WorldWideScience

Sample records for swedish nuclear facilities

  1. Environmental monitoring around the Swedish Nuclear Facilities

    International Nuclear Information System (INIS)

    Bondesson, A.; Luening, M.; Wallberg, L.; Wijk, H.

    1999-01-01

    The environmental monitoring programme for the nuclear facilities has shown that the radioactive discharges increase the concentrations of some radionuclides in the local marine environment around the Swedish nuclear facilities. Samples from the terrestrial environment rarely show increased radionuclide concentrations. From a radiological point of view the most important nuclide in the environmental samples usually is CS-137. However, the largest part of the present concentrations of Cs-137 in the Swedish environment originate from the Chernobyl accident. The concentrations of radionuclides that can be found in biota around the nuclear facilities are much lower than the concentration levels that are known to give acute damage to organisms. The total radiation doses from the discharges of radionuclides are small. (au)

  2. Supervision of Waste Management and Environmental Protection at the Swedish Nuclear Facilities 2001

    CERN Document Server

    Persson, M

    2003-01-01

    The report summarizes the supervision of waste management and environmental protection at the nuclear facilities that was carried out by the Swedish Radiation Protection Authority in 2001. A summary of the inspections and a description of important issues connected with the supervision of the nuclear facilities are given.The inspections during 2001 have focused on theme inspections of waste management, environmental inspections considering the environmental monitoring at the Swedish nuclear facilities and review safety analysis and research programs from the Swedish Nuclear Fuel and Waste Management Co.The Swedish Radiation Protection Authority finds that the operations are mainly performed according to current regulations

  3. Supervision of waste management and environmental protection at the Swedish nuclear facilities 1999

    International Nuclear Information System (INIS)

    2000-03-01

    The report summarizes the supervision of waste management and environmental protection at the nuclear facilities that was carried out by the Swedish Radiation Protection Institute in 1999. A summary of the inspections during 1999 and a description of important issues connected with the supervision of the nuclear facilities are given. The inspections during 1999 have focused on the management of liquid discharges and components containing induced activity at some of the nuclear facilities. Also, routines for filing environmental samples, discharge water samples and documents were inspected at all the different nuclear facilities. The Swedish Radiation Protection Institute finds that the operations are mainly performed according to current regulations

  4. Programme for the Environmental Control at the Swedish Nuclear Facilities, Revision

    International Nuclear Information System (INIS)

    Linden, Ann-Marie

    2004-12-01

    This report contains a revised version of the Environmental Monitoring Programme for the Swedish Nuclear Facilities. The revision is based on earlier experiences and evaluations. Some samples have been excluded. Some have been added, for example spruce cone and the food products apple and currant. The sediment samples of 2 cm length have been completed with samples of 10 cm length every fourth year to follow the migration of radio nuclides down the sediment layers over time. The revised Environmental Monitoring Programme is valid from the 1st of January 2005

  5. Swedish nuclear waste efforts

    International Nuclear Information System (INIS)

    Rydberg, J.

    1981-09-01

    After the introduction of a law prohibiting the start-up of any new nuclear power plant until the utility had shown that the waste produced by the plant could be taken care of in an absolutely safe way, the Swedish nuclear utilities in December 1976 embarked on the Nuclear Fuel Safety Project, which in November 1977 presented a first report, Handling of Spent Nuclear Fuel and Final Storage of Vitrified Waste (KBS-I), and in November 1978 a second report, Handling and Final Storage of Unreprocessed Spent Nuclear Fuel (KBS II). These summary reports were supported by 120 technical reports prepared by 450 experts. The project engaged 70 private and governmental institutions at a total cost of US $15 million. The KBS-I and KBS-II reports are summarized in this document, as are also continued waste research efforts carried out by KBS, SKBF, PRAV, ASEA and other Swedish organizations. The KBS reports describe all steps (except reprocessing) in handling chain from removal from a reactor of spent fuel elements until their radioactive waste products are finally disposed of, in canisters, in an underground granite depository. The KBS concept relies on engineered multibarrier systems in combination with final storage in thoroughly investigated stable geologic formations. This report also briefly describes other activities carried out by the nuclear industry, namely, the construction of a central storage facility for spent fuel elements (to be in operation by 1985), a repository for reactor waste (to be in operation by 1988), and an intermediate storage facility for vitrified high-level waste (to be in operation by 1990). The R and D activities are updated to September 1981

  6. Radioactive discharges and environmental monitoring at the Swedish nuclear facilities 2001; Utslaepps- och omgivningskontroll vid de kaerntekniska anlaeggningarna 2001

    Energy Technology Data Exchange (ETDEWEB)

    Sandwall, Johanna

    2002-11-01

    This report contains an evaluation of the discharge and environmental programme for the Swedish nuclear facilities. It also contains the work on quality control performed by SSI. This is done as random sampling of discharge water and environmental samples.

  7. Swedish spent fuel management systems, facilities and operating experiences

    International Nuclear Information System (INIS)

    Vogt, J.

    1998-01-01

    About 50% of the electricity in Sweden is generated by means of nuclear power from 12 LWR reactors located at four sites and with a total capacity of 10,000 MW. The four utilities have jointly created SKB, the Swedish Nuclear Fuel and Waste Management Company, which has been given the mandate to manage the spent fuel and radioactive waste from its origin at the reactors to the final disposal. SKB has developed a system for the safe handling of all kinds of radioactive waste from the Swedish nuclear power plants. The keystones now in operation of this system are a transport system, a central interim storage facility for spent nuclear fuel (CLAB), a final repository for short-lived, low and intermediate level waste (SFR). The remaining, system components being planned are an encapsulation plant for spent nuclear fuel and a deep repository for encapsulated spent fuel and other long-lived radioactive wastes. (author)

  8. A Swedish nuclear fuel facility and public acceptance

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Bengt A [ABB Atom (Sweden)

    1989-07-01

    For more than ten years the ABB Atom Nuclear Fuel Facility has gained a lot of public attention in Sweden. When the nuclear power debate was coming up in the middle of the seventies, the Nuclear Fuel Facility very soon became a spectacular object. It provided a possibility to bring factual information about nuclear power to the public. Today that public interest still exists. For ABB Atom the Facility works as a tool of information activities in several ways, as a solid base for ABB Atom company presentations. but also as a very practical demonstration of the nuclear power technology to the public. This is valid especially to satisfy the local school demand for a real life object complementary to the theoretical nuclear technology education. Beyond the fact that the Nuclear Fuel Facility is a very effective fuel production plant, it is not too wrong to see it as an important resource for education as well as a tool for improved public relations.

  9. A Swedish nuclear fuel facility and public acceptance

    International Nuclear Information System (INIS)

    Andersson, Bengt A.

    1989-01-01

    For more than ten years the ABB Atom Nuclear Fuel Facility has gained a lot of public attention in Sweden. When the nuclear power debate was coming up in the middle of the seventies, the Nuclear Fuel Facility very soon became a spectacular object. It provided a possibility to bring factual information about nuclear power to the public. Today that public interest still exists. For ABB Atom the Facility works as a tool of information activities in several ways, as a solid base for ABB Atom company presentations. but also as a very practical demonstration of the nuclear power technology to the public. This is valid especially to satisfy the local school demand for a real life object complementary to the theoretical nuclear technology education. Beyond the fact that the Nuclear Fuel Facility is a very effective fuel production plant, it is not too wrong to see it as an important resource for education as well as a tool for improved public relations

  10. Lessons learned from application of the Swedish regulations for decommissioning of nuclear facilities - The regulator's perspective

    International Nuclear Information System (INIS)

    Efraimsson, Henrik; Amft, Martin; Leisvik, Mathias

    2016-01-01

    The paper presents an overview of the Swedish regulations for decommissioning of nuclear facilities. It describes some of the experiences that the Swedish Radiation Safety Authority has gained from the application of these regulations. The focus of the present paper lies on administrative aspects of the care and maintenance operation and on the safety related documentation that has to be prepared before dismantling commences. Lessons learned during recent years will be considered when revising the regulations for decommissioning. Also these lessons learned will help to streamline the administration of the large NPP decommissioning projects that are anticipated to commence in Sweden in the near future. (authors)

  11. Education for the nuclear power industry: Swedish perspective

    International Nuclear Information System (INIS)

    Blomgren, J.

    2005-01-01

    In the Swedish nuclear power industry staff, very few newly employed have a deep education in reactor technology. To remedy this, a joint education company, Nuclear Training and Safety Center (KSU), has been formed. To ensure that nuclear competence will be available also in a long-term perspective, the Swedish nuclear power industry and the Swedish Nuclear Power Inspectorate (SKI) have formed a joint center for support of universities, the Swedish Nuclear Technology Center (SKC). The activities of these organisations, their links to universities, and their impact on the competence development for the nuclear power industry will be outlined. (author)

  12. Programme for the Environmental Control at the Swedish Nuclear Facilities, Revision; Omgivningskontrollprogram foer de kaerntekniska anlaeggningarna, revision

    Energy Technology Data Exchange (ETDEWEB)

    Linden, Ann-Marie

    2004-12-01

    This report contains a revised version of the Environmental Monitoring Programme for the Swedish Nuclear Facilities. The revision is based on earlier experiences and evaluations. Some samples have been excluded. Some have been added, for example spruce cone and the food products apple and currant. The sediment samples of 2 cm length have been completed with samples of 10 cm length every fourth year to follow the migration of radio nuclides down the sediment layers over time. The revised Environmental Monitoring Programme is valid from the 1st of January 2005.

  13. Safety Assessment - Swedish Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Kjellstroem, B. [Luleaa Univ. of Technology (Sweden)

    1996-12-31

    After the reactor accident at Three Mile Island, the Swedish nuclear power plants were equipped with filtered venting of the containment. Several types of accidents can be identified where the filtered venting has no effect on the radioactive release. The probability for such accidents is hopefully very small. It is not possible however to estimate the probability accurately. Experiences gained in the last years, which have been documented in official reports from the Nuclear Power Inspectorate indicate that the probability for core melt accidents in Swedish reactors can be significantly larger than estimated earlier. A probability up to one in a thousand operating years can not be excluded. There are so far no indications that aging of the plants has contributed to an increased accident risk. Maintaining the safety level with aging nuclear power plants can however be expected to be increasingly difficult. It is concluded that the 12 Swedish plants remain a major threat for severe radioactive pollution of the Swedish environment despite measures taken since 1980 to improve their safety. Closing of the nuclear power plants is the only possibility to eliminate this threat. It is recommended that until this is done, quantitative safety goals, same for all Swedish plants, shall be defined and strictly enforced. It is also recommended that utilities distributing misleading information about nuclear power risks shall have their operating license withdrawn. 37 refs.

  14. Safety Assessment - Swedish Nuclear Power Plants

    International Nuclear Information System (INIS)

    Kjellstroem, B.

    1996-01-01

    After the reactor accident at Three Mile Island, the Swedish nuclear power plants were equipped with filtered venting of the containment. Several types of accidents can be identified where the filtered venting has no effect on the radioactive release. The probability for such accidents is hopefully very small. It is not possible however to estimate the probability accurately. Experiences gained in the last years, which have been documented in official reports from the Nuclear Power Inspectorate indicate that the probability for core melt accidents in Swedish reactors can be significantly larger than estimated earlier. A probability up to one in a thousand operating years can not be excluded. There are so far no indications that aging of the plants has contributed to an increased accident risk. Maintaining the safety level with aging nuclear power plants can however be expected to be increasingly difficult. It is concluded that the 12 Swedish plants remain a major threat for severe radioactive pollution of the Swedish environment despite measures taken since 1980 to improve their safety. Closing of the nuclear power plants is the only possibility to eliminate this threat. It is recommended that until this is done, quantitative safety goals, same for all Swedish plants, shall be defined and strictly enforced. It is also recommended that utilities distributing misleading information about nuclear power risks shall have their operating license withdrawn. 37 refs

  15. The International Remote Monitoring Project: Results of the Swedish Nuclear Power Facility field trial

    International Nuclear Information System (INIS)

    Johnson, C.S.; af Ekenstam, G.; Sallstrom, M.

    1995-01-01

    The Swedish Nuclear Power Inspectorate (SKI) and the US Department of Energy (DOE) sponsored work on a Remote Monitoring System (RMS) that was installed in August 1994 at the Barseback Works north of Malmo, Sweden. The RMS was designed to test the front end detection concept that would be used for unattended remote monitoring activities. Front end detection reduces the number of video images recorded and provides additional sensor verification of facility operations. The function of any safeguards Containment and Surveillance (C/S) system is to collect information which primarily is images that verify the operations at a nuclear facility. Barseback is ideal to test the concept of front end detection since most activities of safeguards interest is movement of spent fuel which occurs once a year. The RMS at Barseback uses a network of nodes to collect data from microwave motion detectors placed to detect the entrance and exit of spent fuel casks through a hatch. A video system using digital compression collects digital images and stores them on a hard drive and a digital optical disk. Data and images from the storage area are remotely monitored via telephone from Stockholm, Sweden and Albuquerque, NM, USA. These remote monitoring stations operated by SKI and SNL respectively, can retrieve data and images from the RMS computer at the Barseback Facility. The data and images are encrypted before transmission. This paper presents details of the RMS and test results of this approach to front end detection of safeguard activities

  16. Swedish Opinion on Nuclear Power 1986 - 2011

    Energy Technology Data Exchange (ETDEWEB)

    Holmberg, Soeren

    2012-11-01

    This report contains the Swedish opinion on Nuclear Power and European Attitudes on Nuclear Power. It also includes European Attitudes Towards the Future of Three Energy Sources; Nuclear Energy, Wind Power and Solar Power - with a focus on the Swedish opinion. Results from measurements done by the SOM Inst. are presented.

  17. European stress tests for nuclear power plants. The Swedish National Report

    International Nuclear Information System (INIS)

    2011-01-01

    On 11 March 2011, the Tohoku region in north Honshu, Japan, suffered a severe earthquake with an ensuing tsunami and an accident at the Fukushima Dai-ichi nuclear power plant. Due to the accident the Council of the European Union declared in late March that Member States were prepared to begin reviewing safety at nuclear facilities in the European Union by means of a comprehensive assessment of risk and safety ('stress testing'). On 25 May, SSM ordered the licensees of the nuclear power plants to conduct renewed analyses of the facilities' resilience against different kinds of natural phenomena. They were also to analyse how the facilities would be capable of dealing with a prolonged loss of electrical power, regardless of cause. On 31 October, the licensees reported on their stress tests to SSM. After reviewing these reports, SSM produced a summary stress test report, which was submitted to the Government on the 15 December. The present report is the national report on Swedish stress tests of nuclear power plants. The report will be submit to the European Commission no later than 31 December. Based on the review SSM has drawn the conclusion that the stress tests carried out by Swedish licensees are largely performed in accordance with the specification resolved within the European Union. The scope and depth of these analyses and assessments are essentially in accordance with ENSREG's definition of 'a comprehensive assessment of risk and safety'. The stress tests show that Swedish facilities are robust, but the tests also identify a number of opportunities to further strengthen the facilities' robustness. SSM will order the respective licensees to present an action plan for dealing with the results from the stress tests. The Authority will then examine the plans and adopt a standpoint on proposed measures as well as check that the necessary safety improvements are made. In a number of cases, the stress tests indicate deficiencies in relation to, or alternatively

  18. Big problems for Swedish nuclear industry

    International Nuclear Information System (INIS)

    Holmstroem, Anton; Runesson, Linda

    2006-01-01

    A report of the problems for Swedish nuclear industry the summer of 2006. A detailed description of the 25th of July incident at Forsmark 1 is provided. The incident was classified as level two on the INIS scale. The other Swedish nuclear plants were subject to security evaluations in the aftermath, and at Forsmark 2 similar weaknesses were found in the security system (ml)

  19. The present Swedish nuclear fuel and waste position in perspective

    International Nuclear Information System (INIS)

    Svenke, E.

    1983-01-01

    In Sweden current efforts are focussed on research and development of the management of all types of radioactive residues and on industrial projects for the implementation of a complete programme for the back-end of the fuel cycle, where, in fact, international commercial services scarcely exist. Another reason for this priority is the need to allay public anxiety on the subject. The paper describes the policy, planning, and development of the Swedish nuclear back-end as well as its organization and financing. In Sweden the licensee of a nuclear power facility assumes direct responsibility, technically and financially, for the nuclear waste he generates. To cover future costs with respect to the back-end, the utilities pay to the State a fee related to their production of nuclear electricity. The fee is kept in a fund administered by the State through an authority, the 'National Board for Spent Nuclear Fuel'. The technical implementation programme comprises a sea transportation system to be operational by the end of 1982 and a central facility for intermediate storage of spent reactor fuel to be operational by 1985. The third step in the Swedish waste programme is a central final storage facility for reactor wastes other than spent fuel (planned to be in operation by 1988). Broad research and development work is going on in a deep underground system for the isolation of highly active and long-lived wastes. A rock drilling programme is being carried out at several places and is planned to continue for a period of approximately ten years. Encapsulation of waste and the properties of buffer materials are being studied. The paper stresses the importance of achieving generally and multi-nationally accepted guidelines for waste isolation systems and also of proper demonstration of the performance of the various parts of such systems

  20. Deregulation and internationalisation - impact on the Swedish nuclear industry

    International Nuclear Information System (INIS)

    Haukeland, Sverre R.

    2010-01-01

    The deregulation of the Swedish electricity market in 1996 was well known in advance, and the nuclear power plants in Sweden, as well as their main suppliers, made early preparations for a this new situation. In a study - performed by the author at Malardalen University in Sweden - it is concluded that the electricity industry, including the nuclear power plants, was fundamentally transformed in conjunction with market liberalisation. Two large foreign companies, E-on and Fortum, entered the Swedish market and became part-owners of the nuclear plants. After deregulation, the electricity market in Sweden is dominated by these two companies and the large national company Vattenfall. Similarly, Vattenfall has recently grown into an international energy company, acquiring generation capacity in Northern Europe outside of Sweden, including nuclear power plants in Germany. Restructuring of the nuclear industry on the supplier side started in the 1980's, when the Swedish company ASEA and BBC of Switzerland merged to become ABB. Several years later the Swedish nuclear plant supplier ABB-Atom became part of Westinghouse Electric Company, today owned by Toshiba. The Swedish experience thus confirms an international trend of mergers and consolidation in the nuclear industry. (authors)

  1. Summary of operating experience at Swedish nuclear power plants in 1984

    International Nuclear Information System (INIS)

    1985-01-01

    The four owners on nuclear power plants in Sweden - The Swedish State Power Board, Forsmarks Kraftgrupp AB, Sydkraft AB and OKG AKTIEBOLAG - formed in 1980 the Nuclear Safety Board of the Swedish Utilities as a joint body for collaboration in safety matters. The Board participates in coordination of the safety work of the utilities and conducts its own safety projects, whereever this is more efficient than the utilities' working independently. The work of the Board shall contribute to optimizing safety in the operation of the Swedish nuclear power plants. The most important function of the Board is to collect, process and evaluate information on operational disturbances and incidents at Swedish and foreign nuclear power plants and then use the knowledge thus gained to improve the safety of the operation of the Swedish nuclear power plants (experience feedback). The work with Experience Feedback proceeds in three stages: Event follow-up, Fault analysis and Feedback of results. The Board runs a system for experience feedback (ERF). ERF is a computer-based information and communication system. ERF provides the Board with a daily update of operating experience in both Swedish and foreign nuclear power plants. Each Swedish nuclear power station supplies the ERF system with data on, among other things, operation and operational distrubances. Important experiences are thereby fed back to plant operation. Experience from foreign nuclear power stations can be of interest to the Swedish nuclear power plants. This information comes to RKS and is reviewed daily. The information that is considered relevant to Swedish plants is fed after analysis into the ERF system. Conversely, foreign nuclear power stations can obtain information from the operation of the Swedish plants. (author)

  2. Safety and Radiation Protection at Swedish Nuclear Power Plants 2005

    International Nuclear Information System (INIS)

    2006-05-01

    In 2005, no severe events occurred which challenged the safety at the Swedish nuclear power plants. However, some events have been given a special focus. The 'Gudrun' storm, which occurred in January 2005, affected the operation of the reactors at Ringhals and Barsebaeck 2. At Ringhals, the switchyards were affected by salt deposits and, at Barsebaeck, the 400kV grid was subjected to interruptions. The long-term trend is that the total number of fuel defects in Swedish reactors is decreasing. The damage that occurs nowadays has mainly been caused by small objects entering the fuel via the coolant and fretting holes in the cladding. To reduce the number of defects of this type, fuel with filters is successively being introduced to prevent debris from entering the fuel assemblies and cyclone filters in the facility which cleans the coolant. Since the mid-nineties, the pressurised water reactors, Ringhals 2, 3 and 4, have had problems with fuel rod bowing in excess of the safety analysis calculations. Ringhals AB (RAB) has adopted measures to rectify the bowing. Follow-up work shows that the fuel rod bowing is decreasing. The followup in 2005 of damaged tubes in the Ringhals 4 steam generators indicates a continued slow damage propagation. Tubes with defects of such a limited extent that there are adequate margins to rupture and loosening have been kept in operation. Damaged tubes with insufficient margins have plugged. During the year, previously observed minor leakage from the reactor containment in Ringhals 2 was investigated in greater detail and repaired. The investigations showed extensive corrosion attack caused by deficiencies in connection with containment construction. The ageing of electrical cables and other equipment in the I-C systems has been examined by SKI. Regulatory supervision has so far shown that these issues are largely handled in a satisfactory manner by the licensees but that certain supplementary investigations and other measures need to be

  3. Safety and Radiation Protection at Swedish Nuclear Power Plants 2005

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-05-15

    In 2005, no severe events occurred which challenged the safety at the Swedish nuclear power plants. However, some events have been given a special focus. The 'Gudrun' storm, which occurred in January 2005, affected the operation of the reactors at Ringhals and Barsebaeck 2. At Ringhals, the switchyards were affected by salt deposits and, at Barsebaeck, the 400kV grid was subjected to interruptions. The long-term trend is that the total number of fuel defects in Swedish reactors is decreasing. The damage that occurs nowadays has mainly been caused by small objects entering the fuel via the coolant and fretting holes in the cladding. To reduce the number of defects of this type, fuel with filters is successively being introduced to prevent debris from entering the fuel assemblies and cyclone filters in the facility which cleans the coolant. Since the mid-nineties, the pressurised water reactors, Ringhals 2, 3 and 4, have had problems with fuel rod bowing in excess of the safety analysis calculations. Ringhals AB (RAB) has adopted measures to rectify the bowing. Follow-up work shows that the fuel rod bowing is decreasing. The followup in 2005 of damaged tubes in the Ringhals 4 steam generators indicates a continued slow damage propagation. Tubes with defects of such a limited extent that there are adequate margins to rupture and loosening have been kept in operation. Damaged tubes with insufficient margins have plugged. During the year, previously observed minor leakage from the reactor containment in Ringhals 2 was investigated in greater detail and repaired. The investigations showed extensive corrosion attack caused by deficiencies in connection with containment construction. The ageing of electrical cables and other equipment in the I-C systems has been examined by SKI. Regulatory supervision has so far shown that these issues are largely handled in a satisfactory manner by the licensees but that certain supplementary investigations and other measures

  4. Stakeholder involvement in Swedish nuclear waste management

    International Nuclear Information System (INIS)

    Elam, Mark; Sundqvist, Goeran

    2006-09-01

    This report concerning Swedish nuclear waste management has been produced as part of a cross national research project: CARL - A Social Science Research Project into the Effects of Stakeholder involvement on Decision-Making in Radioactive Waste Management. Besides Sweden, the participating countries are Belgium, Canada, Finland, Slovenia and United Kingdom. A social science research team, working for three years, is in the first phase conducting research in their own countries in order to produce 6 country reports. During the next years the focus will shift to comparisons of stakeholder involvement practices in the participating countries. The report addresses current practices of Swedish nuclear waste management and their historical development. The main focus is on past, current and emerging patterns of stakeholder involvement in the siting of a deep repository for the final disposal of Sweden's spent nuclear fuel. The general questions attended to in the report are: Who are the main stakeholders, and how have they emerged and gained recognition as such? What are the issues currently subject to stakeholder involvement and how have these been decided upon? How is stakeholder involvement organized locally and nationally and how has this changed over time? How has stakeholder involvement gained acceptance as an activity of value in the siting of major waste facilities? The report have attempted to show the development of stakeholder involvement in the siting of a final repository for Sweden's spent nuclear fuel as resembling something other than a straightforward linear process of improvement and refinement. Stakeholder involvement has developed, over the past 15 years or so, into something more like a patchwork of different shapes and forms. Some of the forces that may well contribute to the further elaboration of the patchwork of stakeholder involvement have been pointed out, contingently modifying once more its overall colour and orientation. Questions have been

  5. Stakeholder involvement in Swedish nuclear waste management

    Energy Technology Data Exchange (ETDEWEB)

    Elam, Mark; Sundqvist, Goeran [Goeteborg Univ. (Sweden). Section for Science and Technology Studies

    2006-09-15

    This report concerning Swedish nuclear waste management has been produced as part of a cross national research project: CARL - A Social Science Research Project into the Effects of Stakeholder involvement on Decision-Making in Radioactive Waste Management. Besides Sweden, the participating countries are Belgium, Canada, Finland, Slovenia and United Kingdom. A social science research team, working for three years, is in the first phase conducting research in their own countries in order to produce 6 country reports. During the next years the focus will shift to comparisons of stakeholder involvement practices in the participating countries. The report addresses current practices of Swedish nuclear waste management and their historical development. The main focus is on past, current and emerging patterns of stakeholder involvement in the siting of a deep repository for the final disposal of Sweden's spent nuclear fuel. The general questions attended to in the report are: Who are the main stakeholders, and how have they emerged and gained recognition as such? What are the issues currently subject to stakeholder involvement and how have these been decided upon? How is stakeholder involvement organized locally and nationally and how has this changed over time? How has stakeholder involvement gained acceptance as an activity of value in the siting of major waste facilities? The report have attempted to show the development of stakeholder involvement in the siting of a final repository for Sweden's spent nuclear fuel as resembling something other than a straightforward linear process of improvement and refinement. Stakeholder involvement has developed, over the past 15 years or so, into something more like a patchwork of different shapes and forms. Some of the forces that may well contribute to the further elaboration of the patchwork of stakeholder involvement have been pointed out, contingently modifying once more its overall colour and orientation. Questions

  6. Demonstration and Dialogue: Mediation in Swedish Nuclear Waste Management

    International Nuclear Information System (INIS)

    Elam, Mark; Lidberg, Maria; Soneryd, Linda; Sundqvist, Goeran

    2009-01-01

    This report analyses mediation and mediators in Swedish nuclear waste management. Mediation is about establishing agreement and building common knowledge. It is argued that demonstrations and dialogue are the two prominent approaches to mediation in Swedish nuclear waste management. Mediation through demonstration is about showing, displaying, and pointing out a path to safe disposal for inspection. It implies a strict division between demonstrator and audience. Mediation through dialogue on the other hand, is about collective acknowledgements of uncertainty and suspensions of judgement creating room for broader discussion. In Sweden, it is the Swedish Nuclear Fuel and Waste Management Co. (SKB) that is tasked with finding a method and a site for the final disposal of the nation's nuclear waste. Two different legislative frameworks cover this process. In accordance with the Act on Nuclear Activities, SKB is required to demonstrate the safety of its planned nuclear waste management system to the government, while in respect of the Swedish Environmental Code, they are obliged to organize consultations with the public. How SKB combines these requirements is the main question under investigation in this report in relation to materials deriving from three empirical settings: 1) SKB's safety analyses, 2) SKB's public consultation activities and 3) the 'dialogue projects', initiated by other actors than SKB broadening the public arena for discussion. In conclusion, an attempt is made to characterise the long- term interplay of demonstration and dialogue in Swedish nuclear waste management

  7. The Swedish National Defence Research Establishment and the plans for Swedish nuclear weapons

    International Nuclear Information System (INIS)

    Jonter, Thomas

    2001-03-01

    This study analyses the Swedish nuclear weapons research since 1945 carried out by the Swedish National Defence Research Establishment (FOA). The most important aspect of this research was dealing with protection in broad terms against nuclear weapons attacks. However, another aspect was also important from early on - to conduct research aiming at a possible production of nuclear weapons. FOA performed an extended research up to 1968, when the Swedish Government signed the Non-Proliferation Treaty (NPT), which meant the end of these production plans. Up to this date, five main investigations about the technical conditions were made, 1948, 1953, 1955, 1957 and 1965, which all together expanded the Swedish know-how to produce a bomb. The Swedish plans to procure nuclear weapons were not an issue in the debate until the mid 50's. The reason for this was simple, prior to 1954 the plans were secretly held within a small group of involved politicians, military and researchers. The change of this procedure did take place when the Swedish Supreme Commander in a public defence report in 1954 favoured a Swedish Nuclear weapons option. In 1958 FOA had reached a technical level that allowed the Parliament to make a decision. Two programs were proposed - the L-programme (the Loading Programme), to be used if the parliament would say yes to a production of nuclear weapons, and the S-programme (the Protection Programme), if the Parliament would say no. The debate on the issue had now created problems for the Social Democratic Government. The Prime Minister, Tage Erlander, who had earlier defended a procurement of nuclear weapons, was now forced to reach a compromise. The compromise was presented to the parliament in a creative manner that meant that only the S-programme would be allowed. The Government argued that the technical level did allow a 'freedom of action' up to at least the beginning of the 60's when Sweden was mature to make a decision on the issue. During this period

  8. Operating experience from Swedish nuclear power plants 2004

    International Nuclear Information System (INIS)

    2005-01-01

    2004 was somewhat of a record year for the Swedish nuclear power stations. No serious faults occurred, and production exceeded previous record outputs. Total output from the eleven nuclear power units during the year amounted to 75 TWh, which is the largest amount of power ever produced by nuclear power in Sweden. Corresponding figures for earlier years are 59 TWh (2003), 65 TWh (2002) and 69 TWh (2001). An important reason for this excellent result was the very high energy availability. Forsmark 1, for example, exceeded 97 % availability, while Forsmark 2 just reached 97 %. For all the Swedish nuclear power stations as a whole, availability in 2004 amounted to 91 %. In addition to the connection between production and energy availability, there is also a connection with safety. During the year, safety in the Swedish power stations has been high, not only in absolute terms but also in an international perspective. One measure of safety is to be found in the number of accidents, incidents, anomalies or deviations reported to the IAEA on a scale known as the International Nuclear Event Scale (INES). Sweden has undertaken to report all events in accordance with this international system. Three reports were submitted by the Swedish Nuclear Power Inspectorate, which is responsible for national reporting, during the year. None of them had any significance for reactor safety: all were categorised as incidents or minor deviations from the regulations. Summarising, 2004 has been an excellent year for nuclear power safety, which is also reflected by the record electricity production during the year

  9. Operating experience from Swedish nuclear power plants 2004

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    2004 was somewhat of a record year for the Swedish nuclear power stations. No serious faults occurred, and production exceeded previous record outputs. Total output from the eleven nuclear power units during the year amounted to 75 TWh, which is the largest amount of power ever produced by nuclear power in Sweden. Corresponding figures for earlier years are 59 TWh (2003), 65 TWh (2002) and 69 TWh (2001). An important reason for this excellent result was the very high energy availability. Forsmark 1, for example, exceeded 97 % availability, while Forsmark 2 just reached 97 %. For all the Swedish nuclear power stations as a whole, availability in 2004 amounted to 91 %. In addition to the connection between production and energy availability, there is also a connection with safety. During the year, safety in the Swedish power stations has been high, not only in absolute terms but also in an international perspective. One measure of safety is to be found in the number of accidents, incidents, anomalies or deviations reported to the IAEA on a scale known as the International Nuclear Event Scale (INES). Sweden has undertaken to report all events in accordance with this international system. Three reports were submitted by the Swedish Nuclear Power Inspectorate, which is responsible for national reporting, during the year. None of them had any significance for reactor safety: all were categorised as incidents or minor deviations from the regulations. Summarising, 2004 has been an excellent year for nuclear power safety, which is also reflected by the record electricity production during the year.

  10. Concerns when designing a safeguards approach for the back-end of the Swedish nuclear fuel cycle

    International Nuclear Information System (INIS)

    Fritzell, Anni

    2006-03-01

    In Sweden, the construction of an encapsulation plant and a geological repository for the final disposal of spent nuclear fuel is planned to start within the next ten years. Due to Sweden's international agreements on non-proliferation, the Swedish safeguards regime must be extended to include these facilities. The geological repository has some unique features, which present the safeguards system with unprecedented challenges. These features include, inter alia, the long period of time that the facility will contain nuclear material and that the disposed nuclear material will be very difficult to access, implying that physical verification of its presence in the repository is not foreseen. This work presents the available techniques for creating a safeguards system for the backend of the Swedish nuclear fuel cycle. Important issues to consider in the planning and implementation of the safeguards system have been investigated, which in some cases has led to an identification of areas needing further research. The results include three proposed options for a safeguards approach, which have been evaluated on the basis of the safeguards authorities' requirements. Also, the evolution and present situation of the work carried out in connection to safeguards for geological repositories has been compiled

  11. The nuclear waste issue in Swedish mass media

    International Nuclear Information System (INIS)

    Hedberg, P.

    1991-04-01

    This is an investigation of the representation given in the Swedish mass media of questions concerning the nuclear waste. The investigation covers the period from 1979 to 1989 of 8 newspapers of different political colours and the Swedish radio and television. (KAE)

  12. Results for WANO indicators for Swedish nuclear power plants 1998-2002

    International Nuclear Information System (INIS)

    Flodin, Yngve; Loennblad, Christer

    2004-01-01

    The objective of the SKI indicator project is to introduce safety performance indicators as a complement to the inspections carried out at the swedish nuclear facilities. The Performance Indicators defined by WANO are proven by the industry and should be included in a future indicator system. From the set of WANO-indicators, six have been chosen for evaluation in the project. The chosen indicators are: Collective Radiation Exposure (CRE), Fuel Reliability Index (FRI), Safety System Performance (SP1/2/5), Unplanned Automatic Scrams (UA7), Unit Capability Factor (UCF) and Unplanned Capability Loss Factor (UCL). The resulting indicator values for all the swedish nuclear power plants are presented in graphs for a 5-year period, 1998-2002. Data for the BWR and PWR-collectives are included for comparison. The type of graph used, a combined bar and curve chart, is considered to give the best representation of the data. As a guide when evaluating the results, explanations are provided for individual indicator values that deviate significantly from normal levels

  13. Sweden, United States and nuclear energy. The establishment of a Swedish nuclear materials control 1945-1995

    International Nuclear Information System (INIS)

    Jonter, T.

    1999-05-01

    This report deals mainly with the United States nuclear energy policy towards Sweden 1945-1960. Although Sweden contained rich uranium deposits and retained high competence in the natural sciences and technology, the country had to cooperate with other nations in order to develop the nuclear energy. Besides developing the civil use of nuclear power, the Swedish political elite also had plans to start a nuclear weapons programme. From the beginning of the 1950s up to 1968, when the Swedish parliament decided to sign the non-proliferation treaty, the issue was widely debated. In this report, American policy is analyzed in two periods. In the first period, 1945-1953, the most important aim was to prevent Sweden from acquiring nuclear materials, technical know-how, and advanced equipment which could be used in the production of nuclear weapons. The Swedish research projects were designed to contain both a civil and military use of nuclear energy. The first priority of the American administration was to discourage the Swedes from exploiting their uranium deposits, especially for military purposes. In the next period, 1953-1960, the American policy was characterized by extended aid to the development of the Swedish energy programme. Through the 'Atoms for Peace'-programme, the Swedish actors now received previously classified technical information and nuclear materials. Swedish companies and research centers could now buy enriched uranium and advanced equipment from the United States. This nuclear trade was, however, controlled by the American Atomic Energy Commission (AEC). The American help was shaped to prevent the Swedes from developing nuclear weapons capability. From mid-50s Swedish politicians and defence experts realised that a national production of nuclear bombs would cost much more money than was supposed 4-5 years earlier. As a consequence, Swedish officials started to explore the possibilities of acquiring nuclear weapons from United States. The American

  14. The Swedish Nuclear Power Inspectorate's Review Statement and Evaluation of the Swedish Nuclear Fuel and Waste Management Co's RD and D Programme 2001

    International Nuclear Information System (INIS)

    2002-09-01

    According to the Act on Nuclear Activities, the holder of a licence to operate a nuclear reactor must adopt all necessary measures to manage and dispose of spent nuclear fuel and nuclear waste. The Act stipulates requirements on a research programme which is to be submitted to the competent regulatory authority once every three years. The Swedish Nuclear Power Inspectorate (SKI) is the competent authority that evaluates and reviews the programme. SKI distributes the programme to a wide circle of reviewing bodies for comment, including authorities, municipalities, universities and NGOs. The Swedish programme for final disposal of spent nuclear fuel started about 25 years ago. According to the Swedish Nuclear Waste Management Co. (SKB), the planned repository will not be closed until sometime in the 2050's. A series of decisions must be made before this goal is attained. The decision process can therefore be described as a multi-stage process. During each stages, safety will be evaluated and there is a possibility of taking additional time for development work or of selecting improved solutions. SKI's task is to ensure safety compliance throughout all of these stages. In its decision in January 2000, the Government explained that the Programme for Research, Development and Demonstration for the Treatment and Final Disposal of Nuclear Waste (RD and D Programme 98) complied with legislative requirements but that certain supplementary reporting should be conducted by SKB and submitted no later than when the next programme, in accordance with paragraph 12 of the Act on Nuclear Activities, was prepared (September 2001). The supplementary reporting requested by the Government, and which was submitted by SKB to SKI in December 2000, dealt with issues relating to method selection, site selection and the site investigation programme. SKI submitted its review of the supplement to the Government in June 2001 and the Government made a decision on the matter on November 1, 2001

  15. Concerns when designing a safeguards approach for the back-end of the Swedish nuclear fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Fritzell, Anni (Uppsala Univ., Uppsala (Sweden))

    2008-03-15

    In Sweden, the construction of an encapsulation plant and a geological repository for the final disposal of spent nuclear fuel is planned to start within the next ten years. Due to Sweden's international agreements on non-proliferation, the Swedish safeguards regime must be extended to include these facilities. The geological repository has some unique features, which present the safeguards system with unprecedented challenges. These features include, inter alia, the long period of time that the facility will contain nuclear material and that the disposed nuclear material will be very difficult to access, implying that physical verification of its presence in the repository is not foreseen. This work presents the available techniques for creating a safeguards system for the backend of the Swedish nuclear fuel cycle. Important issues to consider in the planning and implementation of the safeguards system have been investigated, which in some cases has led to an identification of areas needing further research. The results include three proposed options for a safeguards approach, which have been evaluated on the basis of the safeguards authorities' requirements. Also, the evolution and present situation of the work carried out in connection to safeguards for geological repositories has been compiled

  16. Swedish experiences in implementing national and international safeguards

    International Nuclear Information System (INIS)

    Nilsson, A.; Elborn, M.; Grahn, P.

    1991-01-01

    This paper reports that international safeguards have been applied in Sweden since the early 70s. Experiences have been achieved from exclusive bilateral and trilateral control followed by NPT safeguards in 1975. The Swedish State System for accountancy and Control (SSAC) includes all regulations that follows from prevailing obligations regarding the peaceful uses of nuclear material. The system has been developed in cooperation between the national authority, the Swedish Nuclear Power Inspectorate (SKI) and the Swedish nuclear industry. The paper presents experiences from the practical implementation of the SSAC and the IAEA safeguards system, gained by the SKI and the nuclear industry, respectively. Joint approaches and solutions to some significant safeguards issues are presented. The cooperation between the nuclear industry and the authority in R and D activities, in particular with respect to the Swedish Support Program is highlighted, e.g. the use of nuclear facilities in development or training tasks. some of the difficulties encountered with the system are also touched upon

  17. The Swedish nuclear industry way to approach higher demands on characterisation prior to clearance

    International Nuclear Information System (INIS)

    Larsson, Arne; Hellsten, Erik; Berglund, Malin; Larsson, Lars

    2012-01-01

    The Swedish Radiation Safety Authority (SSM) has introduced new regulations for clearance SSMFS 2011:2 'Regulations concerning clearance of material, rooms, buildings and soil from activities with ionizing radiation'. The new regulations came into force January 1, 2012. Compared to the previous regulations these new regulations have a broader scope and have introduced new conditions such as nuclide specific clearance levels. Clearance is practiced to reduce the amount of radioactive waste generated. Cleared material can be reused, recycled or if these two possibilities are not available, disposed of as conventional waste. To be able to meet the requirements for clearance the Swedish nuclear industry has jointly developed guidance for clearance in the form of a handbook and a training course covering the competence requirements in the new regulations. The handbook was developed by a team of representatives from the Swedish nuclear license holders managed by Studsvik on behalf of Swedish Nuclear Fuel and Waste Management Company (SKB). The training program was developed in co-operation between Nuclear Safety and training Company (KSU) and Studsvik on behalf of the Swedish nuclear license holders. A major challenge in the adoption to the new regulations is how to provide robust yet cost effective characterisation data. This is especially difficult for mobile materials and equipment which cannot be fully tracked but also for other materials and areas where the nuclide fingerprint has varied over the years. To be able to deal with these issues a lot of attention has to be paid to the historical inventory records and traceability in the clearance process. Materials, rooms and buildings have been divided in four categories with different requirements on frequency and requirements of measurements. The categories are named 'extremely small risk', 'small risk', 'risk' and 'known contamination above clearance levels'. The two day training course is dived into seven parts

  18. Insurance cost of Swedish nuclear power plants

    International Nuclear Information System (INIS)

    Kaellstrand, Aasa.

    1992-01-01

    What happens if a reactor accident occurs? Can victims of a nuclear accident be compensated for losses? The rights of a victim of a nuclear accident to be compensated for losses are governed by international conventions. These conventions make the licensee of a nuclear plant strictly liable. However, the maximum amount of compensation is limited. In Sweden the total liability of the plant-owner is maximized to 1.2 million Swedish Crowns, that is 0.02 oere/kWh. After the accidents of Harrisburg (1979) and Chernobyl (1986), it has become clear that the amounts of the various conventions are not at all sufficient to cover the damages caused by such an accident. In spite of these facts, there are a large number of reliable sources, who think that the insurance costs are negligible in the cost of production. A cost-benefit analysis based on a study performed by Ottinger et al. in 'Environmental costs of electricity' is therefore adopted to derive the costs of the external effects of nuclear plant operation and from releases to the environment during operation. The environmental externality costs of Swedish nuclear power plant operations are in this report estimated to 18.3 oere/kWh. This figure can be compared to the insurance cost, which for the present is 0.02 oere/kWh. The 'real' insurance cost including the external effects is calculated to approximately 1.12 billion Swedish Crowns] That is 900 times larger than the insurance premium, which the licensee of a nuclear plant faces] (au)

  19. On Younger Stakeholders and Decommissioning of Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Tyszkiewicz, Bogumila; Labor, Bea

    2009-08-15

    In modern democratic countries, information sharing and effective and open communication concerning dismantling and decommissioning of of nuclear facilities as well as the management of nuclear waste are essential for the task to build the confidence required for any further development of nuclear energy. At the same time, it is often perceived that all decision making processes about nuclear energy policies are probably increasingly influenced by public opinion. Nuclear and radiation safety Authorities have a clear role in this regard to provide unbiased information on any health and safety related issues. In order to meet this need, it is necessary for Authorities and others to understand the values and opinions of the citizens, and especially the younger ones. They hold the key to the future at the same time as their perspective on these issues is the least understood. The need of greater public participation in decision making is becoming increasingly recognised the scientific as well as the political community. Many activities are carried out in order to stimulate to higher levels of public involvement in decision making in this active research area. Younger citizens is a stakeholder group that is often excluded in decision- making processes. The existence of large gaps between the involvement of older and younger stakeholders in decision making processes needs to be addressed, since such imbalances might otherwise lead to unequal opportunities between generations and limit the future consumption level of the coming generations. Another demanding task for the present generation is to assure that appropriate financial resources are injected into the Swedish Nuclear Waste Fund. It will thereby be possible for coming generations to undertake efficient measures in the decommissioning and dismantling of older nuclear facilities. To undertake such measures in line with the environmental and health codex is essential. An appropriate balance in this regard must be

  20. On Younger Stakeholders and Decommissioning of Nuclear Facilities

    International Nuclear Information System (INIS)

    Tyszkiewicz, Bogumila; Labor, Bea

    2009-08-01

    In modern democratic countries, information sharing and effective and open communication concerning dismantling and decommissioning of of nuclear facilities as well as the management of nuclear waste are essential for the task to build the confidence required for any further development of nuclear energy. At the same time, it is often perceived that all decision making processes about nuclear energy policies are probably increasingly influenced by public opinion. Nuclear and radiation safety Authorities have a clear role in this regard to provide unbiased information on any health and safety related issues. In order to meet this need, it is necessary for Authorities and others to understand the values and opinions of the citizens, and especially the younger ones. They hold the key to the future at the same time as their perspective on these issues is the least understood. The need of greater public participation in decision making is becoming increasingly recognised the scientific as well as the political community. Many activities are carried out in order to stimulate to higher levels of public involvement in decision making in this active research area. Younger citizens is a stakeholder group that is often excluded in decision- making processes. The existence of large gaps between the involvement of older and younger stakeholders in decision making processes needs to be addressed, since such imbalances might otherwise lead to unequal opportunities between generations and limit the future consumption level of the coming generations. Another demanding task for the present generation is to assure that appropriate financial resources are injected into the Swedish Nuclear Waste Fund. It will thereby be possible for coming generations to undertake efficient measures in the decommissioning and dismantling of older nuclear facilities. To undertake such measures in line with the environmental and health codex is essential. An appropriate balance in this regard must be

  1. Meddling in the KBS Programme and Swedish Success in Nuclear Waste Management

    Energy Technology Data Exchange (ETDEWEB)

    Elam, Mark (Univ. of Goeteborg, Goeteborg (Sweden)), e-mail: mark.elam@sts.gu.se; Sundqvist, Goeran (Univ. of Oslo, Oslo (Norway))

    2010-09-15

    production of nuclear waste facilities themselves which can be seen as firstly adding further weight and credibility to what has already been demonstrated. The materialization of solutions in terms of copper canisters that can be experimented on, or a 'dress rehearsal' repository that can be opened to the public, is important for maintaining and enlarging SKB's ability to demonstrate KBS within reach, but remains nothing that should be rushed into. When KBS becomes too close to hand, and starts to approximate an immutable mobile, it becomes harder to translate it into something else in the face of challenging circumstance. Thus, the remarkable success of Swedish nuclear waste management so far can be ultimately ascribed to an ability for continually producing signs of a definite end to the implementation of geological disposal in sight, while never sacrificing the capacity for showing this end undergoing necessary improvement and becoming otherwise. Bearing this in mind, the best way to read SKB's recent announcement of Oesthammar as their preferred site for a KBS 3 repository is as yet another powerful and compelling sign of the attainability of nuclear fuel safety, not to be confused with its attainment

  2. Meddling in the KBS Programme and Swedish Success in Nuclear Waste Management

    International Nuclear Information System (INIS)

    Elam, Mark; Sundqvist, Goeran

    2010-09-01

    production of nuclear waste facilities themselves which can be seen as firstly adding further weight and credibility to what has already been demonstrated. The materialization of solutions in terms of copper canisters that can be experimented on, or a 'dress rehearsal' repository that can be opened to the public, is important for maintaining and enlarging SKB's ability to demonstrate KBS within reach, but remains nothing that should be rushed into. When KBS becomes too close to hand, and starts to approximate an immutable mobile, it becomes harder to translate it into something else in the face of challenging circumstance. Thus, the remarkable success of Swedish nuclear waste management so far can be ultimately ascribed to an ability for continually producing signs of a definite end to the implementation of geological disposal in sight, while never sacrificing the capacity for showing this end undergoing necessary improvement and becoming otherwise. Bearing this in mind, the best way to read SKB's recent announcement of Oesthammar as their preferred site for a KBS 3 repository is as yet another powerful and compelling sign of the attainability of nuclear fuel safety, not to be confused with its attainment

  3. Demonstration and Dialogue: Mediation in Swedish Nuclear Waste Management. Deliverable D10

    International Nuclear Information System (INIS)

    Elam, Mark; Sundqvist, Goeran; Lidberg, Maria; Soneryd, Linda

    2008-10-01

    This report analyses mediation and mediators in Swedish nuclear waste management. Mediation is about establishing agreement and building common knowledge. It is argued that demonstrations and dialogue are the two prominent approaches to mediation in Swedish nuclear waste management. Mediation through demonstration is about showing, displaying, and pointing out a path to safe disposal for inspection. It implies a strict division between demonstrator and audience. Mediation through dialogue on the other hand, is about collective acknowledgements of uncertainty and suspensions of judgement creating room for broader discussion. In Sweden, it is the Swedish Nuclear Fuel and Waste Management Co. (SKB) that is tasked with finding a method and a site for the final disposal of the nation's nuclear waste. Two different legislative frameworks cover this process. In accordance with the Act on Nuclear Activities, SKB is required to demonstrate the safety of its planned nuclear waste management system to the government, while in respect of the Swedish Environmental Code, they are obliged to organize consultations with the public. How SKB combines these requirements is the main question under investigation in this report in relation to materials deriving from three empirical settings: 1) SKB's safety analyses, 2) SKB's public consultation activities and 3) the 'dialogue projects', initiated by other actors than SKB broadening the public arena for discussion. In conclusion, an attempt is made to characterise the long-term interplay of demonstration and dialogue in Swedish nuclear waste management

  4. Report on the status of instrumentation and control in Swedish nuclear power plants

    International Nuclear Information System (INIS)

    Stroebeck, E.

    1992-01-01

    Nuclear power plants accounted for 46% of the total electric power production in Sweden in 1990. The availability of the Swedish reactors remains at a very high level. The oldest Swedish nuclear power plant has been in operation for nearly 20 years, and in the next 5 to 10 years a large portion of the NPP electrical equipment has to be replaced. The paper presents an overview of activities on control and instrumentation in the following: Future developments; implementation of computer-based systems; training simulators; nuclear safety research. The operating experience in Swedish nuclear power plants in 1991 is also presented. (author)

  5. Delegated democracy. Siting selection for the Swedish nuclear waste

    International Nuclear Information System (INIS)

    Johansson, Hanna Sofia

    2008-11-01

    The present study concerns the siting of the Swedish nuclear waste repository. Four cases are examined: the feasibility studies in Nykoeping and Tierp (cases 1 and 2), as well as three public consultation meetings with conservationist and environmental organisations, and two study visits to nuclear facilities in Oskarshamn and Oesthammar, which were held during what is called the site-investigation phase (cases 3 and 4). The Swedish Nuclear Fuel and Waste Management Co (SKB) began the search for a nuclear waste site in the 1970s. Since 1992 SKB has conducted feasibility studies in eight municipalities, including in the four municipalities mentioned above. At the present time more comprehensive site investigations are underway in Oskarshamn and Oesthammar, two municipalities that already host nuclear power plants as well as storages for nuclear waste. In addition to SKB and the municipalities involved in the site-selection process, politicians, opinion groups, concerned members of the public, and oversight bodies are important actors. The analysis of the cases employs the concepts of 'sub-politics', 'boundary work', and 'expertise', together with the four models of democracy 'representative democracy', participatory democracy', 'deliberative democracy', and 'technocracy'. The aim of the study is to describe the characteristics of Swedish democracy in relation to the disposal of Swedish nuclear waste. The main questions of the study are: Which democratic ideals can be found within SKB's siting process during the feasibility studies and in the consultation process during the site investigations? and Which democratic ideals were influential during the feasibility studies and in the consultation process? The study is based on qualitative methods, and the source materials consist of documents, interviews, and participant observations. In summary, the form of democracy that emerges in the four case studies can be described as delegated democracy. This means that a large

  6. Delegated Democracy. The Siting of Swedish Nuclear Waste

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Hanna Sofia (Stockholm Univ., SCORE, SE-106 91 Stockholm (Sweden))

    2009-12-15

    This paper aims to characterise Swedish democracy in connection with the disposal of Swedish nuclear waste. To this end, an analysis is performed to discern which democratic ideals that can be found within the nuclear waste issue. The study analyses various actors' views on democracy and expertise as well as their definitions of the nuclear waste issue, and discusses this from the perspective of democracy theory. Which definitions that become influential has democratic implications. In addition, various actors' possible attempts to help or hinder other actors from gaining influence over the nuclear waste issue in the four municipalities are studied. In connection with the case studies the aim of the paper can be narrowed to comprise the following questions: Which democratic ideals can be found within SKB's siting process during the feasibility studies and in the consultation process during the site investigations? Which democratic ideals were influential during the feasibility studies and in the consultation process?

  7. Delegated Democracy. The Siting of Swedish Nuclear Waste

    International Nuclear Information System (INIS)

    Johansson, Hanna Sofia

    2009-12-01

    This paper aims to characterise Swedish democracy in connection with the disposal of Swedish nuclear waste. To this end, an analysis is performed to discern which democratic ideals that can be found within the nuclear waste issue. The study analyses various actors' views on democracy and expertise as well as their definitions of the nuclear waste issue, and discusses this from the perspective of democracy theory. Which definitions that become influential has democratic implications. In addition, various actors' possible attempts to help or hinder other actors from gaining influence over the nuclear waste issue in the four municipalities are studied. In connection with the case studies the aim of the paper can be narrowed to comprise the following questions: Which democratic ideals can be found within SKB's siting process during the feasibility studies and in the consultation process during the site investigations? Which democratic ideals were influential during the feasibility studies and in the consultation process?

  8. Technology and costs for decommissioning of Swedish nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-06-01

    The decommissioning study for the Swedish nuclear power plants has been carried out during 1992 to 1994 and the work has been led by a steering group consisting of people from the nuclear utilities and SKB. The study has been focused on two reference plants, Oskarshamn 3 and Ringhals 2. Oskarshamn 3 is a boiling water reactor (BWR) and Ringhals 2 is a pressurized water reactor (PWR). Subsequently, the result from these plants have been translated to the other Swedish plants. The study gives an account of the procedures, costs, waste quantities and occupational doses associated with decommissioning of the Swedish nuclear power plants. Dismantling is assumed to start immediately after removal of the spent fuel. No attempts at optimization, in terms of technology or costs, have been made. The nuclear power plant site is restored after decommissioning so that it can be released for use without restriction for other industrial activities. The study shows that a reactor can be dismantled in about five years, with an average labour force of about 150 persons. The maximum labour force required for Oskarshamn 3 has been estimated to about 300 persons. This peak load occurred the first years but is reduced to about 50 persons during the demolishing of the buildings. The cost of decommissioning Oskarshamn 3 has been estimated to be about MSEK 940 in January 1994 prices. The decommissioning of Ringhals 2 has been estimated to be MSEK 640. The costs for the other Swedish nuclear power plants lie in the range MSEK 590-960. 17 refs, 21 figs, 15 tabs.

  9. Technology and costs for decommissioning of Swedish nuclear power plants

    International Nuclear Information System (INIS)

    1994-06-01

    The decommissioning study for the Swedish nuclear power plants has been carried out during 1992 to 1994 and the work has been led by a steering group consisting of people from the nuclear utilities and SKB. The study has been focused on two reference plants, Oskarshamn 3 and Ringhals 2. Oskarshamn 3 is a boiling water reactor (BWR) and Ringhals 2 is a pressurized water reactor (PWR). Subsequently, the result from these plants have been translated to the other Swedish plants. The study gives an account of the procedures, costs, waste quantities and occupational doses associated with decommissioning of the Swedish nuclear power plants. Dismantling is assumed to start immediately after removal of the spent fuel. No attempts at optimization, in terms of technology or costs, have been made. The nuclear power plant site is restored after decommissioning so that it can be released for use without restriction for other industrial activities. The study shows that a reactor can be dismantled in about five years, with an average labour force of about 150 persons. The maximum labour force required for Oskarshamn 3 has been estimated to about 300 persons. This peak load occurred the first years but is reduced to about 50 persons during the demolishing of the buildings. The cost of decommissioning Oskarshamn 3 has been estimated to be about MSEK 940 in January 1994 prices. The decommissioning of Ringhals 2 has been estimated to be MSEK 640. The costs for the other Swedish nuclear power plants lie in the range MSEK 590-960. 17 refs, 21 figs, 15 tabs

  10. SSI's Review of the RDandD Program 2004 of the Swedish Nuclear Fuel and Waste Management Co; SSI:s granskning av SKB:s Fud-program 2004

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, Carl-Magnus; Hedberg, Bjoern; Wiebert, Anders [and others

    2005-06-01

    In this report the Swedish Radiation Protection Authority's (SSI) review of the Swedish Nuclear Fuel and Waste Management Company's (SKB) RDandD programme 2004 is presented. In the review SSI comments, among other things, SKB's plan of action and future direction of SKB's RDandD programme, need for different types of consultations, plans for demonstration of canister deposition and long term experiments, and strategies for dismantling of nuclear facilities.

  11. Swedish Nuclear Waste Management from Theory to Practice

    International Nuclear Information System (INIS)

    Holmqvist, Magnus

    2008-01-01

    The programme has evolved from a project of a few experts drawing up the outline of what today is a comprehensive programme of research, development, demonstration, design, construction and operation of facilities for radioactive waste management. The Swedish programme was greatly influenced at an early stage by political actions, which included placing the responsibility with the reactor owners to demonstrate safe disposal of spent nuclear fuel and also to fund a disposal programme. The response of the reactor owners was to immediately start the KBS project. Its third report in 1983 described the KBS-3 concept, which is still the basis for SKB's deep geological repository system. Thus, this year is the 25th anniversary of the creation of the well-known KBS-3 concept. The SKB programme for nuclear waste management is today divided in two sub programmes; LILW Programme and the Nuclear Fuel Programme. The LILW Programme is entering into a new phase with the imminent site investigations for the expansion of the SFR LILW repository, which is in operation since 1988, to accept also decommissioning waste. The expansion of SFR is driven by a government decision urging SKB to investigate when a licensing of a repository for decommissioning waste can be made

  12. Swedish nuclear dilemma: Energy and the environment

    International Nuclear Information System (INIS)

    Nordhaus, W.D.

    1997-01-01

    One of the things that makes life both very frustrating and also very interesting is that accomplishing one objective frequently means backpedaling on another. Since economics is the study of tradeoffs, this means that there is generally plenty for economists to do. William Nordhaus is one of the best economists anywhere, and he has written a wonderful book about the tradeoffs faced by one country--Sweden--if and as it acts on a decision its citizens made in 1980 to phase out the use of nuclear power there. The author adds that this decision has been reaffirmed by the Swedish Parliament on several occasions since the 1980 referendum, though with some elusive qualifications. What will be both the environmental and also the economic implications of a Swedish phaseout of the use of nuclear power to generate electricity there. These are the two issues Nordhaus addresses in this book

  13. Emergy Evaluation of a Swedish Nuclear Power Plant

    International Nuclear Information System (INIS)

    Kindberg, Anna

    2007-03-01

    Today it is common to evaluate and compare energy systems in terms of emission of greenhouse gases. However, energy systems should not only reduce their pollution but also give a large energy return. One method used to measure energy efficiency is emergy (embodied energy, energy memory) evaluation, which was developed by the system ecologist Howard T. Odum. Odum defines emergy as the available energy of one kind previously used up directly and indirectly to make a service or product. Both work of nature and work of human economy in generating products and services are calculated in terms of emergy. Work of nature takes the form of natural resources and work of human economy includes labour, services and products used to transform natural resources into something of value to the economy. The quotient between work of nature and work of human economy gives the emergy return on investment of the investigated product. With this in mind the present work is an attempt to make an emergy evaluation of a Swedish nuclear power plant to estimate its emergy return on investment. The emergy return on investment ratio of a Swedish nuclear power plant is calculated to approximately 11 in this diploma thesis. This means that for all emergy the Swedish economy has invested in the nuclear power plant it gets 11 times more emergy in return in the form of electricity generated by nuclear power. The method used in this work may facilitate future emergy evaluations of other energy systems

  14. Emergy Evaluation of a Swedish Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Kindberg, Anna

    2007-03-15

    Today it is common to evaluate and compare energy systems in terms of emission of greenhouse gases. However, energy systems should not only reduce their pollution but also give a large energy return. One method used to measure energy efficiency is emergy (embodied energy, energy memory) evaluation, which was developed by the system ecologist Howard T. Odum. Odum defines emergy as the available energy of one kind previously used up directly and indirectly to make a service or product. Both work of nature and work of human economy in generating products and services are calculated in terms of emergy. Work of nature takes the form of natural resources and work of human economy includes labour, services and products used to transform natural resources into something of value to the economy. The quotient between work of nature and work of human economy gives the emergy return on investment of the investigated product. With this in mind the present work is an attempt to make an emergy evaluation of a Swedish nuclear power plant to estimate its emergy return on investment. The emergy return on investment ratio of a Swedish nuclear power plant is calculated to approximately 11 in this diploma thesis. This means that for all emergy the Swedish economy has invested in the nuclear power plant it gets 11 times more emergy in return in the form of electricity generated by nuclear power. The method used in this work may facilitate future emergy evaluations of other energy systems.

  15. The Swedish Dilemma: Nuclear Energy v. the Environment

    International Nuclear Information System (INIS)

    Nordhaus, W.D.

    1995-01-01

    A phaseout of nuclear power in Sweden is supposed to be accomplished by year 2010. This study is an economic analysis of the questions that are parts of the Swedish nuclear dilemma. Even though the economic questions are in focus, the important environmental, health and safety questions are also treated. The basic argument is that Sweden should choose an energy system that allows its citizens to maximize their consumption in a long-term perspective. Consumption is here given a meaning that includes elements outside the market, such as environmental, health and safety aspects valued in a reasonable way. Considerations must also be given to international aspects like global environment, a free and open system of trade and the value of a stable set of rules and proprietary rights. The study compares the economic pros and cons of different energy systems within this general frame. A detailed model of the Swedish energy and power sectors was developed for the study, called the Swedish Energy and Environment Policy (SEEP) model. The SEEP model is built on modern economic theory and includes energy and environmental factors in a uniform way. 51 refs, 36 tabs, 6 figs

  16. The Swedish Nuclear Power Inspectorate's Review Statement and Evaluation of the Swedish Nuclear Fuel and Waste Management Co's RD and D Programme 2001

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-09-01

    According to the Act on Nuclear Activities, the holder of a licence to operate a nuclear reactor must adopt all necessary measures to manage and dispose of spent nuclear fuel and nuclear waste. The Act stipulates requirements on a research programme which is to be submitted to the competent regulatory authority once every three years. The Swedish Nuclear Power Inspectorate (SKI) is the competent authority that evaluates and reviews the programme. SKI distributes the programme to a wide circle of reviewing bodies for comment, including authorities, municipalities, universities and NGOs. The Swedish programme for final disposal of spent nuclear fuel started about 25 years ago. According to the Swedish Nuclear Waste Management Co. (SKB), the planned repository will not be closed until sometime in the 2050's. A series of decisions must be made before this goal is attained. The decision process can therefore be described as a multi-stage process. During each stages, safety will be evaluated and there is a possibility of taking additional time for development work or of selecting improved solutions. SKI's task is to ensure safety compliance throughout all of these stages. In its decision in January 2000, the Government explained that the Programme for Research, Development and Demonstration for the Treatment and Final Disposal of Nuclear Waste (RD and D Programme 98) complied with legislative requirements but that certain supplementary reporting should be conducted by SKB and submitted no later than when the next programme, in accordance with paragraph 12 of the Act on Nuclear Activities, was prepared (September 2001). The supplementary reporting requested by the Government, and which was submitted by SKB to SKI in December 2000, dealt with issues relating to method selection, site selection and the site investigation programme. SKI submitted its review of the supplement to the Government in June 2001 and the Government made a decision on the matter on November

  17. Operating experience from Swedish nuclear power plants 2002

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    The total production of electricity from Swedish nuclear power plants was 65.6 TWh during 2002, which is a decrease compared to 2001. The energy capability factor for the 11 Swedish reactors averaged 80.8%. The PWRs at Ringhals averaged 87.6%, while the BWRs, not counting Oskarshamn 1, reached 89.2%. No events, which in accordance to conventions should be reported to IAEA, have occurred during 2002. Operational statistics are presented for each Swedish reactor. The hydroelectric power was 66 TWh, 16% lower than 2000. Wind power contributed 0.5 TWh, and remaining production sources, mainly from solid fuel plants combined with district heating, contributed 10.9 TWh. The electricity generation totalled 143 TWh, considerably less than the record high 2001 figure of 158.7 TWh. The preliminary figures for export were 14.8 TWh and and for import 20.1 TWh.

  18. Quarterly report of the Swedish Nuclear Power Inspectorate April - June 1981

    International Nuclear Information System (INIS)

    1981-01-01

    The inspectorate has the supervision of the nuclear power plants and other nuclear installations. The report includes statements of security inspections of the Swedish nuclear power plants and accounts of handling, transport and storing of fissionable materials. Safety problems in Studsvik and at ASEA- ATOM concerning nuclear fuel and nuclear waste are discussed. (G.B.)

  19. Swedish support programme on nuclear non-proliferation in Central and Eastern Europe and Central Asia

    Energy Technology Data Exchange (ETDEWEB)

    Ek, P.; Andersson, Sarmite [Swedish Nuclear Power Inspectorate, Stockholm (Sweden); Wredberg, L. [ILG Consultant Ltd., Vienna (Austria)

    2000-06-15

    At the request of the Swedish Government, the Swedish Nuclear Power Inspectorate has established a support and co-operation programme in the area of nuclear non-proliferation with Russia and several of the republics of the former Soviet Union. The Programme was initiated in 1991 and an overall goal is to accomplish national means and measures for control and protection of nuclear material and facilities, in order to minimise the risk of proliferation of nuclear weapons and illicit trafficking of nuclear material and equipment. The objective of the Swedish Support Programme is to help each, so called, recipient State to be able to, independently and without help from outside, take the full responsibility for operating a national non-proliferation system and thereby fulfil the requirements imposed through the international legal instruments. This would include both the development and implementation of a modern nuclear legislation system, and the establishment of the components making up a national system for combating illicit trafficking. The support and co-operation projects are organised in five Project Groups (i.e. nuclear legislation, nuclear material control, physical protection, export/import control, and combating of illicit trafficking), which together cover the entire non-proliferation area. Up till June 2000, support and co-operation projects, completed and on-going, have been carried out in ten States, namely Armenia, Azerbaijan, Belarus, Georgia, Kazakstan, Latvia, Lithuania, Moldova, Russia and Ukraine. Furthermore, programmes have been initiated during the first part of 2000 with Estonia, Uzbekistan, Kyrgyzstan and Tajikistan. In addition, assistance has been given to Poland on a specific nuclear material accountancy topic. All projects are done on request by and in co-operation with these States. The total number of projects initiated during the period 1991 to June 2000 is 109, thereof 77 have been completed and 32 are currently on-going. It is the

  20. Swedish support programme on nuclear non-proliferation in Central and Eastern Europe and Central Asia

    International Nuclear Information System (INIS)

    Ek, P.; Andersson, Sarmite; Wredberg, L.

    2000-06-01

    At the request of the Swedish Government, the Swedish Nuclear Power Inspectorate has established a support and co-operation programme in the area of nuclear non-proliferation with Russia and several of the republics of the former Soviet Union. The Programme was initiated in 1991 and an overall goal is to accomplish national means and measures for control and protection of nuclear material and facilities, in order to minimise the risk of proliferation of nuclear weapons and illicit trafficking of nuclear material and equipment. The objective of the Swedish Support Programme is to help each, so called, recipient State to be able to, independently and without help from outside, take the full responsibility for operating a national non-proliferation system and thereby fulfil the requirements imposed through the international legal instruments. This would include both the development and implementation of a modern nuclear legislation system, and the establishment of the components making up a national system for combating illicit trafficking. The support and co-operation projects are organised in five Project Groups (i.e. nuclear legislation, nuclear material control, physical protection, export/import control, and combating of illicit trafficking), which together cover the entire non-proliferation area. Up till June 2000, support and co-operation projects, completed and on-going, have been carried out in ten States, namely Armenia, Azerbaijan, Belarus, Georgia, Kazakstan, Latvia, Lithuania, Moldova, Russia and Ukraine. Furthermore, programmes have been initiated during the first part of 2000 with Estonia, Uzbekistan, Kyrgyzstan and Tajikistan. In addition, assistance has been given to Poland on a specific nuclear material accountancy topic. All projects are done on request by and in co-operation with these States. The total number of projects initiated during the period 1991 to June 2000 is 109, thereof 77 have been completed and 32 are currently on-going. It is the

  1. The Swedish National Defence Research Establishment and the plans for Swedish nuclear weapons; Foersvarets forskningsanstalt och planerna paa svenska kaernvapen

    Energy Technology Data Exchange (ETDEWEB)

    Jonter, Thomas [Uppsala Univ. (Sweden). Dept. of History

    2001-03-01

    This study analyses the Swedish nuclear weapons research since 1945 carried out by the Swedish National Defence Research Establishment (FOA). The most important aspect of this research was dealing with protection in broad terms against nuclear weapons attacks. However, another aspect was also important from early on - to conduct research aiming at a possible production of nuclear weapons. FOA performed an extended research up to 1968, when the Swedish Government signed the Non-Proliferation Treaty (NPT), which meant the end of these production plans. Up to this date, five main investigations about the technical conditions were made, 1948, 1953, 1955, 1957 and 1965, which all together expanded the Swedish know-how to produce a bomb. The Swedish plans to procure nuclear weapons were not an issue in the debate until the mid 50's. The reason for this was simple, prior to 1954 the plans were secretly held within a small group of involved politicians, military and researchers. The change of this procedure did take place when the Swedish Supreme Commander in a public defence report in 1954 favoured a Swedish Nuclear weapons option. In 1958 FOA had reached a technical level that allowed the Parliament to make a decision. Two programs were proposed - the L-programme (the Loading Programme), to be used if the parliament would say yes to a production of nuclear weapons, and the S-programme (the Protection Programme), if the Parliament would say no. The debate on the issue had now created problems for the Social Democratic Government. The Prime Minister, Tage Erlander, who had earlier defended a procurement of nuclear weapons, was now forced to reach a compromise. The compromise was presented to the parliament in a creative manner that meant that only the S-programme would be allowed. The Government argued that the technical level did allow a 'freedom of action' up to at least the beginning of the 60's when Sweden was mature to make a decision on the issue

  2. The Swedish system for funding of nuclear waste management

    International Nuclear Information System (INIS)

    Hedman, Tommy; Westerlind, Magnus

    2003-01-01

    Nuclear activities in Sweden goes back to early 1950's. Research and development on spent fuel disposal in Sweden started in earnest with the report of the AKA-commission 1976, which outlined a complete system for the management of spent fuel and associated waste, including how to handle the costs. Components of the system, mentioned in the AKA-report, such as a sea transportation (MS Sigyn), a central spent fuel storage facility (CLAB) and a final repository for operational waste (SFR) have since been constructed and taken in operation. The research and planning for the additional facilities needed for a complete system is in an advanced stage. A nuclear waste fund has also been created, based on a special fee on nuclear power production. During the 1970's the nuclear power utilities established their own internal funds for future waste management expenses. These funds were transferred to the government-run financing system established in 1981 when the Swedish parliament passed the Act on the Financing of Future Expenses for Spent Nuclear Fuel etc. The fees to be paid into the Fund are to be based on the assumption that each reactor generates electricity for 25 years. These fees, plus the interest on the money already deposited in the Fund, must meet all expenses for handling spent fuel, dismantling facilities and for dealing with radioactive decommissioning waste. A guarantee shall compensate for the eventuality of a nuclear power plant being closed before the end of the 25-year earning period. The type of guarantee must be available until all nuclear waste has been placed in a repository and must cover contingencies for the waste programme. This guarantee will be used if expenses for future nuclear waste management become higher than expected, if these expenses have to be met earlier than expected, or if the actual amount in the Fund is lower than was estimated. The process of yearly cost calculations, review and determination of fees and guarantees is well

  3. Changes in control room at Swedish nuclear power plants

    International Nuclear Information System (INIS)

    Kecklund, Lena

    2005-09-01

    The Swedish nuclear power plants were commissioned during a period between 1972 and 1985 and the instrumentation and control equipment are basically from that period. For several years there have been plans made for changes in all the nuclear power plants and to a certain extent the changes in control equipment and monitoring rooms have also been implemented. The object of this project was to make a comprehensive review of the changes in control room design implemented in the Swedish nuclear power plants and to describe how the MTO- (Man-Technology-Organisation) and (Man-Machine-Interface) -issues have been integrated in the process. The survey is intended to give an overall picture of the changes in control room design and man-machine-interface made in the Swedish control rooms, in order to get a deeper knowledge of the change management process and its results as well as of the management of MTO-issues in these projects. The units included in this survey are: Oskarhamn reactor 2 and 3; Ringhals reactor 2, 3 and 4; Forsmark reactor 1, 2 and 3. The Oskarshamn 1 unit has not been included in this report as it has recently undergone an extensive modernisation program as well as a detailed inspection by the SKI (Swedish Nuclear Power Inspectorate). At Ringhals 2 the modernisation work is carried out at present and the unit is also subjected to extensive inspection activities carried out by SKI and is therefore not part of this survey. This report also includes a short description of relevant standards and requirements. Then follows a presentation of the results of the plant survey, presented as case studies for three companies OKG, Ringhals and FKA. Control room changes are summarized as well as the results on specific MTO issues which has been surveyed. In all the power companies there is a joint way of working with projects concerning plant modifications. This process is described for each company separately. In the concluding of the report the strengths and

  4. The Swedish Nuclear Power Inspectorate's Regulations concerning Safety in connection with the Disposal of Nuclear Material and Nuclear Waste. General Recommendations concerning the Application of the Swedish Nuclear Power Inspectorate's Regulations above

    International Nuclear Information System (INIS)

    2002-06-01

    An english translation of the original Swedish regulations concerning the safety in disposal of nuclear wastes is published in this booklet, together with recommendations on how these regulations can be applied

  5. The research strategy of the Swedish Nuclear Power Inspectorate

    International Nuclear Information System (INIS)

    2002-06-01

    such projects in future. Furthermore, in the safeguards area, important joint work is underway in ESARDA. Experience has shown that a prerequisite for taking advantage of international research and expertise is that activities on the national level should be of an adequate scope within each area. In SKI's opinion, the increased co-operation offers the possibility of gaining access to important research information at a relatively modest cost. In recent years, concerns have been expressed regarding the possibility of maintaining adequate strategic expertise in the nuclear field. To explore this issue, SKI has investigated the needs in the strategic expertise areas today and within a ten-year perspective. The investigation shows that the annual university recruitment need is a total of about 50 people within the strategic nuclear areas. In SKI's opinion, the education capacity in these areas is adequate at present and is assured for the foreseeable future as a result of the measures taken by SKI and the nuclear industry through the Swedish Nuclear Centre (SKC). There is also concern regarding expertise and resources for conducting qualified experiments. Over the past ten years, several of the world's research reactors and experimental facilities in thermohydraulics have been decommissioned. The OECD/NEA has therefore taken the initiative to support 'Centres of Excellence' (CoE), which are defined as international research groups associated with important experimental facilities. In parallel, within the Sixth Framework Programme, which is starting in 2003, the EU has used the term 'Networks of Excellence' (NoE), where the aim is to achieve co-operation between researchers within a specific research discipline. SKI has investigated the possibility of proposing a CoE in Sweden or of participating in NoE, in order to support important research conducted in Sweden. SKI sees a possibility that Studsvik's R2 reactor and the fuel experiments that can be conducted and analysed at

  6. Safety and Radiation Protection at Swedish Nuclear Power Plants 2004

    International Nuclear Information System (INIS)

    2005-05-01

    In 2004, no severe events occurred which challenged the safety at Swedish nuclear power plants. Two events were classified as Level 1 events on the 7-point International Nuclear Event Scale. The events are described in the chapter Operating Experience. During the year, relatively little new degradation and deficiencies were detected in the reactor barriers. The number of fuel defects is constantly decreasing. The same applies to the number of defects in the pressure-bearing systems. On the other hand, SKI has observed that damage is beginning to occur in the reactor containment. Applied control programmes are effective and capture most of the damage at an early stage before safety is affected. However, individual defects have been detected in material where such degradation was not anticipated and which is currently not regularly checked. SKI will follow up these observations thoroughly in order to judge whether there is a need for increased inspections. During the year, two defects found in the reactor containment were reported. The damage and degradation that occurred indicate that the causes were mainly due to defects during construction, or during subsequent plant modification. Taking into account the difficulty of inspecting the reactor containments and other vital building structures reliably, it is important for the licensees to continue to study possible ageing and degradation mechanisms that can affect the integrity and safety of the components. SKI continuously follows the progress of the degradation in the mechanical devices and building structures that form the plant barriers and defence-in-depth system. This includes both overall evaluations of the progress of degradation as a whole and the progress of degradation in each facility. Furthermore, the occurrence of different degradation mechanisms is followed. The power companies have intensified the rate of investment in nuclear power plants. Modernization work and safety reviews stipulated by the

  7. Summary of personnel doses and discharge of radioactivity at Swedish nuclear power plants 1971-1975

    International Nuclear Information System (INIS)

    Malmqvist, L.; Persson, Aa.

    1977-01-01

    The report is a summary of personnel doses and activity discharges from Swedish nuclear power plants during the first five years of electric power production by nuclear plants. The personnel doses for the Sweedish plants are lower than the corresponding values for American plants. The highest Swedish value is o,13 manrem per MWE and year. The discharge of radioactivity to the atmosphere from the Swedish plants has been for below the maximum permissible limits. The discharge of radioactivity to the water recipients was less than 1 % of what is permissible

  8. Radioactive discharges and environmental monitoring at the Swedish nuclear facilities 2002-2004; Utslaepps- och omgivningskontroll vid de kaerntekniska anlaeggningarna 2002-2004

    Energy Technology Data Exchange (ETDEWEB)

    Luening, Maria

    2005-11-15

    According to Swedish regulations the effective dose to an individual in the critical group, from one year of releases of radioactive substances to air and water from all facilities located in the same geographically delimited area, shall not exceed 0.1 mSv. The effective dose, which concerns the dose from external radiation and the committed effective dose from internal radiation, shall be integrated over a period of 50 years. When calculating the dose to individuals in the critical group, both children and adults shall be taken into consideration. If the calculated dose exceeds 0.01 mSv per calendar year, realistic calculations of radiation doses shall be conducted for the most affected area. SSI has not defined any radionuclide specific discharge limits. Limitation of releases is being implemented through the restriction of dose to the critical group members. For each nuclear facility, e.g. each reactor, and for each radionuclide that may be released, specific release-to-dose factors have been calculated. The factors have been calculated for hypothetical critical groups, and take into consideration local dispersion conditions in air and in the environment, local settlements, local production of food-stuffs as well as moderately conservative assumptions on diet and contribution of locally produced food-stuff to the diet of the group. For nuclear power reactors, release-to-dose factors (mSv/Bq) have been calculated for 97 radionuclides that may be discharged to the marine environment and 159 radionuclides that may be emitted to air. Discharges shall be controlled through the measurement of representative samples for each release pathway. The analyses shall include nuclide-specific measurements of gamma and alpha-emitting radioactive substances as well as, where relevant, strontium-90 and tritium. The discharges of radioactive substances from the Swedish NPPs result in very low doses well below the limits issued by SSI. Even so, the concentration of radionuclides in

  9. Fundamental design bases for independent core cooling in Swedish nuclear power reactors

    International Nuclear Information System (INIS)

    Jelinek, Tomas

    2015-01-01

    New regulations on design and construction of nuclear power plants came into force in 2005. The need of an independent core cooling system and if the regulations should include such a requirement was discussed. The Swedish Radiation Safety authority (SSM) decided to not include such a requirement because of open questions about the water balance and started to investigate the consequences of an independent core cooling system. The investigation is now finished and SSM is also looking at the lessons learned from the accident in Fukushima 2011. One of the most important measures in the Swedish national action plan is the implementation of an independent core cooling function for all Swedish power plants. SSM has investigated the basic design criteria for such a function where some important questions are the level of defence in depth and the acceptance criteria. There is also a question about independence between the levels of defence in depth that SSM have included in the criteria. Another issue that has to be taken into account is the complexity of the system and the need of automation where independence and simplicity are very strong criteria. In the beginning of 2014 a memorandum was finalized regarding fundamental design bases for independent core cooling in Swedish nuclear power reactors. A decision based on this memorandum with an implementation plan will be made in the first half of 2014. Sweden is also investigating the possibility to have armed personnel on site, which is not allowed currently. The result from the investigation will have impact on the possibility to use mobile equipment and the level of protection of permanent equipment. In this paper, SSM will present the memorandum for design bases for independent core cooling in Swedish nuclear power reactors that was finalized in March 20147 that also describe SSM's position regarding independence and automation of the independent core cooling function. This memorandum describes the Swedish

  10. Quarterly report of the Swedish Nuclear Power Inspectorate

    International Nuclear Information System (INIS)

    1984-01-01

    The inspectorate is reporting on the departures of the nuclear power plants from normal operations. No safety incidents of importance occurred during the 4th quarter 1983. There have been 12 reactor trips for the 10 power units, 9 of those occurred on Dec. 27th, when the Southern Swedish power grid tripped.(P.Aa.)

  11. Sweden and the bomb. The Swedish plans to acquire nuclear weapons, 1945 - 1972

    Energy Technology Data Exchange (ETDEWEB)

    Jonter, T [Uppsala Univ. (Sweden). Dept. of History

    2001-09-01

    This study analyses the Swedish nuclear weapons research since 1945 carried out by the Swedish National Defence Research Establishment (FOA). The most important aspect of this research was dealing with protection in broad terms against nuclear weapons attacks. However, another aspect was also important from early on - to conduct research aiming at a possible production of nuclear weapons. FOA performed an extended research up to 1968, when the Swedish government signed the Non-Proliferation Treaty (NPT), which meant the end of these production plans. Up to this date, five main investigations about the technical conditions were made, 1948, 1953, 1955, 1957 and 1965, which all together expanded the Swedish know-how to produce a bomb. The Swedish plans to procure nuclear weapons were not an issue in the debate until the mid-50's. The reason for this was simple, prior to 1954 the plans were secretly held within a small group of involved politicians, military and researchers. The change of this procedure did take place when the Swedish Supreme Commander in a public defence report in 1954 favoured a Swedish Nuclear weapons option. In 1958 FOA had reached a technical level that allowed the parliament to make a decision. Two programs were proposed - the L-programme (the Loading Programme), to be used if the parliament would say yes to a production of nuclear weapons, and the S-programme (the Protection Programme), if the parliament would say no. The debate on the issue had now created problems for the Social Democratic Government. The prime minister, Tage Erlander, who had earlier defended a procurement of nuclear weapons, was now forced to reach a compromise. The compromise was presented to the parliament in a creative manner that meant that only the S-programme would be allowed. The government argued that the technical level did allow a 'freedom of action' up to at least the beginning of the 60's when Sweden was mature to make a decision on the issue

  12. Sweden and the bomb. The Swedish plans to acquire nuclear weapons, 1945 - 1972

    International Nuclear Information System (INIS)

    Jonter, T

    2001-09-01

    This study analyses the Swedish nuclear weapons research since 1945 carried out by the Swedish National Defence Research Establishment (FOA). The most important aspect of this research was dealing with protection in broad terms against nuclear weapons attacks. However, another aspect was also important from early on - to conduct research aiming at a possible production of nuclear weapons. FOA performed an extended research up to 1968, when the Swedish government signed the Non-Proliferation Treaty (NPT), which meant the end of these production plans. Up to this date, five main investigations about the technical conditions were made, 1948, 1953, 1955, 1957 and 1965, which all together expanded the Swedish know-how to produce a bomb. The Swedish plans to procure nuclear weapons were not an issue in the debate until the mid-50's. The reason for this was simple, prior to 1954 the plans were secretly held within a small group of involved politicians, military and researchers. The change of this procedure did take place when the Swedish Supreme Commander in a public defence report in 1954 favoured a Swedish Nuclear weapons option. In 1958 FOA had reached a technical level that allowed the parliament to make a decision. Two programs were proposed - the L-programme (the Loading Programme), to be used if the parliament would say yes to a production of nuclear weapons, and the S-programme (the Protection Programme), if the parliament would say no. The debate on the issue had now created problems for the Social Democratic Government. The prime minister, Tage Erlander, who had earlier defended a procurement of nuclear weapons, was now forced to reach a compromise. The compromise was presented to the parliament in a creative manner that meant that only the S-programme would be allowed. The government argued that the technical level did allow a 'freedom of action' up to at least the beginning of the 60's when Sweden was mature to make a decision on the issue. During this period

  13. Swedish Disarmament Policy

    OpenAIRE

    2012-01-01

    NPIHP Partners Host Conference on Swedish Disarmament Policy Dec 05, 2012 The Nuclear Proliferation International History Project is pleased to announce a conference on Swedish nuclear disarmament policy, organized and hosted by Stockholm University on 26 november 2012. Organized by Stockholm University Professor Thomas Jonter, Emma Rosengren, Goran Rydeberg, and Stellan Andersson under the aegis of the Swedish Disarmament Resaerch Project, the conference featured keynote addresses by Hans Bl...

  14. Failure data collection from a Swedish nuclear power plant

    International Nuclear Information System (INIS)

    Andersson, B.; Bhattacharyya, A.; Hilding, S.

    1975-01-01

    The Swedish nuclear utilities have formed a joint working group in the field of reliability data of thermal power plants, nuclear and fossil fuelled. The primary task of the working group is to create a standard procedure of collecting failure data from the Swedish nuclear power plants in operation. The failure data will be stored in a joint data bank. A first test collection of such data has been implemented on Oskarshamn I, and the experience with this work is discussed in this report. Reliability analysis of an engineering system is based on the availability of pertinent information on the system components. Right from the beginning within the Swedish nuclear industry the consensus has been that such data can be suitably obtained by monitoring the operating power stations. This has led to a co-operative arrangement between the vendor, ASEA-ATOM and a utility, Oskarshamnsverkets Kraftgrupp AB (OKG) to utilize information from component malfunctions in the reliability analysis. The utility prepares component failure reports which are sent to the vendor for further treatment. Experience gathered to date indicates that this arrangement is effective although many persons are involved in this process of information transmittal. The present set-up is flexible enough to accommodate necessary changes in view of problems which arise now and then in monitoring a complex system like a nuclear power station. This report briefly describes the structure of the failure data collection system. The way in which the raw data collection is done in the station by the owner and the subsequent data processing by the vendor is discussed. A brief status report of the information collected since 1971 is given. It can be concluded that valuable reliability data can be obtained by monitoring component failure reports from an operating power plant. Two requirements are, however, that all the parties involved in the arrangement follow given instructions carefully and that the assumed

  15. The Swedish Nuclear Power Inspectorate's evaluation of SKB's RD and D Program 98. Review report

    International Nuclear Information System (INIS)

    1999-04-01

    the final disposal system is not irrevocable, SKB now uses the term deep disposal. However, the term used in the legislation is final disposal. Regardless of which term is used, different degrees of retrievability can be discussed. SKI has distributed RDandD Programme 98 to sixty-three reviewing bodies for comment. Forty-five responses were received. The reviewing bodies include universities and institutes of technology, local safety committees, municipalities hosting nuclear facilities and municipalities participating in feasibility studies as well as many authorities such as county administrative boards, the Swedish Environmental Protection Agency, the Swedish Board of Housing, Building and Planning and SSI. The comments of the reviewing bodies mainly focus on the decision-making process, including issues relating to method selection and site selection and, in particular, on the selection of sites for site investigation. Several reviewing bodies, particularly universities and institutes of technology, have also submitted comments of a more technical/scientific nature. SKI's evaluation has focused on determining whether SKB's programme can be considered to fulfil the requirements stipulated in the Act on Nuclear Activities that such a programme should be able to result in the implementation of solutions for the final disposal of the spent nuclear fuel from the Swedish nuclear power programme. Furthermore, SKI's evaluation has focused on the conditions that SKI considers should apply to SKB's future work

  16. Operating experience from Swedish nuclear power plants 2001

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    The total production of electricity from Swedish nuclear power plants was 69.2 TWh during 2001, which is an increase of more than 25% compared to 2000. The hydroelectric power production increased to 78.3 TWh, 22% more than during a normal year, i.e. a year with average rainfall. Wind power contributed 0.5 TWh, and remaining production sources, mainly from solid fuel plants combined with district heating, contributed 9.6 TWh. The electricity generation totalled 157.6 TWh, the highest annual production to date. The preliminary figures for export were 18.5 TWh and and for import 11.1 TWh. Operational statistics are presented for each Swedish reactor. Two events, given INES level 1 rating, are reported from Barsebaeck 2 and Ringhals 2.

  17. Operating experience from Swedish nuclear power plants 2001

    International Nuclear Information System (INIS)

    2002-01-01

    The total production of electricity from Swedish nuclear power plants was 69.2 TWh during 2001, which is an increase of more than 25% compared to 2000. The hydroelectric power production increased to 78.3 TWh, 22% more than during a normal year, i.e. a year with average rainfall. Wind power contributed 0.5 TWh, and remaining production sources, mainly from solid fuel plants combined with district heating, contributed 9.6 TWh. The electricity generation totalled 157.6 TWh, the highest annual production to date. The preliminary figures for export were 18.5 TWh and and for import 11.1 TWh. Operational statistics are presented for each Swedish reactor. Two events, given INES level 1 rating, are reported from Barsebaeck 2 and Ringhals 2

  18. The Swedish police as a part of the security systems of nuclear material and other radioactive materials

    International Nuclear Information System (INIS)

    Nylen, L.

    2001-01-01

    Full text: In Sweden a special transport system has been developed for transport of nuclear substances and nuclear waste. This system in itself includes a high security level. Extraordinary circumstances can give cause for protective police measures and intervention. In concerned provinces an incident and emergency response planning take place of the police actions that may be needed at the following types of event: a) bomb threat; b) attack or threat of attack on transport vehicle; c) demonstrations. If a Swedish nuclear power plant is the subject of a bomb threat or other criminal assault, it is in Sweden, according to the Police Act, the task of the police to intervene, interrupt criminal acts and to restore order and security. The role of the Swedish police as regards the physical protection is, among other things, to carry out a certain control within protected area by special trained police personnel before a reactor is put into operation or restarted after revision or repair. Police authorities that have a nuclear power station within its jurisdiction should establish a plan for police actions at the nuclear power station in consultation with legal owner or management of the plant, the Swedish Nuclear Power Administration and the county administration. Special training and frequent practice of response personnel is crucial as well as co-training with key personnel at nuclear power stations. The National Criminal Investigation Department coordinates and commands police measures concerning different types of nuclear transports. Close co-operation with security and operational personnel at the nuclear power stations, operators of the transport system, the Swedish Nuclear Power Administration and the Swedish Radiation Protection Institute is very important. (author)

  19. Operating experience from Swedish nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-06-01

    The total production of electricity from Swedish nuclear power plants was 70.5 TWh during 1998, which is the second highest yearly production ever. Production losses due to low demand totaled 5.1 TWh combined for all twelve units and production losses due to coastdown operation totaled an additional 0.5 TWh. The reason for this low power demand was a very good supply of water to the hydropower system. Hydroelectric power production was 73.6 TWh, an increase by roughly 5 TWh since 1997. Hence, the hydroelectric power production substantially exceeded the 64 TWh expected during a normal year, i.e. a year with average rainfall. Remaining production sources, mainly fossil fuel electricity production combined with district heating, contributed with 10 TWh. The total electricity production was 154.2 TWh, the highest yearly production ever. The total electricity consumption including transmission losses was 143.5 TWh. This is also the highest consumption ever and an increase by one percent compared to 1997. The preliminary net result of the electric power trade shows a net export by 10.7 TWh. The figures above are calculated from the preliminary production results. A comprehensive report on electric power supply and consumption in Sweden is given in the 1998 Annual Report from the Swedish Power Association. Besides Oskarshamn 1, all plants have periodically been operated in load-following mode, mostly because of the abundant supply of hydropower. The energy availability for the three boiling water reactors at Forsmark averaged 93.3 % and for the three pressure water reactors at Ringhals 91.0 %, both figures are the highest ever noted. In the section `Special Reports` three events of importance to safety that occurred during 1998 are reported. The events were all rated as level 1 according to the International Nuclear Event Scale (INES) Figs, tabs.; Also available in Swedish

  20. Economical effect of nuclear power phase out. Swedish selection and dilemma

    International Nuclear Information System (INIS)

    Fujime, Kazuya

    1999-01-01

    Now, it is forecast that the nuclear power plant is not planned its new location except Japan and France among advanced industrial nations, and is fated to phase out at least on its duration year (life). In the ''World Energy Outlook, 1998'' of the International Energy Organization and the International Energy Outlook, 1999 of U.S. Department of Energy, it is also described that both capacities and power generations of nuclear power in the world would reduce after passing their peaks from 2010 to 2020. Dr. W.D. Nord house showed concretely in his ''Swedish Nuclear Dilemma'' that the nuclear power phase out brought a large economical loss to Swedish by a quantitative calculation for a question on if an electric source alternative to nuclear power could be obtained without economical loss. He proposed there that the nuclear power phase out brought a huge economical loss, was inconsistent to global warming prohibition policy, and was adequate to abolish only two out of twelve sets of already defuse determined nuclear power plants. It seems to be necessary to re-examine calmly a result of national vote in 1980, and to revise its orbit to more concrete and actual energy and environment political route. (G.K.)

  1. Operating experience from Swedish nuclear power plants 2003

    International Nuclear Information System (INIS)

    2004-01-01

    In safety terms, operations of the Swedish nuclear power plants in 2003 can be summarized as having ben good, with a few exceptions: The thermal mixer problem at Barsebaeck-2; The Highest Permissible Limit Value excursion at OKG-3, which subjected the reactor pressure vessel to a too rapid temperature change; and An INES class 1 incident at Ringhals-1. The Barsebaeck and Ringhals events were not of such seriousness as to represent a threat to reactor safety, but they both had the effect of causing the Nuclear Power Inspectorate to question safety cultures at the plants. The mixer event resulted in a considerable production loss, with the reactor being shut down twice, making a total of five months. OKG-3 was shut down for almost two months during the autumn. Despite the above, production from Swedish NPPs was much the same as during 2002. Total electricity production amounted to 65 TWh (65.2 TWh in 2002). On the average the energy availability of the eleven reactors was 79%. The PWRs at Ringhals had an average energy availability of 89%, while the BWRs reached 76%

  2. The Swedish dilemma - Nuclear energy v. the environment

    International Nuclear Information System (INIS)

    Nordhaus, W.D.

    1995-11-01

    A phaseout of nuclear power in Sweden is supposed to be accomplished by year 2010. This study is an economic analysis of the questions that are parts of the nuclear dilemma. Even though the economic questions are in focus, the important environmental, health and safety questions are also treated. The basic argument is that Sweden should choose an energy system that allows its citizens to maximize their consumption in a long-term perspective. Consumption is here given a meaning that includes elements outside the market, such as environmental, health and safety aspects valued in a reasonable way. Considerations must also be given to international aspects like global environment, a free and open system of trade and the value of a stable set of rules and proprietary rights. The study compares the economic pros and cons of different energy systems within this general frame. A detailed model of the Swedish energy and power sectors was developed for the study, called the Swedish Energy and Environment Policy (SEEP) model. the SEEP model is built on modern economic theory and includes energy and environmental factors in a uniform way. 8 figs 16 tabs

  3. The Swedish dilemma - Nuclear energy v. the environment

    Energy Technology Data Exchange (ETDEWEB)

    Nordhaus, W D [Yale Univ. (United States)

    1995-11-01

    A phaseout of nuclear power in Sweden is supposed to be accomplished by year 2010. This study is an economic analysis of the questions that are parts of the nuclear dilemma. Even though the economic questions are in focus, the important environmental, health and safety questions are also treated. The basic argument is that Sweden should choose an energy system that allows its citizens to maximize their consumption in a long-term perspective. Consumption is here given a meaning that includes elements outside the market, such as environmental, health and safety aspects valued in a reasonable way. Considerations must also be given to international aspects like global environment, a free and open system of trade and the value of a stable set of rules and proprietary rights. The study compares the economic pros and cons of different energy systems within this general frame. A detailed model of the Swedish energy and power sectors was developed for the study, called the Swedish Energy and Environment Policy (SEEP) model. the SEEP model is built on modern economic theory and includes energy and environmental factors in a uniform way. 8 figs 16 tabs.

  4. The Swedish programme for radioactive waste management

    International Nuclear Information System (INIS)

    Bjurstroem, S.; Forsstroem, H.

    1986-10-01

    The following systems and facilities are currently in operation and under implementation: a sea transportation system for all kinds of nuclear waste, a central facility for interim storage of spent fuel (CLAB) and a central underground repository for final disposal of low and medium level reactor waste (SFR). For the remaining steps - final disposal of highly active and longlived radioactive residues - a concept, based on encapsulation of the fuel elements in copper canisters and final storage of the canisters in a repository situated 500 m down in crystalline rock (KBS-3), has been developed and approved by the government in accordance with the Swedish nuclear legislation. Although a feasible method for final disposal of the highly active residues has been shown, the Swedish legislation requires that research be carried out to reach the best possible base for the final decision around the year 2000. In parallel with this a geological investigation programme is carried out to find a suitable site for a final repository. The final site selection is foreseen at the end of the 1990's. All costs for the management of radioactive waste from the nuclear power plants are carried by a fee determined annually. The fee is 0.019 SEK/kWh for 1986

  5. Evaluation of regulations and norms for concrete constructions in Swedish nuclear power plants; Utvaerdering av regler och normer foer betongkonstruktioner i svenska kaernkraftsanlaeggningar

    Energy Technology Data Exchange (ETDEWEB)

    Jovall, Ola (Scanscot Technology AB, Lund (Sweden))

    2010-12-15

    In the SSM's regulations and recommendations, there are at present no specific requirements and adequate guidance on how concrete structures should be designed in case of new buildings or verification analyses of existing buildings. The result of the work presented in this report constitute the basis for SSM's ongoing regulatory project Investigation regarding requirements for construction, design, analysis and review of reactor containments and other safety-related building structures. The project includes the following: 1. Summary of the regulations and requirements that have been applied at the initial design and new construction of concrete structures at the Swedish nuclear power plants. 2. Comparison and evaluation of relevant regulations published by the European and North American authorities. 3. Comparison and evaluation of relevant codes, standards, guidelines etc. for load-bearing concrete structures in different countries. 4. Conclusions and recommendations to the regulatory framework for the design of load-bearing concrete structures at the Swedish nuclear power plants. Based on a comparison and evaluation of regulations from the U.S., Canada, France, the UK, Finland and Sweden, as well as guidelines established by the international organizations IAEA and EUR, the following general recommendations are provided as a regulatory framework for the design of load-bearing concrete structures at the Swedish nuclear power plants: 1. The Eurocodes will replace the BKR design rules of Swedish National Board of Housing, Building and Planning as the conventional building regulations on the construction of nuclear power plants. 2. A general review and updating of the existing industry standard Design rules for buildings at nuclear facilities DRB:2001 is implemented. Reference is made to the Eurocodes with regard to conditions of conventional design rules

  6. Development, implementation, and experiences of the Swedish spent fuel and waste sea transportation system

    International Nuclear Information System (INIS)

    Gustafsson, B.; Dybeck, P.; Pettersson, S.

    1989-01-01

    In Sweden, electrical production from the first commercial nuclear plant commenced in 1972, i.e. 17 years ago. There are now 12 nuclear reactors in operation, the last two were connected to the grid in fall 1985. These 12 reactors produced about 50% of the present electrical demand in Sweden. The remaining 50% are mainly covered by hydro power stations. The operating record for the Swedish reactors has generally been very good. Nevertheles, the Swedish parliament has taken a decision, that nuclear power shall be phased out from the Swedish system not later than the year 2010. Many of them - to use a mild expression-question the wisdom of this decision. The efforts in the waste management area will, however, be given a continued high priority. The primary responsibility for the management of nuclear waste lies with the waste producer. In order to achieve a good coordination and an effective management the four Swedish nuclear power utilities have delegated these responsibilities to the jointly owned Swedish Nuclear Fuel and Waste Management Co., SKB. This means that SKB is responsible for measures required for the implementation of the national nuclear waste management program such as planning, design, construction and operation of waste facilities including the necessary R and D work. The responsibility of the nuclear power utilities also includes the financing of the waste management program. A special funding system, controlled by the authorities, has been established for this purpose

  7. The Swedish concept for disposal of waste arising from the operation of nuclear power plants

    International Nuclear Information System (INIS)

    Carlsson, J.

    1996-01-01

    The Swedish nuclear power programme consists of 12 reactors producing 50% of the electricity in Sweden. It is stated by law that a waste producer has to make sure a safe handling and disposal of his radioactive waste. SKB is performing necessary activities on behalf of the waste producers. A system is in operation today that will manage all the radioactive waste produced in the country. The system consists of a transportation system, a final repository for operational waste and an interim storage facility for spent fuel. What remains to be built is an encapsulation plant for the spent fuel and a deep repository for final disposal of spent fuel and other long lived waste. All costs for managing and disposal of radioactive waste is paid by the owners of the nuclear power utilities. (author) 9 figs

  8. Radioiodine removal in nuclear facilities

    International Nuclear Information System (INIS)

    1980-01-01

    Technical means are reviewed available for the retention of radioiodine in nuclear power plants and fuel reprocessing plants, its immobilization, storage, and disposal. The removal of iodine species from gaseous effluents of nuclear power plants using impregnated activated charcoal is dealt with. Various scrubbing techniques for trapping iodine from the head-end and dissolver off-gases are discussed as well as solid adsorbents for iodine which may be used to clean up other gaseous streams. Current practices and activities for radioiodine treatment and management in Belgian, Dutch, Swedish, USSR and UK nuclear installations are presented

  9. Assuring nuclear safety competence into the 21. century a swedish perspective

    International Nuclear Information System (INIS)

    Lowenhielm, G.; Svensson, G.; Tiren, IN

    2000-01-01

    Many initiatives have been taken and are being considered to maintain and develop competence in the nuclear field in Sweden. The number of qualified nuclear engineering staff at the plants and at the regulatory bodies appears to be rather small for all important tasks to be carried out. Nevertheless, the current programmes indicate that one can look at future recruitment and competence with some confidence-in spite of the age profile of qualified staff with many approaching retirement. The Swedish Nuclear Power Inspectorate, (SKI), the academic community, and the Industry are conducting several research projects that support the optimistic view expressed above. Examples include: Safety research at SKI and universities: Since many years, SKI is sponsoring research in safety analysis within the framework of its Research Programme. In this programme the regulator supports two professors, one in Nuclear Power Safety at KTH and the other in the Interaction of Man, Technology and Organisation at the University of Stockholm. Swedish Centre of Nuclear Technology: A main activity of the Centre is to support PhD candidates (with scientific advice and economy) in topics related to nuclear technology. The Industry also makes great efforts to support recruitment by various initiatives: Design reconstitution projects: Each one of the older operating plants was subject to a design review that engaged a large number of young staff at the utilities and the vendors. 'Young Generation': It constitutes a communication network among young engineers at European nuclear plants, regulators, and other organisations. (authors)

  10. Quality assurance requirements for the operation of Swedish nuclear power plants

    International Nuclear Information System (INIS)

    1983-09-01

    An adaption of NRC's 10 CFR 50, Appendis B (Quality Assurance Criteria for Nuclear Power and Fuel Reprocessing Plants) to Swedish conditions is presented. No references are given to regulations standards etc that influence the requirements and their adaption to local conditions. (Aa)

  11. Assessment of the effects of neutron fluence on Swedish nuclear pressure vessels

    International Nuclear Information System (INIS)

    Rao, S.

    1980-11-01

    Nuclear pressure vessels are subject to neutron irradiation during service causing embrittlement. This is one important factor in the overall problem of reactor vessel integrity. At present the irradiation effects are mainly assessed by the Charpy V-notch test. Two measures of embrittlement are defined: the increase of the ductile/brittle transition temperature and the decrease in the upper-shelf energy. The object of the present work is to assess these changes for the Swedish nuclear pressure vessels. On the basis of data from irradiations carried out in other countries and Swedish surveillance programmes, the expected end of life embrittlement is estimated for Swedish vessels. The results show that the embrittlement of most reactor vessels is expected to be quite small. Oskarshamn 1 and PWR-vessels, however, will probably show moderate changes, the former due to the higher copper content, and the latter due to the high end of life fluences. Some of the vessel materials which exhibit marginal properties in the upper-shelf energy, as measured by the Charpy V-notch impact test, are identified. It is recommended that fracture mechanics analyses be applied in these cases. (author)

  12. Design of a Prototype Differential Die‐Away Instrument Proposed for Swedish Spent Nuclear Fuel Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Martinik, Tomas, E-mail: tomas.martinik@physics.uu.se [Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala (Sweden); Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Henzl, Vladimir [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Grape, Sophie; Jansson, Peter [Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala (Sweden); Swinhoe, Martyn T.; Goodsell, Alison V. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Tobin, Stephen J. [Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala (Sweden); Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Swedish Nuclear Fuel and Waste Management Company, Blekholmstorget 30, Box 250, SE-101 24 Stockholm (Sweden)

    2016-06-11

    As part of the United States (US) Department of Energy's Next Generation Safeguards Initiative Spent Fuel (NGSI-SF) project, the traditional Differential Die-Away (DDA) method that was originally developed for waste drum assay has been investigated and modified to provide a novel application to characterize or verify spent nuclear fuel (SNF). Following the promising, yet largely theoretical and simulation based, research of physics aspects of the DDA technique applied to SNF assay during the early stages of the NGSI-SF project, the most recent effort has been focused on the practical aspects of developing the first fully functional and deployable DDA prototype instrument for spent fuel. As a result of the collaboration among US research institutions and Sweden, the opportunity to test the newly proposed instrument's performance with commercial grade SNF at the Swedish Interim Storage Facility (Clab) emerged. Therefore the design of this instrument prototype has to accommodate the requirements of the Swedish regulator as well as specific engineering constrains given by the unique industrial environment. Within this paper, we identify key components of the DDA based instrument and we present methodology for evaluation and the results of a selection of the most relevant design parameters in order to optimize the performance for a given application, i.e. test-deployment, including assay of 50 preselected spent nuclear fuel assemblies of both pressurized (PWR) as well as boiling (BWR) water reactor type.

  13. A list of abnormal occurences at Swedish nuclear power stations

    International Nuclear Information System (INIS)

    McHugh, B.

    1974-08-01

    This report consists of a list of extracts from documents belonging to Statens Kaernkraftinspektion (SKI) in Sweden. It deals with non-routine occurrences at the Swedish nuclear power stations which are in operation or where test operations of components and systems have started. The investigation has included matter about the following nuclear power plants: Barsebaeck-1, Oskarshamn-1, Oskarshamn-2, Ringhals-1, Ringhals-2, Aagesta. In all cases from the start of the test operations up to latest the 1st of June 1974. (M.S.)

  14. A vision of inexhaustible energy: The fast breeder reactor in Swedish nuclear power history 1945-80

    International Nuclear Information System (INIS)

    Fjaestad, Maja

    2010-01-01

    The fast breeder is a type of nuclear reactor that aroused much attention in the 1950s and 1960s. Its ability to produce more nuclear fuel than it consumes offered promises of cheap and reliable energy, and thereby connected it to utopian ideas about an eternal supply of energy, Furthermore. the ideas of breeder reactors were a vital part of the post-war visions about the nuclear future. This dissertation investigates the plans for breeder reactors in Sweden, connecting them to the contemporary development of nuclear power with heavy or light water and the discussions of nuclear weapons, as well as to the general visions of a prosperous technological future. The history of the Swedish breeder reactor is traced from high hopes in the beginning, via the fiasco of the Swedish heavy water program, partly focusing on the activities at the company AB Atomenergi and investigating how it planned and argued for its breeder program and how this was received by the politicians. The story continues into the intensive environmental movement in the 1970s, ending with the Swedish referendum on nuclear energy in 1980, which can be seen as the final point for the Swedish breeder. The thesis discusses how the nuclear breeder reactor was transformed from an argument for nuclear power to an argument against it. The breeder began as a part of the vision of a society with abundant energy, but was later seen as a threat against the new sustainable world. The nuclear breeder reactor is an example of a technological vision that did not meet its industrial expectations. But that does not prevent the fact that breeder was an influential technology in an age where important decisions about nuclear energy were made. The thesis argues that important decisions about the contemporary reactors were taken with the idea that they in a foreseeable future would be replaced with the efficient breeder. And the last word on the breeder reactor is not said - today, reactor engineers around the world are

  15. The Swedish Radiation Protection Institute's regulations concerning the final management of spent nuclear fuel and nuclear waste - with background and comments

    International Nuclear Information System (INIS)

    2000-11-01

    This report presents and comments on the Swedish Radiation Protection Institute's Regulations concerning the Protection of Human Health and the Environment in connection with the Final Management of Spent Nuclear Fuel or Nuclear Waste, SSI FS 1998: 1

  16. Views on safety culture at Swedish and Finnish nuclear power plants

    International Nuclear Information System (INIS)

    Hammar, L.; Wahlstroem, B.; Kettunen, J.

    2000-02-01

    The report presents the results of interviews about safety culture at Swedish and Finnish nuclear power plants. The aim is to promote the safety work and increase the debate about safety in nuclear power plants, by showing that the safety culture is an important safety factor. The interviews point out different threats, which may become real. It is therefor necessary that the safety aspects get support from of the society and the power plant owners. (EHS)

  17. Crisis and Policy Reformcraft: Advocacy Coalitions and Crisis-induced Change in Swedish Nuclear Energy Policy

    Energy Technology Data Exchange (ETDEWEB)

    Nohrstedt, Daniel

    2007-04-15

    This dissertation consists of three interrelated essays examining the role of crisis events in Swedish nuclear energy policymaking. The study takes stock of the idea of 'crisis exceptionalism' raised in the literature, which postulates that crisis events provide openings for major policy change. In an effort to explain crisis-induced outcomes in Swedish nuclear energy policy, each essay explores and develops theoretical assumptions derived from the Advocacy Coalition Framework (ACF). The introduction discusses the ACF and other theoretical perspectives accentuating the role of crisis in policymaking and identifies three explanations for crisis-induced policy outcomes: minority coalition mobilization, learning, and strategic action. Essay 1 analyzes the nature and development of the Swedish nuclear energy subsystem. The results contradict the ACF assumption that corporatist systems nurture narrow subsystems and small advocacy coalitions, but corroborate the assumption that advocacy coalitions remain stable over time. While this analysis identifies temporary openings in policymaking venues and in the advocacy coalition structure, it is argued that these developments did not affect crisis policymaking. Essay 2 seeks to explain the decision to initiate a referendum on nuclear power following the 1979 Three Mile Island accident. Internal government documents and other historical records indicate that strategic considerations superseded learning as the primary explanation in this case. Essay 3 conducts an in-depth examination of Swedish policymaking in the aftermath of the 1986 Chernobyl accident in an effort to explain the government's decision not to accelerate the nuclear power phaseout. Recently disclosed government documents show that minority coalition mobilization was insufficient to explain this decision. In this case, rational learning and strategic action provided a better explanation. The main theoretical contribution derived from the three

  18. Crisis and Policy Reformcraft: Advocacy Coalitions and Crisis-induced Change in Swedish Nuclear Energy Policy

    International Nuclear Information System (INIS)

    Nohrstedt, Daniel

    2007-04-01

    This dissertation consists of three interrelated essays examining the role of crisis events in Swedish nuclear energy policymaking. The study takes stock of the idea of 'crisis exceptionalism' raised in the literature, which postulates that crisis events provide openings for major policy change. In an effort to explain crisis-induced outcomes in Swedish nuclear energy policy, each essay explores and develops theoretical assumptions derived from the Advocacy Coalition Framework (ACF). The introduction discusses the ACF and other theoretical perspectives accentuating the role of crisis in policymaking and identifies three explanations for crisis-induced policy outcomes: minority coalition mobilization, learning, and strategic action. Essay 1 analyzes the nature and development of the Swedish nuclear energy subsystem. The results contradict the ACF assumption that corporatist systems nurture narrow subsystems and small advocacy coalitions, but corroborate the assumption that advocacy coalitions remain stable over time. While this analysis identifies temporary openings in policymaking venues and in the advocacy coalition structure, it is argued that these developments did not affect crisis policymaking. Essay 2 seeks to explain the decision to initiate a referendum on nuclear power following the 1979 Three Mile Island accident. Internal government documents and other historical records indicate that strategic considerations superseded learning as the primary explanation in this case. Essay 3 conducts an in-depth examination of Swedish policymaking in the aftermath of the 1986 Chernobyl accident in an effort to explain the government's decision not to accelerate the nuclear power phaseout. Recently disclosed government documents show that minority coalition mobilization was insufficient to explain this decision. In this case, rational learning and strategic action provided a better explanation. The main theoretical contribution derived from the three essays is to posit

  19. Identification of the chemical inventory of different paint types applied in nuclear facilities

    International Nuclear Information System (INIS)

    Sabrina Tietze; Foreman, M.R.St.J.; Ekberg, CH.H.; Chalmers University of Technology, Chemical and Biological Engineering, Goeteborg; Dongen van, B.E.

    2013-01-01

    The floors, concrete walls and many of the metal surfaces in nuclear power plant containments are coated with zinc primers or paint films to preserve the metal surfaces and simplify decontamination in the containment after the occurrence of a severe nuclear incident or accident. A chemical examination of paint films from different nuclear installations out of operation, as well as current operating ones, reveals that different types of paints are used whose composition can vary significantly. Results obtained for one type of paint at a certain nuclear site are in most cases unlikely to be comparable with sites painted with another type of paint. During normal operation and particularly during nuclear accidents, the paints will degrade under the high temperature, steam and irradiation influence. As paint and its degradation products can act as sources and depots for volatile iodine compounds, the type and aging conditions of the paint films will have a significant impact on the source term of the volatile fission product iodine. Thus, great care should be taken when extrapolating any results obtained for the interaction of radioactive iodine with one paint product to a different paint product. The main focus of the study is a comparison of the chemical profile of paint films applied in Swedish nuclear power plants. Teknopox Aqua V A, an epoxy paint recently used at Ringhals 2, and an emulsion paint used in the scrubber buildings of Ringhals 1-4 are compared with a paint film from Barsebaeck nuclear power plant unit 1 that had been aged under real reactor conditions for 20 years. In addition, two paint films, an emulsion and a gloss paint, used in an international nuclear fuel reprocessing facility, are compared with the paints from the Swedish nuclear power plants. (author)

  20. Changes in control room at Swedish nuclear power plants; Kontrollrumsfoeraendringar vid svenska kaernkraftverk

    Energy Technology Data Exchange (ETDEWEB)

    Kecklund, Lena [MTO Psykologi, Huddinge (Sweden)

    2005-09-15

    The Swedish nuclear power plants were commissioned during a period between 1972 and 1985 and the instrumentation and control equipment are basically from that period. For several years there have been plans made for changes in all the nuclear power plants and to a certain extent the changes in control equipment and monitoring rooms have also been implemented. The object of this project was to make a comprehensive review of the changes in control room design implemented in the Swedish nuclear power plants and to describe how the MTO- (Man-Technology-Organisation) and (Man-Machine-Interface) -issues have been integrated in the process. The survey is intended to give an overall picture of the changes in control room design and man-machine-interface made in the Swedish control rooms, in order to get a deeper knowledge of the change management process and its results as well as of the management of MTO-issues in these projects. The units included in this survey are: Oskarhamn reactor 2 and 3; Ringhals reactor 2, 3 and 4; Forsmark reactor 1, 2 and 3. The Oskarshamn 1 unit has not been included in this report as it has recently undergone an extensive modernisation program as well as a detailed inspection by the SKI (Swedish Nuclear Power Inspectorate). At Ringhals 2 the modernisation work is carried out at present and the unit is also subjected to extensive inspection activities carried out by SKI and is therefore not part of this survey. This report also includes a short description of relevant standards and requirements. Then follows a presentation of the results of the plant survey, presented as case studies for three companies OKG, Ringhals and FKA. Control room changes are summarized as well as the results on specific MTO issues which has been surveyed. In all the power companies there is a joint way of working with projects concerning plant modifications. This process is described for each company separately. In the concluding of the report the strengths and

  1. A review of scope and costs for the swedish system for management of nuclear waste

    International Nuclear Information System (INIS)

    1994-01-01

    From a financial analysis of the swedish nuclear waste management program it is deduced that a 25 year long operation of the swedish reactors will not create funds large enough to finance the program at the present fee level (0.019 SEK/kWh). The real interest rate is of great importance for the return from the fees. The cost estimates for decommissioning are much lower than that for comparable reactors in other countries (e.g. Trojan, USA vs Ringhals 2), possibly totaling up to 20 GSEK for all twelve swedish reactors. 3 figs., 12 tabs

  2. The Swedish Nuclear Power Inspectorate's evaluation of SKB's RD and D Program 98. Review report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-04-01

    that the final disposal system is not irrevocable, SKB now uses the term deep disposal. However, the term used in the legislation is final disposal. Regardless of which term is used, different degrees of retrievability can be discussed. SKI has distributed RDandD Programme 98 to sixty-three reviewing bodies for comment. Forty-five responses were received. The reviewing bodies include universities and institutes of technology, local safety committees, municipalities hosting nuclear facilities and municipalities participating in feasibility studies as well as many authorities such as county administrative boards, the Swedish Environmental Protection Agency, the Swedish Board of Housing, Building and Planning and SSI. The comments of the reviewing bodies mainly focus on the decision-making process, including issues relating to method selection and site selection and, in particular, on the selection of sites for site investigation. Several reviewing bodies, particularly universities and institutes of technology, have also submitted comments of a more technical/scientific nature. SKI's evaluation has focused on determining whether SKB's programme can be considered to fulfil the requirements stipulated in the Act on Nuclear Activities that such a programme should be able to result in the implementation of solutions for the final disposal of the spent nuclear fuel from the Swedish nuclear power programme. Furthermore, SKI's evaluation has focused on the conditions that SKI considers should apply to SKB's future work.

  3. Objectives and limitations of scientific studies with reference to the Swedish R ampersand D programme 1992 for handling and final disposal of nuclear waste

    International Nuclear Information System (INIS)

    Sjoeblom, R.; Dverstorp, B.; Wingefors, S.

    1994-01-01

    The Swedish Nuclear Power Inspectorate (SKI) has recently concluded its evaluation of the Swedish programme for the development of a system for the management of nuclear waste. The programme was compiled and issued by the Swedish Nuclear Fuel and Waste Management Company (SKB). In this process of programme formulation and review, considerable attention has been paid to the question of how scientific studies should be directed and performed in order to provide the support needed in the programme

  4. Human factors in maintenance: Development and research in Swedish nuclear power plants

    International Nuclear Information System (INIS)

    Salo, I.; Svensson, Ola

    2001-11-01

    The present report investigated previously completed, ongoing, and planned research and development projects focusing human factors and maintenance work carried out at Swedish nuclear power plants and SKI. In addition, needs for future research and development works were also investigated. Participants from all nuclear power plants and SKI were included in the study. Participants responded to a set of questions in an interview. The interviews also generated a list of future research and development projects

  5. Human factors in maintenance: development and research in Swedish nuclear power plants

    International Nuclear Information System (INIS)

    Salo, I.; Svenson, O.

    2001-11-01

    The report investigated previously completed, ongoing, and planned research and development projects focusing human factors and maintenance work carried out at Swedish nuclear power plants and SKI. In addition, needs for future research and development works were also investigated. Participants from all nuclear power plants and SKI were included in the study. Participants responded to a set of questions in an interview. The interviews also generated a list of future research and development projects. (au)

  6. Human factors in maintenance: Development and research in Swedish nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Salo, I. [Lund Univ. (Sweden). Dept. of Psychology; Svensson, Ola [Stockholm Univ. (Sweden). Dept. of Psychology

    2001-11-01

    The present report investigated previously completed, ongoing, and planned research and development projects focusing human factors and maintenance work carried out at Swedish nuclear power plants and SKI. In addition, needs for future research and development works were also investigated. Participants from all nuclear power plants and SKI were included in the study. Participants responded to a set of questions in an interview. The interviews also generated a list of future research and development projects.

  7. Releases of radioactive substances from Swedish nuclear power plants (RAKU)

    Energy Technology Data Exchange (ETDEWEB)

    Ingemansson, T.; Bergstroem, C. [ALARA Engineering AB, Skultuna (Sweden)

    1997-04-01

    Releases of radioactivity to air and water from Swedish nuclear power plants have been studied and compared with those from foreign reactors. Averaged over the years from commissioning of the reactors to the last year data are available, the release of radioactive noble gas from the Swedish BWRs has been about the same as from comparable foreign reactors. The oldest Swedish BWRs, Oskarshamn 1 and 2 (O1 and O2) and Ringhals 1 (R1), have simple off-gas systems with only one delay volume. All BWRs in US, Germany, Japan and Switzerland are equipped with more sophisticated off-gas systems. It can be expected that O1, O2 and R1 therefore will have the highest release of noble gas activity at an international comparison if they do not modernize their off-gas system. BWRs in US, Germany and Japan are today equipped with recombiners and with one exception also charcoal columns. Japanese BWRs report zero releases to air. Releases of radioactivity to water after commissioning was about the same for most of the studied reactors. Some of the newest German plants have had low annual releases already at commissioning. Improvements of the treatment systems at old German, Swiss and US reactors have significantly lowered the releases. For most of the Swedish plants the annual releases to water have remained at the initial level. Forsmark 3 has succeeded in decreasing the release of radionuclides to water by a factor of almost one hundred compared to other Swedish reactors. Also O3 has managed to decrease the liquid effluents. Japanese plants have zero release of radioactivity excluding tritium to water. The release of tritium is about the same for all reactors of the same type in the world. 35 refs, 31 figs, 24 tabs.

  8. Sweden: The Swedish nuclear archive regulations and projects related to corporate memory. Annex I-2

    International Nuclear Information System (INIS)

    2008-01-01

    The Swedish radiation protection authority regulations on Filing at Nuclear Plants, SSI FS 1997:1, apply to filing of documentation that has been drawn up or received in connection with practices at nuclear plants. The regulations set out: -The minimum level of documentation; - Archiving requirements; -Availability periods; - Choice of data carrier; - Timely transfer to new media; - Requirements regarding safe keeping of documents. The regulations require that, if the nuclear activity ceases, the archives must be transferred to the Swedish national archives. Examples of the availability periods required for records and environmental specimens are as follows: (a) Operations related measurements - 25 years; (b) Emergency response plan - 50 years; (c) Report of an unusual event - 50 years; (d) Documents relating to final disposal - long term; (e) Environmental specimens - 10 years; (f) Records of measurements on specimens - long term

  9. Operating experience from Swedish nuclear power plants

    International Nuclear Information System (INIS)

    1999-01-01

    The total production of electricity from Swedish nuclear power plants was 70.5 TWh during 1998, which is the second highest yearly production ever. Production losses due to low demand totaled 5.1 TWh combined for all twelve units and production losses due to coastdown operation totaled an additional 0.5 TWh. The reason for this low power demand was a very good supply of water to the hydropower system. Hydroelectric power production was 73.6 TWh, an increase by roughly 5 TWh since 1997. Hence, the hydroelectric power production substantially exceeded the 64 TWh expected during a normal year, i.e. a year with average rainfall. Remaining production sources, mainly fossil fuel electricity production combined with district heating, contributed with 10 TWh. The total electricity production was 154.2 TWh, the highest yearly production ever. The total electricity consumption including transmission losses was 143.5 TWh. This is also the highest consumption ever and an increase by one percent compared to 1997. The preliminary net result of the electric power trade shows a net export by 10.7 TWh. The figures above are calculated from the preliminary production results. A comprehensive report on electric power supply and consumption in Sweden is given in the 1998 Annual Report from the Swedish Power Association. Besides Oskarshamn 1, all plants have periodically been operated in load-following mode, mostly because of the abundant supply of hydropower. The energy availability for the three boiling water reactors at Forsmark averaged 93.3 % and for the three pressure water reactors at Ringhals 91.0 %, both figures are the highest ever noted. In the section 'Special Reports' three events of importance to safety that occurred during 1998 are reported. The events were all rated as level 1 according to the International Nuclear Event Scale (INES)

  10. Concrete structures for nuclear facilities

    International Nuclear Information System (INIS)

    1996-01-01

    The detailed requirements for the design and fabrication of the concrete structures for nuclear facilities and for the documents to be submitted to the Finnish Centre for Radiation and Nuclear Safety (STUK) are given in the guide. It also sets the requirements for the inspection of concrete structures during the construction and operation of facilities. The requirements of the guide primarily apply to new construction. As regards the repair and modification of nuclear facilities built before its publication, the guide is followed to the extent appropriate. The regulatory activities of the Finnish Centre for Radiation and Nuclear Safety during a nuclear facility's licence application review and during the construction and operation of the facility are summarised in the guide YVL 1.1

  11. Community-level football injury epidemiology: traumatic injuries treated at Swedish emergency medical facilities.

    Science.gov (United States)

    Timpka, Toomas; Schyllander, Jan; Stark Ekman, Diana; Ekman, Robert; Dahlström, Örjan; Hägglund, Martin; Kristenson, Karolina; Jacobsson, Jenny

    2018-02-01

    Despite the popularity of the sport, few studies have investigated community-level football injury patterns. This study examines football injuries treated at emergency medical facilities using data from three Swedish counties. An open-cohort design was used based on residents aged 0-59 years in three Swedish counties (pop. 645 520). Data were collected from emergency medical facilities in the study counties between 1 January 2007 and 31 December 2010. Injury frequencies and proportions for age groups stratified by sex were calculated with 95% confidence intervals (95% CIs) and displayed per diagnostic group and body location. Each year, more than 1/200 person aged 0-59 years sustained at least one injury during football play that required emergency medical care. The highest injury incidence was observed among adolescent boys [2009 injuries per 100 000 population years (95% CI 1914-2108)] and adolescent girls [1413 injuries per 100 000 population years (95% CI 1333-1498)]. For female adolescents and adults, knee joint/ligament injury was the outstanding injury type (20% in ages 13-17 years and 34% in ages 18-29 years). For children aged 7-12 years, more than half of the treated injuries involved the upper extremity; fractures constituted about one-third of these injuries. One of every 200 residents aged 0-59 years in typical Swedish counties each year sustained a traumatic football injury that required treatment in emergency healthcare. Further research on community-level patterns of overuse syndromes sustained by participation in football play is warranted. © The Author 2017. Published by Oxford University Press on behalf of the European Public Health Association. All rights reserved.

  12. Operating experience from Swedish nuclear power plants, 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    The total generation of electricity from Swedish nuclear power plants was 70.1 TWh during 1999, which is slightly more than the mean value for the last five years. The total electricity consumption decreased by one percent, compared with 1998, to a total of 142.3 TWh, due to an unusually warm summer and autumn. The abundant supply of hydroelectric power resulted in comparatively extensive load-following operation by the nuclear plants during the year. Production losses due to low demand totalled 3.0 TWh. The closure of Barsebaeck 1 will result in a capacity reduction exceeding 4 TWh per year. The hydroelectric power production was 70 TWh, which was 6 TWh more than during a normal year, i.e. a year with average rainfall. The remaining production sources, mainly from solid fuel plants combined with district heating contributed 9 TWh. Electricity generation by means of wind power is still increasing. There are now about 470 wind power stations, which produced 0.3 TWh during the year. The total electricity generation totalled 149.8 TWh, a three percent decrease compared with 1998. The preliminary figures for export were 15.9 TWh and for import 8.4 TWh. The figures above are calculated from the preliminary production result. A comprehensive report on electric power supply and consumption in Sweden is provided in the 1999 Annual Report from the Swedish Power Association. The unit capability factor for the PWRs at Ringhals averaged 91%, while the BWRs averaged 82% mainly due to the extended outages. The BWR reactors at Forsmark averaged as much as 93%. Forsmark 1 experienced the shortest refuelling outage ever in Sweden, only 9 days and 20 hours. In May, Oskarshamn 2 passed a historical milestone - the unit produced 100 TWh since connection to the grid in 1974. The final production day for Barsebaeck 1, which had been in commercial operation since 1975, was on November 30 when a decision by the Swedish Government revoked the operating licence. Three safety-related events

  13. Phasing out nuclear power, the swedish experience

    International Nuclear Information System (INIS)

    Fredriksson, Y.

    2000-01-01

    This article presents the chronological steps in the phasing-out of nuclear energy in Sweden. In 1980 a consultative referendum was held and it was decided that: i) no further expansion of nuclear capacity beyond the 12 reactors in operation or already under construction, ii) all nuclear power plants should be decommissioned by the year 2010. In 1988, as a consequence of the Chernobyl nuclear accident, the Swedish parliament decided that one reactor should be closed down in 1995 and a second in 1996. In 1991 the parliament proposed a new energy program for a 5 year period. The main measure was a huge financial support for increasing energy efficiency and for developing environmental sound technologies. At the same time the parliament repealed the 1991 decision of closing 1 reactor in 1995 and made the phase-out process dependent on the results of the new energy policy. In 1994 a parliamentary Commission was appointed to estimate the results of 1991 energy policy. The results were meager and disappointing so the Commission considered that a number of objectives (the climate issue, employment, welfare and competitiveness) remained unresolved if all nuclear power generation should be phased out by 2010. However, the Commission also considered it important to start the phasing-out process at an early stage and stated that one reactor could be closed down without noticeably affecting the power balance. The Barsebaeck reactor is to be closed before the end of november 1999. (A.C.)

  14. The Swedish Radiation Protection Institute's regulations concerning the final management of spent nuclear fuel and nuclear waste - with background and comments

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-11-01

    This report presents and comments on the Swedish Radiation Protection Institute's Regulations concerning the Protection of Human Health and the Environment in connection with the Final Management of Spent Nuclear Fuel or Nuclear Waste, SSI FS 1998: 1.

  15. Knowledge transfer in Swedish Nuclear Power Plants in connection with retirements

    International Nuclear Information System (INIS)

    Larsson, Annika; Ohlsson, Kjell; Roos, Anna

    2007-01-01

    This report displays how the Swedish nuclear power plants Forsmark, Oskarshamn and Ringhals work with knowledge management. The report also consists of a literature review of appropriate ways to extract tacit knowledge as well as methods to transfer competence. The report is made up of a smaller number of interviews at the nuclear power plants in combination with a questionnaire distributed to a larger number of people at the plants. The results of the interview study is that only one of the Swedish nuclear power plants have a programme to transfer knowledge from older staff to newer. This is, however, not a programme for everyone. Another plant has a programme for knowledge building, but only for their specialists. At both plants, which lack a programme, the interviewees request more structure in knowledge transfer; even though they feel the current way of transferring knowledge with mentors works well. Besides more structure, interviewees present a wish to have more time for knowledge transfer as well as the opportunity to recruit more than needed. Recruiting more than needed is however not very simple due to multiple causes such as nominal sizing departments and a difficulty of recruiting people to work far from larger cities. The way things are now, many feel too under-staffed and under a lot of time pressure daily to also have time for knowledge transfer besides their normal work

  16. Mitigation of severe accidents in Swedish nuclear power plants

    International Nuclear Information System (INIS)

    Soederman, E.

    1987-01-01

    Sweden is the first country to build filtered venting systems, the first one became operable at Barsebaeck nuclear power plant in 1985. In new concepts, now being installed in Sweden, an enhanced containment spray system is the basic element and the filtered venting is only the secondary mitigating system. The filter is a new design, a submerged multi venturi scrubber. The Swedish strategy has been built on three basics: improved knowledge through research; containment integrity through mitigating systems; and accident management to prevent severe accidents. 2 figs

  17. Security culture for nuclear facilities

    Science.gov (United States)

    Gupta, Deeksha; Bajramovic, Edita

    2017-01-01

    Natural radioactive elements are part of our environment and radioactivity is a natural phenomenon. There are numerous beneficial applications of radioactive elements (radioisotopes) and radiation, starting from power generation to usages in medical, industrial and agriculture applications. But the risk of radiation exposure is always attached to operational workers, the public and the environment. Hence, this risk has to be assessed and controlled. The main goal of safety and security measures is to protect human life, health, and the environment. Currently, nuclear security considerations became essential along with nuclear safety as nuclear facilities are facing rapidly increase in cybersecurity risks. Therefore, prevention and adequate protection of nuclear facilities from cyberattacks is the major task. Historically, nuclear safety is well defined by IAEA guidelines while nuclear security is just gradually being addressed by some new guidance, especially the IAEA Nuclear Security Series (NSS), IEC 62645 and some national regulations. At the overall level, IAEA NSS 7 describes nuclear security as deterrence and detection of, and response to, theft, sabotage, unauthorized access, illegal transfer or other malicious acts involving nuclear, other radioactive substances and their associated facilities. Nuclear security should be included throughout nuclear facilities. Proper implementation of a nuclear security culture leads to staff vigilance and a high level of security posture. Nuclear security also depends on policy makers, regulators, managers, individual employees and members of public. Therefore, proper education and security awareness are essential in keeping nuclear facilities safe and secure.

  18. Nuclear physics accelerator facilities

    International Nuclear Information System (INIS)

    1988-12-01

    This paper describes many of the nuclear physics heavy-ion accelerator facilities in the US and the research programs being conducted. The accelerators described are: Argonne National Laboratory--ATLAS; Brookhaven National Laboratory--Tandem/AGS Heavy Ion Facility; Brookhaven National Laboratory--Relativistic Heavy Ion Collider (RHIC) (Proposed); Continuous Electron Beam Accelerator Facility; Lawrence Berkeley Laboratory--Bevalac; Lawrence Berkeley Laboratory--88-Inch Cyclotron; Los Alamos National Laboratory--Clinton P. Anderson Meson Physics Facility (LAMPF); Massachusetts Institute of Technology--Bates Linear Accelerator Center; Oak Ridge National Laboratory--Holifield Heavy Ion Research Facility; Oak Ridge National Laboratory--Oak Ridge Electron Linear Accelerator; Stanford Linear Accelerator Center--Nuclear Physics Injector; Texas AandM University--Texas AandM Cyclotron; Triangle Universities Nuclear Laboratory (TUNL); University of Washington--Tandem/Superconducting Booster; and Yale University--Tandem Van de Graaff

  19. The Swedish Nuclear Power Inspectorate's evaluation of SKB's RD and D Program 98. Summary and conclusions

    International Nuclear Information System (INIS)

    1999-04-01

    Compared to previous programmes, RD and D Programme 98 is focused to a greater extent on method and site selection and on issues relating to the decision-making process. This is natural, since the programme is now approaching the stage where vital decisions will have to be made. The RD and D Programme 98 report is supplemented by a background report 'Detailed Programme for Research and Development 1999-2004' as well as a number of main references 'System Reporting', 'Alternative methods', 'Criteria for Site Evaluation' and the 'North-South/Coast-Interior' report. In addition, a number of references are available in the form of county-specific general siting studies, feasibility studies etc. SKI has distributed RD and D Programme 98 to sixty-three reviewing bodies for comment. The reviewing bodies include universities and institutes of technology, local safety committees, municipalities hosting nuclear facilities and municipalities participating in feasibility studies as well as many authorities. The comments of the reviewing bodies mainly focused on the decision-making process, including issues relating to method selection and site selection and, in particular, on the selection of sites for site investigation. Several reviewing bodies, particularly universities and institutes of technology, have also submitted comments of a more technical-scientific nature. SKI's evaluation has focused on determining whether SKB's programme can be considered to fulfil the requirements stipulated in the Act on Nuclear Activities that such a programme should be able to result in the implementation of solutions for the final disposal of the spent nuclear fuel from the Swedish nuclear power programme. Furthermore, SKI's evaluation has also focused on the conditions that SKI considers should apply to SKB's future work. Specific comments are made for the following areas: Decision-making process, Method selection and system analysis, Siting, Technical development, Safety assessments

  20. Occupational radiation exposure in nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    1979-01-01

    ) determination of the trends in plant radiation fields, (2) control of the sources of radiation, e.g. through quality control of materials used in construction, (3) testing coolant purification techniques, (4) investigating the influence of coolant chemistry control, and (5) developing techniques for decontamination. The previously mentioned Canadian and Swedish experiences together with some significant Japanese results are being incorporated in these US research efforts. Radiation exposure experiences were described for fuel reprocessing plants in Belgium, Federal Republic of Germany, France and the United States using both direct and indirect maintenance. Exposures were similar to those received by nuclear power plant operators, maintenance and health physics personnel, all were well within international guidelines. The major part of the discussion centered around the following topics: the difficulties of applying cost/benefit analysis; the need for uniform reporting of exposure data; the necessity of preparing and designing for high-exposure maintenance activities; the desire for epidemiological studies on radiation workers which will include exposure; to other carcinogenic agents, smoking habits and medical and natural exposures; the reasons behind reported dose reductions. A great deal of practical experience is now available on minimizing industrial and collective doses to radiation workers, as well as on advanced techniques to control occupational exposure at nuclear fuel cycle facilities. (author)

  1. Technology and costs for decommissioning the Swedish nuclear power plants

    International Nuclear Information System (INIS)

    1986-05-01

    The study shows that, from the viewpoint of radiological safety, a nuclear power plant can be dismantled immediately after it has been shut down and the fuel has been removed, which is estimated to take about one year. Most of the equipment that will be used in decommissioning is already available and is used routinely in maintenance and rebuilding work at the nuclear power plants. Special equipment need only be developed for dismantlement of the reactor vessel and for demolishing of heavy concrete structures. The dismantling of a nuclear power plant can be accomplished in about five years, with an average labour force of about 200 men. The maximum labour force required for Ringhals 1 has been estimated at about 500 men during the first years, when active systems are being dismantled in a number of fronts in the plant. During the last years when the buildings are being demolished, approximately 50 men are required. In order to limit the labour requirement and the dose burden to the personnel, the material is taken out in as large pieces as possible. The cost of decommissioning a boiling water reactor (BWR) of the size of Ringhals 1 has been estimated to be about MSEK 540 in January 1986 prices, and for a pressurized water reactor (PWR, Ringhals 2) about MSEK 460. The cost for the other Swedish nuclear power plants lie in the range of MSEK 410-760. These are the direct cost for the decommissioning work, to which must be added the costs of transportation and disposal of the decommissioning waste, about 100 000 m/sup3/. These costs have been estimated to be about MSEK 600 for the 12 Swedish reactors. (author)

  2. Costs related to radioactive residues from nuclear power

    International Nuclear Information System (INIS)

    1988-06-01

    The nuclear power enterprises are responsible for proper actions for safe handling and final storage of spent nuclear fuel and radioactive waste from Swedish nuclear power facilities. The most important actions are to plan, build and operate necessary plants and systems. The nuclear power enterprises have designated Swedish Nuclear Fuel and Waste Management Co., (SKB), to perform these tasks. In this report calculations concerning costs to carry out these tasks are presented. The calculations are based upon a plan prepared by SKB. The plan is described in the report. As final storage of the long lived and highly radioactive waste is planned to take place in the 21st century continuing research and development may indicate new methods which may affect system design as well as costs in a simplifying way. Plants and systems already operational are: Transport systems for radioactive waste products; A central temporary storage for spent nuclear fuel, 'CLAB'; A final storage for radioactive waste from operating nuclear facilities, 'SFR 1'. (L.F.)

  3. Future extension of the Swedish repository for low and intermediate level waste (SFR)

    International Nuclear Information System (INIS)

    Carlsson, Jan

    2006-01-01

    The existing Swedish repository for low and intermediate level waste (SFR) is licensed for disposal of short-lived waste originated from operation and maintenance of Swedish nuclear power plants. The repository is foreseen to be extended to accommodate short-lived waste from the future decommissioning of the Nuclear Power Plants. Long-lived waste from operation, maintenance and eventually decommissioning will be stored some years before disposal in a geological repository. This repository can be build either as a further extension of the SFR facility or as a separate repository. This paper discusses the strategy of a step-wise extended repository where the extensions are performed during operation of the existing parts of the repository. It describes the process for licensing new parts of the repository (and re-license of the existing parts). (author)

  4. Operating experience from Swedish nuclear power plants

    International Nuclear Information System (INIS)

    1998-01-01

    During 1997 the PWRs in Ringhals performed extremely well (capability factors 85-90%), the unit Ringhals 2 reached the best capability factor since commercial operation started in 1976. The BWRs made an average 76% capability, which is somewhat less than in 1996. The slightly reduced capability derives from ongoing modernization projects at several units. At the youngest plants, Forsmark 3 and Oskarshamn 3, capability and utilization were very high. Events and data for 1997 are given for each reactor, together with operational statistics for the years 1990-1997. A number of safety-related events are reported, which occurred st the Swedish plants during 1997. These events are classified as level 1 or higher on the international nuclear event scale (INES)

  5. Operating experience from Swedish nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-06-01

    During 1997 the PWRs in Ringhals performed extremely well (capability factors 85-90%), the unit Ringhals 2 reached the best capability factor since commercial operation started in 1976. The BWRs made an average 76% capability, which is somewhat less than in 1996. The slightly reduced capability derives from ongoing modernization projects at several units. At the youngest plants, Forsmark 3 and Oskarshamn 3, capability and utilization were very high. Events and data for 1997 are given for each reactor, together with operational statistics for the years 1990-1997. A number of safety-related events are reported, which occurred st the Swedish plants during 1997. These events are classified as level 1 or higher on the international nuclear event scale (INES).

  6. The decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    Niel, J.Ch.; Rieu, J.; Lareynie, O.; Delrive, L.; Vallet, J.; Girard, A.; Duthe, M.; Lecomte, C.; Rozain, J.P.; Nokhamzon, J.G.; Davoust, M.; Eyraud, J.L.; Bernet, Ph.; Velon, M.; Gay, A.; Charles, Th.; Leschaeva, M.; Dutzer, M.; Maocec, Ch.; Gillet, G.; Brut, F.; Dieulot, M.; Thuillier, D.; Tournebize, F.; Fontaine, V.; Goursaud, V.; Birot, M.; Le Bourdonnec, Th.; Batandjieva, B.; Theis, St.; Walker, St.; Rosett, M.; Cameron, C.; Boyd, A.; Aguilar, M.; Brownell, H.; Manson, P.; Walthery, R.; Wan Laer, W.; Lewandowski, P.; Dorms, B.; Reusen, N.; Bardelay, J.; Damette, G.; Francois, P.; Eimer, M.; Tadjeddine, A.; Sene, M.; Sene, R.

    2008-01-01

    This file includes five parts: the first part is devoted to the strategies of the different operators and includes the following files: the decommissioning of nuclear facilities Asn point of view, decommissioning of secret nuclear facilities, decommissioning at the civil Cea strategy and programs, EDF de-construction strategy, Areva strategy for decommissioning of nuclear facilities; the second one concerns the stakes of dismantling and includes the articles as follow: complete cleanup of buildings structures in nuclear facilities, decommissioning of nuclear facilities and safety assessment, decommissioning wastes management issues, securing the financing of long-term decommissioning and waste management costs, organizational and human factors in decommissioning projects, training for the decommissioning professions: the example of the Grenoble University master degree; the third part is devoted to the management of dismantling work sites and includes the different articles as follow: decommissioning progress at S.I.C.N. plant, example of decommissioning work site in Cea Grenoble: Siloette reactor decommissioning, matters related to decommissioning sites, decommissioning of french nuclear installations: the viewpoint of a specialist company, specificities of inspections during decommissioning: the Asn inspector point of view; the fourth part is in relation with the international approach and includes as follow: IAEA role in establishing a global safety regime on decommissioning, towards harmonization of nuclear safety practices in Europe: W.E.N.R.A. and the decommissioning of nuclear facilities, EPA superfund program policy for decontamination and decommissioning, progress with remediation at Sellafield, progress and experiences from the decommissioning of the Eurochemic reprocessing plant in Belgium, activities of I.R.S.N. and its daughter company Risk-audit I.r.s.n./G.r.s. international in the field of decommissioning of nuclear facilities in eastern countries

  7. Report on the status of instrumentation and control in Swedish nuclear power plants

    International Nuclear Information System (INIS)

    Blomberg, P.E.

    1990-01-01

    During 1988 the twelve nuclear power units in Sweden generated 69 TWh, which was 45% of the total electric power produced in Sweden. The production capacity of the nuclear power plants increased successively by upgrading the units to higher nominal power levels. The paper presents an overview of activities on control and instrumentation in the following: maintenance, renewal of the I and C systems, training. The operational data of Swedish reactor units are presented. (author). 1 tab

  8. A review of the scope and the cost of the Swedish nuclear waste management system

    International Nuclear Information System (INIS)

    1994-03-01

    A Swedish translation of this report appears as an appendix in SOU 1004:108 (ISBN 91-38-13755-0). The report is prepared for the Nuclear Fond Commission and Ministry of Environment and Natural Resources

  9. Childhood leukemia around nuclear facilities

    International Nuclear Information System (INIS)

    1991-01-01

    This Information Bulletin highlights the conclusion made from an Atomic Energy Control Board of Canada (AECB) study on the incidence of childhood leukemia near nuclear facilities. All of the locations with the nuclear facilities are located in Ontario, the nuclear generating stations at Pickering and Bruce; the uranium mines and mills in Elliot Lake; the uranium refining facility in Port Hope; and nuclear research facilities located at Chalk River plus the small nuclear power plant in Rolphton. Two conclusions are drawn from the study: 1) while the rate of childhood leukemias made be higher or lower than the provincial average, there is no statistical evidence that the difference is due to anything but the natural variation in the occurrence of the disease; and 2) the rate of occurrence of childhood leukemia around the Pickering nuclear power station was slightly greater than the Ontario average both before and after the plant opened, but this, too , could be due to the natural variation

  10. Financial Planning as a Tool for Efficient and Timely Decommissioning of Nuclear Research Facilities

    International Nuclear Information System (INIS)

    Cato, Anna; Lindskog, Staffan; Sjoeblom, Rolf

    2008-01-01

    It is generally recognized in the technical and economical literature that reliable cost evaluations with adequate estimates also of the errors and uncertainties involved are necessary in order for rational and appropriate management decisions to be made on any major plant investment. Such estimates are required for the selection of technologies to be applied and for selection to be made between alternative technologies and designs as well as for the overall financing issues including the one of whether to go ahead with the project. Inadequacies in the cost calculations typically lead to suboptimal decisions and ultimately substantial overruns and/or needs for retrofits. Actually, a very strict discipline has to be applied with adaptation of the approach used with regard to the stage of the planning. Deviations from the expected tend to raise the estimated cost much more frequently than they lower it. The same rationale applies to planning and cost calculations for decommissioning of nuclear research facilities. There are, however, many reasons why such estimations may be very treacherous to carry out. This will be dealt with in the following. The knowledge base underlying the present paper has been developed and accumulated as a result of the research that the Swedish Nuclear Power Inspectorate (SKI) has carried out in support of its regulatory oversight over the Swedish system of finance. The findings are, however, equally applicable and appropriate for implementers in their planning, decision, monitoring and evaluation activities. In the nineteen fifties and sixties, Sweden had a comprehensive program for utilization of nuclear power including uranium mining, fuel fabrication, reprocessing and domestically developed heavy water reactors. Examples of facilities are presented in Figures 1-5. Eventually, the development work lead to the present nuclear program with ten modern light water reactors in operation at present. According to Swedish law, those who benefit

  11. Steel structures for nuclear facilities

    International Nuclear Information System (INIS)

    1993-01-01

    In the guide the requirements concerning design and fabrication of steel structures for nuclear facilities and documents to be submitted to the Finnish Centre for Radiation and Nuclear Safety (STUK) are presented. Furthermore, regulations concerning inspection of steel structures during construction of nuclear facilities and during their operation are set forth

  12. Decommissioning engineering systems for nuclear facilities and knowledge inheritance for decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    Tachibana, Mitsuo

    2016-01-01

    Information on construction, operation and maintenance of a nuclear facility is essential in order to plan and implement the decommissioning of the nuclear facility. A decommissioning engineering system collects these information efficiently, retrieves necessary information rapidly, and support to plan the reasonable decommissioning as well as the systematic implementation of dismantling activities. Then, knowledge of workers involved facility operation and dismantling activities is important because decommissioning of nuclear facility will be carried out for a long period. Knowledge inheritance for decommissioning has been carried out in various organizations. This report describes an outline of and experiences in applying decommissioning engineering systems in JAEA and activities related to knowledge inheritance for decommissioning in some organizations. (author)

  13. Storage facilities of spent nuclear fuel in dry for Mexican nuclear facilities

    International Nuclear Information System (INIS)

    Salmeron V, J. A.; Camargo C, R.; Nunez C, A.; Mendoza F, J. E.; Sanchez J, J.

    2013-10-01

    In this article the relevant aspects of the spent fuel storage and the questions that should be taken in consideration for the possible future facilities of this type in the country are approached. A brief description is proposed about the characteristics of the storage systems in dry, the incorporate regulations to the present Nuclear Regulator Standard, the planning process of an installation, besides the approaches considered once resolved the use of these systems; as the modifications to the system, the authorization periods for the storage, the type of materials to store and the consequent environmental impact to their installation. At the present time the Comision Nacional de Seguridad Nuclear y Salvaguardias (CNSNS) considers the possible generation of two authorization types for these facilities: Specific, directed to establish a new nuclear installation with the authorization of receiving, to transfer and to possess spent fuel and other materials for their storage; and General, focused to those holders that have an operation license of a reactor that allows them the storage of the nuclear fuel and other materials that they possess. Both authorizations should be valued according to the necessities that are presented. In general, this installation type represents a viable solution for the administration of the spent fuel and other materials that require of a temporary solution previous to its final disposal. Its use in the nuclear industry has been increased in the last years demonstrating to be appropriate and feasible without having a significant impact to the health, public safety and the environment. Mexico has two main nuclear facilities, the nuclear power plant of Laguna Verde of the Comision Federal de Electricidad (CFE) and the facilities of the TRIGA Reactor of the Instituto Nacional de Investigaciones Nucleares (ININ) that will require in a future to use this type of disposition installation of the spent fuel and generated wastes. (Author)

  14. Delegated democracy. Siting selection for the Swedish nuclear waste; Demokrati paa delegation. Lokaliseringen av det svenska kaernavfallet

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Hanna Sofia

    2008-11-15

    The present study concerns the siting of the Swedish nuclear waste repository. Four cases are examined: the feasibility studies in Nykoeping and Tierp (cases 1 and 2), as well as three public consultation meetings with conservationist and environmental organisations, and two study visits to nuclear facilities in Oskarshamn and Oesthammar, which were held during what is called the site-investigation phase (cases 3 and 4). The Swedish Nuclear Fuel and Waste Management Co (SKB) began the search for a nuclear waste site in the 1970s. Since 1992 SKB has conducted feasibility studies in eight municipalities, including in the four municipalities mentioned above. At the present time more comprehensive site investigations are underway in Oskarshamn and Oesthammar, two municipalities that already host nuclear power plants as well as storages for nuclear waste. In addition to SKB and the municipalities involved in the site-selection process, politicians, opinion groups, concerned members of the public, and oversight bodies are important actors. The analysis of the cases employs the concepts of 'sub-politics', 'boundary work', and 'expertise', together with the four models of democracy 'representative democracy', participatory democracy', 'deliberative democracy', and 'technocracy'. The aim of the study is to describe the characteristics of Swedish democracy in relation to the disposal of Swedish nuclear waste. The main questions of the study are: Which democratic ideals can be found within SKB's siting process during the feasibility studies and in the consultation process during the site investigations? and Which democratic ideals were influential during the feasibility studies and in the consultation process? The study is based on qualitative methods, and the source materials consist of documents, interviews, and participant observations. In summary, the form of democracy that emerges in the four case

  15. Human error as a source of disturbances in Swedish nuclear power plants

    International Nuclear Information System (INIS)

    Sokolowski, E.

    1985-01-01

    Events involving human errors at the Swedish nuclear power plants are registered and periodically analyzed. The philosophy behind the scheme for data collection and analysis is discussed. Human errors cause about 10% of the disturbances registered. Only a small part of these errors are committed by operators in the control room. These and other findings differ from those in other countries. Possible reasons are put forward

  16. Nuclear facilities

    International Nuclear Information System (INIS)

    Anon.

    2000-01-01

    Here is given the decree (2000-1065) of the 25. of October 2000 reporting the publication of the convention between the Government of the French Republic and the CERN concerning the safety of the LHC (Large Hadron Collider) and the SPS (Proton Supersynchrotron) facilities, signed in Geneva on July 11, 2000. By this convention, the CERN undertakes to ensure the safety of the LHC and SPS facilities and those of the operations of the LEP decommissioning. The French legislation and regulations on basic nuclear facilities (concerning more particularly the protection against ionizing radiations, the protection of the environment and the safety of facilities) and those which could be decided later on apply to the LHC, SPS and auxiliary facilities. (O.M.)

  17. High-risk facilities. Emergency management in nuclear, chemical and hazardous waste facilities

    International Nuclear Information System (INIS)

    Kloepfer, Michael

    2012-01-01

    The book on emergency management in high-risk facilities covers the following topics: Change in the nuclear policy, risk management of high-risk facilities as a constitutional problem - emergency management in nuclear facilities, operational mechanisms of risk control in nuclear facilities, regulatory surveillance responsibilities for nuclear facilities, operational mechanism of the risk control in chemical plants, regulatory surveillance responsibilities for chemical facilities, operational mechanisms of the risk control in hazardous waste facilities, regulatory surveillance responsibilities for hazardous waste facilities, civil law consequences in case of accidents in high-risk facilities, criminal prosecution in case of accidents in high-risk facilities, safety margins as site risk for emission protection facilities, national emergency management - strategic emergency management structures, warning and self-protection of the public in case of CBRN hazards including aspects of the psych-social emergency management.

  18. The Swedish Nuclear Power Inspectorate`s evaluation of SKB`s RD and D Program 98. Summary and conclusions

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-04-01

    Compared to previous programmes, RD and D Programme 98 is focused to a greater extent on method and site selection and on issues relating to the decision-making process. This is natural, since the programme is now approaching the stage where vital decisions will have to be made. The RD and D Programme 98 report is supplemented by a background report `Detailed Programme for Research and Development 1999-2004` as well as a number of main references `System Reporting`, `Alternative methods`, `Criteria for Site Evaluation` and the `North-South/Coast-Interior` report. In addition, a number of references are available in the form of county-specific general siting studies, feasibility studies etc. SKI has distributed RD and D Programme 98 to sixty-three reviewing bodies for comment. The reviewing bodies include universities and institutes of technology, local safety committees, municipalities hosting nuclear facilities and municipalities participating in feasibility studies as well as many authorities. The comments of the reviewing bodies mainly focused on the decision-making process, including issues relating to method selection and site selection and, in particular, on the selection of sites for site investigation. Several reviewing bodies, particularly universities and institutes of technology, have also submitted comments of a more technical-scientific nature. SKI`s evaluation has focused on determining whether SKB`s programme can be considered to fulfil the requirements stipulated in the Act on Nuclear Activities that such a programme should be able to result in the implementation of solutions for the final disposal of the spent nuclear fuel from the Swedish nuclear power programme. Furthermore, SKI`s evaluation has also focused on the conditions that SKI considers should apply to SKB`s future work. Specific comments are made for the following areas: Decision-making process, Method selection and system analysis, Siting, Technical development, Safety assessments

  19. Base isolation for nuclear power and nuclear material facilities

    International Nuclear Information System (INIS)

    Eidinger, J.M.; Kircher, C.A.; Vaidya, N.; Constantinou, M.; Kelly, J.M.; Seidensticker, R.; Tajirian, F.F.; Ovadia, D.

    1989-01-01

    This report serves to document the status of the practice for the use of base isolation systems in the design and construction of nuclear power and nuclear material facilities. The report first describes past and current (1989) applications of base isolation in nuclear facilities. The report then provides a brief discussion of non-nuclear applications. Finally, the report summarizes the status of known base-isolation codes and standards

  20. Concrete containments in Swedish nuclear power plants. A review of construction and material

    International Nuclear Information System (INIS)

    Roth, Thomas; Silfwerbrand, Johan; Sundquist, Haakan

    2002-12-01

    attention. Current investigation shows that the documentation on the concrete containment structures of the Swedish nuclear power stations is fairly complete after the authors have obtained new information through a survey during 2001 and included these data in the report. The target group of this report are structural engineers and other people interested in knowing how the prestressed concrete containments in the Swedish nuclear power stations are designed, detailed and constructed. Uprising questions regarding the structural behaviour of the containment structures ought to be evaluated by using present material properties and not the data describing the used building materials at the design stage. The aim of this research project is to gain new knowledge on life span questions regarding prestressing steel in concrete structures, partly generally and partly with focus on Swedish nuclear power stations and Swedish bridges. The project covers both bonded and un bonded prestressing steel. This report describes the containment structures for all Swedish nuclear power stations. The information is both given in Chapters 5 through 16 and assembled in tables in Appendix A. The intention is that the documentation shall grow and be supplemented as soon as new information, either new data describing the containment structures or new measuring results, will be obtained or produced within current research project. Design and detailing of prestressed concrete structures are among others based on the knowledge of time-dependent material changes regarding concrete (creep and shrinkage) and prestressing steel (relaxation). The intention is that the following items will treated: general evaluation; testing of prestressing steel and concrete properties; assessment of the risk of a time-dependent increase of brittleness of the prestressing steel; comparisons with codes; modelling of steel relaxation; unidimensional modelling of prestressing losses; regard to elevated temperatures

  1. Environmental effects of large discharges of cooling water. Experiences from Swedish nuclear power plants

    International Nuclear Information System (INIS)

    Ehlin, Ulf; Lindahl, Sture; Neuman, Erik; Sandstroem, Olof; Svensson, Jonny

    2009-07-01

    Monitoring the environmental effects of cooling water intake and discharge from Swedish nuclear power stations started at the beginning of the 1960s and continues to this day. In parallel with long-term monitoring, research has provided new knowledge and methods to optimise possible discharge locations and design, and given the ability to forecast their environmental effects. Investigations into the environmental effects of cooling-water are a prerequisite for the issuing of power station operating permits by the environmental authorities. Research projects have been carried out by scientists at universities, while the Swedish Environmental Protection Agency, the Swedish Board of Fisheries, and the Swedish Meteorological and Hydrological Institute, SMHI, are responsible for the greater part of the investigations as well as of the research work. The four nuclear power plants dealt with in this report are Oskarshamn, Ringhals, Barsebaeck and Forsmark. They were taken into operation in 1972, 1975, 1975 and 1980 resp. - a total of 12 reactors. After the closure of the Barsebaeck plants in 2005, ten reactors remain in service. The maximum cooling water discharge from the respective stations was 115, 165, 50 and 135 m 3 /s, which is comparable to the mean flow of an average Swedish river - c:a 150 m 3 /s. The report summarizes studies into the consequences of cooling water intake and discharge. Radiological investigations made at the plants are not covered by this review. The strategy for the investigations was elaborated already at the beginning of the 1960s. The investigations were divided into pre-studies, baseline investigations and monitoring of effects. Pre-studies were partly to gather information for the technical planning and design of cooling water intake and outlet constructions, and partly to survey the hydrographic and ecological situation in the area. Baseline investigations were to carefully map the hydrography and ecology in the area and their natural

  2. Pumps for nuclear facilities

    International Nuclear Information System (INIS)

    1999-01-01

    The guide describes how the Finnish Radiation and Nuclear Safety Authority (STUK) controls pumps and their motors at nuclear power plants and other nuclear facilities. The scope of the control is determined by the Safety Class of the pump in question. The various phases of the control are: (1) review of construction plan, (2) control of manufacturing, and construction inspection, (3) commissioning inspection, and (4) control during operation. STUK controls Safety Class 1, 2 and 3 pumps at nuclear facilities as described in this guide. STUK inspects Class EYT (non-nuclear) pumps separately or in connection with the commissioning inspections of the systems. This guide gives the control procedure and related requirements primarily for centrifugal pumps. However, it is also applied to the control of piston pumps and other pump types not mentioned in this guide

  3. Vitrified radwaste from reprocessing. Material concerning the examination by the Swedish Nuclear Power Inspectorate of the supplementary geology report from the KBS-project

    International Nuclear Information System (INIS)

    1979-01-01

    The Swedish Nuclear Power Inspectorate was designated by the Swedish Government to examine the supplementary geologic investigations performed by the utilities' KBS-project and to judge wheather the area investigated, Sternoe in southern Sweden, could be used for constructing a safe repository for radioactive wastes or not. This report contains material that was ordered by or sent to the Nuclear Power Inspectorate as well as the report by the Inspectorate to the Government. (L.E.)

  4. The Physical Protection of Nuclear Material and Nuclear Facilities

    International Nuclear Information System (INIS)

    1999-08-01

    Physical protection against the theft or unauthorized diversion of nuclear materials and against the sabotage of nuclear facilities by individuals or groups has long been a matter of national and international concern. Although responsibility for establishing and operating a comprehensive physical protection system for nuclear materials and facilities within a State rests entirely with the Government of that State, it is not a matter of indifference to other States whether and to what extent that responsibility is fulfilled. Physical protection has therefore become a matter of international concern and co-operation. The need for international co-operation becomes evident in situations where the effectiveness of physical protection in one State depends on the taking by other States also of adequate measures to deter or defeat hostile actions against nuclear facilities and nuclear materials, particularly when such materials are transported across national frontiers

  5. The Physical Protection of Nuclear Material and Nuclear Facilities

    International Nuclear Information System (INIS)

    1999-06-01

    Physical protection against the theft or unauthorized diversion of nuclear materials and against the sabotage of nuclear facilities by individuals or groups has long been a matter of national and international concern. Although responsibility for establishing and operating a comprehensive physical protection system for nuclear materials and facilities within a State rests entirely with the Government of that State, it is not a matter of indifference to other States whether and to what extent that responsibility is fulfilled. Physical protection has therefore become a matter of international concern and co-operation. The need for international co-operation becomes evident in situations where the effectiveness of physical protection in one State depends on the taking by other States also of adequate measures to deter or defeat hostile actions against nuclear facilities and nuclear materials, particularly when such materials are transported across national frontiers [es

  6. The Physical Protection of Nuclear Material and Nuclear Facilities

    International Nuclear Information System (INIS)

    1999-06-01

    Physical protection against the theft or unauthorized diversion of nuclear materials and against the sabotage of nuclear facilities by individuals or groups has long been a matter of national and international concern. Although responsibility for establishing and operating a comprehensive physical protection system for nuclear materials and facilities within a State rests entirely with the Government of that State, it is not a matter of indifference to other States whether and to what extent that responsibility is fulfilled. Physical protection has therefore become a matter of international concern and co-operation. The need for international co-operation becomes evident in situations where the effectiveness of physical protection in one State depends on the taking by other States also of adequate measures to deter or defeat hostile actions against nuclear facilities and nuclear materials, particularly when such materials are transported across national frontiers

  7. Mechanisms of Copper Corrosion in Aqueous Environments. A report from the Swedish National Council for Nuclear Waste's scientific workshop, on November 16, 2009

    International Nuclear Information System (INIS)

    2010-01-01

    In 2010 the Swedish Nuclear Fuel and Waste Management Company, SKB, plans to submit its license application for the final repository of spent nuclear fuel. The proposed method is the so-called KBS-3 method and implies placing the spent nuclear fuel in copper canisters, surrounded by a buffer of bentonite clay, at 500 m depth in the bedrock. The site selected by SKB to host the repository is located in the municipality of Oesthammar on the Swedish east coast. The copper canister plays a key role in the design of the repository for spent nuclear fuel in Sweden. The long-term physical and chemical stability of copper in aqueous environments is fundamental for the safety evolution of the proposed disposal concept. However, the corrosion resistance of copper has been questioned by results obtained under anoxic conditions in aqueous solution. These observations caused some head-lines in the Swedish newspapers as well as public and political concerns. Consequently, the Swedish National Council for Nuclear Waste organized a scientific workshop on the issue 'Mechanisms of Copper Corrosion in Aqueous Environments'. The purpose of the workshop was to address the fundamental understanding of the corrosion characteristics of copper regarding oxygen-free environments, and to identify what additional information is needed to assess the validity of the proposed corrosion mechanism and its implication on the containment of spent nuclear fuel in a copper canister. This seminar report is based on the presentations and discussions at the workshop. It also includes written statements by the members of the expert panel

  8. Nuclear physics accelerator facilities of the world

    International Nuclear Information System (INIS)

    1991-12-01

    this report is intended to provide a convenient summary of the world's major nuclear physics accelerator facility with emphasis on those facilities supported by the US Department of Energy (DOE). Previous editions of this report have contained only DOE facilities. However, as the extent of global collaborations in nuclear physics grows, gathering summary information on the world's nuclear physics accelerator facilities in one place is useful. Therefore, the present report adds facilities operated by the National Science Foundation (NSF) as well as the leading foreign facilities, with emphasis on foreign facilities that have significant outside user programs. The principal motivation for building and operating these facilities is, of course, basic research in nuclear physics. The scientific objectives for this research were recently reviewed by the DOE/NSF Nuclear Science Advisory Committee, who developed a long range plan, Nuclei, Nucleons, and Quarks -- Nuclear Science in the 1990's. Their report begins as follows: The central thrust of nuclear science is the study of strongly interacting matter and of the forces that govern its structure and dynamics; this agenda ranges from large- scale collective nuclear behavior through the motions of individual nucleons and mesons, atomic nuclei, to the underlying distribution of quarks and gluons. It extends to conditions at the extremes of temperature and density which are of significance to astrophysics and cosmology and are conducive to the creation of new forms of strongly interacting matter; and another important focus is on the study of the electroweak force, which plays an important role in nuclear stability, and on precision tests of fundamental interactions. The present report provides brief descriptions of the accelerator facilities available for carrying out this agenda and their research programs

  9. Investigation and mapping of the requirements for lifting devices in a nuclear facility; Utredning och kartlaeggning av krav foer lyftanordningar inom kaernteknisk anlaeggning

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Kjell (Inspecta Sweden AB, Vaexjoe (Sweden))

    2010-03-15

    This technical report covers the investigation and identification of requirements for lifting devices in nuclear facilities. The report is divided into the following Section: 1. A mapping of the regulatory framework for nuclear hoists in Finland, Germany and USA. 2. A description of how the international legal framework is applied in for replacement or modernization of lifts in the Swedish nuclear power plants. 3. In Europe, the new harmonized standard has been developed for conventional hoists. The rules appear in the 'EN-13 001'. The study will illustrate these rules, and how they currently apply in the nuclear industry in Sweden. 4. A comparison between the IKH's lifting standards and EN13001 which differences are highlighted and explained

  10. Reliability of diesel generators at the Finnish and Swedish nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Pulkkinen, Urho [Technical Research Centre of Finland, Vuorimiehentie 5, SF-02150, Espoo (Finland)

    1986-02-15

    The operating experiences of 40 stand-by diesel generators at the Finnish and Swedish nuclear power plants have been analysed with special emphasis on the impact of the frequency of surveillance testing and of the test procedure on diesel generator reliability, the contribution of design, manufacturing, testing and maintenance errors and the potential and actual common cause failures, The results pf the analyses consisted both practical recommendations and mathematical reliability models and useful reliability data. (author)

  11. Nuclear facilities in the Federal Republic of Germany

    International Nuclear Information System (INIS)

    1991-01-01

    The information brochure is a survey of installed nuclear facilities in Germany, presenting on one page each a picture of a nuclear power plant together with the main relevant data, or of other type of nuclear facilities belonging to the nuclear fuel cycle (such as fuel production plant, fuel production plant, fuel element storage facilities, and facilities for spent fuel and waste management). (UA) [de

  12. Nonreactor nuclear facilities: standards and criteria guide

    International Nuclear Information System (INIS)

    Brynda, W.J.; Junker, L.; Karol, R.C.; Lobner, P.R.; Goldman, L.A.

    1981-09-01

    This guide is a source document that identifies standards, codes, and guides that address the nuclear safety considerations pertinent to nuclear facilities as defined in DOE Order 5480.1, Chapter V, Safety of Nuclear Facilities. The guidance and criteria provided are directed toward areas of safety usually addressed in a Safety Analysis Report. The areas of safety include, but are not limited to, siting, principal design criteria and safety system design guidelines, radiation protection, accident analysis, and quality assurance. The guide is divided into two sections: general guidelines and appendices. Those guidelines that are broadly applicable to most nuclear facilities are presented in the general guidelines. These general guidelines may have limited applicability to subsurface facilities such as waste repositories. Guidelines specific to the various types or categories of nuclear facilities are presented in the appendices. These facility-specific appendices provide guidelines and identify standards and criteria that should be considered in addition to, or in lieu of, the general guidelines

  13. Technical Cybersecurity Controls for Nuclear Facilities

    International Nuclear Information System (INIS)

    Oh, Jinseok; Ryou, Jaecheol; Kim, Youngmi; Jeong, Choonghei

    2014-01-01

    To strengthen cybersecurity for nuclear facilities, many countries take a regulatory approach. For example, US Government issued several regulations . Title 10, of the Code of Federal Regulations, Section 73.54, 'Protection of Digital Computer and Communication Systems and Networks (10 CFR 73.54) for cybersecurity requirements and Regulatory Guide 5.71 (RG. 5.71) for cybersecurity guidance and so on. In the case of Korea, Korean Government issued '8.22 Cybersecurity of I and C systems (KINS/RG-NO8.22). In particular, Reg. 5.71 provides a list of security controls to address the potential cyber risks to a nuclear facilities. Implementing and adopting security controls, we can improve the level of cybersecurity for nuclear facilities. RG 5.71 follows the recommendation of NIST SP 800-53. NIST standard provides security controls for IT systems. And NRC staff tailored the controls in NIST standards to unique environments of nuclear facilities. In this paper, we are going to analysis and compare NRC RG 5.71 and NIST SP800-53, in particular, for technical security controls. If RG 5.71 omits the specific security control that is included in SP800-53, we would review that omitting is adequate or not. If RG 5.71 includes the specific security control that is not included in SP800-53, we would also review the rationale. And we are going to some security controls to strengthen cybersecurity of nuclear facilities. In this paper, we compared and analyzed of two regulation in technical security controls. RG 5.71 that is based on NIST standard provides well-understood security controls for nuclear facility. But some omitting from NIST standard can threaten security state of nuclear facility

  14. Technical Cybersecurity Controls for Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Jinseok; Ryou, Jaecheol [Chungnam National Univ., Daejeon (Korea, Republic of); Kim, Youngmi; Jeong, Choonghei [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2014-05-15

    To strengthen cybersecurity for nuclear facilities, many countries take a regulatory approach. For example, US Government issued several regulations . Title 10, of the Code of Federal Regulations, Section 73.54, 'Protection of Digital Computer and Communication Systems and Networks (10 CFR 73.54) for cybersecurity requirements and Regulatory Guide 5.71 (RG. 5.71) for cybersecurity guidance and so on. In the case of Korea, Korean Government issued '8.22 Cybersecurity of I and C systems (KINS/RG-NO8.22). In particular, Reg. 5.71 provides a list of security controls to address the potential cyber risks to a nuclear facilities. Implementing and adopting security controls, we can improve the level of cybersecurity for nuclear facilities. RG 5.71 follows the recommendation of NIST SP 800-53. NIST standard provides security controls for IT systems. And NRC staff tailored the controls in NIST standards to unique environments of nuclear facilities. In this paper, we are going to analysis and compare NRC RG 5.71 and NIST SP800-53, in particular, for technical security controls. If RG 5.71 omits the specific security control that is included in SP800-53, we would review that omitting is adequate or not. If RG 5.71 includes the specific security control that is not included in SP800-53, we would also review the rationale. And we are going to some security controls to strengthen cybersecurity of nuclear facilities. In this paper, we compared and analyzed of two regulation in technical security controls. RG 5.71 that is based on NIST standard provides well-understood security controls for nuclear facility. But some omitting from NIST standard can threaten security state of nuclear facility.

  15. Earthquake engineering for nuclear facilities

    CERN Document Server

    Kuno, Michiya

    2017-01-01

    This book is a comprehensive compilation of earthquake- and tsunami-related technologies and knowledge for the design and construction of nuclear facilities. As such, it covers a wide range of fields including civil engineering, architecture, geotechnical engineering, mechanical engineering, and nuclear engineering, for the development of new technologies providing greater resistance against earthquakes and tsunamis. It is crucial both for students of nuclear energy courses and for young engineers in nuclear power generation industries to understand the basics and principles of earthquake- and tsunami-resistant design of nuclear facilities. In Part I, "Seismic Design of Nuclear Power Plants", the design of nuclear power plants to withstand earthquakes and tsunamis is explained, focusing on buildings, equipment's, and civil engineering structures. In Part II, "Basics of Earthquake Engineering", fundamental knowledge of earthquakes and tsunamis as well as the dynamic response of structures and foundation ground...

  16. Total quality approach at ABB Atom Nuclear Fuel - winner of the Swedish quality award 1994

    International Nuclear Information System (INIS)

    Moorlin, K.; Olsson, S.

    1995-01-01

    ABB Atom Nuclear Fuel Division received the Swedish Quality Award 1994. The company has since many years a reputation for high product quality and a well implemented quality assurance system. Since some years a total quality approach is applied. For ABB Atom, total quality means continuous improvement of all business processes keeping the customer in focus. This paper elaborates on the improvement tools used at the ABB Atom Nuclear Fuel Division and gives some detailed information of the experience. (author) 6 figs

  17. Nuclear fuel treatment facility for 'Mutsu'

    International Nuclear Information System (INIS)

    Kanazawa, Toshio; Fujimura, Kazuo; Horiguchi, Eiji; Kobayashi, Tetsuji; Tamekiyo, Yoshizou

    1989-01-01

    A new fixed mooring harbor in Sekinehama and surrounding land facilities to accommodate a test voyage for the nuclear-powered ship 'Mutsu' in 1990 were constructed by the Japan Atomic Energy Research Institute. Kobe Steel took part in the construction of the nuclear fuel treatment process in various facilities, beginning in October, 1988. This report describes the outline of the facility. (author)

  18. Study on HVAC system in nuclear facility

    International Nuclear Information System (INIS)

    Baeg, S. Y.; Song, W. S.; Oh, Y. O.; Ju, Y. S.; Hong, K. P.

    2003-01-01

    Heating, Ventilation and Air Conditioning (HVAC) system in nuclear facility should be equipped and constructed more stable and allowable than that in common facility. The purpose of HVAC system is the maintenance of optimum working environment, the protection of worker against a contaminated air and the prevention of atmospheric contamination due to an outward ventilation, etc.. The basic scheme of a safety operation of nuclear facility is to prevent the atmospheric contamination even in low level. The adaptability of HVAC system which is in operation. In this study, the design requirements of HVAC system in nuclear facility and the HVAC systems in foreign countries are reviewed, and the results can be utilized in the design of HVAC system in nuclear facility

  19. The control of nuclear proliferation: future challenges. Swedish Institute of International Affairs, Stockholm, 23 April 1998

    International Nuclear Information System (INIS)

    ElBaradei, M.

    1998-01-01

    The document reproduces the text of the conference given by the Director General of the IAEA at the Swedish Institute of International Affairs in Stockholm on 23 April 1998. After a short presentation of the Agency's current verification activities, particularly in Iraq and Democratic People's Republic of Korea, the Director General focuses on the present and future role of the IAEA in the control of nuclear proliferation through its strengthened safeguards system, in the prevention of nuclear terrorism, and future challenges of controlling nuclear proliferation from both political and technical point of view

  20. Radiation protection actions at Swedish nuclear power plants 1994-2002 and some reflections about the near future

    International Nuclear Information System (INIS)

    Erixon, Stig; Godaas, Tommy; Hofvander, Peter; Lund, Ingmar; Malmqvist, Lars; Thimgren, Ingela; Oelander-Guer, Hanna

    2003-12-01

    This report provides a summary of radiation protection experiences over the years 1994-2002 in the Swedish nuclear power industry. Actions to reduce radiation levels in reactor systems, occupational exposure results and some reflections about the near future are presented

  1. How to interpret Swedish energy policy - Facts and analysis

    International Nuclear Information System (INIS)

    Rising, Agneta; Bohl, Torsten; Wikdahl, Carl-Erik

    1998-01-01

    The Swedish parliament decided on June 10, 1997 that one of the two reactors at the Barsebaeck nuclear power plant shall be closed before mid 1998 and the other until three years later. Some weeks before the 1998 PIME Conference (on December 18) the same parliament is planning to accept a new act, which will make it possible for the government to close any reactor in the future without ay reference to the level of safety. Sweden is known 'internationally to have a successful nuclear power programme and to be in the front line to develop safe nuclear waste methods. The decision in the Swedish parliament therefore came as a surprise not only in Sweden but to a large part of the nuclear power industry, all over the world. Nuclear power accounts for half the power generated in Sweden. here are twelve nuclear power units with a net output of 10 000 MW and an annual energy generation capacity of more than 70 TWh. Nuclear production in Sweden has proved to be technically, economically and environmentally highly successful. ne capacity factors have normally been high, the production costs are low and so are the releases of radioactivity and doses to the personnel. All twelve nuclear units are still highly competitive generators on the deregulated Nordic electricity market and a fe time of at least 40 years is expected for a the nuclear units, as they are being modernised continuously. The estimated safety standard of all twelve units is among the highest in the world. A dynamic nuclear waste programme has been launched. Swedish waste management techniques have achieved world leadership in several important areas. The main part of the explanation can be found in the skilful political strategy of one or two political parties which have been advocating the premature phase-out of the nuclear power programme since the mid 70's. The anti- nuclear policy was introduced in the Swedish parliament already in the 1976 general election, when the Centre Party with a strong antinuclear

  2. Socket welds in nuclear facilities

    International Nuclear Information System (INIS)

    Anderson, P.A.; Torres, L.L.

    1995-01-01

    Socket welds are easier and faster to make than are butt welds. However, they are often not used in nuclear facilities because the crevices between the pipes and the socket sleeves may be subject to crevice corrosion. If socket welds can be qualified for wider use in facilities that process nuclear materials, the radiation exposures to welders can be significantly reduced. The current tests at the Idaho Chemical Processing Plant (ICPP) are designed to determine if socket welds can be qualified for use in the waste processing system at a nuclear fuel processing plant

  3. Disposal of radioactive waste in Swedish crystalline rocks

    International Nuclear Information System (INIS)

    Greis Dahlberg, Christina; Wikberg, Peter

    2015-01-01

    SKB, Swedish Nuclear Fuel and Waste Management Company is tasked with managing Swedish nuclear and radioactive waste. Crystalline rock is the obvious alternative for deep geological disposal in Sweden. SKB is, since 1988, operating a near surface repository for short-lived low and intermediate-level waste, SFR. The waste in SFR comprises operational and decommissioning waste from nuclear plants, industrial waste, research-related waste and medical waste. Spent nuclear fuel is currently stored in an interim facility while waiting for a license to construct a deep geological repository. The Swedish long-lived low and intermediate-level waste consists mainly of BWR control rods, reactor internals and legacy waste from early research in the Swedish nuclear programs. The current plan is to dispose of this waste in a separate deep geological repository, SFL, sometimes after 2045. Understanding of the rock properties is the basis for the design of the repository concepts. Swedish crystalline rock is mechanical stable and suitable for underground constructions. The Spent Fuel Repository is planned at approximately 500 meters depth in the rock at the Forsmark site. The host rock will keep the spent fuel isolated from human and near-surface environment. The rock will also provide the stable chemical and hydraulic conditions that make it possible to select suitable technical barriers to support the containment provided by the rock. A very long lasting canister is necessary to avoid release and transport of radionuclides through water conducting fractures in the rock. A canister designed for the Swedish rock, consists of a tight, 5 cm thick corrosion barrier of copper and a load-bearing insert of cast iron. To restrict the water flow around the canister and by that prevent fast corrosion, a bentonite buffer will surround the canister. Secondary, the bentonite buffer will retard a potential release by its strong sorption of radionuclides. The SFR repository is situated in

  4. Disposal of radioactive waste in Swedish crystalline rocks

    Energy Technology Data Exchange (ETDEWEB)

    Greis Dahlberg, Christina; Wikberg, Peter [Svensk Kaernbraenslehantering AB, Stockholm (Sweden)

    2015-07-01

    SKB, Swedish Nuclear Fuel and Waste Management Company is tasked with managing Swedish nuclear and radioactive waste. Crystalline rock is the obvious alternative for deep geological disposal in Sweden. SKB is, since 1988, operating a near surface repository for short-lived low and intermediate-level waste, SFR. The waste in SFR comprises operational and decommissioning waste from nuclear plants, industrial waste, research-related waste and medical waste. Spent nuclear fuel is currently stored in an interim facility while waiting for a license to construct a deep geological repository. The Swedish long-lived low and intermediate-level waste consists mainly of BWR control rods, reactor internals and legacy waste from early research in the Swedish nuclear programs. The current plan is to dispose of this waste in a separate deep geological repository, SFL, sometimes after 2045. Understanding of the rock properties is the basis for the design of the repository concepts. Swedish crystalline rock is mechanical stable and suitable for underground constructions. The Spent Fuel Repository is planned at approximately 500 meters depth in the rock at the Forsmark site. The host rock will keep the spent fuel isolated from human and near-surface environment. The rock will also provide the stable chemical and hydraulic conditions that make it possible to select suitable technical barriers to support the containment provided by the rock. A very long lasting canister is necessary to avoid release and transport of radionuclides through water conducting fractures in the rock. A canister designed for the Swedish rock, consists of a tight, 5 cm thick corrosion barrier of copper and a load-bearing insert of cast iron. To restrict the water flow around the canister and by that prevent fast corrosion, a bentonite buffer will surround the canister. Secondary, the bentonite buffer will retard a potential release by its strong sorption of radionuclides. The SFR repository is situated in

  5. Nuclear Station Facilities Improvement Planning

    International Nuclear Information System (INIS)

    Hooks, R. W.; Lunardini, A. L.; Zaben, O.

    1991-01-01

    An effective facilities improvement program will include a plan for the temporary relocation of personnel during the construction of an adjoining service building addition. Since the smooth continuation of plant operation is of paramount importance, the phasing plan is established to minimize the disruptions in day-to-day station operation and administration. This plan should consider the final occupancy arrangements and the transition to the new structure; for example, computer hookup and phase-in should be considered. The nuclear industry is placing more emphasis on safety and reliability of nuclear power plants. In order to do this, more emphasis is placed on operations and maintenance. This results in increased size of managerial, technical and maintenance staffs. This in turn requires improved office and service facilities. The facilities that require improvement may include training areas, rad waste processing and storage facilities, and maintenance facilities. This paper discusses an approach for developing an effective program to plan and implement these projects. These improvement projects can range in magnitude from modifying a simple system to building a new structure to allocating space for a future project. This paper addresses the planning required for the new structures with emphasis on site location, space allocation, and internal layout. Since facility planning has recently been completed by Sargent and Leyden at six U. S. nuclear stations, specific examples from some of those plants are presented. Site planning and the establishment of long-range goals are of the utmost importance when undertaking a facilities improvement program for a nuclear station. A plan that considers the total site usage will enhance the value of both the new and existing facilities. Proper planning at the beginning of the program can minimize costs and maximize the benefits of the program

  6. Operational status of nuclear facilities in Japan. 2008 edition

    International Nuclear Information System (INIS)

    2008-01-01

    This document is a summary of the outline of the safety regulation administration of nuclear facilities as well as various data on the commercial nuclear power reactor facilities, research and development nuclear power reactor facilities, fabrication facilities, reprocessing facilities, and disposal facilities in fiscal year 2007 (from April 2007 to March 2008). I sincerely hope this document is used widely by many people engaged in work related to ensuring nuclear safety. (J.P.N.)

  7. Operational status of nuclear facilities in Japan. 2010 edition

    International Nuclear Information System (INIS)

    2010-01-01

    This document is a summary of the outline of the safety regulation administration of nuclear facilities as well as various data on the commercial nuclear power reactor facilities, research and development nuclear power reactor facilities, fabrication facilities, reprocessing facilities, and disposal facilities in fiscal year 2009 (from April 2009 to March 2010). We sincerely hope this document is used widely by many people engaged in work related to ensuring nuclear safety. (author)

  8. Nuclear materials facility safety initiative

    International Nuclear Information System (INIS)

    Peddicord, K.L.; Nelson, P.; Roundhill, M.; Jardine, L.J.; Lazarev, L.; Moshkov, M.; Khromov, V.V.; Kruchkov, E.; Bolyatko, V.; Kazanskij, Yu.; Vorobeva, I.; Lash, T.R.; Newton, D.; Harris, B.

    2000-01-01

    Safety in any facility in the nuclear fuel cycle is a fundamental goal. However, it is recognized that, for example, should an accident occur in either the U.S. or Russia, the results could seriously delay joint activities to store and disposition weapons fissile materials in both countries. To address this, plans are underway jointly to develop a nuclear materials facility safety initiative. The focus of the initiative would be to share expertise which would lead in improvements in safety and safe practices in the nuclear fuel cycle.The program has two components. The first is a lab-to-lab initiative. The second involves university-to-university collaboration.The lab-to-lab and university-to-university programs will contribute to increased safety in facilities dealing with nuclear materials and related processes. These programs will support important bilateral initiatives, develop the next generation of scientists and engineers which will deal with these challenges, and foster the development of a safety culture

  9. Nonreactor nuclear facilities: Standards and criteria guide

    International Nuclear Information System (INIS)

    Brynda, W.J.; Scarlett, C.H.; Tanguay, G.E.; Lobner, P.R.

    1986-09-01

    This guide is a source document that identifies standards, codes, and guides that address the nuclear safety considerations pertinent to nuclear facilities as defined in DOE 5480.1A, Chapter V, ''Safety of Nuclear Facilities.'' The guidance and criteria provided is directed toward areas of safety usually addressed in a Safety Analysis Report. The areas of safety include, but are not limited to, siting, principal design criteria and safety system design guidelines, radiation protection, accident analysis, conduct of operations, and quality assurance. The guide is divided into two sections: general guidelines and appendices. Those guidelines that are broadly applicable to most nuclear facilities are presented in the general guidelines. Guidelines specific to the various types or categories of nuclear facilities are presented in the appendices. These facility-specific appendices provide guidelines and identify standards and criteria that should be considered in addition to, or in lieu of, the general guidelines. 25 figs., 62 tabs

  10. Plan 96 - Costs for management of the radioactive waste from nuclear power production

    International Nuclear Information System (INIS)

    1996-06-01

    This report presents a calculation of the costs for implementing all measures needed to manage and dispose of spent nuclear fuel and radioactive wastes from the Swedish nuclear power reactors. The cost calculations include costs for R,D and D as well as for decommissioning and dismantling the reactor plants etc. The following facilities and systems are already in operation: Transportation system for radioactive waste products, Central interim storage facility for spent nuclear fuel, Final repository for radioactive operational wastes. Plans exist for: Encapsulation plant for spent nuclear fuel, Deep repository for spent fuel and other long-lived waste, Final repository for decommissioning waste. The total future costs, in Jan 1996 prices, for the Swedish waste system from 1997 have been calculated to be 42.2 billion SEK (about 6.4 billion USD). The total costs apply for the waste obtained from 25 years of operation of all Swedish reactors. It is estimated that 10.6 billion SEK in current money has been spent through 1996. Costs based on waste quantities from operation of the reactors for 40 years are also reported. 6 refs

  11. Reliability of diesel generators in the Finnish and Swedish nuclear power plants

    International Nuclear Information System (INIS)

    Pulkkinen, U.; Huovinen, T.; Norros, L.; Vanhala, J.

    1989-10-01

    Diesel generators are used as emergency AC-power sources in nuclear power plants and they produce electric power for other emergency systems during accidents in which offsite power is lost. The reliability of diesel generators is thus of major concern for overall safety of nuclear power plants. In this study we consider the reliability of diesel generators in the Swedish and Finnish nuclear power plants on the basis of collected operational experience. We classify the occurred failures according to their functional criticality, type and cause. The failures caused by human errors in maintenance and testing are analysed in detail. We analyse also the reliability of the diesel generator subsystems. Further, we study the effect of surveillance test and the type of test on the reliability. Finally we construct an unavailability model for single diesel generator unit and discuss the findings of the study giving some practical recommendations

  12. Sea transport of used nuclear fuel and radiactive disposals to a Swedish central store

    International Nuclear Information System (INIS)

    1977-10-01

    Sea transport of used nuclear fuel and radioactive disposals to a Swedish central store. A vessel for transporting used nuclear fuel and radioactive disposals from the power stations at Ringhals, Barsebaeck, Simpevarp and Forsmark to a central store has been projected. Safety aspects, technical and economical aspects have been taken into consideration with regard to the actual volume of goods to be transported. Three different types of vessels are presented and a specification is given for the main alternative. A safety study of the main alternative is shown, regarding collision safety, fire risks and fire extinguishing equipment. (author)

  13. Computer security at ukrainian nuclear facilities: interface between nuclear safety and security

    International Nuclear Information System (INIS)

    Chumak, D.; Klevtsov, O.

    2015-01-01

    Active introduction of information technology, computer instrumentation and control systems (I and C systems) in the nuclear field leads to a greater efficiency and management of technological processes at nuclear facilities. However, this trend brings a number of challenges related to cyber-attacks on the above elements, which violates computer security as well as nuclear safety and security of a nuclear facility. This paper considers regulatory support to computer security at the nuclear facilities in Ukraine. The issue of computer and information security considered in the context of physical protection, because it is an integral component. The paper focuses on the computer security of I and C systems important to nuclear safety. These systems are potentially vulnerable to cyber threats and, in case of cyber-attacks, the potential negative impact on the normal operational processes can lead to a breach of the nuclear facility security. While ensuring nuclear security of I and C systems, it interacts with nuclear safety, therefore, the paper considers an example of an integrated approach to the requirements of nuclear safety and security

  14. Building a medical system for nuclear facilities

    International Nuclear Information System (INIS)

    Maeda, Mitsuya

    2016-01-01

    To build a medical system for nuclear facilities, I explained what kinds of actions were performed with the TEPCO Fukushima Daiichi Nuclear Power Plant Accident and what kinds of actions are going to be performed in the future. We examined the health and medical care of the emergency workers in nuclear facilities including TEPCO Fukushima Daiichi Nuclear Power Plant from 2014 to 2015 in the Ministry of Health, Labour and Welfare (MHLW). We carried out a detailed hearing from stakeholders of electric companies and medical institutions about the medical system in nuclear facilities carrying out urgent activities. It has been said that the electric company is responsible to maintain the medical system for affected workers in nuclear facilities. However, TEPCO could not find the medical staff, such as doctors, by their own effort at the TEPCO Fukushima Daiichi Nuclear Power Plant Accident. The network of doctors familiar with emergency medical care support dispatched the medical staff after July of 2011. The stakeholders indicated that the following six tasks must be resolved: (1) the fact that no electric company performs the action of bringing up medical staff who can be dispatched into nuclear facilities in emergencies in 2015; (2) bringing up personnel in charge of radiation management and logistics other than the medical staff, such as doctors; (3) cooperation with the community medicine system given the light and shade by nuclear facilities; (4) performing training for the many concurrent wounded based on the scenario of a severe accident; (5) indicating both the condition of the contract and the guarantee of status that is appropriate for dispatched medical staffs; and (6) clarifying the organization of the network of stakeholders. The stakeholders showed the future directionality as follows: (1) To recruit the medical staff expected to be dispatched into nuclear facilities, (2) to carry out the discussion and conveyance training to strengthen cooperation with

  15. Visitor centres at nuclear facility sites

    International Nuclear Information System (INIS)

    1993-01-01

    Communications strategies in the nuclear field are often based on the creation of visitor centres at nuclear facility sites. Today, the design, as well as the realization and management of such centres has become a specialized function, and its role is very complementary to the nuclear operator's. It also uses the latest technology in the field of audio-visual, experiment and interactivity. This publication contains the proceedings of an international seminar organized by the OECD Nuclear Energy Agency on the role of visitor centres at nuclear facility sites. It includes the main papers presented at this Seminar

  16. Creation of a new-generation research nuclear facility

    International Nuclear Information System (INIS)

    Girchenko, A.A.; Matyushin, A.P.; Kudryavtsev, E.M.; Skopin, V.P.; Shchepelev, R.M.

    2013-01-01

    The SO-2M research nuclear facility operated on the industrial area of the institute. The facility is now removed from service. In view of this circumstance, it is proposed to restore the facility at the new qualitative level, i.e., to create a new-generation research nuclear facility with a very high safety level consisting of a subcritical bench and a proton accelerator (electronuclear facility). Competitive advantages and design features have been discussed and the productive capacity of the research nuclear facility under development has been evaluated [ru

  17. Outline of Swedish activities on LWR fuel

    Energy Technology Data Exchange (ETDEWEB)

    Grounes, M [Studsvik Nuclear, Nykoeping (Sweden); Roennberg, G [OKG AB (Sweden)

    1997-12-01

    The presentation outlines the Swedish activities on LWR fuel and considers the following issues: electricity production; performance of operating nuclear power plants; nuclear fuel cycle and waste management; research and development in nuclear field. 4 refs, 4 tabs.

  18. Mechanisms of Copper Corrosion in Aqueous Environments. A report from the Swedish National Council for Nuclear Waste's scientific workshop, on November 16, 2009

    Energy Technology Data Exchange (ETDEWEB)

    2010-07-01

    In 2010 the Swedish Nuclear Fuel and Waste Management Company, SKB, plans to submit its license application for the final repository of spent nuclear fuel. The proposed method is the so-called KBS-3 method and implies placing the spent nuclear fuel in copper canisters, surrounded by a buffer of bentonite clay, at 500 m depth in the bedrock. The site selected by SKB to host the repository is located in the municipality of Oesthammar on the Swedish east coast. The copper canister plays a key role in the design of the repository for spent nuclear fuel in Sweden. The long-term physical and chemical stability of copper in aqueous environments is fundamental for the safety evolution of the proposed disposal concept. However, the corrosion resistance of copper has been questioned by results obtained under anoxic conditions in aqueous solution. These observations caused some head-lines in the Swedish newspapers as well as public and political concerns. Consequently, the Swedish National Council for Nuclear Waste organized a scientific workshop on the issue 'Mechanisms of Copper Corrosion in Aqueous Environments'. The purpose of the workshop was to address the fundamental understanding of the corrosion characteristics of copper regarding oxygen-free environments, and to identify what additional information is needed to assess the validity of the proposed corrosion mechanism and its implication on the containment of spent nuclear fuel in a copper canister. This seminar report is based on the presentations and discussions at the workshop. It also includes written statements by the members of the expert panel

  19. Methodology and technology of decommissioning nuclear facilities

    International Nuclear Information System (INIS)

    1986-01-01

    The decommissioning and decontamination of nuclear facilities is a topic of great interest to many Member States of the International Atomic Energy Agency (IAEA) because of the large number of older nuclear facilities which are or soon will be retired from service. In response to increased international interest in decommissioning and to the needs of Member States, the IAEA's activities in this area have increased during the past few years and will be enhanced considerably in the future. A long range programme using an integrated systems approach covering all the technical, regulatory and safety steps associated with the decommissioning of nuclear facilities is being developed. The database resulting from this work is required so that Member States can decommission their nuclear facilities in a safe time and cost effective manner and the IAEA can effectively respond to requests for assistance. The report is a review of the current state of the art of the methodology and technology of decommissioning nuclear facilities including remote systems technology. This is the first report in the IAEA's expanded programme and was of benefit in outlining future activities. Certain aspects of the work reviewed in this report, such as the recycling of radioactive materials from decommissioning, will be examined in depth in future reports. The information presented should be useful to those responsible for or interested in planning or implementing the decommissioning of nuclear facilities

  20. Environmental Impact Statement. March 2011. Interim storage, encapsulation and final disposal of spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    2011-07-01

    An Environmental Impact Statement (EIS) shall be prepared and submitted along with applications for permissibility and a licence under the Environmental Code and a licence under the Nuclear Activities Act for new nuclear facilities. This Environmental Impact Statement has been prepared by Svensk Kaernbraenslehantering AB (the Swedish Nuclear Fuel and Waste Management Co, SKB) to be included in the licence applications for continued operation of Clab (central interim storage facility for spent nuclear fuel) in Simpevarp in Oskarshamn Municipality and construction and operation of facilities for encapsulation (integrated with Clab) and final disposal of spent nuclear fuel in Forsmark in Oesthammar Municipality

  1. Environmental Impact Statement. March 2011. Interim storage, encapsulation and final disposal of spent nuclear fuel

    International Nuclear Information System (INIS)

    2011-01-01

    An Environmental Impact Statement (EIS) shall be prepared and submitted along with applications for permissibility and a licence under the Environmental Code and a licence under the Nuclear Activities Act for new nuclear facilities. This Environmental Impact Statement has been prepared by Svensk Kaernbraenslehantering AB (the Swedish Nuclear Fuel and Waste Management Co, SKB) to be included in the licence applications for continued operation of Clab (central interim storage facility for spent nuclear fuel) in Simpevarp in Oskarshamn Municipality and construction and operation of facilities for encapsulation (integrated with Clab) and final disposal of spent nuclear fuel in Forsmark in Oesthammar Municipality

  2. Remote handling technology for nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    Sakai, Akira; Maekawa, Hiromichi; Ohmura, Yutaka

    1997-01-01

    Design and R and D on nuclear fuel cycle facilities has intended development of remote handling and maintenance technology since 1977. IHI has completed the design and construction of several facilities with remote handling systems for Power Reactor and Nuclear Fuel Development Corporation (PNC), Japan Atomic Energy Research Institute (JAERI), and Japan Nuclear Fuel Ltd. (JNFL). Based on the above experiences, IHI is now undertaking integration of specific technology and remote handling technology for application to new fields such as fusion reactor facilities, decommissioning of nuclear reactors, accelerator testing facilities, and robot simulator-aided remote operation systems in the future. (author)

  3. Procedure for estimating facility decommissioning costs for non-fuel-cycle nuclear facilities

    International Nuclear Information System (INIS)

    Short, S.M.

    1988-01-01

    The Nuclear Regulatory Commission (NRC) staff has been reappraising its regulatory position relative to the decommissioning of nuclear facilities over the last several years. Approximately 30 reports covering the technology, safety, and costs of decommissioning reference nuclear facilities have been published during this period in support of this effort. One of these reports, Technology, Safety, and Costs of Decommissioning Reference Non-Fuel-Cycle Nuclear Facilities (NUREG/CR-1754), was published in 1981 and was felt by the NRC staff to be outdated. The Pacific Northwest Laboratory (PNL) was asked by the NRC staff to revise the information provided in this report to reflect the latest information on decommissioning technology and costs and publish the results as an addendum to the previous report. During the course of this study, the NRC staff also asked that PNL provide a simplified procedure for estimating decommissioning costs of non-fuel-cycle nuclear facilities. The purpose being to provide NRC staff with the means to easily generate their own estimate of decommissioning costs for a given facility for comparison against a licensee's submittal. This report presents the procedure developed for use by NRC staff

  4. The physical protection of nuclear material and nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-06-01

    The latest review (1993) of this document was of limited scope and resulted in changes to the text of INFCIRC/225/Rev.2 designed to make the categorization table in that document consistent with the categorization table contained in the Convention on Physical Protection of Nuclear Materials. Consequently, a comprehensive review of INFCIRC/225 has not been conducted since 1989. Consequently, a meeting of national experts was convened from 2-5 June 1998 and from 27-29 October 1998 for a thorough review of INFCIRC/225/Rev.3. The revised document reflects the recommendations of the national experts to improve the structure and clarity of the document and to take account of improved technology and current international and national practices. In particular, a chapter has been added which provides specific recommendations related to sabotage of nuclear facilities and nuclear material. As a result of this addition, the title has been changed to 'The Physical Protection of Nuclear Material and Nuclear Facilities'. The recommendations presented in this IAEA document reflect a broad consensus among Member States on the requirements which should be met by systems for the physical protection of nuclear materials and facilities. It is hoped that they will provide helpful guidance for Member States.

  5. The physical protection of nuclear material and nuclear facilities

    International Nuclear Information System (INIS)

    1999-06-01

    The latest review (1993) of this document was of limited scope and resulted in changes to the text of INFCIRC/225/Rev.2 designed to make the categorization table in that document consistent with the categorization table contained in the Convention on Physical Protection of Nuclear Materials. Consequently, a comprehensive review of INFCIRC/225 has not been conducted since 1989. Consequently, a meeting of national experts was convened from 2-5 June 1998 and from 27-29 October 1998 for a thorough review of INFCIRC/225/Rev.3. The revised document reflects the recommendations of the national experts to improve the structure and clarity of the document and to take account of improved technology and current international and national practices. In particular, a chapter has been added which provides specific recommendations related to sabotage of nuclear facilities and nuclear material. As a result of this addition, the title has been changed to 'The Physical Protection of Nuclear Material and Nuclear Facilities'. The recommendations presented in this IAEA document reflect a broad consensus among Member States on the requirements which should be met by systems for the physical protection of nuclear materials and facilities. It is hoped that they will provide helpful guidance for Member States

  6. Preliminary plan for decommissioning - repository for spent nuclear fuel

    International Nuclear Information System (INIS)

    Hallberg, Bengt; Tiberg, Liselotte

    2010-06-01

    The final disposal facility for spent nuclear fuel is part of the KBS-3 system, which also consists of a central facility for interim storage and encapsulation of the spent nuclear fuel and a transport system. The nuclear fuel repository will be a nuclear facility. Regulation SSMFS 2008:1 (Swedish Radiation Safety Authority's regulations on safety of nuclear facilities) requires that the licensee must have a current decommissioning plan throughout the facility lifecycle. Before the facility is constructed, a preliminary decommissioning plan should be reported to the Swedish Radiation Safety Authority. This document is a preliminary decommissioning plan, and submitted as an attachment to SKB's application for a license under the Nuclear Activities Act to construct, own and operate the facility. The final disposal facility for spent nuclear fuel consists of an above ground part and a below ground part and will be built near Forsmark and the final repository for radioactive operational waste, SFR. The parts above and below ground are connected by a ramp and several shafts, e.g. for ventilation. The below ground part consists of a central area, and several landfill sites. The latter form the repository area. The sealed below ground part constitutes the final repository. The decommissioning is taking place after the main operation has ended, that is, when all spent nuclear fuel has been deposited and the deposition tunnels have been backfilled and plugged. The decommissioning involves sealing of the remaining parts of the below ground part and demolition of above ground part. When decommissioning begins, there will be no contamination in the facility. The demolition is therefore performed as for a conventional plant. Demolition waste is sorted and recycled whenever possible or placed in landfill. Hazardous waste is managed in accordance with current regulations. A ground investigation is performed and is the basis for after-treatment of the site. The timetable for the

  7. New nuclear facilities and their analytical applications in China

    International Nuclear Information System (INIS)

    Zhang, Z.Y.; He, X.; Ma, Y.H.; Ding, Y.Y.; Chai, Z.F.

    2014-01-01

    Nuclear analytical techniques are a family of modern analytical methods that are based on nuclear reactions, nuclear effects, nuclear radiations, nuclear spectroscopy, nuclear parameters, and nuclear facilities. Because of their combined characteristics of sensitivity and selectivity, they are widely used in projects ranging from life sciences to deep-space exploration. In this review article, new nuclear facilities and their analytical applications in China are selectively reviewed, covering the following aspects: large scientific facilities, national demands, and key scientific issues with the emphasis on the new achievements. (orig.)

  8. Nuclear waste - research and technique development. KASAMS's Review of the Swedish Nuclear Fuel and Waste Management Co's (SKB's) RD and D Programme 2001

    International Nuclear Information System (INIS)

    2002-01-01

    This report is KASAM's review statement to the Government on the Swedish Nuclear Fuel and Waste Management Co's (SKB's) RD and D Programme 2001. KASAM's review was primarily conducted through work by KASAM's members, special adviser, experts and secretary. In KASAM's opinion, the reactor owners, through RD and D Programme 2001, have complied with the requirements of paragraph 12 of the Act on Nuclear Activities. In KASAM's opinion, SKB's research and development programme shows great merit. This applies to both what SKB has done and what it intends to do. The report is well-structured and clear. RD and D Programme 2001 shows that there is still a considerable need for development work in a number of important technical areas. This applies, for example, to the fabrication and sealing of canisters as well as control methods for these activities. Within other areas, for example, geology, chemistry, hydrology, biology and rock mechanics, there is also a great need for further research and development work, and for practical demonstrations of technical applications. In KASAM's opinion, humanities and social science issues, that are of importance for the disposal of nuclear waste, should be accorded greater attention. In Chapter 14, KASAM has presented a proposal for how research in these areas can be organised and financed. KASAM emphasizes that future RD and D programmes should have a broad scientific basis in order to comply with the requirements of the Act on Nuclear Activities regarding comprehensiveness. In their review statements on RD and D Programme 2001, the Swedish Nuclear Power Inspectorate (SKI) and the Swedish Radiation Protection Authority (SSI) have proposed that SKB should be required to present a strategy document which should be kept updated. In KASAM's opinion, such a report of current strategic issues should be made available to the public and other parties concerned. KASAM also believes that such a documentation of strategy issues should be

  9. Physical security of nuclear facilities

    International Nuclear Information System (INIS)

    Dixon, H.

    1987-01-01

    A serious problem with present security systems at nuclear facilities is that the threats and standards prepared by the NRC and DOE are general, and the field offices are required to develop their own local threats and, on that basis, to prepared detailed specifications for security systems at sites in their jurisdiction. As a result, the capabilities of the systems vary across facilities. Five steps in particular are strongly recommended as corrective measures: 1. Those agencies responsible for civil nuclear facilities should jointly prepare detailed threat definitions, operational requirements, and equipment specifications to protect generic nuclear facilities, and these matters should be issued as policy. The agencies should provide sufficient detail to guide the design of specific security systems and to identify candidate components. 2. The DOE, NRC, and DOD should explain to Congress why government-developed security and other military equipment are not used to upgrade existing security systems and to stock future ones. 3. Each DOE and NRC facility should be assessed to determine the impact on the size of the guard force and on warning time when personnel-detecting radars and ground point sensors are installed. 4. All security guards and technicians should be investigated for the highest security clearance, with reinvestigations every four years. 5. The processes and vehicles used in intrafacility transport of nuclear materials should be evaluated against a range of threats and attack scenarios, including violent air and vehicle assaults. All of these recommendations are feasible and cost-effective. The appropriate congressional subcommittees should direct that they be implemented as soon as possible

  10. Final Disposal of Nuclear Waste. The Swedish National Council for Nuclear Waste's Review of the Swedish Nuclear Fuel and Waste Management Co's (SKB's) RDandD Programme 2007

    International Nuclear Information System (INIS)

    2009-01-01

    The Swedish National Council for Nuclear Waste finds that the RDandD programme 2007 fulfils the requirements set forth in the Nuclear Activities Act. However, the Council has identified a number of questions and deficiencies to which the Council wishes to draw attention. The Council finds that there are many unclear points regarding buffer, backfill and closure at this stage. The most important properties of the buffer material should be specified and limit values should be determined with respect to swelling potential, retention capacity for radionuclides, chemical stability, hydraulic diffusion, resistance to erosion and level of impurities. Mechanical strength and chemical stability must be guaranteed for compacted components in the buffer. Models should be set up for transport of the most important radioactive isotopes through the bentonite. SKB must also be able to show that the buffer and backfill conform to the initial states assumed by the safety assessment. Special research is required on the interfaces between backfill and buffer and between backfill and rock. SKB needs to consider the problems that can arise during the expected climate change, probably already during the construction period. The final design of the closure should be determined by the properties of the rock with respect to e.g. fractures at different depths and salinity. However, this presumes knowledge of what properties different materials - and mixtures of materials - have and how they can interact to best effect. The Swedish National Council for Nuclear Waste considers it imperative that SKB give a clear account of the judgements underlying site selection. The Council is troubled by the fact that successful rock stress measurements performed so far in Forsmark are too few in number and uncertain at planned repository depth. The Council would also like to emphasize the internal role of safety assessment within SKB as a tool for both following up repository safety during construction

  11. Research Facilities for the Future of Nuclear Energy

    International Nuclear Information System (INIS)

    Ait Abderrahim, H.

    1996-01-01

    The proceedings of the ENS Class 1 Topical Meeting on Research facilities for the Future of Nuclear Energy include contributions on large research facilities, designed for tests in the field of nuclear energy production. In particular, issues related to facilities supporting research and development programmes in connection to the operation of nuclear power plants as well as the development of new concepts in material testing, nuclear data measurement, code validation, fuel cycle, reprocessing, and waste disposal are discussed. The proceedings contain 63 papers

  12. Nuclear Security Recommendations on Physical Protection of Nuclear Material and Nuclear Facilities (INFCIRC/225/Revision 5): Recommendations

    International Nuclear Information System (INIS)

    2011-01-01

    This publication, Revision 5 of Physical Protection of Nuclear Material and Nuclear Facilities (INFCIRC/225), is intended to provide guidance to States and their competent authorities on how to develop or enhance, implement and maintain a physical protection regime for nuclear material and nuclear facilities, through the establishment or improvement of their capabilities to implement legislative and regulatory programmes. The recommendations presented in this publication reflect a broad consensus among IAEA Member States on the requirements which should be met for the physical protection of nuclear materials and nuclear facilities.

  13. Possible means to manage and store the BKAB RPV and other Swedish large radioactive components

    International Nuclear Information System (INIS)

    Johansson, Leif

    2012-01-01

    calculations show that it is fully acceptable for managing RPVs as single pieces, including RVIs, from Barsebaeck to the final disposal at the SFR or SFL facilities. Regarding nuclear waste, an inventory must be drawn of all nuclear waste within the site of a facility. All nuclear waste that is handled, processed, stored or disposed of at the facility must be confined safely. SKB and the nuclear industry have intensified their efforts to review various options for handling and disposal of large components in order to bring substantial savings not only in dismantling time, but also in dose uptakes for the decommissioning staff. As Barsebaeck NPP, the Swedish nuclear industry and SKB have agreed to present a proposal to the SKB Management Board in early 2010 with a view to extending tunnels and caverns in the SFR facility and preparing for ability to manage whole RPVs. The Ringhals NPPs are owned by Vattenfall AB, with 3 PWRs and 1 BWR. SGs were replaced in two of the PWRs (three from each unit), in 1989 and 1995. Retired SGs are considered as waste, which normally is stored temporarily on site pending transport for final disposal or off-site treatment. The Ringhals SGs were replaced in two of the PWRs (three from each unit), in 1989 and 1995. Retired SGs are considered as waste, which normally is stored temporarily on site pending transport for final disposal or off-site treatment. Each SG weighs about 310 t and measures 21 m in length by 5.5 m in diameter; it requires a storage volume of 400 m3. With a volume reduction over 90 per cent, less than 40 m3 will be stored at the SFR or SFL Facility for short-lived or long-lived waste, respectively. Three SGs have been treated in Studsvik facilities from 2006 to 2009. Three other SGs have been delivered to Studsvik with a roll-on/roll-off ship M/S Electron with the capability to take all three SGs on board. Those three SGs have been treated since 2010. Other large components have been sent to Studsvik as whole pieces for scrap

  14. Analysis of human performance problems at the Swedish nuclear power plants

    International Nuclear Information System (INIS)

    Bento, J.P.

    1988-01-01

    The last five years of operation of all Swedish nuclear power plants have been studied with respect to human performance problems by analysing all scrams and licensee event reports (LERs). Thus, the study covers 165 scrams and 1318 LERs. As general results, 39% of the scrams and 27% of the LERs, as an average for the years 1983-1987, are caused by human performance problems. Among the items studied, emphasis has been put on the analysis of the causal categories involved in human performance problems resulting in plant events. The most significant causal categories appear to be Work organization, Procedures not followed, Work place ergonomics and Human variability

  15. Environmental impact assessment of the Swedish high-level radioactive waste disposal system - examples of likely considerations

    International Nuclear Information System (INIS)

    1994-01-01

    Sweden is investigating the feasibility of establishing a high-level radioactive waste (HLW) disposal system consisting of three components as follows: (1) Encapsulation facility, (2) system for transporting waste and (3) geologic repository. Swedish law requires that an Environmental Impact Assessment (EIA) be written for any planned action expected to have a significant impact on the environment. Before embarking on construction and operation of a HLW disposal system, the Swedish government will evaluate the expected environmental impacts to assure that the Swedish people and environmental will not be unduly affected by the disposal system. The EIA process requires that reasonable alternatives to the proposed action, including the 'zero' or 'no action' alternative, be considered so that the final approved plan for disposal will have undergone scrutiny and comparison of alternatives to arrive at a plan which is the best achievable given reasonable physical and monetary constraints. This report has been prepared by the Center for Nuclear Waste Regulatory Analyses (CNWRA) for use by the Swedish Radiation Protection Institute (SSI). The purpose of this report is to establish a document which outlines the types of information which would be in an EIA for a three part disposal system like that envisioned by the Swedish Nuclear Fuel and Waste Management Company (SKB) for the disposal of Sweden's HLW. Technical information that would normally be included in an EIA is outlined in this document. The SSI's primary interest is in radiological impacts. However, for the sake of completeness and also to evaluate all environmental impacts in a single document, non-radiological impacts are also included. Swedish authorities other than the SSI may have interest in the non-radiological parts of the document. 26 refs

  16. Nuclear safety and radiation protection report of the nuclear facilities - 2014

    International Nuclear Information System (INIS)

    2015-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the Tricastin operational hot base facility (INB no. 157, Bollene, Vaucluse (FR)), a nuclear workshop for storage and maintenance and qualification operations on some EdF equipments. Then, the nuclear safety and radiation protection measures taken regarding the facility are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2014, if some, are reported as well as the effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facility is presented and sorted by type of waste, quantities and type of conditioning. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions

  17. Quality management in nuclear facilities decommissioning

    International Nuclear Information System (INIS)

    Garonis, Omar H.

    2002-01-01

    Internationally, the decommissioning organizations of nuclear facilities carry out the decommissioning according to the safety requirements established for the regulatory bodies. Some of them perform their activities in compliance with a quality assurance system. This work establishes standardization through a Specifications Requirement Document, for the management system of the nuclear facilities decommissioning organizations. It integrates with aspects of the quality, environmental, occupational safety and health management systems, and also makes these aspects compatible with all the requirements of the nuclear industry recommended for the International Atomic Energy Agency (IAEA). (author)

  18. Trend of development of robots for nuclear facilities

    International Nuclear Information System (INIS)

    Maki, Hideo; Sasaki, Masayoshi

    1984-01-01

    Robot technology becomes more and more important in the field of atomic energy industries. Hitachi Ltd. has energetically engaged in the development of the robot technology for nuclear facilities, recognizing these situations. The course of the development of robot technology and the robots for nuclear facilities is described. As the practical examples of the robots for nuclear facilities, there have been automatic fuel exchangers, the remotely operated automatic exchangers for control rod driving mechanism, automatic and semi-automatic ultrasonic flaw detectors and so on. As the robots for nuclear facilities under development, control rod driving mechanism disassembling and cleaning system, the volume reduction device for spent fuel channel boxes and control rods and others are reported. (Kako, I.)

  19. Childhood leukaemia around Canadian nuclear facilities. Phase 2

    International Nuclear Information System (INIS)

    Clarke, E.A.; McLaughlin, J.; Anderson, T.W.

    1991-06-01

    Prompted by findings of increased occurrence of childhood leukaemia in the vicinity of some nuclear facilities in the United Kingdom, this study aimed to investigate whether the frequency of leukaemia among children born to mothers living near nuclear facilities in Ontario differed from the provincial average. The Ontario Cancer Registry was used to identify 1894 children aged 0 to 14 years who died from leukaemia between 1950 and 1987, and 1814 children who were diagnosed with leukaemia between 1964 and 1986. Residence at birth and death was obtained from birth and death certificates. Analyses were performed separately for nuclear research and development facilities; uranium mining, milling and refining facilities; and, nuclear generating stations; and for areas within the same county as the facility and 'nearby' - within a 25-km radius of the facility. Risk estimates were calculated as the ratio of the observed (O) number of events over the expected (E) number. In the vicinity of nuclear research and development facilities the rate of leukaemia was less than expected and within the bound of chance variation. In the areas around the uranium mining, milling and refining facilities and nuclear power plants leukaemia occurred slightly more frequently than expected, but due to small frequencies these differences may have arisen due to chance. Large differences between observed and expected rates were not detected around any of the Ontario facilities. This study was large enough to detect excess risks of the magnitude reported in the United Kingdom, but it was not large enough to discriminate between the observed relative risks and a chance finding. Levels of leukaemia detected near nuclear generating stations indicate the need for further investigation. (20 tabs., 15 figs., 32 refs.)

  20. Dismantling of nuclear facilities

    International Nuclear Information System (INIS)

    Tallec, M.; Kus, J.P.

    2009-01-01

    Nuclear facilities have a long estimable lifetime but necessarily limited in time. At the end of their operation period, basic nuclear installations are the object of cleansing operations and transformations that will lead to their definitive decommissioning and then to their dismantling. Because each facility is somewhere unique, cleansing and dismantling require specific techniques. The dismantlement consists in the disassembly and disposing off of big equipments, in the elimination of radioactivity in all rooms of the facility, in the demolition of buildings and eventually in the reconversion of all or part of the facility. This article describes these different steps: 1 - dismantling strategy: main de-construction guidelines, expected final state; 2 - industries and sites: cleansing and dismantling at the CEA, EDF's sites under de-construction; 3 - de-construction: main steps, definitive shutdown, preparation of dismantling, electromechanical dismantling, cleansing/decommissioning, demolition, dismantling taken into account at the design stage, management of polluted soils; 4 - waste management: dismantlement wastes, national policy of radioactive waste management, management of dismantlement wastes; 5 - mastery of risks: risk analysis, conformability of risk management with reference documents, main risks encountered at de-construction works; 6 - regulatory procedures; 7 - international overview; 8 - conclusion. (J.S.)

  1. Status for cast stainless steel in older Swedish nuclear power plants, March 1996; Status foer gjutet rostfritt staal i aeldre svenska kaernkraftverk, mars 1996

    Energy Technology Data Exchange (ETDEWEB)

    Trolle, M.

    1996-04-01

    The purpose of this study is to compile what is known about larger cast components primarly in older BWR nuclear power plants with external circulation pumps. The work includes metallurgical data and a compilation on the material that the owner of Oskarshamn 1, OKG AB, has delivered to The Swedish Nuclear Power Inspectorate as a result of the investigation of these components. An overview of the investigations performed on the other Swedish plants of similar design during the annual outage 1995 is also described in this report. International experinece is also reported. The results from OKG AB show that there has been extensive cracking in both valves and pump casings and that they are probably resulting defects from the manufacturing process, but an environmental factor cannot be excluded. In order to get a complete picture of the situation in Swedish nuclear power plants a more extensive survey needs to be performed. Internationally the phenomenon of hot cracking in cast stainless steel is well known, but not as severe as in Oskarshamn 1. One question however that is discussed is the recommended amount of ferrite in these steels in order to avoid hot cracking without risking embrittlement of the ferrite phase. The Swedish utilities specify 3%, some European countries recommend 8%. Japan suggests ferrite contents up to 30%. 25 refs.

  2. Convention on nuclear safety 2012 extra ordinary meeting. The Swedish National Report

    International Nuclear Information System (INIS)

    2012-01-01

    During the 5th Review Meeting of the Convention on Nuclear Safety (CNS), the Contracting Parties in attendance agreed to hold an Extraordinary Meeting in August 2012 with the aim to enhance safety through reviewing and sharing lessons learned and actions taken by Contracting Parties in response to events at TEPCO Fukushima Dai-ichi. It was agreed that a brief and concise National Report should be developed by each Contracting Party to support the Extraordinary Meeting. This report should be submitted three months prior to the meeting to the Secretariat via the Convention-secured website for peer review by other Contracting Parties. It was also agreed that the Contracting Parties should organize their reports by topics that cross the boundaries of multiple CNS Articles. Each National Report should provide specific information on these topics to address the lessons learned and activities undertaken by each Contracting Party. The National Report should include a description of the activities the Contracting Party has completed and any activities it intends to complete along with scheduled completion dates. The present report is therefore structured in accordance with the guidance given by the General Committee for CNS. In Chapter 0, a brief description of Swedish nuclear power plants is given with an emphasis on measures that have been taken gradually as a result of new knowledge and experience. The following chapters deal with the six topics, which are: 1) External events, 2) Design issues, 3) Severe accident management and recovery, 4) National organizations, 5) Emergency preparedness and response and post-accident management, and 6) International cooperation. Each chapter concludes with a table illustrating a high-level summary of the items identified. To clarify the relationship between the text and table contained in each chapter, the parts of the text appearing in the table are underlined. Furthermore, the text of some sections/subsections in different chapters

  3. Methodology for analyzing risk at nuclear facilities

    International Nuclear Information System (INIS)

    Yoo, Hosik; Lee, Nayoung; Ham, Taekyu; Seo, Janghoon

    2015-01-01

    Highlights: • A new methodology for evaluating the risk at nuclear facilities was developed. • Five measures reflecting all factors that should be concerned to assess risk were developed. • The attributes on NMAC and nuclear security culture are included as attributes for analyzing. • The newly developed methodology can be used to evaluate risk of both existing facility and future nuclear system. - Abstract: A methodology for evaluating risks at nuclear facilities is developed in this work. A series of measures is drawn from the analysis of factors that determine risks. Five measures are created to evaluate risks at nuclear facilities. These include the legal and institutional framework, material control, physical protection system effectiveness, human resources, and consequences. Evaluation attributes are developed for each measure and specific values are given in order to calculate the risk value quantitatively. Questionnaires are drawn up on whether or not a state has properly established a legal and regulatory framework (based on international standards). These questionnaires can be a useful measure for comparing the status of the physical protection regime between two countries. Analyzing an insider threat is not an easy task and no methodology has been developed for this purpose. In this study, attributes that could quantitatively evaluate an insider threat, in the case of an unauthorized removal of nuclear materials, are developed by adopting the Nuclear Material Accounting & Control (NMAC) system. The effectiveness of a physical protection system, P(E), could be analyzed by calculating the probability of interruption, P(I), and the probability of neutralization, P(N). In this study, the Tool for Evaluating Security System (TESS) code developed by KINAC is used to calculate P(I) and P(N). Consequence is an important measure used to analyze risks at nuclear facilities. This measure comprises radiological, economic, and social damage. Social and

  4. Safety study of fire protection for nuclear fuel cycle facility

    International Nuclear Information System (INIS)

    2013-01-01

    Insufficiencies in the fire protection system of the nuclear reactor facilities were pointed out when the fire occurred due to the Niigata prefecture-Chuetsu-oki Earthquake in July, 2007. This prompted the revision of the fire protection safety examination guideline for nuclear reactors as well as commercial guidelines. The commercial guidelines have been endorsed by the regulatory body. Now commercial fire protection standards for nuclear facilities such as the design guideline and the management guideline for protecting fire in the Light Water Reactors (LWRs) are available, however, those to apply to the nuclear fuel cycle facilities such as mixed oxide fuel fabrication facility (MFFF) have not been established. For the improvement of fire protection system of the nuclear fuel cycle facilities, the development of a standard for the fire protection, corresponding to the commercial standard for LWRs were required. Thus, Japan Nuclear Energy Safety Organization (JNES) formulated a fire protection guidelines for nuclear fuel cycle facilities as a standard relevant to the fire protection of the nuclear fuel cycle facilities considering functions specific to the nuclear fuel cycle facilities. In formulating the guidelines, investigation has been conduced on the commercial guidelines for nuclear reactors in Japan and the standards relevant to the fire protection of nuclear facilities in USA and other countries as well as non-nuclear industrial fire protection standards. The guideline consists of two parts; Equipments and Management, as the commercial guidances of the nuclear reactor. In addition, the acquisition of fire evaluation data for a components (an electric cabinet, cable, oil etc.) targeted for spread of fire and the evaluation model of fire source were continued for the fire hazard analysis (FHA). (author)

  5. Facilities inventory protection for nuclear facilities

    International Nuclear Information System (INIS)

    Schmitt, F.J.

    1989-01-01

    The fact that shut-down applications have been filed for nuclear power plants, suggests to have a scrutinizing look at the scopes of assessment and decision available to administrations and courts for the protection of facilities inventories relative to legal and constitutional requirements. The paper outlines the legal bases which need to be observed if purposeful calculation is to be ensured. Based on the different actual conditions and legal consequences, the author distinguishes between 1) the legal situation of facilities licenced already and 2) the legal situation of facilities under planning during the licencing stage. As indicated by the contents and restrictions of the pertinent provisions of the Atomic Energy Act and by the corresponding compensatory regulation, the object of the protection of facilities inventor in the legal position of the facility owner within the purview of the Atomic Energy Act, and the licensing proper. Art. 17 of the Atomic Energy Act indicates the legislators intent that, once issued, the licence will be the pivotal point for regulations aiming at protection and intervention. (orig./HSCH) [de

  6. Agreement between Norway and Sweden on exchange of information and early notification relating to Swedish and Norwegian nuclear facilities etc

    International Nuclear Information System (INIS)

    1986-01-01

    In the context of the adoption of the IAEA Convention on Early Notification of a Nuclear Accident, Norway and Sweden concluded this Agreement which supplements the provisions of the Convention with regard to direct notification and advance communication of technical information. The Agreement applies to facilities and activities as defined by the Convention. (NEA) [fr

  7. Childhood leukaemia around Canadian nuclear facilities. Phase 1

    International Nuclear Information System (INIS)

    Clarke, E.A.; McLaughlin, J.; Anderson, T.W.

    1989-05-01

    A ninefold excess risk of leukaemia, as observed in vicinity of the Sellafield facility, was not observed amongst children born to mothers residing in the areas around nuclear research facilities and uranium mining, milling and refining facilities in Ontario. In the vicinity of nuclear research facilities, the rate of leukaemia was, in fact, less than expected. In the areas around the uranium mining, milling and refining facilities; leukaemia occurred slightly more frequently than expected; however, due to small frequencies these results may have risen by chance. A slightly greater than expected occurrence of leukaemia was also detected, which may well have been due to chance, in an exploratory study of the areas around nuclear power generating stations in Ontario

  8. Considerations about the licensing process of special nuclear industrial facilities

    Energy Technology Data Exchange (ETDEWEB)

    Talarico, M.A., E-mail: talaricomarco@hotmail.com [Marinha do Brasil, Rio de Janeiro, RJ (Brazil). Coordenacao do Porgrama de Submarino com Propulsao Nuclear; Melo, P.F. Frutuoso e [Coordenacao dos Programas de Pos-Graduacao em Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear

    2015-07-01

    This paper brings a discussion about the challenges involved in the development of a new kind of nuclear facility in Brazil, a naval base for nuclear submarines, with attention to the licensing process and considerations about the risk-informed decision making application to the licensing process. Initially, a model of such a naval base, called in this work, special industrial facility, is proposed, with its systems and respective sets of basic requirements, in order to make it possible the accomplishment of the special industrial facility support function to the nuclear submarine. A discussion about current challenges to overcome in this project is presented: the challenges due to the new characteristics of this type of nuclear facility; existence of several interfaces between the special industrial facilities systems and nuclear submarine systems in design activities; lack of specific regulation in Brazil to allow the licensing process of special industrial facilities by the nuclear safety authority; and comments about the lack of information from reference nuclear facilities, as is the case with nuclear power reactors (for example, the German Grafenrheinfeld nuclear plant is the reference plant for the Brazilian Angra 2 nuclear plant). Finally, in view of these challenges, an analysis method of special industrial facility operational scenarios to assist the licensing process is proposed. Also, considerations about the application of risk-informed decision making to the special industrial facility activity and licensing process in Brazil are presented. (author)

  9. Considerations about the licensing process of special nuclear industrial facilities

    International Nuclear Information System (INIS)

    Talarico, M.A.; Melo, P.F. Frutuoso e

    2015-01-01

    This paper brings a discussion about the challenges involved in the development of a new kind of nuclear facility in Brazil, a naval base for nuclear submarines, with attention to the licensing process and considerations about the risk-informed decision making application to the licensing process. Initially, a model of such a naval base, called in this work, special industrial facility, is proposed, with its systems and respective sets of basic requirements, in order to make it possible the accomplishment of the special industrial facility support function to the nuclear submarine. A discussion about current challenges to overcome in this project is presented: the challenges due to the new characteristics of this type of nuclear facility; existence of several interfaces between the special industrial facilities systems and nuclear submarine systems in design activities; lack of specific regulation in Brazil to allow the licensing process of special industrial facilities by the nuclear safety authority; and comments about the lack of information from reference nuclear facilities, as is the case with nuclear power reactors (for example, the German Grafenrheinfeld nuclear plant is the reference plant for the Brazilian Angra 2 nuclear plant). Finally, in view of these challenges, an analysis method of special industrial facility operational scenarios to assist the licensing process is proposed. Also, considerations about the application of risk-informed decision making to the special industrial facility activity and licensing process in Brazil are presented. (author)

  10. On exposure of workers in nuclear reactor facilities for test and in nuclear reactor facilities in research and development stage in fiscal 1988

    International Nuclear Information System (INIS)

    1989-01-01

    The Law for Regulation on Nuclear Reactor requires the operators of nuclear reactors that the exposure dose of workers engaged in work for nuclear reactors should not exceed the limits specified in official notices that are issued based on the Law. The present article summarizes the contents of the Report on Radiation Management in 1988 submitted by the operators of nuclear reactor facilities for test and those of nuclear reactor facilities in research and development stage based on the Law, and the Report on Management of Exposure Dose of Workers submitted by them based on administrative notices. The reports demonstrate that the exposure of workers was below the permissible exposure dose in 1988 in all nuclear reactor facilities. The article presents data on the distribution of exposure dose among workers in all facilities with a nuclear reactor for test, and data on personal exposure of employees and non-employees and overall exposure of all workers in the facilities of Japan Atomic Energy Research Institute and Power Reactor and Nuclear Fuel Development Corporation. (N.K.)

  11. Decommissioning nuclear facilities

    International Nuclear Information System (INIS)

    Harmon, K.M.; Jenkins, C.E.; Waite, D.A.; Brooksbank, R.E.; Lunis, B.C.; Nemec, J.F.

    1976-01-01

    This paper describes the currently accepted alternatives for decommissioning retired light water reactor fuel cycle facilities and the current state of decommissioning technology. Three alternatives are recognized: Protective Storage; Entombment; and Dismantling. Application of these alternatives to the following types of facilities is briefly described: light water reactors; fuel reprocessing plants, and mixed oxide fuel fabrication plants. Brief descriptions are given of decommissioning operations and results at a number of sites, and recent studies of the future decommissioning of prototype fuel cycle facilities are reviewed. An overview is provided of the types of operations performed and tools used in common decontamination and decommissioning techniques and needs for improved technology are suggested. Planning for decommissioning a nuclear facility is dependent upon the maximum permitted levels of residual radioactive contamination. Proposed guides and recently developed methodology for development of site release criteria are reviewed. 21 fig, 32 references

  12. Some technical aspects of the nuclear material accounting and control at nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    Miller, O.A.; Babaev, N.S.; Gryazev, V.M.; Gadzhiev, G.I.; Gabeskiriya, V.Ya.

    1977-01-01

    The possibilities of nuclear material accounting and control are discussed at nuclear facilities of fuel cycle (WWER-type reactor, fuel fabrication plant, reprocessing plant and uranium enrichment facility) and zero energy fast reactor facility. It is shown that for nuclear material control the main method is the accounting with the application isotopic correlations at the reprocessing plant and enrichment facility. Possibilities and limitations of the application of destructive and non-destructive methods are discussed for nuclear material determinations at fuel facilities and their role in the accounting and safeguards systems as well as possibilities of the application of neutron method at a zero energy fast reactor facility [ru

  13. Criteria, standards and policies regarding decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    Detilleux, E.; Lennemann, W.L.

    1977-01-01

    At the end of this century, there will probably be around 2500 operating nuclear power reactors, along with all the other nuclear fuel cycle facilities supporting their operation. Eventually these facilities, one by one, will be shut down and it will be necessary to dispose of them as with any redundant industrial facility or plant. Some parts of a nuclear fuel cycle facility can be dismantled by conventional methods, but those parts which have become contaminated with radioactive nuclear products or induced radioactivity must be subject to rigid controls and restrictions and handled by special dismantling and disposal procedures. In many cases, the resulting quantity of radioactive waste is likely to be relatively large and dismantling quite costly. Decommissioning nuclear facilities is a multifaceted problem involving planners, design engineers, operators, waste managers and regulatory authorities. Preparation for decommissioning should begin as early as site selection and plant design. The corner stone for the preparation of a decommissioning programme is the definition of its extent, meeting the requirements for public and environmental protection during the period that the radioactive material is of concern. The paper discusses the decontamination and decommissioning experience at the Eurochemic fuel reprocessing plant, the implications and the knowledge gained from this experience. It includes the results of technical reviews made by the Nuclear Energy Agency of OECD and the International Atomic Energy Agency regarding decommissioning nuclear facilities. The paper notes the special planning that should be arranged between those responsible for the nuclear facility and competent public authorities who should jointly make a realistic determination of the eventual disposition of the nuclear facility, even before it is built. Recommendations cover the responsibilities of nuclear plant entrepreneurs, designers, operators, and public and regulatory authorities

  14. Storage facilities of spent nuclear fuel in dry for Mexican nuclear facilities; Instalaciones de almacenamiento de combustible nuclear gastado en seco para instalaciones nucleares mexicanas

    Energy Technology Data Exchange (ETDEWEB)

    Salmeron V, J. A.; Camargo C, R.; Nunez C, A.; Mendoza F, J. E.; Sanchez J, J., E-mail: juan.salmeron@cnsns.gob.mx [Comision Nacional de Seguridad Nuclear y Salvaguardias, Dr. Jose Ma. Barragan No. 779, Col. Narvarte, 03020 Mexico D. F. (Mexico)

    2013-10-15

    In this article the relevant aspects of the spent fuel storage and the questions that should be taken in consideration for the possible future facilities of this type in the country are approached. A brief description is proposed about the characteristics of the storage systems in dry, the incorporate regulations to the present Nuclear Regulator Standard, the planning process of an installation, besides the approaches considered once resolved the use of these systems; as the modifications to the system, the authorization periods for the storage, the type of materials to store and the consequent environmental impact to their installation. At the present time the Comision Nacional de Seguridad Nuclear y Salvaguardias (CNSNS) considers the possible generation of two authorization types for these facilities: Specific, directed to establish a new nuclear installation with the authorization of receiving, to transfer and to possess spent fuel and other materials for their storage; and General, focused to those holders that have an operation license of a reactor that allows them the storage of the nuclear fuel and other materials that they possess. Both authorizations should be valued according to the necessities that are presented. In general, this installation type represents a viable solution for the administration of the spent fuel and other materials that require of a temporary solution previous to its final disposal. Its use in the nuclear industry has been increased in the last years demonstrating to be appropriate and feasible without having a significant impact to the health, public safety and the environment. Mexico has two main nuclear facilities, the nuclear power plant of Laguna Verde of the Comision Federal de Electricidad (CFE) and the facilities of the TRIGA Reactor of the Instituto Nacional de Investigaciones Nucleares (ININ) that will require in a future to use this type of disposition installation of the spent fuel and generated wastes. (Author)

  15. Integrated engineering system for nuclear facilities building

    International Nuclear Information System (INIS)

    Tomura, H.; Miyamoto, A.; Futami, F.; Yasuda, S.; Ohtomo, T.

    1995-01-01

    In the construction of buildings for nuclear facilities in Japan, construction companies are generally in charge of the building engineering work, coordinating with plant engineering. An integrated system for buildings (PROMOTE: PROductive MOdeling system for Total nuclear Engineering) described here is a building engineering system including the entire life cycle of buildings for nuclear facilities. A Three-dimensional (3D) building model (PRO-model) is to be in the core of the system (PROMOTE). Data sharing in the PROMOTE is also done with plant engineering systems. By providing these basic technical foundations, PROMOTE is oriented toward offering rational, highquality engineering for the projects. The aim of the system is to provide a technical foundation in building engineering. This paper discusses the characteristics of buildings for nuclear facilities and the outline of the PROMOTE. (author)

  16. Significant incidents in nuclear fuel cycle facilities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    In contrast to nuclear power plants, events in nuclear fuel cycle facilities are not well documented. The INES database covers all the nuclear fuel cycle facilities; however, it was developed in the early 1990s and does not contain information on events prior to that. The purpose of the present report is to collect significant events and analyze them in order to give a safety related overview of nuclear fuel cycle facilities. Significant incidents were selected using the following criteria: release of radioactive material or exposure to radiation; degradation of items important to safety; and deficiencies in design, quality assurance, etc. which include criticality incidents, fire, explosion, radioactive release and contamination. This report includes an explanation, where possible, of root causes, lessons learned and action taken. 4 refs, 4 tabs.

  17. Significant incidents in nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    1996-03-01

    In contrast to nuclear power plants, events in nuclear fuel cycle facilities are not well documented. The INES database covers all the nuclear fuel cycle facilities; however, it was developed in the early 1990s and does not contain information on events prior to that. The purpose of the present report is to collect significant events and analyze them in order to give a safety related overview of nuclear fuel cycle facilities. Significant incidents were selected using the following criteria: release of radioactive material or exposure to radiation; degradation of items important to safety; and deficiencies in design, quality assurance, etc. which include criticality incidents, fire, explosion, radioactive release and contamination. This report includes an explanation, where possible, of root causes, lessons learned and action taken. 4 refs, 4 tabs

  18. Comments from the Swedish Society for Nature Conservation, SSNC, and the Swedish NGO office for Nuclear Waste Review, MKG, on the industry's, SKB, research programme Fud-07

    International Nuclear Information System (INIS)

    2009-06-01

    The Swedish Society for Nature Conservation and the Swedish NGO Office for Nuclear Waste Review recommends in response to Fud-07 that: - The Government must in its forthcoming decision regarding the industry's 2007 research and development program set out requirements that are needed to bring order to the ongoing work on nuclear waste disposition - The Government must assure an effective quality control of the industry's work - The Government needs to review the industry's use of resources from the Swedish Nuclear Waste Fund and empower the Radiation Safety Authority to ensure their proper use - The Government must make it clear that a permit to establish a final repository for high-level waste will not be given until sufficient evidence is available that supports the chosen method and chosen location, and that provide for guaranteed long-term safety - The Government must instruct the Radiation Safety Authority to develop its own full and independent assessment tools and knowledge base to be able to review the industry's research and development work, with particular emphasis on weaker aspects of the industry's work. - The Government must expand the budget of the Radiation Safety Authority to enable the Authority to perform a thorough examination of the industry's forthcoming application to construct a repository. - The Government must ensure that currently outstanding issues and unsolved problems in the industry's research and development project are thoroughly investigated, and solutions arrived at, before permission to begin construction can be given. - The Government must see to it that work commences on drafting public policy that sets out the objectives and functions that a final repository shall fulfil. - The Government must make it clear that it will not be possible for the industry to neglect or avoid giving alternative methods serious consideration in its environmental impact statement (EIS). - The Government should instruct the Radiation Safety Authority

  19. Nuclear material inventory estimation in a nuclear fuel reprocessing facility

    International Nuclear Information System (INIS)

    Bennett, J.E.; Beyerlein, A.L.

    1981-01-01

    A new approach in the application of modern system identification and estimation techniques is proposed to help nuclear reprocessing facilities meet the nuclear accountability requirement proposed by the International Atomic Energy Agency. The proposed identification and estimation method considers the material inventory in a portion of the chemical separations area of a reprocessing facility. The method addresses the nonlinear aspects of the problem, the time delay through the separation facility, and the lack of measurement access. The method utilizes only input-output measured data and knowledge of the uncertainties associated with the process and measured data. 14 refs

  20. Introduction to nuclear facilities engineering

    International Nuclear Information System (INIS)

    Sapy, Georges

    2012-06-01

    Engineering, or 'engineer's art', aims at transforming simple principle schemes into operational facilities often complex especially when they concern the nuclear industry. This transformation requires various knowledge and skills: in nuclear sciences and technologies (nuclear physics, neutronics, thermal-hydraulics, material properties, radiation protection..), as well as in non-nuclear sciences and technologies (civil engineering, mechanics, electricity, computer sciences, instrumentation and control..), and in the regulatory, legal, contractual and financial domains. This book explains how this huge body of knowledge and skills must be organized and coordinated to create a reliable, exploitable, available, profitable and long-lasting facility, together with respecting extremely high safety, quality, and environmental impact requirements. Each aspect of the problem is approached through the commented presentation of nuclear engineering macro-processes: legal procedures and administrative authorizations, nuclear safety/radiation protection/security approach, design and detailed studies, purchase of equipments, on-site construction, bringing into operation, financing, legal, contractual and logistic aspects, all under the global control of a project management. The 'hyper-complexness' of such an approach leads to hard points and unexpected events. The author identifies the most common ones and proposes some possible solutions to avoid, mitigate or deal with them. In a more general way, he proposes some thoughts about the performance factors of a nuclear engineering process

  1. Civaux nuclear facilities. 2009 annual report

    International Nuclear Information System (INIS)

    2010-01-01

    This annual report is established on account of article 21 of the 2006-686 French law from June 13, 2006, relative to the transparency and safety in the nuclear domain. It describes, first, the nuclear facilities of Civaux, and then the measures taken to ensure their safety (personnel radioprotection, actions implemented for nuclear safety improvement, organisation in crisis situation, external and internal controls, technical assessment of the facilities, administrative procedures carried out in 2009), incidents and accidents registered in 2009, radioactive and chemical effluents released by the facilities in the environment, other pollutions, management of radioactive wastes, and, finally, the actions carried out in the domain of transparency and public information. A glossary and the viewpoint of the Committee of Hygiene, safety and working conditions about the content of the document conclude the report. (J.S.)

  2. Chooz nuclear facilities. 2009 annual report

    International Nuclear Information System (INIS)

    2010-01-01

    This annual report is established on account of article 21 of the 2006-686 French law from June 13, 2006, relative to the transparency and safety in the nuclear domain. It describes, first, the nuclear facilities of Chooz, and then the measures taken to ensure their safety (personnel radioprotection, actions implemented for nuclear safety improvement, organisation in crisis situation, external and internal controls, technical assessment of the facilities, administrative procedures carried out in 2009), incidents and accidents registered in 2009, radioactive and chemical effluents released by the facilities in the environment, other pollutions, management of radioactive wastes, and, finally, the actions carried out in the domain of transparency and public information. A glossary and the viewpoint of the Committee of Hygiene, safety and working conditions about the content of the document conclude the report. (J.S.)

  3. Brennilis nuclear facilities. 2009 annual report

    International Nuclear Information System (INIS)

    2010-01-01

    This annual report is established on account of article 21 of the 2006-686 French law from June 13, 2006, relative to the transparency and safety in the nuclear domain. It describes, first, the nuclear facilities of Brennilis, and then the measures taken to ensure their safety (personnel radioprotection, actions implemented for nuclear safety improvement, organisation in crisis situation, external and internal controls, technical assessment of the facilities, administrative procedures carried out in 2009), incidents and accidents registered in 2009, radioactive and chemical effluents released by the facilities in the environment, other pollutions, management of radioactive wastes, and, finally, the actions carried out in the domain of transparency and public information. A glossary and the viewpoint of the Committee of Hygiene, safety and working conditions about the content of the document conclude the report. (J.S.)

  4. Safeguards Licensing Aspects of a Future Gen IV Test Facility - a Case Study

    International Nuclear Information System (INIS)

    Lindell, M. Aberg; Grape, S.; Hakansson, A.; Svaerd, S. Jacobsson

    2010-01-01

    The scope of this study covers safeguards licensing aspects of a possible future Gen IV demonstration facility. As a basis for the investigation, the facility was assumed to be located in Sweden, comprising a lead-cooled fast reactor and a reprocessing plant with fuel fabrication. The aim has been to identify safeguards requirements that may be set by the IAEA and the Swedish Radiation Safety Authority, and also to suggest how the safeguards system could be implemented in practice. The changed usage and handling of nuclear fuel, as compared to that of today, has been examined in order to determine how today's safeguards measures can be modified and extended to meet the needs of the demonstration facility. This work is part of GENIUS, the Swedish Gen IV research and development programme, which emphasizes lead-cooled fast reactors. (author)

  5. Hematite nuclear fuel cycle facility decommissioning

    International Nuclear Information System (INIS)

    Hayes, K.

    2004-01-01

    Westinghouse Electric Company LLC ('Westinghouse') acquired a nuclear fuel processing plant at Hematite, Missouri ('Hematite', the 'Facility', or the 'Plant') in April 2000. The plant has subsequently been closed, and its operations have been relocated to a newer, larger facility. Westinghouse has announced plans to complete its clean-up, decommissioning, and license retirement in a safe, socially responsible, and environmentally sound manner as required by internal policies, as well as those of its parent company, British Nuclear Fuels plc. ('BNFL'). Preliminary investigations have revealed the presence of environmental contamination in various areas of the facility and grounds, including both radioactive contamination and various other substances related to the nuclear fuel processing operations. The disparity in regulatory requirements for radiological and nonradiological contaminants, the variety of historic and recent operations, and the number of previous owners working under various contractual arrangements for both governmental and private concerns has resulted in a complex project. This paper discusses Westinghouse's efforts to develop and implement a comprehensive decontamination and decommissioning (D and D) strategy for the facility and grounds. (author)

  6. Policy on the decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    1988-08-01

    This Regulatory Policy Statement describes the policy of the Atomic Energy Control Board (AECB) on the decommissioning of those facilities defined as nuclear facilities in the Atomic Energy Control (AEC) Regulations. It is intended as a formal statement, primarily for the information of licensees, or potential licensees, of the regulatory process and requirements generally applicable to the decommissioning of nuclear facilities licensed and regulated by the AECB pursuant to the authority of the AEC Act and Regulations

  7. The State Surveillance over Nuclear Safety of Nuclear Facilities Act No. 28/1984

    International Nuclear Information System (INIS)

    1995-01-01

    The Act lays down responsibilities of the Czechoslovak Atomic Energy Commission in the field of state surveillance over nuclear safety of nuclear facilities; determines the responsibilities of nuclear safety inspectors in their inspection activities; specifies duties of bodies and corporations responsible for nuclear safety of nuclear facilities; stipulates the obligation to set up emergency plans; and specifies penalties imposed on corporations and individuals for noncompliance with nuclear safety provisions. The Act entered into force on 4 April 1984. (J.B.)

  8. Decommissioning of nuclear facilities: Feasibility, needs and costs

    International Nuclear Information System (INIS)

    DeLaney, E.G.; Mickelson, J.R.

    1985-01-01

    The Nuclear Energy Agency's Working Group on Decommissioning is preparing a study entitled ''Decommissioning of Nuclear Facilities: Feasibility, Needs and Costs.'' The study addresses the economics, technical feasibility and waste management aspects of decommissioning larger commercial reactors and nuclear support facilities. Experience on decommissioning small reactors and fuel cycle facilities shows that current technology is generally adequate. Several major projects that are either underway or planned will demonstrate decommissioning of the larger and more complex facilities. This experience will provide a framework for planning and engineering the decommissioning of the larger commercial reactors and fuel cycle facilities. Several areas of technology development are desired for worker productivity improvement, occupational exposure reduction, and waste volume reduction. In order to assess and plan for the decommissioning of large commercial nuclear facilities, projections have been made of the capacity of these facilities that may be decommissioned in the future and the radioactive waste that would be produced from the decommissioning of these facilities. These projections through the year 2025 are based on current data and the OECD reactor capacity forecast through the year 2000. A 25-year operating lifetime for electrical power generation was assumed. The possibilities of plant lifetime extension and the deferral of plant dismantlement make this projection very conservative

  9. Decommissioning of nuclear fuel cycle facilities. Safety guide

    International Nuclear Information System (INIS)

    2001-01-01

    The objective of this Safety Guide is to provide guidance to regulatory bodies and operating organizations on planning and provision for the safe management of the decommissioning of non-reactor nuclear fuel cycle facilities. While the basic safety considerations for the decommissioning of nuclear fuel cycle facilities are similar to those for nuclear power plants, there are important differences, notably in the design and operating parameters for the facilities, the type of radioactive material and the support systems available. It is the objective of this Safety Guide to provide guidance for the shutdown and eventual decommissioning of such facilities, their individual characteristics being taken into account

  10. Childhood leukemia around five nuclear facilities in Canada

    International Nuclear Information System (INIS)

    Elaguppillai, V.

    1992-05-01

    As a result of public concern over the incidence of leukemia around the Sellafield nuclear fuel reprocessing plant, the Canadian Atomic Energy Control Board commissioned a study to test for similar clustering around licensed nuclear facilities in Ontario. In this study the incidence and mortality of leukemia among children up to the age of 14 years born within a radius of about 25 km from five different types of facilities were compared to the provincial average. The facilities considered were the Pickering Nuclear Generating Station, the Bruce Nuclear Power Development, the uranium conversion facility at Port Hope, the uranium mine and mill facilities in Elliot Lake, and the Chalk River Laboratories. The ratio of observed to expected childhood leukemias was around unity at the 95 percent confidence level, indicating that the occurrence of the disease is not significantly different from the provincial average. The sample size is not large enough to distinguish between a change occurrence and a true excess or deficit. (table)

  11. Standard Specification for Nuclear Facility Transient Worker Records

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1995-01-01

    1.1 This specification covers the required content and provides retention requirements for records needed for in-processing of nuclear facility transient workers. 1.2 This specification applies to records to be used for in-processing only. 1.3 This specification is not intended to cover specific skills records (such as equipment operating licenses, ASME inspection qualifications, or welding certifications). 1.4 This specification does not reduce any regulatory requirement for records retention at a licensed nuclear facility. Note 1—Nuclear facilities operated by the U.S. Department of Energy (DOE) are not licensed by the U.S. Nuclear Regulatory Commission (NRC), nor are other nuclear facilities that may come under the control of the U.S. Department of Defense (DOD) or individual agreement states. The references in this specification to licensee, the U.S. NRC Regulatory Guides, and Title 10 of the U.S. Code of Federal Regulations are to imply appropriate alternative nomenclature with respect to DOE, DOD...

  12. Space Nuclear Thermal Propulsion (SNTP) Air Force facility

    Science.gov (United States)

    Beck, David F.

    The Space Nuclear Thermal Propulsion (SNTP) Program is an initiative within the US Air Force to acquire and validate advanced technologies that could be used to sustain superior capabilities in the area or space nuclear propulsion. The SNTP Program has a specific objective of demonstrating the feasibility of the particle bed reactor (PBR) concept. The term PIPET refers to a project within the SNTP Program responsible for the design, development, construction, and operation of a test reactor facility, including all support systems, that is intended to resolve program technology issues and test goals. A nuclear test facility has been designed that meets SNTP Facility requirements. The design approach taken to meet SNTP requirements has resulted in a nuclear test facility that should encompass a wide range of nuclear thermal propulsion (NTP) test requirements that may be generated within other programs. The SNTP PIPET project is actively working with DOE and NASA to assess this possibility.

  13. Gas separation techniques in nuclear facilities

    International Nuclear Information System (INIS)

    Hioki, Hideaki; Morisue, Tetsuo; Ohno, Masayoshi

    1983-01-01

    The literatures concerning the gas separation techniques which are applied to the waste gases generated from nuclear power plants and nuclear fuel reprocessing plants, uranium enrichment and the instrumentation of nuclear facilities are reviewed. The gas permeability and gas separation performance of membranes are discussed in terms of rare gas separation. The investigation into the change of the gas permeability and mechanical properties of membranes with exposure to radiation is reported. The theoretical investigation of the separating cells used for the separation of rare gas and the development of various separating cells are described, and the theoretical and experimental investigations concerning rare gas separation using cascades are described. The application of membrane method to nuclear facilities is explained showing the examples of uranium enrichment, the treatment of waste gases from nuclear reactor buildings and nuclear fuel reprocessing plants, the monitoring of low level β-emitters in stacks, the detection of failed fuels and the detection of water leak in fast breeder reactors. (Yoshitake, I.)

  14. Technology and costs for dismantling a Swedish nuclear power plant

    International Nuclear Information System (INIS)

    1979-10-01

    Various estimates concerning the costs of decommissioning a redundant nuclear power reactor to the green fields state are given in the literature. The purpose of this study is to provide background material for the Swedish nuclear power utilities to estimate the costs and time required to dismantle an ASEA-ATOM Boiling Water Reactor. The units Oskarshamn II and Barsebeck 1, both with an installed capacity of approximately 600 MW, serve as reference plants. The time of operation before final shutdown is assumed to be 40 years. Dismantling operations are initiated one year after shutdown. When the dismantling of the plant is finished, the site is to be released for unrestricted use. The costs for dismantling and subsequent final disposal of the radioactive waste are estimated at approximately SEK 500 million (approximately US dollars 120 million) in terms of 1979 prices. The sum includes 25% contingency. The dismantling cost is equivalent to 10-15% of the installation cost of an equivalent new nuclear power plant. The exact percentage is dependent on the interest rate during the construction period. It is shown in the study that a total dismantling can be accomplished in less than five years. This report is a compilation of studies performed by ASEA-ATOM and VBB based on premises given by KBS. The reports from these studies are presented in appendices. (Auth.)

  15. Estimating Fire Risks at Industrial Nuclear Facilities

    International Nuclear Information System (INIS)

    Coutts, D.A.

    1999-01-01

    The Savannah River Site (SRS) has a wide variety of nuclear production facilities that include chemical processing facilities, machine shops, production reactors, and laboratories. Current safety documentation must be maintained for the nuclear facilities at SRS. Fire Risk Analyses (FRAs) are used to support the safety documentation basis. These FRAs present the frequency that specified radiological and chemical consequences will be exceeded. The consequence values are based on mechanistic models assuming specific fire protection features fail to function as designed

  16. Westinghouse Savannah River Company (WSRC) approach to nuclear facility maintenance

    International Nuclear Information System (INIS)

    Harrison, D.W.

    1991-01-01

    The Savannah River Site (SRS) in South Carolina is a 300+ square mile facility owned by the US Department of Energy (DOE) and operated by Westinghouse Savannah River Company (WSRC), the prime contractor; Bechtel Savannah River, Incorporated (BSRI) is a major subcontractor. The site has used all of the five nuclear reactors and it has the necessary nuclear materials processing facilities, as well as waste management and research facilities. The site has produced materials for the US nuclear arsenal and various isotopes for use in space research and nuclear medicine for more than 30 years. In 1989, WSRC took over as prime contractor, replacing E.I. du Pont de Nemours and Company. At this time, a concentrated effort began to more closely align the operating standards of this site with those accepted by the commercial nuclear industry of the United States. Generally, this meant acceptance of standards of the Institute of Nuclear Power Operations (INPO) for nuclear-related facilities at the site. The subject of this paper is maintenance of nuclear facilities and, therefore, excludes discussion of the maintenance of non-nuclear facilities and equipment

  17. On exposure management of workers in nuclear reactor facilities for test and in nuclear reactor facilities in research and development stage in fiscal 1993

    International Nuclear Information System (INIS)

    1994-01-01

    The Law of Regulation on Nuclear Reactor requires the operators of nuclear reactors that the exposure dose of workers engaged in work for nuclear reactors should not exceed the limits specified in official notices that are issued based on the Law. The present article summarizes the contents of the Report on Radiation Management in 1993 submitted by the operators of nuclear reactor facilities for test and those of nuclear reactor facilities in research and development stage based on the Law, and the Report on Management of Exposure Dose of Workers submitted by them based on administrative notices. The reports demonstrate that the the exposure of workers was below the permissible exposure dose in 1993 in all nuclear reactor facilities. The article presents data on the distribution of exposure dose among workers in all facilities with a nuclear reactor for test, and data on personal exposure of employees and non-employees and overall exposure of all workers in the facilities of JAERI and PNC. (J.P.N.)

  18. Importance of tests in nuclear facilities

    International Nuclear Information System (INIS)

    Guillemard, B.

    1985-10-01

    In nuclear facilities, safety related systems and equipments are subject, along their whole service-life, to numerous tests. This paper analyses the role of tests in the successive stages of design, construction, exploitation of a nuclear facility. It examines several aspects of test quality control: definition of needs, test planning, intrinsic quality of each test, control of interfaces (test are both the end and the starting point of many actions concerned by quality) and the application [fr

  19. Review of national and international demands on fire protection in nuclear power plants and their application in the Swedish nuclear industry

    International Nuclear Information System (INIS)

    Fredholm, Lotta

    2010-02-01

    The aim of this report has been to detect and describe differences between rules regarding fire safety and the interpretation of the rules and make suggestions on how all parties involved are able to develop a harmonized approach to the fire conditions and how fire requirements aspects can be optimized and modernized. International and national laws and requirements for fire protection are compared and analyzed with the content and structure of the USNRCs RG.1189, which is considered the document that has the most complete accounts of the fire requirements both in terms of structure and content. The national laws, rules and guidelines that have been studied are general fire protection rules as well as nuclear specific rules. The studied national rules also includes Safety Analysis Reports (SAR) and Technical Specifications (TS). This study shows that the Swedish SAR and TS are markedly different from each other in how the fire requirements are presented as well as the methodology and level of detail of how they are fulfilled. These differences make it difficult to compare the quality of the fire protection between different sites and it also makes it different to learn from each other. The main reason to the differences are the lack of national guidance of how to fulfil the general requirements. The main conclusion of the screening of national requirements, is that many of the references used in the SAR are not suited for operation at a nuclear plant. The differences are often the purpose, examples of purposes that are not necessarily met by complying with national laws, rules, advices are: - Prevent fire to influence redundant safety equipment in different fire cells. - Prevent fire to influence redundant safety equipment in the same fire cell. - Prevent extensive consequences of fire in cable rooms. - Prevent extensive consequences of fires in oil that are not included in the Swedish regulation for handling highly flammable liquids. The international regulations

  20. Waste management considerations in nuclear facility decommissioning

    International Nuclear Information System (INIS)

    Elder, H.K.; Murphy, E.S.

    1981-01-01

    Decommissioning of nuclear facilities involves the management of significant quantities of radioactive waste. This paper summarizes information on volumes of waste requiring disposal and waste management costs developed in a series of decommissioning studies performed for the U.S. Nuclear Regulatory Commission by the Pacific Northwest Laboratory. These studies indicate that waste management is an important cost factor in the decommissioning of nuclear facilities. Alternatives for managing decommissioning wastes are defined and recommendations are made for improvements in waste management practices

  1. Historical Survey of Nuclear Non-Proliferation in Estonia, 1946-1995

    International Nuclear Information System (INIS)

    Maremaee, Ello; Tankler, Hain; Putnik, Henno; Maalmann, Iige

    2003-12-01

    The report presents a historical survey on two of the nuclear facilities under the IAEA safeguards in Estonia - Sillamaee Uranium Extraction Factory and the Paldiski Submarine Training Centre. These facilities were a Soviet legacy and shall be decommissioned and it is only through a close international co-operation and technical assistance that it would be possible to solve all the problems arising at these facilities. The historical survey represents the best available information the authors were able to give on the nuclear facilities, which have functioned on the territory of Estonia. The historical survey was a joint co-operation initiative by the Estonian Radiation Protection Centre and the Swedish Nuclear Power Inspectorate. The historical survey will be presented to the IAEA as a volunteer supplement to the State Declaration according to the Additional Protocol (author)

  2. Design aspects of radiological safety in nuclear facilities

    International Nuclear Information System (INIS)

    Patkulkar, D.S.; Purohit, R.G.; Tripathi, R.M.

    2014-01-01

    In order to keep operational performance of a nuclear facility high and to keep occupational and public exposure ALARA, radiological safety provisions must be reviewed at the time of facility design. Deficiency in design culminates in deteriorated system performance and non adherence to safety standards and could sometimes result in radiological incident. Important radiological aspects relevant to safety were compiled based on operating experiences, design deficiencies brought out from past nuclear incidents, experience gained during maintenance, participation in design review of upcoming nuclear facilities and radiological emergency preparedness

  3. Radiation protection in nuclear facilities

    International Nuclear Information System (INIS)

    Piechowski, J.; Lochard, J.; Lefaure, Ch.; Schieber, C.; Schneider, Th; Lecomte, J.F.; Delmont, D.; Boitel, S.; Le Fauconnier, J.P.; Sugier, A; Zerbib, J.C.; Barbey, P.

    1998-01-01

    Close ties exist between nuclear safety and radiation protection. Nuclear safety is made up of all the arrangements taken to prevent accidents occurring in nuclear facilities, these accidents would certainly involved a radiological aspect. Radiation protection is made up of all the arrangements taken to evaluate and reduce the impact of radiation on workers or population in normal situations or in case of accident. In the fifties the management of radiological hazards was based on the quest for minimal or even zero risk. This formulation could lead to call some activities in question whereas the benefits for the whole society were evident. Now a new attitude more aware of the real risks and of no wasting resources prevails. This attitude is based on the ALARA principle whose purpose is to maintain the exposure to radiation as low as reasonably achievable taking into account social and economic concerns. This document regroups articles illustrating different aspects of the radiation protection in nuclear facilities such as a research center, a waste vitrification workshop and a nuclear power plant. The surveillance of radiological impacts of nuclear sites on environment is examined, a point is made about the pending epidemiologic studies concerning La Hague complex. (A.C.)

  4. Research and test facilities required in nuclear science and technology

    International Nuclear Information System (INIS)

    2009-01-01

    Experimental facilities are essential research tools both for the development of nuclear science and technology and for testing systems and materials which are currently being used or will be used in the future. As a result of economic pressures and the closure of older facilities, there are concerns that the ability to undertake the research necessary to maintain and to develop nuclear science and technology may be in jeopardy. An NEA expert group with representation from ten member countries, the International Atomic Energy Agency and the European Commission has reviewed the status of those research and test facilities of interest to the NEA Nuclear Science Committee. They include facilities relating to nuclear data measurement, reactor development, neutron scattering, neutron radiography, accelerator-driven systems, transmutation, nuclear fuel, materials, safety, radiochemistry, partitioning and nuclear process heat for hydrogen production. This report contains the expert group's detailed assessment of the current status of these nuclear research facilities and makes recommendations on how future developments in the field can be secured through the provision of high-quality, modern facilities. It also describes the online database which has been established by the expert group which includes more than 700 facilities. (authors)

  5. Radiological dose assessment from the operation of Daeduk nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Won Tae; Kim, Eun Han; Suh, Kyung Suk; Choi, Young Gil [Korea Atomic Energy Research Institute, Taejon (Korea)

    2000-02-01

    The objective of this project is to assure the public acceptance for nuclear facilities, and the environmental safety from the operation of Daeduk nuclear facilities, such as HANARO research reactor, nuclear fuel processing facilities and others. For identifying the integrity of their facilities, the maximum individual doses at the site boundary and on the areas with high population density were assessed. Also, the collective doses within radius 80 km from the site were assessed. The radiation impacts for residents around the site from the operation of Daeduk nuclear facilities in 1999 were neglectable. 8 refs., 10 figs., 27 tabs. (Author)

  6. STACY and TRACY: nuclear criticality experimental facilities under construction

    International Nuclear Information System (INIS)

    Kobayashi, I.; Takeshita, I.; Yanagisawa, H.; Tsujino, T.

    1992-01-01

    Japan Atomic Energy Research Institute is constructing a Nuclear Fuel Cycle Safety Engineering Research Facility, NUCEF, where the following research themes essential for evaluating safety problems relating to back-end technology in nuclear fuel cycle facilities will be studied: nuclear criticality safety research; research on advanced reprocessing processes and partitioning; and research on transuranic waste treatment and disposal. To perform nuclear criticality safety research related to the reprocessing of light water reactor spent fuels, two criticality experimental facilities, STACY and TRACY, are under construction. STACY (Static Criticality Facility) will be used for the study of criticality conditions of solution fuels, uranium, plutonium and their mixtures. TRACY (Transient Criticality Facility) will be used to investigate criticality accident phenomena with uranium solutions. The construction progress and experimental programmes are described in this Paper. (author)

  7. Report on operation of nuclear facilities in 1991

    International Nuclear Information System (INIS)

    1992-06-01

    The Slovenian Nuclear Safety Administration (SNSA) prepared a report on nuclear safety in the republic of Slovenia in 1991 as part of its regular practice of reporting on its work to the Government and the National Assembly of the Republic of Slovenia. The report is divided into three thematic chapters covering the activities of the SNSA, the operation of nuclear facilities in Slovenia, the activity of international missions in Slovenia and the operation of nuclear facilities around the world.

  8. Department of Nuclear Safety Research and Nuclear Facilities annual report 1995

    International Nuclear Information System (INIS)

    Majborn, B.; Brodersen, K.; Damkjaer, A.; Floto, H.; Jacobsen, U.; Oelgaard, P.L.

    1996-03-01

    The report presents a summary of the work of the Department of Nuclear Safety Research and Nuclear Facilities in 1995. The department's research and development activities are organized in three research programmes: Radiation Protection, Reactor Safety, and Radioanalytical Chemistry. The nuclear facilities operated by the department include the Research Reactor DR3, the Isotope Laboratory, the Waste Treatment Plant, and the Educational Reactor DR1. Lists of staff and publications are included together with a summary of the staff's participation in national and international committees. (au) 5 tabs., 21 ills

  9. Department of Nuclear Safety Research and Nuclear Facilities annual report 1995

    Energy Technology Data Exchange (ETDEWEB)

    Majborn, B.; Brodersen, K.; Damkjaer, A.; Floto, H.; Jacobsen, U.; Oelgaard, P.L. [eds.

    1996-03-01

    The report presents a summary of the work of the Department of Nuclear Safety Research and Nuclear Facilities in 1995. The department`s research and development activities are organized in three research programmes: Radiation Protection, Reactor Safety, and Radioanalytical Chemistry. The nuclear facilities operated by the department include the Research Reactor DR3, the Isotope Laboratory, the Waste Treatment Plant, and the Educational Reactor DR1. Lists of staff and publications are included together with a summary of the staff`s participation in national and international committees. (au) 5 tabs., 21 ills.

  10. How to balance the future in a small country with huge traditions of nuclear applications: the Swedish example

    International Nuclear Information System (INIS)

    Pazsit, Imre

    2005-01-01

    After a short historical perspective of how the Swedish energy situation has reached the present status, the paper says that the interplay of many beneficial circumstances put Sweden into the nuclear track toward the peaceful utilization of nuclear energy and technology at a very early stage of development in Europe. It adds then that the future of nuclear power in Sweden, just as in the previous decades, is not predictable in detail. It is however likely that nuclear power remains a significant contributor of electricity production in the coming decades, either at the same or an increased level, in the frame of a long-term agreement and consensus between industry and government. (S. Ohno)

  11. Modelling the cost-effectiveness of impact-absorbing flooring in Swedish residential care facilities.

    Science.gov (United States)

    Ryen, Linda; Svensson, Mikael

    2016-06-01

    Fall-related injuries among the elderly, specifically hip fractures, cause significant morbidity and mortality as well as imposing a substantial financial cost on the health care system. Impact-absorbing flooring has been advocated as an effective method for preventing hip fractures resulting from falls. This study identifies the cost-effectiveness of impact-absorbing flooring compared to standard flooring in residential care facilities for the elderly in a Swedish setting. An incremental cost-effectiveness analysis was performed comparing impact-absorbing flooring to standard flooring using a Markov decision model. A societal perspective was adopted and incremental costs were compared to incremental gains in quality-adjusted life years (QALYs). Data on costs, probability transitions and health-related quality of life measures were retrieved from the published literature and from Swedish register data. Probabilistic sensitivity analysis was performed through a Monte Carlo simulation. The base-case analysis indicates that the impact-absorbing flooring reduces costs and increases QALYs. When allowing for uncertainty we find that 60% of the simulations indicate that impact-absorbing flooring is cost-saving compared to standard flooring and an additional 20% that it has a cost per QALY below a commonly used threshold value : Using a modelling approach, we find that impact-absorbing flooring is a dominant strategy at the societal level considering that it can save resources and improve health in a vulnerable population. © The Author 2015. Published by Oxford University Press on behalf of the European Public Health Association. All rights reserved.

  12. Life Management and Safety of Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Fabbri, S.; Diluch, A.; Vega, G., E-mail: fabbri@cnea.gov.ar [Comisión Nacional de Energía Atómica, Buenos Aires (Argentina)

    2014-10-15

    The nuclear programme in Argentina includes: nuclear power and related supplies, medical and industrial applications, waste management, research and development and human training. Nuclear facilities require life management programs that allow a safe operation. Safety is the first priority for designers and operators. This can be attained with defence in depth: regular inspections and maintenance procedures to minimize failure risks. CNEA objectives in this area are to possess the necessary capability to give safe and fast technical support. Within this scheme, one of the main activities undertaken by CNEA is to provide technological assistance to the nuclear plants and research reactors. As a consequence of an increasing concern about safety and ageing a Life Management Department for safe operation was created to take care of these subjects. The goal is to elaborate a Safety Evaluation Process for the critical components of nuclear plants and other facilities. The overall objectives of a safety process are to ensure a continuous safe, reliable and effective operation of nuclear facilities and it means the implementation of the defence in deep concept to enhance safety for the protection of the public, the workers and the environment. (author)

  13. Proceeding of the 7. Seminar on Technology and Safety of Nuclear Power Plants and Nuclear Facilities

    International Nuclear Information System (INIS)

    Hastowo, Hudi; Antariksawan, Anhar R.; Soetrisnanto, Arnold Y; Jujuratisbela, Uju; Aziz, Ferhat; Su'ud, Zaki; Suprawhardana, M. Salman

    2002-02-01

    The seventh proceedings of seminar safety and technology of nuclear power plant and nuclear facilities, held by National Nuclear Energy Agency. The Aims of seminar is to exchange and disseminate information about safety and nuclear Power Plant Technology and Nuclear Facilities consist of technology; high temperature reactor and application for national development sustain able and high technology. This seminar level all aspects technology, Power Reactor research reactor, high temperature reactor and nuclear facilities. The article is separated by index

  14. Over view of nuclear fuel cycle examination facility at KAERI

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Key-Soon; Kim, Eun-Ga; Joe, Kih-Soo; Kim, Kil-Jeong; Kim, Ki-Hong; Min, Duk-Ki [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-09-01

    Nuclear fuel cycle examination facilities at the Korea Atomic Energy Research Institute (KAERI) consist of two post-irradiation examination facilities (IMEF and PIEF), one chemistry research facility (CRF), one radiowaste treatment facility (RWTF) and one radioactive waste form examination facility (RWEF). This paper presents the outline of the nuclear fuel cycle examination facilities in KAERI. (author)

  15. Engineering and technology in the deconstruction of nuclear materials production facilities

    International Nuclear Information System (INIS)

    Kingsley, R.S.; Reynolds, W.E.; Heffner, D.C.

    1996-01-01

    Technology and equipment exist to support nuclear facility deactivation, decontamination, and decommissioning. In reality, this statement is not surprising because the nuclear industry has been decontaminating and decommissioning production plants for decades as new generations of production technology were introduced. Since the 1950s, the Babcock and Wilcox Company (B ampersand W) has operated a number of nuclear materials processing facilities to manufacture nuclear fuel for the commercial power industry and the U.S. Navy. These manufacturing facilities included a mixed oxide (PuO 2 -UO 2 ) nuclear fuel manufacturing plant, low- and high-enriched uranium (HEU/LEU) chemical and fuel plants, and fuel assembly plants. In addition, B ampersand W designed and build a major nuclear research center in Lynchburg, Virginia, to support these nuclear fuel manufacturing activities and to conduct nuclear power research. These nuclear research facilities included two research reactors, a hot-cell complex for nuclear materials research, four critical experiment facilities, and a plutonium fuels research and development facility. This article describes the B ampersand W deactivation, decomtanimation, and decommisioning program

  16. Nuclear orientation facility at Charles University in Prague

    International Nuclear Information System (INIS)

    Rotter, M.; Trhlik, M.; Hubalovsky, S.; Srnka, A.; Dupak, J.; Ota, J.; Pari, P.

    2000-01-01

    A low temperature nuclear orientation facility was installed at Charles University in the laboratory of the Department of Low Temperature Physics on the Faculty of Mathematics and Physics in Prague. The solid state as well as nuclear physics research is pursued on this facility. (author)

  17. Accidents in nuclear facilities: classification, incidence and impact

    International Nuclear Information System (INIS)

    Galicia A, J.; Paredes G, L. C.

    2012-10-01

    A general analysis of the 146 accidents reported officially in nuclear facilities from 1945 to 2012 is presented, among them some took place in: power or research nuclear reactors, critical and subcritical nuclear assemblies, handling of nuclear materials inside laboratories belonging to institutes or universities, in radiochemistry industrial plants and nuclear fuel factories. In form graph the incidence of these accidents is illustrated classified for; category, decades, geographical localization, country classification before the OECD, failure type, and the immediate or later victims. On the other hand, the main learned lessons of the nuclear accidents of Three Mile Island, Chernobyl and Fukushima are stood out, among those that highlight; the human factors, the necessity of designs more innovative and major technology for the operation, control and surveillance of the nuclear facilities, to increase the criterions of nuclear, radiological and physics safety applied to these facilities, the necessity to carry out probabilistic analysis of safety more detailed for cases of not very probable accidents and their impact, to revalue the selection criterions of the sites for nuclear locations, the methodology of post-accident sites recovery and major instrumentation for parameters evaluation and the radiological monitoring among others. (Author)

  18. Studies in Swedish Energy Opinion

    Energy Technology Data Exchange (ETDEWEB)

    Holmberg, Soeren; Hedberg, Per

    2012-07-01

    the 1970s, energy production was politicized big time in the industrialized world. The birth of the environmental movement, the oil crises in 1973 - 74 and the beginning conflict surrounding civilian nuclear power, put energy issues center stage on the political agenda. Energy policies - especially related to the development of nuclear power - came to dominate election campaigns, like in Sweden in 1976 or be the subject of referendums, like in Austria in 1978 or in Sweden in 1980. Critical voices toward the peaceful use of nuclear power - having started in America before being exported to Europe - gained real strength and public support all over the Western world by the nuclear accident at the Three Mile Island plant in Harrisburg, Pennsylvania in 1979. The energy genie was out of the bottle and out to stay. Fueled by the nuclear meltdowns in Chernobyl in 1986 and in Fukushima in 2011 and supplemented by conflicts over how to reduce the use of oil and coal, how to sensibly exploit the waste gas reserves, and how to develop renewable energy sources based on sun, wind and waves – have made all kinds of energy issues the focal point of political contentions ever since the early 1970s. In Sweden, as in many other countries, energy policies - often with nuclear power in the center - have been one of the most fought-over policy areas during the last thirty-forty years. And the contentious character of energy policies is not limited to the elite level of politics - to politicians, to media pundits or to lobbyists. It is also manifest among ordinary citizens. Energy issues - nuclear power and wind power in particular - are highly polarizing among voters as well. Given this historic background, starting in the 1970s, it was rather natural that energy questions - featuring most prominently questions related to nuclear power - would be important parts of the voter surveys performed by the Swedish National Elections Studies (SNES) at the Univ. of Gothenburg. The first book

  19. Fatigue damage of nuclear facilities

    International Nuclear Information System (INIS)

    2001-01-01

    The conference on the fatigue damage of nuclear facilities, organized by the SFEN (french society of nuclear energy), took place at Paris the 23. of november 2000. Eleven papers were presented, showing the state of the art and the research programs in the domain of the sizing rules, safety, installations damage, examination and maintenance. (A.L.B.)

  20. Dismantling of nuclear facilities

    International Nuclear Information System (INIS)

    Tallec, Michele; Kus, Jean-Pierre; Mogavero, Robert; Genelot, Gabriel

    2009-01-01

    Although the operational life of nuclear plants is long (around 60 years for French reactors) it is nonetheless limited in time, the stopping of it being essentially due to the obsolescence of materials and processes or to economic or safety considerations. The nuclear power plants are then subjected to cleanup and dismantling operations which have different objectives and require specific techniques. The cleanup and/or dismantling of a nuclear power produces significant quantities of waste which is generally of a different nature to that produced during the operation of the concerned plant. The radioactive waste produced by these operations is destined to be sent to the waste disposal facilities of the French National Agency for the Management of Nuclear Waste. (authors)

  1. Application of robotics in nuclear facilities

    International Nuclear Information System (INIS)

    Byrd, J.S.; Fisher, J.J.

    1986-01-01

    Industrial robots and other robotic systems have been successfully applied at the Savannah River nuclear site. These applications, new robotic systems presently under development, general techniques for the employment of robots in nuclear facilities, and future systems are discussed

  2. Criteria, standards and policies regarding decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    Detilleux, E.; Lennemann, W.

    1977-01-01

    The paper discusses the decontamination and decommissioning experiences encountered at the Eurochemic fuel reprocessing plant, their implications and the knowledge gained from these experiences. It includes the results of technical reviews made by the Nuclear Energy Agency of OECD and the International Atomic Energy Agency regarding decommissioning nuclear facilities. The conlusions which are presented should weigh heavily in the considerations of the national authorities involved in regulating nuclear power programmes. The paper notes the special planning that should be arranged between those responsible for the nuclear facility and competent public authorities who jointly should make a realistic determination of the eventual disposition of the nuclear facility, even before it is built. Recommendations cover the responsibilities of nuclear plant entrepreneurs, designers, operators, and public and regulatory authorities [fr

  3. Nuclear safety and radiation protection report of the Bugey nuclear facilities - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Bugey nuclear power plant (Ain (FR)): 4 PWR reactors in operation (INB 78 and 89), one partially dismantled graphite-gas reactor (INB 45), an inter-regional fuel storage facility (MIR, INB 102), and a radioactive waste storage and conditioning facility under construction (ICEDA, INB 173). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  4. Nuclear safety and radiation protection report of the Fessenheim nuclear facilities - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Fessenheim nuclear power plant (INB 75, Haut-Rhin, 68 (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  5. Nuclear safety and radiation protection report of the Gravelines nuclear facilities - 2013

    International Nuclear Information System (INIS)

    2014-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Gravelines nuclear power plant (INB 96, 97 and 122, Nord (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2013, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions

  6. Nuclear safety and radiation protection report of the Penly nuclear facilities - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Penly nuclear power plant (INB 136 and 140, Seine-Maritime, 76 (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  7. Nuclear safety and radiation protection report of the Fessenheim nuclear facilities - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Fessenheim nuclear power plant (INB 75, Haut-Rhin, 68 (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  8. Nuclear safety and radiation protection report of the Blayais nuclear facilities - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Blayais nuclear power plant (INB 86 and 110, Gironde (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  9. Nuclear safety and radiation protection report of the Gravelines nuclear facilities - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Gravelines nuclear power plant (INB 96, 97 and 122, Nord (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  10. Nuclear safety and radiation protection report of the Gravelines nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Gravelines nuclear power plant (INB 96, 97 and 122, Nord (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions

  11. Nuclear safety and radiation protection report of the Penly nuclear facilities - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Penly nuclear power plant (INB 136 and 140, Seine-Maritime, 76 (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  12. Nuclear safety and radiation protection report of the Gravelines nuclear facilities - 2014

    International Nuclear Information System (INIS)

    2015-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Gravelines nuclear power plant (INB 96, 97 and 122, Nord (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2014, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions

  13. Nuclear safety and radiation protection report of the Gravelines nuclear facilities - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Gravelines nuclear power plant (INB 96, 97 and 122, Nord (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  14. Nuclear safety and radiation protection report of the Civaux nuclear facilities - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Civaux nuclear power plant (INB 158 and 159, Vienne (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  15. Nuclear safety and radiation protection report of the Blayais nuclear facilities - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Blayais nuclear power plant (INB 86 and 110, Gironde (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  16. Nuclear safety and radiation protection report of the Civaux nuclear facilities - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Civaux nuclear power plant (INB 158 and 159, Vienne (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  17. Neutron fluence measurement in nuclear facilities

    International Nuclear Information System (INIS)

    Camacho L, M.E.

    1997-01-01

    The objective of present work is to determine the fluence of neutrons in nuclear facilities using two neutron detectors designed and built at Instituto Nacional de Investigaciones Nucleares (ININ), Mexico. The two neutron detectors are of the passive type, based on solid state nuclear tracks detectors (SSNTD). One of the two neutron detectors was used to determine the fluence distribution of the ports at the nuclear research reactor TRIGA Mark III, which belongs to ININ. In these facilities is important to know the neutron fluence distribution characteristic to carried out diverse kind of research activities. The second neutron detector was employed in order to carry out environmental neutron surveillance. The detector has the property to separate the thermal, intermediate and fast components of the neutron fluence. This detector was used to measure the neutron fluence at hundred points around the primary container of the first Mexican Nuclear Power plant 'Laguna Verde'. This last detector was also used to determine the neutron fluence in some points of interest, around and inside a low scattering neutron room at the 'Centro de Metrologia de Radiaciones Ionizantes' of the ININ, to know the background neutron field produced by the neutron sources used there. The design of the two neutron detector and the results obtained for each of the surveying facilities, are described in this work. (Author)

  18. Deep ground water microbiology in Swedish granite rock and it's relevance for radio-nuclide migration from a Swedish high level nuclear waste repository

    International Nuclear Information System (INIS)

    Pedersen, Karsten

    1989-03-01

    Data on numbers, species and activity of deep ground water microbial populations in Swedish granite rock have been collected. Specific studies are performed on radio-nuclid uptake on bacteria judge to be probable inhabitants in Swedish nuclear waste repositories. An integrated mobile field laboratory was used for water sampling and for the immediate counting and inoculation of the samples from boreholes at levels between 129 and 860 m. A sampler adapted for the collection of undisturbed samples for gas analysis was used to collect samples for bacterial enumerations and enrichments. The sampler can be opened and closed from the surface at the actual sampling depth. The samples can subsequently be brought to the surface without contact with air and with the pressure at the actual sampling depth. The number of bacteria were determined in samples from the gas sampler when this was possible. Else numbers are determined in the water that is pumped up to the field lab. The average total number of bacteria is 3 x 10 5 bacterial ml -1 . The number of bacteria possible to recover with plate count arrays from 0.10 to 21.9%. (author)

  19. Comments from the Swedish Society for Nature Conservation, SSNC, and the Swedish NGO office for Nuclear Waste Review, MKG, on the industry's, SKB, research programme Fud-07

    Energy Technology Data Exchange (ETDEWEB)

    2009-06-15

    The Swedish Society for Nature Conservation and the Swedish NGO Office for Nuclear Waste Review recommends in response to Fud-07 that: - The Government must in its forthcoming decision regarding the industry's 2007 research and development program set out requirements that are needed to bring order to the ongoing work on nuclear waste disposition - The Government must assure an effective quality control of the industry's work - The Government needs to review the industry's use of resources from the Swedish Nuclear Waste Fund and empower the Radiation Safety Authority to ensure their proper use - The Government must make it clear that a permit to establish a final repository for high-level waste will not be given until sufficient evidence is available that supports the chosen method and chosen location, and that provide for guaranteed long-term safety - The Government must instruct the Radiation Safety Authority to develop its own full and independent assessment tools and knowledge base to be able to review the industry's research and development work, with particular emphasis on weaker aspects of the industry's work. - The Government must expand the budget of the Radiation Safety Authority to enable the Authority to perform a thorough examination of the industry's forthcoming application to construct a repository. - The Government must ensure that currently outstanding issues and unsolved problems in the industry's research and development project are thoroughly investigated, and solutions arrived at, before permission to begin construction can be given. - The Government must see to it that work commences on drafting public policy that sets out the objectives and functions that a final repository shall fulfil. - The Government must make it clear that it will not be possible for the industry to neglect or avoid giving alternative methods serious consideration in its environmental impact statement (EIS). - The Government should

  20. Swedish national plan for the management of all radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    2010-01-15

    Authority has developed. The following four prioritised areas are discussed in the report: the need for safe interim storage and disposal of non-nuclear radioactive waste, shortcomings in the monitoring of radioactive materials in society, the need for a clarification of responsibilities in legislation and the need for a long-term preservation of information regarding repositories of radioactive waste. The report presents an overview regarding what happens with radioactive waste streams from nuclear activities (nuclear power plants and other nuclear facilities) and from non-nuclear activities (hospitals, research, education and industry), i.e. where the different categories of radioactive waste arise in society and how they are managed, including disposal. Together with this report, there is a description of the actors involved in the waste streams in one way or other, along with the division of responsibilities among them. In most cases, the action proposals point towards a solution without being too specific. The consequences are difficult to quantify, but the analysis provides the basis for further studies by structuring benefit and cost items and by providing indicators regarding what further knowledge is required in order to develop financial estimates in those cases it has not been done. The total benefit of implementing the action proposals falls primarily on the general public, as the proposals contribute to the environmental work and, by 2020, there will be an all-embracing waste-management system whereby all types of radioactive waste will be managed and disposed of safely. The Swedish Radiation Safety Authority expects that more detailed analyses will be carried out when each action proposal is implemented; the precise nature of the proposals can then be determined and it will be easier to provide a more exact estimate of the effects of the proposals

  1. Swedish national plan for the management of all radioactive waste

    International Nuclear Information System (INIS)

    2011-01-01

    Authority has developed. The following four prioritised areas are discussed in the report: the need for safe interim storage and disposal of non-nuclear radioactive waste, shortcomings in the monitoring of radioactive materials in society, the need for a clarification of responsibilities in legislation and the need for a long-term preservation of information regarding repositories of radioactive waste. The report presents an overview regarding what happens with radioactive waste streams from nuclear activities (nuclear power plants and other nuclear facilities) and from non-nuclear activities (hospitals, research, education and industry), i.e. where the different categories of radioactive waste arise in society and how they are managed, including disposal. Together with this report, there is a description of the actors involved in the waste streams in one way or other, along with the division of responsibilities among them. In most cases, the action proposals point towards a solution without being too specific. The consequences are difficult to quantify, but the analysis provides the basis for further studies by structuring benefit and cost items and by providing indicators regarding what further knowledge is required in order to develop financial estimates in those cases it has not been done. The total benefit of implementing the action proposals falls primarily on the general public, as the proposals contribute to the environmental work and, by 2020, there will be an all-embracing waste-management system whereby all types of radioactive waste will be managed and disposed of safely. The Swedish Radiation Safety Authority expects that more detailed analyses will be carried out when each action proposal is implemented; the precise nature of the proposals can then be determined and it will be easier to provide a more exact estimate of the effects of the proposals

  2. Nuclear facility safeguards as specified by the Czechoslovak administrative law

    International Nuclear Information System (INIS)

    Elias, J.; Svab, J.

    1978-01-01

    A study is presented of the legal aspects of nuclear safeguards for the operation of nuclear power facilities evaluating the development of the legal arrangement over the past five years, i.e., encoding nuclear safeguards for nuclear facilities in the new building regulations (Act No. 50/1976 Coll. of Laws on Urban Planning and Building Regulations and implementing provisions). It also discusses the juridical position of State surveillance over the nuclear safety of nuclear facilities and its relation to surveillance carried out by specialized bodies of the State work safety inspection and to surveillance carried out by hygiene inspection bodies. (J.S.)

  3. 14C emission from Swedish nuclear power plants and its effect on the 14C levels in the environment

    International Nuclear Information System (INIS)

    Stenstroem, K.; Erlandsson, Bengt; Hellborg, R.; Kiisk, M.; Persson, Per; Mattsson, Soeren; Thornberg, C.; Skog, G.

    2000-02-01

    The radionuclide 14 C is produced in all types of nuclear reactors mainly by neutron induced reactions in oxygen ( 17 O), nitrogen ( 14 N) and carbon ( 13 C). Part of the 14 C created is continuously released during normal operation as airborne effluents in various chemical forms (such as CO 2 , CO and hydrocarbons) to the surroundings. Because of the biological importance of carbon and the long physical half-life of 14 C, it is of interest to measure the releases and their incorporation into living material. The 14 C activity concentrations in annual tree rings and air around two Swedish nuclear power plants (Barsebaeck and Forsmark) as well as the background 14 C activity levels from two reference sites in southern Sweden during 1973-1996 are presented in this report. In order to verify the reliability of the method some investigations have been conducted at two foreign nuclear sites, Sellafield fuel reprocessing plant in England, and Pickering nuclear generating station in Canada, where the releases of 14 C are known to be substantial. Furthermore, results from some measurements in the vicinity of Paldiski submarine training centre in Estonia are presented. The results of the 14 C measurements of air, vegetation and annual tree rings around the two Swedish nuclear power plants show very low enhancements of 14 C, if at all above the uncertainty of the measurements. Even if the accuracy of the measurements of the annual tree rings is rather good (1-2%) the contribution of 14 C from the reactors to the environment is so small that it is difficult to separate it from the prevailing background levels of 14 C . This is the case for all sampling procedures: in air and vegetation as well as in annual tree rings. Only on a few occasions an actual increase is observed. However, although the calculations suffer from rather large uncertainties, the calculated release rate from Barsebaeck is in fair agreement with reported release data. The results of this investigation show

  4. Stakeholder Involvement in Swedish Nuclear Waste Management

    International Nuclear Information System (INIS)

    Elam, Mark; Sundqvist, Goeran

    2006-01-01

    The focus in this paper is on past, current and emerging patterns of stakeholder involvement in the siting of a deep repository for final disposal of Sweden's spent nuclear fuel. In particular, we concentrate on how the two municipalities of Oskarshamn and Oesthammar have acted as engaged stakeholders, and have gained recognition as such, in the siting process. In general: How has stakeholder involvement gained acceptance as an activity of value in the siting of major waste facilities? What are the issues currently subject to stakeholder involvement and how have these been decided upon? An effect of the history of nuclear activity in Oskarshamn and Oesthammar is that stakeholder involvement over a final repository can be divided into social and technical issues. Both municipalities have out of tradition, as part of their social acceptance of a new repository, been prepared to surrender extended involvement in key safety issues. They have been prepared to do this because they also see themselves being able to delegate these safety issues to the government authorities SSI and SKI. These two authorities have been acceptable to the two municipalities as their legitimate 'technological guardians'. As physical geology re-enters the siting process for a deep repository, Oskarshamn appear more prepared to break with tradition than Oesthammar. Oskarshamn are currently demanding transparency from SKB in relation to the exact technical and geological criteria they will use to choose between them and Oesthammar as a repository site. In contrast to Oesthammar, Oskarshamn are preparing with the expected help of SKI and SSI to dispute their geology and its relation to nuclear safety with SKB if they consider it necessary. If Oskarshamn act to draw safety issues in relation to alternative methods and sitings into the EIA process where might this lead? As environmental groups now enter the process (three groups were granted funding in the first round - 2005) the character of site

  5. Nuclear training facilities at the Royal Naval College, Greenwich

    International Nuclear Information System (INIS)

    Head, J.L.; Lowther, C.A.; Marsh, J.R.W.

    1986-01-01

    The paper describes some of the nuclear training facilities at the Royal Naval College and the way the facilities are used in the training of personnel for the Naval nuclear propulsion programme. (author)

  6. Summary of operating experience in Swedish nuclear power plants 1994

    International Nuclear Information System (INIS)

    1995-01-01

    1994 was a record year for nuclear power in Sweden. For the second time, electricity generation from nuclear power exceeded 70 TWh (billions of kilowatt hours). Nuclear electricity generation corresponded to 51% of the total electricity generated in Sweden. Four units had an energy availability of more than 90%, while another five units had an availability of between 84 and 90%. This can be compared with an average international availability of 75%. Barsebaeck 2 was shut down during January to complete measures to correct a leak which was detected in the containment embedded steel plating in autumn 1993. During the year, a number of events occurred at Barsebaeck which were mainly caused by human error. A special evaluation of plant activities showed that the events occurred in connection with a reorganization which had been carried out. At year-end, it was discovered that the main steam line safety relief valves in Ringhals 2 were not correctly calibrated. The cause of the error was established and corrected and the safety relief valves at the other Ringhals PWRs were checked. Oskarshamn 1 was shut down for the whole year for a further inspection and modernization program. Manual inspections of the lower plenum of the reactor vessel were carried out for the first time ever in the world. The work methods, which have attracted considerable international interest, open up completely new dimensions for the maintenance and repair of reactor pressure vessels. The radiation doses to the personnel, which during 1993 were higher than usual, showed a marked decline in 1994. At the end of 1994, all of the Swedish nuclear power plants, apart from Oskarshamn 1, were in operation

  7. Design requirements for new nuclear reactor facilities in Canada

    International Nuclear Information System (INIS)

    Shim, S.; Ohn, M.; Harwood, C.

    2012-01-01

    The Canadian Nuclear Safety Commission (CNSC) has been establishing the regulatory framework for the efficient and effective licensing of new nuclear reactor facilities. This regulatory framework includes the documentation of the requirements for the design and safety analysis of new nuclear reactor facilities, regardless of size. For this purpose, the CNSC has published the design and safety analysis requirements in the following two sets of regulatory documents: 1. RD-337, Design of New Nuclear Power Plants and RD-310, Safety Analysis for Nuclear Power Plants; and 2. RD-367, Design of Small Reactor Facilities and RD-308, Deterministic Safety Analysis for Small Reactor Facilities. These regulatory documents have been modernized to document past practices and experience and to be consistent with national and international standards. These regulatory documents provide the requirements for the design and safety analysis at a high level presented in a hierarchical structure. These documents were developed in a technology neutral approach so that they can be applicable for a wide variety of water cooled reactor facilities. This paper highlights two particular aspects of these regulatory documents: The use of a graded approach to make the documents applicable for a wide variety of nuclear reactor facilities including nuclear power plants (NPPs) and small reactor facilities; and, Design requirements that are new and different from past Canadian practices. Finally, this paper presents some of the proposed changes in RD-337 to implement specific details of the recommendations of the CNSC Fukushima Task Force Report. Major changes were not needed as the 2008 version of RD-337 already contained requirements to address most of the lessons learned from the Fukushima event of March 2011. (author)

  8. Supervision of the safety culture in nuclear facilities

    International Nuclear Information System (INIS)

    2014-11-01

    This brochure issued by the Swiss Federal Nuclear Safety Inspectorate ENSI reports on safety culture aspects in nuclear facilities and ENSI’s activities as a supervisory instance. ENSI is the independent supervisory authority for the nuclear sector in Switzerland. A definition of safety culture is presented and the development of the concepts used in its monitoring are discussed. The main attributes of a good safety culture are discussed. Further, the conceptual basics and principles of such monitoring are looked at and the methods used for the supervision of safety culture in nuclear facilities are described

  9. Decommissioning of nuclear facilities: a growing activity in the world

    International Nuclear Information System (INIS)

    Anasco, Raul

    2001-01-01

    Nuclear power plants and nuclear facilities are no different from normal buildings and factories. Eventually, they become worn-out or old fashioned, too expensive to maintain or remodel. Decommissioning a nuclear facility is different from retiring other types because of the radioactivity involved. The most important consideration in nuclear decommissioning is to protect workers and the public from exposure to harmful levels of radiation. General criteria and strategies for the decommissioning of nuclear facilities are described as well as the present decommissioning activities of the Argentine CNEA (author)

  10. Sweden's first national report under the Joint Convention on the safety of spent fuel management and on the safety of radioactive waste management. Swedish implementation of the obligations of the Joint Convention

    International Nuclear Information System (INIS)

    2003-01-01

    -assessment by each Contracting Party regarding compliance with the obligations of the Joint Convention. This self-assessment should be reported in the National Report to the Review Meetings. Sweden's self-assessment has demonstrated compliance with all the obligations of the Convention, as shown in detail in section B to K of this report. Having taken a very active part in the creation of the Joint Convention, Sweden wishes to emphasise this incentive. In Sweden's opinion, the Convention implies a commitment to the continuous improvement of safety whenever operating experience, safety research or technical development indicate room for such improvement. Continuous learning from experience and a proactive approach to safety are in fact corner stones of the current Swedish nuclear and radiation safety work, both for the industry and the regulatory bodies. Therefore, Sweden has found it important that its National Report highlights strong features in national practices, as well as areas in which improvements are justified. Implementation of such improvements should then be followed up in the National Reports to subsequent Review Meetings. As general conclusions with regard to strong features in national practices, Sweden would like to point out the following: - The responsibility for safety is clearly defined in the Swedish legal framework. In order not to dilute the responsibility of the licence holders, the Swedish regulations are designed to define requirements to be achieved, not the detailed means to achieve them. Within the framework given by the regulations, the licence holders have to define their own solutions, and demonstrate the safety level achieved to the regulatory bodies. - The legislation clearly defines that all licence holders are responsible for the safe handling and disposal of spent fuel and radioactive waste, as well as for the decommissioning and dismantling of facilities. - The operators of nuclear power plants must jointly carry out the research and

  11. Training of nuclear facility personnel: boon or boondoggle

    International Nuclear Information System (INIS)

    Remick, F.J.

    1975-01-01

    The training of nuclear facility personnel has been a requirement of the reactor licensing process for over two decades. However, the training of nuclear facility personnel remains a combination of boon and boondoggle. The opportunity to develop elite, well trained, professionally aggressive reactor operation staffs is not being realized to its full potential. Improvements in the selection of personnel, training programs, operational tools and professional pride can result in improved plant operation and contribute to improved plant capacity factors. Industry, regulatory agencies, professional societies and universities can do much to improve standards and quality of the training of nuclear facility personnel and to improve the professional level of plant operation

  12. Seismic design considerations for nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    Soni, R.S.; Kushwaha, H.S.; Venkat Raj, V.

    2001-01-01

    During the last few decades, there have been considerable advances in the field of a seismic design of nuclear structures and components housed inside a Nuclear power Plant (NPP). The seismic design and qualification of theses systems and components are carried out through the use of well proven and established theoretical as well as experimental means. Many of the related research works pertaining to these methods are available in the published literature, codes, guides etc. Contrary to this, there is very little information available with regards to the seismic design aspects of the nuclear fuel cycle facilities. This is probably on account of the little importance attached to these facilities from the point of view of seismic loading. In reality, some of these facilities handle a large inventory of radioactive materials and, therefore, these facilities must survive during a seismic event without giving rise to any sort of undue radiological risk to the plant personnel and the public at large. Presented herein in this paper are the seismic design considerations which are adopted for the design of nuclear fuel cycle facilities in India. (author)

  13. Upgrade and development of nuclear data production test facility

    Energy Technology Data Exchange (ETDEWEB)

    Namkung, Won; Ko, I. S.; Cho, M. H.; Lee, Y. S.; Kang, H. S. [Pohang Univ. of Science and Technology, Pohang (Korea, Republic of); Kim, G. N. [Kyungpook National Univ., Daegu (Korea, Republic of); Koh, S. K. [Univ. of Ulsan, Ulsan (Korea, Republic of); Ro, T. I. [Donga Univ., Busan (Korea, Republic of); Choi, G. U. [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of)

    2005-04-15

    It is necessary to improve the Pohang Neutron Facility (PNF) in order to be used as a nuclear data production facility for users in both domestic and abroad. We improved following items: upgrade the electron linac, collimators inside the TOF beam pipe, the development and installation of an automatic sample changer, the extension of the TOF beam line, and the data acquisition system. We would like to establish a utilization system for users to measure the nuclear data at the PNF. To do this, we made manuals for the accelerator operation and the data acquisition system. We also made an application form to apply for users to measure the nuclear data in both domestic and abroad. The main object of the Pohang Neutron Facility is to measure the nuclear data in the neutron energy region from thermal neutron to few hundreds of eV. In addition to neutron beams produced at the PNF, photon and electron beams are produced in this facility. We thus utilize this facility for other fields, such as test facility for detectors, activation experiments, polarized neutron beam source, and so on. In addition to these, we could use this facility for training students.

  14. Investigation on candidates of principal facilities for exposure dose to public for the facilities using nuclear material

    International Nuclear Information System (INIS)

    Shimazaki, Yosuke; Sawahata, Hiroaki; Takada, Shoji; Fujimoto, Nozomu

    2015-01-01

    HTTR holds the nuclear fuel material use facilities in its reactor facilities, for the purpose of study on the fracture behavior of fuel and release behavior of fission products, development of high-performance fuel, and measurement of neutron flux. Due to the revision of the 'Act on the regulation of nuclear source material, nuclear fuel material and reactor', the facilities having the 'Important safety-related facilities' among the facilities applicable to the Enforcement Ordinance Article 41 (Article 41 facilities) has come to need to conform to the 'Regulations concerning standards for the location, structure, and equipment of used facilities and others'. In this case, actions such as modification by all possible means are required. The nuclear fuel substance use facilities of HTTR correspond to Article 41 facilities. So, whether it is a candidate for the 'Important safety-related facilities' has been examined. As a result, it is confirmed that the facilities are not correspond to the 'Important safety-related facilities', and it has been concluded that modification measures for the purpose of conforming to this approval standard rule are not necessary as of the present. (A.O.)

  15. LAMPF: a nuclear research facility

    International Nuclear Information System (INIS)

    Livingston, M.S.

    1977-09-01

    A description is given of the recently completed Los Alamos Meson Physics Facility (LAMPF) which is now taking its place as one of the major installations in this country for the support of research in nuclear science and its applications. Descriptions are given of the organization of the Laboratory, the Users Group, experimental facilities for research and for applications, and procedures for carrying on research studies

  16. The Swedish Utilities joint approach to form common basis for design requirements for the future

    International Nuclear Information System (INIS)

    Hansson, B.

    1998-01-01

    The Owners of the Swedish Nuclear Power Plants have decided to form a document that should state the design principals and requirement for cost-effective and continuous development of the reactor safety in the future. The development of this document will be a part of the modernization and development of the Swedish Nuclear Power Plants. The basis for this document is an evaluation of Swedish and International standards and regulations as IAEA/INSAG, US-regulations, EUR etc. (author)

  17. Sweden's second national report under the Convention on nuclear safety. Swedish implementation of the obligations of the Convention

    International Nuclear Information System (INIS)

    2001-01-01

    The National Reports to the Review Meetings according to Article 5 of the Convention call for a self-assessment of each Contracting Party with regard to compliance with the obligations of the Convention. For Sweden this self-assessment has demonstrated full compliance with all the obligations of the Convention, as shown in detail in part B of this National Report. Sweden wishes to emphasise the incentive character of the Convention. In the opinion of Sweden, the Convention implies a commitment to continuous learning from experience and a proactive approach to safety improvement. Therefore, Sweden has found it important that a National Report highlights strong features in national nuclear practices as well as areas where special attention to the further development are needed. Since the first report to the Convention was issued, three major events have been experienced in the Swedish nuclear programme: Phase out of nuclear power started by the closing of one unit of a twin unit plant on 30 November 1999. The full effects of deregulation of the electricity market have been experienced. Together with increasing taxes on nuclear power, this has strongly affected the production economy of the nuclear industry resulting in efforts to reduce production costs and leaving less room for investments. The new general safety regulations came into force 1 July 1999, resulting in a more structured approach to inspection and safety assessment. These changes have created new challenges for the safety work of the licensees as well as for the regulatory bodies during the last three years. However, the generally positive impression reported to the first review meeting under the Convention still stands. Therefore, Sweden would like to point out the following as strong features in its national nuclear practice: The responsibility for safety is very well defined in the Swedish legal framework. In order not to dilute the responsibility of the licence holders, the Swedish regulations are

  18. Potential Benefits to the Philippines of a Nuclear Facility

    International Nuclear Information System (INIS)

    Asuncion-Astronomo, A.; Romallosa, K.M.D.; Olivares, R.U.

    2015-01-01

    During the late 1950’s, the Philippines was one of the many countries which began the pursuit of the beneficial applications of atomic energy. With the commissioning of the first Philippine Research Reactor (PRR-1) which attained its first criticality in 1963, our country had the capability for radioisotope production, activation analysis of materials, irradiation studies and various opportunities for basic and applied nuclear science research. The Nuclear Power Plant (PNNP-1) in training plant operators and regulators for the first Philippine Nuclear Power Plant (PNPP-1) in Bataan, which was eventually mothballed in 1986. It is thus unfortunate that the only operating nuclear facility in the country, the PRR-1 encountered technical problems during an upgrade and was shut down in 1988. The problem was not resolved and eventually led to the decommissioning of the PRR-1 in 2005. Without an operating nuclear facility available in the country, the number of personnel knowledgeable and skilled in reactor and nuclear science and engineering has greatly declined and lagged behind our counterparts. This has been the situation for more than two decaded and can only be addressed if the country decides to put up a new nuclear facility. It is acknowledged that putting up a nuclear facility is a major undertaking which requires careful planning, preparation and investment. Thus, a decision by any country to embark on this poster, we will provide an overview of the many potential benefits as well as challenges of establishing a new research reactor and/or accelerator facility in the country. The global distribution, comparisons, capabilities and the different application of these facilities will presented as well.(author)

  19. Decommissioning and environmental restoration of nuclear facilities in China

    International Nuclear Information System (INIS)

    Pan Ziqiang

    2000-01-01

    In the beginning of the 1980s, the Scientific and Technological Commission (STC) began the study on the environmental impact of the nuclear industry in China. At the end of the 1980s, the STC initiated the study on the decommissioning of nuclear facilities and environmental restoration. In 1989 the STC completed the project entitled ''Radiological and Environmental Quality Assessment of the Nuclear Industry in China Over the Past Thirty Years''. The status of the environmental pollution of various nuclear facility sites was subsequently analysed. In 1994, the decommissioning and environmental restoration of the first research and manufacture complex for nuclear weapons was completed. The complex is now accessible to the public without restriction and the site has become a town. Some nuclear related facilities, such as uranium mines, are currently being decommissioned. Although uranium mining and milling has a more serious impact on the environment, the technology for decommissioning and environmental restoration in mining and milling installations is not much more complicated than that used for reactor and reprocessing facilities: much has been achieved in the area of mining and milling. (author)

  20. The Study on Domestic and Foreign Cases for Decommissioning of DPRK Nuclear Facilities

    International Nuclear Information System (INIS)

    Baek, Ye Ji; Hhu, Joo Youn; Lee, Jung Hyun; Hwang, Yong Soo

    2016-01-01

    This study was able to analyze domestic and foreign cases, and collect data on the approximate amount of waste and time required time; however, data on applied technology, input manpower, required cost, and waste disposal method was insufficient. DPRK activities such as nuclear weapon development or nuclear testing not only threaten our country's security but also have an adverse effect on nuclear nonproliferation and security in the international society. Therefore, denuclearization of the DPRK is prior task that is essential to peace on the Korean Peninsula. The fundamental purpose of denuclearization of the DPRK is to safely decommission facilities related to developing nuclear weapons and to depose related radioactive waste and nuclear materials. Understanding descriptive references and physical properties of the facility and its purpose important for decommissioning nuclear facilities. Although it was impossible to collect data on DPRK nuclear facilities to perform complete decommissioning, we were able to understand the process used at DPRK nuclear facilities with open source data. This study has been conducted to establish overall measures for decommissioning DPRK nuclear facilities. DPRK nuclear facilities in this study include a IRT- 2000 type nuclear research reactor, a 5 MWe graphite moderated reactor, nuclear fuel fabrication facility, and a nuclear fuel reprocessing facility, which are considered as facilities that produce or manufacture nuclear materials needed for nuclear weapons or related to such activities.

  1. The Study on Domestic and Foreign Cases for Decommissioning of DPRK Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Ye Ji; Hhu, Joo Youn; Lee, Jung Hyun; Hwang, Yong Soo [Korea Institute of Nuclear Non-proliferation and Control, Daejeon (Korea, Republic of)

    2016-05-15

    This study was able to analyze domestic and foreign cases, and collect data on the approximate amount of waste and time required time; however, data on applied technology, input manpower, required cost, and waste disposal method was insufficient. DPRK activities such as nuclear weapon development or nuclear testing not only threaten our country's security but also have an adverse effect on nuclear nonproliferation and security in the international society. Therefore, denuclearization of the DPRK is prior task that is essential to peace on the Korean Peninsula. The fundamental purpose of denuclearization of the DPRK is to safely decommission facilities related to developing nuclear weapons and to depose related radioactive waste and nuclear materials. Understanding descriptive references and physical properties of the facility and its purpose important for decommissioning nuclear facilities. Although it was impossible to collect data on DPRK nuclear facilities to perform complete decommissioning, we were able to understand the process used at DPRK nuclear facilities with open source data. This study has been conducted to establish overall measures for decommissioning DPRK nuclear facilities. DPRK nuclear facilities in this study include a IRT- 2000 type nuclear research reactor, a 5 MWe graphite moderated reactor, nuclear fuel fabrication facility, and a nuclear fuel reprocessing facility, which are considered as facilities that produce or manufacture nuclear materials needed for nuclear weapons or related to such activities.

  2. Nuclear facilities

    International Nuclear Information System (INIS)

    Anon.

    2002-01-01

    During September and October 2001, 15 events were recorded on the first grade and 1 on the second grade of the INES scale. The second grade event is in fact a re-classification of an incident that occurred on the second april 2001 at Dampierre power plant. This event happened during core refueling, a shift in the operation sequence led to the wrong positioning of 113 assemblies. A preliminary study of this event shows that this wrong positioning could have led, in other circumstances, to the ignition of nuclear reactions. Even in that case, the analysis made by EDF shows that the consequences on the staff would have been limited. Nevertheless a further study has shown that the existing measuring instruments could not have detected the power increase announcing the beginning of the chain reaction. The investigation has shown that there were deficiencies in the control of the successive operations involved in refueling. EDF has proposed a series of corrective measures to be implemented in all nuclear power plants. The other 15 events are described in the article. During this period 121 inspections have been made in nuclear facilities. (A.C.)

  3. Safety and radiation protection at the Swedish nuclear power plants 2000

    International Nuclear Information System (INIS)

    2001-04-01

    During 2000 no events occurred, or discoveries were made, that seriously affected the reactor safety at the Swedish nuclear plants. The basic safety strategy is designed so that hidden faults and deficiencies shall not lead to any serious consequences for the plants. It is of outmost importance that the safety work at the plants is performed with the best effort and quality in order to realize this strategy. Especially in the new economic situation of the utilities after deregulation of the electricity market. The total radiation dose to the personnel and contracted workers at the plants was the lowest ever recorded with all NPPs running (8.1 man Sv). Corrosion damages led to a stand-still of two reactors during a long period, and thorough analyses were performed before the Inspectorate allowed a restart

  4. PROJECTIZING AN OPERATING NUCLEAR FACILITY

    International Nuclear Information System (INIS)

    Adams, N

    2007-01-01

    This paper will discuss the evolution of an operations-based organization to a project-based organization to facilitate successful deactivation of a major nuclear facility. It will describe the plan used for scope definition, staff reorganization, method estimation, baseline schedule development, project management training, and results of this transformation. It is a story of leadership and teamwork, pride and success. Workers at the Savannah River Site's (SRS) F Canyon Complex (FCC) started with a challenge--take all the hazardous byproducts from nearly 50 years of operations in a major, first-of-its-kind nuclear complex and safely get rid of them, leaving the facility cold, dark, dry and ready for whatever end state is ultimately determined by the United States Department of Energy (DOE). And do it in four years, with a constantly changing workforce and steadily declining funding. The goal was to reduce the overall operating staff by 93% and budget by 94%. The facilities, F Canyon and its adjoined sister, FB Line, are located at SRS, a 310-square-mile nuclear reservation near Aiken, S.C., owned by DOE and managed by Washington Group International subsidiary Washington Savannah River Company (WSRC). These facilities were supported by more than 50 surrounding buildings, whose purpose was to provide support services during operations. The radiological, chemical and industrial hazards inventory in the old buildings was significant. The historical mission at F Canyon was to extract plutonium-239 and uranium-238 from irradiated spent nuclear fuel through chemical processing. FB Line's mission included conversion of plutonium solutions into metal, characterization, stabilization and packaging, and storage of both metal and oxide forms. The plutonium metal was sent to another DOE site for use in weapons. Deactivation in F Canyon began when chemical separations activities were completed in 2002, and a cross-functional project team concept was implemented to successfully

  5. General problems specific to hot nuclear materials research facilities

    International Nuclear Information System (INIS)

    Bart, G.

    1996-01-01

    During the sixties, governments have installed hot nuclear materials research facilities to characterize highly radioactive materials, to describe their in-pile behaviour, to develop and test new reactor core components, and to provide the industry with radioisotopes. Since then, the attitude towards the nuclear option has drastically changed and resources have become very tight. Within the changed political environment, the national research centres have defined new objectives. Given budgetary constraints, nuclear facilities have to co-operate internationally and to look for third party research assignments. The paper discusses the problems and needs within experimental nuclear research facilities as well as industrial requirements. Special emphasis is on cultural topics (definition of the scope of nuclear research facilities, the search for competitive advantages, and operational requirements), social aspects (overageing of personnel, recruitment, and training of new staff), safety related administrative and technical issues, and research needs for expertise and state of the art analytical infrastructure

  6. Study on system integration of robots operated in nuclear fusion facility and nuclear power plant facilities

    International Nuclear Information System (INIS)

    Oka, Kiyoshi

    2004-07-01

    A present robot is required to apply to many fields such as amusement, welfare and protection against disasters. The are however only limited numbers of the robots, which can work under the actual conditions as a robot system. It is caused by the following reasons: (1) the robot system cannot be realized by the only collection of the elemental technologies, (2) the performance of the robot is determined by that of the integrated system composed of the complicated elements with many functions, and (3) the respective elements have to be optimized in the integrated robot system with a well balance among them, through their examination, adjustment and improvement. Therefore, the system integration of the robot composed of a large number of elements is the most critical issue to realize the robot system for actual use. In the present paper, I describe the necessary approaches and elemental technologies to solve the issues on the system integration of the typical robot systems for maintenance in the nuclear fusion facility and rescue in the accident of the nuclear power plant facilities. These robots work under the intense radiation condition and restricted space in place of human. In particular, I propose a new approach to realize the system integration of the robot for actual use from the viewpoints of not only the environment and working conditions but also the restructure and optimization of the required elemental technologies with a well balance in the robot system. Based on the above approach, I have a contribution to realize the robot systems working under the actual conditions for maintenance in the nuclear fusion facility and rescue in the accident of the nuclear power plant facilities. (author)

  7. Automated approach to nuclear facility safeguards effectiveness evaluation

    International Nuclear Information System (INIS)

    1977-01-01

    Concern over the security of nuclear facilities has generated a need for a reliable, time efficient, and easily applied method of evaluating the effectiveness of safeguards systems. Such an evaluation technique could be used (1) by the Nuclear Regulatory Commission to evaluate a licensee's proposal, (2) to assess the security status of a system, or (3) to design and/or upgrade nuclear facilities. The technique should be capable of starting with basic information, such as the facility layout and performance parameters for physical protection components, and analyzing that information so that a reliable overall facility evaluation is obtained. Responding to this expressed need, an automated approach to facility safeguards effectiveness evaluation has been developed. This procedure consists of a collection of functional modules for facility characterization, critical path generation, and path evaluation combined into a continuous stream of operations. The technique has been implemented on an interactive computer-timesharing system and makes use of computer graphics for the handling and presentation of information. Using this technique a thorough facility evaluation can be made by systematically varying parameters that characterize the physical protection components of a facility according to changes in perceived adversary attributes and strategy, environmental conditions, and site status

  8. Safety at the End of a Nuclear Facility's Life

    International Nuclear Information System (INIS)

    Geis, John A.; McEahern, Patrice; Evans, Brad

    2004-01-01

    The objective of this paper is to capture the changes that are caused by the transition from nuclear operation through closure of defense nuclear facilities and convey lessons learned from their deactivation, decontamination and demolition. The specific area of discussion is focused on the planned reduction of safety equipment and consequent shift in hazard controls and safety management programs as the facility moves toward closure. The premise of the paper is that as the dominant hazards transition from nuclear to radiological and/or industrial, the facility control of the hazards and response to the potential upset conditions must transition as well to ensure safe and efficient operations. Using recent experience of the accelerated closure mission for U. S. Department of Energy (DOE) defense nuclear facilities at Rocky Flats Environmental Technology Site, the current culture with respect to developing and implementing hazard controls and response to upset conditions is illustrated. Several events have been documented that provide insight into the challenges facing line managers and safety professionals at the end of a facility's life cycle. Replacing permanent systems with temporary equipment challenges the traditional concept of reliability. Workers disassemble safety systems daily, but must rely on some of these components or redundant systems as work continues. Decisions governing upkeep of systems that await demolition balance the risk of running to failure against the cost benefit of maintenance and repair. This is further complicated as regulators and safety professionals are often unfamiliar with these new conditions and continue to view facility work activities and potential upset conditions from a nuclear operations perspective. The results of this paper evaluate the differences in how regulatory, safety basis, and operational practices must adapt to the dynamic environment of decontamination and decommissioning in contrast to the relatively constant

  9. Operational status of nuclear facilities in Japan. 2012 edition

    International Nuclear Information System (INIS)

    2012-01-01

    This document is a compilation which provides an outline of the administration of nuclear facility safety regulations as well as various data including operational status, the status of periodical and safety inspections, the status of issues, and radiation management on nuclear power reactor facilities, reactor facilities in the research and development stage, and fabrication, reprocessing, disposal, and storage facilities in fiscal year 2011 (from April 2011 to March 2012). (J.P.N.)

  10. Decommissioning of nuclear facilities using current criteria

    International Nuclear Information System (INIS)

    Shum, E.Y.; Swift, J.J.; Malaro, J.C.

    1991-01-01

    When a licensed nuclear facility ceases operation, the US Nuclear Regulatory Commission (NRC) is responsible for ensuring that the facility and its site are decontaminated to an acceptable level so that it is safe to release that facility and site for unrestricted public use. Currently, the NRC is developing decommissioning criteria based on reducing public doses from residual contamination in soils and structures at sites released for unrestricted use to as low as is reasonably achievable (ALARA). Plans are to quantify ALARA in terms of an annual total effective dose equivalent (TEDE) to an average member of the most highly exposed population group. The NRC is working on a regulatory guidance document to provide a technical basis for translating residual contamination levels to annual dose levels. Another regulatory guide is being developed to provide guidance to the licensee on how to conduct radiological surveys to demonstration compliance with the NRC decommissioning criteria. The methods and approaches used in these regulatory guides on the decommissioning of a nuclear facility are discussed in the paper

  11. Graphics-based nuclear facility modeling and management

    International Nuclear Information System (INIS)

    Rod, S.R.

    1991-07-01

    Nuclear waste management facilities are characterized by their complexity, many unprecedented features, and numerous competing design requirements. This paper describes the development of comprehensive descriptive databases and three-dimensional models of nuclear waste management facilities and applies the database/model to an example facility. The important features of the facility database/model are its abilities to (1) process large volumes of site data, plant data, and nuclear material inventory data in an efficient, integrated manner; (2) produce many different representations of the data to fulfill information needs as they arise; (3) create a complete three-dimensional solid model of the plant with all related information readily accessible; and (4) support complete, consistent inventory control and plant configuration control. While the substantive heart of the system is the database, graphic visualization of the data vastly improves the clarity of the information presented. Graphic representations are a convenient framework for the presentation of plant and inventory data, allowing all types of information to be readily located and presented in a manner that is easily understood. 2 refs., 5 figs., 1 tab

  12. Methods for reducing occupational exposures during the decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    1987-01-01

    The decommissioning and decontamination of nuclear facilities is a topic of great interest to many Member States of the International Atomic Energy Agency (IAEA) because of the large number of older facilities which have been or soon will be retired from service. This report is a review of the current state of knowledge concerning methods for reducing occupational exposures during the decommissioning of nuclear facilities. This report focuses on water cooled nuclear power plants but, in addition, other major nuclear facilities are briefly discussed to determine how they differ from nuclear power plants in this regard. The information presented should be useful to those responsible for or interested in designing or constructing nuclear facilities or in the planning or implementing of the decommissioning of such installations. 59 refs, 1 tab

  13. Nuclear physics at multi-GeV hadron facilities

    International Nuclear Information System (INIS)

    Geesaman, D.F.

    1993-01-01

    The important contributions Multi-GeV hadron beam facilities can make to the field of Nuclear Physics have been recognized by the community for a decade. Such a facility has featured prominently in each NSAC planning exercise in this period. As Nuclear Physicists realize they must become more concerned with the quark structure of nuclei and the applications of Quantum Chromodynamics to many body systems, the need for experiments at such facilities has become more urgent. In this talk, I will present a personal view of some of the significant recent Nuclear Physics results with multi-GeV hadron facilities, the most important opportunities which can open up to us in the future, and demonstrate how our field must take advantage of these opportunities to progress. I will also report on the recent discussions in the community to make this possible

  14. Nuclear safety and radiation protection report of the Chooz nuclear facilities - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Chooz nuclear power plant (Ardennes (FR)): 2 PWR reactors in operation (Chooz B, INB 139 and 144) and one partially dismantled PWR reactor (Chooz A, INB 163). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary followed by the viewpoint of the Committees for health, safety and working conditions. (J.S.)

  15. Nuclear safety and radiation protection report of the Paluel nuclear facilities - 2010

    International Nuclear Information System (INIS)

    2011-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Paluel nuclear power plant (INB no. 103 - Paluel 1, no. 104 - Paluel 2, no. 114 - Paluel 3 and no. 115 - Paluel 4, Cany-Barville - Seine-Maritime (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document ends with a glossary and no recommendation from the Committees for health, safety and working conditions. (J.S.)

  16. Nuclear safety and radiation protection report of the Paluel nuclear facilities - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Paluel nuclear power plant (INB no. 103 - Paluel 1, no. 104 - Paluel 2, no. 114 - Paluel 3 and no. 115 - Paluel 4, Cany-Barville - Seine-Maritime (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  17. Nuclear safety and radiation protection report of the Golfech nuclear facilities - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Golfech nuclear power plant (INB 135 and 142, Tarn-et-Garonne (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  18. Nuclear safety and radiation protection report of the Cattenom nuclear facilities - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Cattenom nuclear power plant (INB 124, 125, 126 and 137, Moselle (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  19. Nuclear safety and radiation protection report of the Cattenom nuclear facilities - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Cattenom nuclear power plant (INB 124, 125, 126 and 137, Moselle (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  20. Nuclear safety and radiation protection report of the Golfech nuclear facilities - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Golfech nuclear power plant (INB 135 and 142, Tarn-et-Garonne (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  1. Nuclear safety and radiation protection report of the Creys-Malville nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the partially dismantled facilities of the Creys-Malville nuclear power plant (also known as Superphenix power plant, INB no. 91, Creys-Mepieu - Isere (FR)) and the other fuel and waste storage facilities of the site (INB no. 141). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities. The incidents and accidents which occurred in 2012, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions

  2. Nuclear safety and radiation protection report of the Creys-Malville nuclear facilities - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the partially dismantled facilities of the Creys-Malville nuclear power plant (also known as Superphenix power plant, INB no. 91, Creys-Mepieu - Isere (FR)) and the other fuel and waste storage facilities of the site (INB no. 141). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  3. Auxiliary facilities on nuclear ship 'MUTSU'

    International Nuclear Information System (INIS)

    Tsujimura, Shotaro; Takigami, Yoshio.

    1989-01-01

    The nuclear ship 'MUTSU' has been moored at SEKINEHAMA, MUTU City in AOMORI Prefecture and several tests and works are being carried out on the ship. The construction of the auxiliary facilities for these works on the ship was completed in safety in August 1988. After that the facilities have fulfilled their function. The outlines of design, fabrication and construction of the facilities are described in this paper. (author)

  4. Measurements of nuclear data and possibility to construct the nuclear data production facility based on electron linac

    Energy Technology Data Exchange (ETDEWEB)

    Namkung, Won; Ko, In Soo; Cho, Moo Hyun; Kim, Gui Nyun; Lee, Young Seok; Kang, Heung Sik [Pohang University of Science and Technology, Pohang(Korea)

    2001-04-01

    In order to construct an infrastructure to produce nuclear data, we studied three main items; (1) Study on the possibility to construct a facility for nuclear data production, (2) Production of nuclear data for nuclear power plant, and (3) Pulsed neutron source based on a 100-MeV electron linac at Pohang Accelerator Laboratory (PAL). We confirmed the possibility to build a nuclear data production facility utilizing a 100-MeV electron linac at PAL and manpower who wanted to participate the nuclear data production experiments. In order to measure the nuclear data for nuclear power plant, we used several nuclear data production facilities in abroad. We measured total cross sections and neutron caprure cross sections for {sup nat}Dy and {sup nat}Hf using the pulsed neutron facility in the Research Reactor Institute, Kyoto University (KURRI). The neutron capture cross sections for {sup 161,162,163,164}Dy were measured at KURRI in the neutron energy region between 0.001 eV and several tens keV, and at the fast neutron facility in Tokyo Institute of Technology in the neutron energy region between 10 keV and 100 keV. We also measured the neutron capture cross sections and gamma multiplicity of {sup 232}Th at the IBR30 in Dubna, Russia. We have construct a pulsed neutron source using a 100-MeV electron linac at PAL. We measured neutron time-of-flight (TOF) spectra in order to check the characteristics of the pulsed neutron source. We also measured a neutron total cross sections of W and Cu. The pulsed neutron facility can be utilized in the education facility for nuclear data production and the test facility for the R and D purpose of the nuclear data production facility. 29 refs., 57 figs., 22 tabs. (Author)

  5. Seismic design considerations of nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    2001-10-01

    An Advisory Group Meeting (AGM) on Seismic Technologies of Nuclear Fuel Cycle Facilities was convened in Vienna from 12 to 14 November 1997. The main objective of the meeting was the investigation of the present status of seismic technologies in nuclear fuel cycle facilities in Member States as a starting point for understanding of the most important directions and trends of national initiatives, including research and development, in the area of seismic safety. The AGM gave priority to the establishment of a consistent programme for seismic assessment of nuclear fuel cycle facilities worldwide. A consultants meeting subsequently met in Vienna from 16 to 19 March 1999. At this meeting the necessity of a dedicated programme was further supported and a technical background to the initiative was provided. This publication provides recommendations both for the seismic design of new plants and for re-evaluation projects of nuclear fuel cycle facilities. After a short introduction of the general IAEA approach, some key contributions from Member State participants are presented. Each of them was indexed separately

  6. Environmental licensing of nuclear facilities: compatibility of technical competencies

    International Nuclear Information System (INIS)

    Shu, J.; Paiva, R.L.C. de; Mezrahi, A.; Cardoso, E.M.; Aquino, W.P.; Deppe, A.L.; Menezes, R.M.; Prado, V.; Franco, N.M.F.L.; Nouailhetas, Y.; Xavier, A.M.

    1996-01-01

    The Brazilian Nuclear Energy Commission (CNEN) has the technical competency for diagnosing environmental radiological impacts, as well as evaluating the safety and requiring adequate control of the facilities which, due to their activities, represent a potential risk of radiological contamination for the environment. The institution is responsible for emission of radioprotection guidelines, controls and surveys in nuclear safety according to the country's regulations and international recommendations. The methodology to assure the limitation of radiation exposure is consequence from shared control over the nuclear activities, in special the nuclear facilities. According to the Federal Constitution of 1988, the nuclear activities must be under exclusive control of the Union in special related to the nuclear policies, economical, laboral and nuclear safety aspects, while the health and environmental controls of these activities are shared by the Federation, Union, States, Federal District and Counties. The controls related to specific aspects have to be harmonized in such a way to be optimized and effective. In this paper the results of compatibilization of nuclear legislation and environmental legislation are presented aiming to optimize the licensing of nuclear facilities. (author)

  7. Image processing technology for nuclear facilities

    International Nuclear Information System (INIS)

    Lee, Jong Min; Lee, Yong Beom; Kim, Woong Ki; Park, Soon Young

    1993-05-01

    Digital image processing technique is being actively studied since microprocessors and semiconductor memory devices have been developed in 1960's. Now image processing board for personal computer as well as image processing system for workstation is developed and widely applied to medical science, military, remote inspection, and nuclear industry. Image processing technology which provides computer system with vision ability not only recognizes nonobvious information but processes large information and therefore this technique is applied to various fields like remote measurement, object recognition and decision in adverse environment, and analysis of X-ray penetration image in nuclear facilities. In this report, various applications of image processing to nuclear facilities are examined, and image processing techniques are also analysed with the view of proposing the ideas for future applications. (Author)

  8. Nuclear criticality safety program at the Fuel Cycle Facility

    International Nuclear Information System (INIS)

    Lell, R.M.; Fujita, E.K.; Tracy, D.B.; Klann, R.T.; Imel, G.R.; Benedict, R.W.; Rigg, R.H.

    1994-01-01

    The Fuel Cycle Facility (FCF) is designed to demonstrate the feasibility of a novel commercial-scale remote pyrometallurgical process for metallic fuels from liquid metal-cooled reactors and to show closure of the Integral Fast Reactor (IFR) fuel cycle. Requirements for nuclear criticality safety impose the most restrictive of the various constraints on the operation of FCF. The upper limits on batch sizes and other important process parameters are determined principally by criticality safety considerations. To maintain an efficient operation within appropriate safety limits, it is necessary to formulate a nuclear criticality safety program that integrates equipment design, process development, process modeling, conduct of operations, a measurement program, adequate material control procedures, and nuclear criticality analysis. The nuclear criticality safety program for FCF reflects this integration, ensuring that the facility can be operated efficiently without compromising safety. The experience gained from the conduct of this program in the Fuel cycle Facility will be used to design and safely operate IFR facilities on a commercial scale. The key features of the nuclear criticality safety program are described. The relationship of these features to normal facility operation is also described

  9. Regulatory system for control of nuclear facilities in Bangladesh

    International Nuclear Information System (INIS)

    Mollah, A.S.

    2005-01-01

    All human activities have associated risks. Nuclear programme is no exception. The Bangladesh Atomic Energy Commission (BAEC), constituted in February 1973 through the promulgation of the Presidential order 15 of 1973. Functions of BAEC include research and development in peaceful application of atomic energy, generation of electricity and promotion of international relations congenial to implementation of its programmes and projects. In 1993 the Government of Bangladesh promulgated the law on Nuclear Safety and Radiation Control. Considering the human resources, expertise and facilities needed for implementation of the provisions of the NSRC law, BAEC was entrusted with the responsibility to enforce it. The responsibilities of the BAEC cover nuclear and radiological safety within the installations of BAEC and radiological safety in the manifold applications of radioisotopes and radiation sources within the country. An adequate and competent infrastructure has been built to cater to the diverse nuclear and radiation protection requirements of all nuclear facilities in Bangladesh, arising at different stages from site selection to day-to-day operation. In addition, periodic inspections of the nuclear facilities are carried out. The licensing and regulatory inspection systems for controlling of nuclear installations and radiation sources are established. The paper describes the legal provisions, responsibilities and organization of BAEC with special emphasis on nuclear safety and radiation protection of nuclear facilities in Bangladesh. (author)

  10. Proceedings of the 9. National Seminar on Technology and Safety of Nuclear Power Plants and Nuclear Facilities

    International Nuclear Information System (INIS)

    Antariksawan, Anhar R.; Soetrisnanto, Arnold Y; Aziz, Ferhat; Untoro, Pudji; Su'ud, Zaki; Zarkasi, Amin Santoso; Lasman, As Natio

    2003-08-01

    The ninth proceedings of seminar safety and technology of nuclear power plant and nuclear facilities held by National Nuclear Energy Agency and PLN-JTK. The aims of seminar is to exchange and disseminate information about Safety and Nuclear Power Plant Technology and Nuclear Facilities consist of Technology High Temperature Reactor and Application for National Development Sustainable and High Technology. This seminar cover all aspects Technology, Power Reactor, Research Reactor High Temperature Reactor and Nuclear Facilities. There are 20 articles have separated index

  11. Nuclear safety and radiation protection report of the Chinon nuclear facilities - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Chinon nuclear power plant (Indre-et-Loire, 37 (FR)): 4 PWR reactors in operation (Chinon B, INB 107 and 132), 3 partially dismantled graphite-gas reactors (Chinon A, INB 133, 153 and 161), a workshop for irradiated materials (AMI, INB 94), and an inter-regional fuel storage facility (MIR, INB 99). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  12. Nuclear safety and radiation protection report of the Chinon nuclear facilities - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Chinon nuclear power plant (Indre-et-Loire, 37 (FR)): 4 PWR reactors in operation (Chinon B, INB 107 and 132), 3 partially dismantled graphite-gas reactors (Chinon A, INB 133, 153 and 161), a workshop for irradiated materials (AMI, INB 94), and an inter-regional fuel storage facility (MIR, INB 99). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  13. performance-based approach to design and evaluation of nuclear security systems for Brazilian nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Tavares, Renato L. A.; Filho, Josélio S. M., E-mail: renato.tavares@cnen.gov.br, E-mail: joselio@cnen.gov.br [Comissão Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil). Diretoria de Radioproteção e Segurança Nuclear. Divisão de Normas e Segurança Física; Fontes, Gladson S.; Fiel, J.C.B., E-mail: gsfontes@hotmail.com, E-mail: fiel@ime.eb.br [Instituto Militar de Engenharia (SE-7/IME), Rio de Janeiro, RJ (Brazil). Seção de Engenharia Nuclear

    2017-07-01

    This study presents an application of a performance-based approach to definition of requirements, design and evaluation of physical protection systems for nuclear facilities. Such approach considers a probabilistic analysis of the threat, equipment, systems and response forces used to prevent, dissuade and detain malicious acts against the integrity of facilities and the nuclear materials inside them. Nowadays, in the context of Brazilian nuclear facilities licensing, a mostly prescriptive approach is adopted, which despite having advantages such as simplified inspections and homogeneous regulatory requisites amid different fuel cycle facility types, does not consider evolution, dynamism and capacities of external or internal threats to facilities and to Brazilian Nuclear Program itself, neither provides metrics to evaluate system performance facing such threats. In order to preserve actual plans and systems confidentiality, a facility hypothetical model is created, including a research reactor and a waste storage facility. It is expected that the methodology and results obtained in this study serve in the future as a basis to Brazilian nuclear operators, in elaboration process of their Physical Protection Plans, which must comply with future regulation CNEN-NN 2.01, a revision of CNEN-NE 2.01, once that regulation will include performance requisites. (author)

  14. performance-based approach to design and evaluation of nuclear security systems for Brazilian nuclear facilities

    International Nuclear Information System (INIS)

    Tavares, Renato L. A.; Filho, Josélio S. M.; Fontes, Gladson S.; Fiel, J.C.B.

    2017-01-01

    This study presents an application of a performance-based approach to definition of requirements, design and evaluation of physical protection systems for nuclear facilities. Such approach considers a probabilistic analysis of the threat, equipment, systems and response forces used to prevent, dissuade and detain malicious acts against the integrity of facilities and the nuclear materials inside them. Nowadays, in the context of Brazilian nuclear facilities licensing, a mostly prescriptive approach is adopted, which despite having advantages such as simplified inspections and homogeneous regulatory requisites amid different fuel cycle facility types, does not consider evolution, dynamism and capacities of external or internal threats to facilities and to Brazilian Nuclear Program itself, neither provides metrics to evaluate system performance facing such threats. In order to preserve actual plans and systems confidentiality, a facility hypothetical model is created, including a research reactor and a waste storage facility. It is expected that the methodology and results obtained in this study serve in the future as a basis to Brazilian nuclear operators, in elaboration process of their Physical Protection Plans, which must comply with future regulation CNEN-NN 2.01, a revision of CNEN-NE 2.01, once that regulation will include performance requisites. (author)

  15. Analysis of general specifications for nuclear facilities environmental monitoring vehicles

    International Nuclear Information System (INIS)

    Xu Xiaowei

    2014-01-01

    At present, with the nuclear energy more increasingly extensive application, the continuous stable radiation monitoring has become the focus of the public attention. The main purpose of the environmental monitoring vehicle for the continuous monitoring of the environmental radiation dose rate and the radionuclides concentration in the medium around nuclear facilities is that the environmental radiation level and the radioactive nuclides activity in the environment medium are measured. The radioactive pollution levels, the scope contaminated and the trends of the pollution accumulation are found out. The change trends for the pollution are observed and the monitoring results are explained. The domestic demand of the environmental monitoring for the nuclear facilities is shown in this report. The changes and demands of the routine environmental monitoring and the nuclear emergency monitoring are researched. The revision opinions for EJ/T 981-1995 General specifications for nuclear facilities environmental monitoring vehicles are put forward. The purpose is to regulate domestic environmental monitoring vehicle technical criterion. The criterion makes it better able to adapt and serve the environmental monitoring for nuclear facilities. The technical guarantee is provided for the environmental monitoring of the nuclear facilities. (authors)

  16. Decommissioning of nuclear facilities: Decontamination, disassembly and waste management

    International Nuclear Information System (INIS)

    1983-01-01

    The term 'decommissioning', as used within the nuclear industry, means the actions taken at the end of a facility's useful life to retire the facility from service in a manner that provides adequate protection for the health and safety of the decommissioning workers, the general public, and for the environment. These actions can range from merely closing down the facility and a minimal removal of radioactive material coupled with continuing maintenance and surveillance, to a complete removal of residual radioactivity in excess of levels acceptable for unrestricted use of the facility and its site. This latter condition, unrestricted use, is the ultimate goal of all decommissioning actions at retired nuclear facilities. The purpose of this report is to provide an information base on the considerations important to decommissioning, the methods available for decontamination and disassembly of a nuclear facility, the management of the resulting radioactive wastes, and the areas of decommissioning methodology where improvements might be made. Specific sections are devoted to each of these topics, and conclusions are presented concerning the present status of each topic. A summary of past decommissioning experience in Member States is presented in the Appendix. The report, with its discussions of necessary considerations, available operational methods, and waste management practices, together with supporting references, provides an appreciation of the activities that comprise decommissioning of nuclear facilities. It is anticipated that the information presented in the report should prove useful to persons concerned with the development of plans for the decommissioning of retired nuclear facilities

  17. Feedback experience from the decommissioning of Spanish nuclear facilities

    International Nuclear Information System (INIS)

    Santiago, J.L.

    2008-01-01

    The Spain has accumulated significant experience in the field of decommissioning of nuclear and radioactive facilities. Relevant projects include the remediation of uranium mills and mines, the decommissioning of research reactors and nuclear research facilities and the decommissioning of gas-graphite nuclear power plants. The decommissioning of nuclear facilities in Spain is undertaken by ENRESA, who is also responsible for the management of radioactive wastes. The two most notable projects are the decommissioning of the Vandellos I nuclear power plant and the decommissioning of the CIEMAT nuclear research centre. The Vandellos I power plant was decommissioned in about five years to what is known as level 2. During this period, the reactor vessel was confined, most plant systems and components were dismantled, the facility was prepared for a period of latency and a large part of the site was restored for subsequent release. In 2005 the facility entered into the phase of dormancy, with minimum operating requirements. Only surveillance and maintenance activities are performed, among which special mention should be made to the five-year check of the leak tightness of the reactor vessel. After the dormancy period (25 - 30 years), level 3 of decommissioning will be initiated including the total dismantling of the remaining parts of the plant and the release of the whole site for subsequent uses. The decommissioning of the CIEMAT Research Centre includes the dismantling of obsolete facilities such as the research reactor JEN-1, a pilot reprocessing plant, a fuel fabrication facility, a conditioning plant for liquid and a liquid waste storage facility which were shutdown in the early eighties. Dismantling works have started in 2006 and will be completed by 2009. On the basis of the experience gained in the above mentioned sites, this paper describes the approaches adopted by ENRESA for large decommissioning projects. (author)

  18. Report on operation of nuclear facilities in Slovenia in 1991

    International Nuclear Information System (INIS)

    1992-11-01

    Slovenian Nuclear Safety Administration (SNSA) is responsible for: nuclear safety, transport of nuclear and radioactive materials, safeguarding nuclear materials, and conducting regulatory process related to liability for nuclear damage, qualification and training of operators at nuclear facilities, quality assurance and inspection of nuclear facilities. The major nuclear facility supervised by SNSA is the Nuclear Power Plant in Krsko with a pressurized water reactor of 632 MW electric power. Beside the nuclear power plant, TRIGA Mark 11 Research Reactor of 250 kW thermal power operates within the Reactor Center of Jozef Stefan Institute. There is an interim storage of low and medium radioactive waste at the Reactor Center. Also the Uranium mine Zirovski Vrh was supervised by SNSA. All the nuclear power facilities in Republic of Slovenia were operating safely in 1991. There were no significant events that could be evaluated as a safety problem or a breach of technical specifications. A great part of activities of SNSA was focused on the next visit of the IAEA OSART team (Operational Safety Assessment Review Team) in Krsko Nuclear Power Plant and on the visit of the INSARR mission (Integrated Safety Assessment of Research Reactors) for the TRIGA Mark 11 Research Reactor. (author)

  19. Local decision-making facing issues of national interest experiences from the swedish siting process for a spent nuclear fuel repository

    International Nuclear Information System (INIS)

    Soderberg, O.

    1998-01-01

    It is common knowledge that there are difficulties in convincing the general public and their democratically elected representatives that final disposal of spent nuclear fuel can be made in safe way. Special problems for the decision-makers are created by the demands put on today's generations to make a responsible risk assessment in a area with genuine uncertainties and characterised by any expressions of lack of confidence in social institutions. The current Swedish process for siting a deep repository for spent nuclear fuel has evolved during a period of many years, through inputs by the industry, Government, regulatory authorities and concerned municipalities. It is clear that the nuclear industry, represented by the Swedish Nuclear Fuel and Waste Management CO (SKB), has the full responsibility to find a solution to the waste management problem and to implement the solution - and to for this under the supervision of Government and regulating authorities. But, given the strong tradition of local self-government, the concerned municipalities, the local population in this process. this is simply the following fact: For people who have engaged themselves in local politics - and are prepared to take their responsibility for the well-being and development of their local community - the issue of a possible nuclear repository in the neighbourhood is difficult to handle. A relevant question is: Why should the nation as a whole expect these locally elected representatives to feel a responsibility for an issue of national importance? (author)

  20. Nuclear safety and radiation protection report of Chinon nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the facilities (INBs no. 94 (irradiated materials workshop), 99 (fuel storage facility), 107 and 132 (NPPs in operation), 133, 153 and 161 (NPPs under deconstruction)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  1. Cost calculations for decommissioning and dismantling of nuclear research facilities

    International Nuclear Information System (INIS)

    Andersson, I.; Backe, S.; Cato, A.; Lindskog, S.; Efraimsson, H.; Iversen, Klaus; Salmenhaara, S.; Sjoeblom, R.

    2008-07-01

    Today, it is recommended that planning of decommission should form an integral part of the activities over the life cycle of a nuclear facility (planning, building and operation), but it was only in the nineteen seventies that the waste issue really surface. Actually, the IAEA guidelines on decommissioning have been issued as recently as over the last ten years, and international advice on finance of decommissioning is even younger. No general international guideline on cost calculations exists at present. This implies that cost calculations cannot be performed with any accuracy or credibility without a relatively detailed consideration of the radiological prerequisites. Consequently, any cost estimates based mainly on the particulars of the building structures and installations are likely to be gross underestimations. The present study has come about on initiative by the Swedish Nuclear Power Inspectorate (SKI) and is based on a common need in Denmark, Finland, Norway and Sweden. The content of the report may be briefly summarised as follows. The background covers design and operation prerequisites as well as an overview of the various nuclear research facilities in the four participating countries: Denmark, Finland, Norway and Sweden. The purpose of the work has been to identify, compile and exchange information on facilities and on methodologies for cost calculation with the aim of achieving an 80 % level of confidence. The scope has been as follows: 1) to establish a Nordic network 2) to compile dedicated guidance documents on radiological surveying, technical planning and financial risk identification and assessment 3) to compile and describe techniques for precise cost calculations at early stages 4) to compile plant and other relevant data A separate section is devoted in the report to good practice for the specific purpose of early but precise cost calculations for research facilities, and a separate section is devoted to techniques for assessment of cost

  2. Cost calculations for decommissioning and dismantling of nuclear research facilities

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, I. (Studsvik Nuclear AB (Sweden)); Backe, S. (Institute for Energy Technology (Norway)); Cato, A.; Lindskog, S. (Swedish Nuclear Power Inspectorate (Sweden)); Efraimsson, H. (Swedish Radiation Protection Authority (Sweden)); Iversen, Klaus (Danish Decommissioning (Denmark)); Salmenhaara, S. (VTT Technical Research Centre of Finland (Finland)); Sjoeblom, R. (Tekedo AB, (Sweden))

    2008-07-15

    Today, it is recommended that planning of decommission should form an integral part of the activities over the life cycle of a nuclear facility (planning, building and operation), but it was only in the nineteen seventies that the waste issue really surface. Actually, the IAEA guidelines on decommissioning have been issued as recently as over the last ten years, and international advice on finance of decommissioning is even younger. No general international guideline on cost calculations exists at present. This implies that cost calculations cannot be performed with any accuracy or credibility without a relatively detailed consideration of the radiological prerequisites. Consequently, any cost estimates based mainly on the particulars of the building structures and installations are likely to be gross underestimations. The present study has come about on initiative by the Swedish Nuclear Power Inspectorate (SKI) and is based on a common need in Denmark, Finland, Norway and Sweden. The content of the report may be briefly summarised as follows. The background covers design and operation prerequisites as well as an overview of the various nuclear research facilities in the four participating countries: Denmark, Finland, Norway and Sweden. The purpose of the work has been to identify, compile and exchange information on facilities and on methodologies for cost calculation with the aim of achieving an 80 % level of confidence. The scope has been as follows: 1) to establish a Nordic network 2) to compile dedicated guidance documents on radiological surveying, technical planning and financial risk identification and assessment 3) to compile and describe techniques for precise cost calculations at early stages 4) to compile plant and other relevant data A separate section is devoted in the report to good practice for the specific purpose of early but precise cost calculations for research facilities, and a separate section is devoted to techniques for assessment of cost

  3. Upgrade and Development of Nuclear Data Production Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-04-15

    It is necessary to improve the Pohang Neutron Facility (PNF) in order to be used as a nuclear data production facility for users in both domestic and abroad. We improved following items: (1) upgrade the electron linac, (2) collimators inside the TOF beam pipe, (3) the development and installation of an automatic sample changer, (4) the extension of the TOF beam line, and (5) the data acquisition system. We would like to establish a utilization system for users to measure the nuclear data at the PNF. To do this, we made manuals for the accelerator operation and the data acquisition system. We also made an application form to apply for users to measure the nuclear data in both domestic and abroad. The main object of the Pohang Neutron Facility is to measure the nuclear data in the neutron energy region from thermal neutron to few hundreds of eV. In addition to neutron beams produced at the PNF, photon and electron beams are produced in this facility. We thus utilize this facility for other fields, such as test facility for detectors, activation experiments, polarized neutron beam source, and so on. In addition to these, we could use this facility for training students

  4. Concerning control of radiation exposure to workers in nuclear reactor facilities for testing and nuclear reactor facilities in research and development phase (fiscal 1987)

    International Nuclear Information System (INIS)

    1988-01-01

    A nuclear reactor operator is required by the Nuclear Reactor Control Law to ensure that the radiation dose to workers engaged in the operations of his nuclear reactor is controlled below the permissible exposure doses that are specified in notifications issued based on the Law. The present note briefly summarizes the data given in the Reports on Radiation Control, which have been submitted according to the Nuclear Reactor Control Law by the operators of nuclear reactor facilities for testing and those in the research and development phase, and the Reports on Control of Radiation Exposure to Workers submitted in accordance with the applicable administrative notices. According to these reports, the measured exposure to workers in 1987 were below the above-mentioned permissible exposure doses in all these nuclear facilities. The 1986 and 1987 measurements of radiation exposure dose to workers in nuclear reactor facilities for testing are tabulated. The measurements cover dose distribution among the facilities' personnel and workers of contractors. They also cover the total exposure dose for all workers in each of four plants operated under the Japan Atomic Energy Research Institute and the Power Reactor and Nuclear Fuel Development Corporation. (N.K.)

  5. Nuclear Fuel Cycle Information System. A directory of nuclear fuel cycle facilities. 2009 ed

    International Nuclear Information System (INIS)

    2009-04-01

    The Nuclear Fuel Cycle Information System (NFCIS) is an international directory of civilian nuclear fuel cycle facilities, published online as part of the Integrated Nuclear Fuel Cycle Information System (iNFCIS: http://www-nfcis.iaea.org/). This is the fourth hardcopy publication in almost 30 years and it represents a snapshot of the NFCIS database as of the end of 2008. Together with the attached CD-ROM, it provides information on 650 civilian nuclear fuel cycle facilities in 53 countries, thus helping to improve the transparency of global nuclear fuel cycle activities

  6. Emergency preparedness and response plan for nuclear facilities in Indonesia

    International Nuclear Information System (INIS)

    Nur Rahmah Hidayati; Pande Made Udiyani

    2009-01-01

    All nuclear facilities in Indonesia are owned and operated by the National Nuclear Energy Agency (BATAN). The programs and activities of emergency planning and preparedness in Indonesia are based on the existing nuclear facilities, i.e. research reactors, research reactor fuel fabrication plant, radioactive waste treatment installation and radioisotopes production installation. The assessment is conducted to learn of status of emergency preparedness and response plan for nuclear facilities in Indonesia and to support the preparation of future Nuclear Power Plant. The assessment is conducted by comparing the emergency preparedness and response system in Indonesia to the system in other countries such as Japan and Republic of Korea, since the countries have many Nuclear Power Plants and other nuclear facilities. As a result, emergency preparedness response plan for existing nuclear facility in Indonesia has been implemented in many activities such as environmental monitoring program, facility monitoring equipment, and the continuous exercise of emergency preparedness and response. However, the implementation need law enforcement for imposing the responsibility of the coordinators in National Emergency Preparedness Plan. It also needs some additional technical support systems which refer to the system in Japan or Republic of Korea. The systems must be completed with some real time monitors which will support the emergency preparedness and response organization. The system should be built in NPP site before the first NPP will be operated. The system should be connected to an Off Site Emergency Center under coordination of BAPETEN as the regulatory body which has responsibility to control of nuclear energy in Indonesia. (Author)

  7. Regulations and financing for decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    Kumakura, Osamu

    1981-01-01

    The purpose of this report is to survey the French legislation concerning the decommissioning of nuclear facilities and the method of financing for it. There is no clause in French regulations, which states any specific criterion or licensing procedure for the proper decommissioning. The legal problems in this domain are treated within the general regulation system on atomic energy. The decommissioning of nuclear facilities is carried out in accordance with the licensing procedure for constructing nuclear facilities or the permission procedure for operating them, according to the ''Decree on nuclear installations, 1963''. The works for the final shut-down and decommissioning are regarded as the modification to the safety report or the general operation instructions, and new permit is required. In the case that the radioactivity of substances after decommissioning is above the criteria of the Decree, 1963, the new license is required. In the case of below the criteria, the facilities are governed by the ''Act on installations classified for environmental protection, 1976''. The ''Decree on general radiation protection, 1966'', the ''Decree on radiation protection of workers in nuclear installations, 1975'', the ''Ministerial order on transport of dangerous materials, 1945'', and two ministerial orders on radioactive effluent discharge, 1974, are applied to the decommissioning works. (Kako, I.)

  8. Enhancement of safety at nuclear facilities in Pakistan

    International Nuclear Information System (INIS)

    Ahmad, S.A.; Hayat, T.; Azhar, W.

    2006-01-01

    Pakistan is benefiting from nuclear technology mostly in health and energy sectors as well as agriculture and industry and has an impeccable safety record. At the national level uses of nuclear technology started in 1955 resulting in the operation of Karachi Radioisotope Center, Karachi, in December 1960. Pakistan Nuclear Safety Committee (PNSC) was formulated in 1964 with subsequent promulgation of Pakistan Atomic Energy Commission (PAEC) Ordinance in 1965 to cope with the anticipated introduction of a research reactor, namely PARR-I, and a nuclear power plant, namely KANUPP. Since then Pakistan's nuclear program has expanded to include numerous nuclear facilities of varied nature. This program has definite economic and social impacts by producing electricity, treating and diagnosing cancer patients, and introducing better crop varieties. Appropriate radiation protection includes a number of measures including database of sealed radiation sources at PAEC operated nuclear facilities, see Table l, updated during periodic physical verification of these sources, strict adherence to the BSS-115, IAEA recommended enforcement of zoning at research reactors and NPPs, etc. Pakistan is party to several international conventions and treaties, such as Convention of Nuclear Safety and Early Notification, to improve and enhance safety at its nuclear facilities. In addition Pakistan generally and PAEC particularly believes in a blend of prudent regulations and good/best practices. This is described in this paper. (Author)

  9. Regulatory control of nuclear facility valves and their actuators

    International Nuclear Information System (INIS)

    1993-01-01

    The methods and procedures by which the Finnish Centre for Radiation and Nuclear Safety (STUK) regulates valves and their actuators in nuclear power plants and in other nuclear facilities are specified in the guide. The scope of regulation depends on the Safety Class of the valve and the actuator in question. The Safety Classification principles for the systems, structures and components of the nuclear power plants are described in the guide YVL 2.1 and the regulatory control of the nuclear facility safety valves is described in the guide YVL 5.4

  10. Nuclear safety and radiation protection report of the Tricastin nuclear facility (BCOT) - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the Tricastin operational hot base facility (INB no. 157, Bollene, Vaucluse (FR)), a nuclear workshop for storage and maintenance and qualification operations on some EdF equipments. Then, the nuclear safety and radiation protection measures taken regarding the facility are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2011, if some, are reported as well as the effluents discharge in the environment. Finally, the management of the radioactive materials and wastes generated by the facility is presented and sorted by type of waste, quantities and type of conditioning. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  11. Pt. 1: Decommissioning of nuclear facilities. Pt. 2: Methods of decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    Steinkilberg, W.

    1982-01-01

    In the present paper the different steps of dismantlement of nuclear facilities are dealt with. First the planning principles for decomminconing are discussed and then the planning of the reactorblock dismantlement in the FR2 research reactor is described. (RW)

  12. The swedish challenge

    International Nuclear Information System (INIS)

    Tregouet, R.

    2006-01-01

    Sweden decided to be the first country without petroleum for 2020. The author presents the major energy policy axis implemented by the swedish government to delete the part of the produced energy by the petroleum: development of the renewable energies, research programs of the transportation sector concerning the alternative fuels for the motors, energy efficiency and development of the biomass to replace the nuclear energy. (A.L.B.)

  13. Radiation protection at nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    Endo, K.; Momose, T.; Furuta, S.

    2011-01-01

    Radiation protection methodologies concerning individual monitoring, workplace monitoring and environmental monitoring in nuclear fuel facilities have been developed and applied to facilities in the Nuclear Fuel Cycle Engineering Laboratories (NCL) of Japan Atomic Energy Agency (JAEA) for over 40 y. External exposure to photon, beta ray and neutron and internal exposure to alpha emitter are important issues for radiation protection at these facilities. Monitoring of airborne and surface contamination by alpha and beta/photon emitters at workplace is also essential to avoid internal exposure. A critical accident alarm system developed by JAEA has been proved through application at the facilities for a long time. A centralised area monitoring system is effective for emergency situations. Air and liquid effluents from facilities are monitored by continuous monitors or sampling methods to comply with regulations. Effluent monitoring has been carried out for 40 y to assess the radiological impacts on the public and the environment due to plant operation. (authors)

  14. Seismic safety assessment of nuclear facilities other than NPPs

    International Nuclear Information System (INIS)

    Coman, O.; Dragomirescu, A.; Kope, F.; Zemtev, N.

    2003-01-01

    Many research nuclear facilities are much simpler as compared with a Nuclear Power Plant (NPP) and the accident scenarios corresponding to an external initiating events and the relevant shutdown paths are much easier to be identified. Therefore, simpler methods than an EE-PSA can be often involved in the evaluation of the overall risk associated to such nuclear facilities in respect to External Event Hazards. (author)

  15. Environmental monitoring of nuclear facilities

    International Nuclear Information System (INIS)

    Winter, M.

    1983-01-01

    The objectives of one environmental monitoring program for nuclear facilities, are presented. The program in Federal Republic of Germany, its goals, its basic conditions, its regulations, and its dose limits are emphasized. (E.G.) [pt

  16. Robotics for nuclear facilities

    International Nuclear Information System (INIS)

    Abe, Akira; Nakayama, Ryoichi; Kubo, Katsumi

    1988-01-01

    It is highly desirable that automatic or remotely controlled machines perform inspection and maintenance tasks in nuclear facilities. Toshiba has been working to develop multi-functional robots, with one typical example being a master-slave manipulator for use in reprocessing facilities. At the same time, the company is also working on the development of multi-purpose intelligent robots. One such device, an automatic inspection robot, to be deployed along a monorail, performs inspection by means of image processing technology, while and advanced intelligent maintenance robot is equipped with a special wheel-locomotion mechanism and manipulator and is designed to perform maintenance tasks. (author)

  17. Disaster countermeasures around nuclear facilities

    International Nuclear Information System (INIS)

    Tatsuta, Yoshinori

    1982-01-01

    The following matters are described. Safety regulation administration for nuclear power plants; nuclear disaster countermeasures in the United States; disaster countermeasures around nuclear facilities (a report of the ad hoc committee in Nuclear Safety Commission), including general requirements, the scope of areas to take the countermeasures, emergency environmental monitoring, guidelines for taking the countermeasures, and emergency medical treatment. In the nuclear safety administration, the system of stationing safety expert personnel on the sites of nuclear power generation and qualifying the persons in charge of reactor operation in the control room is also introduced. As for the disaster countermeasures, such as the detection of an abnormal state, the notification of the abnormality to various organs concerned, the starting of emergency environmental monitoring, the establishment of the countermeasure headquarters, and emergency measures for the local people. (Mori, K.)

  18. CONFERENCE: Nuclear visions

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    Last summer, four hundred visitors of about 30 different nationalities descended on the ancient town of Visby on the Swedish island of Gotland for the Second International Conference on Nucleus-Nucleus Collisions. For the conference itself, sessions were organized not according to conventional topics like low, intermediate and high energy reactions, but along phenomena-related lines that brought listeners together instead of splitting them up. Examples were 'phase transitions', 'new facilities' and 'breaking nuclear matter into pieces'

  19. Sweden's third national report under the Joint Convention on the safety of spent fuel management and on the safety of radioactive waste management. Swedish implementation of the obligations of the Joint Convention

    International Nuclear Information System (INIS)

    2008-01-01

    Article 32 of the Joint Convention calls for a self-assessment by each Contracting Party regarding compliance with the obligations of the Convention. Sweden's self-assessment has demonstrated compliance with all the obligations of the Convention, as shown in detail in sections B to J of this report. The Swedish existing nuclear power programme is since a few years under strong development. Large amounts are being invested in the 10 remaining operating reactors to prepare for long term operation and major programmes are going on to upgrade and uprate the plants. The former regulatory authorities, the Swedish Nuclear Power Inspectorate (SKI), and the Swedish Radiation Protection Authority (SSI), was merged into a new regulatory body, the Swedish Radiation Safety Authority, July 01, 2008. The new authority has been tasked with the responsibility and tasks from SKI and SSI. These developments create new challenges for the safety work of the licensees as well as for the regulatory authority. Even though comprehensive and very active programmes for the management and disposal of spent fuel and radioactive waste have been established, many challenges remain. Over the next 5-15 years several new facilities will be sited, constructed and taken into operation, e.g. an encapsulation plant and a repository for spent fuel. These activities will require substantial efforts for both the nuclear industry and the regulatory bodies. The generally positive impression reported to earlier review meetings under the Joint Convention still stands. Therefore, Sweden would like to point out the following as strong features in its national nuclear practice: The responsibility for safety is clearly defined in the Swedish legal framework. In order not to dilute the responsibility of the licence holders, the Swedish regulations are designed to define requirements to be achieved, not the detailed means to achieve them. Within the framework given by the regulations, the licence holders have to

  20. Summarisation of construction and commissioning experience for nuclear power integrated test facility

    International Nuclear Information System (INIS)

    Xiao Zejun; Jia Dounan; Jiang Xulun; Chen Bingde

    2003-01-01

    Since the foundation of Nuclear Power Institute of China, it has successively designed various engineering experimental facilities, and constructed nuclear power experimental research base, and accumulated rich construction experiences of nuclear power integrated test facility. The author presents experience on design, construction and commissioning of nuclear power integrated test facility

  1. Nuclear safety and radiation protection report of the Flamanville nuclear facilities - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Flamanville nuclear power plant (Manche (FR)): 2 PWR reactors in operation (INB 108 and 109), and 1 PWR under construction (Flamanville 3, INB 167). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, water consumption and waste management at Flamanville 3 construction site) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  2. Nuclear safety and radiation protection report of the Flamanville nuclear facilities - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Flamanville nuclear power plant (Manche (FR)): 2 PWR reactors in operation (INB 108 and 109), and 1 PWR under construction (Flamanville 3, INB 167). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, water consumption and waste management at Flamanville 3 construction site) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  3. Nuclear safety and radiation protection report of the Chooz nuclear facilities - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Chooz nuclear power plant (Ardennes (FR)): 2 PWR reactors in operation (Chooz B, INB 139 and 144) and one partially dismantled PWR reactor (Chooz A, INB 163). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  4. AECL's strategy for decommissioning Canadian nuclear facilities

    International Nuclear Information System (INIS)

    Joubert, W.M.; Pare, F.E.; Pratapagiri, G.

    1992-01-01

    The Canadian policy on decommissioning of nuclear facilities as defined in the Atomic Energy Control Act and Regulations is administered by the Atomic Energy Control Board (AECB), a Federal Government agency. It requires that these facilities be decommissioned according to approved plans which are to be developed by the owner of the nuclear facility during its early stages of design and to be refined during its operating life. In this regulatory environment, Atomic Energy of Canada (AECL) has developed a decommissioning strategy for power stations which consists of three distinctive phases. After presenting AECL's decommissioning philosophy, its foundations are explained and it is described how it has and soon will be applied to various facilities. A brief summary is provided of the experience gained up to date on the implementation of this strategy. (author) 3 figs.; 1 tab

  5. Strategy selection for the decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    2004-01-01

    As modern nuclear power programmes mature and large, commercial nuclear power plants and fuel cycle facilities approach the end of their useful life by reason of age, economics or change of policy on the use of nuclear power, new challenges associated with decommissioning and dismantling come to the fore. Politicians and the public may expect there to be a 'right answer' to the choice of strategy for a particular type of facility, or even all facilities. Both this seminar and wider experience show that this is not the case. Local factors and national political positions have a significant input and often result in widely differing strategy approaches to broadly similar decommissioning projects. All facility owners represented at the seminar were able to demonstrate a rational process for strategy selection and compelling arguments for the choices made. In addition to the papers that were presented, these proceedings include a summary of the discussions that took place. (author)

  6. Test facilities for evaluating nuclear thermal propulsion systems

    International Nuclear Information System (INIS)

    Beck, D.F.; Allen, G.C.; Shipers, L.R.; Dobranich, D.; Ottinger, C.A.; Harmon, C.D.; Fan, W.C.; Todosow, M.

    1992-01-01

    Interagency panels evaluating nuclear thermal propulsion (NTP) development options have consistently recognized the need for constructing a major new ground test facility to support fuel element and engine testing. This paper summarizes the requirements, configuration, and baseline performance of some of the major subsystems designed to support a proposed ground test complex for evaluating nuclear thermal propulsion fuel elements and engines being developed for the Space Nuclear Thermal Propulsion (SNTP) program. Some preliminary results of evaluating this facility for use in testing other NTP concepts are also summarized

  7. Nuclear energy: Environmental issues at DOE's nuclear defense facilities

    International Nuclear Information System (INIS)

    1986-01-01

    GAO's review of nine Department of Energy defense facilities identified a number of significant environmental issues: (1) eight facilities have groundwater contaminated with radioactive and/or hazardous substances to high levels; (2) six facilities have soil contamination in unexpected areas, including offsite locations; (3) four facilities are not in full compliance with the Clean Water Act; and (4) all nine facilities are significantly changing their waste disposal practices to obtain a permit under the Resource Conservation and Recovery Act. GAO is recommending that DOE develop and overall groundwater and soil protection strategy that would provide a better perspective on the environmental risks and impacts associated with operating DOE's nuclear defense facilities. GAO also recommends that DOE allow outside independent inspections of the disposal practices used for any waste DOE self-regulates and revise its order governing the management of hazardous and mixed waste

  8. Institutionalizing Safeguards By Design for Nuclear Facilities

    International Nuclear Information System (INIS)

    Morgan, James B.; Kovacic, Donald N.; Whitaker, J. Michael

    2008-01-01

    Safeguards for nuclear facilities can be significantly improved by developing and implementing methodologies for integrating proliferation resistance into the design of new facilities. This paper proposes a method to systematically analyze a facility's processes, systems, equipment, structures and management controls to ensure that all relevant proliferation scenarios that could potentially result in unacceptable consequences have been identified, evaluated and mitigated. This approach could be institutionalized into a country's regulatory structure similar to the way facilities are licensed to operate safely and are monitored through inspections and incident reporting to ensure compliance with domestic and international safeguards. Furthermore, taking credit for existing systems and equipment that have been analyzed and approved to assure a facility's reliable and safe operations will reduce the overall cost of implementing intrinsic and extrinsic proliferation-resistant features. The ultimate goal is to integrate safety, reliability, security and safeguards operations into the design of new facilities to effectively and efficiently prevent diversion, theft and misuse of nuclear material and sensitive technologies at both the facility and state level. To facilitate this approach at the facility level, this paper discusses an integrated proliferation resistance analysis (IPRA) process. If effectively implemented, this integrated approach will also facilitate the application of International Atomic Energy Agency (IAEA) safeguards

  9. Nuclear safety and radiation protection report of the Bugey nuclear facilities - 2013

    International Nuclear Information System (INIS)

    2014-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the facilities (INBs no. 78, 89 (NPPs in operation), 465 (NPP under deconstruction), 102 (fuel storage facility), and 173 (radioactive waste conditioning and storage facility under construction)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2013, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  10. Nuclear safety and radiation protection report of the Bugey nuclear facilities - 2014

    International Nuclear Information System (INIS)

    2015-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the facilities (INBs no. 78, 89 (NPPs in operation), 465 (NPP under deconstruction), 102 (fuel storage facility), and 173 (radioactive waste conditioning and storage facility under construction)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2014, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  11. Beneficial Re-use of Decommissioned Former Nuclear Facilities

    International Nuclear Information System (INIS)

    Boing, L.E.

    1997-01-01

    With the decision to decommission a nuclear facility, it is necessary to evaluate whether to fully demolish a facility or to re-use the facility in some capacity. This evaluation is often primarily driven by both the past mission of the site and the facility and the site's perceived future mission. In the case where the facility to be decommissioned is located within a large research or industrial complex and represents a significant resource to the site's future mission, it may be a perfect candidate to be re-used in some fashion. However, if the site is a rather remote older facility with little chance of being modified to today's standards for its re-use, the chances for its re-use will be substantially reduced. In this presentation, some specific cases of former nuclear facilities being decommissioned and re-used will be reviewed and some factors required to be considered in making this decision will be reviewed

  12. Human factors design guidelines for maintainability of Department of Energy nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Bongarra, J.P. Jr.; VanCott, H.P.; Pain, R.F.; Peterson, L.R.; Wallace, R.I.

    1985-06-18

    Intent of these guidelines is to provide design and design review teams of DOE nuclear facilities with human factors principles to enhance the design and aid in the inspection of DOE nuclear facilities, systems, and equipment. These guidelines are concerned with design features of DOE nuclear facilities which can potentially affect preventive and corrective maintenance of systems within DOE nuclear facilities. Maintenance includes inspecting, checking, troubleshooting, adjusting, replacing, repairing, and servicing activities. Other factors which influence maintainability such as repair and maintenance suport facilities, maintenance information, and various aspects of the environment are also addressed.

  13. Human factors design guidelines for maintainability of Department of Energy nuclear facilities

    International Nuclear Information System (INIS)

    Bongarra, J.P. Jr.; VanCott, H.P.; Pain, R.F.; Peterson, L.R.; Wallace, R.I.

    1985-01-01

    Intent of these guidelines is to provide design and design review teams of DOE nuclear facilities with human factors principles to enhance the design and aid in the inspection of DOE nuclear facilities, systems, and equipment. These guidelines are concerned with design features of DOE nuclear facilities which can potentially affect preventive and corrective maintenance of systems within DOE nuclear facilities. Maintenance includes inspecting, checking, troubleshooting, adjusting, replacing, repairing, and servicing activities. Other factors which influence maintainability such as repair and maintenance suport facilities, maintenance information, and various aspects of the environment are also addressed

  14. Information note about the protection of nuclear facilities against aircraft crashes

    International Nuclear Information System (INIS)

    2001-01-01

    The protection of nuclear facilities against external risks (earthquakes, floods, fires etc..) is an aspect of safety taken into consideration by the French authority of nuclear safety (ASN). Concerning the aircraft crashes, the fundamental safety rules make three categories of aircraft: the small civil aircraft (weight 5.7 t). Nuclear facilities are designed to resist against crashes of aircraft from the first category only, because the probability of the accidental crash of a big aircraft are extremely low. This document comprises an information note about the protection of nuclear facilities against aircraft crashes, a dossier about the safety of nuclear facilities with respect to external risks in general (natural disasters and aircraft crashes), and an article about the protection of nuclear power plants against aircraft crashes (design, safety measures, regulation, surveillance, experience feedback). (J.S.)

  15. Preliminary plan for decommissioning - repository for spent nuclear fuel; Preliminaer plan foer avveckling - slutfoervar foer anvaent kaernbraensle

    Energy Technology Data Exchange (ETDEWEB)

    Hallberg, Bengt; Tiberg, Liselotte (Studsvik Nuclear AB, Nykoeping (Sweden))

    2010-06-15

    The final disposal facility for spent nuclear fuel is part of the KBS-3 system, which also consists of a central facility for interim storage and encapsulation of the spent nuclear fuel and a transport system. The nuclear fuel repository will be a nuclear facility. Regulation SSMFS 2008:1 (Swedish Radiation Safety Authority's regulations on safety of nuclear facilities) requires that the licensee must have a current decommissioning plan throughout the facility lifecycle. Before the facility is constructed, a preliminary decommissioning plan should be reported to the Swedish Radiation Safety Authority. This document is a preliminary decommissioning plan, and submitted as an attachment to SKB's application for a license under the Nuclear Activities Act to construct, own and operate the facility. The final disposal facility for spent nuclear fuel consists of an above ground part and a below ground part and will be built near Forsmark and the final repository for radioactive operational waste, SFR. The parts above and below ground are connected by a ramp and several shafts, e.g. for ventilation. The below ground part consists of a central area, and several landfill sites. The latter form the repository area. The sealed below ground part constitutes the final repository. The decommissioning is taking place after the main operation has ended, that is, when all spent nuclear fuel has been deposited and the deposition tunnels have been backfilled and plugged. The decommissioning involves sealing of the remaining parts of the below ground part and demolition of above ground part. When decommissioning begins, there will be no contamination in the facility. The demolition is therefore performed as for a conventional plant. Demolition waste is sorted and recycled whenever possible or placed in landfill. Hazardous waste is managed in accordance with current regulations. A ground investigation is performed and is the basis for after-treatment of the site. The timetable

  16. Seismic reevaluation of nuclear facilities worldwide: Overview and status

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, R D; Hardy, G S; Ravindra, M K [EQE International, Irvine, CA (United States); Johnson, J J [EQE International, San Francisco, CA (United States); Hoy, A J [EQE International Ltd., Birchwood, Warrington (United Kingdom)

    1995-07-01

    Existing nuclear facilities throughout the world are being subjected to severe scrutiny of their safety in tile event of an earthquake. In the United States, there have been several licensing and safety review issues for which industry and regulatory agencies have cooperated to develop rational and economically feasible criteria for resolving the issues. Currently, all operating nuclear power plants in the United States are conducting an Individual Plant Examination of External Events, including earthquakes beyond tile design basis. About two-thirds of tile operating plants are conducting parallel programs for verifying, tile seismic adequacy of equipment for the design basis earthquake. The U.S. Department of Energy is also beginning to perform detailed evaluations of their facilities, many of which had little or no seismic design. Western European countries also have been reevaluating their older nuclear power plants for seismic events often adapting the criteria developed in the United States. With the change in tile political systems in Eastern Europe, there is a strong emphasis from their Western European neighbors to evaluate and Upgrade tile safely of their operating nuclear power plants. Finally, nuclear facilities in Asia are, also, being evaluated for seismic vulnerabilities. This paper focuses oil tile methodologies that have been developed for reevaluation of existing nuclear power plants and presents examples of the application of these methodologies to nuclear facilities worldwide. (author)

  17. Seismic reevaluation of nuclear facilities worldwide: Overview and status

    International Nuclear Information System (INIS)

    Campbell, R.D.; Hardy, G.S.; Ravindra, M.K.; Johnson, J.J.; Hoy, A.J.

    1995-01-01

    Existing nuclear facilities throughout the world are being subjected to severe scrutiny of their safety in tile event of an earthquake. In the United States, there have been several licensing and safety review issues for which industry and regulatory agencies have cooperated to develop rational and economically feasible criteria for resolving the issues. Currently, all operating nuclear power plants in the United States are conducting an Individual Plant Examination of External Events, including earthquakes beyond tile design basis. About two-thirds of tile operating plants are conducting parallel programs for verifying, tile seismic adequacy of equipment for the design basis earthquake. The U.S. Department of Energy is also beginning to perform detailed evaluations of their facilities, many of which had little or no seismic design. Western European countries also have been reevaluating their older nuclear power plants for seismic events often adapting the criteria developed in the United States. With the change in tile political systems in Eastern Europe, there is a strong emphasis from their Western European neighbors to evaluate and Upgrade tile safely of their operating nuclear power plants. Finally, nuclear facilities in Asia are, also, being evaluated for seismic vulnerabilities. This paper focuses oil tile methodologies that have been developed for reevaluation of existing nuclear power plants and presents examples of the application of these methodologies to nuclear facilities worldwide. (author)

  18. Knowledge transfer in Swedish Nuclear Power Plants in connection with retirements; Kompetensoeverfoering paa svenska kaernkraftverk i samband med pensionsavgaangar

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, Annika; Ohlsson, Kjell; Roos, Anna

    2007-12-13

    This report displays how the Swedish nuclear power plants Forsmark, Oskarshamn and Ringhals work with knowledge management. The report also consists of a literature review of appropriate ways to extract tacit knowledge as well as methods to transfer competence. The report is made up of a smaller number of interviews at the nuclear power plants in combination with a questionnaire distributed to a larger number of people at the plants. The results of the interview study is that only one of the Swedish nuclear power plants have a programme to transfer knowledge from older staff to newer. This is, however, not a programme for everyone. Another plant has a programme for knowledge building, but only for their specialists. At both plants, which lack a programme, the interviewees request more structure in knowledge transfer; even though they feel the current way of transferring knowledge with mentors works well. Besides more structure, interviewees present a wish to have more time for knowledge transfer as well as the opportunity to recruit more than needed. Recruiting more than needed is however not very simple due to multiple causes such as nominal sizing departments and a difficulty of recruiting people to work far from larger cities. The way things are now, many feel too under-staffed and under a lot of time pressure daily to also have time for knowledge transfer besides their normal work.

  19. Gas processing at DOE nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Jacox, J.

    1995-02-01

    The term {open_quotes}Gas Processing{close_quotes} has many possible meanings and understandings. In this paper, and panel, we will be using it to generally mean the treatment of gas by methods other than those common to HVAC and Nuclear Air Treatment. This is only a working guideline not a rigorous definition. Whether a rigorous definition is desirable, or even possible is a question for some other forum. Here we will be discussing the practical aspects of what {open_quotes}Gas Processing{close_quotes} includes and how existing Codes, Standards and industry experience can, and should, apply to DOE and NRC Licensed facilities. A major impediment to use of the best engineering and technology in many nuclear facilities is the administrative mandate that only systems and equipment that meet specified {open_quotes}nuclear{close_quotes} documents are permissible. This paper will highlight some of the limitations created by this approach.

  20. The improvement of the fire protections system for nuclear cycle facilities. Formulation of a fire protection guideline for nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    2012-04-01

    The private side Fire Protection Guideline was investigated with respect to the fire having taken place at the nuclear reactor site followed by the Chuetsu-Oki earthquake in Niigata Prefecture in 2007. To improve the fire protection system especially applicable to MOX fuel fabrication facilities, JNES (Japan Nuclear Energy Safety Organization) investigated private guidelines adopted in Japanese Light Water cooled Reactors, the standardized guidelines used in Nuclear Facilities in other countries including USA, and the standards in the chemical plants. The content of the guideline concerns the prevention of the fire breakout, the prevention of fire extension, the reduction of the fire effects, as well as the facility-characteristic protection countermeasures and the fire effect evaluations. (S. Ohno)

  1. Stakeholder Involvement Throughout the Life Cycle of Nuclear Facilities

    International Nuclear Information System (INIS)

    2011-01-01

    This report demonstrates the importance of stakeholder involvement throughout the life cycle of all nuclear facilities; including operating reactors, temporary spent fuel storage facilities and final radioactive waste repositories and follows what is defined in the IAEA Safety Standards GS-R-3 where the stakeholders' expectations (identified as 'interested parties' in GS-R-3) shall be taken into consideration 'in the activities and interactions in the processes of the management system, with the aim of enhancing the satisfaction of interested parties while at the same time ensuring that safety is not compromised'. This report explains how involving stakeholders in decision making processes, even for those stakeholder groups that do not have a direct role in making those decisions, can enhance public confidence in the application of nuclear science and technology. In addition, this report presents general guidance on stakeholder involvement. It does not provide detailed procedures for developing and implementing stakeholder involvement programmes, and specifics regarding stakeholder involvement for particular types of nuclear facilities. However, this publication references reports that provide such details. This publication provides assistance to those responsible for planning, designing, constructing, operating or decommissioning a nuclear facility. In addition, regulatory organizations and other authorities overseeing nuclear activities or managing nuclear facility licensing processes are often seen as the main source of independent information for the general public; therefore, stakeholder involvement can demonstrate capability and trustworthiness of regulatory organizations as well. The role of stakeholder involvement at different stages of a facility's life cycle is discussed, with suggestions on developing the components of a comprehensive stakeholder involvement plan. Included is guidance on focusing communication with certain stakeholders, applying various

  2. Nuclear safety and radiation protection report of the Cruas-Meysse nuclear facilities - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Cruas-Meysse nuclear power plant (INB 111 and 112, Ardeche (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  3. Nuclear safety and radiation protection report of the Cruas-Meysse nuclear facilities - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Cruas-Meysse nuclear power plant (INB 111 and 112, Ardeche (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  4. Ensuring the safety of nuclear facilities located in large cities

    International Nuclear Information System (INIS)

    Ryazantsev, E.P.; Kolyadin, V.I.; Bylkin, B.K.; Zverkov, Yu.A.

    2002-01-01

    The problems of ensuring the safety of nuclear facilities and other facilities representing a radiation hazard (hereinafter referred to as 'nuclear facilities') which are located in large cities are considered in the light of the experience with the 'Kurchatov Institute' Russian Research Centre. The accumulation of substantial quantities of spent nuclear fuel and radwaste at the Centre was an inevitable consequence of the military and civilian nuclear research programmes which started there in 1943. A comprehensive programme has been developed for reducing the impact of ionizing radiation on the Centre's personnel, the population living near the Centre and the local environment. The authors describe the basic elements of a programme for decommissioning reactor facilities and eliminating spent fuel and radwaste storage sites and also describe how the programme is progressing. (author)

  5. Nuclear facility safeguards systems modeling using discrete event simulation

    International Nuclear Information System (INIS)

    Engi, D.

    1977-01-01

    The threat of theft or dispersal of special nuclear material at a nuclear facility is treated by studying the temporal relationships between adversaries having authorized access to the facility (insiders) and safeguards system events by using a GASP IV discrete event simulation. The safeguards system events--detection, assessment, delay, communications, and neutralization--are modeled for the general insider adversary strategy which includes degradation of the safeguards system elements followed by an attempt to steal or disperse special nuclear material. The performance measure used in the analysis is the estimated probability of safeguards system success in countering the adversary based upon a predetermined set of adversary actions. An exemplary problem which includes generated results is presented for a hypothetical nuclear facility. The results illustrate representative information that could be utilized by safeguards decision-makers

  6. Study on archive management for nuclear facility decommissioning projects

    International Nuclear Information System (INIS)

    Huang Ling; Gong Jing; Luo Ning; Liao Bing; Zhou Hao

    2011-01-01

    This paper introduces the main features and status of the archive management for nuclear facility decommissioning projects, and explores and discusses the countermeasures in its archive management. Taking the practice of the archive management system of a reactor decommissioning project as an example, the paper illustrates the establishment of archive management system for the nuclear facility decommissioning projects. The results show that the development of a systematic archive management principle and system for nuclear decommissioning projects and the construction of project archives for the whole process from the design to the decommissioning by digitalized archive management system are one effective route to improve the complete, accurate and systematic archiving of project documents, to promote the standardization and effectiveness of the archive management and to ensure the traceability of the nuclear facility decommissioning projects. (authors)

  7. Nuclear safety and radiation protection report of the nuclear facility of Brennilis - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the partially dismantled facilities of the Monts d'Arree (EL4-D or Brennilis) site (INB 162 (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2011, are reported as well as the radioactive effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  8. Nuclear safety and radiation protection report of the nuclear facilities of Brennilis - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the partially dismantled facilities of the Monts d'Arree (EL4-D or Brennilis) site (INB 162 (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  9. INTEGRATION OF FACILITY MODELING CAPABILITIES FOR NUCLEAR NONPROLIFERATION ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    Gorensek, M.; Hamm, L.; Garcia, H.; Burr, T.; Coles, G.; Edmunds, T.; Garrett, A.; Krebs, J.; Kress, R.; Lamberti, V.; Schoenwald, D.; Tzanos, C.; Ward, R.

    2011-07-18

    Developing automated methods for data collection and analysis that can facilitate nuclear nonproliferation assessment is an important research area with significant consequences for the effective global deployment of nuclear energy. Facility modeling that can integrate and interpret observations collected from monitored facilities in order to ascertain their functional details will be a critical element of these methods. Although improvements are continually sought, existing facility modeling tools can characterize all aspects of reactor operations and the majority of nuclear fuel cycle processing steps, and include algorithms for data processing and interpretation. Assessing nonproliferation status is challenging because observations can come from many sources, including local and remote sensors that monitor facility operations, as well as open sources that provide specific business information about the monitored facilities, and can be of many different types. Although many current facility models are capable of analyzing large amounts of information, they have not been integrated in an analyst-friendly manner. This paper addresses some of these facility modeling capabilities and illustrates how they could be integrated and utilized for nonproliferation analysis. The inverse problem of inferring facility conditions based on collected observations is described, along with a proposed architecture and computer framework for utilizing facility modeling tools. After considering a representative sampling of key facility modeling capabilities, the proposed integration framework is illustrated with several examples.

  10. Integration of facility modeling capabilities for nuclear nonproliferation analysis

    International Nuclear Information System (INIS)

    Garcia, Humberto; Burr, Tom; Coles, Garill A.; Edmunds, Thomas A.; Garrett, Alfred; Gorensek, Maximilian; Hamm, Luther; Krebs, John; Kress, Reid L.; Lamberti, Vincent; Schoenwald, David; Tzanos, Constantine P.; Ward, Richard C.

    2012-01-01

    Developing automated methods for data collection and analysis that can facilitate nuclear nonproliferation assessment is an important research area with significant consequences for the effective global deployment of nuclear energy. Facility modeling that can integrate and interpret observations collected from monitored facilities in order to ascertain their functional details will be a critical element of these methods. Although improvements are continually sought, existing facility modeling tools can characterize all aspects of reactor operations and the majority of nuclear fuel cycle processing steps, and include algorithms for data processing and interpretation. Assessing nonproliferation status is challenging because observations can come from many sources, including local and remote sensors that monitor facility operations, as well as open sources that provide specific business information about the monitored facilities, and can be of many different types. Although many current facility models are capable of analyzing large amounts of information, they have not been integrated in an analyst-friendly manner. This paper addresses some of these facility modeling capabilities and illustrates how they could be integrated and utilized for nonproliferation analysis. The inverse problem of inferring facility conditions based on collected observations is described, along with a proposed architecture and computer framework for utilizing facility modeling tools. After considering a representative sampling of key facility modeling capabilities, the proposed integration framework is illustrated with several examples.

  11. Integration Of Facility Modeling Capabilities For Nuclear Nonproliferation Analysis

    International Nuclear Information System (INIS)

    Gorensek, M.; Hamm, L.; Garcia, H.; Burr, T.; Coles, G.; Edmunds, T.; Garrett, A.; Krebs, J.; Kress, R.; Lamberti, V.; Schoenwald, D.; Tzanos, C.; Ward, R.

    2011-01-01

    Developing automated methods for data collection and analysis that can facilitate nuclear nonproliferation assessment is an important research area with significant consequences for the effective global deployment of nuclear energy. Facility modeling that can integrate and interpret observations collected from monitored facilities in order to ascertain their functional details will be a critical element of these methods. Although improvements are continually sought, existing facility modeling tools can characterize all aspects of reactor operations and the majority of nuclear fuel cycle processing steps, and include algorithms for data processing and interpretation. Assessing nonproliferation status is challenging because observations can come from many sources, including local and remote sensors that monitor facility operations, as well as open sources that provide specific business information about the monitored facilities, and can be of many different types. Although many current facility models are capable of analyzing large amounts of information, they have not been integrated in an analyst-friendly manner. This paper addresses some of these facility modeling capabilities and illustrates how they could be integrated and utilized for nonproliferation analysis. The inverse problem of inferring facility conditions based on collected observations is described, along with a proposed architecture and computer framework for utilizing facility modeling tools. After considering a representative sampling of key facility modeling capabilities, the proposed integration framework is illustrated with several examples.

  12. Conducting Computer Security Assessments at Nuclear Facilities

    International Nuclear Information System (INIS)

    2016-06-01

    Computer security is increasingly recognized as a key component in nuclear security. As technology advances, it is anticipated that computer and computing systems will be used to an even greater degree in all aspects of plant operations including safety and security systems. A rigorous and comprehensive assessment process can assist in strengthening the effectiveness of the computer security programme. This publication outlines a methodology for conducting computer security assessments at nuclear facilities. The methodology can likewise be easily adapted to provide assessments at facilities with other radioactive materials

  13. Decommissioning of nuclear facilities involving operations with uranium and thorium

    International Nuclear Information System (INIS)

    Shum, E.Y.; Neuder, S.M.

    1990-01-01

    When a licensed nuclear facility ceases operation, the U.S. Nuclear Regulatory Commission (NRC) ensures that the facility and its site are decontaminated to acceptable levels so they may safely be released for unrestricted public use. Because specific environmental standards or broad federal guidelines governing release of residual radioactive contamination have not been issued, NRC has developed ad hoc cleanup criteria for decommissioning nuclear facilities that involved uranium and thorium. Cleanup criteria include decontamination of buildings, equipment, and land. We will address cleanup criteria and their rationale; procedures for decommissioning uranium/thorium facilities; radiological survey designs and procedures; radiological monitoring and measurement; and cost-effectiveness to demonstrate compliance

  14. Industrial fans used in nuclear facilities

    International Nuclear Information System (INIS)

    Carlson, J.A.

    1987-01-01

    Industrial fans are widely used in nuclear facilities, and their most common use is in building ventilation. To control the spread of contamination, airflows are maintained at high levels. Therefore, the selection of the fan and fan control are important to the safety of people, equipment and the environment. As a result, 80% of all energy used in nuclear facilities is fan energy. Safety evolves from the durability, control and redundancy in the system. In new or retrofit installations, testing and qualification of fans and systems are completed prior to start-up. Less important but necessary is the energy conservation aspect of fan selection and installations. Fan efficiency, type of control and system installation are evaluated for energy use

  15. Security Culture in Physical Protection of Nuclear Material and Facility

    International Nuclear Information System (INIS)

    Susyanta-Widyatmaka; Koraag, Venuesiana-Dewi; Taswanda-Taryo

    2005-01-01

    In nuclear related field, there are three different cultures: safety, safeguards and security culture. Safety culture has established mostly in nuclear industries, meanwhile safeguards and security culture are relatively new and still developing. The latter is intended to improve the physical protection of material and nuclear facility. This paper describes concept, properties and factors affecting security culture and interactions among these cultures. The analysis indicates that anybody involving in nuclear material and facility should have strong commitment and awareness of such culture to establish it. It is concluded that the assessment of security culture outlined in this paper is still preliminary for developing and conduction rigorous security culture implemented in a much more complex facility such as nuclear power plant

  16. Nuclear safety and radiation protection report of Blayais nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 86 and 110). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  17. Nuclear safety and radiation protection report of Civaux nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 158 and 159). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  18. Nuclear safety and radiation protection report of Golfech nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 135 and 142). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  19. Nuclear safety and radiation protection report of Tricastin nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the Tricastin NPPs (INBs no. 87 and 88). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  20. Nuclear safety and radiation protection report of Penly nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 136 and 140). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  1. Nuclear safety and radiation protection report of Cattenom nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 124, 125, 126 and 137). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  2. Nuclear safety and radiation protection report of Chooz nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 139, 144 and 163 (under dismantling)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  3. Nuclear safety and radiation protection report of Flamanville nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 108, 109 and 167 (under construction)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  4. Nuclear safety and radiation protection report of Fessenheim nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INB no. 75). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  5. History of health studies around nuclear facilities: a methodologival consideration

    International Nuclear Information System (INIS)

    Tokuhata, G.K.; Smith, M.W.

    1981-01-01

    A brief historical review was made of low-level radiation studies for general populations living around nuclear facilities. In addition, technical and methodological problems were identified and discussed which often arise in all epidemiological studies designed to determine the possible health effects of low-level radiation released from nuclear facilities. Need for extremely large populations for prospective cancer studies was discussed, but accompanying ascertainment difficulties were also emphasized. More epidemiological studies are needed to provide adequate assessment of the potential health hazards of nuclear facilities

  6. Geosciences research: cooperation with Swedish Nuclear Fuel and Waste Management Co. (SKB)

    International Nuclear Information System (INIS)

    1993-01-01

    PNC has been participating in the research program of the Construction Phase in Aespoe Hard Rock Laboratory project (HRL project), an underground research laboratory project initiated by Swedish Nuclear Fuel and Waste Management Company (SKB), since 1991. The main purpose of participating in the HRL project is to apply site characterization, prediction and validation methodology of geological environment in the project to R and D program on geological disposal in Japan. The outcome from investigations for the 0-700 m section in the access tunnel has been evaluated to compare with predictions on geological-structure. This report gives the summary of R and D program on the HRL project and preliminary results on evaluation of geological-structural predictions for the 0-700 m section in the access tunnel. (author)

  7. Organization and staffing of the regulatory body for nuclear facilities. Safety guide

    International Nuclear Information System (INIS)

    2005-01-01

    The purpose of this safety guide is to provide recommendations for national authorities on the appropriate management system, organization and staffing for the regulatory body responsible for the regulation of nuclear facilities in order to achieve compliance with the applicable safety requirements. This safety guide covers the organization and staffing in relation to nuclear facilities such as: enrichment and fuel manufacturing plants. Nuclear power plants. Other reactors such as research reactors and critical assemblies. Spent fuel reprocessing plants. And radioactive waste management facilities such as treatment, storage and disposal facilities. This safety guide also covers issues related to the decommissioning of nuclear facilities, the closure of waste disposal facilities and site rehabilitation

  8. {sup 14}C emission from Swedish nuclear power plants and its effect on the {sup 14}C levels in the environment

    Energy Technology Data Exchange (ETDEWEB)

    Stenstroem, K.; Erlandsson, Bengt; Hellborg, R.; Kiisk, M.; Persson, Per [Lund Univ. (Sweden). Dept. of Nuclear Physics; Mattsson, Soeren; Thornberg, C. [Lund Univ., Malmoe (Sweden). Dept. of Radiation Physics; Skog, G. [Lund Univ. (Sweden). Dept. of Quaternary Geology

    2000-02-15

    The radionuclide {sup 14}C is produced in all types of nuclear reactors mainly by neutron induced reactions in oxygen ({sup 17}O), nitrogen ({sup 14}N) and carbon ({sup 13}C). Part of the {sup 14}C created is continuously released during normal operation as airborne effluents in various chemical forms (such as CO{sub 2}, CO and hydrocarbons) to the surroundings. Because of the biological importance of carbon and the long physical half-life of {sup 14}C, it is of interest to measure the releases and their incorporation into living material. The {sup 14}C activity concentrations in annual tree rings and air around two Swedish nuclear power plants (Barsebaeck and Forsmark) as well as the background {sup 14}C activity levels from two reference sites in southern Sweden during 1973-1996 are presented in this report. In order to verify the reliability of the method some investigations have been conducted at two foreign nuclear sites, Sellafield fuel reprocessing plant in England, and Pickering nuclear generating station in Canada, where the releases of {sup 14}C are known to be substantial. Furthermore, results from some measurements in the vicinity of Paldiski submarine training centre in Estonia are presented. The results of the {sup 14}C measurements of air, vegetation and annual tree rings around the two Swedish nuclear power plants show very low enhancements of {sup 14}C, if at all above the uncertainty of the measurements. Even if the accuracy of the measurements of the annual tree rings is rather good (1-2%) the contribution of {sup 14}C from the reactors to the environment is so small that it is difficult to separate it from the prevailing background levels of {sup 14}C . This is the case for all sampling procedures: in air and vegetation as well as in annual tree rings. Only on a few occasions an actual increase is observed. However, although the calculations suffer from rather large uncertainties, the calculated release rate from Barsebaeck is in fair agreement

  9. Nuclear safety and radiation protection report of the Chinon nuclear facilities - 2014

    International Nuclear Information System (INIS)

    2015-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the facilities (INBs no. 94 (irradiated materials workshop), 99 (fuel storage facility), 107 and 132 (NPPs in operation), 133, 153 and 161 (NPPs under deconstruction)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2014, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  10. Nuclear safety and radiation protection report of the Chinon nuclear facilities - 2013

    International Nuclear Information System (INIS)

    2014-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the facilities (INBs no. 94 (irradiated materials workshop), 99 (fuel storage facility), 107 and 132 (NPPs in operation), 133, 153 and 161 (NPPs under deconstruction)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2013, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  11. Perceptions of risk, dilemmas of policy: nuclear fallout in Swedish Lapland

    International Nuclear Information System (INIS)

    Beach, H.

    1990-01-01

    This paper concerns risk perceptions of Swedish Saami reindeer herders in conjunction with the Chernobyl nuclear disaster. Focus is also placed upon their experiences of damage and their efforts to deal with these problems. Data relating to these social aspects of the Chernobyl event come from interviews with members of Saami herding families. The initial governmental policy of establishing a simple contamination limit for the marketability of all foodstuffs was beset with shortcomings. I propose that all contaminated foods should be labeled with contamination specifications along a fully graded scale. In addition, there should be consumer education and recommendations for the entire population, not just one segment. An absolutely necessary step in the construction of valid policies is the health calibration of low-dose radiation. Without such knowledge, any marketability limit is suspect. With such knowledge, policy can be firmly based on human health

  12. The cleavable matter: Discursive orders in Swedish nuclear power politics 1972-1980

    International Nuclear Information System (INIS)

    Lindquist, P.

    1997-09-01

    This study applies a qualitative discourse-theoretical method to analyse the central argumentation in the parliamentary debate on nuclear power in Sweden during 1972-1980, reconstructed from official documents such as governmental and parliamentary bills, committee reports, parliamentary debate protocols, and official commission reports. Particular concern is directed to the process in which various discursive orders emerging within the political debate tend to have a structuring influence on the political argumentation regarding what can be said, by whom this can be said, and how this can be said. It is argued that these discursive orders have a profound, and in a systems theoretical sense self-dynamic influence, going beyond the original intentions of the political actors, on how the energy policy issue is interpreted and constructed. It is argued, furthermore, that these discursive orders actively exploit the political context of meaning by deliberately instrumentalising and incorporating competing argumentative elements into their own cognitive structure. In other words, the dominant political system incorporates the arguments of the political opposition and of the environmental and anti nuclear movements in order to consolidate its political power. The discourse theoretical analysis of the Swedish nuclear power debate in that sense unveils a deep resistance against a true political discourse, in the sense of Habermas, as a rational and domination-free process of reaching mutual understanding. 152 refs

  13. Risk classification for nuclear facilities in connection with the illegal use of nuclear materials

    International Nuclear Information System (INIS)

    Bahm, W.; Naegele, G.; Sellinschegg, D.

    1976-01-01

    It is shown, and illustrated by an example, that specific conditions at a nuclear facility to a large extent determine the probability of a successful illegal attack against that facility. Therefore, a categorization of nuclear materials according to the associated hazards alone, as practised currently, does not appear to be sufficient for the establishment of a balanced national physical protection system. In this paper a possible way of categorizing nuclear facilities according to the associated risks, determined as objectively as possible, is discussed. It is felt that initially the analysis should be restricted to the determination of the conditional risks, associated with illegal acquisition and use of radioactive materials by a postulated hostile or similar group. (author)

  14. Certification of U.S. instrumentation in Russian nuclear processing facilities

    International Nuclear Information System (INIS)

    Powell, D.H.; Sumner, J.N.

    2000-01-01

    Agreements between the United States (U.S.) and the Russian Federation (R.F.) require the down-blending of highly enriched uranium (HEU) from dismantled Russian Federation nuclear weapons. The Blend Down Monitoring System (BDMS) was jointly developed by the Los Alamos National Laboratory (LANL) and the Oak Ridge National Laboratory (ORNL) to continuously monitor the enrichments and flow rates in the HEU blending operations at the R.F. facilities. A significant requirement of the implementation of the BDMS equipment in R.F. facilities concerned the certification of the BDMS equipment for use in a Russian nuclear facility. This paper discusses the certification of the BDMS for installation in R.F. facilities, and summarizes the lessons learned from the process that can be applied to the installation of other U.S. equipment in Russian nuclear facilities

  15. Modern tornado design of nuclear and other potentially hazardous facilities

    International Nuclear Information System (INIS)

    Stevenson, J.D.; Zhao, Y.

    1996-01-01

    Tornado wind loads and other tornado phenomena, including tornado missiles and differential pressure effects, have not usually been considered in the design of conventional industrial, commercial, or residential facilities in the United States; however, tornado resistance has often become a design requirement for certain hazardous facilities, such as large nuclear power plants and nuclear materials and waste storage facilities, as well as large liquefied natural gas storage facilities. This article provides a review of current procedures for the design of hazardous industrial facilities to resist tornado effects. 23 refs., 19 figs., 13 tabs

  16. The role of economic incentives in nuclear waste facility siting

    International Nuclear Information System (INIS)

    Davis, E.M.

    1986-01-01

    There is a need to provide some public benefit and/or reward for accepting a ''locally unwanted land use'' (LULU) facility such as a nuclear waste storage or disposal facility. This paper concludes that DOE, Congress and the states should immediately quantify an economic incentive for consideration ''up front'' by society on siting decisions for nuclear waste storage and disposal facilities

  17. Ground test facility for nuclear testing of space reactor subsystems

    International Nuclear Information System (INIS)

    Quapp, W.J.; Watts, K.D.

    1985-01-01

    Two major reactor facilities at the INEL have been identified as easily adaptable for supporting the nuclear testing of the SP-100 reactor subsystem. They are the Engineering Test Reactor (ETR) and the Loss of Fluid Test Reactor (LOFT). In addition, there are machine shops, analytical laboratories, hot cells, and the supporting services (fire protection, safety, security, medical, waste management, etc.) necessary to conducting a nuclear test program. This paper presents the conceptual approach for modifying these reactor facilities for the ground engineering test facility for the SP-100 nuclear subsystem. 4 figs

  18. Plan for reevaluation of NRC policy on decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    1978-03-01

    Recognizing that the current generation of large commercial reactors and supporting nuclear facilities would substantially increase future decommissioning needs, the NRC staff began an in-depth review and re-evaluation of NRC's regulatory approach to decommissioning in 1975. Major technical studies on decommissioning have been initiated at Battelle Pacific Northwest Laboratory in order to provide a firm information base on the engineering methodology, radiation risks, and estimated costs of decommissioning light water reactors and associated fuel cycle facilities. The Nuclear Regulatory Commission is now considering development of a more explicit overall policy for nuclear facility decommissioning and amending its regulations in 10 CFR Parts 30, 40, 50, and 70 to include more specific guidance on decommissioning criteria for production and utilization facility licensees and byproduct, source, and special nuclear material licensees. The report sets forth in detail the NRC staff plan for the development of an overall NRC policy on decommissioning of nuclear facilities

  19. Laboratory instrumentation modernization at the WPI Nuclear Reactor Facility

    International Nuclear Information System (INIS)

    1995-01-01

    With partial funding from the Department of Energy (DOE) University Reactor Instrumentation Program several laboratory instruments utilized by students and researchers at the WPI Nuclear Reactor Facility have been upgraded or replaced. Designed and built by General Electric in 1959, the open pool nuclear training reactor at WPI was one of the first such facilities in the nation located on a university campus. Devoted to undergraduate use, the reactor and its related facilities have been since used to train two generations of nuclear engineers and scientists for the nuclear industry. The low power output of the reactor and an ergonomic facility design make it an ideal tool for undergraduate nuclear engineering education and other training. The reactor, its control system, and the associate laboratory equipment are all located in the same room. Over the years, several important milestones have taken place at the WPI reactor. In 1969, the reactor power level was upgraded from 1 kW to 10 kW. The reactor's Nuclear Regulatory Commission operating license was renewed for 20 years in 1983. In 1988, under DOE Grant No. DE-FG07-86ER75271, the reactor was converted to low-enriched uranium fuel. In 1992, again with partial funding from DOE (Grant No. DE-FG02-90ER12982), the original control console was replaced

  20. Nuclear Science: a survey of funding, facilities, and manpower

    International Nuclear Information System (INIS)

    1975-01-01

    In 1973 the Committee on Nuclear Science of the National Research Council initiated a re-examination of aspects (funding, manpower, and facilities) of the organization and operation of nuclear science research in order to evaluate any changes in the preceding four years and implications of such changes. The reports of the three ad hoc panels established for this purpose (funding and level of effort, nuclear facilities, manpower and education) are presented. Although they identify current problems in nuclear science, these reports do not provide simple solutions; rather, they attempt to provide updated information for use as background for continuing decisions

  1. Radioactive waste management from nuclear facilities

    International Nuclear Information System (INIS)

    2005-06-01

    This report has been published as a NSA (Nuclear Systems Association, Japan) commentary series, No. 13, and documents the present status on management of radioactive wastes produced from nuclear facilities in Japan and other countries as well. Risks for radiation accidents coming from radioactive waste disposal and storage together with risks for reactor accidents from nuclear power plants are now causing public anxiety. This commentary concerns among all high-level radioactive waste management from nuclear fuel cycle facilities, with including radioactive wastes from research institutes or hospitals. Also included is wastes produced from reactor decommissioning. For low-level radioactive wastes, the wastes is reduced in volume, solidified, and removed to the sites of storage depending on their radioactivities. For high-level radioactive wastes, some ten thousand years must be necessary before the radioactivity decays to the natural level and protection against seismic or volcanic activities, and terrorist attacks is unavoidable for final disposals. This inevitably results in underground disposal at least 300 m below the ground. Various proposals for the disposal and management for this and their evaluation techniques are described in the present document. (S. Ohno)

  2. Tritium surveillance around nuclear facilities in Japan

    International Nuclear Information System (INIS)

    Inoue, Y.; Kasida, Y.

    1978-01-01

    In order to measure the tritium levels in the environmental water around the nuclear facilities, the tritium surveillance program began in 1967 locally at Tsuruga and Mihama districts. Nowadays it has been expanded to the ten commercial nuclear power stations and three nuclear facilities. For samples whose tritium concentration is believed less than about 100 pCi/l, they were electrolytically enriched, and then counted by the liquid scintillation counter. Some of samples believed higher than 100 pCi/l were analysed without any enrichment by the low background liquid scintillation counters, Aloka LB 600 or Aloka LB 1. The results of each station are listed in Table. The sampling points corresponding to each results are shown in Figure. Tritium from the effluent was not reflected in all the land water and the tap water around the nuclear power stations and the nuclear facilities. Tritium concentration in rivers, streams, and reservoirs (pools) decreased exponentially from about 600 pCi/l in 1967 to about 150 pCi/l in 1972 at Tsuruga and Mihama, and 360 pCi/l in 1968 to 120 pCi/l in 1973 at Genkai, with the half life of about 2.5 years in both cases. After around 1972, tritium levels of river system in all districts of Japan kept nearly constant up to the end of 1975 and they were in the range from 100 to 300 pCi/l corresponding to the districts. Thereafter, it seems to start to decrease again in 1976. Sea water sampled at the intake of the station or on the seashore far from the outlet was regarded not to be influenced by the effluent from the nuclear reactors or facilities. Tritium concentration in these coastal waters decreased from 100 - 300 pCi/l in 1971 to 30 - 40 pCi/l in 1972 in Fukushima, Ibaraki and Fukui prefectures. (author)

  3. Nuclear astrophysics experiments with Pohang neutron facility

    International Nuclear Information System (INIS)

    Kim, Yeong Duk; Yoo, Gwang Ho

    1998-01-01

    Nuclear astrophysics experiments for fundamental understanding of Big Bang nucleosynthesis was performed at Pohang Neutron Facility. Laboratory experiments, inhomogeneous Big Bang nucleosynthesis and S-process were used for nucleosynthesis. For future study, more study on S-process for the desired data and nuclear network calculation are necessary

  4. Identification of Vital Areas at Nuclear Facilities. Technical Guidance

    International Nuclear Information System (INIS)

    2012-01-01

    The possibility that nuclear or other radioactive material could be used for malicious purposes cannot be ruled out in the current global situation. States have responded to this risk by engaging in a collective commitment to strengthen the protection and control of such material and to effectively respond to nuclear security events. States have agreed to strengthen existing and established new international legal instruments to enhance nuclear security around the world. Nuclear security is fundamental in the management of nuclear technologies and in applications where nuclear or other radioactive material is used or transported. Through its nuclear security programme, the IAEA supports States to establish, maintain and sustain an effective nuclear security regime. The IAEA has adopted a comprehensive approach to nuclear security. This recognizes that an effective national nuclear security regime builds on: the implementation of relevant international legal instruments; information protection; physical protection; material accounting and control; detection of and response to trafficking in such material; national response plans; and contingency measures. With its nuclear security series, the IAEA aims to assist States to implement and sustain such a regime in a coherent and integrated manner. The IAEA Nuclear Security Series comprises: Nuclear Security Fundamentals, which include objectives and essential elements of a State?s nuclear security regime; Recommendations; Implementing Guides; and Technical Guidance publications. Each State carries the full responsibility for nuclear security, i.e. to provide for the security of nuclear and other radioactive material and associated facilities and activities; to ensure the security of such material in use, storage or in transport; and to combat illicit trafficking and the inadvertent movement of such material. It should also be prepared to respond to a nuclear security event. The IAEA recommendations for the protection of

  5. Nuclear safety and radiation protection report of the basic nuclear facilities of the Tricastin nuclear power plant - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Tricastin nuclear power plant (INB 87 and 88, Saint-Paul-Trois-Chateaux, Drome (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  6. Nuclear safety and radiation protection report of the Tricastin operational hot base nuclear facilities - 2013

    International Nuclear Information System (INIS)

    2014-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the Tricastin operational hot base facility (INB no. 157, Bollene, Vaucluse (FR)), a nuclear workshop for storage and maintenance and qualification operations on some EdF equipments. Then, the nuclear safety and radiation protection measures taken regarding the facility are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2013, if some, are reported as well as the effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facility is presented and sorted by type of waste, quantities and type of conditioning. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions

  7. Nuclear physics accelerator facilities

    International Nuclear Information System (INIS)

    1985-01-01

    The Department of Energy's Nuclear Physics program is a comprehensive program of interdependent experimental and theoretical investigation of atomic nuclei. Long range goals are an understanding of the interactions, properties, and structures of atomic nuclei and nuclear matter at the most elementary level possible and an understanding of the fundamental forces of nature by using nuclei as a proving ground. Basic ingredients of the program are talented and imaginative scientists and a diversity of facilities to provide the variety of probes, instruments, and computational equipment needed for modern nuclear research. Approximately 80% of the total Federal support of basic nuclear research is provided through the Nuclear Physics program; almost all of the remaining 20% is provided by the National Science Foundation. Thus, the Department of Energy (DOE) has a unique responsibility for this important area of basic science and its role in high technology. Experimental and theoretical investigations are leading us to conclude that a new level of understanding of atomic nuclei is achievable. This optimism arises from evidence that: (1) the mesons, protons, and neutrons which are inside nuclei are themselves composed of quarks and gluons and (2) quantum chromodynamics can be developed into a theory which both describes correctly the interaction among quarks and gluons and is also an exact theory of the strong nuclear force. These concepts are important drivers of the Nuclear Physics program

  8. Methodology for categorization of nuclear material in pyroprocessing facility

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chanki; Choi, Sungyeol [UNIST, Ulsan (Korea, Republic of); Kim, Woo Jin; Kim, Min Su; Jeong, Yon Hong [Korea Institute of Nuclear Nonproliferation and Control, Daejeon (Korea, Republic of)

    2016-10-15

    For the pyroprocessing facility to be commercialized in future, current regulations should be evaluated and developed in advance, based on the new types of nuclear materials in the facility. Physical protection system, especially, requires reasonable and reliable categorization of nuclear materials, to prevent from the theft of nuclear materials. In this paper, therefore, current categorization methods of nuclear material are investigated and applied to the pyroprocessing facility. After inconsistencies and gaps are found among methods, they are compared and discussed based on eight considering points (i.e, degrees of attractiveness, levels of category, discount factor, physical barriers, chemical barriers, isotopic barriers, radiological barriers, and capabilities of adversaries), to roughly suggest a new method for categorization. Current categorization methods of nuclear material, including IAEA's INFCIRC/225, U.S. DOE's method, newly expected U.S. NRC's method, FOM, and Bunn's approach, are different and can bring inconsistencies of physical protection requirements. The gap among methods will be significant if advanced fuel cycles are applied to them for the future. For example, the categorization results of 5 target materials in pyroprocessing facility show clear inconsistencies, while TRU ingot is considered the most attractive material. To resolve inconsistencies, it is necessary to determine new method suitable to pyroproessing facility, by considering the effects of eight points (i.e, degrees of attractiveness, levels of category, discount factor, physical barriers, chemical barriers, isotopic barriers, radiological barriers, and capabilities of adversaries)

  9. Methodology for categorization of nuclear material in pyroprocessing facility

    International Nuclear Information System (INIS)

    Lee, Chanki; Choi, Sungyeol; Kim, Woo Jin; Kim, Min Su; Jeong, Yon Hong

    2016-01-01

    For the pyroprocessing facility to be commercialized in future, current regulations should be evaluated and developed in advance, based on the new types of nuclear materials in the facility. Physical protection system, especially, requires reasonable and reliable categorization of nuclear materials, to prevent from the theft of nuclear materials. In this paper, therefore, current categorization methods of nuclear material are investigated and applied to the pyroprocessing facility. After inconsistencies and gaps are found among methods, they are compared and discussed based on eight considering points (i.e, degrees of attractiveness, levels of category, discount factor, physical barriers, chemical barriers, isotopic barriers, radiological barriers, and capabilities of adversaries), to roughly suggest a new method for categorization. Current categorization methods of nuclear material, including IAEA's INFCIRC/225, U.S. DOE's method, newly expected U.S. NRC's method, FOM, and Bunn's approach, are different and can bring inconsistencies of physical protection requirements. The gap among methods will be significant if advanced fuel cycles are applied to them for the future. For example, the categorization results of 5 target materials in pyroprocessing facility show clear inconsistencies, while TRU ingot is considered the most attractive material. To resolve inconsistencies, it is necessary to determine new method suitable to pyroproessing facility, by considering the effects of eight points (i.e, degrees of attractiveness, levels of category, discount factor, physical barriers, chemical barriers, isotopic barriers, radiological barriers, and capabilities of adversaries)

  10. Quality Assurance for Operation of Nuclear Facilities

    International Nuclear Information System (INIS)

    Park, C. G.; Kwon, H. I.; Kim, K. H.; Oh, Y. W.; Lee, Y. G.; Ha, J. H.; Lim, N. J.

    2008-12-01

    This report describes QA activities performed within 'Quality Assurance for Nuclear facility project' and results thereof. Efforts were made to maintain and improve quality system of nuclear facilities. Varification activities whether quality system was implemented in compliance with requirements. QA department assisted KOLAS accredited testing and calibration laboratories, ISO 9001 quality system, establishment of QA programs for R and D, and carried out reviews and surveys for development of quality assurance technologies. Major items of this report are as follows : - Development and Improvement of QA Programs - QA Activities - Assessment of Effectiveness and Adequacy for QA Programs

  11. The Siting of Swedish Nuclear Waste: An Example of Deliberative Democracy?

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Hanna Sofia [Goeteborg Univ. (Sweden). Section for Science and Technology Studies

    2006-09-15

    This paper is about the siting process of high-level nuclear waste (HLNW), focusing on consultations with organisations as part of the environmental impact assessment (EIA). In 1992, SKB started its search for a site (deep bedrock) for the HLNW. Today, site investigations are being carried out in Oskarshamn and Oesthammar, two municipalities that already host nuclear facilities. According to the Environmental Code, the exploiter (SKB) is required to hold consultations with individuals who might be specifically concerned about the intervention. Who should be seen as concerned is not clearly defined in the law, but people living near the planned facility and environmental organisations are mentioned. During the consultations, the facility's siting, extent, and design and its environmental impact, as well as the content and design of EIS should be covered. The EIA takes place alongside SKB's technical and geological investigations. To conclude, the aim of the EIA is to, through dialogue between concerned parties, ensure that the applicant has developed a satisfactory proposal where all relevant questions have been taken into account. The questions this paper seeks to answer are: How is the agenda for the consultations set? Which actor(s) are defined as speakers vs audience? What is the character of the discussions at the consultations? The paper focuses on three consultations, two with local organisations in Oskarshamn and Oesthammar, and one in Stockholm with national environmental organisations. These consultations are studied as separate events as well as a series of consultations. The analysis of the consultations show that the organiser of the meetings, SKB, is successful in drawing a boundary between themselves as lecturer and the rest of the participants as listeners, with one exception. At the final consultation in Oesthammar, the Opinion Group of Safe Final Repository (OSS), was allowed to hold a presentation. This is an example of an organisation

  12. The Siting of Swedish Nuclear Waste: An Example of Deliberative Democracy?

    International Nuclear Information System (INIS)

    Johansson, Hanna Sofia

    2006-01-01

    This paper is about the siting process of high-level nuclear waste (HLNW), focusing on consultations with organisations as part of the environmental impact assessment (EIA). In 1992, SKB started its search for a site (deep bedrock) for the HLNW. Today, site investigations are being carried out in Oskarshamn and Oesthammar, two municipalities that already host nuclear facilities. According to the Environmental Code, the exploiter (SKB) is required to hold consultations with individuals who might be specifically concerned about the intervention. Who should be seen as concerned is not clearly defined in the law, but people living near the planned facility and environmental organisations are mentioned. During the consultations, the facility's siting, extent, and design and its environmental impact, as well as the content and design of EIS should be covered. The EIA takes place alongside SKB's technical and geological investigations. To conclude, the aim of the EIA is to, through dialogue between concerned parties, ensure that the applicant has developed a satisfactory proposal where all relevant questions have been taken into account. The questions this paper seeks to answer are: How is the agenda for the consultations set? Which actor(s) are defined as speakers vs audience? What is the character of the discussions at the consultations? The paper focuses on three consultations, two with local organisations in Oskarshamn and Oesthammar, and one in Stockholm with national environmental organisations. These consultations are studied as separate events as well as a series of consultations. The analysis of the consultations show that the organiser of the meetings, SKB, is successful in drawing a boundary between themselves as lecturer and the rest of the participants as listeners, with one exception. At the final consultation in Oesthammar, the Opinion Group of Safe Final Repository (OSS), was allowed to hold a presentation. This is an example of an organisation gaining

  13. Truck bomb and insider threats to nuclear facilities

    International Nuclear Information System (INIS)

    Hirsch, D.

    1987-01-01

    In the nuclear field, two the these weak links in the security chain are the truck bomb threat and the insider threat. The risks associated with terrorist use of vehicular bombs against nuclear targets surfaced (actually, resurfaced) followed the terrorist attacks on the US Embassy annex and the Marine compound in Leb Concern was expressed that similar attacks against nuclear facilities could result in substantial damage and release of radioactivity. Since the current regulations of the NRC require licensees to protect only against attacks on foot (and even then, only against very small attacking forces), shortly after the Lebanon bombings, that agency commenced an urgent rulemaking to require its licensees to protect against truck bombs. Inexplicably, that rulemaking was called off after research results indicated that the truck bomb threat to nuclear facilities was even more serious than previously thought. Even were nuclear facilities adequately protected against external attack, be the aim theft or sabotage, the greatest security risk to these sites - the threat of action by insiders - would remain. The traditional methods of protecting against the insider threat - such as the two-person rule, strict compartmentalization of vital areas, and design features that make damage to two or more redundant systems by one individual difficult - are generally expensive and have encountered substantial resistance from the nuclear industry, which has restrained the NRC from requiring them

  14. Design and Evaluation of Public Hearings for Swedish Site Selection. A Report from the RISCOM II Project

    International Nuclear Information System (INIS)

    Andersson, Kjell; Wene, Clas-Otto; Drottz Sjoeberg, Britt-Marie

    2003-08-01

    Public hearings were held in the Swedish municipalities of Oesthammar, Tierp, Aelvkarleby, Hultsfred, Oskarshamn and in Nykoeping in February of 2001. The municipalities had taken part in feasibility studies, conducted by the Swedish Nuclear Fuel and Waste Management Co (SKB), in the previous years. The hearings were organised by the Swedish regulatory authorities, i.e. the Swedish Nuclear Power Inspectorate (SKI) and the Swedish Radiation Protection Authority (SSI), and aimed at complementing the authorities' reviews of SKB's work and plans, called FUD-K [1]. Central themes of the hearings were SKB's choice of municipalities for the next phase of the programme to build a spent nuclear fuel repository, and their choice of method for this work. Representatives of the municipalities participated in the planning of the hearings, which were guided by the RISCOM Model. In this report we give a background to the hearings, we introduce the RISCOM Model and how it was used to design the hearings, we then analyse the hearing context with a systems analysis approach. Finally, we describe the hearing agenda and evaluate the results with respect to transparency

  15. SKI and SSI's recommendations to the government concerning long-term responsibility after closure of a repository for spent nuclear fuel

    International Nuclear Information System (INIS)

    Paeivioe Jonsson, Josefin

    2008-01-01

    Many activities will cease at the closure of a repository, but not responsibilities. The candidate municipalities in Sweden expressed concern about who will take over after the implementer is released from responsibility for the facility. The government thus commissioned SKI (Swedish Nuclear Power Inspectorate) and SSI (Swedish Radiation Protection Authority) to review the legal obligations of institutional players as laid out today in legislation in Sweden. After closure of the repository in about 100 years there will be post-closure monitoring, possibly for a few hundred years. This will be a part of the conditions on SKB (Swedish Nuclear Fuel and Waste Management Company) which will be set out at the time. Some activities will end at the closure of the facility but monitoring and safeguards obligations may continue. The exact nature of this monitoring and safeguard work needs to be discussed and agreed upon. With the proposed approach most of the liabilities rest with the state in the long term, the waste producers only have liabilities in the short term but their decisions could have big impacts on long term liabilities

  16. World Energy Data System (WENDS). Volume X. Nuclear facility profiles, PO--ZA

    International Nuclear Information System (INIS)

    1979-06-01

    In this compendium each profile of a nuclear facility is a capsule summary of pertinent facts regarding that particular installation. The facilities described include the entire fuel cycle in the broadest sense, encompassing resource recovery through waste management. Power plants and all US facilities have been excluded. To facilitate comparison the profiles have been recorded in a standard format. Because of the breadth of the undertaking some data fields do not apply to the establishment under discussion and accordingly are blank. The set of nuclear facility profiles occupies four volumes; the profiles are ordered by country name, and then by facility code. Each nuclear facility profile volume contains two complete indexes to the information. The first index aggregates the facilities alphabetically by country. It is further organized by category of facility, and then by the four-character facility code. It provides a quick summary of the nuclear energy capability or interest in each country and also an identifier, the facility code, which can be used to access the information contained in the profile

  17. World Energy Data System (WENDS). Volume VIII. Nuclear facility profiles, CO--HU

    International Nuclear Information System (INIS)

    1979-06-01

    In this compendium each profile of a nuclear facility is a capsule summary of pertinent facts regarding that particular installation. The facilities described include the entire fuel cycle in the broadest sense, encompassing resource recovery through waste management. Power plants and all US facilities have been excluded. To facilitate comparison the profiles have been recorded in a standard format. Because of the breadth of the undertaking some data fields do not apply to the establishment under discussion and accordingly are blank. The set of nuclear facility profiles occupies four volumes; the profiles are ordered by country name, and then by facility code. Each nuclear facility profile volume contains two complete indexes to the information. The first index aggregates the facilities alphabetically by country. It is further organized by category of facility, and then by the four-character facility code. It provides a quick summary of the nuclear energy capability or interest in each country and also an identifier, the facility code, which can be used to access the information contained in the profile

  18. World Energy Data System (WENDS). Volume IX. Nuclear facility profiles, IN--PL

    International Nuclear Information System (INIS)

    1979-06-01

    In this compendium each profile of a nuclear facility is a capsule summary of pertinent facts regarding that particular installation. The facilities described include the entire fuel cycle in the broadest sense, encompassing resource recovery through waste management. Power plants and all US facilities have been excluded. To facilitate comparison the profiles have been recorded in a standard format. Because of the breadth of the undertaking some data fields do not apply to the establishment under discussion and accordingly are blank. The set of nuclear facility profiles occupies four volumes; the profiles are ordered by country name, and then by facility code. Each nuclear facility profile volume contains two complete indexes to the information. The first index aggregates the facilities alphabetically by country. It is further organized by category of facility, and then by the four-character facility code. It provides a quick summary of the nuclear energy capability or interest in each country and also an identifier, the facility code, which can be used to access the information contained in the profile

  19. World Energy Data System (WENDS). Volume VII. Nuclear facility profiles, AG--CH

    International Nuclear Information System (INIS)

    1979-06-01

    In this compendium each profile of a nuclear facility is a capsule summary of pertinent facts regarding that particular installation. The facilities described include the entire fuel cycle in the broadest sense, encompassing resource recovery through waste management. Power plants and all US facilities have been excluded. To facilitate comparison the profiles have been recorded in a standard format. Because of the breadth of the undertaking some data fields do not apply to the establishment under discussion and accordingly are blank. The set of nuclear facility profiles occupies four volumes; the profiles are ordered by country name, and then by facility code. Each nuclear facility profile volume contains two complete indexes to the information. The first index aggregates the facilities alphabetically by country. It is further organized by category of facility, and then by the four-character facility code. It provides a quick summary of the nuclear energy capability or interest in each country and also an identifier, the facility code, which can be used to access the information contained in the profile

  20. Dismantlement and Radioactive Waste Management of DPRK Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Jooho, W.; Baldwin, G. T.

    2005-04-01

    One critical aspect of any denuclearization of the Democratic People’s Republic of Korea (DPRK) involves dismantlement of its nuclear facilities and management of their associated radioactive wastes. The decommissioning problem for its two principal operational plutonium facilities at Yongbyun, the 5MWe nuclear reactor and the Radiochemical Laboratory reprocessing facility, alone present a formidable challenge. Dismantling those facilities will create radioactive waste in addition to existing inventories of spent fuel and reprocessing wastes. Negotiations with the DPRK, such as the Six Party Talks, need to appreciate the enormous scale of the radioactive waste management problem resulting from dismantlement. The two operating plutonium facilities, along with their legacy wastes, will result in anywhere from 50 to 100 metric tons of uranium spent fuel, as much as 500,000 liters of liquid high-level waste, as well as miscellaneous high-level waste sources from the Radiochemical Laboratory. A substantial quantity of intermediate-level waste will result from disposing 600 metric tons of graphite from the reactor, an undetermined quantity of chemical decladding liquid waste from reprocessing, and hundreds of tons of contaminated concrete and metal from facility dismantlement. Various facilities for dismantlement, decontamination, waste treatment and packaging, and storage will be needed. The shipment of spent fuel and liquid high level waste out of the DPRK is also likely to be required. Nuclear facility dismantlement and radioactive waste management in the DPRK are all the more difficult because of nuclear nonproliferation constraints, including the call by the United States for “complete, verifiable and irreversible dismantlement,” or “CVID.” It is desirable to accomplish dismantlement quickly, but many aspects of the radioactive waste management cannot be achieved without careful assessment, planning and preparation, sustained commitment, and long

  1. Dismantlement and Radioactive Waste Management of DPRK Nuclear Facilities

    International Nuclear Information System (INIS)

    Jooho, W.; Baldwin, G.T.

    2005-01-01

    One critical aspect of any denuclearization of the Democratic People's Republic of Korea (DPRK) involves dismantlement of its nuclear facilities and management of their associated radioactive wastes. The decommissioning problem for its two principal operational plutonium facilities at Yongbyun, the 5MWe nuclear reactor and the Radiochemical Laboratory reprocessing facility, alone present a formidable challenge. Dismantling those facilities will create radioactive waste in addition to existing inventories of spent fuel and reprocessing wastes. Negotiations with the DPRK, such as the Six Party Talks, need to appreciate the enormous scale of the radioactive waste management problem resulting from dismantlement. The two operating plutonium facilities, along with their legacy wastes, will result in anywhere from 50 to 100 metric tons of uranium spent fuel, as much as 500,000 liters of liquid high-level waste, as well as miscellaneous high-level waste sources from the Radiochemical Laboratory. A substantial quantity of intermediate-level waste will result from disposing 600 metric tons of graphite from the reactor, an undetermined quantity of chemical decladding liquid waste from reprocessing, and hundreds of tons of contaminated concrete and metal from facility dismantlement. Various facilities for dismantlement, decontamination, waste treatment and packaging, and storage will be needed. The shipment of spent fuel and liquid high level waste out of the DPRK is also likely to be required. Nuclear facility dismantlement and radioactive waste management in the DPRK are all the more difficult because of nuclear nonproliferation constraints, including the call by the United States for 'complete, verifiable and irreversible dismantlement,' or 'CVID.' It is desirable to accomplish dismantlement quickly, but many aspects of the radioactive waste management cannot be achieved without careful assessment, planning and preparation, sustained commitment, and long completion times

  2. Management of the high-level nuclear power facilities

    International Nuclear Information System (INIS)

    Preda, Marin

    2003-05-01

    This thesis approaches current issues in the management of the high power nuclear facilities and as such it appears to be important particularly for nuclear power plant operation topics. Of special interest are the failure events entailing possible catastrophic situations. The contents is structured onto ten chapters. The first chapter describes the operation regimes of the nuclear high power facilities. Highlighted here are the thesis scope and the original features of the work. The second chapter deals with operational policies developed in order to ensure the preventive maintenance of the nuclear installations. Also managing structures are described devoted to practical warranting the equipment safety function of non-classical power stations. In the third chapter cases of nuclear accidents are analyzed especially stressing the probabilistic risk and the operation regimes having in view the elimination of catastrophic events. In the fourth and fifth chapters the control of nuclear radiation emission is treated focusing the quality issue of nuclear installations required to avoid hazardous effects at level of nuclear reactor operation stage. At the same time set of operational measures is given here for preventing risks, catastrophes and chaotic situations. The chapter five presents both theoretical and practical approaches of the nuclear reactor core management concerning particularly the fuel testing, the water primary system and the quality of the involved equipment. In the sixth and seventh chapters issues of risk-quality correlations are approached as well as the structure of expert systems for monitoring the operational regimes of nuclear facilities. The efficiency of the power systems with nuclear injection is discussed and some original ideas developed in this work are evidenced in the eighth and ninth chapters. Presented are here both the operational principles and models of raising the efficiency of the interconnected nuclear stations and prices' policy

  3. The concept of the double-purpose electro-nuclear facility

    Energy Technology Data Exchange (ETDEWEB)

    Bergelson, B.P.; Balyuk, S.A. [Institute of theoretical and experimental physics, Moscow (Russian Federation)

    1995-10-01

    The parameters have been determined on a conceptual level of the electro-nuclear facility intended for electric power generation and minor actinide transmutation. Electro-nuclear facilities (ENFs) have been developed without apparent success for many years. The main difficulties are associated with high accelerator cost and absence of their own clearly defined place for ENFs in the nuclear-power complex. In recent years, however, the situation has changed in many aspects in connection with the rise in safety requirements for nuclear power industry and because of the necessity to decrease the equilibrium level of the long-lived radiotoxicity in particular. In the authors opinion double-purpose ENFs designed for power generation and tansmutation of minor actinides are promising. The results of conceptual investigations for such a facility being operated on liquid fuel in the condition of a uranium-plutonium fuel cycle are given here.

  4. Assessment of the fire hazard in nuclear facilities

    International Nuclear Information System (INIS)

    Liemersdorf, H.

    1986-01-01

    The fire protection for conventional buildings and in the industrial area is essentially an empirical discipline. But, for nuclear facilities, the objectives of fire protection are higher than those used in the conventional field. Consequently, it is necessary to develop methods to strengthen or to supplement the empirical evaluation methods on a scientific basis. This paper describes the method for fire hazard analysis developed for this purpose and presents some important results of its application to nuclear power plants. The analysis has the objective, on the one hand, of quantifying the risk contribution of a fire to the overall risk of a nuclear power plant and, on the other, to gain a balanced concept of individual fire protection measures. The results show that the fire risk contribution is relatively small in comparison with the contribution of other events and does not dominate the overall risk of the plant. This justifies the fire protection concepts of the facilities which have been examined. Additionally, it can be shown that further optimization is possible. The analysis method, which has been developed to evaluate the fire hazards of nuclear power plants is also expected to be applied to other nuclear facilities in future. In principal, though, the method may also be applied to the conventional field. (orig.) [de

  5. Nuclear facilities. Revenue Act for 2000 (no. 99-1172)

    International Nuclear Information System (INIS)

    Anon.

    1999-01-01

    The article no. 43 of the Revenue Act for 2000 modifies the existing system of tax for basic nuclear facilities. The articles no. 17 and no. 121 are abrogated. The basic nuclear facilities subjected to an authorization procedure (article no. 8, act no. 61-842 of the 2. of August 1961 concerning the abatement of air pollution and odors) have to pay an annual tax with effect from January 1. 2000. For nuclear reactors, tax has to be paid for each unit of the plant. (O.M.)

  6. Supervision of electrical and instrumentation systems and components at nuclear facilities

    International Nuclear Information System (INIS)

    1986-01-01

    The general guidelines for the supervision of nuclear facilities carried out by the Finnish Centre for Radiation and Nuclear Safety (STUK) are set forth in the guide YVL 1.1. This guide shows in more detail how STUK supervises the electrical and instrumentation systems and components of nuclear facilities

  7. Particulate filtration in nuclear facilities

    International Nuclear Information System (INIS)

    1991-01-01

    The removal of particulate radioactive material from exhaust air or gases is an essential feature of virtually all nuclear facilities. Recent IAEA publications have covered the broad designs of off-gas and air cleaning systems for the range of nuclear power plants and other facilities. This report is a complementary guidebook that examines in detail the latest developments in the design, operation, maintenance and testing of fibrous air filters. The original draft of the report was prepared by three consultants, M.W. First, of the School of Public Health, Harvard University, United States of America, K.S. Robinson, from the UKAEA Harwell Laboratory, United Kingdom, and H.G. Dillmann, of the Kernforschungzentrum, Karlsruhe, Germany. The Technical Committee Meeting (TCM), at which the report was reviewed and much additional information contributed, was attended by 11 experts and was held in Vienna, from 30 May to 3 June 1988. 64 refs, 41 figs, 10 tabs

  8. Development of simplified decommissioning cost estimation code for nuclear facilities

    International Nuclear Information System (INIS)

    Tachibana, Mitsuo; Shiraishi, Kunio; Ishigami, Tsutomu

    2010-01-01

    The simplified decommissioning cost estimation code for nuclear facilities (DECOST code) was developed in consideration of features and structures of nuclear facilities and similarity of dismantling methods. The DECOST code could calculate 8 evaluation items of decommissioning cost. Actual dismantling in the Japan Atomic Energy Agency (JAEA) was evaluated; unit conversion factors used to calculate the manpower of dismantling activities were evaluated. Consequently, unit conversion factors of general components could be classified into three kinds. Weights of components and structures of the facility were necessary for calculation of manpower. Methods for evaluating weights of components and structures of the facility were studied. Consequently, the weight of components in the facility was proportional to the weight of structures of the facility. The weight of structures of the facility was proportional to the total area of floors in the facility. Decommissioning costs of 7 nuclear facilities in the JAEA were calculated by using the DECOST code. To verify the calculated results, the calculated manpower was compared with the manpower gained from actual dismantling. Consequently, the calculated manpower and actual manpower were almost equal. The outline of the DECOST code, evaluation results of unit conversion factors, the evaluation method of the weights of components and structures of the facility are described in this report. (author)

  9. NGOs Participation in the Swedish EIA Process to Establish a Nuclear Waste Disposal

    International Nuclear Information System (INIS)

    Holmstrand, Olov

    2006-01-01

    Swedish environmental NGOs have no complete consensus on the issue of nuclear waste management. However, concerning the demands on the the EIA process most of the opinions coincide. The following standpoints generally reflect those represented by MKG as interpreted by the author Continuation of nuclear waste production, also in connection with uranium mining, is inconsistent with sustainable development. The problems of nuclear waste management must be dealt with now and not left to an undecided future. However, this does not automatically mean that any final solution needs be implemented within a short period of time. Irrespective of storage or disposal method nuclear waste is a possible source for nuclear weapons for a very long time and must therefore be subject to long-term safeguards. Any storage or disposal must be designed considering the risk of intention or unintentional intrusion. The management of nuclear waste is a national task. The thus be performed on a national scale, not as now in the municipal and to some extent regional scale. The choice of method should precede the choice of site. The choice of method should be made according to a systematic process and considering functional conditions set up in advance. Different alternatives should be evaluated and compared according to strict long-term environmental standards that comply with sustainable development. This demands extensive information on more than one possible method. The choice of site should also be made according to a systematic process considering functional conditions set up in advance. A clear and understandable sieving process at a national scale should be performed to find the best possible site considering environmental conditions. Changes have to be made so that an independent body supervises the EIA process instead of the nuclear industry. This increases the chance that the choice of method and site gain legitimacy and acceptance in the eyes of ordinary citizens

  10. NGOs Participation in the Swedish EIA Process to Establish a Nuclear Waste Disposal

    Energy Technology Data Exchange (ETDEWEB)

    Holmstrand, Olov [The Waste Network (Avfallskedjan), Lerum (Sweden)

    2006-09-15

    Swedish environmental NGOs have no complete consensus on the issue of nuclear waste management. However, concerning the demands on the the EIA process most of the opinions coincide. The following standpoints generally reflect those represented by MKG as interpreted by the author Continuation of nuclear waste production, also in connection with uranium mining, is inconsistent with sustainable development. The problems of nuclear waste management must be dealt with now and not left to an undecided future. However, this does not automatically mean that any final solution needs be implemented within a short period of time. Irrespective of storage or disposal method nuclear waste is a possible source for nuclear weapons for a very long time and must therefore be subject to long-term safeguards. Any storage or disposal must be designed considering the risk of intention or unintentional intrusion. The management of nuclear waste is a national task. The thus be performed on a national scale, not as now in the municipal and to some extent regional scale. The choice of method should precede the choice of site. The choice of method should be made according to a systematic process and considering functional conditions set up in advance. Different alternatives should be evaluated and compared according to strict long-term environmental standards that comply with sustainable development. This demands extensive information on more than one possible method. The choice of site should also be made according to a systematic process considering functional conditions set up in advance. A clear and understandable sieving process at a national scale should be performed to find the best possible site considering environmental conditions. Changes have to be made so that an independent body supervises the EIA process instead of the nuclear industry. This increases the chance that the choice of method and site gain legitimacy and acceptance in the eyes of ordinary citizens.

  11. Consideration of external events in the design of nuclear facilities other than nuclear power plants, with emphasis on earthquakes

    International Nuclear Information System (INIS)

    2003-03-01

    The design of nuclear facilities other than nuclear power plants in relation to external events is not a well harmonized practice around the world. Traditionally, the design of these facilities has either been left to the provisions collected in national building codes and other industrial codes not specifically intended for nuclear facilities, or it has been the subject of complex analyses of the type usually performed for nuclear power plants. The IAEA has recently started a programme of development of safety standards for such facilities. The need to define the appropriate safety requirements for nuclear installations prompted a generic review of siting and design approaches for these facilities in relation to external events. Therefore the assessment methods for siting and design were reviewed by the engineering community to provide the overall design of such facilities with the necessary reliability level. This report aims to provide guidelines for the assessment of the safety of nuclear facilities other than nuclear power plants in relation to external events through the application of simplified methods and procedures for their siting and design. The approach adopted is both simplified and conservative compared with that used for power reactors. It seeks to provide a rational balance for a suitable combination of sustainable effort in site investigations and refinement in design procedures, compatible with the assigned safety objectives. This publication is related to IAEA-TECDOC-348 'Earthquake Resistant Design of Nuclear Facilities with Limited Radioactive Inventory' (1985) which focused on the seismic design of nuclear facilities with limited radioactive inventory. After some 17 years, parts of IAEA-TECDOC-348 needed modification, as new operational data have become available from many facilities. In addition, sophisticated design methodologies are now more easily obtainable, and experts felt that the trade-off between sustainable investment in the

  12. Sweden's fourth national report under the Convention on Nuclear Safety. Swedish implementation of the obligations of the Convention

    International Nuclear Information System (INIS)

    2007-01-01

    The national reports to the review meetings according to Article 5 of the Convention call for a self-assessment of each Contracting Party with regard to compliance with the obligations of the Convention. For Sweden this self-assessment has demonstrated compliance with all the obligations of the Convention, as shown in part B of this national report. The Swedish existing nuclear power programme is currently under strong development since a few years. Large amounts are being invested in the 10 remaining operating reactors to prepare for long term operation. The licensees as well as the regulatory bodies have also been challenged over the last years by events, especially the Forsmark event in July 2006, demonstrating the importance of having strong safety management in place and maintaining of a vital safety culture. Of particular importance is not only to develop good formal management systems, but also to monitor and follow up how the systems function in the daily work at the plants. The need for this attention is reinforced by the major programmes going on during a limited time period to upgrade and uprate the plants. These programmes will require a full effort of the operating organisations as well as of the regulatory bodies. An additional challenge is, during the same time period, to manage the transfer of knowledge to a new generation of engineers and specialists. A large number of key staff is due to retire within the next 10 years. The generally positive impression reported to earlier review meetings under the Convention still stands. Therefore, Sweden would like to point out the following as strong features in its national nuclear practice: The Swedish legal framework is well developed and the responsibility for safety is very well defined. The nuclear law also provides for public insight into the activities of the licensees. The regulatory bodies have maintained and increased their resources and are further developing their regulatory practices. There is an

  13. International safeguards in large scale nuclear facilities

    International Nuclear Information System (INIS)

    Gupta, D.; Heil, J.

    1977-01-01

    The trend in the energy sector in most of the industrialized areas of the world shows rather clearly, that the rate of installation of nuclear plants will be very high and that the largest possible units of nuclear material handling and storage facilities will be built. Various experiments and analyses of measurement methods relevant to safeguards, in typical nuclear facilities like a fuel reprocessing or a fabrication plant, have shown that the associated measurement errors as obtained under normal operating conditions are such that they are mainly dominated by systematic errors and that such systematic errors may lie in the range of percentages of the measured amount so that a material balance in such a plant could not normally be closed with high accuracy. The simplest way of going around the problem would be to increase the frequency of striking a material balance over a given period of time. This could however lead to an anormous increase in the technical and financial burden for the operator of a facility. The present paper analyses this problem in some detail for some facilities and shows that with a properly developed information system in such plants and a combination of containment, surveillance and accountancy measures, safeguards statements for relatively low significant amounts can be made with the attainable range of measurement accuracies

  14. Use of Nuclear Material Accounting and Control for Nuclear Security Purposes at Facilities. Implementing Guide

    International Nuclear Information System (INIS)

    2015-01-01

    Nuclear material accounting and control (NMAC) works in a complementary fashion with the international safeguards programme and physical protection systems to help prevent, deter or detect the unauthorized acquisition and use of nuclear materials. These three methodologies are employed by Member States to defend against external threats, internal threats and both state actors and non-state actors. This publication offers guidance for implementing NMAC measures for nuclear security at the nuclear facility level. It focuses on measures to mitigate the risk posed by insider threats and describes elements of a programme that can be implemented at a nuclear facility in coordination with the physical protection system for the purpose of deterring and detecting unauthorized removal of nuclear material

  15. Soils radiological characterization under a nuclear facility - 59046

    International Nuclear Information System (INIS)

    Aubonnet, Emilie; Dubot, Didier

    2012-01-01

    Nowadays, nuclear industry is facing a crucial need in establishing radiological characterization for the appraisal and the monitoring of any remediation work. Regarding its experience in this domain, the French Alternative Energies and Atomic Energy Commission (CEA) of Fontenay-aux- Roses, established an important feedback and developed over the last 10 years a sound methodology for radiological characterization. This approach is based on several steps: - historical investigations; - assumption and confirmation of the contamination; - surface characterization; - in-depth characterization; - rehabilitation objectives; - remediation process. The amount of measures, samples and analysis is optimized for data processing using geo-statistics. This approach is now used to characterize soils under facilities. The paper presents the radiological characterization of soils under a facility basement. This facility has been built after the first generation of nuclear facilities, replacing a plutonium facility which has been dismantled in 1960. The presentation details the different steps of radiological characterization from historical investigations to optimization of excavation depths, impact studies and contaminated volumes. (authors)

  16. System aspects on safeguards for the back-end of the Swedish nuclear fuel cycle

    International Nuclear Information System (INIS)

    Fritzell, Anni

    2008-03-01

    This thesis has investigated system aspects of safeguarding the back-end of the Swedish nuclear fuel cycle. These aspects include the important notion of continuity of knowledge, the philosophy of verifying measurements and the need to consider the safeguards system as a whole when expanding it to include the encapsulation facility and the geological repository. The research has been analytical in method both in the identification of concrete challenges for the safeguards community in Paper 1, and in the diversion path analysis performed in Paper 2. This method of work is beneficial for example when abstract notions are treated. However, as a suggestion for further work along these lines, a formal systems analysis would be advantageous, and may even reveal properties of the safeguards system that the human mind so far has been to narrow to consider. A systems analysis could be used to model a proposed safeguards approach with the purpose of finding vulnerabilities in its detection probabilities. From the results, capabilities needed to overcome these vulnerabilities could be deduced, thereby formulating formal boundary conditions. These could include: The necessary partial defect level for the NDA measurement; The level of redundancy required in the C/S system to minimize the risk of inconclusive results due to equipment failure; and, Requirements on the capabilities of seismic methods, etc. The field of vulnerability assessment as a tool for systems analysis should be of interest for the safeguards community, as a formal approach could give a new dimension to the credibility of safeguards systems

  17. System aspects on safeguards for the back-end of the Swedish nuclear fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Fritzell, Anni (Dept. of Physics and Astronomy, Uppsala Univ., Uppsala (Sweden))

    2008-03-15

    This thesis has investigated system aspects of safeguarding the back-end of the Swedish nuclear fuel cycle. These aspects include the important notion of continuity of knowledge, the philosophy of verifying measurements and the need to consider the safeguards system as a whole when expanding it to include the encapsulation facility and the geological repository. The research has been analytical in method both in the identification of concrete challenges for the safeguards community in Paper 1, and in the diversion path analysis performed in Paper 2. This method of work is beneficial for example when abstract notions are treated. However, as a suggestion for further work along these lines, a formal systems analysis would be advantageous, and may even reveal properties of the safeguards system that the human mind so far has been to narrow to consider. A systems analysis could be used to model a proposed safeguards approach with the purpose of finding vulnerabilities in its detection probabilities. From the results, capabilities needed to overcome these vulnerabilities could be deduced, thereby formulating formal boundary conditions. These could include: The necessary partial defect level for the NDA measurement; The level of redundancy required in the C/S system to minimize the risk of inconclusive results due to equipment failure; and, Requirements on the capabilities of seismic methods, etc. The field of vulnerability assessment as a tool for systems analysis should be of interest for the safeguards community, as a formal approach could give a new dimension to the credibility of safeguards systems

  18. Structural integrity monitoring of critical components in nuclear facilities

    International Nuclear Information System (INIS)

    Roth, Maria; Constantinescu, Dan Mihai; Brad, Sebastian; Ducu, Catalin; Malinovschi, Viorel

    2007-01-01

    Full text: The paper presents the results obtained as part of the Project 'Integrated Network for Structural Integrity Monitoring of Critical Components in Nuclear Facilities', RIMIS, a research work underway within the framework of the Ministry of Education and Research Programme 'Research of Excellence'. The main objective of the Project is to constitute a network integrating the national R and D institutes with preoccupations in the structural integrity assessment of critical components in the nuclear facilities operating in Romania, in order to elaborate a specific procedure for this field. The degradation mechanisms of the structural materials used in the CANDU type reactors, operated by Unit 1 and Unit 2 at Cernavoda (pressure tubes, fuel elements sheaths, steam generator tubing) and in the nuclear facilities relating to reactors of this type as, for instance, the Hydrogen Isotopes Separation facility, will be investigated. The development of a flexible procedure will offer the opportunity to extend the applications to other structural materials used in the nuclear field and in the non-nuclear fields as well, in cooperation with other institutes involved in the developed network. The expected results of the project will allow the integration of the network developed at national level in the structures of similar networks operating within the EU, the enhancement of the scientific importance of Romanian R and D organizations as well as the increase of our country's contribution in solving the major issues of the nuclear field. (authors)

  19. Nuclear safety and radiation protection report of the Nogent-sur-Seine nuclear facilities - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Nogent-sur-Seine nuclear power plant (INB 129 and 130, Aube (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  20. Nuclear safety and radiation protection report of the Dampierre-en-Burly nuclear facilities - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Dampierre-en-Burly nuclear power plant (INB 84 and 85, Loiret, 45 (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  1. Nuclear safety and radiation protection report of the Dampierre-en-Burly nuclear facilities - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Dampierre-en-Burly nuclear power plant (INB 84 and 85, Loiret, 45 (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  2. Nuclear safety and radiation protection report of the Nogent-sur-Seine nuclear facilities - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Nogent-sur-Seine nuclear power plant (INB 129 and 130, Aube (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  3. Nuclear safety and radiation protection report of the Belleville-sur-Loire nuclear facilities - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Belleville-sur-Loire nuclear power plant (INB no. 127 - Belleville 1 and no. 128 - Belleville 2, Belleville-sur-Loire and Sury-pres-Lere - Cher (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  4. Clearance of materials from dismantling of nuclear facilities in Sweden - a study on whether the EU recommendations are applicable in Sweden; Friklassning av material fraan rivning av kaerntekniska anlaeggningar i Sverige - en utredning om EU:s rekommenderade regler aer tillaempbara i Sverige

    Energy Technology Data Exchange (ETDEWEB)

    Hamrefors, Gunilla [Westinghouse Electric Sweden AB, Vaesteraas (Sweden)

    2004-02-01

    The report presents a study on whether the EU recommendations on clearance of metals, buildings and building rubble from the dismantling of nuclear facilities are applicable in Sweden. Analyses are made to estimate the amounts of waste that would be released from dismantling of the Swedish nuclear power plants and to what degree the costs of the licence holders would be influenced. A summary and evaluation of different methods and equipments for measurement is also given. The main conclusion is that the EU recommendations are applicable in Sweden.

  5. The future of nuclear energy in Sweden: An introductory economic analysis

    International Nuclear Information System (INIS)

    Banks, F.E.

    1996-01-01

    According to many observers, Swedish nuclear electricity is the safest in the world, owing to the high technological level in Sweden. This electricity is also among the least expensive because of the high capacity factors in Swedish nuclear installations. Even so, there may soon be an attempt to begin dismantling the Swedish nuclear sector, which in turn, could lead to serious problems for the Swedish macroeconomy. This article attempts to provide an analysis of some of the key economic issues associated with a Swedish nuclear retreat

  6. The on-line low temperature nuclear orientation facility NICOLE

    International Nuclear Information System (INIS)

    Ohtsubo, T; Roccia, S; Gaulard, C; Stone, N J; Stone, J R; Köster, U; Nikolov, J; Veskovic, M; Simpson, G S

    2017-01-01

    We review major experiments and results obtained by the on-line low temperature nuclear orientation method at the NICOLE facility at ISOLDE, CERN since the year 2000 and highlight their general physical impact. This versatile facility, providing a large degree of controlled nuclear polarization, was used for a long-standing study of magnetic moments at shell closures in the region Z  = 28, N  = 28–50 but also for dedicated studies in the deformed region around A  ∼ 180. Another physics program was conducted to test symmetry in the weak sector and constrain weak coupling beyond V–A . Those two programs were supported by careful measurements of the involved solid state physics parameters to attain the full sensitivity of the technique and provide interesting interdisciplinary results. Future plans for this facility include the challenging idea of measuring the beta–gamma–neutron angular distributions from polarized beta delayed neutron emitters, further test of fundamental symmetries and obtaining nuclear structure data used in medical applications. The facility will also continue to contribute to both the nuclear structure and fundamental symmetry test programs. (paper)

  7. Operating experience from Swedish nuclear power plants, 2000

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    From a safety point of view, 2000 was - as were previous years - satisfactory. Total electricity production from the Swedish nuclear power stations amounted to 54.2 TWh, which was over 20% less than the 70.2 TWh produced in 1999. The two main reasons for the reduction were the closure of Barsebaeck 1 on 1st December 1999, and the cutback in output from all reactors due to the particularly good availability of hydro power in 2000. Some reactors were even shut down completely as a result of the low power demand, which has not happened previously. The quantity of unutilised production capacity as a result of these reductions amounted to 11.6 TWh. Costdown operation prior to the annual overhaul shutdowns, which makes better use of the fuel, represented a further 2.1 TWh of unutilised capacity. The average energy availability of the three PWRs at Ringhals was 82.0%, while that of the eight BWRs was 84.2%. Forsmark 3, Ringhals 3 and Oskarshamn 3 all had average availabilities of over 90%. Of five events with safety implications that occurred in the plants during the year, three are described under Special Reporting. One of them relates to the crack indications in welds that were found in an American PWR in the autumn, and which were subsequently also found in Ringhals 4.

  8. Operating experience from Swedish nuclear power plants, 2000

    International Nuclear Information System (INIS)

    2001-01-01

    From a safety point of view, 2000 was - as were previous years - satisfactory. Total electricity production from the Swedish nuclear power stations amounted to 54.2 TWh, which was over 20% less than the 70.2 TWh produced in 1999. The two main reasons for the reduction were the closure of Barsebaeck 1 on 1st December 1999, and the cutback in output from all reactors due to the particularly good availability of hydro power in 2000. Some reactors were even shut down completely as a result of the low power demand, which has not happened previously. The quantity of unutilised production capacity as a result of these reductions amounted to 11.6 TWh. Costdown operation prior to the annual overhaul shutdowns, which makes better use of the fuel, represented a further 2.1 TWh of unutilised capacity. The average energy availability of the three PWRs at Ringhals was 82.0%, while that of the eight BWRs was 84.2%. Forsmark 3, Ringhals 3 and Oskarshamn 3 all had average availabilities of over 90%. Of five events with safety implications that occurred in the plants during the year, three are described under Special Reporting. One of them relates to the crack indications in welds that were found in an American PWR in the autumn, and which were subsequently also found in Ringhals 4

  9. Inventory extension at the Nuclear Materials Storage Facility

    International Nuclear Information System (INIS)

    Stanbro, W.D.; Longmire, V.; Olinger, C.T.; Argo, P.E.

    1996-09-01

    The planned renovation of the Nuclear Material Storage Facility (NMSF) at Los Alamos National Laboratory will be a significant addition to the plutonium storage capacity of the nuclear weapons complex. However, the utility of the facility may be impaired by an overly conservative approach to performing inventories of material in storage. This report examines options for taking advantage of provisions in Department of Energy orders to extend the time between inventories. These extensions are based on a combination of modern surveillance technology, facility design features, and revised operational procedures. The report also addresses the possibility that NMSF could be the site of some form of international inspection as part of the US arms control and nonproliferation policy

  10. A new Brazilian regulation for the security of nuclear material and nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Tavares, Renato L.A.; Filho, Josélio S.M.; Torres, Luiz F.B.; Lima, Alexandre R., E-mail: renato.tavares@cnen.gov.br, E-mail: joselio@cnen.gov.br, E-mail: ltorres@cnen.gov.br, E-mail: alexandre.lima@cnen.gov.br [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil). Diretoria de Radioproteção e Segurança Nuclear; Lima, Fabiano P.C., E-mail: fabianopetruceli@outlook.com [Presidência da República, Brasilia, DF (Brazil). Gabinete de Segurança Institucional

    2017-07-01

    The present paper aims to outline the challenges related to the elaboration and concepts involved in a regulatory transition from a purely prescriptive approach to a combined approach that mixes performance-based concepts and evaluation metrics based on statistical data of equipment and personnel. This methodology might represent an improvement compared to a purely prescriptive approach, in which the regulatory authority defines the measures to be taken by operators of nuclear facilities to prevent theft, sabotage events, and mitigate their consequences. The prescriptive approach, despite having the advantages of clarity in the definition of requirements, simplicity in regulatory terms (inspections to verify compliance), and homogeneity in relation to various facilities, does not allow a clear and effective performance measurement, may provide insufficient or excessive security measures (with excessive expenditure of material and human resources), and the possibility of providing a false sense of security. It is known that, in many countries, the state-sponsored nuclear security regime mixes elements of the two mentioned approaches, prescriptive and based on performance, which is not Brazilian practice nowadays. Such methodological developments happened globally due to the increase of threat level for nuclear facilities and materials. The currently regulation in force is CNEN-NE 2.01, which provides a set of measures intended to implement Physical Protection Systems in Nuclear, Radiological Facilities as well as Transport Operations, and all documents related to security of such issues. The new regulation, named CNEN-NN 2.01, will focus only on Nuclear Material and Facilities (two other regulations specific for Security of Radioactive Sources and Transport Operations are under elaboration process). CNEN NN 2.01 is intended to provide further adherence to new international recommendations, e.g, IAEA INFCIRC 225 Rev.5 (NSS 13), which is currently regarded as the

  11. A new Brazilian regulation for the security of nuclear material and nuclear facilities

    International Nuclear Information System (INIS)

    Tavares, Renato L.A.; Filho, Josélio S.M.; Torres, Luiz F.B.; Lima, Alexandre R.; Lima, Fabiano P.C.

    2017-01-01

    The present paper aims to outline the challenges related to the elaboration and concepts involved in a regulatory transition from a purely prescriptive approach to a combined approach that mixes performance-based concepts and evaluation metrics based on statistical data of equipment and personnel. This methodology might represent an improvement compared to a purely prescriptive approach, in which the regulatory authority defines the measures to be taken by operators of nuclear facilities to prevent theft, sabotage events, and mitigate their consequences. The prescriptive approach, despite having the advantages of clarity in the definition of requirements, simplicity in regulatory terms (inspections to verify compliance), and homogeneity in relation to various facilities, does not allow a clear and effective performance measurement, may provide insufficient or excessive security measures (with excessive expenditure of material and human resources), and the possibility of providing a false sense of security. It is known that, in many countries, the state-sponsored nuclear security regime mixes elements of the two mentioned approaches, prescriptive and based on performance, which is not Brazilian practice nowadays. Such methodological developments happened globally due to the increase of threat level for nuclear facilities and materials. The currently regulation in force is CNEN-NE 2.01, which provides a set of measures intended to implement Physical Protection Systems in Nuclear, Radiological Facilities as well as Transport Operations, and all documents related to security of such issues. The new regulation, named CNEN-NN 2.01, will focus only on Nuclear Material and Facilities (two other regulations specific for Security of Radioactive Sources and Transport Operations are under elaboration process). CNEN NN 2.01 is intended to provide further adherence to new international recommendations, e.g, IAEA INFCIRC 225 Rev.5 (NSS 13), which is currently regarded as the

  12. Air filters for use at nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Linder, P [Aktiebolaget Atomenergi, Studsvik, Nykoeping (Sweden)

    1970-12-01

    The ventilation system of a nuclear facility plays a vital role in ensuring that the air in working areas and the environment remains free from radioactive contamination. An earlier IAEA publication, Techniques for Controlling Air Pollution from the Operation of Nuclear Facilities, Safety Series No. 17, deals with the design and operation of ventilation systems at nuclear facilities. These systems are usually provided with air-cleaning devices which remove the contaminants from the air. This publication is intended as a guide to those who are concerned with the design of air-filtering systems and with the testing, operation and maintenance of air-filter installations at nuclear facilities. Emphasis is mainly placed on so-called high-efficiency particulate air filters (HEPA filters) and on providing general information on them. Besides describing the usual filter types, their dimensions and construction materials, the guidebook attempts to explain their properties and behaviour under different operating conditions. It also gives advice on testing and handling the filters so that effective and safe performance is ensured. The guidebook should serve as an introduction to the use of high efficiency particulate air filters in countries where work with radioactive materials has only recently commenced. The list of references at the end of the book indicates sources of more advanced information for those who already have comprehensive experience in this field. It is assumed here that the filters are obtained from a manufacturer, and the guidebook thus contains no information on the design and development of the filter itself, nor does it deal with the cleaning of the intake air to a plant, with gas sorption or protective respiratory equipment.

  13. Air filters for use at nuclear facilities

    International Nuclear Information System (INIS)

    Linder, P.

    1970-01-01

    The ventilation system of a nuclear facility plays a vital role in ensuring that the air in working areas and the environment remains free from radioactive contamination. An earlier IAEA publication, Techniques for Controlling Air Pollution from the Operation of Nuclear Facilities, Safety Series No. 17, deals with the design and operation of ventilation systems at nuclear facilities. These systems are usually provided with air-cleaning devices which remove the contaminants from the air. This publication is intended as a guide to those who are concerned with the design of air-filtering systems and with the testing, operation and maintenance of air-filter installations at nuclear facilities. Emphasis is mainly placed on so-called high-efficiency particulate air filters (HEPA filters) and on providing general information on them. Besides describing the usual filter types, their dimensions and construction materials, the guidebook attempts to explain their properties and behaviour under different operating conditions. It also gives advice on testing and handling the filters so that effective and safe performance is ensured. The guidebook should serve as an introduction to the use of high efficiency particulate air filters in countries where work with radioactive materials has only recently commenced. The list of references at the end of the book indicates sources of more advanced information for those who already have comprehensive experience in this field. It is assumed here that the filters are obtained from a manufacturer, and the guidebook thus contains no information on the design and development of the filter itself, nor does it deal with the cleaning of the intake air to a plant, with gas sorption or protective respiratory equipment

  14. Stakeholder involvement in decommissioning nuclear facilities

    International Nuclear Information System (INIS)

    2007-01-01

    Significant numbers of nuclear facilities will need to be decommissioned in the coming decades. In this context, NEA member countries are placing increasing emphasis on the involvement of stakeholders in the associated decision procedures. This study reviews decommissioning experience with a view to identifying stakeholder concerns and best practice in addressing them. The lessons learnt about the end of the facility life cycle can also contribute to better foresight in siting and building new facilities. This report will be of interest to all major players in the field of decommissioning, in particular policy makers, implementers, regulators and representatives of local host communities

  15. Technological Advances, Human Performance, and the Operation of Nuclear Facilities

    Science.gov (United States)

    Corrado, Jonathan K.

    Many unfortunate and unintended adverse industrial incidents occur across the United States each year, and the nuclear industry is no exception. Depending on their severity, these incidents can be problematic for people, the facilities, and surrounding environments. Human error is a contributing factor in many such incidents. This dissertation first explored the hypothesis that technological changes that affect how operators interact within the systems of the nuclear facilities exacerbate the cost of incidents caused by human error. I conducted a review of nuclear incidents in the United States from 1955 through 2010 that reached Level 3 (serious incident) or higher on the International Nuclear Events Scale (INES). The cost of each incident at facilities that had recently undergone technological changes affecting plant operators' jobs was compared to the cost of events at facilities that had not undergone changes. A t-test determined a statistically significant difference between the two groups, confirming the hypothesis. Next, I conducted a follow-on study to determine the impact of the incorporation of new technologies into nuclear facilities. The data indicated that spending more money on upgrades increased the facility's capacity as well as the number of incidents reported, but the incident severity was minor. Finally, I discuss the impact of human error on plant operations and the impact of evolving technology on the 21st-century operator, proposing a methodology to overcome these challenges by applying the systems engineering process.

  16. Current Status and Issues of Nuclear Engineering Research and Educational Facilities in Universities

    International Nuclear Information System (INIS)

    2004-01-01

    It is important to discuss about nuclear engineering research and educational facilities in universities after new educational foundation. 12 universities investigated issues and a countermeasure of them. The results of a questionnaire survey, issues and countermeasure are shown in this paper. The questionnaire on the future nuclear researches, development of education, project, maintenance of nuclear and radioactive facilities and accelerator, control of uranium in subcritical test facilities, use of new corporation facilities, the fixed number of student, number of graduate, student experiments, themes of experiments and researches, the state of educational facilities are carried out. The results of questionnaire were summarized as followings: the fixed number of student (B/M/D) on nuclear engineering, exercise of reactor, education, themes, educational and research facilities, significance of nuclear engineering education in university and proposal. (S.Y.)

  17. Lessons Learned from Design and Construction of New US Nuclear Facility

    International Nuclear Information System (INIS)

    Seamans, S. E.; Horvath, D. A.

    2012-01-01

    For reasons related to licensing uncertainty, economic slowdown, and questionable financial backing, no new nuclear facility projects have been undertaken in the United States since the Three Mile Island Incident in 1979; however, a need for such facilities (both nuclear power plants and nuclear fuel facilities) continues and various incentives leading to the start of a nuclear renaissance have occurred. One incentive is a complete overhaul by the US Nuclear Regulatory Commission of the earlier two step licensing process under 10 CFR 50. The earlier approach required first a construction permit and then an operating license, whereas the new approach allows a more streamlined (one step) combined license (COL) approach utilizing Standard Design Certifications via the regulatory framework created by 10 CFR 52. Other incentives include US Government backed loan guarantees as well as private company contributions. One aspect to the new process has been consideration and implementation of many new topic-specific regulations and industry standards which have continued to evolve during the past 30 years in spite of the lack of new plant design and construction activity. Therefore, an Owner attempting a new nuclear facility project under 10 CFR 52 needs to address a myriad of new requirements previously unconsidered. Several new projects including both power plants and fuel facilities have begun the new licensing process with its many new requirements to consider, but a uranium enrichment facility has run the gamut first. This paper will summarize many of the lessons learned from designing, constructing and testing this first new nuclear facility to be built in the US in over 30 years.(author).

  18. Yearly program of safety research in nuclear power facilities from fiscal 1981 to 1985

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    Nuclear safety research plans for nuclear power facilities and others from fiscal 1981 to 1985 are presented for the following areas: the safety of LWR fuel, loss-of-coolant accidents, the structural safety of LWR installations, the reduction of radioactive material release from nuclear power facilities, the stochastic safety evaluation of nuclear power facilities, the aseismicity of nuclear power facilities, the safety of nuclear fuel facilities, and the safety of nuclear fuel transport vessels. In the respective areas, the needs for research and the outline of research works are summarized. Then, about the major research works in each area, the purpose, contents, term and responsible institution of the research are given. (Mori, K.)

  19. Preparedness against nuclear power accidents

    International Nuclear Information System (INIS)

    1985-01-01

    This booklet contains information about the organization against nuclear power accidents, which exist in the four Swedish counties with nuclear power plants. It is aimed at classes 7-9 of the Swedish schools. (L.E.)

  20. Movements and instability in the Swedish bedrock

    International Nuclear Information System (INIS)

    Moerner, N.A.

    1977-01-01

    The report gives a geological evaluation of the Swedish bedrock and its movements during the last 20,000 years, which may serve as a base for further evaluations of the possibilities of storing nuclear waste in the bedrock. The Swedish bedrock is by no means stable. Like all other bedrocks it is unstable. The Swedish bedrock has an old and rich tectono-geodynamic inheritance. Irregularities in the uplift in the form of shoreline bends and isobase irregularities have been established with ancient shorelines and geodetic data. They are in general all related to major faultlines and bedrock seams. Bouldery end moraines and bouldery ground in general register paleopseismic activity -(these areas must hence be excluded as alternatives for storage of nuclear waste in the bedrock). The next ice age, is either on its way or it will, under the most favorable circumstances, have begun 20,000years from now (AP). At the next ice age, all the seismic and neotectonic effects from the deglaciation period will be repeated. During an ice age. Nuclear waste cannot bestored in the bedrock. If one succed in finding a Precambrain bedrock unit within an area of smooth uplift, absence of recent earthquakes, the bedrock surface of which shows few fractures and no faultlines, and where the surroundings exhibit normal moraine features and normal till composition, this area must still be evaluated with respect to that which will happen and may happen in connection with the next ice age and in connection with the cyclic gravitational changes in the present linear uplift. (author)

  1. Nuclear facility decommissioning and site remedial actions

    International Nuclear Information System (INIS)

    Owen, P.T.; Knox, N.P.; Ferguson, S.D.; Fielden, J.M.; Schumann, P.L.

    1989-09-01

    The 576 abstracted references on nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the tenth in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Citations to foreign and domestic literature of all types--technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions--have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's Remedial Action Programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Program, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Uranium Mill Tailings Management, (7) Technical Measurements Center, and (8) General Remedial Action Program Studies. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication description. Indexes are provided for author, corporate affiliation, title work, publication description, geographic location, subject category, and keywords

  2. Nuclear facility decommissioning and site remedial actions

    Energy Technology Data Exchange (ETDEWEB)

    Owen, P.T.; Knox, N.P.; Ferguson, S.D.; Fielden, J.M.; Schumann, P.L.

    1989-09-01

    The 576 abstracted references on nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the tenth in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Citations to foreign and domestic literature of all types--technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions--have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's Remedial Action Programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Program, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Uranium Mill Tailings Management, (7) Technical Measurements Center, and (8) General Remedial Action Program Studies. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication description. Indexes are provided for author, corporate affiliation, title work, publication description, geographic location, subject category, and keywords.

  3. Emergency planning and preparedness for nuclear facilities

    International Nuclear Information System (INIS)

    Koelzer, W.

    1988-01-01

    Nuclear installations are designed, constructed and operated in such a way that the probability for an incident or accident is very low and the probability for a severe accident with catastrophic consequences is extremely small. These accidents represent the residual risk of the nuclear installation, and this residual risk can be decreased on one hand by a better design, construction and operation and on the other hand by planning and taking emergency measures inside the facility and in the environment of the facility. By way of introduction and definition it may be indicated to define some terms pertaining to the subject in order to make for more uniform understanding. (orig./DG)

  4. Nuclear safety and radiation protection report of the Paluel nuclear facilities - 2014

    International Nuclear Information System (INIS)

    2015-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 103, 104, 114 and 115). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2014, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  5. Nuclear safety and radiation protection report of the Penly nuclear facilities - 2014

    International Nuclear Information System (INIS)

    2015-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 136 and 140). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2014, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  6. Nuclear safety and radiation protection report of the Paluel nuclear facilities - 2013

    International Nuclear Information System (INIS)

    2014-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 103, 104, 114 and 115). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2013, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  7. Nuclear safety and radiation protection report of the Civaux nuclear facilities - 2014

    International Nuclear Information System (INIS)

    2015-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 158 and 159). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2014, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  8. Nuclear safety and radiation protection report of Cruas-Meysse nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 111 and 112). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  9. Nuclear safety and radiation protection report of the Penly nuclear facilities - 2013

    International Nuclear Information System (INIS)

    2014-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 136 and 140). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2013, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  10. Nuclear safety and radiation protection report of the Fessenheim nuclear facilities - 2014

    International Nuclear Information System (INIS)

    2015-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INB no. 75). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2014, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  11. Nuclear safety and radiation protection report of the Golfech nuclear facilities - 2014

    International Nuclear Information System (INIS)

    2015-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 135 and 142). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2014, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  12. Nuclear safety and radiation protection report of the Civaux nuclear facilities - 2013

    International Nuclear Information System (INIS)

    2014-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 158 and 159). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2013, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  13. Nuclear safety and radiation protection report of the Flamanville nuclear facilities - 2013

    International Nuclear Information System (INIS)

    2014-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 108, 109 and 167 (under construction)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2013, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  14. Nuclear safety and radiation protection report of the Chooz nuclear facilities - 2014

    International Nuclear Information System (INIS)

    2015-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 139, 144 and 163 (under dismantling)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2014, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  15. Nuclear safety and radiation protection report of the Cattenom nuclear facilities - 2013

    International Nuclear Information System (INIS)

    2014-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 124, 125, 126 and 137). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2013, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  16. Nuclear safety and radiation protection report of the Chooz nuclear facilities - 2013

    International Nuclear Information System (INIS)

    2014-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 139, 144 and 163 (under dismantling)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2013, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  17. Nuclear safety and radiation protection report of the Blayais nuclear facilities - 2013

    International Nuclear Information System (INIS)

    2014-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 86 and 110). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2013, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  18. Nuclear safety and radiation protection report of the Cattenom nuclear facilities - 2014

    International Nuclear Information System (INIS)

    2015-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 124, 125, 126 and 137). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2014, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  19. Nuclear safety and radiation protection report of the Flamanville nuclear facilities - 2014

    International Nuclear Information System (INIS)

    2015-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 108, 109 and 167 (under construction)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2014, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  20. Designing a Physical Security System for Risk Reduction in a Hypothetical Nuclear Facility

    International Nuclear Information System (INIS)

    Saleh, A.A.; Abd Elaziz, M.

    2017-01-01

    Physical security in a nuclear facility means detection, prevention and response to threat, the ft, sabotage, unauthorized access and illegal transfer involving radioactive and nuclear material. This paper proposes a physical security system designing concepts to reduce the risk associated with variant threats to a nuclear facility. This paper presents a study of the unauthorized removal and sabotage in a hypothetical nuclear facility considering deter, delay and response layers. More over, the study involves performing any required upgrading to the security system by investigating the nuclear facility layout and considering all physical security layers design to enhance the weakness for risk reduction