WorldWideScience

Sample records for swcnt-based biosensor arrays

  1. Design & fabrication of cantilever array biosensors

    DEFF Research Database (Denmark)

    Boisen, Anja; Thundat, T

    2009-01-01

    Surface immobilization of functional receptors on microfabricated cantilever arrays offers a new paradigm for the development of biosensors based on nanomechanics. Microcantilever-based systems are capable of real-time, multiplexed detection of unlabeled disease markers in extremely small volumes......, electronic processing, and even local telemetry on a single chip have the potential of satisfying the need for highly sensitive and selective multiple-target detection in very small samples. Here we will review the design and fabrication process of cantilever-based biosensors.......Surface immobilization of functional receptors on microfabricated cantilever arrays offers a new paradigm for the development of biosensors based on nanomechanics. Microcantilever-based systems are capable of real-time, multiplexed detection of unlabeled disease markers in extremely small volumes...

  2. Tin Oxide Nanorod Array-Based Electrochemical Hydrogen Peroxide Biosensor

    Directory of Open Access Journals (Sweden)

    Liu Jinping

    2010-01-01

    Full Text Available Abstract SnO2 nanorod array grown directly on alloy substrate has been employed as the working electrode of H2O2 biosensor. Single-crystalline SnO2 nanorods provide not only low isoelectric point and enough void spaces for facile horseradish peroxidase (HRP immobilization but also numerous conductive channels for electron transport to and from current collector; thus, leading to direct electrochemistry of HRP. The nanorod array-based biosensor demonstrates high H2O2 sensing performance in terms of excellent sensitivity (379 μA mM−1 cm−2, low detection limit (0.2 μM and high selectivity with the apparent Michaelis–Menten constant estimated to be as small as 33.9 μM. Our work further demonstrates the advantages of ordered array architecture in electrochemical device application and sheds light on the construction of other high-performance enzymatic biosensors.

  3. Biosensor Arrays for Estimating Molecular Concentration in Fluid Flows

    CERN Document Server

    Abolfath-Beygi, Maryam

    2011-01-01

    This paper constructs dynamical models and estimation algorithms for the concentration of target molecules in a fluid flow using an array of novel biosensors. Each biosensor is constructed out of protein molecules embedded in a synthetic cell membrane. The concentration evolves according to an advection-diffusion partial differential equation which is coupled with chemical reaction equations on the biosensor surface. By using averaging theory methods and the divergence theorem, an approximate model is constructed that describes the asymptotic behaviour of the concentration as a system of ordinary differential equations. The estimate of target molecules is then obtained by solving a nonlinear least squares problem. It is shown that the estimator is strongly consistent and asymptotically normal. An explicit expression is obtained for the asymptotic variance of the estimation error. As an example, the results are illustrated for a novel biosensor built out of protein molecules.

  4. A Conductometric Indium Oxide Semiconducting Nanoparticle Enzymatic Biosensor Array

    Directory of Open Access Journals (Sweden)

    Tianhong Cui

    2011-09-01

    Full Text Available We report a conductometric nanoparticle biosensor array to address the significant variation of electrical property in nanomaterial biosensors due to the random network nature of nanoparticle thin-film. Indium oxide and silica nanoparticles (SNP are assembled selectively on the multi-site channel area of the resistors using layer-by-layer self-assembly. To demonstrate enzymatic biosensing capability, glucose oxidase is immobilized on the SNP layer for glucose detection. The packaged sensor chip onto a ceramic pin grid array is tested using syringe pump driven feed and multi-channel I–V measurement system. It is successfully demonstrated that glucose is detected in many different sensing sites within a chip, leading to concentration dependent currents. The sensitivity has been found to be dependent on the channel length of the resistor, 4–12 nA/mM for channel lengths of 5–20 µm, while the apparent Michaelis-Menten constant is 20 mM. By using sensor array, analytical data could be obtained with a single step of sample solution feeding. This work sheds light on the applicability of the developed nanoparticle microsensor array to multi-analyte sensors, novel bioassay platforms, and sensing components in a lab-on-a-chip.

  5. A Conductometric Indium Oxide Semiconducting Nanoparticle Enzymatic Biosensor Array

    Science.gov (United States)

    Lee, Dongjin; Ondrake, Janet; Cui, Tianhong

    2011-01-01

    We report a conductometric nanoparticle biosensor array to address the significant variation of electrical property in nanomaterial biosensors due to the random network nature of nanoparticle thin-film. Indium oxide and silica nanoparticles (SNP) are assembled selectively on the multi-site channel area of the resistors using layer-by-layer self-assembly. To demonstrate enzymatic biosensing capability, glucose oxidase is immobilized on the SNP layer for glucose detection. The packaged sensor chip onto a ceramic pin grid array is tested using syringe pump driven feed and multi-channel I–V measurement system. It is successfully demonstrated that glucose is detected in many different sensing sites within a chip, leading to concentration dependent currents. The sensitivity has been found to be dependent on the channel length of the resistor, 4–12 nA/mM for channel lengths of 5–20 μm, while the apparent Michaelis-Menten constant is 20 mM. By using sensor array, analytical data could be obtained with a single step of sample solution feeding. This work sheds light on the applicability of the developed nanoparticle microsensor array to multi-analyte sensors, novel bioassay platforms, and sensing components in a lab-on-a-chip. PMID:22163696

  6. Development of conductometric biosensor array for simultaneous determination of maltose, lactose, sucrose and glucose.

    Science.gov (United States)

    Soldatkin, O O; Peshkova, V M; Saiapina, O Y; Kucherenko, I S; Dudchenko, O Y; Melnyk, V G; Vasylenko, O D; Semenycheva, L M; Soldatkin, A P; Dzyadevych, S V

    2013-10-15

    The aim of this work was to develop an array of biosensors for simultaneous determination of four carbohydrates in solution. Several enzyme systems selective to lactose, maltose, sucrose and glucose were immobilised on the surface of four conductometric transducers and served as bio-recognition elements of the biosensor array. Direct enzyme analysis carried out by the developed biosensors was highly sensitive to the corresponding substrates. The analysis lasted 2 min. The dynamic range of substrate determination extended from 0.001 mM to 1.0-3.0mM, and strongly depended on the enzyme system used. An effect of the solution pH, ionic strength and buffer capacity on the biosensors responses was investigated; the conditions of simultaneous operation of all biosensors were optimised. The data on cross-impact of the substrates of all biosensors were obtained; the biosensor selectivity towards possible interfering carbohydrates was tested. The developed biosensor array showed good signal reproducibility and storage stability. The biosensor array is suited for simultaneous, quick, simple, and selective determination of maltose, lactose, sucrose and glucose. © 2013 Elsevier B.V. All rights reserved.

  7. Polycrystalline-Diamond MEMS Biosensors Including Neural Microelectrode-Arrays.

    Science.gov (United States)

    Varney, Michael W; Aslam, Dean M; Janoudi, Abed; Chan, Ho-Yin; Wang, Donna H

    2011-08-15

    Diamond is a material of interest due to its unique combination of properties, including its chemical inertness and biocompatibility. Polycrystalline diamond (poly-C) has been used in experimental biosensors that utilize electrochemical methods and antigen-antibody binding for the detection of biological molecules. Boron-doped poly-C electrodes have been found to be very advantageous for electrochemical applications due to their large potential window, low background current and noise, and low detection limits (as low as 500 fM). The biocompatibility of poly-C is found to be comparable, or superior to, other materials commonly used for implants, such as titanium and 316 stainless steel. We have developed a diamond-based, neural microelectrode-array (MEA), due to the desirability of poly-C as a biosensor. These diamond probes have been used for in vivo electrical recording and in vitro electrochemical detection. Poly-C electrodes have been used for electrical recording of neural activity. In vitro studies indicate that the diamond probe can detect norepinephrine at a 5 nM level. We propose a combination of diamond micro-machining and surface functionalization for manufacturing diamond pathogen-microsensors.

  8. Polycrystalline-Diamond MEMS Biosensors Including Neural Microelectrode-Arrays

    Directory of Open Access Journals (Sweden)

    Donna H. Wang

    2011-08-01

    Full Text Available Diamond is a material of interest due to its unique combination of properties, including its chemical inertness and biocompatibility. Polycrystalline diamond (poly-C has been used in experimental biosensors that utilize electrochemical methods and antigen-antibody binding for the detection of biological molecules. Boron-doped poly-C electrodes have been found to be very advantageous for electrochemical applications due to their large potential window, low background current and noise, and low detection limits (as low as 500 fM. The biocompatibility of poly-C is found to be comparable, or superior to, other materials commonly used for implants, such as titanium and 316 stainless steel. We have developed a diamond-based, neural microelectrode-array (MEA, due to the desirability of poly-C as a biosensor. These diamond probes have been used for in vivo electrical recording and in vitro electrochemical detection. Poly-C electrodes have been used for electrical recording of neural activity. In vitro studies indicate that the diamond probe can detect norepinephrine at a 5 nM level. We propose a combination of diamond micro-machining and surface functionalization for manufacturing diamond pathogen-microsensors.

  9. The research of differential reference electrode arrayed flexible IGZO glucose biosensor based on microfluidic framework

    Science.gov (United States)

    Chen, Jian-Syun; Chou, Jung-Chuan; Liao, Yi-Hung; Chen, Ruei-Ting; Huang, Min-Siang; Wu, Tong-Yu

    2017-03-01

    This study used a fast, simple, and low-cost method to fabricate arrayed flexible glucose biosensor, and the glucose biosensor was integrated with microfluidic framework for investigating sensing characteristics of glucose biosensor at the dynamic conditions. The indium gallium zinc oxide (IGZO) was adopted as sensing membrane and it was deposited on aluminum electrodes / polyethylene terephthalate (PET) substrate by the radio frequency sputtering system. Then, we utilized screen-printed technology to accomplish miniaturization of glucose biosensor. Finally, the glucose sensing membrane was composed of glucose oxidase (GOx) and nafion, which was dropped on IGZO sensing membrane to complete glucose biosensor. According to the experimental results, we found that optimal sensing characteristics of arrayed flexible IGZO glucose biosensor at the dynamic conditions were better than at the static conditions. The optimal average sensitivity and linearity of the arrayed flexible IGZO glucose biosensor were 7.255 mV/mM and 0.994 at 20 µL/min flow rate, respectively.

  10. Biosensors.

    Science.gov (United States)

    Rechnitz, Garry A.

    1988-01-01

    Describes theory and principles behind biosensors that incorporate biological components as part of a sensor or probe. Projects major applications in medicine and veterinary medicine, biotechnology, food and agriculture, environmental studies, and the military. Surveys current use of biosensors. (ML)

  11. Self-testing of micro-electrode array implemented as a bio-sensor

    NARCIS (Netherlands)

    Liu, H.; Dumas, N.; Richardson, A.

    2007-01-01

    Micro-electrode array (MEA) is widely used in bio-sensor systems. The surface degradation of MEA is a frequently reported problem by its end-users (Qinetiq Winfrith). A self-testing method is developed by comparing the impedance of each electrode and thus obtaining a distribution of all the

  12. Towards an integrated biosensor array for simultaneous and rapid multi-analysis of endocrine disrupting chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Scognamiglio, Viviana, E-mail: viviana.scognamiglio@mlib.ic.cnr.it [IC-CNR Istituto di Cristallografia, AdR1 Dipartimento Agroalimentare - Via Salaria Km 29.3 00015, Rome (Italy); Pezzotti, Italo; Pezzotti, Gianni; Cano, Juan; Manfredonia, Ivano [Biosensor S.r.l. - Via degli Olmetti 44 00060 Formello, Rome (Italy); Buonasera, Katia [IC-CNR Istituto di Cristallografia, AdR1 Dipartimento Agroalimentare - Via Salaria Km 29.3 00015, Rome (Italy); Arduini, Fabiana; Moscone, Danila; Palleschi, Giuseppe [Universita di Roma Tor Vergata, Dipartimento di Scienze e Tecnologie Chimiche - Via della Ricerca Scientifica 00133, Rome (Italy); Giardi, Maria Teresa [IC-CNR Istituto di Cristallografia, AdR1 Dipartimento Agroalimentare - Via Salaria Km 29.3 00015, Rome (Italy)

    2012-11-02

    Highlights: Black-Right-Pointing-Pointer A multitask biosensor for the detection of endocrine disrupting chemicals is proposed. Black-Right-Pointing-Pointer The sensing system employ an array of biological recognition elements. Black-Right-Pointing-Pointer Amperometric and optical transduction methods are provided in an integrated biosensor together with flow control systems. Black-Right-Pointing-Pointer The biosensing device results in an integrated, automatic and portable system for environmental and agrifood application. - Abstract: In this paper we propose the construction and application of a portable multi-purpose biosensor array for the simultaneous detection of a wide range of endocrine disruptor chemicals (EDCs), based on the recognition operated by various enzymes and microorganisms. The developed biosensor combines both electrochemical and optical transduction systems, in order to increase the number of chemical species which can be monitored. Considering to the maximum residue level (MRL) of contaminants established by the European Commission, the biosensor system was able to detect most of the chemicals analysed with very high sensitivity. In particular, atrazine and diuron were detected with a limit of detection of 0.5 nM, with an RSD% less than 5%; paraoxon and chlorpyrifos were revealed with a detection of 5 {mu}M and 4.5 {mu}M, respectively, with an RSD% less than 6%; catechol and bisphenol A were identified with a limit of detection of 1 {mu}M and 35 {mu}M respectively, with an RSD% less than 5%.

  13. Arrays of SOI photonic wire biosensors for label-free molecular detection

    Science.gov (United States)

    Densmore, Adam; Xu, Dan-Xia; Vachon, Martin; Janz, Siegfried; Ma, Rubin; Li, Yunhui; Lopinski, Gregory; Luebbert, Christian C.; Liu, Qing Y.; Schmid, Jens H.; Delâge, André; Cheben, Pavel

    2010-02-01

    We present an SOI biosensor microarray chip that allows multiple molecular binding reactions to be simultaneously monitored. The individual biosensors are formed using 0.26 × 0.45 μm2 silicon photonic wire waveguides, which are arranged in compact Mach-Zehnder interferometer geometries with near temperature independent response. The sharp bend radius permitted by the photonic wires is exploited to form dense spiral waveguide structures that provide several millimeters of path length in a compact 130 μm diameter circular area. This design provides the high sensitivity of a long waveguide, while maintaining compatibility with commercial microarray spotting tools. For low volume analyte delivery the sensor array chip contains a monolithically integrated microfluidic channel formed in an SU-8 overlayer. Multiple antibody-antigen reactions are observed in real-time by using an infrared camera to monitor the optical powers emerging from the sensor array output waveguides.

  14. Simultaneous Profiling of DNA Mutation and Methylation by Melting Analysis Using Magnetoresistive Biosensor Array

    DEFF Research Database (Denmark)

    Rizzi, Giovanni; Lee, Jung-Rok; Dahl, Christina

    2017-01-01

    Epigenetic modifications, in particular DNA methylation, are gaining increasing interest as complementary information to DNA mutations for cancer diagnostics and prognostics. We introduce a method to simultaneously profile DNA mutation and methylation events for an array of sites with single site...... specificity. Genomic (mutation) or bisulphite-treated (methylation) DNA is amplified using nondiscriminatory primers, and the amplicons are then hybridized to a giant magnetoresistive (GMR) biosensor array followed by melting curve measurements. The GMR biosensor platform offers scalable multiplexed detection...... of DNA hybridization, which is insensitive to temperature variation. The melting curve approach further enhances the assay specificity and tolerance to variations in probe length. We demonstrate the utility of this method by simultaneously profiling five mutation and four methylation sites in human...

  15. Array of biosensors for discrimination of grapes according to grape variety, vintage and ripeness

    Energy Technology Data Exchange (ETDEWEB)

    Medina-Plaza, C. [Department of Inorganic Chemistry, Engineers School, Universidad de Valladolid, 47011 Valladolid (Spain); Saja, J.A. de [Department of Condensed Matter Physics, Faculty of Sciences, Universidad de Valladolid, 47011 Valladolid (Spain); Fernández-Escudero, J.A. [Estacion Enologica de Castilla y Leon, Rueda (Spain); Barajas, E. [ITACYL, Valladolid (Spain); Medrano, G. [Bodega Cooperativa de Cigales, Valladolid (Spain); Rodriguez-Mendez, M.L., E-mail: mluz@eii.uva.es [Department of Inorganic Chemistry, Engineers School, Universidad de Valladolid, 47011 Valladolid (Spain)

    2016-12-01

    A bioelectronic tongue based on nanostructured biosensors specific for the simultaneous detection of sugars and phenols has been developed. The array combined oxidases and dehydrogenases immobilized on a lipidic layer prepared using the Langmuir-Blodgett technique where Glucose oxidase, D-Fructose dehydrogenase, Tyrosinase or Laccase were imbibed. A phthalocyanine was co-immobilized in the sensing layer and used as electron mediator. The array thus formed has been used to analyze grapes and provides global information about the samples while providing specific information about their phenolic and their sugar content. Using Principal Component Analysis (PCA) the array of voltammetric biosensors has been successfully used to discriminate musts prepared from different varieties of grapes (Tempranillo, Garnacha, Cabernet-Sauvignon, Prieto Picudo and Mencía). Differences could be also detected between grapes of the same variety and cultivar harvested in two successive vintages (2012 and 2013). Moreover, the ripening of grapes could be monitored from veraison to maturity due to the changes in their phenolic and sugar content. Using Partial Least Squares (PLS-1) analysis, excellent correlations have been found between the responses provided by the array of biosensors and classical parameters directly related to phenols (total polyphenol index, TPI) and sugar concentration (degree Brix) measured by chemical methods with correlation coefficients close to 1 and errors close to 0. It is also worthy to notice the good correlations found with parameters associated with the pH and acidity that can be explained by taking into account the influence of the pH in the oxidation potentials of the phenols and in the enzymatic activity. This bioelectronic tongue can assess simultaneously the sugar and the phenolic content of grapes and could be used to monitor the maturity of the fruit and could be adapted easily to field analysis. - Graphical abstract: A bioelectronic tongue based on

  16. Patterning pallet arrays for cell selection based on high-resolution measurements of fluorescent biosensors.

    Science.gov (United States)

    Shadpour, Hamed; Zawistowski, Jon S; Herman, Annadele; Hahn, Klaus; Allbritton, Nancy L

    2011-06-24

    Pallet arrays enable cells to be separated while they remain adherent to a surface and provide a much greater range of cell selection criteria relative to that of current technologies. However there remains a need to further broaden cell selection criteria to include dynamic intracellular signaling events. To demonstrate the feasibility of measuring cellular protein behavior on the arrays using high resolution microscopy, the surfaces of individual pallets were modified to minimize the impact of scattered light at the pallet edges. The surfaces of the three-dimensional pallets on an array were patterned with a coating such as fibronectin using a customized stamping tool. Micropatterns of varying shape and size were printed in designated regions on the pallets in single or multiple steps to demonstrate the reliability and precision of patterning molecules on the pallet surface. Use of a fibronectin matrix stamped at the center of each pallet permitted the localization of H1299 and mouse embryonic fibroblast (MEF) cells to the pallet centers and away from the edges. Compared to pallet arrays with fibronectin coating the entire top surface, arrays with a central fibronectin pattern increased the percentage of cells localized to the pallet center by 3-4-fold. Localization of cells to the pallet center also enabled the physical separation of cells from optical artifacts created by the rough pallet side walls. To demonstrate the measurement of dynamic intracellular signaling on the arrays, fluorescence measurements of high spatial resolution were performed using a RhoA GTPase biosensor. This biosensor utilized fluorescence resonance energy transfer (FRET) between cyan fluorescent protein (CFP) and yellow fluorescent protein (YFP) to measure localized RhoA activity in cellular ruffles at the cell periphery. These results demonstrated the ability to perform spatially resolved measurements of fluorescence-based sensors on the pallet arrays. Thus, the patterned pallet arrays

  17. ZnO nanorods array based field-effect transistor biosensor for phosphate detection.

    Science.gov (United States)

    Ahmad, Rafiq; Ahn, Min-Sang; Hahn, Yoon-Bong

    2017-07-15

    A promising field-effect transistor (FET) biosensor has been fabricated based on pyruvate oxidase (PyO) functionalized ZnO nanorods (ZnO NRs) array grown on seeded SiO 2 /Si substrate. The direct and vertically grown ZnO NRs on the seeded SiO 2 /Si substrate offers high surface area for enhanced PyO immobilization, which further helps to detect phosphate with higher specificity. Under optimum conditions, the fabricated FET biosensor provided a convenient method for phosphate detection with high sensitivity (80.57μAmM -1 cm -2 ) in a wide-linear range (0.1µM-7.0mM). Additionally, it also showed very low effect of electroactive species, stability and good reproducibility. Encouraging results suggest that this approach presents a promising method to be used for field measurements to detect phosphate. Copyright © 2017. Published by Elsevier Inc.

  18. ZnO nano-array-based EGFET biosensor for glucose detection

    Science.gov (United States)

    Qi, Junjie; Zhang, Huihui; Ji, Zhaoxia; Xu, Minxuan; Zhang, Yue

    2015-06-01

    Electrochemical biosensors are normally based on enzymatic catalysis of a reaction that produces or consumes electrons and the sensing membranes dominate the performance. In this work, ZnO nano-array-based EGFETs were fabricated for pH and glucose detection. The ZnO nano-arrays prepared via low-temperature hydrothermal method were well-aligned, with an average length of 2 μm and diameter of 100-150 nm, and have a typical hexagonal wurtzite structure. The sensor performed with a sensitivity of 45 mV/pH and response time of about 6-7 s from pH = 4-12. UV irradiation can improve the Vref response as a result of the formation of a depletion region at the surface of ZnO nanomaterials. Due to its high specific surface area, the ZnO nano-array EGFET sensor showed a sensitivity of -0.395 mV/μM to the glucose detection in a concentration range between 20 and 100 μM. These EGFET glucose biosensors demonstrate a low detectable concentration (20 μM) with good linearity, therefore may be used to detect glucose in saliva and tears at much lower concentrations than that in blood.

  19. Glucose concentration determination based on silica sol-gel encapsulated glucose oxidase optical biosensor arrays.

    Science.gov (United States)

    Chang, Gang; Tatsu, Yoshiro; Goto, Tatsushi; Imaishi, Hiromasa; Morigaki, Kenichi

    2010-11-15

    Optical biosensor arrays for rapidly determining the glucose concentrations in a large number of beverage and blood samples were developed by immobilizing glucose oxidase (GOD) on oxygen sensor layer. Glucose oxidase was first encapsulated in silica based gels through sol-gel approach and then immobilized on 96-well microarrays integrated with oxygen sensing film at the bottom. The oxygen sensing film was made of an organically modified silica film (ORMOSIL) doped with tris(4,7-diphenyl-1,10-phenanthroline) ruthenium dichloride (Ru(dpp)(3)Cl(2)). The oxidation reaction of glucose by glucose oxidase could be monitored through fluorescence intensity enhancement due to the oxygen consumption in the reaction. The luminescence changing rate evaluated by the dynamic transient method (DTM) was correlated with the glucose concentration with the wide linear range from 0.1 to 5.0mM (Y=13.28X-0.128, R=0.9968) and low detection limit (0.06 mM). The effects of pH and coexisting ions were systemically studied. The results showed that the optical biosensor arrays worked under a wide range of pH value, and normal interfering species such as Na(+), K(+), Cl(-), PO(4)(3-), and ascorbic acid did not cause apparent interference on the measurement. The activity of glucose oxidase was mostly retained even after 2-month storage, indicating their long-term stability. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. High density array fabrication and readout method for a fiber optic biosensor

    Science.gov (United States)

    Pinkel, D.; Gray, J.

    1997-11-25

    The invention relates to the fabrication and use of biosensors comprising a plurality of optical fibers each fiber having attached to its ``sensor end`` biological ``binding partners`` (molecules that specifically bind other molecules to form a binding complex such as antibody-antigen, lectin-carbohydrate, nucleic acid-nucleic acid, biotin-avidin, etc.). The biosensor preferably bears two or more different species of biological binding partner. The sensor is fabricated by providing a plurality of groups of optical fibers. Each group is treated as a batch to attach a different species of biological binding partner to the sensor ends of the fibers comprising that bundle. Each fiber, or group of fibers within a bundle, may be uniquely identified so that the fibers, or group of fibers, when later combined in an array of different fibers, can be discretely addressed. Fibers or groups of fibers are then selected and discretely separated from different bundles. The discretely separated fibers are then combined at their sensor ends to produce a high density sensor array of fibers capable of assaying simultaneously the binding of components of a test sample to the various binding partners on the different fibers of the sensor array. The transmission ends of the optical fibers are then discretely addressed to detectors--such as a multiplicity of optical sensors. An optical signal, produced by binding of the binding partner to its substrate to form a binding complex, is conducted through the optical fiber or group of fibers to a detector for each discrete test. By examining the addressed transmission ends of fibers, or groups of fibers, the addressed transmission ends can transmit unique patterns assisting in rapid sample identification by the sensor. 9 figs.

  1. Disposable micro-fluidic biosensor array for online parallelized cell adhesion kinetics analysis on quartz crystal resonators

    DEFF Research Database (Denmark)

    Cama, G.; Jacobs, T.; Dimaki, Maria

    2010-01-01

    In this contribution we present a new disposable micro-fluidic biosensor array for the online analysis of adherent Madin Darby canine kidney (MDCK-II) cells on quartz crystal resonators (QCRs). The device was conceived for the parallel cultivation of cells providing the same experimental conditions...

  2. Detection of Staphylococcus epidermidis by a Quartz Crystal Microbalance Nucleic Acid Biosensor Array Using Au Nanoparticle Signal Amplification

    Directory of Open Access Journals (Sweden)

    Weiling Fu

    2008-10-01

    Full Text Available Staphylococcus epidermidis is a critical pathogen of nosocomial blood infections, resulting in significant morbidity and mortality. A piezoelectric quartz crystal microbalance (QCM nucleic acid biosensor array using Au nanoparticle signal amplification was developed to rapidly detect S. epidermidis in clinical samples. The synthesized thiolated probes specific targeting S. epidermidis 16S rRNA gene were immobilized on the surface of QCM nucleic acid biosensor arrays. Hybridization was induced by exposing the immobilized probes to the PCR amplified fragments of S. epidermidis, resulting in a mass change and a consequent frequency shift of the QCM biosensor. To further enhance frequency shift results from above described hybridizations, streptavidin coated Au nanoparticles were conjugated to the PCR amplified fragments. The results showed that the lowest detection limit of current QCM system was 1.3×103 CFU/mL. A linear correlation was found when the concentration of S. epidermidis varied from 1.3×103 to 1.3×107 CFU/mL. In addition, 55 clinical samples were detected with both current QCM biosensor system and conventional clinical microbiological method, and the sensitivity and specificity of current QCM biosensor system were 97.14% and 100%, respectively. In conclusion, the current QCM system is a rapid, low-cost and sensitive method that can be used to identify infection of S. epidermidis in clinical samples.

  3. Clinical validation of integrated nucleic acid and protein detection on an electrochemical biosensor array for urinary tract infection diagnosis.

    Directory of Open Access Journals (Sweden)

    Ruchika Mohan

    Full Text Available BACKGROUND: Urinary tract infection (UTI is a common infection that poses a substantial healthcare burden, yet its definitive diagnosis can be challenging. There is a need for a rapid, sensitive and reliable analytical method that could allow early detection of UTI and reduce unnecessary antibiotics. Pathogen identification along with quantitative detection of lactoferrin, a measure of pyuria, may provide useful information towards the overall diagnosis of UTI. Here, we report an integrated biosensor platform capable of simultaneous pathogen identification and detection of urinary biomarker that could aid the effectiveness of the treatment and clinical management. METHODOLOGY/PRINCIPAL FINDINGS: The integrated pathogen 16S rRNA and host lactoferrin detection using the biosensor array was performed on 113 clinical urine samples collected from patients at risk for complicated UTI. For pathogen detection, the biosensor used sandwich hybridization of capture and detector oligonucleotides to the target analyte, bacterial 16S rRNA. For detection of the protein biomarker, the biosensor used an analogous electrochemical sandwich assay based on capture and detector antibodies. For this assay, a set of oligonucleotide probes optimized for hybridization at 37°C to facilitate integration with the immunoassay was developed. This probe set targeted common uropathogens including E. coli, P. mirabilis, P. aeruginosa and Enterococcus spp. as well as less common uropathogens including Serratia, Providencia, Morganella and Staphylococcus spp. The biosensor assay for pathogen detection had a specificity of 97% and a sensitivity of 89%. A significant correlation was found between LTF concentration measured by the biosensor and WBC and leukocyte esterase (p<0.001 for both. CONCLUSION/SIGNIFICANCE: We successfully demonstrate simultaneous detection of nucleic acid and host immune marker on a single biosensor array in clinical samples. This platform can be used for

  4. The Highly Robust Electrical Interconnects and Ultrasensitive Biosensors Based on Embedded Carbon Nanotube Arrays

    Science.gov (United States)

    Li, Jun; Cassell, Alan; Koehne, Jessica; Chen, Hua; Ng, Hou Tee; Ye, Qi; Stevens, Ramsey; Han, Jie; Meyyappan, M.

    2003-01-01

    We report on our recent breakthroughs in two different applications using well-aligned carbon nanotube (CNT) arrays on Si chips, including (1) a novel processing solution for highly robust electrical interconnects in integrated circuit manufacturing, and (2) the development of ultrasensitive electrochemical DNA sensors. Both of them rely on the invention of a bottom-up fabrication scheme which includes six steps, including: (a) lithographic patterning, (b) depositing bottom conducting contacts, (c) depositing metal catalysts, (d) CNT growth by plasma enhanced chemical vapor deposition (PECVD), (e) dielectric gap-filling, and (f) chemical mechanical polishing (CMP). Such processes produce a stable planarized surface with only the open end of CNTs exposed, whch can be further processed or modified for different applications. By depositing patterned top contacts, the CNT can serve as vertical interconnects between the two conducting layers. This method is fundamentally different fiom current damascene processes and avoids problems associated with etching and filling of high aspect ratio holes at nanoscales. In addition, multiwalled CNTs (MWCNTs) are highly robust and can carry a current density of 10(exp 9) A/square centimeters without degradation. It has great potential to help extending the current Si technology. The embedded MWCNT array without the top contact layer can be also used as a nanoelectrode array in electrochemical biosensors. The cell time-constant and sensitivity can be dramatically improved. By functionalizing the tube ends with specific oligonucleotide probes, specific DNA targets can be detected with electrochemical methods down to subattomoles.

  5. High sensitive photonic crystal multiplexed biosensor array using H0 sandwiched cavities

    Science.gov (United States)

    Arafa, Safia; Bouchemat, Mohamed; Bouchemat, Touraya; Benmerkhi, Ahlem

    2017-03-01

    We theoretically investigate a high sensitive photonic crystal integrated biosensor array structure which is potentially used for label-free multiplexed sensing. The proposed device consists of an array of three sandwiched H0 cavities patterned above silicon on insulator (SOI) substrate; each cavity has been designed for different cavity spacing and different resonant wavelength. Results obtained by performing finite-difference time-domain (FDTD) simulations, indicate that the response of each detection unit shifts independently in terms of refractive index variations. The optimized design makes possible the combination of sensing as a function of location, as well as a function of time in the same platform. A refractive index sensitivity of 520nm/RIU and a quality factor over 104 are both achieved with an accompanied crosstalk of less than -26 dB. In addition, the device presents an improved detection limit (DL) of 1.24.10-6 RIU and a wide measurement range. These features make the designed device a promising element for performing label-free multiplexed detection in monolithic substrate for medical diagnostics and environmental monitoring.

  6. High sensitive photonic crystal multiplexed biosensor array using H0 sandwiched cavities

    Directory of Open Access Journals (Sweden)

    Arafa Safia

    2017-01-01

    Full Text Available We theoretically investigate a high sensitive photonic crystal integrated biosensor array structure which is potentially used for label-free multiplexed sensing. The proposed device consists of an array of three sandwiched H0 cavities patterned above silicon on insulator (SOI substrate; each cavity has been designed for different cavity spacing and different resonant wavelength. Results obtained by performing finite-difference time-domain (FDTD simulations, indicate that the response of each detection unit shifts independently in terms of refractive index variations. The optimized design makes possible the combination of sensing as a function of location, as well as a function of time in the same platform. A refractive index sensitivity of 520nm/RIU and a quality factor over 104 are both achieved with an accompanied crosstalk of less than -26 dB. In addition, the device presents an improved detection limit (DL of 1.24.10-6 RIU and a wide measurement range. These features make the designed device a promising element for performing label-free multiplexed detection in monolithic substrate for medical diagnostics and environmental monitoring.

  7. Self-Powered Photoelectrochemical Biosensor Based on CdS/RGO/ZnO Nanowire Array Heterostructure.

    Science.gov (United States)

    Zhao, Kun; Yan, Xiaoqin; Gu, Yousong; Kang, Zhuo; Bai, Zhiming; Cao, Shiyao; Liu, Yichong; Zhang, Xiaohui; Zhang, Yue

    2016-01-13

    A CdS/reduced graphene oxide (RGO)/ZnO nanowire array (NWAs) heterostructure is designed, which exhibits enhanced photoelectrochemical (PEC) activity compared to pure ZnO, RGO/ZnO, and CdS/ZnO. The enhancement can be attributed to the synergistic effect of the high electron mobility of ordered 1D ZnO NWAs, extended visible-light absorption of CdS nanocrystals, and the formed type II band alignment between them. Moreover, the incorporation of RGO further promotes the charge carrier separation and transfer process due to its excellent charge collection and shuttling characteristics. Subsequently, the CdS/RGO/ZnO heterostructure is successfully utilized for the PEC bioanalysis of glutathione at 0 V (vs Ag/AgCl). The self-powered device demonstrates satisfactory sensing performance with rapid response, a wide detection range from 0.05 mm to 1 mm, an acceptable detection limit of 10 μm, as well as certain selectivity, reproducibility, and stability. Therefore, the CdS/RGO/ZnO heterostructure has opened up a promising channel for the development of PEC biosensors. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. How Microelectrode Array-Based Chick Forebrain Neuron Biosensors Respond to Glutamate NMDA Receptor Antagonist AP5 and GABAA Receptor Antagonist Musimol.

    Science.gov (United States)

    Kuang, Serena Y; Yang, Xiaoqi; Wang, Zhonghai; Huang, Ting; Kindy, Mark; Xi, Tingfei; Gao, Bruce Z

    2016-09-01

    We have established a long-term, stable primary chick forebrain neuron (FBN) culture on a microelectrode array platform as a biosensor system for neurotoxicant screening and for neuroelectrophysiological studies for multiple purposes. This paper reports some of our results, which characterize the biosensor pharmacologically. Dose-response experiments were conducted using NMDA receptor antagonist AP5 and GABAA receptor agonist musimol (MUS). The chick FBN biosensor (C-FBN-biosensor) responds to the two agents in a pattern similar to that of rodent counterparts; the estimated EC50s (the effective concentration that causes 50% inhibition of the maximal effect) are 2.3 μM and 0.25 μM, respectively. Intercultural and intracultural reproducibility and long-term reusability of the C-FBN-biosensor are addressed and discussed. A phenomenon of sensitization of the biosensor that accompanies intracultural reproducibility in paired dose-response experiments for the same agent (AP5 or MUS) is reported. The potential application of the C-FBN-biosensor as an alternative to rodent biosensors in shared sensing domains (NMDA receptor and GABAA receptor) is suggested.

  9. How microelectrode array-based chick forebrain neuron biosensors respond to glutamate NMDA receptor antagonist AP5 and GABAA receptor antagonist musimol

    Directory of Open Access Journals (Sweden)

    Serena Y. Kuang

    2016-09-01

    Full Text Available We have established a long-term, stable primary chick forebrain neuron (FBN culture on a microelectrode array platform as a biosensor system for neurotoxicant screening and for neuroelectrophysiological studies for multiple purposes. This paper reports some of our results, which characterize the biosensor pharmacologically. Dose-response experiments were conducted using NMDA receptor antagonist AP5 and GABAA receptor agonist musimol (MUS. The chick FBN biosensor (C-FBN-biosensor responds to the two agents in a pattern similar to that of rodent counterparts; the estimated EC50s (the effective concentration that causes 50% inhibition of the maximal effect are 2.3 μM and 0.25 μM, respectively. Intercultural and intracultural reproducibility and long-term reusability of the C-FBN-biosensor are addressed and discussed. A phenomenon of sensitization of the biosensor that accompanies intracultural reproducibility in paired dose-response experiments for the same agent (AP5 or MUS is reported. The potential application of the C-FBN-biosensor as an alternative to rodent biosensors in shared sensing domains (NMDA receptor and GABAA receptor is suggested.

  10. Silicon Wafer-Based Platinum Microelectrode Array Biosensor for Near Real-Time Measurement of Glutamate in Vivo

    Directory of Open Access Journals (Sweden)

    Nigel T. Maidment

    2008-08-01

    Full Text Available Using Micro-Electro-Mechanical-Systems (MEMS technologies, we have developed silicon wafer-based platinum microelectrode arrays (MEAs modified with glutamate oxidase (GluOx for electroenzymatic detection of glutamate in vivo. These MEAs were designed to have optimal spatial resolution for in vivo recordings. Selective detection of glutamate in the presence of the electroactive interferents, dopamine and ascorbic acid, was attained by deposition of polypyrrole and Nafion. The sensors responded to glutamate with a limit of detection under 1μM and a sub-1-second response time in solution. In addition to extensive in vitro characterization, the utility of these MEA glutamate biosensors was also established in vivo. In the anesthetized rat, these MEA glutamate biosensors were used for detection of cortically-evoked glutamate release in the ventral striatum. The MEA biosensors also were applied to the detection of stress-induced glutamate release in the dorsal striatum of the freely-moving rat.

  11. Directed-Assembly of Carbon Nanotubes on Soft Substrates for Flexible Biosensor Array

    Science.gov (United States)

    Lee, Hyoung Woo; Koh, Juntae; Lee, Byung Yang; Kim, Tae Hyun; Lee, Joohyung; Hong, Seunghun; Yi, Mihye; Jhon, Young Min

    2009-03-01

    We developed a method to selectively assemble and align carbon nanotubes (CNTs) on soft substrates for flexible biosensors. In this strategy, thin oxide layer was deposited on soft substrates via low temperature plasma enhanced chemical vapor deposition, and linker-free assembly process was applied onto the oxide surface where the assembly of carbon nanotubes was guided by methyl-terminated molecular patterns on the oxide surface. The electrical characterization of the fabricated CNT devices exhibited typical p-type gating effect and 1/f noise behavior. The bare oxide regions near CNTs were functionalized with glutamate oxidase to fabricate selective biosensors to detect two forms of glutamate substances existing in different situations: L-glutamic acid, a neuro-transmitting material, and monosodium glutamate, a food additive.

  12. Directed assembly of carbon nanotubes on soft substrates for use as a flexible biosensor array

    Science.gov (United States)

    Koh, Juntae; Yi, Mihye; Lee, Byung Yang; Kim, Tae Hyun; Lee, Joohyung; Jhon, Young Min; Hong, Seunghun

    2008-12-01

    We have developed a method to selectively assemble and align carbon nanotubes (CNTs) on soft substrates for use as flexible biosensors. In this strategy, a thin oxide layer was deposited on soft substrates via low temperature plasma enhanced chemical vapor deposition, and a linker-free assembly process was applied on the oxide surface where the assembly of carbon nanotubes was guided by methyl-terminated molecular patterns on the oxide surface. The electrical characterization of the fabricated CNT devices exhibited a typical p-type gating effect and 1/f noise behavior. The bare oxide regions near CNTs were functionalized with glutamate oxidase to fabricate selective biosensors to detect two forms of glutamate substances existing in different situations: L-glutamic acid, a neurotransmitting material, and monosodium glutamate, a food additive.

  13. Highly efficient biosensors by using well-ordered ZnO/ZnS core/shell nanotube arrays

    Science.gov (United States)

    Tarish, Samar; Xu, Yang; Wang, Zhijie; Mate, Faten; Al-Haddad, Ahmed; Wang, Wenxin; Lei, Yong

    2017-10-01

    We have studied the fabrication of highly efficient glucose sensors using well-ordered heterogeneous ZnO/ZnS core/shell nanotube arrays (CSNAs). The modified electrodes exhibit a superior electrochemical response towards ferrocyanide/ferricyanide and in glucose sensing. Further, the fabricated glucose biosensor exhibited good performance over an acceptable linear range from 2.39 × 10-5 to 2.66 × 10-4 mM, with a sensitivity of 188.34 mA mM-1 cm-2, which is higher than that of the ZnO nanotube array counterpart. A low limit of detection was realized (24 μM), which is good compared with electrodes based on conventional structures. In addition, the enhanced direct electrochemistry of glucose oxidase indicates the fast electron transfer of ZnO/ZnS CSNA electrodes, with a heterogeneous electron transfer rate constant (K s) of 1.69 s-1. The fast electron transfer is attributed to the high conductivity of the modified electrodes. The presented ZnS shell can facilitate the construction of future sensors and enhance the ZnO surface in a biological environment.

  14. Denaturation strategies for detection of double stranded PCR products on GMR magnetic biosensor array

    DEFF Research Database (Denmark)

    Rizzi, Giovanni; Lee, Jung-Rok; Guldberg, Per

    2017-01-01

    Microarrays and other surface-based nucleic acid detection schemes rely on the hybridization of the target to surface-bound detection probes. We present the first comparison of two strategies to detect DNA using a giant magnetoresistive (GMR) biosensor platform starting from an initially double......-time binding signals. The first strategy, using off-chip heat denaturation followed by sequential on-chip incubation of the nucleic acids and MNPs, produces a signal that stabilizes quickly but the signal magnitude is reduced due to competitive rehybridization of the target in solution. The second strategy......, using magnetic capture of the double-stranded product followed by denaturing, produces a higher signal but the signal increase is limited by diffusion of the MNPs. Our results show that both strategies give highly reproducible results but that the signal obtained using magnetic capture is higher...

  15. Nano-arrays of SAM by dip-pen nanowriting (DPN) technique for futuristic bio-electronic and bio-sensor applications

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Pankaj B., E-mail: pankaj@ceeri.ernet.i [Central Electronics Engineering Research Institute, Pilani - 333 031, (Council of Scientific and Industrial Research, Delhi) (India); Kumar, A. [Central Electronics Engineering Research Institute, Pilani - 333 031, (Council of Scientific and Industrial Research, Delhi) (India); Saravanan, R. [Vellore Institute of Technology University, Vellore - 632 014 (India); Sharma, A.K.; Shekhar, Chandra [Central Electronics Engineering Research Institute, Pilani - 333 031, (Council of Scientific and Industrial Research, Delhi) (India)

    2010-11-30

    Nano-arrays of bio-molecules have potential applications in many areas namely, bio-sensors, bio/molecular electronics and virus detection. Spot array, micro-contact printing and photolithography are used for micron size array fabrications while Dip-Pen Nanowriting (DPN) is employed for submicron/nano size arrays. We have fabricated nano-dots of 16-MHA (16-mercaptohexadecanoic acid) self-assembled monolayer (SAM) on gold substrate by DPN technique with different dwell time under varying relative humidity. These patterns were imaged in the same system in LFM (Lateral Force Microscopy) mode with fast scanning speed (5 Hz). The effect of humidity on size variation of nano-dots has been studied. During experiments, relative humidity (RH) was varied from 20% to 60%, while the temperature was kept constant {approx} 25 {sup o}C. The minimum measured diameter of the dot is {approx} 294 nm at RH = 20% for a dwell time of 2 s. The thickness of the 16-MHA dots, estimated in NanoRule image analysis software is {approx} 2 nm, which agrees well with the length of single MHA molecule (2.2 nm). The line profile has been used to estimate the size and thickness of dots. The obtained results will be useful in further development of nano-array based bio-sensors and bio-electronic devices.

  16. Implantable VLSI systems for compression and communication in wireless biosensor recording arrays

    Science.gov (United States)

    Kamboh, Awais Mehmood

    Successful use of microelectrode arrays to record neural activity in the cortex has opened new opportunities for scientists to decode the intricate functionality of the human brain and the behavior of neurons that enable its complex operation. The resulting brain-machine interface devices play a critical role in enabling patients with neural disorders to achieve a better lifestyle. Such interfaces provide a direct interface to the brain and show great promise in many biomedical applications. This thesis explores some of the major obstacles impeding the advance of wireless neural implants and addresses them through development of highly efficient algorithms and implantable hardware. An overwhelming amount of data is generated by the microelectrode arrays, resulting in a data bandwidth bottleneck. To overcome this problem, an implantable system has been devised to enable control over the amount of data that must be transmitted without compromising the information contained in the array of neural signals. Furthermore, the nature of the wireless communication channel across the skin tissue is not well characterized. In this thesis, solutions have been developed to maximize that data throughput and enable unfailing yet low-power communication of bidirectional data between the implanted device and the external world. Finally, a unified energy-efficient, implantable CMOS integrated circuit was developed to address these two critical problems. The resulting integrated solution ensures seamless multi-modal operation, and thus establishes a pathway to the design of next-generation neuroprosthetics devices. Although the motivation for this thesis comes from the field of neuroprosthetics, the solutions devised are pertinent to a wide range of implantable applications.

  17. A gold nanohole array based surface-enhanced Raman scattering biosensor for detection of silver(i) and mercury(ii) in human saliva

    Science.gov (United States)

    Zheng, Peng; Li, Ming; Jurevic, Richard; Cushing, Scott K.; Liu, Yuxin; Wu, Nianqiang

    2015-06-01

    A surface-enhanced Raman scattering (SERS) biosensor has been developed by incorporating a gold nanohole array with a SERS probe (a gold nanostar@Raman-reporter@silica sandwich structure) into a single detection platform via DNA hybridization, which circumvents the nanoparticle aggregation and the inefficient Raman scattering issues. Strong plasmonic coupling between the Au nanostar and the Au nanohole array results in a large enhancement of the electromagnetic field, leading to amplification of the SERS signal. The SERS sensor has been used to detect Ag(i) and Hg(ii) ions in human saliva because both the metal ions could be released from dental amalgam fillings. The developed SERS sensor can be adapted as a general detection platform for non-invasive measurements of a wide range of analytes such as metal ions, small molecules, DNA and proteins in body fluids.A surface-enhanced Raman scattering (SERS) biosensor has been developed by incorporating a gold nanohole array with a SERS probe (a gold nanostar@Raman-reporter@silica sandwich structure) into a single detection platform via DNA hybridization, which circumvents the nanoparticle aggregation and the inefficient Raman scattering issues. Strong plasmonic coupling between the Au nanostar and the Au nanohole array results in a large enhancement of the electromagnetic field, leading to amplification of the SERS signal. The SERS sensor has been used to detect Ag(i) and Hg(ii) ions in human saliva because both the metal ions could be released from dental amalgam fillings. The developed SERS sensor can be adapted as a general detection platform for non-invasive measurements of a wide range of analytes such as metal ions, small molecules, DNA and proteins in body fluids. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr02142a

  18. Development of Highly Sensitive Bulk Acoustic Wave Device Biosensor Arrays for Screening and Early Detection of Prostate Cancer

    Science.gov (United States)

    2009-01-01

    frequency shifts experienced by the QCM in a biosensor application: 27             ∂ ∆ ⋅− ∂ ∆ ⋅+      ∆ −∆−=∆+ ∂ ∆∂ tVt i V h t t SS u

  19. Surface stress-based biosensors.

    Science.gov (United States)

    Sang, Shengbo; Zhao, Yuan; Zhang, Wendong; Li, Pengwei; Hu, Jie; Li, Gang

    2014-01-15

    Surface stress-based biosensors, as one kind of label-free biosensors, have attracted lots of attention in the process of information gathering and measurement for the biological, chemical and medical application with the development of technology and society. This kind of biosensors offers many advantages such as short response time (less than milliseconds) and a typical sensitivity at nanogram, picoliter, femtojoule and attomolar level. Furthermore, it simplifies sample preparation and testing procedures. In this work, progress made towards the use of surface stress-based biosensors for achieving better performance is critically reviewed, including our recent achievement, the optimally circular membrane-based biosensors and biosensor array. The further scientific and technological challenges in this field are also summarized. Critical remark and future steps towards the ultimate surface stress-based biosensors are addressed. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Fabrication of Flexible Arrayed Lactate Biosensor Based on Immobilizing LDH-NAD+ on NiO Film Modified by GO and MBs

    Science.gov (United States)

    Yan, Siao-Jie; Liao, Yi-Hung; Lai, Chih-Hsien; Wu, You-Xiang; Wu, Cian-Yi; Chen, Hsiang-Yi; Huang, Hong-Yu; Wu, Tong-Yu

    2017-01-01

    We proposed the flexible arrayed lactate biosensor based on immobilizing l-lactate dehydrogenase (LDH) and nicotinamide adenine dinucleotide (NAD+) on nickel oxide (NiO) film, and which the average sensitivity could be enhanced by using graphene oxide (GO) and magnetic beads (MBs). By using GO and MBs, it exhibits excellent sensitivity (45.397 mV/mM) with a linearity of 0.992 in a range of 0.2 mM to 3 mM. According to the results of electrochemical impedance spectroscopy (EIS), the electron transfer resistance of LDH-NAD+-MBs/GPTS/GO/NiO film was smaller than those of LDH-NAD+/GPTS/GO/NiO film and LDH-NAD+/GPTS/NiO film, and it presented the outstanding electron transfer ability. After that, the limit of detection, anti-interference effect and bending test were also investigated. PMID:28704960

  1. Optical biosensors.

    Science.gov (United States)

    Damborský, Pavel; Švitel, Juraj; Katrlík, Jaroslav

    2016-06-30

    Optical biosensors represent the most common type of biosensor. Here we provide a brief classification, a description of underlying principles of operation and their bioanalytical applications. The main focus is placed on the most widely used optical biosensors which are surface plasmon resonance (SPR)-based biosensors including SPR imaging and localized SPR. In addition, other optical biosensor systems are described, such as evanescent wave fluorescence and bioluminescent optical fibre biosensors, as well as interferometric, ellipsometric and reflectometric interference spectroscopy and surface-enhanced Raman scattering biosensors. The optical biosensors discussed here allow the sensitive and selective detection of a wide range of analytes including viruses, toxins, drugs, antibodies, tumour biomarkers and tumour cells. © 2016 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  2. Fabrication and characterization of gold nanocrown arrays on a gold film for a high-sensitivity surface plasmon resonance biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Munsik; Kim, Nak-hyeon; Eom, Seyoung [Department of Biomedical Engineering, Kyung Hee University, Yongin 446-701 (Korea, Republic of); Kim, Tae Woo [School of East–West Medical Science, Kyung Hee University, Yongin 446-701 (Korea, Republic of); Byun, Kyung Min, E-mail: kmbyun@khu.ac.kr [Department of Biomedical Engineering, Kyung Hee University, Yongin 446-701 (Korea, Republic of); Park, Hyeong-Ho, E-mail: hyeongho.park@kanc.re.kr [Nano Process Division, Korea Advanced Nano Fab Center, Suwon 443-270 (Korea, Republic of)

    2015-07-31

    We report on a versatile method to fabricate gold nanocrown arrays on a thin gold film based on ultraviolet nanoimprint lithography and tilted evaporation technique. We realize highly ordered 2-dimensional nanocrown arrays and characterize their sizes and morphologies using scanning electron microscopy. To demonstrate an enhanced surface plasmon resonance (SPR) detection by the fabricated gold nanocrown samples, biosensing experiments are performed by measuring SPR angle shift for biotin–streptavidin interaction and bulk refractive index change of dielectric medium. We hope that the suggested plasmonic platform with a high sensitivity could be extended to a variety of biomolecular binding reactions. - Highlights: • Gold nanocrown arrays are produced by nanoimprint lithography and tilted evaporation. • Use of gold nanocrown arrays can improve the sensor sensitivity significantly. • Improved sensitivity is due to enhanced field–matter interaction at gold nanocrowns.

  3. Aptamer- Based Label-Free Electrochemical Biosensor Array for the Detection of Total and Glycated Hemoglobin in Human Whole Blood.

    Science.gov (United States)

    Eissa, Shimaa; Zourob, Mohammed

    2017-04-21

    The increase of the level of glucose in blood leads to an increase in the fraction of glycated hemoglobin (HbA1c). Therefore, the percentage of HbA1c in the blood can serve as a marker for the average glucose level over the past three months and thus, it can be used to diagnose diabetes. Here, we report the selection, identification and characterization of specific DNA aptamers against HbA1c- and total hemoglobin (tHb) and their integration into an electrochemical array sensing platform. High affinity and specificity aptamers were selected in vitro showing dissociation constants of 2.8 and 2.7 nM for HbA1c and tHb, respectively. Thiol-modified forms of the aptamers were then immobilised on gold nanoparticles (AuNPs)-modified array electrodes and used for the label-free detection of HbA1c and tHb using square wave voltammetry. The voltammetric aptasensors showed high sensitivity with detection limits of 0.2 and 0.34 ng/ml for HbA1c and tHb, respectively. This array platform is superior to the currently available immunoassays in terms of simplicity, stability, ease of use, reduction of sample volume and low cost. Moreover, this method enabled the detection of HbA1c % in human whole blood without any pre-treatment, suggesting great promise of this platform for the diagnosis of diabetes.

  4. Aptamer- Based Label-Free Electrochemical Biosensor Array for the Detection of Total and Glycated Hemoglobin in Human Whole Blood

    OpenAIRE

    Shimaa Eissa; Mohammed Zourob

    2017-01-01

    The increase of the level of glucose in blood leads to an increase in the fraction of glycated hemoglobin (HbA1c). Therefore, the percentage of HbA1c in the blood can serve as a marker for the average glucose level over the past three months and thus, it can be used to diagnose diabetes. Here, we report the selection, identification and characterization of specific DNA aptamers against HbA1c- and total hemoglobin (tHb) and their integration into an electrochemical array sensing platform. High...

  5. Nanoplasmonic biosensors: current perspectives

    OpenAIRE

    Mukherji, Soumyo; Shukla,Gauri

    2015-01-01

    Gauri M Shukla, Soumyo MukherjiDepartment of Bioscience and Bioengineering, IIT Bombay, Mumbai, Maharashtra, IndiaAbstract: Recent advances in nanotechnology and nanofabrication have helped develop a wide variety of nanostructured platforms for use as nanoplasmonic biosensors. These can either be in solution phase or be confined on a substrate in the form of metallic nanofilms or periodic arrays. Plasmonic properties of these nanostructures depend on the size, shape, position, orientation, et...

  6. Biosensors in clinical chemistry - 2011 update.

    Science.gov (United States)

    D'Orazio, Paul

    2011-09-18

    Research activity and applications of biosensors for measurement of analytes of clinical interest over the last eight years are reviewed. Nanotechnology has been applied to improve performance of biosensors using electrochemical, optical, mechanical and physical modes of transduction, and to allow arrays of biosensors to be constructed for parallel sensing. Biosensors have been proposed for measurement of cancer biomarkers, cardiac biomarkers as well as biomarkers for autoimmune disease, infectious disease and for DNA analysis. Novel applications of biosensors include measurements in alternate sample types, such as saliva. Biosensors based on immobilized whole cells have found new applications, for example to detect the presence of cancer and to monitor the response of cancer cells to chemotherapeutic agents. The number of research reports describing new biosensors for analytes of clinical interest continues to increase; however, movement of biosensors from the research laboratory to the clinical laboratory has been slow. The greatest impact of biosensors will be felt at point-of-care testing locations without laboratory support. Integration of biosensors into reliable, easy-to-use and rugged instrumentation will be required to assure success of biosensor-based systems at the point-of-care. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Design, experimental verification, and analysis of a 1.8-V-input-range voltage-to-current converter using source degeneration for low-noise multimodal CMOS biosensor array

    Science.gov (United States)

    Niitsu, Kiichi; Ikeda, Kei; Muto, Keita; Nakazato, Kazuo

    2017-01-01

    A multimodal complementary metal-oxide semiconductor (CMOS) biosensor array manufactured using measurement methods such as potentiometry, amperometry, and impedimetry improves its cost competitiveness and measurement accuracy. In addition, it provides a wider range of application because it can obtain signals from multiple aspects. To develop high-signal-to-noise ratio (SNR) multimodal biosensor arrays, time-domain current integration was proposed in the literature and found to be effective. In addition to amperometry and impedimetry, it is possible to perform current integration using the potentiometry output by employing a voltage-to-current converter (VCC). However, a conventional VCC with a fixed transconductance mode does not provide a sufficient input range (<0.6 V) and its noise property has not been investigated. In this work, we investigate the design and noise property of a newly proposed VCC with source degeneration that enhances the input range. For evaluating the proposed method, a test chip was fabricated in a 0.6 µm CMOS. The measured results successfully demonstrate that the input range was enhanced from 0.6 to 1.8 V. Autonomous current limitation was also confirmed. The measured total input-referred noise was 0.445 mV (from 10 Hz to 10 kHz, assuming current integration at every 1 ms).

  8. Fully Printed and Encapsulated SWCNT-Based Thin Film Transistors via a Combination of R2R Gravure and Inkjet Printing.

    Science.gov (United States)

    Homenick, Christa M; James, Robert; Lopinski, Gregory P; Dunford, Jeffrey; Sun, Junfeng; Park, Hyejin; Jung, Younsu; Cho, Gyoujin; Malenfant, Patrick R L

    2016-10-04

    Fully printed thin film transistors (TFT) based on poly(9,9-di-n-dodecylfluorene) (PFDD) wrapped semiconducting single walled carbon nanotube (SWCNT) channels are fabricated by a practical route that combines roll-to-roll (R2R) gravure and ink jet printing. SWCNT network density is easily controlled via ink formulation (concentration and polymer:CNT ratio) and jetting conditions (droplet size, drop spacing, and number of printed layers). Optimum inkjet printing conditions are established on Si/SiO 2 in which an ink consisting of 6:1 PFDD:SWCNT ratio with 50 mg L -1 SWCNT concentration printed at a drop spacing of 20 μm results in TFTs with mobilities of ∼25 cm 2 V -1 s -1 and on-/off-current ratios > 10 5 . These conditions yield excellent network uniformity and are used in a fully additive process to fabricate fully printed TFTs on PET substrates with mobility values > 5 cm 2 V -1 s -1 (R2R printed gate electrode and dielectric; inkjet printed channel and source/drain electrodes). An inkjet printed encapsulation layer completes the TFT process (fabricated in bottom gate, top contact TFT configuration) and provides mobilities > 1 cm 2 V -1 s -1 with good operational stability, based on the performance of an inverter circuit. An array of 20 TFTs shows that most have less than 10% variability in terms of threshold voltage, transconductance, on-current, and subthreshold swing.

  9. A sensitive impedance biosensor based on immunomagnetic separation and urease catalysis for rapid detection of Listeria monocytogenes using an immobilization-free interdigitated array microelectrode.

    Science.gov (United States)

    Chen, Qi; Lin, Jianhan; Gan, Chengqi; Wang, Yuhe; Wang, Dan; Xiong, Yonghua; Lai, Weihua; Li, Yuntao; Wang, Maohua

    2015-12-15

    In this study, we described a novel impedance biosensor combining immunomagnetic separation with urease catalysis for sensitive detection of foodborne bacteria using Listeria monocytogenes as model and an immobilization-free microelectrode as detector. The monoclonal antibodies (MAbs) were immobilized on the surface of the magnetic nanoparticles (MNPs) with the diameter of 180 nm by biotin-streptavidin system for specifically and efficiently separating Listeria cells from sample background. The polyclonal antibodies (PAbs) and the urease were modified onto the surface of the gold nanoparticles (AuNPs) with the diameter of 20 nm and the modified AuNPs were used to react with Listera to form the MNP-MAb-Listeria-PAb-AuNP-urease sandwich complexes. The urease in the complexes could catalyze the hydrolysis of the urea into ammonium carbonate and this led to an increase in the ionic strength of the media, which could be detected by the microelectrode. The magnetic separation efficiencies for L. monocytogenes at the concentrations ranging from 3.0×10(1) to 3.0×10(4) CFU/mL were over 95% for the pure cultures and over 85% for the spiked lettuce samples. The lower detection limit of this biosensor for L. monocytogenes was found to be 300 CFU/mL in both the pure cultures and the spiked lettuce samples. The microelectrode was demonstrated to be reusable for over 50 times with thorough cleaning by deionized water. This biosensor showed its potential to provide a simple, low-cost and sensitive method for rapid screening of foodborne pathogens and could be extended for detection of other biological or chemical targets. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Fabrication of SWCNT based flexible chemiresistor

    Energy Technology Data Exchange (ETDEWEB)

    Rajput, Mayank, E-mail: mnk.rajput1@gmail.com; Das, S. [Sensors and Nanotechnology Group, CSIR-Central Electronics Engineering Research Institute, Pilani - 333031, Rajasthan (India); Kaur, Rajvinder [Punjabi University, Patiala-147002, Punjab (India); Kumar, Anil, E-mail: akumar1758@yahoo.co.in [Sensors and Nanotechnology Group, CSIR-Central Electronics Engineering Research Institute, Pilani - 333031, Rajasthan (India); Academy of Scientific and Innovative Research (AcSIR), New Delhi - 110001, India Tel.: +91-1596-246021, fax: +911596242294 (India)

    2016-04-13

    Carboxyl (-COOH) functionalized SWCNT chemiresistors have been realized on Kapton substrate patterned with Au microelectrodes by the drop casting of functionalized SWCNT dispersion in DI water. I-V measurements on fabricated chemiresistor showed ohmic behavior at different temperatures (25°C-120°C). The effect of bending on flexible functionalized SWCNT chemiresistor for different diameter has been measured. It has been found that bending at different radius of curvature doesn’t change the ohmic behavior of fabricated chemiresistor. Achieved results are promising for cheap flexible electronic devices.

  11. High-throughput epitope binning assays on label-free array-based biosensors can yield exquisite epitope discrimination that facilitates the selection of monoclonal antibodies with functional activity.

    Directory of Open Access Journals (Sweden)

    Yasmina Noubia Abdiche

    Full Text Available Here, we demonstrate how array-based label-free biosensors can be applied to the multiplexed interaction analysis of large panels of analyte/ligand pairs, such as the epitope binning of monoclonal antibodies (mAbs. In this application, the larger the number of mAbs that are analyzed for cross-blocking in a pairwise and combinatorial manner against their specific antigen, the higher the probability of discriminating their epitopes. Since cross-blocking of two mAbs is necessary but not sufficient for them to bind an identical epitope, high-resolution epitope binning analysis determined by high-throughput experiments can enable the identification of mAbs with similar but unique epitopes. We demonstrate that a mAb's epitope and functional activity are correlated, thereby strengthening the relevance of epitope binning data to the discovery of therapeutic mAbs. We evaluated two state-of-the-art label-free biosensors that enable the parallel analysis of 96 unique analyte/ligand interactions and nearly ten thousand total interactions per unattended run. The IBIS-MX96 is a microarray-based surface plasmon resonance imager (SPRi integrated with continuous flow microspotting technology whereas the Octet-HTX is equipped with disposable fiber optic sensors that use biolayer interferometry (BLI detection. We compared their throughput, versatility, ease of sample preparation, and sample consumption in the context of epitope binning assays. We conclude that the main advantages of the SPRi technology are its exceptionally low sample consumption, facile sample preparation, and unparalleled unattended throughput. In contrast, the BLI technology is highly flexible because it allows for the simultaneous interaction analysis of 96 independent analyte/ligand pairs, ad hoc sensor replacement and on-line reloading of an analyte- or ligand-array. Thus, the complementary use of these two platforms can expedite applications that are relevant to the discovery of therapeutic

  12. Recent advances in biosensor technology for potential applications - An overview

    Directory of Open Access Journals (Sweden)

    vigneshvar es

    2016-02-01

    Full Text Available Imperative utilization of biosensors has acquired paramount importance in the field of drug discovery, biomedicine, food safety standards, defence, security and environmental monitoring. This has led to the invention of precise and powerful analytical tools using biological sensing element as biosensor. Glucometers utilizing the strategy of electrochemical detection of oxygen or hydrogen peroxide using immobilized glucose oxidase electrode seeded the discovery of biosensors. Recent advances in biological techniques and instrumentation involving fluorescence tag to nanomaterials have increased the sensitive limit of biosensors. Use of aptamers or nucleotides, affibodies, peptide arrays and molecule imprinted polymers provide tools to develop innovative biosensors over classical methods. Integrated approaches provided a better perspective for developing specific and sensitive biosensors with high regenerative potentials. Variety of biosensors ranging from nanomaterials, polymers to microbes have wider potential applications. It is quite important to integrate multifaceted approaches to design biosensors that have the potential for diverse usage. In light of this, this review provides an overview of different types of biosensors being used ranging from electrochemical, fluorescence tagged, nanomaterials, silica or quartz and microbes for various biomedical and environmental applications with future outlook of biosensor technology.

  13. Recent Advances in Biosensor Technology for Potential Applications - An Overview.

    Science.gov (United States)

    Vigneshvar, S; Sudhakumari, C C; Senthilkumaran, Balasubramanian; Prakash, Hridayesh

    2016-01-01

    Imperative utilization of biosensors has acquired paramount importance in the field of drug discovery, biomedicine, food safety standards, defense, security, and environmental monitoring. This has led to the invention of precise and powerful analytical tools using biological sensing element as biosensor. Glucometers utilizing the strategy of electrochemical detection of oxygen or hydrogen peroxide using immobilized glucose oxidase electrode seeded the discovery of biosensors. Recent advances in biological techniques and instrumentation involving fluorescence tag to nanomaterials have increased the sensitive limit of biosensors. Use of aptamers or nucleotides, affibodies, peptide arrays, and molecule imprinted polymers provide tools to develop innovative biosensors over classical methods. Integrated approaches provided a better perspective for developing specific and sensitive biosensors with high regenerative potentials. Various biosensors ranging from nanomaterials, polymers to microbes have wider potential applications. It is quite important to integrate multifaceted approaches to design biosensors that have the potential for diverse usage. In light of this, this review provides an overview of different types of biosensors being used ranging from electrochemical, fluorescence tagged, nanomaterials, silica or quartz, and microbes for various biomedical and environmental applications with future outlook of biosensor technology.

  14. PHOTONIC CRYSTAL WAVEGUIDE BIOSENSOR

    Directory of Open Access Journals (Sweden)

    A. A. ZANISHEVSKAYA

    2013-04-01

    Full Text Available The hollow core photonic crystal waveguide biosensor is designed and described. The biosensor was tested in experiments for artificial sweetener identification in drinks. The photonic crystal waveguide biosensor has a high sensitivity to the optical properties of liquids filling up the hollow core. The compactness, good integration ability to different optical systems and compatibility for use in industrial settings make such biosensor very promising for various biomedical applications.

  15. Biosensors of bacterial cells.

    Science.gov (United States)

    Burlage, Robert S; Tillmann, Joshua

    2017-07-01

    Biosensors are devices which utilize both an electrical component (transducer) and a biological component to study an environment. They are typically used to examine biological structures, organisms and processes. The field of biosensors has now become so large and varied that the technology can often seem impenetrable. Yet the principles which underlie the technology are uncomplicated, even if the details of the mechanisms are elusive. In this review we confine our analysis to relatively current advancements in biosensors for the detection of whole bacterial cells. This includes biosensors which rely on an added labeled component and biosensors which do not have a labeled component and instead detect the binding event or bound structure on the transducer. Methods to concentrate the bacteria prior to biosensor analysis are also described. The variety of biosensor types and their actual and potential uses are described. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Biosensors and bioelectronics

    CERN Document Server

    Karunakaran, Chandran; Benjamin, Robson

    2015-01-01

    Biosensors and Bioelectronics presents the rapidly evolving methodologies that are relevant to biosensors and bioelectronics fabrication and characterization. The book provides a comprehensive understanding of biosensor functionality, and is an interdisciplinary reference that includes a range of interwoven contributing subjects, including electrochemistry, nanoparticles, and conducting polymers. Authored by a team of bioinstrumentation experts, this book serves as a blueprint for performing advanced fabrication and characterization of sensor systems-arming readers with an application-based re

  17. Dual-mode acoustic wave biosensors microarrays

    Science.gov (United States)

    Auner, Gregory W.; Shreve, Gina; Ying, Hao; Newaz, Golam; Hughes, Chantelle; Xu, Jianzeng

    2003-04-01

    We have develop highly sensitive and selective acoustic wave biosensor arrays with signal analysis systems to provide a fingerprint for the real-time identification and quantification of a wide array of bacterial pathogens and environmental health hazards. We have developed an unique highly sensitive dual mode acoustic wave platform prototype that, when combined with phage based selective detection elements, form a durable bacteria sensor. Arrays of these new real-time biosensors are integrated to form a biosensor array on a chip. This research and development program optimizes advanced piezoelectric aluminum nitride wide bandgap semiconductors, novel micromachining processes, advanced device structures, selective phage displays development and immobilization techniques, and system integration and signal analysis technology to develop the biosensor arrays. The dual sensor platform can be programmed to sense in a gas, vapor or liquid environment by switching between acoustic wave resonate modes. Such a dual mode sensor has tremendous implications for applications involving monitoring of pathogenic microorganisms in the clinical setting due to their ability to detect airborne pathogens. This provides a number of applications including hospital settings such as intensive care or other in-patient wards for the reduction of nosocomial infections and maintenance of sterile environments in surgical suites. Monitoring for airborn pathogen transmission in public transportation areas such as airplanes may be useful for implementation of strategies for redution of airborn transmission routes. The ability to use the same sensor in the liquid sensing mode is important for tracing the source of airborn pathogens to local liquid sources. Sensing of pathogens in saliva will be useful for sensing oral pathogens and support of decision-making strategies regarding prevention of transmission and support of treatment strategies.

  18. Impedimetric Biosensors and Immunosensors

    Directory of Open Access Journals (Sweden)

    Mamas I. Prodromidis

    2007-12-01

    Full Text Available The development of methods targeting the direct monitoring of antibody-antigen interactions is particularly attractive. The design of label-free affinity-based probing concepts is the objective of much current research, at both academic and industrial levels, towards establishing alternative methods to the already existing ELISA-based immunoassays. Among these, Electrochemical Impedance Spectroscopy (EIS represents one of the most powerful methods, due to the ability of EIS-based sensors to be more easily integrated into multi-array or microprocessor- controlled diagnostic tools. During the last decade, EIS and the concept of biochemical capacitors have been widely used for probing various types of biomolecular interactions (immunosensors, DNA hybridization, protein-protein interactions. So far, impedimetric or capacitive immunosensors have been successfully applied at the academic level. However, no prototypes have been released into the market, since major fundamental issues still exist. Even though this fact has brought the reliability of impedimetric immunosensors into question, features associated with electrochemical approaches, namely the ability to be miniaturized, remote control of implanted sensors, low cost of electrode mass production, and cost effective instrumentation (without need of high-energy sources keep impedimetric sensors particularly attractive as compared to other approaches based on microbalances, surface plasmon resonance or ellipsometry. This lecture outlines the theoretical background of impedimetric immunosensors and presents different types of impedimetric biosensors as well as the instrumental approaches that have been so far proposed in the literature.

  19. Acoustic biosensors.

    Science.gov (United States)

    Fogel, Ronen; Limson, Janice; Seshia, Ashwin A

    2016-06-30

    Resonant and acoustic wave devices have been researched for several decades for application in the gravimetric sensing of a variety of biological and chemical analytes. These devices operate by coupling the measurand (e.g. analyte adsorption) as a modulation in the physical properties of the acoustic wave (e.g. resonant frequency, acoustic velocity, dissipation) that can then be correlated with the amount of adsorbed analyte. These devices can also be miniaturized with advantages in terms of cost, size and scalability, as well as potential additional features including integration with microfluidics and electronics, scaled sensitivities associated with smaller dimensions and higher operational frequencies, the ability to multiplex detection across arrays of hundreds of devices embedded in a single chip, increased throughput and the ability to interrogate a wider range of modes including within the same device. Additionally, device fabrication is often compatible with semiconductor volume batch manufacturing techniques enabling cost scalability and a high degree of precision and reproducibility in the manufacturing process. Integration with microfluidics handling also enables suitable sample pre-processing/separation/purification/amplification steps that could improve selectivity and the overall signal-to-noise ratio. Three device types are reviewed here: (i) bulk acoustic wave sensors, (ii) surface acoustic wave sensors, and (iii) micro/nano-electromechanical system (MEMS/NEMS) sensors. © 2016 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  20. Biosensors for Cell Analysis.

    Science.gov (United States)

    Zhou, Qing; Son, Kyungjin; Liu, Ying; Revzin, Alexander

    2015-01-01

    Biosensors first appeared several decades ago to address the need for monitoring physiological parameters such as oxygen or glucose in biological fluids such as blood. More recently, a new wave of biosensors has emerged in order to provide more nuanced and granular information about the composition and function of living cells. Such biosensors exist at the confluence of technology and medicine and often strive to connect cell phenotype or function to physiological or pathophysiological processes. Our review aims to describe some of the key technological aspects of biosensors being developed for cell analysis. The technological aspects covered in our review include biorecognition elements used for biosensor construction, methods for integrating cells with biosensors, approaches to single-cell analysis, and the use of nanostructured biosensors for cell analysis. Our hope is that the spectrum of possibilities for cell analysis described in this review may pique the interest of biomedical scientists and engineers and may spur new collaborations in the area of using biosensors for cell analysis.

  1. Introduction to biosensors

    Science.gov (United States)

    Bhalla, Nikhil; Jolly, Pawan; Formisano, Nello

    2016-01-01

    Biosensors are nowadays ubiquitous in biomedical diagnosis as well as a wide range of other areas such as point-of-care monitoring of treatment and disease progression, environmental monitoring, food control, drug discovery, forensics and biomedical research. A wide range of techniques can be used for the development of biosensors. Their coupling with high-affinity biomolecules allows the sensitive and selective detection of a range of analytes. We give a general introduction to biosensors and biosensing technologies, including a brief historical overview, introducing key developments in the field and illustrating the breadth of biomolecular sensing strategies and the expansion of nanotechnological approaches that are now available. PMID:27365030

  2. BIOSENSORS FOR ENVIRONMENTAL APPLICATIONS

    Science.gov (United States)

    A review, with 19 references, is given on challenges and possible opportunities for the development of biosensors for environmental monitoring applications. The high cost and slow turnaround times typically associated with the measurement of regulated pollutants clearly indicates...

  3. Biosensors Incorporating Bimetallic Nanoparticles

    Directory of Open Access Journals (Sweden)

    John Rick

    2015-12-01

    Full Text Available This article presents a review of electrochemical bio-sensing for target analytes based on the use of electrocatalytic bimetallic nanoparticles (NPs, which can improve both the sensitivity and selectivity of biosensors. The review moves quickly from an introduction to the field of bio-sensing, to the importance of biosensors in today’s society, the nature of the electrochemical methods employed and the attendant problems encountered. The role of electrocatalysts is introduced with reference to the three generations of biosensors. The contributions made by previous workers using bimetallic constructs, grouped by target analyte, are then examined in detail; following which, the synthesis and characterization of the catalytic particles is examined prior to a summary of the current state of endeavor. Finally, some perspectives for the future of bimetallic NPs in biosensors are given.

  4. Recent Advances in Biosensor Technology for Potential Applications – An Overview

    Science.gov (United States)

    Vigneshvar, S.; Sudhakumari, C. C.; Senthilkumaran, Balasubramanian; Prakash, Hridayesh

    2016-01-01

    Imperative utilization of biosensors has acquired paramount importance in the field of drug discovery, biomedicine, food safety standards, defense, security, and environmental monitoring. This has led to the invention of precise and powerful analytical tools using biological sensing element as biosensor. Glucometers utilizing the strategy of electrochemical detection of oxygen or hydrogen peroxide using immobilized glucose oxidase electrode seeded the discovery of biosensors. Recent advances in biological techniques and instrumentation involving fluorescence tag to nanomaterials have increased the sensitive limit of biosensors. Use of aptamers or nucleotides, affibodies, peptide arrays, and molecule imprinted polymers provide tools to develop innovative biosensors over classical methods. Integrated approaches provided a better perspective for developing specific and sensitive biosensors with high regenerative potentials. Various biosensors ranging from nanomaterials, polymers to microbes have wider potential applications. It is quite important to integrate multifaceted approaches to design biosensors that have the potential for diverse usage. In light of this, this review provides an overview of different types of biosensors being used ranging from electrochemical, fluorescence tagged, nanomaterials, silica or quartz, and microbes for various biomedical and environmental applications with future outlook of biosensor technology. PMID:26909346

  5. Molecular Approaches to Optical Biosensors

    National Research Council Canada - National Science Library

    Fierke, Carol

    1998-01-01

    The goal of this proposal was to develop methodologies for the optimization of field-deployable optical biosensors, in general, and, in particular, to optimize a carbonic anhydrase-based fiber optic zinc biosensor...

  6. Photoelectrochemical enzymatic biosensors.

    Science.gov (United States)

    Zhao, Wei-Wei; Xu, Jing-Juan; Chen, Hong-Yuan

    2017-06-15

    Enzymatic biosensors have been valuable bioanalytical devices for analysis of diverse targets in disease diagnosis, biological and biomedical research, etc. Photoelectrochemical (PEC) bioanalysis is a recently emerged method that promptly becoming a subject of new research interests due to its attractive potential for future bioanalysis with high sensitivity and specificity. PEC enzymatic biosensors integrate the inherent sensitivities of PEC bioanalysis and the selectivity of enzymes and thus share their both advantages. Currently, PEC enzymatic biosensors have become a hot topic of significant research and the recent impetus has grown rapidly as demonstrated by increased research papers. Given the pace of advances in this area, this review will make a thorough discussion and survey on the fundamentals, sensing strategies, applications and the state of the art in PEC enzymatic biosensors, followed by future prospects based on our own opinions. We hope this work could provide an accessible introduction to PEC enzymatic biosensors for any scientist. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Introduction to biosensors.

    Science.gov (United States)

    Bhalla, Nikhil; Jolly, Pawan; Formisano, Nello; Estrela, Pedro

    2016-06-30

    Biosensors are nowadays ubiquitous in biomedical diagnosis as well as a wide range of other areas such as point-of-care monitoring of treatment and disease progression, environmental monitoring, food control, drug discovery, forensics and biomedical research. A wide range of techniques can be used for the development of biosensors. Their coupling with high-affinity biomolecules allows the sensitive and selective detection of a range of analytes. We give a general introduction to biosensors and biosensing technologies, including a brief historical overview, introducing key developments in the field and illustrating the breadth of biomolecular sensing strategies and the expansion of nanotechnological approaches that are now available. © 2016 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  8. Biosensors in forensic sciences

    Directory of Open Access Journals (Sweden)

    Frederickx, C.

    2011-01-01

    Full Text Available A biosensor is a device that uses biological materials to detect and monitor the presence of specific chemicals in an area. Traditional methods of volatile detection used by law enforcement agencies and rescue teams typically consist of reliance on canine olfaction. This concept of using dogs to detect specific substances is quite old. However, dogs have some limitations such as cost of training and time of conditioning. Thus, the possibility of using other organisms as biosensors including rats, dolphins, honeybees, and parasitic wasps for detecting explosives, narcotics and cadavers has been developed. Insects have several advantages unshared by mammals. Insects are sensitive, cheap to produce and can be conditioned with impressive speed for a specific chemical-detection task. Moreover, insects might be a preferred sensing method in scenarios that are deemed too dangerous to use mammals. The purpose of this review is to provide an overview of the biosensors used in forensic sciences.

  9. A Multi-Walled Carbon Nanotube-based Biosensor for Monitoring Microcystin-LR in Sources of Drinking Water Supplies

    Science.gov (United States)

    A multi-walled carbon nanotube-based electrochemical biosensor is developed for monitoring microcystin-LR (MC-LR), a toxic cyanobacterial toxin, in sources of drinking water supplies. The biosensor electrodes are fabricated using dense, mm-long multi-walled CNT (MWCNT) arrays gro...

  10. Electrochemical biosensors for hormone analyses.

    Science.gov (United States)

    Bahadır, Elif Burcu; Sezgintürk, Mustafa Kemal

    2015-06-15

    Electrochemical biosensors have a unique place in determination of hormones due to simplicity, sensitivity, portability and ease of operation. Unlike chromatographic techniques, electrochemical techniques used do not require pre-treatment. Electrochemical biosensors are based on amperometric, potentiometric, impedimetric, and conductometric principle. Amperometric technique is a commonly used one. Although electrochemical biosensors offer a great selectivity and sensitivity for early clinical analysis, the poor reproducible results, difficult regeneration steps remain primary challenges to the commercialization of these biosensors. This review summarizes electrochemical (amperometric, potentiometric, impedimetric and conductometric) biosensors for hormone detection for the first time in the literature. After a brief description of the hormones, the immobilization steps and analytical performance of these biosensors are summarized. Linear ranges, LODs, reproducibilities, regenerations of developed biosensors are compared. Future outlooks in this area are also discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Sensitive-cell-based fish chromatophore biosensor

    Science.gov (United States)

    Plant, Thomas K.; Chaplen, Frank W.; Jovanovic, Goran; Kolodziej, Wojtek; Trempy, Janine E.; Willard, Corwin; Liburdy, James A.; Pence, Deborah V.; Paul, Brian K.

    2004-07-01

    A sensitive biosensor (cytosensor) has been developed based on color changes in the toxin-sensitive colored living cells of fish. These chromatophores are highly sensitive to the presence of many known and unknown toxins produced by microbial pathogens and undergo visible color changes in a dose-dependent manner. The chromatophores are immobilized and maintained in a viable state while potential pathogens multiply and fish cell-microbe interactions are monitored. Low power LED lighting is used to illuminate the chromatophores which are magnified using standard optical lenses and imaged onto a CCD array. Reaction to toxins is detected by observing changes is the total area of color in the cells. These fish chromatophores are quite sensitive to cholera toxin, Staphococcus alpha toxin, and Bordatella pertussis toxin. Numerous other toxic chemical and biological agents besides bacterial toxins also cause readily detectable color effects in chromatophores. The ability of the chromatophore cell-based biosensor to distinguish between different bacterial pathogens was examined. Toxin producing strains of Salmonella enteritis, Vibrio parahaemolyticus, and Bacillus cereus induced movement of pigmented organelles in the chromatophore cells and this movement was measured by changes in the optical density over time. Each bacterial pathogen elicited this measurable response in a distinctive and signature fashion. These results suggest a chromatophore cell-based biosensor assay may be applicable for the detection and identification of virulence activities associated with certain air-, food-, and water-borne bacterial pathogens.

  12. Implantable enzyme amperometric biosensors.

    Science.gov (United States)

    Kotanen, Christian N; Moussy, Francis Gabriel; Carrara, Sandro; Guiseppi-Elie, Anthony

    2012-05-15

    The implantable enzyme amperometric biosensor continues as the dominant in vivo format for the detection, monitoring and reporting of biochemical analytes related to a wide range of pathologies. Widely used in animal studies, there is increasing emphasis on their use in diabetes care and management, the management of trauma-associated hemorrhage and in critical care monitoring by intensivists in the ICU. These frontier opportunities demand continuous indwelling performance for up to several years, well in excess of the currently approved seven days. This review outlines the many challenges to successful deployment of chronically implantable amperometric enzyme biosensors and emphasizes the emerging technological approaches in their continued development. The foreign body response plays a prominent role in implantable biotransducer failure. Topics considering the approaches to mitigate the inflammatory response, use of biomimetic chemistries, nanostructured topographies, drug eluting constructs, and tissue-to-device interface modulus matching are reviewed. Similarly, factors that influence biotransducer performance such as enzyme stability, substrate interference, mediator selection and calibration are reviewed. For the biosensor system, the opportunities and challenges of integration, guided by footprint requirements, the limitations of mixed signal electronics, and power requirements, has produced three systems approaches. The potential is great. However, integration along the multiple length scales needed to address fundamental issues and integration across the diverse disciplines needed to achieve success of these highly integrated systems, continues to be a challenge in the development and deployment of implantable amperometric enzyme biosensor systems. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Protein Functionalized Nanodiamond Arrays

    Directory of Open Access Journals (Sweden)

    Liu YL

    2010-01-01

    Full Text Available Abstract Various nanoscale elements are currently being explored for bio-applications, such as in bio-images, bio-detection, and bio-sensors. Among them, nanodiamonds possess remarkable features such as low bio-cytotoxicity, good optical property in fluorescent and Raman spectra, and good photostability for bio-applications. In this work, we devise techniques to position functionalized nanodiamonds on self-assembled monolayer (SAMs arrays adsorbed on silicon and ITO substrates surface using electron beam lithography techniques. The nanodiamond arrays were functionalized with lysozyme to target a certain biomolecule or protein specifically. The optical properties of the nanodiamond-protein complex arrays were characterized by a high throughput confocal microscope. The synthesized nanodiamond-lysozyme complex arrays were found to still retain their functionality in interacting with E. coli.

  14. Evanescent wave fluorescence biosensors: Advances of the last decade

    Science.gov (United States)

    Taitt, Chris Rowe; Anderson, George P.; Ligler, Frances S.

    2015-01-01

    Biosensor development has been a highly dynamic field of research and has progressed rapidly over the past two decades. The advances have accompanied the breakthroughs in molecular biology, nanomaterial sciences, and most importantly computers and electronics. The subfield of evanescent wave fluorescence biosensors has also matured dramatically during this time. Fundamentally, this review builds on our earlier 2005 review. While a brief mention of seminal early work will be included, this current review will focus on new technological developments as well as technology commercialized in just the last decade. Evanescent wave biosensors have found a wide array applications ranging from clinical diagnostics to biodefense to food testing; advances in those applications and more are described herein. PMID:26232145

  15. Biosensors and their applications – A review

    OpenAIRE

    Mehrotra, Parikha

    2016-01-01

    The various types of biosensors such as enzyme-based, tissue-based, immunosensors, DNA biosensors, thermal and piezoelectric biosensors have been deliberated here to highlight their indispensable applications in multitudinous fields.

  16. Carbon nanotube biosensors

    Science.gov (United States)

    Tîlmaciu, Carmen-Mihaela; Morris, May C.

    2015-01-01

    Nanomaterials possess unique features which make them particularly attractive for biosensing applications. In particular, carbon nanotubes (CNTs) can serve as scaffolds for immobilization of biomolecules at their surface, and combine several exceptional physical, chemical, electrical, and optical characteristics properties which make them one of the best suited materials for the transduction of signals associated with the recognition of analytes, metabolites, or disease biomarkers. Here we provide a comprehensive review on these carbon nanostructures, in which we describe their structural and physical properties, functionalization and cellular uptake, biocompatibility, and toxicity issues. We further review historical developments in the field of biosensors, and describe the different types of biosensors which have been developed over time, with specific focus on CNT-conjugates engineered for biosensing applications, and in particular detection of cancer biomarkers. PMID:26579509

  17. Carbon Nanotube Biosensors

    Science.gov (United States)

    Tilmaciu, Carmen-Mihaela; Morris, May

    2015-10-01

    Nanomaterials possess unique features which make them particularly attractive for biosensing applications. In particular Carbon Nanotubes (CNTs) can serve as scaffolds for immobilization of biomolecules at their surface, and combine several exceptional physical, chemical, electrical and optical characteristics properties which make them one of the best suited materials for the transduction of signals associated with the recognition of analytes, metabolites or disease biomarkers. Here we provide a comprehensive review on these carbon nanostructures, in which we will describe their structural and physical properties, discuss functionalization and cellular uptake, biocompatibility and toxicity issues. We further review historical developments in the field of biosensors, and describe the different types of biosensors which have been developed over time, with specific focus on CNT-conjugates engineered for biosensing applications, and in particular detection of cancer biomarkers.

  18. Carbon Nanotube Biosensors

    Directory of Open Access Journals (Sweden)

    Carmen-Mihaela eTilmaciu

    2015-10-01

    Full Text Available Nanomaterials possess unique features which make them particularly attractive for biosensing applications. In particular Carbon Nanotubes (CNTs can serve as scaffolds for immobilization of biomolecules at their surface, and combine several exceptional physical, chemical, electrical and optical characteristics properties which make them one of the best suited materials for the transduction of signals associated with the recognition of analytes, metabolites or disease biomarkers. Here we provide a comprehensive review on these carbon nanostructures, in which we will describe their structural and physical properties, discuss functionalization and cellular uptake, biocompatibility and toxicity issues. We further review historical developments in the field of biosensors, and describe the different types of biosensors which have been developed over time, with specific focus on CNT-conjugates engineered for biosensing applications, and in particular detection of cancer biomarkers.

  19. Towards optoelectronic urea biosensors

    OpenAIRE

    Pokrzywnicka, Marta; Koncki, Robert; Tymecki, ?ukasz

    2015-01-01

    Integration of immobilized enzymes with light-emitting diodes (LEDs) leads to the development of optoelectronic enzyme-based biosensors. In this work, urease, used as a model enzyme, immobilized in the form of?an open-tubular microbioreactor or biosensing membrane that has been integrated with two red LEDs. It forms complete, fiberless, miniaturized, and extremely economic biooptoelectronic devices useful for nonstationary measurements under flow analysis conditions. Both enzyme-based biodevi...

  20. Biosensors, antibiotics and food.

    Science.gov (United States)

    Virolainen, Nina; Karp, Matti

    2014-01-01

    Antibiotics are medicine's leading asset for fighting microbial infection, which is one of the leading causes of death worldwide. However, the misuse of antibiotics has led to the rapid spread of antibiotic resistance among bacteria and the development of multiple resistant pathogens. Therefore, antibiotics are rapidly losing their antimicrobial value. The use of antibiotics in food production animals is strictly controlled by the European Union (EU). Veterinary use is regulated to prevent the spread of resistance. EU legislation establishes maximum residue limits for veterinary medicinal products in foodstuffs of animal origin and enforces the establishment and execution of national monitoring plans. Among samples selected for monitoring, suspected noncompliant samples are screened and then subjected to confirmatory analysis to establish the identity and concentration of the contaminant. Screening methods for antibiotic residues are typically based on microbiological growth inhibition, whereas physico-chemical methods are used for confirmatory analysis. This chapter discusses biosensors, especially whole-cell based biosensors, as emerging screening methods for antibiotic residues. Whole-cell biosensors can offer highly sensitive and specific detection of residues. Applications demonstrating quantitative analysis and specific analyte identification further improve their potential as screening methods.

  1. Protein Detection with Aptamer Biosensors

    Directory of Open Access Journals (Sweden)

    Regina Stoltenburg

    2008-07-01

    Full Text Available Aptamers have been developed for different applications. Their use as new biological recognition elements in biosensors promises progress for fast and easy detection of proteins. This new generation of biosensor (aptasensors will be more stable and well adapted to the conditions of real samples because of the specific properties of aptamers.

  2. Affinity biosensors: techniques and protocols

    National Research Council Canada - National Science Library

    Rogers, Kim R; Mulchandani, Ashok

    1998-01-01

    ..., and government to begin or expand their biosensors research. This volume, Methods in Biotechnology vol. 7: Affinity Biosensors: Techniques and Protocols, describes a variety of classical and emerging transduction technologies that have been interfaced to bioaffinity elements (e.g., antibodies and receptors). Some of the reas...

  3. Recent Advances in DNA Biosensor

    Directory of Open Access Journals (Sweden)

    Suman

    2008-05-01

    Full Text Available DNA based biosensors have recently gained much importance for detection of target genes responsible for diseases, in food industry, environment and in agriculture. This article describes different types of DNA based biosensors, their advantages and basic principle of operating system. The DNA biosensors provide fast, simple, economical, sensitive and selective detection of target genes by hybridization with specific probe. Various new strategies for DNA based biosensors have described along with recent trends and challenges in development of technology. Electrochemical biosensor has more advantages due to electrochemical behaviour of the labels towards the hybridization reaction on electrode surface or in solution in the presence of redox indicators. PCR free DNA biochip is emerging new tools in the field of diagnosis.

  4. Microbial biosensors for environmental monitoring

    Directory of Open Access Journals (Sweden)

    David VOGRINC

    2015-12-01

    Full Text Available Microbial biosensors are analytical devices capable of sensing substances in the environment due to the specific biological reaction of the microorganism or its parts. Construction of a microbial biosensor requires knowledge of microbial response to the specific analyte. Linking this response with the quantitative data, using a transducer, is the crucial step in the construction of a biosensor. Regarding the transducer type, biosensors are divided into electrochemical, optical biosensors and microbial fuel cells. The use of the proper configuration depends on the selection of the biosensing element. With the use of transgenic E. coli strains, bioluminescence or fluorescence based biosensors were developed. Microbial fuel cells enable the use of the heterogeneous microbial populations, isolated from wastewater. Different microorganisms are used for different pollutants – pesticides, heavy metals, phenolic compounds, organic waste, etc. Biosensing enables measurement of their concentration and their toxic or genotoxic effects on the microbes. Increasing environmental awareness has contributed to the increase of interest for biomonitoring. Although technologies, such as bioinformatics and genetic engineering, allow us to design complex and efficient microbial biosensors for environmental pollutants, the transfer of the laboratory work to the field still remains a problem to solve.

  5. Guided-Wave Optical Biosensors

    Science.gov (United States)

    Passaro, Vittorio M. N.; Dell'Olio, Francesco; Casamassima, Biagio; De Leonardis, Francesco

    2007-01-01

    Guided-wave optical biosensors are reviewed in this paper. Advantages related to optical technologies are presented and integrated architectures are investigated in detail. Main classes of bio receptors and the most attractive optical transduction mechanisms are discussed. The possibility to use Mach-Zehnder and Young interferometers, microdisk and microring resonators, surface plasmon resonance, hollow and antiresonant waveguides, and Bragg gratings to realize very sensitive and selective, ultra-compact and fast biosensors is discussed. Finally, CMOS-compatible technologies are proved to be the most attractive for fabrication of guided-wave photonic biosensors.

  6. Guided-Wave Optical Biosensors

    Directory of Open Access Journals (Sweden)

    Francesco De Leonardis

    2007-04-01

    Full Text Available Guided-wave optical biosensors are reviewed in this paper. Advantages related to optical technologies are presented and integrated architectures are investigated in detail. Main classes of bio receptors and the most attractive optical transduction mechanisms are discussed. The possibility to use Mach-Zehnder and Young interferometers, microdisk and microring resonators, surface plasmon resonance, hollow and antiresonant waveguides, and Bragg gratings to realize very sensitive and selective, ultra-compact and fast biosensors is discussed. Finally, CMOS-compatible technologies are proved to be the most attractive for fabrication of guided-wave photonic biosensors.

  7. Optical biosensor with dispersion compensation.

    Science.gov (United States)

    Zong, W; Thirstrup, C; Sørensen, M H; Pedersen, H C

    2005-05-15

    Dispersion limits performance in many optical systems. In surface plasmon resonance (SPR) biosensors, the sensing area is an optical element in which the dispersion depends on the effective refractive index of the biochemical compounds to be measured. We report a method of compensating for wavelength dispersion in SPR biosensors employing two integrated diffractive optical coupling elements in a polymer substrate. The dispersion compensation is achieved over the whole dynamic measurement range and provides a biosensor more robust to wavelength fluctuations than prism-coupler SPR systems. The concept can readily be employed in other types of sensor measuring refractive-index changes.

  8. Detection Limits for Nanoscale Biosensors

    National Research Council Canada - National Science Library

    Sheehan, Paul E; Whitman, Lloyd J

    2005-01-01

    We examine through analytical calculations and finite element simulations how the detection efficiency of disk and wire-like biosensors in unmixed fluids varies with size from the micrometer to nanometer scales...

  9. Functionalized Xenon as a Biosensor

    National Research Council Canada - National Science Library

    Megan M. Spence; Seth M. Rubin; Ivan E. Dimitrov; E. Janette Ruiz; David E. Wemmer; Alexander Pines; Shao Qin Yao; Feng Tian; Peter G. Schultz

    2001-01-01

    .... We have developed an NMR-based xenon biosensor that capitalizes on the enhanced signal-to-noise, spectral simplicity, and chemical-shift sensitivity of laser-polarized xenon to detect specific...

  10. MEMS-Based Multi-Analyte Biosensor

    Science.gov (United States)

    Chan, I. H.; Sohn, L. L.

    2004-03-01

    We present a MEMS-based multi-analyte biosensor consisting of an array of micropores ( ˜1 μm diameter) fabricated on a single chip. The micropores are embedded in PDMS using micromolding techniques, and then sealed to a glass substrate that has previously-defined electrodes for electrical measurement of the pores. Detection of analytes is accomplished using a resistive pulse technique [1-3] which senses the change in size (as small as 2 nm) of derivatized colloids when they react with different analytes. Each pore can sense several analytes if derivatized colloids of different sizes are employed; consequently, an array of pores can be used to detect a large number of analytes simultaneously on a single chip. In this talk, we will describe our multipore array sensor and present preliminary results demonstrating its capabilities. 1. O.A. Saleh and L.L. Sohn, Rev. Sci. Inst. 72, 4449 (2001). 2. O.A. Saleh and L.L. Sohn, NanoLetters 3, 37 (2003). 3. O.A. Saleh and L.L. Sohn, PNAS 100, 820 (2003).

  11. DNA nanotechnology-enabled biosensors.

    Science.gov (United States)

    Chao, Jie; Zhu, Dan; Zhang, Yinan; Wang, Lianhui; Fan, Chunhai

    2016-02-15

    Biosensors employ biological molecules to recognize the target and utilize output elements which can translate the biorecognition event into electrical, optical or mass-sensitive signals to determine the quantities of the target. DNA-based biosensors, as a sub-field to biosensor, utilize DNA strands with short oligonucleotides as probes for target recognition. Although DNA-based biosensors have offered a promising alternative for fast, simple and cheap detection of target molecules, there still exist key challenges including poor stability and reproducibility that hinder their competition with the current gold standard for DNA assays. By exploiting the self-recognition properties of DNA molecules, researchers have dedicated to make versatile DNA nanostructures in a highly rigid, controllable and functionalized manner, which offers unprecedented opportunities for developing DNA-based biosensors. In this review, we will briefly introduce the recent advances on design and fabrication of static and dynamic DNA nanostructures, and summarize their applications for fabrication and functionalization of DNA-based biosensors. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Large scale biomimetic membrane arrays

    DEFF Research Database (Denmark)

    Hansen, Jesper Søndergaard; Perry, Mark; Vogel, Jörg

    2009-01-01

    To establish planar biomimetic membranes across large scale partition aperture arrays, we created a disposable single-use horizontal chamber design that supports combined optical-electrical measurements. Functional lipid bilayers could easily and efficiently be established across CO2 laser micro...... peptides and proteins. Next, we tested the scalability of the biomimetic membrane design by establishing lipid bilayers in rectangular 24 x 24 and hexagonal 24 x 27 aperture arrays, respectively. The results presented show that the design is suitable for further developments of sensitive biosensor assays...

  13. NANOSCALE BIOSENSORS IN ECOSYSTEM EXPOSURE RESEARCH

    Science.gov (United States)

    This powerpoint presentation presented information on nanoscale biosensors in ecosystem exposure research. The outline of the presentation is as follows: nanomaterials environmental exposure research; US agencies involved in nanosensor research; nanoscale LEDs in biosensors; nano...

  14. Computational design of auxotrophy-dependent microbial biosensors for combinatorial metabolic engineering experiments.

    Science.gov (United States)

    Tepper, Naama; Shlomi, Tomer

    2011-01-21

    Combinatorial approaches in metabolic engineering work by generating genetic diversity in a microbial population followed by screening for strains with improved phenotypes. One of the most common goals in this field is the generation of a high rate chemical producing strain. A major hurdle with this approach is that many chemicals do not have easy to recognize attributes, making their screening expensive and time consuming. To address this problem, it was previously suggested to use microbial biosensors to facilitate the detection and quantification of chemicals of interest. Here, we present novel computational methods to: (i) rationally design microbial biosensors for chemicals of interest based on substrate auxotrophy that would enable their high-throughput screening; (ii) predict engineering strategies for coupling the synthesis of a chemical of interest with the production of a proxy metabolite for which high-throughput screening is possible via a designed bio-sensor. The biosensor design method is validated based on known genetic modifications in an array of E. coli strains auxotrophic to various amino-acids. Predicted chemical production rates achievable via the biosensor-based approach are shown to potentially improve upon those predicted by current rational strain design approaches. (A Matlab implementation of the biosensor design method is available via http://www.cs.technion.ac.il/~tomersh/tools).

  15. Fluorescence-based biosensors.

    Science.gov (United States)

    Strianese, Maria; Staiano, Maria; Ruggiero, Giuseppe; Labella, Tullio; Pellecchia, Claudio; D'Auria, Sabato

    2012-01-01

    The field of optical sensors has been a growing research area over the last three decades. A wide range of books and review articles has been published by experts in the field who have highlighted the advantages of optical sensing over other transduction methods. Fluorescence is by far the method most often applied and comes in a variety of schemes. Nowadays, one of the most common approaches in the field of optical biosensors is to combine the high sensitivity of fluorescence detection in combination with the high selectivity provided by ligand-binding proteins. In this chapter we deal with reviewing our recent results on the implementation of fluorescence-based sensors for monitoring environmentally hazardous gas molecules (e.g. nitric oxide, hydrogen sulfide). Reflectivity-based sensors, fluorescence correlation spectroscopy-based (FCS) systems, and sensors relying on the enhanced fluorescence emission on silver island films (SIFs) coupled to the total internal reflection fluorescence mode (TIRF) for the detection of gliadin and other prolamines considered toxic for celiac patients are also discussed herein.

  16. A review on impedimetric biosensors.

    Science.gov (United States)

    Bahadır, Elif Burcu; Sezgintürk, Mustafa Kemal

    2016-01-01

    Electrochemical impedance spectroscopy (EIS) is a sensitive technique for the analysis of the interfacial properties related to biorecognition events such as reactions catalyzed by enzymes, biomolecular recognition events of specific binding proteins, lectins, receptors, nucleic acids, whole cells, antibodies or antibody-related substances, occurring at the modified surface. Many studies on impedimetric biosensors are focused on immunosensors and aptasensors. In impedimetric immunosensors, antibodies and antigens are bound each other and thus immunocomplex is formed and the electrode is coated with a blocking layer. As a result of that electron transfer resistance increases. In impedimetric aptasensors, impedance changes following the binding of target sequences, conformational changes, or DNA damages. Impedimetric biosensors allow direct detection of biomolecular recognition events without using enzyme labels. In this paper, impedimetric biosensors are reviewed and the most interesting ones are discussed.

  17. ENZYME CONDUCTOMETRIC BIOSENSOR FOR FRUCTOSE DETERMINATION

    Directory of Open Access Journals (Sweden)

    O. Y. Dudchenko

    2013-06-01

    Full Text Available The conductometric biosensor for fructose determination based on fructose dehydrogenase and potassium ferricyanide mediator as electron acceptor has been developed. The enzyme was immobilized on a surface of the conductometric transducer together with bovine serum albumin using crosslinking with glutaraldehyde. Working conditions of the discribed fructose biosensor were optimized. The results concerning influence of the buffer solution concentration and potassium ferricyanide concentration on the biosensor performance are given. The fructose biosensor is characterized by high signal reproducibility and selectivity to fructose. The developed conductometric biosensor can be successfully used for fructose monitoring in the procedures of food and clinical diagnostic.

  18. Micro-and nanoelectromechanical biosensors

    CERN Document Server

    Nicu, Liviu

    2014-01-01

    Most books dedicated to the issues of bio-sensing are organized by the well-known scheme of a biosensor. In this book, the authors have deliberately decided to break away from the conventional way of treating biosensing research by uniquely addressing biomolecule immobilization methods on a solid surface, fluidics issues and biosensing-related transduction techniques, rather than focusing simply on the biosensor. The aim is to provide a contemporary snapshot of the biosensing landscape without neglecting the seminal references or products where needed, following the downscaling (from the micr

  19. Microbial biosensors for organophosphate pesticides.

    Science.gov (United States)

    Mulchandani, Ashok; Rajesh

    2011-09-01

    Organophosphates, amongst the most toxic substance known, are used widely in agriculture around the world. Their extensive use, however, has resulted in their occurrence in the water and food supply threatening humans and animals. Therefore, there is a need for determination of these neurotoxic compounds sensitively, selectively, and rapidly in the field. The present work is a brief review on the recent advancements in amperometric, potentiometric, and optical biosensors using genetically engineered microorganisms expressing organophosphate hydrolyzing enzyme intracellularly or anchored on the cell surface for the detection of organophosphate pesticides. The benefits and limitations associated with such microbial biosensors are delineated.

  20. A luminescent nisin biosensor

    Science.gov (United States)

    Immonen, Nina; Karp, Matti

    2006-02-01

    Nisin is a lantibiotic, an antibacterial peptide produced by certain Lactococcus lactis strains that kills or inhibits the growth of other bacteria. Nisin is widely used as a food preservative, and its long-time use suggests that it can be generally regarded as safe. We have developed a method for determining the amount of nisin in food samples that is based on luminescent biosensor bacteria. Bacterial luciferase operon luxABCDE was inserted into plasmid pNZ8048, and the construct was transformed by electroporation into Lc. lactis strain NZ9800, whose ability to produce nisin has been erased by deletion of the gene nisA. The operon luxABCDE has been modified to be functional in gram-positive bacteria to confer a bioluminescent phenotype without the requirement of adding an exogenous substrate. In the plasmid pNZ8048, the operon was placed under control of the nisin-inducible nisA promoter. The chromosomal nisRK genes of Lc. lactis NZ9800 allow it to sense nisin in the environment and relay this signal via signal transduction proteins NisK and NisR to initiate transcription from nisA promoter. In the case of our sensor bacteria, this leads to production of luciferase and, thus, luminescence that can be directly measured from living bacteria. Luminescence can be detected as early as within minutes of induction. The nisin assay described here provides a detection limit in the sub-picogram level per ml, and a linear area between 1 - 1000 pg/ml. The sensitivity of this assay exceeds the performance of all previously published methods.

  1. THE POTENTIOMETRIC UREA BIOSENSOR USING CHITOSAN MEMBRANE

    Directory of Open Access Journals (Sweden)

    Ani Mulyasuryani

    2010-07-01

    Full Text Available Potentiometric urea biosensor development is based on urea hydrolysis by urease resulted CO2. The biosensor is used chitosan membrane and the H3O+ electrode as a transducer. The research was studied of effecting pH and membrane thickness to the biosensor performance. The best biosensor performance resulted at pH = 7.3 and 0.2 mm of membrane thickness. The biosensor has a Nerntian factor 28.47 mV/decade; the concentration range is 0.1 up to 6.00 ppm; and the limit of detection is 0.073 ppm. The response time of this biosensor is 280 seconds, efficiency 32 samples and accuracy 94% up to 99%.   Keywords: biosensor, potentiometry, urea, chitosan membrane

  2. Enzyme conductometric biosensor for maltose determination

    Directory of Open Access Journals (Sweden)

    Dzyadevych S. V.

    2009-08-01

    Full Text Available Aim. To develop enzyme conductometric biosensor for maltose determination. Methods. A conductometric transducer consisting of two gold pairs of electrodes was applied. Three-enzyme membrane (glucose oxidase, mutarotase, -glucosidase immobilized on the surface of the conductometric transducer was used as a bioselective element. Results. A linear range of maltose conductometric biosensor was from 0,002 mM to 1 mM for glucose and maltose detection. The time of maltose analysis in solution was 1–2 minutes. The dependence of biosensor responses to substrate on pH, ionic strength, and buffer capacity of work solution was studied. The data of biosensor selectivity are presented. The developed conductometric biosensor is characterized by high operational stability and signal reproducibility. Conclusion. The enzyme conductometric biosensor for maltose determination has been developed. The analytical characteristics of the maltose biosensor were investigated. The proposed method could be used in food industry to control and optimize production.

  3. Biosensors in Clinical Practice: Focus on Oncohematology

    Directory of Open Access Journals (Sweden)

    Agostino Cortelezzi

    2013-05-01

    Full Text Available Biosensors are devices that are capable of detecting specific biological analytes and converting their presence or concentration into some electrical, thermal, optical or other signal that can be easily analysed. The first biosensor was designed by Clark and Lyons in 1962 as a means of measuring glucose. Since then, much progress has been made and the applications of biosensors are today potentially boundless. This review is limited to their clinical applications, particularly in the field of oncohematology. Biosensors have recently been developed in order to improve the diagnosis and treatment of patients affected by hematological malignancies, such as the biosensor for assessing the in vitro pre-treatment efficacy of cytarabine in acute myeloid leukemia, and the fluorescence resonance energy transfer-based biosensor for assessing the efficacy of imatinib in chronic myeloid leukemia. The review also considers the challenges and future perspectives of biosensors in clinical practice.

  4. An Optical Biosensor for Bacillus Cereus Spore Detection

    Science.gov (United States)

    Li, Chengquan; Tom, Harry W. K.

    2005-03-01

    We demonstrate a new transduction scheme for optical biosensing. Bacillus cereus is a pathogen that may be found in food and dairy products and is able to produce toxins and cause food poisoning. It is related to Bacillus anthracis (anthrax). A CCD array covered with micro-structured glass coverslip is used to detect the optical resonant shift due to the binding of the antigen (bacillus cereus spore) to the antibody (polyclonal antibody). This novel optical biosensor scheme has the potential for detecting 10˜100 bioagents in a single device as well as the potential to test for antigens with multiple antibody tests to avoid ``false positives.''

  5. Improved Ion-Channel Biosensors

    Science.gov (United States)

    Nadeau, Jay; White, Victor; Dougherty, Dennis; Maurer, Joshua

    2004-01-01

    An effort is underway to develop improved biosensors of a type based on ion channels in biomimetic membranes. These sensors are microfabricated from silicon and other materials compatible with silicon. As described, these sensors offer a number of advantages over prior sensors of this type.

  6. Biosensors and multiple mycotoxin analysis

    NARCIS (Netherlands)

    Gaag, B. van der; Spath, S.; Dietrich, H.; Stigter, E.; Boonzaaijer, G.; Osenbruggen, T. van; Koopal, K.

    2003-01-01

    An immunochemical biosensor assay for the detection of multiple mycotoxins in a sample is described.The inhibition assay is designed to measure four different mycotoxins in a single measurement, following extraction, sample clean-up and incubation with an appropriate cocktail of anti-mycotoxin

  7. Capacitive Biosensors and Molecularly Imprinted Electrodes.

    Science.gov (United States)

    Ertürk, Gizem; Mattiasson, Bo

    2017-02-17

    Capacitive biosensors belong to the group of affinity biosensors that operate by registering direct binding between the sensor surface and the target molecule. This type of biosensors measures the changes in dielectric properties and/or thickness of the dielectric layer at the electrolyte/electrode interface. Capacitive biosensors have so far been successfully used for detection of proteins, nucleotides, heavy metals, saccharides, small organic molecules and microbial cells. In recent years, the microcontact imprinting method has been used to create very sensitive and selective biorecognition cavities on surfaces of capacitive electrodes. This chapter summarizes the principle and different applications of capacitive biosensors with an emphasis on microcontact imprinting method with its recent capacitive biosensor applications.

  8. Biosensors based on nanomaterials and nanodevices

    CERN Document Server

    Li, Jun

    2013-01-01

    Biosensors Based on Nanomaterials and Nanodevices links interdisciplinary research from leading experts to provide graduate students, academics, researchers, and industry professionals alike with a comprehensive source for key advancements and future trends in nanostructured biosensor development. It describes the concepts, principles, materials, device fabrications, functions, system integrations, and applications of various types of biosensors based on signal transduction mechanisms, including fluorescence, photonic crystal, surface-enhanced Raman scattering, electrochemistry, electro-lumine

  9. Non-antibody protein-based biosensors

    OpenAIRE

    Ferrigno, Paul?Ko

    2016-01-01

    Biosensors that depend on a physical or chemical measurement can be adversely affected by non-specific interactions. For example, a biosensor designed to measure specifically the levels of a rare analyte can give false positive results if there is even a small amount of interaction with a highly abundant but irrelevant molecule. To overcome this limitation, the biosensor community has frequently turned to antibody molecules as recognition elements because they are renowned for their exquisite...

  10. Plasmonic nanoparticles: Towards the fabrication of biosensors

    Science.gov (United States)

    Shen, Hui

    2015-07-01

    Au and Ag nanoparticles are mainly employed in the fabrication of biosensors owing to their unique optical properties compared to other noble metal nanoparticles. Many biosensors are fabricated for the rapid detection of different analytes such as organic and inorganic molecules, biomolecules like DNA, proteins, biotoxins and pathogens. In this mini review we mainly discuss on the usage of Au and Ag nanoparticles for the fabrication of colorimetric, SERS and two photon based photoluminescence biosensors.

  11. Recent Development in Optical Fiber Biosensors

    Directory of Open Access Journals (Sweden)

    Catalina Bosch Ojeda

    2007-06-01

    Full Text Available Remarkable developments can be seen in the field of optical fibre biosensors in the last decade. More sensors for specific analytes have been reported, novel sensing chemistries or transduction principles have been introduced, and applications in various analytical fields have been realised. This review consists of papers mainly reported in the last decade and presents about applications of optical fiber biosensors. Discussions on the trends in optical fiber biosensor applications in real samples are enumerated.

  12. Analytical Parameters of an Amperometric Glucose Biosensor for Fast Analysis in Food Samples

    Directory of Open Access Journals (Sweden)

    Margalida Artigues

    2017-11-01

    Full Text Available Amperometric biosensors based on the use of glucose oxidase (GOx are able to combine the robustness of electrochemical techniques with the specificity of biological recognition processes. However, very little information can be found in literature about the fundamental analytical parameters of these sensors. In this work, the analytical behavior of an amperometric biosensor based on the immobilization of GOx using a hydrogel (Chitosan onto highly ordered titanium dioxide nanotube arrays (TiO2NTAs has been evaluated. The GOx–Chitosan/TiO2NTAs biosensor showed a sensitivity of 5.46 μA·mM−1 with a linear range from 0.3 to 1.5 mM; its fundamental analytical parameters were studied using a commercial soft drink. The obtained results proved sufficient repeatability (RSD = 1.9%, reproducibility (RSD = 2.5%, accuracy (95–105% recovery, and robustness (RSD = 3.3%. Furthermore, no significant interferences from fructose, ascorbic acid and citric acid were obtained. In addition, the storage stability was further examined, after 30 days, the GOx–Chitosan/TiO2NTAs biosensor retained 85% of its initial current response. Finally, the glucose content of different food samples was measured using the biosensor and compared with the respective HPLC value. In the worst scenario, a deviation smaller than 10% was obtained among the 20 samples evaluated.

  13. Microfabricated Electrochemical Cell-Based Biosensors for Analysis of Living Cells In Vitro

    Directory of Open Access Journals (Sweden)

    Jun Wang

    2012-04-01

    Full Text Available Cellular biochemical parameters can be used to reveal the physiological and functional information of various cells. Due to demonstrated high accuracy and non-invasiveness, electrochemical detection methods have been used for cell-based investigation. When combined with improved biosensor design and advanced measurement systems, the on-line biochemical analysis of living cells in vitro has been applied for biological mechanism study, drug screening and even environmental monitoring. In recent decades, new types of miniaturized electrochemical biosensor are emerging with the development of microfabrication technology. This review aims to give an overview of the microfabricated electrochemical cell-based biosensors, such as microelectrode arrays (MEA, the electric cell-substrate impedance sensing (ECIS technique, and the light addressable potentiometric sensor (LAPS. The details in their working principles, measurement systems, and applications in cell monitoring are covered. Driven by the need for high throughput and multi-parameter detection proposed by biomedicine, the development trends of electrochemical cell-based biosensors are also introduced, including newly developed integrated biosensors, and the application of nanotechnology and microfluidic technology.

  14. Sensor Arrays and Electronic Tongue Systems

    Directory of Open Access Journals (Sweden)

    Manel del Valle

    2012-01-01

    Full Text Available This paper describes recent work performed with electronic tongue systems utilizing electrochemical sensors. The electronic tongues concept is a new trend in sensors that uses arrays of sensors together with chemometric tools to unravel the complex information generated. Initial contributions and also the most used variant employ conventional ion selective electrodes, in which it is named potentiometric electronic tongue. The second important variant is the one that employs voltammetry for its operation. As chemometric processing tool, the use of artificial neural networks as the preferred data processing variant will be described. The use of the sensor arrays inserted in flow injection or sequential injection systems will exemplify attempts made to automate the operation of electronic tongues. Significant use of biosensors, mainly enzyme-based, to form what is already named bioelectronic tongue will be also presented. Application examples will be illustrated with selected study cases from the Sensors and Biosensors Group at the Autonomous University of Barcelona.

  15. Biosensors for DNA sequence detection

    Science.gov (United States)

    Vercoutere, Wenonah; Akeson, Mark

    2002-01-01

    DNA biosensors are being developed as alternatives to conventional DNA microarrays. These devices couple signal transduction directly to sequence recognition. Some of the most sensitive and functional technologies use fibre optics or electrochemical sensors in combination with DNA hybridization. In a shift from sequence recognition by hybridization, two emerging single-molecule techniques read sequence composition using zero-mode waveguides or electrical impedance in nanoscale pores.

  16. Printed Electrochemical Instruments for Biosensors

    OpenAIRE

    Beni, Valerio; Nilsson, D.; Arven, P.; Norberg, P.; Gustafsson, G.; Turner, Anthony

    2015-01-01

    Mobile diagnostics for healthcare, food safety and environmental monitoring, demand a new generation of inexpensive sensing systems suitable for production in high volume. Herein we report on the development of a new disposable electrochemical instrument exploiting the latest advances in printed electronics and printed biosensors. The current system is manufactured under ambient conditions with all interconnections printed; electrochemical measurements and data elaboration are realized by the...

  17. A CMOS biosensor array for measuring cellular exocytosis.

    OpenAIRE

    Ayers, S.

    2009-01-01

    Release of neurotransmitters and hormones from secretory vesicles plays a fundamental role in the function of the nervous system including neuronal communication. High-throughput testing of drugs modulating transmitter release is becoming an increasingly important area in the fields of cell biology, neurobiology, and neurology. In this thesis, I will describe the design and operation of a novel CMOS potentiostat circuit that is capable of measuring transient amperometric oxidation currents at...

  18. Lipid Microarray Biosensor for Biotoxin Detection.

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Anup K.; Throckmorton, Daniel J.; Moran-Mirabal, Jose C.; Edel, Joshua B.; Meyer, Grant D.; Craighead, Harold G.

    2006-05-01

    We present the use of micron-sized lipid domains, patterned onto planar substrates and within microfluidic channels, to assay the binding of bacterial toxins via total internal reflection fluorescence microscopy (TIRFM). The lipid domains were patterned using a polymer lift-off technique and consisted of ganglioside-populated DSPC:cholesterol supported lipid bilayers (SLBs). Lipid patterns were formed on the substrates by vesicle fusion followed by polymer lift-off, which revealed micron-sized SLBs containing either ganglioside GT1b or GM1. The ganglioside-populated SLB arrays were then exposed to either Cholera toxin subunit B (CTB) or Tetanus toxin fragment C (TTC). Binding was assayed on planar substrates by TIRFM down to 1 nM concentration for CTB and 100 nM for TTC. Apparent binding constants extracted from three different models applied to the binding curves suggest that binding of a protein to a lipid-based receptor is strongly affected by the lipid composition of the SLB and by the substrate on which the bilayer is formed. Patterning of SLBs inside microfluidic channels also allowed the preparation of lipid domains with different compositions on a single device. Arrays within microfluidic channels were used to achieve segregation and selective binding from a binary mixture of the toxin fragments in one device. The binding and segregation within the microfluidic channels was assayed with epifluorescence as proof of concept. We propose that the method used for patterning the lipid microarrays on planar substrates and within microfluidic channels can be easily adapted to proteins or nucleic acids and can be used for biosensor applications and cell stimulation assays under different flow conditions. KEYWORDS. Microarray, ganglioside, polymer lift-off, cholera toxin, tetanus toxin, TIRFM, binding constant.4

  19. A New Laccase Based Biosensor for Tartrazine

    Directory of Open Access Journals (Sweden)

    Siti Zulaikha Mazlan

    2017-12-01

    Full Text Available Laccase enzyme, a commonly used enzyme for the construction of biosensors for phenolic compounds was used for the first time to develop a new biosensor for the determination of the azo-dye tartrazine. The electrochemical biosensor was based on the immobilization of laccase on functionalized methacrylate-acrylate microspheres. The biosensor membrane is a composite of the laccase conjugated microspheres and gold nanoparticles (AuNPs coated on a carbon-paste screen-printed electrode. The reaction involving tartrazine can be catalyzed by laccase enzyme, where the current change was measured by differential pulse voltammetry (DPV at 1.1 V. The anodic peak current was linear within the tartrazine concentration range of 0.2 to 14 μM (R2 = 0.979 and the detection limit was 0.04 μM. Common food ingredients or additives such as glucose, sucrose, ascorbic acid, phenol and sunset yellow did not interfere with the biosensor response. Furthermore, the biosensor response was stable up to 30 days of storage period at 4 °C. Foods and beverage were used as real samples for the biosensor validation. The biosensor response to tartrazine showed no significant difference with a standard HPLC method for tartrazine analysis.

  20. Background reduction in a young interferometer biosensor

    NARCIS (Netherlands)

    Mulder, H. K P; Subramaniam, V.; Kanger, J. S.

    2014-01-01

    Integrated optical Young interferometer (IOYI) biosensors are among the most sensitive label-free biosensors. Detection limits are in the range of 20 fg/mm2. The applicability of these sensors is however strongly hampered by the large background that originates from both bulk refractive index

  1. Disposable electrochemical DNA biosensor for environmental ...

    Indian Academy of Sciences (India)

    A simple procedure for the voltammetric detection of the DNA damage using a disposable electrochemical DNA biosensor is reported. The DNA biosensor is assembled by immobilizing the double stranded calf thymus DNA (dsDNA) on the surface of a disposable carbon screen-printed electrode. The interaction of ...

  2. Functionalized Palladium Nanoparticles for Hydrogen Peroxide Biosensor

    Directory of Open Access Journals (Sweden)

    H. Baccar

    2011-01-01

    Full Text Available We present a comparison between two biosensors for hydrogen peroxide (H2O2 detection. The first biosensor was developed by the immobilization of Horseradish Peroxidase (HRP enzyme on thiol-modified gold electrode. The second biosensor was developed by the immobilization of cysteamine functionalizing palladium nanoparticles on modified gold surface. The amino groups can be activated with glutaraldehyde for horseradish peroxidase immobilization. The detection of hydrogen peroxide was successfully observed in PBS for both biosensors using the cyclic voltammetry and the chronoamperometry techniques. The results show that the limit detection depends on the large surface-to-volume ratio attained with palladium nanoparticles. The second biosensor presents a better detection limit of 7.5 μM in comparison with the first one which is equal to 75 μM.

  3. Fabrication of Ultrasensitive Field-Effect Transistor DNA Biosensors by a Directional Transfer Technique Based on CVD-Grown Graphene.

    Science.gov (United States)

    Zheng, Chao; Huang, Le; Zhang, Hong; Sun, Zhongyue; Zhang, Zhiyong; Zhang, Guo-Jun

    2015-08-12

    Most graphene field-effect transistor (G-FET) biosensors are fabricated through a routine process, in which graphene is transferred onto a Si/SiO2 substrate and then devices are subsequently produced by micromanufacture processes. However, such a fabrication approach can introduce contamination onto the graphene surface during the lithographic process, resulting in interference for the subsequent biosensing. In this work, we have developed a novel directional transfer technique to fabricate G-FET biosensors based on chemical-vapor-deposition- (CVD-) grown single-layer graphene (SLG) and applied this biosensor for the sensitive detection of DNA. A FET device with six individual array sensors was first fabricated, and SLG obtained by the CVD-growth method was transferred onto the sensor surface in a directional manner. Afterward, peptide nucleic acid (PNA) was covalently immobilized on the graphene surface, and DNA detection was realized by applying specific target DNA to the PNA-functionalized G-FET biosensor. The developed G-FET biosensor was able to detect target DNA at concentrations as low as 10 fM, which is 1 order of magnitude lower than those reported in a previous work. In addition, the biosensor was capable of distinguishing the complementary DNA from one-base-mismatched DNA and noncomplementary DNA. The directional transfer technique for the fabrication of G-FET biosensors is simple, and the as-constructed G-FET DNA biosensor shows ultrasensitivity and high specificity, indicating its potential application in disease diagnostics as a point-of-care tool.

  4. Electrochemical biosensors in pharmaceutical analysis

    Directory of Open Access Journals (Sweden)

    Eric de Souza Gil

    2010-09-01

    Full Text Available Given the increasing demand for practical and low-cost analytical techniques, biosensors have attracted attention for use in the quality analysis of drugs, medicines, and other analytes of interest in the pharmaceutical area. Biosensors allow quantification not only of the active component in pharmaceutical formulations, but also the analysis of degradation products and metabolites in biological fluids. Thus, this article presents a brief review of biosensor use in pharmaceutical analysis, focusing on enzymatic electrochemical sensors.Em virtude do aumento da demanda por técnicas analíticas simples e de baixo custo, os biossensores têm atraído a atenção para a análise de fármacos, medicamentos e outros analitos de interesse em controle de qualidade de medicamentos. Os biossensores permitem a quantificação não somente de princípio ativo em formulações farmacêuticas, mas também de produtos de degradação e metabólitos em fluídos biológicos, bem como análise de amostras de interesse clínico e industrial, além de possibilitar a determinação de enantiômeros. Desta forma, este artigo objetiva fazer uma breve revisão a respeito do emprego de biossensores em análise farmacêutica, com ênfase em sensores eletroquímicos enzimáticos.

  5. One-pot synthesis of NiO/Mn2O3 nanoflake arrays and their application in electrochemical biosensing

    Science.gov (United States)

    Wang, Yao; Cui, Jiewu; Luo, Lan; Zhang, Jingcheng; Wang, Yan; Qin, Yongqiang; Zhang, Yong; Shu, Xia; Lv, Jun; Wu, Yucheng

    2017-11-01

    The exploration of novel nanomaterials employed as substrate to construct glucose biosensors is still of significance in the field of clinical diagnosis. In this work, NiO/Mn2O3 nanoflake arrays were synthesized by hydrothermal approach in combination with calcination process. As-prepared NiO/Mn2O3 nanoflake arrays were utilized to construct electrochemical biosensors for glucose detection. NiO/Mn2O3 nanoflake arrays were investigated systematically by scanning electron microscopy (SEM), X-ray diffractionmeter (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray spectroscopy, the formation mechanism of NiO/Mn2O3 nanoflake arrays was proposed. As-prepared glucose biosensors based on NiO/Mn2O3 nanoflake arrays were characterized by cyclic voltammgrams and chronoamperometry. The results indicated that glucose biosensors based on optimized NiO/Mn2O3 nanoflake arrays exhibited a high sensitivity of 167.0 μA mM-1 Cm-2 and good anti-interference ability, suggesting the NiO/Mn2O3 nanoflake arrays are an attractive substrate for the construction of oxidase-based biosensors.

  6. Characterization of Textile-Insulated Capacitive Biosensors

    Science.gov (United States)

    Ng, Charn Loong; Reaz, Mamun Bin Ibne

    2017-01-01

    Capacitive biosensors are an emerging technology revolutionizing wearable sensing systems and personal healthcare devices. They are capable of continuously measuring bioelectrical signals from the human body while utilizing textiles as an insulator. Different textile types have their own unique properties that alter skin-electrode capacitance and the performance of capacitive biosensors. This paper aims to identify the best textile insulator to be used with capacitive biosensors by analysing the characteristics of 6 types of common textile materials (cotton, linen, rayon, nylon, polyester, and PVC-textile) while evaluating their impact on the performance of a capacitive biosensor. A textile-insulated capacitive (TEX-C) biosensor was developed and validated on 3 subjects. Experimental results revealed that higher skin-electrode capacitance of a TEX-C biosensor yields a lower noise floor and better signal quality. Natural fabric such as cotton and linen were the two best insulating materials to integrate with a capacitive biosensor. They yielded the lowest noise floor of 2 mV and achieved consistent electromyography (EMG) signals measurements throughout the performance test. PMID:28287493

  7. Characterization of Textile-Insulated Capacitive Biosensors.

    Science.gov (United States)

    Ng, Charn Loong; Reaz, Mamun Bin Ibne

    2017-03-12

    Capacitive biosensors are an emerging technology revolutionizing wearable sensing systems and personal healthcare devices. They are capable of continuously measuring bioelectrical signals from the human body while utilizing textiles as an insulator. Different textile types have their own unique properties that alter skin-electrode capacitance and the performance of capacitive biosensors. This paper aims to identify the best textile insulator to be used with capacitive biosensors by analysing the characteristics of 6 types of common textile materials (cotton, linen, rayon, nylon, polyester, and PVC-textile) while evaluating their impact on the performance of a capacitive biosensor. A textile-insulated capacitive (TEX-C) biosensor was developed and validated on 3 subjects. Experimental results revealed that higher skin-electrode capacitance of a TEX-C biosensor yields a lower noise floor and better signal quality. Natural fabric such as cotton and linen were the two best insulating materials to integrate with a capacitive biosensor. They yielded the lowest noise floor of 2 mV and achieved consistent electromyography (EMG) signals measurements throughout the performance test.

  8. Biosensors: the new wave in cancer diagnosis

    Directory of Open Access Journals (Sweden)

    Brian Bohunicky

    2010-12-01

    Full Text Available Brian Bohunicky1, Shaker A Mousa1,21The Pharmaceutical Research Institute at Albany College of Pharmacy and Health Sciences, Rensselaer, NY, USA; 2College of Medicine, King Saud University, Riyadh, Saudi ArabiaAbstract: The earlier cancer can be detected, the better the chance of a cure. Currently, many cancers are diagnosed only after they have metastasized throughout the body. Effective, accurate methods of cancer detection and clinical diagnosis are urgently needed. Biosensors are devices that are designed to detect a specific biological analyte by essentially converting a biological entity (ie, protein, DNA, RNA into an electrical signal that can be detected and analyzed. The use of biosensors in cancer detection and monitoring holds vast potential. Biosensors can be designed to detect emerging cancer biomarkers and to determine drug effectiveness at various target sites. Biosensor technology has the potential to provide fast and accurate detection, reliable imaging of cancer cells, and monitoring of angiogenesis and cancer metastasis, and the ability to determine the effectiveness of anticancer chemotherapy agents. This review will briefly summarize the current obstacles to early detection of cancer and the expanding use of biosensors as a diagnostic tool, as well as some future applications of biosensor technology.Keywords: biosensor, oncogene, nanotechnology, biotechnology, cancer detection, diagnosis, point-of-care

  9. Simulation of Biosensor using FEM

    Science.gov (United States)

    Sheeparamatti, B. G.; Hebbal, M. S.; Sheeparamatti, R. B.; Math, V. B.; Kadadevaramath, J. S.

    2006-04-01

    Bio-Micro Electro Mechanical Systems/Nano Electro Mechanical Systems include a wide variety of sensors, actuators, and complex micro/nano devices for biomedical applications. Recent advances in biosensors have shown that sensors based on bending of microfabricated cantilevers have potential advantages over earlier used detection methods. Thus, a simple cantilever beam can be used as a sensor for biomedical, chemical and environmental applications. Here, microfabricated multilayered cantilever beam is exposed to sensing environment. Lower layer being pure structural silicon or polymer and upper layer is of polymer with antigen/antibody immobilized in it. Obviously, it has an affinity towards its counterpart i.e. antibody/antigen. In the sensing environment, if counter elements exists, they get captured by this sensing beam head, and the cantilever beam deflects. This deflection can be sensed and the presence of counter elements in the environment can be predicted. In this work, a finite element model of a biosensor for sensing antibody/antigen reaction is developed and simulated using ANSYS/Multiphysics. The optimal dimensions of the microcantilever beam are selected based on permissible deflection range with the aid of MATLAB. In the model analysis, both weight and surface stress effects on the cantilever are considered. Approximate weights are taken into account because of counter elements, considering their molecular weight and possible number of elements required for sensing. The results obtained in terms of lateral deflection are presented.

  10. Application of electrochemical biosensors in clinical diagnosis.

    Science.gov (United States)

    Monošík, Rastislav; Stred'anský, Miroslav; Šturdík, Ernest

    2012-01-01

    Analyses in the clinical area need quick and reliable analytical methods and devices. For this purpose, biosensors can be a suitable option, whereas they are constructed to be simple for use, specific for the target analyte, capable of continuous monitoring and giving quick results, potentially low-costing and portable. In this article, we describe electrochemical biosensors developed for clinical diagnosis, namely for glucose, lactate, cholesterol, urea, creatinine, DNA, antigens, antibodies, and cancer markers assays. Chosen biosensors showed desirable sensitivity, selectivity, and potential for application on real samples. They are often designed to avoid interference with undesired components present in the monitored systems. © 2012 Wiley Periodicals, Inc.

  11. Improved biosensor-based detection system

    DEFF Research Database (Denmark)

    2015-01-01

    Described is a new biosensor-based detection system for effector compounds, useful for in vivo applications in e.g. screening and selecting of cells which produce a small molecule effector compound or which take up a small molecule effector compound from its environment. The detection system...... comprises a protein or RNA-based biosensor for the effector compound which indirectly regulates the expression of a reporter gene via two hybrid proteins, providing for fewer false signals or less 'noise', tuning of sensitivity or other advantages over conventional systems where the biosensor directly...

  12. Design Strategies for Aptamer-Based Biosensors

    Science.gov (United States)

    Han, Kun; Liang, Zhiqiang; Zhou, Nandi

    2010-01-01

    Aptamers have been widely used as recognition elements for biosensor construction, especially in the detection of proteins or small molecule targets, and regarded as promising alternatives for antibodies in bioassay areas. In this review, we present an overview of reported design strategies for the fabrication of biosensors and classify them into four basic modes: target-induced structure switching mode, sandwich or sandwich-like mode, target-induced dissociation/displacement mode and competitive replacement mode. In view of the unprecedented advantages brought about by aptamers and smart design strategies, aptamer-based biosensors are expected to be one of the most promising devices in bioassay related applications. PMID:22399891

  13. Modeling amperometric biosensors based on allosteric enzymes

    Directory of Open Access Journals (Sweden)

    Liutauras Ričkus

    2013-09-01

    Full Text Available Computational modeling of a biosensor with allosteric enzyme layer was investigated in this study. The operation of the biosensor is modeled using non-stationary reaction-diffusion equations. The model involves three regions: the allosteric enzyme layer where the allosteric enzyme reactions as well as then mass transport by diffusion take place, the diffusion region where the mass transport by diffusion and non-enzymatic reactions take place and the convective region in which the analyte concentration is maintained constant. The biosensor response on dependency substrate concentration, cooperativity coefficient and the diffusion layer thickness on the same parameters have been studied.

  14. A molecular machine biosensor: construction, predictive models and experimental studies.

    Science.gov (United States)

    Moradi-Monfared, Sahar; Krishnamurthy, Vikram; Cornell, Bruce

    2012-04-15

    This paper describes the construction, operation and predictive modeling of a molecular machine, functioning as a high sensitivity biosensor. Embedded gramicidin A (gA) ionchannels in a self-assembled tethered lipid bilayer act as biological switches in response to target molecules and provide a signal amplification mechanism that results in high sensitivity molecular detection. The biosensor can be used as a rapid and sensitive point of care diagnostic device in different media such as human serum, plasma and whole blood without the need for pre and post processing steps required in an enzyme-linked immunosorbent assay. The electrical reader of the device provides the added advantage of objective measurement. Novel ideas in the construction of the molecular machine, including fabrication of biochip arrays, and experimental studies of its ability to detect analyte molecules over a wide range of concentrations are presented. Remarkably, despite the complexity of the device, it is shown that the response can be predicted by modeling the analyte fluid flow and surface chemical reactions. The derived predictive models for the sensing dynamics also facilitate determining important variables in the design of a molecular machine such as the ion channel lifetime and diffusion dynamics within the bilayer lipid membrane as well as the bio-molecular interaction rate constants. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Development of an acoustic wave based biosensor for vapor phase detection of small molecules

    Science.gov (United States)

    Stubbs, Desmond

    For centuries scientific ingenuity and innovation have been influenced by Mother Nature's perfect design. One of her more elusive designs is that of the sensory olfactory system, an array of highly sensitive receptors responsible for chemical vapor recognition. In the animal kingdom this ability is magnified among canines where ppt (parts per trillion) sensitivity values have been reported. Today, detection dogs are considered an essential part of the US drug and explosives detection schemes. However, growing concerns about their susceptibility to extraneous odors have inspired the development of highly sensitive analytical detection tools or biosensors known as "electronic noses". In general, biosensors are distinguished from chemical sensors in that they use an entity of biological origin (e.g. antibody, cell, enzyme) immobilized onto a surface as the chemically-sensitive film on the device. The colloquial view is that the term "biosensors" refers to devices which detect the presence of entities of biological origin, such as proteins or single-stranded DNA and that this detection must take place in a liquid. Our biosensor utilizes biomolecules, specifically IgG monoclonal antibodies, to achieve molecular recognition of relatively small molecules in the vapor phase.

  16. Fabrication of organic electrochemical transistor arrays for biosensing.

    Science.gov (United States)

    Zhang, Meng; Lin, Peng; Yang, Mo; Yan, Feng

    2013-09-01

    Organic electrochemical transistors (OECT) have been used as various types of biosensors with very high sensitivity. The OECTs show advantages of easy fabrication, low operational voltage, excellent flexibility and biocompatibility. OECT arrays based on poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) were fabricated in poly(ethylene glycol) (PEG) microwells by physical delamination. The OECTs show fast response time, stable channel current and excellent transistor characteristics. The PEG microwells can be used to trap cells on top of the OECTs, which will be important for the application of the OECT arrays as cell-based biosensors. This technique provides a feasible way for high-throughput cell analysis based on transistor arrays. This article is part of a Special Issue entitled Organic Bioelectronics-Novel Applications in Biomedicine. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Biosensors in immunology: the story so far

    NARCIS (Netherlands)

    Pathak, S.S.; Savelkoul, H.F.J.

    1997-01-01

    Optical biosensors are finding a range of applications in immunology. They enable biomolecular interactions to be characterized in real time without the need to label reactants, and, because individual binding steps can be visualized, are particularly suited to complex assays

  18. Biosensors: applications for dairy food industry.

    Science.gov (United States)

    Richter, E R

    1993-10-01

    Biosensors are defined as indicators of biological compounds that can be as simple as temperature-sensitive paint or as complex as DNA-RNA probes. Food microbiologists are constantly seeking rapid and reliable automated systems for the detection of biological activity. Biosensors provide sensitive, miniaturized systems that can be used to detect unwanted microbial activity or the presence of a biologically active compound, such as glucose or a pesticide. Immunodiagnostics and enzyme biosensors are two of the leading technologies that have had the greatest impact on the food industry. The use of these two systems has reduced the time for detection of pathogens such as Salmonella to 24 h and has provided detection of biological compounds such as cholesterol or chymotrypsin. The continued development of biosensor technology will soon make available "on-line quality control" of food production, which will not only reduce cost of food production but will also provide greater safety and increased food quality.

  19. Point-of-care biosensor system.

    Science.gov (United States)

    Vasan, Arvind Sai Sarathi; Mahadeo, Dinesh Michael; Doraiswami, Ravi; Huang, Yunhan; Pecht, Michael

    2013-01-01

    Point-of-care biosensor systems can potentially improve patient care through real-time and remote health monitoring. Over the past few decades, research has been conducted in the field of biosensors to detect patterns of biomarkers and provide information on their concentration in biological samples for robust diagnosis. In future point-of-care applications, requirements such as rapid label-free detection, miniaturized sensor size, and portability will limit the types of biosensors that can be used. This paper reviews label-free detection techniques using Biological MicroElectroMechanical Systems as a potential candidate for point-of-care biosensing applications. Furthermore, detailed surveys have been carried out on wireless networking schemes applicable for a point-of-care environment and on prognostic techniques that will enable decision-support services. This paper concludes by providing a list of challenges that must be resolved before realizing biosensor systems for next-generation point-of-care applications.

  20. Development of microbial biosensors for food analysis

    DEFF Research Database (Denmark)

    Lukasiak, Justyna

    Microbial biosensors are analytical devices composed of a biological recognition element (microorganism) integrated to a signal transduction element (i.e. bioluminescence), converting a biochemical signal into quantifiable response. Due to their molecular properties they can be diversely designed......, optimize and characterize various reporter strains utilizing different signal transducers and targeting carbohydrate constituents of pectin and arabinoxylan. Addit onally, the objective was to assess the potential suitability of microbial biosensors for food ingredients analysis. Pectin is a plant...... and responded quantitatively in selected detection ranges. Verification of performance of arabinoxylan targeting reporter strains revealed 9-18% difference between the results obtained by biosensors and by High Performance Anion-Exchange Chromatography. Results of this research suggest that microbial biosensors...

  1. Recent Advances in Nanotechnology Applied to Biosensors

    Directory of Open Access Journals (Sweden)

    Daxiang Cui

    2009-02-01

    Full Text Available In recent years there has been great progress the application of nanomaterials in biosensors. The importance of these to the fundamental development of biosensors has been recognized. In particular, nanomaterials such as gold nanoparticles, carbon nanotubes, magnetic nanoparticles and quantum dots have been being actively investigated for their applications in biosensors, which have become a new interdisciplinary frontier between biological detection and material science. Here we review some of the main advances in this field over the past few years, explore the application prospects, and discuss the issues, approaches, and challenges, with the aim of stimulating a broader interest in developing nanomaterial-based biosensors and improving their applications in disease diagnosis and food safety examination.

  2. Intelligent Communication Module for Wireless Biosensor Networks

    OpenAIRE

    Naik, R.; Singh, J.; Le, H. P.

    2010-01-01

    This chapter presented a new paradigm of biosensors which have processing capability with an intelligent and adaptive wireless communication module. The adaptive communication module efficiently reconfigures its hardware components according to the changes in operating environment in order to reduce system power consumption and optimally utilise resources. The chapter presented several significant applications of wireless biosensor networks which hold enormous potential to benefit the communi...

  3. Nanostructured Metal Oxides Based Enzymatic Electrochemical Biosensors

    OpenAIRE

    Ansari, Anees A.; Alhoshan, M.; Alsalhi, M.S.; Aldwayyan, A.S.

    2010-01-01

    The unique electrocatalytic properties of the metal oxides and the ease of metal oxide nanostructured fabrication make them extremely interesting materials for electrochemical enzymatic biosensor applications. The application of nanostructured metal oxides in such sensing devices has taken off rapidly and will surely continue to expand. This article provides a review on current research status of electrochemical enzymatic biosensors based on various new types of nanostructured metal oxides su...

  4. Biosensors for Inorganic and Organic Arsenicals

    OpenAIRE

    Chen, Jian; Rosen, Barry P.

    2014-01-01

    Arsenic is a natural environmental contaminant to which humans are routinely exposed and is strongly associated with human health problems, including cancer, cardiovascular and neurological diseases. To date, a number of biosensors for the detection of arsenic involving the coupling of biological engineering and electrochemical techniques has been developed. The properties of whole-cell bacterial or cell-free biosensors are summarized in the present review with emphasis on their sensitivity a...

  5. Nanoparticles Modified ITO Based Biosensor

    Science.gov (United States)

    Khan, M. Z. H.

    2017-04-01

    Incorporation of nanomaterials with controlled molecular architecture shows great promise in improving electronic communication between biomolecules and the electrode substrate. In electrochemical applications metal nanoparticles (NPs) modified electrodes have been widely used and are emerging as candidates to develop highly sensitive electrochemical sensors. There has been a growing technological interest in modified indium tin oxide (ITO) electrodes due to their prominent optoelectronic properties and their wide use as a transducing platform. The introduction of NPs into the transducing platform is commonly achieved by their adsorption onto conventional electrode surfaces in various forms, including that of a composite. The aim of this review is to discuss the role of metallic NPs for surface fabrication of ITO thin films leading to detection of specific biomolecules and applications as a biosensor platform.

  6. Yeast-based biosensors: design and applications.

    Science.gov (United States)

    Adeniran, Adebola; Sherer, Michael; Tyo, Keith E J

    2015-02-01

    Yeast-based biosensing (YBB) is an exciting research area, as many studies have demonstrated the use of yeasts to accurately detect specific molecules. Biosensors incorporating various yeasts have been reported to detect an incredibly large range of molecules including but not limited to odorants, metals, intracellular metabolites, carcinogens, lactate, alcohols, and sugars. We review the detection strategies available for different types of analytes, as well as the wide range of output methods that have been incorporated with yeast biosensors. We group biosensors into two categories: those that are dependent upon transcription of a gene to report the detection of a desired molecule and those that are independent of this reporting mechanism. Transcription-dependent biosensors frequently depend on heterologous expression of sensing elements from non-yeast organisms, a strategy that has greatly expanded the range of molecules available for detection by YBBs. Transcription-independent biosensors circumvent the problem of sensing difficult-to-detect analytes by instead relying on yeast metabolism to generate easily detected molecules when the analyte is present. The use of yeast as the sensing element in biosensors has proven to be successful and continues to hold great promise for a variety of applications. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.

  7. Biosensors in clinical chemistry: An overview

    Directory of Open Access Journals (Sweden)

    Sathish Babu Murugaiyan

    2014-01-01

    Full Text Available Biosensors are small devices that employ biological/biochemical reactions for detecting target analytes. Basically, the device consists of a biocatalyst and a transducer. The biocatalyst may be a cell, tissue, enzyme or even an oligonucleotide. The transducers are mainly amperometric, potentiometric or optical. The classification of biosensors is based on (a the nature of the recognition event or (b the intimacy between the biocatalyst and the transducer. Bioaffinity and biocatalytic devices are examples for the former and the first, whereas second and third generation instruments are examples for the latter. Cell-based biosensors utilizing immobilized cells, tissues as also enzyme immunosensors and DNA biosensors find variegated uses in diagnostics. Enzyme nanoparticle-based biosensors make use of small particles in the nanometer scale and are currently making a mark in laboratory medicine. Nanotechnology can help in optimizing the diagnostic biochips, which would facilitate sensitive, rapid, accurate and precise bedside monitoring. Biosensors render themselves as capable diagnostic tools as they meet most of the above-mentioned criteria.

  8. Biosensors-on-chip: a topical review

    Science.gov (United States)

    Chen, Sensen; Shamsi, Mohtashim H.

    2017-08-01

    This review will examine the integration of two fields that are currently at the forefront of science, i.e. biosensors and microfluidics. As a lab-on-a-chip (LOC) technology, microfluidics has been enriched by the integration of various detection tools for analyte detection and quantitation. The application of such microfluidic platforms is greatly increased in the area of biosensors geared towards point-of-care diagnostics. Together, the merger of microfluidics and biosensors has generated miniaturized devices for sample processing and sensitive detection with quantitation. We believe that microfluidic biosensors (biosensors-on-chip) are essential for developing robust and cost effective point-of-care diagnostics. This review is relevant to a variety of disciplines, such as medical science, clinical diagnostics, LOC technologies including MEMs/NEMs, and analytical science. Specifically, this review will appeal to scientists working in the two overlapping fields of biosensors and microfluidics, and will also help new scientists to find their directions in developing point-of-care devices.

  9. Opportunities for bioprocess monitoring using FRET biosensors.

    Science.gov (United States)

    Constantinou, Antony; Polizzi, Karen M

    2013-10-01

    Bioprocess monitoring is used to track the progress of a cell culture and ensure that the product quality is maintained. Current schemes for monitoring metabolism rely on offline measurements of samples of the extracellular medium. However, in the era of synthetic biology, it is now possible to design and implement biosensors that consist of biological macromolecules and are able to report on the intracellular environment of cells. The use of fluorescent reporter signals allows non-invasive, non-destructive and online monitoring of the culture, which reduces the delay between measurement and any necessary intervention. The present mini-review focuses on protein-based biosensors that utilize FRET as the signal transduction mechanism. The mechanism of FRET, which utilizes the ratio of emission intensity at two wavelengths, has an inherent advantage of being ratiometric, meaning that small differences in the experimental set-up or biosensor expression level can be normalized away. This allows for more reliable quantitative estimation of the concentration of the target molecule. Existing FRET biosensors that are of potential interest to bioprocess monitoring include those developed for primary metabolites, redox potential, pH and product formation. For target molecules where a biosensor has not yet been developed, some candidate binding domains can be identified from the existing biological databases. However, the remaining challenge is to make the process of developing a FRET biosensor faster and more efficient.

  10. Biosensor

    DEFF Research Database (Denmark)

    2002-01-01

    The invention relates to a biochemical assay for wide class of hydrophobic Coenzyme A esters wherein the analyte is caused to react with a specifically binding, modified protein, and thereby causing a detectable signal. A one step assay for hydrophobic carboxylic acid esters in whole blood, serum...

  11. Biosensors

    Indian Academy of Sciences (India)

    Plant Pathology Labora- tory, National Botanical. Research ... enzymes from thermo- philic fungi. (center) B Singh is Head and Scientist, Plant. Pathology Division,. National Botanical. Research Institute,. Lucknow. He specializes in the field of biocontrol of ... (a) (top): Construction and mode of operation of a bio- sensor.

  12. Nanopore biosensors for detection of proteins and nucleic acids

    NARCIS (Netherlands)

    Maglia, Giovanni; Soskine, Mikhael

    2014-01-01

    Described herein are nanopore biosensors based on a modified cytolysin protein. The nanopore biosensors accommodate macromoiecules including proteins and nucleic acids, and may additionally comprise ligands with selective binding properties.

  13. Optimization of Xenon Biosensors for Detection of ProteinInteractions

    Energy Technology Data Exchange (ETDEWEB)

    Lowery, Thomas J.; Garcia, Sandra; Chavez, Lana; Ruiz, E.Janette; Wu, Tom; Brotin, Thierry; Dutasta, Jean-Pierre; King, David S.; Schultz, Peter G.; Pines, Alex; Wemmer, David E..

    2005-08-03

    Hyperpolarized 129Xe NMR can detect the presence of specific low-concentration biomolecular analytes by means of the xenon biosensor, which consists of a water-soluble, targeted cryptophane-A cage that encapsulates xenon. In this work we use the prototypical biotinylated xenon biosensor to determine the relationship between the molecular composition of the xenon biosensor and the characteristics of protein-bound resonances. The effects of diastereomer overlap, dipole-dipole coupling, chemical shift anisotropy, xenon exchange, and biosensor conformational exchange on protein-bound biosensor signal were assessed. It was found that optimal protein-bound biosensor signal can be obtained by minimizing the number of biosensor diastereomers and using a flexible linker of appropriate length. Both the linewidth and sensitivity of chemical shift to protein binding of the xenon biosensor were found to be inversely proportional to linker length.

  14. Graphene-based field-effect transistor biosensors

    Science.gov (United States)

    Chen; , Junhong; Mao, Shun; Lu, Ganhua

    2017-06-14

    The disclosure provides a field-effect transistor (FET)-based biosensor and uses thereof. In particular, to FET-based biosensors using thermally reduced graphene-based sheets as a conducting channel decorated with nanoparticle-biomolecule conjugates. The present disclosure also relates to FET-based biosensors using metal nitride/graphene hybrid sheets. The disclosure provides a method for detecting a target biomolecule in a sample using the FET-based biosensor described herein.

  15. Potential diagnostic applications of biosensors: current and future directions

    OpenAIRE

    Song, Shiping; Xu, Hui; Fan, Chunhai

    2006-01-01

    This review describes recent advances in biosensors of potential clinical applications. Biosensors are becoming increasingly important and practical tools in pathogen detection, molecular diagnostics, environmental monitoring, food safety control as well as in homeland defense. Electrochemical biosensors are particularly promising toward these goals arising due to several combined advantages including low-cost, operation convenience, and miniaturized devices. We review the clinical applicatio...

  16. Recent Progress in Lectin-Based Biosensors

    Directory of Open Access Journals (Sweden)

    Baozhen Wang

    2015-12-01

    Full Text Available This article reviews recent progress in the development of lectin-based biosensors used for the determination of glucose, pathogenic bacteria and toxins, cancer cells, and lectins. Lectin proteins have been widely used for the construction of optical and electrochemical biosensors by exploiting the specific binding affinity to carbohydrates. Among lectin proteins, concanavalin A (Con A is most frequently used for this purpose as glucose- and mannose-selective lectin. Con A is useful for immobilizing enzymes including glucose oxidase (GOx and horseradish peroxidase (HRP on the surface of a solid support to construct glucose and hydrogen peroxide sensors, because these enzymes are covered with intrinsic hydrocarbon chains. Con A-modified electrodes can be used as biosensors sensitive to glucose, cancer cells, and pathogenic bacteria covered with hydrocarbon chains. The target substrates are selectively adsorbed to the surface of Con A-modified electrodes through strong affinity of Con A to hydrocarbon chains. A recent topic in the development of lectin-based biosensors is a successful use of nanomaterials, such as metal nanoparticles and carbon nanotubes, for amplifying output signals of the sensors. In addition, lectin-based biosensors are useful for studying glycan expression on living cells.

  17. Functional design of electrolytic biosensor

    Science.gov (United States)

    Gamage Preethichandra, D. M.; Mala Ekanayake, E. M. I.; Onoda, M.

    2017-11-01

    A novel amperometric biosensbased on conjugated polypyrrole (PPy) deposited on a Pt modified ITO (indium tin oxide) conductive glass substrate and their performances are described. We have presented a method of developing a highly sensitive and low-cost nano-biosensor for blood glucose measurements. The fabrication method proposed decreases the cost of production significantly as the amount of noble metals used is minimized. A nano-corrugated PPy substrate was developed through pulsed electrochemical deposition. The sensitivity achieved was 325 mA/(Mcm2) and the linear range of the developed sensor was 50-60 mmol/l. Then the application of the electrophoresis helps the glucose oxidase (GOx) on the PPy substrate. The main reason behind this high enzyme loading is the high electric field applied across the sensor surface (working electrode) and the counter electrode where that pushes the nano-scale enzyme particles floating in the phosphate buffer solution towards the substrate. The novel technique used has provided an extremely high sensitivities and very high linear ranges for enzyme (GOx) and therefore can be concluded that this is a very good technique to load enzyme onto the conducting polymer substrates.

  18. Magnetic impedance biosensor: A review.

    Science.gov (United States)

    Wang, Tao; Zhou, Yong; Lei, Chong; Luo, Jun; Xie, Shaorong; Pu, Huayan

    2017-04-15

    Though the magnetoimpedance effect was discovered two decades ago, the biomedical applications of the magnetoimpedance sensor are still in their infancy. In this review, the authors summarized the magnetoimpedance effect in soft ferromagnetic wires, ribbons and thin films for biosensing applications. Recent progress and achievements of the magnetoimpedance-based biosensing applications including the detection of magnetic Ferrofluid, magnetic beads, magnetic nanoparticles, magnetically labeled bioanalytes and biomagnetic fields of living systems were reviewed. The modification effect of the biochemical liquids, agglomeration effect of the magnetic particles, and the effect of the stray magnetic field on magnetoimpedance were investigated in this review. Some constructive strategies were proposed for design of the high-performance magnetoimpedance biosensor, for quantitative and ultrasensitive detection of magnetically labeled biomolecules. The theoretical and experimental results suggest that the magnetoimpedance sensors are particularly suitable for highly sensitive detection of low-concentration biomolecules, and might be used for early diagnosis and screening of cancers. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Magnetoresistive biosensors for quantitative proteomics

    Science.gov (United States)

    Zhou, Xiahan; Huang, Chih-Cheng; Hall, Drew A.

    2017-08-01

    Quantitative proteomics, as a developing method for study of proteins and identification of diseases, reveals more comprehensive and accurate information of an organism than traditional genomics. A variety of platforms, such as mass spectrometry, optical sensors, electrochemical sensors, magnetic sensors, etc., have been developed for detecting proteins quantitatively. The sandwich immunoassay is widely used as a labeled detection method due to its high specificity and flexibility allowing multiple different types of labels. While optical sensors use enzyme and fluorophore labels to detect proteins with high sensitivity, they often suffer from high background signal and challenges in miniaturization. Magnetic biosensors, including nuclear magnetic resonance sensors, oscillator-based sensors, Hall-effect sensors, and magnetoresistive sensors, use the specific binding events between magnetic nanoparticles (MNPs) and target proteins to measure the analyte concentration. Compared with other biosensing techniques, magnetic sensors take advantage of the intrinsic lack of magnetic signatures in biological samples to achieve high sensitivity and high specificity, and are compatible with semiconductor-based fabrication process to have low-cost and small-size for point-of-care (POC) applications. Although still in the development stage, magnetic biosensing is a promising technique for in-home testing and portable disease monitoring.

  20. Polymer Based Biosensors for Medical Applications

    DEFF Research Database (Denmark)

    Cherré, Solène; Rozlosnik, Noemi

    2015-01-01

    The objective of this chapter is to give an overview about the newest developments in biosensors made of polymers for medical applications. Biosensors are devices that can recognize and detect a target with high selectivity. They are widely used in many fields such as medical diagnostic...... and be available for use by everybody. To fulfil these purposes, polymers represent very appropriate materials. Many nano- and microfabrication methods for polymers are available, allowing a fast and cheap production of devices. This chapter will present the general concept of a biosensor in a first part....... The second part will focus on conducting polymers, used as electrode material in devices based on electrochemical detection. A third part will describe the molecularly imprinted technology, where the target is replicated in 3D negative form into the polymer....

  1. Thin Hydrogel Films for Optical Biosensor Applications

    Science.gov (United States)

    Mateescu, Anca; Wang, Yi; Dostalek, Jakub; Jonas, Ulrich

    2012-01-01

    Hydrogel materials consisting of water-swollen polymer networks exhibit a large number of specific properties highly attractive for a variety of optical biosensor applications. This properties profile embraces the aqueous swelling medium as the basis of biocompatibility, non-fouling behavior, and being not cell toxic, while providing high optical quality and transparency. The present review focuses on some of the most interesting aspects of surface-attached hydrogel films as active binding matrices in optical biosensors based on surface plasmon resonance and optical waveguide mode spectroscopy. In particular, the chemical nature, specific properties, and applications of such hydrogel surface architectures for highly sensitive affinity biosensors based on evanescent wave optics are discussed. The specific class of responsive hydrogel systems, which can change their physical state in response to externally applied stimuli, have found large interest as sophisticated materials that provide a complex behavior to hydrogel-based sensing devices. PMID:24957962

  2. Antibody orientation on biosensor surfaces: a minireview.

    Science.gov (United States)

    Trilling, Anke K; Beekwilder, Jules; Zuilhof, Han

    2013-03-21

    Detection elements play a key role in analyte recognition in biosensors. Therefore, detection elements with high analyte specificity and binding strength are required. While antibodies (Abs) have been increasingly used as detection elements in biosensors, a key challenge remains - the immobilization on the biosensor surface. This minireview highlights recent approaches to immobilize and study Abs on surfaces. We first introduce Ab species used as detection elements, and discuss techniques recently used to elucidate Ab orientation by determination of layer thickness or surface topology. Then, several immobilization methods will be presented: non-covalent and covalent surface attachment, yielding oriented or random coupled Abs. Finally, protein modification methods applicable for oriented Ab immobilization are reviewed with an eye to future application.

  3. Development of a biosensor for caffeine.

    Science.gov (United States)

    Babu, V R Sarath; Patra, S; Karanth, N G; Kumar, M A; Thakur, M S

    2007-01-23

    We have utilized a microbe, which can degrade caffeine to develop an Amperometric biosensor for determination of caffeine in solutions. Whole cells of Pseudomonas alcaligenes MTCC 5264 having the capability to degrade caffeine were immobilized on a cellophane membrane with a molecular weight cut off (MWCO) of 3000-6000 by covalent crosslinking method using glutaraledhyde as the bifunctional crosslinking agent and gelatin as the protein based stabilizing agent (PBSA). The biosensor system was able to detect caffeine in solution over a concentration range of 0.1 to 1 mg mL(-1). With read-times as short as 3 min, this caffeine biosensor acts as a rapid analysis system for caffeine in solutions. Interestingly, successful isolation and immobilization of caffeine degrading bacteria for the analysis of caffeine described here was enabled by a novel selection strategy that incorporated isolation of caffeine degrading bacteria capable of utilizing caffeine as the sole source of carbon and nitrogen from soils and induction of caffeine degrading capacity in bacteria for the development of the biosensor. This biosensor is highly specific for caffeine and response to interfering compounds such as theophylline, theobromine, paraxanthine, other methyl xanthines and sugars was found to be negligible. Although a few biosensing methods for caffeine are reported, they have limitations in application for commercial samples. The development and application of new caffeine detection methods remains an active area of investigation, particularly in food and clinical chemistry. The optimum pH and temperature of measurement were 6.8 and 30+/-2 degrees C, respectively. Interference in analysis of caffeine due to different substrates was observed but was not considerable. Caffeine content of commercial samples of instant tea and coffee was analyzed by the biosensor and the results compared well with HPLC analysis.

  4. Applications of redox polymers in biosensors

    Energy Technology Data Exchange (ETDEWEB)

    Boguslavsky, L. (Moltech Corporation, Stony Brook, NY (United States)); Hale, P.D. (Moltech Corporation, Stony Brook, NY (United States)); Geng Lin (Moltech Corporation, Stony Brook, NY (United States)); Skotheim, T.A. (Moltech Corporation, Stony Brook, NY (United States)); Lee Hongsui (Dept. of Applied Science, Brookhaven National Lab., Upton, NY (United States))

    1993-03-01

    Polymers containing covalently attached redox molecules can be highly effective electron transfer mediators for flavin adenine dinucleotide redox centers of many oxidases. Highly flexible siloxane and ethylene oxide polymers containing covalently attached ferrocene molecules are shown to be capable of mediating electron transfer between enzymes and an electrode. The construction and response of bienzyme cholesterol biosensor, acetylcholine and glucose biosensor are described and discussed. Our data showed that the flexibility, hydrophilicity of the polymer, the density of redox centers in the polymer matrices and the self-exchange reaction rate of the redox molecules control the efficiency of the electron transfer mediation. (orig.)

  5. Biosensor technology for pesticides--a review.

    Science.gov (United States)

    Verma, Neelam; Bhardwaj, Atul

    2015-03-01

    Pesticides, due to their lucrative outcomes, are majorly implicated in agricultural fields for crop production enhancement. Due to their pest removal properties, pesticides of various classes have been designed to persist in the environment over a longer duration after their application to achieve maximum effectiveness. Apart from their recalcitrant structure and agricultural benefits, pesticides also impose acute toxicological effects onto the other various life forms. Their accumulation in the living system may prove to be detrimental if established in higher concentrations. Thus, their prompt and accurate analysis is a crucial matter of concern. Conventional techniques like chromatographic techniques (HPLC, GC, etc.) used for pesticides detection are associated with various limitations like stumpy sensitivity and efficiency, time consumption, laboriousity, requirement of expensive equipments and highly trained technicians, and many more. So there is a need to recruit the methods which can detect these neurotoxic compounds sensitively, selectively, rapidly, and easily in the field. Present work is a brief review of the pesticide effects, their current usage scenario, permissible limits in various food stuffs and 21st century advancements of biosensor technology for pesticide detection. Due to their exceptional performance capabilities, easiness in operation and on-site working, numerous biosensors have been developed for bio-monitoring of various environmental samples for pesticide evaluation immensely throughout the globe. Till date, based on sensing element (enzyme based, antibody based, etc.) and type of detection method used (Electrochemical, optical, and piezoelectric, etc.), a number of biosensors have been developed for pesticide detection. In present communication, authors have summarized 21st century's approaches of biosensor technology for pesticide detection such as enzyme-based biosensors, immunosensors, aptamers, molecularly imprinted polymers, and

  6. Biosensors for Inorganic and Organic Arsenicals

    Directory of Open Access Journals (Sweden)

    Jian Chen

    2014-11-01

    Full Text Available Arsenic is a natural environmental contaminant to which humans are routinely exposed and is strongly associated with human health problems, including cancer, cardiovascular and neurological diseases. To date, a number of biosensors for the detection of arsenic involving the coupling of biological engineering and electrochemical techniques has been developed. The properties of whole-cell bacterial or cell-free biosensors are summarized in the present review with emphasis on their sensitivity and selectivity. Their limitations and future challenges are highlighted.

  7. Function-based Biosensor for Hazardous Waste Toxin Detection

    Energy Technology Data Exchange (ETDEWEB)

    James J Hickman

    2008-07-09

    There is a need for new types of toxicity sensors in the DOE and other agencies that are based on biological function as the toxins encountered during decontamination or waste remediation may be previously unknown or their effects subtle. Many times the contents of the environmental waste, especially the minor components, have not been fully identified and characterized. New sensors of this type could target unknown toxins that cause death as well as intermediate levels of toxicity that impair function or cause long term impairment that may eventually lead to death. The primary question posed in this grant was to create an electronically coupled neuronal cellular circuit to be used as sensor elements for a hybrid non-biological/biological toxin sensor system. A sensor based on the electrical signals transmitted between two mammalian neurons would allow the marriage of advances in solid state electronics with a functioning biological system to develop a new type of biosensor. Sensors of this type would be a unique addition to the field of sensor technology but would also be complementary to existing sensor technology that depends on knowledge of what is to be detected beforehand. We integrated physics, electronics, surface chemistry, biotechnology, and fundamental neuroscience in the development of this biosensor. Methods were developed to create artificial surfaces that enabled the patterning of discrete cells, and networks of cells, in culture; the networks were then aligned with transducers. The transducers were designed to measure electromagnetic fields (EMF) at low field strength. We have achieved all of the primary goals of the project. We can now pattern neurons routinely in our labs as well as align them with transducers. We have also shown the signals between neurons can be modulated by different biochemicals. In addition, we have made another significant advance where we have repeated the patterning results with adult hippocampal cells. Finally, we

  8. Hydrogels for in situ encapsulation of biomimetic membrane arrays

    DEFF Research Database (Denmark)

    Ibragimova, Sania; Jensen, Karin Bagger Stibius; Szewczykowski, Piotr Przemyslaw

    2012-01-01

    Hydrogels are hydrophilic, porous polymer networks that can absorb up to thousands of times their own weight in water. They have many potential applications, one of which is the encapsulation of freestanding black lipid membranes (BLMs) for novel separation technologies or biosensor applications....... membranes retained their integrity and functionality after encapsulation with hydrogel. Our results show that hydrogel encapsulation is a potential means to provide stability for biomimetic devices based on functional proteins reconstituted in biomimetic membrane arrays....

  9. Biosensor Systems for Homeland Security

    Energy Technology Data Exchange (ETDEWEB)

    Bruckner-Lea, Cindy J.

    2004-05-30

    The detection of biological agents is important to minimize the effects of pathogens that can harm people, livestock, or plants. In addition to pathogens distributed by man, there is a need to detect natural outbreaks. Recent outbreaks of SARS, mad cow disease, pathogenic E. coli and Salmonella, as well as the discovery of letters filled with anthrax spores have highlighted the need for biosensor systems to aid in prevention, early warning, response, and recovery. Rapid detection can be used to prevent exposure; and detection on a longer timescale can be used to minimize exposure, define treatment, and determine whether contaminated areas are clean enough for reuse. The common types of biological agents of concern include bacteria, spores, and viruses (Figure 1). From a chemist’s point of view, pathogens are essentially complex packages of chemicals that are assembled into organized packages with somewhat predictable physical characteristics such as size and shape. Pathogen detection methods can be divided into three general approaches: selective detection methods for specific identification such as nucleic acid analysis and structural recognition, semi-selective methods for broad-spectrum detection (e.g. physical properties, metabolites, lipids), and function-based methods (e.g. effect of the pathogen on organisms, tissues, or cells). The requirements for biodetection systems depend upon the application. While detect to warn sensors may require rapid detection on the order one minute, detection times of many minutes or hours may be suitable for determining appropriate treatments or for forensic analysis. Of course ideal sensor systems will meet the needs of many applications, and will be sensitive, selective, rapid, and simultaneously detect all agents of concern. They will also be reliable with essentially no false negatives or false positives, small, easy to use, and low cost with minimal consumables.

  10. Photonic crystal biosensors towards on-chip integration.

    Science.gov (United States)

    Threm, Daniela; Nazirizadeh, Yousef; Gerken, Martina

    2012-08-01

    Photonic crystal technology has attracted large interest in the last years. The possibility to generate highly sensitive sensor elements with photonic crystal structures is very promising for medical or environmental applications. The low-cost fabrication on the mass scale is as advantageous as the compactness and reliability of photonic crystal biosensors. The possibility to integrate microfluidic channels together with photonic crystal structures allows for highly compact devices. This article reviews different types of photonic crystal sensors including 1D photonic crystal biosensors, biosensors with photonic crystal slabs, photonic crystal waveguide biosensors and biosensors with photonic crystal microcavities. Their applications in biomolecular and pathogen detection are highlighted. The sensitivities and the detection limits of the different biosensors are compared. The focus is on the possibilities to integrate photonic crystal biosensors on-chip. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Mathematical Model of the Biosensors Acting in a Trigger Mode

    Directory of Open Access Journals (Sweden)

    Feliksas Ivanauskas

    2004-05-01

    Full Text Available Abstract: A mathematical model of biosensors acting in a trigger mode has been developed. One type of the biosensors utilized a trigger enzymatic reaction followed by the cyclic enzymatic and electrochemical conversion of the product (CCE scheme. Other biosensors used the enzymatic trigger reaction followed by the electrochemical and enzymatic product cyclic conversion (CEC scheme. The models were based on diffusion equations containing a non-linear term related to Michaelis-Menten kinetics of the enzymatic reactions. The digital simulation was carried out using the finite difference technique. The influence of the substrate concentration, the maximal enzymatic rate as well as the membrane thickness on the biosensor response was investigated. The numerical experiments demonstrated a significant gain (up to dozens of times in biosensor sensitivity when the biosensor response was under diffusion control. In the case of significant signal amplification, the response time with triggering was up to several times longer than that of the biosensor without triggering.

  12. Integrated biochip for PCR-based DNA amplification and detection on capacitive biosensors

    Science.gov (United States)

    Moschou, D.; Vourdas, N.; Filippidou, M. K.; Tsouti, V.; Kokkoris, G.; Tsekenis, G.; Zergioti, I.; Chatzandroulis, S.; Tserepi, A.

    2013-05-01

    Responding to an increasing demand for LoC devices to perform bioanalytical protocols for disease diagnostics, the development of an integrated LoC device consisting of a μPCR module integrated with resistive microheaters and a biosensor array for disease diagnostics is presented. The LoC is built on a Printed Circuit Board (PCB) platform, implementing both the amplification of DNA samples and DNA detection/identification on-chip. The resistive microheaters for PCR and the wirings for the sensor read-out are fabricated by means of standard PCB technology. The microfluidic network is continuous-flow, designed to perform 30 PCR cycles with heated zones at constant temperatures, and is built onto the PCB utilizing commercial photopatternable polyimide layers. Following DNA amplification, the product is driven in a chamber where a Si-based biosensor array is placed for DNA detection through hybridization. The sensor array is tested for the detection of mutations of the KRAS gene, responsible for colon cancer.

  13. Spreeta-based biosensor for endocrine disruptors

    NARCIS (Netherlands)

    Marchesini, G.R.; Koopal, K.; Meulenberg, E.; Haasnoot, W.; Irth, H.

    2007-01-01

    The construction and performance of an automated low-cost Spreeta¿-based prototype biosensor system for the detection of endocrine disrupting chemicals (EDCs) is described. The system consists primarily of a Spreeta miniature liquid sensor incorporated into an aluminum flow cell holder, dedicated to

  14. Boar taint detection using parasitoid biosensors

    Science.gov (United States)

    To evaluate the potential for a non-stinging wasp to be used as a biosensor in the pig industry, we trained wasps to 3 individual chemicals associated with boar taint. Training consisted of presenting the odors to hungry wasps while they were feeding on sugar. This associates the chemical with a fo...

  15. Optical Biosensors to Explore Biological Systems

    DEFF Research Database (Denmark)

    Palanco, Marta Espina; Mogensen, Klaus Bo; Andersen, Nils H. Skovgaard

    2016-01-01

    their capability to work in biosensor devices. For example, Raman spectroscopy can be non-invasive and can provide 1 μm of spatial resolution in 1 second of collection time, well suited for sensing. Moreover, it may give information at the single cell and even approaching the single molecule scale. Here we present...

  16. Regenerative electronic biosensors using supramolecular approaches

    NARCIS (Netherlands)

    Duan, X.; Rajan, N.; Routenberg, D.; Huskens, Jurriaan; Reed, M.

    2013-01-01

    A supramolecular interface for Si nanowire FETs has been developed with the aim of creating regenerative electronic biosensors. The key to the approach is Si-NWs functionalized with β-cyclodextrin (β-CD), to which receptor moieties can be attached with an orthogonal supramolecular linker. Here we

  17. Microbial Biosensors for Selective Detection of Disaccharides

    Science.gov (United States)

    Seven microbial strains were screened for their ability to detect disaccharides as components of Clark-type oxygen biosensors. Sensors responded to varying degrees to maltose, cellobiose, sucrose, and melibiose, but none responded strongly to lactose. Although microbial sensors are relatively nons...

  18. Methods for using redox liposome biosensors

    Science.gov (United States)

    Cheng, Quan; Stevens, Raymond C.

    2002-01-01

    The present invention provides methods and compositions for detecting the presence of biologically-important analytes by using redox liposome biosensors. In particular, the present invention provides liposome/sol-gel electrodes suitable for the detection of a wide variety of organic molecules, including but not limited to bacterial toxins.

  19. Biosensors for Whole-Cell Bacterial Detection

    Science.gov (United States)

    Rushworth, Jo V.; Hirst, Natalie A.; Millner, Paul A.

    2014-01-01

    SUMMARY Bacterial pathogens are important targets for detection and identification in medicine, food safety, public health, and security. Bacterial infection is a common cause of morbidity and mortality worldwide. In spite of the availability of antibiotics, these infections are often misdiagnosed or there is an unacceptable delay in diagnosis. Current methods of bacterial detection rely upon laboratory-based techniques such as cell culture, microscopic analysis, and biochemical assays. These procedures are time-consuming and costly and require specialist equipment and trained users. Portable stand-alone biosensors can facilitate rapid detection and diagnosis at the point of care. Biosensors will be particularly useful where a clear diagnosis informs treatment, in critical illness (e.g., meningitis) or to prevent further disease spread (e.g., in case of food-borne pathogens or sexually transmitted diseases). Detection of bacteria is also becoming increasingly important in antibioterrorism measures (e.g., anthrax detection). In this review, we discuss recent progress in the use of biosensors for the detection of whole bacterial cells for sensitive and earlier identification of bacteria without the need for sample processing. There is a particular focus on electrochemical biosensors, especially impedance-based systems, as these present key advantages in terms of ease of miniaturization, lack of reagents, sensitivity, and low cost. PMID:24982325

  20. Stability of Enzymatic Biosensors for Wearable Applications.

    Science.gov (United States)

    Sonawane, Apurva; Manickam, Pandiaraj; Bhansali, Shekhar

    2017-05-19

    Technological evolution in wearable sensors is accounting for major growth and transformation in multitude of industries ranging from healthcare to computing & informatics to communication and biomedical sciences. The major driver for this transformation is the new-found ability to continuously monitor and analyze the patients' physiology in patients' natural setting. Numerous wearable sensors are already on the market and are summarized. Most of the current technologies have focused on electro-physiological, electro-mechanical or acoustic measurements. Wearable bio-chemical sensing devices are in their infancy. Traditional challenges in biochemical sensing such as reliability, repeatability, stability, and drift are amplified in wearable sensing systems due to variabilities in operating environment, sample/sensor handling and motion artifacts. Enzymatic sensing technologies, due to reduced fluidic challenges continue to be forerunners for translation into wearable sensors. This paper reviews the recent developments in wearable enzymatic sensors. The wearable sensors have been classified in three major groups based on sensor embodiment and placement relative to the human body: (i) On-body, (ii) Clothing/textile-based biosensors and (iii) Biosensor accessories. The sensors, which come in the forms of stickers, tattoos are categorized as on-body biosensors. The fabric-based biosensor comes in different models such as smart-shirts, socks, gloves and smart undergarments with printed sensors for continuous monitoring.

  1. Applications of Nanomaterials in Electrochemical Enzyme Biosensors

    Directory of Open Access Journals (Sweden)

    Xiaodi Yang

    2009-10-01

    Full Text Available A biosensor is defined as a kind of analytical device incorporating a biological material, a biologically derived material or a biomimic intimately associated with or integrated within a physicochemical transducer or transducing microsystem. Electrochemical biosensors incorporating enzymes with nanomaterials, which combine the recognition and catalytic properties of enzymes with the electronic properties of various nanomaterials, are new materials with synergistic properties originating from the components of the hybrid composites. Therefore, these systems have excellent prospects for interfacing biological recognition events through electronic signal transduction so as to design a new generation of bioelectronic devices with high sensitivity and stability. In this review, we describe approaches that involve nanomaterials in direct electrochemistry of redox proteins, especially our work on biosensor design immobilizing glucose oxidase (GOD, horseradish peroxidase (HRP, cytochrome P450 (CYP2B6, hemoglobin (Hb, glutamate dehydrogenase (GDH and lactate dehydrogenase (LDH. The topics of the present review are the different functions of nanomaterials based on modification of electrode materials, as well as applications of electrochemical enzyme biosensors.

  2. Role of reaction kinetics and mass transport in glucose sensing with nanopillar array electrodes

    OpenAIRE

    Rao Yeswanth L; Kim Euihyeon; Yang Xiaoling; Anandan Venkataramani; Zhang Guigen

    2007-01-01

    Abstract The use of nanopillar array electrodes (NAEs) for biosensor applications was explored using a combined experimental and simulation approach to characterize the role of reaction kinetics and mass transport in glucose detection with NAEs. Thin gold electrodes with arrays of vertically standing gold nanopillars were fabricated and their amperometric current responses were measured under bare and functionalized conditions. Results show that the sensing performances of both the bare and f...

  3. Future of biosensors: a personal view.

    Science.gov (United States)

    Scheller, Frieder W; Yarman, Aysu; Bachmann, Till; Hirsch, Thomas; Kubick, Stefan; Renneberg, Reinhard; Schumacher, Soeren; Wollenberger, Ulla; Teller, Carsten; Bier, Frank F

    2014-01-01

    Biosensors representing the technological counterpart of living senses have found routine application in amperometric enzyme electrodes for decentralized blood glucose measurement, interaction analysis by surface plasmon resonance in drug development, and to some extent DNA chips for expression analysis and enzyme polymorphisms. These technologies have already reached a highly advanced level and need minor improvement at most. The dream of the "100-dollar" personal genome may come true in the next few years provided that the technological hurdles of nanopore technology or of polymerase-based single molecule sequencing can be overcome. Tailor-made recognition elements for biosensors including membrane-bound enzymes and receptors will be prepared by cell-free protein synthesis. As alternatives for biological recognition elements, molecularly imprinted polymers (MIPs) have been created. They have the potential to substitute antibodies in biosensors and biochips for the measurement of low-molecular-weight substances, proteins, viruses, and living cells. They are more stable than proteins and can be produced in large amounts by chemical synthesis. Integration of nanomaterials, especially of graphene, could lead to new miniaturized biosensors with high sensitivity and ultrafast response. In the future individual therapy will include genetic profiling of isoenzymes and polymorphic forms of drug-metabolizing enzymes especially of the cytochrome P450 family. For defining the pharmacokinetics including the clearance of a given genotype enzyme electrodes will be a useful tool. For decentralized online patient control or the integration into everyday "consumables" such as drinking water, foods, hygienic articles, clothing, or for control of air conditioners in buildings and cars and swimming pools, a new generation of "autonomous" biosensors will emerge.

  4. Micro-machined calorimetric biosensors

    Science.gov (United States)

    Doktycz, Mitchel J.; Britton, Jr., Charles L.; Smith, Stephen F.; Oden, Patrick I.; Bryan, William L.; Moore, James A.; Thundat, Thomas G.; Warmack, Robert J.

    2002-01-01

    A method and apparatus are provided for detecting and monitoring micro-volumetric enthalpic changes caused by molecular reactions. Micro-machining techniques are used to create very small thermally isolated masses incorporating temperature-sensitive circuitry. The thermally isolated masses are provided with a molecular layer or coating, and the temperature-sensitive circuitry provides an indication when the molecules of the coating are involved in an enthalpic reaction. The thermally isolated masses may be provided singly or in arrays and, in the latter case, the molecular coatings may differ to provide qualitative and/or quantitative assays of a substance.

  5. Progress in Development of Improved Ion-Channel Biosensors

    Science.gov (United States)

    Nadeau, Jay L.; White, Victor E.; Maurer, Joshua A.; Dougherty, Dennis A.

    2008-01-01

    Further improvements have recently been made in the development of the devices described in Improved Ion-Channel Biosensors (NPO-30710), NASA Tech Briefs, Vol. 28, No. 10 (October 2004), page 30. As discussed in more detail in that article, these sensors offer advantages of greater stability, greater lifetime, and individual electrical addressability, relative to prior ion-channel biosensors. In order to give meaning to a brief description of the recent improvements, it is necessary to recapitulate a substantial portion of the text of the cited previous article. The figure depicts one sensor that incorporates the recent improvements, and can be helpful in understanding the recapitulated text, which follows: These sensors are microfabricated from silicon and other materials compatible with silicon. Typically, the sensors are fabricated in arrays in silicon wafers on glass plates. Each sensor in the array can be individually electrically addressed, without interference with its neighbors. Each sensor includes a well covered by a thin layer of silicon nitride, in which is made a pinhole for the formation of a lipid bilayer membrane. In one stage of fabrication, the lower half of the well is filled with agarose, which is allowed to harden. Then the upper half of the well is filled with a liquid electrolyte (which thereafter remains liquid) and a lipid bilayer is painted over the pinhole. The liquid contains a protein that forms an ion channel on top of the hardened agarose. The combination of enclosure in the well and support by the hardened agarose provides the stability needed to keep the membrane functional for times as long as days or even weeks. An electrode above the well, another electrode below the well, and all the materials between the electrodes together constitute a capacitor. What is measured is the capacitive transient current in response to an applied voltage pulse. One notable feature of this sensor, in comparison with prior such sensors, is a

  6. Solution-phase vs surface-phase aptamer-protein affinity from a label-free kinetic biosensor.

    Directory of Open Access Journals (Sweden)

    Camille Daniel

    Full Text Available Aptamers are selected DNA ligands that target biomolecules such as proteins. In recent years, they are showing an increasing interest as potential therapeutic agents or recognition elements in biosensor applications. In both cases, the need for characterizing the mating between the target and the aptamer either in solution or immobilized on a surface, is pressing. In this context, we have developed a kinetic biosensor made of micro-arrayed anti-thrombin aptamers to assess the kinetic parameters of this interaction. The binding of label-free thrombin on the biosensor was monitored in real-time by Surface Plasmon Resonance imaging. Remarkable performances were obtained for the quantification of thrombin without amplification (sub-nanomolar limit of detection and linear range of quantification to two orders of magnitude. The independent determinations of both the solution- and surface-phase affinities, respectively KD(Sol and KD(Surf, revealed distinct values illustrating the importance of probes, targets or surface interactions in biosensors. Interestingly, KD(Surf values depend on the aptamer grafting density and linearly extrapolate towards KD(Sol for highly diluted probes. This suggests a lesser impact of the surface compared to the probe or target cooperativity interactions since the latter decrease with a reduced grafting density.

  7. Self-powered microneedle-based biosensors for pain-free high-accuracy measurement of glycaemia in interstitial fluid.

    Science.gov (United States)

    Strambini, L M; Longo, A; Scarano, S; Prescimone, T; Palchetti, I; Minunni, M; Giannessi, D; Barillaro, G

    2015-04-15

    In this work a novel self-powered microneedle-based transdermal biosensor for pain-free high-accuracy real-time measurement of glycaemia in interstitial fluid (ISF) is reported. The proposed transdermal biosensor makes use of an array of silicon-dioxide hollow microneedles that are about one order of magnitude both smaller (borehole down to 4µm) and more densely-packed (up to 1×10(6)needles/cm(2)) than state-of-the-art microneedles used for biosensing so far. This allows self-powered (i.e. pump-free) uptake of ISF to be carried out with high efficacy and reliability in a few seconds (uptake rate up to 1µl/s) by exploiting capillarity in the microneedles. By coupling the microneedles operating under capillary-action with an enzymatic glucose biosensor integrated on the back-side of the needle-chip, glucose measurements are performed with high accuracy (±20% of the actual glucose level for 96% of measures) and reproducibility (coefficient of variation 8.56%) in real-time (30s) over the range 0-630mg/dl, thus significantly improving microneedle-based biosensor performance with respect to the state-of-the-art. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Nanobiosensing with Arrays and Ensembles of Nanoelectrodes

    Directory of Open Access Journals (Sweden)

    Najmeh Karimian

    2016-12-01

    Full Text Available Since the first reports dating back to the mid-1990s, ensembles and arrays of nanoelectrodes (NEEs and NEAs, respectively have gained an important role as advanced electroanalytical tools thank to their unique characteristics which include, among others, dramatically improved signal/noise ratios, enhanced mass transport and suitability for extreme miniaturization. From the year 2000 onward, these properties have been exploited to develop electrochemical biosensors in which the surfaces of NEEs/NEAs have been functionalized with biorecognition layers using immobilization modes able to take the maximum advantage from the special morphology and composite nature of their surface. This paper presents an updated overview of this field. It consists of two parts. In the first, we discuss nanofabrication methods and the principles of functioning of NEEs/NEAs, focusing, in particular, on those features which are important for the development of highly sensitive and miniaturized biosensors. In the second part, we review literature references dealing the bioanalytical and biosensing applications of sensors based on biofunctionalized arrays/ensembles of nanoelectrodes, focusing our attention on the most recent advances, published in the last five years. The goal of this review is both to furnish fundamental knowledge to researchers starting their activity in this field and provide critical information on recent achievements which can stimulate new ideas for future developments to experienced scientists.

  9. Biosensor for detection of dissolved chromium in potable water: A review.

    Science.gov (United States)

    Biswas, Puja; Karn, Abhinav Kumar; Balasubramanian, P; Kale, Paresh G

    2017-08-15

    The unprecedented deterioration rate of the environmental quality due to rapid urbanization and industrialization causes a severe global health concern to both ecosystem and humanity. Heavy metals are ubiquitous in nature and being used extensively in industrial processes, the exposure to excessive levels could alter the biochemical cycles of living systems. Hence the environmental monitoring through rapid and specific detection of heavy metal contamination in potable water is of paramount importance. Various standard analytical techniques and sensors are used for the detection of heavy metals include spectroscopy and chromatographic methods along with electrochemical, optical waveguide and polymer based sensors. However, the mentioned techniques lack the point of care application as it demands huge capital cost as well as the attention of expert personnel for sample preparation and operation. Recent advancements in the synergetic interaction among biotechnology and microelectronics have advocated the biosensor technology for a wide array of applications due to its characteristic features of sensitivity and selectivity. This review paper has outlined the overview of chromium toxicity, conventional analytical techniques along with a particular emphasis on electrochemical based biosensors for chromium detection in potable water. This article emphasized porous silicon as a host material for enzyme immobilization and elaborated the working principle, mechanism, kinetics of an enzyme-based biosensor for chromium detection. The significant characteristics such as pore size, thickness, and porosity make the porous silicon suitable for enzyme entrapment. Further, several schemes on porous silicon-based immobilized enzyme biosensors for the detection of chromium in potable water are proposed. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Fundamental Design Principles for Transcription-Factor-Based Metabolite Biosensors.

    Science.gov (United States)

    Mannan, Ahmad A; Liu, Di; Zhang, Fuzhong; Oyarzún, Diego A

    2017-10-20

    Metabolite biosensors are central to current efforts toward precision engineering of metabolism. Although most research has focused on building new biosensors, their tunability remains poorly understood and is fundamental for their broad applicability. Here we asked how genetic modifications shape the dose-response curve of biosensors based on metabolite-responsive transcription factors. Using the lac system in Escherichia coli as a model system, we built promoter libraries with variable operator sites that reveal interdependencies between biosensor dynamic range and response threshold. We developed a phenomenological theory to quantify such design constraints in biosensors with various architectures and tunable parameters. Our theory reveals a maximal achievable dynamic range and exposes tunable parameters for orthogonal control of dynamic range and response threshold. Our work sheds light on fundamental limits of synthetic biology designs and provides quantitative guidelines for biosensor design in applications such as dynamic pathway control, strain optimization, and real-time monitoring of metabolism.

  11. Electronic Biosensors Based on III-Nitride Semiconductors.

    Science.gov (United States)

    Kirste, Ronny; Rohrbaugh, Nathaniel; Bryan, Isaac; Bryan, Zachary; Collazo, Ramon; Ivanisevic, Albena

    2015-01-01

    We review recent advances of AlGaN/GaN high-electron-mobility transistor (HEMT)-based electronic biosensors. We discuss properties and fabrication of III-nitride-based biosensors. Because of their superior biocompatibility and aqueous stability, GaN-based devices are ready to be implemented as next-generation biosensors. We review surface properties, cleaning, and passivation as well as different pathways toward functionalization, and critically analyze III-nitride-based biosensors demonstrated in the literature, including those detecting DNA, bacteria, cancer antibodies, and toxins. We also discuss the high potential of these biosensors for monitoring living cardiac, fibroblast, and nerve cells. Finally, we report on current developments of covalent chemical functionalization of III-nitride devices. Our review concludes with a short outlook on future challenges and projected implementation directions of GaN-based HEMT biosensors.

  12. A general strategy to construct small molecule biosensors in eukaryotes.

    Science.gov (United States)

    Feng, Justin; Jester, Benjamin W; Tinberg, Christine E; Mandell, Daniel J; Antunes, Mauricio S; Chari, Raj; Morey, Kevin J; Rios, Xavier; Medford, June I; Church, George M; Fields, Stanley; Baker, David

    2015-12-29

    Biosensors for small molecules can be used in applications that range from metabolic engineering to orthogonal control of transcription. Here, we produce biosensors based on a ligand-binding domain (LBD) by using a method that, in principle, can be applied to any target molecule. The LBD is fused to either a fluorescent protein or a transcriptional activator and is destabilized by mutation such that the fusion accumulates only in cells containing the target ligand. We illustrate the power of this method by developing biosensors for digoxin and progesterone. Addition of ligand to yeast, mammalian, or plant cells expressing a biosensor activates transcription with a dynamic range of up to ~100-fold. We use the biosensors to improve the biotransformation of pregnenolone to progesterone in yeast and to regulate CRISPR activity in mammalian cells. This work provides a general methodology to develop biosensors for a broad range of molecules in eukaryotes.

  13. Impedimetric biosensors for medical applications current progress and challenges

    CERN Document Server

    Rushworth, Jo V; Goode, Jack A; Pike, Douglas J; Ahmed, Asif; Millner, Paul

    2014-01-01

    In this monograph, the authors discuss the current progress in the medical application of impedimetric biosensors, along with the key challenges in the field. First, a general overview of biosensor development, structure and function is presented, followed by a detailed discussion of impedimetric biosensors and the principles of electrochemical impedance spectroscopy. Next, the current state-of-the art in terms of the science and technology underpinning impedance-based biosensors is reviewed in detail. The layer-by-layer construction of impedimetric sensors is described, including the design of electrodes, their nano-modification, transducer surface functionalization and the attachment of different bioreceptors. The current challenges of translating lab-based biosensor platforms into commercially-available devices that function with real patient samples at the POC are presented; this includes a consideration of systems integration, microfluidics and biosensor regeneration. The final section of this monograph ...

  14. Electronic Biosensors Based on III-Nitride Semiconductors

    Science.gov (United States)

    Kirste, Ronny; Rohrbaugh, Nathaniel; Bryan, Isaac; Bryan, Zachary; Collazo, Ramon; Ivanisevic, Albena

    2015-07-01

    We review recent advances of AlGaN/GaN high-electron-mobility transistor (HEMT)-based electronic biosensors. We discuss properties and fabrication of III-nitride-based biosensors. Because of their superior biocompatibility and aqueous stability, GaN-based devices are ready to be implemented as next-generation biosensors. We review surface properties, cleaning, and passivation as well as different pathways toward functionalization, and critically analyze III-nitride-based biosensors demonstrated in the literature, including those detecting DNA, bacteria, cancer antibodies, and toxins. We also discuss the high potential of these biosensors for monitoring living cardiac, fibroblast, and nerve cells. Finally, we report on current developments of covalent chemical functionalization of III-nitride devices. Our review concludes with a short outlook on future challenges and projected implementation directions of GaN-based HEMT biosensors.

  15. Analytical Problems in Exposing Amperometric Enzyme Biosensors to Biological Fluids

    Directory of Open Access Journals (Sweden)

    Gaia Rocchitta

    2016-05-01

    Full Text Available Enzyme-based chemical biosensors are based on biological recognition. In order to operate, the enzymes must be available to catalyze a specific biochemical reaction and be stable under the normal operating conditions of the biosensor. Design of biosensors is based on knowledge about the target analyte, as well as the complexity of the matrix in which the analyte has to be quantified. This article reviews the problems resulting from the interaction of enzyme-based amperometric biosensors with complex biological matrices containing the target analyte(s. One of the most challenging disadvantages of amperometric enzyme-based biosensor detection is signal reduction from fouling agents and interference from chemicals present in the sample matrix. This article, therefore, investigates the principles of functioning of enzymatic biosensors, their analytical performance over time and the strategies used to optimize their performance. Moreover, the composition of biological fluids as a function of their interaction with biosensing will be presented.

  16. Recent advances in biosensors based on enzyme inhibition.

    Science.gov (United States)

    Amine, A; Arduini, F; Moscone, D; Palleschi, G

    2016-02-15

    Enzyme inhibitors like drugs and pollutants are closely correlated to human and environmental health, thus their monitoring is of paramount importance in analytical chemistry. Enzymatic biosensors represent cost-effective, miniaturized and easy to use devices; particularly biosensors based on enzyme inhibition are useful analytical tools for fast screening and monitoring of inhibitors. The present review will highlight the research carried out in the last 9 years (2006-2014) on biosensors based on enzyme inhibition. We underpin the recent advances focused on the investigation in new theoretical approachs and in the evaluation of biosensor performances for reversible and irreversible inhibitors. The use of nanomaterials and microfluidic systems as well as the applications of the various biosensors in real samples is critically reviewed, demonstrating that such biosensors allow the development of useful devices for a fast and reliable alarm system. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Biosensors in the small scale: methods and technology trends.

    Science.gov (United States)

    Senveli, Sukru U; Tigli, Onur

    2013-03-01

    This study presents a review on biosensors with an emphasis on recent developments in the field. A brief history accompanied by a detailed description of the biosensor concepts is followed by rising trends observed in contemporary micro- and nanoscale biosensors. Performance metrics to quantify and compare different detection mechanisms are presented. A comprehensive analysis on various types and subtypes of biosensors are given. The fields of interest within the scope of this review are label-free electrical, mechanical and optical biosensors as well as other emerging and popular technologies. Especially, the latter half of the last decade is reviewed for the types, methods and results of the most prominently researched detection mechanisms. Tables are provided for comparison of various competing technologies in the literature. The conclusion part summarises the noteworthy advantages and disadvantages of all biosensors reviewed in this study. Furthermore, future directions that the micro- and nanoscale biosensing technologies are expected to take are provided along with the immediate outlook.

  18. [Progress of the study on DNA electrochemical biosensor].

    Science.gov (United States)

    Zhao, Yanzhen; Zhang, Haiyan; Wu, Xiaoli; Liu, Zhongming; Wang, Jie

    2013-02-01

    With its rapid development, the electrochemical biosensor has recently been widely used in gene diagnosis, environmental monitoring, and medical sciences. More and more attention has been focused on how to improve the sensitivity and selectivity of biosensor. In this review, the principle and composition of DNA electrochemical biosensor is simply introduced, the preparation of biological membrane, the application of indicator are specially emphasized, and the future prospect for the development in this field is given.

  19. Non-invasive Optical Biosensor for Probing Cell Signaling

    Directory of Open Access Journals (Sweden)

    Ye Fang

    2007-10-01

    Full Text Available Cell signaling mediated through a cellular target is encoded by spatial andtemporal dynamics of downstream signaling networks. The coupling of temporal dynamicswith spatial gradients of signaling activities guides cellular responses upon stimulation.Monitoring the integration of cell signaling in real time, if realized, would provide a newdimension for understanding cell biology and physiology. Optical biosensors includingresonant waveguide grating (RWG biosensor manifest a physiologically relevant andintegrated cellular response related to dynamic redistribution of cellular matters, thusproviding a non-invasive means for cell signaling study. This paper reviews recentprogresses in biosensor instrumentation, and theoretical considerations and potentialapplications of optical biosensors for whole cell sensing.

  20. Functionalized ZnO nanowires for microcantilever biosensors with enhanced binding capability.

    Science.gov (United States)

    Stassi, Stefano; Chiadò, Alessandro; Cauda, Valentina; Palmara, Gianluca; Canavese, Giancarlo; Laurenti, Marco; Ricciardi, Carlo

    2017-04-01

    An efficient way to increase the binding capability of microcantilever biosensors is here demonstrated by growing zinc oxide nanowires (ZnO NWs) on their active surface. A comprehensive evaluation of the chemical compatibility of ZnO NWs brought to the definition of an innovative functionalization method able to guarantee the proper immobilization of biomolecules on the nanostructured surface. A noteworthy higher amount of grafted molecules was evidenced with colorimetric assays on ZnO NWs-coated devices, in comparison with functionalized and activated silicon flat samples. ZnO NWs grown on silicon microcantilever arrays and activated with the proposed immobilization strategy enhanced the sensor binding capability (and thus the dynamic range) of nearly 1 order of magnitude, with respect to the commonly employed flat functionalized silicon devices. Graphical Abstract An efficient way to increase the binding capability of microcantilever biosensors is represented by growing zinc oxide nanowires (ZnO NWs) on their active surface. ZnO NWs grown on silicon microcantilever arrays and activated with an innovative immobilization strategy enhanced the sensor binding capability of nearly 1 order of magnitude, with respect to the commonly employed flat functionalized silicon devices.

  1. The Anatomy of a Nonfaradaic Electrochemical Biosensor.

    Science.gov (United States)

    Stevenson, Hunter; Radha Shanmugam, Nandhinee; Paneer Selvam, Anjan; Prasad, Shalini

    2017-11-01

    Point-of-care (POC) testing has revolutionized diagnostic healthcare, bringing medical results directly and immediately to the patient. With faster diagnostics, more immediate clinical management decisions can be made. POC tests most often use a dipstick or swab format to detect the presence of a pathogen, disease, or other relevant biomarker. In these formats, the POC tests eliminate the need for complex lab equipment and trained personnel to collect, process, and analyze sample data for simple diagnostics. However, these tests cannot satisfy all clinical needs, because accurate quantitative results are needed. The present study serves as a template for designing a nonfaradaic electrochemical biosensor toward quantitative POC diagnostics. We focus on investigating the most important parameters when constructing a nonfaradaic biosensor through both mathematical modeling and electrochemical measurements. Furthermore, we demonstrate quantitative affinity biosensing of a model protein toward developing a POC device.

  2. Recent advances in biosensor based endotoxin detection.

    Science.gov (United States)

    Das, A P; Kumar, P S; Swain, S

    2014-01-15

    Endotoxins also referred to as pyrogens are chemically lipopolysaccharides habitually found in food, environment and clinical products of bacterial origin and are unavoidable ubiquitous microbiological contaminants. Pernicious issues of its contamination result in high mortality and severe morbidities. Standard traditional techniques are slow and cumbersome, highlighting the pressing need for evoking agile endotoxin detection system. The early and prompt detection of endotoxin assumes prime importance in health care, pharmacological and biomedical sectors. The unparalleled recognition abilities of LAL biosensors perched with remarkable sensitivity, high stability and reproducibility have bestowed it with persistent reliability and their possible fabrication for commercial applicability. This review paper entails an overview of various trends in current techniques available and other possible alternatives in biosensor based endotoxin detection together with its classification, epidemiological aspects, thrust areas demanding endotoxin control, commercially available detection sensors and a revolutionary unprecedented approach narrating the influence of omics for endotoxin detection. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Microbial fuel cells for biosensor applications.

    Science.gov (United States)

    Yang, Huijia; Zhou, Minghua; Liu, Mengmeng; Yang, Weilu; Gu, Tingyue

    2015-12-01

    Microbial fuel cells (MFCs) face major hurdles for real-world applications as power generators with the exception of powering small sensor devices. Despite tremendous improvements made in the last two decades, MFCs are still too expensive to build and operate and their power output is still too small. In view of this, in recently years, intensive researches have been carried out to expand the applications into other areas such as acid and alkali production, bioremediation of aquatic sediments, desalination and biosensors. Unlike power applications, MFC sensors have the immediate prospect to be practical. This review covers the latest developments in various proposed biosensor applications using MFCs including monitoring microbial activity, testing biochemical oxygen demand, detection of toxicants and detection of microbial biofilms that cause biocorrosion.

  4. Conformational biosensor for diagnosis of prion diseases.

    Science.gov (United States)

    Tcherkasskaya, Olga; Davidson, Eugene A; Schmerr, Mary Jo; Orser, Cindy S

    2005-05-01

    A fluorescence technology to monitor the proliferation of amyloidogenic neurological disorders is proposed. A crude brain homogenate (0.01%) from animals infected with a transmissible spongiform encephalopathy is employed as a catalytic medium initiating conformational changes in 520 nM polypeptide biosensors (Tris/trifluoroethanol 50% mixture at pH 7). The fluorescence methods utilize pyrene residues covalently attached to the peptide ends. The coil-to-beta-strand transitions in biosensor molecules cause elevation of a distinct fluorescence band of the pyrene aggregates (i.e. excimers). This approach enables the detection of infectious prion proteins at fmol, does not require antibody binding or protease treatment. Technology might be adopted for diagnosing a large variety of conformational disorders as well as for generic high-throughput screening of the amyloidogenic potential in plasma.

  5. FET-biosensor for cardiac troponin biomarker

    Directory of Open Access Journals (Sweden)

    Md Arshad Mohd Khairuddin

    2017-01-01

    Full Text Available Acute myocardial infarction or myocardial infarction (MI is a major health problem, due to diminished flow of blood to the heart, leads to higher rates of mortality and morbidity. The most specific markers for cardiac injury are cardiac troponin I (cTnI and cardiac troponin T (cTnT which have been considered as ‘gold standard’. Due to higher specificity, determination of the level of cardiac troponins became a predominant indicator for MI. Currently, field-effect transistor (FET-based biosensors have been main interest to be implemented in portable sensors with the ultimate application in point-of-care testing (POCT. In this paper, we review on the FET-based biosensor based on its principle of operation, integration with nanomaterial, surface functionalization as well as immobilization, and the introduction of additional gate (for ambipolar conduction on the device architecture for the detection of cardiac troponin I (cTnI biomarker.

  6. Biosensors for security and bioterrorism applications

    CERN Document Server

    Nikoleli, Georgia-Paraskevi

    2016-01-01

    This book offers comprehensive coverage of biomarker/biosensor interactions for the rapid detection of weapons of bioterrorism, as well as current research trends and future developments and applications. It will be useful to researchers in this field who are interested in new developments in the early detection of such. The authors have collected very valuable and, in some aspects indispensable experience in the area i.e. in the development and application of portable biosensors for the detection of potential hazards. Most efforts are centered on the development of immunochemical assays including flow-lateral systems and engineered antibodies and their fragments. In addition, new approaches to the detection of enzyme inhibitors, direct enzymatic and microbial detection of metabolites and nutrients are elaborated. Some realized prototypes and concept devices applicable for the further use as a basis for the cooperation programs are also discussed. There is a particular focus on electrochemical and optical det...

  7. Modelling Carbon Nanotubes-Based Mediatorless Biosensor

    Directory of Open Access Journals (Sweden)

    Julija Razumiene

    2012-07-01

    Full Text Available This paper presents a mathematical model of carbon nanotubes-based mediatorless biosensor. The developed model is based on nonlinear non-stationary reaction-diffusion equations. The model involves four layers (compartments: a layer of enzyme solution entrapped on a terylene membrane, a layer of the single walled carbon nanotubes deposited on a perforated membrane, and an outer diffusion layer. The biosensor response and sensitivity are investigated by changing the model parameters with a special emphasis on the mediatorless transfer of the electrons in the layer of the enzyme-loaded carbon nanotubes. The numerical simulation at transient and steady state conditions was carried out using the finite difference technique. The mathematical model and the numerical solution were validated by experimental data. The obtained agreement between the simulation results and the experimental data was admissible at different concentrations of the substrate.

  8. FET-biosensor for cardiac troponin biomarker

    Science.gov (United States)

    Arshad, Mohd Khairuddin Md; Faris Mohamad Fathil, Mohamad; Hashim, Uda

    2017-11-01

    Acute myocardial infarction or myocardial infarction (MI) is a major health problem, due to diminished flow of blood to the heart, leads to higher rates of mortality and morbidity. The most specific markers for cardiac injury are cardiac troponin I (cTnI) and cardiac troponin T (cTnT) which have been considered as `gold standard'. Due to higher specificity, determination of the level of cardiac troponins became a predominant indicator for MI. Currently, field-effect transistor (FET)-based biosensors have been main interest to be implemented in portable sensors with the ultimate application in point-of-care testing (POCT). In this paper, we review on the FET-based biosensor based on its principle of operation, integration with nanomaterial, surface functionalization as well as immobilization, and the introduction of additional gate (for ambipolar conduction) on the device architecture for the detection of cardiac troponin I (cTnI) biomarker.

  9. Bioapplications of Electrochemical Sensors and Biosensors.

    Science.gov (United States)

    Dumitrescu, Eduard; Andreescu, Silvana

    2017-01-01

    Recent progress in the electrochemical field enabled development of miniaturized sensing devices that can be used in biological settings to obtain fundamental and practical biochemically relevant information on physiology, metabolism, and disease states in living systems. Electrochemical sensors and biosensors have demonstrated potential for rapid, real-time measurements of biologically relevant molecules. This chapter provides an overview of the most recent advances in the development of miniaturized sensors for biological investigations in living systems, with focus on the detection of neurotransmitters and oxidative stress markers. The design of electrochemical (bio)sensors, including their detection mechanism and functionality in biological systems, is described as well as their advantages and limitations. Application of these sensors to studies in live cells, embryonic development, and rodent models is discussed. © 2017 Elsevier Inc. All rights reserved.

  10. Nanophotonic biosensor for space exploration (PBSA instrument)

    Science.gov (United States)

    Pantoja, S.; Parro, V.; Nestler, J.; Geidel, S.; Martins, R.; Cuesta, F.; Elvira, J. G.; Sousa, A.

    2017-11-01

    One of the biggest challenges of Astrobiology is the search for clear signs of present or past life on other planetary bodies. Thus, this poster will describe the project "Photonic Biosensor for Space Application" (PBSA, www.pbsa-fp7.eu) founded by the Directorate-General for Enterprise and Industry (DG ENTR) within the European Commission and managed by the Unit S2 (Space Research) of the Research European Agency (REA).

  11. Highly Sensitive and Quick Detection of Acute Myocardial Infarction Biomarkers Using In2O3 Nanoribbon Biosensors Fabricated Using Shadow Masks.

    Science.gov (United States)

    Liu, Qingzhou; Aroonyadet, Noppadol; Song, Yan; Wang, Xiaoli; Cao, Xuan; Liu, Yihang; Cong, Sen; Wu, Fanqi; Thompson, Mark E; Zhou, Chongwu

    2016-11-22

    We demonstrate a scalable and facile lithography-free method for fabricating highly uniform and sensitive In2O3 nanoribbon biosensor arrays. Fabrication with shadow masks as the patterning method instead of conventional lithography provides low-cost, time-efficient, and high-throughput In2O3 nanoribbon biosensors without photoresist contamination. Combined with electronic enzyme-linked immunosorbent assay for signal amplification, the In2O3 nanoribbon biosensor arrays are optimized for early, quick, and quantitative detection of cardiac biomarkers in diagnosis of acute myocardial infarction (AMI). Cardiac troponin I (cTnI), creatine kinase MB (CK-MB), and B-type natriuretic peptide (BNP) are commonly associated with heart attack and heart failure and have been selected as the target biomarkers here. Our approach can detect label-free biomarkers for concentrations down to 1 pg/mL (cTnI), 0.1 ng/mL (CK-MB), and 10 pg/mL (BNP), all of which are much lower than clinically relevant cutoff concentrations. The sample collection to result time is only 45 min, and we have further demonstrated the reusability of the sensors. With the demonstrated sensitivity, quick turnaround time, and reusability, the In2O3 nanoribbon biosensors have shown great potential toward clinical tests for early and quick diagnosis of AMI.

  12. Biosensor for organoarsenical herbicides and growth promoters.

    Science.gov (United States)

    Chen, Jian; Sun, Samio; Li, Chen-Zhong; Zhu, Yong-Guan; Rosen, Barry P

    2014-01-21

    The toxic metalloid arsenic is widely distributed in food, water, and soil. While inorganic arsenic enters the environment primarily from geochemical sources, methylarsenicals either result from microbial biotransformation of inorganic arsenic or are introduced anthropogenically. Methylarsenicals such as monosodium methylarsonic acid (MSMA) have been extensively utilized as herbicides, and aromatic arsenicals such as roxarsone (Rox) are used as growth promoters for poultry and swine. Organoarsenicals are degraded to inorganic arsenic. The toxicological effects of arsenicals depend on their oxidation state, chemical composition, and bioavailability. Here we report that the active forms are the trivalent arsenic-containing species. We constructed a whole-cell biosensor utilizing a modified ArsR repressor that is highly selective toward trivalent methyl and aromatic arsenicals, with essentially no response to inorganic arsenic. The biosensor was adapted for in vitro detection of organoarsenicals using fluorescence anisotropy of ArsR-DNA interactions. It detects bacterial biomethylation of inorganic arsenite both in vivo and in vitro with detection limits of 10(-7) M and linearity to 10(-6) M for phenylarsenite and 5 × 10(-6) M for methylarsenite. The biosensor detects reduced forms of MSMA and roxarsone and offers a practical, low cost method for detecting activate forms and breakdown products of organoarsenical herbicides and growth promoters.

  13. Optoelectronic biosensor for remote monitoring of toxins

    Science.gov (United States)

    Knopf, George K.; Bassi, Amarjeet S.; Singh, Shikha; Fiorilli, Mina; Jauda, Lilana

    2001-02-01

    12 A biosensor telemetry system for the on-line remote monitoring of toxic sites is described in this paper. The device is a self-contained field measurement system that employs immobilized luminescent. Vibrio fisheri bacteria to detect airborne contaminants. The presence of toxic chemicals in the air will lead to a measurable decrease in the intensity of light produced by the bacteria population. Both cellular and environmental factors control the level of bioluminescence exhibited by the bacteria. The biological sensing element is placed inside a miniature airflow chamber that houses a light-to-frequency transducer, power supply, and Radio-Frequency (RF) transmitter to convert the intensity of bioluminescence exhibited by the bacteria population into a radio signal that is picked up by a RF receiver at a safe location. The miniature biosensor can be transported to the investigated on either a terrestrial or airborne robotic vehicle. Furthermore, numerous spatially distributed biosensors can be used to both map the extent and the rate-of-change in the dispersion of the hazardous contaminants over a large geographical area.

  14. Biosensor for remote monitoring of airborne toxins

    Science.gov (United States)

    Knopf, George K.; Bassi, Amarjeet S.; Singh, Shikha; Macleod, Roslyn

    1999-12-01

    The rapid detection of toxic contaminants released into the air by chemical processing facilities is a high priority for many manufacturers. This paper describes a novel biosensor for the remote monitoring of toxic sites. The proposed biosensor is a measurement system that employs immobilized luminescent Vibrio fisheri bacteria to detect airborne contaminants. The presence of toxic chemicals will lead to a detectable decrease in the intensity of light produced by the bacteria. Both cellular and environmental factors control the bioluminescence of these bacteria. Important design factors are the appropriate cell growth media, environmental toxicity, oxygen and cell concentrations. The luminescent bacteria are immobilized on polyvinyl alcohol (PVA) gels and placed inside a specially constructed, miniature flow cell which houses a transducer, power source, and transmitter to convert the light signal information into radio frequencies that are picked up by a receiver at a remote location. The biosensor prototype is designed to function either as a single unit mounted on an exploratory robot or numerous units spatially distributed throughout a contaminated environment for remote sensing applications.

  15. Porous photonic crystal external cavity laser biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Qinglan [Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Peh, Jessie; Hergenrother, Paul J. [Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Cunningham, Brian T. [Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States)

    2016-08-15

    We report the design, fabrication, and testing of a photonic crystal (PC) biosensor structure that incorporates a porous high refractive index TiO{sub 2} dielectric film that enables immobilization of capture proteins within an enhanced surface-area volume that spatially overlaps with the regions of resonant electromagnetic fields where biomolecular binding can produce the greatest shifts in photonic crystal resonant wavelength. Despite the nanoscale porosity of the sensor structure, the PC slab exhibits narrowband and high efficiency resonant reflection, enabling the structure to serve as a wavelength-tunable element of an external cavity laser. In the context of sensing small molecule interactions with much larger immobilized proteins, we demonstrate that the porous structure provides 3.7× larger biosensor signals than an equivalent nonporous structure, while the external cavity laser (ECL) detection method provides capability for sensing picometer-scale shifts in the PC resonant wavelength caused by small molecule binding. The porous ECL achieves a record high figure of merit for label-free optical biosensors.

  16. From chemosensing in microorganisms to practical biosensors.

    Science.gov (United States)

    Ghosh, Surya K; Kundu, Tapanendu; Sain, Anirban

    2012-11-01

    Microorganisms like bacteria can sense concentrations of chemoattractants in their medium very accurately. They achieve this through interaction between the receptors on their cell surfaces and chemoattractant molecules (like sugar). Physical processes like diffusion set some limits on the accuracy of detection, which was discussed by Berg and Purcell in the late seventies. We re-examine their work in order to assess what insight it may offer for making efficient, practical biosensors. We model the functioning of a typical biosensor as a reaction-diffusion process in a confined geometry. Using available data first we characterize the system by estimating the kinetic constants for the binding and unbinding reactions between the chemoattractants and the receptors. Then we compute the binding flux for this system, which Berg and Purcell had discussed. Unlike in microorganisms where the interval between successive measurements determines the efficiency of the nutrient searching process, it turns out that biosensors depend on long time properties like signal saturation time, which we study in detail. We also develop a mean field description of the kinetics of the system.

  17. L-arginine biosensors: A comprehensive review

    Directory of Open Access Journals (Sweden)

    Neelam Verma

    2017-12-01

    Full Text Available Arginine has been considered as the most potent nutraceutics discovered ever, due to its powerful healing property, and it's been known to scientists as the Miracle Molecule. Arginine detection in fermented food products is necessary because, high level of arginine in foods forms ethyl carbamate (EC during the fermentation process. Therefore, L-arginine detection in fermented food products is very important as a control measure for quality of fermented foods, food supplements and beverages including wine. In clinical analysis arginine detection is important due to their enormous inherent versatility in various metabolic pathways, topmost in the synthesis of Nitric oxide (NO and tumor growth. A number of methods are being used for arginine detection, but biosensors technique holds prime position due to rapid response, high sensitivity and high specificity. However, there are many problems still to be addressed, including selectivity, real time analysis and interference of urea presence in the sample. In the present review we aim to emphasize the significant role of arginine in human physiology and foods. A small attempt has been made to discuss the various techniques used for development of arginine biosensor and how these techniques affect their performance. The choice of transducers for arginine biosensor ranges from optical, pH sensing, ammonia gas sensing, ammonium ion-selective, conductometric and amperometric electrodes because ammonia is formed as a final product.

  18. Electrowetting on dielectric digital microfluidic platform with nanostructured biosensor interface for enhanced two-dimensional surface plasmon resonance imaging detection

    Science.gov (United States)

    Malic, Lidija

    The sensitive and specific detection of biomolecular interactions is at the heart of many routine analyses in fundamental research, medical diagnosis and environmental monitoring. In contrast to laborious and costly multiwell plate assays, recent years have witnessed a significant progress in miniaturized and integrated biosensors, such as surface plasmon resonance (SPR), tailored to these applications. While the design of various SPR biosensors has been described in literature, a robust, multichannel, low-cost and highly sensitive solution has not yet been presented. Specifically, an integrated system that can allow surface functionalization in array format, low-volume multichannel fluidic interfacing, and increased sensitivity is sought. This thesis describes a novel electro-wetting-on-dielectric (EWOD) digital microfluidic device with integrated nanostructured biosensor interface that addresses the aforementioned issues for enhanced surface plasmon resonance imaging (SPRi) detection. We have taken the opportunity of the most recent advances in microfabrication, nanotechnology and SPR technique to develop this integrated platform. EWOD device is employed for the dynamic immobilization of bioreceptors on SPRi biosensor surface in an array fashion from sub-muL volume solutions. Programmable EWOD electric interface allows the application of an electric field at the biosensor surface for active control of the immobilized probe density and orientation, enhancing SPRi detection. Two-dimensional SPRi detection is achieved by coupling the EWOD device to SPRi instrumentation. Parallel manipulation of individual droplets allows more efficient exploitation of the biosensor surface by separating different samples for simultaneous and selective SPRi detection. Periodic gold structures (nanoposts, nanogratings and nanogrooves) residing on a surface of glass and plastic substrates are investigated to improve the SPRi sensitivity. The corresponding electromagnetic field

  19. Biosensors engineered from conditionally stable ligand-binding domains

    Science.gov (United States)

    Church, George M.; Feng, Justin; Mandell, Daniel J.; Baker, David; Fields, Stanley; Jester, Benjamin Ward; Tinberg, Christine Elaine

    2017-09-19

    Disclosed is a biosensor engineered to conditionally respond to the presence of specific small molecules, the biosensors including conditionally stable ligand-binding domains (LBDs) which respond to the presence of specific small molecules, wherein readout of binding is provided by reporter genes or transcription factors (TFs) fused to the LBDs.

  20. Preparation and electrochemical application of a new biosensor ...

    Indian Academy of Sciences (India)

    Abstract. Banana tissue containing polyphenol oxidase was incorporated into polypyrrole matrix to make a biosensor for the analysis of acetaminophen (ACT). The electrocatalytic behaviour of oxidized acetaminophen was studied at the surface of the biosensor, using various electrochemical methods. The advantages of ...

  1. Development of a Transcription Factor-Based Lactam Biosensor

    DEFF Research Database (Denmark)

    Zhang, Jingwei; Barajas, Jesus F.; Burdu, Mehmet

    2017-01-01

    a chemoinformatic approach inspired by small molecule drug discovery. We define this approach as analogue generation toward catabolizable chemicals or AGTC. We discovered a lactam biosensor based on the ChnR/Pb transcription factor-promoter pair. The microbial biosensor is capable of sensing ε-caprolactam, Î...

  2. Oriented antibodies as versatile detection element in biosensors

    NARCIS (Netherlands)

    Trilling, A.K.

    2013-01-01

    The aim of this thesis is to explore orientation of detection elements on biosensor surfaces. To this end, different strategies were combined such as surface chemistry and protein functionalization, with the aim to generate a platform for oriented immobilization of antibodies in biosensors.

  3. [Microbial biosensors for detection of biological oxygen demand (a review)].

    Science.gov (United States)

    Ponamoreva, O N; Arliapov, V A; Alferov, V A; Reshetilov, A N

    2011-01-01

    The review briefs recent advances in application of biosensors for determining biological oxygen demand (BOD) in water. Special attention is focused on the principles of operation of microbial BOD sensors; the information about biorecognition elements in such systems and the methods used for immobilization of biological components in film biosensors is summarized. Characteristics of some BOD sensor models are considered in detail.

  4. In Vitro Evaluation of Fluorescence Glucose Biosensor Response

    Directory of Open Access Journals (Sweden)

    Mamdouh Aloraefy

    2014-07-01

    Full Text Available Rapid, accurate, and minimally-invasive glucose biosensors based on Förster Resonance Energy Transfer (FRET for glucose measurement have the potential to enhance diabetes control. However, a standard set of in vitro approaches for evaluating optical glucose biosensor response under controlled conditions would facilitate technological innovation and clinical translation. Towards this end, we have identified key characteristics and response test methods, fabricated FRET-based glucose biosensors, and characterized biosensor performance using these test methods. The biosensors were based on competitive binding between dextran and glucose to concanavalin A and incorporated long-wavelength fluorescence dye pairs. Testing characteristics included spectral response, linearity, sensitivity, limit of detection, kinetic response, reversibility, stability, precision, and accuracy. The biosensor demonstrated a fluorescence change of 45% in the presence of 400 mg/dL glucose, a mean absolute relative difference of less than 11%, a limit of detection of 25 mg/dL, a response time of 15 min, and a decay in fluorescence intensity of 72% over 30 days. The battery of tests presented here for objective, quantitative in vitro evaluation of FRET glucose biosensors performance have the potential to form the basis of future consensus standards. By implementing these test methods for a long-visible-wavelength biosensor, we were able to demonstrate strengths and weaknesses with a new level of thoroughness and rigor.

  5. A global benchmark study using affinity-based biosensors

    DEFF Research Database (Denmark)

    Rich, Rebecca L; Papalia, Giuseppe A; Flynn, Peter J

    2009-01-01

    To explore the variability in biosensor studies, 150 participants from 20 countries were given the same protein samples and asked to determine kinetic rate constants for the interaction. We chose a protein system that was amenable to analysis using different biosensor platforms as well as by user...

  6. Silicon-on-Insulator Nanowire Based Optical Waveguide Biosensors

    Science.gov (United States)

    Li, Mingyu; Liu, Yong; Chen, Yangqing; He, Jian-Jun

    2016-01-01

    Optical waveguide biosensors based on silicon-on-insulator (SOI) nanowire have been developed for label free molecular detection. This paper reviews our work on the design, fabrication and measurement of SOI nanowire based high-sensitivity biosensors employing Vernier effect. Biosensing experiments using cascaded double-ring sensor and Mach-Zehnder- ring sensor integrated with microfluidic channels are demonstrated

  7. A global benchmark study using affinity-based biosensors

    NARCIS (Netherlands)

    Rich, Rebecca L.; Papalia, Giusseppe A.; Krishnamoorthy, G.; Beusink, J.B.; Pak, Brian J.; Myszka, David G.; more, more

    2009-01-01

    To explore the variability in biosensor studies, 150 participants from 20 countries were given the same protein samples and asked to determine kinetic rate constants for the interaction. We chose a protein system that was amenable to analysis using different biosensor platforms as well as by users

  8. Recent development of nano-materials used in DNA biosensors.

    Science.gov (United States)

    Xu, Kai; Huang, Junran; Ye, Zunzhong; Ying, Yibin; Li, Yanbin

    2009-01-01

    As knowledge of the structure and function of nucleic acid molecules has increased, sequence-specific DNA detection has gained increased importance. DNA biosensors based on nucleic acid hybridization have been actively developed because of their specificity, speed, portability, and low cost. Recently, there has been considerable interest in using nano-materials for DNA biosensors. Because of their high surface-to-volume ratios and excellent biological compatibilities, nano-materials could be used to increase the amount of DNA immobilization; moreover, DNA bound to nano-materials can maintain its biological activity. Alternatively, signal amplification by labeling a targeted analyte with nano-materials has also been reported for DNA biosensors in many papers. This review summarizes the applications of various nano-materials for DNA biosensors during past five years. We found that nano-materials of small sizes were advantageous as substrates for DNA attachment or as labels for signal amplification; and use of two or more types of nano-materials in the biosensors could improve their overall quality and to overcome the deficiencies of the individual nano-components. Most current DNA biosensors require the use of polymerase chain reaction (PCR) in their protocols. However, further development of nano-materials with smaller size and/or with improved biological and chemical properties would substantially enhance the accuracy, selectivity and sensitivity of DNA biosensors. Thus, DNA biosensors without PCR amplification may become a reality in the foreseeable future.

  9. A Biosensor for the Determination of Cyanide in Cassava | Jasper ...

    African Journals Online (AJOL)

    A simple biosensor for the determination of total cyanide in cassava is demonstrated. The biosensor was developed based on the use of a cyanide ion selective electrode made from AgI and Ag2S and the enzyme linamarase which was isolated from cassava root cortex. Results are reported on a sensing system which ...

  10. Recent Development of Nano-Materials Used in DNA Biosensors

    Directory of Open Access Journals (Sweden)

    Yibin Ying

    2009-07-01

    Full Text Available As knowledge of the structure and function of nucleic acid molecules has increased, sequence-specific DNA detection has gained increased importance. DNA biosensors based on nucleic acid hybridization have been actively developed because of their specificity, speed, portability, and low cost. Recently, there has been considerable interest in using nano-materials for DNA biosensors. Because of their high surface-to-volume ratios and excellent biological compatibilities, nano-materials could be used to increase the amount of DNA immobilization; moreover, DNA bound to nano-materials can maintain its biological activity. Alternatively, signal amplification by labeling a targeted analyte with nano-materials has also been reported for DNA biosensors in many papers. This review summarizes the applications of various nano-materials for DNA biosensors during past five years. We found that nano-materials of small sizes were advantageous as substrates for DNA attachment or as labels for signal amplification; and use of two or more types of nano-materials in the biosensors could improve their overall quality and to overcome the deficiencies of the individual nano-components. Most current DNA biosensors require the use of polymerase chain reaction (PCR in their protocols. However, further development of nano-materials with smaller size and/or with improved biological and chemical properties would substantially enhance the accuracy, selectivity and sensitivity of DNA biosensors. Thus, DNA biosensors without PCR amplification may become a reality in the foreseeable future.

  11. Phased arrays '85

    Science.gov (United States)

    Stiglitz, M. R.

    1985-11-01

    The conference Phased Arrays '85 was held in Bedford, MA, on October 15-18, 1985. It is pointed out that the 15 years between the 1970 and 1985 conferences dedicated to phased array antennas have seen many technological advances. Attention is given to the principle of operation, monolithic phased arrays, active arrays of monopole elements, scan compensated active element patterns, microstrip arrays, time delay technologies for phased array systems, ferrite materials for mm-wave phase shifters, phase-only optimization of phased array excitation by B-quadratic programming, a nearly frequency-independent sidelobe suppression technique for phased arrays, and active impedance effects in low sidelobe and ultrawideband phased arrays.

  12. Biosensor method and system based on feature vector extraction

    Science.gov (United States)

    Greenbaum, Elias [Knoxville, TN; Rodriguez, Jr., Miguel; Qi, Hairong [Knoxville, TN; Wang, Xiaoling [San Jose, CA

    2012-04-17

    A method of biosensor-based detection of toxins comprises the steps of providing at least one time-dependent control signal generated by a biosensor in a gas or liquid medium, and obtaining a time-dependent biosensor signal from the biosensor in the gas or liquid medium to be monitored or analyzed for the presence of one or more toxins selected from chemical, biological or radiological agents. The time-dependent biosensor signal is processed to obtain a plurality of feature vectors using at least one of amplitude statistics and a time-frequency analysis. At least one parameter relating to toxicity of the gas or liquid medium is then determined from the feature vectors based on reference to the control signal.

  13. Introduction to biosensors from electric circuits to immunosensors

    CERN Document Server

    Yoon, Jeong-Yeol

    2016-01-01

    This book equips students with a thorough understanding of various types of sensors and biosensors that can be used for chemical, biological, and biomedical applications, including but not limited to temperature sensors, strain sensor, light sensors, spectrophotometric sensors, pulse oximeter, optical fiber probes, fluorescence sensors, pH sensor, ion-selective electrodes, piezoelectric sensors, glucose sensors, DNA and immunosensors, lab-on-a-chip biosensors, paper-based lab-on-a-chip biosensors, and microcontroller-based sensors. The author treats the study of biosensors with an applications-based approach, including over 15 extensive, hands-on labs given at the end of each chapter. The material is presented using a building-block approach, beginning with the fundamentals of sensor design and temperature sensors, and ending with more complicated biosensors. New to this second edition are sections on op-amp filters, pulse oximetry, meat quality monitoring, advanced fluorescent dyes, autofluorescence, various...

  14. Silicon Photonic Biosensors for Lab-on-a-Chip Applications

    Directory of Open Access Journals (Sweden)

    Kirill Zinoviev

    2008-01-01

    Full Text Available In the last two decades, we have witnessed a remarkable progress in the development of biosensor devices and their application in areas such as environmental monitoring, biotechnology, medical diagnostics, drug screening, food safety, and security, among others. The technology of optical biosensors has reached a high degree of maturity and several commercial products are on the market. But problems of stability, sensitivity, and size have prevented the general use of optical biosensors for real field applications. Integrated photonic biosensors based on silicon technology could solve such drawbacks, offering early diagnostic tools with better sensitivity, specificity, and reliability, which could improve the effectiveness of in-vivo and in-vitro diagnostics. Our last developments in silicon photonic biosensors will be showed, mainly related to the development of portable and highly sensitive integrated photonic sensing platforms.

  15. Review of micro/nanotechnologies for microbial biosensors.

    Science.gov (United States)

    Lim, Ji Won; Ha, Dogyeong; Lee, Jongwan; Lee, Sung Kuk; Kim, Taesung

    2015-01-01

    A microbial biosensor is an analytical device with a biologically integrated transducer that generates a measurable signal indicating the analyte concentration. This method is ideally suited for the analysis of extracellular chemicals and the environment, and for metabolic sensory regulation. Although microbial biosensors show promise for application in various detection fields, some limitations still remain such as poor selectivity, low sensitivity, and impractical portability. To overcome such limitations, microbial biosensors have been integrated with many recently developed micro/nanotechnologies and applied to a wide range of detection purposes. This review article discusses micro/nanotechnologies that have been integrated with microbial biosensors and summarizes recent advances and the applications achieved through such novel integration. Future perspectives on the combination of micro/nanotechnologies and microbial biosensors will be discussed, and the necessary developments and improvements will be strategically deliberated.

  16. Disease-Related Detection with Electrochemical Biosensors: A Review

    Directory of Open Access Journals (Sweden)

    Ying Huang

    2017-10-01

    Full Text Available Rapid diagnosis of diseases at their initial stage is critical for effective clinical outcomes and promotes general public health. Classical in vitro diagnostics require centralized laboratories, tedious work and large, expensive devices. In recent years, numerous electrochemical biosensors have been developed and proposed for detection of various diseases based on specific biomarkers taking advantage of their features, including sensitivity, selectivity, low cost and rapid response. This article reviews research trends in disease-related detection with electrochemical biosensors. Focus has been placed on the immobilization mechanism of electrochemical biosensors, and the techniques and materials used for the fabrication of biosensors are introduced in details. Various biomolecules used for different diseases have been listed. Besides, the advances and challenges of using electrochemical biosensors for disease-related applications are discussed.

  17. Survey of the year 2005 commercial optical biosensor literature.

    Science.gov (United States)

    Rich, Rebecca L; Myszka, David G

    2006-01-01

    We identified 1113 articles (103 reviews, 1010 primary research articles) published in 2005 that describe experiments performed using commercially available optical biosensors. While this number of publications is impressive, we find that the quality of the biosensor work in these articles is often pretty poor. It is a little disappointing that there appears to be only a small set of researchers who know how to properly perform, analyze, and present biosensor data. To help focus the field, we spotlight work published by 10 research groups that exemplify the quality of data one should expect to see from a biosensor experiment. Also, in an effort to raise awareness of the common problems in the biosensor field, we provide side-by-side examples of good and bad data sets from the 2005 literature. Copyright (c) 2006 John Wiley & Sons, Ltd.

  18. Regenerating silicon biosensors through thermal ablation with a hot plate

    Directory of Open Access Journals (Sweden)

    Stephane Leahy

    2015-12-01

    Full Text Available Biosensor development is time-consuming and expensive because it requires a great deal of prototyping and specialized experimental testing using, in many cases, one-time use chips. Several biosensor regeneration techniques have been proposed so that chips may be reused, but these techniques are not convenient for rapid prototyping and experimental testing. A convenient biosensor regeneration technique using thermal ablation with a hot plate is presented. Bound biological material is removed from a Poly-L-Lysine-functionalized silicon biosensor used for testing Escherichia coli by heating the biosensor to 370 °C for 10 min. Images and resonant frequency shifts indicate that regeneration is about 82% effective. This regeneration technique may be further improved by using a higher heating rate and a higher temperature.

  19. Current Trends in Nanomaterial-Based Amperometric Biosensors

    Directory of Open Access Journals (Sweden)

    Akhtar Hayat

    2014-12-01

    Full Text Available The last decade has witnessed an intensive research effort in the field of electrochemical sensors, with a particular focus on the design of amperometric biosensors for diverse analytical applications. In this context, nanomaterial integration in the construction of amperometric biosensors may constitute one of the most exciting approaches. The attractive properties of nanomaterials have paved the way for the design of a wide variety of biosensors based on various electrochemical detection methods to enhance the analytical characteristics. However, most of these nanostructured materials are not explored in the design of amperometric biosensors. This review aims to provide insight into the diverse properties of nanomaterials that can be possibly explored in the construction of amperometric biosensors.

  20. Genetically-encoded biosensors for monitoring cellular stress in bioprocessing.

    Science.gov (United States)

    Polizzi, Karen M; Kontoravdi, Cleo

    2015-02-01

    With the current wealth of transcriptomic data, it is possible to design genetically-encoded biosensors for the detection of stress responses and apply these to high-throughput bioprocess development and monitoring of cellular health. Such biosensors can sense extrinsic factors such as nutrient or oxygen deprivation and shear stress, as well as intrinsic stress factors like oxidative damage and unfolded protein accumulation. Alongside, there have been developments in biosensing hardware and software applicable to the field of genetically-encoded biosensors in the near future. This review discusses the current state-of-the-art in biosensors for monitoring cultures during biological manufacturing and the future challenges for the field. Connecting the individual achievements into a coherent whole will enable the application of genetically-encoded biosensors in industry. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Android integrated urea biosensor for public health awareness

    Directory of Open Access Journals (Sweden)

    Pranali P. Naik

    2015-03-01

    Full Text Available Integration of a biosensor with a wireless network on the Android 4.2.1 (Jelly Bean platform has been demonstrated. The present study reports an android integrated user friendly Flow injection analysis-Enzyme thermistor (FIA-ET urea biosensor system. This android-integrated biosensor system will facilitate enhanced consumer health and awareness alongside abridging the gap between the food testing laboratory and the concerned higher authorities. Data received from a flow injection mode urea biosensor has been exploited as an integration point among the analyst, the food consumer and the responsible higher authorities. Using the urea biosensor as an example, an alarm system has also been demonstrated both graphically and through text message on a mobile handset. The presented sensor integrated android system will also facilitate decision making support system in various fields of food quality monitoring and clinical analysis.

  2. Introduction to Biosensors From Electric Circuits to Immunosensors

    CERN Document Server

    Yoon, Jeong-Yeol

    2013-01-01

    Introduction to Biosensors: From Electric Circuits to Immunosensors discusses underlying circuitry of sensors for biomedical and biological engineers as well as biomedical sensing modalities for electrical engineers while providing an applications-based approach to the study of biosensors with over 13 extensive, hands-on labs. The material is presented using a building-block approach, beginning with the fundamentals of sensor design and temperature sensors and ending with more complicated biosensors. This book also: Provides electrical engineers with the specific knowledge they need to understand biological sensing modalities Provides biomedical engineers with a solid background in circuits and systems Includes complete coverage of temperature sensors, electrochemical sensors, DNA and immunosensors, piezoelectric sensors and immunosensing in a micofluidic device Introduction to Biosensors: From Electric Circuits to Immunosensors aims to provide an interdisciplinary approach to biosensors that will be apprecia...

  3. Biosensors for environmental monitoring of endocrine disruptors: a review article

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Mozaz, Sara; Lopez de Alda, Maria J.; Barcelo, Damia [Department of Environmental Chemistry, IIQAB-CSIC, C/ Jordi Girona 18-26, 08034, Barcelona (Spain); Marco, Maria-Pilar [Department of Biological Organic Chemistry, IIQAB-CSIC, C/ Jordi Girona 18-26, 08034, Barcelona (Spain)

    2004-02-01

    This article provides an overview of the applications of biosensors in analysis and monitoring of endocrine-disrupting compounds (EDCs) in the environment. Special attention is devoted to the various types of physical-chemical signal transduction elements, biological mechanisms employed as sensing elements and techniques used for immobilisation of the bioreceptor molecules on the transducer surface. Two different classes of biosensors for EDCs are considered: biosensors that measure endocrine-disrupting effects, and biosensors that respond to the presence of a specific substance (or group of substances) based on the specific recognition of a biomolecule. Several examples of them are presented to illustrate the power of the biosensor technology for environmental applications. Future trends in the development of new, more advanced devices are also outlined. (orig.)

  4. Benchtop chemistry for the rapid prototyping of label-free biosensors: Transmission localized surface plasmon resonance platforms

    Science.gov (United States)

    Liao, Wei-Ssu; Chen, Xin; Yang, Tinglu; Castellana, Edward T.; Chen, Jixin; Cremer, Paul S.

    2012-01-01

    Herein, a simple label-free biosensor fabrication method is demonstrated based on transmission localized surface plasmon resonance (T-LSPR). The platform, which consists of a silver nanoparticle array, can be prepared in just a few minutes using benchtop chemistry. The array was made by a templating technique in conjunction with the photoreduction of Ag ions from solution. This metal surface was functionalized with biotin-linked thiol ligands for binding streptavidin molecules from solution. For an array of 19 nm diameter silver nanoparticles, a redshift in the T-LSPR spectrum of 24 nm was observed upon protein-ligand binding at saturation. The binding constant was found to be 2 × 1012 M–1. Platforms were also fabricated with silver nanoparticles of 34, 55, and 72 nm diameters. The maximum LSPR wavelength shift was nanoparticle size dependent and the maximum sensitivity was obtained with the smaller nanoparticles. PMID:20408728

  5. Pure shear horizontal SAW biosensor on langasite.

    Science.gov (United States)

    Berkenpas, Eric; Bitla, Shivashanker; Millard, Paul; da Cunha, Mauricio Pereira

    2004-11-01

    The undetected introduction of pathogens into food or water supplies can produce grave consequences in terms of economic loss and human suffering. Sensitive and selective sensors capable of quickly detecting microbial pathogens are urgently needed to limit the effects of bioterrorist incidents, accidents, or pollution. Shear horizontal surface acoustic wave (SH SAW) devices provide an attractive platform for the design of microbial biosensors that function in liquid media, where Rayleigh-type modes are rapidly attenuated. This paper reports on an exploratory SH SAW delay line designed and fabricated on langasite, La3Ga5SiO14 (LGS), along the novel Euler propagation direction (0 degrees, 22 degrees, 90 degrees). A liquid chamber was fabricated and attached to the top surface, and the device was submitted to liquid and biochemical tests. Moderate (6 dB) additional attenuation of the transmission coefficient, /S21/, was consistently observed when the SH SAW delay line was assembled in the test fixture and submitted to the liquid tests, indicating that LGS is an attractive candidate for liquid sensing. Sensor selectivity can be achieved by integrating the LGS SH SAW delay line with a biochemical recognition layer. A test setup was implemented for the characterization of LGS SH SAW-based biosensors. The delay line response to biomolecule binding was shown by detection of sequential binding of proteins to the SH SAW device delay path. The biotinylated sensor was exposed sequentially to biotin-binding deglycosylated avidin, biotin-modified rabbit IgG, and goat anti-rabbit IgG antibody. As each protein was bound to the sensing surface, marked changes in the delay-line phase were recorded. The reported results demonstrate the capability of these devices to act as biochemical detectors in aqueous solutions, and this work represents the first effort using the novel material LGS in SAW-based biosensor technology.

  6. Engineering Pseudomonas stutzeri as a biogeochemical biosensor

    Science.gov (United States)

    Boynton, L.; Cheng, H. Y.; Del Valle, I.; Masiello, C. A.; Silberg, J. J.

    2016-12-01

    Biogeochemical cycles are being drastically altered as a result of anthropogenic activities, such as the burning of fossil fuels and the industrial production of ammonia. We know microbes play a major part in these cycles, but the extent of their biogeochemical roles remains largely uncharacterized due to inadequacies with culturing and measurement. While metagenomics and other -omics methods offer ways to reconstruct microbial communities, these approaches can only give an indication of the functional roles of microbes in a community. These -omics approaches are rapidly being expanded to the point of outpacing our knowledge of functional genes, which highlights an inherent need for analytical methods that non-invasively monitor Earth's processes in real time. Here we aim to exploit synthetic biology methods in order to engineer a ubiquitous denitrifying microbe, Pseudomonas stutzeri that can act as a biosensor in soil and marine environments. By using an easily cultivated microbe that is also common in many environments, we hope to develop a tool that allows us to zoom in on specific aspects of the nitrogen cycle. In order to monitor processes occurring at the genetic level in environments that cannot be resolved with fluorescence-based methods, such as soils, we have developed a system that instead relies on gas production by engineered microbial biosensors. P. stutzeri has been successfully engineered to release a gas, methyl bromide, which can continuously and non-invasively be measured by GC-MS. Similar to using Green Fluorescent Protein, GFP, in the biological sciences, the gene controlling gas production can be linked to those involved in denitrification, thereby creating a quantifiable gas signal that is correlated with microbial activity in the soil. Synthetically engineered microbial biosensors could reveal key aspects of metabolism in soil systems and offer a tool for characterizing the scope and degree of microbial impact on major biogeochemical cycles.

  7. Development of optical WGM resonators for biosensors

    Science.gov (United States)

    Brice, I.; Pirktina, A.; Ubele, A.; Grundsteins, K.; Atvars, A.; Viter, R.; Alnis, J.

    2017-12-01

    Whispering Gallery Mode (WGM) resonators are very sensitive to nanoparticles attaching to the surface. We simulate this process using COMSOL Wave Optics module. Our spherical WGM resonators are produced by melting a tip of an optical fiber and we measure optical Q factors in the 105 range. Molecular oxygen lines of the air in the 760 nm region are used as reference markers when looking for the shifts of the WGM resonance lines. We demonstrate WGM microresonator surface coating with a layer of ZnO nanorods as well as with polystyrene microspheres. Coatings produce increased contact surface. Additional layer of antigens/antibodies will be coated to make high-specificity biosensors.

  8. Development of microbial biosensors for food analysis

    DEFF Research Database (Denmark)

    Lukasiak, Justyna

    . In some cases, due to the unsatisfactory initial signal readings, enhancement of the reporter signal was necessary. In order to achieve that promoter length manipulation method was implemented and proved to be effective. Obtained reporter strains were selective towards respective target analytes...... could be in the future an alternative method for carbohydrate analysis techniques. The use of microbial biosensors is quite simple, costeffective and has a minute environmental impact. Regrettably on this stage of development they cannot be utilized as a reliable tool in food ingredient analysis...

  9. Biosensors and invasive monitoring in clinical applications

    CERN Document Server

    Córcoles, Emma P

    2013-01-01

    This volume examines the advances of invasive monitoring by means of biosensors and microdialysis. Physical and physiological parameters are commonly monitored in clinical settings using invasive techniques due to their positive outcome in patients’ diagnosis and treatment. Biochemical parameters, however, still rely on off-line measurements and require large pieces of equipment. Biosensing and sampling devices present excellent capabilities for their use in continuous monitoring of patients’ biochemical parameters. However, certain issues remain to be solved in order to ensure a more widespread use of these techniques in today’s medical practices.

  10. Electrochemical biosensor-based devices for continuous phenols monitoring in environmental matrices

    OpenAIRE

    Freire,Renato S.; Durán,Nelson; Kubota,Lauro T.

    2002-01-01

    A flow system method for continuous determination of phenolic compounds in environmental matrices was employed using a dialysis membrane sampler and laccase- and tyrosinase-based biosensors as detector. The biosensors response to different phenolic compounds was investigated. The laccase-based biosensor showed high sensitivity to guaiacol and chloroguaiacol, while the tyrosinase-based biosensor was more sensitive to phenol and chlorophenol. Both of the biosensors presented highly selective me...

  11. Coupling in reflector arrays

    DEFF Research Database (Denmark)

    Appel-Hansen, Jørgen

    1968-01-01

    In order to reduce the space occupied by a reflector array, it is desirable to arrange the array antennas as close to each other as possible; however, in this case coupling between the array antennas will reduce the reflecting properties of the reflector array. The purpose of the present communic......In order to reduce the space occupied by a reflector array, it is desirable to arrange the array antennas as close to each other as possible; however, in this case coupling between the array antennas will reduce the reflecting properties of the reflector array. The purpose of the present...

  12. Fabrication of Biosensors Based on Nanostructured Conducting Polyaniline (NSPANI

    Directory of Open Access Journals (Sweden)

    Deepshikha SAINI

    2011-11-01

    Full Text Available In this study, glucose and hydrogen peroxide (H2O2 biosensors based on nanostructured conducting polyaniline (NSPANI (synthesized using sodiumdodecyl sulphate (SDS as structure directing agent were developed. Because of the large specific surface area, excellent conductivity of NSPANI, horseradish peroxidase (HRP and glucose oxidase (GOx could be easily immobilized with high loading and activity. In addition the small dimensions and the high surface-to-volume ratio of the NSCP allow the rapid transmission of electron and enhance current response. The linear dynamic range of optical glucose and H2O2 biosensors is 5–40 mM for glucose and 1–50 mM for H2O2, respectively where as the bulk PANI exhibits linearity between 5-20 mM/l. The miniature optical glucose biosensor also exhibits good reproducibility. The storage stability of optical glucose and H2O2 biosensors is two weeks for glucose and five days for H2O2. The high response value of NSPANI based biosensors as compared to bulk PANI based biosensor reflects higher enzymatic affinity of GOx/NSPANI and HRP/NSPANI with glucose and H2O2 due to biocompatibility, active surface area and high electron communication capability of nanobiopolymer film. In conclusion, the NSPANI based biosensors proposed herein have many advantages such as a low response time, high reproducibility, high sensitivity, stable and wide dynamic range.

  13. A Highly Responsive Silicon Nanowire/Amplifier MOSFET Hybrid Biosensor.

    Science.gov (United States)

    Lee, Jieun; Jang, Jaeman; Choi, Bongsik; Yoon, Jinsu; Kim, Jee-Yeon; Choi, Yang-Kyu; Kim, Dong Myong; Kim, Dae Hwan; Choi, Sung-Jin

    2015-07-21

    This study demonstrates a hybrid biosensor comprised of a silicon nanowire (SiNW) integrated with an amplifier MOSFET to improve the current response of field-effect-transistor (FET)-based biosensors. The hybrid biosensor is fabricated using conventional CMOS technology, which has the potential advantage of high density and low noise performance. The biosensor shows a current response of 5.74 decades per pH for pH detection, which is 2.5 × 10(5) times larger than that of a single SiNW sensor. In addition, we demonstrate charged polymer detection using the biosensor, with a high current change of 4.5 × 10(5) with a 500 nM concentration of poly(allylamine hydrochloride). In addition, we demonstrate a wide dynamic range can be obtained by adjusting the liquid gate voltage. We expect that this biosensor will be advantageous and practical for biosensor applications which requires lower noise, high speed, and high density.

  14. Recent Advances in Magnetic Microfluidic Biosensors

    Directory of Open Access Journals (Sweden)

    Ioanna Giouroudi

    2017-07-01

    Full Text Available The development of portable biosening devices for the detection of biological entities such as biomolecules, pathogens, and cells has become extremely significant over the past years. Scientific research, driven by the promise for miniaturization and integration of complex laboratory equipment on inexpensive, reliable, and accurate devices, has successfully shifted several analytical and diagnostic methods to the submillimeter scale. The miniaturization process was made possible with the birth of microfluidics, a technology that could confine, manipulate, and mix very small volumes of liquids on devices integrated on standard silicon technology chips. Such devices are then directly translating the presence of these entities into an electronic signal that can be read out with a portable instrumentation. For the aforementioned tasks, the use of magnetic markers (magnetic particles—MPs—functionalized with ligands in combination with the application of magnetic fields is being strongly investigated by research groups worldwide. The greatest merits of using magnetic fields are that they can be applied either externally or from integrated microconductors and they can be well-tuned by adjusting the applied current on the microconductors. Moreover, the magnetic markers can be manipulated inside microfluidic channels by high gradient magnetic fields that can in turn be detected by magnetic sensors. All the above make this technology an ideal candidate for the development of such microfluidic biosensors. In this review, focus is given only to very recent advances in biosensors that use microfluidics in combination with magnetic sensors and magnetic markers/nanoparticles.

  15. Carbon Nanofiber Electrode Array for Neurochemical Monitoring

    Science.gov (United States)

    Koehne, Jessica E.

    2017-01-01

    A sensor platform based on vertically aligned carbon nanofibers (CNFs) has been developed. Their inherent nanometer scale, high conductivity, wide potential window, good biocompatibility and well-defined surface chemistry make them ideal candidates as biosensor electrodes. Here, we report using vertically aligned CNF as neurotransmitter recording electrodes for application in a smart deep brain stimulation (DBS) device. Our approach combines a multiplexed CNF electrode chip, developed at NASA Ames Research Center, with the Wireless Instantaneous Neurotransmitter Concentration Sensor (WINCS) system, developed at the Mayo Clinic. Preliminary results indicate that the CNF nanoelectrode arrays are easily integrated with WINCS for neurotransmitter detection in a multiplexed array format. In the future, combining CNF based stimulating and recording electrodes with WINCS may lay the foundation for an implantable smart therapeutic system that utilizes neurochemical feedback control while likely resulting in increased DBS application in various neuropsychiatric disorders. In total, our goal is to take advantage of the nanostructure of CNF arrays for biosensing studies requiring ultrahigh sensitivity, high-degree of miniaturization, and selective biofunctionalization.

  16. Design and Test of a Biosensor-Based Multisensorial System: A Proof of Concept Study

    Directory of Open Access Journals (Sweden)

    Marco Santonico

    2013-12-01

    Full Text Available Sensors are often organized in multidimensional systems or networks for particular applications. This is facilitated by the large improvements in the miniaturization process, power consumption reduction and data analysis techniques nowadays possible. Such sensors are frequently organized in multidimensional arrays oriented to the realization of artificial sensorial systems mimicking the mechanisms of human senses. Instruments that make use of these sensors are frequently employed in the fields of medicine and food science. Among them, the so-called electronic nose and tongue are becoming more and more popular. In this paper an innovative multisensorial system based on sensing materials of biological origin is illustrated. Anthocyanins are exploited here as chemical interactive materials for both quartz microbalance (QMB transducers used as gas sensors and for electrodes used as liquid electrochemical sensors. The optical properties of anthocyanins are well established and widely used, but they have never been exploited as sensing materials for both gas and liquid sensors in non-optical applications. By using the same set of selected anthocyanins an integrated system has been realized, which includes a gas sensor array based on QMB and a sensor array for liquids made up of suitable Ion Sensitive Electrodes (ISEs. The arrays are also monitored from an optical point of view. This embedded system, is intended to mimic the working principles of the nose, tongue and eyes. We call this setup BIONOTE (for BIOsensor-based multisensorial system for mimicking NOse, Tongue and Eyes. The complete design, fabrication and calibration processes of the BIONOTE system are described herein, and a number of preliminary results are discussed. These results are relative to: (a the characterization of the optical properties of the tested materials; (b the performance of the whole system as gas sensor array with respect to ethanol, hexane and isopropyl alcohol

  17. Design and test of a biosensor-based multisensorial system: a proof of concept study.

    Science.gov (United States)

    Santonico, Marco; Pennazza, Giorgio; Grasso, Simone; D'Amico, Arnaldo; Bizzarri, Mariano

    2013-12-04

    Sensors are often organized in multidimensional systems or networks for particular applications. This is facilitated by the large improvements in the miniaturization process, power consumption reduction and data analysis techniques nowadays possible. Such sensors are frequently organized in multidimensional arrays oriented to the realization of artificial sensorial systems mimicking the mechanisms of human senses. Instruments that make use of these sensors are frequently employed in the fields of medicine and food science. Among them, the so-called electronic nose and tongue are becoming more and more popular. In this paper an innovative multisensorial system based on sensing materials of biological origin is illustrated. Anthocyanins are exploited here as chemical interactive materials for both quartz microbalance (QMB) transducers used as gas sensors and for electrodes used as liquid electrochemical sensors. The optical properties of anthocyanins are well established and widely used, but they have never been exploited as sensing materials for both gas and liquid sensors in non-optical applications. By using the same set of selected anthocyanins an integrated system has been realized, which includes a gas sensor array based on QMB and a sensor array for liquids made up of suitable Ion Sensitive Electrodes (ISEs). The arrays are also monitored from an optical point of view. This embedded system, is intended to mimic the working principles of the nose, tongue and eyes. We call this setup BIONOTE (for BIOsensor-based multisensorial system for mimicking NOse, Tongue and Eyes). The complete design, fabrication and calibration processes of the BIONOTE system are described herein, and a number of preliminary results are discussed. These results are relative to: (a) the characterization of the optical properties of the tested materials; (b) the performance of the whole system as gas sensor array with respect to ethanol, hexane and isopropyl alcohol detection

  18. Construction and characterization of novel stress-responsive Deinococcal biosensors

    Energy Technology Data Exchange (ETDEWEB)

    Joe, Min Ho; Lim, Sang Youg

    2012-01-15

    In this research, we constructed a recombinant whole-cell biosensor to detect mutagens (H2O2, mitomycin C, MNNG, bleomycin) using Deinococcus radiodurans and evaluated its possibility for actual application. We performed DNA microarray analysis and selected 10 candidate genes for biosensor recombinant plasmid construction. The expression of ddrA, ddrB, DR{sub 0}161, DR{sub 0}589, and pprA was highly increased after treatment of the target mutagens. Putative promoter region of the genes were used for LacZ-based biosensor plasmid construction by replacing groESL promoter of pRADZ3. Pormoter activity and specificity of the five recombinant LacZ-based biosensor strains harboring the recombinant plasmids was measured. The result indicated that the promoter region of ddrA is the most suitable promoter for the biosensor development. Red pigment-based biosensor plasmid was constructed by displacing lacZ with crtI. The sensor strain was constructed by transforming the sensor plasmid into crtI deleted mutant D. radiodurans strain. Finally, macroscopic detection of the target mutagens by the biosensor strain was evaluated. The strength of red pigment biosynthesis by this recombinant strain in response to the target mutagens was weaker than our expectation. Continuous damage to the sensor strain by the mutagens in the medium might be the main reason for this low red-pigment biosynthesis. Therefore, we propose that the LacZ-based biosensor is more effective than the biosensor using red pigment as indicator for the mutagen detection.

  19. An integrated lab-on-a-chip-based electrochemical biosensor for rapid and sensitive detection of cancer biomarkers.

    Science.gov (United States)

    Uludag, Yildiz; Narter, Fehmi; Sağlam, Erkin; Köktürk, Güzin; Gök, M Yağmur; Akgün, Mete; Barut, Serkan; Budak, Sinan

    2016-11-01

    Recent advances in the area of biosensor technology and microfluidic applications have enabled the miniaturisation of the sensing platforms. Here we describe a new integrated and fully automated lab-on-a-chip-based biosensor device prototype (MiSens) that has potential to be used for point-of-care cancer biomarker testing. The key features of the device include a new biochip, a device integrated microfluidic system and real-time amperometric measurements during the flow of enzyme substrate. For ease of use, a new plug and play type sensor chip docking station has been designed. This system allows the formation of an ∼7 μL capacity flow cell on the electrode array with the necessary microfluidic and electronic connections with one move of a handle. As a case study, the developed prototype has been utilised for the detection of prostate-specific antigen (PSA) level in serum that is routinely used as a biomarker for the diagnosis of prostate cancer. The patient samples from a nearby hospital have been collected and tested using the MiSens device, and the results have been compared to the hospital results. The obtained results indicate the potential of the MiSens device as a useful tool for point-of-care testing. Graphical abstract Microfluidics integrated and automated electrochemical biosensor device "MiSens" has been designed and fabricated by a multidisciplinary team and utilised to detect PSA from clinical samples.

  20. Fabrication and testing of a CoNiCu/Cu CPP-GMR nanowire-based microfluidic biosensor

    Science.gov (United States)

    Bellamkonda, Ramya; John, Tom; Mathew, Bobby; DeCoster, Mark; Hegab, Hisham; Davis, Despina

    2010-02-01

    Giant magneto resistance (GMR)-based microfluidic biosensors are used in applications involving the detection, analysis, enumeration and characterization of magnetic nano-particles attached to biological mediums such as antibodies and DNA. Here we introduce a novel multilayered CoNiCu/Cu nanowire GMR-based microfluidic biosensor. The current perpendicular to the plane of multilayers (CPP)-nanowires GMR was used as the core sensing material in the biosensor which responds to magnetic fields depending on the concentration and the flow velocity of bio-nano-magnetic fluids. The device was tested with different control solutions such as DI-water, mineral oil, phosphate buffered saline (PBS), ferrofluid, polystyrene superparamagnetic beads (PSB) and Dynabeads sheep anti-rabbit IgG. The nanowire array resistance decreased with an increase in the ferrofluid concentration, and a maximum 15.8% relative GMR was observed for the undiluted ferrofluid. The sensor was also responding differently to various ferrofluid flow rates. The GMR device showed variation in the output signal when the PSB and Dynabeads of different dilutions were pumped through it. When the tests were performed with pulsing potentials (150 mV and 200 mV), an increased GMR response was identified at higher voltages for PSB and Dynabeads sheep anti-rabbit IgG.

  1. A Mediated BOD Biosensor Based on Immobilized B. Subtilis on Three-Dimensional Porous Graphene-Polypyrrole Composite.

    Science.gov (United States)

    Hu, Jingfang; Li, Yueqi; Gao, Guowei; Xia, Shanhong

    2017-11-10

    We have developed a novel mediated biochemical oxygen demand (BOD) biosensor based on immobilized Bacillus subtilis (B. subtilis) on three-dimensional (3D) porous graphene-polypyrrole (rGO-PPy) composite. The 3D porous rGO-PPy composite was prepared using hydrothermal method following with electropolymerization. Then the 3D porous rGO-PPy composite was used as a support for immobilizing negatively charged B. subtilis denoted as rGO-PPy-B through coordination and electrostatic interaction. Further, the prepared rGO-PPy-B was used as a microbial biofilm for establishing a mediated BOD biosensor with ferricyanide as an electronic acceptor. The indirect determination of BOD was performed by electrochemical measuring ferrocyanide generated from a reduced ferricyanide mediator using interdigited ultramicroelectrode array (IUDA) as the working electrode. The experimental results suggested a good linear relationship between the amperometric responses and BOD standard concentrations from 4 to 60 mg/L, with a limit detection of 1.8 mg/L (S/N ≥ 3). The electrochemical measurement of real water samples showed a good agreement with the conventional BOD₅ method, and the good anti-interference as well as the long-term stability were well demonstrated, indicating that the proposed mediated BOD biosensor in this study holds a potential practical application of real water monitoring.

  2. Liquid crystal interfaces: Experiments, simulations and biosensors

    Science.gov (United States)

    Popov, Piotr

    Interfacial phenomena are ubiquitous and extremely important in various aspects of biological and industrial processes. For example, many liquid crystal applications start by alignment with a surface. The underlying mechanisms of the molecular organization of liquid crystals at an interface are still under intensive study and continue to be important to the display industry in order to develop better and/or new display technology. My dissertation research has been devoted to studying how complex liquid crystals can be guided to organize at an interface, and to using my findings to develop practical applications. Specifically, I have been working on developing biosensors using liquid-crystal/surfactant/lipid/protein interactions as well as the alignment of low-symmetry liquid crystals for potential new display and optomechanical applications. The biotechnology industry needs better ways of sensing biomaterials and identifying various nanoscale events at biological interfaces and in aqueous solutions. Sensors in which the recognition material is a liquid crystal naturally connects the existing knowledge and experience of the display and biotechnology industries together with surface and soft matter sciences. This dissertation thus mainly focuses on the delicate phenomena that happen at liquid interfaces. In the introduction, I start by defining the interface and discuss its structure and the relevant interfacial forces. I then introduce the general characteristics of biosensors and, in particular, describe the design of biosensors that employ liquid crystal/aqueous solution interfaces. I further describe the basic properties of liquid crystal materials that are relevant for liquid crystal-based biosensing applications. In CHAPTER 2, I describe the simulation methods and experimental techniques used in this dissertation. In CHAPTER 3 and CHAPTER 4, I present my computer simulation work. CHAPTER 3 presents insight of how liquid crystal molecules are aligned by

  3. Deep-probe metal-clad waveguide biosensors

    DEFF Research Database (Denmark)

    Skivesen, Nina; Horvath, Robert; Thinggaard, S.

    2007-01-01

    Two types of metal-clad waveguide biosensors, so-called dip-type and peak-type, are analyzed and tested. Their performances are benchmarked against the well-known surface-plasmon resonance biosensor, showing improved probe characteristics for adlayer thicknesses above 150-200 nm. The dip-type metal......-clad waveguide sensor is shown to be the best all-round alternative to the surface-plasmon resonance biosensor. Both metal-clad waveguides are tested experimentally for cell detection, showing a detection linut of 8-9 cells/mm(2). (c) 2006 Elsevier B.V. All rights reserved....

  4. Development of biosensors and their application in metabolic engineering

    DEFF Research Database (Denmark)

    Zhang, Jie; Jensen, Michael Krogh; Keasling, Jay

    2015-01-01

    for the desired phenotypes. However, methods available for microbial genome diversification far exceed our ability to screen and select for those variants with optimal performance. Genetically encoded biosensors have shown the potential to address this gap, given their ability to respond to small molecule binding...... and ease of implementation with high-throughput analysis. Here we describe recent progress in biosensor development and their applications in a metabolic engineering context. We also highlight examples of how biosensors can be integrated with synthetic circuits to exert feedback regulation...

  5. Resistance-based biosensor of Multi-Walled Carbon Nanotubes.

    Science.gov (United States)

    Kolosovas-Machuca, E S; Vera-Reveles, G; Rodríguez-Aranda, M C; Ortiz-Dosal, L C; Segura-Cardenas, Emmanuel; Gonzalez, Francisco J

    2015-01-01

    Multi-Walled Carbon Nanotubes (MWNTs) are a good choice for resistive biosensors due to their great resistance changes when immunoreactions take place, they are also low-cost, more biocompatible than single-walled carbon nanotubes, and resistive measurement equipment is usually not expensive and readily available. In this work a novel resistive biosensor based on the immobilization of an antigen through a silanization process over the surface of Multi-Walled Carbon Nanotubes (MWNTs) is reported. Results show that the biosensor increases its conductivity when adding the antigen and decreases when adding the antibody making them good candidates for disease diagnosis.

  6. [Progress in the application of conducting polymer in glucose biosensor].

    Science.gov (United States)

    Wang, Cang; Chen, Dajing; Cheng, Liling; Chen, Yuquan; Chen, Wei; Pan, Min

    2013-10-01

    Conducting polymers have stable long-chain structure and good electrical conductivity. They have been used in various types of biosensors because of their excellent characteristics of the immobilization and electrical signal transmission. In recent years, researchers mainly study on improving its micro-nano structures and its signal conductivity to enhance its effect on the enzyme immobilization and signal conductive properties. This paper reviews firstly the application of conducting polymer on enzyme-immobilized glucose biosensor and the new technologies and methods in this field. This paper also points out the future application of conducting polymers in enzyme immobilization and biosensor preparation areas.

  7. Development of allosteric biosensors for the diagnosis of infectious diseases

    OpenAIRE

    Ferraz Colomina, Rosa Maria

    2009-01-01

    Consultable des del TDX Títol obtingut de la portada digitalitzada Los biosensores representan actualmente herramientas importantes para la detección de moléculas de interés. Los biosensores proteicos destacan por su fácil producción y uso, permitiendo un desarrollo económico de biosensores que pueden ser utilizados en todo el mundo y sobretodo, útiles en países con falta de recursos y tecnología. Un diagnóstico rápido y eficaz de enfermedades infecciosas permitiría un tratamiento más r...

  8. Simultaneous determination of cadaverine and putrescine using a disposable monoamine oxidase based biosensor.

    Science.gov (United States)

    Henao-Escobar, Wilder; Domínguez-Renedo, Olga; Asunción Alonso-Lomillo, M; Julia Arcos-Martínez, M

    2013-12-15

    The selective and simultaneous amperometric determination of putrescine (Put) and cadaverine (Cad) has been carried out using a novel design of screen-printed carbon electrode (SPCE) with two working electrodes connected in array mode. A mixture of 3% of tetrathiafulvalene (TTF), as mediator, and carbon ink was used for the construction of the screen-printed working electrode. The employment of different amounts of monoamine oxidase (MAO) enzyme on these modified TTF/SPCEs and the use of gold nanoparticles (AuNPs) allowed performing the simultaneous determination of both analytes. The amperometric detection has been performed by measuring the oxidation current of the mediator at a potential of+250 mV vs. screen-printed Ag/AgCl reference electrode. A linear response in the Cad concentration range from 19.6 till 107.1 µM and from 9.9 till 74.1 μM for Put was obtained at the MAO/AuNPs/TTF/SPCE biosensor. This device showed a capability of detection of 9.9 and 19.9±0.9 µM (n=4 α=β=0.05) and a precision of 4.9% and 10.3% in terms of relative standard deviation for Put and Cad, respectively. The developed biosensor was successfully applied to the simultaneous determination of Put and Cad in octopus samples. © 2013 Elsevier B.V. All rights reserved.

  9. A low cost surface plasmon resonance biosensor using a laser line generator

    Science.gov (United States)

    Chen, Ruipeng; Wang, Manping; Wang, Shun; Liang, Hao; Hu, Xinran; Sun, Xiaohui; Zhu, Juanhua; Ma, Liuzheng; Jiang, Min; Hu, Jiandong; Li, Jianwei

    2015-08-01

    Due to the instrument designed by using a common surface plasmon resonance biosensor is extremely expensive, we established a portable and cost-effective surface plasmon resonance biosensing system. It is mainly composed of laser line generator, P-polarizer, customized prism, microfluidic cell, and line Charge Coupled Device (CCD) array. Microprocessor PIC24FJ128GA006 with embedded A/D converter, communication interface circuit and photoelectric signal amplifier circuit are used to obtain the weak signals from the biosensing system. Moreover, the line CCD module is checked and optimized on the number of pixels, pixels dimension, output amplifier and the timing diagram. The micro-flow cell is made of stainless steel with a high thermal conductivity, and the microprocessor based Proportional-Integral-Derivative (PID) temperature-controlled algorithm was designed to keep the constant temperature (25 °C) of the sample solutions. Correspondingly, the data algorithms designed especially to this biosensing system including amplitude-limiting filtering algorithm, data normalization and curve plotting were programmed efficiently. To validate the performance of the biosensor, ethanol solution samples at the concentrations of 5%, 7.5%, 10%, 12.5% and 15% in volumetric fractions were used, respectively. The fitting equation ΔRU = - 752987.265 + 570237.348 × RI with the R-Square of 0.97344 was established by delta response units (ΔRUs) to refractive indexes (RI). The maximum relative standard deviation (RSD) of 4.8% was obtained.

  10. Aptamer-based microcantilever biosensor for ultrasensitive detection of tumor marker nucleolin.

    Science.gov (United States)

    Li, Huiyan; Bai, Xiaojing; Wang, Nan; Chen, Xuejuan; Li, Jing; Zhang, Zhe; Tang, Jilin

    2016-01-01

    We present an aptamer-based microcantilever biosensor for label-free detection of nucleolin. The sensor cantilevers in the microcantilever array were functionalized with nucleolin aptamer (AS1411) while the reference cantilevers were modified by 6-mercapto-1-hexanol (MCH) to eliminate environmental disturbances. The interaction between nucleolin and AS1411 induced surface stress changes, resulting in a differential deflection between sensor and reference cantilevers. The amplitude of differential cantilever deflection had a good linear relationship with the nucleolin concentration ranging from 10 nM to 250 nM with a correlation coefficient of 0.999. The detection limit was about 1.0 nM, at a signal-to-noise ratio of 3. The aptamer-based microcantilever sensor demonstrated good selectivity and was facile, rapid, and reagentless. Our results show the potential for the application of microcantilever biosensor system as a powerful tool to detect tumor markers with high sensitivity and specificity. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Ratiometric Array of Conjugated Polymers-Fluorescent Protein Provides a Robust Mammalian Cell Sensor.

    Science.gov (United States)

    Rana, Subinoy; Elci, S Gokhan; Mout, Rubul; Singla, Arvind K; Yazdani, Mahdieh; Bender, Markus; Bajaj, Avinash; Saha, Krishnendu; Bunz, Uwe H F; Jirik, Frank R; Rotello, Vincent M

    2016-04-06

    Supramolecular complexes of a family of positively charged conjugated polymers (CPs) and green fluorescent protein (GFP) create a fluorescence resonance energy transfer (FRET)-based ratiometric biosensor array. Selective multivalent interactions of the CPs with mammalian cell surfaces caused differential change in FRET signals, providing a fingerprint signature for each cell type. The resulting fluorescence signatures allowed the identification of 16 different cell types and discrimination between healthy, cancerous, and metastatic cells, with the same genetic background. While the CP-GFP sensor array completely differentiated between the cell types, only partial classification was achieved for the CPs alone, validating the effectiveness of the ratiometric sensor. The utility of the biosensor was further demonstrated in the detection of blinded unknown samples, where 121 of 128 samples were correctly identified. Notably, this selectivity-based sensor stratified diverse cell types in minutes, using only 2000 cells, without requiring specific biomarkers or cell labeling.

  12. Integrated infrared array technology

    Science.gov (United States)

    Goebel, J. H.; Mccreight, C. R.

    1987-01-01

    An overview of integrated infrared (IR) array technology is presented. Although the array pixel formats are smaller, and the readout noise of IR arrays is larger than the corresponding values achieved with optical charge-coupled-device silicon technology, substantial progress is being made in IR technology. Both existing IR arrays and those being developed are described. Examples of astronomical images are given which illustrate the potential of integrated IR arrays for scientific investigations.

  13. Integrated Biosensor Assay for Rapid Uropathogen Identification and Phenotypic Antimicrobial Susceptibility Testing.

    Science.gov (United States)

    Altobelli, Emanuela; Mohan, Ruchika; Mach, Kathleen E; Sin, Mandy Lai Yi; Anikst, Victoria; Buscarini, Maurizio; Wong, Pak Kin; Gau, Vincent; Banaei, Niaz; Liao, Joseph C

    2017-04-01

    Standard diagnosis of urinary tract infection (UTI) via urine culture for pathogen identification (ID) and antimicrobial susceptibility testing (AST) takes 2-3 d. This delay results in empiric treatment and contributes to the misuse of antibiotics and the rise of resistant pathogens. A rapid diagnostic test for UTI may improve patient care and antibiotic stewardship. To develop and validate an integrated biosensor assay for UTI diagnosis, including pathogen ID and AST, with determination of the minimum inhibitory concentration (MIC) for ciprofloxacin. Urine samples positive for Enterobacteriaceae (n=84) or culture-negative (n=23) were obtained from the Stanford Clinical Microbiology Laboratory between November 2013 and September 2014. Each sample was diluted and cultured for 5h with and without ciprofloxacin, followed by quantitative detection of bacterial 16S rRNA using a single electrochemical biosensor array functionalized with a panel of complementary DNA probes. Pathogen ID was determined using universal bacterial, Enterobacteriaceae (EB), and pathogen-specific probes. Phenotypic AST with ciprofloxacin MIC was determined using an EB probe to measure 16S rRNA levels as a function of bacterial growth. Electrochemical signals for pathogen ID at 6 SD over background were considered positive. An MIC signal of 0.4 log units lower than the no-antibiotic control indicated sensitivity. Results were compared to clinical microbiology reports. For pathogen ID, the assay had 98.5% sensitivity, 96.6% specificity, 93.0% positive predictive value, and 99.3% negative predictive value. For ciprofloxacin MIC the categorical and essential agreement was 97.6%. Further automation, testing of additional pathogens and antibiotics, and a full prospective study will be necessary for translation to clinical use. The integrated biosensor platform achieved microbiological results including MIC comparable to standard culture in a significantly shorter assay time. Further assay automation

  14. Dual enzymatic biosensor for simultaneous amperometric determination of histamine and putrescine.

    Science.gov (United States)

    Henao-Escobar, W; Del Torno-de Román, L; Domínguez-Renedo, O; Alonso-Lomillo, M A; Arcos-Martínez, M J

    2016-01-01

    A disposable electrodic system consisting of two working electrodes connected in array mode has been developed for the simultaneous determination of histamine (His) and putrescine (Put). Histamine deshydrogenase and putrescine oxidase enzymes were respectively immobilized by crosslinking on each working screen-printed electrode, both modified with tetrathiafulvalene. The dual system allowed the simultaneous amperometric determination of both species by measuring the oxidation current of the mediator in each working electrode. The effect of other potentially interfering biogenic amines was also evaluated. The capability of detection was of 8.1 ± 0.7 for His and 10 ± 0.6 μM for Put. The precision in terms of relative standard deviation was of 3.5% and 6.7% for His and Put, respectively. The developed biosensor was successfully applied to the determination of His and Put in different food samples. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. In situ measurement of nitrate in deep-sea sediments with a microscale biosensor

    DEFF Research Database (Denmark)

    Marzocchi, Ugo; Revsbech, Niels Peter; Glud, Ronnie

    When a bacteria-based nitrate biosensor with tip diameter down to 20 µm was invented about 12 years ago it became possible to measure detailed nitrate profiles in marine sediments, but functional tip membranes in the sensors were difficult to make, and the sensors did not work at temperatures below...... about 8°C. Large resources are being spent on exploration of the deep sea using sensor-equipped benthic landers, and it would be of significant value to add nitrate to the array of chemical sensors for in situ use, but it is then necessary to construct more robust sensors that work at temperatures...... in anoxic layers led to total depletion at 10-15 mm depth. A result from comparison of shallow (75 m) water sediment profiles recorded both in situ and on recovered sediment cores is that there was more variability in situ than in the laboratory, probably due to decreased animal activity during laboratory...

  16. Development of FRET biosensors for mammalian and plant systems

    NARCIS (Netherlands)

    Hamers, D.; van Voorst Vader, L.; Borst, J.W.; Goedhart, J.

    2014-01-01

    Genetically encoded biosensors are increasingly used in visualising signalling processes in different organisms. Sensors based on green fluorescent protein technology are providing a great opportunity for using Forster resonance energy transfer (FRET) as a tool that allows for monitoring dynamic

  17. Biosensor Urea Berbasis Biopolimer Khitin Sebagai Matriks Immobilisasi

    Directory of Open Access Journals (Sweden)

    Nazruddin Nazaruddin

    2007-06-01

    Full Text Available Penelitian tentang biosensor urea menggunakan biopolimer khitin sebagai matriks immobilisasi telah dilakukan. Penelitian ini dilakukan untuk mengetahui kinerja biosensor yang dihasilkan yang meliputi sensitivitas, trayek pengukuran, limit deteksi, waktu respon, koefisien selektifitas, dan waktu hidup. Penelitian meliputi beberapa tahap yaitu pembuatan membran polimer khitin dan immobilisasi enzim urease, pelekatan membran khitin pada elektroda pH, dan pengukuran parameter kinerja elektroda. Hasil pengukuran menunjukkan sensitivitas biosensor urea berbasis membran khitin adalah 19,11 mV/dekade, trayek pengukuran 10-4 – 10-8 M, limit deteksi 10-8 M, waktu respon 3,10–6,02 menit, dengan urutan kekuatan ion penggangu: NH4Cl > NaCl > CH3COONa > campuran garam > KCl > CaCl2 > asam askorbat. Kata kunci: biosensor, immobilisasi, khitin, urea

  18. Glucose Biosensors: An Overview of Use in Clinical Practice

    Directory of Open Access Journals (Sweden)

    Eun-Hyung Yoo

    2010-05-01

    Full Text Available Blood glucose monitoring has been established as a valuable tool in the management of diabetes. Since maintaining normal blood glucose levels is recommended, a series of suitable glucose biosensors have been developed. During the last 50 years, glucose biosensor technology including point-of-care devices, continuous glucose monitoring systems and noninvasive glucose monitoring systems has been significantly improved. However, there continues to be several challenges related to the achievement of accurate and reliable glucose monitoring. Further technical improvements in glucose biosensors, standardization of the analytical goals for their performance, and continuously assessing and training lay users are required. This article reviews the brief history, basic principles, analytical performance, and the present status of glucose biosensors in the clinical practice.

  19. Biosensor technology in aging research and age-related diseases.

    Science.gov (United States)

    He, Yulong; Wu, Yuehong; Mishra, Anuja; Acha, Victor; Andrews, Thomas; Hornsby, Peter J

    2012-01-01

    Cell- and tissue-based biosensors comprise genetically engineered proteins that are incorporated into cells ex vivo or into cells of tissues in vivo. They enable the investigator to sense levels of hormones, drugs, or toxins, continuously and noninvasively, using biophotonics or other physical principles, and could potentially be used over the entire lifespan of an experimental animal. The present work reviews the state of the art of cell- and tissue-based biosensors and discusses how they could be of value in aging research. Examples of recently developed biosensors are given, including those that detect levels of a cytokine (TNFα) and drugs (activators of the mTOR pathway). Finally, we discuss the hurdles that would have to be overcome for biosensor technology to be used in humans in monitoring health status and disease treatment in late life. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. CMOS Electrochemical Instrumentation for Biosensor Microsystems: A Review.

    Science.gov (United States)

    Li, Haitao; Liu, Xiaowen; Li, Lin; Mu, Xiaoyi; Genov, Roman; Mason, Andrew J

    2016-12-31

    Modern biosensors play a critical role in healthcare and have a quickly growing commercial market. Compared to traditional optical-based sensing, electrochemical biosensors are attractive due to superior performance in response time, cost, complexity and potential for miniaturization. To address the shortcomings of traditional benchtop electrochemical instruments, in recent years, many complementary metal oxide semiconductor (CMOS) instrumentation circuits have been reported for electrochemical biosensors. This paper provides a review and analysis of CMOS electrochemical instrumentation circuits. First, important concepts in electrochemical sensing are presented from an instrumentation point of view. Then, electrochemical instrumentation circuits are organized into functional classes, and reported CMOS circuits are reviewed and analyzed to illuminate design options and performance tradeoffs. Finally, recent trends and challenges toward on-CMOS sensor integration that could enable highly miniaturized electrochemical biosensor microsystems are discussed. The information in the paper can guide next generation electrochemical sensor design.

  1. Cantilever-Based Microwave Biosensors: Analysis, Designs and Optimizations

    DEFF Research Database (Denmark)

    Jiang, Chenhui; Johansen, Tom Keinicke; Jónasson, Sævar Þór

    2011-01-01

    This paper presents a novel microwave readout scheme for measuring deflection of cantilevers in nanometer range. The cantilever deflection can be sensed by the variation of transmission levels or resonant frequencies of microwave signals. The sensitivity of the cantilever biosensor based on LC...... resonators is at first theoretically analyzed. A LC resonator based biosensor with beams is designed and optimized by using 3D electromagnetic (EM) simulations, where the beam is a typical variation of cantilevers. The sensitivity of the lossless biosensor is predicted as 4.6MHz/nm. The 3-dB bandwidths...... of the resonances are narrowed for improving the resolution of distinguishing resonances by reducing conductive loss of electrodes. The lossy biosensor can achieve the highest sensitivity as 5.6 MHz/nm and narrowest 3-dB bandwidth as 5 GHz....

  2. Interdigitated electrodes as impedance and capacitance biosensors: A review

    Science.gov (United States)

    Mazlan, N. S.; Ramli, M. M.; Abdullah, M. M. A. B.; Halin, D. S. C.; Isa, S. S. M.; Talip, L. F. A.; Danial, N. S.; Murad, S. A. Z.

    2017-09-01

    Interdigitated electrodes (IDEs) are made of two individually addressable interdigitated comb-like electrode structures. IDEs are one of the most favored transducers, widely utilized in technological applications especially in the field of biological and chemical sensors due to their inexpensive, ease of fabrication process and high sensitivity. In order to detect and analyze a biochemical molecule or analyte, the impedance and capacitance signal need to be obtained. This paper investigates the working principle and influencer of the impedance and capacitance biosensors. The impedance biosensor depends on the resistance and capacitance while the capacitance biosensor influenced by the dielectric permittivity. However, the geometry and structures of the interdigitated electrodes affect both impedance and capacitance biosensor. The details have been discussed in this paper.

  3. CMOS Electrochemical Instrumentation for Biosensor Microsystems: A Review

    Directory of Open Access Journals (Sweden)

    Haitao Li

    2016-12-01

    Full Text Available Modern biosensors play a critical role in healthcare and have a quickly growing commercial market. Compared to traditional optical-based sensing, electrochemical biosensors are attractive due to superior performance in response time, cost, complexity and potential for miniaturization. To address the shortcomings of traditional benchtop electrochemical instruments, in recent years, many complementary metal oxide semiconductor (CMOS instrumentation circuits have been reported for electrochemical biosensors. This paper provides a review and analysis of CMOS electrochemical instrumentation circuits. First, important concepts in electrochemical sensing are presented from an instrumentation point of view. Then, electrochemical instrumentation circuits are organized into functional classes, and reported CMOS circuits are reviewed and analyzed to illuminate design options and performance tradeoffs. Finally, recent trends and challenges toward on-CMOS sensor integration that could enable highly miniaturized electrochemical biosensor microsystems are discussed. The information in the paper can guide next generation electrochemical sensor design.

  4. Isolated Reporter Bacteria in Supramolecular Hydrogel Microwell Arrays.

    Science.gov (United States)

    Li, Ping; Dou, Xiaoqiu; Feng, Chuanliang; Müller, Mareike; Chang, Matthew Wook; Frettlöh, Martin; Schönherr, Holger

    2017-08-08

    The combination of supramolecular hydrogels formed by low molecular weight gelator self-assembly via noncovalent interactions within a scaffold derived from polyethylene glycol (PEG) affords an interesting approach to immobilize fully functional, isolated reporter bacteria in novel microwell arrays. The PEG-based scaffold serves as a stabilizing element and provides physical support for the self-assembly of the C2-phenyl-derived gelator on the micrometer scale. Supramolecular hydrogel microwell arrays with various shapes and sizes were used to isolate single or small numbers of Escherichia coli TOP10 pTetR-LasR-pLuxR-GFP. In the presence of the autoinducer N-(3-oxododecanoyl) homoserine lactone, the entrapped E. coli in the hydrogel microwell arrays showed an increased GFP expression. The shape and size of microwell arrays did not influence the fluorescence intensity and the projected size of the bacteria markedly, while the population density of seeded bacteria affected the number of bacteria expressing GFP per well. The hydrogel microwell arrays can be further used to investigate quorum sensing, reflecting communication in inter- and intraspecies bacterial communities for biology applications in the field of biosensors. In the future, these self-assembled hydrogel microwell arrays can also be used as a substrate to detect bacteria via secreted autoinducers.

  5. Modelling of Amperometric Biosensors in the Case of Substrate Inhibition

    OpenAIRE

    Romas Baronas; Juozas Kulys

    2006-01-01

    The response of an amperometric biosensor at mixed enzyme kinetics and diffusion limitations was modelled digitally in the case of substrate inhibition. Digital simulations were carried out using a finite difference technique. Calculations showed complex kinetics of biosensor response. At low enzyme activity and substrate concentration (S0 ), the response of the sensor looks like it is limited by a simple substrate diffusion. At substrate concentration comparable to the Michaelis-Menten const...

  6. Antibody Immobilization on Conductive Polymer Coated Nonwoven Fibers for Biosensors

    OpenAIRE

    McGraw, Shannon K.; Anderson, Michael J.; Alocilja, Evangelyn C.; Marek, Patrick J.; Kris J. SENECAL; Andre G. SENECAL

    2011-01-01

    This work is being performed to develop rapid and novel electrochemical biosensors for foodborne pathogen detection. This research focuses on electrotextile platforms to perform both capture and sensing functions in a single component. The biosensor uses nonwoven fiber membranes coated with conductive polymer and functionalized with antibodies for biological capture. This study examines three methods for antibody immobilization: passive adsorption, glutaraldehyde cross-linking, and EDC/Sulfo-...

  7. Biosensor Regeneration: A Review of Common Techniques and Outcomes.

    Science.gov (United States)

    Goode, J A; Rushworth, J V H; Millner, P A

    2015-06-16

    Biosensors are ideally portable, low-cost tools for the rapid detection of pathogens, proteins, and other analytes. The global biosensor market is currently worth over 10 billion dollars annually and is a burgeoning field of interdisciplinary research that is hailed as a potential revolution in consumer, healthcare, and industrial testing. A key barrier to the widespread adoption of biosensors, however, is their cost. Although many systems have been validated in the laboratory setting and biosensors for a range of analytes are proven at the concept level, many have yet to make a strong commercial case for their acceptance. Though it is true with the development of cheaper electrodes, circuits, and components that there is a downward pressure on costs, there is also an emerging trend toward the development of multianalyte biosensors that is pushing in the other direction. One way to reduce the cost that is suitable for certain systems is to enable their reuse, thus reducing the cost per test. Regenerating biosensors is a technique that can often be used in conjunction with existing systems in order to reduce costs and accelerate the commercialization process. This article discusses the merits and drawbacks of regeneration schemes that have been proven in various biosensor systems and indicates parameters for successful regeneration based on a systematic review of the literature. It also outlines some of the difficulties encountered when considering the role of regeneration at the point of use. A brief meta-analysis has been included in this review to develop a working definition for biosensor regeneration, and using this analysis only ∼60% of the reported studies analyzed were deemed a success. This highlights the variation within the field and the need to normalize regeneration as a standard process across the field by establishing a consensus term.

  8. Non-Invasive Optical Biosensor for Probing Cell Signaling

    OpenAIRE

    Fang, Ye

    2007-01-01

    Cell signaling mediated through a cellular target is encoded by spatial and temporal dynamics of downstream signaling networks. The coupling of temporal dynamics with spatial gradients of signaling activities guides cellular responses upon stimulation. Monitoring the integration of cell signaling in real time, if realized, would provide a new dimension for understanding cell biology and physiology. Optical biosensors including resonant waveguide grating (RWG) biosensor manifest a physiologica...

  9. Piezoelectric Biosensors for Organophosphate and Carbamate Pesticides: A Review

    OpenAIRE

    Marrazza, Giovanna

    2014-01-01

    Due to the great amount of pesticides currently being used, there is an increased interest for developing biosensors for their detection. Among all the physical transducers, piezoelectric systems have emerged as the most attractive due to their simplicity, low instrumentation costs, possibility for real-time and label-free detection and generally high sensitivity. This paper presents an overview of biosensors based on the quartz crystal microbalance, which have been reported in the literature...

  10. A Highly Responsive Silicon Nanowire/Amplifier MOSFET Hybrid Biosensor

    Science.gov (United States)

    2015-07-21

    compared with laboratory instruments . A schematic of the hybrid SiNW- MOSFET biosensor is shown in Fig. 1a. In this configuration, the SiNW device...1Scientific RepoRts | 5:12286 | DOi: 10.1038/srep12286 www.nature.com/scientificreports A Highly Responsive Silicon Nanowire/Amplifier MOSFET ...This study demonstrates a hybrid biosensor comprised of a silicon nanowire (SiNW) integrated with an amplifier MOSFET to improve the current response

  11. Label-Free Direct Detection of miRNAs with Poly-Silicon Nanowire Biosensors.

    Directory of Open Access Journals (Sweden)

    Jing He

    Full Text Available The diagnostic and prognostic value of microRNAs (miRNAs in a variety of diseases is promising. The novel silicon nanowire (SiNW biosensors have advantages in molecular detection because of their high sensitivity and fast response. In this study, poly-crystalline silicon nanowire field-effect transistor (poly-SiNW FET device was developed to achieve specific and ultrasensitive detection of miRNAs without labeling and amplification.The poly-SiNW FET was fabricated by a top-down Complementary Metal Oxide Semiconductor (CMOS wafer fabrication based technique. Single strand DNA (ssDNA probe was bind to the surface of the poly-SiNW device which was silanated and aldehyde-modified. By comparing the difference of resistance value before and after ssDNA and miRNA hybridization, poly-SiNW device can be used to detect standard and real miRNA samples.Poly-SiNW device with different structures (different line width and different pitch was applied to detect standard Let-7b sample with a detection limitation of 1 fM. One-base mismatched sequence could be distinguished meanwhile. Furthermore, these poly-SiNW arrays can detect snRNA U6 in total RNA samples extracted from HepG2 cells with a detection limitation of 0.2 μg/mL. In general, structures with pitch showed better results than those without pitch in detection of both Let-7b and snRNA U6. Moreover, structures with smaller pitch showed better detection efficacy.Our findings suggest that poly-SiNW arrays could detect standard and real miRNA sample without labeling or amplification. Poly-SiNW biosensor device is promising for miRNA detection.

  12. Aptamer Based Microsphere Biosensor for Thrombin Detection

    Directory of Open Access Journals (Sweden)

    Xudong Fan

    2006-08-01

    Full Text Available We have developed an optical microsphere resonator biosensor using aptamer asreceptor for the measurement of the important biomolecule thrombin. The sphere surface ismodified with anti-thrombin aptamer, which has excellent binding affinity and selectivityfor thrombin. Binding of the thrombin at the sphere surface is monitored by the spectralposition of the microsphere’s whispering gallery mode resonances. A detection limit on theorder of 1 NIH Unit/mL is demonstrated. Control experiments with non-aptameroligonucleotide and BSA are also carried out to confirm the specific binding betweenaptamer and thrombin. We expect that this demonstration will lead to the development ofhighly sensitive biomarker sensors based on aptamer with lower cost and higher throughputthan current technology.

  13. Nanoparticle-based lateral flow biosensors.

    Science.gov (United States)

    Quesada-González, Daniel; Merkoçi, Arben

    2015-11-15

    Lateral flow biosensors (LFBs) are paper-based devices which permit the performance of low-cost and fast diagnostics with good robustness, specificity, sensitivity and low limits of detection. The use of nanoparticles (NPs) as labels play an important role in the design and fabrication of a lateral flow strip (LFS). The choice of NPs and the corresponding detection method directly affect the performance of these devices. This review discusses aspects related to the application of different nanomaterials (e.g. gold nanoparticles, carbon nanotubes, quantum dots, up-converting phosphor technologies, and latex beads, between others) in LFBs. Moreover, different detection methods (colorimetric, fluorescent, electrochemical, magnetic, etc.) and signal enhancement strategies (affording secondary reactions or modifying the architecture of the LFS) as well as the use of devices such as smartphones to mediate the response of LFSs will be analyzed. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Recent Progress in Electrochemical Biosensors for Glycoproteins

    Directory of Open Access Journals (Sweden)

    Uichi Akiba

    2016-12-01

    Full Text Available This review provides an overview of recent progress in the development of electrochemical biosensors for glycoproteins. Electrochemical glycoprotein sensors are constructed by combining metal and carbon electrodes with glycoprotein-selective binding elements including antibodies, lectin, phenylboronic acid and molecularly imprinted polymers. A recent trend in the preparation of glycoprotein sensors is the successful use of nanomaterials such as graphene, carbon nanotube, and metal nanoparticles. These nanomaterials are extremely useful for improving the sensitivity of glycoprotein sensors. This review focuses mainly on the protocols for the preparation of glycoprotein sensors and the materials used. Recent improvements in glycoprotein sensors are discussed by grouping the sensors into several categories based on the materials used as recognition elements.

  15. Molecular Modeling of Fluorescent SERCA Biosensors.

    Science.gov (United States)

    Svensson, Bengt; Autry, Joseph M; Thomas, David D

    2016-01-01

    Molecular modeling and simulation are useful tools in structural biology, allowing the formulation of functional hypotheses and interpretation of spectroscopy experiments. Here, we describe a method to construct in silico models of a fluorescent fusion protein construct, where a cyan fluorescent protein (CFP) is linked to the actuator domain of the Sarco/Endoplasmic Reticulum Ca(2+)-ATPase (SERCA). This CFP-SERCA construct is a biosensor that can report on structural dynamics in the cytosolic headpiece of SERCA. Molecular modeling and FRET experiments allow us to generate new structural and mechanistic models that better describe the conformational landscape and regulation of SERCA. The methods described here can be applied to the creation of models for any fusion protein constructs and also describe the steps needed to simulate FRET results using molecular models.

  16. Quantitative self-powered electrochromic biosensors.

    Science.gov (United States)

    Pellitero, Miguel Aller; Guimerà, Anton; Kitsara, Maria; Villa, Rosa; Rubio, Camille; Lakard, Boris; Doche, Marie-Laure; Hihn, Jean-Yves; Javier Del Campo, F

    2017-03-01

    Self-powered sensors are analytical devices able to generate their own energy, either from the sample itself or from their surroundings. The conventional approaches rely heavily on silicon-based electronics, which results in increased complexity and cost, and prevents the broader use of these smart systems. Here we show that electrochromic materials can overcome the existing limitations by simplifying device construction and avoiding the need for silicon-based electronics entirely. Electrochromic displays can be built into compact self-powered electrochemical sensors that give quantitative information readable by the naked eye, simply controlling the current path inside them through a combination of specially arranged materials. The concept is validated by a glucose biosensor coupled horizontally to a Prussian blue display designed as a distance-meter proportional to (glucose) concentration. This approach represents a breakthrough for self-powered sensors, and extends the application of electrochromic materials beyond smart windows and displays, into sensing and quantification.

  17. Surface Patterning and Nanowire Biosensor Construction

    DEFF Research Database (Denmark)

    Iversen, Lars

    2008-01-01

    assembled monolayer on gold, a technique useful for creating diverse monolayer patterns in a direct-write fashion. Addition of a second alkanethiol forms a topologically ultra flat but chemically patterned surface, which by inspection with scanning electron microscopy and atomic force microscopy revealed...... submicron feature sizes, varying linearly in size with laser power and irradiation time. In Part II - “Nanoscale Biosensors” - Indium Arsenide (InAs) nanowires (NW) incorporated in field effect transistor (FET) devices provide a sensitive platform for detection of charged analyte species binding to the NW...... surface. A central limitation to this biosensor principle is the screening of analyte charge by mobile ions in electrolytes with physiological ionic strength. To overcome this problem, we propose to use as capture agents proteins which undergo large conformational changes. Using structure based protein...

  18. Miniature Biosensor with Health Risk Assessment Feedback

    Science.gov (United States)

    Hanson, Andrea; Downs, Meghan; Kalogera, Kent; Buxton, Roxanne; Cooper, Tommy; Cooper, Alan; Cooper, Ross

    2016-01-01

    Heart rate (HR) monitoring is a medical requirement during exercise on the International Space Station (ISS), fitness tests, and extravehicular activity (EVA); however, NASA does not currently have the technology to consistently and accurately monitor HR and other physiological data during these activities. Performance of currently available HR monitor technologies is dependent on uninterrupted contact with the torso and are prone to data drop-out and motion artifact. Here, we seek an alternative to the chest strap and electrode based sensors currently in use on ISS today. This project aims to develop a high performance, robust earbud based biosensor with focused efforts on improved HR data quality during exercise or EVA. A health risk assessment algorithm will further advance the goals of autonomous crew health care for exploration missions.

  19. Progress in chemical luminescence-based biosensors: A critical review.

    Science.gov (United States)

    Roda, Aldo; Mirasoli, Mara; Michelini, Elisa; Di Fusco, Massimo; Zangheri, Martina; Cevenini, Luca; Roda, Barbara; Simoni, Patrizia

    2016-02-15

    Biosensors are a very active research field. They have the potential to lead to low-cost, rapid, sensitive, reproducible, and miniaturized bioanalytical devices, which exploit the high binding avidity and selectivity of biospecific binding molecules together with highly sensitive detection principles. Of the optical biosensors, those based on chemical luminescence detection (including chemiluminescence, bioluminescence, electrogenerated chemiluminescence, and thermochemiluminescence) are particularly attractive, due to their high-to-signal ratio and the simplicity of the required measurement equipment. Several biosensors based on chemical luminescence have been described for quantitative, and in some cases multiplex, analysis of organic molecules (such as hormones, drugs, pollutants), proteins, and nucleic acids. These exploit a variety of miniaturized analytical formats, such as microfluidics, microarrays, paper-based analytical devices, and whole-cell biosensors. Nevertheless, despite the high analytical performances described in the literature, the field of chemical luminescence biosensors has yet to demonstrate commercial success. This review presents the main recent advances in the field and discusses the approaches, challenges, and open issues, with the aim of stimulating a broader interest in developing chemical luminescence biosensors and improving their commercial exploitation. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Biosensors based on electrochemical lactate detection: A comprehensive review

    Directory of Open Access Journals (Sweden)

    Kavita Rathee

    2016-03-01

    Full Text Available Lactate detection plays a significant role in healthcare, food industries and is specially necessitated in conditions like hemorrhage, respiratory failure, hepatic disease, sepsis and tissue hypoxia. Conventional methods for lactate determination are not accurate and fast so this accelerated the need of sensitive biosensors for high-throughput screening of lactate in different samples. This review focuses on applications and developments of various electrochemical biosensors based on lactate detection as lactate being essential metabolite in anaerobic metabolic pathway. A comparative study to summarize the L-lactate biosensors on the basis of different analytical properties in terms of fabrication, sensitivity, detection limit, linearity, response time and storage stability has been done. It also addresses the merits and demerits of current enzyme based lactate biosensors. Lactate biosensors are of two main types – lactate oxidase (LOD and lactate dehydrogenase (LDH based. Different supports tried for manufacturing lactate biosensors include membranes, polymeric matrices-conducting or non-conducting, transparent gel matrix, hydrogel supports, screen printed electrodes and nanoparticles. All the examples in these support categories have been aptly discussed. Finally this review encompasses the conclusion and future emerging prospects of lactate sensors.

  1. Novel amperometric glucose biosensor based on MXene nanocomposite

    KAUST Repository

    Rakhi, R. B.

    2016-11-10

    A biosensor platform based on Au/MXene nanocomposite for sensitive enzymatic glucose detection is reported. The biosensor leverages the unique electrocatalytic properties and synergistic effects between Au nanoparticles and MXene sheets. An amperometric glucose biosensor is fabricated by the immobilization of glucose oxidase (GOx) enzyme on Nafion solubilized Au/ MXene nanocomposite over glassy carbon electrode (GCE). The biomediated Au nanoparticles play a significant role in facilitating the electron exchange between the electroactive center of GOx and the electrode. The GOx/Au/MXene/Nafion/GCE biosensor electrode displayed a linear amperometric response in the glucose concentration range from 0.1 to 18 mM with a relatively high sensitivity of 4.2 μAmM−1 cm−2 and a detection limit of 5.9 μM (S/N = 3). Furthermore, the biosensor exhibited excellent stability, reproducibility and repeatability. Therefore, the Au/MXene nanocomposite reported in this work is a potential candidate as an electrochemical transducer in electrochemical biosensors.

  2. Roughness effect on the efficiency of dimer antenna based biosensor

    Directory of Open Access Journals (Sweden)

    D. Barchiesi

    2012-09-01

    Full Text Available The fabrication process of nanodevices is continually improved. However, most of the nanodevices, such as biosensors present rough surfaces with mean roughness of some nanometers even if the deposition rate of material is more controlled. The effect of roughness on performance of biosensors was fully addressed for plane biosensors and gratings, but rarely addressed for biosensors based on Local Plasmon Resonance. The purpose of this paper is to evaluate numerically the influence of nanometric roughness on the efficiency of a dimer nano-biosensor (two levels of roughness are considered. Therefore, we propose a general numerical method, that can be applied to any other nanometric shape, to take into account the roughness in a three dimensional model. The study focuses on both the far-field, which corresponds to the experimental detected data, and the near-field, responsible for exciting and then detecting biological molecules. The results suggest that the biosensor efficiency is highly sensitive to the surface roughness. The roughness can produce important shifts of the extinction efficiency peak and a decrease of its amplitude resulting from changes in the distribution of near-field and absorbed electric field intensities.

  3. Progress of new label-free techniques for biosensors: a review.

    Science.gov (United States)

    Sang, Shengbo; Wang, Yajun; Feng, Qiliang; Wei, Ye; Ji, Jianlong; Zhang, Wendong

    2016-01-01

    The detection techniques used in biosensors can be broadly classified into label-based and label-free. Label-based detection relies on the specific properties of labels for detecting a particular target. In contrast, label-free detection is suitable for the target molecules that are not labeled or the screening of analytes which are not easy to tag. Also, more types of label-free biosensors have emerged with developments in biotechnology. The latest developed techniques in label-free biosensors, such as field-effect transistors-based biosensors including carbon nanotube field-effect transistor biosensors, graphene field-effect transistor biosensors and silicon nanowire field-effect transistor biosensors, magnetoelastic biosensors, optical-based biosensors, surface stress-based biosensors and other type of biosensors based on the nanotechnology are discussed. The sensing principles, configurations, sensing performance, applications, advantages and restriction of different label-free based biosensors are considered and discussed in this review. Most concepts included in this survey could certainly be applied to the development of this kind of biosensor in the future.

  4. Development and adaptation of a multiprobe biosensor for the use in a semi-automated device for the detection of toxic algae.

    Science.gov (United States)

    Diercks, Sonja; Metfies, Katja; Medlin, Linda K

    2008-05-15

    Worldwide monitoring programs have been launched for the observation of phytoplankton composition and especially for harmful and toxic microalgae. Several molecular methods are currently used for the identification of phytoplankton but usually require transportation of samples to specialised laboratories. For the purpose of the monitoring of toxic algae, a multiprobe chip and a semi-automated rRNA biosensor for the in-situ detection of toxic algae were developed. Different materials for the electrodes and the carrier material were tested using single-electrode sensors and sandwich hybridisation that is based on species-specific rRNA probes. Phytoplankton communities consist of different species and therefore a biosensor consisting of a multiprobe chip with an array of 16 gold electrodes for the simultaneous detection of up to 14 target species was developed. The detection of the toxic algae is based on a sandwich hybridisation and an electrochemical detection method.

  5. Evaluation of permselective membranes for optimization of intracerebral amperometric glutamate biosensors

    NARCIS (Netherlands)

    Wahono, N.; Qin, S.; Oomen, P.; Cremers, T. I. F.; de Vries, M. G.; Westerink, B. H. C.

    2012-01-01

    Monitoring of extracellular brain glutamate concentrations by intracerebral biosensors is a promising approach to further investigate the role of this important neurotransmitter. However, amperometric biosensors are typically hampered by Faradaic interference caused by the presence of other

  6. Glucose biosensor based on a glassy carbon electrode modified with polythionine and multiwalled carbon nanotubes

    National Research Council Canada - National Science Library

    Tang, Wenwei; Li, Lei; Wu, Lujun; Gong, Jiemin; Zeng, Xinping

    2014-01-01

    A novel glucose biosensor was fabricated. The first layer of the biosensor was polythionine, which was formed by the electrochemical polymerisation of the thionine monomer on a glassy carbon electrode...

  7. CHARACTERISTICS AND OPTIMAL WORKING CONDITIONS OF AMPEROMETRIC BIOSENSOR FOR ADENOSINE TRIPHOSPHATE DETERMINATION

    Directory of Open Access Journals (Sweden)

    Kucherenko I. S.

    2014-02-01

    Full Text Available Analytical characteristics of a biosensor based on glucose oxidase and hexokinase and intended for ATP determination were studied. Platinum disc electrodes were used as amperometric transducers. Range of working potentials for biosensor functioning was shown. An optimal time of enzymes immobilization was determined. Optimal conditions for biosensor functioning during work with biological fluids were selected. Biosensor work in three buffer solutions (PBS, tris and HEPES was investigated and it was shown that it was possible to obtain various operational characteristics of the biosensor depending on tasks that are assigned to it by varying the composition of sample. Reproducibility of biosensor responses to ATP and glucose during a day and of biosensor preparation was shown. The proposed biosensor can be further used for analysis of glucose and ATP content in water solutions.

  8. Acetylcholinesterase inhibition-based biosensors for pesticide determination: a review.

    Science.gov (United States)

    Pundir, Chandra Shekhar; Chauhan, Nidhi

    2012-10-01

    Pesticides released intentionally into the environment and through various processes contaminate the environment. Although pesticides are associated with many health hazards, there is a lack of monitoring of these contaminants. Traditional chromatographic methods-high-performance liquid chromatography, capillary electrophoresis, and mass spectrometry-are effective for the analysis of pesticides in the environment but have certain limitations such as complexity, time-consuming sample preparation, and the requirement of expensive apparatus and trained persons to operate. Over the past decades, acetylcholinesterase (AChE) inhibition-based biosensors have emerged as simple, rapid, and ultra-sensitive tools for pesticide analysis in environmental monitoring, food safety, and quality control. These biosensors have the potential to complement or replace the classical analytical methods by simplifying or eliminating sample preparation and making field-testing easier and faster with significant decrease in cost per analysis. This article reviews the recent developments in AChE inhibition-based biosensors, which include various immobilization methods, different strategies for biosensor construction, the advantages and roles of various matrices used, analytical performance, and application methods for constructing AChE biosensors. These AChE biosensors exhibited detection limits and linearity in the ranges of 1.0×10(-11) to 42.19 μM (detection limits) and 1.0×10(-11)-1.0×10(-2) to 74.5-9.9×10(3)μM (linearity). These biosensors were stable for a period of 2 to 120days. The future prospects for the development of better AChE biosensing systems are also discussed. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Axiom turkey genotyping array

    Science.gov (United States)

    The Axiom®Turkey Genotyping Array interrogates 643,845 probesets on the array, covering 643,845 SNPs. The array development was led by Dr. Julie Long of the USDA-ARS Beltsville Agricultural Research Center under a public-private partnership with Hendrix Genetics, Aviagen, and Affymetrix. The Turk...

  10. Clocked combustor can array

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Won-Wook; McMahan, Kevin Weston; Srinivasan, Shiva Kumar

    2017-01-17

    The present application provides a clocked combustor can array for coherence reduction in a gas turbine engine. The clocked combustor can array may include a number of combustor cans positioned in a circumferential array. A first set of the combustor cans may have a first orientation and a second set of the combustor cans may have a second orientation.

  11. Laurate Biosensors Image Brain Neurotransmitters In Vivo: Can an Antihypertensive Medication Alter Psychostimulant Behavior?

    OpenAIRE

    Vivek Murthy; Karyn Wat; Helen Ho; Broderick, Patricia A.

    2008-01-01

    Neuromolecular Imaging (NMI) with novel biosensors enables the selective detection of neurotransmitters in vivo within seconds, on line and in real time. Biosensors remain in place for continuing studies over a period of months. This biotechnological advance is based on conventional electrochemistry; the biosensors detect neurotransmitters by electron transfer. Simply stated, biosensors adsorb electrons from each neurotransmitter at specific oxidation potentials; the current derived from elec...

  12. Biosentinel: Developing a Space Radiation Biosensor

    Science.gov (United States)

    Santa Maria, Sergio R.; Marina, Diana B.; Parra, Macarena P.; Boone, Travis D.; Tan, Ming; Ricco, Antonio J.; Straume, Tore N.; Lusby, Terry C.; Harkness, T.; Reiss-Bubenheim, Debra; hide

    2014-01-01

    Ionizing radiation presents a major challenge to human exploration and long-term residence in space. The deep-space radiation spectrum includes highly energetic particles that generate double strand breaks (DSBs), deleterious DNA lesions that are usually repaired without errors via homologous recombination (HR), a conserved pathway in all eukaryotes. While progress identifying and characterizing biological radiation effects using Earth-based facilities has been significant, no terrestrial source duplicates the unique space radiation environment.We are developing a biosensor-based nanosatellite to fly aboard NASAs Space Launch System Exploration Mission 1, expected to launch in 2017 and reach a 1AU (astronomic unit) heliocentric orbit. Our biosensor (called BioSentinel) uses the yeast S. cerevisiae to measure DSBs in response to ambient space radiation. The BioSentinel strain contains engineered genetic defects that prevent growth until and unless a radiation-induced DSB near a reporter gene activates the yeasts HR repair mechanisms. Thus, culture growth and metabolic activity directly indicate a successful DSB-and-repair event. In parallel, HR-defective and wild type strains will provide survival data. Desiccated cells will be carried within independent culture microwells, built into 96-well microfluidic cards. Each microwell set will be activated by media addition at different time points over 18 months, and cell growth will be tracked continuously via optical density. One reserve set will be activated only in the occurrence of a solar particle event. Biological measurements will be compared to data provided by onboard physical dosimeters and to Earth-based experiments.BioSentinel will conduct the first study of biological response to space radiation outside Low Earth Orbit in over 40 years. BioSentinel will thus address strategic knowledge gaps related to the biological effects of space radiation and will provide an adaptable platform to perform human

  13. Simulation and fabrication of a new novel 3D injectable biosensor for high throughput genomics and proteomics in a lab-on-a-chip device

    Science.gov (United States)

    Esfandyarpour, Rahim; Esfandyarpour, Hesaam; Harris, James S.; Davis, Ronald W.

    2013-11-01

    Biosensors are used for the detection of biochemical molecules such as proteins and nucleic acids. Traditional techniques, such as enzyme-linked immuno-sorbent assay (ELISA), are sensitive but require several hours to yield a result and usually require the attachment of a fluorophore molecule to the target molecule. Micromachined biosensors that employ electrical detection are now being developed. Here we describe one such device, which is ultrasensitive, real-time, label free and localized. It is called the nanoneedle biosensor and shows promise to overcome some of the current limitations of biosensors. The key element of this device is a 10 nm wide annular gap at the end of the needle, which is the sensitive part of the sensor. The total diameter of the sensor is about 100 nm. Any change in the population of molecules in this gap results in a change of impedance across the gap. Single molecule detection should be possible because the sensory part of the sensor is in the range of bio-molecules of interest. To increase throughput we can flow the solution containing the target molecules over an array of such structures, each with its own integrated read-out circuitry to allow ‘real-time’ detection (i.e. several minutes) of label free molecules without sacrificing sensitivity. To fabricate the arrays we used electron beam lithography together with associated pattern transfer techniques. Preliminary measurements on individual needle structures in water are consistent with the design. Since the proposed sensor has a rigid nano-structure, this technology, once fully developed, could ultimately be used to directly monitor protein quantities within a single living cell, an application that would have significant utility for drug screening and studying various intracellular signaling pathways.

  14. Integrated multienzyme electrochemical biosensors for monitoring malolactic fermentation in wines.

    Science.gov (United States)

    Gamella, M; Campuzano, S; Conzuelo, F; Curiel, J A; Muñoz, R; Reviejo, A J; Pingarrón, José M

    2010-05-15

    Integrated amperometric biosensors for the determination of L-malic and L-lactic acids were developed by coimmobilization of the enzymes L-malate dehydrogenase (MDH) and diaphorase (DP), or L-lactate oxidase (LOX) and horseradish peroxidase (HRP), respectively, together with the redox mediator tetrathiafulvalene (TTF), on a 3-mercaptopropionic acid (MPA) self-assembled monolayer (SAM)-modified gold electrode by using a dialysis membrane. The electrochemical oxidation of TTF at +100mV (vs. Ag/AgCl), and the reduction of TTF(+) at -50mV were used for the monitoring of the enzyme reactions involved in L-malic and L-lactic acid determinations, respectively. Experimental variables concerning the biosensors composition and the detection conditions were optimized for each biosensor. Good relative standard deviation values were obtained in both cases for the measurements carried out with the same biosensor, with no need of cleaning or pretreatment of the bioelectrodes surface, and with different biosensors constructed in the same manner. After 7 days of continuous use, the MDH/DP biosensor still exhibited 90% of the original sensitivity, while the LOX/HRP biosensor yielded a 91% of the original response after 5 days. Calibration graphs for L-malic and L-lactic were obtained with linear ranges of 5.2x10(-7) to 2.0x10(-5) and 4.2x10(-7) to 2.0x10(-5)M, respectively. The calculated detection limits were 5.2x10(-7) and 4.2x10(-7)M, respectively. The biosensors exhibited a high selectivity with no significant interferences. They were applied to monitor malolactic fermentation (MLF) induced by inoculation of Lactobacillus plantarum CECT 748(T) into a synthetic wine. Samples collected during MLF were assayed for L-malic and L-lactic acids, and the results obtained with the biosensors exhibited a very good correlation when plotted against those obtained by using commercial enzymatic kits.

  15. Thermophotovoltaic Array Optimization

    Energy Technology Data Exchange (ETDEWEB)

    SBurger; E Brown; K Rahner; L Danielson; J Openlander; J Vell; D Siganporia

    2004-07-29

    A systematic approach to thermophotovoltaic (TPV) array design and fabrication was used to optimize the performance of a 192-cell TPV array. The systematic approach began with cell selection criteria that ranked cells and then matched cell characteristics to maximize power output. Following cell selection, optimization continued with an array packaging design and fabrication techniques that introduced negligible electrical interconnect resistance and minimal parasitic losses while maintaining original cell electrical performance. This paper describes the cell selection and packaging aspects of array optimization as applied to fabrication of a 192-cell array.

  16. Nucleic Acids and Enzymes at Electrodes: Electrochemical Nanomedical Biosensors and Biofuel Cell Development

    DEFF Research Database (Denmark)

    Ferapontova, Elena

    Starting from the development of the first electrochemical biosensor for glucose, as far as in 1962, the electrochemical biosensor research area underwent a dramatic evolution both in scientific and commercial directions. At present, electrochemical biosensors are widely used in medical practice,...

  17. Internal response correction for fluorescent whole-cell biosensors.

    Science.gov (United States)

    Mirasoli, Mara; Feliciano, Jessika; Michelini, Elisa; Daunert, Sylvia; Roda, Aldo

    2002-12-01

    Whole-cell biosensors based on reporter genes are finding a variety of applications in analytical chemistry. Despite their ability to selectively recognize the analyte in a complex mixture, few applications of such sensing devices to real sample analysis are reported. This is mainly due to nonspecific effects on the biosensor response caused by components of the sample matrix and by environmental changes. To overcome this problem, a bacterial biosensor with an internal correction mechanism of the analytical response was developed by introducing an additional reporter gene that provides a reference signal of the analytical performance of the biosensor. The first reporter (GFPuv), expressed in response to the concentration of L-arabinose, provides the analytical signal; the second reporter (EYFP), constitutively expressed if a constant amount of IPTG is added to each sample, was used as an internal reference. By inducing the biosensor with varying amounts of L-arabinose and a constant amount of IPTG, it was possible to obtain a dose-response curve for L-arabinose, together with a constant production of EYFP, which allowed for a dynamic evaluation of the metabolic activity of the cell. When tested in nonoptimal conditions (e.g., in the presence of either ethanol or deoxycholic acid at toxic concentrations), the presence of the internal reference system corrected the analytical response due to nonspecific interferences.

  18. Flexible Molybdenum Electrodes towards Designing Affinity Based Protein Biosensors.

    Science.gov (United States)

    Kamakoti, Vikramshankar; Panneer Selvam, Anjan; Radha Shanmugam, Nandhinee; Muthukumar, Sriram; Prasad, Shalini

    2016-07-18

    Molybdenum electrode based flexible biosensor on porous polyamide substrates has been fabricated and tested for its functionality as a protein affinity based biosensor. The biosensor performance was evaluated using a key cardiac biomarker; cardiac Troponin-I (cTnI). Molybdenum is a transition metal and demonstrates electrochemical behavior upon interaction with an electrolyte. We have leveraged this property of molybdenum for designing an affinity based biosensor using electrochemical impedance spectroscopy. We have evaluated the feasibility of detection of cTnI in phosphate-buffered saline (PBS) and human serum (HS) by measuring impedance changes over a frequency window from 100 mHz to 1 MHz. Increasing changes to the measured impedance was correlated to the increased dose of cTnI molecules binding to the cTnI antibody functionalized molybdenum surface. We achieved cTnI detection limit of 10 pg/mL in PBS and 1 ng/mL in HS medium. The use of flexible substrates for designing the biosensor demonstrates promise for integration with a large-scale batch manufacturing process.

  19. Biosensors and bioelectronics on smartphone for portable biochemical detection.

    Science.gov (United States)

    Zhang, Diming; Liu, Qingjun

    2016-01-15

    Smartphone has been widely integrated with sensors, such as test strips, sensor chips, and hand-held detectors, for biochemical detections due to its portability and ubiquitous availability. Utilizing built-in function modules, smartphone is often employed as controller, analyzer, and displayer for rapid, real-time, and point-of-care monitoring, which can significantly simplify design and reduce cost of the detecting systems. This paper presents a review of biosensors and bioelectronics on smartphone for portable biochemical detections. The biosensors and bioelectronics based on smartphone can mainly be classified into biosensors using optics, surface plasmon resonance, electrochemistry, and near-field communication. The developments of these biosensors and bioelectronics on smartphone are reviewed along with typical biochemical detecting cases. Sensor strategies, detector attachments, and coupling methods are highlighted to show designs of the compact, lightweight, and low-cost sensor systems. The performances and advantages of these designs are introduced with their applications in healthcare diagnosis, environment monitoring, and food evaluation. With advances in micro-manufacture, sensor technology, and miniaturized electronics, biosensor and bioelectronic devices on smartphone can be used to perform biochemical detections as common and convenient as electronic tag readout in foreseeable future. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Electrochemical affinity biosensors for detection of mycotoxins: A review.

    Science.gov (United States)

    Vidal, Juan C; Bonel, Laura; Ezquerra, Alba; Hernández, Susana; Bertolín, Juan R; Cubel, Carlota; Castillo, Juan R

    2013-11-15

    This review discusses the current state of electrochemical biosensors in the determination of mycotoxins in foods. Mycotoxins are highly toxic secondary metabolites produced by molds. The acute toxicity of these results in serious human and animal health problems, although it has been only since early 1960s when the first studied aflatoxins were found to be carcinogenic. Mycotoxins affect a broad range of agricultural products, most important cereals and cereal-based foods. A majority of countries, mentioning especially the European Union, have established preventive programs to control contamination and strict laws of the permitted levels in foods. Official methods of analysis of mycotoxins normally requires sophisticated instrumentation, e.g. liquid chromatography with fluorescence or mass detectors, combined with extraction procedures for sample preparation. For about sixteen years, the use of simpler and faster analytical procedures based on affinity biosensors has emerged in scientific literature as a very promising alternative, particularly electrochemical (i.e., amperometric, impedance, potentiometric or conductimetric) affinity biosensors due to their simplicity and sensitivity. Typically, electrochemical biosensors for mycotoxins use specific antibodies or aptamers as affinity ligands, although recombinant antibodies, artificial receptors and molecular imprinted polymers show potential utility. This article deals with recent advances in electrochemical affinity biosensors for mycotoxins and covers complete literature from the first reports about sixteen years ago. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Visual optical biosensors based on DNA-functionalized polyacrylamide hydrogels.

    Science.gov (United States)

    Khimji, Imran; Kelly, Erin Y; Helwa, Youssef; Hoang, Michael; Liu, Juewen

    2013-12-15

    Biosensors are devices that can provide quantitative or semi-quantitative analytical information about target molecules, where molecular recognition is based on biomolecular interactions. In recent years, DNA has emerged as a useful molecule for biosensor development since DNA can not only recognize its complementary strand, but also metal ions, small molecules, proteins and cells utilizing DNA aptamer technology. Converting DNA binding events into useful biosensors often require sensor immobilization. Among the various materials for sensor immobilization, hydrogels are particularly attractive. Hydrogels are crosslinked hydrophilic polymer networks that undergo swelling in water. In a gel, DNA immobilization can take place in 3D, allowing for high DNA loading capacity. Hydrogels are transparent, offering low optical background. The gel volume is affected by many environmental parameters such as temperature, pH, ionic strength, and solvent composition. In this paper, we present a concise summary of recent developments in DNA-functionalized hydrogel biosensors for visual detection. Detailed methods for immobilizing DNA biosensors in monolithic polyacrylamide gels and gel microparticles are supplied. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Recent Advances in Application of Biosensors in Tissue Engineering

    Science.gov (United States)

    Paul, Arghya; Lee, Yong-kyu; Jaffa, Ayad A.

    2014-01-01

    Biosensors research is a fast growing field in which tens of thousands of papers have been published over the years, and the industry is now worth billions of dollars. The biosensor products have found their applications in numerous industries including food and beverages, agricultural, environmental, medical diagnostics, and pharmaceutical industries and many more. Even though numerous biosensors have been developed for detection of proteins, peptides, enzymes, and numerous other biomolecules for diverse applications, their applications in tissue engineering have remained limited. In recent years, there has been a growing interest in application of novel biosensors in cell culture and tissue engineering, for example, real-time detection of small molecules such as glucose, lactose, and H2O2 as well as serum proteins of large molecular size, such as albumin and alpha-fetoprotein, and inflammatory cytokines, such as IFN-g and TNF-α. In this review, we provide an overview of the recent advancements in biosensors for tissue engineering applications. PMID:25165697

  3. Recent Advances in Application of Biosensors in Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Anwarul Hasan

    2014-01-01

    Full Text Available Biosensors research is a fast growing field in which tens of thousands of papers have been published over the years, and the industry is now worth billions of dollars. The biosensor products have found their applications in numerous industries including food and beverages, agricultural, environmental, medical diagnostics, and pharmaceutical industries and many more. Even though numerous biosensors have been developed for detection of proteins, peptides, enzymes, and numerous other biomolecules for diverse applications, their applications in tissue engineering have remained limited. In recent years, there has been a growing interest in application of novel biosensors in cell culture and tissue engineering, for example, real-time detection of small molecules such as glucose, lactose, and H2O2 as well as serum proteins of large molecular size, such as albumin and alpha-fetoprotein, and inflammatory cytokines, such as IFN-g and TNF-α. In this review, we provide an overview of the recent advancements in biosensors for tissue engineering applications.

  4. Over-the-Counter Biosensors: Past, Present, and Future

    Directory of Open Access Journals (Sweden)

    Thomas Ming-Hung Lee

    2008-09-01

    Full Text Available The demand for specific, low cost, rapid, sensitive and easy detection of biomolecules is huge. A well-known example is the glucose meters used by diabetics to monitor their blood glucose levels. Nowadays, a vast majority of the glucose meters are based on electrochemical biosensor technology. The inherent small size and simple construction of the electrochemical transducer and instrument are ideally suited for pointof-care biosensing. Besides glucose, a wide variety of electrochemical biosensors have been developed for the measurements of some other key metabolites, proteins, and nucleic acids. Nevertheless, unlike the glucose meters, limited success has been achieved for the commercialization of the protein and nucleic acid biosensors. In this review article, key technologies on the electrochemical detection of key metabolites, proteins, and DNAs are discussed in detail, with particular emphasis on those that are compatible to home-use setting. Moreover, emerging technologies of lab-on-a-chip microdevices and nanosensors (i.e., silicon and carbon nanotube field-effect sensors offer opportunities for the construction of new generation biosensors with much better performances. Together with the continuous innovations in the basic components of biosensors (i.e., transducers, biorecognition molecules, immobilization and signal transduction schemes, consumers could soon buy different kinds of biosensing devices in the pharmacy stores.

  5. An ultrasensitive photoelectrochemical nucleic acid biosensor

    Science.gov (United States)

    Gao, Zhiqiang; Tansil, Natalia C.

    2005-01-01

    A simple and ultrasensitive procedure for non-labeling detection of nucleic acids is described in this study. It is based on the photoelectrochemical detection of target nucleic acids by forming a nucleic acid/photoreporter adduct layer on an ITO electrode. The target nucleic acids were hybridized with immobilized oligonucleotide capture probes on the ITO electrode. A subsequent binding of a photoreporter—a photoactive threading bis-intercalator consisting of two N,N′-bis(3-propyl-imidazole)-1,4,5,8-naphthalene diimides (PIND) linked by a Ru(bpy)22+ (bpy = 2,2′-bipyridine) complex (PIND–Ru–PIND)—allowed for photoelectrochemical detection of the target nucleic acids. The extremely low dissociation rate of the adduct and the highly reversible photoelectrochemical response under visible light illumination (490 nm) make it possible to conduct nucleic acid detection, with a sensitivity enhancement of four orders of magnitude over voltammetry. These results demonstrate for the first time the potential of photoelectrochemical biosensors for PCR-free ultrasensitive detection of nucleic acids. PMID:16061935

  6. Aptamer-functionalized nano-biosensors.

    Science.gov (United States)

    Chiu, Tai-Chia; Huang, Chih-Ching

    2009-01-01

    Nanomaterials have become one of the most interesting sensing materials because of their unique size- and shape-dependent optical properties, high surface energy and surface-to-volume ratio, and tunable surface properties. Aptamers are oligonucleotides that can bind their target ligands with high affinity. The use of nanomaterials that are bioconjugated with aptamers for selective and sensitive detection of analytes such as small molecules, metal ions, proteins, and cells has been demonstrated. This review focuses on recent progress in the development of biosensors by integrating functional aptamers with different types of nanomaterials, including quantum dots, magnetic nanoparticles (NPs), metallic NPs, and carbon nanotubes. Colorimetry, fluorescence, electrochemistry, surface plasmon resonance, surface-enhanced Raman scattering, and magnetic resonance imaging are common detection modes for a broad range of analytes with high sensitivity and selectivity when using aptamer bioconjugated nanomaterials (Apt-NMs). We highlight the important roles that the size and concentration of nanomaterials, the secondary structure and density of aptamers, and the multivalent interactions play in determining the specificity and sensitivity of the nanosensors towards analytes. Advantages and disadvantages of the Apt-NMs for bioapplications are focused.

  7. Aptamer-Functionalized Nano-Biosensors

    Directory of Open Access Journals (Sweden)

    Tai-Chia Chiu

    2009-12-01

    Full Text Available Nanomaterials have become one of the most interesting sensing materials because of their unique size- and shape-dependent optical properties, high surface energy and surface-to-volume ratio, and tunable surface properties. Aptamers are oligonucleotides that can bind their target ligands with high affinity. The use of nanomaterials that are bioconjugated with aptamers for selective and sensitive detection of analytes such as small molecules, metal ions, proteins, and cells has been demonstrated. This review focuses on recent progress in the development of biosensors by integrating functional aptamers with different types of nanomaterials, including quantum dots, magnetic nanoparticles (NPs, metallic NPs, and carbon nanotubes. Colorimetry, fluorescence, electrochemistry, surface plasmon resonance, surface-enhanced Raman scattering, and magnetic resonance imaging are common detection modes for a broad range of analytes with high sensitivity and selectivity when using aptamer bioconjugated nanomaterials (Apt-NMs. We highlight the important roles that the size and concentration of nanomaterials, the secondary structure and density of aptamers, and the multivalent interactions play in determining the specificity and sensitivity of the nanosensors towards analytes. Advantages and disadvantages of the Apt-NMs for bioapplications are focused.

  8. Biosensors for the Detection of Food Pathogens.

    Science.gov (United States)

    Poltronieri, Palmiro; Mezzolla, Valeria; Primiceri, Elisabetta; Maruccio, Giuseppe

    2014-09-02

    Food pathogens frequently cause foodborne diseases. There is a need to rapidly identify the source of the bacteria in order to contain their spread and epidemics. A pre-enrichment culture or a direct culture on agar plate are standard microbiological methods. In this review, we present an update on alternative molecular methods to nucleic acid-based detection for species identification. Biosensor-based methods rely on the recognition of antigen targets or receptors by antibodies, aptamers or high-affinity ligands. The captured antigens may be then directly or indirectly detected through an antibody or high-affinity and high-specificity recognition molecule. Various different detection methods are discussed, from label-free sensors and immunosensors to fluorescence-based ones. Each method shows advantages and disadvantages in terms of equipment, sensitivity, simplicity and cost-effectiveness. Finally, lab-on-a-chip (LOC) devices are introduced briefly, with the potential to be fast, sensitive and useful for on-site bacteria detection in food processing laboratories to check potential contamination by sample monitoring combined with a rapid pre-enrichment step.

  9. Biosensors for the Detection of Food Pathogens

    Directory of Open Access Journals (Sweden)

    Palmiro Poltronieri

    2014-09-01

    Full Text Available Food pathogens frequently cause foodborne diseases. There is a need to rapidly identify the source of the bacteria in order to contain their spread and epidemics. A pre-enrichment culture or a direct culture on agar plate are standard microbiological methods. In this review, we present an update on alternative molecular methods to nucleic acid-based detection for species identification. Biosensor-based methods rely on the recognition of antigen targets or receptors by antibodies, aptamers or high-affinity ligands. The captured antigens may be then directly or indirectly detected through an antibody or high-affinity and high-specificity recognition molecule. Various different detection methods are discussed, from label-free sensors and immunosensors to fluorescence-based ones. Each method shows advantages and disadvantages in terms of equipment, sensitivity, simplicity and cost-effectiveness. Finally, lab-on-a-chip (LOC devices are introduced briefly, with the potential to be fast, sensitive and useful for on-site bacteria detection in food processing laboratories to check potential contamination by sample monitoring combined with a rapid pre-enrichment step.

  10. Engineering Biosensors with Dual Programmable Dynamic Ranges.

    Science.gov (United States)

    Wei, Benmei; Zhang, Juntao; Ou, Xiaowen; Lou, Xiaoding; Xia, Fan; Vallée-Bélisle, Alexis

    2018-01-10

    Although extensively used in all fields of chemistry, molecular recognition still suffers from a significant limitation: host-guest binding displays a fixed, hyperbolic dose-response curve, which limits its usefulness in many applications. Here we take advantage of the high programmability of DNA chemistry and propose a universal strategy to engineer biorecognition-based sensors with dual programmable dynamic ranges. Using DNA aptamers as our model recognition element and electrochemistry as our readout signal, we first designed a dual signaling "signal-on" and "signal-off" adenosine triphosphate (ATP) sensor composed of a ferrocene-labeled ATP aptamer in complex to a complementary, electrode-bound, methylene-blue labeled DNA. Using this simple "dimeric" sensor, we show that we can easily (1) tune the dynamic range of this dual-signaling sensor through base mutations on the electrode-bound DNA, (2) extend the dynamic range of this sensor by 2 orders of magnitude by using a combination of electrode-bound strands with varying affinity for the aptamers, (3) create an ultrasensitive dual signaling sensor by employing a sequestration strategy in which a nonsignaling, high affinity "depletant" DNA aptamer is added to the sensor surface, and (4) engineer a sensor that simultaneously provides extended and ultrasensitive readouts. These strategies, applicable to a wide range of biosensors and chemical systems, should broaden the application of molecular recognition in various fields of chemistry.

  11. Metal-coated microfluidic channels: An approach to eliminate streaming potential effects in nano biosensors.

    Science.gov (United States)

    Lee, Jieun; Wipf, Mathias; Mu, Luye; Adams, Chris; Hannant, Jennifer; Reed, Mark A

    2017-01-15

    We report a method to suppress streaming potential using an Ag-coated microfluidic channel on a p-type silicon nanowire (SiNW) array measured by a multiplexed electrical readout. The metal layer sets a constant electrical potential along the microfluidic channel for a given reference electrode voltage regardless of the flow velocity. Without the Ag layer, the magnitude and sign of the surface potential change on the SiNW depends on the flow velocity, width of the microfluidic channel and the device's location inside the microfluidic channel with respect to the reference electrode. Noise analysis of the SiNW array with and without the Ag coating in the fluidic channel shows that noise frequency peaks, resulting from the operation of a piezoelectric micropump, are eliminated using the Ag layer with two reference electrodes located at inlet and outlet. This strategy presents a simple platform to eliminate the streaming potential and can become a powerful tool for nanoscale potentiometric biosensors. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Application of recombinant fluorescent mammalian cells as a toxicity biosensor.

    Science.gov (United States)

    Kim, E J; Lee, Y; Lee, J E; Gu, M B

    2002-01-01

    With respect to developing a more sensitive biosensor, a recombinant fluorescent Chinese Hamster Ovary cell line was used for the monitoring of various toxicants. Both cell lines, EFC-500 and KFC-A10, were able to detect toxicants sensitively. They were characterized with mitomycin C and gamma-ray as genotoxicants and bisphenol A, nonylphenol, ziram and methyl bromide as possible and known EDCs. When compared to each other, the response of KFC-A10 was generally more informative and sensitive. Compared to typical bacterial biosensor systems, these cell lines offered a sensitivity of 2- to 50-fold greater for the tested chemicals. Based on these results, the use of mammalian cells offers a sensitive biosensor system that is not only fast, cheap and reproducible but also capable of monitoring the endocrine-like characteristics of environmental toxicants.

  13. Recent advances in nanomaterial-based biosensors for antibiotics detection.

    Science.gov (United States)

    Lan, Lingyi; Yao, Yao; Ping, Jianfeng; Ying, Yibin

    2017-05-15

    Antibiotics are able to be accumulated in human body by food chain and may induce severe influence to human health and safety. Hence, the development of sensitive and simple methods for rapid evaluation of antibiotic levels is highly desirable. Nanomaterials with excellent electronic, optical, mechanical, and thermal properties have been recognized as one of the most promising materials for opening new gates in the development of next-generation biosensors. This review highlights the current advances in the nanomaterial-based biosensors for antibiotics detection. Different kinds of nanomaterials including carbon nanomaterials, metal nanomaterials, magnetic nanoparticles, up-conversion nanoparticles, and quantum dots have been applied to the construction of biosensors with two main signal-transducing mechanisms, i.e. optical and electrochemical. Furthermore, the current challenges and future prospects in this field are also included to provide an overview for future research directions. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Nanophotonic label-free biosensors for environmental monitoring.

    Science.gov (United States)

    Chocarro-Ruiz, Blanca; Fernández-Gavela, Adrián; Herranz, Sonia; Lechuga, Laura M

    2017-06-01

    The field of environmental monitoring has experienced a substantial progress in the last years but still the on-site control of contaminants is an elusive problem. In addition, the growing number of pollutant sources is accompanied by an increasing need of having efficient early warning systems. Several years ago biosensor devices emerged as promising environmental monitoring tools, but their level of miniaturization and their fully operation outside the laboratory prevented their use on-site. In the last period, nanophotonic biosensors based on evanescent sensing have emerged as an outstanding choice for portable point-of-care diagnosis thanks to their capability, among others, of miniaturization, multiplexing, label-free detection and integration in lab-on-chip platforms. This review covers the most relevant nanophotonic biosensors which have been proposed (including interferometric waveguides, grating-couplers, microcavity resonators, photonic crystals and localized surface plasmon resonance sensors) and their recent application for environmental surveillance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Principles and Applications of Flow Injection Analysis in Biosensors

    DEFF Research Database (Denmark)

    Hansen, Elo Harald

    1996-01-01

    In practical applications biosensors are often forced to operate under less than optimal conditions. Because of their construction, and the physical processes and chemical reactions involved in their operation, compromise conditions are frequently required to synchronize all events taking place....... Therefore, and in order to implement functions such as periodic calibration, conditioning and possible regeneration of the biosensor, and, very importantly, to yield the freedom to select the optimum detection means, it is advantageous to use these devices in a flow-through mode, particularly by employing...... the flow injection (FI) approach. The capacity of FI, as offering itself as a complementary facility to augment the performance of biosensors, and in many cases as an attractive alternative, is demonstrated by reference to selected examples, comprising assays based on enzymatic procedures with optical...

  16. Printable Ultrathin Metal Oxide Semiconductor-Based Conformal Biosensors.

    Science.gov (United States)

    Rim, You Seung; Bae, Sang-Hoon; Chen, Huajun; Yang, Jonathan L; Kim, Jaemyung; Andrews, Anne M; Weiss, Paul S; Yang, Yang; Tseng, Hsian-Rong

    2015-12-22

    Conformal bioelectronics enable wearable, noninvasive, and health-monitoring platforms. We demonstrate a simple and straightforward method for producing thin, sensitive In2O3-based conformal biosensors based on field-effect transistors using facile solution-based processing. One-step coating via aqueous In2O3 solution resulted in ultrathin (3.5 nm), high-density, uniform films over large areas. Conformal In2O3-based biosensors on ultrathin polyimide films displayed good device performance, low mechanical stress, and highly conformal contact determined using polydimethylsiloxane artificial skin having complex curvilinear surfaces or an artificial eye. Immobilized In2O3 field-effect transistors with self-assembled monolayers of NH2-terminated silanes functioned as pH sensors. Functionalization with glucose oxidase enabled d-glucose detection at physiologically relevant levels. The conformal ultrathin field-effect transistor biosensors developed here offer new opportunities for future wearable human technologies.

  17. Biosensor for determination of glucose in real samples of beverages

    Directory of Open Access Journals (Sweden)

    Flavio Marques Lopes

    2012-03-01

    Full Text Available A biosensor was developed for spectrophotometric determination of glucose concentrations in real samples of orange juice energetic drinks, and sport drinks. The biosensor consisted of glucose oxidase (GOD and horseradish peroxidase (HRP immobilized onto polyaniline activated with glutaraldehyde (PANIG. Immobilization parameters were optimized for GOD, and maximum immobilization yield was 16% when 5.0 mg of PANIG and 8.9 U prepared in 0.1 mol.L-1 sodium phosphate buffer (pH 7.0 reacted for 60 minutes at 4 °C with gentle stirring. The linear operational range for glucose determination using optimized operational parameters was between 0.05 and 6.0 mg.mL-1 with a very good reproducibility of response. The results obtained in the biosensor were compared with those obtained using free enzymes (commercial kits and then validated through statistical analysis using the Tukey test (95% confidence interval.

  18. Wireless Distribution and Use of Bio-sensor Data

    DEFF Research Database (Denmark)

    Kyng, Morten; Kristensen, Margit; Christensen, Erika Frischknecht

    2007-01-01

      During emergency response use of wired bio-sensors create problems for the response workers. It is difficult to transport patients and checking of data requires you to be next to the patient. We will report on work in progress regarding development of a wireless bio-monitor system that supports...... distribution and use by all involved parties of bio-sensor data during emergency response. The system is being developed in close cooperation between doctors, paramedics and IT specialists using qualitative methods including ethnographically inspired field work and simulations of future work. The system...... evaluations have already demonstrated the usefulness of being able to move patients without having to take care of wires and being able to inspect bio-sensor data without being next to the patient. However, new problems have also emerged when no wires connect a patient to a display. E.g. how do you know whose...

  19. Engineering prokaryotic transcriptional activators as metabolite biosensors in yeast

    DEFF Research Database (Denmark)

    Skjødt, Mette Louise; Snoek, Tim; Kildegaard, Kanchana Rueksomtawin

    2016-01-01

    Whole-cell biocatalysts have proven a tractable path toward sustainable production of bulk and fine chemicals. Yet the screening of libraries of cellular designs to identify best-performing biocatalysts is most often a low-throughput endeavor. For this reason, the development of biosensors enabling...... real-time monitoring of production has attracted attention. Here we applied systematic engineering of multiple parameters to search for a general biosensor design in the budding yeast Saccharomyces cerevisiae based on small-molecule binding transcriptional activators from the prokaryote superfamily...... of LysR-type transcriptional regulators (LTTRs). We identified a design supporting LTTR-dependent activation of reporter gene expression in the presence of cognate small-molecule inducers. As proof of principle, we applied the biosensors for in vivo screening of cells producing naringenin or cis...

  20. Advances in arsenic biosensor development--a comprehensive review.

    Science.gov (United States)

    Kaur, Hardeep; Kumar, Rabindra; Babu, J Nagendra; Mittal, Sunil

    2015-01-15

    Biosensors are analytical devices having high sensitivity, portability, small sample requirement and ease of use for qualitative and quantitative monitoring of various analytes of human importance. Arsenic (As), owing to its widespread presence in nature and high toxicity to living creatures, requires frequent determination in water, soil, agricultural and food samples. The present review is an effort to highlight the various advancements made so far in the development of arsenic biosensors based either on recombinant whole cells or on certain arsenic-binding oligonucleotides or proteins. The role of futuristic approaches like surface plasmon resonance (SPR) and aptamer technology has also been discussed. The biomethods employed and their general mechanisms, advantages and limitations in relevance to arsenic biosensors developed so far are intended to be discussed in this review. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Transient Convection, Diffusion, and Adsorption in Surface-Based Biosensors

    DEFF Research Database (Denmark)

    Hansen, Rasmus; Bruus, Henrik; Callisen, Thomas H.

    2012-01-01

    microfluidic surface-based biosensors, operating under flow conditions. A widely adopted approximate quasi-steady theory to capture convective and diffusive mass transport is reviewed, and an analytical solution is presented. An expression of the Damköhler number is derived in terms of the nondimensional......This paper presents a theoretical and computational investigation of convection, diffusion, and adsorption in surface-based biosensors. In particular, we study the transport dynamics in a model geometry of a surface plasmon resonance (SPR) sensor. The work, however, is equally relevant for other...... concentration to the maximum surface capacity is critical for reliable use of the quasi-steady theory. Finally, our results provide users of surface-based biosensors with a tool for correcting experimentally obtained adsorption rate constants....

  2. Silicon carbide: a versatile material for biosensor applications.

    Science.gov (United States)

    Oliveros, Alexandra; Guiseppi-Elie, Anthony; Saddow, Stephen E

    2013-04-01

    Silicon carbide (SiC) has been around for more than 100 years as an industrial material and has found wide and varied applications because of its unique electrical and thermal properties. In recent years there has been increased attention to SiC as a viable material for biomedical applications. Of particular interest in this review is its potential for application as a biotransducer in biosensors. Among these applications are those where SiC is used as a substrate material, taking advantage of its surface chemical, tribological and electrical properties. In addition, its potential for integration as system on a chip and those applications where SiC is used as an active material make it a suitable substrate for micro-device fabrication. This review highlights the critical properties of SiC for application as a biosensor and reviews recent work reported on using SiC as an active or passive material in biotransducers and biosensors.

  3. An electrochemical biosensor for clenbuterol detection and pharmacokinetics investigation.

    Science.gov (United States)

    Bo, Bing; Zhu, Xuejun; Miao, Peng; Pei, Dong; Jiang, Bo; Lou, Yue; Shu, Yongqian; Li, Genxi

    2013-09-15

    Clenbuterol is a member of β2 adrenergic agonists, which is widely used not only as a food additive for livestocks, but also a kind of stimulant for athletes; however, the abuse of clenbuterol may pose a significant negative impact on human health. Since it is highly required to develop fast, sensitive and cost-effective method to determine clenbuterol level in the suspected urine or blood, we herein have fabricated an electrochemical biosensor for the determination of clenbuterol. Measurement of the species with the proposed biosensor can also have the advantages of simplicity, high sensitivity and selectivity. Moreover, the sensor can be directly used for clenbuterol determination in rat urine. We have further studied the pharmacokinetics of clenbuterol by using this proposed electrochemical biosensor, so a new tool to investigate pharmacokinetic is developed in this work. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Superconducting Bolometer Array Architectures

    Science.gov (United States)

    Benford, Dominic J.; Chervenak, James A.; Irwin, Kent D.; Moseley, S. H., Jr.; Shafer, Richard A.; Staguhn, Johannes G.; Wollack, Ed

    2003-02-01

    The next generation of far-infrared and submillimeter instruments require large arrays of detectors containing thousands of elements. These arrays will necessarily be multiplexed, and superconducting bolometer arrays are the most promising present prospect for these detectors. We discuss our current research into superconducting bolometer array technologies, which has recently resulted in the first multiplexed detections of submillimeter light and the first multiplexed astronomical observations. Prototype arrays containing 512 pixels are in production using the Pop-Up Detector (PUD) architecture, which can be extended easily to 1000 pixel arrays. Planar arrays of close-packed bolometers are being developed for the GBT and for future space missions. For certain applications, such as a slewed far-infrared sky survey, feedhorn-coupling of a large sparsely-filled array of bolometers is desirable, and is being developed using photolithographic feedhorn arrays. Individual detectors have achieved a Noise Equivalent Power (NEP) of ~10-17 W/√Hz at 300mK, but several orders of magnitude improvement are required and can be reached with existing technology. The testing of such ultralow-background detectors will prove difficult, as this requires optical loading of below 1fW. Antenna-coupled bolometer designs have advantages for large format array designs at low powers due to their mode selectivity. We also present a design and preliminary results for an enhanced-dynamic-range transition edge sensor suitable for broadband ultralow-background detectors.

  5. Electronic Switch Arrays for Managing Microbattery Arrays

    Science.gov (United States)

    Mojarradi, Mohammad; Alahmad, Mahmoud; Sukumar, Vinesh; Zghoul, Fadi; Buck, Kevin; Hess, Herbert; Li, Harry; Cox, David

    2008-01-01

    Integrated circuits have been invented for managing the charging and discharging of such advanced miniature energy-storage devices as planar arrays of microscopic energy-storage elements [typically, microscopic electrochemical cells (microbatteries) or microcapacitors]. The architecture of these circuits enables implementation of the following energy-management options: dynamic configuration of the elements of an array into a series or parallel combination of banks (subarrarys), each array comprising a series of parallel combination of elements; direct addressing of individual banks for charging/or discharging; and, disconnection of defective elements and corresponding reconfiguration of the rest of the array to utilize the remaining functional elements to obtain the desited voltage and current performance. An integrated circuit according to the invention consists partly of a planar array of field-effect transistors that function as switches for routing electric power among the energy-storage elements, the power source, and the load. To connect the energy-storage elements to the power source for charging, a specific subset of switches is closed; to connect the energy-storage elements to the load for discharging, a different specific set of switches is closed. Also included in the integrated circuit is circuitry for monitoring and controlling charging and discharging. The control and monitoring circuitry, the switching transistors, and interconnecting metal lines are laid out on the integrated-circuit chip in a pattern that registers with the array of energy-storage elements. There is a design option to either (1) fabricate the energy-storage elements in the corresponding locations on, and as an integral part of, this integrated circuit; or (2) following a flip-chip approach, fabricate the array of energy-storage elements on a separate integrated-circuit chip and then align and bond the two chips together.

  6. Electrochemical sensors and biosensors based on less aggregated graphene.

    Science.gov (United States)

    Bo, Xiangjie; Zhou, Ming; Guo, Liping

    2017-03-15

    As a novel single-atom-thick sheet of sp 2 hybridized carbon atoms, graphene (GR) has attracted extensive attention in recent years because of its unique and remarkable properties, such as excellent electrical conductivity, large theoretical specific surface area, and strong mechanical strength. However, due to the π-π interaction, GR sheets are inclined to stack together, which may seriously degrade the performance of GR with the unique single-atom layer. In recent years, an increasing number of GR-based electrochemical sensors and biosensors are reported, which may reflect that GR has been considered as a kind of hot and promising electrode material for electrochemical sensor and biosensor construction. However, the active sites on GR surface induced by the irreversible GR aggregations would be deeply secluded inside the stacked GR sheets and therefore are not available for the electrocatalysis. So the alleviation or the minimization of the aggregation level for GR sheets would facilitate the exposure of active sites on GR and effectively upgrade the performance of GR-based electrochemical sensors and biosensors. Less aggregated GR with low aggregation and high dispersed structure can be used in improving the electrochemical activity of GR-based electrochemical sensors or biosensors. In this review, we summarize recent advances and new progress for the development of electrochemical sensors based on less aggregated GR. To achieve such goal, many strategies (such as the intercalation of carbon materials, surface modification, and structural engineering) have been applied to alleviate the aggregation level of GR in order to enhance the performance of GR-based electrochemical sensors and biosensors. Finally, the challenges associated with less aggregated GR-based electrochemical sensors and biosensors as well as related future research directions are discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Peptide-based electrochemical biosensor for juvenile idiopathic arthritis detection.

    Science.gov (United States)

    Rodovalho, V R; Araujo, G R; Vaz, E R; Ueira-Vieira, C; Goulart, L R; Madurro, J M; Brito-Madurro, A G

    2017-10-05

    Juvenile idiopathic arthritis (JIA) is a wide group of diseases, characterized by synovial inflammation and joint tissue damage. Due to the delay in the implementation of biomarkers into clinical practice and the association with severe sequels, there is an imperative need for new JIA diagnosis strategies. Electrochemical biosensors based on screen-printed electrodes and peptides are promising alternatives for molecular diagnosis. In this work, a novel biosensor for detecting juvenile idiopathic arthritis (JIA) was developed based on the immobilization of the PRF+1 mimetic peptide, as recognition biological element, on the surface of screen-printed carbon electrode. This biosensor was able to discriminate the JIA positive and negative serum samples from different individuals using differential pulse voltammetry, presenting limits of detection and quantification in diluted samples of 1:784 (v/v) and 1:235 (v/v), respectively. Evaluation by electrochemical impedance spectroscopy showed RCT 3 times higher for JIA positive sample than for a pool of human serum samples from healthy individuals. Surface analysis of the biosensor by atomic force microscopy, after contact with JIA positive serum, presented great globular clusters irregularly distributed. The long-term stability of the biosensor was evaluated, remaining functional for over 40 days of storage (after storage at 8°C). Therefore, a simple, miniaturized and selective biosensor was developed, being the first one based on mimetic peptide and screen-printed carbon electrode, aiming at the diagnosis of the juvenile idiopathic arthritis in real serum samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Engineering an NADPH/NADPRedox Biosensor in Yeast

    DEFF Research Database (Denmark)

    Zhang, Jie; Sonnenschein, Nikolaus; Pihl, Thomas Peter Boye

    2016-01-01

    Genetically encoded biosensors have emerged as powerful tools for timely and precise in vivo evaluation of cellular metabolism. In particular, biosensors that can couple intercellular cues with downstream signaling responses are currently attracting major attention within health science...... in the budding yeast Saccharomyces cerevisiae. Using the biosensor, we are able to monitor the cause of oxidative stress by chemical induction, and changes in NADPH/NADP+ ratios caused by genetic manipulations. Because of the regulatory potential of the biosensor, we also show that the biosensor can actuate upon...

  9. Whole-Cell Fluorescent Biosensors for Bioavailability and Biodegradation of Polychlorinated Biphenyls

    Directory of Open Access Journals (Sweden)

    David Ryan

    2010-02-01

    Full Text Available Whole-cell microbial biosensors are one of the newest molecular tools used in environmental monitoring. Such biosensors are constructed through fusing a reporter gene such as lux, gfp or lacZ,to a responsive promoter. There have been many reports of the applications of biosensors, particularly their use in assaying pollutant toxicity and bioavailability. This paper reviews the basic concepts behind the construction of whole-cell microbial biosensors for pollutant monitoring, and describes the applications of two such biosensors for detecting the bioavailability and biodegradation of Polychlorinated Biphenyls (PCBs.

  10. Fiber Optic Surface Plasmon Resonance-Based Biosensor Technique: Fabrication, Advancement, and Application.

    Science.gov (United States)

    Liang, Gaoling; Luo, Zewei; Liu, Kunping; Wang, Yimin; Dai, Jianxiong; Duan, Yixiang

    2016-05-03

    Fiber optic-based biosensors with surface plasmon resonance (SPR) technology are advanced label-free optical biosensing methods. They have brought tremendous progress in the sensing of various chemical and biological species. This review summarizes four sensing configurations (prism, grating, waveguide, and fiber optic) with two ways, attenuated total reflection (ATR) and diffraction, to excite the surface plasmons. Meanwhile, the designs of different probes (U-bent, tapered, and other probes) are also described. Finally, four major types of biosensors, immunosensor, DNA biosensor, enzyme biosensor, and living cell biosensor, are discussed in detail for their sensing principles and applications. Future prospects of fiber optic-based SPR sensor technology are discussed.

  11. Fluorescence-based biosensors from concepts to applications

    CERN Document Server

    Morris, May C

    2013-01-01

    One of the major challenges of modern biology and medicine consists in finding means to visualize biomolecules in their natural environment with the greatest level of accuracy, so as to gain insight into their properties and behaviour in a physiological and pathological setting. This has been achieved thanks to the design of novel imaging agents, in particular to fluorescent biosensors. Fluorescence Biosensors comprise a large set of tools which are useful for fundamental purposes as well as for applications in biomedicine, drug discovery and biotechnology. These tools have been designed a

  12. Optical biosensors: a revolution towards quantum nanoscale electronics device fabrication.

    Science.gov (United States)

    Dey, D; Goswami, T

    2011-01-01

    The dimension of biomolecules is of few nanometers, so the biomolecular devices ought to be of that range so a better understanding about the performance of the electronic biomolecular devices can be obtained at nanoscale. Development of optical biomolecular device is a new move towards revolution of nano-bioelectronics. Optical biosensor is one of such nano-biomolecular devices that has a potential to pave a new dimension of research and device fabrication in the field of optical and biomedical fields. This paper is a very small report about optical biosensor and its development and importance in various fields.

  13. Optical Biosensors: A Revolution Towards Quantum Nanoscale Electronics Device Fabrication

    Directory of Open Access Journals (Sweden)

    D. Dey

    2011-01-01

    Full Text Available The dimension of biomolecules is of few nanometers, so the biomolecular devices ought to be of that range so a better understanding about the performance of the electronic biomolecular devices can be obtained at nanoscale. Development of optical biomolecular device is a new move towards revolution of nano-bioelectronics. Optical biosensor is one of such nano-biomolecular devices that has a potential to pave a new dimension of research and device fabrication in the field of optical and biomedical fields. This paper is a very small report about optical biosensor and its development and importance in various fields.

  14. Lateral flow biosensors for the detection of nucleic acid.

    Science.gov (United States)

    Zeng, Lingwen; Lie, Puchang; Fang, Zhiyuan; Xiao, Zhuo

    2013-01-01

    The detection of nucleic acid is of central importance for the diagnosis of genetic diseases, infectious agents, and biowarfare agents. Traditional strategies and technologies for nucleic acid detection are time-consuming and labor-intensive. Recently, isothermal strand-displacement reaction-based lateral flow biosensors have attracted a great deal of research interest because they are sensitive, simple, fast, and easy to use. Here, we describe a lateral flow biosensor based on isothermal strand-displacement polymerase reaction and gold nanoparticles for the visual detection of nucleic acid.

  15. Graphene-polymer-enzyme hybrid nanomaterials for biosensors

    DEFF Research Database (Denmark)

    2016-01-01

    The invention relates to a general chemical method for the synthesis of biocompatible hybrid nanomaterials which can be used in the development of new- type enzyme based biosensors. A one-step facile method is presented, in which polyethylenimine (PEI) serves as both a reducing agent for the redu......The invention relates to a general chemical method for the synthesis of biocompatible hybrid nanomaterials which can be used in the development of new- type enzyme based biosensors. A one-step facile method is presented, in which polyethylenimine (PEI) serves as both a reducing agent...

  16. A rapid biosensor for viable B. anthracis spores.

    Science.gov (United States)

    Baeumner, Antje J; Leonard, Barbara; McElwee, John; Montagna, Richard A

    2004-09-01

    A simple membrane-strip-based biosensor assay has been combined with a nucleic acid sequence-based amplification (NASBA) reaction for rapid (4 h) detection of a small number (ten) of viable B. anthracis spores. The biosensor is based on identification of a unique mRNA sequence from one of the anthrax toxin genes, the protective antigen ( pag), encoded on the toxin plasmid, pXO1, and thus provides high specificity toward B. anthracis. Previously, the anthrax toxins activator ( atxA) mRNA had been used in our laboratory for the development of a biosensor for the detection of a single B. anthracis spore within 12 h. Changing the target sequence to the pag mRNA provided the ability to shorten the overall assay time significantly. The vaccine strain of B. anthracis (Sterne strain) was used in all experiments. A 500-microL sample containing as few as ten spores was mixed with 500 microL growth medium and incubated for 30 min for spore germination and mRNA production. Thus, only spores that are viable were detected. Subsequently, RNA was extracted from lysed cells, selectively amplified using NASBA, and rapidly identified by the biosensor. While the biosensor assay requires only 15 min assay time, the overall process takes 4 h for detection of ten viable B. anthracis spores, and is shortened significantly if more spores are present. The biosensor is based on an oligonucleotide sandwich-hybridization assay format. It uses a membrane flow-through system with an immobilized DNA probe that hybridizes with the target sequence. Signal amplification is provided when the target sequence hybridizes to a second DNA probe that has been coupled to liposomes encapsulating the dye sulforhodamine B. The amount of liposomes captured in the detection zone can be read visually or quantified with a hand-held reflectometer. The biosensor can detect as little as 1 fmol target mRNA (1 nmol L(-1)). Specificity analysis revealed no cross-reactivity with 11 organisms tested, among them closely

  17. Aptamer-based molecular recognition for biosensor development.

    Science.gov (United States)

    Zhou, Jing; Battig, Mark R; Wang, Yong

    2010-11-01

    Nucleic acid aptamers are an emerging class of synthetic ligands and have recently attracted significant attention in numerous fields. One is in biosensor development. In principle, nucleic acid aptamers can be discovered to recognize any molecule of interest with high affinity and specificity. In addition, unlike most ligands evolved in nature, synthetic nucleic acid aptamers are usually tolerant of harsh chemical, physical, and biological conditions. These distinguished characteristics make aptamers attractive molecular recognition ligands for biosensing applications. This review first concisely introduces methods for aptamer discovery including upstream selection and downstream truncation, then discusses aptamer-based biosensor development from the viewpoint of signal production.

  18. Carbon nanomaterial-based electrochemical biosensors: an overview

    Science.gov (United States)

    Wang, Zhaoyin; Dai, Zhihui

    2015-04-01

    Carbon materials on the nanoscale exhibit diverse outstanding properties, rendering them extremely suitable for the fabrication of electrochemical biosensors. Over the past two decades, advances in this area have continuously emerged. In this review, we attempt to survey the recent developments of electrochemical biosensors based on six types of carbon nanomaterials (CNs), i.e., graphene, carbon nanotubes, carbon dots, carbon nanofibers, nanodiamonds and buckminsterfullerene. For each material, representative samples are introduced to expound the different roles of the CNs in electrochemical bioanalytical strategies. In addition, remaining challenges and perspectives for future developments are also briefly discussed.

  19. Functionalized nanopipettes: toward label-free, single cell biosensors.

    Science.gov (United States)

    Actis, Paolo; Mak, Andy C; Pourmand, Nader

    2010-08-01

    Nanopipette technology has been proven to be a label-free biosensor capable of identifying DNA and proteins. The nanopipette can include specific recognition elements for analyte discrimination based on size, shape, and charge density. The fully electrical read-out and the ease and low-cost fabrication are unique features that give this technology an enormous potential. Unlike other biosensing platforms, nanopipettes can be precisely manipulated with submicron accuracy and used to study single cell dynamics. This review is focused on creative applications of nanopipette technology for biosensing. We highlight the potential of this technology with a particular attention to integration of this biosensor with single cell manipulation platforms.

  20. Piezoelectric Biosensors for Organophosphate and Carbamate Pesticides: A Review

    Directory of Open Access Journals (Sweden)

    Giovanna Marrazza

    2014-09-01

    Full Text Available Due to the great amount of pesticides currently being used, there is an increased interest for developing biosensors for their detection. Among all the physical transducers, piezoelectric systems have emerged as the most attractive due to their simplicity, low instrumentation costs, possibility for real-time and label-free detection and generally high sensitivity. This paper presents an overview of biosensors based on the quartz crystal microbalance, which have been reported in the literature for organophosphate and carbamate pesticide analysis.

  1. A Review of Membrane-Based Biosensors for Pathogen Detection.

    Science.gov (United States)

    van den Hurk, Remko; Evoy, Stephane

    2015-06-15

    Biosensors are of increasing interest for the detection of bacterial pathogens in many applications such as human, animal and plant health, as well as food and water safety. Membranes and membrane-like structures have been integral part of several pathogen detection platforms. Such structures may serve as simple mechanical support, function as a part of the transduction mechanism, may be used to filter out or concentrate pathogens, and may be engineered to specifically house active proteins. This review focuses on membrane materials, their associated biosensing applications, chemical linking procedures, and transduction mechanisms. The sensitivity of membrane biosensors is discussed, and the state of the field is evaluated and summarized.

  2. Carbon nanotube nanoelectrode arrays

    Science.gov (United States)

    Ren, Zhifeng; Lin, Yuehe; Yantasee, Wassana; Liu, Guodong; Lu, Fang; Tu, Yi

    2008-11-18

    The present invention relates to microelectode arrays (MEAs), and more particularly to carbon nanotube nanoelectrode arrays (CNT-NEAs) for chemical and biological sensing, and methods of use. A nanoelectrode array includes a carbon nanotube material comprising an array of substantially linear carbon nanotubes each having a proximal end and a distal end, the proximal end of the carbon nanotubes are attached to a catalyst substrate material so as to form the array with a pre-determined site density, wherein the carbon nanotubes are aligned with respect to one another within the array; an electrically insulating layer on the surface of the carbon nanotube material, whereby the distal end of the carbon nanotubes extend beyond the electrically insulating layer; a second adhesive electrically insulating layer on the surface of the electrically insulating layer, whereby the distal end of the carbon nanotubes extend beyond the second adhesive electrically insulating layer; and a metal wire attached to the catalyst substrate material.

  3. Effects of food surface topography on phage-based magnetoelastic biosensor detection

    Science.gov (United States)

    Horikawa, Shin; Chai, Yating; Zhao, Ruiting; Wikle, Howard C.; Chin, Bryan A.

    2014-05-01

    Phage-based magnetoelastic (ME) biosensors have proven useful in rapidly and inexpensively detecting food surface con- tamination. These biosensors are wireless, mass-sensitive biosensors and can be placed directly on food surfaces to detect the presence of target pathogens. Previously, millimeter-scale strip-shaped ME biosensors have been used to demonstrate direct detection of Salmonella Typhimurium on various fresh produce surfaces, including tomatoes, shell eggs, watermel- ons, and spinach leaves. Since the topography of these produce surfaces are different, and the biosensor must come into direct contact with Salmonella bacteria, food surfaces with large roughness and curvatures (e.g., spinach leaf surfaces) may allow the bacteria to avoid direct contact, thereby avoiding detection. The primary objective of this paper is, hence, to investigate the effects of food surface topography on the detection capabilities of the biosensors. Spinach leaf surfaces were selected as model surfaces, and detection experiments were conducted with differently sized biosensors (2 mm, 0.5 mm, and 150 μm in length). Spinach leaf roughness and curvatures of both adaxial (top) and abaxial (underside) surfaces were measured using a confocal laser scanning microscope. The experimental results showed that in spinach as the sen- sor was made smaller, the physical contact between the biosensors and bacteria were improved. Smaller sensors thereby enhance detection capabilities. When proper numbers of biosensors are used, micron-scale biosensors are anticipated to yield improved limits of detection over previously investigated millimeter-scale biosensors.

  4. ZnO nanowire-based glucose biosensors with different coupling agents

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Juneui [Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Lim, Sangwoo, E-mail: swlim@yonsei.ac.kr [Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749 (Korea, Republic of)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer Fabrication of ZnO nanowire-based glucose biosensors using different coupling agents. Black-Right-Pointing-Pointer Highest sensitivity for (3-aminopropyl)methyldiethoxysilane-treated biosensor. Black-Right-Pointing-Pointer Larger amount of glucose oxidase and lower electron transfer resistance for (3-aminopropyl)methyldiethoxysilane-treated biosensor. - Abstract: ZnO-nanowire-based glucose biosensors were fabricated by immobilizing glucose oxidase (GOx) onto a linker attached to ZnO nanowires. Different coupling agents were used, namely (3-aminopropyl)trimethoxysilane (APTMS), (3-aminopropyl)triethoxysilane (APTES), and (3-aminopropyl)methyldiethoxysilane (APS), to increase the affinity of GOx binding to ZnO nanowires. The amount of GOx immobilized on the ZnO nanowires, the performance, sensitivity, and Michaelis-Menten constant of each biosensor, and the electron transfer resistance through the biosensor were all measured in order to investigate the effect of the coupling agent on the ZnO nanowire-based biosensor. Among the different biosensors, the APS-treated biosensor had the highest sensitivity (17.72 {mu}A cm{sup -2} mM{sup -1}) and the lowest Michaelis-Menten constant (1.37 mM). Since APS-treated ZnO nanowires showed the largest number of C-N groups and the lowest electron transfer resistance through the biosensor, we concluded that these properties were the key factors in the performance of APS-treated glucose biosensors.

  5. Electrochemical Biosensors - Sensor Principles and Architectures.

    Science.gov (United States)

    Grieshaber, Dorothee; MacKenzie, Robert; Vörös, Janos; Reimhult, Erik

    2008-03-07

    Quantification of biological or biochemical processes are of utmost importance for medical, biological and biotechnological applications. However, converting the biological information to an easily processed electronic signal is challenging due to the complexity of connecting an electronic device directly to a biological environment. Electrochemical biosensors provide an attractive means to analyze the content of a biological sample due to the direct conversion of a biological event to an electronic signal. Over the past decades several sensing concepts and related devices have been developed. In this review, the most common traditional techniques, such as cyclic voltammetry, chronoamperometry, chronopotentiometry, impedance spectroscopy, and various field-effect transistor based methods are presented along with selected promising novel approaches, such as nanowire or magnetic nanoparticle-based biosensing. Additional measurement techniques, which have been shown useful in combination with electrochemical detection, are also summarized, such as the electrochemical versions of surface plasmon resonance, optical waveguide lightmode spectroscopy, ellipsometry, quartz crystal microbalance, and scanning probe microscopy. The signal transduction and the general performance of electrochemical sensors are often determined by the surface architectures that connect the sensing element to the biological sample at the nanometer scale. The most common surface modification techniques, the various electrochemical transduction mechanisms, and the choice of the recognition receptor molecules all influence the ultimate sensitivity of the sensor. New nanotechnology-based approaches, such as the use of engineered ion-channels in lipid bilayers, the encapsulation of enzymes into vesicles, polymersomes, or polyelectrolyte capsules provide additional possibilities for signal amplification. In particular, this review highlights the importance of the precise control over the delicate

  6. Disposable cartridge biosensor platform for portable diagnostics

    Science.gov (United States)

    Yaras, Yusuf S.; Cakmak, Onur; Gunduz, Ali B.; Saglam, Gokhan; Olcer, Selim; Mostafazadeh, Aref; Baris, Ibrahim; Civitci, Fehmi; Yaralioglu, Goksen G.; Urey, Hakan

    2017-03-01

    We developed two types of cantilever-based biosensors for portable diagnostics applications. One sensor is based on MEMS cantilever chip mounted in a microfluidic channel and the other sensor is based on a movable optical fiber placed across a microfluidic channel. Both types of sensors were aimed at direct mechanical measurement of coagulation time in a disposable cartridge using plasma or whole blood samples. There are several similarities and also some important differences between the MEMS based and the optical fiber based solutions. The aim of this paper is to provide a comparison between the two solutions and the results. For both types of sensors, actuation of the cantilever or the moving fiber is achieved using an electro coil and the readout is optical. Since both the actuation and sensing are remote, no electrical connections are required for the cartridge. Therefore it is possible to build low cost disposable cartridges. The reader unit for the cartridge contains light sources, photodetectors, the electro coil, a heater, analog electronics, and a microprocessor. The reader unit has different optical interfaces for the cartridges that have MEMS cantilevers and moving fibers. MEMS based platform has better sensitivity but optomechanical alignment is a challenge and measurements with whole blood were not possible due to high scattering of light by the red blood cells. Fiber sensor based platform has relaxed optomechanical tolerances, ease of manufacturing, and it allows measurements in whole blood. Both sensors were tested using control plasma samples for activated-Partial-Thromboplastin-Time (aPTT) measurements. Control plasma test results matched with the manufacturer's datasheet. Optical fiber based system was tested for aPTT tests with human whole blood samples and the proposed platform provided repeatable test results making the system method of choice for portable diagnostics.

  7. Sense and sensitivity in bioprocessing-detecting cellular metabolites with biosensors.

    Science.gov (United States)

    Dekker, Linda; Polizzi, Karen M

    2017-10-01

    Biosensors use biological elements to detect or quantify an analyte of interest. In bioprocessing, biosensors are employed to monitor key metabolites. There are two main types: fully biological systems or biological recognition coupled with physical/chemical detection. New developments in chemical biosensors include multiplexed detection using microfluidics. Synthetic biology can be used to engineer new biological biosensors with improved characteristics. Although there have been few biosensors developed for bioprocessing thus far, emerging trends can be applied in the future. A range of new platform technologies will enable rapid engineering of new biosensors based on transcriptional activation, riboswitches, and Förster Resonance Energy Transfer. However, translation to industry remains a challenge and more research into the robustness biosensors at scale is needed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Potentiality of application of the conductometric L-arginine biosensors for the real sample analysis

    Directory of Open Access Journals (Sweden)

    Jaffrezic-Renault N.

    2012-12-01

    Full Text Available Aim. To determine an influence of serum components on the L-arginine biosensor sensitivity and to formulate practical recommendations for its reliable analysis. Methods. The L-arginine biosensor comprised arginase and urease co-immobilized by cross-linking. Results. The biosensor specificity was investigated based on a series of representative studies (namely, through urea determination in the serum; inhibitory effect studies of mercury ions; high temperature treatment of sensors; studying the biosensor sensitivity to the serum treated by enzymes, and selectivity studies. It was found that the response of the biosensor to the serum injections was determined by high sensitivity of the L-arginine biosensor toward not only to L-arginine but also toward two other basic amino acids (L-lysine and L-histidine. Conclusions. A detailed procedure of optimization of the conductometric biosensor for L-arginine determination in blood serum has been proposed.

  9. Recent progress in design of protein-based fluorescent biosensors and their cellular applications.

    Science.gov (United States)

    Tamura, Tomonori; Hamachi, Itaru

    2014-12-19

    Protein-based fluorescent biosensors have emerged as key bioanalytical tools to visualize and quantify a wide range of biological substances and events in vitro, in cells, and even in vivo. On the basis of the construction method, the protein-based fluorescent biosensors can be principally classified into two classes: (1) genetically encoded fluorescent biosensors harnessing fluorescent proteins (FPs) and (2) semisynthetic biosensors comprised of protein scaffolds and synthetic fluorophores. Recent advances in protein engineering and chemical biology not only allowed the further optimization of conventional biosensors but also facilitated the creation of novel biosensors based on unique strategies. In this review, we survey the recent studies in the development and improvement of protein-based fluorescent biosensors and highlight the successful applications to live cell and in vivo imaging. Furthermore, we provide perspectives on possible future directions of the technique.

  10. Dynamically Reconfigurable Microphone Arrays

    Science.gov (United States)

    2011-05-01

    Static + 2 Wireless Using only a standard computer sound card, a robot is limited to binaural inputs. Even when using wireless microphones, the audio...Abstract—Robotic sound localization has traditionally been restricted to either on-robot microphone arrays or embedded microphones in aware...a microphone array has a significant impact on the mathematics of sound source localization. Arrays, for instance, are commonly designed to

  11. Rectenna array measurement results

    Science.gov (United States)

    Dickinson, R. M.

    1980-01-01

    The measured performance characteristics of a rectenna array are reviewed and compared to the performance of a single element. It is shown that the performance may be extrapolated from the individual element to that of the collection of elements. Techniques for current and voltage combining were demonstrated. The array performance as a function of various operating parameters is characterized and techniques for overvoltage protection and automatic fault clearing in the array demonstrated. A method for detecting failed elements also exists. Instrumentation for deriving performance effectiveness is described. Measured harmonic radiation patterns and fundamental frequency scattered patterns for a low level illumination rectenna array are presented.

  12. Integrated Avalanche Photodiode arrays

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, Eric S.

    2017-04-18

    The present disclosure includes devices for detecting photons, including avalanche photon detectors, arrays of such detectors, and circuits including such arrays. In some aspects, the detectors and arrays include a virtual beveled edge mesa structure surrounded by resistive material damaged by ion implantation and having side wall profiles that taper inwardly towards the top of the mesa structures, or towards the direction from which the ion implantation occurred. Other aspects are directed to masking and multiple implantation and/or annealing steps. Furthermore, methods for fabricating and using such devices, circuits and arrays are disclosed.

  13. Integrated avalanche photodiode arrays

    Science.gov (United States)

    Harmon, Eric S.

    2015-07-07

    The present disclosure includes devices for detecting photons, including avalanche photon detectors, arrays of such detectors, and circuits including such arrays. In some aspects, the detectors and arrays include a virtual beveled edge mesa structure surrounded by resistive material damaged by ion implantation and having side wall profiles that taper inwardly towards the top of the mesa structures, or towards the direction from which the ion implantation occurred. Other aspects are directed to masking and multiple implantation and/or annealing steps. Furthermore, methods for fabricating and using such devices, circuits and arrays are disclosed.

  14. Modeling microelectrode biosensors: free-flow calibration can substantially underestimate tissue concentrations.

    Science.gov (United States)

    Newton, Adam J H; Wall, Mark J; Richardson, Magnus J E

    2017-03-01

    Microelectrode amperometric biosensors are widely used to measure concentrations of analytes in solution and tissue including acetylcholine, adenosine, glucose, and glutamate. A great deal of experimental and modeling effort has been directed at quantifying the response of the biosensors themselves; however, the influence that the macroscopic tissue environment has on biosensor response has not been subjected to the same level of scrutiny. Here we identify an important issue in the way microelectrode biosensors are calibrated that is likely to have led to underestimations of analyte tissue concentrations. Concentration in tissue is typically determined by comparing the biosensor signal to that measured in free-flow calibration conditions. In a free-flow environment the concentration of the analyte at the outer surface of the biosensor can be considered constant. However, in tissue the analyte reaches the biosensor surface by diffusion through the extracellular space. Because the enzymes in the biosensor break down the analyte, a density gradient is set up resulting in a significantly lower concentration of analyte near the biosensor surface. This effect is compounded by the diminished volume fraction (porosity) and reduction in the diffusion coefficient due to obstructions (tortuosity) in tissue. We demonstrate this effect through modeling and experimentally verify our predictions in diffusive environments. NEW & NOTEWORTHY Microelectrode biosensors are typically calibrated in a free-flow environment where the concentrations at the biosensor surface are constant. However, when in tissue, the analyte reaches the biosensor via diffusion and so analyte breakdown by the biosensor results in a concentration gradient and consequently a lower concentration around the biosensor. This effect means that naive free-flow calibration will underestimate tissue concentration. We develop mathematical models to better quantify the discrepancy between the calibration and tissue

  15. Large-scale parallel surface functionalization of goblet-type whispering gallery mode microcavity arrays for biosensing applications.

    Science.gov (United States)

    Bog, Uwe; Brinkmann, Falko; Kalt, Heinz; Koos, Christian; Mappes, Timo; Hirtz, Michael; Fuchs, Harald; Köber, Sebastian

    2014-10-15

    A novel surface functionalization technique is presented for large-scale selective molecule deposition onto whispering gallery mode microgoblet cavities. The parallel technique allows damage-free individual functionalization of the cavities, arranged on-chip in densely packaged arrays. As the stamp pad a glass slide is utilized, bearing phospholipids with different functional head groups. Coated microcavities are characterized and demonstrated as biosensors. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Microcantilever array instrument based on optical fiber and performance analysis.

    Science.gov (United States)

    Zhang, Guangping; Wu, Lin; Li, Chao; Wu, Shangquan; Zhang, Qingchuan

    2017-07-01

    We developed a microcantilever array biosensor instrument based on optical readout from a microcantilever array in fluid environment. The microcantilever signals were read out sequentially by laser beams emitted from eight optical fibers. The optical fibers were coupled to lasers, while the other ends of the fibers were embedded in eight V-grooves with 250 μm pitch microfabricated from a Si wafer. Aspherical lens was used to keep the distance between lasers. A programmable logic controller was used to make the system work stably. To make sure that the output of lasers was stable, a temperature controller was set up for each laser. When the deflection signal was collected, lasers used here were set to be on for at least 400 ms in each scanning cycle to get high signal-to-noise ratio deflection curves. A test was performed by changing the temperature of the liquid cell holding a microcantilever array to verify the consistent response of the instrument to the cantilever deflections. The stability and conformance of the instrument were demonstrated by quantitative detection of mercury ions in aqueous solution and comparison detection of clenbuterol by setting test and reference cantilevers. This microcantilever array detection instrument can be applied to highly sensitive detection of chemical and biological molecules in fluid environment.

  17. Integration of field effect transistor-based biosensors with a digital microfluidic device for a lab-on-a-chip application.

    Science.gov (United States)

    Choi, Kyungyong; Kim, Jee-Yeon; Ahn, Jae-Hyuk; Choi, Ji-Min; Im, Maesoon; Choi, Yang-Kyu

    2012-04-21

    A new platform for lab-on-a-chip system is suggested that utilizes a biosensor array embedded in a digital microfluidic device. With field effect transistor (FET)-based biosensors embedded in the middle of droplet-driving electrodes, the proposed digital microfluidic device can electrically detect avian influenza antibody (anti-AI) in real time by tracing the drain current of the FET-based biosensor without a labeling process. Digitized transport of a target droplet enclosing anti-AI from an inlet to the embedded sensor is enabled by the actuation of electrowetting-on-dielectrics (EWOD). A reduction of the drain current is observed when the target droplet is merged with a pre-existing droplet on the embedded sensor. This reduction of the drain current is attributed to the specific binding of the antigen and the antibody of the AI. The proposed hybrid device consisting of the FET-based sensor and an EWOD device, built on a coplanar substrate by monolithic integration, is fully compatible with current fabrication technology for control and read-out circuitry. Such a completely electrical manner of inducing the transport of bio-molecules, the detection of bio-molecules, the recording of signals, signal processing, and the data transmission process does not require a pump, a fluidic channel, or a bulky transducer. Thus, the proposed platform can contribute to the construction of an all-in-one chip.

  18. Multiplex biosensor immunoassays for antibiotics in the food chain

    NARCIS (Netherlands)

    Haasnoot, W.

    2009-01-01

    The use of antibiotics in food-producing animals may result in unwanted residues in food products. The main objective of the present research was to study the development and application of fast and automated multiplex surface plasmon resonance (SPR)-based biosensor immunoassays (BIAs), based on

  19. Development and testing of a fluorescence biosensor for glucose sensing

    Science.gov (United States)

    Aloraefy, Mamdouh; Pfefer, Joshua; Ramella-Roman, Jessica; Sapsford, Kim

    2012-06-01

    Rapid, accurate, and minimally-invasive biosensors for glucose measurement have the potential to enhance management of diabetes mellitus and improve patient outcome in intensive care settings. Recent studies have indicated that implantable biosensors based on Förster Resonance Energy Transfer (FRET) can provide high sensitivity in quantifying glucose concentrations. However, standard approaches for determining the potential for interference from other biological constituents have not been established. The aim of this work was to design and optimize a FRET-based glucose sensor and assess its specificity to glucose. A sensor based on competitive binding between concanavalin A and dextran, labeled with long-wavelength acceptor and donor fluorophores, was developed. This process included optimization of dextran molecular weight and donor concentration, acceptor to donor ratio, and hydrogel concentration, as well as the number of polymer layers for encapsulation. The biosensor performance was characterized in terms of its response to clinically relevant glucose concentrations. The potential for interference and the development of test methods to evaluate this effect were studied using a potential clinical interferent, maltose. Results indicated that our biosensor had a prediction accuracy of better than 11% and that the robustness to maltose was highly dependent on glucose level.

  20. The development and application of FET-based biosensors

    NARCIS (Netherlands)

    Bergveld, Piet

    1986-01-01

    After having considered the general definition of biosensors, the specifications of one type are discussed here in more detail, namely the pH-sensitive ISFET, which is at present being clinically investigated for intravascular blood pH recording. Results, advantages and possible improvements will be

  1. Development of FRET biosensors for mammalian and plant systems

    NARCIS (Netherlands)

    Hamers, D.S.; Voorst Vader, van L.; Borst, J.W.; Goedhart, J.

    2014-01-01

    Genetically encoded biosensors are increasingly used in visualising signalling processes in different organisms. Sensors based on green fluorescent protein technology are providing a great opportunity for using Förster resonance energy transfer (FRET) as a tool that allows for monitoring dynamic

  2. Synthesis and assessment of peptide-nanocellulosic biosensors

    Science.gov (United States)

    Nanocellulose is an ideal transducer surface for biosensors: it provides a high surface area, easily derivatized with bioactive molecules, and abrogates binding of proteins present in biological fluids where analytes and clinical biomarkers are of interest. Here an example of approaches to biosenso...

  3. An Evolution Based Biosensor Receptor DNA Sequence Generation Algorithm

    Directory of Open Access Journals (Sweden)

    Yupeng Zang

    2009-12-01

    Full Text Available A biosensor is composed of a bioreceptor, an associated recognition molecule, and a signal transducer that can selectively detect target substances for analysis. DNA based biosensors utilize receptor molecules that allow hybridization with the target analyte. However, most DNA biosensor research uses oligonucleotides as the target analytes and does not address the potential problems of real samples. The identification of recognition molecules suitable for real target analyte samples is an important step towards further development of DNA biosensors. This study examines the characteristics of DNA used as bioreceptors and proposes a hybrid evolution-based DNA sequence generating algorithm, based on DNA computing, to identify suitable DNA bioreceptor recognition molecules for stable hybridization with real target substances. The Traveling Salesman Problem (TSP approach is applied in the proposed algorithm to evaluate the safety and fitness of the generated DNA sequences. This approach improves efficiency and stability for enhanced and variable-length DNA sequence generation and allows extension to generation of variable-length DNA sequences with diverse receptor recognition requirements.

  4. An evolution based biosensor receptor DNA sequence generation algorithm.

    Science.gov (United States)

    Kim, Eungyeong; Lee, Malrey; Gatton, Thomas M; Lee, Jaewan; Zang, Yupeng

    2010-01-01

    A biosensor is composed of a bioreceptor, an associated recognition molecule, and a signal transducer that can selectively detect target substances for analysis. DNA based biosensors utilize receptor molecules that allow hybridization with the target analyte. However, most DNA biosensor research uses oligonucleotides as the target analytes and does not address the potential problems of real samples. The identification of recognition molecules suitable for real target analyte samples is an important step towards further development of DNA biosensors. This study examines the characteristics of DNA used as bioreceptors and proposes a hybrid evolution-based DNA sequence generating algorithm, based on DNA computing, to identify suitable DNA bioreceptor recognition molecules for stable hybridization with real target substances. The Traveling Salesman Problem (TSP) approach is applied in the proposed algorithm to evaluate the safety and fitness of the generated DNA sequences. This approach improves efficiency and stability for enhanced and variable-length DNA sequence generation and allows extension to generation of variable-length DNA sequences with diverse receptor recognition requirements.

  5. Electrochemical biosensor based on immobilized enzymes and redox polymers

    Science.gov (United States)

    Skotheim, Terje A.; Okamoto, Yoshiyuki; Hale, Paul D.

    1992-01-01

    The present invention relates to an electrochemical enzyme biosensor for use in liquid mixtures of components for detecting the presence of, or measuring the amount of, one or more select components. The enzyme electrode of the present invention is comprised of an enzyme, an artificial redox compound covalently bound to a flexible polymer backbone and an electron collector.

  6. Spreeta-based biosensor assays for endocrine disruptors

    NARCIS (Netherlands)

    Marchesini, G.R.; Koopal, K.; meulenberg, E.P.; Haasnoot, W.; Irth, H.

    2007-01-01

    The construction and performance of an automated low-cost Spreeta™-based prototype biosensor system for the detection of endocrine disrupting chemicals (EDCs) is described. The system consists primarily of a Spreeta miniature liquid sensor incorporated into an aluminum flow cell holder, dedicated to

  7. Development of an electrochemical DNA biosensor for detection of ...

    Indian Academy of Sciences (India)

    An electrochemical DNA biosensor was developed by avidin-biotin interaction of a biotinylated probe and avidin-attached, poly(L-glutamic) acid coated pencil graphite electrode (PGA/PGE) for detection of specific Mycobacterium tuberculosis DNA sequence. The discrimination of fully complementary hybridization and ...

  8. Biosensor immunoassays for the detection of bisphenol A

    NARCIS (Netherlands)

    Marchesini, G.R.; Meulenberg, E.; Haasnoot, W.; Irth, H.

    2005-01-01

    Bisphenol A (BPA) is a xenoestrogen found in the environment, in consequence, for the biosensor detection of BPA we raised antibodies (polyclonal (PAbs) and monoclonal (MAbs)) against a structural analogue of BPA, 4,4 bis-(4-hydroxyphenyl) valeric acid (BVA). The kinetics of the MAb¿BPA interaction

  9. Biosensor immunoassays for the detection of bisphenol A

    NARCIS (Netherlands)

    Marchesini, G.R.; meulenberg, E.P.; Haasnoot, W.; Irth, H.

    2005-01-01

    Bisphenol A (BPA) is a xenoestrogen found in the environment, in consequence, for the biosensor detection of BPA we raised antibodies (polyclonal (PAbs) and monoclonal (MAbs)) against a structural analogue of BPA, 4,4 bis-(4-hydroxyphenyl) valeric acid (BVA). The kinetics of the MAb-BPA interaction

  10. Bioelectroanalysis in a Drop: Construction of a Glucose Biosensor

    Science.gov (United States)

    Amor-Gutierrez, O.; Rama, E. C.; Fernandez-Abedul, M. T.; Costa-García, A.

    2017-01-01

    This lab experiment describes a complete method to fabricate an enzymatic glucose electroanalytical biosensor by students. Using miniaturized and disposable screen-printed electrodes (SPEs), students learn how to use them as transducers and understand the importance SPEs have acquired in sensor development during the last years. Students can also…

  11. Bacillus subtilis Biosensor Engineered To Assess Meat Spoilage

    NARCIS (Netherlands)

    Daszczuk, Alicja; Dessalegne, Yonathan; Drenth, Ismael; Hendriks, Elbrich; Jo, Emeraldo; van Lente, Tom; Oldebesten, Arjan; Parrish, Jonathon; Poljakova, Wlada; Purwanto, Annisa A.; van Raaphorst, Renske; Boonstra, Mirjam; van Heel, Auke; Herber, Martijn; van der Meulen, Sjoerd; Siebring, Jeroen; Sorg, Robin A.; Heinemann, Matthias; Kuipers, Oscar P.; Veening, Jan-Willem

    2014-01-01

    Here, we developed a cell-based biosensor that can assess meat freshness using the Gram-positive model bacterium Bacillus subtilis as a chassis. Using transcriptome analysis, we identified promoters that are specifically activated by volatiles released from spoiled meat. The most strongly activated

  12. Tyrosinase-Based Biosensors for Selective Dopamine Detection

    Directory of Open Access Journals (Sweden)

    Monica Florescu

    2017-06-01

    Full Text Available A novel tyrosinase-based biosensor was developed for the detection of dopamine (DA. For increased selectivity, gold electrodes were previously modified with cobalt (II-porphyrin (CoP film with electrocatalytic activity, to act both as an electrochemical mediator and an enzyme support, upon which the enzyme tyrosinase (Tyr was cross-linked. Differential pulse voltammetry was used for electrochemical detection and the reduction current of dopamine-quinone was measured as a function of dopamine concentration. Our experiments demonstrated that the presence of CoP improves the selectivity of the electrode towards dopamine in the presence of ascorbic acid (AA, with a linear trend of concentration dependence in the range of 2–30 µM. By optimizing the conditioning parameters, a separation of 130 mV between the peak potentials for ascorbic acid AA and DA was obtained, allowing the selective detection of DA. The biosensor had a sensitivity of 1.22 ± 0.02 µA·cm−2·µM−1 and a detection limit of 0.43 µM. Biosensor performances were tested in the presence of dopamine medication, with satisfactory results in terms of recovery (96%, and relative standard deviation values below 5%. These results confirmed the applicability of the biosensors in real samples such as human urine and blood serum.

  13. Biosensor immunoassay for flumequine in broiler serum and muscle

    NARCIS (Netherlands)

    Haasnoot, W.; Gercek, H.; Cazemier, G.; Nielen, M.W.F.

    2007-01-01

    Flumequine (Flu) is one of the fluoroquinolones most frequently applied for the treatment of broilers in The Netherlands. For the detection of residues of Flu in blood serum of broilers, a biosensor immunoassay (BIA) was developed which was fast (7.5 min per sample) and specific (no cross-reactivity

  14. Nuclear track-based biosensors with the enzyme laccase

    Energy Technology Data Exchange (ETDEWEB)

    García-Arellano, H. [Departamento de Ciencias Ambientales, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Lerma, Av. de las Garzas No. 10, Col. El Panteón, Lerma de Villada, Municipio de Lerma, Estado de México, C.P. 52005 (Mexico); Fink, D., E-mail: fink@xanum.uam.mx [Division de Ciencias Naturales e Ingeneria, Universidad Autónoma Metropolitana-Cuajimalpa, Artificios 40, Col. Hidalgo, Del. Álvaro Obregón C.P. 01120, México, D.F. (Mexico); Nuclear Physics Institute, 25068 Řež (Czech Republic); Muñoz Hernández, G. [Division de Ciencias Naturales e Ingeneria, Universidad Autónoma Metropolitana-Cuajimalpa, Artificios 40, Col. Hidalgo, Del. Álvaro Obregón C.P. 01120, México, D.F. (Mexico); Departamento de Fisica, Universidad Autónoma Metropolitana-Iztapalapa, PO Box 55-534, 09340 México, D.F. (Mexico); Vacík, J.; Hnatowicz, V. [Nuclear Physics Institute, 25068 Řež (Czech Republic); Alfonta, L. [Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, PO Box 653, Beer-Sheva 84105 (Israel)

    2014-08-15

    Highlights: • We construct a biosensor using polymer foils with laccase-clad etched nuclear tracks. • We use the biosensor for quantitation of phenolic compounds. • The biosensor can detect picomolar concentrations for some phenolic compounds. - Abstract: A new type of biosensors for detecting phenolic compounds is presented here. These sensors consist of thin polymer foils with laccase-clad etched nuclear tracks. The presence of suitable phenolic compounds in the sensors leads to the formation of enzymatic reaction products in the tracks, which differ in their electrical conductivities from their precursor materials. These differences correlate with the concentrations of the phenolic compounds. Corresponding calibration curves have been established for a number of compounds. The sensors thus produced are capable to cover between 5 and 9 orders of magnitude in concentration – in the best case down to some picomoles. The sensor's detection sensitivity strongly depends on the specific compound. It is highest for caffeic acid and acid blue 74, followed by ABTS and ferulic acid.

  15. A global benchmark study using affinity-based biosensors

    Science.gov (United States)

    Rich, Rebecca L.; Papalia, Giuseppe A.; Flynn, Peter J.; Furneisen, Jamie; Quinn, John; Klein, Joshua S.; Katsamba, Phini S.; Waddell, M. Brent; Scott, Michael; Thompson, Joshua; Berlier, Judie; Corry, Schuyler; Baltzinger, Mireille; Zeder-Lutz, Gabrielle; Schoenemann, Andreas; Clabbers, Anca; Wieckowski, Sebastien; Murphy, Mary M.; Page, Phillip; Ryan, Thomas E.; Duffner, Jay; Ganguly, Tanmoy; Corbin, John; Gautam, Satyen; Anderluh, Gregor; Bavdek, Andrej; Reichmann, Dana; Yadav, Satya P.; Hommema, Eric; Pol, Ewa; Drake, Andrew; Klakamp, Scott; Chapman, Trevor; Kernaghan, Dawn; Miller, Ken; Schuman, Jason; Lindquist, Kevin; Herlihy, Kara; Murphy, Michael B.; Bohnsack, Richard; Andrien, Bruce; Brandani, Pietro; Terwey, Danny; Millican, Rohn; Darling, Ryan J.; Wang, Liann; Carter, Quincy; Dotzlaf, Joe; Lopez-Sagaseta, Jacinto; Campbell, Islay; Torreri, Paola; Hoos, Sylviane; England, Patrick; Liu, Yang; Abdiche, Yasmina; Malashock, Daniel; Pinkerton, Alanna; Wong, Melanie; Lafer, Eileen; Hinck, Cynthia; Thompson, Kevin; Primo, Carmelo Di; Joyce, Alison; Brooks, Jonathan; Torta, Federico; Bagge Hagel, Anne Birgitte; Krarup, Janus; Pass, Jesper; Ferreira, Monica; Shikov, Sergei; Mikolajczyk, Malgorzata; Abe, Yuki; Barbato, Gaetano; Giannetti, Anthony M.; Krishnamoorthy, Ganeshram; Beusink, Bianca; Satpaev, Daulet; Tsang, Tiffany; Fang, Eric; Partridge, James; Brohawn, Stephen; Horn, James; Pritsch, Otto; Obal, Gonzalo; Nilapwar, Sanjay; Busby, Ben; Gutierrez-Sanchez, Gerardo; Gupta, Ruchira Das; Canepa, Sylvie; Witte, Krista; Nikolovska-Coleska, Zaneta; Cho, Yun Hee; D’Agata, Roberta; Schlick, Kristian; Calvert, Rosy; Munoz, Eva M.; Hernaiz, Maria Jose; Bravman, Tsafir; Dines, Monica; Yang, Min-Hsiang; Puskas, Agnes; Boni, Erica; Li, Jiejin; Wear, Martin; Grinberg, Asya; Baardsnes, Jason; Dolezal, Olan; Gainey, Melicia; Anderson, Henrik; Peng, Jinlin; Lewis, Mark; Spies, Peter; Trinh, Quyhn; Bibikov, Sergei; Raymond, Jill; Yousef, Mohammed; Chandrasekaran, Vidya; Feng, Yuguo; Emerick, Anne; Mundodo, Suparna; Guimaraes, Rejane; McGirr, Katy; Li, Yue-Ji; Hughes, Heather; Mantz, Hubert; Skrabana, Rostislav; Witmer, Mark; Ballard, Joshua; Martin, Loic; Skladal, Petr; Korza, George; Laird-Offringa, Ite; Lee, Charlene S.; Khadir, Abdelkrim; Podlaski, Frank; Neuner, Phillippe; Rothacker, Julie; Rafique, Ashique; Dankbar, Nico; Kainz, Peter; Gedig, Erk; Vuyisich, Momchilo; Boozer, Christina; Ly, Nguyen; Toews, Mark; Uren, Aykut; Kalyuzhniy, Oleksandr; Lewis, Kenneth; Chomey, Eugene; Pak, Brian J.; Myszka, David G.

    2013-01-01

    To explore the variability in biosensor studies, 150 participants from 20 countries were given the same protein samples and asked to determine kinetic rate constants for the interaction. We chose a protein system that was amenable to analysis using different biosensor platforms as well as by users of different expertise levels. The two proteins (a 50-kDa Fab and a 60-kDa glutathione S-transferase [GST] antigen) form a relatively high-affinity complex, so participants needed to optimize several experimental parameters, including ligand immobilization and regeneration conditions as well as analyte concentrations and injection/dissociation times. Although most participants collected binding responses that could be fit to yield kinetic parameters, the quality of a few data sets could have been improved by optimizing the assay design. Once these outliers were removed, the average reported affinity across the remaining panel of participants was 620 pM with a standard deviation of 980 pM. These results demonstrate that when this biosensor assay was designed and executed appropriately, the reported rate constants were consistent, and independent of which protein was immobilized and which biosensor was used. PMID:19133223

  16. A novel urea conductometric biosensor based on zeolite immobilized urease.

    Science.gov (United States)

    Kirdeciler, Salih Kaan; Soy, Esin; Oztürk, Seçkin; Kucherenko, Ivan; Soldatkin, Oleksandr; Dzyadevych, Sergei; Akata, Burcu

    2011-09-15

    A new approach was developed for urea determination where a thin film of silicalite and zeolite Beta deposited onto gold electrodes of a conductometric biosensor was used to immobilize the enzyme. Biosensor responses, operational and storage stabilities were compared with results obtained from the standard membrane methods for the same measurements. For this purpose, different surface modification techniques, which are simply named as Zeolite Membrane Transducers (ZMTs) and Zeolite Coated Transducers (ZCTs) were compared with Standard Membrane Transducers (SMTs). Silicalite and zeolite Beta with Si/Al ratios 40, 50 and 60 were used to modify the conductometric electrodes and to study the biosensor responses as a function of changing zeolitic parameters. During the measurements using ZCT electrodes, there was no need for any cross-linker to immobilize urease, which allowed the direct evaluation of the effect of changing Si/Al ratio for the same type of zeolite on the biosensor responses for the first time. It was seen that silicalite and zeolite Beta added electrodes in all cases lead to increased responses with respect to SMTs. The responses obtained from ZCTs were always higher than ZMTs as well. The responses obtained from zeolite Beta modified ZMTs and ZCTs increased as a function of increasing Si/Al ratio, which might be due to the increased hydrophobicity and/or the acid strength of the medium. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Fluorescence based fiber optic and planar waveguide biosensors. A review

    Energy Technology Data Exchange (ETDEWEB)

    Benito-Peña, Elena [Department of Analytical Chemistry, Faculty of Chemistry, Complutense University, 28040 Madrid (Spain); Valdés, Mayra Granda [Department of Analytical Chemistry, Faculty of Chemistry, University of La Habana, 10400 La Habana (Cuba); Glahn-Martínez, Bettina [Department of Analytical Chemistry, Faculty of Chemistry, Complutense University, 28040 Madrid (Spain); Moreno-Bondi, Maria C., E-mail: mcmbondi@quim.ucm.es [Department of Analytical Chemistry, Faculty of Chemistry, Complutense University, 28040 Madrid (Spain)

    2016-11-02

    The application of optical biosensors, specifically those that use optical fibers and planar waveguides, has escalated throughout the years in many fields, including environmental analysis, food safety and clinical diagnosis. Fluorescence is, without doubt, the most popular transducer signal used in these devices because of its higher selectivity and sensitivity, but most of all due to its wide versatility. This paper focuses on the working principles and configurations of fluorescence-based fiber optic and planar waveguide biosensors and will review biological recognition elements, sensing schemes, as well as some major and recent applications, published in the last ten years. The main goal is to provide the reader a general overview of a field that requires the joint collaboration of researchers of many different areas, including chemistry, physics, biology, engineering, and material science. - Highlights: • Principles, configurations and fluorescence techniques using fiber optic and planar waveguide biosensors are discussed. • The biorecognition elements and sensing schemes used in fiber optic and planar waveguide platforms are reviewed. • Some major and recent applications of fiber optic and planar waveguide biosensors are introduced.

  18. Fluorescent proteins as genetically encoded FRET biosensors in life sciences.

    Science.gov (United States)

    Hochreiter, Bernhard; Garcia, Alan Pardo; Schmid, Johannes A

    2015-10-16

    Fluorescence- or Förster resonance energy transfer (FRET) is a measurable physical energy transfer phenomenon between appropriate chromophores, when they are in sufficient proximity, usually within 10 nm. This feature has made them incredibly useful tools for many biomedical studies on molecular interactions. Furthermore, this principle is increasingly exploited for the design of biosensors, where two chromophores are linked with a sensory domain controlling their distance and thus the degree of FRET. The versatility of these FRET-biosensors made it possible to assess a vast amount of biological variables in a fast and standardized manner, allowing not only high-throughput studies but also sub-cellular measurements of biological processes. In this review, we aim at giving an overview over the recent advances in genetically encoded, fluorescent-protein based FRET-biosensors, as these represent the largest and most vividly growing group of FRET-based sensors. For easy understanding, we are grouping them into four categories, depending on their molecular mechanism. These are based on: (a) cleavage; (b) conformational-change; (c) mechanical force and (d) changes in the micro-environment. We also address the many issues and considerations that come with the development of FRET-based biosensors, as well as the possibilities that are available to measure them.

  19. Fluorescent Proteins as Genetically Encoded FRET Biosensors in Life Sciences

    Directory of Open Access Journals (Sweden)

    Bernhard Hochreiter

    2015-10-01

    Full Text Available Fluorescence- or Förster resonance energy transfer (FRET is a measurable physical energy transfer phenomenon between appropriate chromophores, when they are in sufficient proximity, usually within 10 nm. This feature has made them incredibly useful tools for many biomedical studies on molecular interactions. Furthermore, this principle is increasingly exploited for the design of biosensors, where two chromophores are linked with a sensory domain controlling their distance and thus the degree of FRET. The versatility of these FRET-biosensors made it possible to assess a vast amount of biological variables in a fast and standardized manner, allowing not only high-throughput studies but also sub-cellular measurements of biological processes. In this review, we aim at giving an overview over the recent advances in genetically encoded, fluorescent-protein based FRET-biosensors, as these represent the largest and most vividly growing group of FRET-based sensors. For easy understanding, we are grouping them into four categories, depending on their molecular mechanism. These are based on: (a cleavage; (b conformational-change; (c mechanical force and (d changes in the micro-environment. We also address the many issues and considerations that come with the development of FRET-based biosensors, as well as the possibilities that are available to measure them.

  20. Beyond graphene: Electrochemical sensors and biosensors for biomarkers detection.

    Science.gov (United States)

    Bollella, Paolo; Fusco, Giovanni; Tortolini, Cristina; Sanzò, Gabriella; Favero, Gabriele; Gorton, Lo; Antiochia, Riccarda

    2017-03-15

    Graphene's success has stimulated great interest and research in the synthesis and characterization of graphene-like 2D materials, single and few-atom-thick layers of van der Waals materials, which show fascinating and technologically useful properties. This review presents an overview of recent electrochemical sensors and biosensors based on graphene and on graphene-like 2D materials for biomarkers detection. Initially, we will outline different electrochemical sensors and biosensors based on chemically derived graphene, including graphene oxide and reduced graphene oxide, properly functionalized for improved performances and we will discuss the various strategies to prepare graphene modified electrodes. Successively, we present electrochemical sensors and biosensors based on graphene-like 2D materials, such as boron nitride (BN), graphite-carbon nitride (g-C 3 N 4 ), transition metal dichalcogenides (TMDs), transition metal oxides and graphane, outlining how the new modified 2D nanomaterials will improve the electrochemical performances. Finally, we will compare the results obtained with different sensors and biosensors for the detection of important biomarkers such as glucose, hydrogen peroxide and cancer biomarkers and highlight the advantages and disadvantages of the use of graphene and graphene-like 2D materials in different sensing platforms. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. The blocking reagent optimization for the magnetoelastic biosensor

    Science.gov (United States)

    Hu, Jiajia; Chai, Yating; Horikawa, Shin; Wikle, Howard C.; Wang, Feng'en; Du, Songtao; Chin, Bryan A.; Hu, Jing

    2015-06-01

    The wireless phage-based magnetoelastic (ME) biosensor has proven to be promising for real-time detection of pathogenic bacteria on fresh produces. The ME biosensor consists of a freestanding ME resonator as the signal transducer and filamentous phage as the biomolecular-recognition element, which can specifically bind to a pathogen of interest. Due to the Joule magnetostriction effect, the biosensors can be placed into mechanical resonance when subjected to a time-varying magnetic field alternating at the sensor's resonant frequency. Upon the attachment of the target pathogen, the mass of the biosensor increases, thereby decreasing its resonant frequency. This paper presents an investigation of blocking reagents immobilization for detecting Salmonella Typhimurium on fresh food surfaces. Three different blocking reagents (BSA, SuperBlock blocking buffer, and blocker BLOTTO) were used and compared. The optical microscope was used for bacterial cells binding observation. Student t-test was used to statistically analysis the experiment results. The results shows that SuperBlock blocking buffer and blocker BLOTTO have much better blocking performance than usually used BSA.

  2. Biorecognition Ability of Polysaccharides as Piezo Quartz Biosensors

    African Journals Online (AJOL)

    Piezoquartz biosensors (PQB) which are analytical devices for recognition of biochemical interactions have recently attracted increasing interest from different researchers such as analysts, immune-chemists, medical doctors, environmentalists, etc. This is due to the advantages of PQB for having high detection sensitivity (at ...

  3. Features and application of wearable biosensors in medical care.

    Science.gov (United States)

    Ajami, Sima; Teimouri, Fotooheh

    2015-12-01

    One of the new technologies in the field of health is wearable biosensor, which provides vital signs monitoring of patients, athletes, premature infants, children, psychiatric patients, people who need long-term care, elderly, and people in impassable regions far from health and medical services. The aim of this study was to explain features and applications of wearable biosensors in medical services. This was a narrative review study that done in 2015. Search conducted with the help of libraries, books, conference proceedings, through databases of Science Direct, PubMed, Proquest, Springer, and SID (Scientific Information Database). In our searches, we employed the following keywords and their combinations; vital sign monitoring, medical smart shirt, smart clothing, wearable biosensors, physiological monitoring system, remote detection systems, remote control health, and bio-monitoring system. The preliminary search resulted in 54 articles, which published between 2002 and 2015. After a careful analysis of the content of each paper, 41 sources selected based on their relevancy. Although the use of wearable in healthcare is still in an infant stage, it could have a magic effect on healthcare. Smart wearable in the technology industry for 2015 is one that is looking to be a big and profitable market. Wearable biosensors capable of continuous vital signs monitoring and feedback to the user will be significantly effective in timely prevention, diagnosis, treatment, and control of diseases.

  4. Coded SQUID arrays

    NARCIS (Netherlands)

    Podt, M.; Weenink, J.; Weenink, J.; Flokstra, Jakob; Rogalla, Horst

    2001-01-01

    We report on a superconducting quantum interference device (SQUID) system to read out large arrays of cryogenic detectors. In order to reduce the number of SQUIDs required for an array of these detectors, we used code-division multiplexing. This simplifies the electronics because of a significantly

  5. Nanoporous-Gold-Based Electrode Morphology Libraries for Investigating Structure-Property Relationships in Nucleic Acid Based Electrochemical Biosensors.

    Science.gov (United States)

    Matharu, Zimple; Daggumati, Pallavi; Wang, Ling; Dorofeeva, Tatiana S; Li, Zidong; Seker, Erkin

    2017-04-19

    Nanoporous gold (np-Au) electrode coatings significantly enhance the performance of electrochemical nucleic acid biosensors because of their three-dimensional nanoscale network, high electrical conductivity, facile surface functionalization, and biocompatibility. Contrary to planar electrodes, the np-Au electrodes also exhibit sensitive detection in the presence of common biofouling media due to their porous structure. However, the pore size of the nanomatrix plays a critical role in dictating the extent of biomolecular capture and transport. Small pores perform better in the case of target detection in complex samples by filtering out the large nonspecific proteins. On the other hand, larger pores increase the accessibility of target nucleic acids in the nanoporous structure, enhancing the detection limits of the sensor at the expense of more interference from biofouling molecules. Here, we report a microfabricated np-Au multiple electrode array that displays a range of electrode morphologies on the same chip for identifying feature sizes that reduce the nonspecific adsorption of proteins but facilitate the permeation of target DNA molecules into the pores. We demonstrate the utility of the electrode morphology library in studying DNA functionalization and target detection in complex biological media with a special emphasis on revealing ranges of electrode morphologies that mutually enhance the limit of detection and biofouling resilience. We expect this technique to assist in the development of high-performance biosensors for point-of-care diagnostics and facilitate studies on the electrode structure-property relationships in potential applications ranging from neural electrodes to catalysts.

  6. Microfabricated ion trap array

    Science.gov (United States)

    Blain, Matthew G [Albuquerque, NM; Fleming, James G [Albuquerque, NM

    2006-12-26

    A microfabricated ion trap array, comprising a plurality of ion traps having an inner radius of order one micron, can be fabricated using surface micromachining techniques and materials known to the integrated circuits manufacturing and microelectromechanical systems industries. Micromachining methods enable batch fabrication, reduced manufacturing costs, dimensional and positional precision, and monolithic integration of massive arrays of ion traps with microscale ion generation and detection devices. Massive arraying enables the microscale ion traps to retain the resolution, sensitivity, and mass range advantages necessary for high chemical selectivity. The reduced electrode voltage enables integration of the microfabricated ion trap array with on-chip circuit-based rf operation and detection electronics (i.e., cell phone electronics). Therefore, the full performance advantages of the microfabricated ion trap array can be realized in truly field portable, handheld microanalysis systems.

  7. Novel trends in affinity biosensors: current challenges and perspectives

    Science.gov (United States)

    Arugula, Mary A.; Simonian, Aleksandr

    2014-03-01

    Molecular biorecognition processes facilitate physical and biochemical interactions between molecules in all crucial metabolic pathways. Perhaps the target analyte and the biorecognition element interactions have the most impactful use in biosensing applications. Traditional analytical sensing systems offer excellent biorecognition elements with the ability to detect and determine the presence of analytes. High affinity antibodies and DNA play an important role in the development of affinity biosensors based on electrochemical, optical and mass sensitive approaches. Advancements in this area routinely employ labels, label free, nanoparticles, multifunctional matrices, carbon nanotubes and other methods to meet the requirements of its own application. However, despite increasing affinity ceilings for conventional biosensors, the field draws back in meeting specifically important demands, such as long-term stability, ultrasensitivity, rapid detection, extreme selectivity, strong biological base, calibration, in vivo measurements, regeneration, satisfactory performance and ease of production. Nevertheless, recent efforts through this line have produced novel high-tech nanosensing systems such as ‘aptamers’ and ‘phages’ which exhibit high-throughput sensing. Aptamers and phages are powerful tools that excel over antibodies in sensibility, stability, multi-detection, in vivo measurements and regeneration. Phages are superior in stability, screening for affinity-based target molecules ranging from small to proteins and even cells, and easy production. In this review, we focus mainly on recent developments in affinity-based biosensors such as immunosensors, DNA sensors, emphasizing aptasensors and phage-based biosensors basing on novel electrochemical, optical and mass sensitive detection techniques. We also address enzyme inhibition-based biosensors and the current problems associated with the above sensors and their future perspectives.

  8. The application of FRET biosensors to visualize Src activation

    Science.gov (United States)

    Wang, Yingxiao; Lu, Shaoying

    2008-02-01

    Src kinase, the first tyrosine kinase discovered, has been shown to play critical roles in a variety of cellular processes, including cell motility/migration, mechanotranduction, and cancer development. Based on fluorescent resonance energy transfer (FRET), we have developed and characterized a genetically encoded single-molecule Src biosensor, which enables the imaging and quantification of temporal-spatial activation of Src in live cells. In this paper, we summarize the application of this biosensor to study a variety of cellular functions. First, we introduced a local mechanical stimulation by applying laser-tweezer-induced traction on fibronectin-coated beads adhered to the cells. Using a membrane-anchored Src biosensor, we observed a wave propagation of Src activation in a direction opposite to the applied force. This Src reporter was also applied to visualize the interplays between cell-cell and cell-ECM adhesions. The results indicate that integrin-ligation can induce Src activation around cell-cell junctions and cause the disruption of adherens junctions. Lastly, the flow-induced dynamic Src activation at subcellular levels was visualized by the FRET biosensor simultaneously with actin-fused mCherry, a red fluorescence protein. Our results indicate that shear stress induced a moderate up-regulation of Src activation in the whole cell, but a significant translocation of active Src from perinuclear regions toward cell periphery. In summary, our novel Src biosensor has made it possible to monitor key signaling transduction cascades involving Src in live cells with temporal-spatial characterization in mechanobiology.

  9. Development of an immunoFET biosensor for the detection of biotinylated PCR product

    Directory of Open Access Journals (Sweden)

    Wannaporn Muangsuwan

    2016-10-01

    Full Text Available ImmunoFET (IMFET biosensor is a simple platform for the detection of biotinylated products of polymerase chain reaction (PCR. Construction of the IMFET biosensor started with adsorption of 1.5 mg/mL of protein A (PA onto the insulated gate surface of ISFET for 90 min. Next, the immobilized 1/500 dilution of anti-biotin antibody was adsorbed onto the PA layer for 60 min. The IMFET biosensor was subsequently ready for detection of the biotinylated amplicon. The IMFET biosensor showed highly specific binding to the biotinylated PCR product of the phaE gene of Haloquadratum walsbyi DSM 16854. The phaE gene is a biomarker of polyhydroxyalkanoate (PHA producers that contain PHA synthase class III. The lowest amount of DNA template of H. walsbyi DSM 16854 that the IMFET biosensor could detect was 125 fg. The IMFET biosensor has a lower amount of detection compared with a DNA lateral flow biosensor from our previous study. The degree of linearity of the biosensor signal was influenced by the concentration of the biotinylated amplicon. The IMFET biosensor also has a short response time (approximately 30 times to detect the phaE amplicon compared to an agarose gel electrophoresis. The IMFET biosensor is a promising tool for the detection of the biotinylated PCR product, and it can be integrated into a micro total analysis system (μTAS.

  10. Bioluminescent bacteria: lux genes as environmental biosensors Bactérias bioluminescentes: os genes lux como biosensores ambientais

    OpenAIRE

    Vânia da Silva Nunes-Halldorson; Norma Letícia Duran

    2003-01-01

    Bioluminescent bacteria are widespread in natural environments. Over the years, many researchers have been studying the physiology, biochemistry and genetic control of bacterial bioluminescence. These discoveries have revolutionized the area of Environmental Microbiology through the use of luminescent genes as biosensors for environmental studies. This paper will review the chronology of scientific discoveries on bacterial bioluminescence and the current applications of bioluminescence in env...

  11. Sensor array signal processing

    CERN Document Server

    Naidu, Prabhakar S

    2009-01-01

    Chapter One: An Overview of Wavefields 1.1 Types of Wavefields and the Governing Equations 1.2 Wavefield in open space 1.3 Wavefield in bounded space 1.4 Stochastic wavefield 1.5 Multipath propagation 1.6 Propagation through random medium 1.7 ExercisesChapter Two: Sensor Array Systems 2.1 Uniform linear array (ULA) 2.2 Planar array 2.3 Distributed sensor array 2.4 Broadband sensor array 2.5 Source and sensor arrays 2.6 Multi-component sensor array2.7 ExercisesChapter Three: Frequency Wavenumber Processing 3.1 Digital filters in the w-k domain 3.2 Mapping of 1D into 2D filters 3.3 Multichannel Wiener filters 3.4 Wiener filters for ULA and UCA 3.5 Predictive noise cancellation 3.6 Exercises Chapter Four: Source Localization: Frequency Wavenumber Spectrum4.1 Frequency wavenumber spectrum 4.2 Beamformation 4.3 Capon's w-k spectrum 4.4 Maximum entropy w-k spectrum 4.5 Doppler-Azimuth Processing4.6 ExercisesChapter Five: Source Localization: Subspace Methods 5.1 Subspace methods (Narrowband) 5.2 Subspace methods (B...

  12. A submillimeter VLBI array

    Energy Technology Data Exchange (ETDEWEB)

    Weintroub, Jonathan [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA (United States)], E-mail: jweintroub@cfa.harvard.edu

    2008-10-15

    A VLBI array operating at {lambda} 1.3 mm and 0.8 mm is being designed using existing submillimeter telescopes as ad-hoc stations. Initial three station {lambda} = 1.3 mm observations of SgrA* and other AGN have produced remarkable results, which are reported by Doeleman elsewhere in this proceedings. Future observations are planned with an enhanced array which has longer baselines, more stations, and greater sensitivity. At {lambda} = 0.8 mm and on the long baselines, the array will have about a 20 {mu}as angular resolution which equals the diameter of the event horizon of the massive black hole in SgrA*. Candidate single dish facilities include the Arizona Radio Observatory Submillimeter Telescope (SMT) in Arizona, the Caltech Submillimeter Observatory (CSO) and the James Clerk Maxwell telescope (JCMT) in Hawaii, the Large Millimeter Telescope (LMT) in Mexico, ASTE and APEX in Chile, and the IRAM 30 m in Spain; interferometers include the Submillimeter Array (SMA) in Hawaii, the Combined Array for Research in Millimeter-wave Astronomy (CARMA) in California, IRAM PdB Interferometer in France, and the Atacama Large Millimeter Array (ALMA) in Chile. I will discuss the techniques we have developed for phasing interferometric arrays to act as single VLBI station. A strategy for detection of short (10s) time-scale source variability using VLBI closure phase will be described.

  13. Fabrication of layer-by-layer deposited multilayer films containing DNA and gold nanoparticle for norepinephrine biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Lu Liping; Wang Shuqing; Lin Xiangqin

    2004-08-16

    The present work describes the preparation and characterization of an electrodeposited DNA membrane doped with gold nanoparticles for the design of biosensors. The gold nanoparticles were deposited on the surface of DNA layer to build a hybrid device of nanoscale electrode array. The gold nanoparticles-doped DNA composite electrode was characterized by atomic force microscopy, scanning electron microscope, and electrochemistry involving electrochemical impedance spectroscopy. This electrode was successfully used for selective determination of norepinephrine (NE) in the presence of ascorbic acid (AA). The reversibility of the electrode oxidation reaction of NE is significantly improved in result of 200 mV negative shift of the voltammetric peak potential on the electrode, and a large increase in the peak current. A detection limit of 5 nM NE is obtained by using DPV in static solutions. The co-existence of a large excess of AA does not interfere with the detection. This electrode shows excellent sensitivity, good selectivity and antifouling properties.

  14. Multi-particle trapping and manipulation by a high-frequency array transducer

    Science.gov (United States)

    Yoon, Changhan; Kang, Bong Jin; Lee, Changyang; Kim, Hyung Ham; Shung, K. Kirk

    2014-11-01

    We report the multiple micro-particle trapping and manipulation by a single-beam acoustic tweezer using a high-frequency array transducer. A single acoustic beam generated by a 30 MHz ultrasonic linear array transducer can entrap and transport multiple micro-particles located at the main lobe and the grating lobes. The distance between trapped particles can be adjusted by changing the transmit arrangement of array-based acoustic tweezers and subsequently the location of grating lobes. The experiment results showed that the proposed method can trap and manipulate multiple particles within a range of hundreds of micrometers. Due to its simplicity and low acoustic power, which is critical to protect cells from any thermal and mechanical damages, the technique may be used for transportation of cells in cell biology, biosensors, and tissue engineering.

  15. Piezoelectric transducer array microspeaker

    KAUST Repository

    Carreno, Armando Arpys Arevalo

    2016-12-19

    In this paper we present the fabrication and characterization of a piezoelectric micro-speaker. The speaker is an array of micro-machined piezoelectric membranes, fabricated on silicon wafer using advanced micro-machining techniques. Each array contains 2n piezoelectric transducer membranes, where “n” is the bit number. Every element of the array has a circular shape structure. The membrane is made out four layers: 300nm of platinum for the bottom electrode, 250nm or lead zirconate titanate (PZT), a top electrode of 300nm and a structural layer of 50

  16. Fluorescent Biosensors Based on Single-Molecule Counting.

    Science.gov (United States)

    Ma, Fei; Li, Ying; Tang, Bo; Zhang, Chun-Yang

    2016-09-20

    Biosensors for highly sensitive, selective, and rapid quantification of specific biomolecules make great contributions to biomedical research, especially molecular diagnostics. However, conventional methods for biomolecular assays often suffer from insufficient sensitivity and poor specificity. In some case (e.g., early disease diagnostics), the concentration of target biomolecules is too low to be detected by these routine approaches, and cumbersome procedures are needed to improve the detection sensitivity. Therefore, there is an urgent need for rapid and ultrasensitive analytical tools. In this respect, single-molecule fluorescence approaches may well satisfy the requirement and hold promising potential for the development of ultrasensitive biosensors. Encouragingly, owing to the advances in single-molecule microscopy and spectroscopy over past decades, the detection of single fluorescent molecule comes true, greatly boosting the development of highly sensitive biosensors. By in vitro/in vivo labeling of target biomolecules with proper fluorescent tags, the quantification of certain biomolecule at the single-molecule level is achieved. In comparison with conventional ensemble measurements, single-molecule detection-based analytical methods possess the advantages of ultrahigh sensitivity, good selectivity, rapid analysis time, and low sample consumption. Consequently, single-molecule detection may be potentially employed as an ideal analytical approach to quantify low-abundant biomolecules with rapidity and simplicity. In this Account, we will summarize our efforts for developing a series of ultrasensitive biosensors based on single-molecule counting. Single-molecule counting is a member of single-molecule detection technologies and may be used as a very simple and ultrasensitive method to quantify target molecules by simply counting the individual fluorescent bursts. In the fluorescent sensors, the signals of target biomolecules may be translated to the

  17. Development of mercury (II) ion biosensors based on mercury-specific oligonucleotide probes.

    Science.gov (United States)

    Li, Lanying; Wen, Yanli; Xu, Li; Xu, Qin; Song, Shiping; Zuo, Xiaolei; Yan, Juan; Zhang, Weijia; Liu, Gang

    2016-01-15

    Mercury (II) ion (Hg(2+)) contamination can be accumulated along the food chain and cause serious threat to the public health. Plenty of research effort thus has been devoted to the development of fast, sensitive and selective biosensors for monitoring Hg(2+). Thymine was demonstrated to specifically combine with Hg(2+) and form a thymine-Hg(2+)-thymine (T-Hg(2+)-T) structure, with binding constant even higher than T-A Watson-Crick pair in DNA duplex. Recently, various novel Hg(2+) biosensors have been developed based on T-rich Mercury-Specific Oligonucleotide (MSO) probes, and exhibited advanced selectivity and excellent sensitivity for Hg(2+) detection. In this review, we explained recent development of MSO-based Hg(2+) biosensors mainly in 3 groups: fluorescent biosensors, colorimetric biosensors and electrochemical biosensors. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Enzyme Biosensors for Biomedical Applications: Strategies for Safeguarding Analytical Performances in Biological Fluids

    Science.gov (United States)

    Rocchitta, Gaia; Spanu, Angela; Babudieri, Sergio; Latte, Gavinella; Madeddu, Giordano; Galleri, Grazia; Nuvoli, Susanna; Bagella, Paola; Demartis, Maria Ilaria; Fiore, Vito; Manetti, Roberto; Serra, Pier Andrea

    2016-01-01

    Enzyme-based chemical biosensors are based on biological recognition. In order to operate, the enzymes must be available to catalyze a specific biochemical reaction and be stable under the normal operating conditions of the biosensor. Design of biosensors is based on knowledge about the target analyte, as well as the complexity of the matrix in which the analyte has to be quantified. This article reviews the problems resulting from the interaction of enzyme-based amperometric biosensors with complex biological matrices containing the target analyte(s). One of the most challenging disadvantages of amperometric enzyme-based biosensor detection is signal reduction from fouling agents and interference from chemicals present in the sample matrix. This article, therefore, investigates the principles of functioning of enzymatic biosensors, their analytical performance over time and the strategies used to optimize their performance. Moreover, the composition of biological fluids as a function of their interaction with biosensing will be presented. PMID:27249001

  19. Design of Infrasonic Arrays

    National Research Council Canada - National Science Library

    Blandford, Robert

    1997-01-01

    The Infrasound Experts Group of the Geneva Conference on Disarmament Ad Hoc Committee on a Nuclear Test Ban has recommended an infrasound array design consisting of four elements, with three elements...

  20. Expandable LED array interconnect

    Science.gov (United States)

    Yuan, Thomas Cheng-Hsin; Keller, Bernd

    2011-03-01

    A light emitting device that can function as an array element in an expandable array of such devices. The light emitting device comprises a substrate that has a top surface and a plurality of edges. Input and output terminals are mounted to the top surface of the substrate. Both terminals comprise a plurality of contact pads disposed proximate to the edges of the substrate, allowing for easy access to both terminals from multiple edges of the substrate. A lighting element is mounted to the top surface of the substrate. The lighting element is connected between the input and output terminals. The contact pads provide multiple access points to the terminals which allow for greater flexibility in design when the devices are used as array elements in an expandable array.

  1. The retinal readout array

    Science.gov (United States)

    Litke, Alan; Meister, Markus

    1991-12-01

    We have fabricated and tested a set of electrode arrays for the study of information processing in the retina. Live retinal tissue is placed on top of an array with the output neurons directly above the electrodes. Absorption of light by the photoreceptor cells leads to the generation of electrical pulses in the output neurons. These pulses, in turn, produce voltage signals on the electrodes which are recorded simultaneously by external electronics. Thus, for the first time, the spatial and temporal firing patterns of a large set of retinal nerve cells can be studied. The arrays are fabricated on quartz wafers coated with a transparent conducting layer of indium tin oxide. The electrodes are electroplated with platinum black. Polyimide is used for insulation. The fabrication and properties of these arrays, and illustrative results with retinal tissue, are described.

  2. Nano- and microsized zeolites as a perspective material for potentiometric biosensors creation

    OpenAIRE

    Soldatkin, Oleksandr O; Shelyakina, Margaryta K; Arkhypova, Valentyna N; Soy, Esin; Kirdeciler, Salih Kaan; Ozansoy Kasap, Berna; Lagarde, Florence; Jaffrezic-Renault, Nicole; Akata Kur?, Burcu; Soldatkin, Alexei P; Dzyadevych, Sergei V

    2015-01-01

    A number of potentiometric biosensors based on coimmobilization of enzymes with different types of zeolite on pH-ion-sensitive field-effect transistor (ISFET) have been developed. Their working characteristics have been determined and compared. It was shown that clinoptilolite and zeolite Beta polymorph A (BEA) are more promising for creating biosensors than zeolite A. Changing the concentration of zeolite BEA in membranes, it is possible to extend the biosensor linear measurement range. The ...

  3. Applications of commercial biosensors in clinical, food, environmental, and biothreat/biowarfare analyses.

    Science.gov (United States)

    Bahadır, Elif Burcu; Sezgintürk, Mustafa Kemal

    2015-06-01

    The lack of specific, low-cost, rapid, sensitive, and easy detection of biomolecules has resulted in the development of biosensor technology. Innovations in biosensor technology have enabled many biosensors to be commercialized and have enabled biomolecules to be detected onsite. Moreover, the emerging technologies of lab-on-a-chip microdevices and nanosensors offer opportunities for the development of new biosensors with much better performance. Biosensors were first introduced into the laboratory by Clark and Lyons. They developed the first glucose biosensor for laboratory conditions. Then in 1973, a glucose biosensor was commercialized by Yellow Springs Instruments. The commercial biosensors have small size and simple construction and they are ideal for point-of-care biosensing. In addition to glucose, a wide variety of metabolites such as lactate, cholesterol, and creatinine can be detected by using commercial biosensors. Like the glucose biosensors (tests) other commercial tests such as for pregnancy (hCG), Escherichia coli O157, influenza A and B viruses, Helicobacter pylori, human immunodeficiency virus, tuberculosis, and malaria have achieved success. Apart from their use in clinical analysis, commercial tests are also used in environmental (such as biochemical oxygen demand, nitrate, pesticide), food (such as glutamate, glutamine, sucrose, lactose, alcohol, ascorbic acid), and biothreat/biowarfare (Bacillus anthracis, Salmonella, Botulinum toxin) analysis. In this review, commercial biosensors in clinical, environmental, food, and biowarfare analysis are summarized and the commercial biosensors are compared in terms of their important characteristics. This is the first review in which all the commercially available tests are compiled together. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Nanocomposite/Hybrid Materials of Electroactive Polymers With Inorganic Oxides for Biosensor Applications

    National Research Council Canada - National Science Library

    Wei, Yen

    2001-01-01

    As proposed, we have successfully synthesized new electroactive and electronically conductive polyaniline polymethacrylate-silica nanocomposites and fabricated biosensor devices, aimed for detecting...

  5. Engineering the bioelectrochemical interface using functional nanomaterials and microchip technique toward sensitive and portable electrochemical biosensors.

    Science.gov (United States)

    Jia, Xiaofang; Dong, Shaojun; Wang, Erkang

    2016-02-15

    Electrochemical biosensors have played active roles at the forefront of bioanalysis because they have the potential to achieve sensitive, specific and low-cost detection of biomolecules and many others. Engineering the electrochemical sensing interface with functional nanomaterials leads to novel electrochemical biosensors with improved performances in terms of sensitivity, selectivity, stability and simplicity. Functional nanomaterials possess good conductivity, catalytic activity, biocompatibility and high surface area. Coupled with bio-recognition elements, these features can amplify signal transduction and biorecognition events, resulting in highly sensitive biosensing. Additionally, microfluidic electrochemical biosensors have attracted considerable attention on account of their miniature, portable and low-cost systems as well as high fabrication throughput and ease of scaleup. For example, electrochemical enzymetic biosensors and aptamer biosensors (aptasensors) based on the integrated microchip can be used for portable point-of-care diagnostics and environmental monitoring. This review is a summary of our recent progress in the field of electrochemical biosensors, including aptasensors, cytosensors, enzymatic biosensors and self-powered biosensors based on biofuel cells. We presented the advantages that functional nanomaterials and microfluidic chip technology bring to the electrochemical biosensors, together with future prospects and possible challenges. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Immobilization techniques in the fabrication of nanomaterial-based electrochemical biosensors: a review.

    Science.gov (United States)

    Putzbach, William; Ronkainen, Niina J

    2013-04-11

    The evolution of 1st to 3rd generation electrochemical biosensors reflects a simplification and enhancement of the transduction pathway. However, in recent years, modification of the transducer with nanomaterials has become increasingly studied and imparts many advantages. The sensitivity and overall performance of enzymatic biosensors has improved tremendously as a result of incorporating nanomaterials in their fabrication. Given the unique and favorable qualities of gold nanoparticles, graphene and carbon nanotubes as applied to electrochemical biosensors, a consolidated survey of the different methods of nanomaterial immobilization on transducer surfaces and enzyme immobilization on these species is beneficial and timely. This review encompasses modification of enzymatic biosensors with gold nanoparticles, carbon nanotubes, and graphene.

  7. Interfacial Structures and Properties of Organic Materials for Biosensors: An Overview

    Directory of Open Access Journals (Sweden)

    Yan Zhou

    2012-11-01

    Full Text Available The capabilities of biosensors for bio-environmental monitoring have profound influences on medical, pharmaceutical, and environmental applications. This paper provides an overview on the background and applications of the state-of-the-art biosensors. Different types of biosensors are summarized and sensing mechanisms are discussed. A review of organic materials used in biosensors is given. Specifically, this review focuses on self-assembled monolayers (SAM due to their high sensitivity and high versatility. The kinetics, chemistry, and the immobilization strategies of biomolecules are discussed. Other representative organic materials, such as graphene, carbon nanotubes (CNTs, and conductive polymers are also introduced in this review.

  8. Direct electron transfer: an approach for electrochemical biosensors with higher selectivity and sensitivity

    Directory of Open Access Journals (Sweden)

    Freire Renato S.

    2003-01-01

    Full Text Available The most promising approach for the development of electrochemical biosensors is to establish a direct electrical communication between the biomolecules and the electrode surface. This review focuses on advances, directions and strategies in the development of third generation electrochemical biosensors. Subjects covered include a brief description of the fundamentals of the electron transfer phenomenon and amperometric biosensor development (different types and new oriented enzyme immobilization techniques. Special attention is given to different redox enzymes and proteins capable of electrocatalyzing reactions via direct electron transfer. The analytical applications and future trends for third generation biosensors are also presented and discussed.

  9. The Development of Reproducible and Selective Uric Acid Biosensor by Using Electrodeposited Polytyramine as Matrix Polymer

    Directory of Open Access Journals (Sweden)

    Manihar Situmorang

    2017-11-01

    Full Text Available A versatile method for the construction of reproducible and high selective uric acid biosensor is explained. Electrodeposited polytyramine is used as biosensor matrixes due to its compatibility to immobilize enzyme uric oxidase in the membrane electrode. The precise control over the charge passed during deposition of polytyramine allows concomitant control over the thickness of the deposited enzyme layers onto the surface of the electrode. The uric acid biosensor showed a sensitive response to uric acid with a linear calibration curve lies in the concentration range of 0.1–2.5 mM, slope 0.066 µA mM-1, and the limit detection was 0.01 mM uric acid (S/N = 3. The biosensor shown excellent reproducibility, the variation between response curves for uric acid lies between RSD 1% at low concentrations and up to RSD 6% at saturation concentration. Uric acid biosensor is free from normal interference. The biosensor showed good stability and to be applicable to determine uric acid in real samples. Analysis of uric acid in the reference standard serum samples by the biosensor method are all agreed with the real value from supplier. Standard samples were also analyzed independently by two methods: the present biosensor method and the standard UV-Vis spectrophotometry method, gave a correlation coefficient of 0.994. This result confirms that the biosensor method meets the rigid demands expected for uric acid in real samples.

  10. Investigation of Defect Free SiGe Nanowire Biosensor Modified by Dual Plasma Technology.

    Science.gov (United States)

    Chen, Yi-Ming; Chang, Tai-Yuan; Lai, Chiung-Hui; Chang, Kow-Ming; Chen, Chu-Feng; Lai, Yi-Lung; Whang, Allen Jong-Woei; Lai, Hui-Lung; Hsu, Terng-Ren

    2016-02-01

    Semiconductor nanowires (NWs) have been extensively investigated and discussed in various fields due to their unique physical properties. In this paper, we successfully produce SiGe NWs biosensor by VLSI technology. We propose the dual plasma technology with CF4 plasma pre-treatment and N2 plasma post-treatment for repairs of defects as well as optimization of SiGe NWs biosensor. The results indicate that sensitivity (S) of the biosensor with dual plasma technology has significantly improved at least 32.8%, suitable for producing industrial SiGe NWs biosensor in the future.

  11. Toxicity assessment using different bioassays and microbial biosensors.

    Science.gov (United States)

    Hassan, Sedky H A; Van Ginkel, Steven W; Hussein, Mohamed A M; Abskharon, Romany; Oh, Sang-Eun

    2016-01-01

    Toxicity assessment of water streams, wastewater, and contaminated sediments, is a very important part of environmental pollution monitoring. Evaluation of biological effects using a rapid, sensitive and cost effective method can indicate specific information on ecotoxicity assessment. Recently, different biological assays for toxicity assessment based on higher and lower organisms such as fish, invertebrates, plants and algal cells, and microbial bioassays have been used. This review focuses on microbial biosensors as an analytical device for environmental, food, and biomedical applications. Different techniques which are commonly used in microbial biosensing include amperometry, potentiometry, conductometry, voltammetry, microbial fuel cells, fluorescence, bioluminescence, and colorimetry. Examples of the use of different microbial biosensors in assessing a variety of environments are summarized. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Antibody Immobilization on Conductive Polymer Coated Nonwoven Fibers for Biosensors

    Directory of Open Access Journals (Sweden)

    Shannon K. MCGRAW

    2011-12-01

    Full Text Available This work is being performed to develop rapid and novel electrochemical biosensors for foodborne pathogen detection. This research focuses on electrotextile platforms to perform both capture and sensing functions in a single component. The biosensor uses nonwoven fiber membranes coated with conductive polymer and functionalized with antibodies for biological capture. This study examines three methods for antibody immobilization: passive adsorption, glutaraldehyde cross-linking, and EDC/Sulfo-NHS cross-linking. Antibodies are immobilized onto the conductive fiber surfaces for the specific capture of a target pathogen. The immobilization and capture capabilities of each method are analyzed through the use of two different fluorescent reporters: FITC and PicoGreen DNA stain. Fluorescence is measured using a fluorescent plate reader and then imaged using a fluorescent microscope. The effect of a blocking agent on specificity is also evaluated. It is found that glutaraldehyde with blocking is the best immobilization method with PicoGreen being the best fluorescent reporter.

  13. Electrochemical Biosensors Based on Nanostructured Carbon Black: A Review

    Directory of Open Access Journals (Sweden)

    Tiago Almeida Silva

    2017-01-01

    Full Text Available Carbon black (CB is a nanostructured material widely used in several industrial processes. This nanomaterial features a set of remarkable properties including high surface area, high thermal and electrical conductivity, and very low cost. Several studies have explored the applicability of CB in electrochemical fields. Recent data showed that modified electrodes based on CB present fast charge transfer and high electroactive surface area, comparable to carbon nanotubes and graphene. These characteristics make CB a promising candidate for the design of electrochemical sensors and biosensors. In this review, we highlight recent advances in the use of CB as a template for biosensing. As will be seen, we discuss the main biosensing strategies adopted for enzymatic catalysis for several target analytes, such as glucose, hydrogen peroxide, and environmental contaminants. Recent applications of CB on DNA-based biosensors are also described. Finally, future challenges and trends of CB use in bioanalytical chemistry are discussed.

  14. A magnetic biosensor system for detection of E. coli

    KAUST Repository

    Li, Fuquan

    2013-07-01

    This work describes a device for detecting E. coli bacteria by manipulating superparamagnetic beads to a sensing area and immobilizing them in a trapping well. The trapping well replaces the biochemical immobilization layer, which is commonly used in magnetic biosensor systems. A concept exploiting the volume difference between bare magnetic beads and magnetic bead-bioanalyte compounds is utilized to detect E. coli bacteria. Trapped beads are detected by the help of a tunnel magneto-resistive sensor. Frequency modulation is employed, in order to increase the signal-to-noise ratio, enabling the detection of individual superparamagnetic beads of 2.8 μm in diameter. Replacing the biochemical immobilization layer by the trapping well greatly simplifies the detection process. After applying the mixture of E. coli and magnetic beads to the biosensor system, bacteria detection is achieved in a single step, within a few minutes. © 2013 IEEE.

  15. Surface grafted polymer brushes: potential applications in dengue biosensors

    Energy Technology Data Exchange (ETDEWEB)

    Baratela, Fernando Jose Costa; Higa, Olga Zazuco, E-mail: ozahiga@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Faria, Henrique Antonio Mendonca de; Queiroz, Alvaro Antonio Alencar de, E-mail: alencar@unifei.edu.br [Universidade Federal de Itajuba (UNIFEI), Itajuba, MG (Brazil). Instituto de Fisica e Quimica

    2013-07-01

    A polymer brush membrane-based ultrasensitive biosensor for dengue diagnosis was constructed using poly(hydroxyethyl methacrylate) (PHEMA) brushes immobilized onto low density polyethylene (LDPE) films. LDPE surface films were initially modified by Ar{sup +} ion irradiation to activate the polymer surface. Subsequently, graft polymerization of 2-hydroxyethyl methacrylate onto the activated LDPE surface was carried out under aqueous conditions to create patterned polymer brushes of PHEMA. The grafted PHEMA brushes were characterized by Fourier transform-infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and contact angle analysis. The SEM observations showed that selective surface activation with Ar+ implantation and graft polymerization on the selectively activated surface had occurred. The PHEMA brushes were electrically characterized in the presence of concentrations of human immunoglobulin (IgG). The proposed amperometric biosensor was successfully used for determination of IgG in physiologic samples with excellent responses. (author)

  16. Characterization of an hrp-aox-polyaniline-graphite composite biosensor

    Directory of Open Access Journals (Sweden)

    Ana Carolina O. Santana

    2014-12-01

    Full Text Available Nowadays there is an increasing demand to develop new and robust biosensors in order to detect low concentrations of different chemicals, in practical and small devices, giving fast and confident responses. The electrode material was a polyaniline-graphite-epoxy composite (PANI/GEC. Alcohol oxidase (AOX and horseradish peroxidase (HRP enzymes were immobilized and the responses were tested by cyclic voltammetry. The conductivities for the composites of graphite/polyaniline were determined. The cyclic voltammograms allowed detecting ethanol in pure diluted samples in a range from 0.036 to 2.62 M. Differential scanning calorimetry (DSC and thermal gravimetry analysis (TGA were used to verify the thermal characteristics of the composites (0, 10, 20, 30 and 100 % of graphite. The Imax value was determined for the dual enzyme biosensor (0.0724 mA, and the Kapp m  as 1.41 M (with R2 =0.9912.

  17. Biosensors based on GaN nanoring optical cavities

    Science.gov (United States)

    Kouno, Tetsuya; Takeshima, Hoshi; Kishino, Katsumi; Sakai, Masaru; Hara, Kazuhiko

    2016-05-01

    Biosensors based on GaN nanoring optical cavities were demonstrated using room-temperature photoluminescence measurements. The outer diameter, height, and thickness of the GaN nanorings were approximately 750-800, 900, and 130-180 nm, respectively. The nanorings functioned as whispering-gallery-mode (WGM)-type optical cavities and exhibited sharp resonant peaks like lasing actions. The evanescent component of the WGM was strongly affected by the refractive index of the ambient environment, the type of liquid, and the sucrose concentration of the analyzed solution, resulting in shifts of the resonant wavelengths. The results indicate that the GaN nanorings can potentially be used in sugar sensors of the biosensors.

  18. Biosensors based on graphene oxide and its biomedical application.

    Science.gov (United States)

    Lee, Jieon; Kim, Jungho; Kim, Seongchan; Min, Dal-Hee

    2016-10-01

    Graphene oxide (GO) is one of the most attributed materials for opening new possibilities in the development of next generation biosensors. Due to the coexistence of hydrophobic domain from pristine graphite structure and hydrophilic oxygen containing functional groups, GO exhibits good water dispersibility, biocompatibility, and high affinity for specific biomolecules as well as properties of graphene itself partly depending on preparation methods. These properties of GO provided a lot of opportunities for the development of novel biological sensing platforms, including biosensors based on fluorescence resonance energy transfer (FRET), laser desorption/ionization mass spectrometry (LDI-MS), surface-enhanced Raman spectroscopy (SERS), and electrochemical detection. In this review, we classify GO-based biological sensors developed so far by their signal generation strategy and provide the comprehensive overview of them. In addition, we offer insights into how the GO attributed in each sensor system and how they improved the sensing performance. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Graphene-Based Materials for Biosensors: A Review

    Science.gov (United States)

    Suvarnaphaet, Phitsini; Pechprasarn, Suejit

    2017-01-01

    The advantages conferred by the physical, optical and electrochemical properties of graphene-based nanomaterials have contributed to the current variety of ultrasensitive and selective biosensor devices. In this review, we present the points of view on the intrinsic properties of graphene and its surface engineering concerned with the transduction mechanisms in biosensing applications. We explain practical synthesis techniques along with prospective properties of the graphene-based materials, which include the pristine graphene and functionalized graphene (i.e., graphene oxide (GO), reduced graphene oxide (RGO) and graphene quantum dot (GQD). The biosensing mechanisms based on the utilization of the charge interactions with biomolecules and/or nanoparticle interactions and sensing platforms are also discussed, and the importance of surface functionalization in recent up-to-date biosensors for biological and medical applications. PMID:28934118

  20. Silaffin peptides as a novel signal enhancer for gravimetric biosensors.

    Science.gov (United States)

    Nam, Dong Hyun; Lee, Jeong-O; Sang, Byoung-In; Won, Keehoon; Kim, Yong Hwan

    2013-05-01

    Application of biomimetic silica formation to gravimetric biosensors has been conducted for the first time. As a model system, silaffin peptides fused with green fluorescent protein (GFP) were immobilized on a gold quartz crystal resonator for quartz crystal microbalances using a self-assembled monolayer. When a solution of silicic acid was supplied, silica particles were successfully deposited on the Au surface, resulting in a significant change in resonance frequency (i.e., signal enhancement) with the silaffin-GFP. However, frequency was not altered when bare GFP was used as a control. The novel peptide enhancer is advantageous because it can be readily and quantitatively conjugated with sensing proteins using recombinant DNA technology. As a proof of concept, this study shows that the silaffin domains can be employed as a novel and efficient biomolecular signal enhancer for gravimetric biosensors.

  1. Nanobioengineering and Characterization of a Novel Estrogen Receptor Biosensor

    Directory of Open Access Journals (Sweden)

    Wilfrid Boireau

    2008-07-01

    Full Text Available We constructed an original supramolecular assembly on a surface of sensor composed of an innovative combination of an engineered cytochrome b5 and a modified nucleic acid bound to a synthetic lipid hemimembrane. The protein/DNA block, called (PDNA 2, was synthesized and purified before its immobilization onto a hybrid bilayer reconstituted on a gold surface. Surface plasmon resonance (SPR and atomic force microscopy (AFM were engaged in parallel on the same substrates in order to better understand dynamic events that occur at the surface of the biosensor. Good correlations were obtained in terms of specificity and reversibility. These findings allow us to present a first application of such biosensor in the study of the interaction processes between nuclear receptor and DNA.

  2. Bacillus subtilis biosensor engineered to assess meat spoilage.

    Science.gov (United States)

    Daszczuk, Alicja; Dessalegne, Yonathan; Drenth, Ismaêl; Hendriks, Elbrich; Jo, Emeraldo; van Lente, Tom; Oldebesten, Arjan; Parrish, Jonathon; Poljakova, Wlada; Purwanto, Annisa A; van Raaphorst, Renske; Boonstra, Mirjam; van Heel, Auke; Herber, Martijn; van der Meulen, Sjoerd; Siebring, Jeroen; Sorg, Robin A; Heinemann, Matthias; Kuipers, Oscar P; Veening, Jan-Willem

    2014-12-19

    Here, we developed a cell-based biosensor that can assess meat freshness using the Gram-positive model bacterium Bacillus subtilis as a chassis. Using transcriptome analysis, we identified promoters that are specifically activated by volatiles released from spoiled meat. The most strongly activated promoter was PsboA, which drives expression of the genes required for the bacteriocin subtilosin. Next, we created a novel BioBrick compatible integration plasmid for B. subtilis and cloned PsboA as a BioBrick in front of the gene encoding the chromoprotein amilGFP inside this vector. We show that the newly identified promoter could efficiently drive fluorescent protein production in B. subtilis in response to spoiled meat and thus can be used as a biosensor to detect meat spoilage.

  3. Screening and Biosensor-Based Approaches for Lung Cancer Detection

    Directory of Open Access Journals (Sweden)

    Lulu Wang

    2017-10-01

    Full Text Available Early diagnosis of lung cancer helps to reduce the cancer death rate significantly. Over the years, investigators worldwide have extensively investigated many screening modalities for lung cancer detection, including computerized tomography, chest X-ray, positron emission tomography, sputum cytology, magnetic resonance imaging and biopsy. However, these techniques are not suitable for patients with other pathologies. Developing a rapid and sensitive technique for early diagnosis of lung cancer is urgently needed. Biosensor-based techniques have been recently recommended as a rapid and cost-effective tool for early diagnosis of lung tumor markers. This paper reviews the recent development in screening and biosensor-based techniques for early lung cancer detection.

  4. Computer modelling of biosensors with competitive substrates conversion

    Directory of Open Access Journals (Sweden)

    Justinas Terešius

    2014-08-01

    Full Text Available Mathematical model of biosensor with competitive substrates conversion is analysed in this work. Model is described by partial differential reaction-diffusion equations with non-linear reaction term. Because of the non-linearity the analytical solutions exist only for extreme parameter values and thus the model in general case is solved by finite difference methods. The validity of the computational model is checked by comparing numerically obtained results to the known analytical solutions at the mentioned extreme parameter values. The purpose of this work is to determine the values of model parameters at which the impact of one of the substrates on the biosensor response can be minimized.DOI: http://dx.doi.org/10.15181/csat.v2i1.184

  5. Sensitive optical biosensors for unlabeled targets: A review

    Energy Technology Data Exchange (ETDEWEB)

    Fan Xudong [Department of Biological Engineering, University of Missouri, 240D, Bond Life Sciences Center, 1201 E. Rollins Street, Columbia, Missouri 65211 (United States)], E-mail: fanxud@missouri.edu; White, Ian M.; Shopova, Siyka I.; Zhu Hongying; Suter, Jonathan D.; Sun Yuze [Department of Biological Engineering, University of Missouri, 240D, Bond Life Sciences Center, 1201 E. Rollins Street, Columbia, Missouri 65211 (United States)

    2008-07-14

    This article reviews the recent progress in optical biosensors that use the label-free detection protocol, in which biomolecules are unlabeled or unmodified, and are detected in their natural forms. In particular, it will focus on the optical biosensors that utilize the refractive index change as the sensing transduction signal. Various optical label-free biosensing platforms will be introduced, including, but not limited to, surface plasmon resonance, interferometers, waveguides, fiber gratings, ring resonators, and photonic crystals. Emphasis will be given to the description of optical structures and their respective sensing mechanisms. Examples of detecting various types of biomolecules will be presented. Wherever possible, the sensing performance of each optical structure will be evaluated and compared in terms of sensitivity and detection limit.

  6. Fluorescence based fiber optic and planar waveguide biosensors. A review.

    Science.gov (United States)

    Benito-Peña, Elena; Valdés, Mayra Granda; Glahn-Martínez, Bettina; Moreno-Bondi, Maria C

    2016-11-02

    The application of optical biosensors, specifically those that use optical fibers and planar waveguides, has escalated throughout the years in many fields, including environmental analysis, food safety and clinical diagnosis. Fluorescence is, without doubt, the most popular transducer signal used in these devices because of its higher selectivity and sensitivity, but most of all due to its wide versatility. This paper focuses on the working principles and configurations of fluorescence-based fiber optic and planar waveguide biosensors and will review biological recognition elements, sensing schemes, as well as some major and recent applications, published in the last ten years. The main goal is to provide the reader a general overview of a field that requires the joint collaboration of researchers of many different areas, including chemistry, physics, biology, engineering, and material science. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Graphene-Based Materials for Biosensors: A Review

    Directory of Open Access Journals (Sweden)

    Phitsini Suvarnaphaet

    2017-09-01

    Full Text Available The advantages conferred by the physical, optical and electrochemical properties of graphene-based nanomaterials have contributed to the current variety of ultrasensitive and selective biosensor devices. In this review, we present the points of view on the intrinsic properties of graphene and its surface engineering concerned with the transduction mechanisms in biosensing applications. We explain practical synthesis techniques along with prospective properties of the graphene-based materials, which include the pristine graphene and functionalized graphene (i.e., graphene oxide (GO, reduced graphene oxide (RGO and graphene quantum dot (GQD. The biosensing mechanisms based on the utilization of the charge interactions with biomolecules and/or nanoparticle interactions and sensing platforms are also discussed, and the importance of surface functionalization in recent up-to-date biosensors for biological and medical applications.

  8. All-nanophotonic NEMS biosensor on a chip

    CERN Document Server

    Fedyanin, Dmitry Yu

    2014-01-01

    Integrated chemical and biological sensors give advantages in cost, size and weight reduction and open new prospects for parallel monitoring and analysis. Biosensors based on nanoelectromechanical systems (NEMS) are the most attractive candidates for the integrated platform. However, actuation and transduction techniques (e.g. electrostatic, magnetomotive, thermal or piezoelectric) limit their operation to laboratory conditions. All-optical approach gives the possibility to overcome this problem, nevertheless, the existing schemes are either fundamentally macroscopic or excessively complicated and expensive in mass production. Here we propose a novel scheme of extremely compact NEMS biosensor monolithically integrated on a chip with all-nanophotonic transduction and actuation. It consists of the photonic waveguide and the nanobeam cantilever placed above the waveguide, both fabricated in the same CMOS-compatible process. Being in the near field of the strongly confined photonic mode, cantilever is efficiently...

  9. Label-Free Biosensor Detection of Endocrine Disrupting Compounds Using Engineered Estrogen Receptors

    Directory of Open Access Journals (Sweden)

    Rita La Spina

    2017-12-01

    Full Text Available Endocrine Disrupting Compounds (EDCs are chemical substances shown to interfere with endogenous hormones affecting the endocrine, immune and nervous systems of mammals. EDCs are the causative agents of diseases including reproductive disorders and cancers. This highlights the urgency to develop fast and sensitive methods to detect EDCs, which are detrimental even at very low concentrations. In this work, we propose a label-free surface plasmon resonance (SPR biosensor method to detect specific EDCs (17 β-estradiol (E2, ethinyl-estradiol, 4-nonylphenol, tamoxifen through their binding to estrogen receptor alpha (ERα. We show that the use of rationally designed ERα (as bio-recognition element in combination with conformation-sensitive peptides (as amplification agent, resulting in increased responses enables the detection of low parts per billion (ppb levels of E2. As a proof of concept, this bioassay was used to detect E2 in (spiked real water samples from fish farms, rivers and the sea at low ppb levels after concentration by solid phase extraction. In addition, the present SPR assay that combines a conformation-sensitive peptide with an array of ERα mutants is very promising for the assessment of the risk of potential estrogenic activity for chemical substances.

  10. Nanostructured biosensor for detecting glucose in tear by applying fluorescence resonance energy transfer quenching mechanism.

    Science.gov (United States)

    Chen, Longyi; Tse, Wai Hei; Chen, Yi; McDonald, Matthew W; Melling, James; Zhang, Jin

    2017-05-15

    In this paper, a nanostructured biosensor is developed to detect glucose in tear by using fluorescence resonance energy transfer (FRET) quenching mechanism. The designed FRET pair, including the donor, CdSe/ZnS quantum dots (QDs), and the acceptor, dextran-binding malachite green (MG-dextran), was conjugated to concanavalin A (Con A), an enzyme with specific affinity to glucose. In the presence of glucose, the quenched emission of QDs through the FRET mechanism is restored by displacing the dextran from Con A. To have a dual-modulation sensor for convenient and accurate detection, the nanostructured FRET sensors were assembled onto a patterned ZnO nanorod array deposited on the synthetic silicone hydrogel. Consequently, the concentration of glucose detected by the patterned sensor can be converted to fluorescence spectra with high signal-to-noise ratio and calibrated image pixel value. The photoluminescence intensity of the patterned FRET sensor increases linearly with increasing concentration of glucose from 0.03mmol/L to 3mmol/L, which covers the range of tear glucose levels for both diabetics and healthy subjects. Meanwhile, the calibrated values of pixel intensities of the fluorescence images captured by a handhold fluorescence microscope increases with increasing glucose. Four male Sprague-Dawley rats with different blood glucose concentrations were utilized to demonstrate the quick response of the patterned FRET sensor to 2µL of tear samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Optical biosensor system for the quick and reliable detection of virus infections: VIROSENS

    Science.gov (United States)

    Proll, Günther; Hartjes, Anja; Sinclair, Alexander; Markovic, Goran; Pröll, Florian; Patel, Pranav; Niedrig, Matthias

    2014-10-01

    Viral infections are of special threat because they can induce severe courses of disease but only few medical treatments are available. Because of socio-economic and climate changes, increased worldwide mobility and population growth, the risk of newly occurring and quickly spreading viral pathogens has increased. A diagnosis of these diseases at an early stage is essential for a quick risk assessment and a proper health management as well as patient's treatment in an optimal way. Currently, the diagnosis of such diseases is based on time consuming and costly detection methods that can only be performed by specially trained personnel in laboratories at specific security levels. Aim of the project VIROSENS is the development of a biosensor platform that can specifically detect virus particles as well as virus-specific antibodies out of biological matrices like blood, serum, plasma and other body fluids. For this purpose, a disposable cartridge for such antibody- and virus-arrays is designed and developed within the project. The optical detection of viruses is performed with a portable device that will be benchmarked and evaluated concerning currently used standard detection methods in terms of its analytical performance. Within this project, a novel combination of serological tests and direct detection of virus particles will be developed, which will provide faster and more reliable results than presently available and used test systems.

  12. Sensitivity and Limit of Detection of biosensors based on ring resonators

    Directory of Open Access Journals (Sweden)

    Romain Guider

    2015-12-01

    Full Text Available In this work, we present a study of the Sensitivity (S and Limit of Detection (LOD of microring based photonic biosensors as a function of the waveguide composition and dimensions. The target is Aflatoxin, which is a toxin of major concern for south Europe dairy industry. The sensing device is based on an array of multiple SiON microring resonators, fiber-coupled to both an 850 nm VCSEL and a silicon photodetectors, packaged with a microfluidic circuit. Volumetric sensing with glucose–water solutions of various concentrations yields a best sensitivity of 112 nm/RIU. To link these results to the Limit of Detection of the sensors, we also measured the noise of our experimental readout system and then calculated the LOD of our sensors. We found a best value of LOD of 1.6 × 10−6 RIU (referred to volumetric sensing. Finally, we detected Aflatoxin in solutions of various concentrations (down to 1.58 nM by functionalized sensors. The functionalization is based on a wet silanization and specific DNA-aptamer binding on the chip. Reproducibility and re-usability of the sensor are investigated by several chemical treatments. Optimum procedure allows multiple sequential measurements with a good endurance. This work was supported by the FP7 EU project “Symphony” (Grant agreement no.: 610580.

  13. Total phenol analysis of weakly supported water using a laccase-based microband biosensor.

    Science.gov (United States)

    Sekretaryova, Alina N; Volkov, Anton V; Zozoulenko, Igor V; Turner, Anthony P F; Vagin, Mikhail Yu; Eriksson, Mats

    2016-02-11

    The monitoring of phenolic compounds in wastewaters in a simple manner is of great importance for environmental control. Here, a novel screen printed laccase-based microband array for in situ, total phenol estimation in wastewaters and for water quality monitoring without additional sample pre-treatment is presented. Numerical simulations using the finite element method were utilized for the characterization of micro-scale graphite electrodes. Anodization followed by covalent modification was used for the electrode functionalization with laccase. The functionalization efficiency and the electrochemical performance in direct and catechol-mediated oxygen reduction were studied at the microband laccase electrodes and compared with macro-scale electrode structures. The reduction of the dimensions of the enzyme biosensor, when used under optimized conditions, led to a significant improvement in its analytical characteristics. The elaborated microsensor showed fast responses towards catechol additions to tap water - a weakly supported medium - characterized by a linear range from 0.2 to 10 μM, a sensitivity of 1.35 ± 0.4 A M(-1) cm(-2) and a dynamic range up to 43 μM. This enhanced laccase-based microsensor was used for water quality monitoring and its performance for total phenol analysis of wastewater samples from different stages of the cleaning process was compared to a standard method. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Writable Biocatalytic Electrochemical Bioelectronics and Biosensors for Simultaneous Detection

    OpenAIRE

    Huang, Ta-Yu

    2017-01-01

    In response to growing demands on minimally or non-invasive biosensors, developing soft wearable bioelectronics is of great interest to health care monitoring system researchers. The wearable bioelectronics enable continuous physiological and physical monitoring to maintain health status. However, the wearable sensor is a nascent field and many challenges remain unsolved. Current wearable devices on the markets predominantly monitor physical parameters such as heart rate, temperature, motion ...

  15. Amperometric urea biosensors based on sulfonated graphene/polyaniline nanocomposite

    OpenAIRE

    Das G.; Yoon HH

    2015-01-01

    Gautam Das, Hyon Hee Yoon Department of Chemical and Biological Engineering, Gachon University, Seongnam, Gyeonggi-do, South Korea Abstract: An electrochemical biosensor based on sulfonated graphene/polyaniline nanocomposite was developed for urea analysis. Oxidative polymerization of aniline in the presence of sulfonated graphene oxide was carried out by electrochemical methods in an aqueous environment. The structural properties of the nanocomposite were characterized by Fourier-transform...

  16. Noninvasive glucose monitoring using saliva nano-biosensor

    OpenAIRE

    Zhang, Wenjun; Du, Yunqing; Wang, Ming L.

    2015-01-01

    Millions of people worldwide live with diabetes and several millions die from it each year. A noninvasive, painless method of glucose testing would highly improve compliance and glucose control while reducing complications and overall disease management costs. To provide accurate, low cost, and continuous glucose monitoring, we have developed a unique, disposable saliva nano-biosensor. More than eight clinical trials on real-time noninvasive salivary glucose monitoring were carried out on two...

  17. New trends in aptamer-based electrochemical biosensors

    OpenAIRE

    Velasco-Garcia, Maria; Missailidis, Sotiris

    2009-01-01

    The analytical characteristics of aptamers are comparable with those of antibodies for the development of biosensor technology. However, aptamers offer some crucial advantages over antibodies such as selection capability for a variety of targets, easy synthesis, improved reproducibility and stability, simple modification for immobilization to solid supports and enhanced selectivity. This article reviews aptamer technology as well as aptamer-based assay configurations and goes on to explore re...

  18. Biosensor technology: recent advances in threat agent detection and medicine.

    Science.gov (United States)

    Kirsch, Jeffrey; Siltanen, Christian; Zhou, Qing; Revzin, Alexander; Simonian, Aleksandr

    2013-11-21

    Biosensors are of great significance because of their capability to resolve a potentially large number of analytical problems and challenges in very diverse areas such as defense, homeland security, agriculture and food safety, environmental monitoring, medicine, pharmacology, industry, etc. The expanding role of biosensing in society and a real-world environment has led to an exponential growth of the R&D efforts around the world. The world market for biosensor devices, according to Global Industry Analysts, Inc., is expected to reach $12 billion by 2015. Such expedient growth is driven by several factors including medical and health problems, such as a growing population with a high risk of diabetes and obesity, and the rising incidence of chronic diseases such as heart disease, stroke, cancer, chronic respiratory diseases, tuberculosis, etc.; significant problems with environmental monitoring; and of course serious challenges in security and military applications and agriculture/food safety. A review paper in the biosensor technology area may be structured based on (i) the principles of detection, such as the type of transducer platform, bioanalytical principles (affinity or kinetic), and biorecognition elements origin/properties (i.e. antibodies, enzymes, cells, aptamers, etc.), and (ii) the application area. This review follows the latter strategy and focuses on the applications. This allows discussion on how different sensing strategies are brought to bear on the same problem and highlights advantages/disadvantages of these sensing strategies. Given the broad range of biosensor related applications, several particularly relevant areas of application were selected for review: biological threat agents, chemical threat agents, and medicine.

  19. Functionalized nanopipettes: toward label-free, single cell biosensors

    OpenAIRE

    Actis, Paolo; Mak, Andy C.; Pourmand, Nader

    2010-01-01

    Nanopipette technology has been proven to be a label-free biosensor capable of identifying DNA and proteins. The nanopipette can include specific recognition elements for analyte discrimination based on size, shape, and charge density. The fully electrical read-out and the ease and low-cost fabrication are unique features that give this technology an enormous potential. Unlike other biosensing platforms, nanopipettes can be precisely manipulated with submicron accuracy and used to study singl...

  20. Adaptive cancellation of motion artifact in wearable biosensors.

    Science.gov (United States)

    Yousefi, Rasoul; Nourani, Mehrdad; Panahi, Issa

    2012-01-01

    The performance of wearable biosensors is highly influenced by motion artifact. In this paper, a model is proposed for analysis of motion artifact in wearable photoplethysmography (PPG) sensors. Using this model, we proposed a robust real-time technique to estimate fundamental frequency and generate a noise reference signal. A Least Mean Square (LMS) adaptive noise canceler is then designed and validated using our synthetic noise generator. The analysis and results on proposed technique for noise cancellation shows promising performance.

  1. Localized surface plasmon resonance biosensor integrated with microfluidic chip.

    Science.gov (United States)

    Huang, Chengjun; Bonroy, Kristien; Reekmans, Gunter; Laureyn, Wim; Verhaegen, Katarina; De Vlaminck, Iwijn; Lagae, Liesbet; Borghs, Gustaaf

    2009-08-01

    A sensitive and low-cost microfluidic integrated biosensor is developed based on the localized surface plasmon resonance (LSPR) properties of gold nanoparticles, which allows label-free monitoring of biomolecular interactions in real-time. A novel quadrant detection scheme is introduced which continuously measures the change of the light transmitted through the nanoparticle-coated sensor surface. Using a green light emitting diode (LED) as a light source in combination with the quadrant detection scheme, a resolution of 10(-4) in refractive index units (RIU) is determined. This performance is comparable to conventional LSPR-based biosensors. The biological sensing is demonstrated using an antigen/antibody (biotin/anti-biotin) system with an optimized gold nanoparticle film. The immobilization of biotin on a thiol-based self-assembled monolayer (SAM) and the subsequent affinity binding of anti-biotin are quantitatively detected by the microfluidic integrated biosensor and a detection limit of 270 ng/mL of anti-biotin was achieved. The microfluidic chip is capable of transporting a precise amount of biological samples to the detection areas to achieve highly sensitive and specific biosensing with decreased reaction time and less reagent consumption. The obtained results are compared with those measured by a surface plasmon resonance (SPR)-based Biacore system for the same binding event. This study demonstrates the feasibility of the integration of LSPR-based biosensing with microfluidic technologies, resulting in a low-cost and portable biosensor candidate compared to the larger and more expensive commercial instruments.

  2. Laccase-based biosensors for detection of phenolic compounds

    OpenAIRE

    Rodríguez-Delgado, Melissa M.; Gibrán S. Alemán-Nava; Rodríguez-Delgado, José Manuel; Dieck-Assad, Graciano; Martínez-Chapa, Sergio Omar; Barceló, Damià; Parra, Roberto

    2015-01-01

    Monitoring of phenolic compounds in the food industry and for environmental and medical applications has become more relevant in recent years. Conventional methods for detection and quantification of these compounds, such as spectrophotometry and chromatography, are time consuming and expensive. However, laccase biosensors represent a fast method for on-line and in situ monitoring of these compounds. We discuss the main transduction principles. We divide the electrochemical principle into amp...

  3. Porous silicon biosensor for the detection of autoimmune diseases

    Science.gov (United States)

    Jane, Andrew O.; Szili, Endre J.; Reed, Joanne H.; Gordon, Tom P.; Voelcker, Nicolas H.

    2007-12-01

    Advances in porous silicon (pSi) technology have led to the development of new sensitive biosensors. The unique optical properties of pSi renders the material a perfect candidate for optical transducers exploiting photoluminescence or white light interference effects. The ability of biosensors exploiting these transduction mechanisms to quickly and accurately detect biological target molecules affords an alternative to current bioassays such as enzyme-linked immunosorbent assays (ELISAs). Here, we present a pSi biosensor that was developed to detect antibodies against the autoimmune protein La. This protein is associated with autoimmune diseases including rheumatic disorders, systematic lupus erythematosus (SLE) and Sjogren's syndrome (SS). A fast and sensitive detection platform such as the one described here can be applied to the rapid diagnosis of these debilitating autoimmune diseases. The immobilisation of the La protein onto pSi films gave a protein receptor-decorated sensor matrix. A cascade of immunological reactions was then initiated to detect anti-La antibody on the functionalised pSi surface. In the presence of o-phenylenediamine (OPD), horseradish peroxidase (HRP)/H IIO II catalysed the formation of an oxidised radical species that accelerated pSi corrosion. pSi corrosion was detected as a blue-shift in the generated interference pattern, corresponding to a decrease in the effective optical thickness (EOT) of the pSi film. Compared to an ELISA, the pSi biosensor could detect the anti-La antibody at a similar concentration (500 - 125 ng/ml). Furthermore, we found that the experimental process can be significantly shortened resulting in detection of the anti-La antibody in 80 minutes compared to a minimum of 5 hours required for ELISA.

  4. Directivity of Antenna Arrays

    Science.gov (United States)

    Bulgakova, A. A.; Gorobets, N. N.; Katrich, V. A.; Lyashchenko, V. A.

    2016-12-01

    Purpose: Theoretical investigation of directive gains of linear and planar antenna arrays depending on the distance between radiators and wavelength. Design/methodology/approach: Computing methods in applied mathematics in MathCad were used to calculate the twofold integrals of the radiation pattern over power throughout the whole space observed, defining the directivity in the most general terms. Patterns of radiators, i. e. elements of antenna arrays, are specified by mathematical models. The calculation accounts for the subintegral fast oscillating function. Findings: Calculations and analysis of a directive gain according to the number of radiators and distances between them in fractions of wavelength are made. It is shown that at the ratio of distance between radiators to wave-length being d/λ =0.5 the directivity of array of isotropic radiators is 1.5N², N - number of radiators. When increasing the d/λ to 0.65÷0.97 the directivity increases according to the law close to the linear one up to the maximum possible value for the specified number of radiators. With the increase of d/λ to the values greater than one, the directivity is significantly reduced (the “blinding” effect of non-phased antenna arrays) and its dependence with the growth of d/λ is decaying and oscillating in character. By that, the transfer function of antenna arrays has some vital difference from the transfer function of continuous antennas. Conclusions: Antenna arrays distort the waveform and spectrum of radiated and received signals as a result of irregular changes of their directivity depending on wavelength. The detected “blinding” effect of non-phased antenna arrays of large electrical dimensions must be taken into account in wideband and superwideband radio-electronics systems, especially in radio astronomy, telecommunications systems and superwideband radar.

  5. Functional nucleic acids as in vivo metabolite and ion biosensors.

    Science.gov (United States)

    Alsaafin, Alaa; McKeague, Maureen

    2017-08-15

    Characterizing the role of metabolites, metals, and proteins is required to understand normal cell function, and ultimately, elucidate the mechanism of disease. Metabolite concentration and transformation results collected from cell lysates or fixed-cells conceal important dynamic information and differences between individual cells that often have profound functional consequences. Functional nucleic acid-based biosensors are emerging tools that are capable of monitoring ions and metabolites in cell populations or whole animals. Functional nucleic acids (FNAs) are a class of biomolecules that can exhibit either ligand binding or enzymatic activity. Unlike their protein analogues or the use of instrument-based analysis, FNA-based biosensors are capable of entering cells without disruption to the cellular environment and can report on the concentration, dynamics, and spatial localization of molecules in cells. Here, we review the types of FNAs that have been used as in vivo biosensors, and how FNAs can be coupled to transduction systems and delivered inside cells. We also provide examples from the literature that demonstrate their impact in practical applications. Finally, we comment on the critical limitations that need to be addressed to enable their use for single-cell dynamic tracking of metabolites and ions in vivo. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  6. Nitrate biosensors and biological methods for nitrate determination.

    Science.gov (United States)

    Sohail, Manzar; Adeloju, Samuel B

    2016-06-01

    The inorganic nitrate (NO3‾) anion is present under a variety of both natural and artificial environmental conditions. Nitrate is ubiquitous within the environment, food, industrial and physiological systems and is mostly present as hydrated anion of a corresponding dissolved salt. Due to the significant environmental and toxicological effects of nitrate, its determination and monitoring in environmental and industrial waters are often necessary. A wide range of analytical techniques are available for nitrate determination in various sample matrices. This review discusses biosensors available for nitrate determination using the enzyme nitrate reductase (NaR). We conclude that nitrate determination using biosensors is an excellent non-toxic alternative to all other available analytical methods. Over the last fifteen years biosensing technology for nitrate analysis has progressed very well, however, there is a need to expedite the development of nitrate biosensors as a suitable alternative to non-enzymatic techniques through the use of different polymers, nanostructures, mediators and strategies to overcome oxygen interference. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Analysis of experimental biosensor/FIA lactose measurements

    Directory of Open Access Journals (Sweden)

    L.S. Ferreira

    2003-03-01

    Full Text Available Whey is an abundant effluent in the production of cheese and casein. The biotechnological utilization of this economically important and nutritive source is limited mainly because of the presence of high percentages of lactose. This disaccharide has poor solubility, which can cause crystallization and insufficient sweetness in dairy food; additionally, part of the adult population suffers from associated lactose intolerance diseases. There are several methods to determine lactose such as spectrophotometry, polarimetry, infrared spectroscopy, titrimetry and chromatography. However these methods are tedious and time-consuming due to long sample preparation. These disadvantages stimulated the development of an enzymatic lactose biosensor. It employs two immobilized enzymes, beta-galactosidase and glucose oxidase and the quantitative analysis of lactose is based on determination of oxygen consumption in the enzymatic reaction. The influence of temperature on the biosensor signal was experimentally studied. It was observed that a nonlinear relationship exists between the electric response of the biosensor - provided by CAFCA (Computer Assisted Flow Control & Analysis - ANASYSCON, Hannover - and lactose concentration. In this work, attempts were made to correlate these variables using a simple nonlinear model and multilayered neural networks, with the latter providing the best modeling of the experimental data.

  8. Direct glucose determination in blood using a reagentless optical biosensor.

    Science.gov (United States)

    Sanz, Vanesa; de Marcos, Susana; Galbán, Javier

    2007-06-15

    This paper demonstrates that glucose determination in blood can be done directly (without sample pretreatment) using a reagentless reversible biosensor based on the intrinsic spectroscopic properties of peroxidase (HRP). The biosensor, prepared by HRP and glucose oxidase entrapment in a polyacrylamide gel matrix, works in continuous mode, presents a linear response range from 1.5 x 10(-6) up to 5.5 x 10(-5)M and can be used for at least 750 measurements; in the best conditions (0.1 M pH 6 phosphate buffer, HRP and GOx amounts in the polymersation mixture for the sensor film preparation 0.0165 and 0.0010 g, respectively) the minimum samples rate is 30 h(-1). For glucose determination, blood is simply diluted in water (until haemolysis is completed) and fed into the sensor without a cleaning step between samples; the blood absorption is corrected in a simple way by working at a proper reference wavelength. The biosensor signals have been mathematically modeled in order to facilitate the design of sensors based on the same idea for other biochemical compounds.

  9. An AC electrokinetics facilitated biosensor cassette for rapid pathogen identification.

    Science.gov (United States)

    Ouyang, Mengxing; Mohan, Ruchika; Lu, Yi; Liu, Tingting; Mach, Kathleen E; Sin, Mandy L Y; McComb, Mason; Joshi, Janhvi; Gau, Vincent; Wong, Pak Kin; Liao, Joseph C

    2013-07-07

    To develop a portable point-of-care system based on biosensors for common infectious diseases such as urinary tract infection, the sensing process needs to be implemented within an enclosed fluidic system. On chip sample preparation of clinical samples remains a significant obstacle to achieving robust sensor performance. Herein AC electrokinetics is applied in an electrochemical biosensor cassette to enhance molecular convection and hybridization efficiency through electrokinetics induced fluid motion and Joule heating induced temperature elevation. Using E. coli as an exemplary pathogen, we determined the optimal electrokinetic parameters for detecting bacterial 16S rRNA in the biosensor cassette based on the current output, signal-to-noise ratio, and limit of detection. In addition, a panel of six probe sets targeting common uropathogenic bacteria was demonstrated. The optimized parameters were also validated using patient-derived clinical urine samples. The effectiveness of electrokinetics for on chip sample preparation will facilitate the implementation of point-of-care diagnosis of urinary tract infection in the future.

  10. AC Electrokinetics Facilitated Biosensor Cassette for Rapid Pathogen Identification

    Science.gov (United States)

    Ouyang, Mengxing; Mohan, Ruchika; Lu, Yi; Liu, Tingting; Mach, Kathleen E.; Sin, Mandy L. Y.; McComb, Mason; Joshi, Janhvi; Gau, Vincent

    2013-01-01

    To develop a portable point-of-care system based on biosensors for common infectious diseases such as urinary tract infection, the sensing process needs to be implemented within an enclosed fluidic system. On chip sample preparation of clinical samples remains a significant obstacle to achieve robust sensor performance. Herein AC electrokinetics is applied in an electrochemical biosensor cassette to enhance molecular convection and hybridization efficiency though electrokinetic induced fluid motion and Joule heating induced temperature elevation. Using E. coli as an exemplary pathogen, we determined the optimal electrokinetic parameters for detecting bacterial 16S rRNA in the biosensor cassette based on the current output, signal-to-noise ratio, and limit of detection. In addition, a panel of six probe sets targeting common uropathogenic bacteria was demonstrated. The optimized parameters were also validated using patient-derived clinical urine samples. The effectiveness of electrokinetic for on chip sample preparation will facilitate the implementation of point-of-care diagnosis of urinary tract infection in the future. PMID:23626988

  11. Aptamer-based electrochemical biosensor for interferon gamma detection.

    Science.gov (United States)

    Liu, Ying; Tuleouva, Nazgul; Ramanculov, Erlan; Revzin, Alexander

    2010-10-01

    In this paper, we describe the development of an electrochemical DNA aptamer-based biosensor for detection of interferon (IFN)-γ. A DNA hairpin containing IFN-γ-binding aptamer was thiolated, conjugated with methylene blue (MB) redox tag, and immobilized on a gold electrode by self-assembly. Binding of IFN-γ caused the aptamer hairpin to unfold, pushing MB redox molecules away from the electrode and decreasing electron-transfer efficiency. The change in redox current was quantified using square wave voltammetry (SWV) and was found to be highly sensitive to IFN-γ concentration. The limit of detection for optimized biosensor was 0.06 nM with linear response extending to 10 nM. This aptasensor was specific to IFN-γ in the presence of overabundant serum proteins. Importantly, the same aptasensor could be regenerated by disrupting aptamer-IFN-γ complex in urea buffer and reused multiple times. Unlike standard sandwich immunoassays, the aptasensor described here allowed one to detect IFN-γ binding directly without the need for multiple washing steps and reagents. An electrochemical biosensor for simple and sensitive detection of IFN-γ demonstrated in this paper will have future applications in immunology, cancer research, and infectious disease monitoring.

  12. Investigation of thin polymer layers for biosensor applications

    Energy Technology Data Exchange (ETDEWEB)

    Saftics, András; Agócs, Emil [Institute for Technical Physics and Materials Science, Research Centre for Natural Sciences–H-1121 Budapest (Hungary); Fodor, Bálint [Institute for Technical Physics and Materials Science, Research Centre for Natural Sciences–H-1121 Budapest (Hungary); Doctoral School of Physics, Faculty of Science, University of Pécs, 7624 Pécs, Ifjúság útja 6 (Hungary); Patkó, Dániel; Petrik, Péter [Institute for Technical Physics and Materials Science, Research Centre for Natural Sciences–H-1121 Budapest (Hungary); Doctoral School of Molecular- and Nanotechnologies, Faculty of Information Technology, University of Pannonia, H-8200 Egyetem u.10, Veszprém (Hungary); Kolari, Kai; Aalto, Timo [VTT Technical Research Centre of Finland, PL 1000, Tietotie 3, 02044 Espoo (Finland); Fürjes, Péter [Institute for Technical Physics and Materials Science, Research Centre for Natural Sciences–H-1121 Budapest (Hungary); Horvath, Robert [Institute for Technical Physics and Materials Science, Research Centre for Natural Sciences–H-1121 Budapest (Hungary); Doctoral School of Molecular- and Nanotechnologies, Faculty of Information Technology, University of Pannonia, H-8200 Egyetem u.10, Veszprém (Hungary); Kurunczi, Sándor, E-mail: kurunczi.sandor@ttk.mta.hu [Institute for Technical Physics and Materials Science, Research Centre for Natural Sciences–H-1121 Budapest (Hungary); Doctoral School of Molecular- and Nanotechnologies, Faculty of Information Technology, University of Pannonia, H-8200 Egyetem u.10, Veszprém (Hungary)

    2013-09-15

    Novel biosensors made of polymers may offer advantages over conventional technology such as possibility of mass production and tunability of the material properties. With the ongoing work on the polymer photonic chip fabrication in our project, simple model samples were tested parallel for future immobilization and accessing conditions for applications in typical aqueous buffers. The model samples consist of a thin, high refractive index polyimide film on top of TEOS on Si wafer. These model samples were measured by in situ spectroscopic ellipsometry using different aqueous buffers. The experiments revealed a high drift in aqueous solutions; the drift in the ellipsometric parameters (delta, psi) can be evaluated and presented as changes in thickness and refractive index of the polyimide layer. The first molecular layer of immobilization is based on polyethyleneimine (PEI). The signal for the PEI adsorption was detected on a stable baseline, only after a long conditioning. The stability of polyimide films in aqueous buffer solutions should be improved toward the real biosensor application. Preliminary results are shown on the possibilities to protect the polyimide. Optical Waveguide Lightmode Spectroscopy (OWLS) has been used to demonstrate the shielding effect of the thin TiO{sub 2} adlayer in biosensor applications.

  13. Resonant energy transfer based biosensor for detection of multivalent proteins.

    Energy Technology Data Exchange (ETDEWEB)

    Song, X. (Xuedong); Swanson, Basil I.

    2001-01-01

    We have developed a new fluorescence-based biosensor for sensitive detection of species involved in a multivslent interaction. The biosensor system utilizes specific interactions between proteins and cell surface receptors, which trigger a receptor aggregation process. Distance-dependent fluorescence self-quenching and resonant energy transfer mechanisms were coupled with a multivalent interaction to probe the receptor aggregation process, providing a sensitive and specific signal transduction method for such a binding event. The fluorescence change induced by the aggregation process can be monitored by different instrument platforms, e.g. fluorimetry and flow cytometry. In this article, a sensitive detection of pentavalent cholera toxin which recognizes ganglioside GM1 has been demonstrated through the resonant energy transfer scheme, which can achieve a double color change simultaneously. A detection sensitivity as high as 10 pM has been achieved within a few minutes (c.a. 5 minutes). The simultaneous double color change (an increase of acceptor fluorescence and a decrease of donor fluorescence intensity) of two similar fluorescent probes provides particularly high detection reliability owing to the fact that they act as each other's internal reference. Any external perturbation such as environmental temperature change causes no significant change in signal generation. Besides the application for biological sensing, the method also provides a useful tool for investigation of kinetics and thermodynamics of a multivalent interaction. Keywords: Biosensor, Fluorescence resonant energy transfer, Multivalent interaction, Cholera Toxin, Ganglioside GM1, Signal Transduction

  14. Surface Modification on Acoustic Wave Biosensors for Enhanced Specificity

    Directory of Open Access Journals (Sweden)

    Nathan D. Gallant

    2012-09-01

    Full Text Available Changes in mass loading on the surface of acoustic biosensors result in output frequency shifts which provide precise measurements of analytes. Therefore, to detect a particular biomarker, the sensor delay path must be judiciously designed to maximize sensitivity and specificity. B-cell lymphoma 2 protein (Bcl-2 found in urine is under investigation as a biomarker for non-invasive early detection of ovarian cancer. In this study, surface chemistry and biofunctionalization approaches were evaluated for their effectiveness in presenting antibodies for Bcl-2 capture while minimizing non-specific protein adsorption. The optimal combination of sequentially adsorbing protein A/G, anti-Bcl-2 IgG and Pluronic F127 onto a hydrophobic surface provided the greatest signal-to-noise ratio and enabled the reliable detection of Bcl-2 concentrations below that previously identified for early stage ovarian cancer as characterized by a modified ELISA method. Finally, the optimal surface modification was applied to a prototype acoustic device and the frequency shift for a range of Bcl-2 concentration was quantified to demonstrate the effectiveness in surface acoustic wave (SAW-based detection applications. The surface functionalization approaches demonstrated here to specifically and sensitively detect Bcl-2 in a working ultrasonic MEMS biosensor prototype can easily be modified to detect additional biomarkers and enhance other acoustic biosensors.

  15. Emerging applications of label-free optical biosensors

    Science.gov (United States)

    Zanchetta, Giuliano; Lanfranco, Roberta; Giavazzi, Fabio; Bellini, Tommaso; Buscaglia, Marco

    2017-01-01

    Innovative technical solutions to realize optical biosensors with improved performance are continuously proposed. Progress in material fabrication enables developing novel substrates with enhanced optical responses. At the same time, the increased spectrum of available biomolecular tools, ranging from highly specific receptors to engineered bioconjugated polymers, facilitates the preparation of sensing surfaces with controlled functionality. What remains often unclear is to which extent this continuous innovation provides effective breakthroughs for specific applications. In this review, we address this challenging question for the class of label-free optical biosensors, which can provide a direct signal upon molecular binding without using secondary probes. Label-free biosensors have become a consolidated approach for the characterization and screening of molecular interactions in research laboratories. However, in the last decade, several examples of other applications with high potential impact have been proposed. We review the recent advances in label-free optical biosensing technology by focusing on the potential competitive advantage provided in selected emerging applications, grouped on the basis of the target type. In particular, direct and real-time detection allows the development of simpler, compact, and rapid analytical methods for different kinds of targets, from proteins to DNA and viruses. The lack of secondary interactions facilitates the binding of small-molecule targets and minimizes the perturbation in single-molecule detection. Moreover, the intrinsic versatility of label-free sensing makes it an ideal platform to be integrated with biomolecular machinery with innovative functionality, as in case of the molecular tools provided by DNA nanotechnology.

  16. Computational Design of a Carbon Nanotube Fluorofullerene Biosensor

    Directory of Open Access Journals (Sweden)

    Shin-Ho Chung

    2012-10-01

    Full Text Available Carbon nanotubes offer exciting opportunities for devising highly-sensitive detectors of specific molecules in biology and the environment. Detection limits as low as 10−11 M have already been achieved using nanotube-based sensors. We propose the design of a biosensor comprised of functionalized carbon nanotube pores embedded in a silicon-nitride or other membrane, fluorofullerene-Fragment antigen-binding (Fab fragment conjugates, and polymer beads with complementary Fab fragments. We show by using molecular and stochastic dynamics that conduction through the (9, 9 exohydrogenated carbon nanotubes is 20 times larger than through the Ion Channel Switch ICSTM biosensor, and fluorofullerenes block the nanotube entrance with a dissociation constant as low as 37 pM. Under normal operating conditions and in the absence of analyte, fluorofullerenes block the nanotube pores and the polymer beads float around in the reservoir. When analyte is injected into the reservoir the Fab fragments attached to the fluorofullerene and polymer bead crosslink to the analyte. The drag of the much larger polymer bead then acts to pull the fluorofullerene from the nanotube entrance, thereby allowing the flow of monovalent cations across the membrane. Assuming a tight seal is formed between the two reservoirs, such a biosensor would be able to detect one channel opening and thus one molecule of analyte making it a highly sensitive detection design.

  17. Use of artificial neural networks in biosensor signal classification

    Directory of Open Access Journals (Sweden)

    Vlastimil Dohnal

    2008-01-01

    Full Text Available Biosensors are analytical devices that transforms chemical information, ranging from the concentration of a specific sample component to total composition analysis, into an analytical signal and that utilizes a biochemical mechanism for the chemical recognition. The complexity of biosensor construction and generation of measured signal requires the development of new method for signal eva­luation and its possible defects recognition. A new method based on artificial neural networks (ANN was developed for recognition of characteristic behavior of signals joined with malfunction of sensor. New algorithm uses unsupervised Kohonen self-organizing neural networks. The work with ANN has two phases – adaptation and prediction. During the adaptation step the classification model is build. Measured data form groups after projection into two-dimensional space based on theirs similarity. After identification of these groups and establishing the connection with signal disorders ANN can be used for evaluation of newly measured signals. This algorithm was successfully applied for 540 signal classification obtained from immobilized acetylcholinesterase biosensor measurement of organophosphate and carbamate pesticides in vegetables, fruits, spices, potatoes and soil samples. From six different signal defects were successfully classified four – low response after substrate addition, equilibration at high values, slow equilibration after substrate addition respectively low sensitivity on syntostigmine.

  18. Recent advances in ZnO nanostructures and thin films for biosensor applications: Review

    Energy Technology Data Exchange (ETDEWEB)

    Arya, Sunil K., E-mail: sunilarya333@gmail.com [Bioelectronics Program, Institute of Microelectronics, A-Star 11 Science Park Road, Singapore Science Park II, Singapore 117685 (Singapore); Saha, Shibu [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Ramirez-Vick, Jaime E. [Engineering Science and Materials Department, University of Puerto Rico, Mayaguez, PR 00681 (United States); Gupta, Vinay [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Bhansali, Shekhar [Department of Electrical and Computer Engineering, Florida International University, Miami, FL (United States); Singh, Surinder P., E-mail: singh.uprm@gmail.com [National Physical Laboratory, Dr K.S. Krishnan Marg, New Delhi 110012 (India)

    2012-08-06

    Graphical abstract: ZnO nanostructures have shown binding of biomolecules in desired orientation with improved conformation and high biological activity, resulting in enhanced sensing characteristics. Furthermore, their compatibility with complementary metal oxide semiconductor technology for constructing integrated circuits makes them suitable candidate for future small integrated biosensor devices. This review highlights various approaches to synthesize ZnO nanostructures and thin films, and their applications in biosensor technology. Highlights: Black-Right-Pointing-Pointer This review highlights various approaches to synthesize ZnO nanostructures and thin films. Black-Right-Pointing-Pointer Article highlights the importance of ZnO nanostructures as biosensor matrix. Black-Right-Pointing-Pointer Article highlights the advances in various biosensors based on ZnO nanostructures. Black-Right-Pointing-Pointer Article describes the potential of ZnO based biosensor for new generation healthcare devices. - Abstract: Biosensors have shown great potential for health care and environmental monitoring. The performance of biosensors depends on their components, among which the matrix material, i.e., the layer between the recognition layer of biomolecule and transducer, plays a crucial role in defining the stability, sensitivity and shelf-life of a biosensor. Recently, zinc oxide (ZnO) nanostructures and thin films have attracted much interest as materials for biosensors due to their biocompatibility, chemical stability, high isoelectric point, electrochemical activity, high electron mobility, ease of synthesis by diverse methods and high surface-to-volume ratio. ZnO nanostructures have shown the binding of biomolecules in desired orientations with improved conformation and high biological activity, resulting in enhanced sensing characteristics. Furthermore, compatibility with complementary metal oxide semiconductor technology for constructing integrated circuits makes Zn

  19. Efficient Array Design for Sonotherapy

    OpenAIRE

    Stephens, Douglas N.; Kruse, Dustin E.; Ergun, Arif S.; Barnes, Stephen; Ming Lu, X.; Ferrara, Katherine

    2008-01-01

    New linear multi-row, multi-frequency arrays have been designed, constructed and tested as fully operational ultrasound probes to produce confocal imaging and therapeutic acoustic intensities with a standard commercial ultrasound imaging system. The triple-array probes and imaging system produce high quality B-mode images with a center row imaging array at 5.3 MHz, and sufficient acoustic power with dual therapeutic arrays to produce mild hyperthermia at 1.54 MHz. The therapeutic array pair i...

  20. Phased array imaging

    Science.gov (United States)

    1990-09-01

    The problem of recoverable image resolution is investigated for the case where an imaging array is used which array has an optical transfer function that may be described as consisting of islands of nonzero value in a sea of zero values. Can the missing spatial frequency information can be provided--can, in effect, a form of (interpolative) super resolution. The CLEAN algorithm used by radio astronomers suggests that this should be possible. The results developed here indicate that this can be done, with no significant price in terms of signal-to-noise ratio to be paid, and further show that a nonlinear algorithm, like CLEAN, is not required. The results show that the feasibility of doing this depends on the angular size of the object being imaged. We find that its size must be less than the inverse of the largest gap between islands in the array's optical transfer function.

  1. Photovoltaic array performance model.

    Energy Technology Data Exchange (ETDEWEB)

    Kratochvil, Jay A.; Boyson, William Earl; King, David L.

    2004-08-01

    This document summarizes the equations and applications associated with the photovoltaic array performance model developed at Sandia National Laboratories over the last twelve years. Electrical, thermal, and optical characteristics for photovoltaic modules are included in the model, and the model is designed to use hourly solar resource and meteorological data. The versatility and accuracy of the model has been validated for flat-plate modules (all technologies) and for concentrator modules, as well as for large arrays of modules. Applications include system design and sizing, 'translation' of field performance measurements to standard reporting conditions, system performance optimization, and real-time comparison of measured versus expected system performance.

  2. Solar array welding developement

    Science.gov (United States)

    Elms, R. V., Jr.

    1974-01-01

    The present work describes parallel gap welding as used for joining solar cells to the cell interconnect system. Sample preparation, weldable cell parameter evaluation, bond scheduling, bond strength evaluation, and bonding and thermal shock tests are described. A range of weld schedule parameters - voltage, time, and force - can be identified for various cell/interconnect designs that will provide adequate bond strengths and acceptably small electrical degradation. Automation of solar array welding operations to a significant degree has been achieved in Europe and will be receiving increased attention in the U.S. to reduce solar array fabrication costs.

  3. Single-particle imaging for biosensor applications

    Science.gov (United States)

    Yorulmaz, Mustafa; Isil, Cagatay; Seymour, Elif; Yurdakul, Celalettin; Solmaz, Berkan; Koc, Aykut; Ünlü, M. Selim

    2017-10-01

    Current state-of-the-art technology for in-vitro diagnostics employ laboratory tests such as ELISA that consists of a multi-step test procedure and give results in analog format. Results of these tests are interpreted by the color change in a set of diluted samples in a multi-well plate. However, detection of the minute changes in the color poses challenges and can lead to false interpretations. Instead, a technique that allows individual counting of specific binding events would be useful to overcome such challenges. Digital imaging has been applied recently for diagnostics applications. SPR is one of the techniques allowing quantitative measurements. However, the limit of detection in this technique is on the order of nM. The current required detection limit, which is already achieved with the analog techniques, is around pM. Optical techniques that are simple to implement and can offer better sensitivities have great potential to be used in medical diagnostics. Interference Microscopy is one of the tools that have been investigated over years in optics field. More of the studies have been performed in confocal geometry and each individual nanoparticle was observed separately. Here, we achieve wide-field imaging of individual nanoparticles in a large field-of-view ( 166 μm × 250 μm) on a micro-array based sensor chip in fraction of a second. We tested the sensitivity of our technique on dielectric nanoparticles because they exhibit optical properties similar to viruses and cells. We can detect non-resonant dielectric polystyrene nanoparticles of 100 nm. Moreover, we perform post-processing applications to further enhance visibility.

  4. Rapid identification of Mycobacterium tuberculosis infection by a new array format-based surface plasmon resonance method

    Science.gov (United States)

    Hsieh, Shang-Chen; Chang, Chia-Chen; Lu, Chia-Chen; Wei, Chia-Fong; Lin, Chuan-Sheng; Lai, Hsin-Chih; Lin, Chii-Wann

    2012-03-01

    Tubercle bacillus [TB] is one of the most important chronic infectious diseases that cause millions of deaths annually. While conventional smear microscopy and culture methods are widely used for diagnosis of TB, the former is insensitive, and the latter takes up to 6 to 8 weeks to provide a result, limiting the value of these methods in aiding diagnosis and intermediate decisions on treatment. Therefore, a rapid detection method is essential for the diagnosis, prognosis assessment, and recurrence monitoring. A new surface plasmon resonance [SPR] biosensor based on an array format, which allowed immobilizing nine TB antigens onto the sensor chip, was constructed. Simultaneous determination of multiple TB antibodies in serum had been accomplished with this array-based SPR system. The results were compared with enzyme-linked immunosorbent assay, a conventional immunological method. Array-based SPR showed more advantages in providing label-free and real-time detection. Additionally, the high sensitivity and specificity for the detection of TB infection showed its potential for future development of biosensor arrays for TB diagnosis.

  5. Biosensors based on β-galactosidase enzyme: Recent advances and perspectives.

    Science.gov (United States)

    Sharma, Shiv K; Leblanc, Roger M

    2017-10-15

    Many industries are striving for the development of more reliable and robust β-galactosidase biosensors that exhibit high response rate, increased detection limit and enriched useful lifetime. In a newfangled technological atmosphere, a trivial advantage or disadvantage of the developed biosensor may escort to the survival and extinction of the industry. Several alternative strategies to immobilize β-galactosidase enzyme for their utilization in biosensors have been developed in recent years in the quest of maximum utility by controlling the defects seen in the previous biosensors. The overwhelming call for on-line measurement of different sample constituents has directed science and industry to search for best practical solutions and biosensors are witnessed as the best prospect. The main objective of this paper is to serve as a narrow footbridge by comparing the literary works on the β-galactosidase biosensors, critically analyze their use in the construction of best biosensor by showing the pros and cons of the predicted methods for the practical use of biosensors. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. A Stable Glutamate Biosensor Based on MnO2 Bulk-modified ...

    African Journals Online (AJOL)

    An amperometric glutamate biosensor was developed using screen-printed carbon electrodes bulk-modified with MnO2 (5%, m:m) onto which glutamate oxidase was immobilized via Nafion(R) film entrapment. The analytical performance of the biosensor was assessed in a flow injection mode and peak heights of the ...

  7. Matrix-insensitive protein assays push the limits of biosensors in medicine

    DEFF Research Database (Denmark)

    Gaster, Richard S; Hall, Drew A; Nielsen, Carsten Haagen

    2009-01-01

    Advances in biosensor technologies for in vitro diagnostics have the potential to transform the practice of medicine. Despite considerable work in the biosensor field, there is still no general sensing platform that can be ubiquitously applied to detect the constellation of biomolecules in diverse...

  8. Gauging and visualizing c-di-GMP levels in pseudomonas aeruginosa using fluorescence-based biosensors

    DEFF Research Database (Denmark)

    Rybtke, Morten; Chua, Song Lin; Yam, Joey Kuok Hoong

    2017-01-01

    developed a collection of fluorescence-based c-di-GMP biosensors capable of gauging the c-di-GMP level in Pseudomonas aeruginosa and closely related bacteria. Here, we describe protocols for the use of these biosensors in gauging and visualizing cellular c-di-GMP levels of P. aeruginosa both in in vitro...

  9. Protease biosensors based on peptide-nanocellulose conjugates: from molecular design to dressing interface

    Science.gov (United States)

    The development of point of care diagnostic protease sensors applied to wound healing has received increased interest for chronic wound treatment and as an interface with chronic wound dressings. Biosensor technology has grown exponentially in recent years. Here we focus on nanocelluosic biosensor t...

  10. Design and Development of Biosensors for the Detection of Heavy Metal Toxicity

    Directory of Open Access Journals (Sweden)

    Graziella L. Turdean

    2011-01-01

    Full Text Available Many compounds (including heavy metals, HMs used in different fields of industry and/or agriculture act as inhibitors of enzymes, which, as consequence, are unable to bind the substrate. Even if it is not so sensitive, the method for detecting heavy metal traces using biosensors has a dynamic trend and is largely applied for improving the “life quality”, because of biosensor's sensitivity, selectivity, and simplicity. In the last years, they also become more and more a synergetic combination between biotechnology and microelectronics. Dedicated biosensors were developed for offline and online analysis, and also, their extent and diversity could be called a real “biosensor revolution”. A panel of examples of biosensors: enzyme-, DNA-, imuno-, whole-cell-based biosensors were systematised depending on the reaction type, transduction signal, or analytical performances. The mechanism of enzyme-based biosensor and the kinetic of detection process are described and compared. In this context, is explainable why bioelectronics, nanotechnology, miniaturization, and bioengineering will compete for developing sensitive and selective biosensors able to determine multiple analytes simultaneously and/or integrated in wireless communications systems.

  11. Aptamer optical biosensor without bio-breakage using upconversion nanoparticles as donors

    NARCIS (Netherlands)

    Song, K.; Kong, X.; Liu, X.; Zhang, Y.; Zeng, Q.; Tu, L.; Shi, Z.; Zhang, H.

    2012-01-01

    LRET-based optical biosensor of an aptamer-upconversion conjugate was constructed. It is demonstrated that photosensitized breakage and damage of aptamers are eliminated by employing UCNPs as donors, and the as-designed biosensor is specific and sensitive in the detection of ATP.

  12. A portable microfluidic Aptamer-Tethered Enzyme Capture (APTEC) biosensor for malaria diagnosis.

    Science.gov (United States)

    Fraser, Lewis A; Kinghorn, Andrew B; Dirkzwager, Roderick M; Liang, Shaolin; Cheung, Yee-Wai; Lim, Bryce; Shiu, Simon Chi-Chin; Tang, Marco S L; Andrew, Dean; Manitta, Joseph; Richards, Jack S; Tanner, Julian A

    2018-02-15

    There is a critical need for better biosensors for the detection and diagnosis of malaria. We previously developed a DNA aptamer that recognises the Plasmodium falciparum lactate dehydrogenase (PfLDH) enzyme with high sensitivity and specificity. The aptamer was integrated into an Aptamer-Tethered Enzyme Capture (APTEC) assay as a laboratory-based diagnostic approach. However, a portable equipment-free point-of-care aptamer-mediated biosensor could have a significant impact on malaria diagnosis in endemic regions. Here, we present a new concept for a malaria biosensor whereby aptamers are coated onto magnetic microbeads for magnet-guided capture, wash and detection of the biomarker. A biosensor incorporating three separate microfluidic chambers was designed to enable such magnet-guided equipment-free colorimetric detection of PfLDH. A series of microfluidic biosensor prototypes were optimised to lower rates of inter-chamber diffusion, increase sensitivity, and provide a method for point-of-care sample testing. The biosensor showed high sensitivity and specificity when detecting PfLDH using both in vitro cultured parasite samples and using clinical samples from malaria patients. The high performance of the biosensor provides a proof-of-principle for a portable biosensor that could be adaptable for a variety of aptamer-mediated diagnostic scenarios. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Direct biosensor immunoassays for the detection of nonmilk proteins in milk powder

    NARCIS (Netherlands)

    Haasnoot, W.; Olieman, K.; Cazemier, G.; Verheijen, R.

    2001-01-01

    The low prices of some nonmilk proteins make them attractive as potential adulterants in dairy products. An optical biosensor (BIACORE 3000) was used to develop a direct and combined biosensor immunoassay (BIA) for the simultaneous detection of soy, pea, and soluble wheat proteins in milk powders.

  14. Single biosensor immunoassay for the detection of five aminoglycosides in reconstituted skimmed milk

    NARCIS (Netherlands)

    Haasnoot, W.; Cazemier, G.; Koets, M.; Amerongen, van A.

    2003-01-01

    The application of an optical biosensor (Biacore 3000), with four flow channels (Fcs), in combination with a mixture of four specific antibodies resulted in a competitive inhibition biosensor immunoassay (BIA) for the simultaneous detection of the five relevant aminoglycosides in reconstituted

  15. On-line detection of toxic components using a microbial fuel cell-based biosensor

    NARCIS (Netherlands)

    Stein, N.E.; Hamelers, H.V.M.; Straten, van G.; Keesman, K.J.

    2012-01-01

    Safe drinking water without toxic chemicals is crucial for people's health. A recently developed sensor for the detection of toxic components in water is the microbial fuel cell (MFC)-based biosensor. In this biosensor, substrate consumption rate and metabolic activity of bacteria are directly

  16. Assessment of goat milk adulteration with a label-free monolithically integrated optoelectronic biosensor

    NARCIS (Netherlands)

    Angelopoulou, Μichailia; Botsialas, Athanasios; Salapatas, Alexandros; Petrou, Panagiota S.; Haasnoot, Willem; Makarona, Eleni; Jobst, Gerhard; Goustouridis, Dimitrios; Siafaka-Kapadai, Athanasia; Raptis, Ioannis; Misiakos, Konstantinos; Kakabakos, Sotirios E.

    2015-01-01

    The label-free detection of bovine milk in goat milk through a miniaturized optical biosensor is presented. The biosensor consists of ten planar silicon nitride waveguide Broad-Band Mach–Zehnder interferometers (BB-MZIs) monolithically integrated and self-aligned with their respective silicon

  17. Effect of Diffusion Limitations on Multianalyte Determination from Biased Biosensor Response

    Directory of Open Access Journals (Sweden)

    Romas Baronas

    2014-03-01

    Full Text Available The optimization-based quantitative determination of multianalyte concentrations from biased biosensor responses is investigated under internal and external diffusion-limited conditions. A computational model of a biocatalytic amperometric biosensor utilizing a mono-enzyme-catalyzed (nonspecific competitive conversion of two substrates was used to generate pseudo-experimental responses to mixtures of compounds. The influence of possible perturbations of the biosensor signal, due to a white noise- and temperature-induced trend, on the precision of the concentration determination has been investigated for different configurations of the biosensor operation. The optimization method was found to be suitable and accurate enough for the quantitative determination of the concentrations of the compounds from a given biosensor transient response. The computational experiments showed a complex dependence of the precision of the concentration estimation on the relative thickness of the outer diffusion layer, as well as on whether the biosensor operates under diffusion- or kinetics-limited conditions. When the biosensor response is affected by the induced exponential trend, the duration of the biosensor action can be optimized for increasing the accuracy of the quantitative analysis.

  18. Breakthroughs in photonics 2012: 2012 breakthroughs in lab-on-a-chip and optical biosensors

    OpenAIRE

    Duval, Daphné; Lechuga, Laura M.

    2013-01-01

    We review the most important achievements published in 2012 in the field of lab-on-a-chip (LOC) and optical biosensors. We will specially focus on optical label-free biosensors and their implementation into lab-on-a-chip platforms, with an emphasis on manuscripts demonstrating bioanalytical applications. © 2009-2012 IEEE.

  19. Detection of egg yolk antibodies reflecting Salmonella enteritidis infections using a surface plasmon resonance biosensor

    NARCIS (Netherlands)

    Thomas, M.E.; Bouma, A.; Eerden, van E.; Landman, W.J.M.; Knapen, van F.; Stegeman, J.A.; Bergwerff, A.A.

    2006-01-01

    A surface plasmon resonance (SPR) biosensor assay was developed on the basis of a lipopolysaccharide antigen of Salmonella enterica serovar enteritidis (S. enterica serovar enteritidis) to detect egg yolk antibodies against S. enterica serovar enteritidis. This biosensor assay was compared to two

  20. Engineering Modular Biosensors to Confer Metabolite-Responsive Regulation of Transcription.

    Science.gov (United States)

    Younger, Andrew K D; Dalvie, Neil C; Rottinghaus, Austin G; Leonard, Joshua N

    2017-02-17

    Efforts to engineer microbial factories have benefitted from mining biological diversity and high throughput synthesis of novel enzymatic pathways, yet screening and optimizing metabolic pathways remain rate-limiting steps. Metabolite-responsive biosensors may help to address these persistent challenges by enabling the monitoring of metabolite levels in individual cells and metabolite-responsive feedback control. We are currently limited to naturally evolved biosensors, which are insufficient for monitoring many metabolites of interest. Thus, a method for engineering novel biosensors would be powerful, yet we lack a generalizable approach that enables the construction of a wide range of biosensors. As a step toward this goal, we here explore several strategies for converting a metabolite-binding protein into a metabolite-responsive transcriptional regulator. By pairing a modular protein design approach with a library of synthetic promoters and applying robust statistical analyses, we identified strategies for engineering biosensor-regulated bacterial promoters and for achieving design-driven improvements of biosensor performance. We demonstrated the feasibility of this strategy by fusing a programmable DNA binding motif (zinc finger module) with a model ligand binding protein (maltose binding protein), to generate a novel biosensor conferring maltose-regulated gene expression. This systematic investigation provides insights that may guide the development of additional novel biosensors for diverse synthetic biology applications.