WorldWideScience

Sample records for swedish nuclear facilities

  1. Supervision of Waste Management and Environmental Protection at the Swedish Nuclear Facilities 2001

    CERN Document Server

    Persson, M

    2003-01-01

    The report summarizes the supervision of waste management and environmental protection at the nuclear facilities that was carried out by the Swedish Radiation Protection Authority in 2001. A summary of the inspections and a description of important issues connected with the supervision of the nuclear facilities are given.The inspections during 2001 have focused on theme inspections of waste management, environmental inspections considering the environmental monitoring at the Swedish nuclear facilities and review safety analysis and research programs from the Swedish Nuclear Fuel and Waste Management Co.The Swedish Radiation Protection Authority finds that the operations are mainly performed according to current regulations

  2. A Swedish nuclear fuel facility and public acceptance

    International Nuclear Information System (INIS)

    Andersson, Bengt A.

    1989-01-01

    For more than ten years the ABB Atom Nuclear Fuel Facility has gained a lot of public attention in Sweden. When the nuclear power debate was coming up in the middle of the seventies, the Nuclear Fuel Facility very soon became a spectacular object. It provided a possibility to bring factual information about nuclear power to the public. Today that public interest still exists. For ABB Atom the Facility works as a tool of information activities in several ways, as a solid base for ABB Atom company presentations. but also as a very practical demonstration of the nuclear power technology to the public. This is valid especially to satisfy the local school demand for a real life object complementary to the theoretical nuclear technology education. Beyond the fact that the Nuclear Fuel Facility is a very effective fuel production plant, it is not too wrong to see it as an important resource for education as well as a tool for improved public relations

  3. Radioactive discharges and environmental monitoring at the Swedish nuclear facilities 2001; Utslaepps- och omgivningskontroll vid de kaerntekniska anlaeggningarna 2001

    Energy Technology Data Exchange (ETDEWEB)

    Sandwall, Johanna

    2002-11-01

    This report contains an evaluation of the discharge and environmental programme for the Swedish nuclear facilities. It also contains the work on quality control performed by SSI. This is done as random sampling of discharge water and environmental samples.

  4. Supervision of Waste Management and Environmental Protection at the Swedish Nuclear Facilities 2001; Avfall och miljoe vid de kaerntekniska anlaeggningarna. Tillsynsrapport 2001

    Energy Technology Data Exchange (ETDEWEB)

    Persson, Monica [and others

    2003-01-01

    The report summarizes the supervision of waste management and environmental protection at the nuclear facilities that was carried out by the Swedish Radiation Protection Authority in 2001. A summary of the inspections and a description of important issues connected with the supervision of the nuclear facilities are given.The inspections during 2001 have focused on theme inspections of waste management, environmental inspections considering the environmental monitoring at the Swedish nuclear facilities and review safety analysis and research programs from the Swedish Nuclear Fuel and Waste Management Co.The Swedish Radiation Protection Authority finds that the operations are mainly performed according to current regulations.

  5. Swedish nuclear waste efforts

    Energy Technology Data Exchange (ETDEWEB)

    Rydberg, J.

    1981-09-01

    After the introduction of a law prohibiting the start-up of any new nuclear power plant until the utility had shown that the waste produced by the plant could be taken care of in an absolutely safe way, the Swedish nuclear utilities in December 1976 embarked on the Nuclear Fuel Safety Project, which in November 1977 presented a first report, Handling of Spent Nuclear Fuel and Final Storage of Vitrified Waste (KBS-I), and in November 1978 a second report, Handling and Final Storage of Unreprocessed Spent Nuclear Fuel (KBS II). These summary reports were supported by 120 technical reports prepared by 450 experts. The project engaged 70 private and governmental institutions at a total cost of US $15 million. The KBS-I and KBS-II reports are summarized in this document, as are also continued waste research efforts carried out by KBS, SKBF, PRAV, ASEA and other Swedish organizations. The KBS reports describe all steps (except reprocessing) in handling chain from removal from a reactor of spent fuel elements until their radioactive waste products are finally disposed of, in canisters, in an underground granite depository. The KBS concept relies on engineered multibarrier systems in combination with final storage in thoroughly investigated stable geologic formations. This report also briefly describes other activities carried out by the nuclear industry, namely, the construction of a central storage facility for spent fuel elements (to be in operation by 1985), a repository for reactor waste (to be in operation by 1988), and an intermediate storage facility for vitrified high-level waste (to be in operation by 1990). The R and D activities are updated to September 1981.

  6. Supervision of waste management and environmental protection at the Swedish nuclear facilities 1999; Avfall och miljoe vid de kaerntekniska anlaeggningarna. - Tillsynsrapport 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    The report summarizes the supervision of waste management and environmental protection at the nuclear facilities that was carried out by the Swedish Radiation Protection Institute in 1999. A summary of the inspections during 1999 and a description of important issues connected with the supervision of the nuclear facilities are given. The inspections during 1999 have focused on the management of liquid discharges and components containing induced activity at some of the nuclear facilities. Also, routines for filing environmental samples, discharge water samples and documents were inspected at all the different nuclear facilities. The Swedish Radiation Protection Institute finds that the operations are mainly performed according to current regulations.

  7. Programme for the Environmental Control at the Swedish Nuclear Facilities, Revision; Omgivningskontrollprogram foer de kaerntekniska anlaeggningarna, revision

    Energy Technology Data Exchange (ETDEWEB)

    Linden, Ann-Marie

    2004-12-01

    This report contains a revised version of the Environmental Monitoring Programme for the Swedish Nuclear Facilities. The revision is based on earlier experiences and evaluations. Some samples have been excluded. Some have been added, for example spruce cone and the food products apple and currant. The sediment samples of 2 cm length have been completed with samples of 10 cm length every fourth year to follow the migration of radio nuclides down the sediment layers over time. The revised Environmental Monitoring Programme is valid from the 1st of January 2005.

  8. Radioactive discharges and environmental monitoring at the Swedish nuclear facilities 2002-2004; Utslaepps- och omgivningskontroll vid de kaerntekniska anlaeggningarna 2002-2004

    Energy Technology Data Exchange (ETDEWEB)

    Luening, Maria

    2005-11-15

    According to Swedish regulations the effective dose to an individual in the critical group, from one year of releases of radioactive substances to air and water from all facilities located in the same geographically delimited area, shall not exceed 0.1 mSv. The effective dose, which concerns the dose from external radiation and the committed effective dose from internal radiation, shall be integrated over a period of 50 years. When calculating the dose to individuals in the critical group, both children and adults shall be taken into consideration. If the calculated dose exceeds 0.01 mSv per calendar year, realistic calculations of radiation doses shall be conducted for the most affected area. SSI has not defined any radionuclide specific discharge limits. Limitation of releases is being implemented through the restriction of dose to the critical group members. For each nuclear facility, e.g. each reactor, and for each radionuclide that may be released, specific release-to-dose factors have been calculated. The factors have been calculated for hypothetical critical groups, and take into consideration local dispersion conditions in air and in the environment, local settlements, local production of food-stuffs as well as moderately conservative assumptions on diet and contribution of locally produced food-stuff to the diet of the group. For nuclear power reactors, release-to-dose factors (mSv/Bq) have been calculated for 97 radionuclides that may be discharged to the marine environment and 159 radionuclides that may be emitted to air. Discharges shall be controlled through the measurement of representative samples for each release pathway. The analyses shall include nuclide-specific measurements of gamma and alpha-emitting radioactive substances as well as, where relevant, strontium-90 and tritium. The discharges of radioactive substances from the Swedish NPPs result in very low doses well below the limits issued by SSI. Even so, the concentration of radionuclides in

  9. Stakeholder involvement in Swedish nuclear waste management

    Energy Technology Data Exchange (ETDEWEB)

    Elam, Mark; Sundqvist, Goeran [Goeteborg Univ. (Sweden). Section for Science and Technology Studies

    2006-09-15

    This report concerning Swedish nuclear waste management has been produced as part of a cross national research project: CARL - A Social Science Research Project into the Effects of Stakeholder involvement on Decision-Making in Radioactive Waste Management. Besides Sweden, the participating countries are Belgium, Canada, Finland, Slovenia and United Kingdom. A social science research team, working for three years, is in the first phase conducting research in their own countries in order to produce 6 country reports. During the next years the focus will shift to comparisons of stakeholder involvement practices in the participating countries. The report addresses current practices of Swedish nuclear waste management and their historical development. The main focus is on past, current and emerging patterns of stakeholder involvement in the siting of a deep repository for the final disposal of Sweden's spent nuclear fuel. The general questions attended to in the report are: Who are the main stakeholders, and how have they emerged and gained recognition as such? What are the issues currently subject to stakeholder involvement and how have these been decided upon? How is stakeholder involvement organized locally and nationally and how has this changed over time? How has stakeholder involvement gained acceptance as an activity of value in the siting of major waste facilities? The report have attempted to show the development of stakeholder involvement in the siting of a final repository for Sweden's spent nuclear fuel as resembling something other than a straightforward linear process of improvement and refinement. Stakeholder involvement has developed, over the past 15 years or so, into something more like a patchwork of different shapes and forms. Some of the forces that may well contribute to the further elaboration of the patchwork of stakeholder involvement have been pointed out, contingently modifying once more its overall colour and orientation. Questions

  10. Stakeholder involvement in Swedish nuclear waste management

    International Nuclear Information System (INIS)

    Elam, Mark; Sundqvist, Goeran

    2006-09-01

    This report concerning Swedish nuclear waste management has been produced as part of a cross national research project: CARL - A Social Science Research Project into the Effects of Stakeholder involvement on Decision-Making in Radioactive Waste Management. Besides Sweden, the participating countries are Belgium, Canada, Finland, Slovenia and United Kingdom. A social science research team, working for three years, is in the first phase conducting research in their own countries in order to produce 6 country reports. During the next years the focus will shift to comparisons of stakeholder involvement practices in the participating countries. The report addresses current practices of Swedish nuclear waste management and their historical development. The main focus is on past, current and emerging patterns of stakeholder involvement in the siting of a deep repository for the final disposal of Sweden's spent nuclear fuel. The general questions attended to in the report are: Who are the main stakeholders, and how have they emerged and gained recognition as such? What are the issues currently subject to stakeholder involvement and how have these been decided upon? How is stakeholder involvement organized locally and nationally and how has this changed over time? How has stakeholder involvement gained acceptance as an activity of value in the siting of major waste facilities? The report have attempted to show the development of stakeholder involvement in the siting of a final repository for Sweden's spent nuclear fuel as resembling something other than a straightforward linear process of improvement and refinement. Stakeholder involvement has developed, over the past 15 years or so, into something more like a patchwork of different shapes and forms. Some of the forces that may well contribute to the further elaboration of the patchwork of stakeholder involvement have been pointed out, contingently modifying once more its overall colour and orientation. Questions have been

  11. Nuclear facilities

    International Nuclear Information System (INIS)

    Anon.

    2002-01-01

    During September and October 2001, 15 events were recorded on the first grade and 1 on the second grade of the INES scale. The second grade event is in fact a re-classification of an incident that occurred on the second april 2001 at Dampierre power plant. This event happened during core refueling, a shift in the operation sequence led to the wrong positioning of 113 assemblies. A preliminary study of this event shows that this wrong positioning could have led, in other circumstances, to the ignition of nuclear reactions. Even in that case, the analysis made by EDF shows that the consequences on the staff would have been limited. Nevertheless a further study has shown that the existing measuring instruments could not have detected the power increase announcing the beginning of the chain reaction. The investigation has shown that there were deficiencies in the control of the successive operations involved in refueling. EDF has proposed a series of corrective measures to be implemented in all nuclear power plants. The other 15 events are described in the article. During this period 121 inspections have been made in nuclear facilities. (A.C.)

  12. Safety Assessment - Swedish Nuclear Power Plants

    International Nuclear Information System (INIS)

    Kjellstroem, B.

    1996-01-01

    After the reactor accident at Three Mile Island, the Swedish nuclear power plants were equipped with filtered venting of the containment. Several types of accidents can be identified where the filtered venting has no effect on the radioactive release. The probability for such accidents is hopefully very small. It is not possible however to estimate the probability accurately. Experiences gained in the last years, which have been documented in official reports from the Nuclear Power Inspectorate indicate that the probability for core melt accidents in Swedish reactors can be significantly larger than estimated earlier. A probability up to one in a thousand operating years can not be excluded. There are so far no indications that aging of the plants has contributed to an increased accident risk. Maintaining the safety level with aging nuclear power plants can however be expected to be increasingly difficult. It is concluded that the 12 Swedish plants remain a major threat for severe radioactive pollution of the Swedish environment despite measures taken since 1980 to improve their safety. Closing of the nuclear power plants is the only possibility to eliminate this threat. It is recommended that until this is done, quantitative safety goals, same for all Swedish plants, shall be defined and strictly enforced. It is also recommended that utilities distributing misleading information about nuclear power risks shall have their operating license withdrawn. 37 refs

  13. Stakeholder Involvement in Swedish Nuclear Waste Management

    International Nuclear Information System (INIS)

    Elam, Mark; Sundqvist, Goeran

    2006-01-01

    The focus in this paper is on past, current and emerging patterns of stakeholder involvement in the siting of a deep repository for final disposal of Sweden's spent nuclear fuel. In particular, we concentrate on how the two municipalities of Oskarshamn and Oesthammar have acted as engaged stakeholders, and have gained recognition as such, in the siting process. In general: How has stakeholder involvement gained acceptance as an activity of value in the siting of major waste facilities? What are the issues currently subject to stakeholder involvement and how have these been decided upon? An effect of the history of nuclear activity in Oskarshamn and Oesthammar is that stakeholder involvement over a final repository can be divided into social and technical issues. Both municipalities have out of tradition, as part of their social acceptance of a new repository, been prepared to surrender extended involvement in key safety issues. They have been prepared to do this because they also see themselves being able to delegate these safety issues to the government authorities SSI and SKI. These two authorities have been acceptable to the two municipalities as their legitimate 'technological guardians'. As physical geology re-enters the siting process for a deep repository, Oskarshamn appear more prepared to break with tradition than Oesthammar. Oskarshamn are currently demanding transparency from SKB in relation to the exact technical and geological criteria they will use to choose between them and Oesthammar as a repository site. In contrast to Oesthammar, Oskarshamn are preparing with the expected help of SKI and SSI to dispute their geology and its relation to nuclear safety with SKB if they consider it necessary. If Oskarshamn act to draw safety issues in relation to alternative methods and sitings into the EIA process where might this lead? As environmental groups now enter the process (three groups were granted funding in the first round - 2005) the character of site

  14. Safety and Radiation Protection at Swedish Nuclear Power Plants 2005

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-05-15

    In 2005, no severe events occurred which challenged the safety at the Swedish nuclear power plants. However, some events have been given a special focus. The 'Gudrun' storm, which occurred in January 2005, affected the operation of the reactors at Ringhals and Barsebaeck 2. At Ringhals, the switchyards were affected by salt deposits and, at Barsebaeck, the 400kV grid was subjected to interruptions. The long-term trend is that the total number of fuel defects in Swedish reactors is decreasing. The damage that occurs nowadays has mainly been caused by small objects entering the fuel via the coolant and fretting holes in the cladding. To reduce the number of defects of this type, fuel with filters is successively being introduced to prevent debris from entering the fuel assemblies and cyclone filters in the facility which cleans the coolant. Since the mid-nineties, the pressurised water reactors, Ringhals 2, 3 and 4, have had problems with fuel rod bowing in excess of the safety analysis calculations. Ringhals AB (RAB) has adopted measures to rectify the bowing. Follow-up work shows that the fuel rod bowing is decreasing. The followup in 2005 of damaged tubes in the Ringhals 4 steam generators indicates a continued slow damage propagation. Tubes with defects of such a limited extent that there are adequate margins to rupture and loosening have been kept in operation. Damaged tubes with insufficient margins have plugged. During the year, previously observed minor leakage from the reactor containment in Ringhals 2 was investigated in greater detail and repaired. The investigations showed extensive corrosion attack caused by deficiencies in connection with containment construction. The ageing of electrical cables and other equipment in the I-C systems has been examined by SKI. Regulatory supervision has so far shown that these issues are largely handled in a satisfactory manner by the licensees but that certain supplementary investigations and other measures

  15. Operating experience from Swedish nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-06-01

    During 1997 the PWRs in Ringhals performed extremely well (capability factors 85-90%), the unit Ringhals 2 reached the best capability factor since commercial operation started in 1976. The BWRs made an average 76% capability, which is somewhat less than in 1996. The slightly reduced capability derives from ongoing modernization projects at several units. At the youngest plants, Forsmark 3 and Oskarshamn 3, capability and utilization were very high. Events and data for 1997 are given for each reactor, together with operational statistics for the years 1990-1997. A number of safety-related events are reported, which occurred st the Swedish plants during 1997. These events are classified as level 1 or higher on the international nuclear event scale (INES).

  16. The nuclear waste issue in Swedish mass media

    International Nuclear Information System (INIS)

    Hedberg, P.

    1991-04-01

    This is an investigation of the representation given in the Swedish mass media of questions concerning the nuclear waste. The investigation covers the period from 1979 to 1989 of 8 newspapers of different political colours and the Swedish radio and television. (KAE)

  17. Nuclear facilities siting

    International Nuclear Information System (INIS)

    Kruger, P.

    1979-01-01

    A review of the status of requirements for the selection of sites for the facilities comprising the nuclear fuel cycle for electric power production. The report includes a summary of the legal and regulatory constraints that have resulted in complex and lengthy process for licensing of nuclear facilities. The nuclear fuel cycle, including the post-reactor operations of spent fuel reprocessing and waste disposal, is reviewed. Site evaluation factors for each major activity in the fuel cycle include geology, hydrology, demography, geography, meteorology, ecology, and institutional and social aspects. An analysis of current methods available for site evaluation are described. The report concludes with analysis of current issues affecting the ability of the nation's industry to license suitable sites for the many types of facility needed in the nuclear fuel cycle. The report should be of interest to civil engineers concerned with the resolution of technical problems of facility site selection. 36 refs

  18. Delegated democracy. Siting selection for the Swedish nuclear waste

    International Nuclear Information System (INIS)

    Johansson, Hanna Sofia

    2008-11-01

    The present study concerns the siting of the Swedish nuclear waste repository. Four cases are examined: the feasibility studies in Nykoeping and Tierp (cases 1 and 2), as well as three public consultation meetings with conservationist and environmental organisations, and two study visits to nuclear facilities in Oskarshamn and Oesthammar, which were held during what is called the site-investigation phase (cases 3 and 4). The Swedish Nuclear Fuel and Waste Management Co (SKB) began the search for a nuclear waste site in the 1970s. Since 1992 SKB has conducted feasibility studies in eight municipalities, including in the four municipalities mentioned above. At the present time more comprehensive site investigations are underway in Oskarshamn and Oesthammar, two municipalities that already host nuclear power plants as well as storages for nuclear waste. In addition to SKB and the municipalities involved in the site-selection process, politicians, opinion groups, concerned members of the public, and oversight bodies are important actors. The analysis of the cases employs the concepts of 'sub-politics', 'boundary work', and 'expertise', together with the four models of democracy 'representative democracy', participatory democracy', 'deliberative democracy', and 'technocracy'. The aim of the study is to describe the characteristics of Swedish democracy in relation to the disposal of Swedish nuclear waste. The main questions of the study are: Which democratic ideals can be found within SKB's siting process during the feasibility studies and in the consultation process during the site investigations? and Which democratic ideals were influential during the feasibility studies and in the consultation process? The study is based on qualitative methods, and the source materials consist of documents, interviews, and participant observations. In summary, the form of democracy that emerges in the four case studies can be described as delegated democracy. This means that a large

  19. Deregulation and internationalisation - impact on the Swedish nuclear industry

    International Nuclear Information System (INIS)

    Haukeland, Sverre R.

    2010-01-01

    The deregulation of the Swedish electricity market in 1996 was well known in advance, and the nuclear power plants in Sweden, as well as their main suppliers, made early preparations for a this new situation. In a study - performed by the author at Malardalen University in Sweden - it is concluded that the electricity industry, including the nuclear power plants, was fundamentally transformed in conjunction with market liberalisation. Two large foreign companies, E-on and Fortum, entered the Swedish market and became part-owners of the nuclear plants. After deregulation, the electricity market in Sweden is dominated by these two companies and the large national company Vattenfall. Similarly, Vattenfall has recently grown into an international energy company, acquiring generation capacity in Northern Europe outside of Sweden, including nuclear power plants in Germany. Restructuring of the nuclear industry on the supplier side started in the 1980's, when the Swedish company ASEA and BBC of Switzerland merged to become ABB. Several years later the Swedish nuclear plant supplier ABB-Atom became part of Westinghouse Electric Company, today owned by Toshiba. The Swedish experience thus confirms an international trend of mergers and consolidation in the nuclear industry. (authors)

  20. Deregulation and internationalisation - impact on the Swedish nuclear industry

    Energy Technology Data Exchange (ETDEWEB)

    Haukeland, Sverre R. [Swedish Nuclear Society, Vattenfall Research and Development, 162 89 Stockholm (Sweden)

    2010-07-01

    The deregulation of the Swedish electricity market in 1996 was well known in advance, and the nuclear power plants in Sweden, as well as their main suppliers, made early preparations for a this new situation. In a study - performed by the author at Malardalen University in Sweden - it is concluded that the electricity industry, including the nuclear power plants, was fundamentally transformed in conjunction with market liberalisation. Two large foreign companies, E-on and Fortum, entered the Swedish market and became part-owners of the nuclear plants. After deregulation, the electricity market in Sweden is dominated by these two companies and the large national company Vattenfall. Similarly, Vattenfall has recently grown into an international energy company, acquiring generation capacity in Northern Europe outside of Sweden, including nuclear power plants in Germany. Restructuring of the nuclear industry on the supplier side started in the 1980's, when the Swedish company ASEA and BBC of Switzerland merged to become ABB. Several years later the Swedish nuclear plant supplier ABB-Atom became part of Westinghouse Electric Company, today owned by Toshiba. The Swedish experience thus confirms an international trend of mergers and consolidation in the nuclear industry. (authors)

  1. Demonstration and Dialogue: Mediation in Swedish Nuclear Waste Management

    International Nuclear Information System (INIS)

    Elam, Mark; Lidberg, Maria; Soneryd, Linda; Sundqvist, Goeran

    2009-01-01

    This report analyses mediation and mediators in Swedish nuclear waste management. Mediation is about establishing agreement and building common knowledge. It is argued that demonstrations and dialogue are the two prominent approaches to mediation in Swedish nuclear waste management. Mediation through demonstration is about showing, displaying, and pointing out a path to safe disposal for inspection. It implies a strict division between demonstrator and audience. Mediation through dialogue on the other hand, is about collective acknowledgements of uncertainty and suspensions of judgement creating room for broader discussion. In Sweden, it is the Swedish Nuclear Fuel and Waste Management Co. (SKB) that is tasked with finding a method and a site for the final disposal of the nation's nuclear waste. Two different legislative frameworks cover this process. In accordance with the Act on Nuclear Activities, SKB is required to demonstrate the safety of its planned nuclear waste management system to the government, while in respect of the Swedish Environmental Code, they are obliged to organize consultations with the public. How SKB combines these requirements is the main question under investigation in this report in relation to materials deriving from three empirical settings: 1) SKB's safety analyses, 2) SKB's public consultation activities and 3) the 'dialogue projects', initiated by other actors than SKB broadening the public arena for discussion. In conclusion, an attempt is made to characterise the long- term interplay of demonstration and dialogue in Swedish nuclear waste management

  2. Swedish Nuclear Waste Management from Theory to Practice

    International Nuclear Information System (INIS)

    Holmqvist, Magnus

    2008-01-01

    The programme has evolved from a project of a few experts drawing up the outline of what today is a comprehensive programme of research, development, demonstration, design, construction and operation of facilities for radioactive waste management. The Swedish programme was greatly influenced at an early stage by political actions, which included placing the responsibility with the reactor owners to demonstrate safe disposal of spent nuclear fuel and also to fund a disposal programme. The response of the reactor owners was to immediately start the KBS project. Its third report in 1983 described the KBS-3 concept, which is still the basis for SKB's deep geological repository system. Thus, this year is the 25th anniversary of the creation of the well-known KBS-3 concept. The SKB programme for nuclear waste management is today divided in two sub programmes; LILW Programme and the Nuclear Fuel Programme. The LILW Programme is entering into a new phase with the imminent site investigations for the expansion of the SFR LILW repository, which is in operation since 1988, to accept also decommissioning waste. The expansion of SFR is driven by a government decision urging SKB to investigate when a licensing of a repository for decommissioning waste can be made

  3. Decommissioning nuclear facilities

    International Nuclear Information System (INIS)

    Harmon, K.M.; Jenkins, C.E.; Waite, D.A.; Brooksbank, R.E.; Lunis, B.C.; Nemec, J.F.

    1976-01-01

    This paper describes the currently accepted alternatives for decommissioning retired light water reactor fuel cycle facilities and the current state of decommissioning technology. Three alternatives are recognized: Protective Storage; Entombment; and Dismantling. Application of these alternatives to the following types of facilities is briefly described: light water reactors; fuel reprocessing plants, and mixed oxide fuel fabrication plants. Brief descriptions are given of decommissioning operations and results at a number of sites, and recent studies of the future decommissioning of prototype fuel cycle facilities are reviewed. An overview is provided of the types of operations performed and tools used in common decontamination and decommissioning techniques and needs for improved technology are suggested. Planning for decommissioning a nuclear facility is dependent upon the maximum permitted levels of residual radioactive contamination. Proposed guides and recently developed methodology for development of site release criteria are reviewed. 21 fig, 32 references

  4. The Swedish National Defence Research Establishment and the plans for Swedish nuclear weapons

    International Nuclear Information System (INIS)

    Jonter, Thomas

    2001-03-01

    This study analyses the Swedish nuclear weapons research since 1945 carried out by the Swedish National Defence Research Establishment (FOA). The most important aspect of this research was dealing with protection in broad terms against nuclear weapons attacks. However, another aspect was also important from early on - to conduct research aiming at a possible production of nuclear weapons. FOA performed an extended research up to 1968, when the Swedish Government signed the Non-Proliferation Treaty (NPT), which meant the end of these production plans. Up to this date, five main investigations about the technical conditions were made, 1948, 1953, 1955, 1957 and 1965, which all together expanded the Swedish know-how to produce a bomb. The Swedish plans to procure nuclear weapons were not an issue in the debate until the mid 50's. The reason for this was simple, prior to 1954 the plans were secretly held within a small group of involved politicians, military and researchers. The change of this procedure did take place when the Swedish Supreme Commander in a public defence report in 1954 favoured a Swedish Nuclear weapons option. In 1958 FOA had reached a technical level that allowed the Parliament to make a decision. Two programs were proposed - the L-programme (the Loading Programme), to be used if the parliament would say yes to a production of nuclear weapons, and the S-programme (the Protection Programme), if the Parliament would say no. The debate on the issue had now created problems for the Social Democratic Government. The Prime Minister, Tage Erlander, who had earlier defended a procurement of nuclear weapons, was now forced to reach a compromise. The compromise was presented to the parliament in a creative manner that meant that only the S-programme would be allowed. The Government argued that the technical level did allow a 'freedom of action' up to at least the beginning of the 60's when Sweden was mature to make a decision on the issue. During this period

  5. Dismantling of nuclear facilities

    International Nuclear Information System (INIS)

    Tallec, Michele; Kus, Jean-Pierre; Mogavero, Robert; Genelot, Gabriel

    2009-01-01

    Although the operational life of nuclear plants is long (around 60 years for French reactors) it is nonetheless limited in time, the stopping of it being essentially due to the obsolescence of materials and processes or to economic or safety considerations. The nuclear power plants are then subjected to cleanup and dismantling operations which have different objectives and require specific techniques. The cleanup and/or dismantling of a nuclear power produces significant quantities of waste which is generally of a different nature to that produced during the operation of the concerned plant. The radioactive waste produced by these operations is destined to be sent to the waste disposal facilities of the French National Agency for the Management of Nuclear Waste. (authors)

  6. Robotics for nuclear facilities

    International Nuclear Information System (INIS)

    Abe, Akira; Nakayama, Ryoichi; Kubo, Katsumi

    1988-01-01

    It is highly desirable that automatic or remotely controlled machines perform inspection and maintenance tasks in nuclear facilities. Toshiba has been working to develop multi-functional robots, with one typical example being a master-slave manipulator for use in reprocessing facilities. At the same time, the company is also working on the development of multi-purpose intelligent robots. One such device, an automatic inspection robot, to be deployed along a monorail, performs inspection by means of image processing technology, while and advanced intelligent maintenance robot is equipped with a special wheel-locomotion mechanism and manipulator and is designed to perform maintenance tasks. (author)

  7. Nuclear physics accelerator facilities

    International Nuclear Information System (INIS)

    1985-01-01

    The Department of Energy's Nuclear Physics program is a comprehensive program of interdependent experimental and theoretical investigation of atomic nuclei. Long range goals are an understanding of the interactions, properties, and structures of atomic nuclei and nuclear matter at the most elementary level possible and an understanding of the fundamental forces of nature by using nuclei as a proving ground. Basic ingredients of the program are talented and imaginative scientists and a diversity of facilities to provide the variety of probes, instruments, and computational equipment needed for modern nuclear research. Approximately 80% of the total Federal support of basic nuclear research is provided through the Nuclear Physics program; almost all of the remaining 20% is provided by the National Science Foundation. Thus, the Department of Energy (DOE) has a unique responsibility for this important area of basic science and its role in high technology. Experimental and theoretical investigations are leading us to conclude that a new level of understanding of atomic nuclei is achievable. This optimism arises from evidence that: (1) the mesons, protons, and neutrons which are inside nuclei are themselves composed of quarks and gluons and (2) quantum chromodynamics can be developed into a theory which both describes correctly the interaction among quarks and gluons and is also an exact theory of the strong nuclear force. These concepts are important drivers of the Nuclear Physics program

  8. Nuclear instrumentation for nuclear recycle facilities

    International Nuclear Information System (INIS)

    Deshpande, V.K.

    2013-01-01

    Back End Nuclear Fuel Cycle or Nuclear Recycle facilities comprise Reprocessing plants (RP), Nuclear Waste Management (WM) plants for high level, intermediate level and low level liquid waste, vitrified waste interim storage facilities such as interim storage and long term deep geological depositories, Near Surface Disposal Facilities (NSDF) and long term geological disposal for solid waste. At present, RPs processes the spent fuel (SF) from the PHWR - Nuclear Power Plants (NPP) to recover fissile and fertile nuclear material. The nuclear waste comprising of fission products is treated in different waste management facilities based on their radioactivity

  9. The research strategy of the Swedish Nuclear Power Inspectorate

    International Nuclear Information System (INIS)

    2002-06-01

    such projects in future. Furthermore, in the safeguards area, important joint work is underway in ESARDA. Experience has shown that a prerequisite for taking advantage of international research and expertise is that activities on the national level should be of an adequate scope within each area. In SKI's opinion, the increased co-operation offers the possibility of gaining access to important research information at a relatively modest cost. In recent years, concerns have been expressed regarding the possibility of maintaining adequate strategic expertise in the nuclear field. To explore this issue, SKI has investigated the needs in the strategic expertise areas today and within a ten-year perspective. The investigation shows that the annual university recruitment need is a total of about 50 people within the strategic nuclear areas. In SKI's opinion, the education capacity in these areas is adequate at present and is assured for the foreseeable future as a result of the measures taken by SKI and the nuclear industry through the Swedish Nuclear Centre (SKC). There is also concern regarding expertise and resources for conducting qualified experiments. Over the past ten years, several of the world's research reactors and experimental facilities in thermohydraulics have been decommissioned. The OECD/NEA has therefore taken the initiative to support 'Centres of Excellence' (CoE), which are defined as international research groups associated with important experimental facilities. In parallel, within the Sixth Framework Programme, which is starting in 2003, the EU has used the term 'Networks of Excellence' (NoE), where the aim is to achieve co-operation between researchers within a specific research discipline. SKI has investigated the possibility of proposing a CoE in Sweden or of participating in NoE, in order to support important research conducted in Sweden. SKI sees a possibility that Studsvik's R2 reactor and the fuel experiments that can be conducted and analysed at

  10. Delegated Democracy. The Siting of Swedish Nuclear Waste

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Hanna Sofia [Stockholm Univ., SCORE, SE-106 91 Stockholm (Sweden)

    2009-12-15

    This paper aims to characterise Swedish democracy in connection with the disposal of Swedish nuclear waste. To this end, an analysis is performed to discern which democratic ideals that can be found within the nuclear waste issue. The study analyses various actors' views on democracy and expertise as well as their definitions of the nuclear waste issue, and discusses this from the perspective of democracy theory. Which definitions that become influential has democratic implications. In addition, various actors' possible attempts to help or hinder other actors from gaining influence over the nuclear waste issue in the four municipalities are studied. In connection with the case studies the aim of the paper can be narrowed to comprise the following questions: Which democratic ideals can be found within SKB's siting process during the feasibility studies and in the consultation process during the site investigations? Which democratic ideals were influential during the feasibility studies and in the consultation process?.

  11. Delegated Democracy. The Siting of Swedish Nuclear Waste

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Hanna Sofia (Stockholm Univ., SCORE, SE-106 91 Stockholm (Sweden))

    2009-12-15

    This paper aims to characterise Swedish democracy in connection with the disposal of Swedish nuclear waste. To this end, an analysis is performed to discern which democratic ideals that can be found within the nuclear waste issue. The study analyses various actors' views on democracy and expertise as well as their definitions of the nuclear waste issue, and discusses this from the perspective of democracy theory. Which definitions that become influential has democratic implications. In addition, various actors' possible attempts to help or hinder other actors from gaining influence over the nuclear waste issue in the four municipalities are studied. In connection with the case studies the aim of the paper can be narrowed to comprise the following questions: Which democratic ideals can be found within SKB's siting process during the feasibility studies and in the consultation process during the site investigations? Which democratic ideals were influential during the feasibility studies and in the consultation process?

  12. Delegated Democracy. The Siting of Swedish Nuclear Waste

    International Nuclear Information System (INIS)

    Johansson, Hanna Sofia

    2009-12-01

    This paper aims to characterise Swedish democracy in connection with the disposal of Swedish nuclear waste. To this end, an analysis is performed to discern which democratic ideals that can be found within the nuclear waste issue. The study analyses various actors' views on democracy and expertise as well as their definitions of the nuclear waste issue, and discusses this from the perspective of democracy theory. Which definitions that become influential has democratic implications. In addition, various actors' possible attempts to help or hinder other actors from gaining influence over the nuclear waste issue in the four municipalities are studied. In connection with the case studies the aim of the paper can be narrowed to comprise the following questions: Which democratic ideals can be found within SKB's siting process during the feasibility studies and in the consultation process during the site investigations? Which democratic ideals were influential during the feasibility studies and in the consultation process?

  13. Dismantling of nuclear facilities

    International Nuclear Information System (INIS)

    Tallec, M.; Kus, J.P.

    2009-01-01

    Nuclear facilities have a long estimable lifetime but necessarily limited in time. At the end of their operation period, basic nuclear installations are the object of cleansing operations and transformations that will lead to their definitive decommissioning and then to their dismantling. Because each facility is somewhere unique, cleansing and dismantling require specific techniques. The dismantlement consists in the disassembly and disposing off of big equipments, in the elimination of radioactivity in all rooms of the facility, in the demolition of buildings and eventually in the reconversion of all or part of the facility. This article describes these different steps: 1 - dismantling strategy: main de-construction guidelines, expected final state; 2 - industries and sites: cleansing and dismantling at the CEA, EDF's sites under de-construction; 3 - de-construction: main steps, definitive shutdown, preparation of dismantling, electromechanical dismantling, cleansing/decommissioning, demolition, dismantling taken into account at the design stage, management of polluted soils; 4 - waste management: dismantlement wastes, national policy of radioactive waste management, management of dismantlement wastes; 5 - mastery of risks: risk analysis, conformability of risk management with reference documents, main risks encountered at de-construction works; 6 - regulatory procedures; 7 - international overview; 8 - conclusion. (J.S.)

  14. Operating experience from Swedish nuclear power plants 2002

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    The total production of electricity from Swedish nuclear power plants was 65.6 TWh during 2002, which is a decrease compared to 2001. The energy capability factor for the 11 Swedish reactors averaged 80.8%. The PWRs at Ringhals averaged 87.6%, while the BWRs, not counting Oskarshamn 1, reached 89.2%. No events, which in accordance to conventions should be reported to IAEA, have occurred during 2002. Operational statistics are presented for each Swedish reactor. The hydroelectric power was 66 TWh, 16% lower than 2000. Wind power contributed 0.5 TWh, and remaining production sources, mainly from solid fuel plants combined with district heating, contributed 10.9 TWh. The electricity generation totalled 143 TWh, considerably less than the record high 2001 figure of 158.7 TWh. The preliminary figures for export were 14.8 TWh and and for import 20.1 TWh.

  15. Nuclear reactor facility

    International Nuclear Information System (INIS)

    Wampole, N.C.

    1978-01-01

    In order to improve the performance of manitenance and inspections it is proposed for a nuclear reactor facility with a primary circuit containing liquid metal to provide a thermally insulated chamber, within which are placed a number of components of the primary circuit, as e.g. valves, recirculation pump, heat exchangers. The isolated placement permit controlled preheating on one hand, but prevents undesirable heating of adjacent load-bearing elements on the other. The chamber is provided with heating devices and, on the outside, with cooling devices; it is of advantage to fill it with an inert gas. (UWI) 891 HP [de

  16. Technology and costs for decommissioning of Swedish nuclear power plants

    International Nuclear Information System (INIS)

    1994-06-01

    The decommissioning study for the Swedish nuclear power plants has been carried out during 1992 to 1994 and the work has been led by a steering group consisting of people from the nuclear utilities and SKB. The study has been focused on two reference plants, Oskarshamn 3 and Ringhals 2. Oskarshamn 3 is a boiling water reactor (BWR) and Ringhals 2 is a pressurized water reactor (PWR). Subsequently, the result from these plants have been translated to the other Swedish plants. The study gives an account of the procedures, costs, waste quantities and occupational doses associated with decommissioning of the Swedish nuclear power plants. Dismantling is assumed to start immediately after removal of the spent fuel. No attempts at optimization, in terms of technology or costs, have been made. The nuclear power plant site is restored after decommissioning so that it can be released for use without restriction for other industrial activities. The study shows that a reactor can be dismantled in about five years, with an average labour force of about 150 persons. The maximum labour force required for Oskarshamn 3 has been estimated to about 300 persons. This peak load occurred the first years but is reduced to about 50 persons during the demolishing of the buildings. The cost of decommissioning Oskarshamn 3 has been estimated to be about MSEK 940 in January 1994 prices. The decommissioning of Ringhals 2 has been estimated to be MSEK 640. The costs for the other Swedish nuclear power plants lie in the range MSEK 590-960. 17 refs, 21 figs, 15 tabs

  17. Emergy Evaluation of a Swedish Nuclear Power Plant

    International Nuclear Information System (INIS)

    Kindberg, Anna

    2007-03-01

    Today it is common to evaluate and compare energy systems in terms of emission of greenhouse gases. However, energy systems should not only reduce their pollution but also give a large energy return. One method used to measure energy efficiency is emergy (embodied energy, energy memory) evaluation, which was developed by the system ecologist Howard T. Odum. Odum defines emergy as the available energy of one kind previously used up directly and indirectly to make a service or product. Both work of nature and work of human economy in generating products and services are calculated in terms of emergy. Work of nature takes the form of natural resources and work of human economy includes labour, services and products used to transform natural resources into something of value to the economy. The quotient between work of nature and work of human economy gives the emergy return on investment of the investigated product. With this in mind the present work is an attempt to make an emergy evaluation of a Swedish nuclear power plant to estimate its emergy return on investment. The emergy return on investment ratio of a Swedish nuclear power plant is calculated to approximately 11 in this diploma thesis. This means that for all emergy the Swedish economy has invested in the nuclear power plant it gets 11 times more emergy in return in the form of electricity generated by nuclear power. The method used in this work may facilitate future emergy evaluations of other energy systems

  18. Emergy Evaluation of a Swedish Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Kindberg, Anna

    2007-03-15

    Today it is common to evaluate and compare energy systems in terms of emission of greenhouse gases. However, energy systems should not only reduce their pollution but also give a large energy return. One method used to measure energy efficiency is emergy (embodied energy, energy memory) evaluation, which was developed by the system ecologist Howard T. Odum. Odum defines emergy as the available energy of one kind previously used up directly and indirectly to make a service or product. Both work of nature and work of human economy in generating products and services are calculated in terms of emergy. Work of nature takes the form of natural resources and work of human economy includes labour, services and products used to transform natural resources into something of value to the economy. The quotient between work of nature and work of human economy gives the emergy return on investment of the investigated product. With this in mind the present work is an attempt to make an emergy evaluation of a Swedish nuclear power plant to estimate its emergy return on investment. The emergy return on investment ratio of a Swedish nuclear power plant is calculated to approximately 11 in this diploma thesis. This means that for all emergy the Swedish economy has invested in the nuclear power plant it gets 11 times more emergy in return in the form of electricity generated by nuclear power. The method used in this work may facilitate future emergy evaluations of other energy systems.

  19. Nuclear waste packaging facility

    International Nuclear Information System (INIS)

    Mallory, C.W.; Watts, R.E.; Paladino, J.B.; Razor, J.E.; Lilley, A.W.; Winston, S.J.; Stricklin, B.C.

    1987-01-01

    A nuclear waste packaging facility comprising: (a) a first section substantially surrounded by radiation shielding, including means for remotely handling waste delivered to the first section and for placing the waste into a disposal module; (b) a second section substantially surrounded by radiation shielding, including means for handling a deformable container bearing waste delivered to the second section, the handling means including a compactor and means for placing the waste bearing deformable container into the compactor, the compactor capable of applying a compacting force to the waste bearing containers sufficient to inelastically deform the waste and container, and means for delivering the deformed waste bearing containers to a disposal module; (c) a module transportation and loading section disposed between the first and second sections including a means for handling empty modules delivered to the facility and for loading the empty modules on the transport means; the transport means moving empty disposal modules to the first section and empty disposal modules to the second section for locating empty modules in a position for loading with nuclear waste, and (d) a grouting station comprising means for pouring grout into the waste bearing disposal module, and a capping station comprising means for placing a lid onto the waste bearing grout-filled disposal module to completely encapsulate the waste

  20. Steel structures for nuclear facilities

    International Nuclear Information System (INIS)

    1993-01-01

    In the guide the requirements concerning design and fabrication of steel structures for nuclear facilities and documents to be submitted to the Finnish Centre for Radiation and Nuclear Safety (STUK) are presented. Furthermore, regulations concerning inspection of steel structures during construction of nuclear facilities and during their operation are set forth

  1. Robots for nuclear facilities

    International Nuclear Information System (INIS)

    Ozaki, Norihiko; Mizuno, Masaaki; Hirai, Yoshiaki

    1983-01-01

    Since it is unavoidable to work in radiation environment for the development of atomic energy, remote operation and automation techniques are indispensable. As the results of the advance of these techniques, radiation exposure dose has been reduced, the works that men cannot do have become feasible, and the role of supporting the development of atomic energy has been achieved. The remote operation techniques for atomic energy, the automation of BWR and PWR power stations, the remote operation techniques in fuel reprocessing facilities and post-irradiation testing facilities are described. As the examples of the development of remote operation techniques, automatic fuel exchangers, control rod driving mechanism automatic exchangers, automatic ultrasonic flaw detectors for in-service inspection, remotely operated automatic devices for repairing steam generators, PWRs and their fuel, and remotely operated maintenance devices for high level waste liquid solidifying pilot plant and FBR fuel recycling test facility are explained. As the examples of the development of robots, automatic inspection systems for the inside of containment vessels of hung type and floor running type, automatic ultrasonic flaw detectors for welded bent pipes, automatic inspection devices for fuel and control rod driving mechanism, and the robots for dismantling nuclear reactors are described. (Kako, I.)

  2. Regulations concerning nuclear facilities decommissioning

    International Nuclear Information System (INIS)

    Habib, F.

    1984-10-01

    After a short presentation of the French nuclear regulations, a short overview of their application is given. Finally, are presented the points related to the fiscality specific of nuclear basis facilities [fr

  3. Decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    Lunning, W.H.

    1977-01-01

    Collaborative studies are in progress in the U.K. between the U.K.A.E.A., the Generating Boards and other outside bodies, to identify the development issues and practical aspects of decommissioning redundant nuclear facilities. The various types of U.K.A.E.A. experimental reactors (D.F.R., W.A.G.R , S.G.H.W.R.) in support of the nuclear power development programme, together with the currently operating commercial 26 Magnox reactors in 11 stations, totalling some 5 GW will be retired before the end of the century and attention is focussed on these. The actual timing of withdrawal from service will be dictated by development programme requirements in the case of experimental reactors and by commercial and technical considerations in the case of electricity production reactors. Decommissioning studies have so far been confined to technical appraisals including the sequence logic of achieving specific objectives and are based on the generally accepted three stage progression. Stage 1, which is essentially a defuelling and coolant removal operation, is an interim phase. Stage 2 is a storage situation, the duration of which will be influenced by environmental pressures or economic factors including the re-use of existing sites. Stage 3, which implies removal of all active and non-active waste material and returning the site to general use, must be the ultimate objective. The engineering features and the radioactive inventory of the system must be assessed in detail to avoid personnel or environmental hazards during Stage 2. These factors will also influence decisions on the degree of Stage 2 decommissioning and its duration, bearing in mind that for Stage 3 activation may govern the waste disposal route and the associated radiation man-rem exposure during dismantling. Ideally, planning for decommissioning should be considered at the design stage of the facility. An objective of present studies is to identify features which would assist decommissioning of future systems

  4. Nuclear fuel storage facility

    International Nuclear Information System (INIS)

    Matsumoto, Takashi; Isaka, Shinji.

    1987-01-01

    Purpose: To increase the spent fuel storage capacity and reduce the installation cost in a nuclear fuel storage facility. Constitution: Fuels handled in the nuclear fuel storage device of the present invention include the following four types: (1) fresh fuels, (2) 100 % reactor core charged fuels, (3) spent fuels just after taking out and (4) fuels after a certain period (for example one half-year) from taking out of the reactor. Reactivity is high for the fuels (1), and some of fuels (2), while low in the fuels (3) (4), Source intensity is strong for the fuels (3) and some of the fuels (2), while it is low for the fuels (1) and (4). Taking notice of the fact that the reactivity, radioactive source intensity and generated after heat are different in the respective fuels, the size of the pool and the storage capacity are increased by the divided storage control. While on the other hand, since the division is made in one identical pool, the control method becomes important, and the working range is restricted by means of a template, interlock, etc., the operation mode of the handling machine is divided into four, etc. for preventing errors. (Kamimura, M.)

  5. A list of abnormal occurences at Swedish nuclear power stations

    International Nuclear Information System (INIS)

    McHugh, B.

    1974-08-01

    This report consists of a list of extracts from documents belonging to Statens Kaernkraftinspektion (SKI) in Sweden. It deals with non-routine occurrences at the Swedish nuclear power stations which are in operation or where test operations of components and systems have started. The investigation has included matter about the following nuclear power plants: Barsebaeck-1, Oskarshamn-1, Oskarshamn-2, Ringhals-1, Ringhals-2, Aagesta. In all cases from the start of the test operations up to latest the 1st of June 1974. (M.S.)

  6. The Swedish Dilemma: Nuclear Energy v. the Environment

    International Nuclear Information System (INIS)

    Nordhaus, W.D.

    1995-01-01

    A phaseout of nuclear power in Sweden is supposed to be accomplished by year 2010. This study is an economic analysis of the questions that are parts of the Swedish nuclear dilemma. Even though the economic questions are in focus, the important environmental, health and safety questions are also treated. The basic argument is that Sweden should choose an energy system that allows its citizens to maximize their consumption in a long-term perspective. Consumption is here given a meaning that includes elements outside the market, such as environmental, health and safety aspects valued in a reasonable way. Considerations must also be given to international aspects like global environment, a free and open system of trade and the value of a stable set of rules and proprietary rights. The study compares the economic pros and cons of different energy systems within this general frame. A detailed model of the Swedish energy and power sectors was developed for the study, called the Swedish Energy and Environment Policy (SEEP) model. The SEEP model is built on modern economic theory and includes energy and environmental factors in a uniform way. 51 refs, 36 tabs, 6 figs

  7. Failure data collection from a Swedish nuclear power plant

    International Nuclear Information System (INIS)

    Andersson, B.; Bhattacharyya, A.; Hilding, S.

    1975-01-01

    The Swedish nuclear utilities have formed a joint working group in the field of reliability data of thermal power plants, nuclear and fossil fuelled. The primary task of the working group is to create a standard procedure of collecting failure data from the Swedish nuclear power plants in operation. The failure data will be stored in a joint data bank. A first test collection of such data has been implemented on Oskarshamn I, and the experience with this work is discussed in this report. Reliability analysis of an engineering system is based on the availability of pertinent information on the system components. Right from the beginning within the Swedish nuclear industry the consensus has been that such data can be suitably obtained by monitoring the operating power stations. This has led to a co-operative arrangement between the vendor, ASEA-ATOM and a utility, Oskarshamnsverkets Kraftgrupp AB (OKG) to utilize information from component malfunctions in the reliability analysis. The utility prepares component failure reports which are sent to the vendor for further treatment. Experience gathered to date indicates that this arrangement is effective although many persons are involved in this process of information transmittal. The present set-up is flexible enough to accommodate necessary changes in view of problems which arise now and then in monitoring a complex system like a nuclear power station. This report briefly describes the structure of the failure data collection system. The way in which the raw data collection is done in the station by the owner and the subsequent data processing by the vendor is discussed. A brief status report of the information collected since 1971 is given. It can be concluded that valuable reliability data can be obtained by monitoring component failure reports from an operating power plant. Two requirements are, however, that all the parties involved in the arrangement follow given instructions carefully and that the assumed

  8. Concrete structures for nuclear facilities

    International Nuclear Information System (INIS)

    1996-01-01

    The detailed requirements for the design and fabrication of the concrete structures for nuclear facilities and for the documents to be submitted to the Finnish Centre for Radiation and Nuclear Safety (STUK) are given in the guide. It also sets the requirements for the inspection of concrete structures during the construction and operation of facilities. The requirements of the guide primarily apply to new construction. As regards the repair and modification of nuclear facilities built before its publication, the guide is followed to the extent appropriate. The regulatory activities of the Finnish Centre for Radiation and Nuclear Safety during a nuclear facility's licence application review and during the construction and operation of the facility are summarised in the guide YVL 1.1

  9. The Swedish nuclear industry way to approach higher demands on characterisation prior to clearance

    International Nuclear Information System (INIS)

    Larsson, Arne; Hellsten, Erik; Berglund, Malin; Larsson, Lars

    2012-01-01

    The Swedish Radiation Safety Authority (SSM) has introduced new regulations for clearance SSMFS 2011:2 'Regulations concerning clearance of material, rooms, buildings and soil from activities with ionizing radiation'. The new regulations came into force January 1, 2012. Compared to the previous regulations these new regulations have a broader scope and have introduced new conditions such as nuclide specific clearance levels. Clearance is practiced to reduce the amount of radioactive waste generated. Cleared material can be reused, recycled or if these two possibilities are not available, disposed of as conventional waste. To be able to meet the requirements for clearance the Swedish nuclear industry has jointly developed guidance for clearance in the form of a handbook and a training course covering the competence requirements in the new regulations. The handbook was developed by a team of representatives from the Swedish nuclear license holders managed by Studsvik on behalf of Swedish Nuclear Fuel and Waste Management Company (SKB). The training program was developed in co-operation between Nuclear Safety and training Company (KSU) and Studsvik on behalf of the Swedish nuclear license holders. A major challenge in the adoption to the new regulations is how to provide robust yet cost effective characterisation data. This is especially difficult for mobile materials and equipment which cannot be fully tracked but also for other materials and areas where the nuclide fingerprint has varied over the years. To be able to deal with these issues a lot of attention has to be paid to the historical inventory records and traceability in the clearance process. Materials, rooms and buildings have been divided in four categories with different requirements on frequency and requirements of measurements. The categories are named 'extremely small risk', 'small risk', 'risk' and 'known contamination above clearance levels'. The two day training course is dived into seven parts

  10. Childhood leukemia around nuclear facilities

    International Nuclear Information System (INIS)

    1991-01-01

    This Information Bulletin highlights the conclusion made from an Atomic Energy Control Board of Canada (AECB) study on the incidence of childhood leukemia near nuclear facilities. All of the locations with the nuclear facilities are located in Ontario, the nuclear generating stations at Pickering and Bruce; the uranium mines and mills in Elliot Lake; the uranium refining facility in Port Hope; and nuclear research facilities located at Chalk River plus the small nuclear power plant in Rolphton. Two conclusions are drawn from the study: 1) while the rate of childhood leukemias made be higher or lower than the provincial average, there is no statistical evidence that the difference is due to anything but the natural variation in the occurrence of the disease; and 2) the rate of occurrence of childhood leukemia around the Pickering nuclear power station was slightly greater than the Ontario average both before and after the plant opened, but this, too , could be due to the natural variation

  11. Opinions of the Swedish people on nuclear power and final disposal of nuclear wastes after Chernobyl

    International Nuclear Information System (INIS)

    Holmberg, Soeren

    1988-10-01

    Swedish public opinion, post-Chernobyl, on nuclear power and waste is analyzed and commented. The three main issues are: To what extent did the Chernobyl-accidendt influence the public opinion on nuclear power; How are the opinions on nuclear power connected to sex, age, political preferences; Should disposed high level nuclear waste be retrievable or not. The report is the result of several public opinion surveys. (L.E)

  12. European stress tests for nuclear power plants. The Swedish National Report

    International Nuclear Information System (INIS)

    2011-01-01

    On 11 March 2011, the Tohoku region in north Honshu, Japan, suffered a severe earthquake with an ensuing tsunami and an accident at the Fukushima Dai-ichi nuclear power plant. Due to the accident the Council of the European Union declared in late March that Member States were prepared to begin reviewing safety at nuclear facilities in the European Union by means of a comprehensive assessment of risk and safety ('stress testing'). On 25 May, SSM ordered the licensees of the nuclear power plants to conduct renewed analyses of the facilities' resilience against different kinds of natural phenomena. They were also to analyse how the facilities would be capable of dealing with a prolonged loss of electrical power, regardless of cause. On 31 October, the licensees reported on their stress tests to SSM. After reviewing these reports, SSM produced a summary stress test report, which was submitted to the Government on the 15 December. The present report is the national report on Swedish stress tests of nuclear power plants. The report will be submit to the European Commission no later than 31 December. Based on the review SSM has drawn the conclusion that the stress tests carried out by Swedish licensees are largely performed in accordance with the specification resolved within the European Union. The scope and depth of these analyses and assessments are essentially in accordance with ENSREG's definition of 'a comprehensive assessment of risk and safety'. The stress tests show that Swedish facilities are robust, but the tests also identify a number of opportunities to further strengthen the facilities' robustness. SSM will order the respective licensees to present an action plan for dealing with the results from the stress tests. The Authority will then examine the plans and adopt a standpoint on proposed measures as well as check that the necessary safety improvements are made. In a number of cases, the stress tests indicate deficiencies in relation to, or alternatively

  13. Swedish support programme on nuclear non-proliferation in Central and Eastern Europe and Central Asia

    International Nuclear Information System (INIS)

    Ek, P.; Andersson, Sarmite; Wredberg, L.

    2000-06-01

    At the request of the Swedish Government, the Swedish Nuclear Power Inspectorate has established a support and co-operation programme in the area of nuclear non-proliferation with Russia and several of the republics of the former Soviet Union. The Programme was initiated in 1991 and an overall goal is to accomplish national means and measures for control and protection of nuclear material and facilities, in order to minimise the risk of proliferation of nuclear weapons and illicit trafficking of nuclear material and equipment. The objective of the Swedish Support Programme is to help each, so called, recipient State to be able to, independently and without help from outside, take the full responsibility for operating a national non-proliferation system and thereby fulfil the requirements imposed through the international legal instruments. This would include both the development and implementation of a modern nuclear legislation system, and the establishment of the components making up a national system for combating illicit trafficking. The support and co-operation projects are organised in five Project Groups (i.e. nuclear legislation, nuclear material control, physical protection, export/import control, and combating of illicit trafficking), which together cover the entire non-proliferation area. Up till June 2000, support and co-operation projects, completed and on-going, have been carried out in ten States, namely Armenia, Azerbaijan, Belarus, Georgia, Kazakstan, Latvia, Lithuania, Moldova, Russia and Ukraine. Furthermore, programmes have been initiated during the first part of 2000 with Estonia, Uzbekistan, Kyrgyzstan and Tajikistan. In addition, assistance has been given to Poland on a specific nuclear material accountancy topic. All projects are done on request by and in co-operation with these States. The total number of projects initiated during the period 1991 to June 2000 is 109, thereof 77 have been completed and 32 are currently on-going. It is the

  14. Swedish support programme on nuclear non-proliferation in Central and Eastern Europe and Central Asia

    Energy Technology Data Exchange (ETDEWEB)

    Ek, P.; Andersson, Sarmite [Swedish Nuclear Power Inspectorate, Stockholm (Sweden); Wredberg, L. [ILG Consultant Ltd., Vienna (Austria)

    2000-06-15

    At the request of the Swedish Government, the Swedish Nuclear Power Inspectorate has established a support and co-operation programme in the area of nuclear non-proliferation with Russia and several of the republics of the former Soviet Union. The Programme was initiated in 1991 and an overall goal is to accomplish national means and measures for control and protection of nuclear material and facilities, in order to minimise the risk of proliferation of nuclear weapons and illicit trafficking of nuclear material and equipment. The objective of the Swedish Support Programme is to help each, so called, recipient State to be able to, independently and without help from outside, take the full responsibility for operating a national non-proliferation system and thereby fulfil the requirements imposed through the international legal instruments. This would include both the development and implementation of a modern nuclear legislation system, and the establishment of the components making up a national system for combating illicit trafficking. The support and co-operation projects are organised in five Project Groups (i.e. nuclear legislation, nuclear material control, physical protection, export/import control, and combating of illicit trafficking), which together cover the entire non-proliferation area. Up till June 2000, support and co-operation projects, completed and on-going, have been carried out in ten States, namely Armenia, Azerbaijan, Belarus, Georgia, Kazakstan, Latvia, Lithuania, Moldova, Russia and Ukraine. Furthermore, programmes have been initiated during the first part of 2000 with Estonia, Uzbekistan, Kyrgyzstan and Tajikistan. In addition, assistance has been given to Poland on a specific nuclear material accountancy topic. All projects are done on request by and in co-operation with these States. The total number of projects initiated during the period 1991 to June 2000 is 109, thereof 77 have been completed and 32 are currently on-going. It is the

  15. Changes in control room at Swedish nuclear power plants

    International Nuclear Information System (INIS)

    Kecklund, Lena

    2005-09-01

    The Swedish nuclear power plants were commissioned during a period between 1972 and 1985 and the instrumentation and control equipment are basically from that period. For several years there have been plans made for changes in all the nuclear power plants and to a certain extent the changes in control equipment and monitoring rooms have also been implemented. The object of this project was to make a comprehensive review of the changes in control room design implemented in the Swedish nuclear power plants and to describe how the MTO- (Man-Technology-Organisation) and (Man-Machine-Interface) -issues have been integrated in the process. The survey is intended to give an overall picture of the changes in control room design and man-machine-interface made in the Swedish control rooms, in order to get a deeper knowledge of the change management process and its results as well as of the management of MTO-issues in these projects. The units included in this survey are: Oskarhamn reactor 2 and 3; Ringhals reactor 2, 3 and 4; Forsmark reactor 1, 2 and 3. The Oskarshamn 1 unit has not been included in this report as it has recently undergone an extensive modernisation program as well as a detailed inspection by the SKI (Swedish Nuclear Power Inspectorate). At Ringhals 2 the modernisation work is carried out at present and the unit is also subjected to extensive inspection activities carried out by SKI and is therefore not part of this survey. This report also includes a short description of relevant standards and requirements. Then follows a presentation of the results of the plant survey, presented as case studies for three companies OKG, Ringhals and FKA. Control room changes are summarized as well as the results on specific MTO issues which has been surveyed. In all the power companies there is a joint way of working with projects concerning plant modifications. This process is described for each company separately. In the concluding of the report the strengths and

  16. Earthquake engineering for nuclear facilities

    CERN Document Server

    Kuno, Michiya

    2017-01-01

    This book is a comprehensive compilation of earthquake- and tsunami-related technologies and knowledge for the design and construction of nuclear facilities. As such, it covers a wide range of fields including civil engineering, architecture, geotechnical engineering, mechanical engineering, and nuclear engineering, for the development of new technologies providing greater resistance against earthquakes and tsunamis. It is crucial both for students of nuclear energy courses and for young engineers in nuclear power generation industries to understand the basics and principles of earthquake- and tsunami-resistant design of nuclear facilities. In Part I, "Seismic Design of Nuclear Power Plants", the design of nuclear power plants to withstand earthquakes and tsunamis is explained, focusing on buildings, equipment's, and civil engineering structures. In Part II, "Basics of Earthquake Engineering", fundamental knowledge of earthquakes and tsunamis as well as the dynamic response of structures and foundation ground...

  17. Deep geological disposal of nuclear waste in the Swedish crystalline bedrock

    International Nuclear Information System (INIS)

    Thegerstroem, Claes; Laarouchi Engstroem, Saida

    2013-01-01

    Nuclear power companies in Sweden jointly established the Swedish Nuclear Fuel and Waste Management Company (SKB) in the 1970s. SKB's assignment is to manage and dispose of all radioactive waste from Swedish nuclear power plants in such a way as to secure maximum safety for human beings and the environment. Since 1992 a stepwise process has been under way, aiming at finding a site for a final repository for spent nuclear fuel. This process was based on our view that a successful work requires that the safety of the site finally selected is met and that the municipality is in favour of the siting. SKB's record of communication related activities includes a wide variety of experiences, and we have learned from all of them. Over time we have identified a number of basic conditions, which are fundamental for a stable and successful siting process. - The siting process shall be transparent and based on voluntary participation. - It's important to maintain a constant dialogue and to express it in comprehensible terms. - A clear division of responsibilities between stakeholders is a key question. - Give the process the time that is needed - try to avoid being in too much of a hurry. - A step-wise and adaptive approach to the implementation of the disposal system. - Despite all non-technical aspects of communication, the continued good performances of operating facilities and of R and D work to guarantee top-quality technical systems are a must. (orig.)

  18. The Swedish dilemma - Nuclear energy v. the environment

    Energy Technology Data Exchange (ETDEWEB)

    Nordhaus, W.D. [Yale Univ. (United States)

    1995-11-01

    A phaseout of nuclear power in Sweden is supposed to be accomplished by year 2010. This study is an economic analysis of the questions that are parts of the nuclear dilemma. Even though the economic questions are in focus, the important environmental, health and safety questions are also treated. The basic argument is that Sweden should choose an energy system that allows its citizens to maximize their consumption in a long-term perspective. Consumption is here given a meaning that includes elements outside the market, such as environmental, health and safety aspects valued in a reasonable way. Considerations must also be given to international aspects like global environment, a free and open system of trade and the value of a stable set of rules and proprietary rights. The study compares the economic pros and cons of different energy systems within this general frame. A detailed model of the Swedish energy and power sectors was developed for the study, called the Swedish Energy and Environment Policy (SEEP) model. the SEEP model is built on modern economic theory and includes energy and environmental factors in a uniform way. 8 figs 16 tabs.

  19. The Swedish dilemma - Nuclear energy v. the environment

    International Nuclear Information System (INIS)

    Nordhaus, W.D.

    1995-11-01

    A phaseout of nuclear power in Sweden is supposed to be accomplished by year 2010. This study is an economic analysis of the questions that are parts of the nuclear dilemma. Even though the economic questions are in focus, the important environmental, health and safety questions are also treated. The basic argument is that Sweden should choose an energy system that allows its citizens to maximize their consumption in a long-term perspective. Consumption is here given a meaning that includes elements outside the market, such as environmental, health and safety aspects valued in a reasonable way. Considerations must also be given to international aspects like global environment, a free and open system of trade and the value of a stable set of rules and proprietary rights. The study compares the economic pros and cons of different energy systems within this general frame. A detailed model of the Swedish energy and power sectors was developed for the study, called the Swedish Energy and Environment Policy (SEEP) model. the SEEP model is built on modern economic theory and includes energy and environmental factors in a uniform way. 8 figs 16 tabs

  20. Nuclear facilities licensing

    International Nuclear Information System (INIS)

    Carvalho, A.J.M. de.

    1978-01-01

    The need for the adoption of a legal and normative system, defining objectives, pescriptions and the process of nuclear licensing and building of nuclear power plants in Brazil is enphasized. General rules for the development of this system are presented. The Brazilian rules on the matter are discussed. A general view of the German legal system for nuclear power plant licensing and the IAEA recommendations on the subject are finally presented. (A.L.S.L.) [pt

  1. The Swedish Nuclear Power Inspectorate's Review Statement and Evaluation of the Swedish Nuclear Fuel and Waste Management Co's RD and D Programme 2001

    International Nuclear Information System (INIS)

    2002-09-01

    According to the Act on Nuclear Activities, the holder of a licence to operate a nuclear reactor must adopt all necessary measures to manage and dispose of spent nuclear fuel and nuclear waste. The Act stipulates requirements on a research programme which is to be submitted to the competent regulatory authority once every three years. The Swedish Nuclear Power Inspectorate (SKI) is the competent authority that evaluates and reviews the programme. SKI distributes the programme to a wide circle of reviewing bodies for comment, including authorities, municipalities, universities and NGOs. The Swedish programme for final disposal of spent nuclear fuel started about 25 years ago. According to the Swedish Nuclear Waste Management Co. (SKB), the planned repository will not be closed until sometime in the 2050's. A series of decisions must be made before this goal is attained. The decision process can therefore be described as a multi-stage process. During each stages, safety will be evaluated and there is a possibility of taking additional time for development work or of selecting improved solutions. SKI's task is to ensure safety compliance throughout all of these stages. In its decision in January 2000, the Government explained that the Programme for Research, Development and Demonstration for the Treatment and Final Disposal of Nuclear Waste (RD and D Programme 98) complied with legislative requirements but that certain supplementary reporting should be conducted by SKB and submitted no later than when the next programme, in accordance with paragraph 12 of the Act on Nuclear Activities, was prepared (September 2001). The supplementary reporting requested by the Government, and which was submitted by SKB to SKI in December 2000, dealt with issues relating to method selection, site selection and the site investigation programme. SKI submitted its review of the supplement to the Government in June 2001 and the Government made a decision on the matter on November 1, 2001

  2. Technology and costs for decommissioning the Swedish nuclear power plants

    International Nuclear Information System (INIS)

    1986-05-01

    The study shows that, from the viewpoint of radiological safety, a nuclear power plant can be dismantled immediately after it has been shut down and the fuel has been removed, which is estimated to take about one year. Most of the equipment that will be used in decommissioning is already available and is used routinely in maintenance and rebuilding work at the nuclear power plants. Special equipment need only be developed for dismantlement of the reactor vessel and for demolishing of heavy concrete structures. The dismantling of a nuclear power plant can be accomplished in about five years, with an average labour force of about 200 men. The maximum labour force required for Ringhals 1 has been estimated at about 500 men during the first years, when active systems are being dismantled in a number of fronts in the plant. During the last years when the buildings are being demolished, approximately 50 men are required. In order to limit the labour requirement and the dose burden to the personnel, the material is taken out in as large pieces as possible. The cost of decommissioning a boiling water reactor (BWR) of the size of Ringhals 1 has been estimated to be about MSEK 540 in January 1986 prices, and for a pressurized water reactor (PWR, Ringhals 2) about MSEK 460. The cost for the other Swedish nuclear power plants lie in the range of MSEK 410-760. These are the direct cost for the decommissioning work, to which must be added the costs of transportation and disposal of the decommissioning waste, about 100 000 m/sup3/. These costs have been estimated to be about MSEK 600 for the 12 Swedish reactors. (author)

  3. Swedish perspective on the accelerator driven nuclear system

    International Nuclear Information System (INIS)

    Gudowski, W.; Conde, H.

    1997-01-01

    Accelerator-driven nuclear systems can become an important complement for nuclear reactors, opening new options for the nuclear fuel cycle and furthermore, in countries like Sweden, where of conventional nuclear power has no future prospects, these systems can make nuclear energy an attractive source of environmentally friendly energy again. Also the idea of burning weapon grade Plutonium in accelerator driven systems has a lot of advantages. Intensive international cooperation and common efforts to build the first demonstration facility are the best ways to achieve these goals

  4. Decontamination of nuclear facilities

    International Nuclear Information System (INIS)

    1982-01-01

    Thirty-seven papers were presented at this conference in five sessions. Topics covered include regulation, control and consequences of decontamination; decontamination of components and facilities; chemical and non-chemical methods of decontamination; and TMI decontamination experience

  5. Facilities inventory protection for nuclear facilities

    International Nuclear Information System (INIS)

    Schmitt, F.J.

    1989-01-01

    The fact that shut-down applications have been filed for nuclear power plants, suggests to have a scrutinizing look at the scopes of assessment and decision available to administrations and courts for the protection of facilities inventories relative to legal and constitutional requirements. The paper outlines the legal bases which need to be observed if purposeful calculation is to be ensured. Based on the different actual conditions and legal consequences, the author distinguishes between 1) the legal situation of facilities licenced already and 2) the legal situation of facilities under planning during the licencing stage. As indicated by the contents and restrictions of the pertinent provisions of the Atomic Energy Act and by the corresponding compensatory regulation, the object of the protection of facilities inventor in the legal position of the facility owner within the purview of the Atomic Energy Act, and the licensing proper. Art. 17 of the Atomic Energy Act indicates the legislators intent that, once issued, the licence will be the pivotal point for regulations aiming at protection and intervention. (orig./HSCH) [de

  6. Meddling in the KBS Programme and Swedish Success in Nuclear Waste Management

    Energy Technology Data Exchange (ETDEWEB)

    Elam, Mark (Univ. of Goeteborg, Goeteborg (Sweden)), e-mail: mark.elam@sts.gu.se; Sundqvist, Goeran (Univ. of Oslo, Oslo (Norway))

    2010-09-15

    production of nuclear waste facilities themselves which can be seen as firstly adding further weight and credibility to what has already been demonstrated. The materialization of solutions in terms of copper canisters that can be experimented on, or a 'dress rehearsal' repository that can be opened to the public, is important for maintaining and enlarging SKB's ability to demonstrate KBS within reach, but remains nothing that should be rushed into. When KBS becomes too close to hand, and starts to approximate an immutable mobile, it becomes harder to translate it into something else in the face of challenging circumstance. Thus, the remarkable success of Swedish nuclear waste management so far can be ultimately ascribed to an ability for continually producing signs of a definite end to the implementation of geological disposal in sight, while never sacrificing the capacity for showing this end undergoing necessary improvement and becoming otherwise. Bearing this in mind, the best way to read SKB's recent announcement of Oesthammar as their preferred site for a KBS 3 repository is as yet another powerful and compelling sign of the attainability of nuclear fuel safety, not to be confused with its attainment

  7. Quarterly report of the Swedish Nuclear Power Inspectorate April - June 1981

    International Nuclear Information System (INIS)

    1981-01-01

    The inspectorate has the supervision of the nuclear power plants and other nuclear installations. The report includes statements of security inspections of the Swedish nuclear power plants and accounts of handling, transport and storing of fissionable materials. Safety problems in Studsvik and at ASEA- ATOM concerning nuclear fuel and nuclear waste are discussed. (G.B.)

  8. Ventilation of nuclear facilities

    International Nuclear Information System (INIS)

    1982-01-01

    In this work an examination is made of ventilation problems in nuclear installations, of the fuel cycle or the handling of radioactive compounds. The study covers the detection of radioactive aerosols, purification, iodine trapping, ventilation equipment and its maintenance, engineering, safety of ventilation, fire efficiency, operation, regulations and normalization [fr

  9. The Swedish concept for disposal of waste arising from the operation of nuclear power plants

    International Nuclear Information System (INIS)

    Carlsson, J.

    1996-01-01

    The Swedish nuclear power programme consists of 12 reactors producing 50% of the electricity in Sweden. It is stated by law that a waste producer has to make sure a safe handling and disposal of his radioactive waste. SKB is performing necessary activities on behalf of the waste producers. A system is in operation today that will manage all the radioactive waste produced in the country. The system consists of a transportation system, a final repository for operational waste and an interim storage facility for spent fuel. What remains to be built is an encapsulation plant for the spent fuel and a deep repository for final disposal of spent fuel and other long lived waste. All costs for managing and disposal of radioactive waste is paid by the owners of the nuclear power utilities. (author) 9 figs

  10. Radiation protection of workers at nuclear facilities

    International Nuclear Information System (INIS)

    2005-01-01

    The guide applies to the radiation protection of nuclear facility workers during the operation of the facility. The monitoring of occupational exposure at nuclear facilities, the radiation monitoring systems and equipment in nuclear facilities, the requirements for radiation safety aspects in the design of nuclear facilities and medical surveillance of exposed workers are presented in separate guides of the Finnish Radiation and Nuclear Safety Authority (STUK)

  11. Nuclear Station Facilities Improvement Planning

    International Nuclear Information System (INIS)

    Hooks, R. W.; Lunardini, A. L.; Zaben, O.

    1991-01-01

    An effective facilities improvement program will include a plan for the temporary relocation of personnel during the construction of an adjoining service building addition. Since the smooth continuation of plant operation is of paramount importance, the phasing plan is established to minimize the disruptions in day-to-day station operation and administration. This plan should consider the final occupancy arrangements and the transition to the new structure; for example, computer hookup and phase-in should be considered. The nuclear industry is placing more emphasis on safety and reliability of nuclear power plants. In order to do this, more emphasis is placed on operations and maintenance. This results in increased size of managerial, technical and maintenance staffs. This in turn requires improved office and service facilities. The facilities that require improvement may include training areas, rad waste processing and storage facilities, and maintenance facilities. This paper discusses an approach for developing an effective program to plan and implement these projects. These improvement projects can range in magnitude from modifying a simple system to building a new structure to allocating space for a future project. This paper addresses the planning required for the new structures with emphasis on site location, space allocation, and internal layout. Since facility planning has recently been completed by Sargent and Leyden at six U. S. nuclear stations, specific examples from some of those plants are presented. Site planning and the establishment of long-range goals are of the utmost importance when undertaking a facilities improvement program for a nuclear station. A plan that considers the total site usage will enhance the value of both the new and existing facilities. Proper planning at the beginning of the program can minimize costs and maximize the benefits of the program

  12. LAMPF: a nuclear research facility

    International Nuclear Information System (INIS)

    Livingston, M.S.

    1977-09-01

    A description is given of the recently completed Los Alamos Meson Physics Facility (LAMPF) which is now taking its place as one of the major installations in this country for the support of research in nuclear science and its applications. Descriptions are given of the organization of the Laboratory, the Users Group, experimental facilities for research and for applications, and procedures for carrying on research studies

  13. Design of a Prototype Differential Die‐Away Instrument Proposed for Swedish Spent Nuclear Fuel Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Martinik, Tomas, E-mail: tomas.martinik@physics.uu.se [Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala (Sweden); Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Henzl, Vladimir [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Grape, Sophie; Jansson, Peter [Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala (Sweden); Swinhoe, Martyn T.; Goodsell, Alison V. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Tobin, Stephen J. [Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala (Sweden); Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Swedish Nuclear Fuel and Waste Management Company, Blekholmstorget 30, Box 250, SE-101 24 Stockholm (Sweden)

    2016-06-11

    As part of the United States (US) Department of Energy's Next Generation Safeguards Initiative Spent Fuel (NGSI-SF) project, the traditional Differential Die-Away (DDA) method that was originally developed for waste drum assay has been investigated and modified to provide a novel application to characterize or verify spent nuclear fuel (SNF). Following the promising, yet largely theoretical and simulation based, research of physics aspects of the DDA technique applied to SNF assay during the early stages of the NGSI-SF project, the most recent effort has been focused on the practical aspects of developing the first fully functional and deployable DDA prototype instrument for spent fuel. As a result of the collaboration among US research institutions and Sweden, the opportunity to test the newly proposed instrument's performance with commercial grade SNF at the Swedish Interim Storage Facility (Clab) emerged. Therefore the design of this instrument prototype has to accommodate the requirements of the Swedish regulator as well as specific engineering constrains given by the unique industrial environment. Within this paper, we identify key components of the DDA based instrument and we present methodology for evaluation and the results of a selection of the most relevant design parameters in order to optimize the performance for a given application, i.e. test-deployment, including assay of 50 preselected spent nuclear fuel assemblies of both pressurized (PWR) as well as boiling (BWR) water reactor type.

  14. Introduction to nuclear facilities engineering

    International Nuclear Information System (INIS)

    Sapy, Georges

    2012-06-01

    Engineering, or 'engineer's art', aims at transforming simple principle schemes into operational facilities often complex especially when they concern the nuclear industry. This transformation requires various knowledge and skills: in nuclear sciences and technologies (nuclear physics, neutronics, thermal-hydraulics, material properties, radiation protection..), as well as in non-nuclear sciences and technologies (civil engineering, mechanics, electricity, computer sciences, instrumentation and control..), and in the regulatory, legal, contractual and financial domains. This book explains how this huge body of knowledge and skills must be organized and coordinated to create a reliable, exploitable, available, profitable and long-lasting facility, together with respecting extremely high safety, quality, and environmental impact requirements. Each aspect of the problem is approached through the commented presentation of nuclear engineering macro-processes: legal procedures and administrative authorizations, nuclear safety/radiation protection/security approach, design and detailed studies, purchase of equipments, on-site construction, bringing into operation, financing, legal, contractual and logistic aspects, all under the global control of a project management. The 'hyper-complexness' of such an approach leads to hard points and unexpected events. The author identifies the most common ones and proposes some possible solutions to avoid, mitigate or deal with them. In a more general way, he proposes some thoughts about the performance factors of a nuclear engineering process

  15. Meteorological instrumentation for nuclear facilities

    International Nuclear Information System (INIS)

    Costa, A.C.L. da.

    1983-01-01

    The main requirements of regulatory agencies, concerning the meteorological instrumentation needed for the licensing of nuclear facilities are discussed. A description is made of the operational principles of sensors for the various meteorological parameters and associated electronic systems. An analysis of the problems associated with grounding of a typical meteorological station is presented. (Author) [pt

  16. Nuclear power generation facility

    International Nuclear Information System (INIS)

    Kubo, Mitsuji.

    1996-01-01

    Main steams are introduced from a moisture separation device for removing moisture content of the main steams to a low pressure turbine passing through a cross-around pipe. A condensate desalter comprising a mixed floor-type desalting tower using granular ion exchange resins is disposed at the downstream of the main condensator by way of condensate pipelines, and a feedwater heater is disposed at the downstream. Structural members of the main condensator are formed by weather proof steels. Low alloy steels are used partially or entirely for the cross-around pipe, gas extraction pipelines, heat draining pipelines, inner structural members other than pipelines in the feedwater heater, and the body and the inner structural members of the moisture separator. Titanium or a titanium alloy is used for the pipelines in the main condensator. With such a constitution, BWR type reactor facilities, in which the concentration of cruds inflown to the condensate cleanup system is reduced to simplify the condensate cleanup device can be obtained. (I.N.)

  17. Nuclear reactor containing facility

    International Nuclear Information System (INIS)

    Hidaka, Masataka; Murase, Michio.

    1994-01-01

    In a reactor containing facility, a condensation means is disposed above the water level of a cooling water pool to condensate steams of the cooling water pool, and return the condensated water to the cooling water pool. Upon occurrence of a pipeline rupture accident, steams generated by after-heat of a reactor core are caused to flow into a bent tube, blown from the exit of the bent tube into a suppression pool and condensated in a suppression pool water, thereby suppressing the pressure in the reactor container. Cooling water in the cooling water pool is boiled by heat conduction due to the condensation of steams, then the steams are exhausted to the outside of the reactor container to remove the heat of the reactor container to the outside of the reactor. In addition, since cooling water is supplied to the cooling water pool quasi-permanently by gravity as a natural force, the reactor container can be cooled by the cooling water pool for a long period of time. Since the condensation means is constituted with a closed loop and interrupted from the outside, radioactive materials are never released to the outside. (N.H.)

  18. Handling of waste at Swedish nuclear power plants

    International Nuclear Information System (INIS)

    Mandahl, B.; Persson, B.; Wikdahl, C.E.

    1977-01-01

    The Swedish nuclear power program started with a 460 MW BWR at Oskarshamn in 1972. The main practical experience in nuclear waste management originates from this unit. Since 1975 five further reactor units have been taken into use and there are now definite plans for a total of 13 units. The waste handling in Sweden now considered is therefore orientated towards a system with 13 operational units. The paper describes the end products and the waste handling systems currently in use. Present day methods and equipment will be discussed as well as trends towards modification of these techniques. Estimates will be made of the quantities of the end products and their radioactive content. Necessary decay times before the waste can be released as nonactive material will also be estimated. Lay-out and capacity of the waste stores at some plants and the need for transport equipment at the sites will be described. The paper also discusses the need for centralized long term storage and even methods for centralized waste treatment aimed at reducing the volume of materials requiring storage

  19. A review of the scope and the cost of the Swedish nuclear waste management system

    International Nuclear Information System (INIS)

    1994-03-01

    A Swedish translation of this report appears as an appendix in SOU 1004:108 (ISBN 91-38-13755-0). The report is prepared for the Nuclear Fond Commission and Ministry of Environment and Natural Resources

  20. Radiation protection in nuclear facilities

    International Nuclear Information System (INIS)

    Piechowski, J.; Lochard, J.; Lefaure, Ch.; Schieber, C.; Schneider, Th; Lecomte, J.F.; Delmont, D.; Boitel, S.; Le Fauconnier, J.P.; Sugier, A; Zerbib, J.C.; Barbey, P.

    1998-01-01

    Close ties exist between nuclear safety and radiation protection. Nuclear safety is made up of all the arrangements taken to prevent accidents occurring in nuclear facilities, these accidents would certainly involved a radiological aspect. Radiation protection is made up of all the arrangements taken to evaluate and reduce the impact of radiation on workers or population in normal situations or in case of accident. In the fifties the management of radiological hazards was based on the quest for minimal or even zero risk. This formulation could lead to call some activities in question whereas the benefits for the whole society were evident. Now a new attitude more aware of the real risks and of no wasting resources prevails. This attitude is based on the ALARA principle whose purpose is to maintain the exposure to radiation as low as reasonably achievable taking into account social and economic concerns. This document regroups articles illustrating different aspects of the radiation protection in nuclear facilities such as a research center, a waste vitrification workshop and a nuclear power plant. The surveillance of radiological impacts of nuclear sites on environment is examined, a point is made about the pending epidemiologic studies concerning La Hague complex. (A.C.)

  1. Safety protection of nuclear facilities and nuclear materials

    International Nuclear Information System (INIS)

    Lukavsky, J.

    1987-01-01

    Safety protection is discussed of nuclear facilities and of nuclear materials, which is a specific element of guaranteeing nuclear safety. Its task is to maximally restrict the risk of misuse of nuclear facilities and nuclear materials for endangering human lives and health and the environment. Concrete requirements for the barriers and technical means and for security of nuclear facilities and nuclear materials are based on this approach. In the CSSR, a legal norm is being prepared that will enact the said requirements for safety protection of nuclear facilities and nuclear materials. (Z.M.)

  2. Nuclear materials facility safety initiative

    International Nuclear Information System (INIS)

    Peddicord, K.L.; Nelson, P.; Roundhill, M.; Jardine, L.J.; Lazarev, L.; Moshkov, M.; Khromov, V.V.; Kruchkov, E.; Bolyatko, V.; Kazanskij, Yu.; Vorobeva, I.; Lash, T.R.; Newton, D.; Harris, B.

    2000-01-01

    Safety in any facility in the nuclear fuel cycle is a fundamental goal. However, it is recognized that, for example, should an accident occur in either the U.S. or Russia, the results could seriously delay joint activities to store and disposition weapons fissile materials in both countries. To address this, plans are underway jointly to develop a nuclear materials facility safety initiative. The focus of the initiative would be to share expertise which would lead in improvements in safety and safe practices in the nuclear fuel cycle.The program has two components. The first is a lab-to-lab initiative. The second involves university-to-university collaboration.The lab-to-lab and university-to-university programs will contribute to increased safety in facilities dealing with nuclear materials and related processes. These programs will support important bilateral initiatives, develop the next generation of scientists and engineers which will deal with these challenges, and foster the development of a safety culture

  3. Physical security of nuclear facilities

    International Nuclear Information System (INIS)

    Dixon, H.

    1987-01-01

    A serious problem with present security systems at nuclear facilities is that the threats and standards prepared by the NRC and DOE are general, and the field offices are required to develop their own local threats and, on that basis, to prepared detailed specifications for security systems at sites in their jurisdiction. As a result, the capabilities of the systems vary across facilities. Five steps in particular are strongly recommended as corrective measures: 1. Those agencies responsible for civil nuclear facilities should jointly prepare detailed threat definitions, operational requirements, and equipment specifications to protect generic nuclear facilities, and these matters should be issued as policy. The agencies should provide sufficient detail to guide the design of specific security systems and to identify candidate components. 2. The DOE, NRC, and DOD should explain to Congress why government-developed security and other military equipment are not used to upgrade existing security systems and to stock future ones. 3. Each DOE and NRC facility should be assessed to determine the impact on the size of the guard force and on warning time when personnel-detecting radars and ground point sensors are installed. 4. All security guards and technicians should be investigated for the highest security clearance, with reinvestigations every four years. 5. The processes and vehicles used in intrafacility transport of nuclear materials should be evaluated against a range of threats and attack scenarios, including violent air and vehicle assaults. All of these recommendations are feasible and cost-effective. The appropriate congressional subcommittees should direct that they be implemented as soon as possible

  4. Laundry monitor for nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Ishibashi, Mitsuo (Toshiba Corp., Fuchu (Japan). Fuchu Works)

    1984-06-01

    A laundry monitor has been developed for the detection and cleansification of radiation contamination on the clothes, headgear, footgear, etc. of workers in nuclear facilities. With this monitor, measurement is made irrespective of the size and shape of the objects; a large-area plastic scintillation detector is incorporated; it has stable and highly sensitive characteristics, with the merits of swift measurement, economical operation and easy maintenance. Connected with a folding machine, automatic carrying and storing compartment through a conveyor, it is capable of saving energy and man power, contributing to scheduled operation, and improving the efficiency of the facilities.

  5. Laundry monitor for nuclear facilities

    International Nuclear Information System (INIS)

    Ishibashi, Mitsuo

    1984-01-01

    A laundry monitor has been developed for the detection and cleansification of radiation contamination on the clothes, headgear, footgear, etc. of workers in nuclear facilities. With this monitor, measurement is made irrespective of the size and shape of the objects ; a large-area plastic scintillation detector is incorporated ; it has stable and highly sensitive characteristics, with the merits of swift measurement, economical operation and easy maintenance. Connected with a folding machine, automatic carrying and storing compartment through a conveyor, it is capable of saving energy and man power, contributing to scheduled operation, and improving the efficiency of the facilities. (author)

  6. SSI's Review of the RDandD Program 2004 of the Swedish Nuclear Fuel and Waste Management Co; SSI:s granskning av SKB:s Fud-program 2004

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, Carl-Magnus; Hedberg, Bjoern; Wiebert, Anders [and others

    2005-06-01

    In this report the Swedish Radiation Protection Authority's (SSI) review of the Swedish Nuclear Fuel and Waste Management Company's (SKB) RDandD programme 2004 is presented. In the review SSI comments, among other things, SKB's plan of action and future direction of SKB's RDandD programme, need for different types of consultations, plans for demonstration of canister deposition and long term experiments, and strategies for dismantling of nuclear facilities.

  7. Particulate filtration in nuclear facilities

    International Nuclear Information System (INIS)

    1991-01-01

    The removal of particulate radioactive material from exhaust air or gases is an essential feature of virtually all nuclear facilities. Recent IAEA publications have covered the broad designs of off-gas and air cleaning systems for the range of nuclear power plants and other facilities. This report is a complementary guidebook that examines in detail the latest developments in the design, operation, maintenance and testing of fibrous air filters. The original draft of the report was prepared by three consultants, M.W. First, of the School of Public Health, Harvard University, United States of America, K.S. Robinson, from the UKAEA Harwell Laboratory, United Kingdom, and H.G. Dillmann, of the Kernforschungzentrum, Karlsruhe, Germany. The Technical Committee Meeting (TCM), at which the report was reviewed and much additional information contributed, was attended by 11 experts and was held in Vienna, from 30 May to 3 June 1988. 64 refs, 41 figs, 10 tabs

  8. Environmental monitoring of nuclear facilities

    International Nuclear Information System (INIS)

    Koelzer, W.

    1988-01-01

    Environmental monitoring of nuclear facilities is part of general monitoring for environmental radioactivity all over the territory of the Federal Republic of Germany. General principles of environmental monitoring were formulated by the ICRP in 1965. In 1974 guidelines for measures of monitoring the environment of NPP incorporating LWR were drafted, which helped to standardize environmental monitoring programs. Since 1958, data on environmental radioactivity from measurements by authorized laboratories have been published in reports. (DG)

  9. RADIATION FACILITY FOR NUCLEAR REACTORS

    Science.gov (United States)

    Currier, E.L. Jr.; Nicklas, J.H.

    1961-12-12

    A radiation facility is designed for irradiating samples in close proximity to the core of a nuclear reactor. The facility comprises essentially a tubular member extending through the biological shield of the reactor and containing a manipulatable rod having the sample carrier at its inner end, the carrier being longitudinally movable from a position in close proximity to the reactor core to a position between the inner and outer faces of the shield. Shield plugs are provided within the tubular member to prevent direct radiation from the core emanating therethrough. In this device, samples may be inserted or removed during normal operation of the reactor without exposing personnel to direct radiation from the reactor core. A storage chamber is also provided within the radiation facility to contain an irradiated sample during the period of time required to reduce the radioactivity enough to permit removal of the sample for external handling. (AEC)

  10. Demonstration and Dialogue: Mediation in Swedish Nuclear Waste Management. Deliverable D10

    International Nuclear Information System (INIS)

    Elam, Mark; Sundqvist, Goeran; Lidberg, Maria; Soneryd, Linda

    2008-10-01

    This report analyses mediation and mediators in Swedish nuclear waste management. Mediation is about establishing agreement and building common knowledge. It is argued that demonstrations and dialogue are the two prominent approaches to mediation in Swedish nuclear waste management. Mediation through demonstration is about showing, displaying, and pointing out a path to safe disposal for inspection. It implies a strict division between demonstrator and audience. Mediation through dialogue on the other hand, is about collective acknowledgements of uncertainty and suspensions of judgement creating room for broader discussion. In Sweden, it is the Swedish Nuclear Fuel and Waste Management Co. (SKB) that is tasked with finding a method and a site for the final disposal of the nation's nuclear waste. Two different legislative frameworks cover this process. In accordance with the Act on Nuclear Activities, SKB is required to demonstrate the safety of its planned nuclear waste management system to the government, while in respect of the Swedish Environmental Code, they are obliged to organize consultations with the public. How SKB combines these requirements is the main question under investigation in this report in relation to materials deriving from three empirical settings: 1) SKB's safety analyses, 2) SKB's public consultation activities and 3) the 'dialogue projects', initiated by other actors than SKB broadening the public arena for discussion. In conclusion, an attempt is made to characterise the long-term interplay of demonstration and dialogue in Swedish nuclear waste management

  11. Final Disposal of Nuclear Waste. The Swedish National Council for Nuclear Waste's Review of the Swedish Nuclear Fuel and Waste Management Co's (SKB's) RDandD Programme 2007

    International Nuclear Information System (INIS)

    2009-01-01

    The Swedish National Council for Nuclear Waste finds that the RDandD programme 2007 fulfils the requirements set forth in the Nuclear Activities Act. However, the Council has identified a number of questions and deficiencies to which the Council wishes to draw attention. The Council finds that there are many unclear points regarding buffer, backfill and closure at this stage. The most important properties of the buffer material should be specified and limit values should be determined with respect to swelling potential, retention capacity for radionuclides, chemical stability, hydraulic diffusion, resistance to erosion and level of impurities. Mechanical strength and chemical stability must be guaranteed for compacted components in the buffer. Models should be set up for transport of the most important radioactive isotopes through the bentonite. SKB must also be able to show that the buffer and backfill conform to the initial states assumed by the safety assessment. Special research is required on the interfaces between backfill and buffer and between backfill and rock. SKB needs to consider the problems that can arise during the expected climate change, probably already during the construction period. The final design of the closure should be determined by the properties of the rock with respect to e.g. fractures at different depths and salinity. However, this presumes knowledge of what properties different materials - and mixtures of materials - have and how they can interact to best effect. The Swedish National Council for Nuclear Waste considers it imperative that SKB give a clear account of the judgements underlying site selection. The Council is troubled by the fact that successful rock stress measurements performed so far in Forsmark are too few in number and uncertain at planned repository depth. The Council would also like to emphasize the internal role of safety assessment within SKB as a tool for both following up repository safety during construction

  12. The Swedish Nuclear Power Inspectorate's evaluation of SKB's RD and D Program 98. Summary and conclusions

    International Nuclear Information System (INIS)

    1999-04-01

    Compared to previous programmes, RD and D Programme 98 is focused to a greater extent on method and site selection and on issues relating to the decision-making process. This is natural, since the programme is now approaching the stage where vital decisions will have to be made. The RD and D Programme 98 report is supplemented by a background report 'Detailed Programme for Research and Development 1999-2004' as well as a number of main references 'System Reporting', 'Alternative methods', 'Criteria for Site Evaluation' and the 'North-South/Coast-Interior' report. In addition, a number of references are available in the form of county-specific general siting studies, feasibility studies etc. SKI has distributed RD and D Programme 98 to sixty-three reviewing bodies for comment. The reviewing bodies include universities and institutes of technology, local safety committees, municipalities hosting nuclear facilities and municipalities participating in feasibility studies as well as many authorities. The comments of the reviewing bodies mainly focused on the decision-making process, including issues relating to method selection and site selection and, in particular, on the selection of sites for site investigation. Several reviewing bodies, particularly universities and institutes of technology, have also submitted comments of a more technical-scientific nature. SKI's evaluation has focused on determining whether SKB's programme can be considered to fulfil the requirements stipulated in the Act on Nuclear Activities that such a programme should be able to result in the implementation of solutions for the final disposal of the spent nuclear fuel from the Swedish nuclear power programme. Furthermore, SKI's evaluation has also focused on the conditions that SKI considers should apply to SKB's future work. Specific comments are made for the following areas: Decision-making process, Method selection and system analysis, Siting, Technical development, Safety assessments

  13. Terrorist threats of nuclear facilities

    International Nuclear Information System (INIS)

    Jozsef Solymosi; Jozser Ronaky; Zoltan Levai; Arpad Vincze; Laszlo Foldi

    2004-01-01

    More than one year has passed since the terrible terrorist attacks against the United States. The tragic event fundamentally restructured our security policy approach and made requirements of countering terrorism a top priority of the 21st century. In one year a lot of studies were published and the majority of them analyses primarily the beginnings of terrorism then focus on the interrelations of causes and consequences of the attacks against the WTC. In most of the cases the authors can only put their questions most of which have remained unanswered to date. Meanwhile, in a short while after the attacks the secret assessments of threat levels of potential targets and areas were also prepared. One of the high priority fields is the issue of nuclear, biological, and chemical security, in short NBC-security. Here and now we focus on component N, that is the assessment techniques of nuclear security in short, without aiming at completeness. Our definite objective is to make non-expert readers understand - and present a concrete example as it is done in risk analysis - the real danger-level of nuclear facilities and especially the terrorist threat. Our objective is not to give tips to terrorists but to provide them with deterring arguments and at the same time calm worried people. In our communique we give an overview of international practice of nuclear antiterrorism and of preventive nuclear protection in Hungary. (author)

  14. Concerns when designing a safeguards approach for the back-end of the Swedish nuclear fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Fritzell, Anni (Uppsala Univ., Uppsala (Sweden))

    2008-03-15

    In Sweden, the construction of an encapsulation plant and a geological repository for the final disposal of spent nuclear fuel is planned to start within the next ten years. Due to Sweden's international agreements on non-proliferation, the Swedish safeguards regime must be extended to include these facilities. The geological repository has some unique features, which present the safeguards system with unprecedented challenges. These features include, inter alia, the long period of time that the facility will contain nuclear material and that the disposed nuclear material will be very difficult to access, implying that physical verification of its presence in the repository is not foreseen. This work presents the available techniques for creating a safeguards system for the backend of the Swedish nuclear fuel cycle. Important issues to consider in the planning and implementation of the safeguards system have been investigated, which in some cases has led to an identification of areas needing further research. The results include three proposed options for a safeguards approach, which have been evaluated on the basis of the safeguards authorities' requirements. Also, the evolution and present situation of the work carried out in connection to safeguards for geological repositories has been compiled

  15. Concerns when designing a safeguards approach for the back-end of the Swedish nuclear fuel cycle

    International Nuclear Information System (INIS)

    Fritzell, Anni

    2006-03-01

    In Sweden, the construction of an encapsulation plant and a geological repository for the final disposal of spent nuclear fuel is planned to start within the next ten years. Due to Sweden's international agreements on non-proliferation, the Swedish safeguards regime must be extended to include these facilities. The geological repository has some unique features, which present the safeguards system with unprecedented challenges. These features include, inter alia, the long period of time that the facility will contain nuclear material and that the disposed nuclear material will be very difficult to access, implying that physical verification of its presence in the repository is not foreseen. This work presents the available techniques for creating a safeguards system for the backend of the Swedish nuclear fuel cycle. Important issues to consider in the planning and implementation of the safeguards system have been investigated, which in some cases has led to an identification of areas needing further research. The results include three proposed options for a safeguards approach, which have been evaluated on the basis of the safeguards authorities' requirements. Also, the evolution and present situation of the work carried out in connection to safeguards for geological repositories has been compiled

  16. Environmental monitoring of nuclear facilities

    International Nuclear Information System (INIS)

    Papadopoulos, D.; Winter, M.

    1982-01-01

    Environmental monitoring adds to the control of emissions of radioactive substances from nuclear facilities. The radioactive substances released with the exhaust air and the liquid effluent result in impact levels in the immediate vicinity, which must be ascertained by measurement. Impact control serves for the quantitative assessment of man-made radioactivity in different media of relevant pathways and for the direct assessment of the radiation exposure of the public living in the vicinity. In this way, the radiation exposure of the environment, which can be calculated if the emission data and the meteorological diffusion parameters are known, is controlled directly. (orig./RW)

  17. Environmental effects of large discharges of cooling water. Experiences from Swedish nuclear power plants

    International Nuclear Information System (INIS)

    Ehlin, Ulf; Lindahl, Sture; Neuman, Erik; Sandstroem, Olof; Svensson, Jonny

    2009-07-01

    Monitoring the environmental effects of cooling water intake and discharge from Swedish nuclear power stations started at the beginning of the 1960s and continues to this day. In parallel with long-term monitoring, research has provided new knowledge and methods to optimise possible discharge locations and design, and given the ability to forecast their environmental effects. Investigations into the environmental effects of cooling-water are a prerequisite for the issuing of power station operating permits by the environmental authorities. Research projects have been carried out by scientists at universities, while the Swedish Environmental Protection Agency, the Swedish Board of Fisheries, and the Swedish Meteorological and Hydrological Institute, SMHI, are responsible for the greater part of the investigations as well as of the research work. The four nuclear power plants dealt with in this report are Oskarshamn, Ringhals, Barsebaeck and Forsmark. They were taken into operation in 1972, 1975, 1975 and 1980 resp. - a total of 12 reactors. After the closure of the Barsebaeck plants in 2005, ten reactors remain in service. The maximum cooling water discharge from the respective stations was 115, 165, 50 and 135 m 3 /s, which is comparable to the mean flow of an average Swedish river - c:a 150 m 3 /s. The report summarizes studies into the consequences of cooling water intake and discharge. Radiological investigations made at the plants are not covered by this review. The strategy for the investigations was elaborated already at the beginning of the 1960s. The investigations were divided into pre-studies, baseline investigations and monitoring of effects. Pre-studies were partly to gather information for the technical planning and design of cooling water intake and outlet constructions, and partly to survey the hydrographic and ecological situation in the area. Baseline investigations were to carefully map the hydrography and ecology in the area and their natural

  18. The Swedish facility for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Skoeld, K.; Capala, J.; Kierkegaard, J.; Haakansson, R.; Gudowska, I.

    2000-01-01

    A BNCT (Boron Neutron Capture Therapy) facility has been constructed at the R2-0 reactor at Studsvik, Sweden. R2-0 is a 1 MW, open core, pool reactor. The reactor core is suspended on a movable tower and can be positioned anywhere in the pool. The BNCT facility includes two adjacent, parallel filter/moderator configurations and the reactor core is positioned in front of any of them as appropriate. One of the resulting neutron beams has been optimized for clinical irradiations with a filter/moderator system that allows easy variation of the neutron spectrum from the thermal to the epithermal energy range and with an extended collimator for convenient patient positioning. The other beam has been designed for radiobiological research and is equipped with a heavy water moderator and a large irradiation cavity with a uniform field of thermal neutrons. (author)

  19. The Swedish National Defence Research Establishment and the plans for Swedish nuclear weapons; Foersvarets forskningsanstalt och planerna paa svenska kaernvapen

    Energy Technology Data Exchange (ETDEWEB)

    Jonter, Thomas [Uppsala Univ. (Sweden). Dept. of History

    2001-03-01

    This study analyses the Swedish nuclear weapons research since 1945 carried out by the Swedish National Defence Research Establishment (FOA). The most important aspect of this research was dealing with protection in broad terms against nuclear weapons attacks. However, another aspect was also important from early on - to conduct research aiming at a possible production of nuclear weapons. FOA performed an extended research up to 1968, when the Swedish Government signed the Non-Proliferation Treaty (NPT), which meant the end of these production plans. Up to this date, five main investigations about the technical conditions were made, 1948, 1953, 1955, 1957 and 1965, which all together expanded the Swedish know-how to produce a bomb. The Swedish plans to procure nuclear weapons were not an issue in the debate until the mid 50's. The reason for this was simple, prior to 1954 the plans were secretly held within a small group of involved politicians, military and researchers. The change of this procedure did take place when the Swedish Supreme Commander in a public defence report in 1954 favoured a Swedish Nuclear weapons option. In 1958 FOA had reached a technical level that allowed the Parliament to make a decision. Two programs were proposed - the L-programme (the Loading Programme), to be used if the parliament would say yes to a production of nuclear weapons, and the S-programme (the Protection Programme), if the Parliament would say no. The debate on the issue had now created problems for the Social Democratic Government. The Prime Minister, Tage Erlander, who had earlier defended a procurement of nuclear weapons, was now forced to reach a compromise. The compromise was presented to the parliament in a creative manner that meant that only the S-programme would be allowed. The Government argued that the technical level did allow a 'freedom of action' up to at least the beginning of the 60's when Sweden was mature to make a decision on the issue

  20. Sweden, United States and nuclear energy. The establishment of a Swedish nuclear materials control 1945-1995

    International Nuclear Information System (INIS)

    Jonter, T.

    1999-05-01

    This report deals mainly with the United States nuclear energy policy towards Sweden 1945-1960. Although Sweden contained rich uranium deposits and retained high competence in the natural sciences and technology, the country had to cooperate with other nations in order to develop the nuclear energy. Besides developing the civil use of nuclear power, the Swedish political elite also had plans to start a nuclear weapons programme. From the beginning of the 1950s up to 1968, when the Swedish parliament decided to sign the non-proliferation treaty, the issue was widely debated. In this report, American policy is analyzed in two periods. In the first period, 1945-1953, the most important aim was to prevent Sweden from acquiring nuclear materials, technical know-how, and advanced equipment which could be used in the production of nuclear weapons. The Swedish research projects were designed to contain both a civil and military use of nuclear energy. The first priority of the American administration was to discourage the Swedes from exploiting their uranium deposits, especially for military purposes. In the next period, 1953-1960, the American policy was characterized by extended aid to the development of the Swedish energy programme. Through the 'Atoms for Peace'-programme, the Swedish actors now received previously classified technical information and nuclear materials. Swedish companies and research centers could now buy enriched uranium and advanced equipment from the United States. This nuclear trade was, however, controlled by the American Atomic Energy Commission (AEC). The American help was shaped to prevent the Swedes from developing nuclear weapons capability. From mid-50s Swedish politicians and defence experts realised that a national production of nuclear bombs would cost much more money than was supposed 4-5 years earlier. As a consequence, Swedish officials started to explore the possibilities of acquiring nuclear weapons from United States. The American

  1. Application of robotics in nuclear facilities

    International Nuclear Information System (INIS)

    Byrd, J.S.; Fisher, J.J.

    1986-01-01

    Industrial robots and other robotic systems have been successfully applied at the Savannah River nuclear site. These applications, new robotic systems presently under development, general techniques for the employment of robots in nuclear facilities, and future systems are discussed

  2. Tritium transport around nuclear facilities

    International Nuclear Information System (INIS)

    Murphy, C.E. Jr.; Sweet, C.W.

    1981-01-01

    The transport and cycling of tritium around nuclear facilities is reviewed with special emphasis on studies at the Savannah River Laboratory, Aiken, South Carolina. These studies have shown that the rate of deposition from the atmosphere, the site of deposition, and the subsequent cycling are strongly influenced by the compound with which the tritium is associated. Tritiated hydrogen is largely deposited in the soil, while tritiated water is deposited in the greatest quantity in the vegetation. Tritiated hydrogen is converted in the soil to tritiated water that leaves the soil slowly, through drainage and transpiration. Tritiated water deposited directly to the vegetation leaves the vegetation more rapidly after exposure. Only a small part of the tritium entering the vegetation becomes bound in organic molecules. However, it appears tht the existence of soil organic compounds with tritium concentrations greater than the equilibrium concentration in the associated water can be explained by direct metabolism of tritiated hydrogen in vegetation

  3. Nonreactor nuclear facilities: standards and criteria guide

    International Nuclear Information System (INIS)

    Brynda, W.J.; Junker, L.; Karol, R.C.; Lobner, P.R.; Goldman, L.A.

    1981-09-01

    This guide is a source document that identifies standards, codes, and guides that address the nuclear safety considerations pertinent to nuclear facilities as defined in DOE Order 5480.1, Chapter V, Safety of Nuclear Facilities. The guidance and criteria provided are directed toward areas of safety usually addressed in a Safety Analysis Report. The areas of safety include, but are not limited to, siting, principal design criteria and safety system design guidelines, radiation protection, accident analysis, and quality assurance. The guide is divided into two sections: general guidelines and appendices. Those guidelines that are broadly applicable to most nuclear facilities are presented in the general guidelines. These general guidelines may have limited applicability to subsurface facilities such as waste repositories. Guidelines specific to the various types or categories of nuclear facilities are presented in the appendices. These facility-specific appendices provide guidelines and identify standards and criteria that should be considered in addition to, or in lieu of, the general guidelines

  4. Protection arrangements of nuclear materials and facilities

    International Nuclear Information System (INIS)

    Al-baroudy, M.M.

    2005-01-01

    The physical protection measures aim at prrotecting the nuclear materials in use, during transport or when stored against diversion or theft. These measures should include urgent and comprehensive steps to find the place in which the lost or stolen nuclear materials are located and then retrieving them. The protection measures aim also at protecting the nuclear facilities against sabotage and mitigating the radiation effects resulting from or reducing thes effects as much as possible. The protection measures play an important role in supporting the objectives of nuclear non-proliferation and protection of the environment. The state shall have the responsibility of establishing and enforcing a comprehensive system for the protectionb of the environment. The state shall have the reponsibility of establishing and enforcing a comprehensive system for the protection of nuclear materials andnuclear facilities within its territory. The present study invloves the protection arrangements of nuclear materials and facilities, in two chapters. the first deals with the protection measures of nuclear materials, explaining the necessary measures to be undertaken inside the state as well as the international coolperation for protecting the nuclear materials. Chapter two involves a study on the protection of the nuclear facilities, explaning the systes for protecting the nuclear facilities inside the state and the international cooperation for protecting the nuclear facilities

  5. Base isolation for nuclear power and nuclear material facilities

    International Nuclear Information System (INIS)

    Eidinger, J.M.; Kircher, C.A.; Vaidya, N.; Constantinou, M.; Kelly, J.M.; Seidensticker, R.; Tajirian, F.F.; Ovadia, D.

    1989-01-01

    This report serves to document the status of the practice for the use of base isolation systems in the design and construction of nuclear power and nuclear material facilities. The report first describes past and current (1989) applications of base isolation in nuclear facilities. The report then provides a brief discussion of non-nuclear applications. Finally, the report summarizes the status of known base-isolation codes and standards

  6. Summary of operational experience in Swedish nuclear power plants 1995

    International Nuclear Information System (INIS)

    1996-01-01

    A summary of two pages for each Swedish reactor is given with availability, number of scrams, collective radiation doses and events for 1995. Special reports are presented on some specific issues: Bowed fuel assemblies at Ringhals, Incorrect opening pressure of the main safety valves at Ringhals, Measures to restore and upgrade safety at Oskarshamn 1, and the Decontamination of the reactor vessel at Oskarshamn 1. Figs

  7. Quality assurance requirements for the operation of Swedish nuclear power plants

    International Nuclear Information System (INIS)

    1983-09-01

    An adaption of NRC's 10 CFR 50, Appendis B (Quality Assurance Criteria for Nuclear Power and Fuel Reprocessing Plants) to Swedish conditions is presented. No references are given to regulations standards etc that influence the requirements and their adaption to local conditions. (Aa)

  8. Nonreactor nuclear facilities: Standards and criteria guide

    International Nuclear Information System (INIS)

    Brynda, W.J.; Scarlett, C.H.; Tanguay, G.E.; Lobner, P.R.

    1986-09-01

    This guide is a source document that identifies standards, codes, and guides that address the nuclear safety considerations pertinent to nuclear facilities as defined in DOE 5480.1A, Chapter V, ''Safety of Nuclear Facilities.'' The guidance and criteria provided is directed toward areas of safety usually addressed in a Safety Analysis Report. The areas of safety include, but are not limited to, siting, principal design criteria and safety system design guidelines, radiation protection, accident analysis, conduct of operations, and quality assurance. The guide is divided into two sections: general guidelines and appendices. Those guidelines that are broadly applicable to most nuclear facilities are presented in the general guidelines. Guidelines specific to the various types or categories of nuclear facilities are presented in the appendices. These facility-specific appendices provide guidelines and identify standards and criteria that should be considered in addition to, or in lieu of, the general guidelines. 25 figs., 62 tabs

  9. Design of alarm systems in Swedish nuclear power plants

    International Nuclear Information System (INIS)

    Thunberg, Anna; Osvalder, Anna-Lisa

    2008-04-01

    Research within the area of improving alarm system design and performance has mainly focused on new alarm systems. However, smaller modernisations of legacy systems are more common in the Swedish nuclear industry than design of totally new systems. This imposes problems when the new system should function together with the old system. This project deals with the special concerns raised by modernisation projects. The objective of the project has been to increase the understanding of the relationship between the operator's performance and the design of the alarm system. Of major concern has been to consider the cognitive abilities of the operator, different operator roles and work situations, and varying need of information. The aim of the project has been to complement existing alarm design guidance and to develop user-centred alarm design concepts. Different case studies have been performed in several industry sectors (nuclear, oil refining, pulp and paper, aviation and medical care) to identify best practice. Several empirical studies have been performed within the nuclear area to investigate the operator's need of information, performance and workload in different operating modes. The aspect of teamwork has also been considered. The analyses show that the operator has different roles in different work situations which affect both the type of information needed and how the information is processed. In full power operation, the interaction between the operator and the alarm system is driven by internal factors and the operator tries to maintain high situation awareness by actively searching for information. The operator wants to optimise the process and need detailed information with possibilities to follow-up and get historical data. In disturbance management, the operator is more dependent on external information presented by the alarm system. The new compilation of alarm guidance is based on the operator's varying needs in different working situations and is

  10. Policy on the decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    1988-08-01

    This Regulatory Policy Statement describes the policy of the Atomic Energy Control Board (AECB) on the decommissioning of those facilities defined as nuclear facilities in the Atomic Energy Control (AEC) Regulations. It is intended as a formal statement, primarily for the information of licensees, or potential licensees, of the regulatory process and requirements generally applicable to the decommissioning of nuclear facilities licensed and regulated by the AECB pursuant to the authority of the AEC Act and Regulations

  11. Waste management considerations in nuclear facility decommissioning

    International Nuclear Information System (INIS)

    Elder, H.K.; Murphy, E.S.

    1981-01-01

    Decommissioning of nuclear facilities involves the management of significant quantities of radioactive waste. This paper summarizes information on volumes of waste requiring disposal and waste management costs developed in a series of decommissioning studies performed for the U.S. Nuclear Regulatory Commission by the Pacific Northwest Laboratory. These studies indicate that waste management is an important cost factor in the decommissioning of nuclear facilities. Alternatives for managing decommissioning wastes are defined and recommendations are made for improvements in waste management practices

  12. Views on safety culture at Swedish and Finnish nuclear power plants

    International Nuclear Information System (INIS)

    Hammar, L.; Wahlstroem, B.; Kettunen, J.

    2000-02-01

    The report presents the results of interviews about safety culture at Swedish and Finnish nuclear power plants. The aim is to promote the safety work and increase the debate about safety in nuclear power plants, by showing that the safety culture is an important safety factor. The interviews point out different threats, which may become real. It is therefor necessary that the safety aspects get support from of the society and the power plant owners. (EHS)

  13. Human factors in maintenance: development and research in Swedish nuclear power plants

    International Nuclear Information System (INIS)

    Salo, I.; Svenson, O.

    2001-11-01

    The report investigated previously completed, ongoing, and planned research and development projects focusing human factors and maintenance work carried out at Swedish nuclear power plants and SKI. In addition, needs for future research and development works were also investigated. Participants from all nuclear power plants and SKI were included in the study. Participants responded to a set of questions in an interview. The interviews also generated a list of future research and development projects. (au)

  14. Human factors in maintenance: Development and research in Swedish nuclear power plants

    International Nuclear Information System (INIS)

    Salo, I.; Svensson, Ola

    2001-11-01

    The present report investigated previously completed, ongoing, and planned research and development projects focusing human factors and maintenance work carried out at Swedish nuclear power plants and SKI. In addition, needs for future research and development works were also investigated. Participants from all nuclear power plants and SKI were included in the study. Participants responded to a set of questions in an interview. The interviews also generated a list of future research and development projects

  15. Human factors in maintenance: Development and research in Swedish nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Salo, I. [Lund Univ. (Sweden). Dept. of Psychology; Svensson, Ola [Stockholm Univ. (Sweden). Dept. of Psychology

    2001-11-01

    The present report investigated previously completed, ongoing, and planned research and development projects focusing human factors and maintenance work carried out at Swedish nuclear power plants and SKI. In addition, needs for future research and development works were also investigated. Participants from all nuclear power plants and SKI were included in the study. Participants responded to a set of questions in an interview. The interviews also generated a list of future research and development projects.

  16. The Swedish Radiation Protection Institute's regulations concerning the final management of spent nuclear fuel and nuclear waste - with background and comments

    International Nuclear Information System (INIS)

    2000-11-01

    This report presents and comments on the Swedish Radiation Protection Institute's Regulations concerning the Protection of Human Health and the Environment in connection with the Final Management of Spent Nuclear Fuel or Nuclear Waste, SSI FS 1998: 1

  17. System aspects on safeguards for the back-end of the Swedish nuclear fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Fritzell, Anni (Dept. of Physics and Astronomy, Uppsala Univ., Uppsala (Sweden))

    2008-03-15

    This thesis has investigated system aspects of safeguarding the back-end of the Swedish nuclear fuel cycle. These aspects include the important notion of continuity of knowledge, the philosophy of verifying measurements and the need to consider the safeguards system as a whole when expanding it to include the encapsulation facility and the geological repository. The research has been analytical in method both in the identification of concrete challenges for the safeguards community in Paper 1, and in the diversion path analysis performed in Paper 2. This method of work is beneficial for example when abstract notions are treated. However, as a suggestion for further work along these lines, a formal systems analysis would be advantageous, and may even reveal properties of the safeguards system that the human mind so far has been to narrow to consider. A systems analysis could be used to model a proposed safeguards approach with the purpose of finding vulnerabilities in its detection probabilities. From the results, capabilities needed to overcome these vulnerabilities could be deduced, thereby formulating formal boundary conditions. These could include: The necessary partial defect level for the NDA measurement; The level of redundancy required in the C/S system to minimize the risk of inconclusive results due to equipment failure; and, Requirements on the capabilities of seismic methods, etc. The field of vulnerability assessment as a tool for systems analysis should be of interest for the safeguards community, as a formal approach could give a new dimension to the credibility of safeguards systems

  18. On Younger Stakeholders and Decommissioning of Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Tyszkiewicz, Bogumila; Labor, Bea

    2009-08-15

    In modern democratic countries, information sharing and effective and open communication concerning dismantling and decommissioning of of nuclear facilities as well as the management of nuclear waste are essential for the task to build the confidence required for any further development of nuclear energy. At the same time, it is often perceived that all decision making processes about nuclear energy policies are probably increasingly influenced by public opinion. Nuclear and radiation safety Authorities have a clear role in this regard to provide unbiased information on any health and safety related issues. In order to meet this need, it is necessary for Authorities and others to understand the values and opinions of the citizens, and especially the younger ones. They hold the key to the future at the same time as their perspective on these issues is the least understood. The need of greater public participation in decision making is becoming increasingly recognised the scientific as well as the political community. Many activities are carried out in order to stimulate to higher levels of public involvement in decision making in this active research area. Younger citizens is a stakeholder group that is often excluded in decision- making processes. The existence of large gaps between the involvement of older and younger stakeholders in decision making processes needs to be addressed, since such imbalances might otherwise lead to unequal opportunities between generations and limit the future consumption level of the coming generations. Another demanding task for the present generation is to assure that appropriate financial resources are injected into the Swedish Nuclear Waste Fund. It will thereby be possible for coming generations to undertake efficient measures in the decommissioning and dismantling of older nuclear facilities. To undertake such measures in line with the environmental and health codex is essential. An appropriate balance in this regard must be

  19. On Younger Stakeholders and Decommissioning of Nuclear Facilities

    International Nuclear Information System (INIS)

    Tyszkiewicz, Bogumila; Labor, Bea

    2009-08-01

    In modern democratic countries, information sharing and effective and open communication concerning dismantling and decommissioning of of nuclear facilities as well as the management of nuclear waste are essential for the task to build the confidence required for any further development of nuclear energy. At the same time, it is often perceived that all decision making processes about nuclear energy policies are probably increasingly influenced by public opinion. Nuclear and radiation safety Authorities have a clear role in this regard to provide unbiased information on any health and safety related issues. In order to meet this need, it is necessary for Authorities and others to understand the values and opinions of the citizens, and especially the younger ones. They hold the key to the future at the same time as their perspective on these issues is the least understood. The need of greater public participation in decision making is becoming increasingly recognised the scientific as well as the political community. Many activities are carried out in order to stimulate to higher levels of public involvement in decision making in this active research area. Younger citizens is a stakeholder group that is often excluded in decision- making processes. The existence of large gaps between the involvement of older and younger stakeholders in decision making processes needs to be addressed, since such imbalances might otherwise lead to unequal opportunities between generations and limit the future consumption level of the coming generations. Another demanding task for the present generation is to assure that appropriate financial resources are injected into the Swedish Nuclear Waste Fund. It will thereby be possible for coming generations to undertake efficient measures in the decommissioning and dismantling of older nuclear facilities. To undertake such measures in line with the environmental and health codex is essential. An appropriate balance in this regard must be

  20. Sweden and the bomb. The Swedish plans to acquire nuclear weapons, 1945 - 1972

    International Nuclear Information System (INIS)

    Jonter, T

    2001-09-01

    This study analyses the Swedish nuclear weapons research since 1945 carried out by the Swedish National Defence Research Establishment (FOA). The most important aspect of this research was dealing with protection in broad terms against nuclear weapons attacks. However, another aspect was also important from early on - to conduct research aiming at a possible production of nuclear weapons. FOA performed an extended research up to 1968, when the Swedish government signed the Non-Proliferation Treaty (NPT), which meant the end of these production plans. Up to this date, five main investigations about the technical conditions were made, 1948, 1953, 1955, 1957 and 1965, which all together expanded the Swedish know-how to produce a bomb. The Swedish plans to procure nuclear weapons were not an issue in the debate until the mid-50's. The reason for this was simple, prior to 1954 the plans were secretly held within a small group of involved politicians, military and researchers. The change of this procedure did take place when the Swedish Supreme Commander in a public defence report in 1954 favoured a Swedish Nuclear weapons option. In 1958 FOA had reached a technical level that allowed the parliament to make a decision. Two programs were proposed - the L-programme (the Loading Programme), to be used if the parliament would say yes to a production of nuclear weapons, and the S-programme (the Protection Programme), if the parliament would say no. The debate on the issue had now created problems for the Social Democratic Government. The prime minister, Tage Erlander, who had earlier defended a procurement of nuclear weapons, was now forced to reach a compromise. The compromise was presented to the parliament in a creative manner that meant that only the S-programme would be allowed. The government argued that the technical level did allow a 'freedom of action' up to at least the beginning of the 60's when Sweden was mature to make a decision on the issue. During this period

  1. Fundamental design bases for independent core cooling in Swedish nuclear power reactors

    International Nuclear Information System (INIS)

    Jelinek, Tomas

    2015-01-01

    New regulations on design and construction of nuclear power plants came into force in 2005. The need of an independent core cooling system and if the regulations should include such a requirement was discussed. The Swedish Radiation Safety authority (SSM) decided to not include such a requirement because of open questions about the water balance and started to investigate the consequences of an independent core cooling system. The investigation is now finished and SSM is also looking at the lessons learned from the accident in Fukushima 2011. One of the most important measures in the Swedish national action plan is the implementation of an independent core cooling function for all Swedish power plants. SSM has investigated the basic design criteria for such a function where some important questions are the level of defence in depth and the acceptance criteria. There is also a question about independence between the levels of defence in depth that SSM have included in the criteria. Another issue that has to be taken into account is the complexity of the system and the need of automation where independence and simplicity are very strong criteria. In the beginning of 2014 a memorandum was finalized regarding fundamental design bases for independent core cooling in Swedish nuclear power reactors. A decision based on this memorandum with an implementation plan will be made in the first half of 2014. Sweden is also investigating the possibility to have armed personnel on site, which is not allowed currently. The result from the investigation will have impact on the possibility to use mobile equipment and the level of protection of permanent equipment. In this paper, SSM will present the memorandum for design bases for independent core cooling in Swedish nuclear power reactors that was finalized in March 20147 that also describe SSM's position regarding independence and automation of the independent core cooling function. This memorandum describes the Swedish

  2. Survey study of communities with nuclear facilities; Oeversiktsstudie av kommuner med kaernteknisk verksamhet

    Energy Technology Data Exchange (ETDEWEB)

    Eng, T. [ed.

    1995-05-01

    The report gives a description of the five Swedish communities that already have nuclear facilities, in order to find the potential for selecting any of these for a future Swedish nuclear waste repository. Only existing, available information has been collected for this report, with the aim to find the interest and need for more detailed localization studies. The following subjects are treated: General data like area, population, industry etc. Communications (road, rail and airports). Existing facilities. Geology. Hydrology. Experiences from rock constructions. Land use, planning, natural reserves etc. Local technical conditions for transport and construction. The following conclusions are drawn: Oskarshamn, Nykoeping and Oesthammar have good geologic potentials and should be candidates for more extensive geologic studies. The geologic potential of Varberg is less well known, and geologic mapping and geophysical measurements are needed. Kaevlinge does not have geologic or technical potentials on par with the other communities, and can be disregarded for further studies. 64 refs, 18 figs.

  3. Importance of tests in nuclear facilities

    International Nuclear Information System (INIS)

    Guillemard, B.

    1985-10-01

    In nuclear facilities, safety related systems and equipments are subject, along their whole service-life, to numerous tests. This paper analyses the role of tests in the successive stages of design, construction, exploitation of a nuclear facility. It examines several aspects of test quality control: definition of needs, test planning, intrinsic quality of each test, control of interfaces (test are both the end and the starting point of many actions concerned by quality) and the application [fr

  4. Crisis and Policy Reformcraft: Advocacy Coalitions and Crisis-induced Change in Swedish Nuclear Energy Policy

    Energy Technology Data Exchange (ETDEWEB)

    Nohrstedt, Daniel

    2007-04-15

    This dissertation consists of three interrelated essays examining the role of crisis events in Swedish nuclear energy policymaking. The study takes stock of the idea of 'crisis exceptionalism' raised in the literature, which postulates that crisis events provide openings for major policy change. In an effort to explain crisis-induced outcomes in Swedish nuclear energy policy, each essay explores and develops theoretical assumptions derived from the Advocacy Coalition Framework (ACF). The introduction discusses the ACF and other theoretical perspectives accentuating the role of crisis in policymaking and identifies three explanations for crisis-induced policy outcomes: minority coalition mobilization, learning, and strategic action. Essay 1 analyzes the nature and development of the Swedish nuclear energy subsystem. The results contradict the ACF assumption that corporatist systems nurture narrow subsystems and small advocacy coalitions, but corroborate the assumption that advocacy coalitions remain stable over time. While this analysis identifies temporary openings in policymaking venues and in the advocacy coalition structure, it is argued that these developments did not affect crisis policymaking. Essay 2 seeks to explain the decision to initiate a referendum on nuclear power following the 1979 Three Mile Island accident. Internal government documents and other historical records indicate that strategic considerations superseded learning as the primary explanation in this case. Essay 3 conducts an in-depth examination of Swedish policymaking in the aftermath of the 1986 Chernobyl accident in an effort to explain the government's decision not to accelerate the nuclear power phaseout. Recently disclosed government documents show that minority coalition mobilization was insufficient to explain this decision. In this case, rational learning and strategic action provided a better explanation. The main theoretical contribution derived from the three

  5. Crisis and Policy Reformcraft: Advocacy Coalitions and Crisis-induced Change in Swedish Nuclear Energy Policy

    International Nuclear Information System (INIS)

    Nohrstedt, Daniel

    2007-04-01

    This dissertation consists of three interrelated essays examining the role of crisis events in Swedish nuclear energy policymaking. The study takes stock of the idea of 'crisis exceptionalism' raised in the literature, which postulates that crisis events provide openings for major policy change. In an effort to explain crisis-induced outcomes in Swedish nuclear energy policy, each essay explores and develops theoretical assumptions derived from the Advocacy Coalition Framework (ACF). The introduction discusses the ACF and other theoretical perspectives accentuating the role of crisis in policymaking and identifies three explanations for crisis-induced policy outcomes: minority coalition mobilization, learning, and strategic action. Essay 1 analyzes the nature and development of the Swedish nuclear energy subsystem. The results contradict the ACF assumption that corporatist systems nurture narrow subsystems and small advocacy coalitions, but corroborate the assumption that advocacy coalitions remain stable over time. While this analysis identifies temporary openings in policymaking venues and in the advocacy coalition structure, it is argued that these developments did not affect crisis policymaking. Essay 2 seeks to explain the decision to initiate a referendum on nuclear power following the 1979 Three Mile Island accident. Internal government documents and other historical records indicate that strategic considerations superseded learning as the primary explanation in this case. Essay 3 conducts an in-depth examination of Swedish policymaking in the aftermath of the 1986 Chernobyl accident in an effort to explain the government's decision not to accelerate the nuclear power phaseout. Recently disclosed government documents show that minority coalition mobilization was insufficient to explain this decision. In this case, rational learning and strategic action provided a better explanation. The main theoretical contribution derived from the three essays is to posit

  6. The control of nuclear proliferation: future challenges. Swedish Institute of International Affairs, Stockholm, 23 April 1998

    International Nuclear Information System (INIS)

    ElBaradei, M.

    1998-01-01

    The document reproduces the text of the conference given by the Director General of the IAEA at the Swedish Institute of International Affairs in Stockholm on 23 April 1998. After a short presentation of the Agency's current verification activities, particularly in Iraq and Democratic People's Republic of Korea, the Director General focuses on the present and future role of the IAEA in the control of nuclear proliferation through its strengthened safeguards system, in the prevention of nuclear terrorism, and future challenges of controlling nuclear proliferation from both political and technical point of view

  7. Methodology and technology of decommissioning nuclear facilities

    International Nuclear Information System (INIS)

    1986-01-01

    The decommissioning and decontamination of nuclear facilities is a topic of great interest to many Member States of the International Atomic Energy Agency (IAEA) because of the large number of older nuclear facilities which are or soon will be retired from service. In response to increased international interest in decommissioning and to the needs of Member States, the IAEA's activities in this area have increased during the past few years and will be enhanced considerably in the future. A long range programme using an integrated systems approach covering all the technical, regulatory and safety steps associated with the decommissioning of nuclear facilities is being developed. The database resulting from this work is required so that Member States can decommission their nuclear facilities in a safe time and cost effective manner and the IAEA can effectively respond to requests for assistance. The report is a review of the current state of the art of the methodology and technology of decommissioning nuclear facilities including remote systems technology. This is the first report in the IAEA's expanded programme and was of benefit in outlining future activities. Certain aspects of the work reviewed in this report, such as the recycling of radioactive materials from decommissioning, will be examined in depth in future reports. The information presented should be useful to those responsible for or interested in planning or implementing the decommissioning of nuclear facilities

  8. The Swedish Nuclear Power Inspectorate's Review Statement and Evaluation of the Swedish Nuclear Fuel and Waste Management Co's RD and D Programme 2001

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-09-01

    According to the Act on Nuclear Activities, the holder of a licence to operate a nuclear reactor must adopt all necessary measures to manage and dispose of spent nuclear fuel and nuclear waste. The Act stipulates requirements on a research programme which is to be submitted to the competent regulatory authority once every three years. The Swedish Nuclear Power Inspectorate (SKI) is the competent authority that evaluates and reviews the programme. SKI distributes the programme to a wide circle of reviewing bodies for comment, including authorities, municipalities, universities and NGOs. The Swedish programme for final disposal of spent nuclear fuel started about 25 years ago. According to the Swedish Nuclear Waste Management Co. (SKB), the planned repository will not be closed until sometime in the 2050's. A series of decisions must be made before this goal is attained. The decision process can therefore be described as a multi-stage process. During each stages, safety will be evaluated and there is a possibility of taking additional time for development work or of selecting improved solutions. SKI's task is to ensure safety compliance throughout all of these stages. In its decision in January 2000, the Government explained that the Programme for Research, Development and Demonstration for the Treatment and Final Disposal of Nuclear Waste (RD and D Programme 98) complied with legislative requirements but that certain supplementary reporting should be conducted by SKB and submitted no later than when the next programme, in accordance with paragraph 12 of the Act on Nuclear Activities, was prepared (September 2001). The supplementary reporting requested by the Government, and which was submitted by SKB to SKI in December 2000, dealt with issues relating to method selection, site selection and the site investigation programme. SKI submitted its review of the supplement to the Government in June 2001 and the Government made a decision on the matter on November

  9. Nuclear astrophysics experiments with Pohang neutron facility

    International Nuclear Information System (INIS)

    Kim, Yeong Duk; Yoo, Gwang Ho

    1998-01-01

    Nuclear astrophysics experiments for fundamental understanding of Big Bang nucleosynthesis was performed at Pohang Neutron Facility. Laboratory experiments, inhomogeneous Big Bang nucleosynthesis and S-process were used for nucleosynthesis. For future study, more study on S-process for the desired data and nuclear network calculation are necessary

  10. Assuring nuclear safety competence into the 21. century a swedish perspective

    International Nuclear Information System (INIS)

    Lowenhielm, G.; Svensson, G.; Tiren, IN

    2000-01-01

    Many initiatives have been taken and are being considered to maintain and develop competence in the nuclear field in Sweden. The number of qualified nuclear engineering staff at the plants and at the regulatory bodies appears to be rather small for all important tasks to be carried out. Nevertheless, the current programmes indicate that one can look at future recruitment and competence with some confidence-in spite of the age profile of qualified staff with many approaching retirement. The Swedish Nuclear Power Inspectorate, (SKI), the academic community, and the Industry are conducting several research projects that support the optimistic view expressed above. Examples include: Safety research at SKI and universities: Since many years, SKI is sponsoring research in safety analysis within the framework of its Research Programme. In this programme the regulator supports two professors, one in Nuclear Power Safety at KTH and the other in the Interaction of Man, Technology and Organisation at the University of Stockholm. Swedish Centre of Nuclear Technology: A main activity of the Centre is to support PhD candidates (with scientific advice and economy) in topics related to nuclear technology. The Industry also makes great efforts to support recruitment by various initiatives: Design reconstitution projects: Each one of the older operating plants was subject to a design review that engaged a large number of young staff at the utilities and the vendors. 'Young Generation': It constitutes a communication network among young engineers at European nuclear plants, regulators, and other organisations. (authors)

  11. Quality management in nuclear facilities decommissioning

    International Nuclear Information System (INIS)

    Garonis, Omar H.

    2002-01-01

    Internationally, the decommissioning organizations of nuclear facilities carry out the decommissioning according to the safety requirements established for the regulatory bodies. Some of them perform their activities in compliance with a quality assurance system. This work establishes standardization through a Specifications Requirement Document, for the management system of the nuclear facilities decommissioning organizations. It integrates with aspects of the quality, environmental, occupational safety and health management systems, and also makes these aspects compatible with all the requirements of the nuclear industry recommended for the International Atomic Energy Agency (IAEA). (author)

  12. Childhood leukaemia around nuclear facilities

    International Nuclear Information System (INIS)

    Wojcik, Andrzej; Feychting, Maria

    2010-06-01

    In December 2007 the German Federal Office for Radiation Protection (BfS) published a report on the incidence of childhood cancers among children living in the vicinity of 16 German nuclear power plants. The results show a significantly enhanced risk of leukaemia in children aged below 5 years, who live within 5 km from a nuclear power plant. The study is known as KiKK (Epidemiologische Studie zu Kinderkrebs in der Umgebung von Kernkraftwerken) and stirred considerable concern about the safety of nuclear installations. In this review we summarise the present state-of-the art regarding childhood leukaemia in the vicinity of nuclear installations and present the main results of the KiKK study with a critical evaluation

  13. The Physical Protection of Nuclear Material and Nuclear Facilities

    International Nuclear Information System (INIS)

    1999-06-01

    Physical protection against the theft or unauthorized diversion of nuclear materials and against the sabotage of nuclear facilities by individuals or groups has long been a matter of national and international concern. Although responsibility for establishing and operating a comprehensive physical protection system for nuclear materials and facilities within a State rests entirely with the Government of that State, it is not a matter of indifference to other States whether and to what extent that responsibility is fulfilled. Physical protection has therefore become a matter of international concern and co-operation. The need for international co-operation becomes evident in situations where the effectiveness of physical protection in one State depends on the taking by other States also of adequate measures to deter or defeat hostile actions against nuclear facilities and nuclear materials, particularly when such materials are transported across national frontiers [es

  14. The Physical Protection of Nuclear Material and Nuclear Facilities

    International Nuclear Information System (INIS)

    1999-08-01

    Physical protection against the theft or unauthorized diversion of nuclear materials and against the sabotage of nuclear facilities by individuals or groups has long been a matter of national and international concern. Although responsibility for establishing and operating a comprehensive physical protection system for nuclear materials and facilities within a State rests entirely with the Government of that State, it is not a matter of indifference to other States whether and to what extent that responsibility is fulfilled. Physical protection has therefore become a matter of international concern and co-operation. The need for international co-operation becomes evident in situations where the effectiveness of physical protection in one State depends on the taking by other States also of adequate measures to deter or defeat hostile actions against nuclear facilities and nuclear materials, particularly when such materials are transported across national frontiers

  15. The Physical Protection of Nuclear Material and Nuclear Facilities

    International Nuclear Information System (INIS)

    1999-06-01

    Physical protection against the theft or unauthorized diversion of nuclear materials and against the sabotage of nuclear facilities by individuals or groups has long been a matter of national and international concern. Although responsibility for establishing and operating a comprehensive physical protection system for nuclear materials and facilities within a State rests entirely with the Government of that State, it is not a matter of indifference to other States whether and to what extent that responsibility is fulfilled. Physical protection has therefore become a matter of international concern and co-operation. The need for international co-operation becomes evident in situations where the effectiveness of physical protection in one State depends on the taking by other States also of adequate measures to deter or defeat hostile actions against nuclear facilities and nuclear materials, particularly when such materials are transported across national frontiers

  16. Quarterly report - Swedish Nuclear Power Inspectorate. April - June 1982

    International Nuclear Information System (INIS)

    1982-01-01

    The inspectorate controls the realization of the instructions for the nuclear power plants. During the second quarter of 1982 nine plants have been in operation. Ringhals 4 has started with test runs. Different disturbances of the operation of the plants are reported on diagrams. The security at Studsvik and at the nuclear fuel fabrication of ASEA-Atom is dealt with and minor incidents are described. (G.B.)

  17. Significant incidents in nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    1996-03-01

    In contrast to nuclear power plants, events in nuclear fuel cycle facilities are not well documented. The INES database covers all the nuclear fuel cycle facilities; however, it was developed in the early 1990s and does not contain information on events prior to that. The purpose of the present report is to collect significant events and analyze them in order to give a safety related overview of nuclear fuel cycle facilities. Significant incidents were selected using the following criteria: release of radioactive material or exposure to radiation; degradation of items important to safety; and deficiencies in design, quality assurance, etc. which include criticality incidents, fire, explosion, radioactive release and contamination. This report includes an explanation, where possible, of root causes, lessons learned and action taken. 4 refs, 4 tabs

  18. Integrated engineering system for nuclear facilities building

    International Nuclear Information System (INIS)

    Tomura, H.; Miyamoto, A.; Futami, F.; Yasuda, S.; Ohtomo, T.

    1995-01-01

    In the construction of buildings for nuclear facilities in Japan, construction companies are generally in charge of the building engineering work, coordinating with plant engineering. An integrated system for buildings (PROMOTE: PROductive MOdeling system for Total nuclear Engineering) described here is a building engineering system including the entire life cycle of buildings for nuclear facilities. A Three-dimensional (3D) building model (PRO-model) is to be in the core of the system (PROMOTE). Data sharing in the PROMOTE is also done with plant engineering systems. By providing these basic technical foundations, PROMOTE is oriented toward offering rational, highquality engineering for the projects. The aim of the system is to provide a technical foundation in building engineering. This paper discusses the characteristics of buildings for nuclear facilities and the outline of the PROMOTE. (author)

  19. Delegated democracy. Siting selection for the Swedish nuclear waste; Demokrati paa delegation. Lokaliseringen av det svenska kaernavfallet

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Hanna Sofia

    2008-11-15

    The present study concerns the siting of the Swedish nuclear waste repository. Four cases are examined: the feasibility studies in Nykoeping and Tierp (cases 1 and 2), as well as three public consultation meetings with conservationist and environmental organisations, and two study visits to nuclear facilities in Oskarshamn and Oesthammar, which were held during what is called the site-investigation phase (cases 3 and 4). The Swedish Nuclear Fuel and Waste Management Co (SKB) began the search for a nuclear waste site in the 1970s. Since 1992 SKB has conducted feasibility studies in eight municipalities, including in the four municipalities mentioned above. At the present time more comprehensive site investigations are underway in Oskarshamn and Oesthammar, two municipalities that already host nuclear power plants as well as storages for nuclear waste. In addition to SKB and the municipalities involved in the site-selection process, politicians, opinion groups, concerned members of the public, and oversight bodies are important actors. The analysis of the cases employs the concepts of 'sub-politics', 'boundary work', and 'expertise', together with the four models of democracy 'representative democracy', participatory democracy', 'deliberative democracy', and 'technocracy'. The aim of the study is to describe the characteristics of Swedish democracy in relation to the disposal of Swedish nuclear waste. The main questions of the study are: Which democratic ideals can be found within SKB's siting process during the feasibility studies and in the consultation process during the site investigations? and Which democratic ideals were influential during the feasibility studies and in the consultation process? The study is based on qualitative methods, and the source materials consist of documents, interviews, and participant observations. In summary, the form of democracy that emerges in the four case

  20. Radiation protection at nuclear fuel cycle facilities.

    Science.gov (United States)

    Endo, Kuniaki; Momose, Takumaro; Furuta, Sadaaki

    2011-07-01

    Radiation protection methodologies concerning individual monitoring, workplace monitoring and environmental monitoring in nuclear fuel facilities have been developed and applied to facilities in the Nuclear Fuel Cycle Engineering Laboratories (NCL) of Japan Atomic Energy Agency (JAEA) for over 40 y. External exposure to photon, beta ray and neutron and internal exposure to alpha emitter are important issues for radiation protection at these facilities. Monitoring of airborne and surface contamination by alpha and beta/photon emitters at workplace is also essential to avoid internal exposure. A critical accident alarm system developed by JAEA has been proved through application at the facilities for a long time. A centralised area monitoring system is effective for emergency situations. Air and liquid effluents from facilities are monitored by continuous monitors or sampling methods to comply with regulations. Effluent monitoring has been carried out for 40 y to assess the radiological impacts on the public and the environment due to plant operation.

  1. Methodology for analyzing risk at nuclear facilities

    International Nuclear Information System (INIS)

    Yoo, Hosik; Lee, Nayoung; Ham, Taekyu; Seo, Janghoon

    2015-01-01

    Highlights: • A new methodology for evaluating the risk at nuclear facilities was developed. • Five measures reflecting all factors that should be concerned to assess risk were developed. • The attributes on NMAC and nuclear security culture are included as attributes for analyzing. • The newly developed methodology can be used to evaluate risk of both existing facility and future nuclear system. - Abstract: A methodology for evaluating risks at nuclear facilities is developed in this work. A series of measures is drawn from the analysis of factors that determine risks. Five measures are created to evaluate risks at nuclear facilities. These include the legal and institutional framework, material control, physical protection system effectiveness, human resources, and consequences. Evaluation attributes are developed for each measure and specific values are given in order to calculate the risk value quantitatively. Questionnaires are drawn up on whether or not a state has properly established a legal and regulatory framework (based on international standards). These questionnaires can be a useful measure for comparing the status of the physical protection regime between two countries. Analyzing an insider threat is not an easy task and no methodology has been developed for this purpose. In this study, attributes that could quantitatively evaluate an insider threat, in the case of an unauthorized removal of nuclear materials, are developed by adopting the Nuclear Material Accounting & Control (NMAC) system. The effectiveness of a physical protection system, P(E), could be analyzed by calculating the probability of interruption, P(I), and the probability of neutralization, P(N). In this study, the Tool for Evaluating Security System (TESS) code developed by KINAC is used to calculate P(I) and P(N). Consequence is an important measure used to analyze risks at nuclear facilities. This measure comprises radiological, economic, and social damage. Social and

  2. Computer Security at Nuclear Facilities (French Edition)

    International Nuclear Information System (INIS)

    2013-01-01

    The possibility that nuclear or other radioactive material could be used for malicious purposes cannot be ruled out in the current global situation. States have responded to this risk by engaging in a collective commitment to strengthen the protection and control of such material and to respond effectively to nuclear security events. States have agreed to strengthen existing instruments and have established new international legal instruments to enhance nuclear security worldwide. Nuclear security is fundamental in the management of nuclear technologies and in applications where nuclear or other radioactive material is used or transported. Through its Nuclear Security Programme, the IAEA supports States to establish, maintain and sustain an effective nuclear security regime. The IAEA has adopted a comprehensive approach to nuclear security. This recognizes that an effective national nuclear security regime builds on: the implementation of relevant international legal instruments; information protection; physical protection; material accounting and control; detection of and response to trafficking in such material; national response plans; and contingency measures. With its Nuclear Security Series, the IAEA aims to assist States in implementing and sustaining such a regime in a coherent and integrated manner. The IAEA Nuclear Security Series comprises Nuclear Security Fundamentals, which include objectives and essential elements of a State's nuclear security regime; Recommendations; Implementing Guides; and Technical Guidance. Each State carries the full responsibility for nuclear security, specifically: to provide for the security of nuclear and other radioactive material and associated facilities and activities; to ensure the security of such material in use, storage or in transport; to combat illicit trafficking and the inadvertent movement of such material; and to be prepared to respond to a nuclear security event. This publication is in the Technical Guidance

  3. Policies for radiation protection at nuclear facilities

    International Nuclear Information System (INIS)

    Stanciu, M.; Pantazi, D.; Mateescu, S.

    1995-01-01

    The purpose of this paper is to discuss the interface between three terms: radiological protection, nuclear safety, and radiation safety. The radiological protection is concerned with the estimation and the control of radiation doses. The term applies only to normal operation and anticipated operational occurrences (certain exposures) at nuclear facilities. Nuclear safety is primarily concerned with assessment and avoidance of accidents at Nuclear Power Plants and other facilities. Briefly, the basic tenets of nuclear safety are: - if it can happen, than that it must not matter; - if it matter, than it must not happen. The aim which radiation protection and nuclear safety regard is a net benefit obtained from safely operating of the nuclear facility and the risk to populating (and to personnel, too) must not exceed the levels considered as dangerous. The evolution of these disciplines has been able to formulate, for the last years, new and generalizing notions, which defined a new item i.e. radiation safety. Radiation safety encompasses not only anticipated situations involving certain exposures, but also unanticipated 'de factor' situations. Radiation safety is at present an essential objective and must represent a concern for Romanian experts. (Author) 3 Figs., 4 Refs

  4. Brennilis nuclear facilities. 2009 annual report

    International Nuclear Information System (INIS)

    2010-01-01

    This annual report is established on account of article 21 of the 2006-686 French law from June 13, 2006, relative to the transparency and safety in the nuclear domain. It describes, first, the nuclear facilities of Brennilis, and then the measures taken to ensure their safety (personnel radioprotection, actions implemented for nuclear safety improvement, organisation in crisis situation, external and internal controls, technical assessment of the facilities, administrative procedures carried out in 2009), incidents and accidents registered in 2009, radioactive and chemical effluents released by the facilities in the environment, other pollutions, management of radioactive wastes, and, finally, the actions carried out in the domain of transparency and public information. A glossary and the viewpoint of the Committee of Hygiene, safety and working conditions about the content of the document conclude the report. (J.S.)

  5. Chooz nuclear facilities. 2009 annual report

    International Nuclear Information System (INIS)

    2010-01-01

    This annual report is established on account of article 21 of the 2006-686 French law from June 13, 2006, relative to the transparency and safety in the nuclear domain. It describes, first, the nuclear facilities of Chooz, and then the measures taken to ensure their safety (personnel radioprotection, actions implemented for nuclear safety improvement, organisation in crisis situation, external and internal controls, technical assessment of the facilities, administrative procedures carried out in 2009), incidents and accidents registered in 2009, radioactive and chemical effluents released by the facilities in the environment, other pollutions, management of radioactive wastes, and, finally, the actions carried out in the domain of transparency and public information. A glossary and the viewpoint of the Committee of Hygiene, safety and working conditions about the content of the document conclude the report. (J.S.)

  6. Blayais nuclear facilities. 2009 annual report

    International Nuclear Information System (INIS)

    2010-01-01

    This annual report is established on account of article 21 of the 2006-686 French law from June 13, 2006, relative to the transparency and safety in the nuclear domain. It describes, first, the nuclear facilities of Blayais, and then the measures taken to ensure their safety (personnel radioprotection, actions implemented for nuclear safety improvement, organisation in crisis situation, external and internal controls, technical assessment of the facilities, administrative procedures carried out in 2009), incidents and accidents registered in 2009, radioactive and chemical effluents released by the facilities in the environment, other pollutions, management of radioactive wastes, and, finally, the actions carried out in the domain of transparency and public information. A glossary and the viewpoint of the Committee of Hygiene, safety and working conditions about the content of the document conclude the report. (J.S.)

  7. Gravelines nuclear facilities. 2009 annual report

    International Nuclear Information System (INIS)

    2010-01-01

    This annual report is established on account of article 21 of the 2006-686 French law from June 13, 2006, relative to the transparency and safety in the nuclear domain. It describes, first, the nuclear facilities of Gravelines, and then the measures taken to ensure their safety (personnel radioprotection, actions implemented for nuclear safety improvement, organisation in crisis situation, external and internal controls, technical assessment of the facilities, administrative procedures carried out in 2009), incidents and accidents registered in 2009, radioactive and chemical effluents released by the facilities in the environment, other pollutions, management of radioactive wastes, and, finally, the actions carried out in the domain of transparency and public information. A glossary and the viewpoint of the Committee of Hygiene, safety and working conditions about the content of the document conclude the report. (J.S.)

  8. Penly nuclear facilities. 2009 annual report

    International Nuclear Information System (INIS)

    2010-01-01

    This annual report is established on account of article 21 of the 2006-686 French law from June 13, 2006, relative to the transparency and safety in the nuclear domain. It describes, first, the nuclear facilities of Penly, and then the measures taken to ensure their safety (personnel radioprotection, actions implemented for nuclear safety improvement, organisation in crisis situation, external and internal controls, technical assessment of the facilities, administrative procedures carried out in 2009), incidents and accidents registered in 2009, radioactive and chemical effluents released by the facilities in the environment, other pollutions, management of radioactive wastes, and, finally, the actions carried out in the domain of transparency and public information. A glossary and the viewpoint of the Committee of Hygiene, safety and working conditions about the content of the document conclude the report. (J.S.)

  9. Golfech nuclear facilities. 2009 annual report

    International Nuclear Information System (INIS)

    2009-01-01

    This annual report is established on account of article 21 of the 2006-686 French law from June 13, 2006, relative to the transparency and safety in the nuclear domain. It describes, first, the nuclear facilities of Golfech, and then the measures taken to ensure their safety (personnel radioprotection, actions implemented for nuclear safety improvement, organisation in crisis situation, external and internal controls, technical assessment of the facilities, administrative procedures carried out in 2009), incidents and accidents registered in 2009, radioactive and chemical effluents released by the facilities in the environment, other pollutions, management of radioactive wastes, and, finally, the actions carried out in the domain of transparency and public information. A glossary and the viewpoint of the Committee of Hygiene, safety and working conditions about the content of the document conclude the report. (J.S.)

  10. Civaux nuclear facilities. 2009 annual report

    International Nuclear Information System (INIS)

    2010-01-01

    This annual report is established on account of article 21 of the 2006-686 French law from June 13, 2006, relative to the transparency and safety in the nuclear domain. It describes, first, the nuclear facilities of Civaux, and then the measures taken to ensure their safety (personnel radioprotection, actions implemented for nuclear safety improvement, organisation in crisis situation, external and internal controls, technical assessment of the facilities, administrative procedures carried out in 2009), incidents and accidents registered in 2009, radioactive and chemical effluents released by the facilities in the environment, other pollutions, management of radioactive wastes, and, finally, the actions carried out in the domain of transparency and public information. A glossary and the viewpoint of the Committee of Hygiene, safety and working conditions about the content of the document conclude the report. (J.S.)

  11. Paluel nuclear facilities. 2009 annual report

    International Nuclear Information System (INIS)

    2010-01-01

    This annual report is established on account of article 21 of the 2006-686 French law from June 13, 2006, relative to the transparency and safety in the nuclear domain. It describes, first, the nuclear facilities of Paluel, and then the measures taken to ensure its safety (personnel radioprotection, actions implemented for nuclear safety improvement, organisation in crisis situation, external and internal controls, technical assessment of the facilities, administrative procedures carried out in 2009, incidents and accidents registered in 2009, radioactive and chemical effluents released by the facilities in the environment, other pollutions, management of radioactive wastes, and, finally, the actions carried out in the domain of transparency and public information. A glossary and the viewpoint of the Committee of Hygiene, safety and working conditions about the content of the document conclude the report. (J.S.)

  12. AECL's strategy for decommissioning Canadian nuclear facilities

    International Nuclear Information System (INIS)

    Joubert, W.M.; Pare, F.E.; Pratapagiri, G.

    1992-01-01

    The Canadian policy on decommissioning of nuclear facilities as defined in the Atomic Energy Control Act and Regulations is administered by the Atomic Energy Control Board (AECB), a Federal Government agency. It requires that these facilities be decommissioned according to approved plans which are to be developed by the owner of the nuclear facility during its early stages of design and to be refined during its operating life. In this regulatory environment, Atomic Energy of Canada (AECL) has developed a decommissioning strategy for power stations which consists of three distinctive phases. After presenting AECL's decommissioning philosophy, its foundations are explained and it is described how it has and soon will be applied to various facilities. A brief summary is provided of the experience gained up to date on the implementation of this strategy. (author) 3 figs.; 1 tab

  13. Institutionalizing Safeguards By Design for Nuclear Facilities

    International Nuclear Information System (INIS)

    Morgan, James B.; Kovacic, Donald N.; Whitaker, J. Michael

    2008-01-01

    Safeguards for nuclear facilities can be significantly improved by developing and implementing methodologies for integrating proliferation resistance into the design of new facilities. This paper proposes a method to systematically analyze a facility's processes, systems, equipment, structures and management controls to ensure that all relevant proliferation scenarios that could potentially result in unacceptable consequences have been identified, evaluated and mitigated. This approach could be institutionalized into a country's regulatory structure similar to the way facilities are licensed to operate safely and are monitored through inspections and incident reporting to ensure compliance with domestic and international safeguards. Furthermore, taking credit for existing systems and equipment that have been analyzed and approved to assure a facility's reliable and safe operations will reduce the overall cost of implementing intrinsic and extrinsic proliferation-resistant features. The ultimate goal is to integrate safety, reliability, security and safeguards operations into the design of new facilities to effectively and efficiently prevent diversion, theft and misuse of nuclear material and sensitive technologies at both the facility and state level. To facilitate this approach at the facility level, this paper discusses an integrated proliferation resistance analysis (IPRA) process. If effectively implemented, this integrated approach will also facilitate the application of International Atomic Energy Agency (IAEA) safeguards

  14. Quality Assurance for Operation of Nuclear Facilities

    International Nuclear Information System (INIS)

    Park, C. G.; Kwon, H. I.; Kim, K. H.; Oh, Y. W.; Lee, Y. G.; Ha, J. H.; Lim, N. J.

    2008-12-01

    This report describes QA activities performed within 'Quality Assurance for Nuclear facility project' and results thereof. Efforts were made to maintain and improve quality system of nuclear facilities. Varification activities whether quality system was implemented in compliance with requirements. QA department assisted KOLAS accredited testing and calibration laboratories, ISO 9001 quality system, establishment of QA programs for R and D, and carried out reviews and surveys for development of quality assurance technologies. Major items of this report are as follows : - Development and Improvement of QA Programs - QA Activities - Assessment of Effectiveness and Adequacy for QA Programs

  15. Emergency planning and preparedness for nuclear facilities

    International Nuclear Information System (INIS)

    Koelzer, W.

    1988-01-01

    Nuclear installations are designed, constructed and operated in such a way that the probability for an incident or accident is very low and the probability for a severe accident with catastrophic consequences is extremely small. These accidents represent the residual risk of the nuclear installation, and this residual risk can be decreased on one hand by a better design, construction and operation and on the other hand by planning and taking emergency measures inside the facility and in the environment of the facility. By way of introduction and definition it may be indicated to define some terms pertaining to the subject in order to make for more uniform understanding. (orig./DG)

  16. Modelling the cost-effectiveness of impact-absorbing flooring in Swedish residential care facilities.

    Science.gov (United States)

    Ryen, Linda; Svensson, Mikael

    2016-06-01

    Fall-related injuries among the elderly, specifically hip fractures, cause significant morbidity and mortality as well as imposing a substantial financial cost on the health care system. Impact-absorbing flooring has been advocated as an effective method for preventing hip fractures resulting from falls. This study identifies the cost-effectiveness of impact-absorbing flooring compared to standard flooring in residential care facilities for the elderly in a Swedish setting. An incremental cost-effectiveness analysis was performed comparing impact-absorbing flooring to standard flooring using a Markov decision model. A societal perspective was adopted and incremental costs were compared to incremental gains in quality-adjusted life years (QALYs). Data on costs, probability transitions and health-related quality of life measures were retrieved from the published literature and from Swedish register data. Probabilistic sensitivity analysis was performed through a Monte Carlo simulation. The base-case analysis indicates that the impact-absorbing flooring reduces costs and increases QALYs. When allowing for uncertainty we find that 60% of the simulations indicate that impact-absorbing flooring is cost-saving compared to standard flooring and an additional 20% that it has a cost per QALY below a commonly used threshold value : Using a modelling approach, we find that impact-absorbing flooring is a dominant strategy at the societal level considering that it can save resources and improve health in a vulnerable population. © The Author 2015. Published by Oxford University Press on behalf of the European Public Health Association. All rights reserved.

  17. Safety and Radiation Protection at Swedish Nuclear Power Plants 2007

    International Nuclear Information System (INIS)

    2008-01-01

    The safety level of the plants is maintained at an acceptable level. SKI has in its regulatory supervision not found any known deficiencies in the barriers which could result in release of radioactive substances in excess of the permitted levels. SKI considers that improvements have been implemented during the year in the management, control and following up of safety work at the plants. In some cases, however, SKI has imposed requirements that improvements be made. Extensive measures are under way at the nuclear power plants to comply with the safety requirements in SKI's regulations, SKIFS 2004:2 concerning the design and construction of nuclear power reactors, and the stricter requirements regarding physical protection. Concurrently preparations are underway at eight of the ten units for thermal power increases. At the Forsmark plant considerable efforts have been during the year to correct the deficiencies in the safety culture and quality assurance system that became apparent in 2006. A programme to improve the execution of activities has been established in accordance with SKI's decision. SKI considers that the plant has developed in a positive direction but that there are further possibilities for improvement with regard to internal control. This is amongst other things concerns the areas internal auditing, independent safety review function, and working methods. SKI has had special supervision of the plant since 28 September, 2006. At the Oskarshamn plant work has been carried out to improve the organisation and routines in several areas. The plant has established routines which provide the basis to ensure that decisions are taken in a stringent manner. The quality assurance system has a clearer structure and there is a better defined division of work. Some measures remain however to be dealt with in 2008. The Ringhals plant has also worked with attitudes to routines and internal control. SKI considers that the measures have good prerequisites to provide a

  18. Safety and Radiation Protection at Swedish Nuclear Power Plants 2007

    Energy Technology Data Exchange (ETDEWEB)

    2008-07-01

    The safety level of the plants is maintained at an acceptable level. SKI has in its regulatory supervision not found any known deficiencies in the barriers which could result in release of radioactive substances in excess of the permitted levels. SKI considers that improvements have been implemented during the year in the management, control and following up of safety work at the plants. In some cases, SKI has imposed requirements that improvements be made. Extensive measures are under way at the nuclear power plants to comply with the safety requirements in SKI's regulations, SKIFS 2004:2 concerning the design and construction of nuclear power reactors, and the stricter requirements regarding physical protection. Concurrently preparations are underway at eight of the ten units for thermal power increases. At the Forsmark plant considerable efforts have been during the year to correct the deficiencies in the safety culture and quality assurance system that became apparent in 2006. A programme to improve the execution of activities has been established in accordance with SKI's decision. SKI considers that the plant has developed in a positive direction but that there are further possibilities for improvement with regard to internal control. This is amongst other things concerns the areas internal auditing, independent safety review function, and working methods. SKI has had special supervision of the plant since 28 September, 2006. At the Oskarshamn plant work has been carried out to improve the organisation and routines in several areas. The plant has established routines which provide the basis to ensure that decisions are taken in a stringent manner. The quality assurance system has a clearer structure and there is a better defined division of work. Some measures remain to be dealt with in 2008. The Ringhals plant has also worked with attitudes to routines and internal control. SKI considers that the measures have good prerequisites to provide a

  19. SETT facility of International Nuclear Security Academy

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Hyung Min [Korea Institute of Nuclear Non-proliferation and Control, Daejeon (Korea, Republic of)

    2012-05-15

    After the Cold War was put to an end, the international community, especially the Western world, was concerned about Soviet nuclear materials falling into wrong hands, especially of terrorists. Later, the growing threat posed by terrorist networks such as the Taliban and al Qaeda led to a global campaign to deny such networks materials which may be used for the development of Weapons of Mass Destruction (WMD). The 9 11 attacks made a section of the international community highly apprehensive of WMD terrorism, especially its nuclear version. From this point of view, it is clear that nuclear facilities which contain nuclear materials are very attractive targets for those who have intention of nuclear terror

  20. Neutron fluence measurement in nuclear facilities

    International Nuclear Information System (INIS)

    Camacho L, M.E.

    1997-01-01

    The objective of present work is to determine the fluence of neutrons in nuclear facilities using two neutron detectors designed and built at Instituto Nacional de Investigaciones Nucleares (ININ), Mexico. The two neutron detectors are of the passive type, based on solid state nuclear tracks detectors (SSNTD). One of the two neutron detectors was used to determine the fluence distribution of the ports at the nuclear research reactor TRIGA Mark III, which belongs to ININ. In these facilities is important to know the neutron fluence distribution characteristic to carried out diverse kind of research activities. The second neutron detector was employed in order to carry out environmental neutron surveillance. The detector has the property to separate the thermal, intermediate and fast components of the neutron fluence. This detector was used to measure the neutron fluence at hundred points around the primary container of the first Mexican Nuclear Power plant 'Laguna Verde'. This last detector was also used to determine the neutron fluence in some points of interest, around and inside a low scattering neutron room at the 'Centro de Metrologia de Radiaciones Ionizantes' of the ININ, to know the background neutron field produced by the neutron sources used there. The design of the two neutron detector and the results obtained for each of the surveying facilities, are described in this work. (Author)

  1. The Siting of Swedish Nuclear Waste: An Example of Deliberative Democracy?

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Hanna Sofia [Goeteborg Univ. (Sweden). Section for Science and Technology Studies

    2006-09-15

    This paper is about the siting process of high-level nuclear waste (HLNW), focusing on consultations with organisations as part of the environmental impact assessment (EIA). In 1992, SKB started its search for a site (deep bedrock) for the HLNW. Today, site investigations are being carried out in Oskarshamn and Oesthammar, two municipalities that already host nuclear facilities. According to the Environmental Code, the exploiter (SKB) is required to hold consultations with individuals who might be specifically concerned about the intervention. Who should be seen as concerned is not clearly defined in the law, but people living near the planned facility and environmental organisations are mentioned. During the consultations, the facility's siting, extent, and design and its environmental impact, as well as the content and design of EIS should be covered. The EIA takes place alongside SKB's technical and geological investigations. To conclude, the aim of the EIA is to, through dialogue between concerned parties, ensure that the applicant has developed a satisfactory proposal where all relevant questions have been taken into account. The questions this paper seeks to answer are: How is the agenda for the consultations set? Which actor(s) are defined as speakers vs audience? What is the character of the discussions at the consultations? The paper focuses on three consultations, two with local organisations in Oskarshamn and Oesthammar, and one in Stockholm with national environmental organisations. These consultations are studied as separate events as well as a series of consultations. The analysis of the consultations show that the organiser of the meetings, SKB, is successful in drawing a boundary between themselves as lecturer and the rest of the participants as listeners, with one exception. At the final consultation in Oesthammar, the Opinion Group of Safe Final Repository (OSS), was allowed to hold a presentation. This is an example of an organisation

  2. The Siting of Swedish Nuclear Waste: An Example of Deliberative Democracy?

    International Nuclear Information System (INIS)

    Johansson, Hanna Sofia

    2006-01-01

    This paper is about the siting process of high-level nuclear waste (HLNW), focusing on consultations with organisations as part of the environmental impact assessment (EIA). In 1992, SKB started its search for a site (deep bedrock) for the HLNW. Today, site investigations are being carried out in Oskarshamn and Oesthammar, two municipalities that already host nuclear facilities. According to the Environmental Code, the exploiter (SKB) is required to hold consultations with individuals who might be specifically concerned about the intervention. Who should be seen as concerned is not clearly defined in the law, but people living near the planned facility and environmental organisations are mentioned. During the consultations, the facility's siting, extent, and design and its environmental impact, as well as the content and design of EIS should be covered. The EIA takes place alongside SKB's technical and geological investigations. To conclude, the aim of the EIA is to, through dialogue between concerned parties, ensure that the applicant has developed a satisfactory proposal where all relevant questions have been taken into account. The questions this paper seeks to answer are: How is the agenda for the consultations set? Which actor(s) are defined as speakers vs audience? What is the character of the discussions at the consultations? The paper focuses on three consultations, two with local organisations in Oskarshamn and Oesthammar, and one in Stockholm with national environmental organisations. These consultations are studied as separate events as well as a series of consultations. The analysis of the consultations show that the organiser of the meetings, SKB, is successful in drawing a boundary between themselves as lecturer and the rest of the participants as listeners, with one exception. At the final consultation in Oesthammar, the Opinion Group of Safe Final Repository (OSS), was allowed to hold a presentation. This is an example of an organisation gaining

  3. Gas processing at DOE nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Jacox, J.

    1995-02-01

    The term {open_quotes}Gas Processing{close_quotes} has many possible meanings and understandings. In this paper, and panel, we will be using it to generally mean the treatment of gas by methods other than those common to HVAC and Nuclear Air Treatment. This is only a working guideline not a rigorous definition. Whether a rigorous definition is desirable, or even possible is a question for some other forum. Here we will be discussing the practical aspects of what {open_quotes}Gas Processing{close_quotes} includes and how existing Codes, Standards and industry experience can, and should, apply to DOE and NRC Licensed facilities. A major impediment to use of the best engineering and technology in many nuclear facilities is the administrative mandate that only systems and equipment that meet specified {open_quotes}nuclear{close_quotes} documents are permissible. This paper will highlight some of the limitations created by this approach.

  4. Image processing technology for nuclear facilities

    International Nuclear Information System (INIS)

    Lee, Jong Min; Lee, Yong Beom; Kim, Woong Ki; Park, Soon Young

    1993-05-01

    Digital image processing technique is being actively studied since microprocessors and semiconductor memory devices have been developed in 1960's. Now image processing board for personal computer as well as image processing system for workstation is developed and widely applied to medical science, military, remote inspection, and nuclear industry. Image processing technology which provides computer system with vision ability not only recognizes nonobvious information but processes large information and therefore this technique is applied to various fields like remote measurement, object recognition and decision in adverse environment, and analysis of X-ray penetration image in nuclear facilities. In this report, various applications of image processing to nuclear facilities are examined, and image processing techniques are also analysed with the view of proposing the ideas for future applications. (Author)

  5. The physical protection of nuclear material and nuclear facilities

    International Nuclear Information System (INIS)

    1999-06-01

    The latest review (1993) of this document was of limited scope and resulted in changes to the text of INFCIRC/225/Rev.2 designed to make the categorization table in that document consistent with the categorization table contained in the Convention on Physical Protection of Nuclear Materials. Consequently, a comprehensive review of INFCIRC/225 has not been conducted since 1989. Consequently, a meeting of national experts was convened from 2-5 June 1998 and from 27-29 October 1998 for a thorough review of INFCIRC/225/Rev.3. The revised document reflects the recommendations of the national experts to improve the structure and clarity of the document and to take account of improved technology and current international and national practices. In particular, a chapter has been added which provides specific recommendations related to sabotage of nuclear facilities and nuclear material. As a result of this addition, the title has been changed to 'The Physical Protection of Nuclear Material and Nuclear Facilities'. The recommendations presented in this IAEA document reflect a broad consensus among Member States on the requirements which should be met by systems for the physical protection of nuclear materials and facilities. It is hoped that they will provide helpful guidance for Member States

  6. Tritium surveillance around nuclear facilities in Japan

    International Nuclear Information System (INIS)

    Inoue, Y.; Kasida, Y.

    1978-01-01

    In order to measure the tritium levels in the environmental water around the nuclear facilities, the tritium surveillance program began in 1967 locally at Tsuruga and Mihama districts. Nowadays it has been expanded to the ten commercial nuclear power stations and three nuclear facilities. For samples whose tritium concentration is believed less than about 100 pCi/l, they were electrolytically enriched, and then counted by the liquid scintillation counter. Some of samples believed higher than 100 pCi/l were analysed without any enrichment by the low background liquid scintillation counters, Aloka LB 600 or Aloka LB 1. The results of each station are listed in Table. The sampling points corresponding to each results are shown in Figure. Tritium from the effluent was not reflected in all the land water and the tap water around the nuclear power stations and the nuclear facilities. Tritium concentration in rivers, streams, and reservoirs (pools) decreased exponentially from about 600 pCi/l in 1967 to about 150 pCi/l in 1972 at Tsuruga and Mihama, and 360 pCi/l in 1968 to 120 pCi/l in 1973 at Genkai, with the half life of about 2.5 years in both cases. After around 1972, tritium levels of river system in all districts of Japan kept nearly constant up to the end of 1975 and they were in the range from 100 to 300 pCi/l corresponding to the districts. Thereafter, it seems to start to decrease again in 1976. Sea water sampled at the intake of the station or on the seashore far from the outlet was regarded not to be influenced by the effluent from the nuclear reactors or facilities. Tritium concentration in these coastal waters decreased from 100 - 300 pCi/l in 1971 to 30 - 40 pCi/l in 1972 in Fukushima, Ibaraki and Fukui prefectures. (author)

  7. A systems approach to nuclear facility monitoring

    International Nuclear Information System (INIS)

    Argo, P.E.; Doak, J.E.; Howse, J.W.

    1996-01-01

    Sensor technology for use in nuclear facility monitoring has reached an advanced stage of development. Research on where to place these sensors in a facility and how to combine their outputs in a meaningful fashion does not appear to be keeping pace. In this paper, the authors take a global view of the problem where sensor technology is viewed as only one piece of a large puzzle. Other pieces of this puzzle include the optimal location and type of sensors used in a specific facility, the rate at which sensors record information, and the risk associated with the materials/processes at a facility. If the data are analyzed off-site, how will they be transmitted? Is real-time analysis necessary? Is one monitoring only the facility itself, or might one also monitor the processing that occurs there (e.g., tank levels and concentrations)? How is one going to combine the outputs from the various sensors to give us an accurate picture of the state of the facility? This paper will not try to answer all these questions, but rather it will attempt to stimulate thought in this area by formulating a systems approach to the problem demonstrated by a prototype system and a system proposed for an actual facility. The focus will be on the data analysis aspect of the problem. Future work in this area should focus on recommendations and guidelines for a monitoring system based upon the type of facility and processing that occurs there

  8. Sweden and the bomb. The Swedish plans to acquire nuclear weapons, 1945 - 1972

    Energy Technology Data Exchange (ETDEWEB)

    Jonter, T [Uppsala Univ. (Sweden). Dept. of History

    2001-09-01

    This study analyses the Swedish nuclear weapons research since 1945 carried out by the Swedish National Defence Research Establishment (FOA). The most important aspect of this research was dealing with protection in broad terms against nuclear weapons attacks. However, another aspect was also important from early on - to conduct research aiming at a possible production of nuclear weapons. FOA performed an extended research up to 1968, when the Swedish government signed the Non-Proliferation Treaty (NPT), which meant the end of these production plans. Up to this date, five main investigations about the technical conditions were made, 1948, 1953, 1955, 1957 and 1965, which all together expanded the Swedish know-how to produce a bomb. The Swedish plans to procure nuclear weapons were not an issue in the debate until the mid-50's. The reason for this was simple, prior to 1954 the plans were secretly held within a small group of involved politicians, military and researchers. The change of this procedure did take place when the Swedish Supreme Commander in a public defence report in 1954 favoured a Swedish Nuclear weapons option. In 1958 FOA had reached a technical level that allowed the parliament to make a decision. Two programs were proposed - the L-programme (the Loading Programme), to be used if the parliament would say yes to a production of nuclear weapons, and the S-programme (the Protection Programme), if the parliament would say no. The debate on the issue had now created problems for the Social Democratic Government. The prime minister, Tage Erlander, who had earlier defended a procurement of nuclear weapons, was now forced to reach a compromise. The compromise was presented to the parliament in a creative manner that meant that only the S-programme would be allowed. The government argued that the technical level did allow a 'freedom of action' up to at least the beginning of the 60's when Sweden was mature to make a decision on the issue

  9. Knowledge transfer in Swedish Nuclear Power Plants in connection with retirements

    International Nuclear Information System (INIS)

    Larsson, Annika; Ohlsson, Kjell; Roos, Anna

    2007-01-01

    This report displays how the Swedish nuclear power plants Forsmark, Oskarshamn and Ringhals work with knowledge management. The report also consists of a literature review of appropriate ways to extract tacit knowledge as well as methods to transfer competence. The report is made up of a smaller number of interviews at the nuclear power plants in combination with a questionnaire distributed to a larger number of people at the plants. The results of the interview study is that only one of the Swedish nuclear power plants have a programme to transfer knowledge from older staff to newer. This is, however, not a programme for everyone. Another plant has a programme for knowledge building, but only for their specialists. At both plants, which lack a programme, the interviewees request more structure in knowledge transfer; even though they feel the current way of transferring knowledge with mentors works well. Besides more structure, interviewees present a wish to have more time for knowledge transfer as well as the opportunity to recruit more than needed. Recruiting more than needed is however not very simple due to multiple causes such as nominal sizing departments and a difficulty of recruiting people to work far from larger cities. The way things are now, many feel too under-staffed and under a lot of time pressure daily to also have time for knowledge transfer besides their normal work

  10. Analysis of human performance problems at the Swedish nuclear power plants

    International Nuclear Information System (INIS)

    Bento, J.P.

    1988-01-01

    The last five years of operation of all Swedish nuclear power plants have been studied with respect to human performance problems by analysing all scrams and licensee event reports (LERs). Thus, the study covers 165 scrams and 1318 LERs. As general results, 39% of the scrams and 27% of the LERs, as an average for the years 1983-1987, are caused by human performance problems. Among the items studied, emphasis has been put on the analysis of the causal categories involved in human performance problems resulting in plant events. The most significant causal categories appear to be Work organization, Procedures not followed, Work place ergonomics and Human variability

  11. Gas separation techniques in nuclear facilities

    International Nuclear Information System (INIS)

    Hioki, Hideaki; Morisue, Tetsuo; Ohno, Masayoshi

    1983-01-01

    The literatures concerning the gas separation techniques which are applied to the waste gases generated from nuclear power plants and nuclear fuel reprocessing plants, uranium enrichment and the instrumentation of nuclear facilities are reviewed. The gas permeability and gas separation performance of membranes are discussed in terms of rare gas separation. The investigation into the change of the gas permeability and mechanical properties of membranes with exposure to radiation is reported. The theoretical investigation of the separating cells used for the separation of rare gas and the development of various separating cells are described, and the theoretical and experimental investigations concerning rare gas separation using cascades are described. The application of membrane method to nuclear facilities is explained showing the examples of uranium enrichment, the treatment of waste gases from nuclear reactor buildings and nuclear fuel reprocessing plants, the monitoring of low level β-emitters in stacks, the detection of failed fuels and the detection of water leak in fast breeder reactors. (Yoshitake, I.)

  12. Improving the Safeguardability of Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    T. Bjornard; R. Bari; D. Hebditch; P. Peterson; M. Schanfein

    2009-07-01

    The application of a Safeguards-by-Design (SBD) process for new nuclear facilities has the potential to reduce security risks and proliferation hazards while improving the synergy of major design features and raising operational efficiency, in a world where significant expansion of nuclear energy use may occur. Correspondingly, the U.S. DOE’s Next Generation Safeguards Initiative (NGSI) includes objectives to contribute to international efforts to develop SBD, and to apply SBD in the development of new U.S. nuclear infrastructure. Here, SBD is defined as a structured approach to ensure the timely, efficient and cost effective integration of international safeguards and other nonproliferation barriers with national material control and accountability, physical protection, and safety objectives into the overall design process for a nuclear facility, from initial planning through design, construction and operation. The SBD process, in its simplest form, may be applied usefully today within most national regulatory environments. Development of a mature approach to implementing SBD requires work in the areas of requirements definition, design processes, technology and methodology, and institutionalization. The U.S. efforts described in this paper are supportive of SBD work for international safeguards that has recently been initiated by the IAEA with the participation of many stakeholders including member States, the IAEA, nuclear technology suppliers, nuclear utilities, and the broader international nonproliferation community.

  13. Hematite nuclear fuel cycle facility decommissioning

    International Nuclear Information System (INIS)

    Hayes, K.

    2004-01-01

    Westinghouse Electric Company LLC ('Westinghouse') acquired a nuclear fuel processing plant at Hematite, Missouri ('Hematite', the 'Facility', or the 'Plant') in April 2000. The plant has subsequently been closed, and its operations have been relocated to a newer, larger facility. Westinghouse has announced plans to complete its clean-up, decommissioning, and license retirement in a safe, socially responsible, and environmentally sound manner as required by internal policies, as well as those of its parent company, British Nuclear Fuels plc. ('BNFL'). Preliminary investigations have revealed the presence of environmental contamination in various areas of the facility and grounds, including both radioactive contamination and various other substances related to the nuclear fuel processing operations. The disparity in regulatory requirements for radiological and nonradiological contaminants, the variety of historic and recent operations, and the number of previous owners working under various contractual arrangements for both governmental and private concerns has resulted in a complex project. This paper discusses Westinghouse's efforts to develop and implement a comprehensive decontamination and decommissioning (D and D) strategy for the facility and grounds. (author)

  14. International safeguards in large scale nuclear facilities

    International Nuclear Information System (INIS)

    Gupta, D.; Heil, J.

    1977-01-01

    The trend in the energy sector in most of the industrialized areas of the world shows rather clearly, that the rate of installation of nuclear plants will be very high and that the largest possible units of nuclear material handling and storage facilities will be built. Various experiments and analyses of measurement methods relevant to safeguards, in typical nuclear facilities like a fuel reprocessing or a fabrication plant, have shown that the associated measurement errors as obtained under normal operating conditions are such that they are mainly dominated by systematic errors and that such systematic errors may lie in the range of percentages of the measured amount so that a material balance in such a plant could not normally be closed with high accuracy. The simplest way of going around the problem would be to increase the frequency of striking a material balance over a given period of time. This could however lead to an anormous increase in the technical and financial burden for the operator of a facility. The present paper analyses this problem in some detail for some facilities and shows that with a properly developed information system in such plants and a combination of containment, surveillance and accountancy measures, safeguards statements for relatively low significant amounts can be made with the attainable range of measurement accuracies

  15. A system approach to nuclear facility monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Argo, P.E.; Doak, J.E.; Howse, J.W.

    1996-09-01

    Sensor technology for use in nuclear facility monitoring has reached and advanced stage of development. Research on where to place these sensors in a facility and how to combine their outputs in a meaningful fashion does not appear to be keeping pace. In this paper, we take a global view of the problem where sensor technology is viewed as only one piece of a large puzzle. Other pieces of this puzzle include the optimal location and type of sensors used in a specific facility, the rate at which sensors record information, and the risk associated with the materials/processes at a facility. If the data are analyzed off-site, how will they be transmitted? Is real-time analysis necessary? Are we monitoring only the facility itself, or might we also monitor the processing that occurs there? How are we going to combine the output from the various sensors to give us an accurate picture of the state of the facility? This paper will not try to answer all these questions, but rather it will attempt to stimulate thought in this area by formulating a systems approach to the problem demonstrated by a prototype system and a systems proposed for an actual facility. Our focus will be on the data analysis aspect of the problem.

  16. Deactivating a major nuclear fuels reprocessing facility

    International Nuclear Information System (INIS)

    LeBaron, G.J.

    1997-01-01

    This paper describes three key processes used in deactivating the Plutonium Uranium Extraction (PUREX) Facility, a large, complex nuclear reprocessing facility, 15 months ahead of schedule and $77 million under budget. The organization was reengineered to refine its business processes and more effectively organize around the deactivation work scope. Multi-disciplined work teams were formed to be self-sufficient and empowered to make decisions and perform work. A number of benefits were realized by reengineering. A comprehensive process to develop end points which clearly identified specific results and the post-project facility configuration was developed so all areas of a facility were addressed. Clear and specific end points allowed teams to focus on completing deactivation activities and helped ensure there were no unfulfilled end-of-project expectations. The RCRA regulations require closure of permitted facilities within 180 days after cessation of operations which may essentially necessitate decommissioning. A more cost effective approach was adopted which significantly reduced risk to human health and the environment by taking the facility to a passive, safe, inexpensive-to-maintain surveillance and maintenance condition (deactivation) prior to disposition. PUREX thus became the first large reprocessing facility with active TSD [treatment, storage, and disposal] units to be deactivated under the RCRA regulations

  17. Nuclear fuel cycle facility accident analysis handbook

    Energy Technology Data Exchange (ETDEWEB)

    Ayer, J E; Clark, A T; Loysen, P; Ballinger, M Y; Mishima, J; Owczarski, P C; Gregory, W S; Nichols, B D

    1988-05-01

    The Accident Analysis Handbook (AAH) covers four generic facilities: fuel manufacturing, fuel reprocessing, waste storage/solidification, and spent fuel storage; and six accident types: fire, explosion, tornado, criticality, spill, and equipment failure. These are the accident types considered to make major contributions to the radiological risk from accidents in nuclear fuel cycle facility operations. The AAH will enable the user to calculate source term releases from accident scenarios manually or by computer. A major feature of the AAH is development of accident sample problems to provide input to source term analysis methods and transport computer codes. Sample problems and illustrative examples for different accident types are included in the AAH.

  18. Nuclear fuel cycle facility accident analysis handbook

    International Nuclear Information System (INIS)

    Ayer, J.E.; Clark, A.T.; Loysen, P.; Ballinger, M.Y.; Mishima, J.; Owczarski, P.C.; Gregory, W.S.; Nichols, B.D.

    1988-05-01

    The Accident Analysis Handbook (AAH) covers four generic facilities: fuel manufacturing, fuel reprocessing, waste storage/solidification, and spent fuel storage; and six accident types: fire, explosion, tornado, criticality, spill, and equipment failure. These are the accident types considered to make major contributions to the radiological risk from accidents in nuclear fuel cycle facility operations. The AAH will enable the user to calculate source term releases from accident scenarios manually or by computer. A major feature of the AAH is development of accident sample problems to provide input to source term analysis methods and transport computer codes. Sample problems and illustrative examples for different accident types are included in the AAH

  19. Testing lifting systems in nuclear facilities

    International Nuclear Information System (INIS)

    Kling, H.; Laug, R.

    1984-01-01

    Lifting systems in nuclear facilities must be inspected at regular intervals after having undergone their first acceptance test. These inspections are frequently carried out by service firms which not only employ the skilled personnel required for such jobs but also make available the necessary test equipment. The inspections in particular include a number of sophisticated load tests for which test load systems have been developed to allow lifting systems to be tested so that reactor specific boundary conditions are taken into account. In view of the large number of facilities to be inspected, the test load system is a modular system. (orig.) [de

  20. The US nuclear science user facilities - 5276

    International Nuclear Information System (INIS)

    Kennedy, J.R.

    2015-01-01

    The primary mission of the NSUF (Nuclear Science User Facilities) is to provide access, at no cost to the researcher, to world-class, state-of-the art capabilities and expertise to advance nuclear science and technology through high impact research. Through the NSUF, nuclear energy researchers can access specialized and often unique and expensive equipment and facilities, as well as the accompanying expertise, including nuclear test reactors, ion beam accelerators, hot cell post-irradiation examination (PIE) equipment, synchrotron beam lines, and advanced radiologically qualified materials science PIE instrumentation. The NSUF can also support the design and fabrication of an irradiation experiment, the transport of that experiment to and from the reactor, the PIE activities, the analysis and interpretation of the data, and final material disposition. A special feature of the NSUF is its Sample Library of irradiated specimens made available to users that reduces investigation time and costs. Enhancing the Sample Library for future applications of advanced instrumentation and new ideas is a key goal of the NSUF. Similar to the effort on building a Sample Library, the NSUF is creating a searchable database of the infrastructure available to DOE-NE (Department Of Energy - Office of Nuclear Energy) supported researchers

  1. Management of tritium at nuclear facilities

    International Nuclear Information System (INIS)

    1984-01-01

    This report presents extending summaries of the works of the participants to an IAEA co-ordinated research programme, ''Handling Tritium - bearing effluents and wastes''. The subjects covered include production of tritium in nuclear power plants (mainly heavy water and light water reactors), as well as at reprocessing plants; removal and enrichment of tritium at nuclear facilities; conditioning methods and characteristics of immobilized tritium of low and high concentration; some potential methods of storage and disposal of tritium. In addition to the conclusions of this three-years work, possible activities in the field are recommended

  2. Performing a nuclear facility EMI audit

    International Nuclear Information System (INIS)

    White, D.R.J.

    1993-01-01

    This paper addresses several questions which may arise when performing a nuclear facility EMI audit. Among the issues addressed are how a nuclear electrical power plant can ensure that it has taken adequate EMC measures to protect it from hostile electromagnetic ambient environments, means by which these measures can be implemented with sufficient integrity and reliability, and how often an inspection or audit should be performed to assess the EMC measures. Means of assessing EMI hardening and effective control of aging effects are also discussed. 2 figs

  3. Industrial fans used in nuclear facilities

    International Nuclear Information System (INIS)

    Carlson, J.A.

    1987-01-01

    Industrial fans are widely used in nuclear facilities, and their most common use is in building ventilation. To control the spread of contamination, airflows are maintained at high levels. Therefore, the selection of the fan and fan control are important to the safety of people, equipment and the environment. As a result, 80% of all energy used in nuclear facilities is fan energy. Safety evolves from the durability, control and redundancy in the system. In new or retrofit installations, testing and qualification of fans and systems are completed prior to start-up. Less important but necessary is the energy conservation aspect of fan selection and installations. Fan efficiency, type of control and system installation are evaluated for energy use

  4. Environmental radiation monitoring around the nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang Woo; Choi, Geun Sik and others

    2001-02-01

    Environmental Radiation Monitoring was carried out with measurement of environment. Radiation and environmental radioactivity analysis around KAERI nuclear facilities and Seoul Research Reactor. The results of environmental radiation monitoring around KAERI nuclear facilities and Seoul Research Reactor are the follows : The average level of environmental radiation dose measured by NaI scintillation counter and accumulated radiation dose by TLD was almost same level compared with the past years. Gross {alpha}, {beta} radioactivity in environmental samples showed a environmental level. {gamma}-radionuclides in water samples were not detected. But only radionuclide K-40, which is natural radionuclide, was detected in the all samples and Cs-137 was detected in the surface soil and discharge sediment. The average level of environmental radiation dose around Seoul Research Reactor was almost same level compared with the past years, and Be-7 and Cs-137 were detected in some surface soil and discharge sediment by {gamma}-spectrometry.

  5. Protection of nuclear facilities against outer aggressions

    International Nuclear Information System (INIS)

    Aussourd, P.; Candes, P.; Le Quinio, R.

    1976-01-01

    The various types of outer aggressions envisaged in safety analysis for nuclear facilities are reviewed. These outer aggressions are classified as natural and non-natural phenomena, the latter depending on the human activities in the vicinity of nuclear sites. The principal natural phenomena able to constitute aggressions are atmospheric phenomena (strong winds, snow storms, hail, frosting mists), hydrologie phenomena such as tides, surges, flood, low waters, and geologic phenomena such as earthquakes. Artificial phenomena are concerned with aircraft crashes, projectiles, fire, possible ruptures of dams, and intentional human aggressions. The protection against intentional human aggressions is of two sorts: first, the possibility of access to the installations mostly sensitive to sabotage are to be prevented or reduced, secondly redundant circuits and functions must be separated for preventing their simultaneous destruction in the case when sabotage actors have reach the core of the facility [fr

  6. Environmental radiation monitoring around the nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Geun Sik; Lee, Chang Woo; Joo, Young Hyun [and others

    2005-04-01

    Environmental Radiation Monitoring was carried out with measurement of environment. radiation and environmental radioactivity analysis around KAERI nuclear facilities and Seoul Research Reactor. The results of environmental radiation monitoring around KAERI nuclear facilities and Seoul Research Reactor are the follows : The average level of environmental radiation dose measured by NaI scintillation counter and accumulated radiation dose by TLD was almost same level compared with the past years. Gross {alpha} ,{beta} radioactivity in environmental samples showed a environmental level. {gamma}-radionuclides in water samples were not detected. But only radionuclide K-40, which is natural radionuclide, was detected in the all samples and Cs-137 was detected in the surface soil and discharge sediment. The average level of environmental radiation dose around Seoul Research Reactor was almost same level compared with the past years, and Be-7 and Cs-137 were detected in some surface soil and discharge sediment by {gamma}-spectrometry.

  7. Computer codes for ventilation in nuclear facilities

    International Nuclear Information System (INIS)

    Mulcey, P.

    1987-01-01

    In this paper the authors present some computer codes, developed in the last years, for ventilation and radioprotection. These codes are used for safety analysis in the conception, exploitation and dismantlement of nuclear facilities. The authors present particularly: DACC1 code used for aerosol deposit in sampling circuit of radiation monitors; PIAF code used for modelization of complex ventilation system; CLIMAT 6 code used for optimization of air conditioning system [fr

  8. Air filters for use at nuclear facilities

    International Nuclear Information System (INIS)

    Linder, P.

    1970-01-01

    The ventilation system of a nuclear facility plays a vital role in ensuring that the air in working areas and the environment remains free from radioactive contamination. An earlier IAEA publication, Techniques for Controlling Air Pollution from the Operation of Nuclear Facilities, Safety Series No. 17, deals with the design and operation of ventilation systems at nuclear facilities. These systems are usually provided with air-cleaning devices which remove the contaminants from the air. This publication is intended as a guide to those who are concerned with the design of air-filtering systems and with the testing, operation and maintenance of air-filter installations at nuclear facilities. Emphasis is mainly placed on so-called high-efficiency particulate air filters (HEPA filters) and on providing general information on them. Besides describing the usual filter types, their dimensions and construction materials, the guidebook attempts to explain their properties and behaviour under different operating conditions. It also gives advice on testing and handling the filters so that effective and safe performance is ensured. The guidebook should serve as an introduction to the use of high efficiency particulate air filters in countries where work with radioactive materials has only recently commenced. The list of references at the end of the book indicates sources of more advanced information for those who already have comprehensive experience in this field. It is assumed here that the filters are obtained from a manufacturer, and the guidebook thus contains no information on the design and development of the filter itself, nor does it deal with the cleaning of the intake air to a plant, with gas sorption or protective respiratory equipment

  9. The Swedish Radiation Protection Institute's regulations concerning the final management of spent nuclear fuel and nuclear waste - with background and comments

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-11-01

    This report presents and comments on the Swedish Radiation Protection Institute's Regulations concerning the Protection of Human Health and the Environment in connection with the Final Management of Spent Nuclear Fuel or Nuclear Waste, SSI FS 1998: 1.

  10. Transfer of 137Cs from Chernobyl debris and nuclear weapons fallout to different Swedish population groups.

    Science.gov (United States)

    Rääf, C L; Hubbard, L; Falk, R; Agren, G; Vesanen, R

    2006-08-15

    Data from measurements on the body burden of (134)Cs, (137)Cs and (40)K in various Swedish populations between 1959 and 2001 has been compiled into a national database. The compilation is a co-operation between the Departments of Radiation Physics in Malmö and Göteborg, the National Radiation Protection Authority (SSI) and the Swedish Defense Research Agency (FOI). In a previous study the effective ecological half time and the associated effective dose to various Swedish populations due to internal contamination of (134)Cs and (137)Cs have been assessed using the database. In this study values of human body burden have been combined with data on the local and regional ground deposition of fallout from nuclear weapons tests (only (137)Cs) and Chernobyl debris (both (134)Cs and (137)Cs), which have enabled estimates of the radioecological transfer in the studied populations. The assessment of the database shows that the transfer of radiocesium from Chernobyl fallout to humans varies considerably between various populations in Sweden. In terms of committed effective dose over a 70 y period from internal contamination per unit activity deposition, the general (predominantly urban) Swedish population obtains 20-30 microSv/kBq m(-2). Four categories of populations exhibit higher radioecological transfer than the general population; i.) reindeer herders ( approximately 700 microSv/kBq m(-2)), ii.) hunters in the counties dominated by forest vegetation ( approximately 100 microSv/kBq m(-2)), iii.) rural non-farming populations living in sub-arctic areas (40-150 microSv/kBq m(-2)), and iv.) farmers ( approximately 50 microSv/kBq m(-2)). Two important factors determine the aggregate transfer from ground deposition to man; i.) dietary habits (intakes of foodstuff originating from natural and semi-natural ecosystems), and ii.) inclination to follow the recommended food restriction by the authorities. The transfer to the general population is considerably lower

  11. Nuclear facility decommissioning and site remedial actions

    Energy Technology Data Exchange (ETDEWEB)

    Owen, P.T.; Knox, N.P.; Ferguson, S.D.; Fielden, J.M.; Schumann, P.L.

    1989-09-01

    The 576 abstracted references on nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the tenth in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Citations to foreign and domestic literature of all types--technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions--have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's Remedial Action Programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Program, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Uranium Mill Tailings Management, (7) Technical Measurements Center, and (8) General Remedial Action Program Studies. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication description. Indexes are provided for author, corporate affiliation, title work, publication description, geographic location, subject category, and keywords.

  12. Nuclear facility decommissioning and site remedial actions

    Energy Technology Data Exchange (ETDEWEB)

    Knox, N.P.; Webb, J.R.; Ferguson, S.D.; Goins, L.F.; Owen, P.T.

    1990-09-01

    The 394 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the eleventh in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Citations to foreign and domestic literature of all types -- technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions -- have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's Remedial Action Programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Programs, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Grand Junction Remedial Action Program, (7) Uranium Mill Tailings Management, (8) Technical Measurements Center, (9) Remedial Action Program, and (10) Environmental Restoration Program. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and keywords. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects and analyzes information on remedial actions and relevant radioactive waste management technologies.

  13. Nuclear facility decommissioning and site remedial actions

    International Nuclear Information System (INIS)

    Knox, N.P.; Webb, J.R.; Ferguson, S.D.; Goins, L.F.; Owen, P.T.

    1990-09-01

    The 394 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the eleventh in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Citations to foreign and domestic literature of all types -- technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions -- have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's Remedial Action Programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Programs, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Grand Junction Remedial Action Program, (7) Uranium Mill Tailings Management, (8) Technical Measurements Center, (9) Remedial Action Program, and (10) Environmental Restoration Program. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and keywords. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects and analyzes information on remedial actions and relevant radioactive waste management technologies

  14. Nuclear facility decommissioning and site remedial actions

    International Nuclear Information System (INIS)

    Owen, P.T.; Knox, N.P.; Ferguson, S.D.; Fielden, J.M.; Schumann, P.L.

    1989-09-01

    The 576 abstracted references on nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the tenth in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Citations to foreign and domestic literature of all types--technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions--have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's Remedial Action Programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Program, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Uranium Mill Tailings Management, (7) Technical Measurements Center, and (8) General Remedial Action Program Studies. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication description. Indexes are provided for author, corporate affiliation, title work, publication description, geographic location, subject category, and keywords

  15. Radioactive waste management from nuclear facilities

    International Nuclear Information System (INIS)

    2005-06-01

    This report has been published as a NSA (Nuclear Systems Association, Japan) commentary series, No. 13, and documents the present status on management of radioactive wastes produced from nuclear facilities in Japan and other countries as well. Risks for radiation accidents coming from radioactive waste disposal and storage together with risks for reactor accidents from nuclear power plants are now causing public anxiety. This commentary concerns among all high-level radioactive waste management from nuclear fuel cycle facilities, with including radioactive wastes from research institutes or hospitals. Also included is wastes produced from reactor decommissioning. For low-level radioactive wastes, the wastes is reduced in volume, solidified, and removed to the sites of storage depending on their radioactivities. For high-level radioactive wastes, some ten thousand years must be necessary before the radioactivity decays to the natural level and protection against seismic or volcanic activities, and terrorist attacks is unavoidable for final disposals. This inevitably results in underground disposal at least 300 m below the ground. Various proposals for the disposal and management for this and their evaluation techniques are described in the present document. (S. Ohno)

  16. Improvement of management systems for nuclear facilities

    International Nuclear Information System (INIS)

    2005-01-01

    The area of Quality Management/ Quality Assurance has been changed dramatically over the past years. The nuclear facilities moved from the 'traditional' Quality Assurance approach towards Quality Management Systems, and later a new concept of Integrated Management Systems was introduced. The IAEA is developing a new set of Standards on Integrated Management Systems, which will replace the current 50-C-Q/SG-Q1-Q14 Code. The new set of document will require the integration of all management areas into one coherent management system. The new set of standards on Management Systems promotes the concept of the Integrated Management Systems. Based on new set a big number of documents are under preparation. These documents will address the current issues in the management systems area, e.g. Management of Change, Continuous Improvement, Self-assessment, and Attributes of effective management, etc. Currently NPES is providing a number of TC projects and Extra Budgetary Programmes to assist Member States in this area. The new Standards on Management Systems will be published in 2006. A number of Regulatory bodies already indicated that they would take the new Management System Standards as a basis for the national regulation. This fact will motivate a considerable change in the management of nuclear utilities, requiring a new approach. This activity is suitable for all IAEA Members States with large or limited nuclear capabilities. The service is directed to provide assistance for the management of all organizations carrying on or regulating nuclear activities and facilities

  17. The Swedish Nuclear Power Inspectorate's evaluation of SKB's RD and D Program 98. Review report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-04-01

    that the final disposal system is not irrevocable, SKB now uses the term deep disposal. However, the term used in the legislation is final disposal. Regardless of which term is used, different degrees of retrievability can be discussed. SKI has distributed RDandD Programme 98 to sixty-three reviewing bodies for comment. Forty-five responses were received. The reviewing bodies include universities and institutes of technology, local safety committees, municipalities hosting nuclear facilities and municipalities participating in feasibility studies as well as many authorities such as county administrative boards, the Swedish Environmental Protection Agency, the Swedish Board of Housing, Building and Planning and SSI. The comments of the reviewing bodies mainly focus on the decision-making process, including issues relating to method selection and site selection and, in particular, on the selection of sites for site investigation. Several reviewing bodies, particularly universities and institutes of technology, have also submitted comments of a more technical/scientific nature. SKI's evaluation has focused on determining whether SKB's programme can be considered to fulfil the requirements stipulated in the Act on Nuclear Activities that such a programme should be able to result in the implementation of solutions for the final disposal of the spent nuclear fuel from the Swedish nuclear power programme. Furthermore, SKI's evaluation has focused on the conditions that SKI considers should apply to SKB's future work.

  18. The review of the Swedish R and D programme 1992 for the handling and final disposal of nuclear waste

    International Nuclear Information System (INIS)

    Sjoeblom, R.; Andersson, J.; Norrby, S.

    1993-01-01

    The Swedish Act on Nuclear Activities states that it is the owners of the nuclear power reactors that bear the responsibility-technically and financially-for the safe disposal of radioactive waste (including the spent fuel). In summary, the act imposes the following on the owners of the nuclear power stations: - To ensure that the necessary measures are taken in order to safely handle and finally dispose of the nuclear waste generated, and to decommission and dismantle the nuclear power plants in a safe manner. - To ensure that the comprehensive research and development activities required to carry out these activities are conducted, including studies of alternative methods for the handling and final disposal of the waste. - To submit, for approval, a programme of research, development and other appropriate measures-including an account of results of completed research-every third year starting in 1986. In response to these demands, the nuclear power companies have formed a jointly owned company, the Swedish Nuclear Fuel and Waste Management Company (SKB) and commissioned it to carry out these tasks. The Swedish Nuclear Power Inspectorate is responsible for the review and evaluation of the SKB programme since July 1st, 1992. The purpose of the present paper is to present a few of the SKI conclusions that may be of general interest. Although the SKB RD and D Programme 92 deals with both spent fuel and other long-lived waste, this paper is limited in scope to spent fuel. (author). 11 refs., 1 fig

  19. Financing Strategies for Nuclear Fuel Cycle Facility

    International Nuclear Information System (INIS)

    David Shropshire; Sharon Chandler

    2005-01-01

    To help meet our nation's energy needs, reprocessing of spent nuclear fuel is being considered more and more as a necessary step in a future nuclear fuel cycle, but incorporating this step into the fuel cycle will require considerable investment. This report presents an evaluation of financing scenarios for reprocessing facilities integrated into the nuclear fuel cycle. A range of options, from fully government owned to fully private owned, was evaluated using a DPL (Dynamic Programming Language) 6.0 model, which can systematically optimize outcomes based on user-defined criteria (e.g., lowest life-cycle cost, lowest unit cost). Though all business decisions follow similar logic with regard to financing, reprocessing facilities are an exception due to the range of financing options available. The evaluation concludes that lowest unit costs and lifetime costs follow a fully government-owned financing strategy, due to government forgiveness of debt as sunk costs. Other financing arrangements, however, including regulated utility ownership and a hybrid ownership scheme, led to acceptable costs, below the Nuclear Energy Agency published estimates. Overwhelmingly, uncertainty in annual capacity led to the greatest fluctuations in unit costs necessary for recovery of operating and capital expenditures; the ability to determine annual capacity will be a driving factor in setting unit costs. For private ventures, the costs of capital, especially equity interest rates, dominate the balance sheet; the annual operating costs dominate the government case. It is concluded that to finance the construction and operation of such a facility without government ownership could be feasible with measures taken to mitigate risk, and that factors besides unit costs should be considered (e.g., legal issues, social effects, proliferation concerns) before making a decision on financing strategy

  20. ICT security- aspects important for nuclear facilities

    International Nuclear Information System (INIS)

    Thunem, Atoosa P-J.

    2005-09-01

    Rapid application growth of complex Information and Communication Technologies (ICT) in every society and state infrastructure as well as industry has revealed vulnerabilities that eventually have given rise to serious security breaches. These vulnerabilities together with the course of the breaches from cause to consequence are gradually about to convince the field experts that ensuring the security of ICT-driven systems is no longer possible by only relying on the fundaments of computer science, IT, or telecommunications. Appropriating knowledge from other disciplines is not only beneficial, but indeed very necessary. At the same time, it is a common observation today that ICT-driven systems are used everywhere, from the nuclear, aviation, commerce and healthcare domains to camera-equipped web-enabled cellular phones. The increasing interdisciplinary and inter-sectoral aspects of ICT security worldwide have been providing updated and useful information to the nuclear domain, as one of the emerging users of ICT-driven systems. Nevertheless, such aspects have also contributed to new and complicated challenges, as ICT security for the nuclear domain is in a much more delicate manner than for any other domains related to the concept of safety, at least from the public standpoint. This report addresses some important aspects of ICT security that need to be considered at nuclear facilities. It deals with ICT security and the relationship between security and safety from a rather different perspective than usually observed and applied. The report especially highlights the influence on the security of ICT-driven systems by all other dependability factors, and on that basis suggests a framework for ICT security profiling, where several security profiles are assumed to be valid and used in parallel for each ICT-driven system, sub-system or unit at nuclear facilities. The report also covers a related research topic of the Halden Project with focus on cyber threats and

  1. Occupational radiation protection at Swedish Nuclear Power Plants: Views on present status and future challenges

    Energy Technology Data Exchange (ETDEWEB)

    Lund, Ingemar; Erixon, Stig; Godaas, Thommy; Hofvander, Peter; Malmqvist, Lars; Thimgren, Ingela; Oelander Guer, Hanna [Department of Occupational and Medical Exposures, Swedish Radiation Protection Authority, SE-171 16 Stockholm (Sweden)

    2004-07-01

    The occupational radiation doses at Swedish NPPs have decreased with roughly a factor of two from the beginning of the 1990's until today. The average collective dose during the last five years is 10 manSv for eleven operating reactors. During the same period, the average annual individual dose to the personnel has decreased from 3 - 4 mSv/year to about 2 mSv/year. In this presentation, the measures taken to improve the radiological conditions at the NPPs are briefly reviewed and the present status is described. The expectations for the future are outlined. The SSI summarises past experiences and the prerequisites for preserving good radiation protection conditions by the following catch words: Competence, Experience Feedback, Preventive Measures, and Long-Term Planning. Finally, it is the view of the SSI that essential efforts to improve the radiation protection conditions at the Swedish nuclear power plants have been made. The radiation protection conditions are good, which is a result of long-term efforts on reducing radiation levels, improving work procedures as well as increasing the knowledge of, and the commitment to, radiation protection issues at the staff level. (authors)

  2. Concrete containments in Swedish nuclear power plants. A review of construction and material

    International Nuclear Information System (INIS)

    Roth, Thomas; Silfwerbrand, Johan; Sundquist, Haakan

    2002-12-01

    attention. Current investigation shows that the documentation on the concrete containment structures of the Swedish nuclear power stations is fairly complete after the authors have obtained new information through a survey during 2001 and included these data in the report. The target group of this report are structural engineers and other people interested in knowing how the prestressed concrete containments in the Swedish nuclear power stations are designed, detailed and constructed. Uprising questions regarding the structural behaviour of the containment structures ought to be evaluated by using present material properties and not the data describing the used building materials at the design stage. The aim of this research project is to gain new knowledge on life span questions regarding prestressing steel in concrete structures, partly generally and partly with focus on Swedish nuclear power stations and Swedish bridges. The project covers both bonded and un bonded prestressing steel. This report describes the containment structures for all Swedish nuclear power stations. The information is both given in Chapters 5 through 16 and assembled in tables in Appendix A. The intention is that the documentation shall grow and be supplemented as soon as new information, either new data describing the containment structures or new measuring results, will be obtained or produced within current research project. Design and detailing of prestressed concrete structures are among others based on the knowledge of time-dependent material changes regarding concrete (creep and shrinkage) and prestressing steel (relaxation). The intention is that the following items will treated: general evaluation; testing of prestressing steel and concrete properties; assessment of the risk of a time-dependent increase of brittleness of the prestressing steel; comparisons with codes; modelling of steel relaxation; unidimensional modelling of prestressing losses; regard to elevated temperatures

  3. Financing the Decommissioning of Nuclear Facilities

    International Nuclear Information System (INIS)

    2016-01-01

    Decommissioning of both commercial and R and D nuclear facilities is expected to increase significantly in the coming years, and the largest of such industrial decommissioning projects could command considerable budgets. It is important to understand the costs of decommissioning projects in order to develop realistic cost estimates as early as possible based on preliminary decommissioning plans, but also to develop funding mechanisms to ensure that future decommissioning expenses can be adequately covered. Sound financial provisions need to be accumulated early on to reduce the potential risk for residual, unfunded liabilities and the burden on future generations, while ensuring environmental protection. Decommissioning planning can be subject to considerable uncertainties, particularly in relation to potential changes in financial markets, in energy policies or in the conditions and requirements for decommissioning individual nuclear installations, and such uncertainties need to be reflected in regularly updated cost estimates. This booklet offers a useful overview of the relevant aspects of financing the decommissioning of nuclear facilities. It provides information on cost estimation for decommissioning, as well as details about funding mechanisms and the management of funds based on current practice in NEA member countries. (authors)

  4. NGOs Participation in the Swedish EIA Process to Establish a Nuclear Waste Disposal

    International Nuclear Information System (INIS)

    Holmstrand, Olov

    2006-01-01

    Swedish environmental NGOs have no complete consensus on the issue of nuclear waste management. However, concerning the demands on the the EIA process most of the opinions coincide. The following standpoints generally reflect those represented by MKG as interpreted by the author Continuation of nuclear waste production, also in connection with uranium mining, is inconsistent with sustainable development. The problems of nuclear waste management must be dealt with now and not left to an undecided future. However, this does not automatically mean that any final solution needs be implemented within a short period of time. Irrespective of storage or disposal method nuclear waste is a possible source for nuclear weapons for a very long time and must therefore be subject to long-term safeguards. Any storage or disposal must be designed considering the risk of intention or unintentional intrusion. The management of nuclear waste is a national task. The thus be performed on a national scale, not as now in the municipal and to some extent regional scale. The choice of method should precede the choice of site. The choice of method should be made according to a systematic process and considering functional conditions set up in advance. Different alternatives should be evaluated and compared according to strict long-term environmental standards that comply with sustainable development. This demands extensive information on more than one possible method. The choice of site should also be made according to a systematic process considering functional conditions set up in advance. A clear and understandable sieving process at a national scale should be performed to find the best possible site considering environmental conditions. Changes have to be made so that an independent body supervises the EIA process instead of the nuclear industry. This increases the chance that the choice of method and site gain legitimacy and acceptance in the eyes of ordinary citizens

  5. Cost calculations for decommissioning and dismantling of nuclear research facilities

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, I. (Studsvik Nuclear AB (Sweden)); Backe, S. (Institute for Energy Technology (Norway)); Cato, A.; Lindskog, S. (Swedish Nuclear Power Inspectorate (Sweden)); Efraimsson, H. (Swedish Radiation Protection Authority (Sweden)); Iversen, Klaus (Danish Decommissioning (Denmark)); Salmenhaara, S. (VTT Technical Research Centre of Finland (Finland)); Sjoeblom, R. (Tekedo AB, (Sweden))

    2008-07-15

    Today, it is recommended that planning of decommission should form an integral part of the activities over the life cycle of a nuclear facility (planning, building and operation), but it was only in the nineteen seventies that the waste issue really surface. Actually, the IAEA guidelines on decommissioning have been issued as recently as over the last ten years, and international advice on finance of decommissioning is even younger. No general international guideline on cost calculations exists at present. This implies that cost calculations cannot be performed with any accuracy or credibility without a relatively detailed consideration of the radiological prerequisites. Consequently, any cost estimates based mainly on the particulars of the building structures and installations are likely to be gross underestimations. The present study has come about on initiative by the Swedish Nuclear Power Inspectorate (SKI) and is based on a common need in Denmark, Finland, Norway and Sweden. The content of the report may be briefly summarised as follows. The background covers design and operation prerequisites as well as an overview of the various nuclear research facilities in the four participating countries: Denmark, Finland, Norway and Sweden. The purpose of the work has been to identify, compile and exchange information on facilities and on methodologies for cost calculation with the aim of achieving an 80 % level of confidence. The scope has been as follows: 1) to establish a Nordic network 2) to compile dedicated guidance documents on radiological surveying, technical planning and financial risk identification and assessment 3) to compile and describe techniques for precise cost calculations at early stages 4) to compile plant and other relevant data A separate section is devoted in the report to good practice for the specific purpose of early but precise cost calculations for research facilities, and a separate section is devoted to techniques for assessment of cost

  6. Emergency facility control device for nuclear reactor

    International Nuclear Information System (INIS)

    Ikehara, Morihiko.

    1981-01-01

    Purpose: To increase the reliability of a nuclear reactor by allowing an emergency facility to be manually started and stopped to make its operation more convenient and eliminate the possibility of erroneous operation in an emergency. Constitution: There are provided a first water level detector for detecting a level lower than the first low water level in a reactor container and a second water level detector for detecting a level lower than the second low water level lower than the first low water level, and an emergency facility can be started and stopped manually only when the level is higher than the second low water level, but the facility will be started regardless of the state of the manual operation when the level is lower than the second low water level. Thus, the emergency facility can be started by manual operation, but will be automatically started so as to secure the necessary minimum operation if the level becomes lower than the second low water level and the stopping operation thereafter is forgotten. (Kamimura, M.)

  7. Environmental radiation monitoring around the nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang Woo

    2012-03-15

    Environmental Radiation Monitoring was carried out with measurement of environment. radiation and environmental radioactivity analysis on the sites of KAERI nuclear facilities and Seoul Research Reactors and their environments. The average level of environmental radiation dose measured by an ERM and the accumulated radiation dose by a TLD were almost same level compared with the previous years. The activity of gross {alpha} and gross {beta}, Tritium, Uranium and Strontium in environmental samples showed a environmental level. The {gamma}-radionuclides such as natural radionuclides 40K or 7Be were detected in pine needle and food. The nuclear radionuclides 134Cs, 137Cs or 131I were temporarily detected in the samples of air particulate and rain in April and of fall out in 2nd quarter from the effect of Fukusima accident.

  8. Robotic inspection of nuclear waste storage facilities

    International Nuclear Information System (INIS)

    Fulbright, R.; Stephens, L.M.

    1995-01-01

    The University of South Carolina and the Westinghouse Savannah River Company have developed a prototype mobile robot designed to perform autonomous inspection of nuclear waste storage facilities. The Stored Waste Autonomous Mobile Inspector (SWAMI) navigates and inspects rows of nuclear waste storage drums, in isles as narrow as 34 inches with drums stacked three high on each side. SWAMI reads drum barcodes, captures drum images, and monitors floor-level radiation levels. The topics covered in this article reporting on SWAMI include the following: overall system design; typical mission scenario; barcode reader subsystem; video subsystem; radiation monitoring subsystem; position determination subsystem; onboard control system hardware; software development environment; GENISAS, a C++ library; MOSAS, an automatic code generating tool. 10 figs

  9. ANI [American Nuclear Insurers] support and research facility nuclear liability insurance inspection program

    International Nuclear Information System (INIS)

    Ernst, B.

    1988-01-01

    American Nuclear Insurers (ANI), a voluntary association of insurance companies, provides property and nuclear liability insurance protection to the nuclear industry. It generally offers insurance coverage to nuclear facilities, suppliers, and transporters for the following: (1) their liability for damages because of bodily injury and/or property damage caused by the nuclear energy hazard, and (2) all-risk damage to nuclear facilities. Among the range of facilities and suppliers insured by ANI are (a) operators of nuclear power plants that supply electricity for the general public, (b) operators of nuclear testing and research reactors, (c) fuel fabricators that manufacture fuel for use in reactors, (d) operators of facilities that dispose of nuclear waste that cannot be salvaged, (e) facilities that maintain and repair equipment used at nuclear facilities, (f) nuclear laundries, and (g) low-level-waste processors. The fundamental goal of the ANI nuclear engineering inspection program is to provide protection to pool members' assets by reducing insurance risk

  10. Human factors methods in DOE nuclear facilities

    International Nuclear Information System (INIS)

    Bennett, C.T.; Banks, W.W.; Waters, R.J.

    1993-01-01

    The US Department of Energy (DOE) is in the process of developing a series of guidelines for the use of human factors standards, procedures, and methods to be used in nuclear facilities. This paper discusses the philosophy and process being used to develop a DOE human factors methods handbook to be used during the design cycle. The following sections will discuss: (1) basic justification for the project; (2) human factors design objectives and goals; and (3) role of human factors engineering (HFE) in the design cycle

  11. Evaluation of Nuclear Facility Decommissioning Projects program

    International Nuclear Information System (INIS)

    Baumann, B.L.

    1983-01-01

    The objective of the Evaluation of Nuclear Facility Decommissioning Projects (ENFDP) program is to provide the NRC licensing staff with data which will allow an assessment of radiation exposure during decommissioning and the implementation of ALARA techniques. The data will also provide information to determine the funding level necessary to ensure timely and safe decommissioning operations. Actual decommissioning costs, methods and radiation exposures are compared with those estimated by the Battelle-PNL and ORNL NUREGs on decommissioning. Exposure reduction techniques applied to decommissioning activities to meet ALARA objectives are described. The lessons learned concerning various decommissioning methods are evaluated

  12. Guidance for air sampling at nuclear facilities

    International Nuclear Information System (INIS)

    Breslin, A.J.

    1976-11-01

    The principal uses of air sampling at nuclear facilities are to monitor general levels of radioactive air contamination, identify sources of air contamination, and evaluate the effectiveness of contaminant control equipment, determine exposures of individual workers, and provide automatic warning of hazardous concentrations of radioactivity. These applications of air sampling are discussed with respect to standards of occupational exposure, instrumentation, sample analysis, sampling protocol, and statistical treatment of concentration data. Emphasis is given to the influence of spacial and temporal variations of radionuclide concentration on the location, duration, and frequency of air sampling

  13. Decontamination Technology Development for Nuclear Research Facilities

    International Nuclear Information System (INIS)

    Oh, Won Zin; Jung, Chong Hun; Choi, Wang Kyu; Won, Hui Jun; Kim, Gye Nam

    2004-02-01

    Technology development of surface decontamination in the uranium conversion facility before decommissioning, technology development of component decontamination in the uranium conversion facility after decommissioning, uranium sludge treatment technology development, radioactive waste soil decontamination technology development at the aim of the temporary storage soil of KAERI, Optimum fixation methodology derivation on the soil and uranium waste, and safety assessment methodology development of self disposal of the soil and uranium waste after decontamination have been performed in this study. The unique decontamination technology applicable to the component of the nuclear facility at room temperature was developed. Low concentration chemical decontamination technology which is very powerful so as to decrease the radioactivity of specimen surface under the self disposal level was developed. The component decontamination technology applicable to the nuclear facility after decommissioning by neutral salt electro-polishing was also developed. The volume of the sludge waste could be decreased over 80% by the sludge waste separation method by water. The electrosorption method on selective removal of U(VI) to 1 ppm of unrestricted release level using the uranium-containing lagoon sludge waste was tested and identified. Soil decontamination process and equipment which can reduce the soil volume over 90% were developed. A pilot size of soil decontamination equipment which will be used to development of real scale soil decontamination equipment was designed, fabricated and demonstrated. Optimized fixation methodology on soil and uranium sludge was derived from tests and evaluation of the results. Safety scenario and safety evaluation model were development on soil and uranium sludge aiming at self disposal after decontamination

  14. Geosciences research: cooperation with Swedish Nuclear Fuel and Waste Management Co. (SKB)

    International Nuclear Information System (INIS)

    1993-01-01

    PNC has been participating in the research program of the Construction Phase in Aespoe Hard Rock Laboratory project (HRL project), an underground research laboratory project initiated by Swedish Nuclear Fuel and Waste Management Company (SKB), since 1991. The main purpose of participating in the HRL project is to apply site characterization, prediction and validation methodology of geological environment in the project to R and D program on geological disposal in Japan. The outcome from investigations for the 0-700 m section in the access tunnel has been evaluated to compare with predictions on geological-structure. This report gives the summary of R and D program on the HRL project and preliminary results on evaluation of geological-structural predictions for the 0-700 m section in the access tunnel. (author)

  15. Perceptions of risk, dilemmas of policy: nuclear fallout in Swedish Lapland

    International Nuclear Information System (INIS)

    Beach, H.

    1990-01-01

    This paper concerns risk perceptions of Swedish Saami reindeer herders in conjunction with the Chernobyl nuclear disaster. Focus is also placed upon their experiences of damage and their efforts to deal with these problems. Data relating to these social aspects of the Chernobyl event come from interviews with members of Saami herding families. The initial governmental policy of establishing a simple contamination limit for the marketability of all foodstuffs was beset with shortcomings. I propose that all contaminated foods should be labeled with contamination specifications along a fully graded scale. In addition, there should be consumer education and recommendations for the entire population, not just one segment. An absolutely necessary step in the construction of valid policies is the health calibration of low-dose radiation. Without such knowledge, any marketability limit is suspect. With such knowledge, policy can be firmly based on human health

  16. Trend and pattern analysis of human performance problems at the swedish nuclear power plants

    International Nuclear Information System (INIS)

    Bento, J.P.

    1990-01-01

    The last six years of operation of all Swedish nuclear power plants have been studied with respect to human performance problems by analysing all scrams and licensee event reports (LERs). The present paper is an updated version of a previous report to which the analysis results of the year 1988's events have been added. The study covers 197 scrams and 1759 LERs. As general results, 38% of the scrams and 27% of the LERs, as an average for the years 1983-1988, are caused by human performance problems. Among the items studied, emphasis has been put on the analysis of the causal categories involved in human performance problems resulting in plant events. The most significant causal categories appear to be Work organization, Work place ergonomics, Procedures not followed, Training and Human variability. The trend and pattern of the dominating causal categories are discussed

  17. Decommissioning and deactivation of nuclear facilities

    International Nuclear Information System (INIS)

    Anasco, Roberto; Harriague, Santiago; Hey, Alfredo M.; Fabbri, Silvio; Garonis, Omar H.

    2003-01-01

    The National Atomic Energy Commission (CNEA) is responsible for the decommissioning and deactivation of all relevant nuclear facilities in Argentina. A D and D Subprogram was created in 2000, within Technology Branch of the CNEA, in order to fulfill this responsibility. The D and D Subprogram has organized its activities in four fields: Planning; Technology development; Human resources development and training; International cooperation. The paper describes the work already done in those 4 areas, as well as the nuclear facilities existing in the country. Planning is being developed for the decommissioning of research reactors, beginning with RA-1, as well as for the Atucha I nuclear power station. An integral Management System has been developed, compatibilizing requirements from ISO 9001, ISO 14001, the national norm for Safety and Occupational Health (equivalent to BS 8800), and IAEA 50-SG Q series. Technology development is for the time being concentrated on mechanical decontamination and concrete demolition. A review has been made of technologies already developed both by CNEA and Nucleoelectrica Argentina S.A. (the nuclear power utility) in areas of chemical and electrochemical decontamination, cutting techniques and robotics. Human resources development has been based on training abroad in the areas of decontamination, cutting techniques, quality assurance and planning, as well as on specific courses, seminars and workshops. An IAEA regional training course on D and D has been given on April 2002 at CNEA's Constituyentes Atomic Center, with the assistance of 22 university graduates from 13 countries in the Latin American and Caribbean Region, and 11 from Argentina. CNEA has also given fellowships for PhD and Master thesis on the subject. International cooperation has been intense, and based on: - IAEA Technical Cooperation Project and experts missions; - Cooperation agreement with the US Department of Energy; - Cooperation agreement with Germany

  18. Identification of the chemical inventory of different paint types applied in nuclear facilities

    International Nuclear Information System (INIS)

    Sabrina Tietze; Foreman, M.R.St.J.; Ekberg, CH.H.; Chalmers University of Technology, Chemical and Biological Engineering, Goeteborg; Dongen van, B.E.

    2013-01-01

    The floors, concrete walls and many of the metal surfaces in nuclear power plant containments are coated with zinc primers or paint films to preserve the metal surfaces and simplify decontamination in the containment after the occurrence of a severe nuclear incident or accident. A chemical examination of paint films from different nuclear installations out of operation, as well as current operating ones, reveals that different types of paints are used whose composition can vary significantly. Results obtained for one type of paint at a certain nuclear site are in most cases unlikely to be comparable with sites painted with another type of paint. During normal operation and particularly during nuclear accidents, the paints will degrade under the high temperature, steam and irradiation influence. As paint and its degradation products can act as sources and depots for volatile iodine compounds, the type and aging conditions of the paint films will have a significant impact on the source term of the volatile fission product iodine. Thus, great care should be taken when extrapolating any results obtained for the interaction of radioactive iodine with one paint product to a different paint product. The main focus of the study is a comparison of the chemical profile of paint films applied in Swedish nuclear power plants. Teknopox Aqua V A, an epoxy paint recently used at Ringhals 2, and an emulsion paint used in the scrubber buildings of Ringhals 1-4 are compared with a paint film from Barsebaeck nuclear power plant unit 1 that had been aged under real reactor conditions for 20 years. In addition, two paint films, an emulsion and a gloss paint, used in an international nuclear fuel reprocessing facility, are compared with the paints from the Swedish nuclear power plants. (author)

  19. Convention on nuclear safety 2012 extra ordinary meeting. The Swedish National Report

    International Nuclear Information System (INIS)

    2012-01-01

    During the 5th Review Meeting of the Convention on Nuclear Safety (CNS), the Contracting Parties in attendance agreed to hold an Extraordinary Meeting in August 2012 with the aim to enhance safety through reviewing and sharing lessons learned and actions taken by Contracting Parties in response to events at TEPCO Fukushima Dai-ichi. It was agreed that a brief and concise National Report should be developed by each Contracting Party to support the Extraordinary Meeting. This report should be submitted three months prior to the meeting to the Secretariat via the Convention-secured website for peer review by other Contracting Parties. It was also agreed that the Contracting Parties should organize their reports by topics that cross the boundaries of multiple CNS Articles. Each National Report should provide specific information on these topics to address the lessons learned and activities undertaken by each Contracting Party. The National Report should include a description of the activities the Contracting Party has completed and any activities it intends to complete along with scheduled completion dates. The present report is therefore structured in accordance with the guidance given by the General Committee for CNS. In Chapter 0, a brief description of Swedish nuclear power plants is given with an emphasis on measures that have been taken gradually as a result of new knowledge and experience. The following chapters deal with the six topics, which are: 1) External events, 2) Design issues, 3) Severe accident management and recovery, 4) National organizations, 5) Emergency preparedness and response and post-accident management, and 6) International cooperation. Each chapter concludes with a table illustrating a high-level summary of the items identified. To clarify the relationship between the text and table contained in each chapter, the parts of the text appearing in the table are underlined. Furthermore, the text of some sections/subsections in different chapters

  20. Nuclear fuel cycle facility accident analysis handbook

    International Nuclear Information System (INIS)

    1998-03-01

    The purpose of this Handbook is to provide guidance on how to calculate the characteristics of releases of radioactive materials and/or hazardous chemicals from nonreactor nuclear facilities. In addition, the Handbook provides guidance on how to calculate the consequences of those releases. There are four major chapters: Hazard Evaluation and Scenario Development; Source Term Determination; Transport Within Containment/Confinement; and Atmospheric Dispersion and Consequences Modeling. These chapters are supported by Appendices, including: a summary of chemical and nuclear information that contains descriptions of various fuel cycle facilities; details on how to calculate the characteristics of source terms for releases of hazardous chemicals; a comparison of NRC, EPA, and OSHA programs that address chemical safety; a summary of the performance of HEPA and other filters; and a discussion of uncertainties. Several sample problems are presented: a free-fall spill of powder, an explosion with radioactive release; a fire with radioactive release; filter failure; hydrogen fluoride release from a tankcar; a uranium hexafluoride cylinder rupture; a liquid spill in a vitrification plant; and a criticality incident. Finally, this Handbook includes a computer model, LPF No.1B, that is intended for use in calculating Leak Path Factors. A list of contributors to the Handbook is presented in Chapter 6. 39 figs., 35 tabs

  1. Database for environmental monitoring at nuclear facilities

    International Nuclear Information System (INIS)

    Raceanu, M.; Varlam, C.; Enache, A.; Faurescu, I.

    2006-01-01

    To ensure that an assessment could be made of the impact of nuclear facilities on the local environment, a program of environmental monitoring must be established well in advance of nuclear facilities operation. Enormous amount of data must be stored and correlated starting with: location, meteorology, type sample characterization from water to different kind of food, radioactivity measurement and isotopic measurement (e.g. for C-14 determination, C-13 isotopic correction it is a must). Data modelling is a well known mechanism describing data structures at a high level of abstraction. Such models are often used to automatically create database structures, and to generate code structures used to access databases. This has the disadvantage of losing data constraints that might be specified in data models for data checking. Embodiment of the system of the present application includes a computer-readable memory for storing a definitional data table for defining variable symbols representing respective measurable physical phenomena. The definitional data table uniquely defines the variable symbols by relating them to respective data domains for the respective phenomena represented by the symbols. Well established rules of how the data should be stored and accessed, are given in the Relational Database Theory. The theory comprise of guidelines such as the avoidance of duplicating data using technique call normalization and how to identify the unique identifier for a database record. (author)

  2. Nuclear fuel cycle facility accident analysis handbook

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The purpose of this Handbook is to provide guidance on how to calculate the characteristics of releases of radioactive materials and/or hazardous chemicals from nonreactor nuclear facilities. In addition, the Handbook provides guidance on how to calculate the consequences of those releases. There are four major chapters: Hazard Evaluation and Scenario Development; Source Term Determination; Transport Within Containment/Confinement; and Atmospheric Dispersion and Consequences Modeling. These chapters are supported by Appendices, including: a summary of chemical and nuclear information that contains descriptions of various fuel cycle facilities; details on how to calculate the characteristics of source terms for releases of hazardous chemicals; a comparison of NRC, EPA, and OSHA programs that address chemical safety; a summary of the performance of HEPA and other filters; and a discussion of uncertainties. Several sample problems are presented: a free-fall spill of powder, an explosion with radioactive release; a fire with radioactive release; filter failure; hydrogen fluoride release from a tankcar; a uranium hexafluoride cylinder rupture; a liquid spill in a vitrification plant; and a criticality incident. Finally, this Handbook includes a computer model, LPF No.1B, that is intended for use in calculating Leak Path Factors. A list of contributors to the Handbook is presented in Chapter 6. 39 figs., 35 tabs.

  3. Database for environmental monitoring in nuclear facilities

    International Nuclear Information System (INIS)

    Raceanu, Mircea; Varlam, Carmen; Iliescu, Mariana; Enache, Adrian; Faurescu, Ionut

    2006-01-01

    To ensure that an assessment could be made of the impact of nuclear facilities on the local environment, a program of environmental monitoring must be established well before of nuclear facility commissioning. Enormous amount of data must be stored and correlated starting with: location, meteorology, type sample characterization from water to different kind of foods, radioactivity measurement and isotopic measurement (e.g. for C-14 determination, C-13 isotopic correction it is a must). Data modelling is a well known mechanism describing data structures at a high level of abstraction. Such models are often used to automatically create database structures, and to generate the code structures used to access the databases. This has the disadvantage of losing data constraints that might be specified in data models for data checking. Embodiment of the system of the present application includes a computer-readable memory for storing a definitional data table for defining variable symbols representing the corresponding measurable physical quantities. Developing a database system implies setting up well-established rules of how the data should be stored and accessed what is commonly called the Relational Database Theory. This consists of guidelines regarding issues as how to avoid duplicating data using the technique called normalization and how to identify the unique identifier for a database record. (authors)

  4. The cleavable matter: Discursive orders in Swedish nuclear power politics 1972-1980

    International Nuclear Information System (INIS)

    Lindquist, P.

    1997-09-01

    This study applies a qualitative discourse-theoretical method to analyse the central argumentation in the parliamentary debate on nuclear power in Sweden during 1972-1980, reconstructed from official documents such as governmental and parliamentary bills, committee reports, parliamentary debate protocols, and official commission reports. Particular concern is directed to the process in which various discursive orders emerging within the political debate tend to have a structuring influence on the political argumentation regarding what can be said, by whom this can be said, and how this can be said. It is argued that these discursive orders have a profound, and in a systems theoretical sense self-dynamic influence, going beyond the original intentions of the political actors, on how the energy policy issue is interpreted and constructed. It is argued, furthermore, that these discursive orders actively exploit the political context of meaning by deliberately instrumentalising and incorporating competing argumentative elements into their own cognitive structure. In other words, the dominant political system incorporates the arguments of the political opposition and of the environmental and anti nuclear movements in order to consolidate its political power. The discourse theoretical analysis of the Swedish nuclear power debate in that sense unveils a deep resistance against a true political discourse, in the sense of Habermas, as a rational and domination-free process of reaching mutual understanding. 152 refs

  5. IAEA safeguards in new nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Catton, A. [International Atomic Energy Agency, Vienna (Austria); Durbin, K. [United States Department of Energy, Washington, D.C. (United States); Hamilton, A. [International Atomic Energy Agency, Vienna (Austria); Martikka, E. [STUK, Helsinki (Finland); Poirier, S.; Sprinkle, J. K.; Stevens, R. [International Atomic Energy Agency, Vienna (Austria); Whitlock, J. [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2014-07-01

    The inclusion of international safeguards early in the design of nuclear facilities offers an opportunity to reduce project risk. It also has the potential to minimize the impact of safeguards activities on facility operations. Safeguards by design (SBD) encourages stakeholders to become familiar with the requirements of their safeguards agreements and to decide when and how they will fulfil those requirements. As one example, modular reactors are at a design stage where SBD can have a useful impact. Modular reactors might be turnkey projects where the operator takes ownership after commissioning. This comes with a legal obligation to comply with International Atomic Energy Agency (IAEA) safeguards requirements. Some of the newcomer countries entering the reactor market have little experience with IAEA safeguards and the associated non-proliferation obligations. To reduce delays or cost increments, one can embed safeguards considerations in the bid and design phases of the project, along with the safety and security considerations. SBD does not introduce any new requirements - it is a process whereby facility designers facilitate the implementation of the existing safeguards requirements. In short, safeguards experts share their expertise with the designers and vice versa. Once all parties understand the fundamentals of all of the operational constraints, they are better able to decide how best to address them. This presentation will provide an overview of SBD activities. (author)

  6. Remote maintenance system for nuclear facilities

    International Nuclear Information System (INIS)

    Maeda, Masafumi

    1993-01-01

    In the facilities related to atomic energy, from the viewpoint of the reduction of radiation exposure of workers and the heightening of the rate of operation of the facilities, the development of remote maintenance system is regarded as important. Meidensha Electric Manufacturing Co., Ltd. developed the bilateral control type manipulator, BILARM-83, in 1979, and has developed high performance manipulator systems. As the design of the plant that realizes the remote operation maintenance of process machinery and equipment during plant operation, the remote maintenance system by canyon cell techniques, which was adopted in Savannah River plant, USA, and has been operated for nearly 50 years, has been known. The concept of the full remote maintenance system by large scale cell techniques was shown and has been developed by Power Reactor and Nuclear Fuel Development Corp. In order to realize the remote maintenance of such large scale cells, Meidensha is developing the both arm type bilateral servo manipulator, the single arm type power manipulator, the transport system for moving them, the power and signal system and so on. Those systems were adopted for the glass solidification facilities. (K.I.)

  7. Seismic design standardization of nuclear facilities

    International Nuclear Information System (INIS)

    Reddy, G.R.; Vaze, K.K.

    2011-01-01

    Full text: Structures, Systems and Components (SSCs) of Nuclear Facilities have to be designed for normal operating loads such as dead weight, pressure, temperature etc., and accidental loads such as earthquakes, floods, extreme, wind air craft impact, explosions etc. Man made accidents such as aircraft impact, explosions etc., some times may be considered as design basis event and some times taken care by providing administrative controls. This will not be possible in the case of natural events such as earthquakes, flooding, extreme winds etc. Among natural events earthquakes are considered as most devastating and need to be considered as design basis event. It is generally felt design of SSCs for earthquake loads is very time consuming and expensive. Conventional seismic design approaches demands for large number of supports for systems and components. This results in large space occupation and in turn creates difficulties for maintenance and in service inspection of systems and components. In addition, complete exercise of design need to be repeated for plants being located at different sites due to different seismic demands. However, advanced seismic response control methods will help to standardize the seismic design meeting the safety and economy. These methods adopt passive, semi active and active devices, and base isolators to control the seismic response. In nuclear industry, it is advisable to go for passive devices to control the seismic responses. Ideally speaking, these methods will make the designs made for normal loads can also satisfy the seismic demand without calling for change in material, geometry, layout etc. in the SSCs. This paper explain the basic ideas of seismic response control methods, demonstrate the effectiveness of control methods through case studies and eventually give the procedure to be adopted for seismic design standardization of nuclear facilities

  8. Safety Management Characteristics Reflected in Interviews at Swedish Nuclear Power Plants: A System Perspective Approach

    International Nuclear Information System (INIS)

    Salo, Ilkka

    2005-12-01

    The present study investigated safety management characteristics reflected in interviews with participants from two Swedish nuclear power plants. A document analysis regarding the plants' organization, safety policies, and safety culture work was carried out as well. The participants (n=9) were all nuclear power professionals, and the majority managers at different levels with at least 10 years of nuclear power experience. The interview comprised themes relevant for organizational safety and safety management, such as: organizational structures and organizational change, threats to safety, information feedback and knowledge transfer, safety analysis, safety policy, and accident and incident analysis and reporting. The results were in part modeled to important themes derived from a general system theoretical framework suggested by Svenson and developed by Svenson and Salo in relation to studies of 'non-nuclear' safety organizations. A primer to important features of the system theoretical framework is presented in the introductory chapter. The results from the interviews generated interesting descriptions about nuclear safety management in relation to the above themes. Regarding organizational restructuring, mainly centralizations of resources, several examples of reasons for the restructuring and related benefits for this centralization of resources were identified. A number of important reminders that ought to be considered in relation to reorganization were also identified. Regarding threats to the own organization a number of such was interpreted from the interviews. Among them are risks related to generation and competence change-over and risks related to outsourcing of activities. A thorough picture of information management and practical implications related to this was revealed in the interviews. Related to information feedback is the issue of organizational safety indicators and safety indicators in general. The interview answers indicated that the area

  9. Research in artificial intelligence for nuclear facilities

    International Nuclear Information System (INIS)

    Uhrig, R.E.

    1990-01-01

    The application of artificial intelligence, in the form of expert systems and neural networks, to the control room activities in a nuclear power plant has the potential to reduce operator error and increase plant safety, reliability, and efficiency. Furthermore, artificial intelligence can increase efficiency and effectiveness in a large number of nonoperating activities (testing, routine maintenance, outage planning, equipment diagnostics, and fuel management) and in research facility experiments. Recent work at the University of Tennessee has demonstrated the feasibility of using neural networks to identify six different transients introduced into the simulation of a steam generator of a nuclear power plant. This work is now being extended to utilize data from a nuclear power plant training simulator. In one configuration, the inputs to the neural network are a subset of the quantities that are typical of those available from the safety parameter display system. The outputs of the network represent the various states of the plant (e.g., normal operation, coolant leakage, inadequate core flow, excessive peak fuel temperature, etc.). Training of the neural network is performed by introducing various faults or conditions to be diagnosed into the simulator. The goal of this work is to demonstrate a neural network diagnostic system that could provide advice to the operators in accordance with the emergency operating procedures

  10. Considerations about the licensing process of special nuclear industrial facilities

    Energy Technology Data Exchange (ETDEWEB)

    Talarico, M.A., E-mail: talaricomarco@hotmail.com [Marinha do Brasil, Rio de Janeiro, RJ (Brazil). Coordenacao do Porgrama de Submarino com Propulsao Nuclear; Melo, P.F. Frutuoso e [Coordenacao dos Programas de Pos-Graduacao em Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear

    2015-07-01

    This paper brings a discussion about the challenges involved in the development of a new kind of nuclear facility in Brazil, a naval base for nuclear submarines, with attention to the licensing process and considerations about the risk-informed decision making application to the licensing process. Initially, a model of such a naval base, called in this work, special industrial facility, is proposed, with its systems and respective sets of basic requirements, in order to make it possible the accomplishment of the special industrial facility support function to the nuclear submarine. A discussion about current challenges to overcome in this project is presented: the challenges due to the new characteristics of this type of nuclear facility; existence of several interfaces between the special industrial facilities systems and nuclear submarine systems in design activities; lack of specific regulation in Brazil to allow the licensing process of special industrial facilities by the nuclear safety authority; and comments about the lack of information from reference nuclear facilities, as is the case with nuclear power reactors (for example, the German Grafenrheinfeld nuclear plant is the reference plant for the Brazilian Angra 2 nuclear plant). Finally, in view of these challenges, an analysis method of special industrial facility operational scenarios to assist the licensing process is proposed. Also, considerations about the application of risk-informed decision making to the special industrial facility activity and licensing process in Brazil are presented. (author)

  11. Considerations about the licensing process of special nuclear industrial facilities

    International Nuclear Information System (INIS)

    Talarico, M.A.; Melo, P.F. Frutuoso e

    2015-01-01

    This paper brings a discussion about the challenges involved in the development of a new kind of nuclear facility in Brazil, a naval base for nuclear submarines, with attention to the licensing process and considerations about the risk-informed decision making application to the licensing process. Initially, a model of such a naval base, called in this work, special industrial facility, is proposed, with its systems and respective sets of basic requirements, in order to make it possible the accomplishment of the special industrial facility support function to the nuclear submarine. A discussion about current challenges to overcome in this project is presented: the challenges due to the new characteristics of this type of nuclear facility; existence of several interfaces between the special industrial facilities systems and nuclear submarine systems in design activities; lack of specific regulation in Brazil to allow the licensing process of special industrial facilities by the nuclear safety authority; and comments about the lack of information from reference nuclear facilities, as is the case with nuclear power reactors (for example, the German Grafenrheinfeld nuclear plant is the reference plant for the Brazilian Angra 2 nuclear plant). Finally, in view of these challenges, an analysis method of special industrial facility operational scenarios to assist the licensing process is proposed. Also, considerations about the application of risk-informed decision making to the special industrial facility activity and licensing process in Brazil are presented. (author)

  12. Comments from the Swedish Society for Nature Conservation, SSNC, and the Swedish NGO office for Nuclear Waste Review, MKG, on the industry's, SKB, research programme Fud-07

    International Nuclear Information System (INIS)

    2009-06-01

    The Swedish Society for Nature Conservation and the Swedish NGO Office for Nuclear Waste Review recommends in response to Fud-07 that: - The Government must in its forthcoming decision regarding the industry's 2007 research and development program set out requirements that are needed to bring order to the ongoing work on nuclear waste disposition - The Government must assure an effective quality control of the industry's work - The Government needs to review the industry's use of resources from the Swedish Nuclear Waste Fund and empower the Radiation Safety Authority to ensure their proper use - The Government must make it clear that a permit to establish a final repository for high-level waste will not be given until sufficient evidence is available that supports the chosen method and chosen location, and that provide for guaranteed long-term safety - The Government must instruct the Radiation Safety Authority to develop its own full and independent assessment tools and knowledge base to be able to review the industry's research and development work, with particular emphasis on weaker aspects of the industry's work. - The Government must expand the budget of the Radiation Safety Authority to enable the Authority to perform a thorough examination of the industry's forthcoming application to construct a repository. - The Government must ensure that currently outstanding issues and unsolved problems in the industry's research and development project are thoroughly investigated, and solutions arrived at, before permission to begin construction can be given. - The Government must see to it that work commences on drafting public policy that sets out the objectives and functions that a final repository shall fulfil. - The Government must make it clear that it will not be possible for the industry to neglect or avoid giving alternative methods serious consideration in its environmental impact statement (EIS). - The Government should instruct the Radiation Safety Authority

  13. Complementary safety assessment assessment of nuclear facilities - Tricastin facility - AREVA

    International Nuclear Information System (INIS)

    2011-01-01

    This complementary safety assessment analyses the robustness of the Areva part of the Tricastin nuclear site to extreme situations such as those that led to the Fukushima accident. This study includes the following facilities: Areva NC Pierrelatte, EURODIF production, Comurhex Pierrelatte, Georges Besse II plant and Socatri. Robustness is the ability for the plant to withstand events beyond which the plant was designed. Robustness is linked to safety margins but also to the situations leading to a sudden deterioration of the accidental sequence. Moreover, safety is not only a matter of design or engineered systems but also a matter of organizing: task organization (including subcontracting) as well as the setting of emergency plans or the inventory of nuclear materials are taken into consideration in this assessment. This report is divided into 10 main chapters: 1) the feedback experience of the Fukushima accident; 2) description of the site and its surroundings; 3) featuring of the site's activities and installations; 4) accidental sequences; 5) protection from earthquakes; 6) protection from floods; 7) protection from other extreme natural disasters; 8) the loss of electrical power and of the heat sink; 9) the management of severe accidents; and 10) subcontracting policy. This analysis has identified 5 main measures to be taken to limit the risks linked to natural disasters: -) continuing the program for replacing the current conversion plant and the enrichment plant; -) renewing the storage of hydrofluoric acid at the de-fluorination workshop; -) assessing the seismic behaviour of some parts of the de-fluorination workshop and of the fluorine fabrication workshop; -) improving the availability of warning and information means in case of emergency; and -) improving the means to mitigate accidental gaseous releases. (A.C.)

  14. Ten years after the Chernobyl accident: reporting on nuclear and other hazards in six Swedish newspapers

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, Aasa; Sjoeberg, L.; Waahlberg, A. af

    1997-07-01

    A European Commission sponsored study (RISKPERCOM) involving France, Norway, Spain, Sweden, and the UK, is concerned with surveying public perceptions of radiation related and other risks. This was partly done by distributing a questionnaire in each country at three different times in 1996: before, during and after the expected media attention given to the tenth anniversary of the Chernobyl accident. A selection of print media were analyzed, during a period of eight weeks - four weeks before the anniversary, and four weeks after - making it possible to contrast any changes between the three waves of the questionnaire with the results of the media study. The present report aims at providing a picture of the Swedish media coverage of different kinds of risks during the period referred to above. The purpose of the analysis is thus primarily of a descriptive nature; explanatory factors are only considered in an ad hoc manner while discussing the results and their possible implications. Naturally, the findings arising from this study cannot alone serve as a basis for making statements about the effects of risk related content on the Swedish newspaper readers. The risk stories included in the analysis were those dealing with one or more of the twenty different hazard items referred to in several of the questions in the RISKPERCOM questionnaire. Radiation and nuclear power energy were not the only issues of concern. The selection covered a wide range of other hazards as well, in order to provide for a wide risk panorama, thus making it possible to compare specific risk qualities etc., as these were presented in the media 70 refs, 40 refs

  15. Ten years after the Chernobyl accident: reporting on nuclear and other hazards in six Swedish newspapers

    International Nuclear Information System (INIS)

    Nilsson, Aasa; Sjoeberg, L.; Waahlberg, A. af

    1997-07-01

    A European Commission sponsored study (RISKPERCOM) involving France, Norway, Spain, Sweden, and the UK, is concerned with surveying public perceptions of radiation related and other risks. This was partly done by distributing a questionnaire in each country at three different times in 1996: before, during and after the expected media attention given to the tenth anniversary of the Chernobyl accident. A selection of print media were analyzed, during a period of eight weeks - four weeks before the anniversary, and four weeks after - making it possible to contrast any changes between the three waves of the questionnaire with the results of the media study. The present report aims at providing a picture of the Swedish media coverage of different kinds of risks during the period referred to above. The purpose of the analysis is thus primarily of a descriptive nature; explanatory factors are only considered in an ad hoc manner while discussing the results and their possible implications. Naturally, the findings arising from this study cannot alone serve as a basis for making statements about the effects of risk related content on the Swedish newspaper readers. The risk stories included in the analysis were those dealing with one or more of the twenty different hazard items referred to in several of the questions in the RISKPERCOM questionnaire. Radiation and nuclear power energy were not the only issues of concern. The selection covered a wide range of other hazards as well, in order to provide for a wide risk panorama, thus making it possible to compare specific risk qualities etc., as these were presented in the media

  16. Governments' role in decommissioning nuclear power facilities

    International Nuclear Information System (INIS)

    Guindon, S.; Wendling, R.D.; Gordelier, S.; Soederberg, O.; Averous, J.; Orlando, D.

    2005-01-01

    Many nuclear power plants will reach the end of their operating lives over the next 20 years; some may be life-extended, others may not. This development will precipitate enhanced industrial and regulatory activities in the area of decommissioning. We are also witnessing in many countries a significant shift in the role of government itself: new pressures on governments, such as enhanced attention on environmental impact/mitigation and strategies to implement market-oriented approaches in a variety of sectors, including the energy sector are driving the public policy agenda. The paper will examine the range of policy issues, drawing from recent NEA studies on decommissioning policies and the recent NEA study on Government and Nuclear Energy and, strategies and costs, and other current trends and developments in the nuclear industry and in the nuclear policy fields. The paper will reflect on issues to be addressed during the conference and draw conclusions on the appropriate role of government in this area. Decommissioning policy is very specific and focused: it is not a high level policy/political issue in most instances and rarely gets the same attention as the issue surrounding the future of nuclear energy itself and public concerns regarding safety, waste and economics. One reason why decommissioning does not get the same attention as for example disposal of spent nuclear fuel might be the fact that technology is available for decommissioning, while technology for disposal of spent nuclear fuel is under development. High profile or not, it will remain an important issue for governments and industry alike particularly because of the cost and long lead times involved. In some instances, governments are the owners of the facilities to be decommissioned. In addition, decommissioning factors into issues surrounding the economics of nuclear energy and the sustainability of the nuclear option. Based on results of the Tarragona Seminar (Spain, September 2-4, 2003) and

  17. Remote handling technology for nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    Sakai, Akira; Maekawa, Hiromichi; Ohmura, Yutaka

    1997-01-01

    Design and R and D on nuclear fuel cycle facilities has intended development of remote handling and maintenance technology since 1977. IHI has completed the design and construction of several facilities with remote handling systems for Power Reactor and Nuclear Fuel Development Corporation (PNC), Japan Atomic Energy Research Institute (JAERI), and Japan Nuclear Fuel Ltd. (JNFL). Based on the above experiences, IHI is now undertaking integration of specific technology and remote handling technology for application to new fields such as fusion reactor facilities, decommissioning of nuclear reactors, accelerator testing facilities, and robot simulator-aided remote operation systems in the future. (author)

  18. Automated entry control system for nuclear facilities

    International Nuclear Information System (INIS)

    Ream, W.K.; Espinoza, J.

    1985-01-01

    An entry control system to automatically control access to nuclear facilities is described. The design uses a centrally located console, integrated into the regular security system, to monitor the computer-controlled passage into and out of sensitive areas. Four types of entry control points are used: an unmanned enclosed portal with metal and SNM detectors for contraband detection with positive personnel identification, a bypass portal for contraband search after a contraband alarm in a regular portal also with positive personnel identification, a single door entry point with positive personnel identification, and a single door entry point with only a magnetic card-type identification. Security force action is required only as a response to an alarm. The integration of the entry control function into the security system computer is also described. The interface between the entry control system and the monitoring security personnel utilizing a color graphics display with touch screen input is emphasized. 2 refs., 7 figs

  19. Monitoring of radioactivity in nuclear facilities

    International Nuclear Information System (INIS)

    Edelhaeuser, H.; Flothmann, D.; Hartwig, S.

    1978-01-01

    In planning the monitoring of nuclear facilities it is thought to be important that emission and immission measurements be considered together and as a complementary means. Following this total view it results from immission aspects that the emission monitoring programs should be examined with respect to completeness of the radioecologically relevant radionuclides. Environmental monitoring should be modified with respect to sampling and measuring frequency (e.g. surface waters to be continuously monitored off-line at the main water source). The selection of environmental media to be monitored should be made anew (e.g. additional monitoring of rain water). Apart from a convincing scientific presentation of the methods, potential reasons for criticism must be eliminated by an objective control of independent experts. (orig.) 891 HP/orig. 892 MB [de

  20. Radiation safely culture in nuclear facilities

    International Nuclear Information System (INIS)

    Coates, R.

    2018-01-01

    The importance of developing a sound radiation safety culture is a relatively new development in the practical application of radiation protection in operational facilities. It is instructive to trace the evolution of the fundamental approaches to controlling operational exposures, staring with the engineering-based 'Distance, Shielding and Time' mantra, through the growing emphasis on ALARA and systematic management-based approaches, towards a recognition of the importance of developing a more 'hearts and minds' approach based within the wider safety culture of the organization. The underlying requirements for developing a strong radiation safety culture are not novel, and are largely identical to those necessary for nuclear safety culture, which is why an integrated approach to culture within the organization is essential

  1. Ventilation safety of facilities comprising nuclear reactors

    International Nuclear Information System (INIS)

    Guirlet, J.

    1982-01-01

    The reliability of the ventilation is one of the most important aspects in the prevention of the nuisances that a nuclear installation can provide, since the ventilation is located at the last barrier. A certain number of essential points have been recalled here. But it is necessary to bear in mind other requirements such as the limitation in the number of crossovers, the answers to be found should the system fail, the need to show that ventilation systems do not in themselves bring other nuisances such as noise, irradiation or contamination hazards, likelyhood of recycling the contamination, vibrations, fire. Finally, it is absolutely essential, right from the project stage, that the design ensures that very good accessibility, very easy dismantling and handling, as well as all the facilities needed to make sure of the initial and periodic tests, are guaranteed [fr

  2. Environmental Radiation Monitoring Around the Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Geun Sik; Lee, Chang Woo

    2008-05-15

    Environmental Radiation Monitoring was carried out with measurement of environment. radiation and environmental radioactivity analysis on the sites of KAERI nuclear facilities and Seoul Research Reactors and their environments. The average level of environmental radiation dose measured by an ERM and the accumulated radiation dose by a TLD were almost same level compared with the previous years. The activity of gross {alpha} and gross {beta}, Tritium, Uraniu and Strontium in environmental samples showed a environmental level. The radioactivities of most {gamma}-radionuclides in air particulate, surface water and ground water were less than MDA except {sup 40}K or {sup 7}Be which are natural radionuclides. However, not only {sup 40}K or {sup 7}Be but also {sup 137}Cs were detected at the background level in surface soil, discharge sediment and fallout or pine needle.

  3. Decommissioning of nuclear facilities: a growing activity in the world

    International Nuclear Information System (INIS)

    Anasco, Raul

    2001-01-01

    Nuclear power plants and nuclear facilities are no different from normal buildings and factories. Eventually, they become worn-out or old fashioned, too expensive to maintain or remodel. Decommissioning a nuclear facility is different from retiring other types because of the radioactivity involved. The most important consideration in nuclear decommissioning is to protect workers and the public from exposure to harmful levels of radiation. General criteria and strategies for the decommissioning of nuclear facilities are described as well as the present decommissioning activities of the Argentine CNEA (author)

  4. Seismic evaluation of existing nuclear facilities. Proceedings

    International Nuclear Information System (INIS)

    1995-01-01

    Programmes for re-evaluation and upgrading of safety of existing nuclear facilities are presently under way in a number of countries around the world. An important component of these programmes is the re-evaluation of the seismic safety through definition of new seismic parameters at the site and evaluation of seismic capacity of structures, equipment and distribution systems following updated information and criteria. The Seminar is intended to provide a forum for the exchange of information and discussion of the state-of-the-art on seismic safety of nuclear facilities in operation or under construction. Both analytical and experimental techniques for the evaluation of seismic capacity of structures, equipment and distribution systems are discussed. Full scale and field tests of structures and components using shaking tables, mechanical exciters, explosive and shock tests, and ambient vibrations are included in the seminar programme with emphasis on recent case histories. Presentations at the Seminar also include analytical techniques for the determination of dynamic properties of soil-structure systems from experiments as well as calibration of numerical models. Methods and criteria for seismic margin assessment based on experience data obtained from the behaviour of structures and components in real earthquakes are discussed. Guidelines for defining technical requirements for capacity re-evaluation (i.e. acceptable behaviour limits and design and implementation of structure and components upgrades are also presented and discussed. The following topics were covered during 7 sessions: earthquake experience and seismic re-evaluation; country experience in seismic re-evaluation programme; generic WWER studies; analytical methods for seismic capacity re-evaluation; experimental methods for seismic capacity re-evaluation; case studies

  5. Radiochemical analysis of military nuclear facilities

    International Nuclear Information System (INIS)

    Bayramov, A.A.; Bayramova, S.M.

    2012-01-01

    Full text : Radiochemical Analysis is a branch of analytical chemistry comprising an aggregate of methods for qualitatively determining the composition and content of radioisotopes in the products of transformations. Safety and minimization of radiation impact on human and environment are important demand of operation of Military Nuclear Facilities (MNF). In accordance of recommendations of International Commission on Radiological Protection there are next objects of radiochemical analysis: 1) potential sources of radiochemical pollution; 2) environment (objects of environment, human environment including buildings, agricultural production, water, air et al.); 3) human himself (determination of dose from external and internal radiation, chemical poisoning). The chemical analysis can be carried out using, for example, the Gas Chromatography instrument whish separates chemical mixtures and identifies the components at a molecular level. It is one of the most accurate tools for analyzing environmental samples. The Gas Chromatography works on the principle that a mixture will separate into individual substances when heated. The heated gases are carried through a column with an inert gas (such as helium). As the separated substances emerge from the column opening, they flow into the Mass Spectrometry. Mass spectrometry identifies compounds by the mass of the analyte molecule. Newly developed portable Gas Chromatography and Mass Spectrometry are techniques that can be used to separate volatile organic compounds and pesticides. Other uses of Gas Chromatography, combined with other separation and analytical techniques, have been developed for radionuclides, explosive compounds such as royal demolition explosive and trinitrotoluene, and metals. So, based on the many years experience of operation of dangerous MNF, in concordance with norms of radiation and chemical safety it was considered that the tasks of the radiochemical analysis of Military Nuclear Facilities include

  6. Protection of nuclear facilities and nuclear materials against malevolent actions

    International Nuclear Information System (INIS)

    Cornu, P.; Aurelle, J.; Jalouneix, J.

    2001-01-01

    The french approach for considering malevolent actions affecting the design and operation of nuclear facilities is aimed at determining the extent to which the facilities are protected. When carrying out these studies, operating organizations have to demonstrate that their are complying with the objectives set by the Competent Authority for reducing the risk of internal or external malevolent actions. The approach to be followed consist to determine the sensitivity of each zone and to estimate the vulnerability of the most critical zones to each type of aggression. The sensitivity can be defined by the level of the radiological consequences resulting from a malevolent action. The estimation of the vulnerability is made of the extent to which it is difficult to carry out a malevolent action. if need be, counter-measures are taken to protect zones for which the consequences would be unacceptable compared to the force of the aggression. Counter-measures are intended both to minimise sensitivity and make it more difficult to carry out the aggression envisaged. Acceptable consequences are taken as being those leading to levels of radioactive releases less than, or equal to, those taken into account in the facility safety case. This implies that the vulnerability of the most sensitive zones should be reduced to a minimum so that an acceptable level of protection can be provided for these areas. Emphasis will be paid on the defence in depth approach organized around prevention, management and mitigation measures. (authors)

  7. Nuclear chemistry counting facilities: requirements definition

    International Nuclear Information System (INIS)

    O'Brien, D.W.; Baker, J.

    1979-01-01

    In an effort to upgrade outdated instrumentation and to take advantage of current and imminent technologies the Nuclear Chemistry Division at Lawrence Livermore Laboratory is about to undertake a major upgrade of their low level radiation counting and analysis facilities. It is expected that such a project will make a more coordinated data acquisition and data processing system, reduce manual data handling operations and speed up data processing throughput. Before taking on a systems design it is appropriate to establish a definition of the requirements of the facilities. This report examines why such a project is necessary in the context of the current and projected operations, needs, problems, risks and costs. The authors also address a functional specification as a prelude to a system design and the design constraints implicit in the systems implementation. Technical, operational and economic assessments establish necessary boundary conditions for this discussion. This report also establishes the environment in which the requirements definition may be considered valid. The validity of these analyses is contingent on known and projected technical, scientific and political conditions

  8. Deep ground water microbiology in Swedish granite rock and it's relevance for radio-nuclide migration from a Swedish high level nuclear waste repository

    International Nuclear Information System (INIS)

    Pedersen, Karsten

    1989-03-01

    Data on numbers, species and activity of deep ground water microbial populations in Swedish granite rock have been collected. Specific studies are performed on radio-nuclid uptake on bacteria judge to be probable inhabitants in Swedish nuclear waste repositories. An integrated mobile field laboratory was used for water sampling and for the immediate counting and inoculation of the samples from boreholes at levels between 129 and 860 m. A sampler adapted for the collection of undisturbed samples for gas analysis was used to collect samples for bacterial enumerations and enrichments. The sampler can be opened and closed from the surface at the actual sampling depth. The samples can subsequently be brought to the surface without contact with air and with the pressure at the actual sampling depth. The number of bacteria were determined in samples from the gas sampler when this was possible. Else numbers are determined in the water that is pumped up to the field lab. The average total number of bacteria is 3 x 10 5 bacterial ml -1 . The number of bacteria possible to recover with plate count arrays from 0.10 to 21.9%. (author)

  9. A trend of robotics in nuclear facilities

    International Nuclear Information System (INIS)

    Nakayama, Ryoichi

    1993-01-01

    In order to operate stably nuclear power stations, the periodic inspection determined by the law has been carried out once every year in Japan. For reducing the radiation exposure of workers and improving work efficiency and work quality, the automation and the use of robots have been promoted. Also in fuel reprocessing plants and the facilities for storing radioactive wastes, the remotely operated devices for handling uranium and plutonium are indispensable. The course of the development of the robots for nuclear power plants classified by ages is shown. The research and development have been advanced from special automatic machines of first generation since 1965, through versatile robots of second generation since 1980 to intellectual robots of third generation since 1985. Automatic fuel exchanger, control rod moving mechanism and the ultrasonic flaw detector for pipings are those of first generation. As those of second generation, various movable inspection robots and the manipulators for them were developed. The ultimate working robot completed in 1990 is that of third generation. As the trend of the practical use, monorail type inspection robots and underwater inspection robots and various manipulators are reported. (K.I.)

  10. The State Surveillance over Nuclear Safety of Nuclear Facilities Act No. 28/1984

    International Nuclear Information System (INIS)

    1995-01-01

    The Act lays down responsibilities of the Czechoslovak Atomic Energy Commission in the field of state surveillance over nuclear safety of nuclear facilities; determines the responsibilities of nuclear safety inspectors in their inspection activities; specifies duties of bodies and corporations responsible for nuclear safety of nuclear facilities; stipulates the obligation to set up emergency plans; and specifies penalties imposed on corporations and individuals for noncompliance with nuclear safety provisions. The Act entered into force on 4 April 1984. (J.B.)

  11. The Transparency Programme of the Swedish National Council for Nuclear Waste. A Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Kjell (Karita Research AB, Taeby (Sweden)), E-Mail: kjell.andersson@karita.se

    2009-12-15

    In this paper the activities of the Transparency Programme of the Swedish National Council for Nuclear Waste have been explored. Comparisons have been made with other activities using the same transparency approach and observations made from different reports that deal with the programme or parts of it have been taken into account. Obviously, to make firm conclusions to what extent the aims of the Transparency Programme have been achieved a formal review should be done. It seems evident however that the programme has vitalized the overall dialogue about the Swedish nuclear waste management programme and that the hearings held have raised the awareness about issues that have been dealt with such as value-laden aspects of disposals methods, feasibility of certain alternatives, the need for clarification of how regulatory criteria can be applied and the use of research on governance processes. Stakeholders seem to have appreciated the overall organization and the stretching that took place during the hearings held. For possible future activities, the observations made about the antagonism between certain parties which has existed since a long time ago and the common language and culture need to be taken into account. The core problem, however, is to reach out to the political decision makers at the national level, especially since the time distance between hearings held so far and critical government decisions is at least six years which put a high demand on the reporting system. Taking the experiences from other transparency projects into account, the Council might consider the possibility to establish a reference group with participation from different stakeholders and politicians who could have a role for conveying results to wider groups. One observer has concluded that the reporting from the Transparency Programme should be open in the sense that it should not make conclusions on the issues as such (e.g. if a certain disposal method is to prefer or not). Instead

  12. The Transparency Programme of the Swedish National Council for Nuclear Waste. A Status Report

    International Nuclear Information System (INIS)

    Andersson, Kjell

    2009-12-01

    In this paper the activities of the Transparency Programme of the Swedish National Council for Nuclear Waste have been explored. Comparisons have been made with other activities using the same transparency approach and observations made from different reports that deal with the programme or parts of it have been taken into account. Obviously, to make firm conclusions to what extent the aims of the Transparency Programme have been achieved a formal review should be done. It seems evident however that the programme has vitalized the overall dialogue about the Swedish nuclear waste management programme and that the hearings held have raised the awareness about issues that have been dealt with such as value-laden aspects of disposals methods, feasibility of certain alternatives, the need for clarification of how regulatory criteria can be applied and the use of research on governance processes. Stakeholders seem to have appreciated the overall organization and the stretching that took place during the hearings held. For possible future activities, the observations made about the antagonism between certain parties which has existed since a long time ago and the common language and culture need to be taken into account. The core problem, however, is to reach out to the political decision makers at the national level, especially since the time distance between hearings held so far and critical government decisions is at least six years which put a high demand on the reporting system. Taking the experiences from other transparency projects into account, the Council might consider the possibility to establish a reference group with participation from different stakeholders and politicians who could have a role for conveying results to wider groups. One observer has concluded that the reporting from the Transparency Programme should be open in the sense that it should not make conclusions on the issues as such (e.g. if a certain disposal method is to prefer or not). Instead

  13. Swedish Projects

    National Research Council Canada - National Science Library

    Borgvall, Jonathan; Lif, Patrik

    2005-01-01

    .... The military research work presented here includes the three military administrations, FOI -- Swedish Defence Research Agency, FMV -- Swedish Defence Materiel Administration, and SNDC -- Swedish...

  14. Study on system integration of robots operated in nuclear fusion facility and nuclear power plant facilities

    International Nuclear Information System (INIS)

    Oka, Kiyoshi

    2004-07-01

    A present robot is required to apply to many fields such as amusement, welfare and protection against disasters. The are however only limited numbers of the robots, which can work under the actual conditions as a robot system. It is caused by the following reasons: (1) the robot system cannot be realized by the only collection of the elemental technologies, (2) the performance of the robot is determined by that of the integrated system composed of the complicated elements with many functions, and (3) the respective elements have to be optimized in the integrated robot system with a well balance among them, through their examination, adjustment and improvement. Therefore, the system integration of the robot composed of a large number of elements is the most critical issue to realize the robot system for actual use. In the present paper, I describe the necessary approaches and elemental technologies to solve the issues on the system integration of the typical robot systems for maintenance in the nuclear fusion facility and rescue in the accident of the nuclear power plant facilities. These robots work under the intense radiation condition and restricted space in place of human. In particular, I propose a new approach to realize the system integration of the robot for actual use from the viewpoints of not only the environment and working conditions but also the restructure and optimization of the required elemental technologies with a well balance in the robot system. Based on the above approach, I have a contribution to realize the robot systems working under the actual conditions for maintenance in the nuclear fusion facility and rescue in the accident of the nuclear power plant facilities. (author)

  15. Safety and ethical aspects on retrievability: A Swedish nuclear regulator's view

    International Nuclear Information System (INIS)

    Toverud, Oe.; Wingefors, S.

    2000-01-01

    An important contribution to the discussion on retrieval in Sweden has been the ethical principle of the Swedish National Council for Nuclear Waste (KASAM). ''The KASAM Principle'' means that the present generation, which has reaped the benefits of nuclear energy, must also take care of the waste and not transfer the responsibility to future generations; a repository should be designed and constructed so that monitoring and remedial actions are not necessary in the future. However, future generations, probably with better knowledge and other values, must still have the freedom to make their own decisions; we should therefore not make monitoring and remedial action unnecessarily difficult. SKI generally supports the KASAM principle but its application in the individual case should be based on solid evidence that both aspects have been covered in a suggested repository design. There may be a number of possible reasons for retrieval of spent nuclear fuel from a repository and they range from technical to purely political. SKI supports that the repository shall not be designed so that it unnecessarily impairs future attempts to retrieve the waste, monitor or ''repair'' the repository. However, measures to facilitate any kind of access to the repository must not reduce the long term safety of the repository. SKI concludes that: Future generations may wish to retrieve the spent fuel from a sealed repository. Disposal method and repository design should consider this and not make such retrieval unnecessarily difficult. On the other hand, any measures taken to facilitate retrieval must not significantly impair the long term safety functions of the repository. It must be shown that the safety aspects have been adequately considered. Retrievability must always be discussed with caution, so that it will not give the impression of doubts concerning the safety of the repository. (author)

  16. A vision of inexhaustible energy: The fast breeder reactor in Swedish nuclear power history 1945-80

    International Nuclear Information System (INIS)

    Fjaestad, Maja

    2010-01-01

    The fast breeder is a type of nuclear reactor that aroused much attention in the 1950s and 1960s. Its ability to produce more nuclear fuel than it consumes offered promises of cheap and reliable energy, and thereby connected it to utopian ideas about an eternal supply of energy, Furthermore. the ideas of breeder reactors were a vital part of the post-war visions about the nuclear future. This dissertation investigates the plans for breeder reactors in Sweden, connecting them to the contemporary development of nuclear power with heavy or light water and the discussions of nuclear weapons, as well as to the general visions of a prosperous technological future. The history of the Swedish breeder reactor is traced from high hopes in the beginning, via the fiasco of the Swedish heavy water program, partly focusing on the activities at the company AB Atomenergi and investigating how it planned and argued for its breeder program and how this was received by the politicians. The story continues into the intensive environmental movement in the 1970s, ending with the Swedish referendum on nuclear energy in 1980, which can be seen as the final point for the Swedish breeder. The thesis discusses how the nuclear breeder reactor was transformed from an argument for nuclear power to an argument against it. The breeder began as a part of the vision of a society with abundant energy, but was later seen as a threat against the new sustainable world. The nuclear breeder reactor is an example of a technological vision that did not meet its industrial expectations. But that does not prevent the fact that breeder was an influential technology in an age where important decisions about nuclear energy were made. The thesis argues that important decisions about the contemporary reactors were taken with the idea that they in a foreseeable future would be replaced with the efficient breeder. And the last word on the breeder reactor is not said - today, reactor engineers around the world are

  17. Stochastic Optimization for Nuclear Facility Deployment Scenarios

    Science.gov (United States)

    Hays, Ross Daniel

    Single-use, low-enriched uranium oxide fuel, consumed through several cycles in a light-water reactor (LWR) before being disposed, has become the dominant source of commercial-scale nuclear electric generation in the United States and throughout the world. However, it is not without its drawbacks and is not the only potential nuclear fuel cycle available. Numerous alternative fuel cycles have been proposed at various times which, through the use of different reactor and recycling technologies, offer to counteract many of the perceived shortcomings with regards to waste management, resource utilization, and proliferation resistance. However, due to the varying maturity levels of these technologies, the complicated material flow feedback interactions their use would require, and the large capital investments in the current technology, one should not deploy these advanced designs without first investigating the potential costs and benefits of so doing. As the interactions among these systems can be complicated, and the ways in which they may be deployed are many, the application of automated numerical optimization to the simulation of the fuel cycle could potentially be of great benefit to researchers and interested policy planners. To investigate the potential of these methods, a computational program has been developed that applies a parallel, multi-objective simulated annealing algorithm to a computational optimization problem defined by a library of relevant objective functions applied to the Ver ifiable Fuel Cycle Simulati on Model (VISION, developed at the Idaho National Laboratory). The VISION model, when given a specified fuel cycle deployment scenario, computes the numbers and types of, and construction, operation, and utilization schedules for, the nuclear facilities required to meet a predetermined electric power demand function. Additionally, it calculates the location and composition of the nuclear fuels within the fuel cycle, from initial mining through

  18. Safety Management in Non-Nuclear Contexts. Examples from Swedish Railway Regulatory and Company Perspectives

    International Nuclear Information System (INIS)

    Salo, Ilkka; Svensson, Ola

    2005-06-01

    Nuclear power operations demand safe procedures. In the context of this report, safety management is considered as a key instrument to achieve safety in technology, organization and operations. Outside the area of nuclear operations there exist a number of other technological areas that also demand safe operations. From the perspective of knowledge management, there exists an enormous pool of safety experiences that may be possible to shear or reformulate from one context to another. From this point of view, it seems highly relevant to make efforts to utilize, and try to understand how safety in general is managed in other contexts. There is much to gain from such an approach, not at least from economical, societal, and systems points of views. Because of the vast diversity between technological areas and their operations, a common framework that allow elaboration with common concepts for understanding, must be generated. In preceding studies a number of steps have been taken towards finding such a general framework for modeling safety management. In an initial step a system theoretical framework was outlined. In subsequent steps central concepts from this framework has been applied and evaluated in relation to a number of non-nuclear organizations. The present report brings this intention one step further, and for the first time, a complete analysis of a system consisting of both the regulator and the licensee was carried out, in the above respects. This report focused the Swedish railway system, and the organizations studied were the Swedish Rail Agency (SRA) and SJ (the main rail traffic operator). The data used for this report consisted of various documents about the organizations, and interview data. This report is basically structured around three, more or less, independent studies that are presented in separate chapters. They are: the system theoretical framework that in the following chapters is applied to the two organizations, and one chapter each for the

  19. The Swedish Radiation Protection Institute's protection criteria for disposal of spent nuclear fuel

    International Nuclear Information System (INIS)

    1995-12-01

    In this document the Swedish Radiation Protection Institute reports the preliminary protection criteria for personnel and public concerned with, or in other ways affected by, the disposal of high level radioactive waste. The document will be submitted for consideration by the parties concerned and also serve as a basis for preparing a Swedish viewpoint which can be asserted in future international discussions

  20. Safety Management Characteristics Reflected in Interviews at Swedish Nuclear Power Plants: A System Perspective Approach

    Energy Technology Data Exchange (ETDEWEB)

    Salo, Ilkka (Risk Analysis, Social and Decision Research Unit, Dept. of Psychology, Stockholm Univ., Stockholm (Sweden))

    2005-12-15

    The present study investigated safety management characteristics reflected in interviews with participants from two Swedish nuclear power plants. A document analysis regarding the plants' organization, safety policies, and safety culture work was carried out as well. The participants (n=9) were all nuclear power professionals, and the majority managers at different levels with at least 10 years of nuclear power experience. The interview comprised themes relevant for organizational safety and safety management, such as: organizational structures and organizational change, threats to safety, information feedback and knowledge transfer, safety analysis, safety policy, and accident and incident analysis and reporting. The results were in part modeled to important themes derived from a general system theoretical framework suggested by Svenson and developed by Svenson and Salo in relation to studies of 'non-nuclear' safety organizations. A primer to important features of the system theoretical framework is presented in the introductory chapter. The results from the interviews generated interesting descriptions about nuclear safety management in relation to the above themes. Regarding organizational restructuring, mainly centralizations of resources, several examples of reasons for the restructuring and related benefits for this centralization of resources were identified. A number of important reminders that ought to be considered in relation to reorganization were also identified. Regarding threats to the own organization a number of such was interpreted from the interviews. Among them are risks related to generation and competence change-over and risks related to outsourcing of activities. A thorough picture of information management and practical implications related to this was revealed in the interviews. Related to information feedback is the issue of organizational safety indicators and safety indicators in general. The interview answers indicated

  1. Quarterly report of the Swedish Nuclear Power inspectorate January-March 1982

    International Nuclear Information System (INIS)

    1982-01-01

    The inspectorate is reporting on the departures of the nuclear power plants from normal operations. The Ringhals-3 reactor has discontinued the operation since the 20th of Oct 1981. There have been 9 reactor trips for all nine power units. The turbine oil of the Oskarshamn-1 reactor caught fire the 18th of February 1982. No incidents are reported from Studsvik and the facilities of ASEA-ATOM. (G.B.)

  2. Studies of activation products in the terrestrial environment of three swedish nuclear power stations

    International Nuclear Information System (INIS)

    Ingemansson, T.; Erlandsson, B.; Mattsson, S.

    1982-01-01

    Samples of sewage sludge, lichen (Cladonia alpestris), soil and ground level air have been analysed for activation products released to the atmosphere from the three Swedish nuclear power stations at Simpevarp near Oskarshamn, Ringhals and Barsebaeck. The activity concentration of the activation products in the sludge can be arranged in the following sequence: 60 Co > 65 Zn > 58 Co 54 Mn. There is agreement between the time variation of the activity concentration in the sludge and the reported releases to the air from the power stations. The measured activity ratio 58 Co/ 60 Co in sludge does not significantly differ from that reported in the releases to the air. The activity concentration in sludge sedimented from incoming waste water has been used to get better time resolution than using only digested sludge from the final step of the plant. These studies have shown that the activity concentration of 60 Co increases substantially with the first rain run-off that reaches the sewage plant and then falls off rapidly. Measurements on samples of lichen and underlying soil show that the radioactive cobalt isotopes ( 58 Co and 60 Co) have a short mean residence time in the lichen carpet compared to most fission products present in global fall-out. (author)

  3. Safety Management in Non-Nuclear Contexts. Examples from Swedish Railway Regulatory and Company Perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Salo, Ilkka; Svensson, Ola (Risk Analysis, Social and Decision Research Unit, Dept. of Psychology, Stockholm Univ., Stockholm (Sweden))

    2005-06-15

    Nuclear power operations demand safe procedures. In the context of this report, safety management is considered as a key instrument to achieve safety in technology, organization and operations. Outside the area of nuclear operations there exist a number of other technological areas that also demand safe operations. From the perspective of knowledge management, there exists an enormous pool of safety experiences that may be possible to shear or reformulate from one context to another. From this point of view, it seems highly relevant to make efforts to utilize, and try to understand how safety in general is managed in other contexts. There is much to gain from such an approach, not at least from economical, societal, and systems points of views. Because of the vast diversity between technological areas and their operations, a common framework that allow elaboration with common concepts for understanding, must be generated. In preceding studies a number of steps have been taken towards finding such a general framework for modeling safety management. In an initial step a system theoretical framework was outlined. In subsequent steps central concepts from this framework has been applied and evaluated in relation to a number of non-nuclear organizations. The present report brings this intention one step further, and for the first time, a complete analysis of a system consisting of both the regulator and the licensee was carried out, in the above respects. This report focused the Swedish railway system, and the organizations studied were the Swedish Rail Agency (SRA) and SJ (the main rail traffic operator). The data used for this report consisted of various documents about the organizations, and interview data. This report is basically structured around three, more or less, independent studies that are presented in separate chapters. They are: the system theoretical framework that in the following chapters is applied to the two organizations, and one chapter each for the

  4. European Nuclear Decommissioning Training Facility II

    International Nuclear Information System (INIS)

    Demeulemeester, Y.

    2005-01-01

    SCK-CEN co-ordinates a project called European Nuclear Decommissioning Training Facility II (EUNDETRAF II) in the Sixth Framework Programme on Community activities in the field of research, technological development and demonstration for the period 2002 to 2006. This was a continuation of the FP5 project EUNDETRAF. EUNDETRAF II is a consortium of main European decommissioners, such as SCK-CEN, EWN (Energie Werke Nord, Greifswald Germany), Belgatom (Belgium), SOGIN Societa Gestione Impiantio Nucleari, Italy), Universitaet Hannover (Germany), RWE NUKEM (United Kingdom), DECOM Slovakia Slovakia), CEA Centre d'Energie Atomique, France), UKAEA (United Kingdom's Atomic Energy Agency, United Kingdom) and NRG (Nuclear Research and consultancy Group, Netherlands). The primary objective of this project is to bring together this vast skill base and experience; to consolidate it for easy assimilation and to transfer to future generations by organising a comprehensive training programme.Each training course has a one-week theoretical and a one-week practical component. The theoretical part is for a broader audience and consists of lectures covering all the main aspects of a decommissioning. The practical part of the course includes site visits and desk top solutions of anticipated decommissioning problems. Due to operational constraints and safety considerations, the number of participants to this part of the course is strictly limited. The partners intend to organise altogether two two-week EUNDETRAF II training courses over a period of three years. Another goal is to disseminate the existing theory as well as the practical know-how to personnel of the third countries. Finally it is important to bring together the principal decommissioning organisations undertaking various decommissioning activities. The project creates a forum for regular contacts to exchange information and experiences for mutual benefit of these organisations as well as to enhance skill base in Europe to

  5. Modern tornado design of nuclear and other potentially hazardous facilities

    International Nuclear Information System (INIS)

    Stevenson, J.D.; Zhao, Y.

    1996-01-01

    Tornado wind loads and other tornado phenomena, including tornado missiles and differential pressure effects, have not usually been considered in the design of conventional industrial, commercial, or residential facilities in the United States; however, tornado resistance has often become a design requirement for certain hazardous facilities, such as large nuclear power plants and nuclear materials and waste storage facilities, as well as large liquefied natural gas storage facilities. This article provides a review of current procedures for the design of hazardous industrial facilities to resist tornado effects. 23 refs., 19 figs., 13 tabs

  6. PRTR/309 building nuclear facility preliminary

    International Nuclear Information System (INIS)

    Cornwell, B.C.

    1994-01-01

    The hazard classification of the Plutonium Recycle Test Reactor (PRTR)/309 building as a ''Radiological Facility'' and the office portions as ''Other Industrial Facility'' are documented by this report. This report provides: a synopsis of the history and facility it's uses; describes major area of the facility; and assesses the radiological conditions for the facility segments. The assessment is conducted using the hazard category threshold values, segmentation methodology, and graded approach guidance of DOE-STD-1027-92

  7. Redevelopment of nuclear facilities after decommissioning

    International Nuclear Information System (INIS)

    2006-01-01

    Being aware of reuse options for decommissioned sites is an important aspect of the decommissioning process. Early planning for site reuse can facilitate the transition from operation to decommissioning, possibly reduce the financial burden associated with decommissioning, re-employ workers and specialist staff, and alleviate the overall impact of decommissioning on the local community. Conversely, the lack of early planning for site reuse after completion of the decommissioning process can become a hindrance to implementing decommissioning in a cost effective and optimized manner. This strategic inadequacy may be caused by insufficient knowledge of experience with redevelopment opportunities that were exploited successfully in industries elsewhere. This report provides an overview of decommissioning projects implemented worldwide with reuse of the decommissioned sites for new purposes after delicensing. Lessons learned from these projects and practical guidance on factors creating reuse opportunities are highlighted. Operators of nuclear facilities, decision makers at government level, regulators/authorities and elected officials at all levels, environmental planners and the general public are all important stakeholders in the site redevelopment process. The subject area addressed in this report has not previously been addressed in IAEA publications on decommissioning except in only a marginal fashion. This report is intended to contribute to the systematic coverage of the entire range of decommissioning aspects within the IAEA's decommissioning programme

  8. Water intaking facility of nuclear power plant

    International Nuclear Information System (INIS)

    Koyama, Kazuhito; Iwata, Nobukatsu; Ochiai, Kanehiro.

    1994-01-01

    In a water intaking facility of a nuclear power plant, a dam is disposed at a position near a sea shore for preventing sea water introduced in open conduit from flowing to the outer sea upon ebbing of tsunamis. The upper end of the dam is set lower than the lower end of a water-intake pipe of a sea water pump of an ordinary system. A water-intake pipe is disposed to such a length that a sea water pump of an emergency system continues to suck the sea water when the water level of the introduced sea water is lowered than the upper end of the dam during the ebb tide. In addition, a means for stopping the operation of the sea water pump of the ordinary system upon starting of the ebb is disposed. Upon reactor scram for occurrence of earthquakes and the like, either the sea water pump in the ordinary system or the seawater pump in the emergency system operates to ensure required amount of sea water for cooling the reactor. In addition, even if the level of the sea water is lowered than the upper end of the dam, since the sea water pump in the emergency system continues to suck sea water, unnecessary suction for sea water by the ordinary sea water pumps can be eliminated. (N.H.)

  9. Environmental radiation monitoring around the nuclear facilities

    International Nuclear Information System (INIS)

    Lee, H.D.; Lee, Y.B.; Lee, W.Y.; Park, D.W.; Chung, B.G.

    1980-01-01

    For the KAERI site, various environmental samples were collected three times a month, and the natural environmental radiation levels were also measured at each sampling point. Measurements for gross alpha and beta radioactivities of the samples were routinely measured for all samples. Strontium-90 concentrations were also analysed for the fallout and air samples collected daily basis on the roof of the main building. Accumulated exposure including the possibility of determination of low level environmental radiation field by employing thermoluminescent dosimeter, CaSO 4 : Dsub(y)-0.4 teflon disc type, at 6 posts in on-site of the KAERI. As for Kori site, at 19 points of ON, OFF-site, and at the same time the environmental radiation exposure rate at each sampling point were measured. Several environmental samples such as surface soil, pine needles, water samples, milk sample and pasture samples were collected and analysed on a quarterly basis. As a result of the survey it can be said that no significant release of radiation to the environment due to the operations of nuclear facilities including research reactor at the KAERI and power reactor at the Kori has been found during the period of the survey and monitoring. (author)

  10. Regulatory control of nuclear facility valves and their actuators

    International Nuclear Information System (INIS)

    1993-01-01

    The methods and procedures by which the Finnish Centre for Radiation and Nuclear Safety (STUK) regulates valves and their actuators in nuclear power plants and in other nuclear facilities are specified in the guide. The scope of regulation depends on the Safety Class of the valve and the actuator in question. The Safety Classification principles for the systems, structures and components of the nuclear power plants are described in the guide YVL 2.1 and the regulatory control of the nuclear facility safety valves is described in the guide YVL 5.4

  11. Swedish Work on Brittle-Fracture Problems in Nuclear Reactor Pressure Vessels

    International Nuclear Information System (INIS)

    Grounes, M.

    1966-03-01

    After a short review of the part of the Swedish nuclear energy program that is of interest in this context the Swedish reactor pressure vessels and the reasoning behind the choice of materials are surveyed. Problems and desirable aims for future reactors are discussed. Much work is now being done on new types of pressure vessel steels with high strength, low transition temperature and good corrosion resistance. These steels are of the martensitic austenitic type Bofors 2RMO (13 % Cr, 6 % Ni, 1. 5 % Mo) and of the ferritic martensitic austenitic type Avesta 248 SV (16 % Cr, 5 % Ni, 1 % Mo). An applied philosophy for estimating the brittle-fracture tendency of pressure vessels is described. As a criterion of this tendency we use the crack-propagation transition temperature, e. g. as measured by the Robertson isothermal crack-arrest test. An estimate of this transition temperature at the end of the reactor' s lifetime must take increases due to fabrication, welding, geometry, ageing and irradiation into account. The transition temperature vs. stress curve moves towards higher temperatures during the reactor' s lifetime. As long as this curve does not cross the reactor vessel stress vs. temperature curve the vessel is considered safe. The magnitude of the different factors influencing the final transition temperature are discussed and data for the Marviken reactor's pressure vessel are presented. At the end of the reactor's lifetime the estimated transition temperature is 115 deg C, which is below the maximum permissible value. A program for the study of strain ageing has been initiated owing to the uncertainty as to the extent of strain ageing at low strains. A study of a simple crack-arrest test, developed in Sweden, is in progress. An extensive irradiation-effects program on several steels is in progress. Results from tests on the Swedish carbon-manganese steels 2103/R3, SIS 142103 and SIS 142102, the low-alloy steels Degerfors DE-631A, Bofors NO 345 and Fortiweld

  12. Swedish Work on Brittle-Fracture Problems in Nuclear Reactor Pressure Vessels

    Energy Technology Data Exchange (ETDEWEB)

    Grounes, M.

    1966-03-15

    After a short review of the part of the Swedish nuclear energy program that is of interest in this context the Swedish reactor pressure vessels and the reasoning behind the choice of materials are surveyed. Problems and desirable aims for future reactors are discussed. Much work is now being done on new types of pressure vessel steels with high strength, low transition temperature and good corrosion resistance. These steels are of the martensitic austenitic type Bofors 2RMO (13 % Cr, 6 % Ni, 1. 5 % Mo) and of the ferritic martensitic austenitic type Avesta 248 SV (16 % Cr, 5 % Ni, 1 % Mo). An applied philosophy for estimating the brittle-fracture tendency of pressure vessels is described. As a criterion of this tendency we use the crack-propagation transition temperature, e. g. as measured by the Robertson isothermal crack-arrest test. An estimate of this transition temperature at the end of the reactor' s lifetime must take increases due to fabrication, welding, geometry, ageing and irradiation into account. The transition temperature vs. stress curve moves towards higher temperatures during the reactor' s lifetime. As long as this curve does not cross the reactor vessel stress vs. temperature curve the vessel is considered safe. The magnitude of the different factors influencing the final transition temperature are discussed and data for the Marviken reactor's pressure vessel are presented. At the end of the reactor's lifetime the estimated transition temperature is 115 deg C, which is below the maximum permissible value. A program for the study of strain ageing has been initiated owing to the uncertainty as to the extent of strain ageing at low strains. A study of a simple crack-arrest test, developed in Sweden, is in progress. An extensive irradiation-effects program on several steels is in progress. Results from tests on the Swedish carbon-manganese steels 2103/R3, SIS 142103 and SIS 142102, the low-alloy steels Degerfors DE-631A, Bofors NO

  13. Facing the nuclear power phaseout - Swedish experiences of enterprise shutdown and organisational development

    International Nuclear Information System (INIS)

    Lundqvist, K.

    1998-02-01

    The aim of this study is to make an overview of problems and experiences connected to decommissioning and organisational changes of Swedish enterprises and public agencies from a safety perspective. The central point is the view of decommissioning of nuclear power plants as a process of change. In practice decommissioning includes both downsizing and organisational development. The question is which problems can arise and which strategy of change is most adequate from the standpoint of safety. The report starts with a summary of the most important experiences of the process of decommissioning of enterprises during the sixties to eighties concerning the consequences for the individuals and the labour market. After that follows the main results from earlier investigations of shut-down of nuclear power plants regarding the staff. The restructuring and downsizing of the public sector during the nineties have given rise to a large amount of material on staffing issues. The knowledge and experiences drawn from the organisational change processes of Swedish working life during the nineties are then summarised. At last some conclusions for decommissioning of nuclear power plants are discussed. The period before and after the termination of power generation is connected with great strain. The vulnerability of the staff increases and the faith in management can easily be destroyed, which can affect safety and the decommissioning work. The feeling of security increases if the staff continuously is kept informed and within certain limits can influence the course of events. A learning strategy is preferable in comparison to an expert oriented strategy because it is impossible to gain complete control over the technically and socially complex process of decommissioning. Instead of detailed and central planning of the process it will be safer to work in a participative way and to include all the staff in the preparations from the very beginning. By a learning way of working is

  14. Childhood leukemia around five nuclear facilities in Canada

    International Nuclear Information System (INIS)

    Elaguppillai, V.

    1992-05-01

    As a result of public concern over the incidence of leukemia around the Sellafield nuclear fuel reprocessing plant, the Canadian Atomic Energy Control Board commissioned a study to test for similar clustering around licensed nuclear facilities in Ontario. In this study the incidence and mortality of leukemia among children up to the age of 14 years born within a radius of about 25 km from five different types of facilities were compared to the provincial average. The facilities considered were the Pickering Nuclear Generating Station, the Bruce Nuclear Power Development, the uranium conversion facility at Port Hope, the uranium mine and mill facilities in Elliot Lake, and the Chalk River Laboratories. The ratio of observed to expected childhood leukemias was around unity at the 95 percent confidence level, indicating that the occurrence of the disease is not significantly different from the provincial average. The sample size is not large enough to distinguish between a change occurrence and a true excess or deficit. (table)

  15. Space Nuclear Thermal Propulsion (SNTP) Air Force facility

    Science.gov (United States)

    Beck, David F.

    The Space Nuclear Thermal Propulsion (SNTP) Program is an initiative within the US Air Force to acquire and validate advanced technologies that could be used to sustain superior capabilities in the area or space nuclear propulsion. The SNTP Program has a specific objective of demonstrating the feasibility of the particle bed reactor (PBR) concept. The term PIPET refers to a project within the SNTP Program responsible for the design, development, construction, and operation of a test reactor facility, including all support systems, that is intended to resolve program technology issues and test goals. A nuclear test facility has been designed that meets SNTP Facility requirements. The design approach taken to meet SNTP requirements has resulted in a nuclear test facility that should encompass a wide range of nuclear thermal propulsion (NTP) test requirements that may be generated within other programs. The SNTP PIPET project is actively working with DOE and NASA to assess this possibility.

  16. How to balance the future in a small country with huge traditions of nuclear applications: the Swedish example

    International Nuclear Information System (INIS)

    Pazsit, Imre

    2005-01-01

    After a short historical perspective of how the Swedish energy situation has reached the present status, the paper says that the interplay of many beneficial circumstances put Sweden into the nuclear track toward the peaceful utilization of nuclear energy and technology at a very early stage of development in Europe. It adds then that the future of nuclear power in Sweden, just as in the previous decades, is not predictable in detail. It is however likely that nuclear power remains a significant contributor of electricity production in the coming decades, either at the same or an increased level, in the frame of a long-term agreement and consensus between industry and government. (S. Ohno)

  17. Implementation of hearings in the Swedish process for siting a spent nuclear fuel repository

    International Nuclear Information System (INIS)

    Westerlind, Magnus; Wiklund, Aasa

    2001-01-01

    The problem of bringing all stakeholders on the scene to penetrate an issue of great complexity is not unique for nuclear waste management. There are an increasing number of site selection processes for disposal of nuclear waste around the world. During the 90's many of these siting processes have gone into a more decisive phase where public participation and transparency get more and more attention. Municipalities, NGOs and the public do no longer accept ready-made solutions but have legitimate claims to be part of the decision making and siting processes at an early stage. The attempts to increase the level of transparency and public involvement differ from country to country and depend e.g. on culture, history and societal conditions as well as on the precise phase in the siting process. However, many processes include public hearings as one tool to enhance transparency. In general, Sweden has not a long history of using hearings in decision making. In the area of nuclear waste management and disposal hearings have so far been rarely used. In 1997 and 1998 two public hearings were arranged by the Swedish Nuclear Power Inspectorate, SKI, in conjunction with the licensing of the enlargement of the Central Interim Storage for Spent Nuclear Fuel, CLAB. These hearings showed that hearings could improve the decision making process. SKI and SSI strongly believe the effort was worthwhile and that hearings will continue to be used in the nuclear waste programme. The hearings provided a forum for local stakeholders to pose questions and stretch both the implementer and to some extent also the authorities. The hearings managed to focus on relevant issues at this stage of the siting process and gave the audience a chance to evaluate and challenge the trustworthiness of the implementer and authorities. In this respect the hearings contributed to transparent and democratic decision making. Some of the keys to the success were: Unbiased and skilled moderators with capacity to

  18. Criteria, standards and policies regarding decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    Detilleux, E.; Lennemann, W.

    1977-01-01

    The paper discusses the decontamination and decommissioning experiences encountered at the Eurochemic fuel reprocessing plant, their implications and the knowledge gained from these experiences. It includes the results of technical reviews made by the Nuclear Energy Agency of OECD and the International Atomic Energy Agency regarding decommissioning nuclear facilities. The conlusions which are presented should weigh heavily in the considerations of the national authorities involved in regulating nuclear power programmes. The paper notes the special planning that should be arranged between those responsible for the nuclear facility and competent public authorities who jointly should make a realistic determination of the eventual disposition of the nuclear facility, even before it is built. Recommendations cover the responsibilities of nuclear plant entrepreneurs, designers, operators, and public and regulatory authorities [fr

  19. Ground test facility for nuclear testing of space reactor subsystems

    International Nuclear Information System (INIS)

    Quapp, W.J.; Watts, K.D.

    1985-01-01

    Two major reactor facilities at the INEL have been identified as easily adaptable for supporting the nuclear testing of the SP-100 reactor subsystem. They are the Engineering Test Reactor (ETR) and the Loss of Fluid Test Reactor (LOFT). In addition, there are machine shops, analytical laboratories, hot cells, and the supporting services (fire protection, safety, security, medical, waste management, etc.) necessary to conducting a nuclear test program. This paper presents the conceptual approach for modifying these reactor facilities for the ground engineering test facility for the SP-100 nuclear subsystem. 4 figs

  20. Nuclear Science: a survey of funding, facilities, and manpower

    International Nuclear Information System (INIS)

    1975-01-01

    In 1973 the Committee on Nuclear Science of the National Research Council initiated a re-examination of aspects (funding, manpower, and facilities) of the organization and operation of nuclear science research in order to evaluate any changes in the preceding four years and implications of such changes. The reports of the three ad hoc panels established for this purpose (funding and level of effort, nuclear facilities, manpower and education) are presented. Although they identify current problems in nuclear science, these reports do not provide simple solutions; rather, they attempt to provide updated information for use as background for continuing decisions

  1. Decommissioning of nuclear facilities: Decontamination, disassembly and waste management

    International Nuclear Information System (INIS)

    1983-01-01

    The term 'decommissioning', as used within the nuclear industry, means the actions taken at the end of a facility's useful life to retire the facility from service in a manner that provides adequate protection for the health and safety of the decommissioning workers, the general public, and for the environment. These actions can range from merely closing down the facility and a minimal removal of radioactive material coupled with continuing maintenance and surveillance, to a complete removal of residual radioactivity in excess of levels acceptable for unrestricted use of the facility and its site. This latter condition, unrestricted use, is the ultimate goal of all decommissioning actions at retired nuclear facilities. The purpose of this report is to provide an information base on the considerations important to decommissioning, the methods available for decontamination and disassembly of a nuclear facility, the management of the resulting radioactive wastes, and the areas of decommissioning methodology where improvements might be made. Specific sections are devoted to each of these topics, and conclusions are presented concerning the present status of each topic. A summary of past decommissioning experience in Member States is presented in the Appendix. The report, with its discussions of necessary considerations, available operational methods, and waste management practices, together with supporting references, provides an appreciation of the activities that comprise decommissioning of nuclear facilities. It is anticipated that the information presented in the report should prove useful to persons concerned with the development of plans for the decommissioning of retired nuclear facilities

  2. Trend of development of robots for nuclear facilities

    International Nuclear Information System (INIS)

    Maki, Hideo; Sasaki, Masayoshi

    1984-01-01

    Robot technology becomes more and more important in the field of atomic energy industries. Hitachi Ltd. has energetically engaged in the development of the robot technology for nuclear facilities, recognizing these situations. The course of the development of robot technology and the robots for nuclear facilities is described. As the practical examples of the robots for nuclear facilities, there have been automatic fuel exchangers, the remotely operated automatic exchangers for control rod driving mechanism, automatic and semi-automatic ultrasonic flaw detectors and so on. As the robots for nuclear facilities under development, control rod driving mechanism disassembling and cleaning system, the volume reduction device for spent fuel channel boxes and control rods and others are reported. (Kako, I.)

  3. Childhood leukaemia around Canadian nuclear facilities. Phase 1

    International Nuclear Information System (INIS)

    Clarke, E.A.; McLaughlin, J.; Anderson, T.W.

    1989-05-01

    A ninefold excess risk of leukaemia, as observed in vicinity of the Sellafield facility, was not observed amongst children born to mothers residing in the areas around nuclear research facilities and uranium mining, milling and refining facilities in Ontario. In the vicinity of nuclear research facilities, the rate of leukaemia was, in fact, less than expected. In the areas around the uranium mining, milling and refining facilities; leukaemia occurred slightly more frequently than expected; however, due to small frequencies these results may have risen by chance. A slightly greater than expected occurrence of leukaemia was also detected, which may well have been due to chance, in an exploratory study of the areas around nuclear power generating stations in Ontario

  4. Nuclear facilities in the fuel cycle - Federal Republic of Germany

    International Nuclear Information System (INIS)

    1984-11-01

    The map of the Federal Republic of Germany (scale 1:800000) presents the sites of nuclear facilities. These include uranium mines and mills, fuel element fabrication and reprocessing plants, nuclear power plants (in operation or under construction), fuel transfer storage, and ultimate storage facilities. As a geographical extension, the PAMELA vitrification plant in Belgium is also shown. The map is of November 1984. (UA) [de

  5. A Regulators Systematic Approach to Physical Protection for Nuclear Facilities

    International Nuclear Information System (INIS)

    Bayer, Stephan; Doulgeris, Nicholas; Leask, Andrew

    2004-01-01

    This paper outlines the framework for a physical protection regime which needs to be incorporated into the design and construction phases of nuclear facility. The need for physical protection considerations at the outset of the design of nuclear facilities is explained. It also discusses about the consequences of malicious activity and the management of risk. Various risk and consequences evaluations are undertaken, notably using design basis threat methodology. (author)

  6. Childhood leukaemia around Canadian nuclear facilities. Phase 2

    International Nuclear Information System (INIS)

    Clarke, E.A.; McLaughlin, J.; Anderson, T.W.

    1991-06-01

    Prompted by findings of increased occurrence of childhood leukaemia in the vicinity of some nuclear facilities in the United Kingdom, this study aimed to investigate whether the frequency of leukaemia among children born to mothers living near nuclear facilities in Ontario differed from the provincial average. The Ontario Cancer Registry was used to identify 1894 children aged 0 to 14 years who died from leukaemia between 1950 and 1987, and 1814 children who were diagnosed with leukaemia between 1964 and 1986. Residence at birth and death was obtained from birth and death certificates. Analyses were performed separately for nuclear research and development facilities; uranium mining, milling and refining facilities; and, nuclear generating stations; and for areas within the same county as the facility and 'nearby' - within a 25-km radius of the facility. Risk estimates were calculated as the ratio of the observed (O) number of events over the expected (E) number. In the vicinity of nuclear research and development facilities the rate of leukaemia was less than expected and within the bound of chance variation. In the areas around the uranium mining, milling and refining facilities and nuclear power plants leukaemia occurred slightly more frequently than expected, but due to small frequencies these differences may have arisen due to chance. Large differences between observed and expected rates were not detected around any of the Ontario facilities. This study was large enough to detect excess risks of the magnitude reported in the United Kingdom, but it was not large enough to discriminate between the observed relative risks and a chance finding. Levels of leukaemia detected near nuclear generating stations indicate the need for further investigation. (20 tabs., 15 figs., 32 refs.)

  7. Security Culture in Physical Protection of Nuclear Material and Facility

    International Nuclear Information System (INIS)

    Susyanta-Widyatmaka; Koraag, Venuesiana-Dewi; Taswanda-Taryo

    2005-01-01

    In nuclear related field, there are three different cultures: safety, safeguards and security culture. Safety culture has established mostly in nuclear industries, meanwhile safeguards and security culture are relatively new and still developing. The latter is intended to improve the physical protection of material and nuclear facility. This paper describes concept, properties and factors affecting security culture and interactions among these cultures. The analysis indicates that anybody involving in nuclear material and facility should have strong commitment and awareness of such culture to establish it. It is concluded that the assessment of security culture outlined in this paper is still preliminary for developing and conduction rigorous security culture implemented in a much more complex facility such as nuclear power plant

  8. INTEGRATION OF FACILITY MODELING CAPABILITIES FOR NUCLEAR NONPROLIFERATION ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    Gorensek, M.; Hamm, L.; Garcia, H.; Burr, T.; Coles, G.; Edmunds, T.; Garrett, A.; Krebs, J.; Kress, R.; Lamberti, V.; Schoenwald, D.; Tzanos, C.; Ward, R.

    2011-07-18

    Developing automated methods for data collection and analysis that can facilitate nuclear nonproliferation assessment is an important research area with significant consequences for the effective global deployment of nuclear energy. Facility modeling that can integrate and interpret observations collected from monitored facilities in order to ascertain their functional details will be a critical element of these methods. Although improvements are continually sought, existing facility modeling tools can characterize all aspects of reactor operations and the majority of nuclear fuel cycle processing steps, and include algorithms for data processing and interpretation. Assessing nonproliferation status is challenging because observations can come from many sources, including local and remote sensors that monitor facility operations, as well as open sources that provide specific business information about the monitored facilities, and can be of many different types. Although many current facility models are capable of analyzing large amounts of information, they have not been integrated in an analyst-friendly manner. This paper addresses some of these facility modeling capabilities and illustrates how they could be integrated and utilized for nonproliferation analysis. The inverse problem of inferring facility conditions based on collected observations is described, along with a proposed architecture and computer framework for utilizing facility modeling tools. After considering a representative sampling of key facility modeling capabilities, the proposed integration framework is illustrated with several examples.

  9. Integration Of Facility Modeling Capabilities For Nuclear Nonproliferation Analysis

    International Nuclear Information System (INIS)

    Gorensek, M.; Hamm, L.; Garcia, H.; Burr, T.; Coles, G.; Edmunds, T.; Garrett, A.; Krebs, J.; Kress, R.; Lamberti, V.; Schoenwald, D.; Tzanos, C.; Ward, R.

    2011-01-01

    Developing automated methods for data collection and analysis that can facilitate nuclear nonproliferation assessment is an important research area with significant consequences for the effective global deployment of nuclear energy. Facility modeling that can integrate and interpret observations collected from monitored facilities in order to ascertain their functional details will be a critical element of these methods. Although improvements are continually sought, existing facility modeling tools can characterize all aspects of reactor operations and the majority of nuclear fuel cycle processing steps, and include algorithms for data processing and interpretation. Assessing nonproliferation status is challenging because observations can come from many sources, including local and remote sensors that monitor facility operations, as well as open sources that provide specific business information about the monitored facilities, and can be of many different types. Although many current facility models are capable of analyzing large amounts of information, they have not been integrated in an analyst-friendly manner. This paper addresses some of these facility modeling capabilities and illustrates how they could be integrated and utilized for nonproliferation analysis. The inverse problem of inferring facility conditions based on collected observations is described, along with a proposed architecture and computer framework for utilizing facility modeling tools. After considering a representative sampling of key facility modeling capabilities, the proposed integration framework is illustrated with several examples.

  10. The cost of decommissioning nuclear facilities

    International Nuclear Information System (INIS)

    1993-01-01

    This report sets out the results of a National Audit Office investigation to determine the extent of the potential Government liability for nuclear decommissioning, how this is to be financed and the possible implications for the taxpayer. Further effort are needed to improve the nuclear industry's estimates, improve efficiency and face up to the costs of decommissioning. This should also ensure that the full cost of nuclear energy is identified. (author)

  11. Knowledge transfer in Swedish Nuclear Power Plants in connection with retirements; Kompetensoeverfoering paa svenska kaernkraftverk i samband med pensionsavgaangar

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, Annika; Ohlsson, Kjell; Roos, Anna

    2007-12-13

    This report displays how the Swedish nuclear power plants Forsmark, Oskarshamn and Ringhals work with knowledge management. The report also consists of a literature review of appropriate ways to extract tacit knowledge as well as methods to transfer competence. The report is made up of a smaller number of interviews at the nuclear power plants in combination with a questionnaire distributed to a larger number of people at the plants. The results of the interview study is that only one of the Swedish nuclear power plants have a programme to transfer knowledge from older staff to newer. This is, however, not a programme for everyone. Another plant has a programme for knowledge building, but only for their specialists. At both plants, which lack a programme, the interviewees request more structure in knowledge transfer; even though they feel the current way of transferring knowledge with mentors works well. Besides more structure, interviewees present a wish to have more time for knowledge transfer as well as the opportunity to recruit more than needed. Recruiting more than needed is however not very simple due to multiple causes such as nominal sizing departments and a difficulty of recruiting people to work far from larger cities. The way things are now, many feel too under-staffed and under a lot of time pressure daily to also have time for knowledge transfer besides their normal work.

  12. Analysis of general specifications for nuclear facilities environmental monitoring vehicles

    International Nuclear Information System (INIS)

    Xu Xiaowei

    2014-01-01

    At present, with the nuclear energy more increasingly extensive application, the continuous stable radiation monitoring has become the focus of the public attention. The main purpose of the environmental monitoring vehicle for the continuous monitoring of the environmental radiation dose rate and the radionuclides concentration in the medium around nuclear facilities is that the environmental radiation level and the radioactive nuclides activity in the environment medium are measured. The radioactive pollution levels, the scope contaminated and the trends of the pollution accumulation are found out. The change trends for the pollution are observed and the monitoring results are explained. The domestic demand of the environmental monitoring for the nuclear facilities is shown in this report. The changes and demands of the routine environmental monitoring and the nuclear emergency monitoring are researched. The revision opinions for EJ/T 981-1995 General specifications for nuclear facilities environmental monitoring vehicles are put forward. The purpose is to regulate domestic environmental monitoring vehicle technical criterion. The criterion makes it better able to adapt and serve the environmental monitoring for nuclear facilities. The technical guarantee is provided for the environmental monitoring of the nuclear facilities. (authors)

  13. 14C emission from Swedish nuclear power plants and its effect on the 14C levels in the environment

    International Nuclear Information System (INIS)

    Stenstroem, K.; Erlandsson, Bengt; Hellborg, R.; Kiisk, M.; Persson, Per; Mattsson, Soeren; Thornberg, C.; Skog, G.

    2000-02-01

    The radionuclide 14 C is produced in all types of nuclear reactors mainly by neutron induced reactions in oxygen ( 17 O), nitrogen ( 14 N) and carbon ( 13 C). Part of the 14 C created is continuously released during normal operation as airborne effluents in various chemical forms (such as CO 2 , CO and hydrocarbons) to the surroundings. Because of the biological importance of carbon and the long physical half-life of 14 C, it is of interest to measure the releases and their incorporation into living material. The 14 C activity concentrations in annual tree rings and air around two Swedish nuclear power plants (Barsebaeck and Forsmark) as well as the background 14 C activity levels from two reference sites in southern Sweden during 1973-1996 are presented in this report. In order to verify the reliability of the method some investigations have been conducted at two foreign nuclear sites, Sellafield fuel reprocessing plant in England, and Pickering nuclear generating station in Canada, where the releases of 14 C are known to be substantial. Furthermore, results from some measurements in the vicinity of Paldiski submarine training centre in Estonia are presented. The results of the 14 C measurements of air, vegetation and annual tree rings around the two Swedish nuclear power plants show very low enhancements of 14 C, if at all above the uncertainty of the measurements. Even if the accuracy of the measurements of the annual tree rings is rather good (1-2%) the contribution of 14 C from the reactors to the environment is so small that it is difficult to separate it from the prevailing background levels of 14 C . This is the case for all sampling procedures: in air and vegetation as well as in annual tree rings. Only on a few occasions an actual increase is observed. However, although the calculations suffer from rather large uncertainties, the calculated release rate from Barsebaeck is in fair agreement with reported release data. The results of this investigation show

  14. Status of ANSI standards on decommissioning of nuclear reprocessing facilities

    International Nuclear Information System (INIS)

    Graham, H.B.

    1975-01-01

    A definition of decommissioning is given, and the preparation of ANSI Standard, ''General Design Criteria for Nuclear Reprocessing Facilities'' (N101.3) is discussed. A Eurochemic report, entitled ''The Shutdown of Reprocessing Facilities--Results of Preliminary Studies on the Installations Belonging to Eurochemic,'' was used in the preparation of this standard. (U.S.)

  15. Decommissioning of nuclear facilities: Feasibility, needs and costs

    International Nuclear Information System (INIS)

    DeLaney, E.G.; Mickelson, J.R.

    1985-01-01

    The Nuclear Energy Agency's Working Group on Decommissioning is preparing a study entitled ''Decommissioning of Nuclear Facilities: Feasibility, Needs and Costs.'' The study addresses the economics, technical feasibility and waste management aspects of decommissioning larger commercial reactors and nuclear support facilities. Experience on decommissioning small reactors and fuel cycle facilities shows that current technology is generally adequate. Several major projects that are either underway or planned will demonstrate decommissioning of the larger and more complex facilities. This experience will provide a framework for planning and engineering the decommissioning of the larger commercial reactors and fuel cycle facilities. Several areas of technology development are desired for worker productivity improvement, occupational exposure reduction, and waste volume reduction. In order to assess and plan for the decommissioning of large commercial nuclear facilities, projections have been made of the capacity of these facilities that may be decommissioned in the future and the radioactive waste that would be produced from the decommissioning of these facilities. These projections through the year 2025 are based on current data and the OECD reactor capacity forecast through the year 2000. A 25-year operating lifetime for electrical power generation was assumed. The possibilities of plant lifetime extension and the deferral of plant dismantlement make this projection very conservative

  16. Safety Analysis of Spent Nuclear Fuel and Radwaste Facilities

    International Nuclear Information System (INIS)

    Poskas, P.; Ragaisis, V.

    2001-01-01

    The overview of the activities in the Laboratory of Heat Transfer in Nuclear Reactors related with the assessment of thermal, neutronic and radiation characteristics in spent nuclear fuel and radwaste facilities are performed. Activities related with decommissioning of Ignalina NPP are also reviewed. (author)

  17. Studies of the impact of nuclear facilities on the environment

    International Nuclear Information System (INIS)

    Bovard, P.; Grauby, A.

    1977-01-01

    The growth of the nuclear industry and current environmental policy make it necessary to carry out prospective and forecasting investigations of the impact of nuclear facilities. The method used at the CEA for this type of research, which benefits from the experience of some 50 investigations of this type already accomplished, both in France and abroad, is discussed [fr

  18. Uranium Mining and Nuclear Facilities (Prohibitions) Act 1986 No. 194

    International Nuclear Information System (INIS)

    1986-01-01

    The purpose of this Act is to protect the health and safety of the people of New South Wales and its environment. Accordingly it prohibits prospecting or mining for uranium and the construction and operation of nuclear reactors and other facilities in the nuclear fuel cycle. (NEA) [fr

  19. The nuclear safeguards data flow for the item facilities

    International Nuclear Information System (INIS)

    Wang Hongjun; Chen Desheng

    1994-04-01

    The constitution of nuclear safeguards data flow for the item facilities is introduced and the main contents are the data flow of nuclear safeguards. If the data flow moves positively, i.e. from source data →supporting documents→accounting records→accounting reports, the systems of records and reports will be constituted. If the data flow moves negatively, the way to trace inspection of nuclear material accounting quality will be constituted

  20. Technical requirement of experiments and facilities for fusion nuclear technology

    International Nuclear Information System (INIS)

    Abdou, M.; Tillak, M.; Gierszwski, P.; Grover, J.; Puigh, R.; Sze, D.K.; Berwald, D.

    1986-06-01

    The technical issues and requirements of experiments and facilities for fusion nuclear technology (FNT) have been investigated. The nuclear subsystems addressed are: a) blanket, b) radiation shield, c) tritium processing system, and d) plasma interactive components. Emphasis has been placed on the important and complex development problems of the blanket. A technical planning process for FNT has been developed and applied, including four major elements: 1) characterization of issues, 2) quantification of testing requirements, 3) evaluation of facilities, and 4) development of a test plan to identify the role, timing, characteristics and costs of major experiments and facilities

  1. Science facilities and stakeholder management: how a pan-European research facility ended up in a small Swedish university town

    Science.gov (United States)

    Thomasson, Anna; Carlile, Colin

    2017-06-01

    This is the story of how a large research facility of broad European and global interest, the European Spallation Source (ESS), ended up in the small university town of Lund in Sweden. This happened in spite of the fact that a number of influential European countries were at one time or another competitors to host the facility. It is also a story about politics which attempts to illustrate how closely intertwined politics and science are, and how the interplay between those interests affects scientific progress. ESS became an arena for individual ambitions and political manoeuvring. The different stakeholders, in their striving to ensure that their own interests were realised, in various ways and with different degrees of success over the years, have influenced the key decisions that, during the already 30 year history of ESS, have driven the course that this project has taken. What emerges is that the interests of the stakeholders and the interests of the project itself are frequently not in harmony. This imposes challenges on the management of large research facilities as they have to not only navigate in the scientific landscape, which they often are more familiar with, but also in the political landscape. This story is therefore an attempt to shed light on the role of managers of large research facilities and the often delicate balancing act they have to perform when trying to comply with the different and often conflicting stakeholder interests. What is especially worthwhile examining, as we do in this paper, is the role that individuals, and the interaction between individuals, have played in the process. This shows that the focus of stakeholder theory on organisations, rather than the people in the organisations, needs to be redirected on to the individuals representing those organisations and their inter-relationships. At the same time it is clear that the developing field of stakeholder management theory has not emerged into the consciousness of science

  2. Organization of the internal dosimetry in the Spanish nuclear facilities

    International Nuclear Information System (INIS)

    Manchena, P.; Soliet, E.

    1998-01-01

    From the beginning of the exploitation of the nuclear energy of Espanna, the nuclear facilities have had Services of Personal Dosimetry with the appropriate means to determine the dose. so much internal as external, of the personnel that mentioned facilities works. All the nuclear power stations use advanced systems of teams with object of detecting the radionuclides incorporation in the organism and calculation programs based on the recent recommendations of the International Commission of Radiological Protection (ICRP) for the determination of the derived doses

  3. Test facilities for evaluating nuclear thermal propulsion systems

    International Nuclear Information System (INIS)

    Beck, D.F.; Allen, G.C.; Shipers, L.R.; Dobranich, D.; Ottinger, C.A.; Harmon, C.D.; Fan, W.C.; Todosow, M.

    1992-01-01

    Interagency panels evaluating nuclear thermal propulsion (NTP) development options have consistently recognized the need for constructing a major new ground test facility to support fuel element and engine testing. This paper summarizes the requirements, configuration, and baseline performance of some of the major subsystems designed to support a proposed ground test complex for evaluating nuclear thermal propulsion fuel elements and engines being developed for the Space Nuclear Thermal Propulsion (SNTP) program. Some preliminary results of evaluating this facility for use in testing other NTP concepts are also summarized

  4. Enhancement of safety at nuclear facilities in Pakistan

    International Nuclear Information System (INIS)

    Ahmad, S.A.; Hayat, T.; Azhar, W.

    2006-01-01

    Pakistan is benefiting from nuclear technology mostly in health and energy sectors as well as agriculture and industry and has an impeccable safety record. At the national level uses of nuclear technology started in 1955 resulting in the operation of Karachi Radioisotope Center, Karachi, in December 1960. Pakistan Nuclear Safety Committee (PNSC) was formulated in 1964 with subsequent promulgation of Pakistan Atomic Energy Commission (PAEC) Ordinance in 1965 to cope with the anticipated introduction of a research reactor, namely PARR-I, and a nuclear power plant, namely KANUPP. Since then Pakistan's nuclear program has expanded to include numerous nuclear facilities of varied nature. This program has definite economic and social impacts by producing electricity, treating and diagnosing cancer patients, and introducing better crop varieties. Appropriate radiation protection includes a number of measures including database of sealed radiation sources at PAEC operated nuclear facilities, see Table l, updated during periodic physical verification of these sources, strict adherence to the BSS-115, IAEA recommended enforcement of zoning at research reactors and NPPs, etc. Pakistan is party to several international conventions and treaties, such as Convention of Nuclear Safety and Early Notification, to improve and enhance safety at its nuclear facilities. In addition Pakistan generally and PAEC particularly believes in a blend of prudent regulations and good/best practices. This is described in this paper. (Author)

  5. Technological Advances, Human Performance, and the Operation of Nuclear Facilities

    Science.gov (United States)

    Corrado, Jonathan K.

    Many unfortunate and unintended adverse industrial incidents occur across the United States each year, and the nuclear industry is no exception. Depending on their severity, these incidents can be problematic for people, the facilities, and surrounding environments. Human error is a contributing factor in many such incidents. This dissertation first explored the hypothesis that technological changes that affect how operators interact within the systems of the nuclear facilities exacerbate the cost of incidents caused by human error. I conducted a review of nuclear incidents in the United States from 1955 through 2010 that reached Level 3 (serious incident) or higher on the International Nuclear Events Scale (INES). The cost of each incident at facilities that had recently undergone technological changes affecting plant operators' jobs was compared to the cost of events at facilities that had not undergone changes. A t-test determined a statistically significant difference between the two groups, confirming the hypothesis. Next, I conducted a follow-on study to determine the impact of the incorporation of new technologies into nuclear facilities. The data indicated that spending more money on upgrades increased the facility's capacity as well as the number of incidents reported, but the incident severity was minor. Finally, I discuss the impact of human error on plant operations and the impact of evolving technology on the 21st-century operator, proposing a methodology to overcome these challenges by applying the systems engineering process.

  6. Construction Cost Growth for New Department of Energy Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Kubic, Jr., William L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-05-25

    Cost growth and construction delays are problems that plague many large construction projects including the construction of new Department of Energy (DOE) nuclear facilities. A study was conducted to evaluate cost growth of large DOE construction projects. The purpose of the study was to compile relevant data, consider the possible causes of cost growth, and recommend measures that could be used to avoid extreme cost growth in the future. Both large DOE and non-DOE construction projects were considered in this study. With the exception of Chemical and Metallurgical Research Building Replacement Project (CMRR) and the Mixed Oxide Fuel Fabrication Facility (MFFF), cost growth for DOE Nuclear facilities is comparable to the growth experienced in other mega construction projects. The largest increase in estimated cost was found to occur between early cost estimates and establishing the project baseline during detailed design. Once the project baseline was established, cost growth for DOE nuclear facilities was modest compared to non-DOE mega projects.

  7. Some safety aspects of nuclear facilities

    International Nuclear Information System (INIS)

    Kocic, A.; Marsicanin, B.; Milosevic, M.

    1977-01-01

    In this paper the Safety Analysis Report is considered as a source of information on the safety, availability and behaviour of similar nuclear plants. The human factor contribution to the safety system is pointed out (author)

  8. Cost estimation method for decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    Tomii, Hiroyuki; Matsuo, Kiyoshi; Shiraishi, Kunio; Watabe, Kozou

    2005-01-01

    Japanese Government decided that Japan Atomic Energy Research Institute (JAERI) and Japan Nuclear Cycle Development Institute (JNC) shall be consolidated to a New Organization as of October 2005, which organization would be an institute for comprehensive research and development for atomic energy. Through the preparation for unification, JAERI and JNC have been developing the decommissioning program for own facilities, estimating decommissioning cost and the amount of waste from the decommissioning, and developing management program. With planning the decommissioning program, it is important to estimate decommissioning cost effectively, because JAERI and JNC retain approximate 230 nuclear facilities which are reactors, fuel cycle and research facilities. Then a decommissioning cost estimation method has been developed based on several dismantling and replacement experiences. This method adopted more estimation formulae for decommissioning various works than ever, so as to be more reliable. And decommissioning cost for the facilities has been estimated under the common condition. This method should be improved, reflecting future nuclear facilities dismantling and replacement events. This paper shows the cost estimation method for nuclear facilities and the cost evaluation result for approximate 230 facilities of both JAERI and JNC. (author)

  9. Nuclear facility safeguards systems modeling using discrete event simulation

    International Nuclear Information System (INIS)

    Engi, D.

    1977-01-01

    The threat of theft or dispersal of special nuclear material at a nuclear facility is treated by studying the temporal relationships between adversaries having authorized access to the facility (insiders) and safeguards system events by using a GASP IV discrete event simulation. The safeguards system events--detection, assessment, delay, communications, and neutralization--are modeled for the general insider adversary strategy which includes degradation of the safeguards system elements followed by an attempt to steal or disperse special nuclear material. The performance measure used in the analysis is the estimated probability of safeguards system success in countering the adversary based upon a predetermined set of adversary actions. An exemplary problem which includes generated results is presented for a hypothetical nuclear facility. The results illustrate representative information that could be utilized by safeguards decision-makers

  10. Study on archive management for nuclear facility decommissioning projects

    International Nuclear Information System (INIS)

    Huang Ling; Gong Jing; Luo Ning; Liao Bing; Zhou Hao

    2011-01-01

    This paper introduces the main features and status of the archive management for nuclear facility decommissioning projects, and explores and discusses the countermeasures in its archive management. Taking the practice of the archive management system of a reactor decommissioning project as an example, the paper illustrates the establishment of archive management system for the nuclear facility decommissioning projects. The results show that the development of a systematic archive management principle and system for nuclear decommissioning projects and the construction of project archives for the whole process from the design to the decommissioning by digitalized archive management system are one effective route to improve the complete, accurate and systematic archiving of project documents, to promote the standardization and effectiveness of the archive management and to ensure the traceability of the nuclear facility decommissioning projects. (authors)

  11. Siting of nuclear facilities. Selections from Nuclear Safety

    Energy Technology Data Exchange (ETDEWEB)

    Buchanan, J.R.

    1976-07-01

    The report presented siting policy and practice for nuclear power plants as developed in the U.S. and abroad. Twenty-two articles from Nuclear Safety on this general topic are reprinted since they provide a valuable reference source. The appendices also include reprints of some relevant regulatory rules and guides on siting. Advantages and disadvantages of novel siting concepts such as underground containment, offshore siting, and nuclear energy parks are addressed. Other topics include site criteria, risk criteria, and nuclear ship criteria.

  12. Siting of nuclear facilities. Selections from Nuclear Safety

    International Nuclear Information System (INIS)

    Buchanan, J.R.

    1976-07-01

    The report presented siting policy and practice for nuclear power plants as developed in the U.S. and abroad. Twenty-two articles from Nuclear Safety on this general topic are reprinted since they provide a valuable reference source. The appendices also include reprints of some relevant regulatory rules and guides on siting. Advantages and disadvantages of novel siting concepts such as underground containment, offshore siting, and nuclear energy parks are addressed. Other topics include site criteria, risk criteria, and nuclear ship criteria

  13. Seismic reevaluation of nuclear facilities worldwide: Overview and status

    International Nuclear Information System (INIS)

    Campbell, R.D.; Hardy, G.S.; Ravindra, M.K.; Johnson, J.J.; Hoy, A.J.

    1995-01-01

    Existing nuclear facilities throughout the world are being subjected to severe scrutiny of their safety in tile event of an earthquake. In the United States, there have been several licensing and safety review issues for which industry and regulatory agencies have cooperated to develop rational and economically feasible criteria for resolving the issues. Currently, all operating nuclear power plants in the United States are conducting an Individual Plant Examination of External Events, including earthquakes beyond tile design basis. About two-thirds of tile operating plants are conducting parallel programs for verifying, tile seismic adequacy of equipment for the design basis earthquake. The U.S. Department of Energy is also beginning to perform detailed evaluations of their facilities, many of which had little or no seismic design. Western European countries also have been reevaluating their older nuclear power plants for seismic events often adapting the criteria developed in the United States. With the change in tile political systems in Eastern Europe, there is a strong emphasis from their Western European neighbors to evaluate and Upgrade tile safely of their operating nuclear power plants. Finally, nuclear facilities in Asia are, also, being evaluated for seismic vulnerabilities. This paper focuses oil tile methodologies that have been developed for reevaluation of existing nuclear power plants and presents examples of the application of these methodologies to nuclear facilities worldwide. (author)

  14. 2009 assessment of radiation safety in the Swedish nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Carlsson, Lennart

    2009-04-15

    The overall conclusion is that the radiation safety, nuclear safety, the physical protection including nuclear safeguards and radiation protection, in the Swedish nuclear power plants has been maintained at an acceptable level. Large investment programmes are being carried out to comply with the requirements imposed by the authority regarding modernisation. Management systems and internal audits have developed in a positive direction. 2008 has been an eventful year in many respects. The nuclear industry is in a very intensive period. Modernisations are under way, aimed at improving safety, and measures are being taken to strengthen the physical protection in order to make forced entry to the plants more difficult. In addition, preparations are in progress to increase the thermal power in most of the reactors. Four events have occurred in 2008 that required SSM's permission to restart the plant (Category 1, SSMFS 2008:1). One event occurred in each of Oskarshamn 1 and 3, Forsmark 3 and Ringhals 2. The events in Oskarshamn 3 and Forsmark 3 were the result of broken control rod shafts. In Oskarshamn 1 a perturbation was caused by lightening, and in Ringhals 2 the event was due to deficiencies in the auxiliary feedwater capacity. Five events have been classified and reported as level 1 on the International Nuclear Events Scale (INES). In all 14 scrams have occurred. This is a higher frequency than the reactors have set as their goal. During the year SSM has carried out five incident-related (RASK) inspections in order to collect information relating to how the licensees have responded to the events and which measures have been taken to prevent a recurrence. None of the events have led to threats to the safety of the surroundings. However several events have been classified at a higher level than has been normal in recent years. Modernisation is being carried out in the form of large projects lasting for several years. The work is either carried out during extended

  15. Potential Benefits to the Philippines of a Nuclear Facility

    International Nuclear Information System (INIS)

    Asuncion-Astronomo, A.; Romallosa, K.M.D.; Olivares, R.U.

    2015-01-01

    During the late 1950’s, the Philippines was one of the many countries which began the pursuit of the beneficial applications of atomic energy. With the commissioning of the first Philippine Research Reactor (PRR-1) which attained its first criticality in 1963, our country had the capability for radioisotope production, activation analysis of materials, irradiation studies and various opportunities for basic and applied nuclear science research. The Nuclear Power Plant (PNNP-1) in training plant operators and regulators for the first Philippine Nuclear Power Plant (PNPP-1) in Bataan, which was eventually mothballed in 1986. It is thus unfortunate that the only operating nuclear facility in the country, the PRR-1 encountered technical problems during an upgrade and was shut down in 1988. The problem was not resolved and eventually led to the decommissioning of the PRR-1 in 2005. Without an operating nuclear facility available in the country, the number of personnel knowledgeable and skilled in reactor and nuclear science and engineering has greatly declined and lagged behind our counterparts. This has been the situation for more than two decaded and can only be addressed if the country decides to put up a new nuclear facility. It is acknowledged that putting up a nuclear facility is a major undertaking which requires careful planning, preparation and investment. Thus, a decision by any country to embark on this poster, we will provide an overview of the many potential benefits as well as challenges of establishing a new research reactor and/or accelerator facility in the country. The global distribution, comparisons, capabilities and the different application of these facilities will presented as well.(author)

  16. Overview of nuclear data measurement facilities in OECD countries

    International Nuclear Information System (INIS)

    Bioux, P.; Rowlands, J.L.

    1996-06-01

    In 1992 EDF commissioned a review of activity in the fields of nuclear data for fission power technology applications in OECD countries. The review was carried out in cooperation with the consultants EUROGRAM. This paper presents a summary. The situation is of concern to the French nuclear industry because of the few measurement facilities which are now funded for work in the field and the reductions in the numbers of scientists expert in measurement and evaluation of nuclear data. There are requirements which justify work to improve knowledge of many items of nuclear data. To ensure maintenance of expertise the French Nuclear Industry has arranged for several young scientists to work with leading experts in the different fields. However, the problem of continued availability of facilities remains. (authors)

  17. Nuclear Fuel Cycle Information System. A directory of nuclear fuel cycle facilities. 2009 ed

    International Nuclear Information System (INIS)

    2009-04-01

    The Nuclear Fuel Cycle Information System (NFCIS) is an international directory of civilian nuclear fuel cycle facilities, published online as part of the Integrated Nuclear Fuel Cycle Information System (iNFCIS: http://www-nfcis.iaea.org/). This is the fourth hardcopy publication in almost 30 years and it represents a snapshot of the NFCIS database as of the end of 2008. Together with the attached CD-ROM, it provides information on 650 civilian nuclear fuel cycle facilities in 53 countries, thus helping to improve the transparency of global nuclear fuel cycle activities

  18. Forest die-back from nuclear facilities?

    International Nuclear Information System (INIS)

    Metzner, H.

    1985-09-01

    A discussion of the mapping method developed by Reichelt is followed by an inquiry into possible correlations between forest decline and natural/man-made radioactivity. To this end, plant damage in areas with unusually high radioactivity as well as in and near nuclear test areas are evaluated; vegetation damage levels near nuclear installations is also evaluated, and the effects of reactor accidents on vegetation studied. To investigate the influence of nuclear power and reprocessing plants, their emissions in rare-gas isotopes as well as in the contaminants SO 2 , NO 2 , O 3 , etc. and the possible effects on meteorological factors and the formation of photooxidants were evaluated. An essential part of the study is concerned with the isotope effects of hydrogen, particularly of released deuterium (865 bibliographical references). (DG) [de

  19. Public attitudes toward nuclear generating facilities: positive

    International Nuclear Information System (INIS)

    Krannich, R.S.

    1977-01-01

    Public opposition and intervention in the siting and development of nuclear power plants has become more of a limiting factor than technological issues. Attitude surveys indicate that, while the majority of Americans support nuclear power, the utilities would do well to respond to the concerns and opinions of local residents when projects are in the planning stages. Recent polls are analyzed to identify the demographic and perceptive factors of opposition. Demographic studies indicate that the greatest opposition comes from women, young people, urban residents, farmers, low-income groups, and the unemployed. Perceptual opposition is associated with anticipated negative impacts in the form of hazards and social disruption. Since there appears to be a correlation between access to pertinent information and level of support, utility planners could develop educational programs to provide this information on the advantages of nuclear power. 10 references

  20. Sweden's second national report under the Convention on nuclear safety. Swedish implementation of the obligations of the Convention

    International Nuclear Information System (INIS)

    2001-01-01

    The National Reports to the Review Meetings according to Article 5 of the Convention call for a self-assessment of each Contracting Party with regard to compliance with the obligations of the Convention. For Sweden this self-assessment has demonstrated full compliance with all the obligations of the Convention, as shown in detail in part B of this National Report. Sweden wishes to emphasise the incentive character of the Convention. In the opinion of Sweden, the Convention implies a commitment to continuous learning from experience and a proactive approach to safety improvement. Therefore, Sweden has found it important that a National Report highlights strong features in national nuclear practices as well as areas where special attention to the further development are needed. Since the first report to the Convention was issued, three major events have been experienced in the Swedish nuclear programme: Phase out of nuclear power started by the closing of one unit of a twin unit plant on 30 November 1999. The full effects of deregulation of the electricity market have been experienced. Together with increasing taxes on nuclear power, this has strongly affected the production economy of the nuclear industry resulting in efforts to reduce production costs and leaving less room for investments. The new general safety regulations came into force 1 July 1999, resulting in a more structured approach to inspection and safety assessment. These changes have created new challenges for the safety work of the licensees as well as for the regulatory bodies during the last three years. However, the generally positive impression reported to the first review meeting under the Convention still stands. Therefore, Sweden would like to point out the following as strong features in its national nuclear practice: The responsibility for safety is very well defined in the Swedish legal framework. In order not to dilute the responsibility of the licence holders, the Swedish regulations are

  1. Identification of Vital Areas at Nuclear Facilities. Technical Guidance

    International Nuclear Information System (INIS)

    2012-01-01

    The possibility that nuclear or other radioactive material could be used for malicious purposes cannot be ruled out in the current global situation. States have responded to this risk by engaging in a collective commitment to strengthen the protection and control of such material and to effectively respond to nuclear security events. States have agreed to strengthen existing and established new international legal instruments to enhance nuclear security around the world. Nuclear security is fundamental in the management of nuclear technologies and in applications where nuclear or other radioactive material is used or transported. Through its nuclear security programme, the IAEA supports States to establish, maintain and sustain an effective nuclear security regime. The IAEA has adopted a comprehensive approach to nuclear security. This recognizes that an effective national nuclear security regime builds on: the implementation of relevant international legal instruments; information protection; physical protection; material accounting and control; detection of and response to trafficking in such material; national response plans; and contingency measures. With its nuclear security series, the IAEA aims to assist States to implement and sustain such a regime in a coherent and integrated manner. The IAEA Nuclear Security Series comprises: Nuclear Security Fundamentals, which include objectives and essential elements of a State?s nuclear security regime; Recommendations; Implementing Guides; and Technical Guidance publications. Each State carries the full responsibility for nuclear security, i.e. to provide for the security of nuclear and other radioactive material and associated facilities and activities; to ensure the security of such material in use, storage or in transport; and to combat illicit trafficking and the inadvertent movement of such material. It should also be prepared to respond to a nuclear security event. The IAEA recommendations for the protection of

  2. MYRRHA: A multipurpose nuclear research facility

    Directory of Open Access Journals (Sweden)

    Baeten P.

    2014-01-01

    As a flexible irradiation facility, the MYRRHA research facility will be able to work in both critical as subcritical modes. In this way, MYRRHA will allow fuel developments for innovative reactor systems, material developments for GEN IV and fusion reactors, and radioisotope production for medical and industrial applications. MYRRHA will be cooled by lead-bismuth eutectic and will play an important role in the development of the Pb-alloys technology needed for the LFR (Lead Fast Reactor GEN IV concept. MYRRHA will also contribute to the study of partitioning and transmutation of high-level waste. Transmutation of minor actinides (MA can be completed in an efficient way in fast neutron spectrum facilities, so both critical reactors and subcritical ADS are potential candidates as dedicated transmutation systems. However critical reactors heavily loaded with fuel containing large amounts of MA pose reactivity control problems, and thus safety problems. A subcritical ADS operates in a flexible and safe manner, even with a core loading containing a high amount of MA leading to a high transmutation rate. In this paper, the most recent developments in the design of the MYRRHA facility are presented.

  3. Nuclear criticality safety program at the Fuel Cycle Facility

    International Nuclear Information System (INIS)

    Lell, R.M.; Fujita, E.K.; Tracy, D.B.; Klann, R.T.; Imel, G.R.; Benedict, R.W.; Rigg, R.H.

    1994-01-01

    The Fuel Cycle Facility (FCF) is designed to demonstrate the feasibility of a novel commercial-scale remote pyrometallurgical process for metallic fuels from liquid metal-cooled reactors and to show closure of the Integral Fast Reactor (IFR) fuel cycle. Requirements for nuclear criticality safety impose the most restrictive of the various constraints on the operation of FCF. The upper limits on batch sizes and other important process parameters are determined principally by criticality safety considerations. To maintain an efficient operation within appropriate safety limits, it is necessary to formulate a nuclear criticality safety program that integrates equipment design, process development, process modeling, conduct of operations, a measurement program, adequate material control procedures, and nuclear criticality analysis. The nuclear criticality safety program for FCF reflects this integration, ensuring that the facility can be operated efficiently without compromising safety. The experience gained from the conduct of this program in the Fuel cycle Facility will be used to design and safely operate IFR facilities on a commercial scale. The key features of the nuclear criticality safety program are described. The relationship of these features to normal facility operation is also described

  4. Nuclear Security Management for Research Reactors and Related Facilities

    International Nuclear Information System (INIS)

    2016-03-01

    This publication provides a single source guidance to assist those responsible for the implementation of nuclear security measures at research reactors and associated facilities in developing and maintaining an effective and comprehensive programme covering all aspects of nuclear security on the site. It is based on national experience and practices as well as on publications in the field of nuclear management and security. The scope includes security operations, security processes, and security forces and their relationship with the State’s nuclear security regime. The guidance is provided for consideration by States, competent authorities and operators

  5. Decommissioning of nuclear facilities: 'it can and has been done'

    International Nuclear Information System (INIS)

    2009-01-01

    Considerable international experience gained over the last 20 years demonstrates that nuclear facilities can be safely dismantled and decommissioned once a decision is made to cease operations and permanently shut them down. The term decommissioning is used to describe all the management and technical actions associated with ceasing operation of a nuclear installation and its subsequent dismantling to facilitate its removal from regulatory control (de-licensing). These actions involve decontamination of structures and components, dismantling of components and demolition of buildings, remediation of any contaminated ground and removal of the resulting waste. Worldwide, of the more than 560 commercial nuclear power plants that are or have been in operation, about 120 plants have been permanently shut down and are at some stage of decommissioning. About 10% of all shutdown plants have been fully decommissioned, including eight reactors of more than 100 MWe. A larger number of various types of fuel cycle and research facilities have also been shut down and decommissioned, including: facilities for the extraction and enrichment of uranium, facilities for fuel fabrication and reprocessing, laboratories, isotope production facilities and particle accelerators. This brochure looks at decommissioning across a spectrum of nuclear facilities and shows worldwide examples of successful projects. Further information can be found in NEA publications and on a number of web-sites

  6. MYRRHA: A multipurpose nuclear research facility

    Science.gov (United States)

    Baeten, P.; Schyns, M.; Fernandez, Rafaël; De Bruyn, Didier; Van den Eynde, Gert

    2014-12-01

    MYRRHA (Multi-purpose hYbrid Research Reactor for High-tech Applications) is a multipurpose research facility currently being developed at SCK•CEN. MYRRHA is based on the ADS (Accelerator Driven System) concept where a proton accelerator, a spallation target and a subcritical reactor are coupled. MYRRHA will demonstrate the ADS full concept by coupling these three components at a reasonable power level to allow operation feedback. As a flexible irradiation facility, the MYRRHA research facility will be able to work in both critical as subcritical modes. In this way, MYRRHA will allow fuel developments for innovative reactor systems, material developments for GEN IV and fusion reactors, and radioisotope production for medical and industrial applications. MYRRHA will be cooled by lead-bismuth eutectic and will play an important role in the development of the Pb-alloys technology needed for the LFR (Lead Fast Reactor) GEN IV concept. MYRRHA will also contribute to the study of partitioning and transmutation of high-level waste. Transmutation of minor actinides (MA) can be completed in an efficient way in fast neutron spectrum facilities, so both critical reactors and subcritical ADS are potential candidates as dedicated transmutation systems. However critical reactors heavily loaded with fuel containing large amounts of MA pose reactivity control problems, and thus safety problems. A subcritical ADS operates in a flexible and safe manner, even with a core loading containing a high amount of MA leading to a high transmutation rate. In this paper, the most recent developments in the design of the MYRRHA facility are presented.

  7. Computer Security at Nuclear Facilities. Reference Manual (Russian Edition)

    International Nuclear Information System (INIS)

    2012-01-01

    The possibility that nuclear or other radioactive material could be used for malicious purposes cannot be ruled out in the current global situation. States have responded to this risk by engaging in a collective commitment to strengthen the protection and control of such material and to respond effectively to nuclear security events. States have agreed to strengthen existing instruments and have established new international legal instruments to enhance nuclear security worldwide. Nuclear security is fundamental in the management of nuclear technologies and in applications where nuclear or other radioactive material is used or transported. Through its Nuclear Security Programme, the IAEA supports States to establish, maintain and sustain an effective nuclear security regime. The IAEA has adopted a comprehensive approach to nuclear security. This recognizes that an effective national nuclear security regime builds on: the implementation of relevant international legal instruments; information protection; physical protection; material accounting and control; detection of and response to trafficking in such material; national response plans; and contingency measures. With its Nuclear Security Series, the IAEA aims to assist States in implementing and sustaining such a regime in a coherent and integrated manner. The IAEA Nuclear Security Series comprises Nuclear Security Fundamentals, which include objectives and essential elements of a State's nuclear security regime; Recommendations; Implementing Guides; and Technical Guidance. Each State carries the full responsibility for nuclear security, specifically: to provide for the security of nuclear and other radioactive material and associated facilities and activities; to ensure the security of such material in use, storage or in transport; to combat illicit trafficking and the inadvertent movement of such material; and to be prepared to respond to a nuclear security event. This publication is in the Technical Guidance

  8. Computer Security at Nuclear Facilities. Reference Manual (Arabic Edition)

    International Nuclear Information System (INIS)

    2011-01-01

    The possibility that nuclear or other radioactive material could be used for malicious purposes cannot be ruled out in the current global situation. States have responded to this risk by engaging in a collective commitment to strengthen the protection and control of such material and to respond effectively to nuclear security events. States have agreed to strengthen existing instruments and have established new international legal instruments to enhance nuclear security worldwide. Nuclear security is fundamental in the management of nuclear technologies and in applications where nuclear or other radioactive material is used or transported. Through its Nuclear Security Programme, the IAEA supports States to establish, maintain and sustain an effective nuclear security regime. The IAEA has adopted a comprehensive approach to nuclear security. This recognizes that an effective national nuclear security regime builds on: the implementation of relevant international legal instruments; information protection; physical protection; material accounting and control; detection of and response to trafficking in such material; national response plans; and contingency measures. With its Nuclear Security Series, the IAEA aims to assist States in implementing and sustaining such a regime in a coherent and integrated manner. The IAEA Nuclear Security Series comprises Nuclear Security Fundamentals, which include objectives and essential elements of a State's nuclear security regime; Recommendations; Implementing Guides; and Technical Guidance. Each State carries the full responsibility for nuclear security, specifically: to provide for the security of nuclear and other radioactive material and associated facilities and activities; to ensure the security of such material in use, storage or in transport; to combat illicit trafficking and the inadvertent movement of such material; and to be prepared to respond to a nuclear security event. This publication is in the Technical Guidance

  9. Computer Security at Nuclear Facilities. Reference Manual (Chinese Edition)

    International Nuclear Information System (INIS)

    2012-01-01

    The possibility that nuclear or other radioactive material could be used for malicious purposes cannot be ruled out in the current global situation. States have responded to this risk by engaging in a collective commitment to strengthen the protection and control of such material and to respond effectively to nuclear security events. States have agreed to strengthen existing instruments and have established new international legal instruments to enhance nuclear security worldwide. Nuclear security is fundamental in the management of nuclear technologies and in applications where nuclear or other radioactive material is used or transported. Through its Nuclear Security Programme, the IAEA supports States to establish, maintain and sustain an effective nuclear security regime. The IAEA has adopted a comprehensive approach to nuclear security. This recognizes that an effective national nuclear security regime builds on: the implementation of relevant international legal instruments; information protection; physical protection; material accounting and control; detection of and response to trafficking in such material; national response plans; and contingency measures. With its Nuclear Security Series, the IAEA aims to assist States in implementing and sustaining such a regime in a coherent and integrated manner. The IAEA Nuclear Security Series comprises Nuclear Security Fundamentals, which include objectives and essential elements of a State's nuclear security regime; Recommendations; Implementing Guides; and Technical Guidance. Each State carries the full responsibility for nuclear security, specifically: to provide for the security of nuclear and other radioactive material and associated facilities and activities; to ensure the security of such material in use, storage or in transport; to combat illicit trafficking and the inadvertent movement of such material; and to be prepared to respond to a nuclear security event. This publication is in the Technical Guidance

  10. Laboratory instrumentation modernization at the WPI Nuclear Reactor Facility

    International Nuclear Information System (INIS)

    1995-01-01

    With partial funding from the Department of Energy (DOE) University Reactor Instrumentation Program several laboratory instruments utilized by students and researchers at the WPI Nuclear Reactor Facility have been upgraded or replaced. Designed and built by General Electric in 1959, the open pool nuclear training reactor at WPI was one of the first such facilities in the nation located on a university campus. Devoted to undergraduate use, the reactor and its related facilities have been since used to train two generations of nuclear engineers and scientists for the nuclear industry. The low power output of the reactor and an ergonomic facility design make it an ideal tool for undergraduate nuclear engineering education and other training. The reactor, its control system, and the associate laboratory equipment are all located in the same room. Over the years, several important milestones have taken place at the WPI reactor. In 1969, the reactor power level was upgraded from 1 kW to 10 kW. The reactor's Nuclear Regulatory Commission operating license was renewed for 20 years in 1983. In 1988, under DOE Grant No. DE-FG07-86ER75271, the reactor was converted to low-enriched uranium fuel. In 1992, again with partial funding from DOE (Grant No. DE-FG02-90ER12982), the original control console was replaced

  11. Decommissioning and environmental restoration of nuclear facilities in China

    International Nuclear Information System (INIS)

    Pan Ziqiang

    2000-01-01

    In the beginning of the 1980s, the Scientific and Technological Commission (STC) began the study on the environmental impact of the nuclear industry in China. At the end of the 1980s, the STC initiated the study on the decommissioning of nuclear facilities and environmental restoration. In 1989 the STC completed the project entitled ''Radiological and Environmental Quality Assessment of the Nuclear Industry in China Over the Past Thirty Years''. The status of the environmental pollution of various nuclear facility sites was subsequently analysed. In 1994, the decommissioning and environmental restoration of the first research and manufacture complex for nuclear weapons was completed. The complex is now accessible to the public without restriction and the site has become a town. Some nuclear related facilities, such as uranium mines, are currently being decommissioned. Although uranium mining and milling has a more serious impact on the environment, the technology for decommissioning and environmental restoration in mining and milling installations is not much more complicated than that used for reactor and reprocessing facilities: much has been achieved in the area of mining and milling. (author)

  12. ISOL based radioactive nuclear beam facilities

    International Nuclear Information System (INIS)

    Nomura, T.

    1991-07-01

    High-intensity and high-quality unstable nuclear beams can be realized by coupling an isotope separator on-line and a proper post accelerator in various primary beams. Some technical features and problems in the production of such beams are discussed. A brief description is given on 'Exotic Nuclei Arena' in Japanese Hadron Project. (author)

  13. Decommissioning of nuclear facilities. Feasibility, needs and costs

    International Nuclear Information System (INIS)

    1986-01-01

    Reactor decommissioning activities generally are considered to begin after operations have ceased and the fuel has been removed from the reactor, although in some countries the activities may be started while the fuel is still at the reactor site. The three principal alternatives for decommissioning are described. The factors to be considered in selecting the decommissioning strategy, i.e. a stage or a combination of stages that comprise the total decommissioning programme, are reviewed. One presents a discussion of the feasibility of decommissioning techniques available for use on the larger reactors and fuel cycle facilities. The numbers and types of facilities to be decommissioned and the resultant waste volumes generated for disposal will then be projected. Finally, the costs of decommissioning these facilities, the effect of these costs on electricity generating costs, and alternative methods of financing decommissioning are discussed. The discussion of decommissioning draws on various countries' studies and experience in this area. Specific details about current activities and policies in NEA Member Countries are given in the short country specific Annexes. The nuclear facilities that are addressed in this study include reactors, fuel fabrication facilities, reprocessing facilities, associated radioactive waste storage facilities, enrichment facilities and other directly related fuel cycle support facilities. The present study focuses on the technical feasibility, needs, and costs of decommissioning the larger commercial facilities in the OECD member countries that are coming into service up to the year 2000. It is intended to inform the public and to assist in planning for the decommissioning of these facilities

  14. Safety at the End of a Nuclear Facility's Life

    International Nuclear Information System (INIS)

    Geis, John A.; McEahern, Patrice; Evans, Brad

    2004-01-01

    The objective of this paper is to capture the changes that are caused by the transition from nuclear operation through closure of defense nuclear facilities and convey lessons learned from their deactivation, decontamination and demolition. The specific area of discussion is focused on the planned reduction of safety equipment and consequent shift in hazard controls and safety management programs as the facility moves toward closure. The premise of the paper is that as the dominant hazards transition from nuclear to radiological and/or industrial, the facility control of the hazards and response to the potential upset conditions must transition as well to ensure safe and efficient operations. Using recent experience of the accelerated closure mission for U. S. Department of Energy (DOE) defense nuclear facilities at Rocky Flats Environmental Technology Site, the current culture with respect to developing and implementing hazard controls and response to upset conditions is illustrated. Several events have been documented that provide insight into the challenges facing line managers and safety professionals at the end of a facility's life cycle. Replacing permanent systems with temporary equipment challenges the traditional concept of reliability. Workers disassemble safety systems daily, but must rely on some of these components or redundant systems as work continues. Decisions governing upkeep of systems that await demolition balance the risk of running to failure against the cost benefit of maintenance and repair. This is further complicated as regulators and safety professionals are often unfamiliar with these new conditions and continue to view facility work activities and potential upset conditions from a nuclear operations perspective. The results of this paper evaluate the differences in how regulatory, safety basis, and operational practices must adapt to the dynamic environment of decontamination and decommissioning in contrast to the relatively constant

  15. Nuclear waste - research and technique development. KASAMS's Review of the Swedish Nuclear Fuel and Waste Management Co's (SKB's) RD and D Programme 2001

    International Nuclear Information System (INIS)

    2002-01-01

    This report is KASAM's review statement to the Government on the Swedish Nuclear Fuel and Waste Management Co's (SKB's) RD and D Programme 2001. KASAM's review was primarily conducted through work by KASAM's members, special adviser, experts and secretary. In KASAM's opinion, the reactor owners, through RD and D Programme 2001, have complied with the requirements of paragraph 12 of the Act on Nuclear Activities. In KASAM's opinion, SKB's research and development programme shows great merit. This applies to both what SKB has done and what it intends to do. The report is well-structured and clear. RD and D Programme 2001 shows that there is still a considerable need for development work in a number of important technical areas. This applies, for example, to the fabrication and sealing of canisters as well as control methods for these activities. Within other areas, for example, geology, chemistry, hydrology, biology and rock mechanics, there is also a great need for further research and development work, and for practical demonstrations of technical applications. In KASAM's opinion, humanities and social science issues, that are of importance for the disposal of nuclear waste, should be accorded greater attention. In Chapter 14, KASAM has presented a proposal for how research in these areas can be organised and financed. KASAM emphasizes that future RD and D programmes should have a broad scientific basis in order to comply with the requirements of the Act on Nuclear Activities regarding comprehensiveness. In their review statements on RD and D Programme 2001, the Swedish Nuclear Power Inspectorate (SKI) and the Swedish Radiation Protection Authority (SSI) have proposed that SKB should be required to present a strategy document which should be kept updated. In KASAM's opinion, such a report of current strategic issues should be made available to the public and other parties concerned. KASAM also believes that such a documentation of strategy issues should be

  16. Facilities of fuel transfer for nuclear reactors

    International Nuclear Information System (INIS)

    Wade, E.E.

    1977-01-01

    This invention relates to sodium cooled fast breeder reactors. It particularly concerns facilities for the transfer of fuel assemblies between the reactor core and a fuel transfer area. The installation is simple in construction and enables a relatively small vessel to be used. In greater detail, the invention includes a vessel with a head, fuel assemblies housed in this vessel, and an inlet and outlet for the coolant covering these fuel assemblies. The reactor has a fuel transfer area in communication with this vessel and gear inside the vessel for the transfer of these fuel assemblies. These facilities are borne by the vessel head and serve to transfer the fuel assemblies from the vessel to the transfer area; whilst leaving the fuel assemblies completely immersed in a continuous mass of coolant. A passageway is provided between the vessel and this transfer area for the fuel assemblies. Facilities are provided for closing off this passageway so that the inside of the reactor vessel may be isolated as desired from this fuel transfer area whilst the reactor is operating [fr

  17. Proceedings of the 9. National Seminar on Technology and Safety of Nuclear Power Plants and Nuclear Facilities

    International Nuclear Information System (INIS)

    Antariksawan, Anhar R.; Soetrisnanto, Arnold Y; Aziz, Ferhat; Untoro, Pudji; Su'ud, Zaki; Zarkasi, Amin Santoso; Lasman, As Natio

    2003-08-01

    The ninth proceedings of seminar safety and technology of nuclear power plant and nuclear facilities held by National Nuclear Energy Agency and PLN-JTK. The aims of seminar is to exchange and disseminate information about Safety and Nuclear Power Plant Technology and Nuclear Facilities consist of Technology High Temperature Reactor and Application for National Development Sustainable and High Technology. This seminar cover all aspects Technology, Power Reactor, Research Reactor High Temperature Reactor and Nuclear Facilities. There are 20 articles have separated index

  18. Saint-Laurent-des-Eaux nuclear facilities. 2009 annual report

    International Nuclear Information System (INIS)

    2010-01-01

    This annual report is established on account of article 21 of the 2006-686 French law from June 13, 2006, relative to the transparency and safety in the nuclear domain. It describes, first, the nuclear facilities of Saint-Laurent-des-Eaux, and then the measures taken to ensure their safety (personnel radioprotection, actions implemented for nuclear safety improvement, organisation in crisis situation, external and internal controls, technical assessment of the facilities, administrative procedures carried out in 2009), incidents and accidents registered in 2009, radioactive and chemical effluents released by the facilities in the environment, other pollutions, management of radioactive wastes, and, finally, the actions carried out in the domain of transparency and public information. A glossary and the viewpoint of the Committee of Hygiene, safety and working conditions about the content of the document conclude the report. (J.S.)

  19. Assessment of Space Nuclear Thermal Propulsion Facility and Capability Needs

    Energy Technology Data Exchange (ETDEWEB)

    James Werner

    2014-07-01

    The development of a Nuclear Thermal Propulsion (NTP) system rests heavily upon being able to fabricate and demonstrate the performance of a high temperature nuclear fuel as well as demonstrating an integrated system prior to launch. A number of studies have been performed in the past which identified the facilities needed and the capabilities available to meet the needs and requirements identified at that time. Since that time, many facilities and capabilities within the Department of Energy have been removed or decommissioned. This paper provides a brief overview of the anticipated facility needs and identifies some promising concepts to be considered which could support the development of a nuclear thermal propulsion system. Detailed trade studies will need to be performed to support the decision making process.

  20. Belleville-sur-Loire nuclear facilities. 2009 annual report

    International Nuclear Information System (INIS)

    2010-01-01

    This annual report is established on account of article 21 of the 2006-686 French law from June 13, 2006, relative to the transparency and safety in the nuclear domain. It describes, first, the nuclear facilities of Belleville-sur-Loire, and then the measures taken to ensure their safety (personnel radioprotection, actions implemented for nuclear safety improvement, organisation in crisis situation, external and internal controls, technical assessment of the facilities, administrative procedures carried out in 2009), incidents and accidents registered in 2009, radioactive and chemical effluents released by the facilities in the environment, other pollutions, management of radioactive wastes, and, finally, the actions carried out in the domain of transparency and public information. A glossary and the viewpoint of the Committee of Hygiene, safety and working conditions about the content of the document conclude the report. (J.S.)

  1. Fessenheim INB 75 basic nuclear facilities. 2009 annual report

    International Nuclear Information System (INIS)

    2010-01-01

    This annual report is established on account of article 21 of the 2006-686 French law from June 13, 2006, relative to the transparency and safety in the nuclear domain. It describes, first, the basic nuclear facilities of Fessenheim INB 75, and then the measures taken to ensure their safety (personnel radioprotection, actions implemented for nuclear safety improvement, organisation in crisis situation, external and internal controls, technical assessment of the facilities, administrative procedures carried out in 2009), incidents and accidents registered in 2009, radioactive and chemical effluents released by the facilities in the environment, other pollutions, management of radioactive wastes, and, finally, the actions carried out in the domain of transparency and public information. A glossary and the viewpoint of the Committee of Hygiene, safety and working conditions about the content of the document conclude the report. (J.S.)

  2. Dampierre-en-Burly nuclear facilities. 2009 annual report

    International Nuclear Information System (INIS)

    2010-01-01

    This annual report is established on account of article 21 of the 2006-686 French law from June 13, 2006, relative to the transparency and safety in the nuclear domain. It describes, first, the nuclear facilities of Dampierre-en-Burly, and then the measures taken to ensure their safety (personnel radioprotection, actions implemented for nuclear safety improvement, organisation in crisis situation, external and internal controls, technical assessment of the facilities, administrative procedures carried out in 2009), incidents and accidents registered in 2009, radioactive and chemical effluents released by the facilities in the environment, other pollutions, management of radioactive wastes, and, finally, the actions carried out in the domain of transparency and public information. A glossary and the viewpoint of the Committee of Hygiene, safety and working conditions about the content of the document conclude the report. (J.S.)

  3. Cruas-Meysse nuclear facilities. 2009 annual report

    International Nuclear Information System (INIS)

    2010-01-01

    This annual report is established on account of article 21 of the 2006-686 French law from June 13, 2006, relative to the transparency and safety in the nuclear domain. It describes, first, the nuclear facilities of Cruas-Meysse, and then the measures taken to ensure their safety (personnel radioprotection, actions implemented for nuclear safety improvement, organisation in crisis situation, external and internal controls, technical assessment of the facilities, administrative procedures carried out in 2009), incidents and accidents registered in 2009, radioactive and chemical effluents released by the facilities in the environment, other pollutions, management of radioactive wastes, and, finally, the actions carried out in the domain of transparency and public information. A glossary and the viewpoint of the Committee of Hygiene, safety and working conditions about the content of the document conclude the report. (J.S.)

  4. Extreme meteorological events and nuclear facilities safety

    International Nuclear Information System (INIS)

    Almeida, Patricia Moco Princisval

    2006-01-01

    An External Event is an event that originates outside the site and whose effects on the Nuclear Power Plants (NPP) should be considered. Such events could be of natural or human induced origin and should be identified and selected for design purposes during the site evaluation process. This work shows that the subtropics and mid latitudes of South America east of the Andes Mountain Range have been recognized as prone to severe convective weather. In Brazil, the events of tornadoes are becoming frequent; however there is no institutionalized procedure for a systematic documentation of severe weather. The information is done only for some scientists and by the newspapers. Like strong wind can affect the structural integrity of buildings or the pressure differential can affect the ventilation system, our concern is the safety of NPP and for this purpose the recommendations of International Atomic Energy Agency, Nuclear Regulatory Commission and Comissao Nacional de Energia Nuclear are showed and also a data base of tornadoes in Brazil is done. (author)

  5. LANSCE nuclear science facilities and activities

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Ronald O [Los Alamos National Laboratory

    2010-01-01

    Nuclear science activities at the Los Alamos Neutron Science Center (LANSCE) encompass measurements spanning the neutron energy range from thermal to 600 MeV. The neutron sources use spallation of the LANSCE 800 MeV pulsed proton beam with the time-of-flight technique to measure properties of neutron-induced reactions as a function of energy over this large energy range. Current experiments are conducted at the Lujan Center moderated neutron source, the unmoderated WNR target, and with a lead-slowing-down spectrometer. Instruments in use include the DANCE array of BaF{sub 2} scintillators for neutron capture studies, the FIGARO array of liquid scintillator neutron detectors, the GEANIE array of high-resolution HPGe x-ray and gamma-ray detectors, and a number of fission chambers, and other detectors. The LANL capabilities for production and handling of radioactive materials coupled with the neutron sources and detectors at LANSCE are enabling new and challenging measurements for a variety of applications including nuclear energy and nuclear astrophysics. An overview of recent research and examples of results is presented.

  6. Storage facilities of spent nuclear fuel in dry for Mexican nuclear facilities; Instalaciones de almacenamiento de combustible nuclear gastado en seco para instalaciones nucleares mexicanas

    Energy Technology Data Exchange (ETDEWEB)

    Salmeron V, J. A.; Camargo C, R.; Nunez C, A.; Mendoza F, J. E.; Sanchez J, J., E-mail: juan.salmeron@cnsns.gob.mx [Comision Nacional de Seguridad Nuclear y Salvaguardias, Dr. Jose Ma. Barragan No. 779, Col. Narvarte, 03020 Mexico D. F. (Mexico)

    2013-10-15

    In this article the relevant aspects of the spent fuel storage and the questions that should be taken in consideration for the possible future facilities of this type in the country are approached. A brief description is proposed about the characteristics of the storage systems in dry, the incorporate regulations to the present Nuclear Regulator Standard, the planning process of an installation, besides the approaches considered once resolved the use of these systems; as the modifications to the system, the authorization periods for the storage, the type of materials to store and the consequent environmental impact to their installation. At the present time the Comision Nacional de Seguridad Nuclear y Salvaguardias (CNSNS) considers the possible generation of two authorization types for these facilities: Specific, directed to establish a new nuclear installation with the authorization of receiving, to transfer and to possess spent fuel and other materials for their storage; and General, focused to those holders that have an operation license of a reactor that allows them the storage of the nuclear fuel and other materials that they possess. Both authorizations should be valued according to the necessities that are presented. In general, this installation type represents a viable solution for the administration of the spent fuel and other materials that require of a temporary solution previous to its final disposal. Its use in the nuclear industry has been increased in the last years demonstrating to be appropriate and feasible without having a significant impact to the health, public safety and the environment. Mexico has two main nuclear facilities, the nuclear power plant of Laguna Verde of the Comision Federal de Electricidad (CFE) and the facilities of the TRIGA Reactor of the Instituto Nacional de Investigaciones Nucleares (ININ) that will require in a future to use this type of disposition installation of the spent fuel and generated wastes. (Author)

  7. Aerial infrared monitoring for nuclear fuel cycle facilities in Ukraine

    International Nuclear Information System (INIS)

    Stankevich, S.A.; Dudar, T.V.; Kovalenko, G.D.; Kartashov, V.V.

    2015-01-01

    The scientific research overall objective is rapid express detection and preliminary identification of pre-accidental conditions at nuclear fuel cycle facilities. We consider development of a miniature unmanned aerial vehicle equipped with high-precision infrared spectroradiometer able to detect remotely internal warming up of hazardous facilities by its thermal infrared radiation. The possibility of remote monitoring using unmanned aerial vehicle is considered at the example of the dry spent fuel storage facility of the Zaporizhzhya Nuclear Power Plant. Infrared remote monitoring is supposed to present additional information on the monitored facilities based on different physical principles rather than those currently in use. Models and specifications towards up-to-date samples of infrared surveying equipment and its small-sized unmanned vehicles are presented in the paper.

  8. The first Swedish nuclear reactor - from technical prototype to scientific instrument

    International Nuclear Information System (INIS)

    Fjaestad, M.

    2001-01-01

    The first Swedish reactor R1, constructed at the Royal Inst. of Technology in Stockholm, went critical in July 1954. This report presents historical aspects of the reactor, in particular about the reactor as a research instrument and a centre for physical science. The tensions between its role as a prototype and a step in the development of power reactors and that as a scientific instrument are especially focused

  9. Excursions to nuclear facilities in the Federal Republic of Germany

    International Nuclear Information System (INIS)

    1980-12-01

    Promoting young talents in the field of nuclear technology is considered one of the most important tasks the Kerntechnische Gesellschaft e.V. (Society for Nuclear Engineering) tries to fulfill in many ways. It has developed a curriculum for the specialty of nuclear technology, provides funds for attending conferences and gives financial support to student members. In line with these efforts to promote young talents, the Kerntechnische Gesellschaft now submits a list of nuclear facilities where to special excursions may be made in the course of corresponding training programmes. State-owned and private research and development centres, industrial factories and electricity-generating nuclear power plants as well as nuclear fuel cycle centres are thus concerned. (orig.) [de

  10. International Peer Review of Swedish Nuclear Fuel and Waste Management Company's SR-Can interim report

    International Nuclear Information System (INIS)

    Sagar, Budhi; Bailey, Lucy; Bennett, David G.; Egan, Mike; Roehlig, Klaus

    2004-12-01

    SKB has produced an interim safety assessment report as part of its work to develop a licence application for the construction of a spent nuclear fuel encapsulation plant. The purpose of the interim report is to set out and demonstrate SKB's proposed methodology for long-term safety assessment. The aim of producing an interim report is to allow the Swedish regulatory authorities (SKI and SSI) to review and comment on SKB's proposed methodology before it is used in support of a formal licence application. To help inform their review of SKB's proposed methodology, the authorities appointed an international review team (IRT) to carry out a review of SKB's interim safety assessment report. Comments from the IRT are presented in this document and will be considered by the regulatory authorities in developing their own view of SKB's proposed methodology. The IRT's review included examination of SKB's documentation (the 'Interim Main Report of the Safety Assessment SR-Can' and four supporting documents) and hearings with SKB staff and contractors. The hearings provided an opportunity for the IRT to discuss the SR-Can safety assessment with the authors and contributors to SKB's work. As directed by SKI and SSI, the IRT's review focused on methodological aspects and sought to determine whether SKB's proposed safety assessment methodology: (i) is fit for the purpose of supporting a licence application; (ii) has a reasonable prospect of leading to a safety assessment that is sufficiently comprehensive, reproducible, traceable and transparent; (iii) is compatible with the authorities' regulations and guidance. No evaluation of long term safety or site acceptability was attempted by the IRT. At the request of SKI and SSI, the IRT's review considered and made recommendations on the following issues: Description of the initial state of the repository and its components; Description of features, events and processes (FEPs) relevant to repository evolution; Strategy for safety

  11. Nuclear Safety Research and Facilities Department annual report 1999

    DEFF Research Database (Denmark)

    Majborn, B.; Damkjær, A.; Jensen, Per Hedemann

    2000-01-01

    The report presents a summary of the work of the Nuclear Safety Research and Facilities Department in 1999. The department´s research and development activities were organized in two research programmes: "Radiation Protection and Reactor Safety" and"Radioecology and Tracer Studies". The nuclear...... facilities operated by the department include the research reactor DR 3, the Isotope Laboratory, the Waste Management Plant, and the educational reactor DR 1. Lists of staff and publications are includedtogether with a summary of the staff´s participation in national and international committees....

  12. Negotiating the voluntary siting of nuclear waste facilities

    International Nuclear Information System (INIS)

    Mussler, R.M.

    1992-01-01

    This paper discusses the Office of the Nuclear Waste Negotiator which was created by Congress with the purpose of seeking a voluntary host State or Indian tribe for a high level nuclear waste repository or monitored retrievable storage facility. Given the history of the Federal government's efforts at siting such facilities, this would appear to be an impossible mission. Since commencing operations in August 1990, the Office has accomplished perhaps more than had been expected. Some of the approaches it has taken to implementing this mission may be applicable to other endeavors

  13. Standards for psychological assessment of nuclear facility personnel. Technical report

    International Nuclear Information System (INIS)

    Frank, F.D.; Lindley, B.S.; Cohen, R.A.

    1981-07-01

    The subject of this study was the development of standards for the assessment of emotional instability in applicants for nuclear facility positions. The investigation covered all positions associated with a nuclear facility. Conclusions reached in this investigation focused on the ingredients of an integrated selection system including the use of personality tests, situational simulations, and the clinical interview; the need for professional standards to ensure quality control; the need for a uniform selection system as organizations vary considerably in terms of instruments presently used; and the need for an on-the-job behavioral observation program

  14. Nuclear Safety Research and Facilities Department annual report 1998

    International Nuclear Information System (INIS)

    Majborn, B.; Brodersen, K.; Damkjaer, A.; Hedemann Jensen, P.; Nielsen, S.P.; Nonboel, E.

    1999-04-01

    The report present a summary of the work of the Nuclear Safety Research and Facilities Department in 1998. The department's research and development activities were organized in two research programmes: 'Radiation Protection and Reactor Safety' and 'Radioecology and Tracer Studies'. The nuclear facilities operated by the department include the research reactor DR3, the Isotope Laboratory, the Waste Treatment plant, and the educational reactor DR1. Lsits of staff and publications are included together with a summary of the staff's participation in national and international committees. (au)

  15. Nuclear Safety Research and Facilities Department annual report 1998

    Energy Technology Data Exchange (ETDEWEB)

    Majborn, B.; Brodersen, K.; Damkjaer, A.; Hedemann Jensen, P.; Nielsen, S.P.; Nonboel, E

    1999-04-01

    The report present a summary of the work of the Nuclear Safety Research and Facilities Department in 1998. The department`s research and development activities were organized in two research programmes: `Radiation Protection and Reactor Safety` and `Radioecology and Tracer Studies`. The nuclear facilities operated by the department include the research reactor DR3, the Isotope Laboratory, the Waste Treatment plant, and the educational reactor DR1. Lsits of staff and publications are included together with a summary of the staff`s participation in national and international committees. (au)

  16. Nuclear Safety Research and Facilities Department annual report 1997

    International Nuclear Information System (INIS)

    Majborn, B.; Aarkrog, A.; Brodersen, K.

    1998-04-01

    The report presents a summary of the work of the Nuclear Safety Research and Facilities Department in 1997. The department's research and development activities were organized in four research programmes: Reactor Safety, Radiation protection, Radioecology, and Radioanalytical Chemistry. The nuclear facilities operated by the department include the research reactor DR3, the Isotope Laboratory, the Waste Treatment Plant, and the educational reactor DR1. Lists of staff and publications are included together with a summary of the staff's participation in national and international committees. (au)

  17. Nuclear Safety Research and Facilities department annual report 1996

    International Nuclear Information System (INIS)

    Majborn, B.; Brodersen, K.; Damkjaer, A.; Floto, H.; Heydorn, K.; Oelgaard, P.L.

    1997-04-01

    The report presents a summary of the work of the Nuclear Safety Research and Facilities Department in 1996. The Department's research and development activities are organized in three research programmes: Radiation Protection, Reactor Safety, and Radioanalytical Chemistry. The nuclear facilities operated by the department include the Research Reactor DR3, the Isotope Laboratory, the Waste Treatment Plant, and the Educational Reactor DR1. Lists of staff and publications are included together with a summary of the staff's participation in national and international committees. (au) 2 tabs., 28 ills

  18. Relative evaluation on decommissioning accident scenarios of nuclear facilities

    International Nuclear Information System (INIS)

    Jeong, Kwan-Seong; Choi, Byung-Seon; Moon, Jei-Kwon; Hyun, Dong-Jun; Kim, Geun-Ho; Kim, Tae-Hyoung; Jo, Kyung-Hwa; Seo, Jae-Seok; Jeong, Seong-Young; Lee, Jung-Jun

    2012-01-01

    Highlights: ► This paper suggests relative importance on accident scenarios during decommissioning of nuclear facilities. ► The importance of scenarios can be performed by using AHP and Sugeno fuzzy method. ► The AHP and Sugeno fuzzy method guarantee reliability of the importance evaluation. -- Abstract: This paper suggests the evaluation method of relative importance on accident scenarios during decommissioning of nuclear facilities. The evaluation method consists of AHP method and Sugeno fuzzy integral method. This method will guarantee the reliability of relative importance evaluation for decommissioning accident scenarios.

  19. Nuclear Safety Research and Facilities Department annual report 1997

    Energy Technology Data Exchange (ETDEWEB)

    Majborn, B.; Aarkrog, A.; Brodersen, K. [and others

    1998-04-01

    The report presents a summary of the work of the Nuclear Safety Research and Facilities Department in 1997. The department`s research and development activities were organized in four research programmes: Reactor Safety, Radiation protection, Radioecology, and Radioanalytical Chemistry. The nuclear facilities operated by the department include the research reactor DR3, the Isotope Laboratory, the Waste Treatment Plant, and the educational reactor DR1. Lists of staff and publications are included together with a summary of the staff`s participation in national and international committees. (au) 11 tabs., 39 ills.; 74 refs.

  20. Nuclear Safety Research and Facilities Department. Annual report 1999

    International Nuclear Information System (INIS)

    Majborn, B.; Damkjaer, A.; Hedemann Jensen, P.; Nielsen, S.P.; Nonboel, E.

    2000-04-01

    The report presents a summary of the work of the Nuclear Safety Research and Facilities Department in 1999. The department's research and development activities were organized in two research programmes: 'Radiation Protection and Reactor Safety' and 'Radioecology and Tracer Studies'. The nuclear facilities operated by the department include the research reactor DR 3, the Isotope Laboratory, the Waste Management Plant, and the educational reactor DR 1. Lists of staff and publications are included together with a summary of the staff's participation in national and international committees. (au)

  1. Nuclear Safety Research and Facilities Department. Annual report 1999

    Energy Technology Data Exchange (ETDEWEB)

    Majborn, B.; Damkjaer, A.; Hedemann Jensen, P.; Nielsen, S.P.; Nonboel, E. [eds.

    2000-04-01

    The report presents a summary of the work of the Nuclear Safety Research and Facilities Department in 1999. The department's research and development activities were organized in two research programmes: 'Radiation Protection and Reactor Safety' and 'Radioecology and Tracer Studies'. The nuclear facilities operated by the department include the research reactor DR 3, the Isotope Laboratory, the Waste Management Plant, and the educational reactor DR 1. Lists of staff and publications are included together with a summary of the staff's participation in national and international committees. (au)

  2. General fire protection guidelines for egyptian nuclear facilities. Vol. 4

    International Nuclear Information System (INIS)

    Radhad, S.; Hussien, A.Z.; Hammad, F.H.

    1996-01-01

    The purpose of this paper is to establish the regulatory requirements of that will provide and ensure fire protection of egyptian nuclear facilities. Those facilities that use, handle and store low and/or medium radioactive substances are included. Two or more classes of occupancy are considered to occur in the same building or structure. Fir protection measures and systems were reviewed for three of the egyptian Nuclear facilities. These are egypt first nuclear reactor (ETRR-1) building and systems, hot laboratories buildings and facilities, and the building including the AECL type Is-6500 industrial cobalt-60 gamma irradiator E gypt's mega gamma I . The study includes the outlines of the various aspects of fire protection with a view to define the relevant highlights and scope of egyptian guideline for nuclear installations. The study considers fire protection aspects including the following items: 1- Site selection. 2- General facility design. 3- Fire alarm, detection and suppression systems. 4- Protection for specific areas/control room, cable spreading room, computer room) 5- Fire emergency response planning. 6- Fire water supply. 7- Emergency lighting and communication. 8- Rescue and escape routes. 9- Explosion protection. 10-Manual fire fighting. 11- Security consideration in the interest of fire protection. 12- quality assurance programme. Therefore, first of all the design stage, then during the construction stage, and later during the operation stage, measures must be taken to forestall the risks associated with the outbreak of fire and to ensure that consequences of fire accidents remain limited

  3. Risk analysis for nuclear spent fuel storage facility

    International Nuclear Information System (INIS)

    Dina, Dumitru; Andrei, Veronica; Ghita, Sorin; Glodeanu, Florin

    2004-01-01

    In June 2003, the first capacity of the Intermediate Dry Spent Fuel Storage Facility (DICA) was commissioned at Cernavoda Nuclear Power Plant (Cernavoda NPP). The facility is a dry system type facility; its designed lifetime is for a minimum of 50 years and capacity for two nuclear power units' lifetime. The storage structures are monolith reinforced concrete modules offering a very good isolation of the spent fuel from the environment. The spent fuel is confined by a system of double barriers that prevents radioactive emissions and ensures protection of the population and environment. The security functions of the facility are operational through passive means. In Romania, the National Commission for Nuclear Activities Control, CNCAN, is the authority that licenses the nuclear activities. CNCAN issued the commissioning and operating licenses for DICA following a complex process. The Final Nuclear Safety Report represents basic documentation for licensing and one of its main chapters presents the risk analysis results. The risk analysis performed for DICA covers normal operational regimes and accident cases considered as design basis events (DBE). The results of risk analysis for Cernavoda NNP DICA demonstrates that risks for the population and environment are much lower than the authorization limits established by CNCAN and in agreement with values for proven safe spent fuel storage technologies from European Union and worldwide. (authors)

  4. Standard Specification for Nuclear Facility Transient Worker Records

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1995-01-01

    1.1 This specification covers the required content and provides retention requirements for records needed for in-processing of nuclear facility transient workers. 1.2 This specification applies to records to be used for in-processing only. 1.3 This specification is not intended to cover specific skills records (such as equipment operating licenses, ASME inspection qualifications, or welding certifications). 1.4 This specification does not reduce any regulatory requirement for records retention at a licensed nuclear facility. Note 1—Nuclear facilities operated by the U.S. Department of Energy (DOE) are not licensed by the U.S. Nuclear Regulatory Commission (NRC), nor are other nuclear facilities that may come under the control of the U.S. Department of Defense (DOD) or individual agreement states. The references in this specification to licensee, the U.S. NRC Regulatory Guides, and Title 10 of the U.S. Code of Federal Regulations are to imply appropriate alternative nomenclature with respect to DOE, DOD...

  5. Regulations and financing for decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    Kumakura, Osamu

    1981-01-01

    The purpose of this report is to survey the French legislation concerning the decommissioning of nuclear facilities and the method of financing for it. There is no clause in French regulations, which states any specific criterion or licensing procedure for the proper decommissioning. The legal problems in this domain are treated within the general regulation system on atomic energy. The decommissioning of nuclear facilities is carried out in accordance with the licensing procedure for constructing nuclear facilities or the permission procedure for operating them, according to the ''Decree on nuclear installations, 1963''. The works for the final shut-down and decommissioning are regarded as the modification to the safety report or the general operation instructions, and new permit is required. In the case that the radioactivity of substances after decommissioning is above the criteria of the Decree, 1963, the new license is required. In the case of below the criteria, the facilities are governed by the ''Act on installations classified for environmental protection, 1976''. The ''Decree on general radiation protection, 1966'', the ''Decree on radiation protection of workers in nuclear installations, 1975'', the ''Ministerial order on transport of dangerous materials, 1945'', and two ministerial orders on radioactive effluent discharge, 1974, are applied to the decommissioning works. (Kako, I.)

  6. Computer security at ukrainian nuclear facilities: interface between nuclear safety and security

    International Nuclear Information System (INIS)

    Chumak, D.; Klevtsov, O.

    2015-01-01

    Active introduction of information technology, computer instrumentation and control systems (I and C systems) in the nuclear field leads to a greater efficiency and management of technological processes at nuclear facilities. However, this trend brings a number of challenges related to cyber-attacks on the above elements, which violates computer security as well as nuclear safety and security of a nuclear facility. This paper considers regulatory support to computer security at the nuclear facilities in Ukraine. The issue of computer and information security considered in the context of physical protection, because it is an integral component. The paper focuses on the computer security of I and C systems important to nuclear safety. These systems are potentially vulnerable to cyber threats and, in case of cyber-attacks, the potential negative impact on the normal operational processes can lead to a breach of the nuclear facility security. While ensuring nuclear security of I and C systems, it interacts with nuclear safety, therefore, the paper considers an example of an integrated approach to the requirements of nuclear safety and security

  7. New directions for chemistry technician training in nuclear facilities

    International Nuclear Information System (INIS)

    Vance, D.E.; Moll, J.J. Sr.

    1993-01-01

    The training process and training programs in both commercial nuclear plants and Department of Energy (DOE) nuclear facilities have improved significantly in the years following the Three-Mile Island (TMI) accident. Some of these changes are described, including the reasons behind the change, the affected population, the training accreditation process and performance-based training, and the benefits of the changes. (author) 5 refs.; 1 fig.; 3 tabs

  8. Method and means of monitoring the effluent from nuclear facilities

    International Nuclear Information System (INIS)

    Lattin, K.R.; Erickson, G.L.

    1976-01-01

    Radioactive iodine is detected in the effluent cooling gas from a nuclear reactor or nuclear facility by passing the effluent gas through a continuously moving adsorbent filter material which is then purged of noble gases and conveyed continuously to a detector of radioactivity. The purging operation has little or no effect upon the concentration of radioactive iodine which is adsorbed on the filter material. 8 claims, 2 figures

  9. Health and environmental aspects of nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    1996-11-01

    The purpose of the present publication is to give a generic description of health and environmental aspects of nuclear fuel cycle facilities. Primarily the report is meant to stand alone; however, because of the content of the publication and in the context of the DECADES project, it may serve as a means of introducing specialists in other fuel cycles to the nuclear fuel cycle. Refs, figs, tabs

  10. Respiratory and protective equipment at a large nuclear facility

    International Nuclear Information System (INIS)

    Zippler, D.B.

    1975-12-01

    A variety of personal protective equipment is used in a large nuclear facility to protect employees against both nuclear and ordinary industrial materials. Equipment requirements are based on risk evaluation and may range from a minimum of shoe covers to whole body protection by air-supplied plastic suits. Types of equipment are listed and one-year costs are given. Criteria for evaluating and compartmentalizing risks are discussed. Air-supplied suits and hoods are discussed in detail

  11. Introduction to symposium 'radiation protection at nuclear facilities'

    International Nuclear Information System (INIS)

    Stricker, L.

    1996-01-01

    An introduction to the symposium 'radiation protection of nuclear facilities' on Wednesday, April 17, 1996 in Vienna has been given. The number of operating reactors and the total collective dose per reactor in OECD countries has been discussed. The evolution of the total collective dose associated with the replacement of steam generators at nuclear power reactors from 1979 to 1995 is presented. The background and culture of radiation protection, regulatory aspects, strategic formulation, plan management policy and organization responsibilities are discussed generally. (Suda)

  12. Procedure for estimating facility decommissioning costs for non-fuel-cycle nuclear facilities

    International Nuclear Information System (INIS)

    Short, S.M.

    1988-01-01

    The Nuclear Regulatory Commission (NRC) staff has been reappraising its regulatory position relative to the decommissioning of nuclear facilities over the last several years. Approximately 30 reports covering the technology, safety, and costs of decommissioning reference nuclear facilities have been published during this period in support of this effort. One of these reports, Technology, Safety, and Costs of Decommissioning Reference Non-Fuel-Cycle Nuclear Facilities (NUREG/CR-1754), was published in 1981 and was felt by the NRC staff to be outdated. The Pacific Northwest Laboratory (PNL) was asked by the NRC staff to revise the information provided in this report to reflect the latest information on decommissioning technology and costs and publish the results as an addendum to the previous report. During the course of this study, the NRC staff also asked that PNL provide a simplified procedure for estimating decommissioning costs of non-fuel-cycle nuclear facilities. The purpose being to provide NRC staff with the means to easily generate their own estimate of decommissioning costs for a given facility for comparison against a licensee's submittal. This report presents the procedure developed for use by NRC staff

  13. Environmental monitoring program for nuclear facilities

    International Nuclear Information System (INIS)

    Roenick, R.G.; Kreter, R.N.

    1984-01-01

    The programs aims to determine the area of largest environmental impact, taking into consideration the various installations in the Resende Industrial Complex. In the present work a mathematical model is applied based on regional data, and after the study of the use of land and waster resources in the area. The work, begin two years before the operation of the installation, has been subsequently modified by the environmental analyses obtained. The background levels of integrated dose are determined, and all the pollutents existing in the air, land and water have been classified, with the object of characterizing the region 20 Kilometers around the nuclear installation. (Author) [pt

  14. Design of alarm systems in Swedish nuclear power plants; Utformning av larmsystem i svenska kaernkraftverk

    Energy Technology Data Exchange (ETDEWEB)

    Thunberg, Anna; Osvalder, Anna-Lisa (Dept. of Product and Production Development, Chalmers Univ. of Technology, Goeteborg (Sweden))

    2008-04-15

    Research within the area of improving alarm system design and performance has mainly focused on new alarm systems. However, smaller modernisations of legacy systems are more common in the Swedish nuclear industry than design of totally new systems. This imposes problems when the new system should function together with the old system. This project deals with the special concerns raised by modernisation projects. The objective of the project has been to increase the understanding of the relationship between the operator's performance and the design of the alarm system. Of major concern has been to consider the cognitive abilities of the operator, different operator roles and work situations, and varying need of information. The aim of the project has been to complement existing alarm design guidance and to develop user-centred alarm design concepts. Different case studies have been performed in several industry sectors (nuclear, oil refining, pulp and paper, aviation and medical care) to identify best practice. Several empirical studies have been performed within the nuclear area to investigate the operator's need of information, performance and workload in different operating modes. The aspect of teamwork has also been considered. The analyses show that the operator has different roles in different work situations which affect both the type of information needed and how the information is processed. In full power operation, the interaction between the operator and the alarm system is driven by internal factors and the operator tries to maintain high situation awareness by actively searching for information. The operator wants to optimise the process and need detailed information with possibilities to follow-up and get historical data. In disturbance management, the operator is more dependent on external information presented by the alarm system. The new compilation of alarm guidance is based on the operator's varying needs in different working

  15. Management of the high-level nuclear power facilities

    International Nuclear Information System (INIS)

    Preda, Marin

    2003-05-01

    This thesis approaches current issues in the management of the high power nuclear facilities and as such it appears to be important particularly for nuclear power plant operation topics. Of special interest are the failure events entailing possible catastrophic situations. The contents is structured onto ten chapters. The first chapter describes the operation regimes of the nuclear high power facilities. Highlighted here are the thesis scope and the original features of the work. The second chapter deals with operational policies developed in order to ensure the preventive maintenance of the nuclear installations. Also managing structures are described devoted to practical warranting the equipment safety function of non-classical power stations. In the third chapter cases of nuclear accidents are analyzed especially stressing the probabilistic risk and the operation regimes having in view the elimination of catastrophic events. In the fourth and fifth chapters the control of nuclear radiation emission is treated focusing the quality issue of nuclear installations required to avoid hazardous effects at level of nuclear reactor operation stage. At the same time set of operational measures is given here for preventing risks, catastrophes and chaotic situations. The chapter five presents both theoretical and practical approaches of the nuclear reactor core management concerning particularly the fuel testing, the water primary system and the quality of the involved equipment. In the sixth and seventh chapters issues of risk-quality correlations are approached as well as the structure of expert systems for monitoring the operational regimes of nuclear facilities. The efficiency of the power systems with nuclear injection is discussed and some original ideas developed in this work are evidenced in the eighth and ninth chapters. Presented are here both the operational principles and models of raising the efficiency of the interconnected nuclear stations and prices' policy

  16. Management system for nuclear facilities and activities

    International Nuclear Information System (INIS)

    Kyei, Afrifa Yamoah

    2015-02-01

    A management system is set of procedures an organization need to order to meet its objectives. A management system is the framework of processes and procedures used to ensure that an organization can fufil all tasks require to achieve its objectives. A good efficiency of this system ensures proper safety culture in an organization. The aim of this project is to provide guidance for establishing, implementing, assessing and continually improving a management system that integrates safety, health, environmental, security, quality and economic elements, in order to meet the requirements established by the IAEA. Due to the number of nuclear and radiological accidents occurring over years. It is therefore necessary to have proper management systems to manage the situation. The management system shall be applicable to operators of nuclear reactors, activities using sources of ionizing radiation, radioactive waste management, the transport of radioactive material, radiation protection activities and any other practices or circumstances in which people may exposed to radiation from naturally occurring of artificial sources. An intergrated management system shall be employed to intergrate all of the organization's system and processes into one complete framework, to enable the organization to work as a single and with artificial objectives. (au)

  17. NF ISO 15080. Nuclear facilities. Ventilation penetrations for shielded containment

    International Nuclear Information System (INIS)

    2002-03-01

    This standard document applies to any kind of shielded containment devoted to the handling of gamma-emitting or neutron-emitting radioactive materials that require a remote handling behind a protection screen. It covers all kinds of hot cells used in the nuclear fuel cycle (reprocessing facilities, hot labs, shielded containments, radioactive waste storage facilities etc..). It can eventually apply also to the containments used in accelerators, research reactors and fusion reactors, radiography facilities and neutrons generators. It precises the general and detailed principles that must be respected during the design of ventilation penetrations inside shielded containments (conventional penetration systems and 'helicoidal cast iron screw technique' systems). (J.S.)

  18. Effect of Fe2O3/ZnO on two glass compositions for solidification on Swedish nuclear wastes

    International Nuclear Information System (INIS)

    Nogues, J.L.; Hench, L.L.

    1981-11-01

    Low melting alkaliborosilicate glasses have been considered for use in the immobilization of high level radioactive wastes for years. A recent study comparing the surface behavior of two nuclear waste glasses concluded that ''Addition of Fe 2 O 3 to a soda borosilicate nuclear waste glass significantly reduces damage by water attack because of a Fe-rich film that forms on the glass surface''. However, in the previous study there were significant differences in the concentration of SiO 2 , B 2 O 3 , CaO and simulated fission products in the glasses which made it impossible to ascribe the improved leach resistance solely to Fe 2 O 3 content. Thus, the objective of the present investigation is to compare the leaching and surface behavior of two nuclear waste glasses which differ only by the substitution of Fe 2 O 3 for some of the ZnO in the glass. By this comparison the authors hope to establish whether Fe 2 O 3 provides a unique contribution to improvements in the leach resistance of these complex glasses. Both glass compositions studied are compatible with the low melting temperature, 0 C, required for the French AVM Process. The quantity of simulated waste products is 9%, characteristic of the Swedish nuclear waste program. (Auth.)

  19. Nuclear Security in Action at Facilities in Ghana

    International Nuclear Information System (INIS)

    Dahlstrom, Danielle

    2013-01-01

    Nuclear security is a national responsibility. An Integrated Nuclear Security Support Plan (INSSP) is a tool that enables States to address nuclear security in a comprehensive way and to strengthen its national nuclear security regime, beginning with the legislative and regulatory framework within a State. Operating areas in nuclear facilities like research reactors which use highly enriched uranium, require additional physical protection measures to ensure the security of the nuclear material and prevent acts of sabotage. Other radioactive materials, like sealed radioactive sources used in radiotherapy machines in hospitals for cancer treatment, need to be protected so that they are not stolen and used with malicious intent. Nuclear and other radioactive material needs to be kept in safe and secure storage, which incorporates various types of physical barriers to prevent theft and unauthorized access. Intrusion detection and assessment systems, like cameras and sensors, help to ensure timely and adequate responses to any security incident. Responding to a nuclear security incident, and mitigating its consequences, requires specialized equipment like isotope identifiers, and competent and well trained personnel. Nuclear Security Support Centres (NSSCs) focus on human resource development as well as technical and scientific support which contribute to the sustainability of nuclear security in a State

  20. Stakeholder Involvement Throughout the Life Cycle of Nuclear Facilities

    International Nuclear Information System (INIS)

    2011-01-01

    This report demonstrates the importance of stakeholder involvement throughout the life cycle of all nuclear facilities; including operating reactors, temporary spent fuel storage facilities and final radioactive waste repositories and follows what is defined in the IAEA Safety Standards GS-R-3 where the stakeholders' expectations (identified as 'interested parties' in GS-R-3) shall be taken into consideration 'in the activities and interactions in the processes of the management system, with the aim of enhancing the satisfaction of interested parties while at the same time ensuring that safety is not compromised'. This report explains how involving stakeholders in decision making processes, even for those stakeholder groups that do not have a direct role in making those decisions, can enhance public confidence in the application of nuclear science and technology. In addition, this report presents general guidance on stakeholder involvement. It does not provide detailed procedures for developing and implementing stakeholder involvement programmes, and specifics regarding stakeholder involvement for particular types of nuclear facilities. However, this publication references reports that provide such details. This publication provides assistance to those responsible for planning, designing, constructing, operating or decommissioning a nuclear facility. In addition, regulatory organizations and other authorities overseeing nuclear activities or managing nuclear facility licensing processes are often seen as the main source of independent information for the general public; therefore, stakeholder involvement can demonstrate capability and trustworthiness of regulatory organizations as well. The role of stakeholder involvement at different stages of a facility's life cycle is discussed, with suggestions on developing the components of a comprehensive stakeholder involvement plan. Included is guidance on focusing communication with certain stakeholders, applying various

  1. Dry cleaning process in nuclear facilities

    International Nuclear Information System (INIS)

    Kizawa, Hideo; Nishihara, Yukio; Kohanawa, Osamu; Yamamoto, Masao.

    1985-01-01

    Purpose: To attain man-power saving and effective processing in the cleaning and administrating steps of working cloths in a radioactive material handling facility. Method: Radiation monitors, chute, conveying bags, storage lines, auxiliary charging chute, finishing equipments, automatic classifying circle conveyors and the likes are disposed to the up- and down-stream of a dry cleaner step, and the information processings and operation controls for each of the equipments are adapted to be carried out systematically. The specific items for the information to be handled are the amount of cloths to be cleaned, accumulation amount of conveying bags, operation states of the dry cleaner, contamination degree of cloths, operation states of the finishing equipments, storage amount of cloths in the storage area and the like. As the administrative function, administration of working cloths, control of secondary wastes, and preparation of operation recordings for each of the equipments are carried out. (Kamimura, M.)

  2. Design of concrete structures important to safety of nuclear facilities

    International Nuclear Information System (INIS)

    2001-10-01

    Civil engineering structures in nuclear installations form an important feature having implications to safety performance of these installations. The objective and minimum requirements for the design of civil engineering buildings/structures to be fulfilled to provide adequate assurance for safety of nuclear installations in India (such as pressurised heavy water reactor and related systems) are specified in the Safety standard for civil engineering structures important to safety of nuclear facilities. This standard is written by AERB to specify guidelines for implementation of the above civil engineering safety standard in the design of concrete structures important to safety

  3. Cooling water facilities at a nuclear station

    International Nuclear Information System (INIS)

    Hurst, W.L.; Ghadiali, B.M.; Kanovich, J.S.

    1983-01-01

    The use of ponds for holding a reserve of cooling water obtained as sewage effluent and also for collection of waste water for disposal by evaporation, was made at a nuclear power plant site in southern Arizona. The power output of the plant will be 3,900 MW. Two single cell ponds are 80 acres (30 ha) and 250 acres (100 ha) in size. Excavated materials from the 80-acre (30ha) pond were used for structural backfill as planned, and the 250-acre (100ha) pond was designed for limited dike height with balanced cut and fill and some excess materials used as side berms for additional safety. Both ponds are being lined with a unique combination of linings to provide environmental safeguards and at the same time cost-effectiveness is compared to alternative schemes

  4. The final disposal facility of spent nuclear fuel

    International Nuclear Information System (INIS)

    Prvakova, S.; Necas, V.

    2001-01-01

    Today the most serious problem in the area of nuclear power engineering is the management of spent nuclear fuel. Due to its very high radioactivity the nuclear waste must be isolated from the environment. The perspective solution of nuclear fuel cycle is the final disposal into geological formations. Today there is no disposal facility all over the world. There are only underground research laboratories in the well developed countries like the USA, France, Japan, Germany, Sweden, Switzerland and Belgium. From the economical point of view the most suitable appears to build a few international repositories. According to the political and social aspect each of the country prepare his own project of the deep repository. The status of those programmes in different countries is described. The development of methods for the long-term management of radioactive waste is necessity in all countries that have had nuclear programmes. (authors)

  5. Summarisation of construction and commissioning experience for nuclear power integrated test facility

    International Nuclear Information System (INIS)

    Xiao Zejun; Jia Dounan; Jiang Xulun; Chen Bingde

    2003-01-01

    Since the foundation of Nuclear Power Institute of China, it has successively designed various engineering experimental facilities, and constructed nuclear power experimental research base, and accumulated rich construction experiences of nuclear power integrated test facility. The author presents experience on design, construction and commissioning of nuclear power integrated test facility

  6. Conference on the research facilities for future nuclear power engineering

    International Nuclear Information System (INIS)

    Arkhangel'skij, N.V.

    1996-01-01

    The activity of the European nuclear society Conference (Belgium, June, 1996) is described. The main topics of 60 presented reports are the following ones: necessity of developing new experimental facilities and their parameters; financing prospects and international cooperation in this field

  7. Seismic design considerations of nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    2001-10-01

    An Advisory Group Meeting (AGM) on Seismic Technologies of Nuclear Fuel Cycle Facilities was convened in Vienna from 12 to 14 November 1997. The main objective of the meeting was the investigation of the present status of seismic technologies in nuclear fuel cycle facilities in Member States as a starting point for understanding of the most important directions and trends of national initiatives, including research and development, in the area of seismic safety. The AGM gave priority to the establishment of a consistent programme for seismic assessment of nuclear fuel cycle facilities worldwide. A consultants meeting subsequently met in Vienna from 16 to 19 March 1999. At this meeting the necessity of a dedicated programme was further supported and a technical background to the initiative was provided. This publication provides recommendations both for the seismic design of new plants and for re-evaluation projects of nuclear fuel cycle facilities. After a short introduction of the general IAEA approach, some key contributions from Member State participants are presented. Each of them was indexed separately

  8. Economic benefits of power factor correction at a nuclear facility

    International Nuclear Information System (INIS)

    Boger, R.M.; Dalos, W.; Juguilon, M.E.

    1986-01-01

    The economic benefits of correcting poor power factor at an operating nuclear facility are shown. A project approach for achieving rapid return of investment without disrupting plant availability is described. Examples of technical problems associated with using capacitors for power factor correction are presented

  9. Application of thermal neutrons in testing of nuclear facilities materials

    International Nuclear Information System (INIS)

    Milczarek, J.J.

    2008-01-01

    Recent applications of thermal neutrons in testing of materials used in nuclear facilities are presented. The neutron radiography technique, characterization of residual stresses with neutron diffraction and small angle neutron scattering is considered in some detail. The results of testing of fuel elements, steel used for pressurized reactor vessels and changes induced in control rods are discussed. (author)

  10. performance-based approach to design and evaluation of nuclear security systems for Brazilian nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Tavares, Renato L. A.; Filho, Josélio S. M., E-mail: renato.tavares@cnen.gov.br, E-mail: joselio@cnen.gov.br [Comissão Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil). Diretoria de Radioproteção e Segurança Nuclear. Divisão de Normas e Segurança Física; Fontes, Gladson S.; Fiel, J.C.B., E-mail: gsfontes@hotmail.com, E-mail: fiel@ime.eb.br [Instituto Militar de Engenharia (SE-7/IME), Rio de Janeiro, RJ (Brazil). Seção de Engenharia Nuclear

    2017-07-01

    This study presents an application of a performance-based approach to definition of requirements, design and evaluation of physical protection systems for nuclear facilities. Such approach considers a probabilistic analysis of the threat, equipment, systems and response forces used to prevent, dissuade and detain malicious acts against the integrity of facilities and the nuclear materials inside them. Nowadays, in the context of Brazilian nuclear facilities licensing, a mostly prescriptive approach is adopted, which despite having advantages such as simplified inspections and homogeneous regulatory requisites amid different fuel cycle facility types, does not consider evolution, dynamism and capacities of external or internal threats to facilities and to Brazilian Nuclear Program itself, neither provides metrics to evaluate system performance facing such threats. In order to preserve actual plans and systems confidentiality, a facility hypothetical model is created, including a research reactor and a waste storage facility. It is expected that the methodology and results obtained in this study serve in the future as a basis to Brazilian nuclear operators, in elaboration process of their Physical Protection Plans, which must comply with future regulation CNEN-NN 2.01, a revision of CNEN-NE 2.01, once that regulation will include performance requisites. (author)

  11. Regulations and financing for decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    Yajima, Masayuki

    1981-01-01

    In the Federal Republic of Germany, the specific regulations governing the decommissioning of nuclear facilities have been instituted. In the revised edition of the Atomic Energy Act dated October 31, 1976, the new subsection 3 was added to Section 7. As the result, license is required for the final shutdown of plants as well as the protective storage of plants and the dismantling of plants and components. The submission of corresponding documents is required for decommissioning. Another specific provision regarding the decommissioning of nuclear facilities is in Section 9 (a) of the Act. Any person, who finally shuts down or dismantles the plants in which nuclear fuel has been handled, must ensure that the residual radioactive substances as well as the radioactive parts of the plants and the equipments which were removed or dismantled are utilized safely or disposed as radioactive wastes adequately. Criterion 2.10 of safety criteria promulgated by the Federal Ministry of Interior stipulates that nuclear power plants must be designed so as to be able to shut down in accordance with the radiation protection regulations. The ''Ordinance concerning financial security pursuant to the Atomic Energy Act'' contains a specific provision for the decommissioning of nuclear facilities. (Kako, I.)

  12. Analysis and consideration for the US criteria of nuclear fuel cycle facilities to resist natural disasters

    International Nuclear Information System (INIS)

    Shen Hong

    2013-01-01

    Natural disasters pose a threat to the safety of nuclear facilities. Fukushima nuclear accident tells us that nuclear safety in siting, design and construction shall be strengthened in case of external events caused by natural disasters. This paper first analyzes the DOE criteria of nuclear fuel cycle facilities to resist natural disasters. Then to develop our national criteria for natural disaster resistance of nuclear fuel cycle facilities is suggested, so as to ensure the safety of these facilities. (authors)

  13. The systemic roles of SKI and SSI in the Swedish nuclear waste management system. Syncho's report for project RISCOM

    International Nuclear Information System (INIS)

    Espejo, R.; Gill, A.

    1998-01-01

    The purpose of this report is to share and summarize our findings about the regulatory roles of SKI/SSI in the context of the Swedish Nuclear System (SNS), with an emphasis on nuclear waste management. The driving force in this review is to make decision processes more transparent. What is reported is based on interviews conducted with employees at SKI/SSI/SKB during early December 1996, the presentation to SKI/SSI in January 1997, discussions during the Shap Wells meeting in Cumbria during March 1997 and RISCOM internal discussions. We offer two hypotheses about the way the Nuclear Waste Management System (NWMS) appears to work. We choose one and derive from it a view about structural issues in SNS and NWMS. The conclusion is a set of systemic roles for the regulators. It is the comparison between these systemic roles and the actual situation that may trigger some adjustments in the system. Our hope is that these findings will make apparent feasible and desirable changes in the system in order to increase the chances for transparent decisions in the Nuclear Waste Management System. In summary, Section 2 includes a general background of the NWMS based on interviews and general information. Section 3 makes a more focused attempt to work out the issues expressed by people in the interviews. Section 4 discusses at a more conceptual level systemic ideas such as the unfolding of complexity. Section 5 is an attempt to organize viewpoints about the NWMS and offers hypotheses to support a preliminary diagnosis of the system in Section 6. We call this section 'A problem of identity'. It is only in Section 7 that basic systemic arguments are unfolded with the intention of supporting an appreciation of SKI/SSI's regulatory roles in the nuclear industry as a whole and nuclear waste management in particular. Section 8 offers a summary of conclusions

  14. Los Alamos Neutron Science Center (LANSCE) Nuclear Science Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Ronald Owen [Los Alamos National Laboratory; Wender, Steve [Los Alamos National Laboratory

    2015-06-19

    The Los Alamos Neutron Science Center (LANSCE) facilities for Nuclear Science consist of a high-energy "white" neutron source (Target 4) with 6 flight paths, three low-energy nuclear science flight paths at the Lujan Center, and a proton reaction area. The neutron beams produced at the Target 4 complement those produced at the Lujan Center because they are of much higher energy and have shorter pulse widths. The neutron sources are driven by the 800-MeV proton beam of the LANSCE linear accelerator. With these facilities, LANSCE is able to deliver neutrons with energies ranging from a milli-electron volt to several hundreds of MeV, as well as proton beams with a wide range of energy, time and intensity characteristics. The facilities, instruments and research programs are described briefly.

  15. Nuclear facilities and environment - an overview of regulatory aspects

    International Nuclear Information System (INIS)

    Chande, S.K.

    2007-01-01

    The Department of Atomic Energy (DAE) operates the entire range of nuclear fuel cycle facilities in the country. The radioactive wastes generated in these facilities have to be disposed into the environment without any adverse effect. In doing so, utmost care is taken to ensure the highest level of safety to the environment, the general public and the occupational workers. Atomic Energy Regulatory Board (AERB) is entrusted with the responsibility of protecting workers, public and environment against undue hazards from ionising radiations. To achieve this objective, AERB exercises regulatory control on the disposal of radioactive wastes from nuclear facilities. The disposal of radioactive effluents into the environment is governed by the Atomic Energy (Safe Disposal of Radioactive Wastes) Rules, 1987. The regulatory aspects with respect to disposal of radioactive wastes are discussed in this paper. (author)

  16. Inventory extension at the Nuclear Materials Storage Facility

    International Nuclear Information System (INIS)

    Stanbro, W.D.; Longmire, V.; Olinger, C.T.; Argo, P.E.

    1996-09-01

    The planned renovation of the Nuclear Material Storage Facility (NMSF) at Los Alamos National Laboratory will be a significant addition to the plutonium storage capacity of the nuclear weapons complex. However, the utility of the facility may be impaired by an overly conservative approach to performing inventories of material in storage. This report examines options for taking advantage of provisions in Department of Energy orders to extend the time between inventories. These extensions are based on a combination of modern surveillance technology, facility design features, and revised operational procedures. The report also addresses the possibility that NMSF could be the site of some form of international inspection as part of the US arms control and nonproliferation policy

  17. Decommissioning Technology Development for Nuclear Research Facilities

    International Nuclear Information System (INIS)

    Lee, K. W.; Kang, Y. A.; Kim, G. H.

    2007-06-01

    It is predicted that the decommissioning of a nuclear power plant would happen in Korea since 2020 but the need of partial decommissioning and decontamination for periodic inspection and life extension still has been on an increasing trend and its domestic market has gradually been extended. Therefore, in this project we developed following several essential technologies as a decommissioning R and D. The measurement technology for in-pipe radioactive contamination was developed for measuring alpha/beta/gamma emitting nuclides simultaneously inside a in-pipe and it was tested into the liquid waste transfer pipe in KRR-2. And the digital mock-up system for KRR-1 and 2 was developed for choosing the best scenarios among several scenarios on the basis of various decommissioning information(schedule, waste volume, cost, etc.) that are from the DMU and the methodology of decommissioning cost estimation was also developed for estimating a research reactor's decommissioning cost and the DMU and the decommissioning cost estimation system were incorporated into the decommissioning information integrated management system. Finally the treatment and management technology of the irradiated graphites that happened after decommissioning KRR-2 was developed in order to treat and manage the irradiated graphites safely

  18. Seismic isolation rubber bearings for nuclear facilities

    International Nuclear Information System (INIS)

    Fujita, Takafumi

    1991-01-01

    This paper describes results of biaxial breaking tests by compression and shear and by tension and shear for seismic isolation rubber bearings with bolted-type connections. The bearings used in the tests were low-damping rubber bearings, high-damping rubber bearings, and lead-rubber bearings. Three modes of failure of the bolted-type bearings were observed in the tests. They are the breaking failure by tension and shear; the breaking failure by compression and shear; and the buckling failure by compression and shear. The first and the second modes of failures are almost independent of the types and the sizes of the bearings. The breaking conditions of those failure modes are described in the axial-stress-shear-strain plane. This expression is useful for the evaluation of safety margins of the bearings. The paper outlines the basic design of the nuclear-grade bearings which were used for large-scale rubber bearing tests in a research project for seismic isolation of FBR plants. It also discusses the protection method against aging and the quality control which are important for implementation. (orig./HP)

  19. Seismic isolation rubber bearings for nuclear facilities

    International Nuclear Information System (INIS)

    Fujita, Takafumi

    1989-01-01

    This paper describes results of biaxial breaking tests by compression and shear and by tension and shear for seismic isolation rubber bearings with bolted-type connections. The bearings used in the tests were low-damping rubber bearings, high-damping rubber bearings, and lead-rubber bearings. Three modes of failure of the bolted-type bearings were observed in the tests. They are the breaking failure by tension and shear; the breaking failure by compression and shear; and the buckling failure by compression and shear. The first and the second modes of failures are almost independent of the types and the sizes of the bearings. The breaking conditions of those failure modes are described in the axial stress-shear strain plane. This expression is useful for the evaluation of safety margins of the bearings. The paper outlines the basic design of the nuclear-grade bearings which were used for large-scale rubber bearing tests in a research project for seismic isolation of fast breeder reactor (FBR) plants. The paper also discusses the protection method against aging and the quality control which are important for implementation

  20. Radiocarbon dispersion around Canadian nuclear facilities

    International Nuclear Information System (INIS)

    Milton, G.M.; Kramer, S.J.; Brown, R.M.; Repta, C.J.W.; King, K.J.; Rao, R.R.

    1995-01-01

    Canadian deuterium uranium (CANDU) pressurized heavy-water reactors produce 14 C by neutron activation of trace quantities of nitrogen in annular gas and reactor components ( 14 N(n,p) 14 C), and from 17 O in the heavy water moderator by ( 17 O(n,α) 14 C). The radiocarbon produced in the moderator is removed on ion exchange resins incorporated in the water purification systems; however, a much smaller gaseous portion is vented from reactor stacks at activity levels considerably below 1% of permissible derived emission limits. Early measurements of the carbon speciation indicated that >90% of the 14 C emitted was in the form of CO 2 .We conducted surveys of the atmospheric dispersion of 14 CO 2 at the Chalk River Laboratories and at the Pickering Nuclear Generating Station. We analyzed air, vegetation, soils and tree rings to add to the historical record of 14 C emissions at these sites, and to gain an understanding of the relative importance of the various carbon pools that act as sources/sinks within the total 14 C budget. Better model parameters than those currently available for calculating the dose to the critical group can be obtained in this manner. Global dose estimates may require the development of techniques for estimating emissions occurring outside the growing season. (author)

  1. Decommissioning Technology Development for Nuclear Research Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K. W.; Kang, Y. A.; Kim, G. H. (and others)

    2007-06-15

    It is predicted that the decommissioning of a nuclear power plant would happen in Korea since 2020 but the need of partial decommissioning and decontamination for periodic inspection and life extension still has been on an increasing trend and its domestic market has gradually been extended. Therefore, in this project we developed following several essential technologies as a decommissioning R and D. The measurement technology for in-pipe radioactive contamination was developed for measuring alpha/beta/gamma emitting nuclides simultaneously inside a in-pipe and it was tested into the liquid waste transfer pipe in KRR-2. And the digital mock-up system for KRR-1 and 2 was developed for choosing the best scenarios among several scenarios on the basis of various decommissioning information(schedule, waste volume, cost, etc.) that are from the DMU and the methodology of decommissioning cost estimation was also developed for estimating a research reactor's decommissioning cost and the DMU and the decommissioning cost estimation system were incorporated into the decommissioning information integrated management system. Finally the treatment and management technology of the irradiated graphites that happened after decommissioning KRR-2 was developed in order to treat and manage the irradiated graphites safely.

  2. Operation technology of air treatment system in nuclear facilities

    CERN Document Server

    Chun, Y B; Hwong, Y H; Lee, H K; Min, D K; Park, K J; Uom, S H; Yang, S Y

    2001-01-01

    Effective operation techniques were reviewed on the air treatment system to protect the personnel in nuclear facilities from the contamination of radio-active particles and to keep the environment clear. Nuclear air treatment system consisted of the ventilation and filtering system was characterized by some test. Measurement of air velocity of blowing/exhaust fan in the ventilation system, leak tests of HEPA filters in the filtering, and measurement of pressure difference between the areas defined by radiation level were conducted. The results acquired form the measurements were reflected directly for the operation of air treatment. In the abnormal state of virus parts of devices composted of the system, the repairing method, maintenance and performance test were also employed in operating effectively the air treatment system. These measuring results and techniques can be available to the operation of air treatment system of PIEF as well as the other nuclear facilities in KAERI.

  3. Implications of multinational arrangements for nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    Muench, E.; Richter, B.; Stein, G.

    1980-01-01

    In the recently concluded INFCE study a variety of possibilities to minimize the proliferation risk was discussed, and their applicability in the nuclear fuel cycle was investigated. It was found that safeguards still play a central part as an anti-proliferation measure. Aspect of institutional arrangements with the aim of placing nuclear material processing and storage facilities under multinational or international auspices is the basis and goal of this study, as in international discussions some degree of proliferation hindrance is attributed to such models. In the assessment of the internationalization of nuclear facilities as an anti-proliferation measure two aspects have to be emphasized: Firstly, internationalization may be understood as a political measure to hinder proliferation, and secondly, no additional control effort should be caused by the possible complementary character to safeguards. 5 refs

  4. Use of Nuclear Material Accounting and Control for Nuclear Security Purposes at Facilities. Implementing Guide

    International Nuclear Information System (INIS)

    2015-01-01

    Nuclear material accounting and control (NMAC) works in a complementary fashion with the international safeguards programme and physical protection systems to help prevent, deter or detect the unauthorized acquisition and use of nuclear materials. These three methodologies are employed by Member States to defend against external threats, internal threats and both state actors and non-state actors. This publication offers guidance for implementing NMAC measures for nuclear security at the nuclear facility level. It focuses on measures to mitigate the risk posed by insider threats and describes elements of a programme that can be implemented at a nuclear facility in coordination with the physical protection system for the purpose of deterring and detecting unauthorized removal of nuclear material

  5. Safe enclosure of nuclear facilities during deferred dismantling

    International Nuclear Information System (INIS)

    2002-01-01

    The objective of this Safety Report is to provide information to Member States to help ensure that a nuclear installation that will be or has been placed in a safe enclosure mode is maintained in a safe state until the final dismantling is performed and the facility or site released from regulatory control. This period of time may be referred to as the deferred dismantling, safe enclosure or long term storage period. During this safe enclosure period, control of the radioactive material and any other hazardous material must be maintained and the safety of the general public and the environment ensured. This Safety Report applies to the safe enclosure of large nuclear facilities such as nuclear power plants, research reactors, large research facilities, large manufacturing facilities and some fuel cycle facilities. Safe enclosure is not normally applicable to smaller industrial and medical installations owing to the small amount of radioactive material present and the nature of that material. This Safety Report would not normally be applicable to facilities that contain long lived radionuclides, as there is little benefit in placing them into safe enclosure. For these facilities, immediate dismantling is normally the preferred option. This publication describes the activities and concerns that are considered from the time when the initial decision is taken to defer dismantling activities, to the point when final dismantling commences or resumes. It is an expansion of the guidance provided in three IAEA Safety Guides. This Safety Report discusses methods that can be used to meet safety requirements, describes good practices and gives practical examples. The IAEA has published a Technical Report that provides technical details relating to the safe enclosure strategy

  6. Department of Nuclear Safety Research and Nuclear Facilities annual report 1995

    International Nuclear Information System (INIS)

    Majborn, B.; Brodersen, K.; Damkjaer, A.; Floto, H.; Jacobsen, U.; Oelgaard, P.L.

    1996-03-01

    The report presents a summary of the work of the Department of Nuclear Safety Research and Nuclear Facilities in 1995. The department's research and development activities are organized in three research programmes: Radiation Protection, Reactor Safety, and Radioanalytical Chemistry. The nuclear facilities operated by the department include the Research Reactor DR3, the Isotope Laboratory, the Waste Treatment Plant, and the Educational Reactor DR1. Lists of staff and publications are included together with a summary of the staff's participation in national and international committees. (au) 5 tabs., 21 ills

  7. Accidents in nuclear facilities: classification, incidence and impact; Accidentes en instalaciones nucleares: clasificacion, incidencia e impacto

    Energy Technology Data Exchange (ETDEWEB)

    Galicia A, J. [Universidad Autonoma Metropolitana, Unidad Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, 09340 Mexico D. F. (Mexico); Paredes G, L. C., E-mail: blink19871@hotmail.com [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2012-10-15

    A general analysis of the 146 accidents reported officially in nuclear facilities from 1945 to 2012 is presented, among them some took place in: power or research nuclear reactors, critical and subcritical nuclear assemblies, handling of nuclear materials inside laboratories belonging to institutes or universities, in radiochemistry industrial plants and nuclear fuel factories. In form graph the incidence of these accidents is illustrated classified for; category, decades, geographical localization, country classification before the OECD, failure type, and the immediate or later victims. On the other hand, the main learned lessons of the nuclear accidents of Three Mile Island, Chernobyl and Fukushima are stood out, among those that highlight; the human factors, the necessity of designs more innovative and major technology for the operation, control and surveillance of the nuclear facilities, to increase the criterions of nuclear, radiological and physics safety applied to these facilities, the necessity to carry out probabilistic analysis of safety more detailed for cases of not very probable accidents and their impact, to revalue the selection criterions of the sites for nuclear locations, the methodology of post-accident sites recovery and major instrumentation for parameters evaluation and the radiological monitoring among others. (Author)

  8. The Swedish Concept for Disposal of Spent Nuclear Fuel: Differences Between Vertical and Horizontal Waste Canister Emplacement

    International Nuclear Information System (INIS)

    Bennett, D.G.; Hicks, T.W.

    2005-10-01

    The Swedish Nuclear Power Inspectorate (SKI) is preparing for the review of licence applications related to the disposal of spent nuclear fuel. The Swedish Nuclear Fuel and Waste Management Company (SKB) refers to its proposals for the disposal of spent nuclear fuel as the KBS-3 concept. In the KBS-3 concept, SKB plans that, after 30 to 40 years of interim storage, spent fuel will be disposed of at a depth of about 500 m in crystalline bedrock, surrounded by a system of engineered barriers. The principle barrier to radionuclide release is a cylindrical copper canister. Within the copper canister, the spent fuel is supported by a cast iron insert. Outside the copper canister is a layer of bentonite clay, known as the buffer, which is designed to provide mechanical protection for the canisters and to limit the access of groundwater and corrosive substances to their surfaces. The bentonite buffer is also designed to sorb radionuclides released from the canisters, and to filter any colloids that may form within the waste. SKB is expected to base its forthcoming licence applications on a repository design in which the waste canisters are emplaced in vertical boreholes (KBS-3V). However, SKB has also indicated that it might be possible and, in some respects, beneficial to dispose of the waste canisters in horizontal tunnels (KBS-3H). There are many similarities between the KBS-3V and KBS-3H designs. There are, however, uncertainties associated with both of the designs and, when compared, both possess relative advantages and disadvantages. SKB has identified many of the key factors that will determine the evolution of a KBS-3H repository and has plans for research and development work in many of the areas where the differences between the KBS-3V and KBS-3H designs mean that they could be significant in terms of repository performance. With respect to the KBS-3H design, key technical issues are associated with: 1. The accuracy of deposition drift construction. 2. Water

  9. Nuclear space power safety and facility guidelines study

    International Nuclear Information System (INIS)

    Mehlman, W.F.

    1995-01-01

    This report addresses safety guidelines for space nuclear reactor power missions and was prepared by The Johns Hopkins University Applied Physics Laboratory (JHU/APL) under a Department of Energy grant, DE-FG01-94NE32180 dated 27 September 1994. This grant was based on a proposal submitted by the JHU/APL in response to an open-quotes Invitation for Proposals Designed to Support Federal Agencies and Commercial Interests in Meeting Special Power and Propulsion Needs for Future Space Missionsclose quotes. The United States has not launched a nuclear reactor since SNAP 10A in April 1965 although many Radioisotope Thermoelectric Generators (RTGs) have been launched. An RTG powered system is planned for launch as part of the Cassini mission to Saturn in 1997. Recently the Ballistic Missile Defense Office (BMDO) sponsored the Nuclear Electric Propulsion Space Test Program (NEPSTP) which was to demonstrate and evaluate the Russian-built TOPAZ II nuclear reactor as a power source in space. As of late 1993 the flight portion of this program was canceled but work to investigate the attributes of the reactor were continued but at a reduced level. While the future of space nuclear power systems is uncertain there are potential space missions which would require space nuclear power systems. The differences between space nuclear power systems and RTG devices are sufficient that safety and facility requirements warrant a review in the context of the unique features of a space nuclear reactor power system

  10. Nuclear space power safety and facility guidelines study

    Energy Technology Data Exchange (ETDEWEB)

    Mehlman, W.F.

    1995-09-11

    This report addresses safety guidelines for space nuclear reactor power missions and was prepared by The Johns Hopkins University Applied Physics Laboratory (JHU/APL) under a Department of Energy grant, DE-FG01-94NE32180 dated 27 September 1994. This grant was based on a proposal submitted by the JHU/APL in response to an {open_quotes}Invitation for Proposals Designed to Support Federal Agencies and Commercial Interests in Meeting Special Power and Propulsion Needs for Future Space Missions{close_quotes}. The United States has not launched a nuclear reactor since SNAP 10A in April 1965 although many Radioisotope Thermoelectric Generators (RTGs) have been launched. An RTG powered system is planned for launch as part of the Cassini mission to Saturn in 1997. Recently the Ballistic Missile Defense Office (BMDO) sponsored the Nuclear Electric Propulsion Space Test Program (NEPSTP) which was to demonstrate and evaluate the Russian-built TOPAZ II nuclear reactor as a power source in space. As of late 1993 the flight portion of this program was canceled but work to investigate the attributes of the reactor were continued but at a reduced level. While the future of space nuclear power systems is uncertain there are potential space missions which would require space nuclear power systems. The differences between space nuclear power systems and RTG devices are sufficient that safety and facility requirements warrant a review in the context of the unique features of a space nuclear reactor power system.

  11. Space nuclear thermal propulsion test facilities accommodation at INEL

    Science.gov (United States)

    Hill, Thomas J.; Reed, William C.; Welland, Henry J.

    1993-01-01

    The U.S. Air Force (USAF) has proposed to develop the technology and demonstrate the feasibility of a particle bed reactor (PBR) propulsion system that could be used to power an advanced upper stage rocket engine. The U.S. Department of Energy (DOE) is cooperating with the USAF in that it would host the test facility if the USAF decides to proceed with the technology demonstration. Two DOE locations have been proposed for testing the PBR technology, a new test facility at the Nevada Test Site, or the modification and use of an existing facility at the Idaho National Engineering Laboratory. The preliminary evaluations performed at the INEL to support the PBR technology testing has been completed. Additional evaluations to scope the required changes or upgrade needed to make the proposed USAF PBR test facility meet the requirements for testing Space Exploration Initiative (SEI) nuclear thermal propulsion engines are underway.

  12. Space nuclear thermal propulsion test facilities accommodation at INEL

    International Nuclear Information System (INIS)

    Hill, T.J.; Reed, W.C.; Welland, H.J.

    1993-01-01

    The U.S. Air Force (USAF) has proposed to develop the technology and demonstrate the feasibility of a particle bed reactor (PBR) propulsion system that could be used to power an advanced upper stage rocket engine. The U.S. Department of Energy (DOE) is cooperating with the USAF in that it would host the test facility if the USAF decides to proceed with the technology demonstration. Two DOE locations have been proposed for testing the PBR technology, a new test facility at the Nevada Test Site, or the modification and use of an existing facility at the Idaho National Engineering Laboratory. The preliminary evaluations performed at the INEL to support the PBR technology testing has been completed. Additional evaluations to scope the required changes or upgrade needed to make the proposed USAF PBR test facility meet the requirements for testing Space Exploration Initiative (SEI) nuclear thermal propulsion engines are underway

  13. Spent Nuclear Fuel Project Cold Vacuum Drying Facility Operations Manual

    International Nuclear Information System (INIS)

    IRWIN, J.J.

    1999-01-01

    This document provides the Operations Manual for the Cold Vacuum Drying Facility (CVDF). The Manual was developed in conjunction with HNF-553, Spent Nuclear Fuel Project Final Safety Analysis Report Annex B--Cold Vacuum Drying Facility. The HNF-SD-SNF-DRD-002, 1999, (Cold Vacuum Drying Facility Design Requirements), Rev. 4. and the CVDF Final Design Report. The Operations Manual contains general descriptions of all the process, safety and facility systems in the CVDF, a general CVD operations sequence and references to the CVDF System Design Descriptions (SDDs). This manual has been developed for the SNFP Operations Organization and shall be updated, expanded, and revised in accordance with future design, construction and startup phases of the CVDF until the CVDF final ORR is approved

  14. Analysis of occupational doses in radioactive and nuclear facilities

    International Nuclear Information System (INIS)

    Curti, A.; Gomez P, I.; Pardo, G.; Thomasz, E.

    1996-01-01

    Occupational doses were analyzed in the most important nuclear and radioactive facilities in Argentina, on the period 1988-1994. The areas associated with uranium mining and milling, and medical uses of radiation facilities were excluded from this analysis. The ICRP publication 60 recommendations, adopted in 1990, and enforced in Argentine in 1994, keep the basic criteria of dose limitation system and recommend a substantial reduction in the dose limits. The reduction of the dose limits will affect the individual dose distributions, principally in those installations with occupational doses close to 50 mSv. It were analyzed Occupational doses, principally in the following facilities: Atucha-I and Embalse Nuclear Power Plants, radioisotope production plants, research reactors and radioactive waste management plants. The highest doses were identified in each facility, as well as the task associated with them. Trends in the individual dose distribution and collective and average doses were analyzed. It is concluded, that no relevant difficulties should appear in accomplishing with the basic standards for radiological safety, except for the Atucha-I Nuclear Power Plant. In this NPP a significant effort for the optimization of radiological safety procedures in order to diminish the occupational doses, and a change of the fuel channels by new ones free of cobalt are being carried out. (authors). 4 refs., 3 figs., 3 tabs

  15. Graphics-based nuclear facility modeling and management

    International Nuclear Information System (INIS)

    Rod, S.R.

    1991-07-01

    Nuclear waste management facilities are characterized by their complexity, many unprecedented features, and numerous competing design requirements. This paper describes the development of comprehensive descriptive databases and three-dimensional models of nuclear waste management facilities and applies the database/model to an example facility. The important features of the facility database/model are its abilities to (1) process large volumes of site data, plant data, and nuclear material inventory data in an efficient, integrated manner; (2) produce many different representations of the data to fulfill information needs as they arise; (3) create a complete three-dimensional solid model of the plant with all related information readily accessible; and (4) support complete, consistent inventory control and plant configuration control. While the substantive heart of the system is the database, graphic visualization of the data vastly improves the clarity of the information presented. Graphic representations are a convenient framework for the presentation of plant and inventory data, allowing all types of information to be readily located and presented in a manner that is easily understood. 2 refs., 5 figs., 1 tab

  16. Mechanisms of Copper Corrosion in Aqueous Environments. A report from the Swedish National Council for Nuclear Waste's scientific workshop, on November 16, 2009

    Energy Technology Data Exchange (ETDEWEB)

    2010-07-01

    In 2010 the Swedish Nuclear Fuel and Waste Management Company, SKB, plans to submit its license application for the final repository of spent nuclear fuel. The proposed method is the so-called KBS-3 method and implies placing the spent nuclear fuel in copper canisters, surrounded by a buffer of bentonite clay, at 500 m depth in the bedrock. The site selected by SKB to host the repository is located in the municipality of Oesthammar on the Swedish east coast. The copper canister plays a key role in the design of the repository for spent nuclear fuel in Sweden. The long-term physical and chemical stability of copper in aqueous environments is fundamental for the safety evolution of the proposed disposal concept. However, the corrosion resistance of copper has been questioned by results obtained under anoxic conditions in aqueous solution. These observations caused some head-lines in the Swedish newspapers as well as public and political concerns. Consequently, the Swedish National Council for Nuclear Waste organized a scientific workshop on the issue 'Mechanisms of Copper Corrosion in Aqueous Environments'. The purpose of the workshop was to address the fundamental understanding of the corrosion characteristics of copper regarding oxygen-free environments, and to identify what additional information is needed to assess the validity of the proposed corrosion mechanism and its implication on the containment of spent nuclear fuel in a copper canister. This seminar report is based on the presentations and discussions at the workshop. It also includes written statements by the members of the expert panel

  17. The regulatory process for the decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    1990-01-01

    The objective of this publication is to provide general guidance to Member States for regulating the decommissioning of nuclear facilities within the established nuclear regulatory framework. The Guide should also be useful to those responsible for, or interested in, the decommissioning of nuclear facilities. The Guide describes in general terms the process to be used in regulating decommissioning and the considerations to be applied in the development of decommissioning regulations and guides. It also delineates the responsibilities of the regulatory body and the licensee in decommissioning. The provisions of this Guide are intended to apply to all facilities within the nuclear fuel cycle and larger industrial installations using long lived radionuclides. For smaller installations, however, less extensive planning and less complex regulatory control systems should be acceptable. The Guide deals primarily with decommissioning after planned shutdown. Most provisions, however, are also applicable to decommissioning after an abnormal event, once cleanup operations have been terminated. The decommissioning planning in this case must take account of the abnormal event. 28 refs, 1 fig

  18. Structure and function design for nuclear facilities decommissioning information database

    International Nuclear Information System (INIS)

    Liu Yongkuo; Song Yi; Wu Xiaotian; Liu Zhen

    2014-01-01

    The decommissioning of nuclear facilities is a radioactive and high-risk project which has to consider the effect of radiation and nuclear waste disposal, so the information system of nuclear facilities decommissioning project must be established to ensure the safety of the project. In this study, by collecting the decommissioning activity data, the decommissioning database was established, and based on the database, the decommissioning information database (DID) was developed. The DID can perform some basic operations, such as input, delete, modification and query of the decommissioning information data, and in accordance with processing characteristics of various types of information data, it can also perform information management with different function models. On this basis, analysis of the different information data will be done. The system is helpful for enhancing the management capability of the decommissioning process and optimizing the arrangements of the project, it also can reduce radiation dose of the workers, so the system is quite necessary for safe decommissioning of nuclear facilities. (authors)

  19. Hoisting appliances and fuel handling equipment at nuclear facilities

    International Nuclear Information System (INIS)

    1987-01-01

    The guide is followed by the Finnish Centre for Radiation and Nuclear Safety (STUK) in regulating hoisting and handling equipment Class 3 at nuclear facilities. The guide is applied e.g. to the following equipment: reactor building overhead cranes, hoisting appliances at nuclear fuel storages, fuel handling machines, other hoisting appliances, which because of nuclear safety aspects are classified in Safety Class 3, and load-bearing devices connected with the above equipment, such as replaceable hoisting tools and auxiliary lifting devices. The regulating of hoisting and handling equipment comprises the following stages: handling of preliminary and final safety analysis reports, inspection of the construction plan, supervision of fabrication and construction inspection, and supervision of initial start-up and commissioning inspection

  20. Documents pertaining to safety control of nuclear facilities

    International Nuclear Information System (INIS)

    1998-01-01

    The Finnish Radiation and Nuclear Safety Authority (STUK) controls the safety of nuclear facilities in Finland. This control encompasses on one hand the evaluation of plant safety on the basis of plans and analyses pertaining to the plant and on the other hand the inspection of plant structures, systems and components as well as of operational activity. STUK also monitors plants operational experience feedback and technical developments in the field, as well as the development of safety research and takes the necessary measures on their basis. Guide YVL 1.1 describes how STUK controls the design, construction and operation of nuclear power plants. The documents to be submitted to STUK are described in the nuclear energy legislation and YVL guides. This guide presents the mode of delivery, quality, contents and number of documents to be submitted to STUK

  1. The dynamic analysis facility at the Chalk River Nuclear Laboratories

    International Nuclear Information System (INIS)

    Argue, D.S.; Howatt, W.T.

    1979-10-01

    The Dynamic Analysis Facility at the Chalk River Nuclear Laboratories (CRNL) of Atomic Energy of Canada Limited (AECL) comprises a Hybrid Computer, consisting of two Applied Dynamic International AD/FIVE analog computers and a Digital Equipment Corporation (DEC) PDP-11/55 digital computer, and a Program Development System based on a DEC PDP-11/45 digital computer. This report describes the functions of the various hardware components of the Dynamic Analysis Facility and the interactions between them. A brief description of the software available to the user is also given. (auth)

  2. Study on Nuclear Facility Cyber Security Awareness and Training Programs

    International Nuclear Information System (INIS)

    Lee, Jung-Woon; Song, Jae-Gu; Lee, Cheol-Kwon

    2016-01-01

    Cyber security awareness and training, which is a part of operational security controls, is defined to be implemented later in the CSP implementation schedule. However, cyber security awareness and training is a prerequisite for the appropriate implementation of a cyber security program. When considering the current situation in which it is just started to define cyber security activities and to assign personnel who has responsibilities for performing those activities, a cyber security awareness program is necessary to enhance cyber security culture for the facility personnel to participate positively in cyber security activities. Also before the implementation of stepwise CSP, suitable education and training should be provided to both cyber security teams (CST) and facility personnel who should participate in the implementation. Since such importance and urgency of cyber security awareness and training is underestimated at present, the types, trainees, contents, and development strategies of cyber security awareness and training programs are studied to help Korean nuclear facilities to perform cyber security activities more effectively. Cyber security awareness and training programs should be developed ahead of the implementation of CSP. In this study, through the analysis of requirements in the regulatory standard RS-015, the types and trainees of overall cyber security training programs in nuclear facilities are identified. Contents suitable for a cyber security awareness program and a technical training program are derived. It is suggested to develop stepwise the program contents in accordance with the development of policies, guides, and procedures as parts of the facility cyber security program. Since any training programs are not available for the specialized cyber security training in nuclear facilities, a long-term development plan is necessary. As alternatives for the time being, several cyber security training courses for industrial control systems by

  3. Study on Nuclear Facility Cyber Security Awareness and Training Programs

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jung-Woon; Song, Jae-Gu; Lee, Cheol-Kwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Cyber security awareness and training, which is a part of operational security controls, is defined to be implemented later in the CSP implementation schedule. However, cyber security awareness and training is a prerequisite for the appropriate implementation of a cyber security program. When considering the current situation in which it is just started to define cyber security activities and to assign personnel who has responsibilities for performing those activities, a cyber security awareness program is necessary to enhance cyber security culture for the facility personnel to participate positively in cyber security activities. Also before the implementation of stepwise CSP, suitable education and training should be provided to both cyber security teams (CST) and facility personnel who should participate in the implementation. Since such importance and urgency of cyber security awareness and training is underestimated at present, the types, trainees, contents, and development strategies of cyber security awareness and training programs are studied to help Korean nuclear facilities to perform cyber security activities more effectively. Cyber security awareness and training programs should be developed ahead of the implementation of CSP. In this study, through the analysis of requirements in the regulatory standard RS-015, the types and trainees of overall cyber security training programs in nuclear facilities are identified. Contents suitable for a cyber security awareness program and a technical training program are derived. It is suggested to develop stepwise the program contents in accordance with the development of policies, guides, and procedures as parts of the facility cyber security program. Since any training programs are not available for the specialized cyber security training in nuclear facilities, a long-term development plan is necessary. As alternatives for the time being, several cyber security training courses for industrial control systems by

  4. Radiological planning and implementation for nuclear-facility decommissioning

    International Nuclear Information System (INIS)

    Valentine, A.M.

    1982-01-01

    The need and scope of radiological planning required to support nuclear facility decommissioning are issues addressed in this paper. The role of radiation protection engineering and monitoring professionals during project implementation and closeout is also addressed. Most of the discussion focuses on worker protection considerations; however, project support, environmental protection and site release certification considerations are also covered. One objective is to identify radiological safety issues that must be addressed. The importance of the issues will vary depending on the type of facility being decommissioned; however, by giving appropriate attention to these issues difficult decommissioning projects can be accomplished in a safer manner with workers and the public receiving minimal radiation exposures

  5. Annual survey of the Retired Piqua Nuclear Power Facility

    International Nuclear Information System (INIS)

    Kirsch, G.E.

    1988-10-01

    The annual environmental radiological survey of the Retired Piqua Nuclear Power Facility was performed on October 12, 1988, by Battelle-Columbus. The radiation survey was performed on site and samples were collected for analyses at the Battelle West Jefferson radiochemistry laboratory. Samples collected included area smears to be counted for removable surface contamination, tap water, a sump water sample, and a sump sludge sample. Analyses were performed for these media as described in the survey specifications on page 11. The analyses indicate no significant change from past year's surveys and meet all applicable radiological criteria for the Piqua facility

  6. Current Status of the Cyber Threat Assessment for Nuclear Facilities

    International Nuclear Information System (INIS)

    Kim, Hyun Doo

    2016-01-01

    In December 2014, unknown hackers hacked internal documents sourced from Korea Hydro and Nuclear Power (KHNP) and those electronic documents were posted five times on a Social Network Service (SNS). The data included personal profiles, flow charts, manuals and blueprints for installing pipes in the nuclear power plant. Although the data were not critical to operation or sabotage of the plant, it threatened people and caused social unrest in Korea and neighboring countries. In December 2015, cyber attack on power grid caused a blackout for hundreds of thousands of people in Ukraine. The power outage was caused by a sophisticated attack using destructive malware called 'BlackEnergy'. Cyber attacks are reality in today's world and critical infrastructures are increasingly targeted. Critical infrastructures, such as the nuclear power plant, need to be proactive and protect the nuclear materials, assets and facilities from potential cyber attacks. The threat assessment document and its detailed procedure are confidential for the State. Nevertheless, it is easy to find cooperation on assessing and evaluating the threats of nuclear materials and facilities with other government departments or agencies including the national police. The NSSC and KINAC also cooperated with the National Intelligence Service (NIS) and National Security Research Institute (NSR). However, robust cyber threat assessment system and regular consultative group should be established with domestic and overseas organization including NIS, NSR, the National Police Agency and the military force to protect and ensure to safety of people, public and environment from rapidly changing and upgrading cyber threats

  7. Occupational radiation exposures at radioactive and nuclear facilities in Argentina

    International Nuclear Information System (INIS)

    Curti, A.; Pardo, G.; Melis, H.

    1998-01-01

    This paper presents an evaluation of occupational radiation exposures at relevant radioactive and nuclear facilities in Argentina, for 1996. The facilities send this information to the Nuclear Regulatory Authority due to the requirements included in their operation licenses and authorizations. Dose distributions of 1891 workers and their parameters are presented. The analysis is performed for each type of the following practices: nuclear power plants, research reactors, radioisotope production, fuel fabrication, industrial irradiation and research in the nuclear fuel cycle. Trends of occupational exposure in different practices are analysed and the highest doses have been identified. Following the 1990 recommendations of the International Commission on Radiological Protection (ICRP 60), the Nuclear Regulatory Authority of Argentina updated the dose limits for workers in 1995. The individual dose limits are 20 mSv per year averaged over five consecutive years (100 mSv in 5 years), not exceeding 50 mSv in a single year. To evaluate the occupational radiation exposure trend, without taking into account practices, an analysis of the distribution of individual doses accumulated in the period 1995/96, for all workers, is performed. Individual doses received during 1996 were all below 50 mSv and doses accumulated in the period 1995/96 were below 100 mSv. (author). 7 refs., 16 figs., 5 tabs

  8. Current Status of the Cyber Threat Assessment for Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun Doo [KINAC, Daejeon (Korea, Republic of)

    2016-05-15

    In December 2014, unknown hackers hacked internal documents sourced from Korea Hydro and Nuclear Power (KHNP) and those electronic documents were posted five times on a Social Network Service (SNS). The data included personal profiles, flow charts, manuals and blueprints for installing pipes in the nuclear power plant. Although the data were not critical to operation or sabotage of the plant, it threatened people and caused social unrest in Korea and neighboring countries. In December 2015, cyber attack on power grid caused a blackout for hundreds of thousands of people in Ukraine. The power outage was caused by a sophisticated attack using destructive malware called 'BlackEnergy'. Cyber attacks are reality in today's world and critical infrastructures are increasingly targeted. Critical infrastructures, such as the nuclear power plant, need to be proactive and protect the nuclear materials, assets and facilities from potential cyber attacks. The threat assessment document and its detailed procedure are confidential for the State. Nevertheless, it is easy to find cooperation on assessing and evaluating the threats of nuclear materials and facilities with other government departments or agencies including the national police. The NSSC and KINAC also cooperated with the National Intelligence Service (NIS) and National Security Research Institute (NSR). However, robust cyber threat assessment system and regular consultative group should be established with domestic and overseas organization including NIS, NSR, the National Police Agency and the military force to protect and ensure to safety of people, public and environment from rapidly changing and upgrading cyber threats.

  9. Psychometric model for safety culture assessment in nuclear research facilities

    International Nuclear Information System (INIS)

    Nascimento, C.S. do; Andrade, D.A.; Mesquita, R.N. de

    2017-01-01

    Highlights: • A psychometric model to evaluate ‘safety climate’ at nuclear research facilities. • The model presented evidences of good psychometric qualities. • The model was applied to nuclear research facilities in Brazil. • Some ‘safety culture’ weaknesses were detected in the assessed organization. • A potential tool to develop safety management programs in nuclear facilities. - Abstract: A safe and reliable operation of nuclear power plants depends not only on technical performance, but also on the people and on the organization. Organizational factors have been recognized as the main causal mechanisms of accidents by research organizations through USA, Europe and Japan. Deficiencies related with these factors reveal weaknesses in the organization’s safety culture. A significant number of instruments to assess the safety culture based on psychometric models that evaluate safety climate through questionnaires, and which are based on reliability and validity evidences, have been published in health and ‘safety at work’ areas. However, there are few safety culture assessment instruments with these characteristics (reliability and validity) available on nuclear literature. Therefore, this work proposes an instrument to evaluate, with valid and reliable measures, the safety climate of nuclear research facilities. The instrument was developed based on methodological principles applied to research modeling and its psychometric properties were evaluated by a reliability analysis and validation of content, face and construct. The instrument was applied to an important nuclear research organization in Brazil. This organization comprises 4 research reactors and many nuclear laboratories. The survey results made possible a demographic characterization and the identification of some possible safety culture weaknesses and pointing out potential areas to be improved in the assessed organization. Good evidence of reliability with Cronbach's alpha

  10. Psychometric model for safety culture assessment in nuclear research facilities

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, C.S. do, E-mail: claudio.souza@ctmsp.mar.mil.br [Centro Tecnológico da Marinha em São Paulo (CTMSP), Av. Professor Lineu Prestes 2468, 05508-000 São Paulo, SP (Brazil); Andrade, D.A., E-mail: delvonei@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN – SP), Av. Professor Lineu Prestes 2242, 05508-000 São Paulo, SP (Brazil); Mesquita, R.N. de, E-mail: rnavarro@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN – SP), Av. Professor Lineu Prestes 2242, 05508-000 São Paulo, SP (Brazil)

    2017-04-01

    Highlights: • A psychometric model to evaluate ‘safety climate’ at nuclear research facilities. • The model presented evidences of good psychometric qualities. • The model was applied to nuclear research facilities in Brazil. • Some ‘safety culture’ weaknesses were detected in the assessed organization. • A potential tool to develop safety management programs in nuclear facilities. - Abstract: A safe and reliable operation of nuclear power plants depends not only on technical performance, but also on the people and on the organization. Organizational factors have been recognized as the main causal mechanisms of accidents by research organizations through USA, Europe and Japan. Deficiencies related with these factors reveal weaknesses in the organization’s safety culture. A significant number of instruments to assess the safety culture based on psychometric models that evaluate safety climate through questionnaires, and which are based on reliability and validity evidences, have been published in health and ‘safety at work’ areas. However, there are few safety culture assessment instruments with these characteristics (reliability and validity) available on nuclear literature. Therefore, this work proposes an instrument to evaluate, with valid and reliable measures, the safety climate of nuclear research facilities. The instrument was developed based on methodological principles applied to research modeling and its psychometric properties were evaluated by a reliability analysis and validation of content, face and construct. The instrument was applied to an important nuclear research organization in Brazil. This organization comprises 4 research reactors and many nuclear laboratories. The survey results made possible a demographic characterization and the identification of some possible safety culture weaknesses and pointing out potential areas to be improved in the assessed organization. Good evidence of reliability with Cronbach's alpha

  11. A Quantitative Literacy View of Natural Disasters and Nuclear Facilities

    Directory of Open Access Journals (Sweden)

    C. B. Connor

    2011-07-01

    Full Text Available The March 11, 2011 earthquake, tsunami, and nuclear disaster in Tohoku, Japan, highlights the need to improve quantitative literacy (QL in natural hazard assessment. A critical understanding of natural hazard assessments requires a sophisticated perspective on the mathematical and statistical tools used to estimate the odds of disaster, and the roles of data quality, model development, and subjective probability in estimation of uncertainty. Thus, improved QL is a basic requirement for improved decision-making about the safety of critical infrastructure, such as nuclear facilities.

  12. The Study on Domestic and Foreign Cases for Decommissioning of DPRK Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Ye Ji; Hhu, Joo Youn; Lee, Jung Hyun; Hwang, Yong Soo [Korea Institute of Nuclear Non-proliferation and Control, Daejeon (Korea, Republic of)

    2016-05-15

    This study was able to analyze domestic and foreign cases, and collect data on the approximate amount of waste and time required time; however, data on applied technology, input manpower, required cost, and waste disposal method was insufficient. DPRK activities such as nuclear weapon development or nuclear testing not only threaten our country's security but also have an adverse effect on nuclear nonproliferation and security in the international society. Therefore, denuclearization of the DPRK is prior task that is essential to peace on the Korean Peninsula. The fundamental purpose of denuclearization of the DPRK is to safely decommission facilities related to developing nuclear weapons and to depose related radioactive waste and nuclear materials. Understanding descriptive references and physical properties of the facility and its purpose important for decommissioning nuclear facilities. Although it was impossible to collect data on DPRK nuclear facilities to perform complete decommissioning, we were able to understand the process used at DPRK nuclear facilities with open source data. This study has been conducted to establish overall measures for decommissioning DPRK nuclear facilities. DPRK nuclear facilities in this study include a IRT- 2000 type nuclear research reactor, a 5 MWe graphite moderated reactor, nuclear fuel fabrication facility, and a nuclear fuel reprocessing facility, which are considered as facilities that produce or manufacture nuclear materials needed for nuclear weapons or related to such activities.

  13. Nuclear safety and radiation protection report of the Bugey nuclear facilities - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Bugey nuclear power plant (Ain (FR)): 4 PWR reactors in operation (INB 78 and 89), one partially dismantled graphite-gas reactor (INB 45), an inter-regional fuel storage facility (MIR, INB 102), and a radioactive waste storage and conditioning facility under construction (ICEDA, INB 173). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  14. Measurement of C-14 distribution in forest around nuclear facilities

    International Nuclear Information System (INIS)

    Atarashi-Andoh, Mariko; Amano, Hikaru; Arakhatoon, Jahan

    2003-01-01

    A simple analytical method of C-14 measurement using fast bomb combustion and liquid scintillation counting (LSC) has been developed for measuring C-14 distribution in the terrestrial environment. Specific activities of C-14 in cedar leaves and soils collected from an area around nuclear facilities and control areas were measured using this method. Depth distribution of Cs-137 in soils was also measured at the same sampling sites and compared with the depth distribution of C-14. C-14 specific activity in cedar leaves examined around nuclear facilities exceeded that in the control areas by 8 to 30 mBq (g carbon) -1 . The depth distribution of C-14 in forest soil shows that C-14 has peak values in the top 10 cm of the soil profiles ascribed to the highest bomb C-14 level in the 1960's. The data were made available to assess the behavior of fallout C-14 in the surface environment. (author)

  15. Benefits of explosive cutting for nuclear-facility applications

    International Nuclear Information System (INIS)

    Hazelton, R.F.; Lundgren, R.A.; Allen, R.P.

    1981-06-01

    The study discussed in this report was a cost/benefit analysis to determine: (1) whether explosive cutting is cost effective in comparison with alternative metal sectioning methods and (2) whether explosive cutting would reduce radiation exposure or provide other benefits. Two separate approaches were pursued. The first was to qualitatively assess cutting methods and factors involved in typical sectioning cases and then compare the results for the cutting methods. The second was to prepare estimates of work schedules and potential radiation exposures for candidate sectioning methods for two hypothetical, but typical, sectioning tasks. The analysis shows that explosive cutting would be cost effective and would also reduce radiation exposure when used for typical nuclear facility sectioning tasks. These results indicate that explosive cutting should be one of the principal cutting methods considered whenever steel or similar metal structures or equipment in a nuclear facility are to be sectioned for repair or decommissioning. 13 figures, 7 tables

  16. Organization and management for decommissioning of large nuclear facilities

    International Nuclear Information System (INIS)

    2000-01-01

    For nuclear facilities, decommissioning is the final phase in the life-cycle after siting, design, construction, commissioning and operation. It is a complex process involving operations such as detailed surveys, decontamination and dismantling of plant equipment and facilities, demolition of buildings and structures, and management of resulting waste and other materials, whilst taking into account aspects of health and safety of the operating personnel and the general public, and protection of the environment. Careful planning and management is essential to ensure that decommissioning is accomplished in a safe and cost effective manner. Guidance on organizational aspects may lead to better decision making, reductions in time and resources, lower doses to the workers and reduced impact on public health and the environment. The objective of this report is to provide information and guidance on the organization and management aspects for the decommissioning of large nuclear facilities which will be useful for licensees responsible for discharging these responsibilities. The information contained in the report may also be useful to policy makers, regulatory bodies and other organizations interested in the planning and management of decommissioning. In this report, the term 'decommissioning' refers to those actions that are taken at the end of the useful life of a nuclear facility in withdrawing it from service with adequate regard for the health and safety of workers and members of the public and for the protection of the environment. The term 'large nuclear facilities' involves nuclear power plants, large nuclear research reactors and other fuel cycle facilities such as reprocessing plants, fuel conversion, fabrication and enrichment plants, as well as spent fuel storage and waste management plants. Information on the planning and management for decommissioning of smaller research reactors or other small nuclear facilities can be found elsewhere. The report covers

  17. Review of national and international demands on fire protection in nuclear power plants and their application in the Swedish nuclear industry

    International Nuclear Information System (INIS)

    Fredholm, Lotta

    2010-02-01

    The aim of this report has been to detect and describe differences between rules regarding fire safety and the interpretation of the rules and make suggestions on how all parties involved are able to develop a harmonized approach to the fire conditions and how fire requirements aspects can be optimized and modernized. International and national laws and requirements for fire protection are compared and analyzed with the content and structure of the USNRCs RG.1189, which is considered the document that has the most complete accounts of the fire requirements both in terms of structure and content. The national laws, rules and guidelines that have been studied are general fire protection rules as well as nuclear specific rules. The studied national rules also includes Safety Analysis Reports (SAR) and Technical Specifications (TS). This study shows that the Swedish SAR and TS are markedly different from each other in how the fire requirements are presented as well as the methodology and level of detail of how they are fulfilled. These differences make it difficult to compare the quality of the fire protection between different sites and it also makes it different to learn from each other. The main reason to the differences are the lack of national guidance of how to fulfil the general requirements. The main conclusion of the screening of national requirements, is that many of the references used in the SAR are not suited for operation at a nuclear plant. The differences are often the purpose, examples of purposes that are not necessarily met by complying with national laws, rules, advices are: - Prevent fire to influence redundant safety equipment in different fire cells. - Prevent fire to influence redundant safety equipment in the same fire cell. - Prevent extensive consequences of fire in cable rooms. - Prevent extensive consequences of fires in oil that are not included in the Swedish regulation for handling highly flammable liquids. The international regulations

  18. Managing LLRW from decommissioning of nuclear facilities - a Canadian perspective

    International Nuclear Information System (INIS)

    Donders, R.E.; De, P.L.

    1994-03-01

    In Canada, considerable experience has been gained recently in decommissioning nuclear facilities and managing the resulting waste. This experience has raised important issues from both the decommissioning and waste management perspectives. This paper focuses on the waste management aspects of decommissioning. Past experience is reviewed, preliminary estimates of waste volumes and characteristics are provided, and the major technical and regulatory issues are discussed. (author). 5 refs., 1 tab., 2 figs

  19. [Safeguards for the physical protection of nuclear materials and facilities

    International Nuclear Information System (INIS)

    Jones, O.E.

    1975-01-01

    Testimony is given on the subject of safeguards for the physical protection of nuclear materials and facilities, particularly during transportation. The ERDA nation-wide safe-secure transportation system and the Safe-Secure Trailer are described. The nationwide ERDA voice communication system is also described. Development of hardware and systems is discussed. The use of adversary simulation for evaluating protection systems is mentioned

  20. Major issues on establishing an emergency plan in nuclear facilities

    International Nuclear Information System (INIS)

    Chen, Zhu-zhou

    1988-03-01

    Several major issues on emergency planning and preparation in nuclear facilities were discussed -- such as the importance of emergency planning and preparation, basic principles of intervention and implementation of emergency plan and emergency training and drills to insure the effectiveness of the emergency plan. It is emphasized that the major key point of emergency planning and response is to avoid the occurrence of serious nonrandom effect. 12 refs., 3 tabs

  1. FY16 ISCP Nuclear Counting Facility Hardware Expansion Summary

    International Nuclear Information System (INIS)

    Church, Jennifer A.; Kashgarian, Michaele; Wooddy, Todd; Haslett, Bob; Torretto, Phil

    2016-01-01

    Hardware expansion and detector calibrations were the focus of FY 16 ISCP efforts in the Nuclear Counting Facility. Work focused on four main objectives: 1) Installation, calibration, and validation of 4 additional HPGe gamma spectrometry systems; including two Low Energy Photon Spectrometers (LEPS). 2) Re-Calibration and validation of 3 previously installed gamma-ray detectors, 3) Integration of the new systems into the NCF IT infrastructure, and 4) QA/QC and maintenance of current detector systems.

  2. An international contribution to decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    Lazo, T.

    1995-01-01

    Nuclear power plants and fuel cycle facilities must be retired from service when they have completed their design objective, become obsolete or when they no longer fulfill current safety, technical or economic requirements. Decommissioning is defined as the set of technical and administrative operations that provides adequate protection of workers and public against radiation risks, minimizes impact on the environment and involves manageable costs. A traditional definition of the stages of decommissioning has been proposed by the IAEA and is largely used worldwide. A number of factors have to be considered when selecting the optimum strategy, which include the national nuclear policy, characteristics of the facility, health and safety, environmental protection, radioactive waste management, future use of the site, improvements of the technology that may be achieved in the future, costs and availability of funds and various social considerations. The paper describes the current situation of nuclear facilities and the associated forthcoming requirements and problems of decommissioning. This task requires a complete radionuclide inventory, decontamination methods, disassembly techniques and remote operations. Radiation safety presents three aspects: nuclear safety, protection of workers and protection of the public. An appropriate delay to initiate decommissioning after shutdown of a facility may considerably reduce workers exposures and costs. Decommissioning also generates significant quantities of neutron-activated and surface contaminated materials which require a specific management. A vigorous international cooperation and coordinated research programs have been encouraged by the NEA for a minimization of costs and efforts and to provide a basis for consensus of opinions on policies, strategies and criteria. (J.S.). 19 refs., 5 figs., 3 tabs

  3. FY16 ISCP Nuclear Counting Facility Hardware Expansion Summary

    Energy Technology Data Exchange (ETDEWEB)

    Church, Jennifer A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kashgarian, Michaele [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wooddy, Todd [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Haslett, Bob [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Torretto, Phil [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-09-15

    Hardware expansion and detector calibrations were the focus of FY 16 ISCP efforts in the Nuclear Counting Facility. Work focused on four main objectives: 1) Installation, calibration, and validation of 4 additional HPGe gamma spectrometry systems; including two Low Energy Photon Spectrometers (LEPS). 2) Re-Calibration and validation of 3 previously installed gamma-ray detectors, 3) Integration of the new systems into the NCF IT infrastructure, and 4) QA/QC and maintenance of current detector systems.

  4. Environmental effects of large discharges of cooling water. Experiences from Swedish nuclear power plants; Miljoeeffekter av stora kylvattenutslaepp. Erfarenheter fraan de svenska kaernkraftverken

    Energy Technology Data Exchange (ETDEWEB)

    Ehlin, Ulf; Lindahl, Sture; Neuman, Erik; Sandstroem, Olof; Svensson, Jonny

    2009-07-15

    Monitoring the environmental effects of cooling water intake and discharge from Swedish nuclear power stations started at the beginning of the 1960s and continues to this day. In parallel with long-term monitoring, research has provided new knowledge and methods to optimise possible discharge locations and design, and given the ability to forecast their environmental effects. Investigations into the environmental effects of cooling-water are a prerequisite for the issuing of power station operating permits by the environmental authorities. Research projects have been carried out by scientists at universities, while the Swedish Environmental Protection Agency, the Swedish Board of Fisheries, and the Swedish Meteorological and Hydrological Institute, SMHI, are responsible for the greater part of the investigations as well as of the research work. The four nuclear power plants dealt with in this report are Oskarshamn, Ringhals, Barsebaeck and Forsmark. They were taken into operation in 1972, 1975, 1975 and 1980 resp. - a total of 12 reactors. After the closure of the Barsebaeck plants in 2005, ten reactors remain in service. The maximum cooling water discharge from the respective stations was 115, 165, 50 and 135 m3/s, which is comparable to the mean flow of an average Swedish river - c:a 150 m3/s. The report summarizes studies into the consequences of cooling water intake and discharge. Radiological investigations made at the plants are not covered by this review. The strategy for the investigations was elaborated already at the beginning of the 1960s. The investigations were divided into pre-studies, baseline investigations and monitoring of effects. Pre-studies were partly to gather information for the technical planning and design of cooling water intake and outlet constructions, and partly to survey the hydrographic and ecological situation in the area. Baseline investigations were to carefully map the hydrography and ecology in the area and their natural

  5. Training practices to support decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    Bourassa, J.; Clark, C.R.; Kazennov, A.; Laraia, M.; Rodriguez, M.; Scott, A.; Yoder, J.

    2006-01-01

    Adequate numbers of competent personnel must be available during any phase of a nuclear facility life cycle, including the decommissioning phase. While a significant amount of attention has been focused on the technical aspects of decommissioning and many publications have been developed to address technical aspects, human resource management issues, particularly the training and qualification of decommissioning personnel, are becoming more paramount with the growing number of nuclear facilities of all types that are reaching or approaching the decommissioning phase. One of the keys to success is the training of the various personnel involved in decommissioning in order to develop the necessary knowledge and skills required for specific decommissioning tasks. The operating organisations of nuclear facilities normally possess limited expertise in decommissioning and consequently rely on a number of specialized organisations and companies that provide the services related to the decommissioning activities. Because of this there is a need to address the issue of assisting the operating organisations in the development and implementation of human resource management policies and training programmes for the facility personnel and contractor personnel involved in various phases of decommissioning activities. The lessons learned in the field of ensuring personnel competence are discussed in the paper (on the basis of information and experiences accumulated from various countries and organizations, particularly, through relevant IAEA activities). Particularly, the following aspects are addressed: transition of training from operational to decommissioning phase; knowledge management; target groups, training needs analysis, and application of a systematic approach to training (SAT); content of training for decommissioning management and professional staff, and for decommissioning workers; selection and training of instructors; training facilities and tools; and training as

  6. Appendix 1. The initial and final state of the nuclear facility and the planned follow-on and time-binding activities to achieve the ultimate state of the nuclear facility in that phase, including their impact on employees of nuclear facilities and surroundings nuclear facility

    International Nuclear Information System (INIS)

    2007-01-01

    In this chapter the initial and final state of the NPP A-1 and the planned follow-on and time-binding activities to achieve the ultimate state of the nuclear facility in that phase, including their impact on employees of nuclear facilities and surroundings nuclear facility are reviewed.

  7. Hypothyroidism among former workers of a nuclear weapons facility.

    Science.gov (United States)

    Leavey, Anna; Frank, Arthur L; Pinson, Barbara; Shepherd, Sara; Burstyn, Igor

    2011-12-01

    Ionizing radiation alters thyroid function, and workers at a nuclear weapons facility may be exposed to above environmental levels of radiation. Hypothyroid status was determined for 622 former workers of a nuclear weapons facility located in Texas, using a combination of measured thyroid stimulating hormone (TSH) levels and thyroid medication history, as part of an on-going health surveillance program. We classified 916 unique job titles into 35 job categories. According to the most stringent TSH definition used in this study (0.3-3.0 IU/ml), 174 (28.0%) former workers were considered to be hypothyroid; of these 66 (41.8%) were females and 108 (23.3%) were males. In logistic regression analysis adjusted for age, gender, and smoking status, only having worked as a material handler (n = 18) exhibited an elevated risk of developing hypothyroidism compared to other jobs (OR 3.88, 95% CI 1.43-11.07). This is one of the jobs with suspected exposure to radiation. No excess risk of hypothyroidism was observed for any of the other job categories. There is suggestive evidence that only material handlers at this nuclear weapons facility may have elevated risk of hypothyroidism; further evaluation of thyroid health in this population is warranted. Copyright © 2011 Wiley Periodicals, Inc.

  8. Decontamination and decommissioning project for the nuclear facilities

    International Nuclear Information System (INIS)

    Park, J. H.; Paik, S. T.; Park, H. S.

    2005-02-01

    The goal of this project is the safe and successful decommissioning of the inside reactor hall of the Korean Research Reactor No 2 (KRR-2) and convert to temporary storage facility for the radioactive waste produced during decommissioning. It's necessary to manage the overall decommissioning and decontamination project for the man-power, the progress of the work, etc. needed to works and to develop the suitable technology and equipment in order to perform the decommissioning works for the purpose of securing the safety and minimizing the radiation exposure for works. Also, the large amount of the liquid and solid wastes were generated from the dismantling works. The radioactivity of the waste was not high but the amount was large and the properties was very diverse, and therefore unique management technologies were required for the decommissioning waste. The operation experience of the uranium conversion plant as a nuclear cycle facility was contributed to the localization of nuclear fuels for HWR. It was shut down in 1993. And, in 2001 the decontamination and dismantlement program for the conversion plant has been launched to achieving radiation safety and environment restoration. Conversion plant environment restoration project will be contributed to developing the decontamination and dismantlement technologies related to other domestic nuclear facilities and to set new criteria in the D and D areas

  9. Handbook on interdisciplinary use of European nuclear physics facilities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This handbook is intended to collect together, in an accessible way, the most pertinent information which might be needed by anyone contemplating the use of nuclear physics accelerators for research in other disciplines, or for industrial, biomedical, solid-state or other applications. Information for the publication was supplied by each laboratory represented here, and this was edited and supplemented where it was thought necessary, by additional material, often derived from the facilities' web-sites. The reader will find for each facility a technical description concerning the accelerator itself and its experimental equipment, followed by a 'what can be made there' section. 'at a glance' page contains a summary of contact names and addresses, transport, access and accommodation offered that will be of a great use for prospective user. 26 facilities in 12 European countries (Belgium, Finland, France, Germany, Italy, Norway, Poland, Portugal, Spain, Sweden, Switzerland and The Netherlands) are presented.

  10. Handbook on interdisciplinary use of European nuclear physics facilities

    International Nuclear Information System (INIS)

    2004-01-01

    This handbook is intended to collect together, in an accessible way, the most pertinent information which might be needed by anyone contemplating the use of nuclear physics accelerators for research in other disciplines, or for industrial, biomedical, solid-state or other applications. Information for the publication was supplied by each laboratory represented here, and this was edited and supplemented where it was thought necessary, by additional material, often derived from the facilities' web-sites. The reader will find for each facility a technical description concerning the accelerator itself and its experimental equipment, followed by a 'what can be made there' section. 'at a glance' page contains a summary of contact names and addresses, transport, access and accommodation offered that will be of a great use for prospective user. 26 facilities in 12 European countries (Belgium, Finland, France, Germany, Italy, Norway, Poland, Portugal, Spain, Sweden, Switzerland and The Netherlands) are presented

  11. Final generic environmental impact statement on decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    1988-08-01

    This final generic environmental impact statement was prepared as part of the requirement for considering changes in regulations on decommissioning of commercial nuclear facilities. Consideration is given to the decommissioning of pressurized water reactors, boiling water reactors, research and test reactors, fuel reprocessing plants (FRPs) (currently, use of FRPs in the commercial sector is not being considered), small mixed oxide fuel fabrication plants, uranium hexafluoride conversion plants, uranium fuel fabrication plants, independent spent fuel storage installations, and non-fuel-cycle facilities for handling byproduct, source and special nuclear materials. Decommissioning has many positive environmental impacts such as the return of possibly valuable land to the public domain and the elimination of potential problems associated with increased numbers of radioactively contaminated facilities with a minimal use of resources. Major adverse impacts are shown to be routine occupational radiation doses and the commitment of nominally small amounts of land to radioactive waste disposal. Other impacts, including public radiation doses, are minor. Mitigation of potential health, safety, and environmental impacts requires more specific and detailed regulatory guidance than is currently available. Recommendations are made as to regulatory decommissioning particulars including such aspects as decommissioning alternatives, appropriate preliminary planning requirements at the time of commissioning, final planning requirements prior to termination of facility operations, assurance of funding for decommissioning, environmental review requirements. 26 refs., 7 figs., 68 tabs

  12. Earthquake resistant design of nuclear facilities with limited radioactive inventory

    International Nuclear Information System (INIS)

    1985-10-01

    This document comprises the essential elements of an earthquake resistant design code for nuclear facilities with limited radioactive inventory. The purpose of the document is the enhancement of seismic safety for such facilities without the necessity to resort to complicated and sophisticated methodologies which are often associated with and borrowed from nuclear power plant analysis and design. The first two sections are concerned with the type of facility for which the document is applicable and the radiological consideration for accident conditions. The principles of facility classification and item categorization as a function of the potential radiological consequences of failure are given in section 3. The design basis ground motion is evaluated in sections 4-6 using a simplified but conservative approach which also includes considerations for the underlying soil characteristics. Sections 7 and 8 specify the principles of seismic design of building structures and equipment using two methods, called the equivalent static and simplified dynamic approach. Considerations for the detailing of equipment and piping and those other than for lateral load calculations, such as sloshing effects, are given in the subsequent sections. Several appendices are given for illustration of the principles presented in the text. Finally, a design tree diagram is included to facilitate the user's task of making the appropriate selections. (author)

  13. Construction and engineering report for advanced nuclear fuel development facility

    Energy Technology Data Exchange (ETDEWEB)

    Cho, S. W.; Park, J. S.; Kwon, S.J.; Lee, K. W.; Kim, I. J.; Yu, C. H

    2003-09-01

    The design and construction of the fuel technology development facility was aimed to accommodate general nuclear fuel research and development for the HANARO fuel fabrication and advanced fuel researches. 1. Building size and room function 1) Building total area : approx. 3,618m{sup 2}, basement 1st floor, ground 3th floor 2) Room function : basement floor(machine room, electrical room, radioactive waste tank room), 1st floor(research reactor fuel fabrication facility, pyroprocess lab., metal fuel lab., nondestructive lab., pellet processing lab., access control room, sintering lab., etc), 2nd floor(thermal properties measurement lab., pellet characterization lab., powder analysis lab., microstructure analysis lab., etc), 3rd floor(AHU and ACU Room) 2. Special facility equipment 1) Environmental pollution protection equipment : ACU(2sets), 2) Emergency operating system : diesel generator(1set), 3) Nuclear material handle, storage and transport system : overhead crane(3sets), monorail hoist(1set), jib crane(2sets), tank(1set) 4) Air conditioning unit facility : AHU(3sets), packaged air conditioning unit(5sets), 5) Automatic control system and fire protection system : central control equipment(1set), lon device(1set), fire hose cabinet(3sets), fire pump(3sets) etc.

  14. Airborne release fractions/rates and respirable fractions for nonreactor nuclear facilities. Volume 2, Appendices

    International Nuclear Information System (INIS)

    1994-12-01

    This document contains compiled data from the DOE Handbook on Airborne Release Fractions/Rates and Respirable Fractions for Nonreactor Nuclear facilities. Source data and example facilities utilized, such as the Plutonium Recovery Facility, are included

  15. Risk classification for nuclear facilities in connection with the illegal use of nuclear materials

    International Nuclear Information System (INIS)

    Bahm, W.; Naegele, G.; Sellinschegg, D.

    1976-01-01

    It is shown, and illustrated by an example, that specific conditions at a nuclear facility to a large extent determine the probability of a successful illegal attack against that facility. Therefore, a categorization of nuclear materials according to the associated hazards alone, as practised currently, does not appear to be sufficient for the establishment of a balanced national physical protection system. In this paper a possible way of categorizing nuclear facilities according to the associated risks, determined as objectively as possible, is discussed. It is felt that initially the analysis should be restricted to the determination of the conditional risks, associated with illegal acquisition and use of radioactive materials by a postulated hostile or similar group. (author)

  16. Addressing Uncertainties in Cost Estimates for Decommissioning Nuclear Facilities

    International Nuclear Information System (INIS)

    Benjamin, Serge; Descures, Sylvain; Du Pasquier, Louis; Francois, Patrice; Buonarotti, Stefano; Mariotti, Giovanni; Tarakonov, Jurij; Daniska, Vladimir; Bergh, Niklas; Carroll, Simon; AaSTRoeM, Annika; Cato, Anna; De La Gardie, Fredrik; Haenggi, Hannes; Rodriguez, Jose; Laird, Alastair; Ridpath, Andy; La Guardia, Thomas; O'Sullivan, Patrick; ); Weber, Inge; )

    2017-01-01

    The cost estimation process of decommissioning nuclear facilities has continued to evolve in recent years, with a general trend towards demonstrating greater levels of detail in the estimate and more explicit consideration of uncertainties, the latter of which may have an impact on decommissioning project costs. The 2012 report on the International Structure for Decommissioning Costing (ISDC) of Nuclear Installations, a joint recommendation by the Nuclear Energy Agency (NEA), the International Atomic Energy Agency (IAEA) and the European Commission, proposes a standardised structure of cost items for decommissioning projects that can be used either directly for the production of cost estimates or for mapping of cost items for benchmarking purposes. The ISDC, however, provides only limited guidance on the treatment of uncertainty when preparing cost estimates. Addressing Uncertainties in Cost Estimates for Decommissioning Nuclear Facilities, prepared jointly by the NEA and IAEA, is intended to complement the ISDC, assisting cost estimators and reviewers in systematically addressing uncertainties in decommissioning cost estimates. Based on experiences gained in participating countries and projects, the report describes how uncertainty and risks can be analysed and incorporated in decommissioning cost estimates, while presenting the outcomes in a transparent manner

  17. Nuclear safety and radiation protection report of the Paluel nuclear facilities - 2013

    International Nuclear Information System (INIS)

    2014-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 103, 104, 114 and 115). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2013, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  18. Nuclear safety and radiation protection report of the Civaux nuclear facilities - 2014

    International Nuclear Information System (INIS)

    2015-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 158 and 159). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2014, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  19. Nuclear safety and radiation protection report of Cruas-Meysse nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 111 and 112). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  20. Nuclear safety and radiation protection report of the Dampierre-en-Burly nuclear facilities - 2013

    International Nuclear Information System (INIS)

    2014-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 84 and 85). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2013, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  1. Nuclear safety and radiation protection report of Dampierre-En-Burly nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 84 and 85). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  2. Nuclear safety and radiation protection report of Civaux nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 158 and 159). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  3. Nuclear safety and radiation protection report of the Penly nuclear facilities - 2013

    International Nuclear Information System (INIS)

    2014-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 136 and 140). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2013, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  4. Nuclear safety and radiation protection report of Golfech nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 135 and 142). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  5. Nuclear safety and radiation protection report of Nogent-Sur-Seine nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 129 and 130). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  6. Nuclear safety and radiation protection report of Penly nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 136 and 140). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  7. Nuclear safety and radiation protection report of the Fessenheim nuclear facilities - 2014

    International Nuclear Information System (INIS)

    2015-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INB no. 75). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2014, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  8. Nuclear safety and radiation protection report of Saint-Alban Saint-Maurice nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 119 and 120). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  9. Nuclear safety and radiation protection report of Belleville-Sur-Loire nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 127 and 128). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  10. Nuclear safety and radiation protection report of the Golfech nuclear facilities - 2014

    International Nuclear Information System (INIS)

    2015-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 135 and 142). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2014, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  11. Nuclear safety and radiation protection report of the Civaux nuclear facilities - 2013

    International Nuclear Information System (INIS)

    2014-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 158 and 159). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2013, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  12. Nuclear safety and radiation protection report of the Nogent-sur-Seine nuclear facilities - 2013

    International Nuclear Information System (INIS)

    2014-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 129 and 130). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2013, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  13. Nuclear safety and radiation protection report of the Dampierre-en-Burly nuclear facilities - 2014

    International Nuclear Information System (INIS)

    2015-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 84 and 85). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2014, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  14. Nuclear safety and radiation protection report of Blayais nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 86 and 110). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  15. Nuclear safety and radiation protection report of Fessenheim nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INB no. 75). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  16. Nuclear safety and radiation protection report of the Chooz nuclear facilities - 2014

    International Nuclear Information System (INIS)

    2015-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 139, 144 and 163 (under dismantling)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2014, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  17. Nuclear safety and radiation protection report of the Paluel nuclear facilities - 2014

    International Nuclear Information System (INIS)

    2015-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 103, 104, 114 and 115). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2014, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  18. Nuclear safety and radiation protection report of the Flamanville nuclear facilities - 2014

    International Nuclear Information System (INIS)

    2015-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 108, 109 and 167 (under construction)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2014, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  19. Nuclear safety and radiation protection report of the Flamanville nuclear facilities - 2013

    International Nuclear Information System (INIS)

    2014-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 108, 109 and 167 (under construction)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2013, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  20. Nuclear safety and radiation protection report of the Cattenom nuclear facilities - 2013

    International Nuclear Information System (INIS)

    2014-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 124, 125, 126 and 137). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2013, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  1. Nuclear safety and radiation protection report of the Chooz nuclear facilities - 2013

    International Nuclear Information System (INIS)

    2014-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 139, 144 and 163 (under dismantling)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2013, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  2. Nuclear safety and radiation protection report of the Cattenom nuclear facilities - 2014

    International Nuclear Information System (INIS)

    2015-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 124, 125, 126 and 137). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2014, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  3. Nuclear safety and radiation protection report of the Blayais nuclear facilities - 2013

    International Nuclear Information System (INIS)

    2014-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 86 and 110). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2013, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  4. Nuclear safety and radiation protection report of the Cruas-Meysse nuclear facilities - 2014

    International Nuclear Information System (INIS)

    2015-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 111 and 112). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2014, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  5. Nuclear safety and radiation protection report of the Belleville-sur-Loire nuclear facilities - 2013

    International Nuclea