WorldWideScience

Sample records for swaying

  1. Measuring postural sway in sitting

    DEFF Research Database (Denmark)

    Curtis, Derek John; Hansen, Lisbeth; Luun, Malene

    2015-01-01

    group appeared to result from an equally stable trunk supported on a less stable pelvis. Mediolateral marker sway and intersegmental angular sway showed a clearer age dependency. Trunk postural control does not appear to differ between children older and younger than 10 years old, but sagittal plane...... and younger than 10 years old, participated in this study. The children sat unsupported for 30 s while their posture and sway were quantified using stereophotogrammetry. The tendency in both age groups was to sit with a backward tilted pelvis and a kyphotic trunk. The sitting position was most varied...

  2. A top-face-sway electromagnetic micromotor

    Science.gov (United States)

    Liang, Jingqiu; Le, Zichun; Yao, Jinsong; Wu, Zhiyong; Jia, Hongguang; Wu, Yihui; Jia, Zhi; 1, Qiongying Lu; Xuan, Ming; Wang, Lijun

    2003-04-01

    In this paper, the structure of a top-face-sway electromagnetic micromotor and its principle, fabrication and performance are introduced. A combination of the electromagnetic actuating and the planetary reducing provides this micromotor an advantage of low rotational speed and high torque. In addition, since a flexible coupling absorbs the sway and only outputs rotation, it gives this micromotor a balanced output. The dimension of the micromotor is 5 mm. Its rotation speed has a range of 20 - 860 rpm, and its driving current is 300 mA. The output torque of the micromotor is measured to be 13.0 ?Nm.

  3. column frame for design of reinforced concrete sway frames

    African Journals Online (AJOL)

    adminstrator

    design of slender reinforced concrete columns in sway frames according .... concrete,. Ac = gross cross-sectional area of the columns. Step 3: Effective Buckling Length Factors. The effective buckling length factors of columns in a sway frame shall be computed by .... shall have adequate resistance to failure in a sway mode ...

  4. Sway as predictor of injuries in children

    DEFF Research Database (Denmark)

    Runge, Lisbeth; Kristensen, Peter Lund; Junge, Tina

    2014-01-01

    ). Outcome measures Primary outcome was overuse and traumatic injuries, with special emphasis on ankle and knee sprains. Complaints were registered by SMS-track on a weekly basis, and after a telephone interview, clinicians examined and diagnosed the children with complaints. Injuries were diagnosed using...... ICD-10. Results Injuries: 2276, traumatic injuries: 714, ankle sprains: 164, knee sprains: 42 Preliminary multivariate analysis taking into account competing risk showed significant odds ratios (OR) at test 1; A) 1.003 per cm increase of sway; B) overall traumatic injury OR=3.0, ankle sprain OR=5...

  5. Kinesthetic motor imagery modulates body sway.

    Science.gov (United States)

    Rodrigues, E C; Lemos, T; Gouvea, B; Volchan, E; Imbiriba, L A; Vargas, C D

    2010-08-25

    The aim of this study was to investigate the effect of imagining an action implicating the body axis in the kinesthetic and visual motor imagery modalities upon the balance control system. Body sway analysis (measurement of center of pressure, CoP) together with electromyography (EMG) recording and verbal evaluation of imagery abilities were obtained from subjects during four tasks, performed in the upright position: to execute bilateral plantar flexions; to imagine themselves executing bilateral plantar flexions (kinesthetic modality); to imagine someone else executing the same movement (visual modality), and to imagine themselves singing a song (as a control imagery task). Body sway analysis revealed that kinesthetic imagery leads to a general increase in CoP oscillation, as reflected by an enhanced area of displacement. This effect was also verified for the CoP standard deviation in the medial-lateral direction. An increase in the trembling displacement (equivalent to center of pressure minus center of gravity) restricted to the anterior-posterior direction was also observed to occur during kinesthetic imagery. The visual imagery task did not differ from the control (sing) task for any of the analyzed parameters. No difference in the subjects' ability to perform the imagery tasks was found. No modulation of EMG data were observed across imagery tasks, indicating that there was no actual execution during motor imagination. These results suggest that motor imagery performed in the kinesthetic modality evokes motor representations involved in balance control. Copyright (c)10 IBRO. Published by Elsevier Ltd. All rights reserved.

  6. Influence of musical groove on postural sway.

    Science.gov (United States)

    Ross, Jessica M; Warlaumont, Anne S; Abney, Drew H; Rigoli, Lillian M; Balasubramaniam, Ramesh

    2016-03-01

    Timescales of postural fluctuation reflect underlying neuromuscular processes in balance control that are influenced by sensory information and the performance of concurrent cognitive and motor tasks. An open question is how postural fluctuations entrain to complex environmental rhythms, such as in music, which also vary on multiple timescales. Musical groove describes the property of music that encourages auditory-motor synchronization and is used to study voluntary motor entrainment to rhythmic sounds. The influence of groove on balance control mechanisms remains unexplored. We recorded fluctuations in center of pressure (CoP) of standing participants (N = 40) listening to low and high groove music and during quiet stance. We found an effect of musical groove on radial sway variability, with the least amount of variability in the high groove condition. In addition, we observed that groove influenced postural sway entrainment at various temporal scales. For example, with increasing levels of groove, we observed more entrainment to shorter, local timescale rhythmic musical occurrences. In contrast, we observed more entrainment to longer, global timescale features of the music, such as periodicity, with decreasing levels of groove. Finally, musical experience influenced the amount of postural variability and entrainment at local and global timescales. We conclude that groove in music and musical experience can influence the neural mechanisms that govern balance control, and discuss implications of our findings in terms of multiscale sensorimotor coupling. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  7. Multisensory training for postural sway control in non-injured elderly ...

    African Journals Online (AJOL)

    Multisensory training for postural sway control in non-injured elderly females. ... Elderly adults demonstrate increased postural sway, which may ultimately lead to falls. ... Keywords: multisensory training, postural sway control, balance ability, ...

  8. Comparison of postural sway depending on balance pad type.

    Science.gov (United States)

    Lee, DongGeon; Kim, HaNa; An, HyunJi; Jang, JiEun; Hong, SoungKyun; Jung, SunHye; Lee, Kyeongbong; Choi, Myong-Ryol; Lee, Kyung-Hee; Lee, GyuChang

    2018-02-01

    [Purpose] The purpose of the present study was to compare the postural sway of healthy adults standing on different types of balance pads. [Subjects and Methods] Nine healthy adults participated in this study. Postural body sway was measured while participants were standing on four different types of balance pads: Balance-pad Elite (BE), Aero-Step XL (AS), Dynair Ballkissen Senso (DBS), and Dynair Ballkissen XXL Meditation and Yoga (DBMY). A Wii Balance Board interfaced with Balancia software was used to measure postural body sway. [Results] In the sway velocity, sway path length, and sway area, no significant differences were found between baseline conditions (participants were standing on the floor with no balance pad) and the use of the BE or AS. However, significant increases in all parameters were found comparing baseline conditions to the use of either Dynair balance pad. Furthermore, the use of either Dynair balance pad significantly increased postural sway compared to both the BE and the AS. [Conclusion] These findings suggest that the DBS and DBMY balance pads may serve as superior tools for providing unstable condition for balance training than the BE and the AS balance pads.

  9. SWAY Bæredygtighed hos SMV'er

    DEFF Research Database (Denmark)

    2016-01-01

    Valg af materiale/medie/form: SWAY der indeholder forskelligt materiale Valg af arbejdsform: Kan anvendes som et element i undervisning eller indlæg Begrundelse for valg af materiale/medie/form/arbejdsform: Forskelligt materiale kan samlet heri og det kan tilgås af alle via linket...

  10. The effects of brief swaying on postural control.

    Science.gov (United States)

    Pagé, Sara; Maheu, Maxime; Landry, Simon P; Champoux, François

    2017-12-06

    Postural control can be improved with balance training. However, the nature and duration of the training required to enhance posture remains unclear. We studied the effects of 5 min of a self-initiated balance exercise along a single axis on postural control in healthy individuals. Postural control was measured before and after a 5-min period where members of the experimental group were asked to lean their entire body forward and backward and members of the control group were asked to remain seated. A significant improvement for sway velocity, a postural control variable significantly associated with an increased risk of falls, was found in the experimental group following the body sway exercise. These data suggest that a basic exercise can rapidly improve postural control and reduce the risk of falls.

  11. An input shaping controller enabling cranes to move without sway

    International Nuclear Information System (INIS)

    Singer, N.; Singhose, W.; Kriikku, E.

    1997-01-01

    A gantry crane at the Savannah River Technology Center was retrofitted with an Input Shaping controller. The controller intercepts the operator's pendant commands and modifies them in real time so that the crane is moved without residual sway in the suspended load. Mechanical components on the crane were modified to make the crane suitable for the anti-sway algorithm. This paper will describe the required mechanical modifications to the crane, as well as, a new form of Input Shaping that was developed for use on the crane. Experimental results are presented which demonstrate the effectiveness of the new process. Several practical considerations will be discussed including a novel (patent pending) approach for making small, accurate moves without residual oscillations

  12. Body sway reflects leadership in joint music performance.

    Science.gov (United States)

    Chang, Andrew; Livingstone, Steven R; Bosnyak, Dan J; Trainor, Laurel J

    2017-05-23

    The cultural and technological achievements of the human species depend on complex social interactions. Nonverbal interpersonal coordination, or joint action, is a crucial element of social interaction, but the dynamics of nonverbal information flow among people are not well understood. We used joint music making in string quartets, a complex, naturalistic nonverbal behavior, as a model system. Using motion capture, we recorded body sway simultaneously in four musicians, which reflected real-time interpersonal information sharing. We used Granger causality to analyze predictive relationships among the motion time series of the players to determine the magnitude and direction of information flow among the players. We experimentally manipulated which musician was the leader (followers were not informed who was leading) and whether they could see each other, to investigate how these variables affect information flow. We found that assigned leaders exerted significantly greater influence on others and were less influenced by others compared with followers. This effect was present, whether or not they could see each other, but was enhanced with visual information, indicating that visual as well as auditory information is used in musical coordination. Importantly, performers' ratings of the "goodness" of their performances were positively correlated with the overall degree of body sway coupling, indicating that communication through body sway reflects perceived performance success. These results confirm that information sharing in a nonverbal joint action task occurs through both auditory and visual cues and that the dynamics of information flow are affected by changing group relationships.

  13. Body sway reflects leadership in joint music performance

    Science.gov (United States)

    Livingstone, Steven R.; Bosnyak, Dan J.; Trainor, Laurel J.

    2017-01-01

    The cultural and technological achievements of the human species depend on complex social interactions. Nonverbal interpersonal coordination, or joint action, is a crucial element of social interaction, but the dynamics of nonverbal information flow among people are not well understood. We used joint music making in string quartets, a complex, naturalistic nonverbal behavior, as a model system. Using motion capture, we recorded body sway simultaneously in four musicians, which reflected real-time interpersonal information sharing. We used Granger causality to analyze predictive relationships among the motion time series of the players to determine the magnitude and direction of information flow among the players. We experimentally manipulated which musician was the leader (followers were not informed who was leading) and whether they could see each other, to investigate how these variables affect information flow. We found that assigned leaders exerted significantly greater influence on others and were less influenced by others compared with followers. This effect was present, whether or not they could see each other, but was enhanced with visual information, indicating that visual as well as auditory information is used in musical coordination. Importantly, performers’ ratings of the “goodness” of their performances were positively correlated with the overall degree of body sway coupling, indicating that communication through body sway reflects perceived performance success. These results confirm that information sharing in a nonverbal joint action task occurs through both auditory and visual cues and that the dynamics of information flow are affected by changing group relationships. PMID:28484007

  14. Voluntary sway and rapid orthogonal transitions of voluntary sway in young adults, and low and high fall-risk older adults.

    Science.gov (United States)

    Tucker, Murray G; Kavanagh, Justin J; Morrison, Steven; Barrett, Rod S

    2009-10-01

    Falls amongst older people have been linked to reduced postural stability and slowed movement responses. The objective of this study was to examine differences in postural stability and the speed of response between young adults, low fall-risk older adults, and high fall-risk older adults during voluntary postural sway movements. Twenty-five young adults (25+/-4 years), and 32 low fall-risk (74+/-5 years), and 16 high fall-risk (79+/-7 years) older adults performed voluntary sway and rapid orthogonal transitions of voluntary sway between the anterior-posterior and medial-lateral directions. Measures included reaction and movement time and the amplitudes of the centre of pressure, centre of mass, and the separation distance between the centre of pressure and centre of mass. Both fall-risk groups compared to the young had slower reaction and movement time, greater centre of pressure and/or centre of mass amplitude in the orthogonal (non-target) direction during voluntary sway, and reduced anterior-posterior and medial-lateral separation between the centre of pressure and centre of mass during voluntary sway and orthogonal transitions. High compared to low fall-risk individuals had slower reaction and movement time, increased non-target centre of mass amplitude during voluntary sway, and reduced medial-lateral centre of pressure and centre of mass separation during voluntary sway and orthogonal transitions. Age-related deterioration of postural control resulted in slower reactive responses and reduced control of the direction of body movement during voluntary sway and orthogonal transitions. Slower postural reaction and movement time and reduced medial-lateral control of the centre of mass during voluntary sway movements are associated with increased fall-risk in community-living older people.

  15. [Temporal Analysis of Body Sway during Reciprocator Motion Movie Viewing].

    Science.gov (United States)

    Sugiura, Akihiro; Tanaka, Kunihiko; Wakatabe, Shun; Matsumoto, Chika; Miyao, Masaru

    2016-01-01

    We aimed to investigate the effect of stereoscopic viewing and the degree of awareness of motion sickness on posture by measuring body sway during motion movie viewing. Nineteen students (12 men and 7 women; age range, 21-24 years) participated in this study. The movie, which showed several balls randomly positioned, was projected on a white wall 2 m in front of the subjects through a two-dimensional (2-D)/three-dimensional (3-D) convertible projector. To measure body sway during movie viewing, the subjects stood statically erect on a Wii balance board, with the toe opening at 18 degrees. The study protocol was as follows: The subjects watched (1) a nonmoving movie for 1 minute as the pretest and then (2) a round-trip sinusoidally moving-in-depth-direction movie for 3 minutes. (3) The initial static movie was shown again for 1 minute. Steps (2) and (3) were treated as one trial, after which two trials (2-D and 3-D movies) were performed in a random sequence. In this study, we found that posture changed according to the motion in the movie and that the longer the viewing time, the higher the synchronization accuracy. These tendencies depended on the level of awareness of motion sickness or the 3-D movie viewed. The mechanism of postural change in movie viewing was not vection but self-defense to resolve sensory conflict between visual information (spatial swing) and equilibrium sense (motionlessness).

  16. Voluntarily controlled but not merely observed visual feedback affects postural sway

    Science.gov (United States)

    Asai, Tomohisa; Hiromitsu, Kentaro; Imamizu, Hiroshi

    2018-01-01

    Online stabilization of human standing posture utilizes multisensory afferences (e.g., vision). Whereas visual feedback of spontaneous postural sway can stabilize postural control especially when observers concentrate on their body and intend to minimize postural sway, the effect of intentional control of visual feedback on postural sway itself remains unclear. This study assessed quiet standing posture in healthy adults voluntarily controlling or merely observing visual feedback. The visual feedback (moving square) had either low or high gain and was either horizontally flipped or not. Participants in the voluntary-control group were instructed to minimize their postural sway while voluntarily controlling visual feedback, whereas those in the observation group were instructed to minimize their postural sway while merely observing visual feedback. As a result, magnified and flipped visual feedback increased postural sway only in the voluntary-control group. Furthermore, regardless of the instructions and feedback manipulations, the experienced sense of control over visual feedback positively correlated with the magnitude of postural sway. We suggest that voluntarily controlled, but not merely observed, visual feedback is incorporated into the feedback control system for posture and begins to affect postural sway. PMID:29682421

  17. Motion in images is essential to cause motion sickness symptoms, but not to increase postural sway

    NARCIS (Netherlands)

    Lubeck, A.J.A.; Bos, J.E.; Stins, J.F.

    2015-01-01

    Abstract Objective It is generally assumed that motion in motion images is responsible for increased postural sway as well as for visually induced motion sickness (VIMS). However, this has not yet been tested. To that end, we studied postural sway and VIMS induced by motion and still images. Method

  18. Guying to prevent wind sway influences loblolly pine growth and wood properties

    Science.gov (United States)

    James D. Burton; Diana M. Smith

    1972-01-01

    Restraining young loblolly pine (Pinus taeda L.) trees from normal swaying in the wind markedly reduced radial growth in the immobilized portion of the bole and accelerated it in the upper, free-swaying portion. Guying also reduced specific gravity, number of earlywood and latewood tracheids, latewood tracheid diameter, and amount of compression wood...

  19. Influence of fatigue time and level on increases in postural sway.

    Science.gov (United States)

    Pline, Kevin M; Madigan, Michael L; Nussbaum, Maury A

    2006-12-15

    The purpose of this study was to investigate the influence of fatigue time and fatigue level on the increases in postural sway during quiet standing. Centre of pressure-based measures of postural sway were collected both before and after fatiguing participants using three different fatigue levels and two different fatigue times. Results showed increasing fatigue time increased sway velocity and sway area, and increasing fatigue level increased sway velocity. Fatigue time effects are important to consider when applying laboratory-based findings to the field given that the fatigue time can differ substantially between the two. Fatigue level effects imply a dose - response relationship between localized muscle fatigue and risk of falling that can have important implications in work/rest cycle scheduling for occupations at risk of injurious falls.

  20. The relation between postural sway magnitude and metabolic energy cost during upright standing on a compliant surface.

    NARCIS (Netherlands)

    Houdijk, J.H.P.; Brown, S.; van Dieen, J.H.

    2015-01-01

    Postural control performance is often described in terms of postural sway magnitude, assuming that lower sway magnitude reflects better performance. However, people do not typically minimize sway magnitude when performing a postural control task. Possibly, other criteria are satisfied when people

  1. Analysis of postural sway in patients with normal pressure hydrocephalus: effects of shunt implantation

    Directory of Open Access Journals (Sweden)

    Czerwosz L

    2009-12-01

    Full Text Available Abstract Poor postural balance is one of the major risk factors for falling in normal pressure hydrocephalus (NPH. Postural instability in the clinic is commonly assessed based upon force platform posturography. In this study we focused on the identification of changes in sway characteristics while standing quiet in patients with NPH before and after shunt implantation. Postural sway area and sway radius were analyzed in a group of 9 patients and 46 controls of both genders. Subject's spontaneous sway was recorded while standing quiet on a force platform for 30-60 s, with eyes open and then closed. Both analyzed sway descriptors identified between-group differences and also an effect of shunt implantation in the NPH group. Sway radius and sway area in patients exhibited very high values compared with those in the control group. Importantly, the effect of eyesight in patients was not observed before shunt implantation and reappeared after the surgical treatment. The study documents that static force platform posturography may be a reliable measure of postural control improvement due to shunt surgery.

  2. Validation of a FAST Model of the SWAY Prototype Floating Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Koh, J. H. [Nanyang Technological Univ. (Singapore); Ng, E. Y. K. [Nanyang Technological Univ. (Singapore); Robertson, Amy [National Renewable Energy Lab. (NREL), Golden, CO (United States); Jonkman, Jason [National Renewable Energy Lab. (NREL), Golden, CO (United States); Driscoll, Frederick [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-06-01

    As part of a collaboration of the National Renewable Energy Laboratory (NREL) and SWAY AS, NREL installed scientific wind, wave, and motion measurement equipment on the spar-type 1/6.5th-scale prototype SWAY floating offshore wind system. The equipment enhanced SWAY's data collection and allowed SWAY to verify the concept and NREL to validate a FAST model of the SWAY design in an open-water condition. Nanyang Technological University (NTU), in collaboration with NREL, assisted with the validation. This final report gives an overview of the SWAY prototype and NREL and NTU's efforts to validate a model of the system. The report provides a summary of the different software tools used in the study, the modeling strategies, and the development of a FAST model of the SWAY prototype wind turbine, including justification of the modeling assumptions. Because of uncertainty in system parameters and modeling assumptions due to the complexity of the design, several system properties were tuned to better represent the system and improve the accuracy of the simulations. Calibration was performed using data from a static equilibrium test and free-decay tests.

  3. Building and Calibration of a FAST Model of the SWAY Prototype Floating Wind Turbine: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Koh, J. H.; Robertson, A.; Jonkman, J.; Driscoll, F.; Ng, E. Y. K.

    2013-09-01

    Present efforts to verify and validate aero-hydro-servo-elastic numerical simulation tools that predict the dynamic response of a floating offshore wind turbine are primarily limited to code-to-code comparisons or code-to-data comparisons using data from wind-wave basin tests. In partnership with SWAY AS, the National Renewable Energy Laboratory (NREL) installed scientific wind, wave, and motion measurement equipment on the 1/6.5th-scale prototype SWAY floating wind system to collect data to validate a FAST model of the SWAY design in an open-water condition. Nanyang Technological University (NTU), through a collaboration with NREL, assisted in this validation.

  4. Is there a relationship between pain intensity and postural sway in patients with non-specific low back pain?

    DEFF Research Database (Denmark)

    Ruhe, A.; Fejer, R.; Walker, B.

    2011-01-01

    compared to healthy controls. In addition, regression analysis revealed a significant and linear increase in postural sway with higher pain ratings for all included COP parameters. Statistically significant changes in mean sway velocity in antero-posterior and medio-lateral direction and sway area were......Background: Increased center of pressure excursions are well documented in patients suffering from non-specific low back pain, whereby the altered postural sway includes both higher mean sway velocities and larger sway area. No investigation has been conducted to evaluate a relationship between...... pain intensity and postural sway in adults (aged 50 or less) with non-specific low back pain. Methods: Seventy-seven patients with non-specific low back pain and a matching number of healthy controls were enrolled. Center of pressure parameters were measured by three static bipedal standing tasks of 90...

  5. Sway control method and system for rotary cranes

    Science.gov (United States)

    Robinett, Rush D.; Parker, Gordon G.; Feddema, John T.; Dohrmann, Clark R.; Petterson, Ben J.

    1999-01-01

    Methods and apparatuses for reducing the oscillatory motion of rotary crane payloads during operator-commanded or computer-controlled maneuvers. An Input-shaping filter receives input signals from multiple operator input devices and converts them into output signals readable by the crane controller to dampen the payload tangential and radial sway associated with rotation of the jib. The input signals are characterized by a hub rotation trajectory .gamma.(t), which includes a jib angular acceleration .gamma., a trolley acceleration x, and a load-line length velocity L. The system state variables are characterized by a tangential rotation angle .theta.(t) and a radial rotation angle .phi.(t) of the load-line. The coupled equations of motion governing the filter are non-linear and configuration-dependent. In one embodiment, a filter is provided between the operator and the crane for filtering undesired frequencies from the angular .gamma. and trolley x velocities to suppress payload oscillation. In another embodiment, crane commands are computer generated and controlled to suppress vibration of the payload using a postulated asymmetrical shape for the acceleration profiles of the jib, which profiles are uniquely determined by a set of parameters (including the acceleration pulse amplitude and the duration and coast time between pulses), or a dynamic programming approach.

  6. Postural sway changes during pregnancy: a descriptive study using stabilometry.

    Science.gov (United States)

    Oliveira, Liliam F; Vieira, Taian M M; Macedo, Adriana R; Simpson, David M; Nadal, Jurandir

    2009-11-01

    This study aims to analyse changes in body sway over the course of pregnancy. This is a descriptive study in which stabilometric tests were applied at three stages of pregnancy and with a combination of different visual conditions (eyes open/closed) and support base configuration (feet together/apart). Twenty healthy pregnant women participated in the study. Changes in postural control with pregnancy were analysed via the elliptical area of the stabilograms and spectral analysis of the displacements of the centre of pressure (COP) along the lateral and anterior/posterior directions. The elliptical area encompassing the COP significantly increased over the course of the pregnancy for the feet apart and eyes closed test protocols. The spectral analysis revealed a significant increase of COP oscillations along the anterior-posterior direction when subjects stood with the eyes open/feet together and feet apart. A reduction (significant) of the lateral oscillations of COP was observed for the eyes open/feet together protocol. Pregnancy induced significant changes in the postural control when pregnant women stood with a reduced support base or with eyes closed.

  7. Do voluntary strength, proprioception, range of motion, or postural sway predict occurrence of lateral ankle sprain?

    OpenAIRE

    de Noronha, M; Refshauge, K M; Herbert, R D; Kilbreath, S L

    2006-01-01

    Prevention of ankle sprain, the most common sporting injury, is only possible once risk factors have been identified. Voluntary strength, proprioception, postural sway, and range of motion are possible risk factors. A systematic review was carried out to investigate these possiblities. Eligible studies were those with longitudinal design investigating ankle sprain in subjects aged ⩾15 years. The studies had to have measured range of motion, voluntary strength, proprioception, or postural sway...

  8. Motor deficits in schizophrenia quantified by nonlinear analysis of postural sway.

    Directory of Open Access Journals (Sweden)

    Jerillyn S Kent

    Full Text Available Motor dysfunction is a consistently reported but understudied aspect of schizophrenia. Postural sway area was examined in individuals with schizophrenia under four conditions with different amounts of visual and proprioceptive feedback: eyes open or closed and feet together or shoulder width apart. The nonlinear complexity of postural sway was assessed by detrended fluctuation analysis (DFA. The schizophrenia group (n = 27 exhibited greater sway area compared to controls (n = 37. Participants with schizophrenia showed increased sway area following the removal of visual input, while this pattern was absent in controls. Examination of DFA revealed decreased complexity of postural sway and abnormal changes in complexity upon removal of visual input in individuals with schizophrenia. Additionally, less complex postural sway was associated with increased symptom severity in participants with schizophrenia. Given the critical involvement of the cerebellum and related circuits in postural stability and sensorimotor integration, these results are consistent with growing evidence of motor, cerebellar, and sensory integration dysfunction in the disorder, and with theoretical models that implicate cerebellar deficits and more general disconnection of function in schizophrenia.

  9. Postural sway and regional cerebellar volume in adults with attention-deficit/hyperactivity disorder

    Science.gov (United States)

    Hove, Michael J.; Zeffiro, Thomas A.; Biederman, Joseph; Li, Zhi; Schmahmann, Jeremy; Valera, Eve M.

    2015-01-01

    Objective Motor abnormalities, including impaired balance and increased postural sway, are commonly reported in children with ADHD, but have yet to be investigated in adults with ADHD. Furthermore, although these abnormalities are thought to stem from cerebellar deficits, evidence for an association between the cerebellum and these motor deficits has yet to be provided for either adults or children with ADHD. Method In this study, we measured postural sway in adults with ADHD and controls, examining the relationship between sway and regional cerebellar gray matter volume. Thirty-two ADHD and 28 control participants completed various standing-posture tasks on a Wii balance board. Results Postural sway was significantly higher for the ADHD group compared to the healthy controls. Higher sway was positively associated with regional gray matter volume in the right posterior cerebellum (lobule VIII/IX). Conclusion These findings show that sway abnormalities commonly reported in children with ADHD are also present in adults, and for the first time show a relationship between postural control atypicalities and the cerebellum in this group. Our findings extend the literature on motor abnormalities in ADHD and contribute to our knowledge of their neural substrate. PMID:26106567

  10. Visual tasks and postural sway in children with and without autism spectrum disorders.

    Science.gov (United States)

    Chang, Chih-Hui; Wade, Michael G; Stoffregen, Thomas A; Hsu, Chin-Yu; Pan, Chien-Yu

    2010-01-01

    We investigated the influences of two different suprapostural visual tasks, visual searching and visual inspection, on the postural sway of children with and without autism spectrum disorder (ASD). Sixteen ASD children (age=8.75±1.34 years; height=130.34±11.03 cm) were recruited from a local support group. Individuals with an intellectual disability as a co-occurring condition and those with severe behavior problems that required formal intervention were excluded. Twenty-two sex- and age-matched typically developing (TD) children (age=8.93±1.39 years; height=133.47±8.21 cm) were recruited from a local public elementary school. Postural sway was recorded using a magnetic tracking system (Flock of Birds, Ascension Technologies, Inc., Burlington, VT). Results indicated that the ASD children exhibited greater sway than the TD children. Despite this difference, both TD and ASD children showed reduced sway during the search task, relative to sway during the inspection task. These findings replicate those of Stoffregen et al. (2000), Stoffregen, Giveans, et al. (2009), Stoffregen, Villard, et al. (2009) and Prado et al. (2007) and extend them to TD children as well as ASD children. Both TD and ASD children were able to functionally modulate postural sway to facilitate the performance of a task that required higher perceptual effort. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Postural sway in individuals with type 2 diabetes and concurrent benign paroxysmal positional vertigo.

    Science.gov (United States)

    D'Silva, Linda J; Kluding, Patricia M; Whitney, Susan L; Dai, Hongying; Santos, Marcio

    2017-12-01

    diabetes has been shown to affect the peripheral vestibular end organs and is associated with an increase in the frequency of benign paroxysmal positional vertigo (BPPV). People with diabetes have higher postural sway; however, the impact of symptomatic BPPV on postural sway in individuals with diabetes is unclear. The purpose of this cross-sectional study was to examine postural sway in people with type 2 diabetes who have symptomatic, untreated BPPV (BPPVDM). fifty-two participants (mean age 56.9 ± 5.6 years) were enrolled: controls (n = 14), diabetes (n = 14), BPPV only (n = 13) and BPPVDM (n = 11). An inertial motion sensor was used to detect pelvic acceleration across five standing conditions with eyes open/closed on firm/foam surfaces. Range of acceleration (cm/s 2 ), peak velocity (cm/s) and variability of sway [root mean square (RMS)] in the anterior-posterior (AP) and medial-lateral (ML) directions were used to compare postural sway between groups across conditions. participants with BPPVDM had higher ranges of acceleration in the AP (p = 0.02) and ML (p = 0.02) directions, as well as higher peak velocity (p diabetes groups. Standing on foam with eyes closed and tandem stance were challenging conditions for people with BPPVDM. clinicians may consider using standing on foam with eyes closed and tandem standing with eyes open to assess postural control in people with BPPVDM to identify postural instability.

  12. A Cable-Passive Damper System for Sway and Skew Motion Control of a Crane Spreader

    Directory of Open Access Journals (Sweden)

    La Duc Viet

    2015-01-01

    Full Text Available While the crane control problem is often approached by applying a certain active control command to some parts of the crane, this paper proposes a cable-passive damper system to reduce the vibration of a four-cable suspended crane spreader. The residual sway and skew motions of a crane spreader always produce the angle deflections between the crane cables and the crane spreader. The idea in this paper is to convert those deflections into energy dissipated by the viscous dampers, which connect the cables and the spreader. The proposed damper system is effective in reducing spreader sway and skew motions. Moreover, the optimal damping coefficient can be found analytically by minimizing the time integral of system energy. The numerical simulations show that the proposed passive system can assist the input shaping control of the trolley motion in reducing both sway and skew responses.

  13. Does postural sway change in association with manual therapeutic interventions? A review of the literature

    Directory of Open Access Journals (Sweden)

    Ruhe Alexander

    2013-02-01

    Full Text Available Abstract Study design Literature Review Objectives The objective of this literature review was to determine if postural sway changes in association with manual therapeutic interventions and to investigate whether any changes occur in healthy individuals or in association with pain intensity. Summary of Background data Improving postural stability has been proposed as a goal of manual therapeutic interventions. So far, no literature review has addressed whether there is supportive evidence for this and if so, what factors may be associated or causative for observed sway alterations. Search methods Seven online databases (PubMed, MEDLINE, EMBASE, CINAHL, Web of Science, ScienceDirect and the Cochrane library were systematically searched followed by a manual search of the retrieved papers. Selection criteria Studies comparing postural sway derived from bipedal force plate measurements in association with a manual therapeutic intervention, ideally compared to a control group. Data collection and analysis Two reviewers independently screened titles and abstracts for relevance, conducted the data extraction and the risk of bias assessment which was conducted using the RTI item bank. A descriptive analysis was conducted as the heterogeneous study designs prevented pooling of data. Results Nine studies of varying methodological quality met the inclusion criteria. No direct comparison of data across the studies was possible. There was no evidence that manual interventions lead to a change in postural sway in healthy individuals regardless of the body regions addressed by the intervention. There was some indication that postural sway may change at follow-up measurements in pain sufferers; however, this may be due to variations in pain intensity rather than resulting from the intervention itself. Conclusions There is no conclusive scientific evidence that manual therapeutic interventions may exhibit any immediate or long-term effect on COP excursions. Any

  14. Viewing pain and happy faces elicited similar changes in postural body sway.

    Directory of Open Access Journals (Sweden)

    Juan Gea

    Full Text Available Affective facial expressions are potent social cues that can induce relevant physiological changes, as well as behavioral dispositions in the observer. Previous studies have revealed that angry faces induced significant reductions in body sway as compared with neutral and happy faces, reflecting an avoidance behavioral tendency as freezing. The expression of pain is usually considered an unpleasant stimulus, but also a relevant cue for delivering effective care and social support. Nevertheless, there are few data about behavioral dispositions elicited by the observation of pain expressions in others. The aim of the present research was to evaluate approach-avoidance tendencies by using video recordings of postural body sway when participants were standing and observing facial expressions of pain, happy and neutral. We hypothesized that although pain faces would be rated as more unpleasant than the other faces, they would provoke significant changes in postural body sway as compared to neutral facial expressions. Forty healthy female volunteers (mean age 25 participated in the study. Amplitude of forward movements and backward movements in the anterior-posterior and medial-lateral axes were obtained. Statistical analyses revealed that pain faces were the most unpleasant stimuli, and that both happy and pain faces were more arousing than neutral ones. Happy and pain faces also elicited greater amplitude of body sway in the anterior-posterior axes as compared with neutral faces. In addition, significant positive correlations were found between body sway elicited by pain faces and pleasantness and empathic ratings, suggesting that changes in postural body sway elicited by pain faces might be associated with approach and cooperative behavioral responses.

  15. An improved input shaping design for an efficient sway control of a nonlinear 3D overhead crane with friction

    Science.gov (United States)

    Maghsoudi, Mohammad Javad; Mohamed, Z.; Sudin, S.; Buyamin, S.; Jaafar, H. I.; Ahmad, S. M.

    2017-08-01

    This paper proposes an improved input shaping scheme for an efficient sway control of a nonlinear three dimensional (3D) overhead crane with friction using the particle swarm optimization (PSO) algorithm. Using this approach, a higher payload sway reduction is obtained as the input shaper is designed based on a complete nonlinear model, as compared to the analytical-based input shaping scheme derived using a linear second order model. Zero Vibration (ZV) and Distributed Zero Vibration (DZV) shapers are designed using both analytical and PSO approaches for sway control of rail and trolley movements. To test the effectiveness of the proposed approach, MATLAB simulations and experiments on a laboratory 3D overhead crane are performed under various conditions involving different cable lengths and sway frequencies. Their performances are studied based on a maximum residual of payload sway and Integrated Absolute Error (IAE) values which indicate total payload sway of the crane. With experiments, the superiority of the proposed approach over the analytical-based is shown by 30-50% reductions of the IAE values for rail and trolley movements, for both ZV and DZV shapers. In addition, simulations results show higher sway reductions with the proposed approach. It is revealed that the proposed PSO-based input shaping design provides higher payload sway reductions of a 3D overhead crane with friction as compared to the commonly designed input shapers.

  16. Is there a relationship between pain intensity and postural sway in patients with non-specific low back pain?

    Directory of Open Access Journals (Sweden)

    Fejer René

    2011-07-01

    Full Text Available Abstract Background Increased center of pressure excursions are well documented in patients suffering from non-specific low back pain, whereby the altered postural sway includes both higher mean sway velocities and larger sway area. No investigation has been conducted to evaluate a relationship between pain intensity and postural sway in adults (aged 50 or less with non-specific low back pain. Methods Seventy-seven patients with non-specific low back pain and a matching number of healthy controls were enrolled. Center of pressure parameters were measured by three static bipedal standing tasks of 90 sec duration with eyes closed in narrow stance on a firm surface. The perceived pain intensity was assessed by a numeric rating scale (NRS-11, an equal number of patients (n = 11 was enrolled per pain score. Results Generally, our results confirmed increased postural instability in pain sufferers compared to healthy controls. In addition, regression analysis revealed a significant and linear increase in postural sway with higher pain ratings for all included COP parameters. Statistically significant changes in mean sway velocity in antero-posterior and medio-lateral direction and sway area were reached with an incremental change in NRS scores of two to three points. Conclusions COP mean velocity and sway area are closely related to self-reported pain scores. This relationship may be of clinical use as an objective monitoring tool for patients under treatment or rehabilitation.

  17. Is there a relationship between pain intensity and postural sway in patients with non-specific low back pain?

    Science.gov (United States)

    Ruhe, Alexander; Fejer, René; Walker, Bruce

    2011-07-15

    Increased center of pressure excursions are well documented in patients suffering from non-specific low back pain, whereby the altered postural sway includes both higher mean sway velocities and larger sway area. No investigation has been conducted to evaluate a relationship between pain intensity and postural sway in adults (aged 50 or less) with non-specific low back pain. Seventy-seven patients with non-specific low back pain and a matching number of healthy controls were enrolled. Center of pressure parameters were measured by three static bipedal standing tasks of 90 sec duration with eyes closed in narrow stance on a firm surface. The perceived pain intensity was assessed by a numeric rating scale (NRS-11), an equal number of patients (n = 11) was enrolled per pain score. Generally, our results confirmed increased postural instability in pain sufferers compared to healthy controls. In addition, regression analysis revealed a significant and linear increase in postural sway with higher pain ratings for all included COP parameters. Statistically significant changes in mean sway velocity in antero-posterior and medio-lateral direction and sway area were reached with an incremental change in NRS scores of two to three points. COP mean velocity and sway area are closely related to self-reported pain scores. This relationship may be of clinical use as an objective monitoring tool for patients under treatment or rehabilitation.

  18. Testing the assumption of normality in body sway area calculations during unipedal stance tests with an inertial sensor.

    Science.gov (United States)

    Kyoung Jae Kim; Lucarevic, Jennifer; Bennett, Christopher; Gaunaurd, Ignacio; Gailey, Robert; Agrawal, Vibhor

    2016-08-01

    The quantification of postural sway during the unipedal stance test is one of the essentials of posturography. A shift of center of pressure (CoP) is an indirect measure of postural sway and also a measure of a person's ability to maintain balance. A widely used method in laboratory settings to calculate the sway of body center of mass (CoM) is through an ellipse that encloses 95% of CoP trajectory. The 95% ellipse can be computed under the assumption that the spatial distribution of the CoP points recorded from force platforms is normal. However, to date, this assumption of normality has not been demonstrated for sway measurements recorded from a sacral inertial measurement unit (IMU). This work provides evidence for non-normality of sway trajectories calculated at a sacral IMU with injured subjects as well as healthy subjects.

  19. Pain relief is associated with decreasing postural sway in patients with non-specific low back pain.

    Science.gov (United States)

    Ruhe, Alexander; Fejer, René; Walker, Bruce

    2012-03-21

    Increased postural sway is well documented in patients suffering from non-specific low back pain, whereby a linear relationship between higher pain intensities and increasing postural sway has been described. No investigation has been conducted to evaluate whether this relationship is maintained if pain levels change in adults with non-specific low back pain. Thirty-eight patients with non-specific low back pain and a matching number of healthy controls were enrolled. Postural sway was measured by three identical static bipedal standing tasks of 90 sec duration with eyes closed in narrow stance on a firm surface. The perceived pain intensity was assessed by a numeric rating scale (NRS-11). The patients received three manual interventions (e.g. manipulation, mobilization or soft tissue techniques) at 3-4 day intervals, postural sway measures were obtained at each occasion. A clinically relevant decrease of four NRS scores in associated with manual interventions correlated with a significant decrease in postural sway. In contrast, if no clinically relevant change in intensity occurred (≤ 1 level), postural sway remained similar compared to baseline. The postural sway measures obtained at follow-up sessions 2 and 3 associated with specific NRS level showed no significant differences compared to reference values for the same pain score. Alterations in self-reported pain intensities are closely related to changes in postural sway. The previously reported linear relationship between the two variables is maintained as pain levels change. Pain interference appears responsible for the altered sway in pain sufferers. This underlines the clinical use of sway measures as an objective monitoring tool during treatment or rehabilitation.

  20. Day-to-Day Variability of Postural Sway and Its Association With Cognitive Function in Older Adults: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Julia M. Leach

    2018-05-01

    Full Text Available Introduction: Increased variability in motor function has been observed during the initial stages of cognitive decline. However, the natural variability of postural control, as well as its association with cognitive status and decline, remains unknown. The objective of this pilot study was to characterize the day-to-day variability in postural sway in non-demented older adults. We hypothesized that older adults with a lower cognitive status would have higher day-to-day variability in postural sway.Materials and Methods: A Nintendo Wii balance board (WBB was used to quantify postural sway in the home twice daily for 30 days in 20 non-demented, community-dwelling older adults: once under a single-task condition and once under a dual-task condition (using a daily word search task administered via a Nook tablet. Mean sway distance, velocity, area, centroidal frequency and frequency dispersion were derived from the center of pressure data acquired from the WBB.Results: Linear relationships were observed between the day-to-day variability in postural sway and cognitive status (indexed by cognitive global z-scores. More variability in time-domain postural sway (sway distance and area and less variability in frequency-domain postural sway (centroidal sway frequency were associated with a lower cognitive status under both the single- and dual-task conditions. Additionally, lower cognitive performance rates on the daily word search task were related to a lower cognitive status.Discussion: This small pilot study conducted on a short time scale motivates large-scale implementations over more extended time periods. Tracking longitudinal changes in postural sway may further our understanding of early-stage postural decline and its association with cognitive decline and, in turn, may aid in the early detection of dementia during preclinical stages when the utility of disease-modifying therapies would be greatest.

  1. Temporal changes in postural sway caused by ultrashort-acting hypnotics: triazolam and zolpidem.

    Science.gov (United States)

    Nakamura, M; Ishii, M; Niwa, Y; Yamazaki, M; Ito, H

    2005-01-01

    Two ultrashort-acting hypnotics, triazolam 0.25 mg and zolpidem 10 mg, were studied for their effects on equilibrium function in humans. Eight healthy male subjects participated in a double-blind, placebo-controlled study after informed consent. They subjected to static equilibrium tests, oculomotor tests and an assay of drug concentrations in the blood. Zolpidem was statistically significant in postural sway in tandem stance test, as defined by parametric values of tracing sum length and polygonal area of foot pressure center measured by a gait analysis system. In the tandem stance test, triazolam was statistically significant in postural sway only as defined by the polygonal area. However, in the Romberg test, the only statistically significant difference in zolpidem use was observed in polygonal area values. Blood concentrations of triazolam and zolpidem were found to closely correlate with the extent of postural sway in both tandem stance and Romberg tests. In this study, zolpidem with minimal muscle-relaxant effect incurred imbalance more extensively than triazolam, which is known for its effect of muscle relaxation. In addition, gaze deviation nystagmus was observed only in zolpidem use in 5 of 8 subjects (62.5%). From these results, it is suggested that in the use of hypnotics, sway derives from the suppression of the central nervous system relevant to awakening rather than from muscle relaxation. The prior reference to blood concentrations of hypnotics should help improve safety care in minimizing loss of balance control and possible fall. Copyright 2005 S. Karger AG, Basel.

  2. Comparative assessment of anti-sway control strategy for tower crane system

    Science.gov (United States)

    Samin, Reza Ezuan; Mohamed, Zaharuddin

    2017-09-01

    Tower crane is also known as rotary crane and widely used in constructions due to limited human capability to carry the various types of load at the construction site. In general crane is used for the purpose of loading and unloading heavy material from one place to another. However, in order to transfer the material in minimum time from one location to another, swaying of the payload will occur. Hence, this research presents the investigation of tower crane system which mainly focusing on the swaying angle of the payload by implementing conventional and intelligent controllers. Its mathematical modeling is developed using the Newton's Second Law and simulation is done within the MATLAB/Simulink environment. Simulation results are presented in cart trajectory capability and payload sway angle reduction. A comparative assessment between conventional controller and intelligent controller for the tower crane system are presented and discussed. Furthermore, the effect of various rope length and payload mass of the tower crane system to the performance of trajectory capability and sway angle reduction are also presented and discussed.

  3. Light and heavy touch reduces postural sway and modifies axial tone in Parkinson's disease.

    Science.gov (United States)

    Franzén, Erika; Paquette, Caroline; Gurfinkel, Victor; Horak, Fay

    2012-10-01

    Light touch with a stable object reduces postural sway by increasing axial postural tone in healthy subjects. However, it is unknown whether subjects with Parkinson's disease (PD), who have more postural sway and higher axial postural tone than healthy subjects, can benefit from haptic touch. To investigate the effect of light and heavy touch on postural stability and hip tone in subjects with PD. Fourteen subjects with mid-stage PD and 14 healthy control subjects were evaluated during quiet standing with eyes closed with their arms (a) crossed, (b) lightly touching a fixed rigid bar in front of them, and (c) firmly gripping the bar. Postural sway was measured with a forceplate, and axial hip tone was quantified using a unique device that measures the resistance of the hips to yaw rotation while maintaining active stance. Subjects with PD significantly decreased their postural sway with light or heavy touch (P touch, hip tone was larger in PD subjects. With touch, however, tone values were similar in both groups. This change in hip tone with touch was highly correlated with the initial amount of tone (PD, r = -.72 to -.95; controls, r = -.74 to -.85). The authors showed, for the first time, that subjects with PD benefit from touch similarly to control subjects and that despite higher axial postural tone, PD subjects are able to modulate their tone with touch. Future studies should investigate the complex relationship between touch and postural tone.

  4. Body sway at sea for two visual tasks and three stance widths.

    Science.gov (United States)

    Stoffregen, Thomas A; Villard, Sebastien; Yu, Yawen

    2009-12-01

    On land, body sway is influenced by stance width (the distance between the feet) and by visual tasks engaged in during stance. While wider stance can be used to stabilize the body against ship motion and crewmembers are obliged to carry out many visual tasks while standing, the influence of these factors on the kinematics of body sway has not been studied at sea. Crewmembers of the RN Atlantis stood on a force plate from which we obtained data on the positional variability of the center of pressure (COP). The sea state was 2 on the Beaufort scale. We varied stance width (5 cm, 17 cm, and 30 cm) and the nature of the visual tasks. In the Inspection task, participants viewed a plain piece of white paper, while in the Search task they counted the number of target letters that appeared in a block of text. Search task performance was similar to reports from terrestrial studies. Variability of the COP position was reduced during the Search task relative to the Inspection task. Variability was also reduced during wide stance relative to narrow stance. The influence of stance width was greater than has been observed in terrestrial studies. These results suggest that two factors that influence postural sway on land (variations in stance width and in the nature of visual tasks) also influence sway at sea. We conclude that--in mild sea states--the influence of these factors is not suppressed by ship motion.

  5. Eye movement instructions modulate motion illusion and body sway with Op Art.

    Science.gov (United States)

    Kapoula, Zoï; Lang, Alexandre; Vernet, Marine; Locher, Paul

    2015-01-01

    Op Art generates illusory visual motion. It has been proposed that eye movements participate in such illusion. This study examined the effect of eye movement instructions (fixation vs. free exploration) on the sensation of motion as well as the body sway of subjects viewing Op Art paintings. Twenty-eight healthy adults in orthostatic stance were successively exposed to three visual stimuli consisting of one figure representing a cross (baseline condition) and two Op Art paintings providing sense of motion in depth-Bridget Riley's Movements in Squares and Akiyoshi Kitaoka's Rollers. Before their exposure to the Op Art images, participants were instructed either to fixate at the center of the image (fixation condition) or to explore the artwork (free viewing condition). Posture was measured for 30 s per condition using a body fixed sensor (accelerometer). The major finding of this study is that the two Op Art paintings induced a larger antero-posterior body sway both in terms of speed and displacement and an increased motion illusion in the free viewing condition as compared to the fixation condition. For body sway, this effect was significant for the Riley painting, while for motion illusion this effect was significant for Kitaoka's image. These results are attributed to macro-saccades presumably occurring under free viewing instructions, and most likely to the small vergence drifts during fixations following the saccades; such movements in interaction with visual properties of each image would increase either the illusory motion sensation or the antero-posterior body sway.

  6. Intersection of reality and fiction in art perception: pictorial space, body sway and mental imagery.

    Science.gov (United States)

    Ganczarek, Joanna; Ruggieri, V; Nardi, D; Olivetti Belardinelli, M

    2015-09-01

    The thesis of embodied cognition claims that perception of the environment entails a complex set of multisensory processes which forms a basis for the agent's potential and immediate actions. However, in the case of artworks, an agent becomes an observer and action turns into a reaction. This raises questions about the presence of embodied or situated cognition involved in art reception. The study aimed to assess the bodily correlates of perceiving fictional pictorial spaces in the absence of a possibility of an actual physical immersion or manipulation of represented forms. The subjects were presented with paintings by Vermeer and De Hooch, whilst their body sway and eye movements were recorded. Moreover, test and questionnaires on mental imagery (MRT, VVIQ and OSIQ) were administered. Three major results were obtained: (1) the degree of pictorial depth did not influence body sway; (2) fixations to distant elements in paintings (i.e. backgrounds) were accompanied by an increase in body sway; and (3) mental rotation test scores correlated positively with body sway. Our results suggest that in certain cases--despite the fictional character of art--observers' reactions resemble reactions to real stimuli. It is proposed that these reactions are mediated by mental imagery (e.g. mental rotation) that contributes to the act of representing alternative to real artistic spaces.

  7. Loss of otolith function with age is associated with increased postural sway measures.

    Science.gov (United States)

    Serrador, Jorge M; Lipsitz, Lewis A; Gopalakrishnan, Gosala S; Black, F Owen; Wood, Scott J

    2009-11-06

    Loss of balance and increased fall risk is a common problem associated with aging. Changes in vestibular function occur with aging but the contribution of reduced vestibular otolith function to fall risk remains unknown. We examined a population of 151 healthy individuals (aged 21-93) for both balance (sway measures) and ocular counter-rolling (OCR) function. We assessed balance function with eyes open and closed on a firm surface, eyes open and closed on a foam surface and OCR during +/-20 degree roll tilt at 0.005 Hz. Subjects demonstrated a significant age-related reduction in OCR and increase in postural sway. The effect of age on OCR was greater in females than males. The reduction in OCR was strongly correlated with the mediolateral measures of sway with eyes closed. This correlation was also present in the elderly group alone, suggesting that aging alone does not account for this effect. OCR decreased linearly with age and at a greater rate in females than males. This loss of vestibular otolith-ocular function is associated with increased mediolateral measures of sway which have been shown to be related to increased risk of falls. These data suggest a role for loss of otolith function in contributing to fall risk in the elderly. Further prospective, longitudinal studies are necessary to confirm these findings.

  8. Standing body sway in women with and without morning sickness in pregnancy.

    Science.gov (United States)

    Yu, Yawen; Chung, Hyun Chae; Hemingway, Lauren; Stoffregen, Thomas A

    2013-01-01

    Morning sickness typically is attributed to hormonal changes in pregnancy. We asked whether morning sickness is associated with changes in standing postural equilibrium, as occurs in research on visually induced motion sickness. Twenty-one pregnant women (mean age=30 years, mean height=163cm; mean weight=63kg) were tested during the first trimester. Laboratory-based balance measures were collected, along with perceived postural stability, the presence of morning sickness, and the severity of subjective symptoms. We varied the distance between the feet and the visual task performed during stance. Participants were classified as either experiencing (Sick, n=12) or not experiencing (Well, n=9) morning sickness. Perceived balance stability was lower for Sick than for Well women. The positional variability of sway was reduced for the Sick group, relative to the Well group. Positional variability decreased with wider stance width, and was reduced during performance of a more demanding visual task. Stance width and visual task also influenced the temporal dynamics of sway. Effects of stance width and visual task on postural sway were similar to effects in non-pregnant adults, suggesting that sensitive tuning of posture is maintained during the first trimester. The findings suggest that women with morning sickness may attempt to stabilize their bodies by reducing overall body sway. It may be useful to recommend that women adopt wider stance early in pregnancy. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Postural sway and regional cerebellar volume in adults with attention-deficit/hyperactivity disorder

    Directory of Open Access Journals (Sweden)

    Michael J. Hove

    2015-01-01

    Conclusion: These findings show that sway abnormalities commonly reported in children with ADHD are also present in adults, and for the first time show a relationship between postural control atypicalities and the cerebellum in this group. Our findings extend the literature on motor abnormalities in ADHD and contribute to our knowledge of their neural substrate.

  10. An Evaluation of New Indices of Postural Sway in Patients with Knee Osteoarthritis

    Directory of Open Access Journals (Sweden)

    SM Mohsenipour

    2017-07-01

    CONCLUSION: Results of the study demonstrated that patients with more difficult positions (RS, NTS have more sways than those with CDLS, especially in the lateral direction. Therefore, balancing and strengthening exercises are especially important in the lateral direction and in challenging situations.

  11. Correlation between Mechanical Properties of the Ankle Muscles and Postural Sway during the Menstrual Cycle.

    Science.gov (United States)

    Yim, JongEun; Petrofsky, Jerrold; Lee, Haneul

    2018-03-01

    Ankle and foot injuries are common among athletes and physically active individuals. The most common residual disability, ankle sprain, is characterized by instability along with postural sway. If the supporting structures around a joint become lax, posture stability and balance are also affected. Previous studies have examined muscle stiffness and elasticity and postural sway separately; however, the relationship between these factors is yet unknown. It is well known that the levels of sex hormones, especially estrogen, change in women over the phase of the menstrual cycle. Therefore, this study examined the relationship between the mechanical properties of tissue and balance activity using a non-invasive digital palpation device to determine if they undergo any changes over the menstrual cycle in young women. Sixteen young women with regular menstrual cycles completed the study. Tone, stiffness, and elasticity of the ankle muscles (lateral gastrocnemius, peroneus longus, and tibialis anterior) were measured using a non-invasive digital palpation device. Postural sway was recorded while the participants performed balance tasks during ovulation and menstruation. Significantly greater posture sway characteristics and ankle muscle elasticity were found during ovulation than during menstruation; lower tone and stiffness of the ankle muscles were observed at ovulation (p connective tissues. We therefore postulate that estrogen increases joint and muscle laxity and affects posture stability according to the phase of the menstrual cycle.

  12. Extended design method for in-plane stability of haunched sway portal frames

    NARCIS (Netherlands)

    van Hove, B.W.E.M.; Snijder, H.H.; Hofmeyer, H.; Altinga, N.

    2017-01-01

    In current design rules the effect of a haunch on the sway in-plane stability of a steel portal frame only takes into account the influence of the haunch dimensions on the beam-to-column connection strength and stiffness. The effect of the haunch dimensions on the beam behavior, and thus on the

  13. Loss of Peripheral Sensory Function Explains Much of the Increase in Postural Sway in Healthy Older Adults

    Directory of Open Access Journals (Sweden)

    Eric Anson

    2017-06-01

    Full Text Available Postural sway increases with age and peripheral sensory disease. Whether, peripheral sensory function is related to postural sway independent of age in healthy adults is unclear. Here, we investigated the relationship between tests of visual function (VISFIELD, vestibular function (CANAL or OTOLITH, proprioceptive function (PROP, and age, with center of mass sway area (COM measured with eyes open then closed on firm and then a foam surface. A cross-sectional sample of 366 community dwelling healthy adults from the Baltimore Longitudinal Study of Aging was tested. Multiple linear regressions examined the association between COM and VISFIELD, PROP, CANAL, and OTOLITH separately and in multi-sensory models controlling for age and gender. PROP dominated sensory prediction of sway across most balance conditions (β's = 0.09–0.19, p's < 0.001, except on foam eyes closed where CANAL function loss was the only significant sensory predictor of sway (β = 2.12, p < 0.016. Age was not a consistent predictor of sway. This suggests loss of peripheral sensory function explains much of the age-associated increase in sway.

  14. The Association between Seasonal Variation in Vitamin D, Postural Sway, and Falls Risk: An Observational Cohort Study

    Directory of Open Access Journals (Sweden)

    Marie-Louise Bird

    2013-01-01

    Full Text Available Introduction. Low serum vitamin D levels are associated with increased postural sway. Vitamin D varies seasonally. This study investigates whether postural sway varies seasonally and is associated with serum vitamin D and falls. Methods. In a longitudinal observational study, eighty-eight independently mobile community-dwelling older adults (69.7 ± 7.6 years were evaluated on five occasions over one year, measuring postural sway (force platform, vitamin D levels, fall incidence, and causes and adverse outcomes. Mixed-methods Poisson regression was used to determine associations between measures. Results. Postural sway did not vary over the year. Vitamin D levels varied seasonally (P<0.001, peaking in summer. Incidence of falls (P=0.01 and injurious falls (P=0.02 were lower in spring, with the highest fall rate at the end of autumn. Postural sway was not related to vitamin D (P=0.87 or fall rates, but it was associated with fall injuries (IRR 1.59 (CI 1.14 to 2.24, P=0.007. Conclusions. Postural sway remained stable across the year while vitamin D varied seasonally. Participants with high values for postural sway demonstrated higher rates of injurious falls. This study provides important evidence for clinicians and researchers providing interventions measuring balance outcomes across seasons.

  15. The influence of age, anxiety and concern about falling on postural sway when standing at an elevated level.

    Science.gov (United States)

    Sturnieks, Daina L; Delbaere, Kim; Brodie, Matthew A; Lord, Stephen R

    2016-10-01

    Psychological processes may influence balance and contribute to the risk of falls in older people. While a self-reported fear of falling is associated with increased postural sway, inducing fear using an elevated platform can lead to reduced sway, suggesting different underlying mechanisms whereby fear may influence balance control. This study examined changes in postural sway, muscle activity and physiological measures of arousal while standing on a 65cm elevated platform, compared to floor level, in young and older adults. The older adults were classified as fall concerned or not fall concerned based on the Falls Efficacy Scale-International and anxious or not anxious based on the Goldberg Anxiety Scale. Fall concern did not affect the physiological and sway response to the elevated platform. In response to the postural threat, the anxious participants increased their sway frequency (p=0.001) but did not reduce sway range (p=0.674). Conversely, non-anxious participants showed an adaptive tightening of balance control, effectively reducing sway range in the elevated condition (ppostural control strategies under threatening conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Correlations between measurement time and different expansibility of the elastic tape on the rectus femoris and body sway index with plyometric exercise.

    Science.gov (United States)

    Yoon, Jung-Gyu

    2018-01-01

    [Purpose] The purpose of this study was to examine correlations between measurement time and different expansibility of the elastic tape on the rectus femoris and body sway index with plyometric exercise. [Subjects and Methods] The subjects of this study were 24 healthy men. C90 area, C90 angle, trace length, sway average velocity for body sway index were measured using a force plate by BT4. The collected data were analyzed using Kendall's coefficient of concordance. [Results] All of body sway index on measuring follow up 24 hours after removing tape were significantly decreased than before and right after plyometric exercise. No significant correlations were found between body sway index and different expansibility of the elastic tape. [Conclusion] It appears that different expansibility of the elastic tape does not affect the ability to body sway index. Carry over effect of taping was verified on measuring follow up 24 hours after removing tape through the decreasing body sway index.

  17. Girls with generalized joint hypermobility display changed muscle activity and postural sway during static balance tasks

    DEFF Research Database (Denmark)

    Juul-Kristensen, B; Johansen, Kl; Hendriksen, P

    2016-01-01

    OBJECTIVES: To study knee muscle activity and static postural sway in girls with generalized joint hypermobility (GJH). METHOD: Sixteen girls with GJH and 11 girls with non-GJH (NGJH) aged 14 years, randomly recruited among schoolchildren, participated in this study. GJH inclusion criteria were......: Beighton score minimum 6/9 and one hypermobile knee; for NGJH: Beighton score maximum 5/9 and no knees with hypermobility. The participants performed a static two-legged balance test with eyes open (2EO) and eyes closed (2EC) and a one-legged stance test with eyes open (1EO). Postural sway (centre......) of Q, H, and G muscle activity was calculated. Knee function was self-reported using the Knee Injury and Osteoarthritis Outcome Score for children (KOOS-Child). RESULTS: GJH had a significantly lower lateral HQ CCI and a higher medial/lateral HQ CCI ratio in all balance tasks. Group mean EMG varied...

  18. Postural orientation and equilibrium processes associated with increased postural sway in autism spectrum disorder (ASD).

    Science.gov (United States)

    Wang, Zheng; Hallac, Rami R; Conroy, Kaitlin C; White, Stormi P; Kane, Alex A; Collinsworth, Amy L; Sweeney, John A; Mosconi, Matthew W

    2016-01-01

    Increased postural sway has been repeatedly documented in children with autism spectrum disorder (ASD). Characterizing the control processes underlying this deficit, including postural orientation and equilibrium, may provide key insights into neurophysiological mechanisms associated with ASD. Postural orientation refers to children's ability to actively align their trunk and head with respect to their base of support, while postural equilibrium is an active process whereby children coordinate ankle dorsi-/plantar-flexion and hip abduction/adduction movements to stabilize their upper body. Dynamic engagement of each of these control processes is important for maintaining postural stability, though neither postural orientation nor equilibrium has been studied in ASD. Twenty-two children with ASD and 21 age and performance IQ-matched typically developing (TD) controls completed three standing tests. During static stance, participants were instructed to stand as still as possible. During dynamic stances, participants swayed at a comfortable speed and magnitude in either anterior-posterior (AP) or mediolateral (ML) directions. The center of pressure (COP) standard deviation and trajectory length were examined to determine if children with ASD showed increased postural sway. Postural orientation was assessed using a novel virtual time-to-contact (VTC) approach that characterized spatiotemporal dimensions of children's postural sway (i.e., body alignment) relative to their postural limitation boundary, defined as the maximum extent to which each child could sway in each direction. Postural equilibrium was quantified by evaluating the amount of shared or mutual information of COP time series measured along the AP and ML directions. Consistent with prior studies, children with ASD showed increased postural sway during both static and dynamic stances relative to TD children. In regard to postural orientation processes, children with ASD demonstrated reduced spatial

  19. Light and heavy touch reduces postural sway and modifies axial tone in Parkinson’s disease

    Science.gov (United States)

    Franzén, Erika; Paquette, Caroline; Gurfinkel, Victor; Horak, Fay

    2014-01-01

    Background Light touch with a stable object reduces postural sway by increasing axial postural tone in healthy subjects. However, it is unknown whether subjects with Parkinson’s disease (PD), who have more postural sway and higher axial postural tone than healthy subjects, can benefit from haptic touch. Objective To investigate the effect of light and heavy touch on postural stability and hip tone in subjects with PD. Methods Fourteen subjects with mid-stage PD, and 14 healthy control subjects were evaluated during quiet standing with eyes closed with their arms: 1) crossed, 2) lightly touching a fixed rigid bar in front of them and 3) firmly gripping the bar. Postural sway was measured with a forceplate and axial hip tone was quantified using a unique device that measures the resistance of the hips to yaw rotation while maintaining active stance. Results Subjects with PD significantly decreased their postural sway with light or heavy touch (ptouch, hip tone was larger in PD subjects. With touch, however, tone values were similar in both groups. This change in hip tone with touch was highly correlated with the initial amount of tone (PD: r=− 0.72 to −0.95 and controls: r=−0.74 to−0.85). Conclusions We showed, for the first time, that subjects with PD benefit from touch similarly to control subjects and that despite higher axial postural tone, PD subjects are able to modulate their tone with touch. Future studies should investigate the complex relationship between touch and postural tone. PMID:22415944

  20. Pain relief is associated with decreasing postural sway in patients with non-specific low back pain

    DEFF Research Database (Denmark)

    Ruhe, A.; Fejer, René; Walker, B.

    2012-01-01

    is maintained if pain levels change in adults with non-specific low back pain. Methods: Thirty-eight patients with non-specific low back pain and a matching number of healthy controls were enrolled. Postural sway was measured by three identical static bipedal standing tasks of 90 sec duration with eyes closed......Background: Increased postural sway is well documented in patients suffering from non-specific low back pain, whereby a linear relationship between higher pain intensities and increasing postural sway has been described. No investigation has been conducted to evaluate whether this relationship...... in narrow stance on a firm surface. The perceived pain intensity was assessed by a numeric rating scale (NRS 11). The patients received three manual interventions (e. g. manipulation, mobilization or soft tissue techniques) at 3-4 day intervals, postural sway measures were obtained at each occasion. Results...

  1. The influence of motor imagery on postural sway: Differential effects of type of body movement and person perspective

    NARCIS (Netherlands)

    Stins, J.F.; Schneider, I.K.; Koole, S.L.; Beek, P.J.

    2015-01-01

    The present study examined the differential effects of kinesthetic imagery (first person perspective) and visual imagery (third person perspective) on postural sway during quiet standing. Based on an embodied cognition perspective, the authors predicted that kinesthetic imagery would lead to

  2. Effects of external loads on postural sway during quiet stance in adults aged 20-80 years.

    Science.gov (United States)

    Hill, M W; Duncan, M J; Oxford, S W; Kay, A D; Price, M J

    2018-01-01

    The purpose of this study was to investigate the effects of holding external loads on postural sway during upright stance across age decades. Sixty-five healthy adults (females, n = 35), aged 18-80 years were assessed in four conditions; (1) standing without holding a load, holding a load corresponding to 5% body mass in the (2) left hand, (3) right hand and (4) both hands. The centre of pressure (COP) path length and anteroposterior and mediolateral COP displacement were used to indirectly assess postural sway. External loading elicited reductions in COP measures of postural sway in older age groups only (P  0.05). Holding external loads during standing is relevant to many activities of daily living (i.e. holding groceries). The reduction in postural sway may suggest this type of loading has a stabilising effect during quiet standing among older adults. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Effects of visual motion consistent or inconsistent with gravity on postural sway.

    Science.gov (United States)

    Balestrucci, Priscilla; Daprati, Elena; Lacquaniti, Francesco; Maffei, Vincenzo

    2017-07-01

    Vision plays an important role in postural control, and visual perception of the gravity-defined vertical helps maintaining upright stance. In addition, the influence of the gravity field on objects' motion is known to provide a reference for motor and non-motor behavior. However, the role of dynamic visual cues related to gravity in the control of postural balance has been little investigated. In order to understand whether visual cues about gravitational acceleration are relevant for postural control, we assessed the relation between postural sway and visual motion congruent or incongruent with gravity acceleration. Postural sway of 44 healthy volunteers was recorded by means of force platforms while they watched virtual targets moving in different directions and with different accelerations. Small but significant differences emerged in sway parameters with respect to the characteristics of target motion. Namely, for vertically accelerated targets, gravitational motion (GM) was associated with smaller oscillations of the center of pressure than anti-GM. The present findings support the hypothesis that not only static, but also dynamic visual cues about direction and magnitude of the gravitational field are relevant for balance control during upright stance.

  4. TENS to the Lateral Aspect of the Knees During Stance Attenuates Postural Sway in Young Adults

    Directory of Open Access Journals (Sweden)

    Yocheved Laufer

    2007-01-01

    Full Text Available Somatosensory input is known to be essential for postural control. The present study examined the effects on postural sway of sensory input delivered via transcutaneous electrical nerve stimulation (TENS applied to the knees during stance. Electrodes from a dual-channel portable TENS unit were adhered to the skin overlying the lateral and medial aspect of both knees of 20 young healthy volunteers (mean age 24.0 years, standard deviation 4.0. Postural sway parameters were obtained during static bipedal stance with an AMTI force platform. Four stimulation conditions were tested with eyes open and with eyes closed: no TENS; TENS applied bilaterally; and TENS applied to either the right or the left knee. Participants underwent two eight-trial blocks, with each trial lasting 30 seconds. The order of conditions was randomized for each participant. Stimulation consisted of a biphasic symmetrical stimulus delivered at the sensory detection level, with a pulse duration of 200μsec and a pulse frequency of 100Hz. The application of TENS induced significant reductions in mean sway velocity and in the medio-lateral dispersion of the center of pressure, with no corresponding effect on the anterior-posterior dispersion. These findings suggest that electrical stimulation delivered at the sensory detection level to the lateral aspects of the knees may be effective in improving balance control, and that this effect may be directionally specific.

  5. The Complexity of Standing Postural Sway Associates with Future Falls in Community-Dwelling Older Adults: The MOBILIZE Boston Study

    OpenAIRE

    Zhou, Junhong; Habtemariam, Daniel; Iloputaife, Ikechukwu; Lipsitz, Lewis A.; Manor, Brad

    2017-01-01

    Standing postural control is complex, meaning that it is dependent upon numerous inputs interacting across multiple temporal-spatial scales. Diminished physiologic complexity of postural sway has been linked to reduced ability to adapt to stressors. We hypothesized that older adults with lower postural sway complexity would experience more falls in the future. 738 adults aged ?70 years completed the Short Physical Performance Battery test (SPPB) test and assessments of single and dual-task st...

  6. Can explicit visual feedback of postural sway efface the effects of sensory manipulations on mediolateral balance performance?

    OpenAIRE

    Cofre Lizama, L.E.; Pijnappels, M.A.G.M.; Reeves, N.P.; Verschueren, S.M.; van Dieen, J.H.

    2016-01-01

    Explicit visual feedback on postural sway is often used in balance assessment and training. However, up-weighting of visual information may mask impairments of other sensory systems. We therefore aimed to determine whether the effects of somatosensory, vestibular, and proprioceptive manipulations on mediolateral balance are reduced by explicit visual feedback on mediolateral sway of the body center of mass and by the presence of visual information. We manipulated sensory inputs of the somatos...

  7. The Complexity of Standing Postural Sway Associates with Future Falls in Community-Dwelling Older Adults: The MOBILIZE Boston Study.

    Science.gov (United States)

    Zhou, Junhong; Habtemariam, Daniel; Iloputaife, Ikechukwu; Lipsitz, Lewis A; Manor, Brad

    2017-06-07

    Standing postural control is complex, meaning that it is dependent upon numerous inputs interacting across multiple temporal-spatial scales. Diminished physiologic complexity of postural sway has been linked to reduced ability to adapt to stressors. We hypothesized that older adults with lower postural sway complexity would experience more falls in the future. 738 adults aged ≥70 years completed the Short Physical Performance Battery test (SPPB) test and assessments of single and dual-task standing postural control. Postural sway complexity was quantified using multiscale entropy. Falls were subsequently tracked for 48 months. Negative binomial regression demonstrated that older adults with lower postural sway complexity in both single and dual-task conditions had higher future fall rate (incident rate ratio (IRR) = 0.98, p = 0.02, 95% Confidence Limits (CL) = 0.96-0.99). Notably, participants in the lowest quintile of complexity during dual-task standing suffered 48% more falls during the four-year follow-up as compared to those in the highest quintile (IRR = 1.48, p = 0.01, 95% CL = 1.09-1.99). Conversely, traditional postural sway metrics or SPPB performance did not associate with future falls. As compared to traditional metrics, the degree of multi-scale complexity contained within standing postural sway-particularly during dual task conditions- appears to be a better predictor of future falls in older adults.

  8. Gender differences in body-sway factors of center of foot pressure in a static upright posture and under the influence of alcohol intake.

    Science.gov (United States)

    Kitabayashi, Tamotsu; Demura, Shinichi; Noda, Masahiro; Yamada, Takayoshi

    2004-07-01

    This study aimed to examine gender differences in 4 body-sway factors of the center of foot pressure (CFP) during a static upright posture and the influence of alcohol intake on them. Four body-sway factors were interpreted in previous studies using factor analysis (the principal factor method and oblique solution by promax-rotation) on 220 healthy young males and females as follows; unit time sway, front-back sway, left-right sway and high frequency band power. The CFP measurement for 1 min was carried out twice with 1 min rest. The measurements of blood pressure, heart rate, whole body reaction time, standing on one leg with eyes closed, and CFP were carried out before and after the alcohol intake using 11 healthy young males and females. The measurement device used was an Anima's stabilometer G5500. The data sampling frequency was 20 Hz. Reliability of 4 body-sway factors was very high. Significant gender differences were found in the left-right sway and the high frequency band power factors, but the influence on body-sway is, as a whole, can be disregarded. These four sway factors can determine the influence of alcohol intake as efficient as 32 sway parameters.

  9. Thioridazine dose-related effects on biomechanical force platform measures of sway in young and old men.

    Science.gov (United States)

    Liu, Y J; Stagni, G; Walden, J G; Shepherd, A M; Lichtenstein, M J

    1998-04-01

    Thioridazine (TDZ) is associated with an increased risk of falls. The purpose of this study was to determine whether (1) thioridazine increases Biomechanics Force Platform (BFP) measures of sway in a dose-related manner, (2) there is a difference in sway between young and old men, (3) there is a correlation between sway and orthostatic changes in BP and HR. Seven younger (aged 20-42) and five older (aged 70-76) healthy male volunteers received, in a randomized order double-blind design, a single oral dose of 0, 25, and 50 mg of TDZ on three separate days at least 7 days apart and 75 mg on the fourth day of the study. Sway and blood pressure were measured for 24 hours. A general clinical research center. Biomechanics force platform measures of postural sway were measured as the movement of the center of pressure. The elliptical area (EA) and average velocity (AV) were calculated with eyes open and eyes closed. Blood pressure and heart rate were measured for 5 minutes supine and 5 minutes standing. Thioridazine increases BFP sway in a dose-dependent manner. EA increased from 0.56 (SD = .51) cm2 for placebo to 0.88 (SD = 1.09) cm2 for 75 mg TDZ. AV increased from 1.07 (SD = .27) cm/sec, placebo, to 1.43 (SD = .55) cm/sec, 75 mg TDZ. Older men swayed more than younger men. Changes followed the expected time course for TDZ. EA and AV were associated with HR and BP, e.g., SBP versus ln(EA) and ln(AV) (r = -0.21 and r = -0.22, respectively; P fall risk dose dependently in young and old men. This may explain the effects of neuroleptic drugs on fall risk in older people.

  10. Increased postural sway during quiet stance as a risk factor for prospective falls in community-dwelling elderly individuals.

    Science.gov (United States)

    Johansson, Jonas; Nordström, Anna; Gustafson, Yngve; Westling, Göran; Nordström, Peter

    2017-11-01

    fall-related injuries constitute major health risks in older individuals, and these risks are projected to increase in parallel with increasing human longevity. Impaired postural stability is a potential risk factor related to falls, although the evidence is inconclusive, partly due to the lack of prospective studies. This study aimed to investigate how objective measures of postural sway predict incident falls. this prospectively observational study included 1,877 community-dwelling individuals aged 70 years who participated in the Healthy Ageing Initiative between June 2012 and December 2015. postural sway was measured during eyes-open (EO) and eyes-closed (EC) trials using the Wii Balance Board. Functional mobility, muscle strength, objective physical activity and cognitive performance were also measured. Participants reported incident falls 6 and 12 months after the examination. during follow-up, 255 (14%) prospective fallers were identified. Division of centre of pressure (COP) sway lengths into quintiles revealed a nonlinear distribution of falls for EO trial data, but not EC trial data. After adjustment for multiple confounders, fall risk was increased by 75% for participants with COP sway lengths ≥400 mm during the EO trial (odds ratio [OR] 1.75, 95% confidence interval [CI] 1.09-2.79), and approximately doubled for sway lengths ≥920 mm during the EC trial (OR 1.90, 95% CI 1.12-3.22). objective measures of postural sway independently predict incident falls in older community-dwelling men and women. Further studies are needed to evaluate whether postural sway length is of interest for the prediction of incident falls in clinical settings. © The Author 2017. Published by Oxford University Press on behalf of the British Geriatrics Society.All rights reserved. For permissions, please email: journals.permissions@oup.com

  11. Postural sway and gaze can track the complex motion of a visual target.

    Directory of Open Access Journals (Sweden)

    Vassilia Hatzitaki

    Full Text Available Variability is an inherent and important feature of human movement. This variability has form exhibiting a chaotic structure. Visual feedback training using regular predictive visual target motions does not take into account this essential characteristic of the human movement, and may result in task specific learning and loss of visuo-motor adaptability. In this study, we asked how well healthy young adults can track visual target cues of varying degree of complexity during whole-body swaying in the Anterior-Posterior (AP and Medio-Lateral (ML direction. Participants were asked to track three visual target motions: a complex (Lorenz attractor, a noise (brown and a periodic (sine moving target while receiving online visual feedback about their performance. Postural sway, gaze and target motion were synchronously recorded and the degree of force-target and gaze-target coupling was quantified using spectral coherence and Cross-Approximate entropy. Analysis revealed that both force-target and gaze-target coupling was sensitive to the complexity of the visual stimuli motions. Postural sway showed a higher degree of coherence with the Lorenz attractor than the brown noise or sinusoidal stimulus motion. Similarly, gaze was more synchronous with the Lorenz attractor than the brown noise and sinusoidal stimulus motion. These results were similar regardless of whether tracking was performed in the AP or ML direction. Based on the theoretical model of optimal movement variability tracking of a complex signal may provide a better stimulus to improve visuo-motor adaptation and learning in postural control.

  12. Postural sway, falls, and cognitive status: a cross-sectional study among older adults.

    Science.gov (United States)

    Mignardot, Jean-Baptiste; Beauchet, Olivier; Annweiler, Cédric; Cornu, Christophe; Deschamps, Thibault

    2014-01-01

    Cognitive impairment-related changes in postural sway increase fall risk among older adults. Better understanding this association could be helpful for fall prevention. To examine the center-of-pressure (COP) velocity association with cognitive status and history of falls, in cognitively healthy individuals (CHI), patients with mild cognitive impairment (MCI), and with mild-to-moderate Alzheimer's disease (MMAD). Six hundred and eleven older community-dwellers (77.2 ± 7.9 years; 51.8% men) were separated into CHI, MCI, and MMAD participants. By computing the average absolute maximal velocity (AAMV), the bounding limits of COP velocity dynamics were determined while participants were asked to maintain quiet stance on a force platform with eyes open or with eyes closed. Age, gender, history of falls, body mass index, medications, handgrip strength, Timed Up & Go score were used as covariates. The multivariate ANCOVA, with AAMV in eyes open and eyes closed conditions as dependent variables, showed that the highest AAMVs that bound the COP velocity dynamics of postural sway were associated with cognitive impairment (p = 0.048) (i.e., lowest limits in CHI and MCI as compared with MMAD) and falls (p = 0.033) (i.e., highest limits in fallers). These findings identified the bounding limits of COP velocity as a hallmark feature of cognitive impairment-related changes in postural sway, in particular for MMAD. This point is of special interest for clinical balance assessment and fall prevention in MMAD patients in order to plan long-term targeted fall-prevention programs.

  13. Influence of age on postural sway during different dual-task conditions.

    Directory of Open Access Journals (Sweden)

    Marco eBergamin

    2014-10-01

    Full Text Available Dual-task performance assessments of competing parallel tasks and postural outcomes are growing in importance for geriatricians, as it is associated with predicting fall risk in older adults. This study aims to evaluate the postural stability during different dual-task conditions including visual (SMBT, verbal (CBAT and cognitive (MAT tasks in comparison with the standard Romberg’s open eyes position (OE. Furthermore, these conditions were investigated in a sample of young adults and a group of older healthy subjects to examine a potential interaction between type of secondary task and age status. To compare these groups across the four conditions, a within-between mixed model ANOVA was applied. Thus, a stabilometric platform has been used to measure center of pressure velocity (CoPV, sway area (SA, antero-posterior (AP and medio-lateral (ML oscillations as extents of postural sway. Tests of within-subjects effects indicated that different four conditions influenced the static balance for CoPV (p<0.001, SA (p<0.001. Post-hoc analyses indicated that CBAT task induced the worst balance condition on CoPV and resulted in significantly worse scores than OE (-11.4%; p<0.05, SMBT (-17.8% p<0.01 and MAT (-17.8% p<0.01 conditions; the largest SA was found in OE, and it was statistically larger than SMBT (-27.0%, p<0.01 and MAT (-23.1%; p<0.01. The between-subjects analysis indicated a general lower balance control in the group of elderly subjects (CoPV p<0.001, SA p<0.002, while, the mixed model ANOVA did not detect any interaction effect between types of secondary task and groups in any parameters (CoPV p=0.154, SA p=0.125. Postural sway during dual-task assessments was also found to decrease with advancing age, however, no interactions between aging and types of secondary tasks were found. Overall, these results indicated that the secondary task which most influenced the length of sway path, as measured by postural stability was a simple verbal

  14. Combination of BTrackS and Geri-Fit as a targeted approach for assessing and reducing the postural sway of older adults with high fall risk

    Directory of Open Access Journals (Sweden)

    Goble DJ

    2017-02-01

    Full Text Available Daniel J Goble, Mason C Hearn, Harsimran S Baweja School of Exercise and Nutritional Sciences, College of Health and Human Services, San Diego State University, San Diego, CA, USA Abstract: Atypically high postural sway measured by a force plate is a known risk factor for falls in older adults. Further, it has been shown that small, but significant, reductions in postural sway are possible with various balance exercise interventions. In the present study, a new low-cost force-plate technology called the Balance Tracking System (BTrackS was utilized to assess postural sway of older adults before and after 90 days of a well-established exercise program called Geri-Fit. Results showed an overall reduction in postural sway across all participants from pre- to post-intervention. However, the magnitude of effects was significantly influenced by the amount of postural sway demonstrated by individuals prior to Geri-Fit training. Specifically, more participants with atypically high postural sway pre-intervention experienced an overall postural sway reduction. These reductions experienced were typically greater than the minimum detectable change statistic for the BTrackS Balance Test. Taken together, these findings suggest that BTrackS is an effective means of identifying older adults with elevated postural sway, who are likely to benefit from Geri-Fit training to mitigate fall risk. Keywords: aging, balance, BTrackS, Geri-Fit, postural sway, fall risk

  15. Postural Sway Parameters and Gait Symmetry in Preschool Children: Cross-sectional study

    Directory of Open Access Journals (Sweden)

    Fabiane E de Sá

    Full Text Available Abstract The most important function of posture is to ensure the maintenance of control during the start and the continuation of human movement, moreover, posture serves as a reference for the production of precise movements. The aim of this study was to relate the postural sway parameters and gait symmetry in preschool children.This study is a cross-sectional study, conducted in 49 children with a mean age of 4.65 ± 0.44 years. Initially, height and body mass of children were measured using anthropometric scales. Next, an electronic baropodometer was used to evaluate the distribution of dynamic plantar pressure (gait and stabilometry (balance.A Student t test or Mann-Whitney test for comparing two groups was used. To correlate variables, a Pearson's correlation or Spearman's correlation coefficient was used. The stabilometric parameters showed no significant difference between an eyes open test and eyes closed test in preschool child. We found a moderate relationship between axis inclination and cadence symmetry (R=0.40;p=0.007. Postural sway parameters have relationship cadence symmetry of the gait in preschool children.

  16. Effects of Cable Sway, Electrode Surface Area, and Electrode Mass on Electroencephalography Signal Quality during Motion.

    Science.gov (United States)

    Symeonidou, Evangelia-Regkina; Nordin, Andrew D; Hairston, W David; Ferris, Daniel P

    2018-04-03

    More neuroscience researchers are using scalp electroencephalography (EEG) to measure electrocortical dynamics during human locomotion and other types of movement. Motion artifacts corrupt the EEG and mask underlying neural signals of interest. The cause of motion artifacts in EEG is often attributed to electrode motion relative to the skin, but few studies have examined EEG signals under head motion. In the current study, we tested how motion artifacts are affected by the overall mass and surface area of commercially available electrodes, as well as how cable sway contributes to motion artifacts. To provide a ground-truth signal, we used a gelatin head phantom with embedded antennas broadcasting electrical signals, and recorded EEG with a commercially available electrode system. A robotic platform moved the phantom head through sinusoidal displacements at different frequencies (0-2 Hz). Results showed that a larger electrode surface area can have a small but significant effect on improving EEG signal quality during motion and that cable sway is a major contributor to motion artifacts. These results have implications in the development of future hardware for mobile brain imaging with EEG.

  17. Locomotor Sensory Organization Test: How Sensory Conflict Affects the Temporal Structure of Sway Variability During Gait.

    Science.gov (United States)

    Chien, Jung Hung; Mukherjee, Mukul; Siu, Ka-Chun; Stergiou, Nicholas

    2016-05-01

    When maintaining postural stability temporally under increased sensory conflict, a more rigid response is used where the available degrees of freedom are essentially frozen. The current study investigated if such a strategy is also utilized during more dynamic situations of postural control as is the case with walking. This study attempted to answer this question by using the Locomotor Sensory Organization Test (LSOT). This apparatus incorporates SOT inspired perturbations of the visual and the somatosensory system. Ten healthy young adults performed the six conditions of the traditional SOT and the corresponding six conditions on the LSOT. The temporal structure of sway variability was evaluated from all conditions. The results showed that in the anterior posterior direction somatosensory input is crucial for postural control for both walking and standing; visual input also had an effect but was not as prominent as the somatosensory input. In the medial lateral direction and with respect to walking, visual input has a much larger effect than somatosensory input. This is possibly due to the added contributions by peripheral vision during walking; in standing such contributions may not be as significant for postural control. In sum, as sensory conflict increases more rigid and regular sway patterns are found during standing confirming the previous results presented in the literature, however the opposite was the case with walking where more exploratory and adaptive movement patterns are present.

  18. A longitudinal assessment of myoelectric activity, postural sway, and low-back pain during pregnancy.

    Science.gov (United States)

    Moreira, Luciana S; Elias, Leonardo A; Gomide, Adriane B; Vieira, Marcus F; DO Amaral, Waldemar N

    2017-01-01

    The present study aimed at investigating the control of upright quiet standing in pregnant women throughout pregnancy, and whether low-back pain exerts influence on this motor task. Myoelectric signals from postural muscles and stabilometric data were collected from 15 non-pregnant and 15 pregnant women during upright quiet standing. Electromyogram envelopes and center of pressure metrics were evaluated in the control group, as well as in pregnant women in their first and third trimester of pregnancy. A correlation analysis was performed between the measured variables and a low-back pain disability index. Pregnant women exhibited a decreased maximum voluntary isometric activity for all postural muscles evaluated. Additionally, the activity of lumbar muscles during the postural task was significantly higher in the pregnant women in comparison to the non-pregnant controls. The soleus muscle maintained its activity at the same level as the gestation progressed. Higher postural oscillations were observed in the anteroposterior direction while mediolateral sway was reduced in the third trimester of pregnancy. No correlation was detected between the lowback pain disability index and neuromechanical variables. This study provides additional data regarding the functioning and adaptations of the postural control system during pregnancy. Also, we provide further evidence that postural control during quiet standing cannot be used to predict the occurrence of low-back pain. We hypothesize that the modifications in the neural drive to the muscles, as well as in postural sway may be related to changes in the biomechanics and hormonal levels experienced by the pregnant women.

  19. The influence of commercial-grade carpet on postural sway and balance strategy among older adults.

    Science.gov (United States)

    Dickinson, Joan I; Shroyer, JoAnn L; Elias, Jeffrey W

    2002-08-01

    The purpose of this research study was to examine the effect of a selected commercial-grade carpet on the static balance of healthy, older adults who had not fallen more than twice in the last 6 months. We tested a total of 45 participants. Each participant stood on a computerized balance machine and was subjected to a carpeted versus a noncarpeted condition while exposed to various sensory limitations. We measured both postural sway and balance strategy. The selected commercial-grade carpet did not affect postural sway. The participants were able to adapt to the sensory limitations regardless of whether they were standing on the carpet. Although balance strategy scores were significantly lower during the carpeted conditions, the clinical significance was questionable as the difference between the means was small for practical purposes. Healthy, older adults did not have difficulty maintaining static balance on the carpeted surface; however, the results could be different if participants who had a history of falling had been included. The results from this study are important and provide a basis of comparison for those individuals who have experienced more than two falls in the last 6 months or who have a history of falling.

  20. Combination of BTrackS and Geri-Fit as a targeted approach for assessing and reducing the postural sway of older adults with high fall risk.

    Science.gov (United States)

    Goble, Daniel J; Hearn, Mason C; Baweja, Harsimran S

    2017-01-01

    Atypically high postural sway measured by a force plate is a known risk factor for falls in older adults. Further, it has been shown that small, but significant, reductions in postural sway are possible with various balance exercise interventions. In the present study, a new low-cost force-plate technology called the Balance Tracking System (BTrackS) was utilized to assess postural sway of older adults before and after 90 days of a well-established exercise program called Geri-Fit. Results showed an overall reduction in postural sway across all participants from pre- to post-intervention. However, the magnitude of effects was significantly influenced by the amount of postural sway demonstrated by individuals prior to Geri-Fit training. Specifically, more participants with atypically high postural sway pre-intervention experienced an overall postural sway reduction. These reductions experienced were typically greater than the minimum detectable change statistic for the BTrackS Balance Test. Taken together, these findings suggest that BTrackS is an effective means of identifying older adults with elevated postural sway, who are likely to benefit from Geri-Fit training to mitigate fall risk.

  1. SeeSway - A free web-based system for analysing and exploring standing balance data.

    Science.gov (United States)

    Clark, Ross A; Pua, Yong-Hao

    2018-06-01

    Computerised posturography can be used to assess standing balance, and can predict poor functional outcomes in many clinical populations. A key limitation is the disparate signal filtering and analysis techniques, with many methods requiring custom computer programs. This paper discusses the creation of a freely available web-based software program, SeeSway (www.rehabtools.org/seesway), which was designed to provide powerful tools for pre-processing, analysing and visualising standing balance data in an easy to use and platform independent website. SeeSway links an interactive web platform with file upload capability to software systems including LabVIEW, Matlab, Python and R to perform the data filtering, analysis and visualisation of standing balance data. Input data can consist of any signal that comprises an anterior-posterior and medial-lateral coordinate trace such as center of pressure or mass displacement. This allows it to be used with systems including criterion reference commercial force platforms and three dimensional motion analysis, smartphones, accelerometers and low-cost technology such as Nintendo Wii Balance Board and Microsoft Kinect. Filtering options include Butterworth, weighted and unweighted moving average, and discrete wavelet transforms. Analysis methods include standard techniques such as path length, amplitude, and root mean square in addition to less common but potentially promising methods such as sample entropy, detrended fluctuation analysis and multiresolution wavelet analysis. These data are visualised using scalograms, which chart the change in frequency content over time, scatterplots and standard line charts. This provides the user with a detailed understanding of their results, and how their different pre-processing and analysis method selections affect their findings. An example of the data analysis techniques is provided in the paper, with graphical representation of how advanced analysis methods can better discriminate

  2. MRI-related static magnetic stray fields and postural body sway: a double-blind randomized crossover study.

    Science.gov (United States)

    van Nierop, Lotte E; Slottje, Pauline; Kingma, Herman; Kromhout, Hans

    2013-07-01

    We assessed postural body sway performance after exposure to movement induced time-varying magnetic fields in the static magnetic stray field in front of a 7 Tesla (T) magnetic resonance imaging scanner. Using a double blind randomized crossover design, 30 healthy volunteers performed two balance tasks (i.e., standing with eyes closed and feet in parallel and then in tandem position) after standardized head movements in a sham, low exposure (on average 0.24 T static magnetic stray field and 0.49 T·s(-1) time-varying magnetic field) and high exposure condition (0.37 T and 0.70 T·s(-1)). Personal exposure to static magnetic stray fields and time-varying magnetic fields was measured with a personal dosimeter. Postural body sway was expressed in sway path, area, and velocity. Mixed-effects model regression analysis showed that postural body sway in the parallel task was negatively affected (P < 0.05) by exposure on all three measures. The tandem task revealed the same trend, but did not reach statistical significance. Further studies are needed to investigate the possibility of independent or synergetic effects of static magnetic stray field and time-varying magnetic field exposure. In addition, practical safety implications of these findings, e.g., for surgeons and others working near magnetic resonance imaging scanners need to be investigated. Copyright © 2012 Wiley Periodicals, Inc.

  3. Low back pain and postural sway during quiet standing with and without sensory manipulation: A systematic review

    NARCIS (Netherlands)

    Mazaheri, M.; Coenen, P.; Parnianpour, M; Kiers, H.; van Dieen, J.H.

    2013-01-01

    A previous review concluded that postural sway is increased in patients with low back pain (LBP). However, more detailed analysis of the literature shows that postural deficit may be dependent on experimental conditions in which patients with LBP have been assessed. The research question to be

  4. On the relationship between pain intensity and postural sway in patients with non-specific neck pain

    DEFF Research Database (Denmark)

    Ruhe, Alexander; Fejer, René; Walker, Bruce

    2013-01-01

    Increased center of pressure excursions are well documented in patients with non-specific neck pain. While a linear relationship between pain intensity and postural sway has been described in low back pain patients, no such investigation has been conducted in adults with non-specific neck pain....

  5. A systematic review of the relationship between physical activities in sports or daily life and postural sway in upright stance

    NARCIS (Netherlands)

    Kiers, H.; van Dieen, J.H.; Dekkers, H.; Wittink, H.; Vanhees, L.

    2013-01-01

    Background: In many sports, maintaining balance is necessary to compete at a high level. Also, in many health problems, balance is impaired. Postural sway (PS) is often used as an indicator of upright balance control, and physical activity (PA) might enhance balance control. However, the

  6. Can explicit visual feedback of postural sway efface the effects of sensory manipulations on mediolateral balance performance?

    NARCIS (Netherlands)

    Cofre Lizama, L.E.; Pijnappels, M.A.G.M.; Reeves, N.P.; Verschueren, S.M.; van Dieen, J.H.

    2016-01-01

    Explicit visual feedback on postural sway is often used in balance assessment and training. However, up-weighting of visual information may mask impairments of other sensory systems. We therefore aimed to determine whether the effects of somatosensory, vestibular, and proprioceptive manipulations on

  7. Selection of body sway parameters according to their sensitivity and repeatability

    Directory of Open Access Journals (Sweden)

    Nejc Sarabon

    2010-03-01

    Full Text Available For the precise evaluation of body balance, static type of tests performed on a force plate are the most commonly used ones. In these tests, body sway characteristics are analyzed based on the model of inverted pendulum and looking at the center of pressure (COP movement in time. Human body engages different strategies to compensate for balance perturbations. For this reason, there is a need to identify parameters which are sensitive to specific balance changes and which enable us to identify balance sub-components. The aim of our study was to investigate intra-visit repeatability and sensibility of the 40 different body sway parameters. Twenty-nine subjects participated in the study. They performed three different balancing tasks of different levels of difficulty, three repetitions each. The hip-width parallel stance and the single leg stance, both with open eyes, were used as ways to compare different balance intensities due to biomechanical changes. Additionally, deprivation of vision was used in the third balance task to study sensitivity to sensory system changes. As shown by intraclass correlation coefficient (ICC, repeatability of cumulative parameters such as COP, maximal amplitude and frequency showed excellent repeatability (ICC>0,85. Other parameters describing sub-dynamics through single repetition proved to have unsatisfying repeatability. Parameters most sensitive to increased intensity of balancing tasks were common COP, COP in medio-lateral and in antero-posterior direction, and maximal amplitues in the same directions. Frequency of oscilations has proved to be sensitive only to deprivation of vision. As shown in our study, cumulative parameters describing the path which the center of pressure makes proved to be the most repeatable and sensitive to detect different increases of balancing tasks enabling future use in balance studies and in clinical practice.

  8. Sway Area and Velocity Correlated With MobileMat Balance Error Scoring System (BESS) Scores.

    Science.gov (United States)

    Caccese, Jaclyn B; Buckley, Thomas A; Kaminski, Thomas W

    2016-08-01

    The Balance Error Scoring System (BESS) is often used for sport-related concussion balance assessment. However, moderate intratester and intertester reliability may cause low initial sensitivity, suggesting that a more objective balance assessment method is needed. The MobileMat BESS was designed for objective BESS scoring, but the outcome measures must be validated with reliable balance measures. Thus, the purpose of this investigation was to compare MobileMat BESS scores to linear and nonlinear measures of balance. Eighty-eight healthy collegiate student-athletes (age: 20.0 ± 1.4 y, height: 177.7 ± 10.7 cm, mass: 74.8 ± 13.7 kg) completed the MobileMat BESS. MobileMat BESS scores were compared with 95% area, sway velocity, approximate entropy, and sample entropy. MobileMat BESS scores were significantly correlated with 95% area for single-leg (r = .332) and tandem firm (r = .474), and double-leg foam (r = .660); and with sway velocity for single-leg (r = .406) and tandem firm (r = .601), and double-leg (r = .575) and single-leg foam (r = .434). MobileMat BESS scores were not correlated with approximate or sample entropy. MobileMat BESS scores were low to moderately correlated with linear measures, suggesting the ability to identify changes in the center of mass-center of pressure relationship, but not higher-order processing associated with nonlinear measures. These results suggest that the MobileMat BESS may be a clinically-useful tool that provides objective linear balance measures.

  9. Dual task interference on postural sway, postural transitions and gait in people with Parkinson's disease and freezing of gait.

    Science.gov (United States)

    de Souza Fortaleza, Ana Claudia; Mancini, Martina; Carlson-Kuhta, Patty; King, Laurie A; Nutt, John G; Chagas, Eliane Ferrari; Freitas, Ismael Forte; Horak, Fay B

    2017-07-01

    Freezing of gait (FoG) is associated with less automatic gait and more impaired cognition, balance and postural transitions compared to people with PD who do not have FoG. However, it is unknown whether dual-task cost during postural sway, postural transitions (such as gait initiation and turning), and gait are more in subjects with Parkinson's disease (PD) who have freezing of gait (FoG+) compared to those who do not have FoG (FoG-). Here, we hypothesized that the effects of a cognitive dual task on postural sway, postural transitions and gait would be larger in FoG+ than FoG-. Thirty FoG- and 24 FoG+ performed an Instrumented Stand and Walk test in OFF medication state, with and without a secondary cognitive task (serial subtraction by 3s). Measures of postural sway, gait initiation, turning, and walking were extracted using body-worn inertial sensors. FoG+ showed significantly larger dual task cost than FoG- for several gait metrics, but not during postural sway or postural transitions. During walking, FoG+ exhibited a larger dual task cost than FoG- resulting in shorter stride length and slower stride velocity. During standing, FoG+ showed a larger postural sway compared to FoG- and during gait initiation, FoG+, but not FoG-, showed a longer first step duration during the dual-task condition compared to single-task condition (interaction effect, p=0.04). During turning, both groups showed a slower turn peak speed in the dual-task condition compared to single task condition. These findings partly support our hypothesis that dual task cost on walking is greater in FoG+ than FoG-. Copyright © 2017. Published by Elsevier B.V.

  10. The effects of unstable surface balance training on postural sway, stability, functional ability and flexibility in women.

    Science.gov (United States)

    Nepocatych, Svetlana; Ketcham, Caroline J; Vallabhajosula, Srikant; Balilionis, Gytis

    2018-01-01

    This study examined the effects of balance training routine, using both sides utilized balance trainer (BOSU) and aerobic step (STEP) on postural sway and functional ability in middle-aged women. Twenty-seven females participated in the study, age 40.6±12.0 years, body mass 72.0±14.0 kg, height 164.0±7.7 cm, BMI 26.5±4.5 kg/m2, and relative body fat 33.1±7.4%. Participants were divided into two groups and performed progressive exercise routine on either STEP or BOSU for three weeks. Pre- and post-test consisted of Postural Sway Test performed on the Biodex Balance System, Functional Ability Test, Sit and Reach Test and Plank. A significant time effect was observed for both groups for sway index(P=0.029) and center of pressure antero-posterior (AP) displacement (P=0.038) but not for sway area or medio-lateral (ML) displacement (P>0.05). In addition, BOSU group had significantly lower Sway Index(P=0.048) and ML range (P=0.035) scores when vision and surface was altered compared to STEP group. A significant time effect was observed in walking-up the stairs (P=0.020), sit and reach test (P=0.035), and plank (Ptraining have a potential to induce adaptive responses in neuromuscular system that enhances postural control, balance and functional ability of women. The training using BOSU may help improve static balance and functional ability in women.

  11. A user`s guide to LUGSAN II. A computer program to calculate and archive lug and sway brace loads for aircraft-carried stores

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, W.N. [Sandia National Labs., Albuquerque, NM (United States). Mechanical and Thermal Environments Dept.

    1998-03-01

    LUG and Sway brace ANalysis (LUGSAN) II is an analysis and database computer program that is designed to calculate store lug and sway brace loads for aircraft captive carriage. LUGSAN II combines the rigid body dynamics code, SWAY85, with a Macintosh Hypercard database to function both as an analysis and archival system. This report describes the LUGSAN II application program, which operates on the Macintosh System (Hypercard 2.2 or later) and includes function descriptions, layout examples, and sample sessions. Although this report is primarily a user`s manual, a brief overview of the LUGSAN II computer code is included with suggested resources for programmers.

  12. Validation of SWAY Wind Turbine Response in FAST, with a Focus on the Influence of Tower Wind Loads: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Koh, J. H.; Robertson, A.; Jonkman, J.; Driscoll, R.; Yin Kwee Ng, E.

    2015-04-23

    Need to modify simulated system behavior to the measured data, but the tower wind loads improved the comparison for nonoperating conditions. the SWAY system in both turbine operating and nonoperating conditions. Mixed results were observed when comparing the simulated system behavior to the measured data, but the tower wind loads improved the comparison for nonoperating conditions. without the new tower-load capability to examine its influence on the response characteristics of the system. This is important in situations when the turbine is parked in survival conditions. The simulation results were then compared to measured data from the SWAY system in both turbine operating and nonoperating conditions. Mixed results were observed when comparing the simulated system behavior to the measured data, but the tower wind loads improved the comparison for nonoperating conditions.

  13. Comparison between Decision Tree and Genetic Programming to distinguish healthy from stroke postural sway patterns.

    Science.gov (United States)

    Marrega, Luiz H G; Silva, Simone M; Manffra, Elisangela F; Nievola, Julio C

    2015-01-01

    Maintaining balance is a motor task of crucial importance for humans to perform their daily activities safely and independently. Studies in the field of Artificial Intelligence have considered different classification methods in order to distinguish healthy subjects from patients with certain motor disorders based on their postural strategies during the balance control. The main purpose of this paper is to compare the performance between Decision Tree (DT) and Genetic Programming (GP) - both classification methods of easy interpretation by health professionals - to distinguish postural sway patterns produced by healthy and stroke individuals based on 16 widely used posturographic variables. For this purpose, we used a posturographic dataset of time-series of center-of-pressure displacements derived from 19 stroke patients and 19 healthy matched subjects in three quiet standing tasks of balance control. Then, DT and GP models were trained and tested under two different experiments where accuracy, sensitivity and specificity were adopted as performance metrics. The DT method has performed statistically significant (P < 0.05) better in both cases, showing for example an accuracy of 72.8% against 69.2% from GP in the second experiment of this paper.

  14. Estimation of Sway Velocity-Dependent Hydrodynamic Derivatives in Surface Ship Manoeuvring Using Ranse Based CFD

    Directory of Open Access Journals (Sweden)

    Sheeja Janardhanan

    2010-09-01

    Full Text Available The hydrodynamic derivatives appearing in the manoeuvring equations of motion are the primary parameters in the prediction of the trajectory of a vessel. Determination of these derivatives poses major challenge in ship manoeuvring related problems. This paper deals with one such problem in which an attempt has been made to numerically simulate the conventional straight line test in a towing tank using computational fluid dynamics (CFD. Free-surface effects have been neglected here. The domain size has been fixed as per ITTC guide lines. The grid size has been fixed after a thorough grid independency analysis and an optimum grid size has been chosen in order to ensure the insensitivity of the flow parameters to grid size and also to have reduced computational effort. The model has been oriented to wider range of drift angles to capture the non-linear effects and subsequently the forces and moments acting on the model in each angle have been estimated. The sway velocity dependent derivatives have been obtained through plots and curve-fits. The effect of finite water depth on the derivatives has also been looked into. The results have been compared with the available experimental and empirical values and the method was found to be promising.

  15. A systematic review of the relationship between physical activities in sports or daily life and postural sway in upright stance.

    Science.gov (United States)

    Kiers, Henri; van Dieën, Jaap; Dekkers, Henk; Wittink, Harriët; Vanhees, Luc

    2013-11-01

    In many sports, maintaining balance is necessary to compete at a high level. Also, in many health problems, balance is impaired. Postural sway (PS) is often used as an indicator of upright balance control, and physical activity (PA) might enhance balance control. However, the relationship between PS and PA has never been systematically reviewed. Our objective was to summarize the evidence regarding the relationship between PS in upright bipedal and unipedal standing and PA. We conducted a literature search in MEDLINE, EmBase, CINAHL, the Cochrane Database, and PEDro, up to March 2012, with no limit on the starting date. Characteristics and methodological aspects of each article were extracted by two reviewers. We used centre of pressure (CoP) velocity, and variables related to the CoP area, to compare studies. A total of 39 articles were reviewed from an initial yield of 2,058. Of these 39 studies, 37 used a comparative design, one was a cohort study, and one was a randomized controlled trial. The main conclusion was that in general, sport practitioners sway less than controls, and high-level athletes sway less than low-level athletes. Additionally, we identified specific effects dependent on the use of vision, sport-specific postures, and frequency and duration of the (sports) activity. PS in unperturbed bipedal stance appears to have limited sensitivity to detect subtle differences between groups of healthy people.

  16. PENGEMBANGAN MEDIA PEMBELAJARAN IPS SEJARAH MELALUI APLIKASI SWAY BERKONTEN INDIS DI SMP NEGERI 8 MADIUN

    Directory of Open Access Journals (Sweden)

    Khoirul Huda

    2017-08-01

    Full Text Available Education in Indonesia is seen from the perspective of the present field experiencing many multicomplex problems. The role of educators in utilizing learning conditions through the composition of teaching tools has not been powerless. Minimnya in designing models, strategies or media that are not adequate. This condition is often seen in SMP Negeri 8 Madiun. Based on the observations mention First, the teaching model of IPS History is still conventional with the lecture method. Educators have not taken advantage of interesting and interactive media variations leading to saturation. Second, the limitations of resource utilization. Whereas the surrounding environment learning source can be used for learning IPS History such as Indis building (Housing Employee KA, SMPN 1 Madiun School Building, City Hall, Giringan PLTA, pagotan sugar factory and kawedanan Uteran or Kandangan coffee garden. The purpose of this research is to develop the media office Sway berkonten Indis to form a draft prototype that has been tested. Research type is Research and Development. The result of this research is limited test at SMP Negeri 10 Madiun got average score 4,23, produce very good score (X => 4,21 so media is considered feasible. The expanded scale test at SMP Negeri 8 Madiun shows the average of 60,35 (pre-test and 94,46 (post-test, and statistic test of Paired Samples T Test. The result of significance value is 0.00, so the result shows less than 0.05 and  means rejected so that there has been a significant increase.

  17. Payoff non-linearity sways the effect of mistakes on the evolution of reciprocity.

    Science.gov (United States)

    Kurokawa, Shun

    2016-09-01

    The existence of cooperation is considered to require explanation, and reciprocity is a potential explanatory mechanism. Animals sometimes fail to cooperate even when they attempt to do so, and a reciprocator has an Achilles' heel: it is vulnerable to error (the interaction between two reciprocators can lead to an endless vendetta.). However, the strategy favored by natural selection is determined also by its interaction with other strategies. The relationship between two reciprocators leading to a collapse of cooperation through error does not straightforwardly imply that mistakes make the conditions under which reciprocity evolves stringent. Hence, mistakes may facilitate the evolution of reciprocity. However, it has been shown through the analysis of the interaction between reciprocators and unconditional defectors that the existence of mistakes makes the conditions for reciprocators stable against invasion by an unconditional defector more stringent, which indicates that mistakes discourage the evolution of reciprocity. However, this result is based on the assumption that the effects of cooperation are additive (payoff is linear), while the game played by real animals does not always display this feature. In such cases, the result may be swayed. In this paper, we remove this assumption, reexamining whether mistakes disturb the evolution of reciprocity. Using the analysis of an evolutionarily stable strategy (ESS), we show that when extra fitness costs are present in cases where mutual cooperation is established, mistakes can facilitate the evolution of reciprocity; whereas, when the effect of cooperation is additive, mistakes always disturb the evolution of reciprocity, as has been shown previously. Copyright © 2016. Published by Elsevier Inc.

  18. SENSITIVITY OF BODY SWAY PARAMETERS DURING QUIET STANDING TO MANIPULATION OF SUPPORT SURFACE SIZE

    Directory of Open Access Journals (Sweden)

    Sarabon Nejc

    2010-09-01

    Full Text Available The centre of pressure (COP movement during stance maintenance on a stable surface is commonly used to describe and evaluate static balance. The aim of our study was to test sensitivity of individual COP parameters to different stance positions which were used to address size specific changes in the support surface. Twenty-nine subjects participated in the study. They carried out three 60-second repetitions of each of the five balance tasks (parallel stance, semi-tandem stance, tandem stance, contra-tandem stance, single leg stance. Using the force plate, the monitored parameters included the total COP distance, the distance covered in antero-posterior and medio-lateral directions, the maximum oscillation amplitude in antero-posterior and medio-lateral directions, the total frequency of oscillation, as well as the frequency of oscillation in antero-posterior and medio-lateral directions. The parameters which describe the total COP distance were the most sensitive to changes in the balance task, whereas the frequency of oscillation proved to be sensitive to a slightly lesser extent. Reductions in the support surface size in each of the directions resulted in proportional changes of antero-posterior and medio- lateral directions. The frequency of oscillation did not increase evenly with the increase in the level of difficulty of the balance task, but reached a certain value, above which it did not increase. Our study revealed the monitored parameters of the COP to be sensitive to the support surface size manipulations. The results of the study provide an important source for clinical and research use of the body sway measurements.

  19. The effects of arm crank ergometry, cycle ergometry and treadmill walking on postural sway in healthy older females.

    Science.gov (United States)

    Hill, M W; Oxford, S W; Duncan, M J; Price, M J

    2015-01-01

    Older adults are increasingly being encouraged to exercise but this may lead to muscle fatigue, which can adversely affect postural stability. Few studies have investigated the effects of upper body exercise on postural sway in groups at risk of falling, such as the elderly. The purpose of this study was to compare the effects arm crank ergometry (ACE), cycle ergometry (CE) and treadmill walking (TM) on postural sway in healthy older females. In addition, this study sought to determine the time necessary to recover postural control after exercise. A total of nine healthy older females participated in this study. Participants stood on a force platform to assess postural sway which was measured by displacement of the centre of pressure before and after six separate exercise trials. Each participant completed three incremental exercise tests to 85% of individual's theoretical maximal heart rate (HRMAX) for ACE, CE and TM. Subsequent tests involved 20-min of ACE, CE and TM exercise at a relative workload corresponding to 50% of each individual's predetermined heart rate reserve (HRE). Post fatigue effects and postural control recovery were measured at different times after exercise (1, 3, 5, 10, 15 and 30-min). None of the participants exhibited impaired postural stability after ACE. In contrast, CE and TM elicited significant post exercise balance impairments, which lasted for ∼ 10 min post exercise. We provide evidence of an exercise mode which does not elicit post exercise balance impairments. Older adults should exercise caution immediately following exercise engaging the lower limbs to avoid fall risk. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Investigating the center of pressure velocity Romberg's quotient for assessing the visual role on the body sway

    OpenAIRE

    Silva, Paulo José Guimarães da; Nadal, Jurandir; Infantosi, Antonio Fernando Catelli

    2012-01-01

    The classical Romberg's test based on stabilometric tests in eyes open (EO) and closed (EC) conditions was used for investigating the influence of visual feedback in the body sway control in healthy adult subjects. Stabilograms from 144 subjects (aged 18-40) resting over a force platform were recorded for 30 s in EO and 30 s in EC conditions. The mean velocity was obtained for EO (VmEO) and EC (VmEC) in both anterior-posterior (y) and medial-lateral (x) directions and in the (x,y) plane, and ...

  1. Additional Haptic Information Provided by Anchors Reduces Postural Sway in Young Adults Less Than Does Light Touch

    Directory of Open Access Journals (Sweden)

    Renato Moraes

    2018-06-01

    Full Text Available This study investigated the effect of adding haptic information to the control of posture, as well as comparing the effect of both the “light touch” (LT and “anchor system” (AS paradigms on postural sway. Additionally, it compared the effect of location and number of points of contact to the control of posture in young adults. The location consisted of using the anchors tied to the finger and held by the hands, and, for LT, the fingertip. For the number of points of contact, participants used two hands, and then separately the dominant hand, and the non-dominant hand, for both anchor and LT paradigms. Participants stood upright with feet-together and in tandem position while performing tasks that combined the use of anchors and LT, points of contact (hand grip and finger, and number of points of contact (two hands and one hand. In this study, the anchors consist of holding in each hand a flexible cable with the other end attached to the ground. The LT consists of slightly touching a rigid surface with the tip of the index finger. The results showed, first, that the anchors improved postural control less than did the LT. Second, they revealed that holding the anchors with the hands or with them tied to the fingertip resulted in a similar reduction in postural sway only in the tandem position. For the feet-together position, the anchors tied to the fingertip were ineffective. Similarly, the use of one or two hands did not affect the contribution of the anchors. However, using two hands in the LT condition was more effective than was one hand. Third, our results showed the presence of a temporal delay between force and center-of-pressure (COP for the anchors, only in the AP direction with feet-together. In conclusion, overall, the anchors were less effective in reducing postural sway than was the LT. The anchors attached to fingertips were as effective as the hand-held anchors in the tandem position, yet ineffective during foot

  2. Influence of Electrotactile Tongue Feedback on Controlling Upright Stance during Rotational and/or Translational Sway-referencing with Galvanic Vestibular Stimulation

    Science.gov (United States)

    Wood, Scott J.; Tyler, Mitchell E.; Bach-y-Rita, Paul; MacDougall, Hamish G.; Moore, Steven T.; Stallings, Valerie L.; Paloski, William H.; Black, F. Owen

    2007-01-01

    Integration of multi-sensory inputs to detect tilts relative to gravity is critical for sensorimotor control of upright orientation. Displaying body orientation using electrotactile feedback to the tongue has been developed by Bach-y-Rita and colleagues as a sensory aid to maintain upright stance with impaired vestibular feedback. MacDougall et al. (2006) recently demonstrated that unpredictably varying Galvanic vestibular stimulation (GVS) significantly increased anterior-posterior (AP) sway during rotational sway referencing with eyes closed. The purpose of this study was to assess the influence of electrotactile feedback on postural control performance with pseudorandom binaural bipolar GVS. Postural equilibrium was measured with a computerized hydraulic platform in 10 healthy adults (6M, 4F, 24-65 y). Tactile feedback (TF) of pitch and roll body orientation was derived from a two-axis linear accelerometer mounted on a torso belt and displayed on a 144-point electrotactile array held against the anterior dorsal tongue (BrainPort, Wicab, Inc., Middleton, WI). Subjects were trained to use TF by voluntarily swaying to draw figures on their tongue, both with and without GVS. Subjects were required to keep the intraoral display in their mouths on all trials, including those that did not provide TF. Subjects performed 24 randomized trials (20 s duration with eyes closed) including four support surface conditions (fixed, rotational sway-referenced, translating the support surface proportional to AP sway, and combined rotational-translational sway-referencing), each repeated twice with and without GVS, and with combined GVS and TF. Postural performance was assessed using deviations from upright (peak-to-peak and RMS sway) and convergence toward stability limits (time and distance to base of support boundaries). Postural stability was impaired with GVS in all platform conditions, with larger decrements in performance during trials with rotation sway

  3. Resting State Default Mode Network Connectivity, Dual Task Performance, Gait Speed, and Postural Sway in Older Adults with Mild Cognitive Impairment.

    Science.gov (United States)

    Crockett, Rachel A; Hsu, Chun Liang; Best, John R; Liu-Ambrose, Teresa

    2017-01-01

    Aging is associated with an increased risk of falling. In particular, older adults with mild cognitive impairment (MCI) are more vulnerable to falling compared with their healthy counterparts. Major contributors to this increased falls risk include a decline in dual task performance, gait speed, and postural sway. Recent evidence highlights the potential influence of the default mode network (DMN), the frontoparietal network (FPN), and the supplementary motor area (SMA) on dual task performance, gait speed, and postural sway. The DMN is active during rest and deactivates during task-oriented processes, to maintain attention and stay on task. The FPN and SMA are involved in top-down attentional control, motor planning, and motor execution. The DMN shows less deactivation during task in older adults with MCI. This lack of deactivation is theorized to increase competition for resources between the DMN and task-related brain regions (e.g., the FPN and SMA), increasing distraction from the task and reducing task performance. However, no study has yet investigated the relationship between the between-network connectivity of the DMN with these regions and dual task walking, gait speed or postural sway. We hypothesized that greater functional connectivity both within the DMN and between DMN-FPN and DMN-SMA, will be associated with poorer performance during dual task walking, slower gait speed, and greater postural sway in older adults with MCI. Forty older adults with MCI were measured on a dual task-walking paradigm, gait speed over a 4-m walk, and postural sway using a sway-meter. Greater within-DMN connectivity was significantly correlated with poorer dual task performance. Furthermore, greater inter-network connectivity between the DMN and SMA was significantly correlated with slower gait speed and greater postural sway on the eyes open floor sway task. Thus, greater resting state DMN functional connectivity may be an underlying neural mechanism for reduced dual task

  4. Nintendo Wii Balance Board is sensitive to effects of visual tasks on standing sway in healthy elderly adults.

    Science.gov (United States)

    Koslucher, Frank; Wade, Michael G; Nelson, Brent; Lim, Kelvin; Chen, Fu-Chen; Stoffregen, Thomas A

    2012-07-01

    Research has shown that the Nintendo Wii Balance Board (WBB) can reliably detect the quantitative kinematics of the center of pressure in stance. Previous studies used relatively coarse manipulations (1- vs. 2-leg stance, and eyes open vs. closed). We sought to determine whether the WBB could reliably detect postural changes associated with subtle variations in visual tasks. Healthy elderly adults stood on a WBB while performing one of two visual tasks. In the Inspection task, they maintained their gaze within the boundaries of a featureless target. In the Search task, they counted the occurrence of designated target letters within a block of text. Consistent with previous studies using traditional force plates, the positional variability of the center of pressure was reduced during performance of the Search task, relative to movement during performance of the Inspection task. Using detrended fluctuation analysis, a measure of movement dynamics, we found that COP trajectories were more predictable during performance of the Search task than during performance of the Inspection task. The results indicate that the WBB is sensitive to subtle variations in both the magnitude and dynamics of body sway that are related to variations in visual tasks engaged in during stance. The WBB is an inexpensive, reliable technology that can be used to evaluate subtle characteristics of body sway in large or widely dispersed samples. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Postural Control Can Be Well Maintained by Healthy, Young Adults in Difficult Visual Task, Even in Sway-Referenced Dynamic Conditions.

    Science.gov (United States)

    Lions, Cynthia; Bucci, Maria Pia; Bonnet, Cédrick

    2016-01-01

    To challenge the validity of existing cognitive models of postural control, we recorded eye movements and postural sway during two visual tasks (a control free-viewing task and a difficult searching task), and two postural tasks (one static task in which the platform was maintained stable and a dynamic task in which the platform moved in a sway-referenced manner.) We expected these models to be insufficient to predict the results in postural control both in static-as already shown in the literature reports-and in dynamic platform conditions. Twelve healthy, young adults (17.3 to 34.1 years old) participated in this study. Postural performances were evaluated using the Multitest platform (Framiral®) and ocular recording was performed with Mobile T2 (e(ye)BRAIN®). In the free-viewing task, the participants had to look at an image, without any specific instruction. In the searching task, the participants had to look at an image and also to locate the position of an object in the scene. Postural sway was only significantly higher in the dynamic free-viewing condition than in the three other conditions with no significant difference between these three other conditions. Visual task performance was slightly higher in dynamic than in static conditions. As expected, our results did not confirm the main assumption of the current cognitive models of postural control-i.e. that the limited attentional resources of the brain should explain changes in postural control in our conditions. Indeed, 1) the participants did not sway significantly more in the sway-referenced dynamic searching condition than in any other condition; 2) the participants swayed significantly less in both static and dynamic searching conditions than in the dynamic free-viewing condition. We suggest that a new cognitive model illustrating the adaptive, functional role of the brain to control upright stance is necessary for future studies.

  6. Postural Control Can Be Well Maintained by Healthy, Young Adults in Difficult Visual Task, Even in Sway-Referenced Dynamic Conditions.

    Directory of Open Access Journals (Sweden)

    Cynthia Lions

    Full Text Available To challenge the validity of existing cognitive models of postural control, we recorded eye movements and postural sway during two visual tasks (a control free-viewing task and a difficult searching task, and two postural tasks (one static task in which the platform was maintained stable and a dynamic task in which the platform moved in a sway-referenced manner. We expected these models to be insufficient to predict the results in postural control both in static-as already shown in the literature reports-and in dynamic platform conditions.Twelve healthy, young adults (17.3 to 34.1 years old participated in this study. Postural performances were evaluated using the Multitest platform (Framiral® and ocular recording was performed with Mobile T2 (e(yeBRAIN®. In the free-viewing task, the participants had to look at an image, without any specific instruction. In the searching task, the participants had to look at an image and also to locate the position of an object in the scene.Postural sway was only significantly higher in the dynamic free-viewing condition than in the three other conditions with no significant difference between these three other conditions. Visual task performance was slightly higher in dynamic than in static conditions.As expected, our results did not confirm the main assumption of the current cognitive models of postural control-i.e. that the limited attentional resources of the brain should explain changes in postural control in our conditions. Indeed, 1 the participants did not sway significantly more in the sway-referenced dynamic searching condition than in any other condition; 2 the participants swayed significantly less in both static and dynamic searching conditions than in the dynamic free-viewing condition. We suggest that a new cognitive model illustrating the adaptive, functional role of the brain to control upright stance is necessary for future studies.

  7. Adaptive output-based command shaping for sway control of a 3D overhead crane with payload hoisting and wind disturbance

    Science.gov (United States)

    Abdullahi, Auwalu M.; Mohamed, Z.; Selamat, H.; Pota, Hemanshu R.; Zainal Abidin, M. S.; Ismail, F. S.; Haruna, A.

    2018-01-01

    Payload hoisting and wind disturbance during crane operations are among the challenging factors that affect a payload sway and thus, affect the crane's performance. This paper proposes a new online adaptive output-based command shaping (AOCS) technique for an effective payload sway reduction of an overhead crane under the influence of those effects. This technique enhances the previously developed output-based command shaping (OCS) which was effective only for a fixed system and without external disturbances. Unlike the conventional input shaping design technique which requires the system's natural frequency and damping ratio, the proposed technique is designed by using the output signal and thus, an online adaptive algorithm can be formulated. To test the effectiveness of the AOCS, experiments are carried out using a laboratory overhead crane with a payload hoisting in the presence of wind, and with different payloads. The superiority of the method is confirmed by 82% and 29% reductions in the overall sway and the maximum transient sway respectively, when compared to the OCS, and two robust input shapers namely Zero Vibration Derivative-Derivative and Extra-Insensitive shapers. Furthermore, the method demonstrates a uniform crane's performance under all conditions. It is envisaged that the proposed method can be very useful in designing an effective controller for a crane system with an unknown payload and under the influence of external disturbances.

  8. Sports activities are reflected in the local stability and regularity of body sway : Older ice-skaters have better postural control than inactive elderly

    NARCIS (Netherlands)

    Lamoth, Claudine J. C.; van Heuvelen, Marieke J. G.

    With age postural control deteriorates and increases the risk for falls. Recent research has suggested that in contrast to persons with superior balance control (dancer's athletes), with pathology and aging, predictability and regularity of sway patterns increase and stability decreases implying a

  9. Effect of six weeks of dura disc and mini-trampoline balance training on postural sway in athletes with functional ankle instability.

    Science.gov (United States)

    Kidgell, Dawson J; Horvath, Deanna M; Jackson, Brendan M; Seymour, Philip J

    2007-05-01

    Lateral ankle sprain (LAS) is one of the most common injuries incurred during sporting activities, and effective rehabilitation programs for this condition are challenging to develop. The purpose of this research was to compare the effect of 6 weeks of balance training on either a mini-trampoline or a dura disc on postural sway and to determine if the mini-trampoline or the dura disc is more effective in improving postural sway. Twenty subjects (11 men, 9 women) with a mean age of 25.4 +/- 4.2 years were randomly allocated into a control group, a dura disc training (DT) group, or a mini-trampoline (MT) group. Subjects completed 6 weeks of balance training. Postural sway was measured by subjects performing a single limb stance on a force plate. The disbursement of the center of pressure was obtained from the force plate in the medial-lateral and the anterior-posterior sway path and was subsequently used for pretest and posttest analysis. After the 6-week training intervention, there was a significant (p 0.05) difference detected for improvements between the MT and DT groups. These results indicate that not only is the mini-trampoline an effective tool for improving balance after LAS, but it is equally as effective as the dura disc.

  10. THE COMPARISON OF THE LUMBAR MULTIFIDUS MUSCLES FUNCTION BETWEEN GYMNASTIC ATHLETES WITH SWAY-BACK POSTURE AND NORMAL POSTURE.

    Science.gov (United States)

    Mahdavie, Elnaz; Rezasoltani, Asghar; Simorgh, Leila

    2017-08-01

    The prevalence of sway back posture (SBP) is very high among elite gymnasts. This posture may be partly due to the improper function of lumbar multifidus muscles (LMM) as lumbar stabilizers muscles. The aim of this study was to compare the thicknesses of LMM measured at rest and during the contraction elicited during an arm lift between elite gymnasts with SBP and normal posture. Observational, descriptive, comparative. The participants consist of twenty gymnasts between the ages of 17 and 30 who had trained in gymnastics for more than ten years. They were assigned to two groups: SBP (n=10) and control (n=10). Posture analysis with grid paper and plumb line was performed for all subjects. The thickness of LMM on dominant side of spinal column was measured by a real-time ultrasound at five lumbar levels. The thickness of the LMM was measured both at rest and during the contraction elicited during an arm lift. The variation between the LMM thickness between the muscle at rest and muscle at the peak of contraction was regarded as LMM muscle function. The thickness of LMM was less in SBP group than the control group at all lumbar segments. The variation in LMM thickness between the state of rest and muscle contraction was significantly less in athletes with SBP than controls when compared at all levels of the lumbar spine (p antigravity and stabilizing muscle group was decreased during arm raising in gymnasts with SBP. 3a.

  11. Situation of nuclear power generation in Sweden: swaying nuclear energy policy and conversion from nuclear phase-out policy

    International Nuclear Information System (INIS)

    Kuroda, Yuji

    2017-01-01

    In Sweden, fossil fuels cannot be produced domestically, and most of them depend on foreign imports. For this reason, together with hydropower generation using abundant water resources, nuclear power generation was introduced and used since the early stage. Nuclear power generation in 2015 reached 35% of total generated power energy. As of 2016, Sweden was steadily constructing the world's second final disposal site of high-level radioactive waste. On the other hand, this country is known as the one that decided nuclear phase-out policy earliest in the world. However, the country's nuclear policy is swaying together with changes in political party power due to election results. In 1980, they decided the policy of abolishing all nuclear power generation by 2010. Thereafter, the nuclear phase-out policy was frozen and maximum 10 units of nuclear plants were accepted. The goal of the latest policy is to allow new construction up to 10 units as replacement, and to use 100% of renewable energy in 2040. However, the year of 2040 is not a deadline for the abolishment of nuclear power generation. In Sweden's public opinion on nuclear power generation, the early abolition was dominant at about 50% during 1986∼1995, but this opinion decreased to about 10% in the 2000s. There is an increasing number of opinions saying that the existing nuclear plants should be continuously operated for a while, and phased out step by step in the future. (A.O.)

  12. Interwoven fluctuations during intermodal perception: fractality in head sway supports the use of visual feedback in haptic perceptual judgments by manual wielding.

    Science.gov (United States)

    Kelty-Stephen, Damian G; Dixon, James A

    2014-12-01

    Intermodal integration required for perceptual learning tasks is rife with individual differences. Participants vary in how they use perceptual information to one modality. One participant alone might change her own response over time. Participants vary further in their use of feedback through one modality to inform another modality. Two experiments test the general hypothesis that perceptual-motor fluctuations reveal both information use within modality and coordination among modalities. Experiment 1 focuses on perceptual learning in dynamic touch, in which participants use exploratory hand-wielding of unseen objects to make visually guided length judgments and use visual feedback to rescale their judgments of the same mechanical information. Previous research found that the degree of fractal temporal scaling (i.e., "fractality") in hand-wielding moderates the use of mechanical information. Experiment 1 shows that head-sway fractality moderates the use of visual information. Further, experience with feedback increases head-sway fractality and prolongs its effect on later hand-wielding fractality. Experiment 2 replicates effects of head-sway fractality moderating use of visual information in a purely visual-judgment task. Together, these findings suggest that fractal fluctuations may provide a modal-general window onto not just how participants use perceptual information but also how well they may integrate information among different modalities. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  13. Leg and trunk muscle coordination and postural sway during increasingly difficult standing balance tasks in young and older adults.

    Science.gov (United States)

    Donath, Lars; Kurz, Eduard; Roth, Ralf; Zahner, Lukas; Faude, Oliver

    2016-09-01

    Ageing impairs body balance and increases older adults' fall risk. Balance training can improve intrinsic fall risk factors. However, age comparisons of muscle activity responses during balance tasks are lacking. This study investigated relative muscle activity, muscle coordination and postural sway during various recommended static balance training tasks. Muscle activity (%MVC), amplitude ratios (AR) and co-activity (CAI) were determined during standing tasks for 30s (1: double limb stance on a foam surface, eyes open; 2: double limb stance on firm ground, eyes closed; 3: double limb stance, feet in step position on a foam surface, eyes open; 4: double limb stance, feet in step position on firm ground, eyes closed; 5: single limb stance on firm ground, eyes open) in 20 healthy young adults (24±2 y) and 20 older adults (73±6 y). Surface electromyography (SEMG) was applied (SENIAM guidelines) to ankle (tibialis anterior, soleus, medial gastrocnemius, peroneus longus) and thigh (vastus lateralis, vastus medialis, biceps femoris, semitendinosus) muscles (non-dominant leg). Electrodes over trunk (multifidus and internal oblique) muscles were applied bilaterally. Two- to six-fold higher levels of relative muscle activity were found in older adults for ankle (0.0002adults for the trunk (0.001older adults for the ankle (0.009Older adults had higher electrophysiological costs for all stance conditions. Muscle coordination showed inverse activity patterns at the ankle and trunk. Optimal balance and strength training programs should take into account age-specific alterations in muscle activity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Effects on muscle strength, maximal jump height, flexibility and postural sway after soccer and Zumba exercise among female hospital employees: a 9-month randomised controlled trial.

    Science.gov (United States)

    Barene, Svein; Holtermann, Andreas; Oseland, Harald; Brekke, Ole-Lars; Krustrup, Peter

    2016-10-01

    This 9-month randomised controlled workplace physical activity trial investigated the effects of soccer and Zumba exercise, respectively, on muscle strength, maximal jump height, sit-and-reach flexibility and postural sway among female workers. A total of 107 female hospital employees aged 25-63 were cluster-randomised to a soccer group, a Zumba group or a control group. Training was conducted outside working hours as two to three 1-h weekly sessions the first 3 months and once a week the last 6 months. Tests were conducted at baseline, after 3 and 9 months. The soccer group improved maximal neck extension strength both after 3 (1.2 kg; P flexibility. The present study indicates that workplace-initiated soccer and Zumba exercise may be beneficial for improvement of the neck and trunk strength, which may have preventive effects with regard to future perceived muscle pain in the respective body regions. Furthermore, the Zumba group revealed positive effects on lower limb lean mass and postural sway compared to the control group.

  15. Effects of body weight-support treadmill training on postural sway and gait independence in patients with chronic spinal cord injury.

    Science.gov (United States)

    Covarrubias-Escudero, Felipe; Rivera-Lillo, Gonzalo; Torres-Castro, Rodrigo; Varas-Díaz, Gonzalo

    2017-10-23

    To examine the effects of a six-week body weight-support treadmill training (BWSTT) program on center-of-mass control and gait independence in chronic, incomplete spinal cord injury (iSCI) patients. Descriptive. Clinica Los Coihues. Neurorehabilitation center in Santiago, Chile. 17 chronic iSCI patients and 17 healthy subjects. An instrumented sway (ISway) test was performed before and after the implementation of a six-week BWSTT program. The standing balance of participants was measured by Normalized jerk (NJ) and root mean square (RMS). These values were used to assess the standing balance of participants, and were correlated with the scores obtained on the Walking Index Spinal Cord Injury (WISCI) II test. Significant differences were found in standing balance (i.e., through NJ) after the BWSTT program (P = 0.016), but no significant differences were found in RMS values for postural sway (P = 0.693). None of the patients obtained improved WISCI II scores pre- vs. post-intervention. While a BWSTT program can improve center-of-mass control in iSCI patients, no effects were recorded for gait independence. National Clinical Trials, registry number NCT02703883.

  16. Study of horizontal-vertical interactive Sway Rocking (SR) model for basemat uplift. Part 2: non-linear response analysis and validation

    International Nuclear Information System (INIS)

    Momma, T.; Shirahama, K.; Suzuki, K.; Ogihara, M.

    1995-01-01

    Non-linear earthquake response analyses of a BWR MARK-II type nuclear reactor building are conducted by using a Sway Rocking model (SR model) proposed in Part 1 considering the interaction between horizontal and vertical motion. The results are compared with those of accurate mathematical model using the Green Function method. Horizontal response of the SR model agrees very well with that of the Green Function model. The floor response spectra of induced vertical motions by both methods are also corresponding well in periodic characteristics as well as peak-levels. From these results, it is confirmed that the horizontal-vertical interactive SR model is applicable to non-linear response analyses considering basemat uplift. Based on the comparison of the induced vertical motions due to basemat uplift by both methods, an application limit of the horizontal-vertical interactive SR model is set up at the ground contact ratio of about 50%. (author). 4 refs., 8 figs., 1 tab

  17. Role of the Frontal Cortex in Standing Postural Sway Tasks While Dual-Tasking: A Functional Near-Infrared Spectroscopy Study Examining Working Memory Capacity

    Directory of Open Access Journals (Sweden)

    Hiroyuki Fujita

    2016-01-01

    Full Text Available Posture control during a dual-task involves changing the distribution of attention resources between the cognitive and motor tasks and involves the frontal cortex working memory (WM. The present study aimed to better understand the impact of frontal lobe activity and WM capacity in postural control during a dual-task. High and low WM-span groups were compared using their reading span test scores. High and low WM capacity were compared based on cognitive and balance performance and hemoglobin oxygenation (oxyHb levels during standing during single (S-S, standing during dual (S-D, one leg standing during single (O-S, and one leg standing during dual (O-D tasks. For sway pass length, significant difference in only the O-D task was observed between both groups. oxyHb levels were markedly increased in the right dorsolateral prefrontal cortex and supplementary motor area in the high-span group during a dual-task. Therefore, WM capacity influenced the allocation of attentional resources and motor performance.

  18. Vitamin D deficiency intensifies deterioration of risk factors, such as male sex and absence of vision, leading to increased postural body sway.

    Science.gov (United States)

    Krause, Matthias; Anschütz, Wilma; Vettorazzi, Eik; Breer, Stefan; Amling, Michael; Barvencik, Florian

    2014-01-01

    Due to inconsistent findings, the influence of vitamin D on postural body sway (PBS) is currently under debate. This study evaluated the impact of vitamin D on PBS with regards to different foot positions and eye opening states in community-dwelling older individuals. In a cross-sectional study, we assessed PBS in 342 older individuals (264 females [average age (± SD): 68.3 ± 9.0 years], 78 males [65.7 ± 9.6 years]). A detailed medical history and vitamin D level were obtained for each individual. Fall risk was evaluated using the New York-Presbyterian Fall Risk Assessment Tool (NY PFRA). PBS parameters (area, distance, velocity, frequency) were evaluated on a pressure plate with feet in closed stance (CS) or hip-width stance (HWS), open eyes and closed eyes. Statistical analysis included logarithmic mixed models for repeated measures with the MIXED model procedure to test the influence of vitamin D (categorized in 30 μg/l), foot position, eye opening state, age, sex and frequency of physical activity on PBS. Vitamin D was not an independent risk factor for falls experienced in the last 12 months. Nonetheless, PBS was higher in patients with vitamin D deficiency (risk factors for increased PBS like male sex and absence of vision are additionally compromised by vitamin D deficiency. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Swayed by the Logo and Name: Does University Branding Work?

    Science.gov (United States)

    Idris, Muhammad Zaffwan; Whitfield, T. W. Allan

    2014-01-01

    Over the last decade, many universities attempted to improve their public image by changing their corporate visual identity (CVI) and/or name. Despite the prevalence of such practices, little research has been conducted into their effectiveness. The research reported here focused upon one facet of the higher education branding debate, that of the…

  20. How Life History Can Sway the Fixation Probability of Mutants

    Science.gov (United States)

    Li, Xiang-Yi; Kurokawa, Shun; Giaimo, Stefano; Traulsen, Arne

    2016-01-01

    In this work, we study the effects of demographic structure on evolutionary dynamics when selection acts on reproduction, survival, or both. In contrast to the previously discovered pattern that the fixation probability of a neutral mutant decreases while the population becomes younger, we show that a mutant with a constant selective advantage may have a maximum or a minimum of the fixation probability in populations with an intermediate fraction of young individuals. This highlights the importance of life history and demographic structure in studying evolutionary dynamics. We also illustrate the fundamental differences between selection on reproduction and selection on survival when age structure is present. In addition, we evaluate the relative importance of size and structure of the population in determining the fixation probability of the mutant. Our work lays the foundation for also studying density- and frequency-dependent effects in populations when demographic structures cannot be neglected. PMID:27129737

  1. Motion sickness and postural sway in console video games.

    Science.gov (United States)

    Stoffregen, Thomas A; Faugloire, Elise; Yoshida, Ken; Flanagan, Moira B; Merhi, Omar

    2008-04-01

    We tested the hypotheses that (a) participants might develop motion sickness while playing "off-the-shelf" console video games and (b) postural motion would differ between sick and well participants, prior to the onset of motion sickness. There have been many anecdotal reports of motion sickness among people who play console video games (e.g., Xbox, PlayStation). Participants (40 undergraduate students) played a game continuously for up to 50 min while standing or sitting. We varied the distance to the display screen (and, consequently, the visual angle of the display). Across conditions, the incidence of motion sickness ranged from 42% to 56%; incidence did not differ across conditions. During game play, head and torso motion differed between sick and well participants prior to the onset of subjective symptoms of motion sickness. The results indicate that console video games carry a significant risk of motion sickness. Potential applications of this research include changes in the design of console video games and recommendations for how such systems should be used.

  2. Analyst: Soldier fails to sway election / Joel Alas

    Index Scriptorium Estoniae

    Alas, Joel

    2007-01-01

    President Toomas Hendrik Ilves ei kuulutanud välja keelatud rajatise kõrvaldamise seadust, sest see on põhiseadusega vastuolus. Politoloog Vello Pettai hinnangul pole valijatele Tõnismäe pronkssõduri teema oluline

  3. Fire response of composite columns subject to sway

    DEFF Research Database (Denmark)

    Virdi, Kuldeep

    Composite columns, using profiled steel sections encased in concrete or steel tubes filled with concrete, are increasingly used in practice taking advantage of speed of erection as well as offering cost-effective solutions. While the design of braced and unbraced composite columns under ambient...... conditions is adequately covered in the relevant standard, Eurocode 4, simplified design of unbraced composite columns for the fire limit state has not been included. Recognising this, a collaborative research project was undertaken with funding from the Research Fund for Coal and Steel. The paper describes...... the scope of the project which covered control tests under ambient conditions, carried out by the author while at City University London. Other aspects covered in the project included fire tests carried out by CTICM in France, on isolated columns and on two frames designed by Leibniz Universität Hannover...

  4. Validation of measures from the smartphone sway balance application: a pilot study.

    Science.gov (United States)

    Patterson, Jeremy A; Amick, Ryan Z; Thummar, Tarunkumar; Rogers, Michael E

    2014-04-01

    A number of different balance assessment techniques are currently available and widely used. These include both subjective and objective assessments. The ability to provide quantitative measures of balance and posture is the benefit of objective tools, however these instruments are not generally utilized outside of research laboratory settings due to cost, complexity of operation, size, duration of assessment, and general practicality. The purpose of this pilot study was to assess the value and validity of using software developed to access the iPod and iPhone accelerometers output and translate that to the measurement of human balance. Thirty healthy college-aged individuals (13 male, 17 female; age = 26.1 ± 8.5 years) volunteered. Participants performed a static Athlete's Single Leg Test protocol for 10 sec, on a Biodex Balance System SD while concurrently utilizing a mobile device with balance software. Anterior/posterior stability was recorded using both devices, described as the displacement in degrees from level, and was termed the "balance score." There were no significant differences between the two reported balance scores (p = 0.818. Mean balance score on the balance platform was 1.41 ± 0.90, as compared to 1.38 ± 0.72 using the mobile device. There is a need for a valid, convenient, and cost-effective tool to objectively measure balance. Results of this study are promising, as balance score derived from the Smartphone accelerometers were consistent with balance scores obtained from a previously validated balance system. However, further investigation is necessary as this version of the mobile software only assessed balance in the anterior/posterior direction. Additionally, further testing is necessary on a healthy populations and as well as those with impairment of the motor control system. Level 2b (Observational study of validity)(1.)

  5. Robust PD Sway Control of a Lifted Load for a Crane Using a Genetic Algorithm

    Science.gov (United States)

    Kawada, Kazuo; Sogo, Hiroyuki; Yamamoto, Toru; Mada, Yasuhiro

    PID control schemes still continue to be widely used for most industrial control systems. This is mainly because PID controllers have simple control structures, and are simple to maintain and tune. However, it is difficult to find a set of suitable control parameters in the case of time-varying and/or nonlinear systems. For such a problem, the robust controller has been proposed.Although it is important to choose the suitable nominal model in designing the robust controller, it is not usually easy.In this paper, a new robust PD controller design scheme is proposed, which utilizes a genetic algorithm.

  6. Effect of sacroiliac manipulation on postural sway in quiet standing: a randomized controlled trial.

    Science.gov (United States)

    Farazdaghi, Mohammad Reza; Motealleh, Alireza; Abtahi, Forough; Panjan, Andrej; Šarabon, Nejc; Ghaffarinejad, Farahnaz

    Sacroiliac joint manipulation can alter joint and muscle control mechanisms through local and remote effects. Postural balance is controlled by supraspinal (rambling) and spinal-peripheral (trembling) mechanisms. A manipulation may interfere with postural control in quiet standing. To evaluate the immediate effects of sacroiliac joint manipulation on postural control in patients with (1) sacroiliac dysfunction and (2) to determine whether rambling and trembling are affected by sacroiliac joint manipulation. 32 patients aged between 20 and 50 years old were selected by convenience after confirmation of sacroiliac joint dysfunction by clinical examination. These patients were randomly allocated either to manipulation or sham manipulation group. Displacement, velocity and frequency of the center of pressure, rambling and trembling in the anterior-posterior and medial-lateral directions were our primary outcomes and analyzed immediately before and after the intervention in quiet standing. The physical therapists who performed the physical, biomechanical and statistical examinations, were all blinded to the patients' grouping. No differences were found between the two groups but trembling velocity (0.14 and -0.11 for intervention and sham group, respectively) and frequency (0.17 and 0.11 for intervention and sham group respectively) increased after intervention in the treatment group in the anterior-posterior direction. Generally, sacroiliac joint manipulation had no superiority than sham treatment regarding postural control as measured by rambling-trembling analysis of center of pressure. Manipulation may increase muscle activation in the treatment group due to increased trembling parameters. Trial number: IRCT2014072715932N8 - http://www.irct.ir/searchresult.php?keyword=%D8%B3%D9%88%DB%8C%D9%87&id=15932&field=&number=8&prt=13&total=10&m=1. Copyright © 2017 Associação Brasileira de Pesquisa e Pós-Graduação em Fisioterapia. Publicado por Elsevier Editora Ltda. All rights reserved.

  7. Postural Control and Automaticity in Dyslexic Children: The Relationship between Visual Information and Body Sway

    Science.gov (United States)

    Barela, Jose A.; Dias, Josenaldo L.; Godoi, Daniela; Viana, Andre R.; de Freitas, Paulo B.

    2011-01-01

    Difficulty with literacy acquisition is only one of the symptoms of developmental dyslexia. Dyslexic children also show poor motor coordination and postural control. Those problems could be associated with automaticity, i.e., difficulty in performing a task without dispending a fair amount of conscious efforts. If this is the case, dyslexic…

  8. Effects of voluntary and automatic control of center of pressure sway during quiet standing.

    Science.gov (United States)

    Ueta, Kozo; Okada, Yohei; Nakano, Hideki; Osumi, Michihiro; Morioka, Shu

    2015-01-01

    The authors investigated the effects of voluntary and automatic control on the spatial variables (envelope area, maximal amplitude, and root mean square [RMS]) of center of pressure (COP) displacement during quiet standing and identified differences in their postural control strategies (mean velocity [MV], mean power frequency [MPF], and power density). COP data were recorded under relaxed (experimental control), still (voluntary control), and dual (automatic control) conditions. RMS was significantly lower in the still and dual conditions than in the relaxed condition. MV, MPF, and power density were significantly higher in the still condition than in the dual condition. These results indicate that both voluntary and automatic control decrease the spatial variables of COP displacement; however, their postural control strategies are different.

  9. Trunk sway analysis to quantify the warm-up phenomenon in myotonia congenita patients.

    NARCIS (Netherlands)

    Horlings, G.C.; Drost, G.; Bloem, B.R.; Trip, J.; Pieterse, A.J.; Engelen, B.G.M. van; Allum, J.H.J.

    2009-01-01

    OBJECTIVE: Patients with autosomal recessive myotonia congenita display myotonia and transient paresis that diminish with repetitive muscle contractions (warm-up phenomenon). A new approach is presented to quantify this warm-up phenomenon under clinically relevant gait and balance tasks. METHODS:

  10. Relation between risk of falling and postural sway complexity in diabetes.

    Science.gov (United States)

    Morrison, S; Colberg, S R; Parson, H K; Vinik, A I

    2012-04-01

    For older individuals with diabetes, any decline in balance control can be especially problematic since it is often a precursor to an increased risk of falling. This study was designed to evaluate differences in postural motion dynamics and falls risk for older individuals with type 2 diabetes (T2DM) classified as fallers/non-fallers and, to assess what impact exercise has on balance and falls risk. The results demonstrated that the risk of falling is greater for those older individuals with multiple risk factors including diabetes and a previous falls history. The postural motion features of the high-risk individuals (T2DM-fallers) were also different, being characterized by increased variability and complexity, increased AP-ML coupling, less overall COP motion and increased velocity. One suggestion is that these individuals evoked a stiffening strategy during the more challenging postural tasks. Following training, a decline in falls risk was observed for all groups, with this effect being most pronounced for the T2DM-fallers. Interestingly, the COP motion of this group became more similar to controls, exhibiting decreased complexity and variability, and decreased velocity. The reciprocal changes in COP complexity support the broader view that age/disease-related changes in physiological complexity are bi-directional. Overall, these results show that, even for older T2DM individuals at greater risk of falling, targeted interventions can positively enhance their postural dynamics. Further, the finding that the pattern of postural motion variability and complexity was altered highlights that a decline in physiological complexity may not always be negatively associated with aging and/or disease. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. `Not hard to sway': a case study of student engagement in two large engineering classes

    Science.gov (United States)

    Shekhar, Prateek; Borrego, Maura

    2018-07-01

    Although engineering education research has empirically validated the effectiveness of active learning in improving student learning over traditional lecture-based methods, the adoption of active learning in classrooms has been slow. One of the greatest reported barriers is student resistance towards engagement in active learning exercises. This paper argues that the level of student engagement in active learning classrooms is an interplay of social and physical classroom characteristics. Using classroom observations and instructor interviews, this study describes the influence of the interaction of student response systems and classroom layout on student engagement in two large active-learning-based engineering classrooms. The findings suggest that the use of different student response systems in combination with cluster-style seating arrangements can increase student engagement in large classrooms.

  12. Considerations on the application of the chaos paradigm to describe the postural sway

    Energy Technology Data Exchange (ETDEWEB)

    Pascolo, Paolo [Laboratorio di meccanica funzionale, Dipartimento di Ingegneria Civile, Universita di Udine, Via delle Scienze 208, Udine 33100 (Italy)] e-mail: p.pascolo@dic.uniud.it; Barazza, Fausto [Dipartimento di Georisorse e Territorio, Universita di Udine (Italy); Carniel, Roberto [Dipartimento di Georisorse e Territorio, Universita di Udine (Italy)

    2006-03-01

    Time-series of statokinesigram (SKG) of healthy subjects and parkinsonians are investigated and compared. This is done by employing the chaos paradigm in order to obtain the main characteristics of the SKG. The interpretation of our findings is twofold:when a proper Theiler window is not used we find a virtual invariance of the chaos parameters when healthy subjects and parkinsonians are compared but a discrepancy of our values (correlation dimension equals to 1.4) with those found in previous works; when a proper Theiler window is used (more) appropriately, the SKGs do not show a convergence of the fractal dimension estimates; therefore nothing can be said in terms of chaoticity of system.

  13. Effects of Balance Training on Postural Sway, Leg Extensor Strength, and Jumping Height in Adolescents

    Science.gov (United States)

    Granacher, Urs; Gollhofer, Albert; Kriemler, Susi

    2010-01-01

    Deficits in strength of the lower extremities and postural control have been associated with a high risk of sustaining sport-related injuries. Such injuries often occur during physical education (PE) classes and mostly affect the lower extremities. Thus, the objectives of this study were to investigate the effects of balance training on postural…

  14. Considerations on the application of the chaos paradigm to describe the postural sway

    International Nuclear Information System (INIS)

    Pascolo, Paolo; Barazza, Fausto; Carniel, Roberto

    2006-01-01

    Time-series of statokinesigram (SKG) of healthy subjects and parkinsonians are investigated and compared. This is done by employing the chaos paradigm in order to obtain the main characteristics of the SKG. The interpretation of our findings is twofold:when a proper Theiler window is not used we find a virtual invariance of the chaos parameters when healthy subjects and parkinsonians are compared but a discrepancy of our values (correlation dimension equals to 1.4) with those found in previous works; when a proper Theiler window is used (more) appropriately, the SKGs do not show a convergence of the fractal dimension estimates; therefore nothing can be said in terms of chaoticity of system

  15. Traveling Weather Disturbances in Mars Southern Extratropics: Sway of the Great Impact Basins

    Science.gov (United States)

    Hollingsworth, Jeffery L.

    2016-01-01

    As on Earth, between late autumn and early spring on Mars middle and high latitudes within its atmosphere support strong mean thermal contrasts between the equator and poles (i.e. "baroclinicity"). Data collected during the Viking era and observations from both the Mars Global Surveyor (MGS) and Mars Reconnaissance Orbiter (MRO) indicate that this strong baroclinicity supports vigorous, large-scale eastward traveling weather systems (i.e. transient synoptic-period waves). Within a rapidly rotating, differentially heated, shallow atmosphere such as on Earth and Mars, such large-scale, extratropical weather disturbances are critical components of the global circulation. These wave-like disturbances act as agents in the transport of heat and momentum, and moreover generalized tracer quantities (e.g., atmospheric dust, water vapor and water-ice clouds) between low and high latitudes of the planet. The character of large-scale, traveling extratropical synoptic-period disturbances in Mars' southern hemisphere during late winter through early spring is investigated using a high-resolution Mars global climate model (Mars GCM). This global circulation model imposes interactively lifted (and radiatively active) dust based on a threshold value of the instantaneous surface stress. Compared to observations, the model exhibits a reasonable "dust cycle" (i.e. globally averaged, a more dusty atmosphere during southern spring and summer occurs). In contrast to their northern-hemisphere counterparts, southern synoptic-period weather disturbances and accompanying frontal waves have smaller meridional and zonal scales, and are far less intense synoptically. Influences of the zonally asymmetric (i.e. east-west varying) topography on southern large-scale weather disturbances are examined. Simulations that adapt Mars' full topography compared to simulations that utilize synthetic topographies emulating essential large-scale features of the southern middle latitudes indicate that Mars' transient barotropic/baroclinic eddies are significantly influenced by the great impact basins of this hemisphere (e.g., Argyre and Hellas). In addition, the occurrence of a southern storm zone in late winter and early spring is keyed particularly to the western hemisphere via orographic influences arising from the Tharsis highlands, and the Argyre and Hellas impact basins. Geographically localized transient-wave activity diagnostics are constructed that illuminate fundamental differences amongst such simulations and these are described.

  16. Body Sway as a Possible Indicator of Fatigue in Clerical Workers

    Directory of Open Access Journals (Sweden)

    Ina Völker

    2015-09-01

    Conclusion: Data suggest that postural stability of clerical workers was comparable in the morning and afternoon, but COP movement was greater in the morning. Within the framework of dynamic systems theory, this could indicate that the postural system explored the state space in more detail, and thus was more ready to respond to unexpected perturbations in the morning.

  17. Attentional and sensory contributions to postural sway in children with autism spectrum disorder

    NARCIS (Netherlands)

    Stins, J.F.; Emck, C.; de Vries, E.M.; Doop, S.; Beek, P.J.

    2015-01-01

    Postural control is known to depend on sensory and cognitive factors. Little is known about how children with autism spectrum disorder (ASD) regulate static balance, and to what extent vision and cognition contribute to the regulation of balance in this group. We compared a group of children with

  18. To what extent do they sway Australian water management decision making?

    Science.gov (United States)

    Papas, Maureen

    2016-10-01

    At a time when the reliability of freshwater resources has become highly unpredictable, as a result of climate change and increased droughts frequency, the role of scientific evidence in forecasting the availability of seasonal water has become more critical. Australia is one of the driest inhabited continents. Its freshwater availability is highly variable, which poses unique problems for the management of the nation's water resources. Under Australia's federal system, water management challenges have been progressively dealt with through political institutions that rely on best available science to inform policy development. However, it could be argued that evidenced-based policy making is an impossible aim in a highly complex and uncertain political environment: that such a rational approach would be defeated by competing values and vested interests across stakeholders. This article demonstrates that, while science has a fundamental role to play in effective water resource management, the reality on the ground often diverges from the intended aim and does not always reflect efforts at reform. This article briefly reviews the Water Act 2007 (Cth) and comments on why policy makers need to manage rather than try to eliminate uncertainty to promote change.

  19. To what extent do they sway Australian water management decision making?

    Directory of Open Access Journals (Sweden)

    M. Papas

    2016-10-01

    Full Text Available At a time when the reliability of freshwater resources has become highly unpredictable, as a result of climate change and increased droughts frequency, the role of scientific evidence in forecasting the availability of seasonal water has become more critical. Australia is one of the driest inhabited continents. Its freshwater availability is highly variable, which poses unique problems for the management of the nation's water resources. Under Australia's federal system, water management challenges have been progressively dealt with through political institutions that rely on best available science to inform policy development. However, it could be argued that evidenced-based policy making is an impossible aim in a highly complex and uncertain political environment: that such a rational approach would be defeated by competing values and vested interests across stakeholders. This article demonstrates that, while science has a fundamental role to play in effective water resource management, the reality on the ground often diverges from the intended aim and does not always reflect efforts at reform. This article briefly reviews the Water Act 2007 (Cth and comments on why policy makers need to manage rather than try to eliminate uncertainty to promote change.

  20. The Effects of the Air Cast Sports Stirrup on Postural Sway in Normal Males

    Science.gov (United States)

    1993-01-01

    Pittsburgh Pittsburgh, PAI Paula Sammarone, MA, ATC Date Rangos School of Health Sciences I Director, Athletic Training Duquesne University I Pittsburgh, PA I...sprain occurs, tearing of the ligaments also occur, which results in de- afferentization of the articular nerves (20). 1 Several treatment modalities...intermediate ranges. Articular nerve fibers have lower tensile strength than collagen fibers (21). Since most inversion injuries of the ankle result in some

  1. Heat transfer along the route to chaos of a swaying thermal plume

    International Nuclear Information System (INIS)

    Angeli, D; Corticelli, M A; Fichera, A; Pagano, A

    2015-01-01

    Detailed analyses have been recently reported on the low order dynamics of a thermal plume arising from a horizontal cylindrical heat source concentric to an air-filled isothermally cooled square enclosure, together with those of the related flow structures, in the limit of the 2D approximation. In particular, within the range of 0 < Ra < 3Ra cr , with Ra cr corresponding to the loss of stability of the stationary buoyant plume, the entire evolution from a periodic limit cycle (P 1 ) to the birth of chaos through a period-doubling cascade has been fully explored. With this respect, special attention has been given to the window of quasiperiodic dynamics onto a T 2 -torus that is observed to separate the monoperiodic dynamics from the biperiodic dynamics onto a P 1 and a P 2 -limit cycle, respectively. The results of these analyses hint at the bimodal nature of the overall dynamics, in general, and of the subharmonic cascade, in particular, which are still under investigation. Although relevant on a dynamical perspective, a with a main reflection on the laminar-turbulent transition, the observed oscillations appear to be characterised by comparable amplitudes and to be determined by similar evolutions of the flow pattern evolutions, so that their role on the overall heat transfer rate is expected to be marginal. Within this frame, the present study aims at reporting the influence played by the observed dynamics of the thermal plume and of the flow structures on the global heat transfer rate. In particular, the aim is the assessment of the correlation between the Rayleigh number and the average Nusselt number on the cylinder surface, as well as the effect on the latter of the observed series of bifurcations. (paper)

  2. What Sways People's Judgment of Sleep Quality? A Quantitative Choice-Making Study With Good and Poor Sleepers.

    Science.gov (United States)

    Ramlee, Fatanah; Sanborn, Adam N; Tang, Nicole K Y

    2017-07-01

    We conceptualized sleep quality judgment as a decision-making process and examined the relative importance of 17 parameters of sleep quality using a choice-based conjoint analysis. One hundred participants (50 good sleepers; 50 poor sleepers) were asked to choose between 2 written scenarios to answer 1 of 2 questions: "Which describes a better (or worse) night of sleep?". Each scenario described a self-reported experience of sleep, stringing together 17 possible determinants of sleep quality that occur at different times of the day (day before, pre-sleep, during sleep, upon waking, day after). Each participant answered 48 questions. Logistic regression models were fit to their choice data. Eleven of the 17 sleep quality parameters had a significant impact on the participants' choices. The top 3 determinants of sleep quality were: Total sleep time, feeling refreshed (upon waking), and mood (day after). Sleep quality judgments were most influenced by factors that occur during sleep, followed by feelings and activities upon waking and the day after. There was a significant interaction between wake after sleep onset and feeling refreshed (upon waking) and between feeling refreshed (upon waking) and question type (better or worse night of sleep). Type of sleeper (good vs poor sleepers) did not significantly influence the judgments. Sleep quality judgments appear to be determined by not only what happened during sleep, but also what happened after the sleep period. Interventions that improve mood and functioning during the day may inadvertently also improve people's self-reported evaluation of sleep quality. © Sleep Research Society 2017. Published by Oxford University Press [on behalf of the Sleep Research Society].

  3. Altered Visual and Feet Proprioceptive Feedbacks during Quiet Standing Increase Postural Sway in Patients with Severe Knee Osteoarthritis

    DEFF Research Database (Denmark)

    Hirata, Rogerio Pessoto; Jørgensen, Tanja Schjødt; Rosager, Sara

    2013-01-01

    The objective was to investigate how postural control in knee osteoarthritis (KOA) patients, with different structural severities and pain levels, is reorganized under different sensory conditions.......The objective was to investigate how postural control in knee osteoarthritis (KOA) patients, with different structural severities and pain levels, is reorganized under different sensory conditions....

  4. Music production-consumption and the service-good spectrum under the sway of a shift within a shift

    OpenAIRE

    Carvalho, Sílvia Helena Meyer; Scavarda, Annibal

    2015-01-01

    Nowadays music constitutes a phenomenon whose complexion entangles aspects simultaneously related to society, culture, art, business, and technology. Due to the combined influence of these aspects, music production-consumption acquires some unique features. Added to that, the swift evolution and growing influence of the economic-technological association have increasingly affected music as a sociocultural phenomenon, as an art form, and as a corporative business, increasing the complexity of ...

  5. Effects on muscle strength, maximal jump height, flexibility and postural sway after soccer and Zumba exercise among female hospital employees

    DEFF Research Database (Denmark)

    Barene, Svein; Holtermann, Andreas; Oseland, Harald

    2016-01-01

    -63 were cluster-randomised to a soccer group, a Zumba group or a control group. Training was conducted outside working hours as two to three 1-h weekly sessions the first 3 months and once a week the last 6 months. Tests were conducted at baseline, after 3 and 9 months. The soccer group improved maximal...... lean mass (0.4 kg; P

  6. Initial Consideration of the Feasibility and Optimal Application of Tactile Sway Cueing to Improve Balance Among Persons Suffering from Disequilibrium

    Science.gov (United States)

    2010-11-01

    mouth are engineered out of the system. Fortunately, the later model of Brainport is wireless, but even so, having a device in the mouth may feel ...E. 2006. Determining the effectiveness of a vibrotactile balance prosthesis . Journal of Vestibular Research. 16: 45-56. 14 Raj, A. K., Suri, N

  7. MUSIC PRODUCTION-CONSUMPTION AND THE SERVICE-GOOD SPECTRUM UNDER THE SWAY OF A SHIFT WITHIN A SHIFT

    Directory of Open Access Journals (Sweden)

    Sílvia Helena Meyer Carvalho

    2015-06-01

    Full Text Available Nowadays music constitutes a phenomenon whose complexion entangles aspects simultaneously related to society, culture, art, business, and technology. Due to the combined influence of these aspects, music production-consumption acquires some unique features. Added to that, the swift evolution and growing influence of the economic-technological association have increasingly affected music as a sociocultural phenomenon, as an art form, and as a corporative business, increasing the complexity of an already convoluted context. Given the composite and dynamic constitution of the music field, the present approach departs from a multidisciplinary analysis, establishing a methodological groundwork that comprehends conceptual and qualitative research, elaborated through exploratory study. Under a standard economic perspective, music production-consumption belongs in the structure of the music supply chain, presenting a rather uncertain status between service and good. Apart from the economic understanding, however, music comprises a wide variety of manifestations, which do not suit conventional production-consumption processes. In order to cope with the inexorable duality of this paradoxical coexistence, this study proposes a model intended to contribute to the building of a comprehensive knowledge on music production and consumption. As this model departs from some specific flows of music production and consumption, it creates an array of patterns, pinpointing their situation within the service-good spectrum. In addition, it considers Digital Revolution and globalized communications as enablers that affect the foundations of traditional music, unbalance routine flows inside the supply chain of the music industry and cause music production-consumption relationships to shift their status from product-oriented to service-oriented.

  8. Elite level adolescent athletes with Generalised Joint Hypermobility (GJH) display increased lower extremity symptoms and larger postural sway than those without GJH

    DEFF Research Database (Denmark)

    Juul-Kristensen, B; Schmidt, H; Pedersen, T Lykke

    mobility was measured as HSA using an inclinometer in a standardized protocol format. A multiple regression analysis was used to reveal associations between GJH and horizontal shoulder abduction, adjusted for sex and age. Results Overall, significant associations between GJH and HSA were found. An increase...

  9. Measuring Regularity of Human Postural Sway Using Approximate Entropy and Sample Entropy in Patients with Ehlers-Danlos Syndrome Hypermobility Type

    Science.gov (United States)

    Rigoldi, Chiara; Cimolin, Veronica; Camerota, Filippo; Celletti, Claudia; Albertini, Giorgio; Mainardi, Luca; Galli, Manuela

    2013-01-01

    Ligament laxity in Ehlers-Danlos syndrome hypermobility type (EDS-HT) patients can influence the intrinsic information about posture and movement and can have a negative effect on the appropriateness of postural reactions. Several measures have been proposed in literature to describe the planar migration of CoP over the base of support, and the…

  10. Homocysteine and the methylenetetrahydrofolate reductase 677C-->T polymorphism in relation to muscle mass and strength, physical performance and postural sway

    NARCIS (Netherlands)

    Swart, K. M. A.; Enneman, A. W.; van Wijngaarden, J. P.; van Dijk, S. C.; Brouwer-Brolsma, E. M.; Ham, A. C.; Dhonukshe-Rutten, R. A. M.; van der Velde, N.; Brug, J.; van Meurs, J. B. J.; de Groot, L. C. P. G. M.; Uitterlinden, A. G.; Lips, P.; van Schoor, N. M.

    2013-01-01

    Elevated plasma homocysteine has been linked to reduced mobility and muscle functioning in the elderly. The relation of methylenetetrahydrofolate reductase (MTHFR) 677C-->T polymorphism with these associations has not yet been studied. This study aimed to investigate (1) the association of plasma

  11. Reliability of Center of Pressure Parameters in Postural Sway among Athlete and Non-athlete Men in Different Levels of Fatigue and Vision

    Directory of Open Access Journals (Sweden)

    Zohreh Meshkati

    2010-10-01

    Full Text Available Objective: This study aimed to investigate the skill, fatigue and vision-related differences between athletes and non-athletes in reliability of center of pressure (COP measures derived from force platform. Materials & Methods: Thirty-one healthy male participants (15 athletes and 16 non-athletes were tested on force platform on two sessions with a 48-72 hr interval. COP parameters was recorded during two-legged quiet standing before and after a generalized fatigue exercise by treadmill, with eyes-open (EO and eyes-closed (EC. Standard deviation (SD of amplitude, SD of velocity in anteroposterior (AP and mediolateral directions and mean total velocity were calculated from 30 sec COP data. Results: Higher intraclass correlation coefficient (ICC was found for COP measures in the athlete (compared with the non-athlete group. ICC was increased in post-fatigue (compared with pre-fatigue conditions. Also higher ICC was found for EC (compared with EO tests. Coefficients of variation smaller than 15% were obtained for most of the COP measures. Alpha level of 0. 05 was considered for all statistical analyses. Regarding the level of skill, fatigue and vision, mean total velocity (P=0. 001 and SD of velocity (AP (P=0. 001 were the most reliable parameters. Conclusion: The results aid researchers in selection of reliable COP measures for future studies of postural control in sports. In this way, researchers can use mean total velocity and SD of velocity (AP parameters in their studies in same conditions on athletes.

  12. Fighting Swaying Imbalances of Powers: The Transformation of Spiritual Freedom in Tang Tales into Individual Freedom in Hou Hsiao-hsien’s The Assassin

    Directory of Open Access Journals (Sweden)

    Frank Kraushaar

    2018-03-01

    Full Text Available The appearance of Hou Hsiao-hsien’s 侯孝賢 film The Assassin in 2015 and its distinction the same year with the Best Director’s award at the film festival in Cannes has launched an avalanche of confused and confusing reviews in print-media and on the internet. This partly may have been due to the gap between expectations the film’s attribution to the wuxia genre generated in the public and what actually Hou expects from his audience. Despite an unmistakable historical contextualisation at the heart of power-struggling between the Tang imperial court and the ruling house of Weibo, a state that manages to assert its de facto independence behind a diaphanous diplomatic veil of loyalty, the story of the young female assassin Nie Yinniang develops into a sphere of its own, which seems to extend beyond the confines of history and strongly suggests a freedom unspeakable within the intellectual parameter of Tang. This paper traces back the film’s narrative based on Tang dynasty tales and its cinematic language, and arrives at an interpretation related to contemporary social and political topics such as the female/male body and violence. It also touches upon the cross-strait relations’ issues and the “Western” idea of freedom expressed in an apparently traditional Chinese narrative context.

  13. بررسی تغییرات ساختاری و رفتاری عضلات ثبات دهنده ستون مهره ای با استفاده از روش‌های تصویربرداری اولتراسوند، MRI و الکترومیوگرافی در افراد دارای اختلال پاسچر Sway-Back"

    Directory of Open Access Journals (Sweden)

    الناز مهدوی

    2017-06-01

    Full Text Available مقدمه و اهداف اختلال پاسچر sway-back (SB یکی از شایعترین اختلالات ستون مهره ها درمیان افراد جامعه بخصوص خانم های جوان می باشد. با وجود شیوع این اختلال پاسچر، در مورد نحوه تغییر راستای اسکلتی در ناحیه کمر و لگن و تغییرات عضلانی حاصله اتفاق نظری بین محققان وجود ندارد. هدف از مطالعه حاضر، جمع آوری تغییرات گزارش شده در ابعاد، تولید تنشن و ساختار عضلات ثبات دهنده ستون مهره ای در پاسچر SB، با استفاده از روش های دقیق تصویربرداری اولتراسوند، الکترومیوگرافی و MRI می باشد. مواد و روش ها با جستجو در پایگاههای اطلاعاتی Google scholar, Pubmed, Embase در ابتدا 102 مقاله که در بازه ی زمانی 2002-2016 بودند بدست آمد که بعد از تطابق با معیارهای ورود و خروج، تعداد 97 مقاله حذف شد و 5 مقاله باقی مانده به صورت تمام متن مورد بررسی قرار گرفتند. در این مرور از مقالاتی استفاده شد که تغییرات عضلانی در پاسچر SB را با استفاده ار روشهای USI ,MRI و EMG مورد بررسی قرار داده بودند. یافته ها با استفاده از الکترومیوگرافی سطحی کاهش فعالیت عضلات اینترنال ابلیک، مولتی فیدوس کمری و ارکتوراسپاین و افزایش فعالیت عضله ی رکتوس ابدومینوس را نشان داده شد. بررسی ضخامت عضله ی ترانسورس ابدومینوس با استفاده از اولتراسونوگرافی نیز نشان داد که ضخامت این عضله در

  14. The Control of Posture in Newly Standing Infants is Task Dependent

    Science.gov (United States)

    Claxton, Laura J.; Melzer, Dawn K.; Ryu, Joong Hyun; Haddad, Jeffrey M.

    2012-01-01

    The postural sway patterns of newly standing infants were compared under two conditions: standing while holding a toy and standing while not holding a toy. Infants exhibited a lower magnitude of postural sway and more complex sway patterns when holding the toy. These changes suggest that infants adapt postural sway in a manner that facilitates…

  15. Brazil is a country of “balangandãs” (swaying ornaments in French imaginary O Brasil é um país de “balangandãs” no imaginário francês

    Directory of Open Access Journals (Sweden)

    Maranúbia Barbosa

    2006-12-01

    Full Text Available This article explains how the French have built a distorted image of Brazil in their imaginary. Such image was built long before, based on French travelers reports and even Brazilian historians. For the French, Brazil is a country of balangandãs, plenty of festivals, bronzed female mulattoes, carnival and football. In 2005, there was the Year of Brazil in France and the event organizers insisted on exhibiting stereotyped images (clichés of Brazil.Este artigo mostra como os franceses construíram uma imagem distorcida do Brasil em seu imaginário. Essa imagem foi construída, desde os primórdios, a partir de relatos de viajantes franceses e mesmo de historiadores brasileiros. Para os franceses, o Brasil é um país de balangandãs, muita festa, gente alegre, sol o ano inteiro, mulatas bronzeadas, carnaval e futebol. Em 2005, aconteceu o Ano do Brasil na França e a organização do evento insistiu em exibir imagens estereotipadas (clichês do Brasil.

  16. The Speed Control of Constant Tension Motor of Marine Crane

    Directory of Open Access Journals (Sweden)

    Chen Xinyang

    2016-01-01

    Full Text Available This article describes the working principle of the marine beacon crane hanging disc mechanical anti-sway device, and establish mathematical model on the rope controlling hanging disc of mechanical anti-sway device; Through matlab simulation analysis, this article obtains the relation curve between the velocity of traction rope of hanging disc and output frequency of the crane motor, combining rotary crane scaled model, this article carries out anti-sway experiment for the rotary crane to examine the crane’s anti-sway effects.

  17. 運動中の姿勢制御と重心移動の関係に関する考察

    OpenAIRE

    朴沢, 二郎; Jiro, Hozawa; 仙台大学; Sendai College

    1997-01-01

    The speed of lateral body sway during the movements was recorded by the gravicorder (NEC 1G06) from 12 subjects with normal equilirium function, and the following results were obtainded; 1) When the sway action was performed on the horizontal platform of the gravicorder, there was no directional preponderance in sway speed of all subjects. 2) When the platform was tilted to the right or left, all subjects swayed faster to the tilted side. 3) When the subjects stooped as to lower their gravity...

  18. Influence of the visual environment on the postural stability in healthy older women.

    Science.gov (United States)

    Brooke-Wavell, K; Perrett, L K; Howarth, P A; Haslam, R A

    2002-01-01

    A poor postural stability in older people is associated with an increased risk of falling. It is recognized that visual environment factors (such as poor lighting and repeating patterns on escalators) may contribute to falls, but little is known about the effects of the visual environment on postural stability in the elderly. To determine whether the postural stability of older women (using body sway as a measure) differed under five different visual environment conditions. Subjects were 33 healthy women aged 65-76 years. Body sway was measured using an electronic force platform which identified the location of their centre of gravity every 0.05 s. Maximal lateral sway and anteroposterior sway were determined and the sway velocity calculated over 1-min trial periods. Body sway was measured under each of the following conditions: (1) normal laboratory lighting (186 lx); (2) moderate lighting (10 lx); (3) dim lighting (1 lx); (4) eyes closed, and (5) repeating pattern projected onto a wall. Each measure of the postural stability was significantly poorer in condition 4 (eyes closed) than in all other conditions. Anteroposterior sway was greater in condition 3 than in conditions 1 and 2, whilst the sway velocity was greater in condition 3 than in condition 2. Lateral sway did not differ significantly between different lighting levels (conditions 1-3). A projected repeating pattern (condition 5) did not significantly influence the postural stability relative to condition 1. The substantially greater body sway with eyes closed than with eyes open confirms the importance of vision in maintaining the postural stability. At the lowest light level, the body sway was significantly increased as compared with the other light levels, but was still substantially smaller than on closing the eyes. A projected repeating pattern did not influence the postural stability. Dim lighting levels and removing visual input appear to be associated with a poorer postural stability in older

  19. The Postural Responses to a Moving Environment of Adults Who Are Blind

    Science.gov (United States)

    Stoffregen, Thomas A.; Ito, Kiyohide; Hove, Philip; Yank, Jane Redfield; Bardy, Benoit G.

    2010-01-01

    Adults who are blind stood in a room that could be moved around them. A sound source moved with the room, simulating the acoustic consequences of body sway. Body sway was greater when the room moved than when it was stationary, suggesting that sound may have been used to control stance. (Contains 1 figure.)

  20. Relationships between Task-Oriented Postural Control and Motor Ability in Children and Adolescents with Down Syndrome

    Science.gov (United States)

    Wang, Hui-Yi; Long, I-Man; Liu, Mei-Fang

    2012-01-01

    Individuals with Down syndrome (DS) have been characterized by greater postural sway in quiet stance and insufficient motor ability. However, there is a lack of studies to explore the properties of dynamic postural sway, especially under conditions of task-oriented movement. The purpose of this study was to investigate the relationships between…

  1. Dynamic loadings of deepwater spar palatform - A case study

    Digital Repository Service at National Institute of Oceanography (India)

    Mandal, S.; Narasimhan, M.C.; Ambulgekar, P.P.

    of freedom, i.e., surge, sway, heave, roll, pitch and yaw are analyzed It is observed that responses due to sway, roll and yaw are negligible as compared to responses of surge, heave and pitch Tensions at the mooring points are also presented in the paper....

  2. Dynamical structure of center-of-pressure trajectories with and without functional taping in children with cerebral palsy level I and II of GMFCS.

    Science.gov (United States)

    Pavão, Silvia Leticia; Ledebt, Annick; Savelsbergh, Geert J P; Rocha, Nelci Adriana C F

    2017-08-01

    Postural control during quiet standing was examined in typical children (TD) and children with cerebral palsy (CP) level I and II of GMFCS. The immediate effect on postural control of functional taping on the thighs was analyzed. We evaluated 43 TD, 17 CP children level I, and 10 CP children level II. Participants were evaluated in two conditions (with and without taping). The trajectories of the center of pressure (COP) were analyzed by means of conventional posturography (sway amplitude, sway-path-length) and dynamic posturography (degree of twisting-and-turning, sway regularity). Both CP groups showed larger sway amplitude than the TD while only the CP level II showed more regular COP trajectories with less twisting-and-turning. Functional taping didn't affect sway amplitude or sway-path-length. TD children exhibited more twisting-and-turning with functional taping, whereas no effects on postural sway dynamics were observed in CP children. Functional taping doesn't result in immediate changes in quiet stance in CP children, whereas in TD it resulted in faster sway corrections. Children level II invest more attention in postural control than level I, and TD. While quiet standing was more automatized in children level I than in level II, both CP groups showed a less stable balance than TD. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Relationship between the mobility of medial longitudinal arch and postural control

    Directory of Open Access Journals (Sweden)

    Tansu Birinci

    2017-05-01

    Conclusion: Our results suggest that decrease of arch mobility on the dominant foot is associated with posterior sway by causing knee or hip strategy and preventing ankle strategy even in small perturbations. The rate of deviation from the equilibrium point and the degree of total swaying increase when arch mobility decreases.

  4. Postural stability is compromised by fatiguing overhead work.

    Science.gov (United States)

    Nussbaum, Maury A

    2003-01-01

    In a laboratory setting, 16 participants performed a repetitive overhead tapping task for 3 hours or until self-terminated due to substantial shoulder discomfort. Several measures of postural sway and stability were obtained using a force plate, both during quiet standing and during performance of the tapping task. Sway area and peak sway velocity showed consistent increases with time, whereas changes in average velocity and peak whole-body center-of-mass acceleration were either small or nonsignificant. Although relatively insensitive to several task variables, changes in sway areas and peak velocities were substantially larger in trials terminated by the participants. It is argued that fatigue plays a more important role than simple task duration in causing the observed increases in sway, and hence decreases in postural stability. Potential whole-body consequences of localized musculoskeletal stresses appear supported by the results, and implications for safety, risks of falls, and work scheduling are discussed.

  5. Auditory cues for orientation and postural control in sighted and congenitally blind people

    Science.gov (United States)

    Easton, R. D.; Greene, A. J.; DiZio, P.; Lackner, J. R.

    1998-01-01

    This study assessed whether stationary auditory information could affect body and head sway (as does visual and haptic information) in sighted and congenitally blind people. Two speakers, one placed adjacent to each ear, significantly stabilized center-of-foot-pressure sway in a tandem Romberg stance, while neither a single speaker in front of subjects nor a head-mounted sonar device reduced center-of-pressure sway. Center-of-pressure sway was reduced to the same level in the two-speaker condition for sighted and blind subjects. Both groups also evidenced reduced head sway in the two-speaker condition, although blind subjects' head sway was significantly larger than that of sighted subjects. The advantage of the two-speaker condition was probably attributable to the nature of distance compared with directional auditory information. The results rule out a deficit model of spatial hearing in blind people and are consistent with one version of a compensation model. Analysis of maximum cross-correlations between center-of-pressure and head sway, and associated time lags suggest that blind and sighted people may use different sensorimotor strategies to achieve stability.

  6. Assessment of postural instability in patients with Parkinson's disease.

    Science.gov (United States)

    Błaszczyk, J W; Orawiec, R; Duda-Kłodowska, D; Opala, G

    2007-10-01

    Postural instability is one of the most disabling features of idiopathic Parkinson's disease (PD). In this study, we focused on postural instability as the main factor predisposing parkinsonians to falls. For this purpose, changes in sway characteristics during quiet stance due to visual feedback exclusion were studied. We searched for postural sway measures that could be potential discriminators for an increased fall risk. A group of 110 subjects: 55 parkinsonians (Hoehn and Yahr: 1-3), and 55 age-matched healthy volunteers participated in the experiment. Their spontaneous sway characteristics while standing quiet with eyes open and eyes closed were analyzed. We found that an increased mediolateral sway and sway area while standing with eyes closed are characteristic of parkinsonian postural instability and may serve to quantify well a tendency to fall. These sway indices significantly correlated with disease severity rated both by the Hoehn and Yahr scale as well as by the Motor Section of the UPDRS. A forward shift of a mean COP position in parkinsonians which reflects their flexed posture was also significantly greater to compare with the elderly subjects and exhibited a high sensitivity to visual conditions. Both groups of postural sway abnormalities identified here may be used as accessible and reliable measures which allow for quantitative assessment of postural instability in Parkinson's disease.

  7. Differences Between Men and Women in Balance and Tremor in Relation to Plantar Fascia Laxity During the Menstrual Cycle.

    Science.gov (United States)

    Lee, Haneul; Petrofsky, Jerrold

    2018-03-01

      Although much attention has been paid to the effect of estrogen on the knee ligaments, little has been done to examine the ligaments in the foot, such as the plantar fascia, and how they may be altered during the menstrual cycle.   To (1) examine sex differences in plantar fascia thickness and laxity and postural sway and (2) identify any menstrual cycle effects on plantar fascia laxity, postural sway, and neuromuscular tremor between menstruation and the ovulation phase.   Case-control study.   Research laboratory.   Fifteen healthy women (age = 25.9 ± 1.8 years) and 15 healthy men (age = 27.3 ± 2.0 years) volunteered to participate in this study.   We asked participants to perform 8 balance tasks on a force platform while we assessed postural sway and tremor.   Plantar fascia length and thickness unloaded and loaded with body weight were measured via ultrasound. Postural sway and tremor were measured using a force platform.   Plantar fascia length and thickness with pressure were greater in ovulating women compared with men ( P women during menstruation and men. Postural sway and tremor were greater at ovulation than during menstruation ( P men had less sway than ovulating women on the 3 most difficult balance tasks ( P women. Postural sway and tremor in men were the same as in women during menstruation. These findings support the need to be aware of the effect of sex hormones on balance to prevent lower extremity injuries during sport activities.

  8. Complexity-Based Measures Inform Effects of Tai Chi Training on Standing Postural Control: Cross-Sectional and Randomized Trial Studies

    Science.gov (United States)

    Wayne, Peter M.; Gow, Brian J.; Costa, Madalena D.; Peng, C.-K.; Lipsitz, Lewis A.; Hausdorff, Jeffrey M.; Davis, Roger B.; Walsh, Jacquelyn N.; Lough, Matthew; Novak, Vera; Yeh, Gloria Y.; Ahn, Andrew C.; Macklin, Eric A.; Manor, Brad

    2014-01-01

    Background Diminished control of standing balance, traditionally indicated by greater postural sway magnitude and speed, is associated with falls in older adults. Tai Chi (TC) is a multisystem intervention that reduces fall risk, yet its impact on sway measures vary considerably. We hypothesized that TC improves the integrated function of multiple control systems influencing balance, quantifiable by the multi-scale “complexity” of postural sway fluctuations. Objectives To evaluate both traditional and complexity-based measures of sway to characterize the short- and potential long-term effects of TC training on postural control and the relationships between sway measures and physical function in healthy older adults. Methods A cross-sectional comparison of standing postural sway in healthy TC-naïve and TC-expert (24.5±12 yrs experience) adults. TC-naïve participants then completed a 6-month, two-arm, wait-list randomized clinical trial of TC training. Postural sway was assessed before and after the training during standing on a force-plate with eyes-open (EO) and eyes-closed (EC). Anterior-posterior (AP) and medio-lateral (ML) sway speed, magnitude, and complexity (quantified by multiscale entropy) were calculated. Single-legged standing time and Timed-Up–and-Go tests characterized physical function. Results At baseline, compared to TC-naïve adults (n = 60, age 64.5±7.5 yrs), TC-experts (n = 27, age 62.8±7.5 yrs) exhibited greater complexity of sway in the AP EC (P = 0.023), ML EO (Padults. Trial Registration ClinicalTrials.gov NCT01340365 PMID:25494333

  9. Balance and Gait Represent Independent Domains of Mobility in Parkinson Disease

    Science.gov (United States)

    Horak, Fay B.; Carlson-Kuhta, Patricia; Nutt, John G.; Salarian, Arash

    2016-01-01

    Background The Instrumented Stand and Walk (ISAW) test, which includes 30 seconds of stance, step initiation, gait, and turning, results in many objective balance and gait metrics from body-worn inertial sensors. However, it is not clear which metrics provide independent information about mobility. Objective It was hypothesized that balance and gait represent several independent domains of mobility and that not all domains would be abnormal in individuals with Parkinson disease (PD) or would change with levodopa therapy. Design This was a cross-sectional study. Methods A factor analysis approach was used to identify independent measures of mobility extracted from the ISAW in 100 participants with PD and 21 control participants. First, a covariance analysis showed that postural sway measures were independent of gait measures. Then, the factor analysis revealed 6 independent factors (mobility domains: sway area, sway frequency, arm swing asymmetry, trunk motion during gait, gait speed, and cadence) that accounted for 87% of the variance of performance across participants. Results Sway area, gait speed, and trunk motion differed between the PD group in the off-levodopa state and the control group, but sway frequency (but not sway area) differed between the PD group in the off-levodopa state and the control group. Four of the 6 factors changed significantly with levodopa (off to on): sway area, sway frequency, trunk motion during gait, and cadence. When participants were on levodopa, the sway area increased compared with off levodopa, becoming more abnormal, whereas the other 3 significant metrics moved toward, but did not reach, the healthy control values. Limitations Exploratory factor analysis was limited to the PD population. Conclusions The different sensitivity various balance and gait domains to PD and to levodopa also support neural control of at least 6 independent mobility domains, each of which warrants clinical assessment for impairments in mobility. PMID

  10. Dynamic Parameters of Balance Which Correlate to Elderly Persons with a History of Falls

    OpenAIRE

    Muir, Jesse W.; Kiel, Douglas P.; Hannan, Marian; Magaziner, Jay; Rubin, Clinton T.

    2013-01-01

    Poor balance in older persons contributes to a rise in fall risk and serious injury, yet no consensus has developed on which measures of postural sway can identify those at greatest risk of falling. Postural sway was measured in 161 elderly individuals (81.8y±7.4), 24 of which had at least one self-reported fall in the prior six months, and compared to sway measured in 37 young adults (34.9y±7.1). Center of pressure (COP) was measured during 4 minutes of quiet stance with eyes opened. In the ...

  11. Popmuusika / Mart Juur

    Index Scriptorium Estoniae

    Juur, Mart, 1964-

    2006-01-01

    Uutest heliplaatidest "Walk The Line", "B.B. King & Friends", Green Day "Bullet In A Bible", "It's All Gone Pete Tong O.S.T.", Mogwai "Mr. Beast", Cypress Hill "Greatest Hits From The Bong", Sway "This Is My Demo"

  12. Letter to the Editor: On "Advantages and disadvantages of stiffness instructions when studying postural control" by C.T. Bonnet: You just can't win: Advantages and disadvantages of the postural stability requirement.

    Science.gov (United States)

    Lajoie, Y; Richer, N; Jehu, D A; Polskaia, N; Saunders, D

    2016-05-01

    In the examination of postural control, instructions to stand as still as possible are common and promote a relatively unnatural sway pattern. The validity of the stability requirement is discussed in the present commentary in response to the discussion initiated by Cedrick T. Bonnet. The advantages of using the stability requirement include: evaluating unbiased postural control, reducing variability in postural sway, manipulating focus of attention, examining the ability to maintain an upright stance, and ecological validity of testing. The disadvantages include: constraining natural postural sway, increasing the complexity of the control condition, promoting an internal focus of attention, and reducing the ability to detect exploratory behaviour. After evaluating the aforementioned advantages and disadvantages, the present commentary suggests that researchers should strive to provide specific instructions to maintain feet, arm and eye position without specifically requiring participants to reduce their postural sway. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. The Crisis of Science

    Indian Academy of Sciences (India)

    successors demonstrated that his laws hold sway from the stars in the sky to terrestrial objects of different sizes around us. .... theory. The modern scientific view is that all solids, liquids and gases are made up of atoms. ..... principles having.

  14. Genetics Home Reference: hypochondroplasia

    Science.gov (United States)

    ... the elbows, a sway of the lower back ( lordosis ), and bowed legs. These signs are generally less ... Management Resources (2 links) GeneReview: Hypochondroplasia MedlinePlus Encyclopedia: Lordosis General Information from MedlinePlus (5 links) Diagnostic Tests ...

  15. Zede Journal - Vol 33 (2015)

    African Journals Online (AJOL)

    Investigation on applicability of substitute beam-column frame for design of reinforced concrete sway frames · EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT. Abrham Ewnetie, Girma Zerayohannes, 13-26 ...

  16. Vendors: Gifts Are the Exception to the Rule.

    Science.gov (United States)

    Natale, Jo Anna

    1992-01-01

    Informal interviews with several people working in different industries reveal that, without exception, the vendors say companies do not routinely offer school officials gifts and entertainment to sway purchasing decisions, but that it does happen. (MLF)

  17. Quantitative Romberg's test in acute carbon monoxide poisoning treated by hyperbaric oxygen

    DEFF Research Database (Denmark)

    Bidstrup, Daniel; Jansen, Erik Christian; Hyldegaard, Ole

    2017-01-01

    LMM, sway prior to HBO₂ therapy was set as the fixed effect and change in sway after HBO₂ therapy was set as the response variable. Patient, treatment number, weight and age were set as random effects for all LMMs. RESULTS: From the LMMs we found that larger values of sway prior to HBO₂ produced......OBJECTIVE: The aim of this study was to evaluate whether monitoring of acute carbon monoxide-poisoned (COP) patients by means of quantitative Romberg's test (QR-test) during a hyperbaric oxygen (HBO₂) therapy regimen could be a useful supplement in the evaluation of neurological status. METHODS: We...... conducted a retrospective study (2000-2014) in which we evaluated data containing quantitative sway measurements of acute COP patients (n = 58) treated in an HBO₂ regimen. Each patient was tested using QR-test before and after each HBO₂ treatment. Data were analyzed using linear mixed models (LMM). In each...

  18. A multidimensional analysis of physiological and mechanical ...

    African Journals Online (AJOL)

    Journal of Fundamental and Applied Sciences ... investigates the various physiological and mechanical techniques employed by archers of varying skill levels. ... Keywords: archery; muscle activations; heart rate; bow movement; postural sway ...

  19. Comparisons Of The Effects Of Medetomidine, Lidocaine And Their ...

    African Journals Online (AJOL)

    ... with a one-week interval between subsequent injections. Lumbosacral epidural injection of medetomidine and medetomidine-lidocaine combinations induced behavioral changes characterized by ataxia, swaying movements, tail flaccidity, low head carriage, sternal and lateral recumbency posture coupled with salivation.

  20. 34 CFR 101.112 - Improper conduct.

    Science.gov (United States)

    2010-07-01

    ... officer give statements to communications media, by paid advertisement or otherwise, designed to influence... sway the judgement of the reviewing authority by undertaking to bring pressure or influence to bear...

  1. Effect of exercise intervention on vestibular related impairments in ...

    African Journals Online (AJOL)

    Venkadesan Rajendran

    2012-11-09

    Nov 9, 2012 ... related impairments in hearing-impaired children. Venkadesan ..... referenced vision, fixed support; (4) eyes open, sway-referenced support; (5) eyes ..... Canada: Alberta Heritage Foundation for Medical Research;. 1997. 29.

  2. The Politics of Air Power: From Confrontation to Cooperation in Army Aviation Civil-Military Relations, 1919-1940

    National Research Council Canada - National Science Library

    Rice, Rondall

    2002-01-01

    .... In order to sway public opinion and elected officials, air leaders used propaganda to arouse public sentiment and circumvented military and civilian superiors to appeal directly to like-minded congressmen...

  3. Complexity-Based Measures Inform Effects of Tai Chi Training on Standing Postural Control: Cross-Sectional and Randomized Trial Studies.

    Science.gov (United States)

    Wayne, Peter M; Gow, Brian J; Costa, Madalena D; Peng, C-K; Lipsitz, Lewis A; Hausdorff, Jeffrey M; Davis, Roger B; Walsh, Jacquelyn N; Lough, Matthew; Novak, Vera; Yeh, Gloria Y; Ahn, Andrew C; Macklin, Eric A; Manor, Brad

    2014-01-01

    Diminished control of standing balance, traditionally indicated by greater postural sway magnitude and speed, is associated with falls in older adults. Tai Chi (TC) is a multisystem intervention that reduces fall risk, yet its impact on sway measures vary considerably. We hypothesized that TC improves the integrated function of multiple control systems influencing balance, quantifiable by the multi-scale "complexity" of postural sway fluctuations. To evaluate both traditional and complexity-based measures of sway to characterize the short- and potential long-term effects of TC training on postural control and the relationships between sway measures and physical function in healthy older adults. A cross-sectional comparison of standing postural sway in healthy TC-naïve and TC-expert (24.5±12 yrs experience) adults. TC-naïve participants then completed a 6-month, two-arm, wait-list randomized clinical trial of TC training. Postural sway was assessed before and after the training during standing on a force-plate with eyes-open (EO) and eyes-closed (EC). Anterior-posterior (AP) and medio-lateral (ML) sway speed, magnitude, and complexity (quantified by multiscale entropy) were calculated. Single-legged standing time and Timed-Up-and-Go tests characterized physical function. At baseline, compared to TC-naïve adults (n = 60, age 64.5±7.5 yrs), TC-experts (n = 27, age 62.8±7.5 yrs) exhibited greater complexity of sway in the AP EC (P = 0.023), ML EO (P<0.001), and ML EC (P<0.001) conditions. Traditional measures of sway speed and magnitude were not significantly lower among TC-experts. Intention-to-treat analyses indicated no significant effects of short-term TC training; however, increases in AP EC and ML EC complexity amongst those randomized to TC were positively correlated with practice hours (P = 0.044, P = 0.018). Long- and short-term TC training were positively associated with physical function. Multiscale entropy offers a complementary

  4. Complexity-Based Measures Inform Effects of Tai Chi Training on Standing Postural Control: Cross-Sectional and Randomized Trial Studies.

    Directory of Open Access Journals (Sweden)

    Peter M Wayne

    Full Text Available Diminished control of standing balance, traditionally indicated by greater postural sway magnitude and speed, is associated with falls in older adults. Tai Chi (TC is a multisystem intervention that reduces fall risk, yet its impact on sway measures vary considerably. We hypothesized that TC improves the integrated function of multiple control systems influencing balance, quantifiable by the multi-scale "complexity" of postural sway fluctuations.To evaluate both traditional and complexity-based measures of sway to characterize the short- and potential long-term effects of TC training on postural control and the relationships between sway measures and physical function in healthy older adults.A cross-sectional comparison of standing postural sway in healthy TC-naïve and TC-expert (24.5±12 yrs experience adults. TC-naïve participants then completed a 6-month, two-arm, wait-list randomized clinical trial of TC training. Postural sway was assessed before and after the training during standing on a force-plate with eyes-open (EO and eyes-closed (EC. Anterior-posterior (AP and medio-lateral (ML sway speed, magnitude, and complexity (quantified by multiscale entropy were calculated. Single-legged standing time and Timed-Up-and-Go tests characterized physical function.At baseline, compared to TC-naïve adults (n = 60, age 64.5±7.5 yrs, TC-experts (n = 27, age 62.8±7.5 yrs exhibited greater complexity of sway in the AP EC (P = 0.023, ML EO (P<0.001, and ML EC (P<0.001 conditions. Traditional measures of sway speed and magnitude were not significantly lower among TC-experts. Intention-to-treat analyses indicated no significant effects of short-term TC training; however, increases in AP EC and ML EC complexity amongst those randomized to TC were positively correlated with practice hours (P = 0.044, P = 0.018. Long- and short-term TC training were positively associated with physical function.Multiscale entropy offers a complementary

  5. Difference in postural control between patients with functional and mechanical ankle instability.

    Science.gov (United States)

    Chen, Henry; Li, Hong-Yun; Zhang, Jian; Hua, Ying-Hui; Chen, Shi-Yi

    2014-10-01

    Lateral ankle sprain is one of the most common injuries. Since the structural and pathological differences in mechanical ankle instability (MAI) and functional ankle instability (FAI) may not be the same, it may be better to treat these as separate groups. The purpose of this study was to compare the difference in postural sway between MAI and FAI in patients with chronic ankle instability (CAI). Twenty-six patients with CAI and 14 healthy control participants were included in the study. The CAI patients were subdivided into MAI (15 patients) and FAI (11 patients) groups. Patients who were diagnosed with lateral ankle ligaments rupture by magnetic resonance imaging and ultrasonography were assigned to the MAI group. All participants performed single-limb postural sway tests 3 times on each leg with eyes closed and open. The average distances from the mean center of pressure position in the mediolateral and anteroposterior directions were recorded and compared among the 3 groups. The unstable ankles in the MAI group showed significantly greater postural sway in the anterior, posterior, and medial directions compared with those in the control group with eyes closed. With eyes open, significantly greater postural sway was found in the anterior direction. In the FAI group, no difference was found in postural sway compared with those in the control group. The MAI group showed significantly greater postural sway in the anterior direction compared with the FAI group with eyes closed and open. No significant difference in postural sway was found between the unstable and stable ankles in the MAI or FAI groups, with or without vision. Patients with MAI have deficits in postural control, especially in anterior-posterior directions. However, no difference was found in postural sway in patients with FAI compared with healthy people. As MAI patients suffer from deficits in postural control, balance training should be applied in those patients. In addition, special training

  6. Physiological complexity and system adaptability: evidence from postural control dynamics of older adults.

    Science.gov (United States)

    Manor, Brad; Costa, Madalena D; Hu, Kun; Newton, Elizabeth; Starobinets, Olga; Kang, Hyun Gu; Peng, C K; Novak, Vera; Lipsitz, Lewis A

    2010-12-01

    The degree of multiscale complexity in human behavioral regulation, such as that required for postural control, appears to decrease with advanced aging or disease. To help delineate causes and functional consequences of complexity loss, we examined the effects of visual and somatosensory impairment on the complexity of postural sway during quiet standing and its relationship to postural adaptation to cognitive dual tasking. Participants of the MOBILIZE Boston Study were classified into mutually exclusive groups: controls [intact vision and foot somatosensation, n = 299, 76 ± 5 (SD) yr old], visual impairment only (Postural sway (i.e., center-of-pressure) dynamics were assessed during quiet standing and cognitive dual tasking, and a complexity index was quantified using multiscale entropy analysis. Postural sway speed and area, which did not correlate with complexity, were also computed. During quiet standing, the complexity index (mean ± SD) was highest in controls (9.5 ± 1.2) and successively lower in the visual (9.1 ± 1.1), somatosensory (8.6 ± 1.6), and combined (7.8 ± 1.3) impairment groups (P = 0.001). Dual tasking resulted in increased sway speed and area but reduced complexity (P postural sway speed from quiet standing to dual-tasking conditions. Sensory impairments contributed to decreased postural sway complexity, which reflected reduced adaptive capacity of the postural control system. Relatively low baseline complexity may, therefore, indicate control systems that are more vulnerable to cognitive and other stressors.

  7. Altered postural control strategies in quiet standing more than 20 years after rupture of the anterior cruciate ligament.

    Science.gov (United States)

    Stensdotter, Ann-Katrin; Tengman, Eva; Häger, Charlotte

    2016-05-01

    To explore long-term consequences of anterior cruciate ligament (ACL) rupture on postural sway and control strategies during bilateral quiet standing, in subjects treated with or without reconstructive surgery compared to uninjured controls. 70 individuals who had unilateral ACL rupture 23±2.4 years ago (33 received ACL reconstructive surgery, ACLR, and 37 had physiotherapy only, ACLPT) and 33 uninjured matched controls (CTRL) (mean age 46±5.3) stood quietly with eyes closed for 3min on a firm and on a compliant surface, respectively. Center of pressure (CoP) was registered with a force plate and postural sway was calculated from center of mass (CoM) derived from 3D kinematics. Sway density (SD) analyses of CoP assessed distance and duration of stable phases. The torque controlling postural sway was estimated from CoP-CoM. Comparisons across conditions to CTRL revealed larger CoP-CoM-area in ACLR (p=0.017, CI: 10.95, 143.10), but not in ACLPT. Mean distance between SD-peaks was greater for ACLR (ppostural control efforts than CTRL but without significant differences in postural sway. Control efforts were thus not directly associated with sway and further research should be focused on variance in postural control strategies. Copyright © 2016. Published by Elsevier B.V.

  8. The effects of aging on postural control and selective attention when stepping down while performing a concurrent auditory response task.

    Science.gov (United States)

    Tsang, William W N; Lam, Nazca K Y; Lau, Kit N L; Leung, Harry C H; Tsang, Crystal M S; Lu, Xi

    2013-12-01

    To investigate the effects of aging on postural control and cognitive performance in single- and dual-tasking. A cross-sectional comparative design was conducted in a university motion analysis laboratory. Young adults (n = 30; age 21.9 ± 2.4 years) and older adults (n = 30; age 71.9 ± 6.4 years) were recruited. Postural control after stepping down was measured with and without performing a concurrent auditory response task. Measurement included: (1) reaction time and (2) error rate in performing the cognitive task; (3) total sway path and (4) total sway area after stepping down. Our findings showed that the older adults had significantly longer reaction times and higher error rates than the younger subjects in both the single-tasking and dual-tasking conditions. The older adults had significantly longer reaction times and higher error rates when dual-tasking compared with single-tasking, but the younger adults did not. The older adults demonstrated significantly less total sway path, but larger total sway area in single-leg stance after stepping down than the young adults. The older adults showed no significant change in total sway path and area between the dual-tasking and when compared with single-tasking conditions, while the younger adults showed significant decreases in sway. Older adults prioritize postural control by sacrificing cognitive performance when faced with dual-tasking.

  9. Dynamic postural stability during advancing pregnancy.

    Science.gov (United States)

    McCrory, J L; Chambers, A J; Daftary, A; Redfern, M S

    2010-08-26

    Pregnant women are at an increased risk of experiencing a fall. Numerous anatomical, physiological, and hormonal alterations occur during pregnancy, but the influence of these factors on dynamic postural stability has not been explored. The purpose of this study was to examine dynamic postural stability in pregnant women during their second and third trimesters as well as in a group of non-pregnant control women. Eighty-one women (41 pregnant, 40 controls) participated stood on a force plate that translated anteroposteriorly at small, medium, and large magnitudes. Reaction time and center of pressure (COP) movement during the translations were analyzed. Trimester, perturbation direction, and perturbation magnitude were the independent variables in a mixed-model analysis of variance on each of the following dependent variables: reaction time, initial sway, total sway, and sway velocity. Reaction time to the perturbation was not significantly different between the groups. Initial sway, total sway, and sway velocity were significantly less during the third trimester than during the second trimester and when compared to the non-pregnant controls (Ppostural stability. 2010 Elsevier Ltd. All rights reserved.

  10. Auditory white noise reduces age-related fluctuations in balance.

    Science.gov (United States)

    Ross, J M; Will, O J; McGann, Z; Balasubramaniam, R

    2016-09-06

    Fall prevention technologies have the potential to improve the lives of older adults. Because of the multisensory nature of human balance control, sensory therapies, including some involving tactile and auditory noise, are being explored that might reduce increased balance variability due to typical age-related sensory declines. Auditory white noise has previously been shown to reduce postural sway variability in healthy young adults. In the present experiment, we examined this treatment in young adults and typically aging older adults. We measured postural sway of healthy young adults and adults over the age of 65 years during silence and auditory white noise, with and without vision. Our results show reduced postural sway variability in young and older adults with auditory noise, even in the absence of vision. We show that vision and noise can reduce sway variability for both feedback-based and exploratory balance processes. In addition, we show changes with auditory noise in nonlinear patterns of sway in older adults that reflect what is more typical of young adults, and these changes did not interfere with the typical random walk behavior of sway. Our results suggest that auditory noise might be valuable for therapeutic and rehabilitative purposes in older adults with typical age-related balance variability. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Mechanisms of postural control in alcoholic men and women: biomechanical analysis of musculoskeletal coordination during quiet standing.

    Science.gov (United States)

    Sullivan, Edith V; Rose, Jessica; Pfefferbaum, Adolf

    2010-03-01

    Excessive sway during quiet standing is a common sequela of chronic alcoholism even with prolonged sobriety. Whether alcoholic men and women who have remained abstinent from alcohol for weeks to months differ from each other in the degree of residual postural instability and biomechanical control mechanisms has not been directly tested. We used a force platform to characterize center-of-pressure biomechanical features of postural sway, with and without stabilizing conditions from touch, vision, and stance, in 34 alcoholic men, 15 alcoholic women, 22 control men, and 29 control women. Groups were matched in age (49.4 years), general intelligence, socioeconomic status, and handedness. Each alcoholic group was sober for an average of 75 days. Analysis of postural sway when using all 3 stabilizing conditions versus none revealed diagnosis and sex differences in ability to balance. Alcoholics had significantly longer sway paths, especially in the anterior-posterior direction, than controls when maintaining erect posture without balance aids. With stabilizing conditions the sway paths of all groups shortened significantly, especially those of alcoholic men, who demonstrated a 3.1-fold improvement in sway path difference between the easiest and most challenging conditions; the remaining 3 groups, each showed a approximately 2.4-fold improvement. Application of a mechanical model to partition sway paths into open-loop and closed-loop postural control systems revealed that the sway paths of the alcoholic men but not alcoholic women were characterized by greater short-term (open-loop) diffusion coefficients without aids, often associated with muscle stiffening response. With stabilizing factors, all 4 groups showed similar long-term (closed loop) postural control. Correlations between cognitive abilities and closed-loop sway indices were more robust in alcoholic men than alcoholic women. Reduction in sway and closed-loop activity during quiet standing with stabilizing

  12. The influence of diabetic peripheral neuropathy on local postural muscle and central sensory feedback balance control.

    Science.gov (United States)

    Toosizadeh, Nima; Mohler, Jane; Armstrong, David G; Talal, Talal K; Najafi, Bijan

    2015-01-01

    Poor balance control and increased fall risk have been reported in people with diabetic peripheral neuropathy (DPN). Traditional body sway measures are unable to describe underlying postural control mechanism. In the current study, we used stabilogram diffusion analysis to examine the mechanism under which balance is altered in DPN patients under local-control (postural muscle control) and central-control (postural control using sensory cueing). DPN patients and healthy age-matched adults over 55 years performed two 15-second Romberg balance trials. Center of gravity sway was measured using a motion tracker system based on wearable inertial sensors, and used to derive body sway and local/central control balance parameters. Eighteen DPN patients (age = 65.4±7.6 years; BMI = 29.3±5.3 kg/m2) and 18 age-matched healthy controls (age = 69.8±2.9; BMI = 27.0±4.1 kg/m2) with no major mobility disorder were recruited. The rate of sway within local-control was significantly higher in the DPN group by 49% (healthy local-controlslope = 1.23±1.06×10-2 cm2/sec, Pcontrol balance behavior in DPN patients. Unlike local-control, the rate of sway within central-control was 60% smaller in the DPN group (healthy central-controlslope-Log = 0.39±0.23, Pcontrol rate of sway with neuropathy severity (rPearson = 0.65-085, Pcontrols. However, as soon as they perceived the magnitude of sway using sensory feedback, they chose a high rigid postural control strategy, probably due to high concerns for fall, which may increase the energy cost during extended period of standing; the adaptation mechanism using sensory feedback depends on the level of neuropathy and the history of diabetes.

  13. Sensorimotor integration in dyslexic children under different sensory stimulations.

    Directory of Open Access Journals (Sweden)

    André R Viana

    Full Text Available Dyslexic children, besides difficulties in mastering literacy, also show poor postural control that might be related to how sensory cues coming from different sensory channels are integrated into proper motor activity. Therefore, the aim of this study was to examine the relationship between sensory information and body sway, with visual and somatosensory information manipulated independent and concurrently, in dyslexic children. Thirty dyslexic and 30 non-dyslexic children were asked to stand as still as possible inside of a moving room either with eyes closed or open and either lightly touching a moveable surface or not for 60 seconds under five experimental conditions: (1 no vision and no touch; (2 moving room; (3 moving bar; (4 moving room and stationary touch; and (5 stationary room and moving bar. Body sway magnitude and the relationship between room/bar movement and body sway were examined. Results showed that dyslexic children swayed more than non-dyslexic children in all sensory condition. Moreover, in those trials with conflicting vision and touch manipulation, dyslexic children swayed less coherent with the stimulus manipulation compared to non-dyslexic children. Finally, dyslexic children showed higher body sway variability and applied higher force while touching the bar compared to non-dyslexic children. Based upon these results, we can suggest that dyslexic children are able to use visual and somatosensory information to control their posture and use the same underlying neural control processes as non-dyslexic children. However, dyslexic children show poorer performance and more variability while relating visual and somatosensory information and motor action even during a task that does not require an active cognitive and motor involvement. Further, in sensory conflict conditions, dyslexic children showed less coherent and more variable body sway. These results suggest that dyslexic children have difficulties in multisensory

  14. Relationship Between Postural Control and Restricted, Repetitive Behaviors in Autism Spectrum Disorders

    Directory of Open Access Journals (Sweden)

    Krestin eRadonovich

    2013-05-01

    Full Text Available Restricted, repetitive behaviors (RRBs are one of the core diagnostic criteria of autism spectrum disorders (ASD, and include simple repetitive motor behaviors and more complex cognitive behaviors, such as compulsions and restricted interests. In addition to the core symptoms, impaired movement is often observed in ASD. Research suggests that the postural system in individuals with ASD is immature and may never reach adult levels. RRBs have been related to postural sway in individuals with mental retardation.Our goals were to determine whether subjects with ASD had greater postural sway and whether RBS-R scores were related to the magnitude of postural sway. We compared the center of pressure (COP sway area during quiet stance with scores on the Repetitive Behavior Scale-Revised (RBS-R in children with ASD and typically developing controls (TD ages 3-16. All subjects had Nonverbal IQ>70. Subjects performed four quiet stance trials at a self–selected stance width for 15 seconds. Subjects with ASD had greater postural sway area compared to controls. Not surprisingly, subjects with ASD exhibited greater frequencies and intensities of RRBs overall and on all 6 subscales. Further, there was a positive correlation between postural sway area and presence of RRBs. Interestingly, results of the postural sway area for the ASD group suggests that roughly half of the ASD subjects scored comparable to TD controls, whereas the other half scored >2 SD worse. Motor impaired children did not have significantly worse IQ scores, but were younger and had more RRBs.Results support previous findings of relationships between RRBs and postural control. It appears that motor control impairments may characterize a subset of individuals with ASD. Better delineation of motor control abilities in individuals with ASD will be important to help explain variations of abilities in ASD, inform treatment, and guide examination of underlying neural involvement in this diverse

  15. Tonic immobility differentiates stress responses in PTSD.

    Science.gov (United States)

    Fragkaki, Iro; Stins, John; Roelofs, Karin; Jongedijk, Ruud A; Hagenaars, Muriel A

    2016-11-01

    Tonic immobility (TI) is a state of physical immobility associated with extreme stress and the development of posttraumatic stress disorder (PTSD). However, it is unknown whether TI is associated with a distinct actual stress response, i.e., objective immobility measured by a stabilometric platform. This study made a first step in exploring this as well as differences in body sway responses between PTSD patients and healthy controls. We hypothesized that PTSD would be related to increased body sway under stress, whereas TI would be related to decreased body sway under stress. Eye closure was selected as a PTSD-relevant stress induction procedure. Body sway and heart rate (HR) were measured in 12 PTSD patients and 12 healthy controls in four conditions: (1) maintaining a stable stance with eyes open, (2) with eyes closed, (3) during a mental arithmetic task with eyes open, and (4) with eyes closed. As predicted, PTSD patients showed increased body sway from eyes open to eyes closed compared to controls and this effect was eliminated by executing the arithmetic task. Most importantly, retrospective self-reported TI was associated with lower body sway increases in PTSD and higher body sway decreases in controls from eyes-open to eyes-closed conditions. These preliminary findings suggest that eye closure has a different effect on PTSD patients than controls and that high self-reported TI might indicate a distinct stress response pattern, i.e., a proneness for immobility. It may be relevant to take such individual differences in stress-response into account in PTSD treatment.

  16. Does a mineral wristband affect balance? A randomized, controlled, double-blind study.

    Science.gov (United States)

    Hansson, Eva Ekvall; Beckman, Anders; Persson, Liselott

    2015-06-26

    Having good balance is a facilitating factor in the performance of everyday activities. Good balance is also essential in various sport activities in order to both get results and prevent injury. A common measure of balance is postural sway, which can be measured both antero-posteriorly and medio-laterally. There are several companies marketing wristbands whose intended function is to improve balance, strength and flexibility. Randomized controlled trials have shown that wristbands with holograms have no effect on balance but studies on wristbands with minerals seem to be lacking. The aim of this study was to investigate if the mineral wristband had any effect on postural sway in a group of healthy individuals. Randomized, controlled, double-blind study. The study group consisted of 40 healthy persons. Postural sway was measured antero-posteriorly and medio-laterally on a force plate, to compare: the mineral wristband, a placebo wristband, and without any wristband. The measurements were performed for 30 s, in four situations: with open eyes and closed eyes, standing on a firm surface and on foam. Analyses were made with multilevel technique. The use of wristband with or without minerals did not alter postural sway. Closed eyes and standing on foam both prolonged the dependent measurement, irrespective if it was medio-lateral or antero-posterior. Wearing any wristband (mineral or placebo) gave a small (0.22-0.36 mm/s) but not statistically significant reduction of postural sway compared to not wearing wristband. This study showed no effect on postural sway by using the mineral wristband, compared with a placebo wristband or no wristband. Wearing any wristband at all (mineral or placebo) gave a small but not statistically significant reduction in postural sway, probably caused by sensory input.

  17. Sensory integration of a light touch reference in human standing balance

    Science.gov (United States)

    Smith, Craig P.; Reynolds, Raymond F.

    2018-01-01

    In upright stance, light touch of a space-stationary touch reference reduces spontaneous sway. Moving the reference evokes sway responses which exhibit non-linear behavior that has been attributed to sensory reweighting. Reweighting refers to a change in the relative contribution of sensory cues signaling body sway in space and light touch cues signaling finger position with respect to the body. Here we test the hypothesis that the sensory fusion process involves a transformation of light touch signals into the same reference frame as other sensory inputs encoding body sway in space, or vice versa. Eight subjects lightly gripped a robotic manipulandum which moved in a circular arc around the ankle joint. A pseudo-randomized motion sequence with broad spectral characteristics was applied at three amplitudes. The stimulus was presented at two different heights and therefore different radial distances, which were matched in terms of angular motion. However, the higher stimulus evoked a significantly larger sway response, indicating that the response was not matched to stimulus angular motion. Instead, the body sway response was strongly related to the horizontal translation of the manipulandum. The results suggest that light touch is integrated as the horizontal distance between body COM and the finger. The data were well explained by a model with one feedback loop minimizing changes in horizontal COM-finger distance. The model further includes a second feedback loop estimating the horizontal finger motion and correcting the first loop when the touch reference is moving. The second loop includes the predicted transformation of sensory signals into the same reference frame and a non-linear threshold element that reproduces the non-linear sway responses, thus providing a mechanism that can explain reweighting. PMID:29874252

  18. Sway‐dependent changes in standing ankle stiffness caused by muscle thixotropy

    Science.gov (United States)

    Sakanaka, Tania E.; Lakie, Martin

    2016-01-01

    Key points The passive stiffness of the calf muscles contributes to standing balance, although the properties of muscle tissue are highly labile.We investigated the effect of sway history upon intrinsic ankle stiffness and demonstrated reductions in stiffness of up to 43% during conditions of increased baseline sway.This sway dependence was most apparent when using low amplitude stiffness‐measuring perturbations, and the short‐range stiffness component was smaller during periods of high sway.These characteristics are consistent with the thixotropic properties of the calf muscles causing the observed changes in ankle stiffness.Periods of increased sway impair the passive stabilization of standing, demanding more active neural control of balance. Abstract Quiet standing is achieved through a combination of active and passive mechanisms, consisting of neural control and intrinsic mechanical stiffness of the ankle joint, respectively. The mechanical stiffness is partly determined by the calf muscles. However, the viscoelastic properties of muscle are highly labile, exhibiting a strong dependence on movement history. By measuring the effect of sway history upon ankle stiffness, the present study determines whether this lability has consequences for the passive stabilization of human standing. Ten subjects stood quietly on a rotating platform whose axis was collinear with the ankle joint. Ankle sway was increased by slowly tilting this platform in a random fashion, or decreased by fixing the body to a board. Ankle stiffness was measured by using the same platform to simultaneously apply small, brief perturbations (ankle stiffness by up to 43% compared to the body‐fixed condition. Normal quiet stance was associated with intermediate values. The effect was most apparent when using smaller perturbation amplitudes to measure stiffness (0.1 vs. 0.6 deg). Furthermore, torque responses exhibited a biphasic pattern, consisting of an initial steep rise followed by a

  19. Validating and calibrating the Nintendo Wii balance board to derive reliable center of pressure measures.

    Science.gov (United States)

    Leach, Julia M; Mancini, Martina; Peterka, Robert J; Hayes, Tamara L; Horak, Fay B

    2014-09-29

    The Nintendo Wii balance board (WBB) has generated significant interest in its application as a postural control measurement device in both the clinical and (basic, clinical, and rehabilitation) research domains. Although the WBB has been proposed as an alternative to the "gold standard" laboratory-grade force plate, additional research is necessary before the WBB can be considered a valid and reliable center of pressure (CoP) measurement device. In this study, we used the WBB and a laboratory-grade AMTI force plate (AFP) to simultaneously measure the CoP displacement of a controlled dynamic load, which has not been done before. A one-dimensional inverted pendulum was displaced at several different displacement angles and load heights to simulate a variety of postural sway amplitudes and frequencies (<1 Hz). Twelve WBBs were tested to address the issue of inter-device variability. There was a significant effect of sway amplitude, frequency, and direction on the WBB's CoP measurement error, with an increase in error as both sway amplitude and frequency increased and a significantly greater error in the mediolateral (ML) (compared to the anteroposterior (AP)) sway direction. There was no difference in error across the 12 WBB's, supporting low inter-device variability. A linear calibration procedure was then implemented to correct the WBB's CoP signals and reduce measurement error. There was a significant effect of calibration on the WBB's CoP signal accuracy, with a significant reduction in CoP measurement error (quantified by root-mean-squared error) from 2-6 mm (before calibration) to 0.5-2 mm (after calibration). WBB-based CoP signal calibration also significantly reduced the percent error in derived (time-domain) CoP sway measures, from -10.5% (before calibration) to -0.05% (after calibration) (percent errors averaged across all sway measures and in both sway directions). In this study, we characterized the WBB's CoP measurement error under controlled, dynamic

  20. The effects of a high-intensity free-weight back-squat exercise protocol on postural stability in resistance-trained males.

    Science.gov (United States)

    Thiele, R M; Conchola, E C; Palmer, T B; DeFreitas, J M; Thompson, B J

    2015-01-01

    The purpose of this study was to investigate the effects of a high-intensity free-weight back-squat exercise on postural stability characteristics in resistance-trained males. Eighteen college-aged (mean ± SD: age = 22.9 ± 2.9 years; height = 175.8 ± 6.4 cm; mass = 86.3 ± 9.3 kg), resistance-trained males performed postural stability testing before and after completing five sets of eight repetitions of back-squat exercises at 80% of one-repetition maximum. A commercial balance testing device was used to assess sway index at pre- and at 0, 5, 10, 15 and 20 min post-exercise. Each balance assessment consisted of four, 20-s static stance conditions: eyes-open firm surface, eyes-closed firm surface, eyes-open soft surface and eyes-closed soft surface. Sway index was greater (P = 0.001-0.020) at Post 0 than at all other time points. No differences (P > 0.05) were observed between any other time phases. Sway index was greater (P squat; however, sway index recovered within 5 min of exercise. Higher sway index values as a result of neuromuscular fatigue induced by a back-squat exercise may have performance and injury risk consequences to subsequent activities that rely on postural stability. However, these findings suggest balance impairments may recover in ~5 min following high-intensity lower body resistance exercise.

  1. Walking with a four wheeled walker (rollator) significantly reduces EMG lower-limb muscle activity in healthy subjects.

    Science.gov (United States)

    Suica, Zorica; Romkes, Jacqueline; Tal, Amir; Maguire, Clare

    2016-01-01

    To investigate the immediate effect of four-wheeled- walker(rollator)walking on lower-limb muscle activity and trunk-sway in healthy subjects. In this cross-sectional design electromyographic (EMG) data was collected in six lower-limb muscle groups and trunk-sway was measured as peak-to-peak angular displacement of the centre-of-mass (level L2/3) in the sagittal and frontal-planes using the SwayStar balance system. 19 subjects walked at self-selected speed firstly without a rollator then in randomised order 1. with rollator 2. with rollator with increased weight-bearing. Rollator-walking caused statistically significant reductions in EMG activity in lower-limb muscle groups and effect-sizes were medium to large. Increased weight-bearing increased the effect. Trunk-sway in the sagittal and frontal-planes showed no statistically significant difference between conditions. Rollator-walking reduces lower-limb muscle activity but trunk-sway remains unchanged as stability is likely gained through forces generated by the upper-limbs. Short-term stability is gained but the long-term effect is unclear and requires investigation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Influence of virtual reality on postural stability during movements of quiet stance.

    Science.gov (United States)

    Horlings, Corinne G C; Carpenter, Mark G; Küng, Ursula M; Honegger, Flurin; Wiederhold, Brenda; Allum, John H J

    2009-02-27

    Balance problems during virtual reality (VR) have been mentioned in the literature but seldom investigated despite the increased use of VR systems as a training or rehabilitation tool. We examined the influence of VR on body sway under different stance conditions. Seventeen young subjects performed four tasks (standing with feet close together or tandem stance on firm and foam surfaces for 60s) under three visual conditions: eyes open without VR, eyes closed, or while viewing a virtual reality scene which moved with body movements. Angular velocity transducers mounted on the shoulder provided measures of body sway in the roll and pitch plane. VR caused increased pitch and roll angles and angular velocities compared to EO. The effects of VR were, for the most part, indistinguishable from eyes closed conditions. Use of a foam surface increased sway compared to a firm surface under eyes closed and VR conditions. During the movements of quiet stance, VR causes an increase in postural sway in amplitude similar to that caused by closing the eyes. This increased sway was present irrespective of stance surface, but was greatest on foam.

  3. A tactile stimulus applied to the leg improves postural stability in young, old and neuropathic subjects.

    Science.gov (United States)

    Menz, Hylton B; Lord, Stephen R; Fitzpatrick, Richard C

    2006-10-02

    The purpose of this study was to determine whether the application of passive tactile cues to the lower limb could improve postural stability in healthy young controls, older people and people with diabetic peripheral neuropathy. Antero-posterior sway was measured with eyes open and closed in 10 healthy young subjects (mean age 27 years, 5 male, 5 female), 10 older subjects without diabetic peripheral neuropathy (mean age 88 years, 2 male, 8 female) and 10 subjects with diabetic peripheral neuropathy (mean age 65 years, 6 male, 4 female) while a small piece of Velcro attached to a flexible mount was applied to three different sites on the leg (ankle, calf, and knee). Across all conditions, the mean sway of the neuropathic subjects was 93% greater than for the young subjects and 11% more than the older subjects. On average, subjects swayed 10% more with the eyes closed than with the eyes open. Each stimulus reduced sway, but the effect increased approximately in proportion to the height of the stimulus above the ankles (ankle 7.6%, calf 13.5%, knee 20.1% reduction compared to the no stimulus condition). This experiment demonstrates that a passive stimulus applied to the skin of the leg, which provides sensory information about body movement, significantly reduces body sway during standing. This applies to older subjects and subjects with peripheral neuropathy as well as healthy young subjects. These results have implications for novel approaches for improving stability in people with peripheral sensory loss.

  4. Coordination exercise and postural stability in elderly people: Effect of Tai Chi Chuan.

    Science.gov (United States)

    Wong, A M; Lin, Y C; Chou, S W; Tang, F T; Wong, P Y

    2001-05-01

    To evaluate the effects of coordination exercise on postural stability in older individuals by Chinese shadow boxing, Tai Chi Chuan (TCC). Cross-sectional study. Research project in a hospital-based biomechanical laboratory. The TCC group (n = 25) had been practicing TCC regularly for 2 to 35 years. The control group (n = 14) included healthy and active older subjects. Static postural stability test: progressively harder sequential tests with 6 combinations of vision (eyes open, eyes closed, sway-referenced) and support (fixed, sway-referenced); and dynamic balance test: 3 tests of weight shifting (left to right, forward-backward, multidirectional) at 3 speeds. Static and dynamic balance of Sensory Organization Testing (SOT) of the Smart Balance Master System. In static postural control, the results showed no differences between the TCC or control group in the more simple conditions, but in the more complicated SOT (eyes closed with sway surface, sway vision with sway surface), the TCC group had significantly better results than the control group. The TCC group also had significantly better results in the rhythmic forward-backward weight-shifting test. Duration of practice did not seem to affect the stability of elder people. The elderly people who regularly practiced TCC showed better postural stability in the more challenged conditions than those who do not (eg, the condition with simultaneous disturbance of vision and proprioception). TCC as a coordination exercise may reduce the risk of a fall through maintaining the ability of posture control.

  5. Static and dynamic balance performance in patients with osteoporotic vertebral compression fracture.

    Science.gov (United States)

    Wang, Ling-Yi; Liaw, Mei-Yun; Huang, Yu-Chi; Lau, Yiu-Chung; Leong, Chau-Peng; Pong, Ya-Ping; Chen, Chia-Lin

    2013-01-01

    Patients with osteoporotic vertebral compression fracture (OVCF) have postural changes and increased risk of falling. The aim of this study is to compare balance characteristics between patients with OVCF and healthy control subjects. Patients with severe OVCF and control subjects underwent computerised dynamic posturography (CDP) in this case-control study. Forty-seven OVCF patients and 45 controls were recruited. Compared with the control group, the OVCF group had significantly decreased average stability; maximal stability under the `eye open with swayed support surface' (CDP subtest 4) and 'eye closed with swayed support surface' conditions (subtest 5); and decreased ankle strategy during subtests 4 and 5 and under the `swayed vision with swayed support surface' condition (subtest 6). The OVCF group fell more frequently during subtests 5 and 6 and had longer overall reaction time and longer reaction time when moving backward during the directional control test. OVCF patients had poorer static and dynamic balance performance compared with normal control. They had decreased postural stability and ankle strategy with increased fall frequency on a swayed surface; they also had longer reaction times overall and in the backward direction. Therefore, we suggest balance rehabilitation for patients with OVCF to prevent fall.

  6. Cross-Modal Calibration of Vestibular Afference for Human Balance.

    Directory of Open Access Journals (Sweden)

    Martin E Héroux

    Full Text Available To determine how the vestibular sense controls balance, we used instantaneous head angular velocity to drive a galvanic vestibular stimulus so that afference would signal that head movement was faster or slower than actual. In effect, this changed vestibular afferent gain. This increased sway 4-fold when subjects (N = 8 stood without vision. However, after a 240 s conditioning period with stable balance achieved through reliable visual or somatosensory cues, sway returned to normal. An equivalent galvanic stimulus unrelated to sway (not driven by head motion was equally destabilising but in this situation the conditioning period of stable balance did not reduce sway. Reflex muscle responses evoked by an independent, higher bandwidth vestibular stimulus were initially reduced in amplitude by the galvanic stimulus but returned to normal levels after the conditioning period, contrary to predictions that they would decrease after adaptation to increased sensory gain and increase after adaptation to decreased sensory gain. We conclude that an erroneous vestibular signal of head motion during standing has profound effects on balance control. If it is unrelated to current head motion, the CNS has no immediate mechanism of ignoring the vestibular signal to reduce its influence on destabilising balance. This result is inconsistent with sensory reweighting based on disturbances. The increase in sway with increased sensory gain is also inconsistent with a simple feedback model of vestibular reflex action. Thus, we propose that recalibration of a forward sensory model best explains the reinterpretation of an altered reafferent signal of head motion during stable balance.

  7. Design and construction of a planar motion mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Tanasovici, Gilberto [Protemaq Engenharia e Projetos, Santo Andre, SP (Brazil); Fucatu, Carlos H. [Technomar Engenharia Ltda., Sao Paulo, SP (Brazil); Tannuri, Eduardo A. [Universidade de Sao Paulo (USP), SP (Brazil). Escola Politecnica. Dept. de Engenharia Mecatronica; Umeda, Carlos H. [Instituto de Pesquisas Tecnologicas (IPT), Sao Paulo, SP (Brazil)

    2008-07-01

    This paper describes the design and construction of a PMM (Planar Motion Mechanism) towed by the IPT-SP main carriage. The IPT towing tank no. 2 is 220 m length and 6.6 m wide. The PMM provides a forced sway and/or yaw oscillation on a ship or other marine structure scaled model.. The maximum sway amplitude (transversal motion) is {+-}1 m, and the maximum sway velocity is 1.0 m/s, with a maximum carrying load of 1000 N. The maximum yaw velocity (rotation motion) is 36 deg/s. High-precision components were used in the construction, and the final estimated accuracy in the sway axis is 0.02 mm and approximately 0.1 deg for yaw motions. Finite Element Analysis and Structural Optimization techniques were used during the design stage. The PMM structure total mass is less than 1 ton, lighter than similar mechanisms in other institutions. A Man-Machine Interface was developed, and the operator is able to define the period and amplitude of sway and yaw motions, as well as the fade-in and fade-out time. An integral 3-component force load cell is installed in the end of the support axis, which measures the hydrodynamic loads on the captive model at low speed tests. This novel laboratorial facility allows the IPT to execute new kinds of experimental procedures, related to evaluation of hydrodynamic loads acting on ship hulls and offshore structures. (author)

  8. Effect of expertise in shooting and Taekwondo on bipedal and unipedal postural control isolated or concurrent with a reaction-time task.

    Science.gov (United States)

    Negahban, Hossein; Aryan, Najmolhoda; Mazaheri, Masood; Norasteh, Ali Asghar; Sanjari, Mohammad Ali

    2013-06-01

    It was hypothesized that training in 'static balance' or 'dynamic balance' sports has differential effects on postural control and its attention demands during quiet standing. In order to test this hypothesis, two groups of female athletes practicing shooting, as a 'static balance' sport, and Taekwondo, as a 'dynamic balance' sport, and a control group of non-physically active females voluntarily participated in this study. Postural control was assessed during bipedal and unipedal stance with and without performing a Go/No-go reaction time task. Visual and/or support surface conditions were manipulated in bipedal and unipedal stances in order to modify postural difficulty. Mixed model analysis of variance was used to determine the effects of dual tasking on postural and cognitive performance. Similar pattern of results were found in bipedal and unipedal stances, with Taekwondo practitioners displaying larger sway, shooters displaying lower sway and non-athletes displaying sway characteristics intermediate to Taekwondo and shooting athletes. Larger effect was found in bipedal stance. Single to dual-task comparison of postural control showed no significant effect of mental task on sway velocity in shooters, indicating less cognitive effort invested in balance control during bipedal stance. We suggest that expertise in shooting has a more pronounced effect on decreased sway in static balance conditions. Furthermore, shooters invest less attention in postures that are more specific to their training, i.e. bipedal stance. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Auditory white noise reduces postural fluctuations even in the absence of vision.

    Science.gov (United States)

    Ross, Jessica Marie; Balasubramaniam, Ramesh

    2015-08-01

    The contributions of somatosensory, vestibular, and visual feedback to balance control are well documented, but the influence of auditory information, especially acoustic noise, on balance is less clear. Because somatosensory noise has been shown to reduce postural sway, we hypothesized that noise from the auditory modality might have a similar effect. Given that the nervous system uses noise to optimize signal transfer, adding mechanical or auditory noise should lead to increased feedback about sensory frames of reference used in balance control. In the present experiment, postural sway was analyzed in healthy young adults where they were presented with continuous white noise, in the presence and absence of visual information. Our results show reduced postural sway variability (as indexed by the body's center of pressure) in the presence of auditory noise, even when visual information was not present. Nonlinear time series analysis revealed that auditory noise has an additive effect, independent of vision, on postural stability. Further analysis revealed that auditory noise reduced postural sway variability in both low- and high-frequency regimes (> or noise. Our results support the idea that auditory white noise reduces postural sway, suggesting that auditory noise might be used for therapeutic and rehabilitation purposes in older individuals and those with balance disorders.

  10. Haptic cues for orientation and postural control in sighted and blind individuals

    Science.gov (United States)

    Jeka, J. J.; Easton, R. D.; Bentzen, B. L.; Lackner, J. R.

    1996-01-01

    Haptic cues from fingertip contact with a stable surface attenuate body sway in subjects even when the contact forces are too small to provide physical support of the body. We investigated how haptic cues derived from contact of a cane with a stationary surface at low force levels aids postural control in sighted and congenitally blind individuals. Five sighted (eyes closed) and five congenitally blind subjects maintained a tandem Romberg stance in five conditions: (1) no cane; (2,3) touch contact (postural sway in all subjects, compared to the no-cane condition. A slanted cane was far more effective in reducing postural sway than was a perpendicular cane. Cane use also decreased head displacement of sighted subjects far more than that of blind subjects. These results suggest that head movement control is linked to postural control through gaze stabilization reflexes in sighted subjects; such reflexes are absent in congenitally blind individuals and may account for their higher levels of head displacement.

  11. Postural stability in young and old women

    DEFF Research Database (Denmark)

    Jørgensen, Martin Grønbech

    at an early stage, good knowledge and sensitive measurements of postural stability are essential. In addition, in order to develop effective intervention strategies such knowledge is of major importance. However, no single postural stability parameter has effectively been able to identify individuals at risk...... of falling. Hence, there is a strong need for development and identification of sensitive postural sway parameters in various demographic groups. The aim of this study was to explore differences in postural stability between physically active old (O) and young (Y) women using newly developed sway parameters....... METHODS AND MATERIALS: Center of pressure (CoP) excursion was measured (100 Hz) by force plate (AMTI) analysis in old (72.5±6.3 years) and young (25.8±1.6 years) women during static 2-leg (bilateral) and 1-leg (unilateral) standing (15-s) with eyes opened. RESULTS: O demonstrated elevated CoP sway length...

  12. Impact of soft and hard insole density on postural stability in older adults.

    Science.gov (United States)

    Losa Iglesias, Marta Elena; Becerro de Bengoa Vallejo, Ricardo; Palacios Peña, Domingo

    2012-01-01

    A significant predictor of falls in the elderly population is attributed to postural instability. Thus, it is important to identify and implement practical clinical interventions to enhance postural stability in older adults. Shoe insoles have been identified as a mechanism to enhance postural control, and our study aimed to evaluate the impact of 2 shoe insoles on static standing balance in healthy, older adults compared with standing posture while barefoot. We hypothesized that both hard and soft shoe insoles would decrease postural sway compared with the barefoot condition. Indeed, excursion distances and sway areas were reduced, and sway velocity was decreased when wearing insoles. The hard insole was also effective when visual feedback was removed, suggesting that the more rigid an insole, the greater potential reduction in fall risk. Thus, shoe insoles may be a cost-effective, clinical intervention that is easy to implement to reduce the risk of falling in the elderly population. Copyright © 2012 Mosby, Inc. All rights reserved.

  13. Fuzzy crane control with sensorless payload deflection feedback for vibration reduction

    Science.gov (United States)

    Smoczek, Jaroslaw

    2014-05-01

    Different types of cranes are widely used for shifting cargoes in building sites, shipping yards, container terminals and many manufacturing segments where the problem of fast and precise transferring a payload suspended on the ropes with oscillations reduction is frequently important to enhance the productivity, efficiency and safety. The paper presents the fuzzy logic-based robust feedback anti-sway control system which can be applicable either with or without a sensor of sway angle of a payload. The discrete-time control approach is based on the fuzzy interpolation of the controllers and crane dynamic model's parameters with respect to the varying rope length and mass of a payload. The iterative procedure combining a pole placement method and interval analysis of closed-loop characteristic polynomial coefficients is proposed to design the robust control scheme. The sensorless anti-sway control application developed with using PAC system with RX3i controller was verified on the laboratory scaled overhead crane.

  14. Characterization of static balance abilities in elite soccer players by playing position and age.

    Science.gov (United States)

    Pau, Massimiliano; Ibba, Gianfranco; Leban, Bruno; Scorcu, Marco

    2014-01-01

    In this study, we investigated the static balance of adult and adolescent elite soccer players to understand how expertise and playing position influence postural control. Seventy-one national level players were tested using a force platform to acquire Center-of-Pressure (COP) data in uni- and bipedal stance and calculate sway area (SA), COP path length, velocity and displacements. The results show significant differences in postural sway related to age and playing position only for single-limb stance. In particular, midfielders exhibited significantly lower values of SA with respect to defenders (-48%, p = 0.001) and the under-15 players exhibited SA 42-64% higher than all the others (p = 0.001). In the light of planning training or rehabilitation programs specific for each player's role and age, sway measurements may supply useful, objective and reliable information only for the unipedal test as the bipedal standing appears not challenging enough to let differences in balance abilities emerge.

  15. Effect of cognitive challenge on the postural control of patients with ACL reconstruction under visual and surface perturbations.

    Science.gov (United States)

    Lion, Alexis; Gette, Paul; Meyer, Christophe; Seil, Romain; Theisen, Daniel

    2018-02-01

    Our study aimed to evaluate the effect of cognitive challenge on double-leg postural control under visual and surface perturbations of patients with anterior cruciate ligament reconstruction (ACLR) cleared to return to sport. Double-leg stance postural control of 19 rehabilitated patients with ACLR (age: 24.8 ± 6.7 years, time since surgery: 9.2 ± 1.6 months) and 21 controls (age: 24.9 ± 3.7 years) was evaluated in eight randomized situations combining two cognitive (with and without silent backward counting in steps of seven), two visual (eyes open, eyes closed) and two surface (stable support, foam support) conditions. Sway area and sway path of the centre of foot pressure were measured during three 20-s recordings for each situation. Higher values indicated poorer postural control. Generally, postural control of patients with ACLR and controls was similar for sway area and sway path (p > 0.05). The lack of visual anchorage and the disturbance of the plantar input by the foam support increased sway area and sway path (p postural control during double-leg stance tests. The use of a dual task paradigm under increased task complexity modified postural control, but in a similar way in patients with ACLR than in healthy controls. Double-leg stance tests, even under challenging conditions, are not sensitive enough to reveal postural control differences between rehabilitated patients with ACLR and controls. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Effect of Sitting Pause Times on Balance After Supine to Standing Transfer in Dim Light.

    Science.gov (United States)

    Johnson, Eric G; Albalwi, Abdulaziz A; Al-Dabbak, Fuad M; Daher, Noha S

    2017-06-01

    The risk of falling for older adults increases in dimly lit environments. Longer sitting pause times, before getting out of bed and standing during the night, may improve postural stability. The purpose of this study was to measure the effect of sitting pause times on postural sway velocity immediately after a supine to standing transfer in a dimly lit room in older adult women. Eighteen healthy women aged 65 to 75 years who were able to independently perform supine to standing transfers participated in the study. On each of 2 consecutive days, participants assumed the supine position on a mat table and closed their eyes for 45 minutes. Then, participants were instructed to open their eyes and transfer from supine to sitting, with either 2- or 30-second pause in the sitting position followed by standing. The sitting pause time order was randomized. A significant difference was observed in postural sway velocity between the 2- and 30-second sitting pause times. The results revealed that there was less postural sway velocity after 30-second than 2-second sitting pause time (0.61 ± 0.19 vs 1.22 ± 0.68, P Falls related to bathroom usage at night are the most common reported falls among older adults. In the present study, the investigators studied the effect of sitting pause times on postural sway velocity after changing position from supine to standing in a dimly lit environment. The findings showed that the mean postural sway velocity was significantly less after 30-second sitting pause time compared with 2-second sitting pause time. Postural sway velocity decreased when participants performed a sitting pause of 30 seconds before standing in a dimly lit environment. These results suggest that longer sitting pause times may improve adaptability to dimly lit environments, contributing to improved postural stability and reduced risk of fall in older adult women when getting out of bed at night.

  17. Increased alertness, better than posture prioritization, explains dual-task performance in prosthesis users and controls under increasing postural and cognitive challenge.

    Science.gov (United States)

    Howard, Charla L; Perry, Bonnie; Chow, John W; Wallace, Chris; Stokic, Dobrivoje S

    2017-11-01

    Sensorimotor impairments after limb amputation impose a threat to stability. Commonly described strategies for maintaining stability are the posture first strategy (prioritization of balance) and posture second strategy (prioritization of concurrent tasks). The existence of these strategies was examined in 13 below-knee prosthesis users and 15 controls during dual-task standing under increasing postural and cognitive challenge by evaluating path length, 95% sway area, and anterior-posterior and medial-lateral amplitudes of the center of pressure. The subjects stood on two force platforms under usual (hard surface/eyes open) and difficult (soft surface/eyes closed) conditions, first alone and while performing a cognitive task without and then with instruction on cognitive prioritization. During standing alone, sway was not significantly different between groups. After adding the cognitive task without prioritization instruction, prosthesis users increased sway more under the dual-task than single-task standing (p ≤ 0.028) during both usual and difficult conditions, favoring the posture second strategy. Controls, however, reduced dual-task sway under a greater postural challenge (p ≤ 0.017), suggesting the posture first strategy. With prioritization of the cognitive task, sway was unchanged or reduced in prosthesis users, suggesting departure from the posture second strategy, whereas controls maintained the posture first strategy. Individual analysis of dual tasking revealed that greater postural demand in controls and greater cognitive challenge in prosthesis users led to both reduced sway and improved cognitive performance, suggesting cognitive-motor facilitation. Thus, activation of additional resources through increased alertness, rather than posture prioritization, may explain dual-task performance in both prosthesis users and controls under increasing postural and cognitive challenge.

  18. Improving balance skills in patients who had stroke through virtual reality treadmill training.

    Science.gov (United States)

    Yang, Saiwei; Hwang, Wei-Hsung; Tsai, Yi-Ching; Liu, Fu-Kang; Hsieh, Lin-Fen; Chern, Jen-Suh

    2011-12-01

    The aim of this study was to evaluate the effects of virtual reality (VR) treadmill training on the balance skills of patients who have had a stroke. A total of 14 patients with strokes were recruited and randomly assigned to receive VR treadmill or traditional treadmill training. The outcome measures that were included for the study were center of pressure (COP) sway excursion, COP maximum sway in anterior-posterior direction, COP maximum sway in medial-lateral direction, COP sway area, bilateral limb-loading symmetric index, the sway excursion values for the paretic foot (sway excursion/P), paretic limb stance time (stance time/P), number of steps of the paretic limb (number of steps/P), and contact area of the paretic foot (contact A/P) during quiet stance, sit-to-stand transfer, and level walking. There were no significant improvements in COP-related measures and symmetric index during the quiet stance, either in the VR treadmill or traditional treadmill training group (P > 0.05). However, the difference between groups after training in COP maximum sway in medial-lateral direction during the quiet stance was significant (P = 0.038). Traditional treadmill training failed to improve sit-to-stand performance, whereas VR treadmill training improved symmetric index (P = 0.028) and sway excursion (P = 0.046) significantly during sit-to-stand transfer. The changes of symmetric index between groups were markedly different (P = 0.045). Finally, both groups improved significantly in stance time/P, but only VR treadmill training increased contact A/P (P = 0.034) after training during level walking. The difference between groups during level walking was not significant. Neither traditional treadmill nor VR treadmill training had any effect on balance skill during quiet stance, but VR treadmill training improved balance skill in the medial-lateral direction better than traditional training did. VR treadmill training also improved balance skill during sit-to-stand transfers

  19. The influence of diabetic peripheral neuropathy on local postural muscle and central sensory feedback balance control.

    Directory of Open Access Journals (Sweden)

    Nima Toosizadeh

    Full Text Available Poor balance control and increased fall risk have been reported in people with diabetic peripheral neuropathy (DPN. Traditional body sway measures are unable to describe underlying postural control mechanism. In the current study, we used stabilogram diffusion analysis to examine the mechanism under which balance is altered in DPN patients under local-control (postural muscle control and central-control (postural control using sensory cueing. DPN patients and healthy age-matched adults over 55 years performed two 15-second Romberg balance trials. Center of gravity sway was measured using a motion tracker system based on wearable inertial sensors, and used to derive body sway and local/central control balance parameters. Eighteen DPN patients (age = 65.4±7.6 years; BMI = 29.3±5.3 kg/m2 and 18 age-matched healthy controls (age = 69.8±2.9; BMI = 27.0±4.1 kg/m2 with no major mobility disorder were recruited. The rate of sway within local-control was significantly higher in the DPN group by 49% (healthy local-controlslope = 1.23±1.06×10-2 cm2/sec, P<0.01, which suggests a compromised local-control balance behavior in DPN patients. Unlike local-control, the rate of sway within central-control was 60% smaller in the DPN group (healthy central-controlslope-Log = 0.39±0.23, P<0.02, which suggests an adaptation mechanism to reduce the overall body sway in DPN patients. Interestingly, significant negative correlations were observed between central-control rate of sway with neuropathy severity (rPearson = 0.65-085, P<0.05 and the history of diabetes (rPearson = 0.58-071, P<0.05. Results suggest that in the lack of sensory feedback cueing, DPN participants were highly unstable compared to controls. However, as soon as they perceived the magnitude of sway using sensory feedback, they chose a high rigid postural control strategy, probably due to high concerns for fall, which may increase the energy cost during extended period of standing; the adaptation

  20. Effect of darbepoetin alfa on physical function in patients undergoing surgery for colorectal cancer

    DEFF Research Database (Denmark)

    Nørager, C B; Jensen, M B; Madsen, M R

    2007-01-01

    OBJECTIVE: To study whether perioperative treatment with darbepoetin alfa (DA) improves physical performance following colorectal cancer surgery. METHODS: Patients admitted for planned colorectal cancer surgery were randomized to receive either weekly placebo or DA 300 or 150 microg depending...... on the hemoglobin (Hb) concentration. Patients were assessed 10 days before, as well as 7 and 30 days after surgery for work capacity, postural sway, muscle strength, fatigue and quality of life (QoL). The primary outcome measure were the changes in patients' physical performance from preoperative to postoperative...... differences between the 2 groups on days 7 or 30 for fatigue, postural sway and QoL. DA treatment significantly (p

  1. Effect of Ankle Range of Motion (ROM) and Lower-Extremity Muscle Strength on Static Balance Control Ability in Young Adults: A Regression Analysis

    Science.gov (United States)

    Kim, Seong-Gil

    2018-01-01

    Background The purpose of this study was to investigate the effect of ankle ROM and lower-extremity muscle strength on static balance control ability in young adults. Material/Methods This study was conducted with 65 young adults, but 10 young adults dropped out during the measurement, so 55 young adults (male: 19, female: 36) completed the study. Postural sway (length and velocity) was measured with eyes open and closed, and ankle ROM (AROM and PROM of dorsiflexion and plantarflexion) and lower-extremity muscle strength (flexor and extensor of hip, knee, and ankle joint) were measured. Pearson correlation coefficient was used to examine the correlation between variables and static balance ability. Simple linear regression analysis and multiple linear regression analysis were used to examine the effect of variables on static balance ability. Results In correlation analysis, plantarflexion ROM (AROM and PROM) and lower-extremity muscle strength (except hip extensor) were significantly correlated with postural sway (pregression analysis, plantar flexion PROM with eyes open significantly influenced sway length (B=0.681) and sway velocity (B=0.011). Conclusions Lower-extremity muscle strength and ankle plantarflexion ROM influenced static balance control ability, with ankle plantarflexion PROM showing the greatest influence. Therefore, both contractile structures and non-contractile structures should be of interest when considering static balance control ability improvement. PMID:29760375

  2. Development of the quality of reaching in infants with cerebral palsy : a kinematic study

    NARCIS (Netherlands)

    Boxum, Anke G; La Bastide-Van Gemert, Sacha; Dijkstra, Linze-Jaap; Hamer, Elisa G; Hielkema, Tjitske; Reinders-Messelink, Heleen A; Hadders-Algra, Mijna

    2017-01-01

    AIM: To assess development of reaching and head stability in infants at very high risk (VHR-infants) of cerebral palsy (CP) who did and did not develop CP. METHOD: This explorative longitudinal study assessed the kinematics of reaching and head sway in sitting in 37 VHR-infants (18 CP) one to four

  3. Threatre 1

    African Journals Online (AJOL)

    USER

    Western forms, particularly jazz (Dosunmu, 2010). Throughout his lifetime, Fela held hegemonic sway over afrobeat's stylistic and ideological trajectories, making him one of the best musicians to have emerged from the continent of Africa. However, his success was borne from his ability to create and manage the band.

  4. Practical Recommendations for the Preliminary Design Analysis of ...

    African Journals Online (AJOL)

    Interior-to-exterior shear ratios for equal and unequal bay frames, as well as column inflection points were obtained to serve as practical aids for preliminary analysis/design of fixed-feet multistory sway frames. Equal and unequal bay five story frames were analysed to show the validity of the recommended design ...

  5. Crime, Violence, and the Crisis in Guatemala: A Case Study in the Erosion of the State

    Science.gov (United States)

    2010-05-01

    information to drug traffickers. The head of the PNC, Porfirio Pérez Pani- agua , was recently dismissed on suspicion that he and more than a dozen...2008, Santiago, Chile : Corporación Latinobarómetro, 2008, p. 51; Marc Lacey, “Drug Gangs Use Violence to Sway Guatemala Vote,” New York Times, August

  6. Stumbling over obstacles in older adults compared to young adults

    NARCIS (Netherlands)

    Schillings, AM; Mulder, T; Duysens, J

    Falls are a major problem in older adults. Many falls occur because of stumbling. The aim of the present study is to investigate stumbling reactions of older adults and to compare them with young adults. While subjects walked on a treadmill, a rigid obstacle unexpectedly obstructed the forward sway

  7. Postural Control Deficits in Autism Spectrum Disorder: The Role of Sensory Integration

    Science.gov (United States)

    Doumas, Michail; McKenna, Roisin; Murphy, Blain

    2016-01-01

    We investigated the nature of sensory integration deficits in postural control of young adults with ASD. Postural control was assessed in a fixed environment, and in three environments in which sensory information about body sway from visual, proprioceptive or both channels was inaccurate. Furthermore, two levels of inaccurate information were…

  8. Effects of Attentional Focus and Age on Suprapostural Task Performance and Postural Control

    Science.gov (United States)

    McNevin, Nancy; Weir, Patricia; Quinn, Tiffany

    2013-01-01

    Purpose: Suprapostural task performance (manual tracking) and postural control (sway and frequency) were examined as a function of attentional focus, age, and tracking difficulty. Given the performance benefits often found under external focus conditions, it was hypothesized that external focus instructions would promote superior tracking and…

  9. Perception-Action and Adaptation in Postural Control of Children and Adolescents with Cerebral Palsy

    Science.gov (United States)

    Barela, Jose A.; Focks, Grietje M. Jaspers; Hilgeholt, Toke; Barela, Ana M. F.; Carvalho, Raquel de P.; Savelsbergh, Geert J. P.

    2011-01-01

    The aim of this study was to examine the coupling between visual information and body sway and the adaptation in this coupling of individuals with cerebral palsy (CP). Fifteen children with and 15 without CP, 6-15 years old, were required to stand upright inside of a moving room. All children first performed two trials with no movement of the room…

  10. Eye Movements Affect Postural Control in Young and Older Females.

    Science.gov (United States)

    Thomas, Neil M; Bampouras, Theodoros M; Donovan, Tim; Dewhurst, Susan

    2016-01-01

    Visual information is used for postural stabilization in humans. However, little is known about how eye movements prevalent in everyday life interact with the postural control system in older individuals. Therefore, the present study assessed the effects of stationary gaze fixations, smooth pursuits, and saccadic eye movements, with combinations of absent, fixed and oscillating large-field visual backgrounds to generate different forms of retinal flow, on postural control in healthy young and older females. Participants were presented with computer generated visual stimuli, whilst postural sway and gaze fixations were simultaneously assessed with a force platform and eye tracking equipment, respectively. The results showed that fixed backgrounds and stationary gaze fixations attenuated postural sway. In contrast, oscillating backgrounds and smooth pursuits increased postural sway. There were no differences regarding saccades. There were also no differences in postural sway or gaze errors between age groups in any visual condition. The stabilizing effect of the fixed visual stimuli show how retinal flow and extraocular factors guide postural adjustments. The destabilizing effect of oscillating visual backgrounds and smooth pursuits may be related to more challenging conditions for determining body shifts from retinal flow, and more complex extraocular signals, respectively. Because the older participants matched the young group's performance in all conditions, decreases of posture and gaze control during stance may not be a direct consequence of healthy aging. Further research examining extraocular and retinal mechanisms of balance control and the effects of eye movements, during locomotion, is needed to better inform fall prevention interventions.

  11. Competing effects of pain and fear of pain on postural control in low back pain?

    NARCIS (Netherlands)

    Mazaheri, M.; Heidari, E.; Mostmand, J.; Negahban, H.; van Dieen, J.H.

    2014-01-01

    STUDY DESIGN. A cross-sectional, observational study. OBJECTIVE. To determine whether pain and fear of pain have competing effects on postural sway in patients with low back pain (LBP). SUMMARY OF BACKGROUND DATA. Competing effects of pain and pain-related fear on postural control can be proposed as

  12. Impact of musculoskeletal pain on balance and concerns of falling in mobility-limited, community-dwelling Danes over 75 years of age: a cross-sectional study.

    Science.gov (United States)

    Kendall, Julie C; Hvid, Lars G; Hartvigsen, Jan; Fazalbhoy, Azharuddin; Azari, Michael F; Skjødt, Mathias; Robinson, Stephen R; Caserotti, Paolo

    2017-12-11

    In older adults, musculoskeletal pain is associated with increased concerns of falling, reduced balance and increased occurrence of falls. In younger adults, the intensity of neck pain and low back pain is associated with increased postural sway. It is not known if pain further impairs balance and concerns of falling in mobility-limited older adults, and if so, whether this is associated with different intensities of pain. This study examined whether mobility-limited older adults with mild or intense neck pain and/or low back pain have significantly increased postural sway as measured by centre of pressure (COP) changes and concerns of falling compared to those without pain. 48 older adults with a gait speed of point numerical rating scale (0-10). Participants were sub-grouped into mild (0-4) and intense (> 5) neck pain or low back pain. Intense neck pain was associated with increased anterior-posterior sway range and area of sway. Intense low back pain was associated with increased concerns of falling. Intense neck pain in mobility-limited older adults is associated with significant changes in postural balance, and intense low back pain is associated with significantly higher concerns of falling.

  13. Using motor imagery to study the neural substrates of dynamic balance

    NARCIS (Netherlands)

    Ferraye, M.U.; Debû, B.H.G.; Heil, L.; Carpenter, M.; Bloem, B.R.; Toni, I.

    2014-01-01

    This study examines the cerebral structures involved in dynamic balance using a motor imagery (MI) protocol. We recorded cerebral activity with functional magnetic resonance imaging while subjects imagined swaying on a balance board along the sagittal plane to point a laser at target pairs of

  14. The functional effect of segmental trunk and head control training in moderate-to-severe cerebral palsy

    DEFF Research Database (Denmark)

    Curtis, Derek John; Woollacott, Marjorie; Bencke, Jesper

    2018-01-01

    . Outcomes were Gross Motor Function Measure (GMFM), Pediatric Evaluation of Disability Inventory (PEDI), Segmental Assessment of Trunk Control (SATCo), and postural sway at baseline, at primary endpoint (6 months), and at follow-up (12 months). RESULTS: There were no significant differences in either GMFM...

  15. Effect of Ankle Range of Motion (ROM) and Lower-Extremity Muscle Strength on Static Balance Control Ability in Young Adults: A Regression Analysis.

    Science.gov (United States)

    Kim, Seong-Gil; Kim, Wan-Soo

    2018-05-15

    BACKGROUND The purpose of this study was to investigate the effect of ankle ROM and lower-extremity muscle strength on static balance control ability in young adults. MATERIAL AND METHODS This study was conducted with 65 young adults, but 10 young adults dropped out during the measurement, so 55 young adults (male: 19, female: 36) completed the study. Postural sway (length and velocity) was measured with eyes open and closed, and ankle ROM (AROM and PROM of dorsiflexion and plantarflexion) and lower-extremity muscle strength (flexor and extensor of hip, knee, and ankle joint) were measured. Pearson correlation coefficient was used to examine the correlation between variables and static balance ability. Simple linear regression analysis and multiple linear regression analysis were used to examine the effect of variables on static balance ability. RESULTS In correlation analysis, plantarflexion ROM (AROM and PROM) and lower-extremity muscle strength (except hip extensor) were significantly correlated with postural sway (psimple correlation analysis, all variables that passed the correlation analysis procedure had significant influence (plinear regression analysis, plantar flexion PROM with eyes open significantly influenced sway length (B=0.681) and sway velocity (B=0.011). CONCLUSIONS Lower-extremity muscle strength and ankle plantarflexion ROM influenced static balance control ability, with ankle plantarflexion PROM showing the greatest influence. Therefore, both contractile structures and non-contractile structures should be of interest when considering static balance control ability improvement.

  16. International Journal of Arts and Humanities(IJAH) Bahir Dar- Ethiopia

    African Journals Online (AJOL)

    Prof

    The trend has made the democratic process of the people selecting their own .... not limit their corrupting influence to Rome but also swayed their allies. 'They were .... friends with presents, and then to win new ones — in short, to make haste to ...

  17. Effects of Behavioral and Social Class Information on Social Judgment.

    Science.gov (United States)

    Baron, Reuben M.; And Others

    1995-01-01

    Investigated the role of disconfirming behavioral information and the limits on social class schema effects. Using a Bayesian model of social perception, it was found that unambiguous, relevant stimulus information influenced judgments. Although social class information did not affect relevant stimulus information, it did sway judgments in…

  18. The Ebay-ification of Education: Critical Literacy in a Consumerocracy

    Science.gov (United States)

    Brannon, Lil; Urbanski, Cynthia; Manship, Lacy; Arnold, Lucy; Iannone, Tony

    2010-01-01

    When people dive into the varied texts of culture, print and non-print, and explore and critique them, they are doing much more than showing various persuasive appeals or advertising gimmicks to sway their audience; they are examining the purposes and values of capitalism, the economic system that produces a consumerocracy. People might even turn…

  19. Provenance Studies Through Petrography and Heavy Mineral

    African Journals Online (AJOL)

    USER

    are also cement and voids. These four parameters make up the bulk textural properties of any ..... tidal effect held sway.The field work ... Laterites.Geol.Surv. Nigeria Rept. No. 1027. nd. Folk, R. L. 1974.Petrology of Sedimentary Rocks (2.

  20. Pain education combined with neck- and aerobic training is more effective at relieving chronic neck pain than pain education alone--A preliminary randomized controlled trial.

    Science.gov (United States)

    Brage, K; Ris, I; Falla, D; Søgaard, K; Juul-Kristensen, B

    2015-10-01

    To evaluate the effect of training and pain education vs pain education alone, on neck pain, neck muscle activity and postural sway in patients with chronic neck pain. Twenty women with chronic neck pain were randomized to receive pain education and specific training (neck-shoulder exercises, balance and aerobic training) (INV), or pain education alone (CTRL). Effect on neck pain, function and Global Perceived Effect (GPE) were measured. Surface electromyography (EMG) was recorded from neck flexor and extensor muscles during performance of the Cranio-Cervical Flexion Test (CCFT) and three postural control tests (two-legged: eyes open and closed, one-legged: eyes open). Sway parameters were calculated. Fifteen participants (CTRL: eight; INV: seven) completed the study. Per protocol analyses showed a larger pain reduction (p = 0.002) for the INV group with tendencies for increased GPE (p = 0.06), reduced sternocleidomastoid activity during the CCFT (p = 0.09), reduced sway length (p = 0.09), and increased neck extensor activity (p = 0.02) during sway compared to the CTRL group. Pain education and specific training reduce neck pain more than pain education alone in patients with chronic neck pain. These results provide encouragement for a larger clinical trial to corroborate these observations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Influence of pilates mat and apparatus exercises on pain and balance of businesswomen with chronic low back pain.

    Science.gov (United States)

    Lee, Chae-Woo; Hyun, Ju; Kim, Seong Gil

    2014-04-01

    [Purpose] The purpose of this study was to examine the influence of mat Pilates and apparatus Pilates on pain and static balance of businesswomen with chronic back pain. [Subjects and Methods] Participants were randomly allocated to Pilates mat exercises (PME) or Pilates apparatus exercise (PAE), and performed the appropriate Pilates exercises 3 days per week for 8 weeks. In order to measure the improvement in the participants' static balance ability as a result of the exercise, the sway length and sway velocity of the subjects were measured before and after the experiment while the subjects stood on a Balance Performance Monitor (BPM) facing the front wall for 30 seconds with their eyes open. The visual analogue scale (VAS) was used to measure the degree of pain. [Results] The VAS score, sway length, and sway velocity of both groups decreased significantly after the experiment, but the PME group showed a greater decrease than the PAE group. [Conclusion] PME showed greater improvement in pain level and balance compared with PAE in this research. Since the subjects of this study were patients with low back pain, PME is assumed to have been more suitable and effective because it uses body weight to strengthen core muscles rather than heavier apparatuses as in PAE.

  2. Dynamic Parameters of Balance Which Correlate to Elderly Persons with a History of Falls

    Science.gov (United States)

    Muir, Jesse W.; Kiel, Douglas P.; Hannan, Marian; Magaziner, Jay; Rubin, Clinton T.

    2013-01-01

    Poor balance in older persons contributes to a rise in fall risk and serious injury, yet no consensus has developed on which measures of postural sway can identify those at greatest risk of falling. Postural sway was measured in 161 elderly individuals (81.8y±7.4), 24 of which had at least one self-reported fall in the prior six months, and compared to sway measured in 37 young adults (34.9y±7.1). Center of pressure (COP) was measured during 4 minutes of quiet stance with eyes opened. In the elderly with fall history, all measures but one were worse than those taken from young adults (e.g., maximal COP velocity was 2.7× greater in fallers than young adults; polder persons with no recent fall history (COP Displacement, Short Term Diffusion Coefficient, and Critical Displacement). Variance of elderly subjects' COP measures from the young adult cohort were weighted to establish a balance score (“B-score”) algorithm designed to distinguish subjects with a fall history from those more sure on their feet. Relative to a young adult B-score of zero, elderly “non-fallers” had a B-score of 0.334, compared to 0.645 for those with a fall history (ppostural sway elements may identify individuals at greatest risk of falling, allowing interventions to target those with greatest need of attention. PMID:23940592

  3. Evaluation of the free moment parameter during walking in patients with multiple sclerosis

    Directory of Open Access Journals (Sweden)

    Fereshteh Eftekhary

    2018-01-01

    Conclusion: The results of this study can be concluded that most differences in postural sway when walking between subjects with multiple sclerosis and healthy occurs at the start of the stance phase of gait, exactly at the time of initial heel contact.

  4. Do Equilibrium Constraints Modulate Postural Reaction when Viewing Imbalance?

    Science.gov (United States)

    Tia, Banty; Paizis, Christos; Mourey, France; Pozzo, Thierry

    2012-01-01

    Action observation and action execution are tightly coupled on a neurophysiological and a behavioral level, such that visually perceiving an action can contaminate simultaneous and subsequent action execution. More specifically, observing a model in postural disequilibrium was shown to induce an increase in observers' body sway. Here we…

  5. Detsibill : Hullumaja! Nii palju bände... White label : Project Massacre. Kuula / DJ Pickney Tiger

    Index Scriptorium Estoniae

    DJ Pickney Tiger, pseud., 1970-

    2006-01-01

    Heliplaatidest: Cyndi Lauper "The Body Acoustic", Sway "This is my demo", Röyksopp "Night Out Live", Hardcore Superstar "Gai", The Bamboos "Step It Up", "Innovatsioon", Scandinavian Music Group "Hölmö rakkaus - ylpeä sydän", Anti-Flag "For Blood and Epmpire", Depoo "Amazing", Azmuth "Pure (Best of Far Out)", "Parimad laulud uues kuues"

  6. Interactions of touch feedback with muscle vibration and galvanic vestibular stimulation in the control of trunk posture

    NARCIS (Netherlands)

    Maaswinkel, E.; Veeger, H.E.J.; van Dieen, J.H.

    2014-01-01

    This study investigated the effect of touch on trunk sway in a seated position. Two touch conditions were included: touching an object with the index finger of the right hand (hand-touch) and maintaining contact with an object at the level of the spine of T10 on the mid back (back-touch). In both

  7. Generation Who, What, Y? What You Need to Know about Generation Y

    Science.gov (United States)

    Goldgehn, Leslie A.

    2004-01-01

    Generation Y wants to know why! Today's youth are curious, they want the facts, they want the hard data, and most of all they want the truth. Advertisements and creative marketing tactics do not easily sway this group. They do their research before they believe most things they hear and see. Purchasing behaviors of Generation Y show that the group…

  8. Dynamic model of movement of mine suspended monorail

    Directory of Open Access Journals (Sweden)

    Viktor GUTAREVYCH

    2014-03-01

    Full Text Available In the article we have developed the dynamic model of interaction of rolling stock during the movement, on the suspended monorail, taking into account the side-sway. We have received the motion equations, carried out their analysis and determined the own oscillation frequencies of rolling stock of suspended monorail.

  9. Adaptation to altered balance conditions in unilateral amputees due to atherosclerosis: a randomized controlled study

    Directory of Open Access Journals (Sweden)

    Bretz Éva

    2011-05-01

    Full Text Available Abstract Background Amputation impairs the ability to balance. We examined adaptation strategies in balance following dysvascularity-induced unilateral tibial amputation in skilled prosthetic users (SPU and first fitted amputees (FFA (N = 28. Methods Excursions of center of pressure (COP were determined during 20 s quiet standing using a stabilometry system with eyes-open on both legs or on the non-affected leg(s. Main measures: COP trajectories and time functions; distribution of reaction forces between the two legs; inclination angles obtained through second order regression analysis using stabilogram data. Results FFA vs SPU demonstrated 27.8% greater postural sway in bilateral stance (p = 0.0004. Postural sway area was smaller in FFA standing on the non-affected leg compared with SPU (p = 0.028. The slope of the regression line indicating postural stability was nearly identical in FFA and SPU and the direction of regression line was opposite for the left and right leg amputees. Conclusion Of the two adaptation strategies in balance, the first appears before amputation due to pain and fatigue in the affected leg. This strategy appears in the form of reduced postural sway while standing on the non-affected leg. The second adaptation occurs during rehabilitation and regular use of the prosthesis resulting in normal weightbearing associated with reduced postural sway on two legs and return to the normal postural stability on one leg.

  10. Drama and Prophecy: The J. P. Clark Paradigm | Benedict | UJAH ...

    African Journals Online (AJOL)

    The utilitarian aesthetic of drama cannot be disputed particularly in Africa as it has since held sway and decked itself out from the genesis of the literary drama of the continent. This is because most African dramatists across the boundaries of critical currents have used drama to treat one social issue or the other.

  11. Effect of plantar cutaneous inputs on center of pressure during quiet stance in older adults

    Directory of Open Access Journals (Sweden)

    Yun Wang

    2016-06-01

    Conclusion: The findings indicate that mechanical facilitation of sensation on the plantar soles enhanced postural stability in older adults. The results show that plantar cutaneous inputs provide information that leads to reduced postural sway in healthy older adults. This could have implications in clinical and rehabilitative areas.

  12. Examining Evidence for External and Consequential Validity of the First Term General Chemistry Exam from the ACS Examinations Institute

    Science.gov (United States)

    Lewis, Scott E.

    2014-01-01

    Validity of educational research instruments and student assessments has appropriately become a growing interest in the chemistry education research community. Of particular concern is an attention to the consequences to students that result from the interpretation of assessment scores and whether those consequences are swayed by invalidity within…

  13. Genetic Engineering and Crop Production.

    Science.gov (United States)

    Jones, Helen C.; Frost, S.

    1991-01-01

    With a spotlight upon current agricultural difficulties and environmental dilemmas, this paper considers both the extant and potential applications of genetic engineering with respect to crop production. The nonagricultural factors most likely to sway the impact of this emergent technology upon future crop production are illustrated. (JJK)

  14. 46 CFR 201.182 - Improper pressures.

    Science.gov (United States)

    2010-10-01

    ... to sway the judgment of the Administration by undertaking to bring pressure or influence to bear upon... presiding officer directly or indirectly give statements to the press or radio, by paid advertisements or otherwise, designed to influence the Administration's judgment in the matter. In addition, it is further...

  15. Korean Affairs Report, Kulloja, No. 10, October 1984.

    Science.gov (United States)

    1985-06-04

    death" holds sway, and the corrupt tendency to 11 preach degradation, pessimism and extreme individual egoism is spreading like a contagious... restrict the overall promotion of their individuality conflicts with the fundamental mission of collectivism as the driving principle for attaining the

  16. The Technolife Project

    DEFF Research Database (Denmark)

    Bertilsson, Margareta

    2013-01-01

    The experimental approach of Technolife seeks for points of mediation by which varied public concerns can become embedded institutionally and secure sets of legitimate procedures It is an open (experimental) question if the wide variety of technologies now in sway can be handled within a uniform ...

  17. A New Hope? Overcoming the Limitations of Effects-Based Operations

    Science.gov (United States)

    2007-05-10

    sway. Nor does the equation of a “Warlord” to a Junta government apply because often the “Warlord” is the head of a tribe through heredity or has...operations. More communities without power give rise to a greater disenfranchised population. In considering power plants as a target to 12

  18. Prism adaptation improves postural imbalance in neglect patients

    NARCIS (Netherlands)

    Nijboer, Tanja C W; Olthoff, Liselot; Van der Stigchel, Stefan; Visser-Meily, Johanna M a

    2014-01-01

    Several studies have found a negative relation between neglect and postural imbalance. The aim of the current study was to investigate the influence of a single session of prism adaptation on balance [i.e. mediolateral and anteroposterior center of pressure (CoP)] and postural sway (i.e. mean

  19. A Comparison of Military and Law Enforcement Body Armour

    Science.gov (United States)

    Pope, Rodney

    2018-01-01

    Law-enforcement officers increasingly wear body armour for protection; wearing body armour is common practice in military populations. Law-enforcement and military occupational demands are vastly different and military-styled body armour may not be suitable for law-enforcement. This study investigated differences between selected military body armour (MBA: 6.4 kg) and law-enforcement body armour (LEBA: 2.1 kg) in impacts on postural sway, vertical jump, agility, a functional movement screen (FMS), task simulations (vehicle exit; victim recovery), and subjective measures. Ten volunteer police officers (six females, four males) were randomly allocated to one of the designs on each of two days. Body armour type did not significantly affect postural sway, vertical jump, vehicle exit and 5 m sprint times, or victim recovery times. Both armour types increased sway velocity and sway-path length in the final five seconds compared to the first 5 s of a balance task. The MBA was associated with significantly slower times to complete the agility task, poorer FMS total scores, and poorer subjective ratings of performance and comfort. The LEBA was perceived as more comfortable and received more positive performance ratings during the agility test and task simulations. The impacts of MBA and LEBA differed significantly and they should not be considered interchangeable. PMID:29443905

  20. Dispelling myths about eggs.

    Science.gov (United States)

    With the rise of the “Google generation”, consumers can easily access information with a simple click. Unfortunately, this information is not always accurate or honest. This can pose many problems if consumer perception of your product is swayed by erroneous information. Being able to factually a...

  1. Effects of pesticides on the peripheral and central nervous system in tobacco farmers in Malaysia: studies on peripheral nerve conduction, brain-evoked potentials and computerized posturography.

    Science.gov (United States)

    Kimura, Kaoru; Yokoyama, Kazuhito; Sato, Hajime; Nordin, Rusli Bin; Naing, Lin; Kimura, Satoshi; Okabe, Shingo; Maeno, Takashi; Kobayashi, Yasuki; Kitamura, Fumihiko; Araki, Shunichi

    2005-04-01

    We examined the effects of pesticides on the central and peripheral nervous system in the setting of a tobacco farm at a developing country. Maximal motor and sensory nerve conduction velocities (MCV and SCV, respectively) in the median, sural and tibial nerves, postural sway, and brain-evoked potentials (auditory event-related and visual-evoked potentials) were measured in 80 male tobacco farmers and age- and sex-matched 40 controls in Kelantan, Malaysia. Median SCV (finger-wrist) in farmers using Delsen (mancozeb, dithiocarbamate fungicide), who showed significant decrease of serum cholinesterase activities, were significantly lower compared with the controls. Sural SCV in farmers using Fastac (alpha-cypermethrin, pyrethroid insecticide) and median MCV (elbow-wrist) in farmers using Tamex (butralin, dinitroaniline herbicide) were significantly slowed compared with their respective controls. In Delsen (mancozeb, dithiocarbamate) users, the power of postural sway of 0-1 Hz was significantly larger than that in the controls both in the anterior-posterior direction with eyes open and in the right-left direction with eyes closed. The former type of sway was also significantly increased in Tamaron (methamidophos, organophosphorus insecticide) users. In conclusion, nerve conduction velocities and postural sway seem to be sensitive indicators of the effects of pesticides on the central and peripheral nervous system.

  2. 49 CFR Appendix to Part 380 - LCV Driver Training Programs, Required Knowledge and Skills

    Science.gov (United States)

    2010-10-01

    ... LCV drivers. This must include instruction relative to backing, lane positioning and path selection... to brake performance and directional stability while accelerating, braking, merging, cornering... instruction related to trailer sway and off-tracking. Emphasis must be placed on maintaining directional...

  3. A Comparison of Military and Law Enforcement Body Armour.

    Science.gov (United States)

    Orr, Robin; Schram, Ben; Pope, Rodney

    2018-02-14

    Law-enforcement officers increasingly wear body armour for protection; wearing body armour is common practice in military populations. Law-enforcement and military occupational demands are vastly different and military-styled body armour may not be suitable for law-enforcement. This study investigated differences between selected military body armour (MBA: 6.4 kg) and law-enforcement body armour (LEBA: 2.1 kg) in impacts on postural sway, vertical jump, agility, a functional movement screen (FMS), task simulations (vehicle exit; victim recovery), and subjective measures. Ten volunteer police officers (six females, four males) were randomly allocated to one of the designs on each of two days. Body armour type did not significantly affect postural sway, vertical jump, vehicle exit and 5 m sprint times, or victim recovery times. Both armour types increased sway velocity and sway-path length in the final five seconds compared to the first 5 s of a balance task. The MBA was associated with significantly slower times to complete the agility task, poorer FMS total scores, and poorer subjective ratings of performance and comfort. The LEBA was perceived as more comfortable and received more positive performance ratings during the agility test and task simulations. The impacts of MBA and LEBA differed significantly and they should not be considered interchangeable.

  4. Old Wine in New Bottles

    NARCIS (Netherlands)

    Warner, J.F.; Hoogesteger van Dijk, J.D.; Hidalgo, Jean Pablo

    2017-01-01

    Despite a widely embraced ecological turn and strident critique of megastructures in the 1990s, construction of large infrastructure has been reignited worldwide. While Integrated Water Resources Management (IWRM) and River Basin Management (RBM) have at least discursively held sway as the dominant

  5. Measuring center of pressure signals to quantify human balance using multivariate multiscale entropy by designing a force platform.

    Science.gov (United States)

    Huang, Cheng-Wei; Sue, Pei-Der; Abbod, Maysam F; Jiang, Bernard C; Shieh, Jiann-Shing

    2013-08-08

    To assess the improvement of human body balance, a low cost and portable measuring device of center of pressure (COP), known as center of pressure and complexity monitoring system (CPCMS), has been developed for data logging and analysis. In order to prove that the system can estimate the different magnitude of different sways in comparison with the commercial Advanced Mechanical Technology Incorporation (AMTI) system, four sway tests have been developed (i.e., eyes open, eyes closed, eyes open with water pad, and eyes closed with water pad) to produce different sway displacements. Firstly, static and dynamic tests were conducted to investigate the feasibility of the system. Then, correlation tests of the CPCMS and AMTI systems have been compared with four sway tests. The results are within the acceptable range. Furthermore, multivariate empirical mode decomposition (MEMD) and enhanced multivariate multiscale entropy (MMSE) analysis methods have been used to analyze COP data reported by the CPCMS and compare it with the AMTI system. The improvements of the CPCMS are 35% to 70% (open eyes test) and 60% to 70% (eyes closed test) with and without water pad. The AMTI system has shown an improvement of 40% to 80% (open eyes test) and 65% to 75% (closed eyes test). The results indicate that the CPCMS system can achieve similar results to the commercial product so it can determine the balance.

  6. Measuring Center of Pressure Signals to Quantify Human Balance Using Multivariate Multiscale Entropy by Designing a Force Platform

    Directory of Open Access Journals (Sweden)

    Cheng-Wei Huang

    2013-08-01

    Full Text Available To assess the improvement of human body balance, a low cost and portable measuring device of center of pressure (COP, known as center of pressure and complexity monitoring system (CPCMS, has been developed for data logging and analysis. In order to prove that the system can estimate the different magnitude of different sways in comparison with the commercial Advanced Mechanical Technology Incorporation (AMTI system, four sway tests have been developed (i.e., eyes open, eyes closed, eyes open with water pad, and eyes closed with water pad to produce different sway displacements. Firstly, static and dynamic tests were conducted to investigate the feasibility of the system. Then, correlation tests of the CPCMS and AMTI systems have been compared with four sway tests. The results are within the acceptable range. Furthermore, multivariate empirical mode decomposition (MEMD and enhanced multivariate multiscale entropy (MMSE analysis methods have been used to analyze COP data reported by the CPCMS and compare it with the AMTI system. The improvements of the CPCMS are 35% to 70% (open eyes test and 60% to 70% (eyes closed test with and without water pad. The AMTI system has shown an improvement of 40% to 80% (open eyes test and 65% to 75% (closed eyes test. The results indicate that the CPCMS system can achieve similar results to the commercial product so it can determine the balance.

  7. African Ruling Political Parties and the Making of 'Authoritarian ...

    African Journals Online (AJOL)

    appearing to be a 'reincarnation' of the one-party system and military rule that held sway for about three to four decades in Africa (from the 1960s). In the process of this transformation, African ruling parties have been grossly destabilising opposition and perceived dissenters through clientelism, patronage politics and ...

  8. Alternative Philosophies of Work: Some Questions for Educators.

    Science.gov (United States)

    Wirth, Arthur G.

    1982-01-01

    For decades the principles of scientific management, borrowed from industry, have held sway in U.S. schools. Now these principles have been supplanted in the industrial workplace by new socio-technical theories. This article describes the new industrial management model and its implications for education. (Author/WD)

  9. Will Marriage Matter? Effects of Marriage Anticipated by Same-Sex Couples

    Science.gov (United States)

    Shulman, Julie L.; Gotta, Gabrielle; Green, Robert-Jay

    2012-01-01

    The current study used an online survey to explore the anticipated impact of legalized marriage on partners in same-sex couples living in California. These data were gathered prior to the California Supreme Court decision in May 2008 legalizing same-sex marriage, which held sway for 5 months before California Proposition 8 eliminating same-sex…

  10. A Comparison of Military and Law Enforcement Body Armour

    Directory of Open Access Journals (Sweden)

    Robin Orr

    2018-02-01

    Full Text Available Law-enforcement officers increasingly wear body armour for protection; wearing body armour is common practice in military populations. Law-enforcement and military occupational demands are vastly different and military-styled body armour may not be suitable for law-enforcement. This study investigated differences between selected military body armour (MBA: 6.4 kg and law-enforcement body armour (LEBA: 2.1 kg in impacts on postural sway, vertical jump, agility, a functional movement screen (FMS, task simulations (vehicle exit; victim recovery, and subjective measures. Ten volunteer police officers (six females, four males were randomly allocated to one of the designs on each of two days. Body armour type did not significantly affect postural sway, vertical jump, vehicle exit and 5 m sprint times, or victim recovery times. Both armour types increased sway velocity and sway-path length in the final five seconds compared to the first 5 s of a balance task. The MBA was associated with significantly slower times to complete the agility task, poorer FMS total scores, and poorer subjective ratings of performance and comfort. The LEBA was perceived as more comfortable and received more positive performance ratings during the agility test and task simulations. The impacts of MBA and LEBA differed significantly and they should not be considered interchangeable.

  11. Interference between postural control and spatial vs. non-spatial auditory reaction time tasks in older adults.

    Science.gov (United States)

    Fuhrman, Susan I; Redfern, Mark S; Jennings, J Richard; Furman, Joseph M

    2015-01-01

    This study investigated whether spatial aspects of an information processing task influence dual-task interference. Two groups (Older/Young) of healthy adults participated in dual-task experiments. Two auditory information processing tasks included a frequency discrimination choice reaction time task (non-spatial task) and a lateralization choice reaction time task (spatial task). Postural tasks included combinations of standing with eyes open or eyes closed on either a fixed floor or a sway-referenced floor. Reaction times and postural sway via center of pressure were recorded. Baseline measures of reaction time and sway were subtracted from the corresponding dual-task results to calculate reaction time task costs and postural task costs. Reaction time task cost increased with eye closure (p = 0.01), sway-referenced flooring (p vision x age interaction indicated that older subjects had a significant vision X task interaction whereas young subjects did not. However, when analyzed by age group, the young group showed minimal differences in interference for the spatial and non-spatial tasks with eyes open, but showed increased interference on the spatial relative to non-spatial task with eyes closed. On the contrary, older subjects demonstrated increased interference on the spatial relative to the non-spatial task with eyes open, but not with eyes closed. These findings suggest that visual-spatial interference may occur in older subjects when vision is used to maintain posture.

  12. A comparative cepstral based analysis of simulated and measured S-band and X-band radar Doppler spectra of human motion

    CSIR Research Space (South Africa)

    Van Eeden, WD

    2015-10-01

    Full Text Available targets. It is also shown that, whereas the motion of most body parts of a human target can be observed in the X-band data, only the main torso sway can be observed at S-band. This implies that X-band data is well suited to cepstrum based human motion...

  13. Anodal Transcranial Direct Current Stimulation Shows Minimal, Measure-Specific Effects on Dynamic Postural Control in Young and Older Adults: A Double Blind, Sham-Controlled Study.

    Science.gov (United States)

    Craig, Chesney E; Doumas, Michail

    2017-01-01

    We investigated whether stimulating the cerebellum and primary motor cortex (M1) using transcranial direct current stimulation (tDCS) could affect postural control in young and older adults. tDCS was employed using a double-blind, sham-controlled design, in which young (aged 18-35) and older adults (aged 65+) were assessed over three sessions, one for each stimulatory condition-M1, cerebellar and sham. The effect of tDCS on postural control was assessed using a sway-referencing paradigm, which induced platform rotations in proportion to the participant's body sway, thus assessing sensory reweighting processes. Task difficulty was manipulated so that young adults experienced a support surface that was twice as compliant as that of older adults, in order to minimise baseline age differences in postural sway. Effects of tDCS on postural control were assessed during, immediately after and 30 minutes after tDCS. Additionally, the effect of tDCS on corticospinal excitability was measured by evaluating motor evoked potentials using transcranial magnetic stimulation immediately after and 30 minutes after tDCS. Minimal effects of tDCS on postural control were found in the eyes open condition only, and this was dependent on the measure assessed and age group. For young adults, stimulation had only offline effects, as cerebellar stimulation showed higher mean power frequency (MPF) of sway 30 minutes after stimulation. For older adults, both stimulation conditions delayed the increase in sway amplitude witnessed between blocks one and two until stimulation was no longer active. In conclusion, despite tDCS' growing popularity, we would caution researchers to consider carefully the type of measures assessed and the groups targeted in tDCS studies of postural control.

  14. Tai Chi training reduced coupling between respiration and postural control.

    Science.gov (United States)

    Holmes, Matthew L; Manor, Brad; Hsieh, Wan-hsin; Hu, Kun; Lipsitz, Lewis A; Li, Li

    2016-01-01

    In order to maintain stable upright stance, the postural control system must account for the continuous perturbations to the body's center-of-mass including those caused by spontaneous respiration. Both aging and disease increase "posturo-respiratory synchronization;" which reflects the degree to which respiration affects postural sway fluctuations over time. Tai Chi training emphasizes the coordination of respiration and bodily movements and may therefore optimize the functional interaction between these two systems. The purpose of the project was to examine the effect of Tai Chi training on the interaction between respiration and postural control in older adults. We hypothesized that Tai Chi training would improve the ability of the postural control system to compensate for respiratory perturbations and thus, reduce posturo-respiratory synchronization. Participants were recruited from supportive housing facilities and randomized to a 12-week Tai Chi intervention (n=28; 86 ± 5 yrs) or educational-control program (n=34, 85 ± 6 yrs). Standing postural sway and respiration were simultaneously recorded with a force plate and respiratory belt under eyes-open and eyes-closed conditions. Posturo-respiratory synchronization was determined by quantifying the variation of the phase relationship between the dominant oscillatory mode of respiration and corresponding oscillations within postural sway. Groups were similar in age, gender distribution, height, body mass, and intervention compliance. Neither intervention altered average sway speed, sway magnitude or respiratory rate. As compared to the education-control group, however, Tai Chi training reduced posturo-respiratory synchronization when standing with eyes open or closed (ppostural control or respiration, yet reduced the coupling between respiration and postural control. The beneficial effects of Tai Chi training may therefore stem in part from optimization of this multi-system interaction. Copyright © 2015

  15. Visiting Richard Serra’s Promenade sculpture improves postural control and judgment of subjective visual vertical.

    Directory of Open Access Journals (Sweden)

    Zoï eKapoula

    2014-12-01

    Full Text Available Body sway while maintaining an upright quiet stance reflects an active process of balance based on the integration of visual, vestibular, somatosensory and proprioceptive inputs. Richard Serra’s Promenade sculpture featured in the 2008 Monumenta exhibition at the Grand Palais in Paris, France is herein hypothesised to have stimulated the body’s vertical and longitudinal axes as it showcased 5 monumental rectangular solids pitched at a 1.69° angle.Using computerised dynamic posturography we measured the body sway of 23 visitors when fixating a cross, or when observing the artwork (fixating it or actively exploring it with eye movements before and after walking around and alongside the sculpture (i.e., before and after a promenade. A first fixation at the sculpture increased medio-lateral stability (in terms of spectral power of body sway. Eye movement exploration in the depth of the sculpture increased antero-posterior stability (in terms of spectral power and cancelling time of body sway at the expense of medio-lateral stability (in terms of cancelling time. Moreover, a medio-lateral instability associated with eye movement exploration before the promenade (in terms of body sway sensu stricto was cancelled after the promenade. Finally, the overall medio-lateral stability (in terms of spectral power increased after the promenade.Fourteen additional visitors were asked to sit in a dark room and adjust a luminous line to what they considered to be the earth-vertical axis. The promenade executed within the sculpted environment afforded by Serra’s monumental statuary works resulted in significantly improved performances on the subjective visual vertical test.We attribute these effects to the sculpted environment provided by the exhibition which may have acted as a kind of physiologic training ground thereby improving the visitors’ overall sense of visual perspective, equilibrium and gravity.

  16. Immediate effects of Pilates based therapeutic exercise on postural control of young individuals with non-specific low back pain: A randomized controlled trial.

    Science.gov (United States)

    Lopes, Susana; Correia, Christophe; Félix, Gonçalo; Lopes, Mário; Cruz, Ana; Ribeiro, Fernando

    2017-10-01

    Low back pain affects the person's ability to keep balance, especially in challenging conditions. The purpose of this study was to determine the immediate effects of Pilates exercises on postural sway and dynamic balance of young individuals with non-specific low back pain. Controlled laboratory design. Forty-six participants with non-specific low back pain were randomized to a Pilates (n=23, 10 males; age: 21.8±3.2years) and a control group (n=23, 9 males; age: 22.8±3.6years). Postural sway was assessed with a force platform and dynamic balance with the Star Excursion Balance Test, before and after the intervention or rest period. To assess postural sway, participants stood still on an unstable surface set on the force plate for 90s, with eyes closed. The intervention lasted 20min and consisted on four Pilates exercises: single leg stretch (level 1), pelvic press (level 1), swimming (level 1) and kneeling opposite arm and leg reach. At baseline, no differences were found between groups. The Pilates group improved in all the postural sway values (area of CoP: 11.5±3.4 to 9.7±2.7cm 2 , p=0.002 and CoP velocity: 2.8±0.6 to 2.3±0.5cm/s, pControl group only improved in CoP velocity, however, this improvement was significantly inferior compared to the Pilates group. Pilates exercises immediately improved postural sway and dynamic balance in young adults with non-specific low back pain. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Effects of textured insoles on balance in people with Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Feng Qiu

    Full Text Available BACKGROUND: Degradation of the somatosensory system has been implicated in postural instability and increased falls risk for older people and Parkinson's disease (PD patients. Here we demonstrate that textured insoles provide a passive intervention that is an inexpensive and accessible means to enhance the somatosensory input from the plantar surface of the feet. METHODS: 20 healthy older adults (controls and 20 participants with PD were recruited for the study. We evaluated effects of manipulating somatosensory information from the plantar surface of the feet using textured insoles. Participants performed standing tests, on two different surfaces (firm and foam, under three footwear conditions: 1 barefoot; 2 smooth insoles; and 3 textured insoles. Standing balance was evaluated using a force plate yielding data on the range of anterior-posterior and medial-lateral sway, as well as standard deviations for anterior-posterior and medial-lateral sway. RESULTS: On the firm surface with eyes open both the smooth and textured insoles reduced medial-lateral sway in the PD group to a similar level as the controls. Only the textured insole decreased medial-lateral sway and medial-lateral sway standard deviation in the PD group on both surfaces, with and without visual input. Greatest benefits were observed in the PD group while wearing the textured insoles, and when standing on the foam surface with eyes closed. CONCLUSIONS: Data suggested that textured insoles may provide a low-cost means of improving postural stability in high falls-risk groups, such as people with PD.

  18. Fingertip touch improves postural stability in patients with peripheral neuropathy.

    Science.gov (United States)

    Dickstein, R; Shupert, C L; Horak, F B

    2001-12-01

    The purpose of this work was to determine whether fingertip touch on a stable surface could improve postural stability during stance in subjects with somatosensory loss in the feet from diabetic peripheral neuropathy. The contribution of fingertip touch to postural stability was determined by comparing postural sway in three touch conditions (light, heavy and none) in eight patients and eight healthy control subjects who stood on two surfaces (firm or foam) with eyes open or closed. In the light touch condition, fingertip touch provided only somatosensory information because subjects exerted less than 1 N of force with their fingertip to a force plate, mounted on a vertical support. In the heavy touch condition, mechanical support was available because subjects transmitted as much force to the force plate as they wished. In the no touch condition, subjects held the right forefinger above the force plate. Antero-posterior (AP) and medio-lateral (ML) root mean square (RMS) of center of pressure (CoP) sway and trunk velocity were larger in subjects with somatosensory loss than in control subjects, especially when standing on the foam surface. The effects of light and heavy touch were similar in the somatosensory loss and control groups. Fingertip somatosensory input through light touch attenuated both AP and ML trunk velocity as much as heavy touch. Light touch also reduced CoP sway compared to no touch, although the decrease in CoP sway was less effective than with heavy touch, particularly on the foam surface. The forces that were applied to the touch plate during light touch preceded movements of the CoP, lending support to the suggestion of a feedforward mechanism in which fingertip inputs trigger the activation of postural muscles for controlling body sway. These results have clinical implications for understanding how patients with peripheral neuropathy may benefit from a cane for postural stability in stance.

  19. Otolith and canal reflexes in human standing

    Science.gov (United States)

    Cathers, Ian; Day, Brian L; Fitzpatrick, Richard C

    2005-01-01

    We used galvanic vestibular stimulation (GVS) to identify human balance reflexes of the semicircular canals and otolith organs. The experiment used a model of vestibular signals arising from GVS modulation of the net signal from vestibular afferents. With the head upright, the model predicts that the GVS-evoked canal signal indicates lateral head rotation while the otolith signal indicates lateral tilt or acceleration. Both signify body sway transverse to the head. With the head bent forward, the model predicts that the canal signal indicates body spin about a vertical axis but the otolith signal still signifies lateral body motion. Thus, we compared electromyograms (EMG) in the leg muscles and body sway evoked by GVS when subjects stood with the head upright or bent forward. With the head upright, GVS evoked a large sway in the direction of the anodal electrode. This response was abolished with the head bent forward leaving only small, oppositely directed, transient responses at the start and end of the stimulus. With the head upright, GVS evoked short-latency (60–70 ms), followed by medium-latency (120 ms) EMG responses, of opposite polarity. Bending the head forward abolished the medium-latency but preserved the short-latency response. This is compatible with GVS evoking separate otolithic and canal reflexes, indicating that balance is controlled by independent canal and otolith reflexes, probably through different pathways. We propose that the short-latency reflex and small transient sway are driven by the otolith organs and the medium-latency response and the large sway are driven by the semicircular canals. PMID:15618274

  20. Reliability of Single-Leg Balance and Landing Tests in Rugby Union; Prospect of Using Postural Control to Monitor Fatigue.

    Science.gov (United States)

    Troester, Jordan C; Jasmin, Jason G; Duffield, Rob

    2018-06-01

    The present study examined the inter-trial (within test) and inter-test (between test) reliability of single-leg balance and single-leg landing measures performed on a force plate in professional rugby union players using commercially available software (SpartaMARS, Menlo Park, USA). Twenty-four players undertook test - re-test measures on two occasions (7 days apart) on the first training day of two respective pre-season weeks following 48h rest and similar weekly training loads. Two 20s single-leg balance trials were performed on a force plate with eyes closed. Three single-leg landing trials were performed by jumping off two feet and landing on one foot in the middle of a force plate 1m from the starting position. Single-leg balance results demonstrated acceptable inter-trial reliability (ICC = 0.60-0.81, CV = 11-13%) for sway velocity, anterior-posterior sway velocity, and mediolateral sway velocity variables. Acceptable inter-test reliability (ICC = 0.61-0.89, CV = 7-13%) was evident for all variables except mediolateral sway velocity on the dominant leg (ICC = 0.41, CV = 15%). Single-leg landing results only demonstrated acceptable inter-trial reliability for force based measures of relative peak landing force and impulse (ICC = 0.54-0.72, CV = 9-15%). Inter-test results indicate improved reliability through the averaging of three trials with force based measures again demonstrating acceptable reliability (ICC = 0.58-0.71, CV = 7-14%). Of the variables investigated here, total sway velocity and relative landing impulse are the most reliable measures of single-leg balance and landing performance, respectively. These measures should be considered for monitoring potential changes in postural control in professional rugby union.

  1. EFFECTS OF BALLATES, STEP AEROBICS, AND WALKING ON BALANCE IN WOMEN AGED 50-75 YEARS

    Directory of Open Access Journals (Sweden)

    Sarah Clary

    2006-09-01

    Full Text Available This study examined the effectiveness of Ballates training (strengthening of the central core musculature by the inception of balance techniques compared to more traditional exercise programs, such as step aerobics and walking, on balance in women aged 50- 75 years. Participants were randomly assigned to one of three supervised training groups (1 hour/day, 3 days/week, 13 weeks, Ballates (n = 12, step aerobics (n = 17, or walking (n =15. Balance was measured by four different methods (modified Clinical Test for the Sensory Interaction on Balance - mCTSIB; Unilateral Stance with Eyes Open - US-EO or Eyes Closed - US-EC; Tandem Walk - TW; Step Quick Turn - SQT using the NeuroCom Balance Master. A 2-way (Group and Trial repeated measures ANOVA and post-hoc Bonferroni Pair-wise Comparisons were used to evaluate changes in the dependent variables used to describe stability and balance (sway velocity, turn sway, speed, and turn time. Measures of static postural stability and dynamic balance were similar for the three groups prior to training. Following the different exercise interventions, sway velocity on firm and foam surfaces (mCTSIB with eyes closed (p < 0.05 increased for the Ballates group while the other two exercise groups either maintained or decreased their sway velocity following the training, therefore suggesting that these two groups either maintained or improved their balance. There were significant improvements in speed during the TW test (p < 0.01, and turn time (p < 0.01 and sway (p < 0.05 during the SQT test for each of the three groups. In general, all three training programs improved dynamic balance, however, step aerobics and walking programs resulted in be better improvements in postural stability or static balance when compared to the Ballates program

  2. Cortical Contribution to Linear, Non-linear and Frequency Components of Motor Variability Control during Standing.

    Science.gov (United States)

    König Ignasiak, Niklas; Habermacher, Lars; Taylor, William R; Singh, Navrag B

    2017-01-01

    Motor variability is an inherent feature of all human movements and reflects the quality of functional task performance. Depending on the requirements of the motor task, the human sensory-motor system is thought to be able to flexibly govern the appropriate level of variability. However, it remains unclear which neurophysiological structures are responsible for the control of motor variability. In this study, we tested the contribution of cortical cognitive resources on the control of motor variability (in this case postural sway) using a dual-task paradigm and furthermore observed potential changes in control strategy by evaluating Ia-afferent integration (H-reflex). Twenty healthy subjects were instructed to stand relaxed on a force plate with eyes open and closed, as well as while trying to minimize sway magnitude and performing a "subtracting-sevens" cognitive task. In total 25 linear and non-linear parameters were used to evaluate postural sway, which were combined using a Principal Components procedure. Neurophysiological response of Ia-afferent reflex loop was quantified using the Hoffman reflex. In order to assess the contribution of the H-reflex on the sway outcome in the different standing conditions multiple mixed-model ANCOVAs were performed. The results suggest that subjects were unable to further minimize their sway, despite actively focusing to do so. The dual-task had a destabilizing effect on PS, which could partly (by 4%) be counter-balanced by increasing reliance on Ia-afferent information. The effect of the dual-task was larger than the protective mechanism of increasing Ia-afferent information. We, therefore, conclude that cortical structures, as compared to peripheral reflex loops, play a dominant role in the control of motor variability.

  3. Vibrotactile Feedback Alters Dynamics Of Static Postural Control In Persons With Parkinson's Disease But Not Older Adults At High Fall Risk.

    Science.gov (United States)

    High, Carleigh M; McHugh, Hannah F; Mills, Stephen C; Amano, Shinichi; Freund, Jane E; Vallabhajosula, Srikant

    2018-06-01

    Aging and Parkinson's disease are often associated with impaired postural control. Providing extrinsic feedback via vibrotactile sensation could supplement intrinsic feedback to maintain postural control. We investigated the postural control response to vibrotactile feedback provided at the trunk during challenging stance conditions in older adults at high fall risk and individuals with Parkinson's disease compared to healthy older adults. Nine older adults at high fall risk, 9 persons with Parkinson's disease and 10 healthy older adults performed 30s quiet standing on a force platform under five challenging stance conditions with eyes open/closed and standing on firm/foam surface with feet together, each with and without vibrotactile feedback. During vibrotactile feedback trials, feedback was provided when participants swayed >10% over the center of their base of support. Participants were instructed vibrations would be in response to their movement. Magnitude of postural sway was estimated using center of pressure path length, velocity, and sway area. Dynamics of individuals' postural control was evaluated using detrended fluctuation analysis. Results showed that vibrotactile feedback induced a change in postural control dynamics among persons with Parkinson's disease when standing with intact intrinsic visual input and altered intrinsic somatosensory input, but there was no change in sway magnitude. However, use of vibrotactile feedback did not significantly alter dynamics of postural control in older adults with high risk of falling or reduce the magnitude of sway. Considering the effects of vibrotactile feedback were dependent on the population and stance condition, designing an optimal therapeutic regimen for balance training should be carefully considered and be specific to a target population. Furthermore, our results suggest that explicit instructions on how to respond to the vibrotactile feedback could affect training outcome. Copyright © 2018 The

  4. Impairments of postural stability, core endurance, fall index and functional mobility skills in patients with patello femoral pain syndrome.

    Science.gov (United States)

    Yilmaz Yelvar, Gul Deniz; Çirak, Yasemin; Dalkilinç, Murat; Demir, Yasemin Parlak; Baltaci, Gul; Kömürcü, Mahmut; Yelvar, Gul Deniz Yilmaz

    2016-06-30

    Postural control allows performance of daily and sports activities. The previous studies show that postural sway inceases in orthopaedic injuries such as osteoarthritis and total knee arthroplasty. To compare postural sway, risk of falling and function between individuals with and without patellofemoral pain syndrome (PFS). This study included 22 subjects with patellofemoral pain syndrome, age-matched pain-free 22 females serving as a control group. Visual anolog scale and Kujala were used to evaluate the pain. Posturographic assesment was performed by Tetrax posturographic device. Biering Modified Sorenson test for extensor endurance and sit-up test for flexor endurance were used for the evaluation of trunk endurance. Timed get-up and go test was used for lower extremity function. The Student's t Test was used to compare variables between the groups. The Pearson correlation coefficients were calculated to examine correlation between the quantitative variables. Postural sway included eyes open without pillow, eyes open on pillow, eyes closed on pillow, risk of falling, function and postural stabilization included flexor endurance, extansor endurance are impared in patient with patellofemoral pain syndrome when compare to controls. In subjects with PFPS increased postural sway significantly associated with body mass index (r= 0.52), pain duration (r= 0.43), postural control (extansor endurance) (r= -0.50) and risk of falling (r= 0.62) on pillow with open eyes. In addition we found function significantly related with postural control (extansor endurance and flexor endurance) (r= -0.59 and r= -0.59) and risk of falling (r= 0.77)CONCLUSIONS: Decreased neuromuscular control of the trunk core and increased postural sway and falling risk were found in patients with PFPS. Patients may be evaluated for deficits in postural control and falling risk before treatment.

  5. Changes in balance and joint position sense during a 12-day high altitude trek: The British Services Dhaulagiri medical research expedition.

    Directory of Open Access Journals (Sweden)

    Sarah B Clarke

    Full Text Available Postural control and joint position sense are essential for safely undertaking leisure and professional activities, particularly at high altitude. We tested whether exposure to a 12-day trek with a gradual ascent to high altitude impairs postural control and joint position sense. This was a repeated measures observational study of 12 military service personnel (28±4 years. Postural control (sway velocity measured by a portable force platform during standing balance, a Sharpened Romberg Test and knee joint position sense were measured, in England (113m elevation and at 3 research camps (3619m, 4600m and 5140m on a 12-day high altitude trek in the Dhaulagiri region of Nepal. Pulse oximetry, and Lake Louise scores were also recorded on the morning and evening of each trek day. Data were compared between altitudes and relationships between pulse oximetry, Lake Louise score, and sway velocity were explored. Total sway velocity during standing balance with eyes open (p = 0.003, d = 1.9 and during Sharpened Romberg test with eyes open (p = 0.007, d = 1.6 was significantly greater at altitudes of 3619m and 5140m when compared with sea level. Anterior-posterior sway velocity during standing balance with eyes open was also significantly greater at altitudes of 3619m and 5140m when compared with sea level (p = 0.001, d = 1.9. Knee joint position sense was not altered at higher altitudes. There were no significant correlations between Lake Louise scores, pulse oximetry and postural sway. Despite a gradual ascent profile, exposure to 3619 m was associated with impairments in postural control without impairment in knee joint position sense. Importantly, these impairments did not worsen at higher altitudes of 4600 m or 5140 m. The present findings should be considered during future trekking expeditions when developing training strategies targeted to manage impairments in postural control that occur with increasing altitude.

  6. Changes in balance and joint position sense during a 12-day high altitude trek: The British Services Dhaulagiri medical research expedition.

    Science.gov (United States)

    Clarke, Sarah B; Deighton, Kevin; Newman, Caroline; Nicholson, Gareth; Gallagher, Liam; Boos, Christopher J; Mellor, Adrian; Woods, David R; O'Hara, John P

    2018-01-01

    Postural control and joint position sense are essential for safely undertaking leisure and professional activities, particularly at high altitude. We tested whether exposure to a 12-day trek with a gradual ascent to high altitude impairs postural control and joint position sense. This was a repeated measures observational study of 12 military service personnel (28±4 years). Postural control (sway velocity measured by a portable force platform) during standing balance, a Sharpened Romberg Test and knee joint position sense were measured, in England (113m elevation) and at 3 research camps (3619m, 4600m and 5140m) on a 12-day high altitude trek in the Dhaulagiri region of Nepal. Pulse oximetry, and Lake Louise scores were also recorded on the morning and evening of each trek day. Data were compared between altitudes and relationships between pulse oximetry, Lake Louise score, and sway velocity were explored. Total sway velocity during standing balance with eyes open (p = 0.003, d = 1.9) and during Sharpened Romberg test with eyes open (p = 0.007, d = 1.6) was significantly greater at altitudes of 3619m and 5140m when compared with sea level. Anterior-posterior sway velocity during standing balance with eyes open was also significantly greater at altitudes of 3619m and 5140m when compared with sea level (p = 0.001, d = 1.9). Knee joint position sense was not altered at higher altitudes. There were no significant correlations between Lake Louise scores, pulse oximetry and postural sway. Despite a gradual ascent profile, exposure to 3619 m was associated with impairments in postural control without impairment in knee joint position sense. Importantly, these impairments did not worsen at higher altitudes of 4600 m or 5140 m. The present findings should be considered during future trekking expeditions when developing training strategies targeted to manage impairments in postural control that occur with increasing altitude.

  7. Influence of gender and physical exercise on balance of healthy young adults

    Directory of Open Access Journals (Sweden)

    Sarina Francescato Torres

    Full Text Available Objective To verify the effects of gender and physical activity on postural sway. Method A cross-sectional study was conducted to analyze upright balance of young men and women between the ages of 20-30, both active and sedentary. Study participants were 60 individuals, who were divided into: active women (n = 15, sedentary women (n = 15, active men (n = 15 and sedentary men (n = 15. The International Physical Activity Questionnaire (IPAQ short form, was used to evaluate each participant’s level of physical activity. According to the questionnaire, active individuals are those who carry out moderate activity, with an energy expenditure between 3.5 and 6 METs (1 MET: 3.5 ml/kg/min, or vigorous activity, with an energy expenditure above 6 METs, at least three days a week for 20 minutes. To assess control of postural sway, we measured the amplitude and velocity of anteroposterior (AP and mediolateral (ML sway in standing position, with their eyes open and closed, with and without foam, on a force platform. Results Comparison between genders revealed that, when compared to sedentary women, sedentary men displayed poorer performance in velocity and amplitude of AP postural control sway with their eyes closed, with and without foam. There were no differences in the amplitude and velocity of ML sway, both with open and closed eyes among groups (p < 0.05. There were no differences when comparing physically active men and women either. Conclusion Sedentary men seem to rely more on vision for maintaining postural control in quiet standing situations with respect to women.

  8. Chaos in balance: non-linear measures of postural control predict individual variations in visual illusions of motion.

    Directory of Open Access Journals (Sweden)

    Deborah Apthorp

    Full Text Available Visually-induced illusions of self-motion (vection can be compelling for some people, but they are subject to large individual variations in strength. Do these variations depend, at least in part, on the extent to which people rely on vision to maintain their postural stability? We investigated by comparing physical posture measures to subjective vection ratings. Using a Bertec balance plate in a brightly-lit room, we measured 13 participants' excursions of the centre of foot pressure (CoP over a 60-second period with eyes open and with eyes closed during quiet stance. Subsequently, we collected vection strength ratings for large optic flow displays while seated, using both verbal ratings and online throttle measures. We also collected measures of postural sway (changes in anterior-posterior CoP in response to the same visual motion stimuli while standing on the plate. The magnitude of standing sway in response to expanding optic flow (in comparison to blank fixation periods was predictive of both verbal and throttle measures for seated vection. In addition, the ratio between eyes-open and eyes-closed CoP excursions during quiet stance (using the area of postural sway significantly predicted seated vection for both measures. Interestingly, these relationships were weaker for contracting optic flow displays, though these produced both stronger vection and more sway. Next we used a non-linear analysis (recurrence quantification analysis, RQA of the fluctuations in anterior-posterior position during quiet stance (both with eyes closed and eyes open; this was a much stronger predictor of seated vection for both expanding and contracting stimuli. Given the complex multisensory integration involved in postural control, our study adds to the growing evidence that non-linear measures drawn from complexity theory may provide a more informative measure of postural sway than the conventional linear measures.

  9. Spherical Lenses and Prisms Lead to Postural Instability in Both Dyslexic and Non Dyslexic Adolescents

    Science.gov (United States)

    Kapoula, Zoi; Gaertner, Chrystal; Matheron, Eric

    2012-01-01

    There is controversy as to whether dyslexic children present systematic postural deficiency. Clinicians use a combination of ophthalmic prisms and proprioceptive soles to improve postural performances. This study examines the effects of convergent prisms and spherical lenses on posture. Fourteen dyslexics (13–17 years-old) and 11 non dyslexics (13–16 years-old) participated in the study. Quiet stance posturography was performed with the TechnoConcept device while subjects fixated a target at eye-level from a distance of 1_m. Four conditions were run: normal viewing; viewing the target with spherical lenses of −1 diopter (ACCOM1) over each eye; viewing with −3 diopters over each eye (ACCOM3); viewing with a convergent prism of 8 diopters per eye. Relative to normal viewing, the −1 lenses increased the surface of body sway significantly whereas the −3 diopter lenses only resulted in a significant increase of antero-posterior body sway. Thus, adolescents would appear to cope more effectively with stronger conflicts rather than subtle ones. The prism condition resulted in a significant increase in both the surface and the antero-posterior body sway. Importantly, all of these effects were similar for the two groups. Wavelet analysis (time frequency domain) revealed high spectral power of antero-posterior sway for the prism condition in both groups. In the ACCOM3 condition, the spectral power of antero-posterior sway decreased for non dyslexics but increased for dyslexics suggesting that dyslexics encounter more difficulty with accommodation. The cancelling time for medium range frequency (believed to be controlled by the cerebellum), was shorter in dyslexics, suggesting fewer instances of optimal control. We conclude that dyslexics achieve similar postural performances albeit less efficiently. Prisms and lenses destabilize posture for all teenagers. Thus, contrary to adults, adolescents do not seem to use efferent, proprioceptive ocular motor signals to

  10. Spherical lenses and prisms lead to postural instability in both dyslexic and non dyslexic adolescents.

    Directory of Open Access Journals (Sweden)

    Zoi Kapoula

    Full Text Available There is controversy as to whether dyslexic children present systematic postural deficiency. Clinicians use a combination of ophthalmic prisms and proprioceptive soles to improve postural performances. This study examines the effects of convergent prisms and spherical lenses on posture. Fourteen dyslexics (13-17 years-old and 11 non dyslexics (13-16 years-old participated in the study. Quiet stance posturography was performed with the TechnoConcept device while subjects fixated a target at eye-level from a distance of 1_m. Four conditions were run: normal viewing; viewing the target with spherical lenses of -1 diopter (ACCOM1 over each eye; viewing with -3 diopters over each eye (ACCOM3; viewing with a convergent prism of 8 diopters per eye. Relative to normal viewing, the -1 lenses increased the surface of body sway significantly whereas the -3 diopter lenses only resulted in a significant increase of antero-posterior body sway. Thus, adolescents would appear to cope more effectively with stronger conflicts rather than subtle ones. The prism condition resulted in a significant increase in both the surface and the antero-posterior body sway. Importantly, all of these effects were similar for the two groups. Wavelet analysis (time frequency domain revealed high spectral power of antero-posterior sway for the prism condition in both groups. In the ACCOM3 condition, the spectral power of antero-posterior sway decreased for non dyslexics but increased for dyslexics suggesting that dyslexics encounter more difficulty with accommodation. The cancelling time for medium range frequency (believed to be controlled by the cerebellum, was shorter in dyslexics, suggesting fewer instances of optimal control. We conclude that dyslexics achieve similar postural performances albeit less efficiently. Prisms and lenses destabilize posture for all teenagers. Thus, contrary to adults, adolescents do not seem to use efferent, proprioceptive ocular motor signals to

  11. Unintentional Interpersonal Synchronization Represented as a Reciprocal Visuo-Postural Feedback System: A Multivariate Autoregressive Modeling Approach.

    Directory of Open Access Journals (Sweden)

    Shuntaro Okazaki

    Full Text Available People's behaviors synchronize. It is difficult, however, to determine whether synchronized behaviors occur in a mutual direction--two individuals influencing one another--or in one direction--one individual leading the other, and what the underlying mechanism for synchronization is. To answer these questions, we hypothesized a non-leader-follower postural sway synchronization, caused by a reciprocal visuo-postural feedback system operating on pairs of individuals, and tested that hypothesis both experimentally and via simulation. In the behavioral experiment, 22 participant pairs stood face to face either 20 or 70 cm away from each other wearing glasses with or without vision blocking lenses. The existence and direction of visual information exchanged between pairs of participants were systematically manipulated. The time series data for the postural sway of these pairs were recorded and analyzed with cross correlation and causality. Results of cross correlation showed that postural sway of paired participants was synchronized, with a shorter time lag when participant pairs could see one another's head motion than when one of the participants was blindfolded. In addition, there was less of a time lag in the observed synchronization when the distance between participant pairs was smaller. As for the causality analysis, noise contribution ratio (NCR, the measure of influence using a multivariate autoregressive model, was also computed to identify the degree to which one's postural sway is explained by that of the other's and how visual information (sighted vs. blindfolded interacts with paired participants' postural sway. It was found that for synchronization to take place, it is crucial that paired participants be sighted and exert equal influence on one another by simultaneously exchanging visual information. Furthermore, a simulation for the proposed system with a wider range of visual input showed a pattern of results similar to the

  12. Reliability of Single-Leg Balance and Landing Tests in Rugby Union; Prospect of Using Postural Control to Monitor Fatigue

    Directory of Open Access Journals (Sweden)

    Jordan C. Troester, Jason G. Jasmin, Rob Duffield

    2018-06-01

    Full Text Available The present study examined the inter-trial (within test and inter-test (between test reliability of single-leg balance and single-leg landing measures performed on a force plate in professional rugby union players using commercially available software (SpartaMARS, Menlo Park, USA. Twenty-four players undertook test – re-test measures on two occasions (7 days apart on the first training day of two respective pre-season weeks following 48h rest and similar weekly training loads. Two 20s single-leg balance trials were performed on a force plate with eyes closed. Three single-leg landing trials were performed by jumping off two feet and landing on one foot in the middle of a force plate 1m from the starting position. Single-leg balance results demonstrated acceptable inter-trial reliability (ICC = 0.60-0.81, CV = 11-13% for sway velocity, anterior-posterior sway velocity, and mediolateral sway velocity variables. Acceptable inter-test reliability (ICC = 0.61-0.89, CV = 7-13% was evident for all variables except mediolateral sway velocity on the dominant leg (ICC = 0.41, CV = 15%. Single-leg landing results only demonstrated acceptable inter-trial reliability for force based measures of relative peak landing force and impulse (ICC = 0.54-0.72, CV = 9-15%. Inter-test results indicate improved reliability through the averaging of three trials with force based measures again demonstrating acceptable reliability (ICC = 0.58-0.71, CV = 7-14%. Of the variables investigated here, total sway velocity and relative landing impulse are the most reliable measures of single-leg balance and landing performance, respectively. These measures should be considered for monitoring potential changes in postural control in professional rugby union.

  13. Novel use of the Wii Balance Board to prospectively predict falls in community-dwelling older adults.

    Science.gov (United States)

    Kwok, Boon-Chong; Clark, Ross A; Pua, Yong-Hao

    2015-06-01

    The Wii Balance Board has received increasing attention as a balance measurement tool; however its ability to prospectively predict falls is unknown. This exploratory study investigated the use of the Wii Balance Board and other clinical-based measures for prospectively predicting falls among community-dwelling older adults. Seventy-three community-dwelling men and women, aged 60-85years were followed-up over a year for falls. Standing balance was indexed by sway velocities measured using the Wii Balance Board interfaced with a laptop. Clinical-based measures included Short Physical Performance Battery, gait speed and Timed-Up-and-Go test. Multivariable regression analyses were used to assess the ability of the Wii Balance Board measure to complement the TUG test in fall screening. Individually, the study found Wii Balance Board anteroposterior (odds ratio 1.98, 95% CI 1.16 to 3.40, P=0.01) and mediolateral (odds ratio 2.80, 95% CI 1.10 to 7.13, p=0.03) sway velocity measures predictive of prospective falls. However, when each velocity measure was adjusted with body mass index and Timed-Up-and-Go, only anteroposterior sway velocity was predictive of prospective falls (odds ratio 2.21, 95% CI 1.18 to 4.14). A faster anteroposterior velocity was associated with increased odds of falling. Area-under-the-curves for Wii Balance Board sway velocities were 0.67 and 0.71 for anteroposterior and mediolateral respectively. The Wii Balance Board-derived anteroposterior sway velocity measure could complement existing clinical-based measures in predicting future falls among community-dwelling older adults. Australian New Zealand Clinical Trials Registry number: ACTRN12610001099011. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Effects of affective picture viewing on postural control

    Directory of Open Access Journals (Sweden)

    Beek Peter J

    2007-10-01

    Full Text Available Abstract Background Emotion theory holds that unpleasant events prime withdrawal actions, whereas pleasant events prime approach actions. Recent studies have suggested that passive viewing of emotion eliciting images results in postural adjustments, which become manifest as changes in body center of pressure (COP trajectories. From those studies it appears that posture is modulated most when viewing pictures with negative valence. The present experiment was conducted to test the hypothesis that pictures with negative valence have a greater impact on postural control than neutral or positive ones. Thirty-four healthy subjects passively viewed a series of emotion eliciting images, while standing either in a bipedal or unipedal stance on a force plate. The images were adopted from the International Affective Picture System (IAPS. We analysed mean and variability of the COP and the length of the associated sway path as a function of emotion. Results The mean position of the COP was unaffected by emotion, but unipedal stance resulted in overall greater body sway than bipedal stance. We found a modest effect of emotion on COP: viewing pictures of mutilation resulted in a smaller sway path, but only in unipedal stance. We obtained valence and arousal ratings of the images with an independent sample of viewers. These subjects rated the unpleasant images as significantly less pleasant than neutral images, and the pleasant images as significantly more pleasant than neutral images. However, the subjects rated the images as overall less pleasant and less arousing than viewers in a closely comparable American study, pointing to unknown differences in viewer characteristics. Conclusion Overall, viewing emotion eliciting images had little effect on body sway. Our finding of a reduction in sway path length when viewing pictures of mutilation was indicative of a freezing strategy, i.e. fear bradycardia. The results are consistent with current knowledge about the

  15. Effects of affective picture viewing on postural control.

    Science.gov (United States)

    Stins, John F; Beek, Peter J

    2007-10-04

    Emotion theory holds that unpleasant events prime withdrawal actions, whereas pleasant events prime approach actions. Recent studies have suggested that passive viewing of emotion eliciting images results in postural adjustments, which become manifest as changes in body center of pressure (COP) trajectories. From those studies it appears that posture is modulated most when viewing pictures with negative valence. The present experiment was conducted to test the hypothesis that pictures with negative valence have a greater impact on postural control than neutral or positive ones. Thirty-four healthy subjects passively viewed a series of emotion eliciting images, while standing either in a bipedal or unipedal stance on a force plate. The images were adopted from the International Affective Picture System (IAPS). We analysed mean and variability of the COP and the length of the associated sway path as a function of emotion. The mean position of the COP was unaffected by emotion, but unipedal stance resulted in overall greater body sway than bipedal stance. We found a modest effect of emotion on COP: viewing pictures of mutilation resulted in a smaller sway path, but only in unipedal stance. We obtained valence and arousal ratings of the images with an independent sample of viewers. These subjects rated the unpleasant images as significantly less pleasant than neutral images, and the pleasant images as significantly more pleasant than neutral images. However, the subjects rated the images as overall less pleasant and less arousing than viewers in a closely comparable American study, pointing to unknown differences in viewer characteristics. Overall, viewing emotion eliciting images had little effect on body sway. Our finding of a reduction in sway path length when viewing pictures of mutilation was indicative of a freezing strategy, i.e. fear bradycardia. The results are consistent with current knowledge about the neuroanatomical organization of the emotion system and

  16. The Effects of Cervical Muscle Fatigue on Balance – A Study with Elite Amateur Rugby League Players

    Directory of Open Access Journals (Sweden)

    Guy Gosselin, Michael J. Fagan

    2014-06-01

    Full Text Available Neck muscle fatigue has been shown to alter an individual’s balance in a similar way to that reported in subjects suffering from neck pain or subjects that have suffered a neck injury. The main purpose of the present study was to quantify the effects of neck fatigue on neck muscle electromyography (EMG activity, balance, perceived fatigue and perceived stability. Forty four elite amateur rugby league players resisted with their neck muscles approximately 35% maximum voluntary isometric contraction (MVIC force for 15 minutes in eight different directions. Sway velocity and surface electromyography were measured. Questionnaires were used to record perceived effort and stability. Repeated measures ANOVA showed that after 15 minutes isometric contraction, significant changes were seen in sway velocity, perceived sway and EMG median frequency. There were no differences in perceived efforts. The changes in sway velocity and median frequency were more pronounced after extension and right and left posterior oblique contractions but there was no significant difference in sway velocity after contraction in the right lateral flexion, right anterior oblique and left anterior oblique direction of contraction. All the subjects showed oriented whole-body leaning in the plane of the contraction. The experiment produced significantly altered and perceived altered balance in this group of physically fit individuals. The results may contribute to our understanding of normal functional capacities of athletes and will provide a basis for further investigation in healthy non-athletes and participants that have suffered neck injuries. This may ultimately help develop accurate and valid rehabilitation outcome measures.

  17. Validating and Calibrating the Nintendo Wii Balance Board to Derive Reliable Center of Pressure Measures

    Directory of Open Access Journals (Sweden)

    Julia M. Leach

    2014-09-01

    Full Text Available The Nintendo Wii balance board (WBB has generated significant interest in its application as a postural control measurement device in both the clinical and (basic, clinical, and rehabilitation research domains. Although the WBB has been proposed as an alternative to the “gold standard” laboratory-grade force plate, additional research is necessary before the WBB can be considered a valid and reliable center of pressure (CoP measurement device. In this study, we used the WBB and a laboratory-grade AMTI force plate (AFP to simultaneously measure the CoP displacement of a controlled dynamic load, which has not been done before. A one-dimensional inverted pendulum was displaced at several different displacement angles and load heights to simulate a variety of postural sway amplitudes and frequencies (<1 Hz. Twelve WBBs were tested to address the issue of inter-device variability. There was a significant effect of sway amplitude, frequency, and direction on the WBB’s CoP measurement error, with an increase in error as both sway amplitude and frequency increased and a significantly greater error in the mediolateral (ML (compared to the anteroposterior (AP sway direction. There was no difference in error across the 12 WBB’s, supporting low inter-device variability. A linear calibration procedure was then implemented to correct the WBB’s CoP signals and reduce measurement error. There was a significant effect of calibration on the WBB’s CoP signal accuracy, with a significant reduction in CoP measurement error (quantified by root-mean-squared error from 2–6 mm (before calibration to 0.5–2 mm (after calibration. WBB-based CoP signal calibration also significantly reduced the percent error in derived (time-domain CoP sway measures, from −10.5% (before calibration to −0.05% (after calibration (percent errors averaged across all sway measures and in both sway directions. In this study, we characterized the WBB’s CoP measurement error

  18. Does a single session of high-intensity interval training provoke a transient elevated risk of falling in seniors and adults?

    Science.gov (United States)

    Donath, Lars; Kurz, Eduard; Roth, Ralf; Hanssen, Henner; Schmidt-Trucksäss, Arno; Zahner, Lukas; Faude, Oliver

    2015-01-01

    Balance and strength training can reduce seniors' fall risk up to 50%. Available evidence suggests that acute bouts of neuromuscular and endurance exercise deteriorate postural control. High-intensity endurance training has been successfully applied in different populations. Thus, it seemed valuable to examine the acute effects of high-intensity interval training (HIIT) on neuromuscular performance in seniors and young adults. The acute impact of a HIIT session on balance performance and muscle activity after exercise cessation and during post-exercise recovery was examined in young and old adults. We intended to investigate whether a transient exercise-induced fall-risk may occur in both groups. 20 healthy seniors (age 70 (SD 4) years) and young adults (age 27 (SD 3) years) were examined on 3 days. After exhaustive ramp-like treadmill testing in order to determine maximal heart rate (HRmax) on the first day, either a 4 × 4 min HIIT at 90% of HRmax or a control condition (CON) was randomly performed on the second and third day, respectively. Balance performance (postural sway) was assessed during single limb stance with open eyes (SLEO) and double limb stance with closed eyes (DLEC). EMG was recorded for the soleus (SOL), anterior tibialis (TIB), gastrocnemius (GM) and peroneus longus (PL) muscles at the dominant leg. All measures were collected before, immediately as well as 10, 30 and 45 min after HIIT and CON, respectively. Compared to CON, HIIT induced significant increases of postural sway immediately after exercise cessation during SLEO in both groups (adults: p seniors: p = 0.007, Δ = +15% sway). Increased sway during DLEC was only found for seniors immediately and 10 min after HIIT (post: p = 0.003, Δ = +14% sway, 10 min post: p = 0.004, Δ = +18% sway). Muscle activity was increased during SLEO for TIB until 10 min post in seniors (0.008 seniors seems to prolong this period up to 30 min. Thus, the advantage of HIIT with regard to time efficiency seems

  19. Reliability of inertial sensors in the assessment of patients with vestibular disorders: a feasibility study

    Directory of Open Access Journals (Sweden)

    Sathish K. Sankarpandi

    2017-02-01

    Full Text Available Abstract Background Vestibular disorders affect an individual’s stability, balance, and gait and predispose them to falls. Traditional laboratory-based semi-objective vestibular assessments are intrusive and cumbersome provide little information about their functional ability. Commercially available wearable inertial sensors allow us to make this real life assessments objective, with a detailed view of their functional abilities. Timed Up and Go (TUG and Postural Sway tests are commonly used tests for gait and balance assessments. Our aim was to assess the feasibility, test-retest reliability and ability to classify fall status in individuals with vestibular disorders using parameters derived from the commercially available wearable system (inertial sensors and the Mobility Lab Software, APDM, Inc.. Methods We recruited 27 individuals diagnosed either with unilateral or bilateral vestibular loss on vestibular function testing. Instrumented Timed Up and Go (iTUG and Postural Sway (iSway were administered three times during the first session and then repeated at a similar time the following week. To evaluate within and between sessions reliability of the parameters the Intra-Class Correlation coefficient (ICC was used. Subsequently, the ability of reliable parameters (ICC ≥ 0.8 to classify fallers from non-fallers was estimated. Results The iTUG test parameters showed good within and between sessions’ reliability with mean ICC (between-sessions values of 0.81 ± 0.17 and 0.69 ± 0.15, respectively. For the iSway test, the relative figures were; 0.76 ± 0.13 and 0.71 ± 0.14, respectively. A retrospective falls classification analysis with past 12 months falls history data yielded an accuracy of 66.70% with an area under the curve of 0.79. Mean Distance from centre of COP (mm of accelerometer’s trajectory (m/s2 from the iSway test was the only significant parameter to classify fallers from non-fallers. Conclusions Using

  20. Postural stabilizing effect of alfacalcidol and active absorbable algal calcium (AAA Ca) compared with calcium carbonate assessed by computerized posturography.

    Science.gov (United States)

    Fujita, Takuo; Nakamura, Shoji; Ohue, Mutsumi; Fujii, Yoshio; Miyauchi, Akimitsu; Takagi, Yasuyuki; Tsugeno, Hirofumi

    2007-01-01

    Sway and postural instability have drawn attention as a risk factor for osteoporotic fracture, in addition to low bone mineral density (BMD) and poor bone quality. In view of the fracture-reducing effect of alfacalcidol and active absorbable algal calcium (AAA Ca) not readily explained by rather mild increases of BMD, attempts were made to evaluate postural stabilizing effect of alfacalcidol, AAA Ca, and calcium carbonate (CaCO(3)) by computerized posturography. Track of the gravity center was analyzed to calculate parameters related to tract length, track range, and track density to express the degree of sway before and after supplementation in 126 subjects ranging in age between 20 and 81 years randomly divided into four groups. Supplementation with AAA Ca containing 900 mg elemental Ca (group A), no calcium (group B), CaCO(3) also containing 900 mg elemental Ca (group C), or alfacalcidol (group D) continued daily for 12 months. For each parameter, the ratio closed eye value/open eye value (Romberg ratio) was calculated to detect aggravation of sway by eye closure. Age, parameters of Ca and P, and proportions of subjects with fracture and those with low BMD showed no marked deviation among the groups. With eyes open, significant decreases of a track range parameter (REC) from group B was noted in groups A (P = 0.0397) and D (P = 0.0296), but not in group C according to multiple comparison by Scheffe, indicating superior postural stabilizing effect of A and D over C. In the first 2 months, a significant fall was already evident in REC from group B in group D (P = 0.0120) with eyes open. Paired comparison of sway parameters before and after supplementation revealed a significant increase of track density parameter (LNGA), indicating sway control efficiency and a significant decrease of REC in groups A and D compared to group B with eyes open. With eyes closed, only group A showed a significant improvement from group B (P = 0.0456; Fig. 1), with a significant

  1. Does integrative medicine enhance balance in aging adults? Proof of concept for the benefit of electroacupuncture therapy in Parkinson's disease.

    Science.gov (United States)

    Toosizadeh, Nima; Lei, Hong; Schwenk, Michael; Sherman, Scott J; Sternberg, Esther; Mohler, Jane; Najafi, Bijan

    2015-01-01

    Postural balance and potentially fall risk increases among older adults living with neurological diseases, especially Parkinson's disease (PD). Since conventional therapies such as levodopa or deep brain stimulation may fail to alleviate or may even worsen balance, interest is growing in evaluating alternative PD therapies. The purpose of the current study was to assess improvement in postural balance in PD patients following electroacupuncture (EA) as an alternative therapy. 15 aging adults (71.2 ± 6.3 years) with idiopathic PD and 44 healthy age-matched participants (74.6 ± 6.5 years) were recruited. The PD participants were randomly assigned (at a ratio of 2:1) to an intervention (n = 10) or to a control group (n = 5). The intervention group received a 30-min EA treatment on a weekly basis for 3 weeks, while the control group received a sham treatment. Outcomes were assessed at baseline and after the final therapy. Measurements included balance assessment, specifically the ratio of medial-lateral (ML) center-of-gravity (COG) sway to anterior-posterior (AP) sway (COGML/AP) and ankle/hip sway during eyes-open, eyes-closed, and eyes-open dual-task trials, the Unified Parkinson's Disease Rating Scale (UPDRS), as well as quality of life, concerns for fall, and pain questionnaires. No difference was observed for the assessed parameters between the intervention and the control group at baseline. After treatment, an improvement in balance performance was observed in the intervention group. Compared with the healthy population, PD patients prior to treatment had larger COGML/AP sway with more dependency on upper-body movements for maintaining balance. Following EA therapy, COGML/AP sway was reduced by 31% and ankle/hip sway increased by 46% in the different conditions (p = 0.02 for the dual-task condition). The clinical rating revealed an overall improvement (p fall status (67%) and rigidity (48%). Changes were small and nonsignificant in the controls (p > 0.29). This

  2. Sensor-Based Interactive Balance Training with Visual Joint Movement Feedback for Improving Postural Stability in Diabetics with Peripheral Neuropathy: A Randomized Controlled Trial.

    Science.gov (United States)

    Grewal, Gurtej Singh; Schwenk, Michael; Lee-Eng, Jacqueline; Parvaneh, Saman; Bharara, Manish; Menzies, Robert A; Talal, Talal K; Armstrong, David G; Najafi, Bijan

    2015-01-01

    Individuals with diabetic peripheral neuropathy (DPN) have deficits in sensory and motor skills leading to inadequate proprioceptive feedback, impaired postural balance and higher fall risk. This study investigated the effect of sensor-based interactive balance training on postural stability and daily physical activity in older adults with diabetes. Thirty-nine older adults with DPN were enrolled (age 63.7 ± 8.2 years, BMI 30.6 ± 6, 54% females) and randomized to either an intervention (IG) or a control (CG) group. The IG received sensor-based interactive exercise training tailored for people with diabetes (twice a week for 4 weeks). The exercises focused on shifting weight and crossing virtual obstacles. Body-worn sensors were implemented to acquire kinematic data and provide real-time joint visual feedback during the training. Outcome measurements included changes in center of mass (CoM) sway, ankle and hip joint sway measured during a balance test while the eyes were open and closed at baseline and after the intervention. Daily physical activities were also measured during a 48-hour period at baseline and at follow-up. Analysis of covariance was performed for the post-training outcome comparison. Compared with the CG, the patients in the IG showed a significantly reduced CoM sway (58.31%; p = 0.009), ankle sway (62.7%; p = 0.008) and hip joint sway (72.4%; p = 0.017) during the balance test with open eyes. The ankle sway was also significantly reduced in the IG group (58.8%; p = 0.037) during measurements while the eyes were closed. The number of steps walked showed a substantial but nonsignificant increase (+27.68%; p = 0.064) in the IG following training. The results of this randomized controlled trial demonstrate that people with DPN can significantly improve their postural balance with diabetes-specific, tailored, sensor-based exercise training. The results promote the use of wearable technology in exercise training; however, future studies comparing this

  3. The impact of diabetes on mobility, balance, and recovery after repositioning maneuvers in individuals with benign paroxysmal positional vertigo.

    Science.gov (United States)

    D'Silva, Linda J; Whitney, Susan L; Santos, Marcio; Dai, Hongying; Kluding, Patricia M

    2017-06-01

    The prevalence of benign paroxysmal positional vertigo (BPPV) is higher in people with type 2 diabetes (DM). The impact of DM on mobility, balance, and management of BPPV is unknown. This prospective study compared symptom severity, mobility and balance before and after the canalith repositioning maneuver (CRM) in people with posterior canal BPPV canalithiasis, with and without DM. Fifty participants, BPPV (n=34) and BPPV+DM (n=16) were examined for symptom severity (dizziness handicap inventory, DHI), mobility (functional gait assessment, FGA), and postural sway (using an accelerometer in five conditions) before and after the CRM. The number of maneuvers required for symptom resolution was recorded. At baseline, no differences in DHI or FGA scores were seen between groups, however, people with BPPV+DM had higher sway velocity in the medio-lateral direction in tandem stance (pdiabetes, as well as the influence of diabetic peripheral neuropathy on functional performance are essential. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. The Effects of Hippotherapy on Elderly Persons’ Static Balance and Gait

    Science.gov (United States)

    Kim, Seong Gil; Lee, Chae-Woo

    2014-01-01

    [Purpose] The aim of this study was to examine the effects of hippotherapy on elderly persons’ static balance and gait. [Subjects and Methods] Twenty-two elderly persons residing in the community were randomly divided into a hippotherapy group and a treadmill group and they conducted exercise for eight weeks. [Results] Step lengths increased significantly, and step time and sway path lengths significantly decreased in both groups. A comparison of sway path lengths after the intervention between the two groups revealed that the hippotherapy group showed larger decreases than the treadmill group. [Conclusion] The results of this study indicate that hippotherapy may improve the static balance and gait of elderly persons residing in the community. PMID:24567669

  5. Overhead Crane Computer Model

    Science.gov (United States)

    Enin, S. S.; Omelchenko, E. Y.; Fomin, N. V.; Beliy, A. V.

    2018-03-01

    The paper has a description of a computer model of an overhead crane system. The designed overhead crane system consists of hoisting, trolley and crane mechanisms as well as a payload two-axis system. With the help of the differential equation of specified mechanisms movement derived through Lagrange equation of the II kind, it is possible to build an overhead crane computer model. The computer model was obtained using Matlab software. Transients of coordinate, linear speed and motor torque of trolley and crane mechanism systems were simulated. In addition, transients of payload swaying were obtained with respect to the vertical axis. A trajectory of the trolley mechanism with simultaneous operation with the crane mechanism is represented in the paper as well as a two-axis trajectory of payload. The designed computer model of an overhead crane is a great means for studying positioning control and anti-sway control systems.

  6. Dose postural control improve following application of transcutaneous electrical nerve stimulation in diabetic peripheral neuropathic patients? A randomized placebo control trial.

    Science.gov (United States)

    Saadat, Z; Rojhani-Shirazi, Z; Abbasi, L

    2017-12-01

    peripheral neuropathy is the most common problem of diabetes. Neuropathy leads to lower extremity somatosensory deficits and postural instability in these patients. However, there are not sufficient evidences for improving postural control in these patients. To investigate the effects of transcutaneous electrical nerve stimulation (TENS) on postural control in patients with diabetic neuropathy. Twenty eighth patients with diabetic neuropathy (40-55 Y/O) participated in this RCT study. Fourteen patients in case group received TENS and sham TENS was used for control group. Force plate platform was used to extract sway velocity and COP displacement parameters for postural control evaluation. The mean sway velocity and center of pressure displacement along the mediolateral and anteroposterior axes were not significantly different between two groups after TENS application (p>0.05). Application of 5min high frequency TENS on the knee joint could not improve postural control in patients with diabetic neuropathy. Copyright © 2017. Published by Elsevier Ltd.

  7. Stochastic resonance whole-body vibration improves postural control in health care professionals: a worksite randomized controlled trial.

    Science.gov (United States)

    Elfering, Achim; Schade, Volker; Stoecklin, Lukas; Baur, Simone; Burger, Christian; Radlinger, Lorenz

    2014-05-01

    Slip, trip, and fall injuries are frequent among health care workers. Stochastic resonance whole-body vibration training was tested to improve postural control. Participants included 124 employees of a Swiss university hospital. The randomized controlled trial included an experimental group given 8 weeks of training and a control group with no intervention. In both groups, postural control was assessed as mediolateral sway on a force plate before and after the 8-week trial. Mediolateral sway was significantly decreased by stochastic resonance whole-body vibration training in the experimental group but not in the control group that received no training (p < .05). Stochastic resonance whole-body vibration training is an option in the primary prevention of balance-related injury at work. Copyright 2014, SLACK Incorporated.

  8. A selective emotional decision-making bias elicited by facial expressions.

    Directory of Open Access Journals (Sweden)

    Nicholas Furl

    Full Text Available Emotional and social information can sway otherwise rational decisions. For example, when participants decide between two faces that are probabilistically rewarded, they make biased choices that favor smiling relative to angry faces. This bias may arise because facial expressions evoke positive and negative emotional responses, which in turn may motivate social approach and avoidance. We tested a wide range of pictures that evoke emotions or convey social information, including animals, words, foods, a variety of scenes, and faces differing in trustworthiness or attractiveness, but we found only facial expressions biased decisions. Our results extend brain imaging and pharmacological findings, which suggest that a brain mechanism supporting social interaction may be involved. Facial expressions appear to exert special influence over this social interaction mechanism, one capable of biasing otherwise rational choices. These results illustrate that only specific types of emotional experiences can best sway our choices.

  9. A Selective Emotional Decision-Making Bias Elicited by Facial Expressions

    Science.gov (United States)

    Furl, Nicholas; Gallagher, Shannon; Averbeck, Bruno B.

    2012-01-01

    Emotional and social information can sway otherwise rational decisions. For example, when participants decide between two faces that are probabilistically rewarded, they make biased choices that favor smiling relative to angry faces. This bias may arise because facial expressions evoke positive and negative emotional responses, which in turn may motivate social approach and avoidance. We tested a wide range of pictures that evoke emotions or convey social information, including animals, words, foods, a variety of scenes, and faces differing in trustworthiness or attractiveness, but we found only facial expressions biased decisions. Our results extend brain imaging and pharmacological findings, which suggest that a brain mechanism supporting social interaction may be involved. Facial expressions appear to exert special influence over this social interaction mechanism, one capable of biasing otherwise rational choices. These results illustrate that only specific types of emotional experiences can best sway our choices. PMID:22438936

  10. Balance training reduces falls risk in older individuals with type 2 diabetes.

    Science.gov (United States)

    Morrison, Steven; Colberg, Sheri R; Mariano, Mira; Parson, Henri K; Vinik, Arthur I

    2010-04-01

    This study assessed the effects of balance/strength training on falls risk and posture in older individuals with type 2 diabetes. Sixteen individuals with type 2 diabetes and 21 age-matched control subjects (aged 50-75 years) participated. Postural stability and falls risk was assessed before and after a 6-week exercise program. Diabetic individuals had significantly higher falls risk score compared with control subjects. The diabetic group also exhibited evidence of mild-to-moderate neuropathy, slower reaction times, and increased postural sway. Following exercise, the diabetic group showed significant improvements in leg strength, faster reaction times, decreased sway, and, consequently, reduced falls risk. Older individuals with diabetes had impaired balance, slower reactions, and consequently a higher falls risk than age-matched control subjects. However, all these variables improved after resistance/balance training. Together these results demonstrate that structured exercise has wide-spread positive effects on physiological function for older individuals with type 2 diabetes.

  11. Impact of musculoskeletal pain on balance and concerns of falling in mobility-limited, community-dwelling Danes over 75 years of age

    DEFF Research Database (Denmark)

    Kendall, Julie C; Hvid, Lars G; Hartvigsen, Jan

    2018-01-01

    on questionnaires. Sway range, velocity and area were recorded on a force plate in a comfortable standing stance. Pain intensity was rated on an 11 point numerical rating scale (0-10). Participants were sub-grouped into mild (0-4) and intense (> 5) neck pain or low back pain. RESULTS: Intense neck pain...... as measured by centre of pressure (COP) changes and concerns of falling compared to those without pain. METHODS: 48 older adults with a gait speed of from Odense, Denmark were recruited through the public health service. Self-reported neck pain, low back pain, and concerns of falling were recorded...... balance and concerns of falling in mobility-limited older adults, and if so, whether this is associated with different intensities of pain. OBJECTIVE: This study examined whether mobility-limited older adults with mild or intense neck pain and/or low back pain have significantly increased postural sway...

  12. Contribution of Head Position, Standing Surface, and Vision to Postural Control in Community-Dwelling Older Adults.

    Science.gov (United States)

    Pociask, Fredrick D; DiZazzo-Miller, Rosanne; Goldberg, Allon; Adamo, Diane E

    2016-01-01

    Postural control requires the integration of sensorimotor information to maintain balance and to properly position and orient the body in response to external stimuli. Age-related declines in peripheral and central sensory and motor function contribute to postural instability and falls. This study investigated the contribution of head position, standing surface, and vision on postural sway in 26 community-dwelling older adults. Participants were asked to maintain a stable posture under conditions that varied standing surface, head position, and the availability of visual information. Significant main and interaction effects were found for all three factors. Findings from this study suggest that postural sway responses require the integration of available sources of sensory information. These results have important implications for fall risks in older adults and suggest that when standing with the head extended and eyes closed, older adults may place themselves at risk for postural disequilibrium and loss of balance. Copyright © 2016 by the American Occupational Therapy Association, Inc.

  13. Effects of the anchor system on postural control in older Adults

    Directory of Open Access Journals (Sweden)

    Eliane Mauerberg de Castro

    2012-03-01

    Full Text Available Falls are common during aging, and can have drastic consequences. Within this context, maintaining the ability to balance plays an essential role in enabling older adults to continue to perform their daily activities. Therefore, the use of interventional and treatment tools for development of balance becomes essential. The objective of this study was to analyze the anchor system as a potential tool for decreasing body sway in older and young adults. Older adults had more postural sway than their young counterparts. The absence of visual information led to larger instability in both groups. The anchor system improved postural stability of both groups. Thus, it may be a useful tool for posture stabilization in old and young adults.

  14. A selective emotional decision-making bias elicited by facial expressions.

    Science.gov (United States)

    Furl, Nicholas; Gallagher, Shannon; Averbeck, Bruno B

    2012-01-01

    Emotional and social information can sway otherwise rational decisions. For example, when participants decide between two faces that are probabilistically rewarded, they make biased choices that favor smiling relative to angry faces. This bias may arise because facial expressions evoke positive and negative emotional responses, which in turn may motivate social approach and avoidance. We tested a wide range of pictures that evoke emotions or convey social information, including animals, words, foods, a variety of scenes, and faces differing in trustworthiness or attractiveness, but we found only facial expressions biased decisions. Our results extend brain imaging and pharmacological findings, which suggest that a brain mechanism supporting social interaction may be involved. Facial expressions appear to exert special influence over this social interaction mechanism, one capable of biasing otherwise rational choices. These results illustrate that only specific types of emotional experiences can best sway our choices.

  15. Adaptations in movement performance after plyometric training on mini-trampoline in children.

    Science.gov (United States)

    Arabatzi, Fotini

    2018-01-01

    Deficits in postural control and skill performance are important intrinsic fall risk factors. Thus, the purpose of this study was to investigate the impact of trampoline plyometrics on postural control, and jumping height in prepubertal children. Twenty-two school children were assigned to either a trampoline group (TPLG, N.=12, 7 girls and 5 boys, age =9.30±0.55 years) or a control group (CG, N.=12, 8 girls and 4 boys, age =9.30±0.55 years). The TPLG participated in 4 weeks plyometric training on a mini-trampoline (3 times per week) integrated in their physical education lessons while the CG attended the standard physical education curriculum at school. Pre- and postintervention included the measurements of postural sway and maximum height in countermovement and drop jump. Postural sway decreased significantly (Ptrampoline training, close supervision by experienced personnel is recommended.

  16. Noise and poise: Enhancement of postural complexity in the elderly with a stochastic-resonance based therapy

    Science.gov (United States)

    Costa, M.; Priplata, A. A.; Lipsitz, L. A.; Wu, Z.; Huang, N. E.; Goldberger, A. L.; Peng, C.-K.

    2007-03-01

    Pathologic states are associated with a loss of dynamical complexity. Therefore, therapeutic interventions that increase physiologic complexity may enhance health status. Using multiscale entropy analysis, we show that the postural sway dynamics of healthy young and healthy elderly subjects are more complex than that of elderly subjects with a history of falls. Application of subsensory noise to the feet has been demonstrated to improve postural stability in the elderly. We next show that this therapy significantly increases the multiscale complexity of sway fluctuations in healthy elderly subjects. Quantification of changes in dynamical complexity of biologic variability may be the basis of a new approach to assessing risk and to predicting the efficacy of clinical interventions, including noise-based therapies.

  17. Computational Model and Numerical Simulation for Submerged Mooring Monitoring Platform’s Dynamical Response

    Directory of Open Access Journals (Sweden)

    He Kongde

    2015-01-01

    Full Text Available Computational model and numerical simulation for submerged mooring monitoring platform were formulated aimed at the dynamical response by the action of flow force, which based on Hopkinson impact load theory, taken into account the catenoid effect of mooring cable and revised the difference of tension and tangential direction action force by equivalent modulus of elasticity. Solved the equation by hydraulics theory and structural mechanics theory of oceaneering, studied the response of buoy on flow force. The validity of model were checked and the results were in good agreement; the result show the buoy will engender biggish heave and swaying displacement, but the swaying displacement got stable quickly and the heaven displacement cause vibration for the vortex-induced action by the flow.

  18. Pain education combined with neck- and aerobic training is more effective at relieving chronic neck pain than pain education alone - A preliminary randomized controlled trial

    DEFF Research Database (Denmark)

    Brage, K; Ris Hansen, Inge; Falla, D

    2015-01-01

    -shoulder exercises, balance and aerobic training) (INV), or pain education alone (CTRL). Effect on neck pain, function and Global Perceived Effect (GPE) were measured. Surface electromyography (EMG) was recorded from neck flexor and extensor muscles during performance of the Cranio-Cervical Flexion Test (CCFT......OBJECTIVE: To evaluate the effect of training and pain education vs pain education alone, on neck pain, neck muscle activity and postural sway in patients with chronic neck pain. METHODS: Twenty women with chronic neck pain were randomized to receive pain education and specific training (neck......) and three postural control tests (two-legged: eyes open and closed, one-legged: eyes open). Sway parameters were calculated. RESULTS: Fifteen participants (CTRL: eight; INV: seven) completed the study. Per protocol analyses showed a larger pain reduction (p = 0.002) for the INV group with tendencies...

  19. Mapping Education Research and Judging Influence. Evidence Speaks Reports, Vol 1, #17

    Science.gov (United States)

    Bruer, John T.

    2016-01-01

    Education research is a vast, multi-disciplinary field. In trying to understand it or make judgments about importance, influence, or where the action is, it can be helpful to see the big picture and not be swayed by where we happen to sit in the field. A map of education research derived from citation data can help us see the big picture.…

  20. Lowering the YE+1 end-cap for CMS

    CERN Multimedia

    Maximilien Brice

    2007-01-01

    On 9 January 2007, the massive YE+1 end-cap was lowered into the CMS cavern. This is a very precise process as the crane must lower the end-cap through minimal clearance without tilt or sway. Once in the cavern, the end-cap is then positioned over the end of the barrel to detect particles produced in collisions that travel close to the axis of the beams.

  1. Rapid processing of haptic cues for postural control in blind subjects.

    Science.gov (United States)

    Schieppati, Marco; Schmid, Monica; Sozzi, Stefania

    2014-07-01

    Vision and touch rapidly lead to postural stabilization in sighted subjects. Is touch-induced stabilization more rapid in blind than in sighted subjects, owing to cross-modal reorganization of function in the blind? We estimated the time-period elapsing from onset of availability of haptic support to onset of lateral stabilization in a group of early- and late-onset blinds. Eleven blind (age 39.4 years±11.7SD) and eleven sighted subjects (age 30.0 years±10.0SD), standing eyes closed with feet in tandem position, touched a pad with their index finger and withdrew the finger from the pad in sequence. EMG of postural muscles and displacement of centre of foot pressure were recorded. The task was repeated fifty times, to allow statistical evaluation of the latency of EMG and sway changes following the haptic shift. Steady-state sway (with or without contact with pad, no haptic shift) did not differ between blind and sighted. On adding the haptic stimulus, EMG and sway diminished in both groups, but at an earlier latency (by about 0.5 s) in the blinds (p blinds. When the haptic stimulus was withdrawn, both groups increased EMG and sway at equally short delays. Blinds are rapid in implementing adaptive postural modifications when granted an external haptic reference. Fast processing of the stabilizing haptic spatial-orientation cues may be favoured by cortical plasticity in blinds. These findings add new information to the field of sensory-guided dynamic control of equilibrium in man. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  2. The US Air Force After Vietnam: Postwar Challenges and Potential for Responses

    Science.gov (United States)

    1988-12-01

    January-February 1985 issue of Air University Review. In 1986 Air University Review also published his essay "In Search of the Unicorn ," a discussion of...was a po- litical thing for sure. ൢ When clarity faltered and the sense of purpose became confused, the temptation rose to locate crises very close...help . If the consensus faltered because public consciousness was less swayed by assertions of crisis, what new con- sensus could be established? The

  3. Preliminary evaluation of prototype footwear and insoles to optimise balance and gait in older people.

    Science.gov (United States)

    Menz, Hylton B; Auhl, Maria; Munteanu, Shannon E

    2017-09-11

    Footwear has the potential to influence balance in either a detrimental or beneficial manner, and is therefore an important consideration in relation to falls prevention. The objective of this study was to evaluate balance ability and gait patterns in older women while wearing prototype footwear and insoles designed to improve balance. Older women (n = 30) aged 65 - 83 years (mean 74.4, SD 5.6) performed a series of laboratory tests of balance ability (postural sway on a foam rubber mat, limits of stability and tandem walking, measured with the Neurocom® Balance Master) and gait patterns (walking speed, cadence, step length and step width at preferred speed, measured with the GAITRite® walkway) while wearing (i) flexible footwear (Dunlop Volley™), (ii) their own footwear, and (iii) prototype footwear and insoles designed to improve dynamic balance. Perceptions of the footwear were also documented using a structured questionnaire. There was no difference in postural sway, limits of stability or gait patterns between the footwear conditions. However, when performing the tandem walking test, there was a significant reduction in step width and end sway when wearing the prototype footwear compared to both the flexible footwear and participants' own footwear. Participants perceived their own footwear to be more attractive, comfortable, well-fitted and easier to put on and off compared to the prototype footwear. Despite this, most participants (n = 18, 60%) reported that they would consider wearing the prototype footwear to reduce their risk of falling. The prototype footwear and insoles used in this study improve balance when performing a tandem walk test, as evidenced by a narrower step width and decreased sway at completion of the task. However, further development of the design is required to make the footwear acceptable to older women from the perspective of aesthetics and comfort. Australian New Zealand Clinical Trials Registry. ACTRN12617001128381 , 01

  4. A trial of the use of pedobarography in the assessment of the effectiveness of rehabilitation in patients with coxarthrosis.

    Science.gov (United States)

    Rongies, Witold; Bak, Agata; Lazar, Andrzej; Dolecki, Włodzimierz; Kolanowska-Kenczew, Tomira; Sierdziński, Janusz; Spychała, Andrzej; Krakowiecki, Arkadiusz

    2009-01-01

    Pedobarography is an evidence-based diagnostic method that allows quantitative, qualitative and repeatable measurement of pressures on every square centimetre of the sole area of the foot as well as centre of gravity sway, with graphic and numerical recording of results. The aim of the study was to assess the progress of a selected model of rehabilitation on the basis of subpedal pressure distribution and centre of gravity sway in pedobarographic examination as well as to evaluate changes in pain intensity in patients with a history of coxarthrosis. The study included 21 patients with Altman grade 2 coxarthrosis. A postural pedobarographic examination was performed immediately before and after a 15-day course of rehabilitation with a PEL 38 electronic pedobarograph and computer image analyser with TWINN 99 software, version 2.08. Following the rehabilitation, the study group displayed a statistically significant reduction in pain intensity, improved balance between the average and maximum subpedal pressures of both feet as well as a decrease in the velocity of centre of gravity sway. 1. A correlation between reduced pain intensity and improved balance of loads on both feet, as well as decreased velocity of centre of gravity sway were observed in the study group after the rehabilitation. 2. The pedobarographic examination may become a new method of diagnosis and follow-up in rehabilitation. 3. Pedobarography, owing to its ease of repeatability and non-invasiveness, may constitute a valuable attempt at objective monitoring of the progress of rehabilitation and its results. 4. The study results encourage further research based on a larger cohort of patients and a control group with a multi-stage prospective design.

  5. Postural Control in Bilateral Vestibular Failure: Its Relation to Visual, Proprioceptive, Vestibular, and Cognitive Input.

    Science.gov (United States)

    Sprenger, Andreas; Wojak, Jann F; Jandl, Nico M; Helmchen, Christoph

    2017-01-01

    Patients with bilateral vestibular failure (BVF) suffer from postural and gait unsteadiness with an increased risk of falls. The aim of this study was to elucidate the differential role of otolith, semicircular canal (SSC), visual, proprioceptive, and cognitive influences on the postural stability of BVF patients. Center-of-pressure displacements were recorded by posturography under six conditions: target visibility; tonic head positions in the pitch plane; horizontal head shaking; sensory deprivation; dual task; and tandem stance. Between-group analysis revealed larger postural sway in BVF patients on eye closure; but with the eyes open, BVF did not differ from healthy controls (HCs). Head tilts and horizontal head shaking increased sway but did not differ between groups. In the dual task condition, BVF patients maintained posture indistinguishable from controls. On foam and tandem stance, postural sway was larger in BVF, even with the eyes open. The best predictor for the severity of bilateral vestibulopathy was standing on foam with eyes closed. Postural control of our BVF was indistinguishable from HCs once visual and proprioceptive feedback is provided. This distinguishes them from patients with vestibulo-cerebellar disorders or functional dizziness. It confirms previous reports and explains that postural unsteadiness of BVF patients can be missed easily if not examined by conditions of visual and/or proprioceptive deprivation. In fact, the best predictor for vestibular hypofunction (VOR gain) was examining patients standing on foam with the eyes closed. Postural sway in that condition increased with the severity of vestibular impairment but not with disease duration. In the absence of visual control, impaired otolith input destabilizes BVF with head retroflexion. Stimulating deficient SSC does not distinguish patients from controls possibly reflecting a shift of intersensory weighing toward proprioceptive-guided postural control. Accordingly, proprioceptive

  6. Analysis of static and dynamic balance in healthy elderly practitioners of Tai Chi Chuan versus ballroom dancing

    Directory of Open Access Journals (Sweden)

    Miguel Antônio Rahal

    2015-03-01

    Full Text Available OBJECTIVE: To determine whether Tai Chi Chuan or ballroom dancing promotes better performance with respect to postural balance, gait, and postural transfer among elderly people. METHODS: We evaluated 76 elderly individuals who were divided into two groups: the Tai Chi Chuan Group and the Dance Group. The subjects were tested using the NeuroCom Balance Master¯ force platform system with the following protocols: static balance tests (the Modified Clinical Tests of Sensory Interaction on Balance and Unilateral Stance and dynamic balance tests (the Walk Across Test and Sit-to-stand Transfer Test. RESULTS: In the Modified Clinical Test of Sensory Interaction on Balance, the Tai Chi Chuan Group presented a lower sway velocity on a firm surface with open and closed eyes, as well as on a foam surface with closed eyes. In the Modified Clinical Test of Sensory Interaction on Unilateral Stance, the Tai Chi Chuan Group presented a lower sway velocity with open eyes, whereas the Dance Group presented a lower sway velocity with closed eyes. In the Walk Across Test, the Tai Chi Chuan Group presented faster walking speeds than those of the Dance Group. In the Sit-to-stand Transfer Test, the Tai Chi Chuan Group presented shorter transfer times from the sitting to the standing position, with less sway in the final standing position. CONCLUSION: The elderly individuals who practiced Tai Chi Chuan had better bilateral balance with eyes open on both types of surfaces compared with the Dance Group. The Dance Group had better unilateral postural balance with eyes closed. The Tai Chi Chuan Group had faster walking speeds, shorter transfer times, and better postural balance in the final standing position during the Sit-to-stand Test.

  7. Postural Stability of Patients with Schizophrenia during Challenging Sensory Conditions: Implication of Sensory Integration for Postural Control.

    Directory of Open Access Journals (Sweden)

    Ya-Ling Teng

    Full Text Available Postural dysfunctions are prevalent in patients with schizophrenia and affect their daily life and ability to work. In addition, sensory functions and sensory integration that are crucial for postural control are also compromised. This study intended to examine how patients with schizophrenia coordinate multiple sensory systems to maintain postural stability in dynamic sensory conditions. Twenty-nine patients with schizophrenia and 32 control subjects were recruited. Postural stability of the participants was examined in six sensory conditions of different level of congruency of multiple sensory information, which was based on combinations of correct, removed, or conflicting sensory inputs from visual, somatosensory, and vestibular systems. The excursion of the center of pressure was measured by posturography. Equilibrium scores were derived to indicate the range of anterior-posterior (AP postural sway, and sensory ratios were calculated to explore ability to use sensory information to maintain balance. The overall AP postural sway was significantly larger for patients with schizophrenia compared to the controls [patients (69.62±8.99; controls (76.53±7.47; t1,59 = -3.28, p<0.001]. The results of mixed-model ANOVAs showed a significant interaction between the group and sensory conditions [F5,295 = 5.55, p<0.001]. Further analysis indicated that AP postural sway was significantly larger for patients compared to the controls in conditions containing unreliable somatosensory information either with visual deprivation or with conflicting visual information. Sensory ratios were not significantly different between groups, although small and non-significant difference in inefficiency to utilize vestibular information was also noted. No significant correlations were found between postural stability and clinical characteristics. To sum up, patients with schizophrenia showed increased postural sway and a higher rate of falls during challenging sensory

  8. The central part of CMS is lowered

    CERN Multimedia

    Maximilien Brice

    2007-01-01

    On 28 February 2007, the CMS central piece containing the magnet and weighing as much as five Jumbo jets (1920 tonnes) was gently lowered into place. Only 20 cm separated the detector, which was suspended by four huge cables, each with 55 strands and sophisticated monitoring to minimize sway and tilt, from the walls of the shaft. The entire process took about 10 hours to complete.

  9. Test-retest reliability of the assessment of postural stability in typically developing children and in hearing impaired children.

    Science.gov (United States)

    De Kegel, A; Dhooge, I; Cambier, D; Baetens, T; Palmans, T; Van Waelvelde, H

    2011-04-01

    The purpose of this study was to establish test-retest reliability of centre of pressure (COP) measurements obtained by an AccuGait portable forceplate (ACG), mean COG sway velocity measured by a Basic Balance Master (BBM) and clinical balance tests in children with and without balance difficulties. 49 typically developing children and 23 hearing impaired children, with a higher risk for stability problems, between 6 and 12 years of age participated. Each child performed the modified Clinical Test of Sensory Interaction on Balance (mCTSIB), Unilateral Stance (US) and Tandem Stance on ACG, mCTSIB and US on BBM and clinical balance tests: one-leg standing, balance beam walking and one-leg hopping. All subjects completed 2 test sessions on 2 different days in the same week assessed by the same examiner. Among COP measurements obtained by the ACG, mean sway velocity was the most reliable parameter with all ICCs higher than 0.72. The standard deviation (SD) of sway velocity, sway area, SD of anterior-posterior and SD of medio-lateral COP data showed moderate to excellent reliability with ICCs between 0.55 and 0.96 but some caution must be taken into account in some conditions. BBM is less reliable but clinical balance tests are as reliable as ACG. Hearing impaired children exhibited better relative reliability (ICC) and comparable absolute reliability (SEM) for most balance parameters compared to typically developing children. Reliable information regarding postural stability of typically developing children and hearing impaired children may be obtained utilizing COP measurements generated by an AccuGait system and clinical balance tests. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Topology Model of the Flow around a Submarine Hull Form

    Science.gov (United States)

    2015-12-01

    UNCLASSIFIED Topology Model of the Flow around a Submarine Hull Form S.-K. Lee Maritime Division Defence Science and Technology Group DST-Group–TR...3177 ABSTRACT A topology model constructed from surface-streamer visualisation describes the flow around a generic conventional submarine hull form at...pure yaw angles of 0 ◦, 10 ◦ and 18 ◦. The model is used to develop equations for sway-force and yaw-moment coefficients which relate to the hull - form

  11. Mild Traumatic Brain Injury and Dynamic Simulated Shooting Performance

    Science.gov (United States)

    2016-02-01

    differences between tasks. All pairwise comparisons were adjusted with a Sidak correction for multiple comparisons. TLX scores 0 5 10 15 20 25 30 35...research at multiple sites. Specific to the question of MTBI-related balance, we recommend that future studies seek, when feasible, to quantify body sway...higher ratings of perceived workload. In addition, the alternate analyses yielded some preliminary evidence of shooting performance decrements

  12. Postural Control in Bilateral Vestibular Failure: Its Relation to Visual, Proprioceptive, Vestibular, and Cognitive Input

    Directory of Open Access Journals (Sweden)

    Andreas Sprenger

    2017-09-01

    Full Text Available Patients with bilateral vestibular failure (BVF suffer from postural and gait unsteadiness with an increased risk of falls. The aim of this study was to elucidate the differential role of otolith, semicircular canal (SSC, visual, proprioceptive, and cognitive influences on the postural stability of BVF patients. Center-of-pressure displacements were recorded by posturography under six conditions: target visibility; tonic head positions in the pitch plane; horizontal head shaking; sensory deprivation; dual task; and tandem stance. Between-group analysis revealed larger postural sway in BVF patients on eye closure; but with the eyes open, BVF did not differ from healthy controls (HCs. Head tilts and horizontal head shaking increased sway but did not differ between groups. In the dual task condition, BVF patients maintained posture indistinguishable from controls. On foam and tandem stance, postural sway was larger in BVF, even with the eyes open. The best predictor for the severity of bilateral vestibulopathy was standing on foam with eyes closed. Postural control of our BVF was indistinguishable from HCs once visual and proprioceptive feedback is provided. This distinguishes them from patients with vestibulo-cerebellar disorders or functional dizziness. It confirms previous reports and explains that postural unsteadiness of BVF patients can be missed easily if not examined by conditions of visual and/or proprioceptive deprivation. In fact, the best predictor for vestibular hypofunction (VOR gain was examining patients standing on foam with the eyes closed. Postural sway in that condition increased with the severity of vestibular impairment but not with disease duration. In the absence of visual control, impaired otolith input destabilizes BVF with head retroflexion. Stimulating deficient SSC does not distinguish patients from controls possibly reflecting a shift of intersensory weighing toward proprioceptive-guided postural control. Accordingly

  13. Peculiarities of litter invertebrates’ multispecies complexes formation on the Khortitsa island (Zaporizhzhya province

    Directory of Open Access Journals (Sweden)

    D. О. Fedorchenko

    2008-02-01

    Full Text Available Peculiarities of litter invertebrates’ complexes formation under conditions of the Khortitsa National Reserve (Zaporizhzhya province are studied. The dispersion of taxonomic groups of different levels (families and species in litter mesofauna is swayed by the inter- and intrasystem factors; the largest influence has the power of litter and its humidity. The rate of ecological factors’ influence at different taxonomic levels may diverge.

  14. The Major Crimes Task Force-Afghanistan: A Case Study and Examination of Implications for Future FBI Capacity Building Programs

    Science.gov (United States)

    2014-12-01

    CIA payroll .175 It has been reported that the CIA paid “tens of millions of dollars” directly to President Karzai and that similar but smaller payments...Similarly, in Iraq, U.S. efforts to use biometric evidence collected through the exploitation of recovered IEDs was 220 Bueno De Mesquita and Smith...influence with senior HN officials or the political sway of prominent HN officials on its payroll . Of all the U.S. partners in capacity-building efforts

  15. Should Advertising by Aesthetic Surgeons be Permitted?

    OpenAIRE

    Nagpal, Neeraj

    2017-01-01

    Cosmetic, aesthetic and cutaneous surgical procedures require qualified specialists trained in the various procedures and competent to handle complications. However, it also requires huge investments in terms of infrastructure, trained staff and equipment. To be viable advertising is essential to any establishment which provides cosmetic and aesthetic procedures. Business men with deep pockets establish beauty chains which also provide these services and advertise heavily to sway public opini...

  16. Effect of the cognitive-motor dual-task using auditory cue on balance of surviviors with chronic stroke: a pilot study.

    Science.gov (United States)

    Choi, Wonjae; Lee, GyuChang; Lee, Seungwon

    2015-08-01

    To investigate the effect of a cognitive-motor dual-task using auditory cues on the balance of patients with chronic stroke. Randomized controlled trial. Inpatient rehabilitation center. Thirty-seven individuals with chronic stroke. The participants were randomly allocated to the dual-task group (n=19) and the single-task group (n=18). The dual-task group performed a cognitive-motor dual-task in which they carried a circular ring from side to side according to a random auditory cue during treadmill walking. The single-task group walked on a treadmill only. All subjects completed 15 min per session, three times per week, for four weeks with conventional rehabilitation five times per week over the four weeks. Before and after intervention, both static and dynamic balance were measured with a force platform and using the Timed Up and Go (TUG) test. The dual-task group showed significant improvement in all variables compared to the single-task group, except for anteroposterior (AP) sway velocity with eyes open and TUG at follow-up: mediolateral (ML) sway velocity with eye open (dual-task group vs. single-task group: 2.11 mm/s vs. 0.38 mm/s), ML sway velocity with eye close (2.91 mm/s vs. 1.35 mm/s), AP sway velocity with eye close (4.84 mm/s vs. 3.12 mm/s). After intervention, all variables showed significant improvement in the dual-task group compared to baseline. The study results suggest that the performance of a cognitive-motor dual-task using auditory cues may influence balance improvements in chronic stroke patients. © The Author(s) 2014.

  17. Planning of overhead contact lines and simulation of the pantograph running; Oberleitungsplanung und Simulation des Stromabnehmerlaufes

    Energy Technology Data Exchange (ETDEWEB)

    Hofbauer, Gerhard [ALPINE-ENERGIE Oesterreich GmbH, Linz (Austria); Hofbauer, Werner

    2009-07-01

    Using the software FLTG all planning steps for overhead contact lines can be carried out based on the parameters of the contact line type and the line data. Contact line supports and individual spans are presented graphically. The geometric interaction of pantograph and contact line can be simulated taking into account the pantograph type, its sway and the wind action. Thus, the suitability of a line for the interoperability of the transEuropean rail system can be demonstrated. (orig.)

  18. Alcohol-Induced Impairment of Balance is Antagonized by Energy Drinks.

    Science.gov (United States)

    Marczinski, Cecile A; Fillmore, Mark T; Stamates, Amy L; Maloney, Sarah F

    2018-01-01

    The acute administration of alcohol reliably impairs balance and motor coordination. While it is common for consumers to ingest alcohol with other stimulant drugs (e.g., caffeine, nicotine), little is known whether prototypical alcohol-induced balance impairments are altered by stimulant drugs. The purpose of this study was to examine whether the coadministration of a high-caffeine energy drink with alcohol can antagonize expected alcohol-induced increases in body sway. Sixteen social drinkers (of equal gender) participated in 4 separate double-blind dose administration sessions that involved consumption of alcohol and energy drinks, alone and in combination. Following dose administration, participants completed automated assessments of balance stability (both eyes open and eyes closed) measured using the Biosway Portable Balance System. Participants completed several subjective measures including self-reported ratings of sedation, stimulation, fatigue, and impairment. Blood pressure and pulse rate were recorded repeatedly. The acute administration of alcohol increased body sway, and the coadministration of energy drinks antagonized this impairment. When participants closed their eyes, alcohol-induced body sway was similar whether or not energy drinks were ingested. While alcohol administration increased ratings of sedation and fatigue, energy drink administration increased ratings of stimulation and reduced ratings of fatigue. Modest increases in systolic and diastolic blood pressure following energy drink administration were also observed. Visual assessment of balance impairment is frequently used to indicate that an individual has consumed too much alcohol (e.g., as part of police-standardized field sobriety testing or by a bartender assessing when someone should no longer be served more alcohol). The current findings suggest that energy drinks can antagonize alcohol-induced increases in body sway, indicating that future work is needed to determine whether this

  19. L1 Adaptive Manoeuvring Control of Unmanned High-speed Water Craft

    DEFF Research Database (Denmark)

    Svendsen, Casper H.; Holck, Niels Ole; Galeazzi, Roberto

    2012-01-01

    This work addresses the issue of designing an adaptive robust control system to govern the steering of a high speed unmanned personal watercraft (PWC) maintaining equal performance across the craft’s envelope of operation. The maneuvering dynamics of a high speed PWC is presented and a strong var......-of-freedom surge-sway-yaw-roll model. An L1 adaptive autopilot is then designed, which allows to achieve fast adaption to system parameters’ changes and robustness of the closed loop system....

  20. Period Prevalence of Dizziness and Vertigo in Adolescents.

    Science.gov (United States)

    Langhagen, Thyra; Albers, Lucia; Heinen, Florian; Straube, Andreas; Filippopulos, Filipp; Landgraf, Mirjam N; Gerstl, Lucia; Jahn, Klaus; von Kries, Rüdiger

    2015-01-01

    To assess the period prevalence and severity of dizziness and vertigo in adolescents. In 1661 students in 8th-10th grade in twelve grammar schools in Munich, Germany information on vertigo/dizziness was assessed by a questionnaire in the class room setting. Three month prevalence of dizziness/vertigo was estimated; symptoms were categorized as orthostatic dizziness, spinning vertigo, swaying vertigo or unspecified dizziness. Duration of symptoms and impact on daily life activities were assessed. 72.0% (95%-CI = [69.8-74.2]; N = 1196) of the students (mean age 14.5±1.1) reported to suffer from at least one episode of dizziness or vertigo in the last three months. Most adolescents ticked to have symptoms of orthostatic dizziness (52.0%, 95%-CI = [49.5-54.4], N = 863). The period prevalence for the other types of vertigo were spinning vertigo: 11.6%, 95%-CI = [10.1-13.3], N = 193; swaying vertigo: 12.2%, 95%-CI = [10.6-13.8], N = 202; and unspecified dizziness: 15.2%, 95%-CI = [13.5-17.1], N = 253. About 50% of students with spinning vertigo and swaying vertigo also report to have orthostatic dizziness. Most vertigo/dizziness types were confined to less than one minute on average. The proportion of students with any dizziness/vertigo accounting for failure attending school, leisure activities or obliging them to stay in bed were more pronounced for spinning or swaying vertigo. Dizziness and vertigo in grammar school students appear to be as common as in adults. In face of the high period prevalence and clinical relevance of dizziness/vertigo in adolescents there is a need for prevention strategies. Risk factors for dizziness/vertigo need to be assessed to allow for conception of an intervention programme.

  1. Plaadid / Mart Normet

    Index Scriptorium Estoniae

    Normet, Mart, 1979-

    2006-01-01

    Uutest heliplaatidest Quantic "One Off's Remixes And B Sides", Sway "This In My Demo", Placebo "Meds", Lordi "The Arockalypse", Peer Günt "Bad Boys Are Here", "This Is How We Lounge vol 2", Ne-Yo "In My Own Words", David Gilmour "On An Island", Cat Power "The Greatest", KT Tunstall "Eye To The Telescope", "Memories Of A Geisha", "Uues kuues", Skye "Mind How You Go", Amparanoia "La Vida Te Da"

  2. Changes of postural control and muscle activation pattern in response to external perturbations after neck flexor fatigue in young subjects with and without chronic neck pain.

    Science.gov (United States)

    Cheng, Chih-Hsiu; Chien, Andy; Hsu, Wei-Li; Yen, Ling-Wei; Lin, Yang-Hua; Cheng, Hsin-Yi Kathy

    2015-03-01

    Previous studies have identified sensorimotor disturbances and greater fatigability of neck muscles in patients with neck pain. The purpose of this study was to investigate the effect of neck pain and neck flexor fatigue on standing balance following postural perturbations. Twenty patients with chronic neck pain (CNP) (24.7±3.6 year-old) and 20 age-matched asymptomatic subjects (22.1±2.2 year-old) were recruited. Subjects stood barefoot on a force plate and experienced backward perturbations before and after neck flexor fatigue. Center of pressure, electromyography of cervical and lumbar muscles, and head/trunk accelerations were recorded. Two-way ANOVA (pain×fatigue) was used for statistical analysis. CNP group showed larger body sway during quiet standing but not during perturbed standing compared with asymptomatic adults. In both groups, neck flexor fatigue resulted in greater body sway during the quiet standing but smaller body sway during perturbed standing, increased neck muscle activations and decreased lumbar muscle activations, as well as increased time to maximal head acceleration. Disturbed balance control was observed in CNP patients during the quiet standing. However, a rigid strategy was used to minimize the postural sway and to protect the head against backward perturbations in both CNP and asymptomatic young adults after neck flexor fatigue. The results facilitate the understanding of how the subjects with chronic neck pain and with neck muscle fatigue deal with the challenging condition. Further studies are needed to verify if such phenomenon could be changed after the intervention of specific flexor muscle retraining and balance control exercises. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Effectiveness and Limitations of Unsupervised Home-Based Balance Rehabilitation with Nintendo Wii in People with Multiple Sclerosis

    OpenAIRE

    Massimiliano Pau; Giancarlo Coghe; Federica Corona; Bruno Leban; Maria Giovanna Marrosu; Eleonora Cocco

    2015-01-01

    Balance training represents a critical part of the rehabilitation process of individuals living with multiple sclerosis (MS) since impaired postural control is a distinctive symptom of the disease. In recent years, the use of the Nintendo Wii system has become widespread among rehabilitation specialists for this purpose, but few studies have verified the effectiveness of such an approach using quantitative measures of balance. In this study, we analyzed the postural sway features of a cohort ...

  4. On the revolution of heavenly spheres

    CERN Document Server

    Copernicus, Nicolaus

    1995-01-01

    The Ptolemaic system of the universe, with the earth at the center, had held sway since antiquity as authoritative in philosophy, science, and church teaching. Following his observations of the heavenly bodies, Nicolaus Copernicus (1473-1543) abandoned the geocentric system for a heliocentric model, with the sun at the center. His remarkable work, On the Revolutions of Heavenly Spheres, stands as one of the greatest intellectual revolutions of all time, and profoundly influenced, among others, Galileo and Sir Isaac Newton.

  5. Postural imbalance and falls in PSP correlate with functional pathology of the thalamus.

    Science.gov (United States)

    Zwergal, A; la Fougère, C; Lorenzl, S; Rominger, A; Xiong, G; Deutschenbaur, L; Linn, J; Krafczyk, S; Dieterich, M; Brandt, T; Strupp, M; Bartenstein, P; Jahn, K

    2011-07-12

    To determine how postural imbalance and falls are related to regional cerebral glucose metabolism (PET) and functional activation of the cerebral postural network (fMRI) in patients with progressive supranuclear palsy (PSP). Sixteen patients with PSP, who had self-monitored their frequency of falls, underwent a standardized clinical assessment, posturographic measurement of balance during modified sensory input, and a resting [¹⁸F]FDG-PET. In addition, patients performed an fMRI paradigm using mental imagery of standing. Results were compared to healthy controls (n = 16). The frequency of falls/month in patients (range 1-40) correlated with total PSP rating score (r = 0.90). Total sway path in PSP significantly correlated with frequency of falls, especially during modulated sensory input (eyes open: r = 0.62, eyes closed: r = 0.67, eyes open/head extended: r = 0.84, eyes open/foam-padded platform: r = 0.87). Higher sway path values and frequency of falls were associated with decreased regional glucose metabolism (rCGM) in the thalamus (sway path: r = -0.80, falls: r = -0.64) and increased rCGM in the precentral gyrus (sway path: r = 0.79, falls: r = 0.64). Mental imagery of standing during fMRI revealed a reduced activation of the mesencephalic brainstem tegmentum and the thalamus in patients with postural imbalance and falls. The new and clinically relevant finding of this study is that imbalance and falls in PSP are closely associated with thalamic dysfunction. Deficits in thalamic postural control get most evident when balance is assessed during modified sensory input. The results are consistent with the hypothesis that reduced thalamic activation via the ascending brainstem projections may cause postural imbalance in PSP.

  6. The Effects of Multisensory Balance Training on Postural Control in Older Adults

    OpenAIRE

    Farnoosh Shams; Afsoun Hassani Mehraban; Ghorban Taghizadeh

    2011-01-01

    Objectives: It has been found that older adults fall or sway significantly more than younger ones under sensory conflict conditions. Considering the prospects of future increases in the elderly population size of Iran and the lack of proper postural control and the high costs of its probable consequences, this study investigated the effects of multi balance training on postural control. Methods & Materials: In this semi-experimental study, 34 elderly women participated in two training and...

  7. Proprioceptive changes impair balance control in individuals with chronic obstructive pulmonary disease.

    Directory of Open Access Journals (Sweden)

    Lotte Janssens

    Full Text Available Balance deficits are identified as important risk factors for falling in individuals with chronic obstructive pulmonary disease (COPD. However, the specific use of proprioception, which is of primary importance during balance control, has not been studied in individuals with COPD. The objective was to determine the specific proprioceptive control strategy during postural balance in individuals with COPD and healthy controls, and to assess whether this was related to inspiratory muscle weakness.Center of pressure displacement was determined in 20 individuals with COPD and 20 age/gender-matched controls during upright stance on an unstable support surface without vision. Ankle and back muscle vibration were applied to evaluate the relative contribution of different proprioceptive signals used in postural control.Individuals with COPD showed an increased anterior-posterior body sway during upright stance (p = 0.037. Compared to controls, individuals with COPD showed an increased posterior body sway during ankle muscle vibration (p = 0.047, decreased anterior body sway during back muscle vibration (p = 0.025, and increased posterior body sway during simultaneous ankle-muscle vibration (p = 0.002. Individuals with COPD with the weakest inspiratory muscles showed the greatest reliance on ankle muscle input when compared to the stronger individuals with COPD (p = 0.037.Individuals with COPD, especially those with inspiratory muscle weakness, increased their reliance on ankle muscle proprioceptive signals and decreased their reliance on back muscle proprioceptive signals during balance control, resulting in a decreased postural stability compared to healthy controls. These proprioceptive changes may be due to an impaired postural contribution of the inspiratory muscles to trunk stability. Further research is required to determine whether interventions such as proprioceptive training and inspiratory muscle training improve postural balance and reduce the

  8. Postural Control in Bilateral Vestibular Failure: Its Relation to Visual, Proprioceptive, Vestibular, and Cognitive Input

    Science.gov (United States)

    Sprenger, Andreas; Wojak, Jann F.; Jandl, Nico M.; Helmchen, Christoph

    2017-01-01

    Patients with bilateral vestibular failure (BVF) suffer from postural and gait unsteadiness with an increased risk of falls. The aim of this study was to elucidate the differential role of otolith, semicircular canal (SSC), visual, proprioceptive, and cognitive influences on the postural stability of BVF patients. Center-of-pressure displacements were recorded by posturography under six conditions: target visibility; tonic head positions in the pitch plane; horizontal head shaking; sensory deprivation; dual task; and tandem stance. Between-group analysis revealed larger postural sway in BVF patients on eye closure; but with the eyes open, BVF did not differ from healthy controls (HCs). Head tilts and horizontal head shaking increased sway but did not differ between groups. In the dual task condition, BVF patients maintained posture indistinguishable from controls. On foam and tandem stance, postural sway was larger in BVF, even with the eyes open. The best predictor for the severity of bilateral vestibulopathy was standing on foam with eyes closed. Postural control of our BVF was indistinguishable from HCs once visual and proprioceptive feedback is provided. This distinguishes them from patients with vestibulo-cerebellar disorders or functional dizziness. It confirms previous reports and explains that postural unsteadiness of BVF patients can be missed easily if not examined by conditions of visual and/or proprioceptive deprivation. In fact, the best predictor for vestibular hypofunction (VOR gain) was examining patients standing on foam with the eyes closed. Postural sway in that condition increased with the severity of vestibular impairment but not with disease duration. In the absence of visual control, impaired otolith input destabilizes BVF with head retroflexion. Stimulating deficient SSC does not distinguish patients from controls possibly reflecting a shift of intersensory weighing toward proprioceptive-guided postural control. Accordingly, proprioceptive

  9. Age-Related Changes in Physical Fall Risk Factors: Results from a 3 Year Follow-up of Community Dwelling Older Adults in Tasmania, Australia

    OpenAIRE

    Bird, Marie-Louise; Pittaway, Jane; Cuisick, Isobel; Rattray, Megan; Ahuja, Kiran

    2013-01-01

    As the population ages, fall rates are expected to increase, leading to a rise in accidental injury and injury-related deaths, and placing an escalating burden on health care systems. Sixty-nine independent community-dwelling adults (60?85 years, 18 males) had their leg strength, physical activity levels and their annual fall rate assessed at two timepoints over three years, (summer 2010 and summer 2013) monitoring balance. Force platform measures of medio-lateral sway range increased signifi...

  10. Prediction of Post-stroke Falls by Quantitative Assessment of Balance

    OpenAIRE

    Lee, Hyun Haeng; Jung, Se Hee

    2017-01-01

    Objective To evaluate characteristics of the postural instability in patients with stroke and to present a prediction model of post-stroke falls. Methods Patients with a first-ever stroke who had been evaluated by the Balance Master (BM) at post-stroke 3 months (?1 month) between August 2011 and December 2015 were enrolled. Parameters for the postural instability, such as the weight bearing asymmetry (WBA) and postural sway velocity (PSV), were obtained. The fall events in daily lives were as...

  11. The effect of perindopril on postural instability in older people with a history of falls-a randomised controlled trial.

    Science.gov (United States)

    Sumukadas, Deepa; Price, Rosemary; McMurdo, Marion E T; Rauchhaus, Petra; Struthers, Allan; McSwiggan, Stephen; Arnold, Graham; Abboud, Rami; Witham, Miles

    2018-01-01

    double-blind, parallel group, placebo-controlled randomised trial. we recruited people aged >65 years with at least one fall in the previous year. Participants received 4 mg perindopril or placebo daily for 15 weeks. The primary outcome was the between-group difference in force-plate measured anteroposterior (AP) sway at 15 weeks. Secondary outcomes included other measures of postural sway, limits of stability during maximal forward, right and left leaning, blood pressure, muscle strength, 6-min walk distance and falls. The primary outcome was assessed using two-way ANOVA, adjusted for baseline factors. we randomised 80 participants. Mean age was 78.0 (SD 7.4) years; 60 (75%) were female. About 77/80 (96%) completed the trial. At 15 weeks there were no significant between-group differences in AP sway with eyes open (mean difference 0 mm, 95% CI -8 to 7 mm, P = 0.91) or eyes closed (mean difference 2 mm, 95% CI -7 to 12 mm, P = 0.59); no differences in other measures of postural stability, muscle strength or function. About 16/40 (42%) of patients in each group had orthostatic hypotension at follow-up. The median number (IQR) of falls was 1 (0,4) in the perindopril versus 1 (0,2) in the placebo group (P = 0.24). perindopril did not improve postural sway in older people at risk of falls. ISRCTN58995463. © The Author 2017. Published by Oxford University Press on behalf of the British Geriatrics Society.

  12. Longitudinal relationships among posturography and gait measures in multiple sclerosis.

    Science.gov (United States)

    Fritz, Nora E; Newsome, Scott D; Eloyan, Ani; Marasigan, Rhul Evans R; Calabresi, Peter A; Zackowski, Kathleen M

    2015-05-19

    Gait and balance dysfunction frequently occurs early in the multiple sclerosis (MS) disease course. Hence, we sought to determine the longitudinal relationships among quantitative measures of gait and balance in individuals with MS. Fifty-seven ambulatory individuals with MS (28 relapsing-remitting, 29 progressive) were evaluated using posturography, quantitative sensorimotor and gait measures, and overall MS disability with the Expanded Disability Status Scale at each session. Our cohort's age was 45.8 ± 10.4 years (mean ± SD), follow-up time 32.8 ± 15.4 months, median Expanded Disability Status Scale score 3.5, and 56% were women. Poorer performance on balance measures was related to slower walking velocity. Two posturography measures, the anterior-posterior sway and sway during static eyes open, feet apart conditions, were significant contributors to walk velocity over time (approximate R(2) = 0.95), such that poorer performance on the posturography measures was related to slower walking velocity. Similarly, the anterior-posterior sway and sway during static eyes closed, feet together conditions were also significant contributors to the Timed 25-Foot Walk performance over time (approximate R(2) = 0.83). This longitudinal cohort study establishes a strong relationship between clinical gait measures and posturography. The data show that increases in static posturography and reductions in dynamic posturography are associated with a decline in walk velocity and Timed 25-Foot Walk performance over time. Furthermore, longitudinal balance measures predict future walking performance. Quantitative walking and balance measures are important additions to clinical testing to explore longitudinal change and understand fall risk in this progressive disease population. © 2015 American Academy of Neurology.

  13. Plantar pressure and foot pain in the last trimester of pregnancy.

    Science.gov (United States)

    Karadag-Saygi, Evrim; Unlu-Ozkan, Feyza; Basgul, Alin

    2010-02-01

    Back and foot pain are common complaints during pregnancy. Progression of symptoms is seen especially in the third trimester as the center of gravity (COP) is altered due to weight gain. The aim of the study was to evaluate plantar pressure changes and postural balance differences of pregnant women. Thirty-five last trimester pregnant women with complaints of foot pain were included. The control group consisted of 35 non-pregnant women who were age and body mass index (BMI) matched volunteers. All selected cases were overweight. Foot pain in pregnancy was measured by Visual analogue scale (VAS). Percentages of pressure on forefoot and hindfoot were measured using static pedobarography and peak pressures at forefoot, midfoot and hindfoot were measured using dynamic pedobarography. As a measurement of balance, COP sway length and width were also analyzed. Compared to overweight individuals, pregnant patients had higher forefoot pressure on the right side with standing and walking. Also, significant increases in contact times under the forefoot and longer floor contact times were found. VAS scores were correlated with forefoot contact times during walking. Although the sway length from COP was higher than controls, no significant correlation was found in sway length and weight gain. These data suggest that forefoot pressures increase in the last trimester of pregnancy during standing and walking. There is prominent increased postural sway in anterior-posterior direction in this period. We believe that based on the observed pressure changes, foot pain in pregnancy due to changes in body mass and distribution may be relieved by exercise and shoewear modifications.

  14. From outer space to paradise? : Remapping Hawai'i in "Lilo and Stitch"

    OpenAIRE

    Laemmerhirt, Iris-Aya

    2013-01-01

    Ever since the European discovery of the Hawaiian Islands by Captain James Cook in 1778, this island state has been shamelessly exploited economically and reimagined for a wide, mainly white, audience in the media. The island state continues to occupy a unique place in public consciousness, evoking escapist fantasies of dazzling long, sandy beaches, spectacular sunsets, swaying palm trees, and beautiful hula dancers as well as skilled surfers enjoying perfect waves. Numerous novels, TV series...

  15. Optimal transmitter power of an intersatellite optical communication system with reciprocal Pareto fading.

    Science.gov (United States)

    Liu, Xian

    2010-02-10

    This paper shows that optical signal transmission over intersatellite links with swaying transmitters can be described as an equivalent fading model. In this model, the instantaneous signal-to-noise ratio is stochastic and follows the reciprocal Pareto distribution. With this model, we show that the transmitter power can be minimized, subject to a specified outage probability, by appropriately adjusting some system parameters, such as the transmitter gain.

  16. A data analysis method for identifying deterministic components of stable and unstable time-delayed systems with colored noise

    Energy Technology Data Exchange (ETDEWEB)

    Patanarapeelert, K. [Faculty of Science, Department of Mathematics, Mahidol University, Rama VI Road, Bangkok 10400 (Thailand); Frank, T.D. [Institute for Theoretical Physics, University of Muenster, Wilhelm-Klemm-Str. 9, 48149 Muenster (Germany)]. E-mail: tdfrank@uni-muenster.de; Friedrich, R. [Institute for Theoretical Physics, University of Muenster, Wilhelm-Klemm-Str. 9, 48149 Muenster (Germany); Beek, P.J. [Faculty of Human Movement Sciences and Institute for Fundamental and Clinical Human Movement Sciences, Vrije Universiteit, Van der Boechorststraat 9, 1081 BT Amsterdam (Netherlands); Tang, I.M. [Faculty of Science, Department of Physics, Mahidol University, Rama VI Road, Bangkok 10400 (Thailand)

    2006-12-18

    A method is proposed to identify deterministic components of stable and unstable time-delayed systems subjected to noise sources with finite correlation times (colored noise). Both neutral and retarded delay systems are considered. For vanishing correlation times it is shown how to determine their noise amplitudes by minimizing appropriately defined Kullback measures. The method is illustrated by applying it to simulated data from stochastic time-delayed systems representing delay-induced bifurcations, postural sway and ship rolling.

  17. Stopping Piracy: Refocusing on Land-based Governance

    Science.gov (United States)

    2012-06-01

    control over Guadeloupe, Hispaniola, and Martinique. They also held nominal sway over Tortuga , later to become a pirate safe haven. The Dutch began to...population of Tortuga to move to Jamaica in an effort to reinforce the island’s defenses. By 1665, more than 2,000 pirates operated out of Port Royal...mainly worked out of Tortuga . The French pirate Francois l’Olonais was a particularly brutal criminal, and reportedly decapitated 87 Spanish

  18. Postural stability does not differ among female sports with high risk of anterior cruciate ligament injury.

    Science.gov (United States)

    Cortes, Nelson; Porter, Larissa D; Ambegaonkar, Jatin P; Caswell, Shane V

    2014-12-01

    Dancers have a lower incidence of anterior cruciate ligament (ACL) injury compared to athletes in sports that involve cutting and landing motions. Balance can impact ACL injury risk and is related to neuromuscular control during movement. The purpose of this study was to investigate whether balance differences exist among female dancers and female soccer and basketball athletes. Fifty-eight female dancers, soccer, and basketball athletes (16.5 ± 1.6 yrs, 1.6 ± 0.2 m, 60.2 ± 14.1 kg) completed the Stability Evaluation Test (SET) on the NeuroCom VSR Sport (NeuroCom International, Clackamas, OR) to measure sway velocity. Video records of the SET test were used for Balance Error Scoring System (BESS) test scoring. A oneway ANCOVA compared composite sway velocity and BESS scores among sports. There was no statistically significant difference for sway velocity or BESS among sports (sway velocity soccer 2.3 ± 0.4, dance 2.2 ± 0.4, and basketball 2.4 ± 0.4; BESS soccer 13.6 ± 5.0, dance 11.9 ± 5.5, and basketball 14.9 ± 5.1, p>0.05). Balance was similar among athletes participating in different sports (dance, basketball, and soccer). Quasi-static balance may not play a significant role in neuromuscular control during movement and not be a significant risk factor to explain the disparity in ACL injury incidence among sports. Future research should examine the effects of dynamic balance and limb asymmetries among sports to elucidate on the existing differences on ACL injury incidence rates.

  19. Central Determinants of Age-Related Declines in Motor Function (Annals of the New York Academy of Sciences. Volume 515)

    Science.gov (United States)

    1988-01-18

    postural muscle response latencies are significantly longer in the aging adult (con1- pared to the young one) when these responses are activated by external...posterior sway) were calculated and com- pared for the two age groups. Significant differences (p < 0.001) were observed be- tween correlations in the two...Laboratory of Celular and Molecu/ar Bioloi< Gerontology Research Center" Aautional Institute on .lging Francis Scott Key Medical Center Bc imore

  20. Balance rehabilitation: promoting the role of virtual reality in patients with diabetic peripheral neuropathy.

    Science.gov (United States)

    Grewal, Gurtej S; Sayeed, Rashad; Schwenk, Michael; Bharara, Manish; Menzies, Robert; Talal, Talal K; Armstrong, David G; Najafi, Bijan

    2013-01-01

    Individuals with diabetic peripheral neuropathy frequently experience concomitant impaired proprioception and postural instability. Conventional exercise training has been demonstrated to be effective in improving balance but does not incorporate visual feedback targeting joint perception, which is an integral mechanism that helps compensate for impaired proprioception in diabetic peripheral neuropathy. This prospective cohort study recruited 29 participants (mean ± SD: age, 57 ± 10 years; body mass index [calculated as weight in kilograms divided by height in meters squared], 26.9 ± 3.1). Participants satisfying the inclusion criteria performed predefined ankle exercises through reaching tasks, with visual feedback from the ankle joint projected on a screen. Ankle motion in the mediolateral and anteroposterior directions was captured using wearable sensors attached to the participant's shank. Improvements in postural stability were quantified by measuring center of mass sway area and the reciprocal compensatory index before and after training using validated body-worn sensor technology. Findings revealed a significant reduction in center of mass sway after training (mean, 22%; P = .02). A higher postural stability deficit (high body sway) at baseline was associated with higher training gains in postural balance (reduction in center of mass sway) (r = -0.52, P virtual reality technology. The method included wearable sensors and an interactive user interface for real-time visual feedback based on ankle joint motion, similar to a video gaming environment, for compensating impaired joint proprioception. These findings support that visual feedback generated from the ankle joint coupled with motor learning may be effective in improving postural stability in patients with diabetic peripheral neuropathy.

  1. MINIMUM BRACING STIFFNESS FOR MULTI-COLUMN SYSTEMS: THEORY

    OpenAIRE

    ARISTIZÁBAL-OCHOA, J. DARÍO

    2011-01-01

    A method that determines the minimum bracing stiffness required by a multi-column elastic system to achieve non-sway buckling conditions is proposed. Equations that evaluate the required minimum stiffness of the lateral and torsional bracings and the corresponding “braced" critical buckling load for each column of the story level are derived using the modified stability functions. The following effects are included: 1) the types of end connections (rigid, semirigid, and simple); 2) the bluepr...

  2. Reliability of the Wii Balance Board in kayak.

    Science.gov (United States)

    Vando, Stefano; Laffaye, Guillaume; Masala, Daniele; Falese, Lavinia; Padulo, Johnny

    2015-01-01

    the seat of the kayaker represent the principal contact point to express mechanical Energy. therefore we investigated the reliability of the Wii Balance Board measures in the kayak vs. on the ground. Bland-Altman test showed a low systematic bias on the ground (2.85%) and in kayak (-2.13%) respectively; while 0.996 for Intra-class correlation coefficient. the Wii Balance Board is useful to assess postural sway in kayak.

  3. Air & Space Power Journal. Volume 28, Number 5, September-October 2014

    Science.gov (United States)

    2014-10-01

    authorized could employ up to three four-ship cells concurrently.27 If three cells are employed simul- taneously, then 12 of the 21 jets (57 percent...of terrorist cells probably does not have the strategic capability to affect information to the degree required to sway global opinion. In the face...effect of additional weight on the mobility and stamina of the horses). The costly proposition of thickening the stone curtain walls of castles would

  4. Update on Spain's oil market

    International Nuclear Information System (INIS)

    Whitaker, D.; Gutierrez, I.

    1994-01-01

    Since Spain's entry into the European Community a liberalisation of the oil industry has occurred culminating in two oil sector reform laws passed in 1992. While competition has increased, a return to the free-market policies which held sway before 1927 has not happened. Rather, three large companies dominate the Spanish oil market, with continuing input from government towards liberalization, if somewhat slowly. This paper describes recent changes and examines factors which limit liberalization policies. (UK)

  5. Frequency of Loaded Road March Training and Performance on a Loaded Road March

    Science.gov (United States)

    1990-04-01

    heart rate through the use of beta - blockers can substantially improve shooting accuracy (29, 44). Post road march decrements in the grenade throw may...the road march. An Increase in body tremors due to fatigue or an elevated post exercise heart rate may account for this. Whole body sway while aiming...a rifle is substantially increased even after a short period of exercise (39) and this may effect accuracy. Muscle tremors increase after brief or

  6. The Impossible Trinity and Capital Flows in East Asia

    OpenAIRE

    Stephen Grenville

    2011-01-01

    The Impossible Trinity doctrine still holds a powerful sway over policymakers, advisors (particularly the International Monetary Fund [IMF]) and academia. In East Asia over the past decade, however, most countries have been able to maintain open capital markets, monetary policy independence, and a fair degree of management over their exchange rates. This is because the Impossible Trinity model does not fit the actual circumstances very closely. Capital flows are dominated by factors other ...

  7. Dynamic parameters of balance which correlate to elderly persons with a history of falls.

    Directory of Open Access Journals (Sweden)

    Jesse W Muir

    Full Text Available Poor balance in older persons contributes to a rise in fall risk and serious injury, yet no consensus has developed on which measures of postural sway can identify those at greatest risk of falling. Postural sway was measured in 161 elderly individuals (81.8y±7.4, 24 of which had at least one self-reported fall in the prior six months, and compared to sway measured in 37 young adults (34.9y±7.1. Center of pressure (COP was measured during 4 minutes of quiet stance with eyes opened. In the elderly with fall history, all measures but one were worse than those taken from young adults (e.g., maximal COP velocity was 2.7× greater in fallers than young adults; p<0.05, while three measures of balance were significantly worse in fallers as compared to older persons with no recent fall history (COP Displacement, Short Term Diffusion Coefficient, and Critical Displacement. Variance of elderly subjects' COP measures from the young adult cohort were weighted to establish a balance score ("B-score" algorithm designed to distinguish subjects with a fall history from those more sure on their feet. Relative to a young adult B-score of zero, elderly "non-fallers" had a B-score of 0.334, compared to 0.645 for those with a fall history (p<0.001. A weighted amalgam of postural sway elements may identify individuals at greatest risk of falling, allowing interventions to target those with greatest need of attention.

  8. Fatigue-induced balance impairment in young soccer players.

    Science.gov (United States)

    Pau, Massimiliano; Ibba, Gianfranco; Attene, Giuseppe

    2014-01-01

    Although balance is generally recognized to be an important feature in ensuring good performance in soccer, its link with functional performance remains mostly unexplored, especially in young athletes. To investigate changes in balance induced by fatigue for unipedal and bipedal static stances in young soccer players. Crossover study. Biomechanics laboratory and outdoor soccer field. Twenty-one male soccer players (age = 14.5 ± 0.2 years, height = 164.5 ± 5.6 cm, mass = 56.8 ± 6.8 kg). Static balance was assessed with postural-sway analysis in unipedal and bipedal upright stance before and after a fatigue protocol consisting of a repeated sprint ability (RSA) test (2 × 15-m shuttle sprint interspersed with 20 seconds of passive recovery, repeated 6 times). On the basis of the center-of-pressure (COP) time series acquired during the experimental tests, we measured sway area, COP path length, and COP maximum displacement and velocity in the anteroposterior and mediolateral directions. Fatigue increased all sway values in bipedal stance and all values except COP velocity in the mediolateral direction in unipedal stance. Fatigue index (calculated on the basis of RSA performance) was positively correlated with fatigue/rest sway ratio for COP path length and COP velocity in the anteroposterior and mediolateral directions for nondominant single-legged stance. Fatigued players exhibited reduced performance of the postural-control system. Participants with better performance in the RSA test appeared less affected by balance impairment, especially in single-legged stance.

  9. Cultures of Food and Gastronomy in Mughal and post-Mughal India

    OpenAIRE

    Narayanan, Divya

    2015-01-01

    This dissertation is an interdisciplinary and transcultural study of food cultures in Mughal and post-Mughal India between the sixteenth and mid-nineteenth centuries. Using historical as well as anthropological tools of analysis, and drawing on a variety of documentary and manuscript sources in Persian, English and Hindi, it seeks to unravel various facets of the linkages between food, society and culture in the regions of the Indian subcontinent under the political sway or cultural influence...

  10. A Comparison of Military and Law Enforcement Body Armour

    OpenAIRE

    Robin Orr; Ben Schram; Rodney Pope

    2018-01-01

    Law-enforcement officers increasingly wear body armour for protection; wearing body armour is common practice in military populations. Law-enforcement and military occupational demands are vastly different and military-styled body armour may not be suitable for law-enforcement. This study investigated differences between selected military body armour (MBA: 6.4 kg) and law-enforcement body armour (LEBA: 2.1 kg) in impacts on postural sway, vertical jump, agility, a functional movement screen (...

  11. Twelve Monkeys, the Kassandra dilemma and innovation diffusion: transdisciplinary lessons for animal and environmental activism

    OpenAIRE

    Sarah Rutherford Smith

    2014-01-01

    Animal activists and environmental activists believe that the world and its inhabitants face devastating consequences in the future if behaviour towards and the treatment of animals and the environment do not change. However, despite their predictions many people are not swayed to change their behaviour. This article suggests that these activists experience what is known as Kassandra’s dilemma; the conundrum of knowing what the future holds but being unable to prevent events fr...

  12. Postural Control in Workplace Safety: Role of Occupational Footwear and Workload

    OpenAIRE

    Harish Chander; John C. Garner; Chip Wade; Adam C. Knight

    2017-01-01

    Maintaining postural stability is crucial, especially in hazardous occupational environments. The purpose of the study was to assess the role of three occupational footwear (low top shoe (LT); tactical work boot (TB) and steel-toed work boot (WB)) on postural stability when exposed to an occupational workload (4-h) involving standing/walking using the sensory organization test (SOT) equilibrium (EQ) scores and comparing current results with previously published postural sway variables from th...

  13. Causes of death among the Caesars (27 BC-AD 476) | Retief | Acta ...

    African Journals Online (AJOL)

    The Roman Empire was ruled by 77 emperors between 27 BC and AD 476 (503 years); 18 (23,4%) of them held sway during the Early Empire (27 BC–AD 193, 220 years), and 59 (76,6%) during the Late Empire (193-476, 283 years). On the average emperors in the Early Empire ruled for a longer period (12,7 years as ...

  14. Are we simplifying balance evaluation in adolescent idiopathic scoliosis?

    Science.gov (United States)

    Pasha, Saba; Baldwin, Keith

    2018-01-01

    Clinical evaluation of the postural balance in adolescent idiopathic scoliosis has been measured by sagittal vertical axis and frontal balance. The impact of the scoliotic deformity in three planes on balance has not been fully investigated. 47 right thoracic and left lumbar curves adolescent idiopathic scoliosis and 10 non-scoliotic controls were registered prospectively. 13 spinopelvic postural parameters were calculated from the 3-dimantional reconstructions of X-rays. 7 balance variables describing the position and sway of the center of pressure were recorded using a pressure mat. A regression analysis was used to predict sagittal vertical axis and frontal balance from the 7 balance variables. A canonical correlation analysis was performed between all the postural parameters and balance variables and the significant associations between the postural and balance variables were determined. sagittal vertical axis and frontal balance were not significantly associated with the position or sway of the center of pressure (p>0.05). Canonical correlation analysis showed significant associations between the postural variables in the 3 planes and center of pressure position (R 2 =0.81) and sway (R 2 =0.62), pbalance contributed to the postural balance in the cohort. The compensatory role of the pelvis and distal kyphosis in sagittal plane was underlined. Multidimensional analyses between the postural and balance variables showed the alignment of the thoracic, lumbar, and pelvis in the 3 planes, in addition to the global head-pelvic position impact on adolescent idiopathic scoliosis balance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Personality traits and individual differences predict threat-induced changes in postural control.

    Science.gov (United States)

    Zaback, Martin; Cleworth, Taylor W; Carpenter, Mark G; Adkin, Allan L

    2015-04-01

    This study explored whether specific personality traits and individual differences could predict changes in postural control when presented with a height-induced postural threat. Eighty-two healthy young adults completed questionnaires to assess trait anxiety, trait movement reinvestment (conscious motor processing, movement self-consciousness), physical risk-taking, and previous experience with height-related activities. Tests of static (quiet standing) and anticipatory (rise to toes) postural control were completed under low and high postural threat conditions. Personality traits and individual differences significantly predicted height-induced changes in static, but not anticipatory postural control. Individuals less prone to taking physical risks were more likely to lean further away from the platform edge and sway at higher frequencies and smaller amplitudes. Individuals more prone to conscious motor processing were more likely to lean further away from the platform edge and sway at larger amplitudes. Individuals more self-conscious about their movement appearance were more likely to sway at smaller amplitudes. Evidence is also provided that relationships between physical risk-taking and changes in static postural control are mediated through changes in fear of falling and physiological arousal. Results from this study may have indirect implications for balance assessment and treatment; however, further work exploring these factors in patient populations is necessary. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Cognitive tasks promote automatization of postural control in young and older adults.

    Science.gov (United States)

    Potvin-Desrochers, Alexandra; Richer, Natalie; Lajoie, Yves

    2017-09-01

    Researchers looking at the effects of performing a concurrent cognitive task on postural control in young and older adults using traditional center-of-pressure measures and complexity measures found discordant results. Results of experiments showing improvements of stability have suggested the use of strategies such as automatization of postural control or stiffening strategy. This experiment aimed to confirm in healthy young and older adults that performing a cognitive task while standing leads to improvements that are due to automaticity of sway by using sample entropy. Twenty-one young adults and twenty-five older adults were asked to stand on a force platform while performing a cognitive task. There were four cognitive tasks: simple reaction time, go/no-go reaction time, equation and occurrence of a digit in a number sequence. Results demonstrated decreased sway area and variability as well as increased sample entropy for both groups when performing a cognitive task. Results suggest that performing a concurrent cognitive task promotes the adoption of an automatic postural control in young and older adults as evidenced by an increased postural stability and postural sway complexity. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Lower regulatory frequency for postural control in patients with fibromyalgia and chronic fatigue syndrome.

    Science.gov (United States)

    Rasouli, Omid; Vasseljen, Ottar; Fors, Egil A; Lorås, Håvard W; Stensdotter, Ann-Katrin

    2018-01-01

    As many similar symptoms are reported in fibromyalgia (FM) and chronic fatigue syndrome (CFS), underlying defcits may potentially also be similar. Postural disequilibrium reported in both conditions may thus be explained by similar deviations in postural control strategies. 75 females (25/group FM, CFS and control, age 19-49 years) performed 60 s of quiet standing on a force platform in each of three conditions: 1) firm surface with vision, 2) firm surface without vision and, 3) compliant surface with vision. Migration of center of pressure was decomposed into a slow and a fast component denoting postural sway and lateral forces controlling postural sway, analyzed in the time and frequency domains. Main effects of group for the antero-posterior (AP) and medio-lateral (ML) directions showed that patients displayed larger amplitudes (AP, p = 0.002; ML, p = 0.021) and lower frequencies (AP, p controls. Post hoc analyses showed no significant differences between patient groups. In conclusion, both the CFS- and the FM-group differed from the control group. Larger postural sway and insufficient control was found in patients compared to controls, with no significant differences between the two patient groups.

  18. Recruitment of motor units in the medial gastrocnemius muscle during human quiet standing: is recruitment intermittent? What triggers recruitment?

    Science.gov (United States)

    Vieira, Taian M M; Loram, Ian D; Muceli, Silvia; Merletti, Roberto; Farina, Dario

    2012-01-01

    The recruitment and the rate of discharge of motor units are determinants of muscle force. Within a motoneuron pool, recruitment and rate coding of individual motor units might be controlled independently, depending on the circumstances. In this study, we tested whether, during human quiet standing, the force of the medial gastrocnemius (MG) muscle is predominantly controlled by recruitment or rate coding. If MG control during standing was mainly due to recruitment, then we further asked what the trigger mechanism is. Is it determined internally, or is it related to body kinematics? While seven healthy subjects stood quietly, intramuscular electromyograms were recorded from the MG muscle with three pairs of wire electrodes. The number of active motor units and their mean discharge rate were compared for different sway velocities and positions. Motor unit discharges occurred more frequently when the body swayed faster and forward (Pearson R = 0.63; P motor unit potentials was explained chiefly by the recruitment of additional units. During forward body shifts, the median number of units detected increased from 3 to 11 (P motor units did not discharge continuously throughout standing. They were recruited within individual, forward sways and intermittently, with a modal rate of two recruitments per second. This modal rate is consistent with previous circumstantial evidence relating the control of standing to an intrinsic, higher level planning process.

  19. Hippotherapy on postural balance in the sitting position of children with cerebral palsy - Longitudinal study.

    Science.gov (United States)

    Moraes, Andréa Gomes; Copetti, Fernando; Ângelo, Vera Regina; Chiavoloni, Luana; de David, Ana Cristina

    2018-06-11

    To verify the effects of 12, 24, 36 hippotherapy sessions over time on postural balance while sitting in children with cerebral palsy as well the effects of treatment after one interruption period of 45 days. Hippotherapy program with a twice-weekly treatment with a total of 13 children aged 5-10 years old. Measurements of postural balance during sitting were performed using the AMTI AccuSway Plus platform. There was a statistically significant reduction in mediolateral and anteroposterior sway after the first 12 hippotherapy sessions, and further significant sway reduction occurred as the treatment progressed. Changes in the center of pressure displacement velocity variable began to occur after 24 sessions. Seated postural balance improved in children with cerebral palsy, as evidenced by lower COP displacement, particularly after a greater number of sessions. After the last evaluations, when completing 36 sessions of hippotherapy, it was verified that the improvements to the postural balance continued to occur. Therefore, further studies with a longer treatment period may help to clarify if, at some point, there is stabilization in the improvement of postural balance. Furthermore, it is important to analyze the impact of hippotherapy on functional activities over time.

  20. Misclassification of Patients with Spinocerebellar Ataxia as having Psychogenic Postural Instability based on Computerized Dynamic Posturography

    Directory of Open Access Journals (Sweden)

    Susan J Herdman

    2011-04-01

    Full Text Available Specific criteria have been developed based on computerized dynamic posturography (CDP to assist clinicians in identifying patients with psychogenic balance problems1-4. Patients with known Spinocerebellar Ataxia (SCA meet several of the criteria for psychogenic balance problem and risk being misclassified as having imbalance of psychogenic origin. However, our research shows that patients with SCA may be distinguished from patients with psychogenic balance problems in several ways. We compared test performance on CDP and the observation of specific behaviors that are associated with psychogenic balance problems in patients with SCA (n = 43 and patients with known psychogenic balance problems (n = 40. Chi square analysis was used to determine if there were significant differences between the groups for the frequency of each criterion for psychogenic CDP and Observed Behaviors. Level of significance was Bonferroni corrected for multiple comparisons. Sensitivity, specificity, and positive likelihood ratios were calculated for each criterion. Hierarchical cluster analysis was used to examine whether the two patient groups demonstrated similar groupings of criteria. Comparison of the results of these analyses identified two criteria that were significantly more frequent in the Psychogenic group than in the SCA group: Regular Periodicity of sway and Circular Sway. Sensitivity, specificity and positive likelihood ratios identified two additional criteria, Inconsistent Motor Responses and Large lateral Sway that also seem to suggest a psychogenic component to a person’s imbalance. Prospective studies are needed to validate the usefulness of these findings.

  1. Clinical correlates of between-limb synchronization of standing balance control and falls during inpatient stroke rehabilitation.

    Science.gov (United States)

    Mansfield, Avril; Mochizuki, George; Inness, Elizabeth L; McIlroy, William E

    2012-01-01

    Stroke-related sensorimotor impairment potentially contributes to impaired balance. Balance measures that reveal underlying limb-specific control problems, such as a measure of the synchronization of both lower limbs to maintain standing balance, may be uniquely informative about poststroke balance control. This study aimed to determine the relationships between clinical measures of sensorimotor control, functional balance, and fall risk and between-limb synchronization of balance control. The authors conducted a retrospective chart review of 100 individuals with stroke admitted to inpatient rehabilitation. Force plate-based measures were obtained while standing on 2 force plates, including postural sway (root mean square of anteroposterior and mediolateral center of pressure [COP]), stance load asymmetry (percentage of body weight borne on the less-loaded limb), and between-limb synchronization (cross-correlation of the COP recordings under each foot). Clinical measures obtained were motor impairment (Chedoke-McMaster Stroke Assessment), plantar cutaneous sensation, functional balance (Berg Balance Scale), and falls experienced in rehabilitation. Synchronization was significantly related to motor impairment and prospective falls, even when controlling for other force plate-based measures of standing balance control (ie, postural sway and stance load symmetry). Between-limb COP synchronization for standing balance appears to be a uniquely important index of balance control, independent of postural sway and load symmetry during stance.

  2. Infant attachment predicts bodily freezing in adolescence: evidence from a prospective longitudinal study

    Directory of Open Access Journals (Sweden)

    Hannah C. M. Niermann

    2015-10-01

    Full Text Available Early life-stress, particularly maternal deprivation, is associated with long-lasting deviations in animals’ freezing responses. Given the relevance of freezing for stress-coping, translational research is needed to examine the relation between insecure infant-parent attachment and bodily freezing-like behavior in humans. Therefore, we investigated threat-related reductions in body sway (indicative of freezing-like behavior in 14-year-old adolescents (N=79, for whom attachment security was earlier assessed in infancy. As expected, insecure (versus secure attachment was associated with less body sway for angry versus neutral faces. This effect remained when controlling for intermediate life-events. These results suggest that the long-lasting effects of early negative caregiving experiences on the human stress and threat systems extend to the primary defensive reaction of freezing. Additionally, we replicated earlier work in adults, by observing a significant correlation (in adolescents assessed as securely attached between subjective state anxiety and reduced body sway in response to angry versus neutral faces. Together, this research opens venues to start exploring the role of freezing in the development of human psychopathology.

  3. Postural stability in a population of dancers, healthy non-dancers, and vestibular neuritis patients.

    Science.gov (United States)

    Martin-Sanz, Eduardo; Ortega Crespo, Isabel; Esteban-Sanchez, Jonathan; Sanz, Ricardo

    2017-09-01

    Several studies have indicated better balance control in dancers than in control participants, but some controversy remains. The aim of our study is to evaluate the postural stability in a cohort of dancers, non-dancers, compensated, and non-compensated unilateral vestibular neuritis (VN). This is a prospective study of control subjects, dancers, and VN patients between June 2009 and December 2015. Dancers from the Dance Conservatory of Madrid and VN patients were referred to our department for analysis. After the clinical history, neuro-otological examination, audiogram, and caloric tests, the diagnosis was done. Results from clinical examination were used for the categorization of compensation situation. A computerized dynamic posturography was performed to every subject. Forty dancers and 38 women formed both 'dancer' and 'normal' cohorts. Forty-two compensated and 39 uncompensated patients formed both 'compensated' and 'uncompensated' cohorts. Dancers had significantly greater antero-posterior (AP) body sway than controls during condition 5 and 6 in the Sensory Organization Test (SOT) (p body sway in every SOT studied condition (p body say in SOT 5 and 6, showed greater values in compensated patients than the control group, the mean analysis did not show any statistical difference between the compensated and dancer groups, in such SOT conditions. Dancers demonstrated greater sways than non-dancers when they relied their postural control on vestibular input alone. Compensated patients had a similar posturographic pattern that the dancers cohort, suggesting a similar shift from visual to somatosensory information.

  4. Examining the stability of dual-task posture and reaction time measures in older adults over five sessions: a pilot study.

    Science.gov (United States)

    Jehu, Deborah A; Paquet, Nicole; Lajoie, Yves

    2016-12-01

    Improved performance may be inherent due to repeated exposure to a testing protocol. However, limited research has examined this phenomenon in postural control. The aim was to determine the influence of repeated administration of a dual-task testing protocol once per week for 5 weeks on postural sway and reaction time. Ten healthy older adults (67.0 ± 6.9 years) stood on a force plate for 30 s in feet apart and semi-tandem positions while completing simple reaction time (SRT) and choice reaction time (CRT) tasks. They were instructed to stand as still as possible while verbally responding as fast as possible to the stimuli. No significant differences in postural sway were shown over time (p > 0.05). A plateau in average CRT emerged as the time effect revealed longer CRT during session 1 compared to sessions 3-5 (p task context. Postural sway and SRT were stable over the 5 testing sessions, but variability of CRT continued to improve over time. These findings form a basis for future studies to examine performance-related improvements due to repeated exposure to a testing protocol in a dual-task setting.

  5. Effects of dual-task training on balance and executive functions in Parkinson's disease: A pilot study.

    Science.gov (United States)

    Fernandes, Ângela; Rocha, Nuno; Santos, Rubim; Tavares, João Manuel R S

    2015-01-01

    The aim of this study was to analyze the efficacy of cognitive-motor dual-task training compared with single-task training on balance and executive functions in individuals with Parkinson's disease. Fifteen subjects, aged between 39 and 75 years old, were randomly assigned to the dual-task training group (n = 8) and single-task training group (n = 7). The training was run twice a week for 6 weeks. The single-task group received balance training and the dual-task group performed cognitive tasks simultaneously with the balance training. There were no significant differences between the two groups at baseline. After the intervention, the results for mediolateral sway with eyes closed were significantly better for the dual-task group and anteroposterior sway with eyes closed was significantly better for the single-task group. The results suggest superior outcomes for the dual-task training compared to the single-task training for static postural control, except in anteroposterior sway with eyes closed.

  6. The effects of Pilates exercise training on static and dynamic balance in chronic stroke patients: a randomized controlled trial

    Science.gov (United States)

    Lim, Hee Sung; Kim, You Lim; Lee, Suk Min

    2016-01-01

    [Purpose] The purpose of this study was to analyze the effects of Pilates exercise on static and dynamic balance in chronic stroke patients. [Subjects and Methods] Nineteen individuals with unilateral chronic hemiparetic stroke (age, 64.7 ± 6.9 years; height, 161.7 ± 7.9 cm; weight, 67.0 ± 11.1 kg) were randomly allocated to either a Pilates exercise group (PG, n=10) or a control group (CG, n=9). The PG attended 24 exercise sessions conducted over an 8-week period (3 sessions/week). Center of pressure (COP) sway and COP velocity were measured one week before and after the exercise program and compared to assess training effects. [Results] Pilates exercise positively affected both static and dynamic balance in patients with chronic stroke. For static balance, COP sway and velocity in the medial-lateral (M-L) and anterior-posterior (A-P) directions were significantly decreased in the PG after training while no significant differences were found in the CG. For dynamic balance, measured during treadmill walking, the PG showed significantly reduced COP sway and velocity in the M-L and A-P directions for both the paretic and non-paretic leg. [Conclusions] The findings provide initial evidence that Pilates exercise can enhance static and dynamic balance in patients with chronic stroke. PMID:27390424

  7. Effectiveness and Limitations of Unsupervised Home-Based Balance Rehabilitation with Nintendo Wii in People with Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Massimiliano Pau

    2015-01-01

    Full Text Available Balance training represents a critical part of the rehabilitation process of individuals living with multiple sclerosis (MS since impaired postural control is a distinctive symptom of the disease. In recent years, the use of the Nintendo Wii system has become widespread among rehabilitation specialists for this purpose, but few studies have verified the effectiveness of such an approach using quantitative measures of balance. In this study, we analyzed the postural sway features of a cohort of twenty-seven individuals with MS before and after 5 weeks of unsupervised home-based balance training with the Wii system. Center of pressure (COP time-series were recorded using a pressure platform and processed to calculate sway area, COP path length, displacements, and velocities in mediolateral (ML and anteroposterior (AP directions. Although the results show a significant reduction in sway area, COP displacements, and velocity, such improvements are essentially restricted to the ML direction, as the Wii platform appears to properly stimulate the postural control system in the frontal plane but not in the sagittal one. Available Wii games, although somewhat beneficial, appear not fully suitable for rehabilitation in MS owing to scarce flexibility and adaptability to MS needs and thus specific software should be developed.

  8. Effectiveness and Limitations of Unsupervised Home-Based Balance Rehabilitation with Nintendo Wii in People with Multiple Sclerosis.

    Science.gov (United States)

    Pau, Massimiliano; Coghe, Giancarlo; Corona, Federica; Leban, Bruno; Marrosu, Maria Giovanna; Cocco, Eleonora

    2015-01-01

    Balance training represents a critical part of the rehabilitation process of individuals living with multiple sclerosis (MS) since impaired postural control is a distinctive symptom of the disease. In recent years, the use of the Nintendo Wii system has become widespread among rehabilitation specialists for this purpose, but few studies have verified the effectiveness of such an approach using quantitative measures of balance. In this study, we analyzed the postural sway features of a cohort of twenty-seven individuals with MS before and after 5 weeks of unsupervised home-based balance training with the Wii system. Center of pressure (COP) time-series were recorded using a pressure platform and processed to calculate sway area, COP path length, displacements, and velocities in mediolateral (ML) and anteroposterior (AP) directions. Although the results show a significant reduction in sway area, COP displacements, and velocity, such improvements are essentially restricted to the ML direction, as the Wii platform appears to properly stimulate the postural control system in the frontal plane but not in the sagittal one. Available Wii games, although somewhat beneficial, appear not fully suitable for rehabilitation in MS owing to scarce flexibility and adaptability to MS needs and thus specific software should be developed.

  9. Effects of community-based virtual reality treadmill training on balance ability in patients with chronic stroke.

    Science.gov (United States)

    Kim, Nara; Park, YuHyung; Lee, Byoung-Hee

    2015-03-01

    [Purpose] We aimed to examine the effectiveness of a community-based virtual reality treadmill training (CVRTT) program on static balance abilities in patients with stroke. [Subjects and Methods] Patients (n = 20) who suffered a stroke at least 6 months prior to the study were recruited. All subjects underwent conventional physical therapy for 60 min/day, 5 days/week, for 4 weeks. Additionally, the CVRTT group underwent community-based virtual reality scene exposure combined with treadmill training for 30 min/day, 3 days/week, for 4 weeks, whereas the control group underwent conventional physical therapy, including muscle strengthening, balance training, and indoor and outdoor gait training, for 30 min/day, 3 days/week, for 4 weeks. Outcome measurements included the anteroposterior, mediolateral, and total postural sway path lengths and speed, which were recorded using the Balancia Software on a Wii Fit(™) balance board. [Results] The postural sway speed and anteroposterior and total postural sway path lengths were significantly decreased in the CVRTT group. Overall, the CVRTT group showed significantly greater improvement than the control group. [Conclusions] The present study results can be used to support the use of CVRTT for effectively improving balance in stroke patients. Moreover, we determined that a CVRTT program for stroke patients is both feasible and suitable.

  10. Effectiveness and Limitations of Unsupervised Home-Based Balance Rehabilitation with Nintendo Wii in People with Multiple Sclerosis

    Science.gov (United States)

    2015-01-01

    Balance training represents a critical part of the rehabilitation process of individuals living with multiple sclerosis (MS) since impaired postural control is a distinctive symptom of the disease. In recent years, the use of the Nintendo Wii system has become widespread among rehabilitation specialists for this purpose, but few studies have verified the effectiveness of such an approach using quantitative measures of balance. In this study, we analyzed the postural sway features of a cohort of twenty-seven individuals with MS before and after 5 weeks of unsupervised home-based balance training with the Wii system. Center of pressure (COP) time-series were recorded using a pressure platform and processed to calculate sway area, COP path length, displacements, and velocities in mediolateral (ML) and anteroposterior (AP) directions. Although the results show a significant reduction in sway area, COP displacements, and velocity, such improvements are essentially restricted to the ML direction, as the Wii platform appears to properly stimulate the postural control system in the frontal plane but not in the sagittal one. Available Wii games, although somewhat beneficial, appear not fully suitable for rehabilitation in MS owing to scarce flexibility and adaptability to MS needs and thus specific software should be developed. PMID:26583146

  11. A multimodal assessment of balance in elderly and young adults

    Science.gov (United States)

    King, Gregory W.; Abreu, Eduardo L.; Cheng, An-Lin; Chertoff, Keyna K.; Brotto, Leticia; Kelly, Patricia J.; Brotto, Marco

    2016-01-01

    Falling is a significant health issue among elderly adults. Given the multifactorial nature of falls, effective balance and fall risk assessment must take into account factors from multiple sources. Here we investigate the relationship between fall risk and a diverse set of biochemical and biomechanical variables including: skeletal muscle-specific troponin T (sTnT), maximal strength measures derived from isometric grip and leg extension tasks, and postural sway captured from a force platform during a quiet stance task. These measures were performed in eight young and eleven elderly adults, along with estimates of fall risk derived from the Tinetti Balance Assessment. We observed age-related effects in all measurements, including a trend toward increased sTnT levels, increased postural sway, reduced upper and lower extremity strength, and reduced balance scores. We observed a negative correlation between balance scores and sTnT levels, suggesting its use as a biomarker for fall risk. We observed a significant positive correlation between balance scores and strength measures, adding support to the notion that muscle strength plays a significant role in postural control. We observed a significant negative correlation between balance scores and postural sway, suggesting that fall risk is associated with more loosely controlled center of mass regulation. PMID:26934319

  12. Proprioceptive impairments in high fall risk older adults: the effect of mechanical calf vibration on postural balance.

    Science.gov (United States)

    Toosizadeh, Nima; Ehsani, Hossein; Miramonte, Marco; Mohler, Jane

    2018-05-02

    Impairments in proprioceptive mechanism with aging has been observed and associated with fall risk. The purpose of the current study was to assess proprioceptive deficits among high fall risk individuals in comparison with healthy participants, when postural performance was disturbed using low-frequency mechanical gastrocnemius vibratory stimulation. Three groups of participants were recruited: healthy young (n = 10; age = 23 ± 2 years), healthy elders (n = 10; age = 73 ± 3 years), and high fall risk elders (n = 10; age = 84 ± 9 years). Eyes-open and eyes-closed upright standing balance performance was measured with no vibration, and 30 and 40 Hz vibration of both calves. Vibration-induced changes in balance behaviors, compared to baseline (no vibratory stimulation) were compared between three groups using multivariable repeated measures analysis of variance models. Overall, similar results were observed for two vibration frequencies. However, changes in body sway due to vibration were more obvious within the eyes-closed condition, and in the medial-lateral direction. Within the eyes-closed condition high fall risk participants showed 83% less vibration-induced change in medial-lateral body sway, and 58% less sway velocity, when compared to healthy participants (p balance performance may be explained by reduced sensitivity in peripheral nervous system among older adults with impaired balance.

  13. The Association of Glaucomatous Visual Field Loss and Balance

    Science.gov (United States)

    de Luna, Regina A.; Mihailovic, Aleksandra; Nguyen, Angeline M.; Friedman, David S.; Gitlin, Laura N.; Ramulu, Pradeep Y.

    2017-01-01

    Purpose To relate balance measures to visual field (VF) damage from glaucoma. Methods The OPAL kinematic system measured balance, as root mean square (RMS) sway, on 236 patients with suspect/diagnosed glaucoma. Balance was measured with feet shoulder width apart while standing on a firm/foam surface with eyes opened/closed (Instrumental Clinical Test of Sensory Integration and Balance [ICTSIB] conditions), and eyes open on a firm surface under feet together, semi-tandem, or tandem positions (standing balance conditions). Integrated VF (IVF) sensitivities were calculated by merging right and left eye 24-2 VF data. Results Mean age was 71 years (range, 57–93) and mean IVF sensitivity was 27.1 dB (normal = 31 dB). Lower IVF sensitivity was associated with greater RMS sway during eyes-open foam-surface testing (β = 0.23 z-score units/5 dB IVF sensitivity decrement, P = 0.001), but not during other ICTSIB conditions. Lower IVF sensitivity also was associated with greater RMS sway during feet together standing balance testing (0.10 z-score units/5 dB IVF sensitivity decrement, P = 0.049), but not during other standing balance conditions. Visual dependence of balance was lower in patients with worse IVF sensitivity (β = −21%/5 dB IVF sensitivity decrement, P falls and patients with VF loss from glaucoma may be at higher risk of falls because of poor balance. PMID:28553562

  14. Development of a protocol for improving the clinical utility of posturography as a fall-risk screening tool.

    Science.gov (United States)

    Bigelow, Kimberly Edginton; Berme, Necip

    2011-02-01

    The usefulness of posturography in the clinical screening of older adults for fall risk has been limited by a lack of standardization in testing methodology and data reporting. This study determines which testing condition and postural sway measures best differentiate recurrent fallers and nonrecurrent fallers. One hundred and fifty older adults were categorized based on their fall status in the past year. Participants performed four quiet-standing tasks, eyes open and eyes closed in both comfortable and narrow stance, for 60 seconds while standing on a force-measuring platform. Traditional and fractal measures were calculated from the center of pressure data. Logistic regression was performed to determine the model for each condition that best discriminated between recurrent fallers and nonrecurrent fallers. The eyes closed comfortable stance condition, with its associated model, best differentiated recurrent fallers and nonrecurrent fallers. Medial-lateral sway velocity, anterior-posterior short-term α-scaling exponent, medial-lateral short-term α-scaling exponent, mean frequency, body mass index, and age were included in this model. Sensitivity of the model was 75%, and specificity was 94%. This resulting model demonstrates potential to differentiate recurrent fallers and nonrecurrent fallers in an eyes closed comfortable stance condition. The inclusion of traditional sway parameters, fractal measures, and personal characteristics in this model demonstrates the importance of considering multiple descriptions of postural stability together rather than using only a single measure to establish fall risk.

  15. Effects of ballates, step aerobics, and walking on balance in women aged 50-75 years.

    Science.gov (United States)

    Clary, Sarah; Barnes, Cathleen; Bemben, Debra; Knehans, Allen; Bemben, Michael

    2006-01-01

    This study examined the effectiveness of Ballates training (strengthening of the central core musculature by the inception of balance techniques) compared to more traditional exercise programs, such as step aerobics and walking, on balance in women aged 50- 75 years. Participants were randomly assigned to one of three supervised training groups (1 hour/day, 3 days/week, 13 weeks), Ballates (n = 12), step aerobics (n = 17), or walking (n =15). Balance was measured by four different methods (modified Clinical Test for the Sensory Interaction on Balance - mCTSIB; Unilateral Stance with Eyes Open - US-EO or Eyes Closed - US-EC; Tandem Walk - TW; Step Quick Turn - SQT) using the NeuroCom Balance Master. A 2-way (Group and Trial) repeated measures ANOVA and post-hoc Bonferroni Pair-wise Comparisons were used to evaluate changes in the dependent variables used to describe stability and balance (sway velocity, turn sway, speed, and turn time). Measures of static postural stability and dynamic balance were similar for the three groups prior to training. Following the different exercise interventions, sway velocity on firm and foam surfaces (mCTSIB) with eyes closed (p risk of fall.

  16. Rambling and trembling in response to body loading.

    Science.gov (United States)

    Tahayor, Behdad; Riley, Zachary A; Mahmoudian, Armaghan; Koceja, David M; Hong, Siang Lee

    2012-04-01

    Various studies have suggested that postural sway is controlled by at least two subsystems. Rambling-Trembling analysis is a widely accepted methodology to dissociate the signals generated by these two hypothetical subsystems. The core assumption of this method is based on the equilibrium point hypothesis which suggests that the central nervous system preserves upright standing by transiently shifting the center of pressure (COP) from one equilibrium point to another. The trajectory generated by this shifting is referred to as rambling and its difference from the original COP signal is referred to as trembling. In this study we showed that these two components of COP are differentially affected when standing with external loads. Using Detrended Fluctuation analysis, we compared the pattern of these two signals in different configurations of body loading. Our findings suggest that by applying an external load, the dynamics of the trembling component is altered independently of the area of postural sway and also independently of the rambling component. The dynamics of rambling changed only during the backloading condition in which the postural sway area also substantially increased. It can be suggested that during loaded standing, the trembling mechanism (which is suggested to be activated by peripheral mechanisms and reflexes) is altered without affecting the central influence on the shifts of the equilibrium point.

  17. Medio-lateral postural instability in subjects with tinnitus

    Directory of Open Access Journals (Sweden)

    Zoi eKapoula

    2011-05-01

    Full Text Available Background: Many patients show modulation of tinnitus by gaze, jaw or neck movements, reflecting abnormal sensorimotor integration and interaction between various inputs. Postural control is based on multi-sensory integration (visual, vestibular, somatosensory, and oculomotor and indeed there is now evidence that posture can also be influenced by sound. Perhaps tinnitus influences posture similarly to external sound. This study examines the quality of postural performance in quiet stance in patients with modulated tinnitus.Methods: Twenty-three patients with highly modulated tinnitus were selected in the ENT service. Twelve reported exclusively or predominately left tinnitus, eight right and three bilateral. Eighteen control subjects were also tested. Subjects were asked to fixate a target at 40cm for 51s; posturography was performed with the platform (Technoconcept, 40Hz for both the eyes open and eyes closed conditions.Results: For both conditions, tinnitus subjects showed abnormally high lateral body sway (SDx. This was corroborated by fast Fourrier Transformation (FFTx and wavelet analysis. For patients with left tinnitus only, medio-lateral sway increased significantly when looking away from the center. Conclusions: Similarly to external sound stimulation, tinnitus could influence lateral sway by activating attention shift, and perhaps vestibular responses. Poor integration of sensorimotor signals is another possibility. Such abnormalities would be accentuated in left tinnitus because of the importance of the right cerebral cortex in processing both auditory-tinnitus and attention.

  18. Comparison of Postural Responses to Galvanic Vestibular Stimulation between Pilots and the General Populace

    Directory of Open Access Journals (Sweden)

    Yang Yang

    2015-01-01

    Full Text Available Galvanic vestibular stimulation (GVS can be used to study the body’s response to vestibular stimuli. This study aimed to investigate whether postural responses to GVS were different between pilots and the general populace. Bilateral bipolar GVS was applied with a constant-current profile to 12 pilots and 12 control subjects via two electrodes placed over the mastoid processes. Both GVS threshold and the center of pressure’s trajectory (COP’s trajectory were measured. Position variability of COP during spontaneous body sway and peak displacement of COP during GVS-induced body sway were calculated in the medial-lateral direction. Spontaneous body sway was slight for all subjects, and there was no significant difference in the value of COP position variability between the pilots and controls. Both the GVS threshold and magnitude of GVS-induced body deviation were similar for different GVS polarities. GVS thresholds were similar between the two groups, but the magnitude of GVS-induced body deviation in the controls was significantly larger than that in the pilots. The pilots showed less GVS-induced body deviation, meaning that pilots may have a stronger ability to suppress vestibular illusions.

  19. Adaptation of sensorimotor coupling in postural control is impaired by sleep deprivation.

    Directory of Open Access Journals (Sweden)

    Stefane A Aguiar

    Full Text Available The purpose of the study was to investigate the effects of sleep deprivation (SD in adaptation of the coupling between visual information and body sway in young adults' postural control due to changes in optic flow characteristics. Fifteen young adults were kept awake for approximately 25 hours and formed the SD group, while fifteen adults who slept normally the night before the experiment participated as part of the control group. All participants stood as still as possible in a moving room before and after being exposed to one trial with higher amplitude and velocity of room movement. Postural performance and the coupling between visual information, provided by a moving room, and body sway were examined. Results showed that after an abrupt change in visual cues, larger amplitude, and higher velocity of the room, the influence of room motion on body sway was decreased in both groups. However, such a decrease was less pronounced in sleep deprived as compared to control subjects. Sleep deprived adults were able to adapt motor responses to the environmental change provided by the increase in room motion amplitude. Nevertheless, they were not as efficient as control subjects in doing so, which demonstrates that SD impairs the ability to adapt sensorimotor coupling while controlling posture when a perturbation occurs.

  20. Application of mass-spring model in seismic analysis of liquid storage tank

    International Nuclear Information System (INIS)

    Liu Jiayi; Bai Xinran; Li Xiaoxuan

    2013-01-01

    There are many tanks for storing liquid in nuclear power plant. When seismic analysis is performed, swaying of liquid may change the mechanical parameters of those tanks, such as the center of mass and the moment of inertia, etc., so the load due to swaying of liquid can't be neglected. Mass-spring model is a simplified model to calculate the dynamic pressure of liquid in tank under earthquake, which is derived by the theory of Housner and given in the specification of seismic analysis of Safety-Related Nuclear Structures and Commentary-4-98 (ASCE-4-98 for short hereinafter). According to the theory of Housner and ASCE-4-98, the mass-spring 3-D FEM model for storage tank and liquid in it was established, by which the force of stored liquid acted on liquid storage tank in nuclear power plant under horizontal seismic load was calculated. The calculated frequency of liquid swaying and effect of liquid convection on storage tank were compared with those calculated by simplified formula. It is shown that the results of 3-D FEM model are reasonable and reliable. Further more, it is more direct and convenient compared with description in ASCE-4-98 when the mass-spring model is applied to 3-D FEM model for seismic analysis, from which the displacement and stress distributions of the plate-shell elements or the 3-D solid finite elements can be obtained directly from the seismic input model. (authors)

  1. The effects of cognitive loading on balance control in patients with multiple sclerosis.

    Science.gov (United States)

    Negahban, Hossein; Mofateh, Razieh; Arastoo, Ali Asghar; Mazaheri, Masood; Yazdi, Mohammad Jafar Shaterzadeh; Salavati, Mahyar; Majdinasab, Nastaran

    2011-10-01

    The aim of this study was to compare the effects of concurrent cognitive task (silent backward counting) on balance performance between two groups of multiple sclerosis (MS) (n=23) and healthy (n=23) participates. Three levels of postural difficulty were studied on a force platform, i.e. rigid surface with eyes open, rigid surface with eyes closed, and foam surface with eyes closed. A mixed model analysis of variance showed that under difficult sensory condition of foam surface with eyes closed, execution of concurrent cognitive task caused a significant decrement in variability of sway velocity in anteroposterior direction for the patient group (P<0.01) while this was not the case for healthy participants (P=0.22). Also, the variability of sway velocity in mediolateral direction was significantly decreased during concurrent execution of cognitive task in patient group (P<0.01) and not in healthy participants (P=0.39). Furthermore, in contrast to single tasking, dual tasking had the ability to discriminate between the 2 groups in all conditions of postural difficulty. In conclusion, findings of variability in sway velocity seem to confirm the different response to cognitive loading between two groups of MS and healthy participants. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Effects of nanotechnologies-based devices on postural control in healthy subjects.

    Science.gov (United States)

    Malchiodi Albedi, Giovanna; Corna, Stefano; Aspesi, Valentina; Clerici, Daniela; Parisio, Cinzia; Seitanidis, Jonathan; Cau, Nicola; Brugliera, Luigia; Capodaglio, Paolo

    2017-09-05

    The aim of the present preliminary randomized controlled study was to ascertain whether the use of newly developed nanotechnologies-based patches can influence posture control of healthy subjects. Thirty healthy female subjects (age 39.4 years, BMI 22.74 kg/m2) were randomly assigned to two groups: one with active patches and a control group with sham patches. Two patches were applied with a tape: one on the subject's sternum and the other on the C7 apophysis. Body sway during quiet upright stance was recorded with a dynamometric platform. Each subject was tested under two visual conditions, eyes open and closed. We used a blocked stratified randomization procedure conducted by a third party. Subjects wearing the sham patches showed a significant increase of the centre of pressure sway area after 4 hours when they performed the habitual moderate-intensity work activities. In the active patch group, a decrease of the sway path was evident, providing evidence of an enhanced balance control. Our preliminary findings on healthy subjects indicate that nanotechnological devices generating ultra-low electromagnetic fields can improve posture control.

  3. Gabapentin can improve postural stability and quality of life in primary orthostatic tremor.

    Science.gov (United States)

    Rodrigues, Julian P; Edwards, Dylan J; Walters, Susan E; Byrnes, Michelle L; Thickbroom, Gary; Stell, Rick; Mastaglia, Frank L

    2005-07-01

    Primary orthostatic tremor (OT) is characterized by leg tremor and instability on standing. High frequency (13-18 Hz) tremor bursting is present in leg muscles during stance, and posturography has shown greater than normal sway. We report on an open-label add-on study of gabapentin in 6 patients with OT. Six patients were studied with surface electromyography, force platform posturography, and a modified Parkinson's disease questionnaire (PDQ-39) quality of life (QOL) scale before and during treatment with gabapentin 300 mg t.d.s. If on other medications for OT, these were continued unchanged. Of the 6 patients, 4 reported a subjective benefit of 50 to 75% with gabapentin, 3 of whom showed reduced tremor amplitude and postural sway of up to 70%. Dynamic balance improved in all 3 patients who completed the protocol. QOL data from 5 patients showed improvement in all cases. No adverse effects were noted. Gabapentin may improve tremor, stability, and QOL in patients with OT, and symptomatic response correlated with a reduction in tremor amplitude and postural sway. The findings confirm previous reports of symptomatic benefit with gabapentin and provide justification for larger controlled clinical trials. Further work is required to establish the optimal dosage and to validate the methods used to quantify the response to treatment. Copyright 2005 Movement Disorder Society.

  4. The effect of time-of-day on static and dynamic balance in recreational athletes.

    Science.gov (United States)

    Heinbaugh, Erika M; Smith, Derek T; Zhu, Qin; Wilson, Margaret A; Dai, Boyi

    2015-09-01

    The purpose of this study was to investigate the effect of time-of-day (morning vs. afternoon) on static and dynamic balance in recreational athletes. A total of 34 recreational athletes completed the single-leg stance test with or without eyes open, lower quarter Y-balance test, upper quarter Y-balance test, and single-leg landing balance test in a random order in the morning (7:00-10:00 am) and afternoon (3:00-6:00 pm) for two consecutive days. Compared with the morning, participants demonstrated decreased centre of pressure (COP) sway areas (p = 0.002; Cohen's d (d) = 0.28) and sway speeds (p = 0.002; d = 0.17) during the eyes-open single-leg stance test, increased stance time (p = 0.031; d = 0.16) and decreased COP sway areas (p = 0.029; d = 0.22) during the eyes-closed single-leg stance test, and increased reaching distances (p = 0.024; d = 0.10) during the upper quarter Y-balance test in the afternoon. The between-day effect (day 1 vs. day 2) was observed for several parameters. Time-of-day had a minimal effect on dynamic balance and a noticeable effect on static balance. Time-of-day may be considered as a factor in designing balance training programmes and intervention studies for recreational athletes.

  5. Embodied prosthetic arm stabilizes body posture, while unembodied one perturbs it.

    Science.gov (United States)

    Imaizumi, Shu; Asai, Tomohisa; Koyama, Shinichi

    2016-10-01

    Senses of ownership (this arm belongs to me) and agency (I am controlling this arm) originate from sensorimotor system. External objects can be integrated into the sensorimotor system following long-term use, and recognized as one's own body. We examined how an (un)embodied prosthetic arm modulates whole-body control, and assessed the components of prosthetic embodiment. Nine unilateral upper-limb amputees participated. Four frequently used their prosthetic arm, while the others rarely did. Their postural sway was measured during quiet standing with or without their prosthesis. The frequent users showed greater sway when they removed the prosthesis, while the rare users showed greater sway when they fitted the prosthesis. Frequent users reported greater everyday feelings of postural stabilization by prosthesis and a larger sense of agency over the prosthesis. We suggest that a prosthetic arm maintains or perturbs postural control, depending on the prosthetic embodiment, which involves sense of agency rather than ownership. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Caffeine antagonism of alcohol-induced driving impairment.

    Science.gov (United States)

    Liguori, A; Robinson, J H

    2001-07-01

    The extent to which caffeine antagonizes alcohol-induced impairment of simulated automobile driving at the current lowest legal American limit (0.08% BrAC) was the focus of this study. Fifteen adults swallowed a capsule (0, 200, or 400 mg caffeine) then drank a beverage (0.0 or 0.6 g/kg ethanol) in a within-subject, double-blind, randomized procedure. Forty-five minutes later, participants completed a test battery of subjective effects scales, dynamic posturography, critical flicker fusion (CFF), choice reaction time (CRT), divided attention (Stroop test), and simulated driving. Alcohol alone increased ratings of 'dizzy', 'drug effect', and 'high', slowed CRT and brake latency, and increased body sway. Caffeine alone increased ratings of 'alert' and 'jittery', but did not significantly affect body sway or psychomotor performance. Both caffeine doses comparably counteracted alcohol impairment of brake latency but not CRT or body sway. Brake latency with either alcohol-caffeine combination remained significantly longer than that with placebo. Stroop and CFF performance were unaffected by any drug condition. The results suggest that caffeine may increase alertness and improve reaction time after alcohol use but will not completely counteract alcohol impairment in a driver.

  7. Relationships between HMG-CoA reductase inhibitors (statin) use and strength, balance and falls in older people.

    Science.gov (United States)

    Haerer, W; Delbaere, K; Bartlett, H; Lord, S R; Rowland, J

    2012-12-01

    To investigate associations between HMG-CoA reductase inhibitor (statin) use and muscle strength, balance, mobility and falls in older people. Five hundred community-dwelling people aged 70-90 years provided information about their medication use and undertook tests of lower limb strength, postural sway, leaning balance (maximal balance range and coordinated stability tests) and functional mobility. Participants were then followed up for 12 months with respect to falls. After adjusting for general health in analyses of covariance procedures, statin users had poorer maximal balance range than non-statin users (P = 0.017). Statin and non-statin users did not differ with respect to strength, postural sway, mobility or falls experienced in the follow-up year. In a sample of healthy older people, statin use was not associated with muscle weakness, postural sway, reduced mobility or falls. Statin users, however, had poorer leaning balance which may potentially increase fall risk in this group. © 2011 The Authors; Internal Medicine Journal © 2011 Royal Australasian College of Physicians.

  8. Vestibular ablation and a semicircular canal prosthesis affect postural stability during head turns

    Science.gov (United States)

    Thompson, Lara A.; Haburcakova, Csilla; Lewis, Richard F.

    2016-01-01

    In our study, we examined postural stability during head turns for two rhesus monkeys: one, single animal study contrasted normal and mild bilateral vestibular ablation and a second animal study contrasted severe bilateral vestibular ablation with and without prosthetic stimulation. The monkeys freely stood, unrestrained on a balance platform and made voluntary head turns between visual targets. To quantify each animals’ posture, motions of the head and trunk, as well as torque about the body’s center-of-mass, were measured. In the mildly ablated animal, we observed less foretrunk sway in comparison to the normal state. When the canal prosthesis provided electric stimulation to the severely ablated animal, it showed a decrease in trunk sway during head turns. Because the rhesus monkey with severe bilateral vestibular loss exhibited a decrease in trunk sway when receiving vestibular prosthetic stimulation, we propose that the prosthetic electrical stimulation partially restored head velocity information. Our results provide an indication that a semicircular canal prosthesis may be an effective way to improve postural stability in patients with severe peripheral vestibular dysfunction. PMID:27405997

  9. A Vibrotactile and Plantar Force Measurement-Based Biofeedback System: Paving the Way towards Wearable Balance-Improving Devices

    Directory of Open Access Journals (Sweden)

    Christina Zong-Hao Ma

    2015-12-01

    Full Text Available Although biofeedback systems have been used to improve balance with success, they were confined to hospital training applications. Little attempt has been made to investigate the use of in-shoe plantar force measurement and wireless technology to turn hospital training biofeedback systems into wearable devices. This research developed a wearable biofeedback system which detects body sway by analyzing the plantar force and provides users with the corresponding haptic cues. The effects of this system were evaluated in thirty young and elderly subjects with simulated reduced foot sensation. Subjects performed a Romberg test under three conditions: (1 no socks, system turned-off; (2 wearing five layers of socks, system turned-off; (3 wearing five layers of socks, and system turned-on. Degree of body sway was investigated by computing the center of pressure (COP movement measured by a floor-mounted force platform. Plantar tactile sensation was evaluated using a monofilament test. Wearing multiple socks significantly decreased the plantar tactile sensory input (p < 0.05, and increased the COP parameters (p < 0.017, indicating increased postural sway. After turning on the biofeedback system, the COP parameters decreased significantly (p < 0.017. The positive results of this study should inspire future development of wearable plantar force-based biofeedback systems for improving balance in people with sensory deficits.

  10. The influence of an auditory-memory attention-demanding task on postural control in blind persons.

    Science.gov (United States)

    Melzer, Itshak; Damry, Elad; Landau, Anat; Yagev, Ronit

    2011-05-01

    In order to evaluate the effect of an auditory-memory attention-demanding task on balance control, nine blind adults were compared to nine age-gender-matched sighted controls. This issue is particularly relevant for the blind population in which functional assessment of postural control has to be revealed through "real life" motor and cognitive function. The study aimed to explore whether an auditory-memory attention-demanding cognitive task would influence postural control in blind persons and compare this with blindfolded sighted persons. Subjects were instructed to minimize body sway during narrow base upright standing on a single force platform under two conditions: 1) standing still (single task); 2) as in 1) while performing an auditory-memory attention-demanding cognitive task (dual task). Subjects in both groups were required to stand blindfolded with their eyes closed. Center of Pressure displacement data were collected and analyzed using summary statistics and stabilogram-diffusion analysis. Blind and sighted subjects had similar postural sway in eyes closed condition. However, for dual compared to single task, sighted subjects show significant decrease in postural sway while blind subjects did not. The auditory-memory attention-demanding cognitive task had no interference effect on balance control on blind subjects. It seems that sighted individuals used auditory cues to compensate for momentary loss of vision, whereas blind subjects did not. This may suggest that blind and sighted people use different sensorimotor strategies to achieve stability. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Dynamic parameters of balance which correlate to elderly persons with a history of falls.

    Science.gov (United States)

    Muir, Jesse W; Kiel, Douglas P; Hannan, Marian; Magaziner, Jay; Rubin, Clinton T

    2013-01-01

    Poor balance in older persons contributes to a rise in fall risk and serious injury, yet no consensus has developed on which measures of postural sway can identify those at greatest risk of falling. Postural sway was measured in 161 elderly individuals (81.8y±7.4), 24 of which had at least one self-reported fall in the prior six months, and compared to sway measured in 37 young adults (34.9y±7.1). Center of pressure (COP) was measured during 4 minutes of quiet stance with eyes opened. In the elderly with fall history, all measures but one were worse than those taken from young adults (e.g., maximal COP velocity was 2.7× greater in fallers than young adults; pfall history (COP Displacement, Short Term Diffusion Coefficient, and Critical Displacement). Variance of elderly subjects' COP measures from the young adult cohort were weighted to establish a balance score ("B-score") algorithm designed to distinguish subjects with a fall history from those more sure on their feet. Relative to a young adult B-score of zero, elderly "non-fallers" had a B-score of 0.334, compared to 0.645 for those with a fall history (pfalling, allowing interventions to target those with greatest need of attention.

  12. Dynamic Determinants of the Uncontrolled Manifold during Human Quiet Stance.

    Science.gov (United States)

    Suzuki, Yasuyuki; Morimoto, Hiroki; Kiyono, Ken; Morasso, Pietro G; Nomura, Taishin

    2016-01-01

    Human postural sway during stance arises from coordinated multi-joint movements. Thus, a sway trajectory represented by a time-varying postural vector in the multiple-joint-angle-space tends to be constrained to a low-dimensional subspace. It has been proposed that the subspace corresponds to a manifold defined by a kinematic constraint, such that the position of the center of mass (CoM) of the whole body is constant in time, referred to as the kinematic uncontrolled manifold ( kinematic-UCM ). A control strategy related to this hypothesis ( CoM-control-strategy ) claims that the central nervous system (CNS) aims to keep the posture close to the kinematic-UCM using a continuous feedback controller, leading to sway patterns that mostly occur within the kinematic-UCM, where no corrective control is exerted. An alternative strategy proposed by the authors ( intermittent control-strategy ) claims that the CNS stabilizes posture by intermittently suspending the active feedback controller, in such a way to allow the CNS to exploit a stable manifold of the saddle-type upright equilibrium in the state-space of the system, referred to as the dynamic-UCM , when the state point is on or near the manifold. Although the mathematical definitions of the kinematic- and dynamic-UCM are completely different, both UCMs play similar roles in the stabilization of multi-joint upright posture. The purpose of this study was to compare the dynamic performance of the two control strategies. In particular, we considered a double-inverted-pendulum-model of postural control, and analyzed the two UCMs defined above. We first showed that the geometric configurations of the two UCMs are almost identical. We then investigated whether the UCM-component of experimental sway could be considered as passive dynamics with no active control, and showed that such UCM-component mainly consists of high frequency oscillations above 1 Hz, corresponding to anti-phase coordination between the ankle and hip. We

  13. Dynamic determinants of the uncontrolled manifold during human quiet stance

    Directory of Open Access Journals (Sweden)

    Yasuyuki Suzuki

    2016-12-01

    Full Text Available Human postural sway during stance arises from coordinated multi-joint movements. Thus, a sway trajectory represented by a time-varying postural vector in the multiple-joint-angle-space tends to be constrained to a low-dimensional subspace. It has been proposed that the subspace corresponds to a manifold defined by a kinematic constraint, such that the position of the center of mass (CoM of the whole body is constant in time, referred to as the kinematic uncontrolled manifold (kinematic-UCM. A control strategy related to this hypothesis (CoM-control-strategy claims that the central nervous system (CNS aims to keep the posture close to the kinematic-UCM using a continuous feedback controller, leading to sway patterns that mostly occur within the kinematic-UCM, where no corrective control is exerted. An alternative strategy proposed by the authors (intermittent control-strategy claims that the CNS stabilizes posture by intermittently suspending the active feedback controller, in such a way to allow the CNS to exploit a stable manifold of the saddle-type upright equilibrium in the state-space of the system, referred to as the dynamic-UCM, when the state point is on or near the manifold. Although the mathematical definitions of the kinematic- and dynamic-UCM are completely different, both UCMs play similar roles in the stabilization of multi-joint upright posture. The purpose of this study was to compare the dynamic performance of the two control strategies. In particular, we considered a double-inverted-pendulum-model of postural control, and analyzed the two UCMs defined above. We first showed that the geometric configurations of the two UCMs are almost identical. We then investigated whether the UCM-component of experimental sway could be considered as passive dynamics with no active control, and showed that such UCM-component mainly consists of high frequency oscillations above 1 Hz, corresponding to anti-phase coordination between the ankle and

  14. A novel balance training system using multimodal biofeedback.

    Science.gov (United States)

    Afzal, Muhammad Raheel; Oh, Min-Kyun; Choi, Hye Young; Yoon, Jungwon

    2016-04-22

    A biofeedback-based balance training system can be used to provide the compromised sensory information to subjects in order to retrain their sensorimotor function. In this study, the design and evaluation of the low-cost, intuitive biofeedback system developed at Gyeongsang National University is extended to provide multimodal biofeedback for balance training by utilization of visual and haptic modalities. The system consists of a smartphone attached to the waist of the subject to provide information about tilt of the torso, a personal computer running a purpose built software to process the smartphone data and provide visual biofeedback to the subject by means of a dedicated monitor and a dedicated Phantom Omni(®) device for haptic biofeedback. For experimental verification of the system, eleven healthy young participants performed balance tasks assuming two distinct postures for 30 s each while acquiring torso tilt. The postures used were the one foot stance and the tandem Romberg stance. For both the postures, the subjects stood on a foam platform which provided a certain amount of ground instability. Post-experiment data analysis was performed using MATLAB(®) to analyze reduction in body sway. Analysis parameters based on the projection of trunk tilt information were calculated in order to ascertain the reduction in body sway and improvements in postural control. Two-way analysis of variance (ANOVA) showed no statistically significant interactions between postures and biofeedback. Post-hoc analysis revealed statistically significant reduction in body sway on provision of biofeedback. Subjects exhibited maximum body sway during no biofeedback trial, followed by either haptic or visual biofeedback and in most of the trials the multimodal biofeedback of visual and haptic together resulted in minimization of body sway, thus indicating that the multimodal biofeedback system worked well to provide significant (p biofeedback system can offer more customized training

  15. Spatial Orientation and Balance Control Changes Induced by Altered Gravito-Inertial Force Vectors

    Science.gov (United States)

    Kaufman, Galen D.; Wood, Scott J.; Gianna, Claire C.; Black, F. Owen; Paloski, William H.; Dawson, David L. (Technical Monitor)

    1999-01-01

    Seventeen healthy and eight vestibular deficient subjects were exposed to an interaural centripetal acceleration of 1 G (resultant 45 deg roll tilt of 1.4 G) on a 0.8 meter radius centrifuge for a period of 90 minutes in the dark. The subjects sat with head fixed upright, except every 4 of 10 minutes when instructed to rotate their head so that their nose and eyes pointed towards a visual point switched on every 3 to 5 seconds at random places (within +/- 30 deg) in the Earth horizontal plane. Motion sickness caused some subjects to limit their head movements during significant portions of the 90 minute period, and led three normal subjects to stop the test earlier. Eye movements, including directed saccades for subjective Earth- and head-referenced planes, were recorded before, during, and immediately after centrifugation using electro-oculography. Postural stability measurements were made before and within ten minutes after centrifugation. In normal subjects, postural sway and multisegment body kinematics were gathered during an eyes-closed head movement cadence (sway-referenced support platform), and in response to translational/rotational platform perturbations. A significant increase in postural sway, segmental motion amplitude and hip frequency was observed after centrifugation. This effect was short-lived, with a recovery time of several postural test trials. There were also asymmetries in the direction of post-centrifugation center of sway and head tilt which depended on the subject's orientation during the centrifugation adaptation period (left ear or right ear out). To delineate the effect of the magnitude of the gravito-inertial vector versus its direction during the adaptive centrifugation period, we tilted eight normal subjects in the roll axis at a 45 deg angle in the dark for 90 minutes without rotational motion. Their postural responses did not change following the period of tilt. Based on verbal reports, normal subjects overestimated roll

  16. Experimental and numerical investigation of the roll motion behavior of a floating liquefied natural gas system

    Science.gov (United States)

    Zhao, WenHua; Yang, JianMin; Hu, ZhiQiang; Xiao, LongFei; Peng, Tao

    2013-03-01

    The present paper does an experimental and numerical investigation of the hydrodynamic interaction and the response of a single point turret-moored Floating Liquefied Natural Gas (FLNG) system, which is a new type of floating LNG (Liquid Natural Gas) platform that consists of a ship-type FPSO hull equipped with LNG storage tanks and liquefaction plants. In particular, this study focuses on the investigation of the roll response of FLNG hull in free-decay motions, white noise waves and also in irregular waves. Model tests of the FLNG system in 60%H filling condition excited by both white noise waves and irregular waves combined with steady wind and current have been carried out. Response Amplitude Operators (RAOs) and time histories of the responses are obtained for sway, roll and yaw motions. Obvious Low Frequency (LF) components of the roll motions are observed, which may be out of expectation. To facilitate the physical understanding of this phenomenon, we filter the roll motions at the period of 30 s into two parts: the Wave Frequency (WF) motions and the Low Frequency (LF) motions respectively. The results indicate that the LF motions are closely related to the sway and yaw motions. Possible reasons for the presence of the LF motions of roll have been discussed in detail, through the comparison with the sway and yaw motions. As for the numerical part, the simulation of the modeled case is conducted with the help of the software SESAM®. A good agreement between experiments and calculations is reported within the scope of trends. However, the numerical simulations should be further improved for the prediction of the FLNG system in the heading sea.

  17. Effects of transcranial direct current stimulation (tDCS) on multiscale complexity of dual-task postural control in older adults.

    Science.gov (United States)

    Zhou, Diange; Zhou, Junhong; Chen, Hu; Manor, Brad; Lin, Jianhao; Zhang, Jue

    2015-08-01

    Transcranial direct current stimulation (tDCS) targeting the prefrontal cortex reduces the size and speed of standing postural sway in younger adults, particularly when performing a cognitive dual task. Here, we hypothesized that tDCS would alter the complex dynamics of postural sway as quantified by multiscale entropy (MSE). Twenty healthy older adults completed two study visits. Center-of-pressure (COP) fluctuations were recorded during single-task (i.e., quiet standing) and dual-task (i.e., standing while performing serial subtractions) conditions, both before and after a 20-min session of real or sham tDCS. MSE was used to estimate COP complexity within each condition. The percentage change in complexity from single- to dual-task conditions (i.e., dual-task cost) was also calculated. Before tDCS, COP complexity was lower (p = 0.04) in the dual-task condition as compared to the single-task condition. Neither real nor sham tDCS altered complexity in the single-task condition. As compared to sham tDCS, real tDCS increased complexity in the dual-task condition (p = 0.02) and induced a trend toward improved serial subtraction performance (p = 0.09). Moreover, those subjects with lower dual-task COP complexity at baseline exhibited greater percentage increases in complexity following real tDCS (R = -0.39, p = 0.05). Real tDCS also reduced the dual-task cost to complexity (p = 0.02), while sham stimulation had no effect. A single session of tDCS targeting the prefrontal cortex increased standing postural sway complexity with concurrent non-postural cognitive task. This form of noninvasive brain stimulation may be a safe strategy to acutely improve postural control by enhancing the system's capacity to adapt to stressors.

  18. Automatic postural response systems in individuals with congenital total blindness.

    Science.gov (United States)

    Nakata, H; Yabe, K

    2001-07-01

    This study examined the effects of the absence of vision from birth on automatic postural responses to platform displacements during stance. Postural responses were induced by producing randomly four types of perturbations which consisted of forward and backward translations, and toe up and down rotations. Nine congenitally totally blind and nine sighted adults served as subjects. EMG signals were recorded from four muscles in the right leg, and reaction time to somatosensory stimuli generated by platform displacements was measured by pushing a hand-held button. To assess the ability to control postural balance, the root mean square (RMS) values for lateral and antero-posterior sway before, during, and after perturbations were calculated. The EMG amplitude in the gastrocnemius muscle of a blind subject was smaller than that of a sighted subject with eyes closed. No significant differences were found between blind and sighted subjects in EMG latencies of the lower extremity muscles in response to perturbations. The blind subjects had significantly faster reaction times to somatosensory stimuli triggered by platform displacements, but in toe down rotations no significant difference was found between blind and sighted subjects. The difference in the EMG latencies and reaction times between the two groups suggests that blindness from birth may not affect the spinal stretch reflex, but may affect a volitional act mediated through the motor cortex. There were also no significant differences in the RMS values for postural sway between blind and sighted subjects with eyes open or closed, although blind subjects swayed more after backward translations than did sighted subjects with eyes open. Results suggest that the ability to control postural balance during perturbations was not affected by vision loss from birth. Our findings suggest that the automatic postural response systems of humans are unaffected by the absence of vision from birth and are rather hard wired.

  19. The Contribution of Proprioceptive Information to Postural Control in Elderly and Patients with Parkinson’s Disease with a History of Falls

    Science.gov (United States)

    Bekkers, Esther M. J.; Dockx, Kim; Heremans, Elke; Vercruysse, Sarah; Verschueren, Sabine M. P.; Mirelman, Anat; Nieuwboer, Alice

    2014-01-01

    Proprioceptive deficits negatively affect postural control but their precise contribution to postural instability in Parkinson’s disease (PD) is unclear. We investigated if proprioceptive manipulations differentially affect balance, measured by force plates, during quiet standing in 13 PD patients and 13 age-matched controls with a history of falls. Perceived limits of stability (LoS) were derived from the differences between maximal center of pressure (CoP) displacement in anterior–posterior (AP) and medio-lateral (ML) direction during a maximal leaning task. Task conditions comprised standing with eyes open (EO) and eyes closed (EC): (1) on a stable surface; (2) an unstable surface; and (3) with Achilles tendon vibration. CoP displacements were calculated as a percentage of their respective LoS. Perceived LoS did not differ between groups. PD patients showed greater ML CoP displacement than elderly fallers (EF) across all conditions (p = 0.043) and tended to have higher postural sway in relation to the LoS (p = 0.050). Both groups performed worse on an unstable surface and during tendon vibration compared to standing on a stable surface with EO and even more so with EC. Both PD and EF had more AP sway in all conditions with EC compared to EO (p postural control in fallers with and without PD. PD fallers showed higher ML sway after sensory manipulations, as a result of which these values approached their perceived LoS more closely than in EF. We conclude that despite a similar fall history, PD patients showed more ML instability than EF, irrespective of sensory manipulation, but had a similar reliance on ankle proprioception. Hence, we recommend that rehabilitation and fall prevention for PD should focus on motor rather than on sensory aspects. PMID:25505395

  20. Effect of a single session of ear acupuncture on pain intensity and postural control in individuals with chronic low back pain: a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Andrea Ushinohama

    2016-01-01

    Full Text Available ABSTRACT Background Ear Acupuncture (EA is a form of acupuncture in which needles are applied to the external ear and has been used in multiple painful conditions. Low back pain (LBP is highly prevalent in active individuals and causes high economic burden to health systems worldwide. LBP affects the person’s ability to keep balance, especially in challenging conditions. Objective The aim of the study was to examine the effects of a single session of EA on pain intensity and body sway during postural tasks. Method Eighty adults with LBP and pain intensity equal to or greater than 4 (0-10 scale were randomly allocated (1:1 to EA group (EAG or placebo group (PG. Initially, the level of pain intensity was assessed. Next, participants stood still on a force plate either with feet in parallel or in semi-tandem and with eyes open or closed. Then, the EAG was treated with EA for 20 min and the PG was treated with detuned ultrasound. After the treatment, pain intensity was assessed again and the postural test was repeated. Pain intensity was the primary outcome and center of pressure sway area and speed were the secondary outcomes measured. Results Results revealed that pain intensity decreased in both groups after treatment, but decreased more in the EAG. For postural control, no effect of treatment and no interaction between treatment and postural condition on body sway were found. Conclusion Those findings indicate that EA is better than placebo to reduce pain, but neither treatment has any effect on postural control.

  1. The contribution of proprioceptive information to postural control in elderly and patients with Parkinson's disease with a history of falls.

    Science.gov (United States)

    Bekkers, Esther M J; Dockx, Kim; Heremans, Elke; Vercruysse, Sarah; Verschueren, Sabine M P; Mirelman, Anat; Nieuwboer, Alice

    2014-01-01

    Proprioceptive deficits negatively affect postural control but their precise contribution to postural instability in Parkinson's disease (PD) is unclear. We investigated if proprioceptive manipulations differentially affect balance, measured by force plates, during quiet standing in 13 PD patients and 13 age-matched controls with a history of falls. Perceived limits of stability (LoS) were derived from the differences between maximal center of pressure (CoP) displacement in anterior-posterior (AP) and medio-lateral (ML) direction during a maximal leaning task. Task conditions comprised standing with eyes open (EO) and eyes closed (EC): (1) on a stable surface; (2) an unstable surface; and (3) with Achilles tendon vibration. CoP displacements were calculated as a percentage of their respective LoS. Perceived LoS did not differ between groups. PD patients showed greater ML CoP displacement than elderly fallers (EF) across all conditions (p = 0.043) and tended to have higher postural sway in relation to the LoS (p = 0.050). Both groups performed worse on an unstable surface and during tendon vibration compared to standing on a stable surface with EO and even more so with EC. Both PD and EF had more AP sway in all conditions with EC compared to EO (p postural control in fallers with and without PD. PD fallers showed higher ML sway after sensory manipulations, as a result of which these values approached their perceived LoS more closely than in EF. We conclude that despite a similar fall history, PD patients showed more ML instability than EF, irrespective of sensory manipulation, but had a similar reliance on ankle proprioception. Hence, we recommend that rehabilitation and fall prevention for PD should focus on motor rather than on sensory aspects.

  2. Postural threat differentially affects the feedforward and feedback components of the vestibular-evoked balance response.

    Science.gov (United States)

    Osler, Callum J; Tersteeg, M C A; Reynolds, Raymond F; Loram, Ian D

    2013-10-01

    Circumstances may render the consequence of falling quite severe, thus maximising the motivation to control postural sway. This commonly occurs when exposed to height and may result from the interaction of many factors, including fear, arousal, sensory information and perception. Here, we examined human vestibular-evoked balance responses during exposure to a highly threatening postural context. Nine subjects stood with eyes closed on a narrow walkway elevated 3.85 m above ground level. This evoked an altered psycho-physiological state, demonstrated by a twofold increase in skin conductance. Balance responses were then evoked by galvanic vestibular stimulation. The sway response, which comprised a whole-body lean in the direction of the edge of the walkway, was significantly and substantially attenuated after ~800 ms. This demonstrates that a strong reason to modify the balance control strategy was created and subjects were highly motivated to minimise sway. Despite this, the initial response remained unchanged. This suggests little effect on the feedforward settings of the nervous system responsible for coupling pure vestibular input to functional motor output. The much stronger, later effect can be attributed to an integration of balance-relevant sensory feedback once the body was in motion. These results demonstrate that the feedforward and feedback components of a vestibular-evoked balance response are differently affected by postural threat. Although a fear of falling has previously been linked with instability and even falling itself, our findings suggest that this relationship is not attributable to changes in the feedforward vestibular control of balance. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  3. Neuromuscular training in construction workers: a longitudinal controlled pilot study.

    Science.gov (United States)

    Faude, Oliver; Donath, Lars; Bopp, Micha; Hofmann, Sara; Erlacher, Daniel; Zahner, Lukas

    2015-08-01

    Many accidents at construction sites are due to falls. An exercise-based workplace intervention may improve intrinsic fall risk factors. In this pilot study, we aimed at evaluating the effects of neuromuscular exercise on static and functional balance performance as well as on lower limb explosive power in construction workers. Healthy middle-aged construction workers were non-randomly assigned to an intervention [N = 20, age = 40.3 (SD 8.3) years] or a control group [N = 20, age = 41.8 (9.9) years]. The intervention group performed static and dynamic balance and strength exercises (13 weeks, 15 min each day). Before and after the intervention and after an 8-week follow-up, unilateral postural sway, backward balancing (on 3- and 4.5-cm-wide beams) as well as vertical jump height were assessed. We observed a group × time interaction for postural sway (p = 0.002) with a reduction in the intervention group and no relevant change in the control group. Similarly, the number of successful steps while walking backwards on the 3-cm beam increased only in the intervention group (p = 0.047). These effects were likely to most likely practically beneficial from pretest to posttest and to follow-up test for postural sway (+12%, standardized mean difference (SMD) = 0.65 and 17%, SMD = 0.92) and backward balancing on the 3-cm beam (+58%, SMD = 0.59 and 37%, SMD = 0.40). Fifteen minutes of neuromuscular training each day can improve balance performance in construction workers and, thus, may contribute to a decreased fall risk.

  4. Does the radiologically isolated syndrome exist? A dual-task cost pilot study.

    Science.gov (United States)

    Dattola, Vincenzo; Logiudice, Anna Lisa; Bonanno, Lilla; Famà, Fausto; Milardi, Demetrio; Chillemi, Gaetana; D'Aleo, Giangaetano; Marino, Silvia; Calabrò, Rocco Salvatore; Russo, Margherita

    2017-11-01

    Simultaneous performance of motor and cognitive tasks may compete for common brain network resources in aging or patients with some neurological diseases, suggesting the occurrence of a cognitive-motor interference. While this phenomenon has been well described for multiple sclerosis (MS) patients, it never has been tested on asymptomatic subject with magnetic resonance imaging (MRI) findings suggestive of demyelinating disease (i.e., radiologically isolated syndrome: RIS). In this pilot study, 10 RIS subjects and 10 sex/age-matched healthy controls were tested by means of static posturography under eyes opened (single-task trial) and while performing two different cognitive tasks (semantic modified word list generation for first dual-task trial and phonemic semantic modified word list generation for second dual-task trial), to estimate the dual-task cost (DTC) of standing balance. In our sample, under cognitive interference (without any substantial differences between semantic and phonemic modified word list generation), the RIS group showed significance differences in CoP (center of pressure) total sway area, ellipse eccentricity, CoP sway path length, CoP median sway velocity along the AP (anteroposterior) axis and along the ML (mediolateral) axis, reflecting a higher negative DTC respect to healthy subjects (which have simply shown a statistical trend, failing to reach a significance, in some trials). The phenomenon of cognitive-motor interference might be unmasked by a dual-task posturography in RIS subjects, too. We hypothesize that this approach could be useful to early reveal the presence of a demyelinating disease and to reach a MS diagnosis in subjects otherwise classified as RIS.

  5. Reliability of System Identification Techniques to Assess Standing Balance in Healthy Elderly.

    Directory of Open Access Journals (Sweden)

    Jantsje H Pasma

    Full Text Available System identification techniques have the potential to assess the contribution of the underlying systems involved in standing balance by applying well-known disturbances. We investigated the reliability of standing balance parameters obtained with multivariate closed loop system identification techniques.In twelve healthy elderly balance tests were performed twice a day during three days. Body sway was measured during two minutes of standing with eyes closed and the Balance test Room (BalRoom was used to apply four disturbances simultaneously: two sensory disturbances, to the proprioceptive and the visual system, and two mechanical disturbances applied at the leg and trunk segment. Using system identification techniques, sensitivity functions of the sensory disturbances and the neuromuscular controller were estimated. Based on the generalizability theory (G theory, systematic errors and sources of variability were assessed using linear mixed models and reliability was assessed by computing indexes of dependability (ID, standard error of measurement (SEM and minimal detectable change (MDC.A systematic error was found between the first and second trial in the sensitivity functions. No systematic error was found in the neuromuscular controller and body sway. The reliability of 15 of 25 parameters and body sway were moderate to excellent when the results of two trials on three days were averaged. To reach an excellent reliability on one day in 7 out of 25 parameters, it was predicted that at least seven trials must be averaged.This study shows that system identification techniques are a promising method to assess the underlying systems involved in standing balance in elderly. However, most of the parameters do not appear to be reliable unless a large number of trials are collected across multiple days. To reach an excellent reliability in one third of the parameters, a training session for participants is needed and at least seven trials of two

  6. Sport-specific balance.

    Science.gov (United States)

    Zemková, Erika

    2014-05-01

    This review includes the latest findings based on experimental studies addressing sport-specific balance, an area of research that has grown dramatically in recent years. The main objectives of this work were to investigate the postural sway response to different forms of exercise under laboratory and sport-specific conditions, to examine how this effect can vary with expertise, and to provide examples of the association of impaired balance with sport performance and/or increasing risk of injury. In doing so, sports where body balance is one of the limiting factors of performance were analyzed. While there are no significant differences in postural stability between athletes of different specializations and physically active individuals during standing in a standard upright position (e.g., bipedal stance), they have a better ability to maintain balance in specific conditions (e.g., while standing on a narrow area of support). Differences in magnitude of balance impairment after specific exercises (rebound jumps, repeated rotations, etc.) and mainly in speed of its readjustment to baseline are also observed. Besides some evidence on an association of greater postural sway with the increasing risk of injuries, there are many myths related to the negative influence of impaired balance on sport performance. Though this may be true for shooting or archery, findings have shown that in many other sports, highly skilled athletes are able to perform successfully in spite of increased postural sway. These findings may contribute to better understanding of the postural control system under various performance requirements. It may provide useful knowledge for designing training programs for specific sports.

  7. Characteristics of balance control in older persons who fall with injury--a prospective study.

    Science.gov (United States)

    Kurz, Ilan; Oddsson, Lars; Melzer, Itshak

    2013-08-01

    Older adults who have recently fallen demonstrate increased postural sway compared with non-fallers. However, the differences in postural control between older adults who were seriously injured (SI) as a result of a fall, compared with those who fell but were not injured (NSI) and non-fallers (NFs), has not been investigated. The objective of the present study was to investigate the underlying postural control mechanisms related to injuries resulting from a fall. Both traditional postural sway measures of foot center-of-pressure (CoP) displacements and fractal measures, the Stabilogram-Diffusion Analysis (SDA), were used to characterize the postural control. One hundred older adults aged 65-91years were tested during narrow base upright stance in eyes closed condition; falls were monitored over a 1-year period. Forty-nine older adults fell during the 1-year follow-up, 13 were seriously injured as a result of a fall (SI), 36 were not injured (NSI), and 49 were non-fallers (NFs); two passed away. The SDA showed significantly higher short-term diffusion coefficients and critical displacements in SI in the anterior-posterior direction compared with both NSI and NF. However, in the medio-lateral direction there were no statistically significant differences between groups. For the traditional measures of sway, the average anterior-posterior CoP range was also larger in SI individuals. This work suggests that older fallers with a deterioration of anterior-posterior postural control may be at higher risk of serious injury following fall events. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Decreased postural control in people with moderate hearing loss

    Science.gov (United States)

    Thomas, Ewan; Martines, Francesco; Bianco, Antonino; Messina, Giuseppe; Giustino, Valerio; Zangla, Daniele; Iovane, Angelo; Palma, Antonio

    2018-01-01

    Abstract Balance is a complex process that involves multiple sensory integrations. The auditory, visual, and vestibular systems are the main contributors. Hearing loss or hearing impairment may induce inappropriate postural strategies that could affect balance and therefore increase the risk of falling. The aim of this study was to understand whether hearing loss could influence balance, cervical posture, and muscle activation in the cervical region. Thirteen patients (61 ± 13 years; 161.8 ± 11.0 cm; 70.5 ± 15.9 kg) with moderate hearing loss (Right ear −60 ± 21 dB; Left ear −61 ± 24 dB) underwent: an audiometric examination, a postural examination (with open and closed eyes) through a stabilometric platform, a cervical ROM examination through a head accelerometer, and a sternocleidomastoid electromyography (EMG) examination. A linear regression analysis has shown a regression coefficient (R2) 0.76 and 0.69 between hearing loss and the posturographic parameters, on the sagittal sway, with open and closed eyes, respectively. The combination of frontal and sagittal sway is able to explain up to 84% of the variance of the audiometric assessment. No differences were found between right and left hemibody between the audiometric, posturographic, cervical ROM parameters, and in EMG amplitude. ROM and EMG parameters have not shown any significant associations with hearing loss, for both right and left head rotation. Hearing loss is associated to increased posturographic measures, especially the sagittal sway, underlining a reduced postural control in people with hearing impairments. No association was found between the heads posture and neck activation with hearing loss. Hearing loss may be associated with an increased risk of falls. PMID:29620637

  9. Effects of tetrahydrocannabinol on balance and gait in patients with dementia: A randomised controlled crossover trial.

    Science.gov (United States)

    van den Elsen, Geke Ah; Tobben, Lieke; Ahmed, Amir Ia; Verkes, Robbert Jan; Kramers, Cornelis; Marijnissen, Radboud M; Olde Rikkert, Marcel Gm; van der Marck, Marjolein A

    2017-02-01

    Oral tetrahydrocannabinol (THC) is currently studied for its possible efficacy on dementia-related neuropsychiatric symptoms (NPS), but might lead to increased risk of falling. This was a randomised, double-blind, crossover study to evaluate the effects of THC on mobility in dementia patients. Eighteen community-dwelling patients ( M age =77 years) received 1.5 mg of oral THC twice daily and placebo, in random order, for three days, separated by a four-day washout. Balance and gait were assessed using SwayStar TM and GAITRite TM within two hours after administration, in two consecutive intervention periods, under the following conditions: standing with eyes open (EO) and eyes closed (EC), preferred speed walking with and without a cognitive dual task. THC significantly increased sway during standing EC (roll angle 0.32[±0.6]°, p=0.05; pitch angle 1.04[±1.5]°, p=0.009; pitch velocity 1.96[±3.3]°/s, p=0.02), but not during standing EO. During preferred speed walking, THC increased stride length (4.3[±5.4] cm, p=0.005) and trunk sway (pitch angle 1.18[±1.6]°, p=0.005). No effects were observed during dual task walking. No differences in the number and type of adverse events were found, and no falls occurred after administration of THC. This study showed that 3 mg of THC per day has a benign adverse event profile regarding mobility and was well tolerated by community-dwelling dementia patients.

  10. Decreased postural control in people with moderate hearing loss.

    Science.gov (United States)

    Thomas, Ewan; Martines, Francesco; Bianco, Antonino; Messina, Giuseppe; Giustino, Valerio; Zangla, Daniele; Iovane, Angelo; Palma, Antonio

    2018-04-01

    Balance is a complex process that involves multiple sensory integrations. The auditory, visual, and vestibular systems are the main contributors. Hearing loss or hearing impairment may induce inappropriate postural strategies that could affect balance and therefore increase the risk of falling.The aim of this study was to understand whether hearing loss could influence balance, cervical posture, and muscle activation in the cervical region.Thirteen patients (61 ± 13 years; 161.8 ± 11.0 cm; 70.5 ± 15.9 kg) with moderate hearing loss (Right ear -60 ± 21 dB; Left ear -61 ± 24 dB) underwent: an audiometric examination, a postural examination (with open and closed eyes) through a stabilometric platform, a cervical ROM examination through a head accelerometer, and a sternocleidomastoid electromyography (EMG) examination.A linear regression analysis has shown a regression coefficient (R) 0.76 and 0.69 between hearing loss and the posturographic parameters, on the sagittal sway, with open and closed eyes, respectively. The combination of frontal and sagittal sway is able to explain up to 84% of the variance of the audiometric assessment. No differences were found between right and left hemibody between the audiometric, posturographic, cervical ROM parameters, and in EMG amplitude. ROM and EMG parameters have not shown any significant associations with hearing loss, for both right and left head rotation.Hearing loss is associated to increased posturographic measures, especially the sagittal sway, underlining a reduced postural control in people with hearing impairments. No association was found between the heads posture and neck activation with hearing loss. Hearing loss may be associated with an increased risk of falls.

  11. Balance Regularity Among Former High School Football Players With or Without a History of Concussion.

    Science.gov (United States)

    Schmidt, Julianne D; Terry, Douglas P; Ko, Jihyun; Newell, Karl M; Miller, L Stephen

    2018-02-01

      Subclinical postural-control changes may persist beyond the point when athletes are considered clinically recovered postconcussion.   To compare postural-control performance between former high school football players with or without a history of concussion using linear and nonlinear metrics.   Case-control study.   Clinical research laboratory.   A total of 11 former high school football players (age range, 45-60 years) with 2 or more concussions and 11 age- and height-matched former high school football players without a history of concussion. No participant had college or professional football experience.   Participants completed the Sensory Organization Test. We compared postural control (linear: equilibrium scores; nonlinear: sample and multiscale entropy) between groups using a 2 × 3 analysis of variance across conditions 4 to 6 (4: eyes open, sway-referenced platform; 5: eyes closed, sway-referenced platform; 6: eyes open, sway-referenced surround and platform).   We observed a group-by-condition interaction effect for medial-lateral sample entropy ( F 2,40 = 3.26, P = .049, η p 2 = 0.140). Participants with a history of concussion presented with more regular medial-lateral sample entropy values (0.90 ± 0.41) for condition 5 than participants without a history of concussion (1.30 ± 0.35; mean difference = -0.40; 95% confidence interval [CI] = -0.74, -0.06; t 20 = -2.48, P = .02), but conditions 4 (mean difference = -0.11; 95% CI: -0.37, 0.15; t 20 = -0.86, P = .40) and 6 (mean difference = -0.25; 95% CI: -0.55, 0.06; t 20 = -1.66, P = .11) did not differ between groups.   Postconcussion deficits, detected using nonlinear metrics, may persist long after injury resolution. Subclinical concussion deficits may persist for years beyond clinical concussion recovery.

  12. The effect of vision elimination during quiet stance tasks with different feet positions.

    Science.gov (United States)

    Sarabon, Nejc; Rosker, Jernej; Loefler, Stefan; Kern, Helmut

    2013-09-01

    Literature confirms the effects of vision and stance on body sway and indicates possible interactions between the two. However, no attempts have been made to systematically compare the effect of vision on the different types of stance which are frequently used in clinical and research practice. The biomechanical changes that occur after changing shape and size of the support surface suggest possible sensory re-weighting might take place. The purpose of this study was to assess the effect of vision on body sway in relation to different stance configurations and width. Thirty-eight volunteers performed four quiet stance configurations (parallel, semi-tandem, tandem and single leg), repeating them with open and closed eyes. Traditional parameters, recurrence quantification analysis and sample entropy were analyzed from the CoP trajectory signal. Traditional and recurrence quantification analysis parameters were affected by vision removal and stance type. Exceptions were frequency of oscillation, entropy and trapping time. The most prominent effect of vision elimination on traditional parameters was observed for narrower stances. A significant interaction effect between vision removal and stance type was present for most of the parameters observed (p<0.05). The interaction effect between medio-lateral and antero-posterior traditional parameters differed in linearity between stances. The results confirm the effect of vision removal on the body sway. However, for the medio-lateral traditional parameters, the effects did not increase linearly with the change in width and stance type. This suggests that removal of vision could be more effectively compensated by other sensory systems in semi-tandem stance, tandem and single legged stance. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Influence of Transcranial Direct Current Stimulation to the Cerebellum on Standing Posture Control

    Directory of Open Access Journals (Sweden)

    Yasuto Inukai

    2016-07-01

    Full Text Available Damage to the vestibular cerebellum results in dysfunctional standing posture control. Patients with cerebellum dysfunction have a larger sway in the center of gravity while standing compared with healthy subjects. Transcranial direct current stimulation (tDCS is a noninvasive technique for selectively exciting or inhibiting specific neural structures with potential applications in functional assessment and treatment of neural disorders. However, the specific stimulation parameters for influencing postural control have not been assessed. In this study, we investigated the influence of tDCS when applied over the cerebellum on standing posture control. Sixteen healthy subjects received tDCS (20 min, 2 mA over the scalp 2 cm below the inion. In experiment 1, all 16 subjects received tDCS under three stimulus conditions, Sham, Cathodal, and Anodal, in a random order with the second electrode placed on the forehead. In experiment 2, five subjects received cathodal stimulation only with the second electrode placed over the right buccinator muscle. Center of gravity sway was measured twice for 60 s before and after tDCS in a standing posture with eyes open and legs closed, and average total locus length, locus length per second, rectangular area, and enveloped area were calculated. In experiment 1, total locus length and locus length per second decreased significantly after cathodal stimulation but not after anodal or sham stimulation, while no tDCS condition influenced rectangular or enveloped areas. In experiment 2, cathodal tDCS again significantly reduced total locus length and locus length per second but not rectangular and enveloped areas. The effects of tDCS on postural control are polarity-dependent, likely reflecting the selective excitation or inhibition of cerebellar Purkinje cells. Cathodal tDCS to the cerebellum of healthy subjects can alter body sway (velocity.

  14. Postural adaptations to repeated optic flow stimulation in older adults

    Science.gov (United States)

    O’Connor, Kathryn W.; Loughlin, Patrick J.; Redfern, Mark S.; Sparto, Patrick J.

    2008-01-01

    The purpose of this study is to understand the processes of adaptation (changes in within-trial postural responses) and habituation (reductions in between-trial postural responses) to visual cues in older and young adults. Of particular interest were responses to sudden increases in optic flow magnitude. The postural sway of 25 healthy young adults and 24 healthy older adults was measured while subjects viewed anterior-posterior 0.4 Hz sinusoidal optic flow for 45 s. Three trials for each of three conditions were performed: 1) constant 12 cm optic flow amplitude (24 cm peak-to-peak), 2) constant 4 cm amplitude (8 cm p-t-p), and 3) a transition in amplitude from 4 to 12 cm. The average power of head sway velocity (Pvel) was calculated for consecutive 5 s intervals during the trial to examine the changes in sway within and between trials. A mixed factor repeated measures ANOVA was performed to examine the effects of subject Group, Trial, and Interval on the Pvel. Pvel was greater in older adults in all conditions (p Pvel of the older adults decreased significantly between all 3 trials, but decreased only between trial 1 and 2 in young adults. While the responses of the young adults to the transition in optic flow from 4 to 12 cm did not significantly change, older adults had an increase in Pvel following the transition, ranging from 6.5 dB for the first trial to 3.4 dB for the third trial. These results show that older adults can habituate to repeated visual perturbation exposures; however, this habituation requires a greater number of exposures than young adults. This suggests aging impacts the ability to quickly modify the relative weighting of the sensory feedback for postural stabilization. PMID:18329878

  15. Balance control impairment induced after OKS in patients with vestibular migraine: an intercritical marker.

    Science.gov (United States)

    Panichi, R; Cipriani, L; Sarchielli, P; Di Mauro, M; Pettorossi, V E; Ricci, G; Faralli, M

    2015-09-01

    The aim of the study was to assess the effects of optokinetic stimulation (OKS) on vestibular postural control in migraine patients with recurrent vertigo. 15 patients with vestibular migraine (VM) were enrolled in a posturographic study in eyes open (OE) and eyes closed (CE) condition. The tests were performed between attacks of headache and vertigo at three different time: before, during, and 60 min after OKS. Data of patients with VM were compared with those obtained from two control groups matched for sex and age (15 for each group): (a) normal subjects not suffering from migraine without history of recurrent vertigo (N group); (b) subjects suffering from migraine with no history of recurrent vertigo (M group). Mean sway path velocity and sway area were analyzed. OKS increased the instability in all groups during the stimulus, and both the velocity and area values were higher in M and VM group. However, there was not significant difference between these two groups when stability was examined in OE condition before, during and after OKS stimulation. Conversely, in CE condition a significant greater instability was induced after OKS stimulation only in VM. In particular, post-stimulus values were significantly higher than the pre-stimulus one only in this group, while no significant difference was observed in other groups. A spatial analysis of the sway area evidenced that the instability induced by the OKS in VM group occurred along the direction of OKS. We suggest that this enhanced instability observed after OKS during the intercritical period may be considered an useful marker to support the diagnostic definition of VM in the absence of other vestibular signs.

  16. Effectiveness of a Nintendo Wii balance board exercise programme on standing balance of children with cerebral palsy: A randomised clinical trial protocol.

    Science.gov (United States)

    Gatica-Rojas, Valeska; Cartes-Velásquez, Ricardo; Guzmán-Muñoz, Eduardo; Méndez-Rebolledo, Guillermo; Soto-Poblete, Alex; Pacheco-Espinoza, Ana Carolina; Amigo-Mendoza, Carlos; Albornoz-Verdugo, M Eliana; Elgueta-Cancino, Edith

    2017-06-01

    Patients with cerebral palsy (CP) typically receive limited physical therapy services. However, the Nintendo Wii system offers a simple and affordable mode of virtual reality therapy. There are no clinical trials assessing the Nintendo Wii balance board for improving standing balance in CP. This randomised clinical trial will evaluate the effectiveness of an 18-session/six-week protocol using Wii therapy (W-t) compared with conventional therapy (C-t) in Chilean CP patients. The C-t group will perform the typical exercises prescribed by physical therapists for 40 min each session. W-t will consist of a virtual reality training session using the Nintendo Wii balance board console for 30 min each session. The primary outcome variable is the area of centre-of-pressure (CoP) sway (CoP Sway ). The secondary outcomes are the standard deviation (SD ML ; SD AP ) and velocity (V ML ; V AP ) of CoP in the ML and AP directions. For a mean difference of 21.5 cm 2 (CoP Sway ) between the groups, we required a minimum of 16 participants in each group. Data will be collected at baseline (week 0), during the study (weeks 2 and 4), at the end of the study (week 6), and during the follow-up (weeks 8 and 10). Measurements of postural control during quiet standing for both groups will be assessed on a force platform AMTI OR67. This is the first trial that measures and compares the effects of a Nintendo Wii Balance Board exercise programme on standing balance in children with cerebral palsy compared to conventional therapy.

  17. Changes in cortical activity associated with adaptive behavior during repeated balance perturbation of unpredictable timing

    Directory of Open Access Journals (Sweden)

    Andreas eMierau

    2015-10-01

    Full Text Available The compensation for a sudden balance perturbation, unpracticed and unpredictable in timing and magnitude is accompanied by pronounced postural instability that is suggested to be causal to falls. However, subsequent presentations of an identical perturbation are characterized by a marked decrease of the amplitude of postural reactions; a phenomenon called adaptation or habituation. This study aimed to identify cortical characteristics associated with adaptive behavior during repetitive balance perturbations based on single-trial analyses of the P1 and N1 perturbation-evoked potentials. Thirty-seven young men were exposed to ten transient balance perturbations while balancing on the dominant leg. 32-channel EEG, surface EMG of the ankle plantar flexor muscles and postural sway (i.e. Euclidean distance of the supporting platform were recorded simultaneously. The P1 and N1 potentials were localized and the amplitude/latency was analyzed trial by trial. The best match sources for P1 and N1 potentials were located in the parietal (Brodmann area 5 and midline fronto-central cortex (Brodmann area 6, respectively. The amplitude and latency of the P1 potential remained unchanged over trials. In contrast, a significant adaptation of the N1 amplitude was observed. Similar adaptation effects were found with regard to postural sway and m. peroneus longus EMG activity of the non-dominant (free leg; an indicator reduced muscular co-contraction and/or less temporary bipedal stance to regain stability. Significant but weak correlations were found between N1 amplitude and postural sway as well as EMG activity. These results highlight the important role of the midline fronto-central cortex for adaptive behavior associated with balance control.

  18. Deficits in medio-lateral balance control and the implications for falls in individuals with multiple sclerosis.

    Science.gov (United States)

    Morrison, S; Rynders, C A; Sosnoff, J J

    2016-09-01

    A major health concern faced by individuals with Multiple Sclerosis (MS) is the heightened risk of falling. Reasons for this increased risk can often be traced back to declines in neurophysiological mechanisms underlying balance control and/or muscular strength. The aim of this study was to assess differences between persons with MS and age-matched healthy adults in regards to their falls risk, strength, reactions and directional control of balance. Twenty-two persons with multiple sclerosis (mean age 56.3±8.9 years) and 22 age-matched healthy adults (mean age 59.1±7.1 years) participated in the study. Assessments of falls risk, balance, fear of falling, lower limb strength, and reaction time were performed. Balance control was assessed under four conditions where the combined effects of vision (eyes open/closed) and standing surface (firm/pliable surface) were evaluated. Results demonstrated that, in comparison to healthy older adults, persons with MS had a significantly higher falls risk, slower reaction times, and weaker lower- limb strength. For balance, persons with MS exhibited greater overall COP motion in both the medio-lateral (ML) and anterior-posterior (AP) directions compared to older adults. Additionally, during more challenging balance conditions, persons from the MS group exhibited greater ML motion compared to sway in the AP direction. Overall, the results confirm that persons with MS are often at a heightened risk of falling, due to the multitude of neuromuscular changes brought about by this disease process. However, the increased ML sway for the MS group could reflect a decreased ability to control side-to-side motion in comparison to controlling AP sway. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Effects of Indoor Footwear on Balance and Gait Patterns in Community-Dwelling Older Women.

    Science.gov (United States)

    Menz, Hylton B; Auhl, Maria; Munteanu, Shannon E

    2017-01-01

    Footwear worn indoors is generally less supportive than outdoor footwear and may increase the risk of falls. To evaluate balance ability and gait patterns in older women while wearing different styles of indoor footwear: a backless slipper and an enclosed slipper designed to optimise balance. Older women (n = 30) aged 65-83 years (mean 74.4, SD 5.6) performed a series of laboratory tests of balance ability (postural sway, limits of stability, and tandem walking, measured with the NeuroCom® Balance Master) and gait patterns (walking speed, cadence, and step length, measured with the GAITRite® walkway) while wearing (1) socks, (2) backless slippers with a soft sole, and (3) enclosed slippers with a firm sole and Velcro® fastening. Perceptions of the footwear were also documented using a structured questionnaire. Significant overall effects of footwear were observed for postural sway, the limits of stability test (directional control), the tandem walk test (step width and end sway), and temporospatial gait patterns (walking speed, cadence, and step length). No footwear effects were observed for maximum excursion when performing the limits of stability test or for speed when performing the tandem walk test. Post hoc tests indicated that performances were best while wearing the enclosed slippers, intermediate with socks, and worst with backless slippers. The enclosed slippers were perceived to be more attractive, comfortable, and well fitted, but heavier than the backless slippers. Most participants (n = 23; 77%) reported that they would consider wearing the enclosed slippers to reduce their risk of falling. Indoor footwear with an enclosed heel, Velcro® fastening, and a firm sole optimises balance and gait compared to backless slippers, and is therefore recommended to reduce the risk of falling. © 2016 The Author(s) Published by S. Karger AG, Basel.

  20. Direct and indirect measurement of neuromuscular fatigue in Canadian football players.

    Science.gov (United States)

    Clarke, Nick; Farthing, Jonathan P; Lanovaz, Joel L; Krentz, Joel R

    2015-05-01

    This study assessed the effects of a fatiguing game simulation (G-Sim) on the balance of collegiate Canadian football players. The purpose of the study was to evaluate postural control as a potential tool for monitoring neuromuscular fatigue (NMF) in collision-based team sports. Fifteen male Canadian football players were recruited (mean±SD: age 21.8±1.6 years, weight 97.6±14.7 kg). Indirect NMF measures (postural sway and countermovement jump (CMJ)) were performed 24 h before (TBase), immediately before (TPre) and after (TPost), and 24 h (T24) and 48 h after (T48) a Canadian football G-Sim. Peak isometric knee extensor torque of a maximal voluntary contraction (MVC) and electrically evoked tetani at 20 Hz (P20) and 80 Hz (P80) were also recorded as direct NMF measures at TBase, TPre, TPost, and T48. At TPost, we observed significant declines in MVC, P20, and the MVC/P80 ratio (-15.3%, -15.7%, and -12.1%, respectively; n=12) along with reductions in CMJ takeoff velocity and peak power (-6.9% and -6.5%, respectively; n=12) and larger area of the center of pressure trajectory (95.2%; n=10) during a 60-s postural sway task. All variables were no longer different than baseline by T48. Acute neuromuscular impairment in this cohort is likely attributable to alterations in excitation-contraction coupling due to structural damage and central activation failure. Congruency between the direct and indirect measures of NMF suggests monitoring postural sway has the potential to identify both neuromuscular and somatosensory alterations induced by acute game-induced fatigue in collision-based team sports players.

  1. [Fall risk assessment and knee extensor muscle activity in elderly people].

    Science.gov (United States)

    Oya, Yukiko; Nakamura, Masumi; Tabata, Emi; Morizono, Ryo; Mori, Sachiko; Kimuro, Yukari; Horikawa, Etsuo

    2008-05-01

    The purpose of this study was to analyze relationships between the history of falls, tripping, sway, and knee extensor muscle strengths as a tool for fall risk assessment in elderly people. We examined effective fall prevention measures. We investigated 102 elderly volunteers in the community. The subjects were classified according to history of falls, tripping, sway and 5 performance tests conducted to assess fall risk including Timed up-and-go test (TUG), Functional Reach test (FR), Hand grip and Reaction time (RT). In addition, the time serial data of the knee extensor muscle strength were acquired using a hand-held dynamometer. In comparison to the non-faller group, the faller group showed a significantly higher incident rate of tripping and sway. A frequency analysis using the Maximum Entropy Method revealed that the fallers group showed lower peak frequency (p=0.025). Also, the slope of the logarithmical spectrum was less steep in the fallers group (p=0.035). Also results from analysis of the peak force latency from the beginning of measurement to 50%, 80%, and 100% muscle strength, also showed that the faller group took more time for maximal voluntary contraction. The frequency analysis of the time series date of peak force latency of knee extensor muscle strength revealed that the muscle activity differs in faller compared to non-fallers. This study suggested that knee extensor muscle isometric performance could possibly be used as a new tool for fall risk assessment. We concluded that exercises to raise maximal muscle strength and muscle response speed are useful for the prevention of falls.

  2. Visuomotor Entrainment and the Frequency-Dependent Response of Walking Balance to Perturbations.

    Science.gov (United States)

    Franz, Jason R; Francis, Carrie; Allen, Matt; Thelen, Darryl G

    2016-08-26

    Visuomotor entrainment, or the synchronization of motor responses to visual stimuli, is a naturally emergent phenomenon in human standing. Our purpose was to investigate the prevalence and resolution of visuomotor entrainment in walking and the frequency-dependent response of walking balance to perturbations. We used a virtual reality environment to manipulate optical flow in ten healthy young adults during treadmill walking. A motion capture system recorded trunk, sacrum, and heel marker trajectories during a series of 3-min conditions in which we perturbed a virtual hallway mediolaterally with systematic changes in the driving frequencies of perceived motion. We quantified visuomotor entrainment using spectral analyses and balance deficits using trunk sway, gait variability, and detrended fluctuation analyses (DFA). ML kinematics were highly sensitive to visual perturbations, and instinctively synchronized (i.e., entrained) to a broad range of driving frequencies of perceived ML motion. However, the influence of visual perturbations on metrics of walking balance was frequency-dependent and governed by their proximity to stride frequency. Specifically, we found that a driving frequency nearest to subjects' average stride frequency uniquely compromised trunk sway, gait variability, and step-to-step correlations. We conclude that visuomotor entrainment is a robust and naturally emerging phenomenon during human walking, involving coordinated and frequency-dependent adjustments in trunk sway and foot placement to maintain balance at the whole-body level. These findings provide mechanistic insight into how the visuomotor control of walking balance is disrupted by visual perturbations and important reference values for the emergence of balance deficits due to age, injury, or disease.

  3. Postural control during the Stroop test in dyslexic and non dyslexic teenagers.

    Directory of Open Access Journals (Sweden)

    Zoï Kapoula

    Full Text Available Postural control in quiet stance although simple still requires some cognitive resources; dual cognitive tasks influence further postural control. The present study examines whether or not dyslexic teenagers experience postural instability when performing a Stroop dual task for which their performances are known to be poor. Fifteen dyslexics and twelve non-dyslexics (14 to 17 years old were recruited from the same school. They were asked to perform three tasks: (1 fixate a target, (2 perform an interference Stroop test (naming the colour or the word rather than reading the word, (3 performing flexibility Stroop task: the subject performed the interference task as in (2 except when the word was in a box, in which case he had to read the word. Postural performances were measured with a force platform. The results showed a main task effect on the variance of speed of body sway only: such variance was higher in the flexibility task than for the other two tasks. No group effect was found for any of the parameters of posture (surface, mediolateral and anteroposterior sway, variance of speed. Further wavelet analysis in the time-frequency domain revealed an increase in the spectral power of the medium frequency range believed to be related to cerebellum control; an accompanying increase in the cancellation time of the high frequency band related to reflexive loops occurred for non-dyslexics only. These effects occurred for the flexibility task and could be due to its high cognitive difficulty. Dyslexics displayed shorter cancellation time for the medium frequency band for all tasks, suggesting less efficient cerebellar control, perhaps of eye fixation and attention influencing body sway. We conclude that there is no evidence for a primary posture deficit in 15 year old teenagers who come from the general population and who were recruited in schools.

  4. The multitrace matrix model: An alternative to Connes NCG and IKKT model in 2 dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Ydri, Badis, E-mail: ydri@stp.dias.ie

    2016-12-10

    We present a new multitrace matrix model, which is a generalization of the real quartic one matrix model, exhibiting dynamical emergence of a fuzzy two-sphere and its non-commutative gauge theory. This provides a novel and a much simpler alternative to Connes non-commutative geometry and to the IKKT matrix model for emergent geometry in two dimensions. However, in higher dimensions this mechanism is not known to exist and the systematic frameworks of NCG and IKKT are expected to hold sway.

  5. A mathematical model for incorporating biofeedback into human postural control

    Directory of Open Access Journals (Sweden)

    Ersal Tulga

    2013-02-01

    Full Text Available Abstract Background Biofeedback of body motion can serve as a balance aid and rehabilitation tool. To date, mathematical models considering the integration of biofeedback into postural control have represented this integration as a sensory addition and limited their application to a single degree-of-freedom representation of the body. This study has two objectives: 1 to develop a scalable method for incorporating biofeedback into postural control that is independent of the model’s degrees of freedom, how it handles sensory integration, and the modeling of its postural controller; and 2 to validate this new model using multidirectional perturbation experimental results. Methods Biofeedback was modeled as an additional torque to the postural controller torque. For validation, this biofeedback modeling approach was applied to a vibrotactile biofeedback device and incorporated into a two-link multibody model with full-state-feedback control that represents the dynamics of bipedal stance. Average response trajectories of body sway and center of pressure (COP to multidirectional surface perturbations of subjects with vestibular deficits were used for model parameterization and validation in multiple perturbation directions and for multiple display resolutions. The quality of fit was quantified using average error and cross-correlation values. Results The mean of the average errors across all tactor configurations and perturbations was 0.24° for body sway and 0.39 cm for COP. The mean of the cross-correlation value was 0.97 for both body sway and COP. Conclusions The biofeedback model developed in this study is capable of capturing experimental response trajectory shapes with low average errors and high cross-correlation values in both the anterior-posterior and medial-lateral directions for all perturbation directions and spatial resolution display configurations considered. The results validate that biofeedback can be modeled as an additional

  6. Quantifying linguistic coordination

    DEFF Research Database (Denmark)

    Fusaroli, Riccardo; Tylén, Kristian

    task (Bahrami et al 2010, Fusaroli et al. 2012) we extend to linguistic coordination dynamical measures of recurrence employed in the analysis of sensorimotor coordination (such as heart-rate (Konvalinka et al 2011), postural sway (Shockley 2005) and eye-movements (Dale, Richardson and Kirkham 2012......). We employ nominal recurrence analysis (Orsucci et al 2005, Dale et al 2011) on the decision-making conversations between the participants. We report strong correlations between various indexes of recurrence and collective performance. We argue this method allows us to quantify the qualities...

  7. 5-HT1A receptor blockade targeting the basolateral amygdala improved stress-induced impairment of memory consolidation and retrieval in rats.

    Science.gov (United States)

    Sardari, M; Rezayof, A; Zarrindast, M-R

    2015-08-06

    The aim of the present study was to investigate the possible role of basolateral amygdala (BLA) 5-HT1A receptors in memory formation under stress. We also examined whether the blockade of these receptors is involved in stress-induced state-dependent memory. Adult male Wistar rats received cannula implants that bilaterally targeted the BLA. Long-term memory was examined using the step-through type of passive avoidance task. Behavioral stress was evoked by exposure to an elevated platform (EP) for 10, 20 and 30min. Post-training exposure to acute stress (30min) impaired the memory consolidation. In addition, pre-test exposure to acute stress-(20 and 30min) induced the impairment of memory retrieval. Interestingly, the memory impairment induced by post-training exposure to stress was restored in the animals that received 20- or 30-min pre-test stress exposure, suggesting stress-induced state-dependent memory retrieval. Post-training BLA-targeted injection of a selective 5-HT1A receptor antagonist, (S)-WAY-100135 (2μg/rat), prevented the impairing effect of stress on memory consolidation. Pre-test injection of the same doses of (S)-WAY-100135 that was targeted to the BLA also reversed stress-induced memory retrieval impairment. It should be considered that post-training or pre-test BLA-targeted injection of (S)-WAY-100135 (0.5-2μg/rat) by itself had no effect on the memory formation. Moreover, pre-test injection of (S)-WAY-100135 (2μg/rat) that targeted the BLA inhibited the stress-induced state-dependent memory retrieval. Taken together, our findings suggest that post-training or pre-test exposure to acute stress induced the impairment of memory consolidation, retrieval and state-dependent learning. The BLA 5-HT1A receptors have a critical role in learning and memory under stress. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  8. China's energy security, the Malacca dilemma and responses

    International Nuclear Information System (INIS)

    Zhang Zhongxiang

    2011-01-01

    China's rapid economic growth has led to a huge increase in oil imports. This has raised great concern regarding its energy security because China depends on a single chokepoint, the Strait of Malacca, with nearly three-quarters of its oil imports flowing through the Strait. Given its strategic importance to China and China's little sway on the waterway, this viewpoint focuses mainly on China's concerns about and efforts at both demand and supply sides towards energy security, in particular regarding the Malacca dilemma, and puts potential Arctic oil and gas into that context.

  9. Optimized Experiment Design for Marine Systems Identification

    DEFF Research Database (Denmark)

    Blanke, M.; Knudsen, Morten

    1999-01-01

    Simulation of maneuvring and design of motion controls for marine systems require non-linear mathematical models, which often have more than one-hundred parameters. Model identification is hence an extremely difficult task. This paper discusses experiment design for marine systems identification...... and proposes a sensitivity approach to solve the practical experiment design problem. The applicability of the sensitivity approach is demonstrated on a large non-linear model of surge, sway, roll and yaw of a ship. The use of the method is illustrated for a container-ship where both model and full-scale tests...

  10. Prevalance and characteristics of epilepsy in the Belgian shepherd variants Groenendael and Tervueren born in Denmark 1995-2004

    DEFF Research Database (Denmark)

    Berendt, Mette; Gulløv, Christina Hedal; Christensen, Stine Louise Krogh

    2008-01-01

    1995 and 2004. Furthermore, it was the intention to describe the clinical manifestation (seizure types and phenomenology) of epilepsy and to identify risk factors for euthanasia once the dog was diagnosed as having epilepsy. METHODS: All owners of Groenendael and Tervueren dogs born between January...... seizures. In four percent seizures were unclassifiable. The most commonly reported focal seizure phenomenology included ataxia, crawling, swaying, fearful behavior, salivation, excessive attention seeking and disorientation. In 16% of the cases, epilepsy led to euthanasia. Intact dogs with epilepsy had...

  11. Acute Sport-Related Concussion Screening for Collegiate Athletes Using an Instrumented Balance Assessment.

    Science.gov (United States)

    Baracks, Joshua; Casa, Douglas J; Covassin, Tracey; Sacko, Ryan; Scarneo, Samantha E; Schnyer, David; Yeargin, Susan W; Neville, Christopher

    2018-06-13

      Without a true criterion standard assessment, the sport-related concussion (SRC) diagnosis remains subjective. Inertial balance sensors have been proposed to improve acute SRC assessment, but few researchers have studied their clinical utility.   To determine if group differences exist when using objective measures of balance in a sample of collegiate athletes with recent SRCs and participants serving as the control group and to calculate sensitivity and specificity to determine the diagnostic utility of the inertial balance sensor for acute SRC injuries.   Cohort study.   Multicenter clinical trial.   We enrolled 48 participants with SRC (age = 20.62 ± 1.52 years, height = 179.76 ± 10.00 cm, mass = 83.92 ± 23.22 kg) and 45 control participants (age = 20.85 ± 1.42 years, height = 177.02 ± 9.59 cm, mass = 74.61 ± 14.92 kg) at 7 clinical sites in the United States. All were varsity or club collegiate athletes, and all participants with SRC were tested within 72 hours of SRC.   Balance performance was assessed using an inertial balance sensor. Two measures (root mean square [RMS] sway and 95% ellipse sway area) were analyzed to represent a range of general balance measures. Balance assessments were conducted in double-legged, single-legged, and tandem stances.   A main effect for group was associated with the root mean square sway measure ( F 1,91 = 11.75, P = .001), with the SRC group demonstrating balance deficits compared with the control group. We observed group differences in the 95% ellipse sway area measure for the double-legged ( F 1,91 = 11.59, P = .001), single-legged ( F 1,91 = 6.91, P = .01), and tandem ( F 1,91 = 7.54, P = .007) stances. Sensitivity was greatest using a cutoff value of 0.5 standard deviations (54% [specificity = 71%]), whereas specificity was greatest using a cutoff value of 2 standard deviations (98% [sensitivity = 33%]).   Inertial balance sensors may be useful tools for objectively measuring balance during acute

  12. Commentary on "Leadership, Production, and Exchange: An Evaluation of World-Systems Theory in a Global Context"

    Directory of Open Access Journals (Sweden)

    Darrell Lalone

    2015-08-01

    Full Text Available As we expand and extend our applications of world-system theory, as we explore the shifting interplay between cores and peripheries, as we see boundaries emerge and dissolve, we also fix world-systems theory itself on the map table. What is its core? What are its peripheries, or would it claim that all human interactions fall within its sway?Thomas Hall, for example, does not take quite the entire map, but takes "intersocietal interaction" as the world-systems domain.

  13. Sensorimotor Control in Individuals With Idiopathic Neck Pain and Healthy Individuals: A Systematic Review and Meta-Analysis.

    Science.gov (United States)

    de Zoete, Rutger M J; Osmotherly, Peter G; Rivett, Darren A; Farrell, Scott F; Snodgrass, Suzanne J

    2017-06-01

    (1) To identify reported tests used to assess sensorimotor control in individuals with idiopathic neck pain and (2) to investigate whether these tests can quantify differences between individuals with idiopathic neck pain and healthy individuals. Allied and Complementary Medicine Database, CINAHL, Cochrane Central Register of Controlled Trials, Embase, MEDLINE, Physiotherapy Evidence Database, Scopus, and SPORTDiscus. Studies reporting sensorimotor outcomes in individuals with idiopathic neck pain or healthy individuals were identified. There were 1,677 records screened independently by 2 researchers for eligibility: 43 studies were included in the review, with 30 of these studies included in the meta-analysis. Methodologic quality was determined using the Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies. Data were extracted using a standardized extraction table. Sensorimotor control was most commonly assessed by joint position error and postural sway. Pooled means for joint position error after cervical rotation in individuals with neck pain (range, 2.2°-9.8°) differed significantly (P=.04) compared with healthy individuals (range, 1.66°-5.1°). Postural sway with eyes open ranged from 4.85 to 10.5cm 2 (neck pain) and 3.5 to 6.6cm 2 (healthy) (P=.16), and postural sway with eyes closed ranged from 2.51 to 16.6cm 2 (neck pain) and 2.74 to 10.9cm 2 (healthy) (P=.30). Individual studies, but not meta-analysis, demonstrated differences between neck pain and healthy groups for postural sway. Other test conditions and other tests were not sufficiently investigated to enable pooling of data. The findings from this review suggest sensorimotor control testing may be clinically useful in individuals with idiopathic neck pain. However, results should be interpreted with caution because clinical differences were small; therefore, further cross-sectional research with larger samples is needed to determine the magnitude of the relation between

  14. An Interview with Professor Roy Caldwell

    OpenAIRE

    Chowdhary, Kuntal; Bhat, Prashant; Rosen, Jared; Naughton, Ida; Wang, Jingyan

    2013-01-01

    Envision the underwater world: vibrant coral, swaying seaweed, and lively creatures abound. However, the postcards and National Geographic covers that try to capture the beauty of this picturesque habitat can only represent it at one moment in time -- in reality, the landscape is hardly static, since many of its animals are capable of body modifications to change their shape and color. To understand the coloration and color vision of sea creatures, UC Berkeley Professor Roy L. Caldwell resear...

  15. Effects of kinesthetic haptic feedback on standing stability of young healthy subjects and stroke patients.

    Science.gov (United States)

    Afzal, Muhammad Raheel; Byun, Ha-Young; Oh, Min-Kyun; Yoon, Jungwon

    2015-03-13

    Haptic control is a useful therapeutic option in rehabilitation featuring virtual reality interaction. As with visual and vibrotactile biofeedback, kinesthetic haptic feedback may assist in postural control, and can achieve balance control. Kinesthetic haptic feedback in terms of body sway can be delivered via a commercially available haptic device and can enhance the balance stability of both young healthy subjects and stroke patients. Our system features a waist-attached smartphone, software running on a computer (PC), and a dedicated Phantom Omni® device. Young healthy participants performed balance tasks after assumption of each of four distinct postures for 30 s (one foot on the ground; the Tandem Romberg stance; one foot on foam; and the Tandem Romberg stance on foam) with eyes closed. Patient eyes were not closed and assumption of the Romberg stance (only) was tested during a balance task 25 s in duration. An Android application running continuously on the smartphone sent mediolateral (ML) and anteroposterior (AP) tilt angles to a PC, which generated kinesthetic haptic feedback via Phantom Omni®. A total of 16 subjects, 8 of whom were young healthy and 8 of whom had suffered stroke, participated in the study. Post-experiment data analysis was performed using MATLAB®. Mean Velocity Displacement (MVD), Planar Deviation (PD), Mediolateral Trajectory (MLT) and Anteroposterior Trajectory (APT) parameters were analyzed to measure reduction in body sway. Our kinesthetic haptic feedback system was effective to reduce postural sway in young healthy subjects regardless of posture and the condition of the substrate (the ground) and to improve MVD and PD in stroke patients who assumed the Romberg stance. Analysis of Variance (ANOVA) revealed that kinesthetic haptic feedback significantly reduced body sway in both categories of subjects. Kinesthetic haptic feedback can be implemented using a commercial haptic device and a smartphone. Intuitive balance cues were

  16. The effect of Nintendo® Wii® on balance in people with multiple sclerosis: a pilot randomized control study.

    Science.gov (United States)

    Brichetto, Giampaolo; Spallarossa, Patricio; de Carvalho, Maria L Lopes; Battaglia, Mario A

    2013-08-01

    Improvement of sensory strategies is a relevant part of balance rehabilitation in multiple sclerosis (MS). This study aimed to Assess the effectiveness of visual-feedback exercises in improving balance in MS. We divided 36 patients into Wii and control-treated groups that underwent balance rehabilitation. Outcomes were obtained for Berg Balance Scale (BBS), Modified Fatigue Impact Scale, and sway area under conditions of opened and closed eyes. BBS showed a statistically significant improvement (from 49.6 to 54.6 points, p Wii group. Interactive visual-feedback exercises such as Wii could be more effective than the current standard protocol in improving balance disorders in MS.

  17. Effectiveness of a perceptual - proprioceptive training with virtual visual feedback in healthy subjects: a pilot study

    OpenAIRE

    Vando, Stefano; Unim, Brigid; Cassarino, Salvatore A; Padulo, Johnny; Masala, Daniele

    2013-01-01

    Background: the aim of this pilot study was to evaluate whether proprioceptive-motor training using the Wii Balance Board (WBB) might improve postural sway in healthy subjects.Methods: twenty-five healthy subjects were trained for six weeks (two sessions per week) with 5 “video games”: Wii Fit Plus (WFP) program. Before and after training: Basic Balance, Single-leg Balance, Agility, Stability and Motion (lower limb: right-left and both leg) were measured using the Wii Balance Board.Results: t...

  18. Associations of anthropometry since birth with sagittal posture at age 7 in a prospective birth cohort: the Generation XXI Study.

    Science.gov (United States)

    Araújo, Fábio A; Lucas, Raquel; Simpkin, Andrew J; Heron, Jon; Alegrete, Nuno; Tilling, Kate; Howe, Laura D; Barros, Henrique

    2017-07-26

    Adult sagittal posture is established during childhood and adolescence. A flattened or hypercurved spine is associated with poorer musculoskeletal health in adulthood. Although anthropometry from birth onwards is expected to be a key influence on sagittal posture design, this has never been assessed during childhood. Our aim was to estimate the association between body size throughout childhood with sagittal postural patterns at age 7. Prospective cohort study. A subsample of 1029 girls and 1101 boys taking part in the 7-year-old follow-up of the birth cohort Generation XXI (Porto, Portugal) was included. We assessed the associations between anthropometric measurements (weight, height and body mass index) at birth, 4 and 7 years of age and postural patterns at age 7. Postural patterns were defined using latent profile analysis, a probabilistic model-based technique which allows for simultaneously including anthropometrics as predictors of latent profiles by means of logistic regression. Postural patterns identified were sway, flat and "neutral to hyperlordotic"in girls, and "sway to neutral", flat and hyperlordotic in boys; with flat and hyperlordotic postures representing a straightened and a rounded spine, respectively. In both girls and boys, higher weight was associated with lower odds of a flat pattern compared with a sway/"sway to neutral"pattern, with stronger associations at older ages: for example, ORs were 0.68 (95% CI 0.53 to 0.88) per SD increase in birth weight and 0.36 (95% CI 0.19 to 0.68) per SD increase in weight at age 7 in girls, with similar findings in boys. Boys with higher ponderal index at birth were more frequently assigned to the hyperlordotic pattern (OR=1.44 per SD; p=0.043). Our findings support a prospective sculpting role of body size and therefore of load on musculoskeletal spinopelvic structures, with stronger associations as children get older. © Article author(s) (or their employer(s) unless otherwise stated in the text of the

  19. Interactive Sensor-Based Balance Training in Older Cancer Patients with Chemotherapy-Induced Peripheral Neuropathy: A Randomized Controlled Trial.

    Science.gov (United States)

    Schwenk, Michael; Grewal, Gurtej S; Holloway, Dustin; Muchna, Amy; Garland, Linda; Najafi, Bijan

    2016-01-01

    Cancer patients with chemotherapy-induced peripheral neuropathy (CIPN) have deficits in sensory and motor skills leading to inappropriate proprioceptive feedback, impaired postural control, and fall risk. Balance training programs specifically developed for CIPN patients are lacking. This pilot study investigated the effect of an interactive motor adaptation balance training program based on wearable sensors for improving balance in older cancer patients with CIPN. Twenty-two patients (age: 70.3 ± 8.7 years) with objectively confirmed CIPN [vibration perception threshold (VPT) >25 V] were randomized to either an intervention (IG) or a control (CG) group. The IG received interactive game-based balance training including repetitive weight shifting and virtual obstacle crossing tasks. Wearable sensors provided real-time visual/auditory feedback from the lower limb trajectory and allowed the perception of motor errors during each motor action. The CG received no exercise intervention and continued their normal activity. Outcome measures were changes in sway of ankle, hip, and center of mass (CoM) in both mediolateral and anteroposterior (AP) directions during 30-second balance tests with increasing task difficulty [i.e. standing in feet-closed position with eyes open (EO) and eyes closed (EC), and in semi-tandem position with EO] at baseline and after the intervention. Additionally, gait performance (speed, variability) and fear of falling [Falls Efficacy Scale-International (FES-I)] were measured. Training was safe despite the participants' impaired health status, great severity of CIPN (VPT 49.6 ± 26.7 V), and great fear of falling (FES-I score 31.37 ± 11.20). After the intervention, sway of hip, ankle, and CoM was significantly reduced in the IG compared to the CG while standing in feet-closed position with EO (p = 0.010-0.022, except AP CoM sway) and in semi-tandem position (p = 0.008-0.035, except ankle sway). No significant effects were found for balance with

  20. The Past, Present and Future of Industrial Policy in India: Adapting to the Changing Domestic and International Environment

    OpenAIRE

    Ajit Singh

    2008-01-01

    In the post-World War II period India was probably the first non-communist developing country to have instituted a full-fledged industrial policy. The purpose of the policy was to co-ordinate investment decisions both in the public and the private sectors and to seize the 'commanding heights' of the economy by bringing certain strategic industries and firms under public ownership. This classical state-directed industrialisation model held sway for three decades, from 1950-1980. The model bega...

  1. Soil-structure interaction analysis of HTTR building by a simplified model

    International Nuclear Information System (INIS)

    Yagishita, F.; Suzuki, H.; Yamagishi, Y.

    1990-01-01

    For the evaluation of the design seismic forces of the embedded High-Temperature-Testing-Reactor (HTTR) structure, a sway-rocking model considering the embedment of the structure is used. As for the composition of this model; the structure is modeled into beams with lumped masses, and the soil into the horizontal side springs and the horizontal and rotational bottom springs. At the same time, the input motion to the structure which has the form of multiple excitation is calculated based on one dimensional wave propagation theory. This paper presents the concept of this modelling and evaluated results. (author). 9 refs, 11 figs

  2. PDV [Petroleos de Venezuela] ditches past to play leading role in Venezuela's future

    International Nuclear Information System (INIS)

    Giusti, L.

    1994-01-01

    The president of Petroleos de Venezuela (PDV) describes the transformation of Venezuelan society and economics which has come about between 1989 and 1992 and the effect of these political changes on the oil industry in this country. While political and social unrest has been widespread before and during these changes PDV, at least, considers that a more robust economy and a better and fairer society will result than would have been possible under the oil rent system which held sway prior to 1989. (author)

  3. The preterm pig as a model of premature infant gait ataxia

    DEFF Research Database (Denmark)

    Bergström, A.; Ryom, K.; Vanden Hole, C.

    Aims/background Compromised gait, balance and motor coordination (ataxia) as observed in cases of cerebral palsy is a serious complication to premature birth. The cerebellum is a central region with regards to these brain functions and its development shows high sensitivity to premature birth. Our...... group has over many years refined a pig model of premature birth focusing on gut and immune system development. Phenotypically, we have observed distinct motoric problems e.g. falls, tiptoe walking and swaying in preterm pigs relative to term born counterparts, indicating compromised brain function...

  4. Orchestrating intensities and rhythms

    DEFF Research Database (Denmark)

    Staunæs, Dorthe; Juelskjær, Malou

    2016-01-01

    environmentality and learning-centered governance standards has dramatic and performative effects for the production of (educational) subjectivities. This implies a shift from governing identities, categories and structures towards orchestrating affective intensities and rhythms. Finally, the article discusses...... and the making of subjects have held sway for many years; and it is also well known that schools have been some of the most regular purchasers of psychological methods, tests and classifications. Following but also elaborating upon governmentality studies, it is suggested that a current shift towards...

  5. Making difficult decisions how to be decisive and get the business done

    CERN Document Server

    Shaw, Peter J A

    2010-01-01

    You are faced with so many difficult decisions. Often your decision making seems random. It can be swayed by different situations and emotions. You need to be more rigorous in the way you make decisions and yet you have very little time to do so. Experience from others who have made tough decisions and a framework to help you do so would be invaluable. The courage to make decisions is sometimes a bit elusive. It is difficult to find the calmness to be able to make and live with those decisions. There is so much that can be learned from the experience of others. After working through this boo

  6. Obligations procédurales et droit au divorce

    OpenAIRE

    Lauer , Mélanie

    2008-01-01

    There is no longer any doubt that divroce is an integral part of the family scene. But for that, divorce law has swayed between permissive law and coercive law. The law of July 11 1975 inspired a movement of liberalisation that would reign over diverce law. But it is with law of May 26 2004 that liberalisation would become more extensice. Even if this law is keeping with a form of continuity by maintaining the plurality of divorce cases, it opens the doors of divorce wider. The rules of subst...

  7. Postural adaptations to repeated optic flow stimulation in older adults

    OpenAIRE

    O’Connor, Kathryn W.; Loughlin, Patrick J.; Redfern, Mark S.; Sparto, Patrick J.

    2008-01-01

    The purpose of this study is to understand the processes of adaptation (changes in within-trial postural responses) and habituation (reductions in between-trial postural responses) to visual cues in older and young adults. Of particular interest were responses to sudden increases in optic flow magnitude. The postural sway of 25 healthy young adults and 24 healthy older adults was measured while subjects viewed anterior-posterior 0.4 Hz sinusoidal optic flow for 45 s. Three trials for each of ...

  8. Medical significance of the essential biological metals

    International Nuclear Information System (INIS)

    Davies, I.J.T.

    1977-01-01

    The medical significance of the essential biological metals such as zinc, copper and molybdenum as well as their nutritional and biochemical importance are reviewed. The following topics are treated: biochemical actions of the essential biological metals; the concept of essentiality; the development of knowledge about the essential biological metals. Data are given on zinc deficiency and hypogonadismi in humans, zinc and acrodermatitis enterophatica, zinc and the skin, zinc in diabetes mellitus, zinc and insulin, zinc and the liver; copper functions, copper deficiency - ''sway back'' in sheep, copper and haemopoiesis, copper and the function of blood vessels; molybdenum and dental caries in humans, oesophageal carcinoma and molybdenum deficiency in humans. (T.G.)

  9. Recycling entire DOE facilities: The National Conversion Pilot Project

    International Nuclear Information System (INIS)

    Floyd, D.R.

    1996-01-01

    The Mission of the National Conversion Pilot Project - to demonstrate, at the Rocky Flats Site, the feasibility of economic conversion of DOE Sites - is succeeding. Contaminated facilities worth $92 million are being cleaned and readied for reuse by commercial industry to manufacture products needed in the DOE cleanup and elsewhere. Former Rocky Flats workers have been hired, recultured, are conducting the cleanup and are expected to perform the future manufacturing by recycling DOE RSM and other metals requiring special environmental controls. Stakeholder sway over project activities is welcome and strong

  10. The potential for bioethanol production from wheat in the U.K

    International Nuclear Information System (INIS)

    Batchelor, S.; Booth, E.J.; Walker, K.C.; Cook, P.

    1994-06-01

    Ethanol, currently widely used in cosmetic chemical and pharmaceutical applications, can be manufactured either from petroleum deriviatives (synthetic ethanol), or by the biological fermentation of carbohydrate. This report looks at the United Kingdom potential for production of the latter, so called, bioethanol from wheat. Ethanol from wheat is already produced for the grain spirit industry, and two such bioethanol plants operating in Sweden and France are described. Although there is, at present, no overall cost advantage in using bioethanol from wheat over synthetic ethanol, environmental benefits may sway the balance in its failure. (UK)

  11. Nuclear power

    International Nuclear Information System (INIS)

    Bupp, I.C.

    1991-01-01

    Is a nuclear power renaissance likely to occur in the United States? This paper investigates the many driving forces that will determine the answer to that question. This analysis reveals some frequently overlooked truths about the current state of nuclear technology: An examination of the issues also produces some noteworthy insights concerning government regulations and related technologies. Public opinion will play a major role in the unfolding story of the nuclear power renaissance. Some observers are betting that psychological, sociological, and political considerations will hod sway over public attitudes. Others wager that economic and technical concerns will prevail. The implications for the nuclear power renaissance are striking

  12. Using M and S to Improve Human Decision Making and Achieve Effective Problem Solving in an International Environment

    Science.gov (United States)

    Christie, Vanessa L.; Landess, David J.

    2012-01-01

    In the international arena, decision makers are often swayed away from fact-based analysis by their own individual cultural and political bias. Modeling and Simulation-based training can raise awareness of individual predisposition and improve the quality of decision making by focusing solely on fact vice perception. This improved decision making methodology will support the multinational collaborative efforts of military and civilian leaders to solve challenges more effectively. The intent of this experimental research is to create a framework that allows decision makers to "come to the table" with the latest and most significant facts necessary to determine an appropriate solution for any given contingency.

  13. Influence of Visual Motion, Suggestion, and Illusory Motion on Self-Motion Perception in the Horizontal Plane.

    Directory of Open Access Journals (Sweden)

    Steven David Rosenblatt

    Full Text Available A moving visual field can induce the feeling of self-motion or vection. Illusory motion from static repeated asymmetric patterns creates a compelling visual motion stimulus, but it is unclear if such illusory motion can induce a feeling of self-motion or alter self-motion perception. In these experiments, human subjects reported the perceived direction of self-motion for sway translation and yaw rotation at the end of a period of viewing set visual stimuli coordinated with varying inertial stimuli. This tested the hypothesis that illusory visual motion would influence self-motion perception in the horizontal plane. Trials were arranged into 5 blocks based on stimulus type: moving star field with yaw rotation, moving star field with sway translation, illusory motion with yaw, illusory motion with sway, and static arrows with sway. Static arrows were used to evaluate the effect of cognitive suggestion on self-motion perception. Each trial had a control condition; the illusory motion controls were altered versions of the experimental image, which removed the illusory motion effect. For the moving visual stimulus, controls were carried out in a dark room. With the arrow visual stimulus, controls were a gray screen. In blocks containing a visual stimulus there was an 8s viewing interval with the inertial stimulus occurring over the final 1s. This allowed measurement of the visual illusion perception using objective methods. When no visual stimulus was present, only the 1s motion stimulus was presented. Eight women and five men (mean age 37 participated. To assess for a shift in self-motion perception, the effect of each visual stimulus on the self-motion stimulus (cm/s at which subjects were equally likely to report motion in either direction was measured. Significant effects were seen for moving star fields for both translation (p = 0.001 and rotation (p0.1 for both. Thus, although a true moving visual field can induce self-motion, results of this

  14. Visual Vection does not Perturb Squatting Posture

    Directory of Open Access Journals (Sweden)

    Dietrich Gilles

    2011-12-01

    Full Text Available Vision contributes fundamentally to the control of the standing posture. The illusion of self motion falsely perceived (vection increases postural sway while standing. In this paper we examine the effect of vection on both standing and deep squatting with the hypothesis that the squatting posture should not be disturbed by the conflict of sensory information due to vection. The results show that standing posture only was affected by the visual stimuli. The widespread use of squatting for work as well as rest could be due in part to this lack of effect of sensory perturbation on postural stability.

  15. Hypermobility in Adolescent Athletes: Pain, Functional Ability, Quality of Life, and Musculoskeletal Injuries.

    Science.gov (United States)

    Schmidt, Heidi; Pedersen, Trine Lykke; Junge, Tina; Engelbert, Raoul; Juul-Kristensen, Birgit

    2017-10-01

    Study Design Cross-sectional. Background Generalized joint hypermobility (GJH) may increase pain and likelihood of injuries and also decrease function and health-related quality of life (HRQoL) in elite-level adolescent athletes. Objective To assess the prevalence of GJH in elite-level adolescent athletes, and to study the association of GJH with pain, function, HRQoL, and musculoskeletal injuries. Methods A total of 132 elite-level adolescent athletes (36 adolescent boys, 96 adolescent girls; mean ± SD age, 14.0 ± 0.9 years), including ballet dancers (n = 22), TeamGym gymnasts (n = 57), and team handball players (n = 53), participated in the study. Generalized joint hypermobility was classified by Beighton score as GJH4 (4/9 or greater), GJH5 (5/9 or greater), and GJH6 (6/9 or greater). Function of the lower extremity, musculoskeletal injuries, and HRQoL were assessed with self-reported questionnaires, and part of physical performance was assessed by 4 postural-sway tests and 2 single-legged hop-for-distance tests. Results Overall prevalence rates for GJH4, GJH5, and GJH6 were 27.3%, 15.9%, and 6.8%, respectively, with a higher prevalence of GJH4 in ballet dancers (68.2%) and TeamGym gymnasts (24.6%) than in team handball players (13.2%). There was no significant difference in lower extremity function, injury prevalence and related factors (exacerbation, recurrence, and absence from training), HRQoL, or lengths of hop tests for those with and without GJH. However, the GJH group had significantly larger center-of-pressure path length across sway tests. Conclusion For ballet dancers and TeamGym gymnasts, the prevalence of GJH4 was higher than that of team handball players. For ballet dancers, the prevalence of GJH5 and GJH6 was higher than that of team handball players and the general adolescent population. The GJH group demonstrated larger sway in the balance tests, which, in the current cross-sectional study, did not have an association with injuries or HRQo

  16. Ground Reaction Forces Generated During Rhythmical Squats as a Dynamic Loads of the Structure

    Science.gov (United States)

    Pantak, Marek

    2017-10-01

    Dynamic forces generated by moving persons can lead to excessive vibration of the long span, slender and lightweight structure such as floors, stairs, stadium stands and footbridges. These dynamic forces are generated during walking, running, jumping and rhythmical body swaying in vertical or horizontal direction etc. In the paper the mathematical models of the Ground Reaction Forces (GRFs) generated during squats have been presented. Elaborated models was compared to the GRFs measured during laboratory tests carried out by author in wide range of frequency using force platform. Moreover, the GRFs models were evaluated during dynamic numerical analyses and dynamic field tests of the exemplary structure (steel footbridge).

  17. A mathematical model for incorporating biofeedback into human postural control

    Science.gov (United States)

    2013-01-01

    Background Biofeedback of body motion can serve as a balance aid and rehabilitation tool. To date, mathematical models considering the integration of biofeedback into postural control have represented this integration as a sensory addition and limited their application to a single degree-of-freedom representation of the body. This study has two objectives: 1) to develop a scalable method for incorporating biofeedback into postural control that is independent of the model’s degrees of freedom, how it handles sensory integration, and the modeling of its postural controller; and 2) to validate this new model using multidirectional perturbation experimental results. Methods Biofeedback was modeled as an additional torque to the postural controller torque. For validation, this biofeedback modeling approach was applied to a vibrotactile biofeedback device and incorporated into a two-link multibody model with full-state-feedback control that represents the dynamics of bipedal stance. Average response trajectories of body sway and center of pressure (COP) to multidirectional surface perturbations of subjects with vestibular deficits were used for model parameterization and validation in multiple perturbation directions and for multiple display resolutions. The quality of fit was quantified using average error and cross-correlation values. Results The mean of the average errors across all tactor configurations and perturbations was 0.24° for body sway and 0.39 cm for COP. The mean of the cross-correlation value was 0.97 for both body sway and COP. Conclusions The biofeedback model developed in this study is capable of capturing experimental response trajectory shapes with low average errors and high cross-correlation values in both the anterior-posterior and medial-lateral directions for all perturbation directions and spatial resolution display configurations considered. The results validate that biofeedback can be modeled as an additional torque to the postural

  18. Recognition of aspect-dependent three-dimensional objects by an echolocating Atlantic bottlenose dolphin.

    Science.gov (United States)

    Helweg, D A; Roitblat, H L; Nachtigall, P E; Hautus, M J

    1996-01-01

    We examined the ability of a bottlenose dolphin (Tursiops truncatus) to recognize aspect-dependent objects using echolocation. An aspect-dependent object such as a cube produces acoustically different echoes at different angles relative to the echolocation signal. The dolphin recognized the objects even though the objects were free to rotate and sway. A linear discriminant analysis and nearest centroid classifier could classify the objects using average amplitude, center frequency, and bandwidth of object echoes. The results show that dolphins can use varying acoustic properties to recognize constant objects and suggest that aspect-independent representations may be formed by combining information gleaned from multiple echoes.

  19. Influence of Visual Motion, Suggestion, and Illusory Motion on Self-Motion Perception in the Horizontal Plane.

    Science.gov (United States)

    Rosenblatt, Steven David; Crane, Benjamin Thomas

    2015-01-01

    A moving visual field can induce the feeling of self-motion or vection. Illusory motion from static repeated asymmetric patterns creates a compelling visual motion stimulus, but it is unclear if such illusory motion can induce a feeling of self-motion or alter self-motion perception. In these experiments, human subjects reported the perceived direction of self-motion for sway translation and yaw rotation at the end of a period of viewing set visual stimuli coordinated with varying inertial stimuli. This tested the hypothesis that illusory visual motion would influence self-motion perception in the horizontal plane. Trials were arranged into 5 blocks based on stimulus type: moving star field with yaw rotation, moving star field with sway translation, illusory motion with yaw, illusory motion with sway, and static arrows with sway. Static arrows were used to evaluate the effect of cognitive suggestion on self-motion perception. Each trial had a control condition; the illusory motion controls were altered versions of the experimental image, which removed the illusory motion effect. For the moving visual stimulus, controls were carried out in a dark room. With the arrow visual stimulus, controls were a gray screen. In blocks containing a visual stimulus there was an 8s viewing interval with the inertial stimulus occurring over the final 1s. This allowed measurement of the visual illusion perception using objective methods. When no visual stimulus was present, only the 1s motion stimulus was presented. Eight women and five men (mean age 37) participated. To assess for a shift in self-motion perception, the effect of each visual stimulus on the self-motion stimulus (cm/s) at which subjects were equally likely to report motion in either direction was measured. Significant effects were seen for moving star fields for both translation (p = 0.001) and rotation (pperception was shifted in the direction consistent with the visual stimulus. Arrows had a small effect on self

  20. Modulation of Visually Evoked Postural Responses by Contextual Visual, Haptic and Auditory Information: A ‘Virtual Reality Check’

    Science.gov (United States)

    Meyer, Georg F.; Shao, Fei; White, Mark D.; Hopkins, Carl; Robotham, Antony J.

    2013-01-01

    Externally generated visual motion signals can cause the illusion of self-motion in space (vection) and corresponding visually evoked postural responses (VEPR). These VEPRs are not simple responses to optokinetic stimulation, but are modulated by the configuration of the environment. The aim of this paper is to explore what factors modulate VEPRs in a high quality virtual reality (VR) environment where real and virtual foreground objects served as static visual, auditory and haptic reference points. Data from four experiments on visually evoked postural responses show that: 1) visually evoked postural sway in the lateral direction is modulated by the presence of static anchor points that can be haptic, visual and auditory reference signals; 2) real objects and their matching virtual reality representations as visual anchors have different effects on postural sway; 3) visual motion in the anterior-posterior plane induces robust postural responses that are not modulated by the presence of reference signals or the reality of objects that can serve as visual anchors in the scene. We conclude that automatic postural responses for laterally moving visual stimuli are strongly influenced by the configuration and interpretation of the environment and draw on multisensory representations. Different postural responses were observed for real and virtual visual reference objects. On the basis that automatic visually evoked postural responses in high fidelity virtual environments should mimic those seen in real situations we propose to use the observed effect as a robust objective test for presence and fidelity in VR. PMID:23840760

  1. Modulation of visually evoked postural responses by contextual visual, haptic and auditory information: a 'virtual reality check'.

    Directory of Open Access Journals (Sweden)

    Georg F Meyer

    Full Text Available Externally generated visual motion signals can cause the illusion of self-motion in space (vection and corresponding visually evoked postural responses (VEPR. These VEPRs are not simple responses to optokinetic stimulation, but are modulated by the configuration of the environment. The aim of this paper is to explore what factors modulate VEPRs in a high quality virtual reality (VR environment where real and virtual foreground objects served as static visual, auditory and haptic reference points. Data from four experiments on visually evoked postural responses show that: 1 visually evoked postural sway in the lateral direction is modulated by the presence of static anchor points that can be haptic, visual and auditory reference signals; 2 real objects and their matching virtual reality representations as visual anchors have different effects on postural sway; 3 visual motion in the anterior-posterior plane induces robust postural responses that are not modulated by the presence of reference signals or the reality of objects that can serve as visual anchors in the scene. We conclude that automatic postural responses for laterally moving visual stimuli are strongly influenced by the configuration and interpretation of the environment and draw on multisensory representations. Different postural responses were observed for real and virtual visual reference objects. On the basis that automatic visually evoked postural responses in high fidelity virtual environments should mimic those seen in real situations we propose to use the observed effect as a robust objective test for presence and fidelity in VR.

  2. Simulation of Tsunami Resistance of a Pinus Thunbergii tree in Coastal Forest in Japan

    Science.gov (United States)

    Nanko, K.; Suzuki, S.; Noguchi, H.; Hagino, H.

    2015-12-01

    Forests reduce fluid force of tsunami, whereas extreme tsunami sometimes breaks down the forest trees. It is difficult to estimate the interactive relationship between the fluid and the trees because fluid deform tree architecture and deformed tree changes flow field. Dynamic tree deformation and fluid behavior should be clarified by fluid-structure interaction analysis. For the initial step, we have developed dynamic simulation of tree sway and breakage caused by tsunami based on a vibrating system with multiple degrees of freedom. The target specie of the simulation was Japanese black pine (pinus thunbergii), which is major specie in the coastal forest to secure livelihood area from the damage by blown sand and salt in Japanese coastal area. For the simulation, a tree was segmented into 0.2 m long circular truncated cones. Turning moment induced by tsunami and self-weight was calculated at each segment bottom. Tree deformation was computed on multi-degree-of-freedom vibration equation. Tree sway was simulated by iterative calculation of the tree deformation with time step 0.05 second with temporally varied flow velocity of tsunami. From the calculation of bending stress and turning moment at tree base, we estimated resistance of a Pinus thunbergii tree from tsunami against tree breakage.

  3. Research into 2D Dynamics and Control of Small Oscillations of a Cross-Beam during Transportation by Two Overhead Cranes

    Directory of Open Access Journals (Sweden)

    Alexander V. Perig

    2017-01-01

    Full Text Available A new mathematical model of a 3DOF 2D mechanical system “transported cross-beam, two moving bridge cranes” has been proposed. Small system oscillations have been derived through the introduction of Lagrange equations. The numerical estimation of 3DOF system motion has been carried out with equation-based Modelica language. The present article uses the Lagrange method and numerical and optimization methods, realized with JModelica.org and Optimica freeware. The absolute swaying of the cross-beam with respect to the displacement of the two moving bridge cranes was estimated. The phase portraits of the 3DOF system for linear and angular coordinates were presented. An open loop optimal control problem was posed for the motion of the bridge cranes. A “bang-bang” control strategy was implemented for the derivation of an optimal control solution, which enables the travel of two bridge cranes at a prescribed distance for minimum time and minimum swaying of a heavy cross-beam. The derived results of the numerical simulation can be easily practically realized by crane operators with good agreement with simple engineering estimations. The proposed control strategy enables synchronous motion of two bridge cranes with a cross-beam that practically solves the posed problem of unwanted excessive oscillations of a heavy cross-beam during transportation.

  4. Evaluation of postural steadiness before and after sedation: comparison of four nonlinear and three conventional measures

    International Nuclear Information System (INIS)

    Tietäväinen, A; Hæggström, E; Mandel, J E

    2014-01-01

    Sedative drugs decrease postural steadiness and increase the risk of injury from falls and accidents. The recovery rate is individual, making it hard to predict the patient's steadiness and hence safe discharge time. 103 outpatients sedated with midazolam and fentanyl were measured posturographically, before (PRE) and after (POST) endoscopy. The ability of conventional and nonlinear sway measures to separate the PRE and POST conditions were compared, and the area under the receiver operating characteristics curve (AUC) was used to quantify the significance of the separation. A nonlinear measure, fuzzy sample entropy, scored the largest AUC (AUC FSE  = 0.83, p < 0.0001). While the AUC FSE  was not significantly larger than the AUCs of conventional sway measures which offer easy quantification of postural steadiness, nonlinear measures provide more insight into the structure of postural control, which may help understand the effect of sedation on postural steadiness. This study is a step toward developing a tester that indicates a safe discharge time. (paper)

  5. Time course and dimensions of postural control changes following neuromuscular training in youth field hockey athletes.

    Science.gov (United States)

    Zech, Astrid; Klahn, Philipp; Hoeft, Jon; zu Eulenburg, Christine; Steib, Simon

    2014-02-01

    Injury prevention effects of neuromuscular training have been partly attributed to postural control adaptations. Uncertainty exists regarding the magnitude of these adaptations and on how they can be adequately monitored. The objective was to determine the time course of neuromuscular training effects on functional, dynamic and static balance measures. Thirty youth (14.9 ± 3 years) field hockey athletes were randomised to an intervention or control group. The intervention included a 20-min neuromuscular warm-up program performed twice weekly for 10 weeks. Balance assessments were performed at baseline, week three, week six and post-intervention. They included the star excursion balance test (SEBT), balance error scoring system (BESS), jump-landing time to stabilization (TTS) and center of pressure (COP) sway velocity during single-leg standing. No baseline differences were found between groups in demographic data and balance measures. Adherence was at 86%. All balance measures except the medial-lateral TTS improved significantly over time (p controls (31.8 ± 22.1%). There were no significant group by time interactions in the SEBT, TTS and COP sway velocity. Neuromuscular training was effective in improving postural control in youth team athletes. However, this effect was not reflected in all balance measures suggesting that the neuromuscular training did not influence all dimensions of postural control. Further studies are needed to confirm the potential of specific warm-up programs to improve postural control.

  6. Cardiovascular and Postural Control Interactions during Hypergravity: Effects on Cerebral Autoregulation in Males and Females

    Science.gov (United States)

    Goswami, Nandu; Blaber, Andrew; Bareille, Marie-Pierre; Beck, Arnaud; Avan, Paul; Bruner, Michelle; Hinghofer-Szalkay, Helmut

    2012-07-01

    Orthostatic intolerance remains a problem upon return to Earth from the microgravity environment of spaceflight. A variety of conditions including hypovolemia, cerebral vasoconstriction, cerebral or peripheral vascular disease, or cardiac arrhythmias may result in syncope if the person remains upright. Current research indicates that there is a greater dependence on visual and somatosensory information at the beginning of space flight with a decreased otolith gain during prolonged space flight (Herault et al., 2002). The goal of the research is to further our understanding of the fundamental adaptive homeostatic mechanisms involved in gravity related changes in cardiovascular and postural function. Cardiovascular, cerebrovascular, and postural sensory motor control systems in male and female participants before, during, and after exposure to graded levels of hyper-G were investigated. Hypotheses: 1) Activation of skeletal muscle pump will be directly related to the degree of orthostatic stress. 2) Simultaneous measurement of heart rate, blood pressure and postural sway will predict cardio-postural stability. Blood pressure and heart rate (means and variability), postural sway, center of pressure (COP), baroreflex function, calf blood flow, middle cerebral artery blood flow, non-invasive intracranial pressure measurements, and two-breath CO2 were measured. Results from the study will be used to provide an integrated insight into mechanisms of cardio-postural control and cerebral autoregulation, which are important aspects of human health in flights to Moon, Mars and distant planets.

  7. A point of application study to determine the accuracy, precision and reliability of a low-cost balance plate for center of pressure measurement.

    Science.gov (United States)

    Goble, Daniel J; Khan, Ehran; Baweja, Harsimran S; O'Connor, Shawn M

    2018-04-11

    Changes in postural sway measured via force plate center of pressure have been associated with many aspects of human motor ability. A previous study validated the accuracy and precision of a relatively new, low-cost and portable force plate called the Balance Tracking System (BTrackS). This work compared a laboratory-grade force plate versus BTrackS during human-like dynamic sway conditions generated by an inverted pendulum device. The present study sought to extend previous validation attempts for BTrackS using a more traditional point of application (POA) approach. Computer numerical control (CNC) guided application of ∼155 N of force was applied five times to each of 21 points on five different BTrackS Balance Plate (BBP) devices with a hex-nose plunger. Results showed excellent agreement (ICC > 0.999) between the POAs and measured COP by the BBP devices, as well as high accuracy ( 0.999) providing evidence of almost perfect inter-device reliability. Taken together, these results provide an important, static corollary to the previously obtained dynamic COP results from inverted pendulum testing of the BBP. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Modulation of visually evoked postural responses by contextual visual, haptic and auditory information: a 'virtual reality check'.

    Science.gov (United States)

    Meyer, Georg F; Shao, Fei; White, Mark D; Hopkins, Carl; Robotham, Antony J

    2013-01-01

    Externally generated visual motion signals can cause the illusion of self-motion in space (vection) and corresponding visually evoked postural responses (VEPR). These VEPRs are not simple responses to optokinetic stimulation, but are modulated by the configuration of the environment. The aim of this paper is to explore what factors modulate VEPRs in a high quality virtual reality (VR) environment where real and virtual foreground objects served as static visual, auditory and haptic reference points. Data from four experiments on visually evoked postural responses show that: 1) visually evoked postural sway in the lateral direction is modulated by the presence of static anchor points that can be haptic, visual and auditory reference signals; 2) real objects and their matching virtual reality representations as visual anchors have different effects on postural sway; 3) visual motion in the anterior-posterior plane induces robust postural responses that are not modulated by the presence of reference signals or the reality of objects that can serve as visual anchors in the scene. We conclude that automatic postural responses for laterally moving visual stimuli are strongly influenced by the configuration and interpretation of the environment and draw on multisensory representations. Different postural responses were observed for real and virtual visual reference objects. On the basis that automatic visually evoked postural responses in high fidelity virtual environments should mimic those seen in real situations we propose to use the observed effect as a robust objective test for presence and fidelity in VR.

  9. Postural response to predictable and nonpredictable visual flow in children and adults.

    Science.gov (United States)

    Schmuckler, Mark A

    2017-11-01

    Children's (3-5years) and adults' postural reactions to different conditions of visual flow information varying in its frequency content was examined using a moving room apparatus. Both groups experienced four conditions of visual input: low-frequency (0.20Hz) visual oscillations, high-frequency (0.60Hz) oscillations, multifrequency nonpredictable visual input, and no imposed visual information. Analyses of the frequency content of anterior-posterior (AP) sway revealed that postural reactions to the single-frequency conditions replicated previous findings; children were responsive to low- and high-frequency oscillations, whereas adults were responsive to low-frequency information. Extending previous work, AP sway in response to the nonpredictable condition revealed that both groups were responsive to the different components contained in the multifrequency visual information, although adults retained their frequency selectivity to low-frequency versus high-frequency content. These findings are discussed in relation to work examining feedback versus feedforward control of posture, and the reweighting of sensory inputs for postural control, as a function of development and task context. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Balance and gait in children with dyslexia.

    Science.gov (United States)

    Moe-Nilssen, Rolf; Helbostad, Jorunn L; Talcott, Joel B; Toennessen, Finn Egil

    2003-05-01

    Tests of postural stability have provided some evidence of a link between deficits in gross motor skills and developmental dyslexia. The ordinal-level scales used previously, however, have limited measurement sensitivity, and no studies have investigated motor performance during walking in participants with dyslexia. The purpose of this study was to investigate if continuous-scaled measures of standing balance and gait could discriminate between groups of impaired and normal readers when investigators were blind to group membership during testing. Children with dyslexia ( n=22) and controls ( n=18), aged 10-12 years, performed walking tests at four different speeds (slow-preferred-fast-very fast) on an even and an uneven surface, and tests of unperturbed and perturbed body sway during standing. Body movements were registered by a triaxial accelerometer over the lower trunk, and measures of reaction time, body sway, walking speed, step length and cadence were calculated. Results were controlled for gender differences. Tests of standing balance with eyes closed did not discriminate between groups. All unperturbed standing tests with eyes open showed significant group differences ( Pwalking speed during very fast walking on both flat and uneven surface was > or =0.2 m/s ( Pwalking speed ( Pwalking speed as well as cadence at a normalised speed discriminated better between groups when subjects were walking on an uneven surface compared to a flat floor. Continuous-scaled walking tests performed in field settings may be suitable for motor skill assessment as a component of a screening tool for developmental dyslexia.

  11. Comparative impacts of Tai Chi, balance training, and a specially-designed yoga program on balance in older fallers.

    Science.gov (United States)

    Ni, Meng; Mooney, Kiersten; Richards, Luca; Balachandran, Anoop; Sun, Mingwei; Harriell, Kysha; Potiaumpai, Melanie; Signorile, Joseph F

    2014-09-01

    To compare the effect of a custom-designed yoga program with 2 other balance training programs. Randomized controlled trial. Research laboratory. A group of older adults (N=39; mean age, 74.15 ± 6.99 y) with a history of falling. Three different exercise interventions (Tai Chi, standard balance training, yoga) were given for 12 weeks. Balance performance was examined during pre- and posttest using field tests, including the 8-foot up-and-go test, 1-leg stance, functional reach, and usual and maximal walking speed. The static and dynamic balances were also assessed by postural sway and dynamic posturography, respectively. Training produced significant improvements in all field tests (Ptime × group interaction were not detected. For postural sway, significant decreases in the area of the center of pressure with eyes open (P=.001) and eyes closed (P=.002) were detected after training. For eyes open, maximum medial-lateral velocity significantly decreased for the sample (P=.013). For eyes closed, medial-lateral displacement decreased for Tai Chi (Ptime on the test (P=.006), and 2 linear measures in lateral (P=.001) and anterior-posterior (P<.001) directions were seen for the sample. Yoga was as effective as Tai Chi and standard balance training for improving postural stability and may offer an alternative to more traditional programs. Copyright © 2014 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  12. Influence of standing position on mechanical and energy costs in uphill cycling.

    Science.gov (United States)

    Bouillod, Anthony; Pinot, Julien; Valade, Aurélien; Cassirame, Johan; Soto-Romero, Georges; Grappe, Frédéric

    2018-04-27

    This study was designed to examine the influence of standing position (vs. seated) during uphill cycling on both mechanical cost (MC) and energy cost (EC) in elite cyclists. For the study, thirteen elite cyclists (VO 2max : 71.4 ± 8.0 ml·min -1 ·kg -1 ) performed, in a randomised order, three sets of exercises. Each set comprised 2 min of exercise, alternating every 30 s between seated and standing postures, using different slopes and intensity levels on a motorised treadmill. MC was calculated from the measurement of power output and speed, whereas EC was calculated from the measurement of oxygen consumption and speed. MC was significantly higher (+4.3%, p tire manufacturers to reduce the increase in rolling resistance between the two positions. Considering the relationship observed between the MC and bicycle sways, cyclists would be well advised to decrease the bicycle sways in order to reduce the MC of locomotion. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Evaluation of the lambda model for human postural control during ankle strategy.

    Science.gov (United States)

    Micheau, Philippe; Kron, Aymeric; Bourassa, Paul

    2003-09-01

    An accurate modeling of human stance might be helpful in assessing postural deficit. The objective of this article is to validate a mathematical postural control model for quiet standing posture. The postural dynamics is modeled in the sagittal plane as an inverted pendulum with torque applied at the ankle joint. The torque control system is represented by the physiological lambda model. Two neurophysiological command variables of the central nervous system, designated lambda and micro, establish the dynamic threshold muscle at which motoneuron recruitment begins. Kinematic data and electromyographic signals were collected on four young males in order to measure small voluntary sway and quiet standing posture. Validation of the mathematical model was achieved through comparison of the experimental and simulated results. The mathematical model allows computation of the unmeasurable neurophysiological commands lambda and micro that control the equilibrium position and stability. Furthermore, with the model it is possible to conclude that low-amplitude body sway during quiet stance is commanded by the central nervous system.

  14. Otolith and Vertical Canal Contributions to Dynamic Postural Control

    Science.gov (United States)

    Black, F. Owen

    1999-01-01

    The objective of this project is to determine: 1) how do normal subjects adjust postural movements in response to changing or altered otolith input, for example, due to aging? and 2) how do patients adapt postural control after altered unilateral or bilateral vestibular sensory inputs such as ablative inner ear surgery or ototoxicity, respectively? The following hypotheses are under investigation: 1) selective alteration of otolith input or abnormalities of otolith receptor function will result in distinctive spatial, frequency, and temporal patterns of head movements and body postural sway dynamics. 2) subjects with reduced, altered, or absent vertical semicircular canal receptor sensitivity but normal otolith receptor function or vice versa, should show predictable alterations of body and head movement strategies essential for the control of postural sway and movement. The effect of altered postural movement control upon compensation and/or adaptation will be determined. These experiments provide data for the development of computational models of postural control in normals, vestibular deficient subjects and normal humans exposed to unusual force environments, including orbital space flight.

  15. Effect of Visual Angle on the Head Movement Caused by Changing Binocular Disparity

    Directory of Open Access Journals (Sweden)

    Toru Maekawa

    2011-10-01

    Full Text Available It has been shown that vertical binocular disparity has no or little effect on the perception of visual direction (Banks et al., 2002. On the other hand, our previous study has reported that a continuous change of vertical disparity causes an involuntary sway of the head (Maekawa et al., 2009. We predict that the difference between those results attributes to the dissociation between the processes for perception and action in the brain. The aim of this study is to investigate in more details the condition that influences the process of disparity information. The present experiment particularly varied the visual angle of stimulus presentation and measured the head movement and body sway caused by changing vertical disparity. Results showed that the head movement was greater as the visual angle of the stimulus was smaller. It has been reported that stimulus of only small visual angle affect depth perception (Erklens et al., 1995. Thus, our result suggests that perception and action produced by vertical disparity are consistent as far as the effect of the stimulus size is concerned.

  16. Lead effects on postural balance of children

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, A.; Shukla, R.; Bornschein, R.L.; Dietrich, K.N. (Univ. of Cincinnati, OH (USA)); Keith, R. (Univ. of Cincinnati Medical Center, OH (USA))

    1990-11-01

    The postural sway responses of 63 children with a mean age of 5.74 years were quantified with a Force Platform technique. The average maximum (max) blood lead (PbB) of these children during the first 5 years of life was 20.7 {mu}g/dL (range 9.2 to 32.5). The backward stepwise regression analysis for sway area response during the eyes-closed, no-foam test with all the covariates and confounders and the PbB parameters showed a significant relationship with peak or max PbB during the second year of life. These results are consistent with their previous study with a smaller group of children. The data have been analyzed to provide some insight into the role of various afferents for the maintenance of postural balance. The results suggests a hypothesis that if the max PbB had caused some level of impairment in the functional capacities or interconnectivity of the vestibular and/or proprioception systems at 2 years of age, then it is reasonable to assume that the redundancy in the postural afferent systems would naturally adapt to rely more on the remaining intact afferent system (in this case, vision).

  17. Shakespeare arean hypertexts in communist Bulgaria Shakespeare arean hypertexts in communist Bulgaria

    Directory of Open Access Journals (Sweden)

    Alexander Shurbanov

    2008-04-01

    Full Text Available Since the first days of the reception of Shakespeare’s work in Bulgaria during the second half of the nineteenth century down to the present time two of his tragedies, Romeo and Juliet and Hamlet, have held an unrivalled sway on the national stage and over the people’s minds. Another one, Othello, was produced very frequently in the beginning, though often by non-Bulgarian troupes, and yet another, Macbeth, was a set text at the schools for many decades but rarely took the fancy of theatre directors and audiences. Since the first days of the reception of Shakespeare’s work in Bulgaria during the second half of the nineteenth century down to the present time two of his tragedies, Romeo and Juliet and Hamlet, have held an unrivalled sway on the national stage and over the people’s minds. Another one, Othello, was produced very frequently in the beginning, though often by non-Bulgarian troupes, and yet another, Macbeth, was a set text at the schools for many decades but rarely took the fancy of theatre directors and audiences.

  18. Linking pedestrian flow characteristics with stepping locomotion

    Science.gov (United States)

    Wang, Jiayue; Boltes, Maik; Seyfried, Armin; Zhang, Jun; Ziemer, Verena; Weng, Wenguo

    2018-06-01

    While properties of human traffic flow are described by speed, density and flow, the locomotion of pedestrian is based on steps. To relate characteristics of human locomotor system with properties of human traffic flow, this paper aims to connect gait characteristics like step length, step frequency, swaying amplitude and synchronization with speed and density and thus to build a ground for advanced pedestrian models. For this aim, observational and experimental study on the single-file movement of pedestrians at different densities is conducted. Methods to measure step length, step frequency, swaying amplitude and step synchronization are proposed by means of trajectories of the head. Mathematical models for the relations of step length or frequency and speed are evaluated. The problem how step length and step duration are influenced by factors like body height and density is investigated. It is shown that the effect of body height on step length and step duration changes with density. Furthermore, two different types of step in-phase synchronization between two successive pedestrians are observed and the influence of step synchronization on step length is examined.

  19. STEADFAST: Psychotherapeutic Intervention Improves Postural Strategy of Somatoform Vertigo and Dizziness

    Science.gov (United States)

    Best, Christoph; Tschan, Regine; Stieber, Nikola; Beutel, Manfred E.; Eckhardt-Henn, Annegret; Dieterich, Marianne

    2015-01-01

    Patients with somatoform vertigo and dizziness (SVD) disorders often report instability of stance or gait and fear of falling. Posturographic measurements indeed indicated a pathological postural strategy. Our goal was to evaluate the effectiveness of a psychotherapeutic and psychoeducational short-term intervention (PTI) using static posturography and psychometric examination. Seventeen SVD patients took part in the study. The effects of PTI on SVD were evaluated with quantitative static posturography. As primary endpoint a quotient characterizing the relation between horizontal and vertical sway was calculated (Q H/V), reflecting the individual postural strategy. Results of static posturography were compared to those of age- and gender-matched healthy volunteers (n = 28); baseline measurements were compared to results after PTI. The secondary endpoint was the participation-limiting consequences of SVD as measured by the Vertigo Handicap Questionnaire (VHQ). Compared to the healthy volunteers, the patients with SVD showed a postural strategy characterized by stiffening-up that resulted in a significantly reduced body sway quotient before PTI (patients: Q H/V = 0.31 versus controls: Q H/V = 0.38; p = 0.022). After PTI the postural behavior normalized, and psychological distress was reduced. PTI therefore appears to modify pathological balance behaviour. The postural strategy of patients with SVD possibly results from anxious anticipatory cocontraction of the antigravity muscles. PMID:26843786

  20. Cooperative Learning and Interpersonal Synchrony.

    Science.gov (United States)

    Vink, Roy; Wijnants, Maarten L; Cillessen, Antonius H N; Bosman, Anna M T

    2017-04-01

    Cooperative learning has been shown to result in better task performance, compared to individual and competitive learning, and can lead to positive social effects. However, potential working mechanisms at a micro level remain unexplored. One potential working mechanism might be the level of interpersonal synchrony between cooperating individuals. It has been shown that increased levels of interpersonal synchrony are related to better cognitive performance (e.g., increased memory). Social factors also appear to be affected by the level of interpersonal synchrony, with more interpersonal synchrony leading to increased likeability. In the present study, interpersonal synchrony of postural sway and its relation to task performance and social factors (i.e., popularity, social acceptance, and likeability) was examined. To test this, 183 dyads performed a tangram task while each child stood on a Nintendo Wii Balance Board that recorded their postural sway. The results showed that lower levels of interpersonal synchrony were related to better task performance and those dyads who were on average more popular synchronized more. These results contradict previous findings. It is suggested that for task performance, a more loosely coupled system is better than a synchronized system. In terms of social competence, dyad popularity was associated with more interpersonal synchrony.