WorldWideScience

Sample records for swath bathymetry mapping

  1. Multibeam swath bathymetry signal processing techniques

    Digital Repository Service at National Institute of Oceanography (India)

    Ranade, G.; Sudhakar, T.

    Mathematical advances and the advances in the real time signal processing techniques in the recent times, have considerably improved the state of art in the bathymetry systems. These improvements have helped in developing high resolution swath...

  2. Swath sonar mapping of Earth's submarine plate boundaries

    Science.gov (United States)

    Carbotte, S. M.; Ferrini, V. L.; Celnick, M.; Nitsche, F. O.; Ryan, W. B. F.

    2014-12-01

    The recent loss of Malaysia Airlines flight MH370 in an area of the Indian Ocean where less than 5% of the seafloor is mapped with depth sounding data (Smith and Marks, EOS 2014) highlights the striking lack of detailed knowledge of the topography of the seabed for much of the worlds' oceans. Advances in swath sonar mapping technology over the past 30 years have led to dramatic improvements in our capability to map the seabed. However, the oceans are vast and only an estimated 10% of the seafloor has been mapped with these systems. Furthermore, the available coverage is highly heterogeneous and focused within areas of national strategic priority and community scientific interest. The major plate boundaries that encircle the globe, most of which are located in the submarine environment, have been a significant focus of marine geoscience research since the advent of swath sonar mapping. While the location of these plate boundaries are well defined from satellite-derived bathymetry, significant regions remain unmapped at the high-resolutions provided by swath sonars and that are needed to study active volcanic and tectonic plate boundary processes. Within the plate interiors, some fossil plate boundary zones, major hotspot volcanoes, and other volcanic provinces have been the focus of dedicated research programs. Away from these major tectonic structures, swath mapping coverage is limited to sparse ocean transit lines which often reveal previously unknown deep-sea channels and other little studied sedimentary structures not resolvable in existing low-resolution global compilations, highlighting the value of these data even in the tectonically quiet plate interiors. Here, we give an overview of multibeam swath sonar mapping of the major plate boundaries of the globe as extracted from public archives. Significant quantities of swath sonar data acquired from deep-sea regions are in restricted-access international archives. Open access to more of these data sets would

  3. Archive of side scan sonar and swath bathymetry data collected during USGS cruise 10CCT01 offshore of Cat Island, Gulf Islands National Seashore, Mississippi, March 2010

    Science.gov (United States)

    DeWitt, Nancy T.; Flocks, James G.; Pfeiffer, William R.; Wiese, Dana S.

    2010-01-01

    In March of 2010, the U.S. Geological Survey (USGS) conducted geophysical surveys east of Cat Island, Mississippi (fig. 1). The efforts were part of the USGS Gulf of Mexico Science Coordination partnership with the U.S. Army Corps of Engineers (USACE) to assist the Mississippi Coastal Improvements Program (MsCIP) and the Northern Gulf of Mexico (NGOM) Ecosystem Change and Hazards Susceptibility Project by mapping the shallow geological stratigraphic framework of the Mississippi Barrier Island Complex. These geophysical surveys will provide the data necessary for scientists to define, interpret, and provide baseline bathymetry and seafloor habitat for this area and to aid scientists in predicting future geomorpholocial changes of the islands with respect to climate change, storm impact, and sea-level rise. Furthermore, these data will provide information for barrier island restoration, particularly in Camille Cut, and provide protection for the historical Fort Massachusetts. For more information refer to http://ngom.usgs.gov/gomsc/mscip/index.html. This report serves as an archive of the processed swath bathymetry and side scan sonar data (SSS). Data products herein include gridded and interpolated surfaces, surface images, and x,y,z data products for both swath bathymetry and side scan sonar imagery. Additional files include trackline maps, navigation files, GIS files, Field Activity Collection System (FACS) logs, and formal FGDC metadata. Scanned images of the handwritten FACS logs and digital FACS logs are also provided as PDF files. Refer to the Acronyms page for expansion of acronyms and abbreviations used in this report or hold the cursor over an acronym for a pop-up explanation. The USGS St. Petersburg Coastal and Marine Science Center assigns a unique identifier to each cruise or field activity. For example, 10CCT01 tells us the data were collected in 2010 for the Coastal Change and Transport (CCT) study and the data were collected during the first field

  4. Satellite derived bathymetry: mapping the Irish coastline

    Science.gov (United States)

    Monteys, X.; Cahalane, C.; Harris, P.; Hanafin, J.

    2017-12-01

    Ireland has a varied coastline in excess of 3000 km in length largely characterized by extended shallow environments. The coastal shallow water zone can be a challenging and costly environment in which to acquire bathymetry and other oceanographic data using traditional survey methods or airborne LiDAR techniques as demonstrated in the Irish INFOMAR program. Thus, large coastal areas in Ireland, and much of the coastal zone worldwide remain unmapped using modern techniques and is poorly understood. Earth Observations (EO) missions are currently being used to derive timely, cost effective, and quality controlled information for mapping and monitoring coastal environments. Different wavelengths of the solar light penetrate the water column to different depths and are routinely sensed by EO satellites. A large selection of multispectral imagery (MS) from many platforms were examined, as well as from small aircrafts and drones. A number of bays representing very different coastal environments were explored in turn. The project's workflow is created by building a catalogue of satellite and field bathymetric data to assess the suitability of imagery captured at a range of spatial, spectral and temporal resolutions. Turbidity indices are derived from the multispectral information. Finally, a number of spatial regression models using water-leaving radiance parameters and field calibration data are examined. Our assessment reveals that spatial regression algorithms have the potential to significantly improve the accuracy of the predictions up to 10m WD and offer a better handle on the error and uncertainty budget. The four spatial models investigated show better adjustments than the basic non-spatial model. Accuracy of the predictions is better than 10% WD at 95% confidence. Future work will focus on improving the accuracy of the predictions incorporating an analytical model in conjunction with improved empirical methods. The recently launched ESA Sentinel 2 will become the

  5. A simulator for airborne laser swath mapping via photon counting

    Science.gov (United States)

    Slatton, K. C.; Carter, W. E.; Shrestha, R.

    2005-06-01

    Commercially marketed airborne laser swath mapping (ALSM) instruments currently use laser rangers with sufficient energy per pulse to work with return signals of thousands of photons per shot. The resulting high signal to noise level virtually eliminates spurious range values caused by noise, such as background solar radiation and sensor thermal noise. However, the high signal level approach requires laser repetition rates of hundreds of thousands of pulses per second to obtain contiguous coverage of the terrain at sub-meter spatial resolution, and with currently available technology, affords little scalability for significantly downsizing the hardware, or reducing the costs. A photon-counting ALSM sensor has been designed by the University of Florida and Sigma Space, Inc. for improved topographic mapping with lower power requirements and weight than traditional ALSM sensors. Major elements of the sensor design are presented along with preliminary simulation results. The simulator is being developed so that data phenomenology and target detection potential can be investigated before the system is completed. Early simulations suggest that precise estimates of terrain elevation and target detection will be possible with the sensor design.

  6. Archive of Side Scan Sonar and Swath Bathymetry Data collected during USGS Cruise 10CCT02 Offshore of Petit Bois Island Including Petit Bois Pass, Gulf Islands National Seashore, Mississippi, March 2010

    Science.gov (United States)

    Pfeiffer, William R.; Flocks, James G.; DeWitt, Nancy T.; Forde, Arnell S.; Kelso, Kyle; Thompson, Phillip R.; Wiese, Dana S.

    2011-01-01

    In March of 2010, the U.S. Geological Survey (USGS) conducted geophysical surveys offshore of Petit Bois Island, Mississippi, and Dauphin Island, Alabama (fig. 1). These efforts were part of the USGS Gulf of Mexico Science Coordination partnership with the U.S. Army Corps of Engineers (USACE) to assist the Mississippi Coastal Improvements Program (MsCIP) and the Northern Gulf of Mexico (NGOM) Ecosystem Change and Hazards Susceptibility Project by mapping the shallow geologic stratigraphic framework of the Mississippi Barrier Island Complex. These geophysical surveys will provide the data necessary for scientists to define, interpret, and provide baseline bathymetry and seafloor habitat for this area and to aid scientists in predicting future geomorphological changes of the islands with respect to climate change, storm impact, and sea-level rise. Furthermore, these data will provide information for barrier island restoration, particularly in Camille Cut, and protection for the historical Fort Massachusetts on Ship Island, Mississippi. For more information please refer to http://ngom.usgs.gov/gomsc/mscip/index.html. This report serves as an archive of the processed swath bathymetry and side scan sonar data (SSS). Data products herein include gridded and interpolated surfaces, seabed backscatter images, and ASCII x,y,z data products for both swath bathymetry and side scan sonar imagery. Additional files include trackline maps, navigation files, GIS files, Field Activity Collection System (FACS) logs, and formal FGDC metadata. Scanned images of the handwritten and digital FACS logs are also provided as PDF files. Refer to the Acronyms page for expansion of acronyms and abbreviations used in this report.

  7. Evidences of intraplate deformation in the West Madeira Abyssal Plain (eastern North Atlantic) from seismic reflection and multibeam swath bathymetry data

    Science.gov (United States)

    Roque, C.; Simões, M.; Lourenço, N.; Pinto de Abreu, M.

    2009-04-01

    The West Madeira Abyssal Plain is located in the eastern North Atlantic off Madeira Islands, forming part of the Canary Basin and reaching a mean water depth of 5300 m. This region is also located within Africa plate at about 500 km southwards from the Açores-Gibraltar plate boundary, and for that reason lacks seismic activity. Although this region being located in an intraplate setting, the presence of faulted sediments was reported in several works published during the eighties of last century following a study conducted in late 1970s to evaluate the feasibility of disposal of high-level radioactive wastes in the ocean. According these works, the Madeira Abyssal Plain sediments are cut by many normal growth faults and this deformation is a result of compaction and dewatering of the sediments. Evidences of tectonic deformation of oceanic sediments in intraplate settings are uncommon, but folded sediments and reverse faults extending into the basement, were recognized in the equatorial Indian Ocean and in the West African continental margin. Recently, during 2006 multi-channel seismic reflection and multibeam swath bathymetry surveys were carried out in the West Madeira Abyssal Plain by EMEPC in order to prepare the Portuguese proposal for the extension of the continental shelf. The seismic lines were acquired onboard R/V Akademik Shatskiy using a source of 5720 cu in bolt gun array, cable length of 7950 m and shot interval of 50.00 m. The multibeam swath bathymetry was acquired onboard NRP Gago Coutinho, and allowed a high resolution mapping of the main geomorphological features. The multichannel seismic lines, oriented WNW-ESE, image the Madeira island lower slope located at about 4000 m water depth and the almost flat abyssal plain at about 5300 m water depth. These seismic lines show a thick sedimentary succession that reaches a maximum thickness of about 1.5 sec twt in the deepest parts of the West Madeira Abyssal Plain, overlying an irregular diffractive

  8. Airborne 3D Imaging Lidar for Contiguous Decimeter Resolution Terrain Mapping and Shallow Water Bathymetry

    Science.gov (United States)

    Degnan, J. J.; Wells, D. N.; Huet, H.; Chauvet, N.; Lawrence, D. W.; Mitchell, S. E.; Eklund, W. D.

    2005-12-01

    A 3D imaging lidar system, developed for the University of Florida at Gainesville and operating at the water transmissive wavelength of 532 nm, is designed to contiguously map underlying terrain and/or perform shallow water bathymetry on a single overflight from an altitude of 600 m with a swath width of 225 m and a horizontal spatial resolution of 20 cm. Each 600 psec pulse from a frequency-doubled, low power (~3 microjoules @ 8 kHz = 24 mW), passively Q-switched Nd:YAG microchip laser is passed through a holographic element which projects a 10x10 array of spots onto a 2m x 2m target area. The individual ground spots are then imaged onto individual anodes within a 10x10 segmented anode photomultiplier. The latter is followed by a 100 channel multistop ranging receiver with a range resolution of about 4 cm. The multistop feature permits single photon detection in daylight with wide range gates as well as multiple single photon returns per pixel per laser fire from volumetric scatterers such as tree canopies or turbid water columns. The individual single pulse 3D images are contiguously mosaiced together through the combined action of the platform velocity and a counter-rotating dual wedge optical scanner whose rotations are synchronized to the laser pulse train. The paper provides an overview of the lidar opto-mechanical design, the synchronized dual wedge scanner and servo controller, and the experimental results obtained to date.

  9. Defining and Verifying Research Grade Airborne Laser Swath Mapping (ALSM) Observations

    Science.gov (United States)

    Carter, W. E.; Shrestha, R. L.; Slatton, C. C.

    2004-12-01

    The first and primary goal of the National Science Foundation (NSF) supported Center for Airborne Laser Mapping (NCALM), operated jointly by the University of Florida and the University of California, Berkeley, is to make "research grade" ALSM data widely available at affordable cost to the national scientific community. Cost aside, researchers need to know what NCALM considers research grade data and how the quality of the data is verified, to be able to determine the likelihood that the data they receive will meet their project specific requirements. Given the current state of the technology it is reasonable to expect a well planned and executed survey to produce surface elevations with uncertainties less than 10 centimeters and horizontal uncertainties of a few decimeters. Various components of the total error are generally associated with the aircraft trajectory, aircraft orientation, or laser vectors. Aircraft trajectory error is dependent largely on the Global Positioning System (GPS) observations, aircraft orientation on Inertial Measurement Unit (IMU) observations, and laser vectors on the scanning and ranging instrumentation. In addition to the issue of the precision or accuracy of the coordinates of the surface points, consideration must also be given to the point-to-point spacing and voids in the coverage. The major sources of error produce distinct artifacts in the data set. For example, aircraft trajectory errors tend to change slowly as the satellite constellation geometry varies, producing slopes within swaths and offsets between swaths. Roll, pitch and yaw biases in the IMU observations tend to persist through whole flights, and created distinctive artifacts in the swath overlap areas. Errors in the zero-point and scale of the laser scanner cause the edges of swaths to turn up or down. Range walk errors cause offsets between bright and dark surfaces, causing paint stripes to float above the dark surfaces of roads. The three keys to producing

  10. Mapping bathymetry in an active surf zone with the WorldView2 multispectral satellite

    Science.gov (United States)

    Trimble, S. M.; Houser, C.; Brander, R.; Chirico, P.

    2015-12-01

    Rip currents are strong, narrow seaward flows of water that originate in the surf zones of many global beaches. They are related to hundreds of international drownings each year, but exact numbers are difficult to calculate due to logistical difficulties in obtaining accurate incident reports. Annual average rip current fatalities are estimated to be ~100, 53 and 21 in the United States (US), Costa Rica, and Australia respectively. Current warning systems (e.g. National Weather Service) do not account for fine resolution nearshore bathymetry because it is difficult to capture. The method shown here could provide frequent, high resolution maps of nearshore bathymetry at a scale required for improved rip prediction and warning. This study demonstrates a method for mapping bathymetry in the surf zone (20m deep and less), specifically within rip channels, because rips form at topographically low spots in the bathymetry as a result of feedback amongst waves, substrate, and antecedent bathymetry. The methods employ the Digital Globe WorldView2 (WV2) multispectral satellite and field measurements of depth to generate maps of the changing bathymetry at two embayed, rip-prone beaches: Playa Cocles, Puerto Viejo de Talamanca, Costa Rica, and Bondi Beach, Sydney, Australia. WV2 has a 1.1 day pass-over rate with 1.84m ground pixel resolution of 8 bands, including 'yellow' (585-625 nm) and 'coastal blue' (400-450 nm). The data is used to classify bottom type and to map depth to the return in multiple bands. The methodology is tested at each site for algorithm consistency between dates, and again for applicability between sites.

  11. A framework to quantify uncertainties of seafloor backscatter from swath mapping echosounders

    Science.gov (United States)

    Malik, Mashkoor; Lurton, Xavier; Mayer, Larry

    2018-06-01

    Multibeam echosounders (MBES) have become a widely used acoustic remote sensing tool to map and study the seafloor, providing co-located bathymetry and seafloor backscatter. Although the uncertainty associated with MBES-derived bathymetric data has been studied extensively, the question of backscatter uncertainty has been addressed only minimally and hinders the quantitative use of MBES seafloor backscatter. This paper explores approaches to identifying uncertainty sources associated with MBES-derived backscatter measurements. The major sources of uncertainty are catalogued and the magnitudes of their relative contributions to the backscatter uncertainty budget are evaluated. These major uncertainty sources include seafloor insonified area (1-3 dB), absorption coefficient (up to > 6 dB), random fluctuations in echo level (5.5 dB for a Rayleigh distribution), and sonar calibration (device dependent). The magnitudes of these uncertainty sources vary based on how these effects are compensated for during data acquisition and processing. Various cases (no compensation, partial compensation and full compensation) for seafloor insonified area, transmission losses and random fluctuations were modeled to estimate their uncertainties in different scenarios. Uncertainty related to the seafloor insonified area can be reduced significantly by accounting for seafloor slope during backscatter processing while transmission losses can be constrained by collecting full water column absorption coefficient profiles (temperature and salinity profiles). To reduce random fluctuations to below 1 dB, at least 20 samples are recommended to be used while computing mean values. The estimation of uncertainty in backscatter measurements is constrained by the fact that not all instrumental components are characterized and documented sufficiently for commercially available MBES. Further involvement from manufacturers in providing this essential information is critically required.

  12. CryoSat-2 altimetry derived Arctic bathymetry map: first results and validation

    Science.gov (United States)

    Andersen, O. B.; Abulaitijiang, A.; Cancet, M.; Knudsen, P.

    2017-12-01

    The Technical University of Denmark (DTU), DTU Space has been developing high quality high resolution gravity fields including the new highly accurate CryoSat-2 radar altimetry satellite data which extends the global coverage of altimetry data up to latitude 88°. With its exceptional Synthetic Aperture Radar (SAR) mode being operating throughout the Arctic Ocean, leads, i.e., the ocean surface heights, is used to retrieve the sea surface height with centimeter-level range precision. Combined with the long repeat cycle ( 369 days), i.e., dense cross-track coverage, the high-resolution Arctic marine gravity can be modelled using the CryoSat-2 altimetry. Further, the polar gap can be filled by the available ArcGP product, thus yielding the complete map of the Arctic bathymetry map. In this presentation, we will make use of the most recent DTU17 marine gravity, to derive the arctic bathymetry map using inversion based on best available hydrographic maps. Through the support of ESA a recent evaluation of existing hydrographic models of the Arctic Ocean Bathymetry models (RTOPO, GEBCO, IBCAO etc) and various inconsistencies have been identified and means to rectify these inconsistencies have been taken prior to perform the inversion using altimetry. Simultaneously DTU Space has been placing great effort on the Arctic data screening, filtering, and de-noising using various altimetry retracking solutions and classifications. All the pre-processing contributed to the fine modelling of Actic gravity map. Thereafter, the arctic marine gravity grids will eventually be translated (downward continuation operation) to a new altimetry enhanced Arctic bathymetry map using appropriate band-pass filtering.

  13. EMODnet High Resolution Seabed Mapping - further developing a high resolution digital bathymetry for European seas

    Science.gov (United States)

    Schaap, D.; Schmitt, T.

    2017-12-01

    Access to marine data is a key issue for the EU Marine Strategy Framework Directive and the EU Marine Knowledge 2020 agenda and includes the European Marine Observation and Data Network (EMODnet) initiative. EMODnet aims at assembling European marine data, data products and metadata from diverse sources in a uniform way. The EMODnet Bathymetry project has developed Digital Terrain Models (DTM) for the European seas. These have been produced from survey and aggregated data sets that are indexed with metadata by adopting the SeaDataNet Catalogue services. SeaDataNet is a network of major oceanographic data centres around the European seas that manage, operate and further develop a pan-European infrastructure for marine and ocean data management. The latest EMODnet Bathymetry DTM release has a grid resolution of 1/8 arcminute and covers all European sea regions. Use has been made of circa 7800 gathered survey datasets and composite DTMs. Catalogues and the EMODnet DTM are published at the dedicated EMODnet Bathymetry portal including a versatile DTM viewing and downloading service. End December 2016 the Bathymetry project has been succeeded by EMODnet High Resolution Seabed Mapping (HRSM). This continues gathering of bathymetric in-situ data sets with extra efforts for near coastal waters and coastal zones. In addition Satellite Derived Bathymetry data are included to fill gaps in coverage of the coastal zones. The extra data and composite DTMs will increase the coverage of the European seas and its coastlines, and provide input for producing an EMODnet DTM with a common resolution of 1/16 arc minutes. The Bathymetry Viewing and Download service will be upgraded to provide a multi-resolution map and including 3D viewing. The higher resolution DTMs will also be used to determine best-estimates of the European coastline for a range of tidal levels (HAT, MHW, MSL, Chart Datum, LAT), thereby making use of a tidal model for Europe. Extra challenges will be `moving to the

  14. Coverage map of gridded multibeam and lidar bathymetry of the US Territory of Guam

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded multibeam bathymetry is integrated with gridded lidar bathymetry. Gridded (5 m cell size) multibeam bathymetry were collected aboard NOAA Ship Hiialaka'i and...

  15. Archive of Sidescan Sonar and Swath Bathymetry Data Collected During USGS Cruise 13CCT04 Offshore of Petit Bois Island, Gulf Islands National Seashore, Mississippi, August 2013

    Science.gov (United States)

    DeWitt, Nancy T.; Flocks, James G.; Kindinger, Jack G.; Bernier, Julie C.; Kelso, Kyle W.; Wiese, Dana S.; Finlayson, David P.; Pfeiffer, William R.

    2015-01-01

    In August of 2013, the U.S. Geological Survey conducted a geophysical survey offshore of Petit Bois Island, Mississippi. This effort was part of the U.S. Geological Survey Gulf of Mexico Science Coordination partnership with the U.S. Army Corps of Engineers to assist the Mississippi Coastal Improvements Program and the Northern Gulf of Mexico Ecosystem Change and Hazards Susceptibility Project, by mapping the shallow geologic stratigraphic framework of the Mississippi Barrier Island Complex.

  16. Multibeam Bathymetry Mapping for U.S. UNCLOS Concerns: A Gold Mine for Marine Geology

    Science.gov (United States)

    Gardner, J. V.; Mayer, L. A.; Armstrong, A.

    2007-12-01

    Since 2003, the University of New Hampshire's Center for Coastal and Ocean Mapping-Joint Hydrographic Center has conducted mapping of several U.S. continental margins in areas where a potential exists for an extended continental shelf as defined under Article 76 of the United Nations Convention on the Law of the Sea. UNH was directed by Congress, through funding to NOAA, to map the bathymetry in areas in the Arctic Ocean, Bering Sea, Gulf of Alaska, Atlantic, Gulf of Mexico, Philippine Sea, and slopes of Kingman Reef and Palmyra Atoll. These new data can be used to accurately locate the 2500-m isobath and to determine the location of the maximum change in gradient at the base of the continental slopes. To achieve these objectives, the area between ~1000 m and ~5000 m isobaths are mapped. The program has mapped >900,000 km2 as of September 2007. The bathymetry data are collected with multibeam echosounders navigated with inertial-aided DGPS and are fully motion compensated. An integral part of the data collection is measurements of the sound-speed profile in the water column to correct for refraction. The data are fully processed at sea. Most cruises also collect 3.5-kHz high-resolution profiles and some have included gravity measurements. All processed bathymetry and associated acoustic backscatter data are immediately available one the web and the raw multibeam datagrams and processed gravity data are archived at NOAA/NGDC. The new data provide a wealth of new information on the geomorphology of the continental margins. The mapping discovered many new features on the U.S. margins, as well as better defined features known to exist but either poorly mapped or mapped with obsolete mapping technology. New features discovered during the surveys include an undiscovered seamount, christened Healy Seamount and a series of huge sediment ridges striking normal to the Barrow margin in the Arctic Ocean; a series of plateaus and ridges north of Bowers Ridge in the Bering Sea

  17. Using High-Resolution Swath Mapping Data and Other Underway Geophysical Measurements Collected during Transit Cruises of RV Isabu to Map Deep Sea Floor of the Pacific and Indian Oceans

    Science.gov (United States)

    Hong, G. H.; Lee, S. M.; Kim, D. J.; Lee, Y. H.; Kim, S. S.

    2017-12-01

    Detail images of the seafloor are often the first collection of clues that set one towards a path that leads to a new discovery. The mapping of unchartered seafloor is like exploring the surface of an unknown planet for the first time. The launch of new global-ocean-class RV Isabu operated by Korea Institute of Ocean Science and Technology (KIOST) in November 2016 has reinvigorated the ongoing open ocean research in Korea. The location of the KIOST research vessels can be found at http://www.kiost.net/. Here we present a new collaborative research and education program which utilizes onboard measurements taken during the transit cruises. The measurements include high-resolution swath mapping bathymetric data, underway geophysical measurements (3.5 kHz subbottom profile, sea surface gravity and magnetic field) which are gathered semi-automatically during a scientific operation. The acquisition of data alone is not sufficient for meaningful scientific knowledge as the initial measurements must be cleaned and processed during or after the cruise. As in any scientific endeavor, planning is important. Prior to the cruise, preliminary study will be carried out by carefully examining the previously collected data from various global databases. Whenever possible, a small offset will be made of the ship track lines crossing the region so that important new measurements can be obtained systematically over the years. We anticipate that the program will not only contribute to fill the gap in the high-resolution bathymetry in some part of the Indian Ocean and Pacific. The processed and analyzed data will be available to other scientific communities for further understanding via download from KIOST website.

  18. Bathymetry mapping using a GPS-sonar equipped remote control boat: Application in waste stabilisation ponds

    Science.gov (United States)

    Coggins, Liah; Ghadouani, Anas; Ghisalberti, Marco

    2014-05-01

    Traditionally, bathymetry mapping of ponds, lakes and rivers have used techniques which are low in spatial resolution, sometimes subjective in terms of precision and accuracy, labour intensive, and that require a high level of safety precautions. In waste stabilisation ponds (WSP) in particular, sludge heights, and thus sludge volume, are commonly measured using a sludge judge (a clear plastic pipe with length markings). A remote control boat fitted with a GPS-equipped sonar unit can improve the resolution of depth measurements, and reduce safety and labour requirements. Sonar devices equipped with GPS technology, also known as fish finders, are readily available and widely used by people in boating. Through the use of GPS technology in conjunction with sonar, the location and depth can be recorded electronically onto a memory card. However, despite its high applicability to the field, this technology has so far been underutilised. In the case of WSP, the sonar can measure the water depth to the top of the sludge layer, which can then be used to develop contour maps of sludge distribution and to determine sludge volume. The coupling of sonar technology with a remotely operative vehicle has several advantages of traditional measurement techniques, particularly in removing human subjectivity of readings, and the sonar being able to collect more data points in a shorter period of time, and continuously, with a much higher spatial resolution. The GPS-sonar equipped remote control boat has been tested on in excess of 50 WSP within Western Australia, and has shown a very strong correlation (R2 = 0.98) between spot readings taken with the sonar compared to a sludge judge. This has shown that the remote control boat with GPS-sonar device is capable of providing sludge bathymetry with greatly increased spatial resolution, while greatly reducing profiling time. Remotely operated vehicles, such as the one built in this study, are useful for not only determining sludge

  19. High spatial resolution mapping of water quality and bathymetry with an autonomous underwater vehicle

    Science.gov (United States)

    Pampalone, Vincenzo; Milici, Barbara

    2015-12-01

    The drone Ecomapper AUV (Autonomous Underwater Vehicle) is a rare example of highly technological instrument in the environmental coastal monitoring field. The YSI EcoMapper is a one-man deployable, Autonomous Underwater Vehicle (AUV) designed to collect bathymetry and water quality data. The submarine-like vehicle follows a programmed course and employs sensors mounted in the nose to record pertinent information. Once the vehicle has started its mission, it operates independently of the user and utilizes GPS waypoints navigation to complete its programmed course. Throughout the course, the vehicle constantly steers toward the line drawn in the mission planning software (VectorMap), essentially following a more accurate road of coordinates instead of transversing waypoint-to-waypoint. It has been equipped with a Doppler Velocity Log (DVL) to increase its underwater navigation accuracy. Potential EcoMapper applications include baseline environmental mapping in freshwater, estuarine or near-coastal environments, bathymetric mapping, dissolved oxygen studies, event monitoring (algal blooms, storm impacts, low dissolved oxygen), non-point source studies, point-source dispersion mapping, security, search & rescue, inspection, shallow water mapping, thermal dissipation mapping of cooling outfalls, trace-dye studies. The AUV is used in the coastal area of the Augusta Bay (Italy), located in the eastern part of Sicily. Due to the heavy contamination generated by the several chemical and petrochemical industries active in the zone, the harbour was declared a Contaminated Site of National Interest. The ecomapper allows for a simultaneous data collection of water quality and bathymetric data providing a complete environmental mapping system of the Harbour.

  20. Bathymetry & Geomorphology - A New Seafloor Mapping of the Israeli Exclusive Economic Zone

    Science.gov (United States)

    Tibor, G.; Hall, J. K.; Kanari, M.; Sade, R. A.; Sade, H.; Amit, G.; Gur-Arie, L.; Ketter, T.

    2017-12-01

    Recent extensive activities of oil and gas exploration and production companies in the Israeli Exclusive Economic Zone (EEZ) raised the need for an up-to-date baseline mapping of the seafloor to assist policy makers. The baseline mapping focused on bathymetry, geomorphology, geology, biodiversity, infauna and habitat in order to compile a sensitivity map for the Petroleum Commissioner in the Ministry of Energy in the bid for opening the sea to new natural gas and oil explorations. The Israeli EEZ covers an area of 25,950 sq. km. and reaches a maximum water depth of 2,100 m. It is located within the Levantine Basin, a zone of compression and strike-slip tectonics as Africa pushes into Eurasia. These forces operate on a half kilometer thick of Messinian evaporates and over a dozen kilometers of Pliocene and Pleistocene sediments to produce a complex seafloor morphology. The margin is cut by numerous slumps and canyons, while the basin is traversed by deep sea channels emptying into the moat around Eratosthenes Seamount farther north. The bathymetric and geomorphological mapping was done in three phases using Kongsberg and Elac multibeam sonars installed on different research vessels. The last phase (Aug.-Sept., 2016) covering depths from 1,400 to 2,100 m used the Kongsberg EM302 sonar installed on our new governmental research vessel Bat Galim. It has "state of the art" capabilities to map, sample and analyze the water column, seafloor and sub-bottom from water depths of 10m to 7,000 m. These mapping capabilities are unique in our region, the Eastern Mediterranean and the Red Sea, so we hope to promote research collaborations with our neighbors.

  1. Archive of side scan sonar and swath bathymetry data collected during USGS cruise 10CCT03 offshore of the Gulf Islands National Seashore, Mississippi, from East Ship Island, Mississippi, to Dauphin Island, Alabama, April 2010

    Science.gov (United States)

    DeWitt, Nancy T.; Flocks, James G.; Pfeiffer, William R.; Gibson, James N.; Wiese, Dana S.

    2012-01-01

    In April of 2010, the U.S. Geological Survey (USGS) conducted a geophysical survey from the east end of East Ship Island, Miss., extending to the middle of Dauphin Island, Ala. (fig. 1). This survey had a dual purpose: (1) to interlink previously conducted nearshore geophysical surveys (shoreline to ~2 km) with those of offshore surveys (~2 to ~9 km) in the area, and (2) to extend the geophysical survey to include a portion of the Dauphin Island nearshore zone. The efforts were part of the USGS Gulf of Mexico Science Coordination partnership with the U.S. Army Corps of Engineers (USACE) to assist the Mississippi Coastal Improvements Program (MsCIP) and the Northern Gulf of Mexico (NGOM) Ecosystem Change and Hazards Susceptibility Project by mapping the shallow geological stratigraphic framework of the Mississippi Barrier Island Complex. These geophysical surveys will provide the data necessary for scientists to define, interpret, and provide baseline bathymetry and seafloor habitat for this area and to aid scientists in predicting future geomorpholocial changes of the islands with respect to climate change, storm impact, and sea-level rise. Furthermore, these data will provide information for barrier island restoration feasibility, particularly in Camille Cut, and efforts for the preservation of historical Fort Massachusetts. For more information refer to http://ngom.usgs.gov/gomsc/mscip/.

  2. Bathymetry and acoustic backscatter-outer mainland shelf, eastern Santa Barbara Channel, California

    Science.gov (United States)

    Dartnell, Peter; Finlayson, David P.; Ritchie, Andrew C.; Cochrane, Guy R.; Erdey, Mercedes D.

    2012-01-01

    In 2010 and 2011, scientists from the U.S. Geological Survey (USGS), Pacific Coastal and Marine Science Center (PCMSC), acquired bathymetry and acoustic-backscatter data from the outer shelf region of the eastern Santa Barbara Channel, California. These surveys were conducted in cooperation with the Bureau of Ocean Energy Management (BOEM). BOEM is interested in maps of hard-bottom substrates, particularly natural outcrops that support reef communities in areas near oil and gas extraction activity. The surveys were conducted using the USGS R/V Parke Snavely, outfitted with an interferometric sidescan sonar for swath mapping and real-time kinematic navigation equipment. This report provides the bathymetry and backscatter data acquired during these surveys in several formats, a summary of the mapping mission, maps of bathymetry and backscatter, and Federal Geographic Data Committee (FGDC) metadata.

  3. Bathymetry Mapping of the West Florida Shelf (Steamboat Lumps), Gulf of Mexico (NODC Accession 0001410)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — XYZ ASCII format data generated from the 2001 multibeam sonar survey of the West Florida Shelf, Gulf of Mexico. The data include high-resolution bathymetry and...

  4. Preliminary hard and soft bottom seafloor substrate map derived from an unsupervised classification of gridded backscatter and bathymetry derivatives at Swains Island, Territory of American Samoa, USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Preliminary hard and soft seafloor substrate map derived from an unsupervised classification of multibeam backscatter and bathymetry derivatives at Swains Island,...

  5. Precise mapping of annual river bed changes based on airborne laser bathymetry

    Science.gov (United States)

    Mandlburger, Gottfried; Wieser, Martin; Pfeifer, Norbert; Pfennigbauer, Martin; Steinbacher, Frank; Aufleger, Markus

    2014-05-01

    three epochs constituting an excellent basis for, both, the visual and quantitative estimation of the changes over the year. It turned out that even between the April and May flight remarkable differences could be detected although there was no major precipitation event in-between and the flow conditions were entirely below mean flow. In contrast to the moderate changes between April and May, the flood event in June 2013 (HQ1) resulted in a radical change of the river bed topography documented by the October flight. Since the study site (Neubacher Au) is a Natura2000 conservation area, space for a meandering flow is allowed. Entire gravel bars have been removed and new bars were deposited down-stream. Furthermore, the river axis was locally shifted by more than 1m during the flood event. The results demonstrate the high potential of laser bathymetry for precise mapping of river bed changes. This opens new perspectives for the validation of sediment transport models models and a much better understanding of the river morphology (e.g. formation and changes of sand and gravel banks). The traditional approach in sediment transport modelling based on a limited number of cross sections can be completed respectively replaced by a more comprehensive and more reliable concept on the basis of spatial distributed river bed data. Valuable calibration data in a new quality will be available.

  6. Shallow water bathymetry mapping using Support Vector Machine (SVM) technique and multispectral imagery

    NARCIS (Netherlands)

    Misra, Ankita; Vojinovic, Zoran; Ramakrishnan, Balaji; Luijendijk, Arjen; Ranasinghe, Roshanka

    2018-01-01

    Satellite imagery along with image processing techniques prove to be efficient tools for bathymetry retrieval as they provide time and cost-effective alternatives to traditional methods of water depth estimation. In this article, a nonlinear machine learning technique of Support Vector Machine (SVM)

  7. Mapping South Baltic Near-Shore Bathymetry Using Sentinel-2 Observations

    Directory of Open Access Journals (Sweden)

    Chybicki Andrzej

    2017-09-01

    Full Text Available One of the most promising new applications of remote observation satellite systems (RO is the near-shore bathymetry estimation based on spaceborn multispectral imageries. In recent years, many experiments aiming to estimate bathymetry in optically shallow water with the use of remote optical observations have been presented. In this paper, optimal models of satellite derived bathymetry (SDB for relatively turbid waters of the South Baltic Sea were presented. The obtained results were analysed in terms of depth error estimation, spatial distribution, and overall quality. The models were calibrated based on sounding (in-situ data obtained by a single-beam echo sounder, which was retrieved from the Maritime Office in Gdynia, Poland. The remote observations for this study were delivered by the recently deployed European Space Agency Sentinel-2 satellite observation system. A detailed analysis of the obtained results has shown that the tested methods can be successfully applied for the South Baltic region at depths of 12-18 meters. However, significant limitations were observed. The performed experiments have revealed that the error of model calibration, expressed in meters (RMSE, equals up to 10-20% of the real depth and is, generally, case dependent. To overcome this drawback, a novel indicator of determining the maximal SDB depth was proposed. What is important, the proposed SDB quality indicator is derived only on the basis of remotely registered data and therefore can be applied operationally.

  8. Coseismic slip in the 2010 Yushu earthquake (China, constrained by wide-swath and strip-map InSAR

    Directory of Open Access Journals (Sweden)

    Y. Wen

    2013-01-01

    Full Text Available On 14 April 2010, an Mw = 6.9 earthquake occurred in the Yushu county of China, which caused ~3000 people to lose their lives. Integrated with the information from the observed surface ruptures and aftershock locations, the faulting pattern of this earthquake is derived from the descending wide-swath and ascending strip mode PALSAR data collected by ALOS satellite. We used a layered crustal model and stress drop smoothing constraint to infer the coseismic slip distribution. Our model suggests that the earthquake fault can be divided into four segments and the slip mainly occurs within the upper 12 km with a maximum slip of 2.0 m at depth of 3 km on the Jiegu segment. The rupture of the upper 12 km is dominated by left-lateral strike-slip motion. The relatively small slip along the SE region of Yushu segment suggests a slip deficit there. The inverted geodetic moment is approximately Mw = 6.9, consistent with the seismological results. The average stress drop caused by the earthquake is about 2 MPa with a maximum stress drop of 8.3 MPa. Furthermore, the calculated static Coulomb stress changes in surrounding regions show increased Coulomb stress occurred in the SE region along the Yushu segment but with less aftershock, indicating an increased seismic hazard in this region after the earthquake.

  9. Bathymetry and digital elevation models of Coyote Creek and Alviso Slough, South San Francisco Bay, California

    Science.gov (United States)

    Foxgrover, Amy C.; Finlayson, David P.; Jaffe, Bruce E.; Fregoso, Theresa A.

    2012-01-05

    In 2010 the U.S. Geological Survey (USGS), Pacific Coastal and Marine Science Center completed three cruises to map the bathymetry of the main channel and shallow intertidal mudflats in the southernmost part of south San Francisco Bay. The three surveys were merged to generate comprehensive maps of Coyote Creek (from Calaveras Point east to the railroad bridge) and Alviso Slough (from the bay to the town of Alviso) to establish baseline bathymetry prior to the breaching of levees adjacent to Alviso and Guadalupe Sloughs as part of the South Bay Salt Pond Restoration Project (http://www.southbayrestoration.org). Since 2010 the USGS has conducted twelve additional surveys to monitor bathymetric change in this region as restoration progresses.The bathymetry surveys were conducted using the state-of-the-art research vessel R/V Parke Snavely outfitted with an interferometric sidescan sonar for swath mapping in extremely shallow water. This publication provides high-resolution bathymetric data collected by the USGS. For the 2010 baseline survey we have merged the bathymetry with aerial lidar data that were collected for the USGS during the same time period to create a seamless, high-resolution digital elevation model (DEM) of the study area. The series of bathymetry datasets are provided at 1 m resolution and the 2010 bathymetric/topographic DEM at 2 m resolution. The data are formatted as both X, Y, Z text files and ESRI Arc ASCII files that are accompanied by Federal Geographic Data Committee (FGDC) compliant metadata.

  10. BedMachine v3: Complete Bed Topography and Ocean Bathymetry Mapping of Greenland From Multibeam Echo Sounding Combined With Mass Conservation

    DEFF Research Database (Denmark)

    Morlighem, M.; Williams, C. N.; Rignot, E.

    2017-01-01

    Greenland's bed topography is a primary control on ice flow, grounding line migration, calving dynamics, and subglacial drainage. Moreover, fjord bathymetry regulates the penetration of warm Atlantic water (AW) that rapidly melts and undercuts Greenland's marine‐terminating glaciers. Here we...... present a new compilation of Greenland bed topography that assimilates seafloor bathymetry and ice thickness data through a mass conservation approach. A new 150 m horizontal resolution bed topography/bathymetric map of Greenland is constructed with seamless transitions at the ice/ocean interface...

  11. Velocity mapping in the Lower Congo River: a first look at the unique bathymetry and hydrodynamics of Bulu Reach

    Science.gov (United States)

    Jackson, P. Ryan; Oberg, Kevin A.; Gardiner, Ned; Shelton, John

    2009-01-01

    The lower Congo River is one of the deepest, most powerful, and most biologically diverse stretches of river on Earth. The river’s 270 m decent from Malebo Pool though the gorges of the Crystal Mountains to the Atlantic Ocean (498 km downstream) is riddled with rapids, cataracts, and deep pools. Much of the lower Congo is a mystery from a hydraulics perspective. However, this stretch of the river is a hotbed for biologists who are documenting evolution in action within the diverse, but isolated, fish populations. Biologists theorize that isolation of fish populations within the lower Congo is due to barriers presented by flow structure and bathymetry. To investigate this theory, scientists from the U.S. Geological Survey and American Museum of Natural History teamed up with an expedition crew from National Geographic in 2008 to map flow velocity and bathymetry within target reaches in the lower Congo River using acoustic Doppler current profilers (ADCPs) and echo sounders. Simultaneous biological and water quality sampling was also completed. This paper presents some preliminary results from this expedition, specifically with regard to the velocity structure andbathymetry. Results show that the flow in the bedrock controlled Bulu reach of the lower Congo is highly energetic. Turbulent and secondary flow structures can span the full depth of flow (up to 165 m), while coherent bank-to-bank cross-channel flow structures are absent. Regions of flow separation near the banks are isolated from one another and from the opposite bank by high shear, high velocity zones with depth-averaged flow velocities that can exceed 4 m/s.

  12. Mapping the Gaps: Building a pipeline for contributing and accessing crowdsourced bathymetry data

    Science.gov (United States)

    Rosenberg, A. M.; Jencks, J. H.; Robertson, E.; Reed, A.

    2017-12-01

    Both the Moon and Mars have been more comprehensively mapped than the Earth's oceans. Notably, less than 15% of the world's deep ocean and 50% of the world's coastal waters (infrastructure and interface of the DCDB to provide archiving, discovery, display and retrieval of CSB contributed from mariners around the world. NCEI, in partnership with NOAA's Office of Coast Survey and Rose Point Navigation Systems, established a citizen science pilot program in 2015 to harvest CSB from Electronic Navigation Systems. Today, data providers can submit xyz, csv, or geoJSON for automated ingest, while other formats can be accommodated with minimal system code changes. Like most marine geophysical datasets at NCEI, users can discover, filter, and request CSB data via a map viewer (https://maps.ngdc.noaa.gov/viewers/csb/). Now that the CSB pipeline has been established, NCEI has begun to plan future work that includes expanding the current infrastructure to account for increasing data volumes and implementing a point storage technology that would allow results to be dynamically generated and displayed through heat maps, while continuing to increase the number of data contributors to the IHO CSB initiative.

  13. BedMachine v3: Complete Bed Topography and Ocean Bathymetry Mapping of Greenland From Multibeam Echo Sounding Combined With Mass Conservation

    DEFF Research Database (Denmark)

    Morlighem, M.; Williams, C. N.; Rignot, E.

    2017-01-01

    Greenland's bed topography is a primary control on ice flow, grounding line migration, calving dynamics, and subglacial drainage. Moreover, fjord bathymetry regulates the penetration of warm Atlantic water (AW) that rapidly melts and undercuts Greenland's marine‐terminating glaciers. Here we...... present a new compilation of Greenland bed topography that assimilates seafloor bathymetry and ice thickness data through a mass conservation approach. A new 150 m horizontal resolution bed topography/bathymetric map of Greenland is constructed with seamless transitions at the ice/ocean interface......, yielding major improvements over previous data sets, particularly in the marine‐terminating sectors of northwest and southeast Greenland. Our map reveals that the total sea level potential of the Greenland ice sheet is 7.42 ± 0.05 m, which is 7 cm greater than previous estimates. Furthermore, it explains...

  14. Mapping river bathymetry with a small footprint green LiDAR: Applications and challenges

    Science.gov (United States)

    Kinzel, Paul J.; Legleiter, Carl; Nelson, Jonathan M.

    2013-01-01

    Airborne bathymetric Light Detection And Ranging (LiDAR) systems designed for coastal and marine surveys are increasingly sought after for high-resolution mapping of fluvial systems. To evaluate the potential utility of bathymetric LiDAR for applications of this kind, we compared detailed surveys collected using wading and sonar techniques with measurements from the United States Geological Survey’s hybrid topographic⁄ bathymetric Experimental Advanced Airborne Research LiDAR (EAARL). These comparisons, based upon data collected from the Trinity and Klamath Rivers, California, and the Colorado River, Colorado, demonstrated

  15. Preliminary hard and soft bottom seafloor substrate map (5m grid) derived from an unsupervised classification of gridded backscatter and bathymetry derivatives at Rose Atoll Lagoon, Territory of American Samoa, USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Preliminary hard and soft seafloor substrate map derived from an unsupervised classification of multibeam backscatter and bathymetry derivatives at Rose Atoll...

  16. Preliminary hard and soft bottom seafloor substrate map (40m grid) derived from an unsupervised classification of gridded backscatter and bathymetry derivatives at Rose Atoll, Territory of American Samoa, USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Preliminary hard and soft seafloor substrate map derived from an unsupervised classification of multibeam backscatter and bathymetry derivatives at Rose Atoll,...

  17. Integrated hard and soft bottom seafloor substrate map derived from an unsupervised classification of gridded backscatter, World-View 2 imagery and bathymetry derivatives of Ni'ihau Island, Hawaii, USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Preliminary hard and soft seafloor substrate map derived from an unsupervised classification of multibeam backscatter, bathymety derivatives, and bathymetry derived...

  18. Archive of single beam and swath bathymetry data collected nearshore of the Gulf Islands National Seashore, Mississippi, from West Ship Island, Mississippi, to Dauphin Island, Alabama: Methods and data report for USGS Cruises 08CCT01 and 08CCT02, July 2008, and 09CCT03 and 09CCT04, June 2009

    Science.gov (United States)

    DeWitt, Nancy T.; Flocks, James G.; Pendleton, Elizabeth A.; Hansen, Mark E.; Reynolds, B.J.; Kelso, Kyle W.; Wiese, Dana S.; Worley, Charles R.

    2012-01-01

    During the summers of 2008 and 2009 the USGS conducted bathymetric surveys from West Ship Island, Miss., to Dauphin Island, Ala., as part of the Northern Gulf of Mexico (NGOM) Ecosystem Change and Hazard Susceptibility project. The survey area extended from the shoreline out to approximately 2 kilometers and included the adjacent passes (fig. 1). The bathymetry was primarily used to create a topo-bathymetric map and provide a base-level assessment of the seafloor following the 2005 hurricane season. Additionally, these data will be used in conjunction with other geophysical data (chirp and side scan sonar) to construct a comprehensive geological framework of the Mississippi Barrier Island Complex. The culmination of the geophysical surveys will provide baseline bathymetry necessary for scientists to define and interpret seafloor habitat for this area and for scientists to predict future geomorpholocial changes of the islands with respect to climate change, storm impact, and sea-level rise. Furthermore, these data provide information for feasibility of barrier island restoration, particularly in Camille Cut, and for the preservation of historical Fort Massachusetts. For more information refer to http://ngom.usgs.gov/gomsc/mscip/index.html.

  19. Combining pixel and object based image analysis of ultra-high resolution multibeam bathymetry and backscatter for habitat mapping in shallow marine waters

    Science.gov (United States)

    Ierodiaconou, Daniel; Schimel, Alexandre C. G.; Kennedy, David; Monk, Jacquomo; Gaylard, Grace; Young, Mary; Diesing, Markus; Rattray, Alex

    2018-06-01

    Habitat mapping data are increasingly being recognised for their importance in underpinning marine spatial planning. The ability to collect ultra-high resolution (cm) multibeam echosounder (MBES) data in shallow waters has facilitated understanding of the fine-scale distribution of benthic habitats in these areas that are often prone to human disturbance. Developing quantitative and objective approaches to integrate MBES data with ground observations for predictive modelling is essential for ensuring repeatability and providing confidence measures for habitat mapping products. Whilst supervised classification approaches are becoming more common, users are often faced with a decision whether to implement a pixel based (PB) or an object based (OB) image analysis approach, with often limited understanding of the potential influence of that decision on final map products and relative importance of data inputs to patterns observed. In this study, we apply an ensemble learning approach capable of integrating PB and OB Image Analysis from ultra-high resolution MBES bathymetry and backscatter data for mapping benthic habitats in Refuge Cove, a temperate coastal embayment in south-east Australia. We demonstrate the relative importance of PB and OB seafloor derivatives for the five broad benthic habitats that dominate the site. We found that OB and PB approaches performed well with differences in classification accuracy but not discernible statistically. However, a model incorporating elements of both approaches proved to be significantly more accurate than OB or PB methods alone and demonstrate the benefits of using MBES bathymetry and backscatter combined for class discrimination.

  20. SWATH2stats: An R/Bioconductor Package to Process and Convert Quantitative SWATH-MS Proteomics Data for Downstream Analysis Tools.

    Science.gov (United States)

    Blattmann, Peter; Heusel, Moritz; Aebersold, Ruedi

    2016-01-01

    SWATH-MS is an acquisition and analysis technique of targeted proteomics that enables measuring several thousand proteins with high reproducibility and accuracy across many samples. OpenSWATH is popular open-source software for peptide identification and quantification from SWATH-MS data. For downstream statistical and quantitative analysis there exist different tools such as MSstats, mapDIA and aLFQ. However, the transfer of data from OpenSWATH to the downstream statistical tools is currently technically challenging. Here we introduce the R/Bioconductor package SWATH2stats, which allows convenient processing of the data into a format directly readable by the downstream analysis tools. In addition, SWATH2stats allows annotation, analyzing the variation and the reproducibility of the measurements, FDR estimation, and advanced filtering before submitting the processed data to downstream tools. These functionalities are important to quickly analyze the quality of the SWATH-MS data. Hence, SWATH2stats is a new open-source tool that summarizes several practical functionalities for analyzing, processing, and converting SWATH-MS data and thus facilitates the efficient analysis of large-scale SWATH/DIA datasets.

  1. Archive of bathymetry data collected in South Florida from 1995 to 2015

    Science.gov (United States)

    Hansen, Mark Erik; DeWitt, Nancy T.; Reynolds, Billy J.

    2017-08-10

    DescriptionLand development and alterations of the ecosystem in south Florida over the past 100 years have decreased freshwater and increased nutrient flows into many of Florida's estuaries, bays, and coastal regions. As a result, there has been a decrease in the water quality in many of these critical habitats, often prompting seagrass die-offs and reduced fish and aquatic life populations. Restoration of water quality in many of these habitats will depend partly upon using numerical-circulation and sediment-transport models to establish water-quality targets and to assess progress toward reaching restoration targets. Application of these models is often complicated because of complex sea floor topography and tidal flow regimes. Consequently, accurate and modern sea-floor or bathymetry maps are critical for numerical modeling research. Modern bathymetry data sets will also permit a comparison to historical data in order to help assess sea-floor changes within these critical habitats. New and detailed data sets also support marine biology studies to help understand migratory and feeding habitats of marine life.This data series is a compilation of 13 mapping projects conducted in south Florida between 1995 and 2015 and archives more than 45 million bathymetric soundings. Data were collected primarily with a single beam sound navigation and ranging (sonar) system called SANDS developed by the U.S. Geological Survey (USGS) in 1993. Bathymetry data for the Estero Bay project were supplemented with the National Aeronautics and Space Administration's (NASA) Experimental Advanced Airborne Research Lidar (EAARL) system. Data from eight rivers in southwest Florida were collected with an interferometric swath bathymetry system. The projects represented in this data series were funded by the USGS Coastal and Marine Geology Program (CMGP), the USGS South Florida Ecosystem Restoration Project- formally named Placed Based Studies, and other non-Federal agencies. The purpose of

  2. California State Waters Map Series: offshore of Tomales Point, California

    Science.gov (United States)

    Johnson, Samuel Y.; Dartnell, Peter; Golden, Nadine E.; Hartwell, Stephen R.; Greene, H. Gary; Erdey, Mercedes D.; Cochrane, Guy R.; Watt, Janet Tilden; Kvitek, Rikk G.; Manson, Michael W.; Endris, Charles A.; Dieter, Bryan E.; Krigsman, Lisa M.; Sliter, Ray W.; Lowe, Erik N.; Chinn, John L.; Johnson, Samuel Y.; Cochran, Susan A.

    2015-01-01

    In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within the 3-nautical-mile limit of California’s State Waters. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data, acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 200 m) subsurface geology.

  3. California State Waters Map Series: offshore of San Francisco, California

    Science.gov (United States)

    Cochrane, Guy R.; Johnson, Samuel Y.; Dartnell, Peter; Greene, H. Gary; Erdey, Mercedes D.; Golden, Nadine E.; Hartwell, Stephen R.; Endris, Charles A.; Manson, Michael W.; Sliter, Ray W.; Kvitek, Rikk G.; Watt, Janet Tilden; Ross, Stephanie L.; Bruns, Terry R.; Cochrane, Guy R.; Cochran, Susan A.

    2015-01-01

    In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data, acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology.

  4. California State Waters Map Series: offshore of Refugio Beach, California

    Science.gov (United States)

    Johnson, Samuel Y.; Dartnell, Peter; Cochrane, Guy R.; Golden, Nadine E.; Phillips, Eleyne L.; Ritchie, Andrew C.; Krigsman, Lisa M.; Dieter, Bryan E.; Conrad, James E.; Greene, H. Gary; Seitz, Gordon G.; Endris, Charles A.; Sliter, Ray W.; Wong, Florence L.; Erdey, Mercedes D.; Gutierrez, Carlos I.; Yoklavich, Mary M.; East, Amy E.; Hart, Patrick E.; Johnson, Samuel Y.; Cochran, Susan A.

    2015-01-01

    In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data, acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology.

  5. California State Waters Map Series: offshore of Pacifica, California

    Science.gov (United States)

    Edwards, Brian D.; Phillips, Eleyne L.; Dartnell, Peter; Greene, H. Gary; Bretz, Carrie K.; Kvitek, Rikk G.; Hartwell, Stephen R.; Johnson, Samuel Y.; Cochrane, Guy R.; Dieter, Bryan E.; Sliter, Ray W.; Ross, Stephanie L.; Golden, Nadine E.; Watt, Janet Tilden; Chinn, John L.; Erdey, Mercedes D.; Krigsman, Lisa M.; Manson, Michael W.; Endris, Charles A.; Cochran, Susan A.; Edwards, Brian D.

    2015-01-01

    In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within the 3-nautical-mile limit of California’s State Waters. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data, acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. 

  6. High-resolution topography along surface rupture of the 16 October 1999 Hector Mine, California (Mw 7.1) from airborne laser swath mapping

    Science.gov (United States)

    Hudnutt, K.W.; Borsa, A.; Glennie, C.; Minster, J.-B.

    2002-01-01

    In order to document surface rupture associated with the Hector Mine earthquake, in particular, the area of maximum slip and the deformed surface of Lavic Lake playa, we acquired high-resolution data using relatively new topographic-mapping methods. We performed a raster-laser scan of the main surface breaks along the entire rupture zone, as well as along an unruptured portion of the Bullion fault. The image of the ground surface produced by this method is highly detailed, comparable to that obtained when geologists make particularly detailed site maps for geomorphic or paleoseismic studies. In this case, however, for the first time after a surface-rupturing earthquake, the detailed mapping is along the entire fault zone rather than being confined to selected sites. These data are geodetically referenced, using the Global Positioning System, thus enabling more accurate mapping of the rupture traces. In addition, digital photographs taken along the same flight lines can be overlaid onto the precise topographic data, improving terrain visualization. We demonstrate the potential of these techniques for measuring fault-slip vectors.

  7. Satellite Derived Seafloor Bathymetry and Habitat Mapping on a Shallow Carbonate Platform: Campeche Bank, México.

    Science.gov (United States)

    Garza-Perez, J. R.; Rankey, E. C.; Rodriguez-Vázquez, R. A.; Naranjo-Garcia, M. J.

    2017-12-01

    Extensive and consistent high-resolution seafloor mapping is a difficult task involving important financial resources, intensive field work and careful planning; thus there is a paucity of this type of mapping products both in spatial distribution and through time. Remote sensed imagery has supported continuous mapping efforts elsewhere, but extensive seafloor mapping, even in shallow regions keeps being elusive. Challenges to this effort include cloud cover, surface sun-glint, and water turbidity caused by sediment resuspension and primary productivity. Nevertheless, using high-quality satellite imagery (Landsat-8 OLI -30x30m/pixel- and GeoEye-1 -2x2m/pixel) and rigorous pre-processing (atmospheric correction, de-glinting and water-column light extinction compensation), resulting data contribute towards the advancement of seafloor mapping. The Yucatan Peninsula in México is a carbonate ramp devoid of significant orographic features and surface water bodies. Its submerged portion is the Campeche Bank, gently sloping towards the Gulf of Mexico. The bottom features several distinct blankets composed by medium-fine sediment (dominated by pelecypods, gastropods, foraminifera, lithoclasts, calcareous peloids and algal nodules, Halimeda plaques and coralline algae fragments), and a reef unit with several bank-type coral reefs. Outside the coral reefs, biotic cover down to 20 m deep is dominated by macroalgae (red, brown, green), coralline and filamentous algae with sharp seasonal changes in abundance, from almost nil during north-winds (Oct. - Jan.) to high during dry (Feb.- May) and rainy seasons (Jun. - Sept.), with changes of dominance by algae groups between dry and rainy seasons. This bloom is favored by increases in sunlight and nutrients carried by the Caribbean current upwelling washing the Campeche Bank. Beyond 20 m depth, sandy plains dominate the seascape. Corals, octocorals, sponges and tunicates are spatially restricted to bottoms with thin layers of

  8. Bathymetry of Lake Michigan

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathymetry of Lake Michigan has been compiled as a component of a NOAA project to rescue Great Lakes lake floor geological and geophysical data and make it more...

  9. Bathymetry of Lake Ontario

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathymetry of Lake Ontario has been compiled as a component of a NOAA project to rescue Great Lakes lake floor geological and geophysical data and make it more...

  10. Bathymetry of Lake Superior

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathymetry of Lake Superior has been compiled as a component of a NOAA project to rescue Great Lakes lake floor geological and geophysical data and make it more...

  11. Great Lakes Bathymetry

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathymetry of Lakes Michigan, Erie, Saint Clair, Ontario and Huron has been compiled as a component of a NOAA project to rescue Great Lakes lake floor geological and...

  12. Bathymetry of Lake Huron

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathymetry of Lake Huron has been compiled as a component of a NOAA project to rescue Great Lakes lake floor geological and geophysical data and make it more...

  13. ROV seafloor surveys combining 5-cm lateral resolution multibeam bathymetry with color stereo photographic imagery

    Science.gov (United States)

    Caress, D. W.; Hobson, B.; Thomas, H. J.; Henthorn, R.; Martin, E. J.; Bird, L.; Rock, S. M.; Risi, M.; Padial, J. A.

    2013-12-01

    The Monterey Bay Aquarium Research Institute is developing a low altitude, high-resolution seafloor mapping capability that combines multibeam sonar with stereo photographic imagery. The goal is to obtain spatially quantitative, repeatable renderings of the seafloor with fidelity at scales of 5 cm or better from altitudes of 2-3 m. The initial test surveys using this sensor system are being conducted from a remotely operated vehicle (ROV). Ultimately we intend to field this survey system from an autonomous underwater vehicle (AUV). This presentation focuses on the current sensor configuration, methods for data processing, and results from recent test surveys. Bathymetry data are collected using a 400-kHz Reson 7125 multibeam sonar. This configuration produces 512 beams across a 135° wide swath; each beam has a 0.5° acrosstrack by 1.0° alongtrack angular width. At a 2-m altitude, the nadir beams have a 1.7-cm acrosstrack and 3.5 cm alongtrack footprint. Dual Allied Vision Technology GX1920 2.8 Mpixel color cameras provide color stereo photography of the seafloor. The camera housings have been fitted with corrective optics achieving a 90° field of view through a dome port. Illumination is provided by dual 100J xenon strobes. Position, depth, and attitude data are provided by a Kearfott SeaDevil Inertial Navigation System (INS) integrated with a 300 kHz RDI Doppler velocity log (DVL). A separate Paroscientific pressure sensor is mounted adjacent to the INS. The INS Kalman filter is aided by the DVL velocity and pressure data, achieving navigational drift rates less than 0.05% of the distance traveled during surveys. The sensors are mounted onto a toolsled fitted below MBARI's ROV Doc Ricketts with the sonars, cameras and strobes all pointed vertically down. During surveys the ROV flies at a 2-m altitude at speeds of 0.1-0.2 m/s. During a four-day R/V Western Flyer cruise in June 2013, we successfully collected multibeam and camera survey data from a 2-m altitude

  14. BedMachine v3: Complete Bed Topography and Ocean Bathymetry Mapping of Greenland From Multibeam Echo Sounding Combined With Mass Conservation

    DEFF Research Database (Denmark)

    Morlighem, M.; Williams, C. N.; Rignot, E.

    2017-01-01

    Greenland's bed topography is a primary control on ice flow, grounding line migration, calving dynamics, and subglacial drainage. Moreover, fjord bathymetry regulates the penetration of warm Atlantic water (AW) that rapidly melts and undercuts Greenland's marine‐terminating glaciers. Here we...... recent calving front response of numerous outlet glaciers and reveals new pathways by which AW can access glaciers with marine‐based basins, thereby highlighting sectors of Greenland that are most vulnerable to future oceanic forcing....

  15. The meandering Indus, channels: Study in a small area by the multibeam swath bathymetry system - Hydrosweep

    Digital Repository Service at National Institute of Oceanography (India)

    Kodagali, V.N.; Jauhari, P.

    The discharge of sediments by the river Indus has accumulated into a 2500 m thick pile, forming one of the largest deep sea fans in the world. Though there are many reports on channels in different regions of tha fan, we report for the first time...

  16. Multiscale Terrain Analysis of Multibeam Bathymetry Data for Lake Trout Spawning Habitat Mapping in the Drummond Island Refuge, northern Lake Huron

    Science.gov (United States)

    Wattrus, N. J.; Binder, T.

    2012-12-01

    Until the 1950s, lake trout supported a valuable commercial fishery in the Great Lakes. The introduction of sea lamprey into the Great Lakes and overfishing resulted in the loss of most populations. Despite consistent stocking efforts since the 1960s, restoration of these populations has been slow. The reasons are numerous, but may be related to differences in the spawning behavior between hatchery and wild trout. A four-year study initiated in 2010, utilizes acoustic telemetry to characterize and compare the spawning behaviors of hatchery and wild lake trout in the Drummond Island Refuge in northern Lake Huron. In this project, the movement of tagged fish are monitored by an array of over 125 lake floor hydrophones during the fall spawning period. Fish behavior is overlaid over detailed bathymetric and substrate data and compared with environmental variables (e.g. water temperature, wind speed and direction, and wave height and direction) to develop a conceptual behavioral model. Sites suspected of being spawning sites based upon telemetry data are verified through the use of divers and trapping eggs and fry. Prior to this study, the factors that influenced how the spawning fish utilize the lake floor shoals have been poorly understood. Among the factors thought to impact spawning success were: bathymetry and substrate composition. Diver and telemetry data suggest that the fish(both hatchery raised and wild) are particularly attracted to rocky substrates and that fragment size is important. High resolution multibeam bathymetric surveys conducted in 2010 and 2011 have been used to characterize the shape and composition of the lake floor in the study area. Classification of the substrate is a labor intensive process requiring divers, drop cameras and sediment sampling. To improve this, the traditional approach has been to use supervised and unsupervised classification techniques that are based upon measured acoustic backscatter from an echosounder or sidescan sonar

  17. Bathymetry and acoustic backscatter data collected in 2010 from Cat Island, Mississippi

    Science.gov (United States)

    Buster, Noreen A.; Pfeiffer, William R.; Miselis, Jennifer L.; Kindinger, Jack G.; Wiese, Dana S.; Reynolds, B.J.

    2012-01-01

    Scientists from the U.S. Geological Survey (USGS), St. Petersburg Coastal and Marine Science Center (SPCMSC), in collaboration with the U.S. Army Corps of Engineers (USACE), conducted geophysical and sedimentological surveys around Cat Island, the westernmost island in the Mississippi-Alabama barrier island chain (fig. 1). The objectives of the study were to understand the geologic evolution of Cat Island relative to other barrier islands in the northern Gulf of Mexico and to identify relationships between the geologic history, present day morphology, and sediment distribution. This report contains data from the bathymetry and side-scan sonar portion of the study collected during two geophysical cruises. Interferometric swath bathymetry and side-scan sonar data were collected aboard the RV G.K. Gilbert September 7-15, 2010. Single-beam bathymetry was collected in shallow water around the island (Field Activity Collection System (FACS) logs, and formal Federal Geographic Data Committee (FDGC) metadata.

  18. Preliminary hard and soft bottom seafloor substrate map derived from an unsupervised classification of gridded backscatter and bathymetry derivatives of Ni'ihau Island, Hawaii, USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Preliminary hard and soft seafloor substrate map derived from an unsupervised classification of multibeam backscatter and bathymety derivatives of Ni'ihau Island,...

  19. CRED Preliminary hard and soft bottom seafloor substrate map derived from an unsupervised classification of gridded backscatter and bathymetry derivatives at the U.S. Territory of Guam.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Preliminary hard and soft seafloor substrate map derived from an unsupervised classification of multibeam backscatter and bathymety derivatives at the U.S. Territory...

  20. Preliminary hard and soft bottom seafloor substrate map derived from an unsupervised classification of gridded backscatter and bathymetry derivatives at Tutuila Island, American Samoa, South Pacific.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Preliminary hard and soft seafloor substrate map derived from an unsupervised classification of multibeam backscatter and bathymety derivatives at Tutuila Island,...

  1. Preliminary hard and soft bottom seafloor substrate map derived from gridded sidescan and bathymetry derivatives at Apra Harbor, Guam U.S. Territory.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Preliminary hard and soft seafloor substrate map classified from sidescan data and bathymetric derivatives at Apra Harbor, Guam U.S. Territory. The dataset was...

  2. NOAA TIFF Image - 8m Multibeam Bathymetry, US Virgin Islands - St. John Shelf - Project NF-10-03 - (2010), UTM 20N NAD83 (NCEI Accession 0131854)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a GeoTIFF with 8x8 meter cell size representing the bathymetry of a sharply sloping swath of the St. John Shelf, a selected portion of seafloor...

  3. NOAA TIFF Image - 8m Multibeam Bathymetry, US Virgin Islands - St. John Shelf - Project NF-10-03 - (2010), UTM 20N NAD83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a GeoTIFF with 8x8 meter cell size representing the bathymetry of a sharply sloping swath of the St. John Shelf, a selected portion of seafloor...

  4. Bathymetry from fusion of airborne hyperspectral and laser data

    Science.gov (United States)

    Kappus, Mary E.; Davis, Curtiss O.; Rhea, W. Joseph

    1998-10-01

    Airborne hyperspectral and nadir-viewing laser data can be combined to ascertain shallow water bathymetry. The combination emphasizes the advances and overcomes the disadvantages of each method used alone. For laser systems, both the hardware and software for obtaining off-nadir measurement are complicated and expensive, while for the nadir view the conversion of laser pulse travel time to depth is straightforward. The hyperspectral systems can easily collect data in a full swath, but interpretation for water depth requires careful calibration and correction for transmittance through the atmosphere and water. Relative depths are apparent in displays of several subsets of hyperspectral data, for example, single blue-green wavelengths, endmembers that represent the pure water component of the data, or ratios of deep to shallow water endmembers. A relationship between one of these values and the depth measured by the aligned nadir laser can be determined, and then applied to the rest of the swath to obtain depth in physical units for the entire area covered. We demonstrate this technique using bathymetric charts as a proxy for laser data, and hyperspectral data taken by AVIRIS over Lake Tahoe and Key West.

  5. Adaptive beamforming for low frequency SAS imagery and bathymetry

    NARCIS (Netherlands)

    Hayes, M.P.; Hunter, A.J.

    2012-01-01

    Synthetic aperture side-scan sonar (SAS) is a mature technology for high-resolution sea floor imaging [1]. Interferometric synthetic aperture sonars (InSAS) use additional hydrophones in a vertical array for bathymetric mapping [2]. This has created high-resolution bathymetry in deep water

  6. Pemetaan batimetri sebagai informasi dasar untuk penempatan fish apartment di perairan Bangsring, Kabupaten Banyuwangi, Jawa Timur (Bathymetry mapping as basic information for fish apartment placement in Bangsring waters, Banyuwangi, East Java

    Directory of Open Access Journals (Sweden)

    M. Arif Zainul Fuad

    2016-12-01

    Full Text Available The objective of the present research was to map the bathymetry of the Bangsring coastal area, Banyuwangi. Depth data obtained are used to consider the suitable location for fish apartment placement. The depth of the water was measured using a single beam echosounder with a frequency of 50 Hz. The data obtained by sounding process corrected by Tidal data. The tidal data measured during sampling with the observation interval of 30 minutes. The tidal correction was performed to get the depth value relative to lowest Water Surface (LWS. The results showed the depth of the Bangsring coastal area ranged from 2-49 meters. The deepest region is in the southeast of the research area. Based on the depth of the waters, the locations that can be an alternative placement of fish apartment is located by distance of 200- 250 meters in front of Bangsring coastal area with total area  approximately 30 Ha Penelitian ini bertujuan untuk memetakan kedalaman perairan Bangsring, Banyuwangi. Data kedalaman yang didapat dari pemeruman selanjutnya digunakan sebagai pertimbangan untuk mencari alternatif lokasi penempatan fish apartment. Kedalaman perairan di ukur menggunakan Single Beam Echosounder dengan frekuensi 50 Hz. Pemeruman dilakukan selama 2 hari yaitu pada tanggal 17 dan 18 Maret 2016 dengan metode zig zag . Hasil pengukuran kedalaman selanjutnya di koreksi terhadap pasang surut. Pasang surut diukur selama pelaksanaan pemeruman dengan interval pengamatan 30 menit. Koreksi pasang surut dilakukan untuk mendapatkan nilai kedalaman relatif terhadap Lowest Water Surface (LWS. Hasil penelitian menunjukkan kedalaman Perairan Bangsring Berkisar antara 2-49 meter. Wilayah terdalam berada dibagian tenggara area penelitian. Berdasarkan kedalaman perairan tersebut, maka lokasi Perairan di Bangsring yang dapat dijadikan alternatif penempatan fish apartment adalah di perairan depan pantai bagian timur dengan jarak sejauh 200-250 meter dari garis pantai Bangsring dengan

  7. Generating High-Resolution Lake Bathymetry over Lake Mead using the ICESat-2 Airborne Simulator

    Science.gov (United States)

    Li, Y.; Gao, H.; Jasinski, M. F.; Zhang, S.; Stoll, J.

    2017-12-01

    Precise lake bathymetry (i.e., elevation/contour) mapping is essential for optimal decision making in water resources management. Although the advancement of remote sensing has made it possible to monitor global reservoirs from space, most of the existing studies focus on estimating the elevation, area, and storage of reservoirs—and not on estimating the bathymetry. This limitation is attributed to the low spatial resolution of satellite altimeters. With the significant enhancement of ICESat-2—the Ice, Cloud & Land Elevation Satellite #2, which is scheduled to launch in 2018—producing satellite-based bathymetry becomes feasible. Here we present a pilot study for deriving the bathymetry of Lake Mead by combining Landsat area estimations with airborne elevation data using the prototype of ICESat-2—the Multiple Altimeter Beam Experimental Lidar (MABEL). First, an ISODATA classifier was adopted to extract the lake area from Landsat images during the period from 1982 to 2017. Then the lake area classifications were paired with MABEL elevations to establish an Area-Elevation (AE) relationship, which in turn was applied to the classification contour map to obtain the bathymetry. Finally, the Lake Mead bathymetry image was embedded onto the Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM), to replace the existing constant values. Validation against sediment survey data indicates that the bathymetry derived from this study is reliable. This algorithm has the potential for generating global lake bathymetry when ICESat-2 data become available after next year's launch.

  8. River bathymetry estimation based on the floodplains topography.

    Science.gov (United States)

    Bureš, Luděk; Máca, Petr; Roub, Radek; Pech, Pavel; Hejduk, Tomáš; Novák, Pavel

    2017-04-01

    Topographic model including River bathymetry (bed topography) is required for hydrodynamic simulation, water quality modelling, flood inundation mapping, sediment transport, ecological and geomorphologic assessments. The most common way to create the river bathymetry is to use of the spatial interpolation of discrete points or cross sections data. The quality of the generated bathymetry is dependent on the quality of the measurements, on the used technology and on the size of input dataset. Extensive measurements are often time consuming and expensive. Other option for creating of the river bathymetry is to use the methods of mathematical modelling. In the presented contribution we created the river bathymetry model. Model is based on the analytical curves. The curves are bent into shape of the cross sections. For the best description of the river bathymetry we need to know the values of the model parameters. For finding these parameters we use of the global optimization methods. The global optimization schemes is based on heuristics inspired by the natural processes. We use new type of DE (differential evolution) for finding the solutions of inverse problems, related to the parameters of mathematical model of river bed surfaces. The presented analysis discuss the dependence of model parameters on the selected characteristics. Selected characteristics are: (1) Topographic characteristics (slope and curvature in the left and right floodplains) determined on the base of DTM 5G (digital terrain model). (2) Optimization scheme. (3) Type of used analytical curves. The novel approach is applied on the three parts of Vltava river in Czech Republic. Each part of the river is described on the base of the point field. The point fields was measured with ADCP probe River surveyor M9. This work was supported by the Technology Agency of the Czech Republic, programme Alpha (project TA04020042 - New technologies bathymetry of rivers and reservoirs to determine their storage

  9. 16 Years, 16 Cruises, 1.6 Billion Soundings: a Compilation of High-Resolution Multibeam Bathymetry of the Active Plate Boundary Along the Chilean Continental Margin

    Science.gov (United States)

    Weinrebe, W.; Flueh, E. R.; Hasert, M.; Behrmann, J. H.; Voelker, D.; Geersen, J.; Ranero, C. R.; Diaz-Naveas, J. L.

    2011-12-01

    Chile, a country stranding the active plate boundary between the South-American and the Nazca Plate is afflicted by recurrent earthquakes and hazardous volcanic eruptions. The strongest earthquake ever recorded occurred here, and volcanic hazards are frequent. Consequently, this area has been studied by geoscientists for many years to improve the understanding of subduction zone processes. Swath bathymetry mapping of the ocean floor has proven to bear a large potential for the interpretation of subduction-related processes, such as tectonic deformation of the marine forearc, release and migration of fluids as well as earthquake-triggered mass wasting. Multibeam bathymetry data of 16 major cruises of German, British, and Chilean research vessels recorded between 1995 and December 2010, in total more than 10,000 data files comprising about 1.6 billion soundings, have now been carefully reprocessed, compiled and merged into a unifying set of high-resolution bathymetric maps of the Chilean continental margin from latitude 40°S to 20°S. The imprint of subsurface processes on the surface morphology is well displayed in the case of the Chilean continental margin. The 3,500 km long Chilean convergent margin is not uniform, as various segments with different tectonic characteristics can be distinguished. Major factors that control margin morphology and thus the style of subduction are (1) relief and structure of the incoming oceanic plate, (2) supply of trench sediment, (3) turbidite transport within the trench, and (4) the input of terrigeneous sediments down the continental slope. A major segment boundary occurs at latitude 32°-33° S where the hotspot-related volcanic chain of Juan Fernandez is presently subducting. South of the area of ridge subduction the trench is filled with turbidites, and accretionary ridges develop across the base of the slope along most of the segment, whereas north of this boundary the turbiditic infill is reduced and subduction erosion is

  10. EMODNet Bathymetry - building and providing a high resolution digital bathymetry for European seas

    Science.gov (United States)

    Schaap, Dick M. A.

    2016-04-01

    available and gathered surveys and already more than 13.000 surveys have been indexed by 27 European data providers from 15 countries and originating from more than 120 organizations. Also use is made of composite DTMs as generated and maintained by several data providers for their areas of interest. Already 44 composite DTMs are included in the Sextant data products catalogue. For areas without coverage use is made of the latest global DTM of GEBCO who is partner in the EMODNet Bathymetry project. In return GEBCO integrates the EMODNet DTM to achieve an enriched and better result. The catalogue services and the generated EMODNet can be queried and browsed at the dedicated EMODNet Bathymetry portal which also provides a versatile DTM viewing service with many relevant map layers and functions for retrieving. Activities are underway for further refinement following user feedback. The EMODnet DTM is publicly available for downloading in various formats. The presentation will highlight key details of EMODNet Bathymetry project, the recently released EMODNet Digital Bathymetry for all European seas, its portal and its versatile viewer.

  11. NOAA TIFF Image - 8m Multibeam Bathymetry , W00216 USVI 2011 , Seafloor Characterization of the US Caribbean - Nancy Foster - NF-11-1 (2011), UTM 20N NAD83 (NCEI Accession 0131858)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a GeoTIFF with 8x8 meter cell size representing the bathymetry of a sharply sloping swath of the St. John Shelf, a selected portion of seafloor...

  12. NOAA TIFF Image - 4m Multibeam Bathymetry , W00216 USVI 2011 , Seafloor Characterization of the US Caribbean - Nancy Foster - NF-11-1 (2011), UTM 20N NAD83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a GeoTIFF with 4x4 meter cell size representing the bathymetry of a sharply sloping swath of the St. John Shelf, a selected portion of seafloor...

  13. NOAA TIFF Image - 2m Multibeam Bathymetry, W00216 USVI 2011, Seafloor Characterization of the US Caribbean - Nancy Foster - NF-11-1 (2011), UTM 20N NAD83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a GeoTIFF with 2x2 meter cell size representing the bathymetry of a sharply sloping swath of the St. John Shelf, a selected portion of seafloor...

  14. NOAA TIFF Image - 2m Multibeam Bathymetry, W00216 USVI 2011, Seafloor Characterization of the US Caribbean - Nancy Foster - NF-11-1 (2011), UTM 20N NAD83 (NCEI Accession 0131858)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a GeoTIFF with 2x2 meter cell size representing the bathymetry of a sharply sloping swath of the St. John Shelf, a selected portion of seafloor...

  15. NOAA TIFF Image - 8m Multibeam Bathymetry , W00216 USVI 2011 , Seafloor Characterization of the US Caribbean - Nancy Foster - NF-11-1 (2011), UTM 20N NAD83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a GeoTIFF with 8x8 meter cell size representing the bathymetry of a sharply sloping swath of the St. John Shelf, a selected portion of seafloor...

  16. EMODNet Bathymetry - building and providing a high resolution digital bathymetry for European seas

    Science.gov (United States)

    Schaap, D.

    2016-12-01

    DTM to achieve an enriched and better result. The catalogue services and the generated EMODnet can be queried and browsed at the dedicated EMODnet Bathymetry portal which also provides a versatile DTM viewing service with many relevant map layers and functions for retrieving. The EMODnet DTM is publicly available for downloading in various formats.

  17. Highly resolved global distribution of tropospheric NO2 using GOME narrow swath mode data

    Directory of Open Access Journals (Sweden)

    S. Beirle

    2004-01-01

    Full Text Available The Global Ozone Monitoring Experiment (GOME allows the retrieval of tropospheric vertical column densities (VCDs of NO2 on a global scale. Regions with enhanced industrial activity can clearly be detected, but the standard spatial resolution of the GOME ground pixels (320x40km2 is insufficient to resolve regional trace gas distributions or individual cities. Every 10 days within the nominal GOME operation, measurements are executed in the so called narrow swath mode with a much better spatial resolution (80x40km2. We use this data (1997-2001 to construct a detailed picture of the mean global tropospheric NO2 distribution. Since - due to the narrow swath - the global coverage of the high resolution observations is rather poor, it has proved to be essential to deseasonalize the single narrow swath mode observations to retrieve adequate mean maps. This is done by using the GOME backscan information. The retrieved high resolution map illustrates the shortcomings of the standard size GOME pixels and reveals an unprecedented wealth of details in the global distribution of tropospheric NO2. Localised spots of enhanced NO2 VCD can be directly associated to cities, heavy industry centers and even large power plants. Thus our result helps to check emission inventories. The small spatial extent of NO2 'hot spots' allows us to estimate an upper limit of the mean lifetime of boundary layer NOx of 17h on a global scale. The long time series of GOME data allows a quantitative comparison of the narrow swath mode data to the nominal resolution. Thus we can analyse the dependency of NO2 VCDs on pixel size. This is important for comparing GOME data to results of new satellite instruments like SCIAMACHY (launched March 2002 on ENVISAT, OMI (launched July 2004 on AURA or GOME II (to be launched 2005 with an improved spatial resolution.

  18. Improving Watershed-Scale Hydrodynamic Models by Incorporating Synthetic 3D River Bathymetry Network

    Science.gov (United States)

    Dey, S.; Saksena, S.; Merwade, V.

    2017-12-01

    Digital Elevation Models (DEMs) have an incomplete representation of river bathymetry, which is critical for simulating river hydrodynamics in flood modeling. Generally, DEMs are augmented with field collected bathymetry data, but such data are available only at individual reaches. Creating a hydrodynamic model covering an entire stream network in the basin requires bathymetry for all streams. This study extends a conceptual bathymetry model, River Channel Morphology Model (RCMM), to estimate the bathymetry for an entire stream network for application in hydrodynamic modeling using a DEM. It is implemented at two large watersheds with different relief and land use characterizations: coastal Guadalupe River basin in Texas with flat terrain and a relatively urban White River basin in Indiana with more relief. After bathymetry incorporation, both watersheds are modeled using HEC-RAS (1D hydraulic model) and Interconnected Pond and Channel Routing (ICPR), a 2-D integrated hydrologic and hydraulic model. A comparison of the streamflow estimated by ICPR at the outlet of the basins indicates that incorporating bathymetry influences streamflow estimates. The inundation maps show that bathymetry has a higher impact on flat terrains of Guadalupe River basin when compared to the White River basin.

  19. SwathProfiler and NProfiler: Two new ArcGIS Add-ins for the automatic extraction of swath and normalized river profiles

    Science.gov (United States)

    Pérez-Peña, J. V.; Al-Awabdeh, M.; Azañón, J. M.; Galve, J. P.; Booth-Rea, G.; Notti, D.

    2017-07-01

    The present-day great availability of high-resolution Digital Elevation Models has improved tectonic geomorphology analyses in their methodological aspects and geological meaning. Analyses based on topographic profiles are valuable to explore the short and long-term landscape response to tectonic activity and climate changes. Swath and river longitudinal profiles are two of the most used analysis to explore the long and short-term landscape responses. Most of these morphometric analyses are conducted in GIS software, which have become standard tools for analyzing drainage network metrics. In this work we present two ArcGIS Add-Ins to automatically delineate swath and normalized river profiles. Both tools are programmed in Visual Basic . NET and use ArcObjects library-architecture to access directly to vector and raster data. The SwathProfiler Add-In allows analyzing the topography within a swath or band by representing maximum-minimum-mean elevations, first and third quartile, local relief and hypsometry. We have defined a new transverse hypsometric integral index (THi) that analyzes hypsometry along the swath and offer valuable information in these kind of graphics. The NProfiler Add-In allows representing longitudinal normalized river profiles and their related morphometric indexes as normalized concavity (CT), maximum concavity (Cmax) and length of maximum concavity (Lmax). Both tools facilitate the spatial analysis of topography and drainage networks directly in a GIS environment as ArcMap and provide graphical outputs. To illustrate how these tools work, we analyzed two study areas, the Sierra Alhamilla mountain range (Betic Cordillera, SE Spain) and the Eastern margin of the Dead Sea (Jordan). The first study area has been recently studied from a morphotectonic perspective and these new tools can show an added value to the previous studies. The second study area has not been analyzed by quantitative tectonic geomorphology and the results suggest a landscape

  20. Miniature Ka-band Automated Swath Mapper (KASM), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal discusses the development and demonstration of a swath-based airborne instrument suite intended as a calibration and validation with relevance to the...

  1. Efficient data assimilation algorithm for bathymetry application

    Science.gov (United States)

    Ghorbanidehno, H.; Lee, J. H.; Farthing, M.; Hesser, T.; Kitanidis, P. K.; Darve, E. F.

    2017-12-01

    Information on the evolving state of the nearshore zone bathymetry is crucial to shoreline management, recreational safety, and naval operations. The high cost and complex logistics of using ship-based surveys for bathymetry estimation have encouraged the use of remote sensing techniques. Data assimilation methods combine the remote sensing data and nearshore hydrodynamic models to estimate the unknown bathymetry and the corresponding uncertainties. In particular, several recent efforts have combined Kalman Filter-based techniques such as ensembled-based Kalman filters with indirect video-based observations to address the bathymetry inversion problem. However, these methods often suffer from ensemble collapse and uncertainty underestimation. Here, the Compressed State Kalman Filter (CSKF) method is used to estimate the bathymetry based on observed wave celerity. In order to demonstrate the accuracy and robustness of the CSKF method, we consider twin tests with synthetic observations of wave celerity, while the bathymetry profiles are chosen based on surveys taken by the U.S. Army Corps of Engineer Field Research Facility (FRF) in Duck, NC. The first test case is a bathymetry estimation problem for a spatially smooth and temporally constant bathymetry profile. The second test case is a bathymetry estimation problem for a temporally evolving bathymetry from a smooth to a non-smooth profile. For both problems, we compare the results of CSKF with those obtained by the local ensemble transform Kalman filter (LETKF), which is a popular ensemble-based Kalman filter method.

  2. Coastal bathymetry and backscatter data collected in 2012 from the Chandeleur Islands, Louisiana

    Science.gov (United States)

    DeWitt, Nancy T.; Bernier, Julie C.; Pfeiffer, William R.; Miselis, Jennifer L.; Reynolds, B.J.; Wiese, Dana S.; Kelso, Kyle W.

    2014-01-01

    As part of the Barrier Island Evolution Research Project, scientists from the U.S. Geological Survey St. Petersburg Coastal and Marine Science Center conducted nearshore geophysical surveys off the northern Chandeleur Islands, Louisiana, in July and August of 2012. The objective of the study is to better understand barrier island geomorphic evolution, particularly storm-related depositional and erosional processes that shape the islands over annual to interannual timescales (1-5 years). Collecting geophysical data will allow us to identify relationships between the geologic history of the island and its present day morphology and sediment distribution. This mapping effort was the second in a series of three planned surveys in this area. High resolution geophysical data collected in each of 3 consecutive years along this rapidly changing barrier island system will provide a unique time-series dataset that will significantly further the analyses and geomorphological interpretations of this and other coastal systems, improving our understanding of coastal response and evolution over short time scales (1-5 years). This Data Series report includes the geophysical data that were collected during two cruises (USGS Field Activity Numbers 12BIM03 and 12BIM04) aboard the RV Survey Cat and the RV Twin Vee along the northern portion of the Chandeleur Islands, Breton National Wildlife Refuge, Louisiana. Data were acquired with the following equipment: a Systems Engineering and Assessment, Ltd., SWATHplus interferometric sonar (468 kilohertz (kHz)), an EdgeTech 424 (4-24 kHz) chirp sub-bottom profiling system, and a Knudsen 320BP (210 kHz) echosounder. This report serves as an archive of processed interferometric swath and single-beam bathymetry data. Geographic information system data products include an interpolated digital elevation model, an acoustic backscatter mosaic, trackline maps, and point data files. Additional files include error analysis maps, Field Activity

  3. Imaging trench-line disruptions: Swath mapping of subduction zone

    Digital Repository Service at National Institute of Oceanography (India)

    Chakraborty, B.; Mukhopadhyay, R.

    of the surveyed area. Generally, low b corr e sponds to rough seafloor, while S quantifies overall energy at a given area, i .e. for profiles ha v ing similar b but higher S will correspond to rougher profile. We extracted four evenly spaced depth... simulating reflector (BSR), often associated with the base of hydrate stability field. Physical parameters like porosity, density, thermal conductivity, temper a- ture, geothermal gradient, hydrate saturation, electr i- cal resistivity and heat flow...

  4. Mosaic of gridded multibeam bathymetry, gridded LiDAR bathymetry and bathymetry derived from multispectral IKONOS satellite imagery of Tinian Island, Commonwealth of the Northern Marianas Islands, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded multibeam bathymetry is integrated with gridded LiDAR bathymetry and bathymetry derived from multispectral IKONOS satellite data. Gridded (5 m cell size)...

  5. EMODNet Bathymetry - building and providing a high resolution digital bathymetry for European seas

    Science.gov (United States)

    Schaap, Dick M. A.

    2015-04-01

    /8 arcminute * 1/8 arcminute and will cover all European sea regions. Use is made of available and gathered surveys and already more than 10.000 surveys have been indexed by 24 European data providers and originating from more than 120 organisations. Also use is made of composite DTMs as generated and maintained by several data providers for their areas of interest. Already 44 composite DTMs are included in the Sextant data products catalogue. For areas without coverage use is made of the latest global DTM of GEBCO who is partner in the EMODnet Bathymetry project. In return GEBCO integrates the EMODnet DTM to achieve an enriched and better result. The catalogue services and the generated EMODnet can be queried and browsed at the dedicated EMODnet Bathymetry portal which also provides a versatile DTM viewing service with many relevant map layers and functions for retrieving. Activities are underway for further refinement following user feedback. The EMODnet DTM is publicly available for downloading in various formats. The presentation will highlight key details of EMODnet Bathymetry project, its portal and views on the new EMODNet Digital Bathymetry for European seas as to be released early 2015.

  6. Capacity building in ocean bathymetry: The Nippon Foundation GEBCO Training Programme at the University of New Hampshire

    Digital Repository Service at National Institute of Oceanography (India)

    Srinivas, K.; Dave, M.; Caceres, H.M.; Morishita, T.; Mustapha, A.A.; Peralta, W.R.; Sharma, S.; Angwenyi, C.

    in deep ocean research cruises, working visits to other laboratories and institutions, focused lectures from visiting experts, and the preparation of a bathymetry map of their area from public domain data. Intangible but necessary preparation includes...

  7. Gridded bathymetry of Penguin Bank, Hawaii, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded bathymetry (5 m cell size) of Penguin Bank, Hawaii, USA. The netCDF grid and ArcGIS ASCII file include multibeam bathymetry from the Simrad EM3002d, and...

  8. Seep Detection using E/V Nautilus Integrated Seafloor Mapping and Remotely Operated Vehicles on the United States West Coast

    Science.gov (United States)

    Gee, L. J.; Raineault, N.; Kane, R.; Saunders, M.; Heffron, E.; Embley, R. W.; Merle, S. G.

    2017-12-01

    Exploration Vessel (E/V) Nautilus has been mapping the seafloor off the west coast of the United States, from Washington to California, for the past three years with a Kongsberg EM302 multibeam sonar. This system simultaneously collects bathymetry, seafloor and water column backscatter data, allowing an integrated approach to mapping to more completely characterize a region, and has identified over 1,000 seafloor seeps. Hydrographic multibeam sonars like the EM302 were designed for mapping the bathymetry. It is only in the last decade that major mapping projects included an integrated approach that utilizes the seabed and water column backscatter information in addition to the bathymetry. Nautilus mapping in the Eastern Pacific over the past three years has included a number of seep-specific expeditions, and utilized and adapted the preliminary mapping guidelines that have emerged from research. The likelihood of seep detection is affected by many factors: the environment: seabed geomorphology, surficial sediment, seep location/depth, regional oceanography and biology, the nature of the seeps themselves: size variation, varying flux, depth, and transience, the detection system: design of hydrographic multibeam sonars limits use for water column detection, the platform: variations in the vessel and operations such as noise, speed, and swath overlap. Nautilus integrated seafloor mapping provided multiple indicators of seep locations, but it remains difficult to assess the probability of seep detection. Even when seeps were detected, they have not always been located during ROV dives. However, the presence of associated features (methane hydrate and bacterial mats) serve as evidence of potential seep activity and reinforce the transient nature of the seeps. Not detecting a seep in the water column data does not necessarily indicate that there is not a seep at a given location, but with multiple passes over an area and by the use of other contextual data, an area may

  9. GeoMapApp as a platform for visualizing marine data from Polar Regions

    Science.gov (United States)

    Nitsche, F. O.; Ryan, W. B.; Carbotte, S. M.; Ferrini, V.; Goodwillie, A. M.; O'hara, S. H.; Weissel, R.; McLain, K.; Chinhong, C.; Arko, R. A.; Chan, S.; Morton, J. J.; Pomeroy, D.

    2012-12-01

    To maximize the investment in expensive fieldwork the resulting data should be re-used as much as possible. In addition, unnecessary duplication of data collection effort should be avoided. This becomes even more important if access to field areas is as difficult and expensive as it is in Polar Regions. Making existing data discoverable in an easy to use platform is key to improve re-use and avoid duplication. A common obstacle is that use of existing data is often limited to specialists who know of the data existence and also have the right tools to view and analyze these data. GeoMapApp is a free, interactive, map based tool that allows users to discover, visualize, and analyze a large number of data sets. In addition to a global view, it provides polar map projections for displaying data in Arctic and Antarctic areas. Data that have currently been added to the system include Arctic swath bathymetry data collected from the USCG icebreaker Healy. These data are collected almost continuously including from cruises where bathymetry is not the main objective and for which existence of the acquired data may not be well known. In contrast, existence of seismic data from the Antarctic continental margin is well known in the seismic community. They are archived at and can be accessed through the Antarctic Seismic Data Library System (SDLS). Incorporating these data into GeoMapApp makes an even broader community aware of these data and the custom interface, which includes capabilities to visualize and explore these data, allows users without specific software or knowledge of the underlying data format to access the data. In addition to investigating these datasets, GeoMapApp provides links to the actual data sources to allow specialists the opportunity to re-use the original data. Important identification of data sources and data references are achieved on different levels. For access to the actual Antarctic seismic data GeoMapApp links to the SDLS site, where users have

  10. New Approaches to the Sea-Floor Mapping: Results From the GEBCO-NF Alumni Team's Technique Developments in Preparation to the Shell Ocean Discovery XPRIZE 2017.

    Science.gov (United States)

    Bazhenova, E.; Zarayskaya, Y.; Wigley, R. A.; Anderson, R.; Falconer, R. K. H.; Kearns, T.; Martin, T.; Minami, H.; Roperez, J.; Rosedee, A.; Sade, H.; Seeboruth, S.; Simpson, B.; Sumiyoshi, M.; Tinmouth, N.; Zwolak, K.

    2017-12-01

    In preparation for the XPRIZE 2017 Round 1, a new sea-floor mapping system has been assembled based on an Unmanned Surface Vessel (USV) coupled with an Autonomous Underwater Vehicle (AUV). USV operation allows reducing logistics costs, while the AUV provides enhanced maneuverability and high accuracy of stabilization for the mapping missions. The AUV is equipped with a high-resolution interferometric synthetic aperture sonar (HISAS) and a multibeam sonar (MBES), covering a wide bathymetry swath and the nadir, respectively. Typically operating at 20 to 40 m altitude, the HISAS is capable of providing SAS imagery with 4 x 4 cm resolution and bathymetry with 40 x 40 cm resolution throughout the swath. Smaller areas of interest (50 x 50 m) can be further examined using the Spot processing technique, to produce SAS imagery with 2 x 2 cm resolution and high- resolution SAS bathymetry with 5 x 5 cm resolution. This allows multi-aspect imaging and examination of seabed geological features at different scales. Advanced data post-processing can be performed to produce 3D images of objects and explore their structure using the shadow contrast and shape. Being an interferometric system, the HISAS collects data for both imagery and bathymetry in the same swath. This improves the robustness for SAS in areas with significant relief. In the standard survey mode, the HISAS can typically collect SAS data at 2.6 km2/hr over relatively flat ground. Another limiting factor to the HISAS data coverage and quality is the vehicle stability influenced by downslope and cross currents and the resulting vehicle's speed. From experience, the best coverage occurs at a vehicle speed of around 2 m/s. At slower speeds the vehicle starts to lose steerage leading to degradation of tracking and navigation performance, which harms the focusing algorithm that creates the SAS data. For the AUV mission planning in unknown areas or in case of highly variable conditions at the study site, MBES

  11. A method to eliminate refraction artifacts in EM1002 multibeam echosounder system (Swath bathymetry and seabed surveys of EEZ)

    Digital Repository Service at National Institute of Oceanography (India)

    Fernandes, W.A.

    creating artificial features known as refraction artifacts. In 2007, we conducted an experiment off Goa region and collected multi-beam depth data and sound speed profiles. The reason for this experiment was to analyze the data, identify the errors...

  12. Mosaic of gridded multibeam bathymetry and bathymetry derived from multispectral IKONOS satellite imagery of Tutuila Island, American Samoa, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded multibeam bathymetry is integrated with bathymetry derived from multispectral IKONOS satellite data. Gridded (5 m cell size) multibeam bathymetry collected...

  13. Mosaic of gridded multibeam bathymetry and bathymetry derived from multispectral IKONOS satellite imagery of Rose Atoll, American Samoa, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded multibeam bathymetry is integrated with bathymetry derived from multispectral IKONOS satellite data. Gridded (5 m cell size) multibeam bathymetry were...

  14. Study of Wide Swath Synthetic Aperture Ladar Imaging Techology

    Directory of Open Access Journals (Sweden)

    Zhang Keshu

    2017-02-01

    Full Text Available Combining synthetic-aperture imaging and coherent-light detection technology, the weak signal identification capacity of Synthetic Aperture Ladar (SAL reaches the photo level, and the image resolution exceeds the diffraction limit of the telescope to obtain high-resolution images irrespective to ranges. This paper introduces SAL, including the development path, technology characteristics, and the restriction of imaging swath. On the basis of this, we propose to integrate the SAL technology for extending its swath. By analyzing the scanning-operation mode and the signal model, the paper explicitly proposes that the former mode will be the developmental trend of the SAL technology. This paper also introduces the flight demonstrations of the SAL and the imaging results of remote targets, showing the potential of the SAL in long-range, high-resolution, and scanning-imaging applications. The technology and the theory of the scanning mode of SAL compensates for the defects related to the swath and operation efficiency of the current SAL. It provides scientific foundation for the SAL system applied in wide swath, high resolution earth observation, and the ISAL system applied in space-targets imaging.

  15. NEPR Bathymetry Model - NOAA TIFF Image

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This GeoTiff is a bathymetry model of the seafloor of Northeast Puerto Rico that contains the shallow water area (0-35m deep) of the Northeast Ecological Reserve:...

  16. Estimated Bathymetry of the Puerto Rico shelf

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This classification of estimated depth represents the relative bathymetry of Puerto Rico's shallow waters based on Landsat imagery for NOAA's Coastal Centers for...

  17. New constraints on the structure of Hess Deep from regional- and micro-bathymetry data acquired during RRS James Cook in Jan-Feb 2008 (JC021)

    Science.gov (United States)

    Shillington, D. J.; Ferrini, V. L.; MacLeod, C. J.; Teagle, D. A.; Gillis, K. M.; Cazenave, P. W.; Hurst, S. D.; Scientific Party, J.

    2008-12-01

    In January-February 2008, new geophysical and geological data were acquired in Hess Deep using the RRS James Cook and the British ROV Isis. Hess Deep provides a tectonic window into oceanic crust emplaced by fast seafloor spreading at the East Pacific Rise, thereby offering the opportunity to test competing hypotheses for oceanic crustal accretion. The goal of this cruise was to collect datasets that can constrain the structure and composition of the lower crustal section exposed in the south-facing slope of the Intrarift Ridge just north of the Deep, and thus provide insights into the emplacement of gabbroic lower crust at fast spreading rates. Additionally, the acquired datasets provide site survey data for IODP Proposal 551-Full. The following datasets were acquired during JC021: 1) regional multibeam bathymetry survey complemented with sub-bottom profiler (SBP) data (in selected areas), 2) two micro-bathymetry surveys, and 3) seafloor rock samples acquired with an ROV. Here we present grids of regional multibeam and microbathymetry data following post-cruise processing. Regional multibeam bathymetry were acquired using the hull-mounted Kongsberg Simrad EM120 system (12 kHz). These data provide new coverage of the northern flank of the rift as far east as 100°W, which show that it comprises of a series of 50- to 100-km-long en echelon segments. Both E-W and NE-SW striking features are observed in the immediate vicinity of the Deep, including in a newly covered region to the SW of the rift tip. Such features might arise due to the rotation of the Galapagos microplate(s), as proposed by other authors. The ROV Isis acquired micro-bathymetry data in two areas using a Simrad SM2000 (200 kHz) multibeam sonar. Data were acquired at a nominal altitude of ~100 m and speed of 0.3 kts to facilitate high-resolution mapping of seabed features and also permit coverage of two relatively large areas. Swath widths were ~200- 350 m depending on noise and seabed characteristics

  18. Analysis of MABEL Bathymetry in Keweenaw Bay and Implications for ICESat-2 ATLAS

    Directory of Open Access Journals (Sweden)

    Nicholas A. Forfinski-Sarkozi

    2016-09-01

    Full Text Available In 2018, the National Aeronautics and Space Administration (NASA is scheduled to launch the Ice, Cloud, and land Elevation Satellite-2 (ICESat-2, with a new six-beam, green-wavelength, photon-counting lidar system, Advanced Topographic Laser Altimeter System (ATLAS. The primary objectives of the ICESat-2 mission are to measure ice-sheet elevations, sea-ice thickness, and global biomass. However, if bathymetry can be reliably retrieved from ATLAS data, this could assist in addressing a key data need in many coastal and inland water body areas, including areas that are poorly-mapped and/or difficult to access. Additionally, ATLAS-derived bathymetry could be used to constrain bathymetry derived from complementary data, such as passive, multispectral imagery and synthetic aperture radar (SAR. As an important first step in evaluating the ability to map bathymetry from ATLAS, this study involves a detailed assessment of bathymetry from the Multiple Altimeter Beam Experimental Lidar (MABEL, NASA’s airborne ICESat-2 simulator, flown on the Earth Resources 2 (ER-2 high-altitude aircraft. An interactive, web interface, MABEL Viewer, was developed and used to identify bottom returns in Keweenaw Bay, Lake Superior. After applying corrections for refraction and channel-specific elevation biases, MABEL bathymetry was compared against National Oceanic and Atmospheric Administration (NOAA data acquired two years earlier. The results indicate that MABEL reliably detected bathymetry in depths of up to 8 m, with a root mean square (RMS difference of 0.7 m, with respect to the reference data. Additionally, a version of the lidar equation was developed for predicting bottom-return signal levels in MABEL and tested using the Keweenaw Bay data. Future work will entail extending these results to ATLAS, as the technical specifications of the sensor become available.

  19. Multichannel High Resolution Wide Swath SAR Imaging for Hypersonic Air Vehicle with Curved Trajectory

    Directory of Open Access Journals (Sweden)

    Rui Zhou

    2018-01-01

    Full Text Available Synthetic aperture radar (SAR equipped on the hypersonic air vehicle in near space has many advantages over the conventional airborne SAR. However, its high-speed maneuvering characteristics with curved trajectory result in serious range migration, and exacerbate the contradiction between the high resolution and wide swath. To solve this problem, this paper establishes the imaging geometrical model matched with the flight trajectory of the hypersonic platform and the multichannel azimuth sampling model based on the displaced phase center antenna (DPCA technology. Furthermore, based on the multichannel signal reconstruction theory, a more efficient spectrum reconstruction model using discrete Fourier transform is proposed to obtain the azimuth uniform sampling data. Due to the high complexity of the slant range model, it is difficult to deduce the processing algorithm for SAR imaging. Thus, an approximate range model is derived based on the minimax criterion, and the optimal second-order approximate coefficients of cosine function are obtained using the two-population coevolutionary algorithm. On this basis, aiming at the problem that the traditional Omega-K algorithm cannot compensate the residual phase with the difficulty of Stolt mapping along the range frequency axis, this paper proposes an Exact Transfer Function (ETF algorithm for SAR imaging, and presents a method of range division to achieve wide swath imaging. Simulation results verify the effectiveness of the ETF imaging algorithm.

  20. Multichannel High Resolution Wide Swath SAR Imaging for Hypersonic Air Vehicle with Curved Trajectory.

    Science.gov (United States)

    Zhou, Rui; Sun, Jinping; Hu, Yuxin; Qi, Yaolong

    2018-01-31

    Synthetic aperture radar (SAR) equipped on the hypersonic air vehicle in near space has many advantages over the conventional airborne SAR. However, its high-speed maneuvering characteristics with curved trajectory result in serious range migration, and exacerbate the contradiction between the high resolution and wide swath. To solve this problem, this paper establishes the imaging geometrical model matched with the flight trajectory of the hypersonic platform and the multichannel azimuth sampling model based on the displaced phase center antenna (DPCA) technology. Furthermore, based on the multichannel signal reconstruction theory, a more efficient spectrum reconstruction model using discrete Fourier transform is proposed to obtain the azimuth uniform sampling data. Due to the high complexity of the slant range model, it is difficult to deduce the processing algorithm for SAR imaging. Thus, an approximate range model is derived based on the minimax criterion, and the optimal second-order approximate coefficients of cosine function are obtained using the two-population coevolutionary algorithm. On this basis, aiming at the problem that the traditional Omega-K algorithm cannot compensate the residual phase with the difficulty of Stolt mapping along the range frequency axis, this paper proposes an Exact Transfer Function (ETF) algorithm for SAR imaging, and presents a method of range division to achieve wide swath imaging. Simulation results verify the effectiveness of the ETF imaging algorithm.

  1. Gridded multibeam bathymetry and SHOALS LIDAR bathymetry of Penguin Bank, Hawaii, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded bathymetry (5 m cell size) of Penguin Bank, Hawaii, USA. The netCDF grid and ArcGIS ASCII file include multibeam bathymetry from the Simrad EM3002d, and...

  2. Efficient Data Assimilation Algorithms for Bathymetry Applications

    Science.gov (United States)

    Ghorbanidehno, H.; Kokkinaki, A.; Lee, J. H.; Farthing, M.; Hesser, T.; Kitanidis, P. K.; Darve, E. F.

    2016-12-01

    Information on the evolving state of the nearshore zone bathymetry is crucial to shoreline management, recreational safety, and naval operations. The high cost and complex logistics of using ship-based surveys for bathymetry estimation have encouraged the use of remote sensing monitoring. Data assimilation methods combine monitoring data and models of nearshore dynamics to estimate the unknown bathymetry and the corresponding uncertainties. Existing applications have been limited to the basic Kalman Filter (KF) and the Ensemble Kalman Filter (EnKF). The former can only be applied to low-dimensional problems due to its computational cost; the latter often suffers from ensemble collapse and uncertainty underestimation. This work explores the use of different variants of the Kalman Filter for bathymetry applications. In particular, we compare the performance of the EnKF to the Unscented Kalman Filter and the Hierarchical Kalman Filter, both of which are KF variants for non-linear problems. The objective is to identify which method can better handle the nonlinearities of nearshore physics, while also having a reasonable computational cost. We present two applications; first, the bathymetry of a synthetic one-dimensional cross section normal to the shore is estimated from wave speed measurements. Second, real remote measurements with unknown error statistics are used and compared to in situ bathymetric survey data collected at the USACE Field Research Facility in Duck, NC. We evaluate the information content of different data sets and explore the impact of measurement error and nonlinearities.

  3. NEPR Geographic Zone Map 2015

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This geographic zone map was created by interpreting satellite and aerial imagery, seafloor topography (bathymetry model), and the new NEPR Benthic Habitat Map...

  4. NEPR Benthic Habitat Map 2015

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This benthic habitat map was created from a semi-automated habitat mapping process, using a combination of bathymetry, satellite imagery, aerial imagery and...

  5. Preliminary hard and soft bottom seafloor substrate map derived from an supervised classification of bathymetry derived from multispectral World View-2 satellite imagery of Ni'ihau Island, Territory of Main Hawaiian Islands, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Preliminary hard and soft seafloor substrate map derived from a supervised classification from multispectral World View-2 satellite imagery of Ni'ihau Island,...

  6. Preliminary hard and soft bottom seafloor substrate map derived from an unsupervised classification of gridded backscatter and bathymetry derivatives at Tinian Island, Commonwealth of the Northern Mariana Islands (CNMI).

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Preliminary hard and soft seafloor substrate map derived from an unsupervised classification of multibeam backscatter and bathymety derivatives at Tinian Islands and...

  7. Preliminary hard and soft bottom seafloor substrate map derived from an unsupervised classification of gridded backscatter and bathymetry derivatives at Saipan Island, Commonwealth of the Northern Mariana Islands (CNMI).

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Preliminary hard and soft seafloor substrate map derived from an unsupervised classification of multibeam backscatter and bathymety derivatives at Saipan Island,...

  8. Preliminary hard and soft bottom seafloor substrate map derived from an unsupervised classification of gridded backscatter and bathymetry derivatives at Ofu and Olosega Islands, Territory of American Samoa, USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Preliminary hard and soft seafloor substrate map derived from an unsupervised classification of multibeam backscatter and bathymety derivatives at Ofu and Olosega...

  9. The Surface Water and Ocean Topography Satellite Mission - An Assessment of Swath Altimetry Measurements of River Hydrodynamics

    Science.gov (United States)

    Wilson, Matthew D.; Durand, Michael; Alsdorf, Douglas; Chul-Jung, Hahn; Andreadis, Konstantinos M.; Lee, Hyongki

    2012-01-01

    The Surface Water and Ocean Topography (SWOT) satellite mission, scheduled for launch in 2020 with development commencing in 2015, will provide a step-change improvement in the measurement of terrestrial surface water storage and dynamics. In particular, it will provide the first, routine two-dimensional measurements of water surface elevations, which will allow for the estimation of river and floodplain flows via the water surface slope. In this paper, we characterize the measurements which may be obtained from SWOT and illustrate how they may be used to derive estimates of river discharge. In particular, we show (i) the spatia-temporal sampling scheme of SWOT, (ii) the errors which maybe expected in swath altimetry measurements of the terrestrial surface water, and (iii) the impacts such errors may have on estimates of water surface slope and river discharge, We illustrate this through a "virtual mission" study for a approximately 300 km reach of the central Amazon river, using a hydraulic model to provide water surface elevations according to the SWOT spatia-temporal sampling scheme (orbit with 78 degree inclination, 22 day repeat and 140 km swath width) to which errors were added based on a two-dimension height error spectrum derived from the SWOT design requirements. Water surface elevation measurements for the Amazon mainstem as may be observed by SWOT were thereby obtained. Using these measurements, estimates of river slope and discharge were derived and compared to those which may be obtained without error, and those obtained directly from the hydraulic model. It was found that discharge can be reproduced highly accurately from the water height, without knowledge of the detailed channel bathymetry using a modified Manning's equation, if friction, depth, width and slope are known. Increasing reach length was found to be an effective method to reduce systematic height error in SWOT measurements.

  10. OESbathy version 1.0: a method for reconstructing ocean bathymetry with realistic continental shelf-slope-rise structures

    Science.gov (United States)

    Goswami, A.; Olson, P. L.; Hinnov, L. A.; Gnanadesikan, A.

    2015-04-01

    We present a method for reconstructing global ocean bathymetry that uses a plate cooling model for the oceanic lithosphere, the age distribution of the oceanic crust, global oceanic sediment thicknesses, plus shelf-slope-rise structures calibrated at modern active and passive continental margins. Our motivation is to reconstruct realistic ocean bathymetry based on parameterized relationships of present-day variables that can be applied to global oceans in the geologic past, and to isolate locations where anomalous processes such as mantle convection may affect bathymetry. Parameters of the plate cooling model are combined with ocean crustal age to calculate depth-to-basement. To the depth-to-basement we add an isostatically adjusted, multicomponent sediment layer, constrained by sediment thickness in the modern oceans and marginal seas. A continental shelf-slope-rise structure completes the bathymetry reconstruction, extending from the ocean crust to the coastlines. Shelf-slope-rise structures at active and passive margins are parameterized using modern ocean bathymetry at locations where a complete history of seafloor spreading is preserved. This includes the coastal regions of the North, South, and Central Atlantic Ocean, the Southern Ocean between Australia and Antarctica, and the Pacific Ocean off the west coast of South America. The final products are global maps at 0.1° × 0.1° resolution of depth-to-basement, ocean bathymetry with an isostatically adjusted, multicomponent sediment layer, and ocean bathymetry with reconstructed continental shelf-slope-rise structures. Our reconstructed bathymetry agrees with the measured ETOPO1 bathymetry at most passive margins, including the east coast of North America, north coast of the Arabian Sea, and northeast and southeast coasts of South America. There is disagreement at margins with anomalous continental shelf-slope-rise structures, such as around the Arctic Ocean, the Falkland Islands, and Indonesia.

  11. Gridded bathymetry of Barbers Point, Oahu Hawaii, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded bathymetry (1m) of Barbers Point ship grounding site, Oahu, Hawaii, USA. The data include multibeam bathymetry from the Reson 8101 multibeam sonar collected...

  12. Bathymetry for Louisiana, Geographic NAD83, LOSCO (1994) [bathymetry_NOAA_1994

    Data.gov (United States)

    Louisiana Geographic Information Center — This is a line data depicting the offshore bathymetry_NOAA_1994 for Louisiana. The contour interval is 2 meters. These data were derived from point depths depicted...

  13. OESbathy version 1.0: a method for reconstructing ocean bathymetry with generalized continental shelf-slope-rise structures

    Science.gov (United States)

    Goswami, A.; Olson, P. L.; Hinnov, L. A.; Gnanadesikan, A.

    2015-09-01

    We present a method for reconstructing global ocean bathymetry that combines a standard plate cooling model for the oceanic lithosphere based on the age of the oceanic crust, global oceanic sediment thicknesses, plus generalized shelf-slope-rise structures calibrated at modern active and passive continental margins. Our motivation is to develop a methodology for reconstructing ocean bathymetry in the geologic past that includes heterogeneous continental margins in addition to abyssal ocean floor. First, the plate cooling model is applied to maps of ocean crustal age to calculate depth to basement. To the depth to basement we add an isostatically adjusted, multicomponent sediment layer constrained by sediment thickness in the modern oceans and marginal seas. A three-parameter continental shelf-slope-rise structure completes the bathymetry reconstruction, extending from the ocean crust to the coastlines. Parameters of the shelf-slope-rise structures at active and passive margins are determined from modern ocean bathymetry at locations where a complete history of seafloor spreading is preserved. This includes the coastal regions of the North, South, and central Atlantic, the Southern Ocean between Australia and Antarctica, and the Pacific Ocean off the west coast of South America. The final products are global maps at 0.1° × 0.1° resolution of depth to basement, ocean bathymetry with an isostatically adjusted multicomponent sediment layer, and ocean bathymetry with reconstructed continental shelf-slope-rise structures. Our reconstructed bathymetry agrees with the measured ETOPO1 bathymetry at most passive margins, including the east coast of North America, north coast of the Arabian Sea, and northeast and southeast coasts of South America. There is disagreement at margins with anomalous continental shelf-slope-rise structures, such as around the Arctic Ocean, the Falkland Islands, and Indonesia.

  14. Cloud Classification in Wide-Swath Passive Sensor Images Aided by Narrow-Swath Active Sensor Data

    Directory of Open Access Journals (Sweden)

    Hongxia Wang

    2018-05-01

    Full Text Available It is a challenge to distinguish between different cloud types because of the complexity and diversity of cloud coverage, which is a significant clutter source that impacts on target detection and identification from the images of space-based infrared sensors. In this paper, a novel strategy for cloud classification in wide-swath passive sensor images is developed, which is aided by narrow-swath active sensor data. The strategy consists of three steps, that is, the orbit registration, most matching donor pixel selection, and cloud type assignment for each recipient pixel. A new criterion for orbit registration is proposed so as to improve the matching accuracy. The most matching donor pixel is selected via the Euclidean distance and the square sum of the radiance relative differences between the recipient and the potential donor pixels. Each recipient pixel is then assigned a cloud type that corresponds to the most matching donor. The cloud classification of the Moderate Resolution Imaging Spectroradiometer (MODIS images is performed with the aid of the data from Cloud Profiling Radar (CPR. The results are compared with the CloudSat product 2B-CLDCLASS, as well as those that are obtained using the method of the International Satellite Cloud Climatology Project (ISCCP, which demonstrates the superior classification performance of the proposed strategy.

  15. Technology Development for 3-D Wide Swath Imaging Supporting ACE

    Science.gov (United States)

    Racette, Paul; Heymsfield, Gerry; Li, Lihua; Mclinden, Matthew; Park, Richard; Cooley, Michael; Stenger, Pete; Hand, Thomas

    2014-01-01

    The National Academy of Sciences Decadal Survey (DS) Aerosol-Cloud-Ecosystems Mission (ACE) aims to advance our ability to observe and predict changes to the Earth's hydrological cycle and energy balance in response to climate forcing, especially those changes associated with the effects of aerosol on clouds and precipitation. ACE is focused on obtaining measurements to reduce the uncertainties in current climate models arising from the lack in understanding of aerosol-cloud interactions. As part of the mission instrument suite, a dual-frequency radar comprised of a fixed-beam 94 gigahertz (W-band) radar and a wide-swath 35 gigahertz (Ka-band) imaging radar has been recommended by the ACE Science Working Group.In our 2010 Instrument Incubator Program project, we've developed a radar architecture that addresses the challenge associated with achieving the measurement objectives through an innovative, shared aperture antenna that allows dual-frequency radar operation while achieving wide-swath (100 kilometers) imaging at Ka-band. The antenna system incorporates 2 key technologies; a) a novel dual-band reflectorreflectarray and b) a Ka-band Active Electronically Scanned Array (AESA) feed module. The dual-band antenna is comprised of a primary cylindrical reflectorreflectarray surface illuminated by a point-focus W-band feed (compatible with a quasi-optical beam waveguide feed, such as that employed on CloudSat); the Ka-band AESA line feed provides wide-swath across-track scanning. The benefits of this shared-aperture approach include significant reductions in ACE satellite payload size, weight, and cost, as compared to a two aperture approach. Four objectives were addressed in our project. The first entailed developing the tools for the analysis and design of reflectarray antennas, assessment of candidate reflectarray elements, and validation using test coupons. The second objective was to develop a full-scale aperture design utilizing the reflectarray surface and to

  16. MBARI Mapping AUV: A High-Resolution Deep Ocean Seafloor Mapping Capability

    Science.gov (United States)

    Caress, D. W.; Kirkwood, W. J.; Thomas, H.; McEwen, R.; Henthorn, R.; McGill, P.; Thompson, D.; Sibenac, M.; Jensen, S.; Shane, F.; Hamilton, A.

    2005-05-01

    The Monterey Bay Aquarium Research Institute (MBARI) is developing an autonomous seafloor mapping capability for deep ocean science applications. The MBARI Mapping AUV is a 0.53 m (21 in) diameter, 5.1 m (16.7 ft) long, Dorado-class vehicle designed to carry four mapping sonars. The primary sensor is a 200 kHz multibeam sonar producing swath bathymetry and sidescan. In addition, the vehicle carries 100 kHz and 410 kHz chirp sidescan sonars, and a 2-16 kHz sweep chirp subbottom profiler. Navigation and attitude data are obtained from an inertial navigation system (INS) incorporating a ring laser gyro and a 300 kHz Doppler velocity log (DVL). The vehicle also includes acoustic modem, ultra-short baseline navigation, and long-baseline navigation systems. The Mapping AUV is powered by 6 kWhr of Li-polymer batteries, providing expected mission duration of 12 hours at a typical speed of 1.5 m/s. All components of the vehicle are rated to 6000 m depth, allowing MBARI to conduct high-resolution mapping of the deep-ocean seafloor. The sonar package is also be mountable on ROV Ventana, allowing surveys at altitudes less than 20 m at topographically challenging sites. The vehicle was assembled and extensively tested during 2004; this year we are commencing operations for MBARI science projects while continuing the process of testing and integrating the complete suite of sensors and systems. MBARI is beginning to use this capability to observe the changing morphology of dynamic systems such as submarine canyons and active slumps, to map deep-water benthic habitats at resolutions comparable to ROV and submersible observations, to provide basemaps for ROV dives, and to provide high resolution bathymetry and subbottom profiles as part of a variety of projects requiring knowledge of the seafloor. We will present initial results from surveys in and around Monterey Canyon, including high resolution repeat surveys of four sites along the canyon axis.

  17. Bathymetry of Torssukatak fjord and one century of glacier stability

    Science.gov (United States)

    An, L.; Rignot, E. J.; Morlighem, M.

    2017-12-01

    Marine-terminating glaciers dominate the evolution of the Greenland Ice Sheet(GrIS) mass balance as they control 90% of the ice discharge into the ocean. Warm air temperatures thin the glaciers from the top to unground ice fronts from the bed. Warm oceans erode the submerged grounded ice, causing the grounding line to retreat. To interpret the recent and future evolution of two outlet glaciers, Sermeq Avangnardleq (AVA) and Sermeq Kujatdleq (KUJ) in central West Greenland, flowing into the ice-choked Torssukatak fjord (TOR), we need to know their ice thickness and bed topography and the fjord bathymetry. Here, we present a novel mapping of the glacier bed topography, ice thickness and sea floor bathymetry near the grounding line using high resolution airborne gravity data from AIRGrav collected in August 2012 with a helicopter platform, at 500 m spacing grid, 50 knots ground speed, 80 m ground clearance, with submilligal accuracy, i.e. higher than NASA Operation IceBridge (OIB)'s 5.2 km resolution, 290 knots, and 450 m clearance. We also employ MultiBeam Echo Sounding data (MBES) collected in the fjord since 2009. We had to wait until the summer of 2016, during Ocean Melting Greenland (OMG), to map the fjord bathymetry near the ice fronts for the first time. We constrain the 3D inversion of the gravity data with MBES in the fjord and a reconstruction of the glacier bed topography using mass conservation (MC) on land ice. The seamless topography obtained across the grounding line reveal the presence of a 300-m sill for AVA, which explains why this glacier has been stable for a century, despite changes in surface melt and ocean-induced melt and the presence of a deep fjord (800 m) in front of the glacier. For KUJ, we also reveal the presence of a wide sill (300 m depth) near the current ice front which explains its stability and the stranding of iceberg debris in front of the glacier. The results shed new light on the evolution of these glaciers and explain their

  18. The use of radar for bathymetry assessment

    OpenAIRE

    Aardoom, J.H.; Greidanus, H.S.F.

    1998-01-01

    The bottom topography in shallow seas can be observed by air- and spaceborne imaging radar. Bathymetric information derived from radar data is limited in accuracy, but radar has a good spatial coverage. The accuracy can be increased by assimilating the radar imagery into existing or insitu gathered bathymetric data. The paper reviews the concepts of bathymetry assessment by radar, the radar imaging mechanism, and the possibilities and limitations of the use of radar data in rapid assessment.

  19. CRED Cumulative Map of Percent Scleractinian Coral Cover at Saipan

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This map displays optical validation observation locations and percent coverage of scleractinian coral overlaid on bathymetry.

  20. CRED Cumulative Map of Percent Scleractinian Coral Cover at Sarigan

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This map displays optical validation observation locations and percent coverage of scleractinian coral overlaid on bathymetry.

  1. CRED Cumulative Map of Percent Scleractinian Coral Cover at Tutuila

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This map displays optical validation observation locations and percent coverage of scleractinian coral overlaid on bathymetry.

  2. CRED Cumulative Map of Percent Scleractinian Coral Cover at Anatahan

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This map displays optical validation observation locations and percent coverage of scleractinian coral overlaid on bathymetry.

  3. CRED Cumulative Map of Percent Scleractinian Coral Cover at Alamagan

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This map displays optical validation observation locations and percent coverage of scleractinian coral overlaid on bathymetry.

  4. CRED Cumulative Map of Percent Scleractinian Coral Cover at Agrihan

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This map displays optical validation observation locations and percent coverage of scleractinian coral overlaid on bathymetry.

  5. CRED Cumulative Map of Percent Scleractinian Coral Cover at Asuncion

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This map displays optical validation observation locations and percent coverage of scleractinian coral overlaid on bathymetry.

  6. CRED Cumulative Map of Percent Scleractinian Coral Cover at Aguijan

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This map displays optical validation observation locations and percent coverage of scleractinian coral overlaid on bathymetry.

  7. CRED Cumulative Map of Percent Scleractinian Coral Cover at Pagan

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This map displays optical validation observation locations and percent coverage of scleractinian coral overlaid on bathymetry.

  8. Bathymetric Structure from Motion Photogrammetry: Extracting stream bathymetry from multi-view stereo photogrammetry

    Science.gov (United States)

    Dietrich, J. T.

    2016-12-01

    Stream bathymetry is a critical variable in a number of river science applications. In larger rivers, bathymetry can be measured with instruments such as sonar (single or multi-beam), bathymetric airborne LiDAR, or acoustic doppler current profilers. However, in smaller streams with depths less than 2 meters, bathymetry is one of the more difficult variables to map at high-resolution. Optical remote sensing techniques offer several potential solutions for collecting high-resolution bathymetry. In this research, I focus on direct photogrammetric measurements of bathymetry using multi-view stereo photogrammetry, specifically Structure from Motion (SfM). The main barrier to accurate bathymetric mapping with any photogrammetric technique is correcting for the refraction of light as it passes between the two different media (air and water), which causes water depths to appear shallower than they are. I propose and test an iterative approach that calculates a series of refraction correction equations for every point/camera combination in a SfM point cloud. This new method is meant to address shortcomings of other correction techniques and works within the current preferred method for SfM data collection, oblique and highly convergent photographs. The multi-camera refraction correction presented here produces bathymetric datasets with accuracies of 0.02% of the flying height and precisions of 0.1% of the flying height. This methodology, like many fluvial remote sensing methods, will only work under ideal conditions (e.g. clear water), but it provides an additional tool for collecting high-resolution bathymetric datasets for a variety of river, coastal, and estuary systems.

  9. Mosaic of 10 m gridded multibeam bathymetry and bathymetry derived from multispectral IKONOS satellite imagery of Alamagan Island, Commonwealth of Northern Mariana Islands, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded multibeam bathymetry is integrated with bathymetry derived from multispectral IKONOS satellite data. Gridded (10 m cell size) multibeam bathymetry collected...

  10. Mosaic of gridded multibeam bathymetry and bathymetry derived from multispectral IKONOS satellite imagery of Palmyra Atoll, Pacific Remote Island Area, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded multibeam bathymetry is integrated with bathymetry derived from multispectral IKONOS satellite data. Gridded (5 m cell size) multibeam bathymetry collected...

  11. Mosaic of 10 m gridded multibeam bathymetry and bathymetry derived from multispectral IKONOS satellite imagery of Asuncion Island, Commonwealth of the Northern Marianas Islands, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded multibeam bathymetry is integrated with bathymetry derived from multpectral IKONOS satellite data. Gridded (10 m cell size) multibeam bathymetry collected...

  12. Mosaic of 5 m gridded multibeam bathymetry and bathymetry derived from multispectral IKONOS satellite imagery of Alamagan Island, Commonwealth of Northern Mariana Islands, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded multibeam bathymetry is integrated with bathymetry derived from multispectral IKONOS satellite data. Gridded (5 m cell size) multibeam bathymetry collected...

  13. Mosaic of 10 m gridded multibeam bathymetry and bathymetry derived from multispectral IKONOS satellite imagery of Maug Island, Commonwealth of the Northern Marianas Islands, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded multibeam bathymetry is integrated with bathymetry derived from multpectral IKONOS satellite data. Gridded (5m and 10 m cell size) multibeam bathymetry...

  14. Mosaic of 5 m gridded multibeam bathymetry and bathymetry derived from multispectral IKONOS satellite imagery of Asuncion Island, Commonwealth of the Northern Marianas Islands, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded multibeam bathymetry is integrated with bathymetry derived from multpectral IKONOS satellite data. Gridded (5 m cell size) multibeam bathymetry collected...

  15. Mosaic of gridded multibeam bathymetry and bathymetry derived from multispectral World View-2 satellite imagery of Sarigan Island, Territory of Mariana, USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded multibeam bathymetry is integrated with bathymetry derived from multpectral World View-2 satellite data. Gridded (10 m cell size) multibeam bathymetry...

  16. Mosaic of 5 m gridded multibeam bathymetry and bathymetry derived from multispectral IKONOS satellite imagery of Maug Island, Commonwealth of the Northern Marianas Islands, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded multibeam bathymetry is integrated with bathymetry derived from multpectral IKONOS satellite data. Gridded (5m and 10 m cell size) multibeam bathymetry...

  17. Mosaic of 5m gridded multibeam bathymetry and bathymetry derived from multispectral World View-2 satellite imagery of Swains Island, Territory of American Samoa, South Pacific, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded multibeam bathymetry is integrated with bathymetry derived from multpectral World View-2 satellite data. Gridded (5 m cell size) multibeam bathymetry...

  18. Mosaic of gridded multibeam bathymetry and bathymetry derived from multispectral IKONOS satellite imagery of Ofu and Olosega Islands, Territory of American Samoa, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded multibeam bathymetry is integrated with bathymetry derived from multipectral IKONOS satellite data. Gridded (5 m cell size) multibeam bathymetry collected...

  19. Mosaic of gridded multibeam bathymetry and bathymetry derived from multispectral World View-2 satellite imagery of Baker Island, Pacific Remote Island Areas, Central Pacific.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded multibeam bathymetry is integrated with bathymetry derived from multpectral World View-2 satellite data. Gridded (10 m cell size) multibeam bathymetry...

  20. Mosaic of gridded multibeam bathymetry and bathymetry derived from multispectral World View-2 satellite imagery of Rota Island, Territory of Mariana, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded multibeam bathymetry is integrated with bathymetry derived from multpectral World View-2 satellite data. Gridded (5 m cell size) multibeam bathymetry...

  1. SWOT: The Surface Water and Ocean Topography Mission. Wide- Swath Altimetric Elevation on Earth

    Science.gov (United States)

    Fu, Lee-Lueng (Editor); Alsdorf, Douglas (Editor); Morrow, Rosemary; Rodriguez, Ernesto; Mognard, Nelly

    2012-01-01

    The elevation of the surface of the ocean and freshwater bodies on land holds key information on many important processes of the Earth System. The elevation of the ocean surface, called ocean surface topography, has been measured by conventional nadirlooking radar altimeter for the past two decades. The data collected have been used for the study of large-scale circulation and sea level change. However, the spatial resolution of the observations has limited the study to scales larger than about 200 km, leaving the smaller scales containing substantial kinetic energy of ocean circulation that is responsible for the flux of heat, dissolved gas and nutrients between the upper and the deep ocean. This flux is important to the understanding of the ocean's role in regulatingfuture climate change.The elevation of the water bodies on land is a key parameter required for the computation of storage and discharge of freshwater in rivers, lakes, and wetlands. Globally, the spatial and temporal variability of water storage and discharge is poorly known due to the lack of well-sampled observations. In situ networks measuring river flows are declining worldwide due to economic and political reasons. Conventional altimeter observations suffers from the complexity of multiple peaks caused by the reflections from water, vegetation canopy and rough topography, resulting in much less valid data over land than over the ocean. Another major limitation is the large inter track distance preventing good coverage of rivers and other water bodies.This document provides descriptions of a new measurement technique using radar interferometry to obtain wide-swath measurement of water elevation at high resolution over both the ocean and land. Making this type of measurement, which addresses the shortcomings of conventional altimetry in both oceanographic and hydrologic applications, is the objective of a mission concept called Surface Water and Ocean Topography (SWOT), which was recommended by

  2. Swath-altimetry measurements of the main stem Amazon River: measurement errors and hydraulic implications

    Science.gov (United States)

    Wilson, M. D.; Durand, M.; Jung, H. C.; Alsdorf, D.

    2015-04-01

    The Surface Water and Ocean Topography (SWOT) mission, scheduled for launch in 2020, will provide a step-change improvement in the measurement of terrestrial surface-water storage and dynamics. In particular, it will provide the first, routine two-dimensional measurements of water-surface elevations. In this paper, we aimed to (i) characterise and illustrate in two dimensions the errors which may be found in SWOT swath measurements of terrestrial surface water, (ii) simulate the spatio-temporal sampling scheme of SWOT for the Amazon, and (iii) assess the impact of each of these on estimates of water-surface slope and river discharge which may be obtained from SWOT imagery. We based our analysis on a virtual mission for a ~260 km reach of the central Amazon (Solimões) River, using a hydraulic model to provide water-surface elevations according to SWOT spatio-temporal sampling to which errors were added based on a two-dimensional height error spectrum derived from the SWOT design requirements. We thereby obtained water-surface elevation measurements for the Amazon main stem as may be observed by SWOT. Using these measurements, we derived estimates of river slope and discharge and compared them to those obtained directly from the hydraulic model. We found that cross-channel and along-reach averaging of SWOT measurements using reach lengths greater than 4 km for the Solimões and 7.5 km for Purus reduced the effect of systematic height errors, enabling discharge to be reproduced accurately from the water height, assuming known bathymetry and friction. Using cross-sectional averaging and 20 km reach lengths, results show Nash-Sutcliffe model efficiency values of 0.99 for the Solimões and 0.88 for the Purus, with 2.6 and 19.1 % average overall error in discharge, respectively. We extend the results to other rivers worldwide and infer that SWOT-derived discharge estimates may be more accurate for rivers with larger channel widths (permitting a greater level of cross

  3. GEOMETRIC QUALITY ASSESSMENT OF LIDAR DATA BASED ON SWATH OVERLAP

    Directory of Open Access Journals (Sweden)

    A. Sampath

    2016-06-01

    Full Text Available This paper provides guidelines on quantifying the relative horizontal and vertical errors observed between conjugate features in the overlapping regions of lidar data. The quantification of these errors is important because their presence quantifies the geometric quality of the data. A data set can be said to have good geometric quality if measurements of identical features, regardless of their position or orientation, yield identical results. Good geometric quality indicates that the data are produced using sensor models that are working as they are mathematically designed, and data acquisition processes are not introducing any unforeseen distortion in the data. High geometric quality also leads to high geolocation accuracy of the data when the data acquisition process includes coupling the sensor with geopositioning systems. Current specifications (e.g. Heidemann 2014 do not provide adequate means to quantitatively measure these errors, even though they are required to be reported. Current accuracy measurement and reporting practices followed in the industry and as recommended by data specification documents also potentially underestimate the inter-swath errors, including the presence of systematic errors in lidar data. Hence they pose a risk to the user in terms of data acceptance (i.e. a higher potential for Type II error indicating risk of accepting potentially unsuitable data. For example, if the overlap area is too small or if the sampled locations are close to the center of overlap, or if the errors are sampled in flat regions when there are residual pitch errors in the data, the resultant Root Mean Square Differences (RMSD can still be small. To avoid this, the following are suggested to be used as criteria for defining the inter-swath quality of data: a Median Discrepancy Angle b Mean and RMSD of Horizontal Errors using DQM measured on sloping surfaces c RMSD for sampled locations from flat areas (defined as areas with less than 5

  4. Feasibility study for airborne fluorescence/reflectivity lidar bathymetry

    Science.gov (United States)

    Steinvall, Ove; Kautsky, Hans; Tulldahl, Michael; Wollner, Erika

    2012-06-01

    There is a demand from the authorities to have good maps of the coastal environment for their exploitation and preservation of the coastal areas. The goal for environmental mapping and monitoring is to differentiate between vegetation and non-vegetated bottoms and, if possible, to differentiate between species. Airborne lidar bathymetry is an interesting method for mapping shallow underwater habitats. In general, the maximum depth range for airborne laser exceeds the possible depth range for passive sensors. Today, operational lidar systems are able to capture the bottom (or vegetation) topography as well as estimations of the bottom reflectivity using e.g. reflected bottom pulse power. In this paper we study the possibilities and advantages for environmental mapping, if laser sensing would be further developed from single wavelength depth sounding systems to include multiple emission wavelengths and fluorescence receiver channels. Our results show that an airborne fluorescence lidar has several interesting features which might be useful in mapping underwater habitats. An example is the laser induced fluorescence giving rise to the emission spectrum which could be used for classification together with the elastic lidar signal. In the first part of our study, vegetation and substrate samples were collected and their spectral reflectance and fluorescence were subsequently measured in laboratory. A laser wavelength of 532 nm was used for excitation of the samples. The choice of 532 nm as excitation wavelength is motivated by the fact that this wavelength is commonly used in bathymetric laser scanners and that the excitation wavelengths are limited to the visual region as e.g. ultraviolet radiation is highly attenuated in water. The second part of our work consisted of theoretical performance calculations for a potential real system, and comparison of separability between species and substrate signatures using selected wavelength regions for fluorescence sensing.

  5. SWATH-MS data of Drosophila melanogaster proteome dynamics during embryogenesis

    Directory of Open Access Journals (Sweden)

    Bertrand Fabre

    2016-12-01

    Full Text Available Embryogenesis is one of the most important processes in the life of an animal. During this dynamic process, progressive cell division and cellular differentiation are accompanied by significant changes in protein expression at the level of the proteome. However, very few studies to date have described the dynamics of the proteome during the early development of an embryo in any organism. In this dataset, we monitor changes in protein expression across a timecourse of more than 20 h of Drosophila melanogaster embryonic development. Mass-spectrometry data were produced using a SWATH acquisition mode on a Sciex Triple-TOF 6600. A spectral library built in-house was used to analyse these data and more than 1950 proteins were quantified at each embryonic timepoint. The files presented here are a permanent digital map and can be reanalysed to test against new hypotheses. The data have been deposited with the ProteomeXchange Consortium with the dataset identifier PRIDE: PXD0031078.

  6. MODIS/Aqua Clouds 5-Min L2 Swath 1km and 5km V006

    Data.gov (United States)

    National Aeronautics and Space Administration — The MODIS/Aqua Clouds 5-Min L2 Swath 1km and 5km (MYD06_L2) product consists of cloud optical and physical parameters. These parameters are derived using remotely...

  7. MODIS/Aqua Aerosol 5-Min L2 Swath 10km V006

    Data.gov (United States)

    National Aeronautics and Space Administration — The MODIS/Aqua Aerosol 5-Min L2 Swath 10km (MYD04_L2) product continues to provide full global coverage of aerosol properties from the Dark Target (DT) and Deep Blue...

  8. MODIS/Aqua Raw Radiances in Counts 5-Min L1A Swath V006

    Data.gov (United States)

    National Aeronautics and Space Administration — The MODIS/Aqua Raw Radiances in Counts 5-Min L1A Swath (MYD01) product contains reformatted and packaged raw instrument data. MODIS instrument data, in packetized...

  9. Mosaic of gridded multibeam and lidar bathymetry of the US Territory of Guam

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded multibeam bathymetry is integrated with gridded lidar bathymetry. Gridded (5 m cell size) multibeam bathymetry were collected aboard NOAA Ship Hiialaka'i and...

  10. The Use of Variable Q1 Isolation Windows Improves Selectivity in LC-SWATH-MS Acquisition.

    Science.gov (United States)

    Zhang, Ying; Bilbao, Aivett; Bruderer, Tobias; Luban, Jeremy; Strambio-De-Castillia, Caterina; Lisacek, Frédérique; Hopfgartner, Gérard; Varesio, Emmanuel

    2015-10-02

    As tryptic peptides and metabolites are not equally distributed along the mass range, the probability of cross fragment ion interference is higher in certain windows when fixed Q1 SWATH windows are applied. We evaluated the benefits of utilizing variable Q1 SWATH windows with regards to selectivity improvement. Variable windows based on equalizing the distribution of either the precursor ion population (PIP) or the total ion current (TIC) within each window were generated by an in-house software, swathTUNER. These two variable Q1 SWATH window strategies outperformed, with respect to quantification and identification, the basic approach using a fixed window width (FIX) for proteomic profiling of human monocyte-derived dendritic cells (MDDCs). Thus, 13.8 and 8.4% additional peptide precursors, which resulted in 13.1 and 10.0% more proteins, were confidently identified by SWATH using the strategy PIP and TIC, respectively, in the MDDC proteomic sample. On the basis of the spectral library purity score, some improvement warranted by variable Q1 windows was also observed, albeit to a lesser extent, in the metabolomic profiling of human urine. We show that the novel concept of "scheduled SWATH" proposed here, which incorporates (i) variable isolation windows and (ii) precursor retention time segmentation further improves both peptide and metabolite identifications.

  11. CRED Cumulative Map of Percent Scleractinian Coral Cover at Kauai, 2005

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This map displays optical validation observation locations and percent coverage of scleractinian coral overlaid on bathymetry.

  12. CRED Cumulative Map of Percent Scleractinian Coral Cover at Niihau, 2005

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This map displays optical validation observation locations and percent coverage of scleractinian coral overlaid on bathymetry.

  13. CRED Cumulative Map of Percent Scleractinian Coral Cover at Raita Bank, 2001

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This map displays optical validation observation locations and percent coverage of scleractinian coral overlaid on bathymetry.

  14. CRED Cumulative Map of Percent Scleractinian Coral Cover at Kure Atoll, 2002-2004

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This map displays optical validation observation locations and percent coverage of scleractinian coral overlaid on bathymetry.

  15. CRED Cumulative Map of Percent Scleractinian Coral Cover at Stingray Shoals

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This map displays optical validation observation locations and percent coverage of scleractinian coral overlaid on bathymetry.

  16. CRED Cumulative Map of Percent Scleractinian Coral Cover at Ofu & Olosega

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This map displays optical validation observation locations and percent coverage of scleractinian coral overlaid on bathymetry.

  17. CRED Cumulative Map of Percent Scleractinian Coral Cover at Laysan Island, 2002-2004

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This map displays optical validation observation locations and percent coverage of scleractinian coral overlaid on bathymetry.

  18. CRED Cumulative Map of Percent Scleractinian Coral Cover at Eleven-Mile Bank

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This map displays optical validation observation locations and percent coverage of scleractinian coral overlaid on bathymetry.

  19. CRED Cumulative Map of Percent Scleractinian Coral Cover at Palmyra Atoll, 2002-2004

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This map displays optical validation observation locations and percent coverage of scleractinian coral overlaid on bathymetry.

  20. CRED Cumulative Map of Percent Scleractinian Coral Cover at Lisianski Island, 2001-2004

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This map displays optical validation observation locations and percent coverage of scleractinian coral overlaid on bathymetry.

  1. CRED Cumulative Map of Percent Scleractinian Coral Cover at Ta'u

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This map displays optical validation observation locations and percent coverage of scleractinian coral overlaid on bathymetry.

  2. CRED Cumulative Map of Percent Scleractinian Coral Cover at Gardner Pinnacles, 2003

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This map displays optical validation observation locations and percent coverage of scleractinian coral overlaid on bathymetry.

  3. CRED Cumulative Map of Percent Scleractinian Coral Cover at Pearl and Hermes Atoll, 2002-2004

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This map displays optical validation observation locations and percent coverage of scleractinian coral overlaid on bathymetry.

  4. CRED Cumulative Map of Percent Scleractinian Coral Cover at Molokai, 2005

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This map displays optical validation observation locations and percent coverage of scleractinian coral overlaid on bathymetry.

  5. CRED Cumulative Map of Percent Scleractinian Coral Cover at Guam, 2003

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This map displays optical validation observation locations and percent coverage of scleractinian coral overlaid on bathymetry.

  6. CRED Cumulative Map of Percent Scleractinian Coral Cover at Baker Island, 2002-2004

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This map displays optical validation observation locations and percent coverage of scleractinian coral overlaid on bathymetry.

  7. CRED Cumulative Map of Percent Scleractinian Coral Cover at French Frigate Shoals

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This map displays optical validation observation locations and percent coverage of scleractinian coral overlaid on bathymetry.

  8. CRED Cumulative Map of Percent Scleractinian Coral Cover at Maro Reef, 2001-2004

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This map displays optical validation observation locations and percent coverage of scleractinian coral overlaid on bathymetry.

  9. Satellite Derived Bathymetry as a Coastal Geo-Intelligence Tool for Alaska

    Science.gov (United States)

    Ventura, D. C.

    2017-12-01

    What do marine rescue, navigation safety, resource management, coastal infrastructure management, climate adaptation and resilience, economic investment, habitat protection agencies and institutions all have in common? They all benefit from accurate coastal bathymetric data As Arctic-Related Incidents of National Significance (IoNS) workshop points out, reducing time and cost of collecting coastal bathymetry in the Arctic is fundamental to addressing needs of a multitude of stakeholders. Until recently, high resolution coastal data acquisition involved field mobilization of planes, vessels, and people. Given limited resources, short season and remoteness, this approach results in very modest progress toward filling the Alaska's coastal bathymetry data gap and updating vintage data from circa Captain Cook.After successfully executing Satellite Derived Bathymetry (SDB) projects in other more environmentally suitable locations, Fugro and its partner EOMAP are now assessing suitability SDB technique along the Alaska coast. This includes aaccessing archived satellite data and understanding best environmental conditions for the mapping and defining maximum mapping depth as an initial action to understand potentials for Alaska. Here we leverage the physics-based approach to satellite imagery data extraction to derive water depth and complimentary intelligence such as seafloor habitat mapping and certain water quality parameters, such as clarity, turbidity, sediment and chlorophyll-a concentrations, and seasonal changes. Both new and archive imagery are utilized as part of the process. If successful, the benefits and cost savings of this approach are enormous as repeat rate for data collects like this can be measured in months/years as opposed to decades/centuries. Arctic coasts have multiple vulnerabilities and the rate of change will continue to outpace the budgets. As innovative and learning organizations, Fugro and EOMAP strive to not only share the results of this

  10. High-resolution multibeam bathymetry of East and West Flower Gardens and Stetson Banks, Gulf of Mexico

    Science.gov (United States)

    Gardner, J.V.; Mayer, L.A.; Hughes, Clarke J.E.; Kleiner, A.

    1998-01-01

    The 1990s have seen rapid advances in seafloor mapping technology. Multibeam sonars are now capable of mapping a wide range of water depths with beams as narrow as 1??, and provide up to a 150?? swath. When these multibeam sonars are coupled with an extremely accurate vehicle motion sensor and very precise navigation, they are capable of producing unprecedented images of the seafloor. This technology was used in December 1997 to map the East and West Flower Gardens and Stetson Banks, Gulf of Mexico. The results from this survey provide the most accurate maps of these areas yet produced and reveal features at submeter resolution never mapped in these areas before. The digital data provide a database that should become the fundamental base maps for all subsequent work in this recently established National Marine Sanctuary.

  11. How tides and river flows determine estuarine bathymetries [review article

    Science.gov (United States)

    Prandle, D.

    2004-04-01

    For strongly tidal, funnel-shaped estuaries, we examine how tides and river flows determine size and shape. We also consider how long it takes for bathymetric adjustment, both to determine whether present-day bathymetry reflects prevailing forcing and how rapidly changes might occur under future forcing scenarios. Starting with the assumption of a 'synchronous' estuary (i.e., where the sea surface slope resulting from the axial gradient in phase of tidal elevation significantly exceeds the gradient in tidal amplitude ζ̂), an expression is derived for the slope of the sea bed. Thence, by integration we derive expressions for the axial depth profile and estuarine length, L, as a function of ζ̂ and D, the prescribed depth at the mouth. Calculated values of L are broadly consistent with observations. The synchronous estuary approach enables a number of dynamical parameters to be directly calculated and conveniently illustrated as functions of ζ̂ and D, namely: current amplitude Û, ratio of friction to inertia terms, estuarine length, stratification, saline intrusion length, flushing time, mean suspended sediment concentration and sediment in-fill times. Four separate derivations for the length of saline intrusion, LI, all indicate a dependency on D 2/f ÛU o ( Uo is the residual river flow velocity and f is the bed friction coefficient). Likely bathymetries for `mixed' estuaries can be delineated by mapping, against ζ̂ and D, the conditions LI/ Lsalt. By combining the derived expressions for L and LI with this latter criterion, an expression is derived relating Di, the depth at the centre of the intrusion, to the corresponding value of Uo. This expression indicates Uo is always close to 1 cm s -1, as commonly observed. Converting from Uo to river flow, Q, provides a morphological expression linking estuarine depth to Q (with a small dependence on side slope gradients). These dynamical solutions are coupled with further generalised theory related to depth and

  12. Northeast Puerto Rico and Culebra Island - Benthic Habitat Map 2015

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This benthic habitat map was created from a semi-automated habitat mapping process, using a combination of bathymetry, satellite imagery, aerial imagery and...

  13. Northeast Puerto Rico and Culebra Island - Geographic Zone Map 2015

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This geographic zone map was created by interpreting satellite and aerial imagery, seafloor topography (bathymetry model), and the new NEPR Benthic Habitat Map...

  14. Water Storage Changes using Floodplain Bathymetry from InSAR and satellite altimetry in the Congo River Basin

    Science.gov (United States)

    Yuan, T.; Lee, H.; Jung, H. C.; Beighley, E.; Alsdorf, D. E.

    2016-12-01

    Extensive wetlands and swamps expand along the Congo River and its tributaries. These wetlands store water and attenuate flood wave during high water season. Substantial dissolved and solid substances are also transported with the water flux, influencing geochemical environment and biogeochemistry processes both in the wetlands and the river. To understand the role of the wetlands in partitioning the surface water and the accompanied material movement, water storage change is one of the most fundamental observations. The water flow through the wetlands is complex, affected by topography, vegetation resistance, and hydraulic variations. Interferometric Synthetic Aperture Radar (InSAR) has been successfully used to map relative water level changes in the vegetated wetlands with high spatial resolution. By examining interferograms generated from ALOS PALSAR along the middle reach of the Congo River floodplain, we found greater water level changes near the Congo mainstem. Integrated analysis of InSAR and Envisat altimetry data has shown that proximal floodplain with higher water level change has lower elevation during dry season. This indicates that the spatial variation of water level change in the Congo floodplain is mostly controlled by floodplain bathymetry. A method based on water level and bathymetry model is proposed to estimate water storage change. The bathymetry model is composed of (1) elevation at the intersection of the floodplain and the river and (2) floodplain bathymetry slope. We first constructed the floodplain bathymetry by selecting an Envisat altimetry profile during low water season to estimate elevation at the intersection of the floodplain and the river. Floodplain bathymetry slope was estimated using InSAR measurements. It is expected that our new method can estimate water storage change with higher temporal resolution corresponding to altimeter's repeat cycle. In addition, given the multi-decadal archive of satellite altimetry measurements

  15. Seafloor Mapping: We've Come a Long Way - But Still Have Far to Go……

    Science.gov (United States)

    Mayer, L. A.

    2017-12-01

    Our ability to map the seafloor has changed radically over the past century. For thousands of years a weight at the end of a rope (or wire) - a lead line - provided the only means to measure depth. By the end of the Second World War, single beam echo sounders had been perfected to the extent that they became common on oceanographic and other vessels providing more rapid but laterally averaged (typically over a distance commensurate with the water depth) measurements of seafloor depths. Towards the end of the 20th Century - two great advances were made in seafloor mapping - the development of techniques to use satellite altimetry to predict seafloor bathymetry and the evolution of multibeam sonar technology from classified military applications to the academic and commercial communities. Satellite-altimetry derived bathymetry provides an unprecedented view of seafloor topography and tremendous insight into tectonic-scale processes but is limited in achievable resolution. Multibeam sonars offer the potential of extremely high-resolution (a function of array size, beam footprint, and water depth), but are typically deployed from manned surface vessels that cover limited amount of seafloor at a relatively high daily cost. We have the technology to map the entire world ocean with multibeam sonar but It has been estimated that to map the world ocean deeper than about 150m (shallow water is very time-consuming and expensive because the coverage swath width is typically 3-5 times water) would take approximately 200 ship years and cost on the order of 3 billion dollars. We have demonstrated our willingness to spend billions to map other planets (e.g. Mars and the Moon) but for some reason, not our own. Recently, however, there has been growing momentum to see the entire world ocean mapped. The Nippon Foundation and GEBCO have recently announced the Seabed 2030 project with a goal of facilitating the mapping of the world ocean by 2030 and international agreements like The

  16. Utilization of bathymetry data to examine lead sediment contamination distributions in Lake Ontario

    Directory of Open Access Journals (Sweden)

    Chris H. Marvin

    2016-06-01

    Full Text Available Bathymetry data offer interesting opportunities for the analysis of contaminant distribution patterns. This research utilized lead surficial sediment sample data from Lake Ontario that were collected by the Canada Centre for Inland Waters in 1968 and 1998. Traditionally, two-dimensional analyses such as dot maps or proportional circle representation have been utilized to examine pollutant levels. Generating area estimates allows for expanded spatial analysis of contaminant distribution patterns. Lake-wide surfaces were derived using the ordinary kriging technique. These were then layered on bathymetry data to examine three-dimensional relationships between observed pollution patterns and lake-bottom features. Spatial variability was observed in both the 1968 and 1998 datasets. Contamination levels in 1998 dropped substantially, especially in areas that were previously the most heavily polluted and above the Probable Effect Level (4660.23 km2 or 26.72% of the common analysis area lake-bottom in 1998 versus 6189.07 km2 or 62.00% in 1968. Conversely, areas below the Threshold Effect Level increased from 922.09 km2 (5.29% in 1968 to 3484.22 km2 (19.98% in 1998. In both years, shallow and sill/ridge areas tended to have lower levels of contamination than deeper lake basins or contaminant inflow areas. The 1968 dataset likely provides a more detailed estimation surface as there were more points available for interpolation procedures. The kriging surfaces when combined with bathymetry, sedimentology information, and knowledge of physical processes provide a comprehensive illustration of the contaminant distributions whether they are high (1968 or when loadings are significantly reduced (1998. The results have implications for future sediment assessment programs and survey design on a lake-wide basis. The bathymetry data allowed for enhanced interpretation and an improved understanding of observed lead pollution patterns.

  17. SWATH Mass Spectrometry Performance Using Extended Peptide MS/MS Assay Libraries*

    Science.gov (United States)

    Wu, Jemma X.; Song, Xiaomin; Pascovici, Dana; Zaw, Thiri; Care, Natasha; Krisp, Christoph; Molloy, Mark P.

    2016-01-01

    The use of data-independent acquisition methods such as SWATH for mass spectrometry based proteomics is usually performed with peptide MS/MS assay libraries which enable identification and quantitation of peptide peak areas. Reference assay libraries can be generated locally through information dependent acquisition, or obtained from community data repositories for commonly studied organisms. However, there have been no studies performed to systematically evaluate how locally generated or repository-based assay libraries affect SWATH performance for proteomic studies. To undertake this analysis, we developed a software workflow, SwathXtend, which generates extended peptide assay libraries by integration with a local seed library and delivers statistical analysis of SWATH-quantitative comparisons. We designed test samples using peptides from a yeast extract spiked into peptides from human K562 cell lysates at three different ratios to simulate protein abundance change comparisons. SWATH-MS performance was assessed using local and external assay libraries of varying complexities and proteome compositions. These experiments demonstrated that local seed libraries integrated with external assay libraries achieve better performance than local assay libraries alone, in terms of the number of identified peptides and proteins and the specificity to detect differentially abundant proteins. Our findings show that the performance of extended assay libraries is influenced by the MS/MS feature similarity of the seed and external libraries, while statistical analysis using multiple testing corrections increases the statistical rigor needed when searching against large extended assay libraries. PMID:27161445

  18. A consistent data set of Antarctic ice sheet topography, cavity geometry, and global bathymetry

    Directory of Open Access Journals (Sweden)

    R. Timmermann

    2010-12-01

    Full Text Available Sub-ice shelf circulation and freezing/melting rates in ocean general circulation models depend critically on an accurate and consistent representation of cavity geometry. Existing global or pan-Antarctic topography data sets have turned out to contain various inconsistencies and inaccuracies. The goal of this work is to compile independent regional surveys and maps into a global data set. We use the S-2004 global 1-min bathymetry as the backbone and add an improved version of the BEDMAP topography (ALBMAP bedrock topography for an area that roughly coincides with the Antarctic continental shelf. The position of the merging line is individually chosen in different sectors in order to capture the best of both data sets. High-resolution gridded data for ice shelf topography and cavity geometry of the Amery, Fimbul, Filchner-Ronne, Larsen C and George VI Ice Shelves, and for Pine Island Glacier are carefully merged into the ambient ice and ocean topographies. Multibeam survey data for bathymetry in the former Larsen B cavity and the southeastern Bellingshausen Sea have been obtained from the data centers of Alfred Wegener Institute (AWI, British Antarctic Survey (BAS and Lamont-Doherty Earth Observatory (LDEO, gridded, and blended into the existing bathymetry map. The resulting global 1-min Refined Topography data set (RTopo-1 contains self-consistent maps for upper and lower ice surface heights, bedrock topography, and surface type (open ocean, grounded ice, floating ice, bare land surface. The data set is available in NetCDF format from the PANGAEA database at doi:10.1594/pangaea.741917.

  19. Swath width study. A simulation assessment of costs and benefits of a sensor system for agricultural application

    Science.gov (United States)

    1979-01-01

    Satellites provide an excellent platform from which to observe crops on the scale and frequency required to provide accurate crop production estimates on a worldwide basis. Multispectral imaging sensors aboard these platforms are capable of providing data from which to derive acreage and production estimates. The issue of sensor swath width was examined. The quantitative trade trade necessary to resolve the combined issue of sensor swath width, number of platforms, and their orbits was generated and are included. Problems with different swath width sensors were analyzed and an assessment of system trade-offs of swath width versus number of satellites was made for achieving Global Crop Production Forecasting.

  20. Estimated Bathymetry of the U.S. Virgin Islands

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This classification of estimated depth represents the relative bathymetry of the U.S. Virgin Islands shallow waters based on Landsat imagery for NOAA's Coastal...

  1. Bathymetry of Lake Erie and Lake Saint Clair

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathymetry of Lake Erie and Lake Saint Clair has been compiled as a component of a NOAA project to rescue Great Lakes lake floor geological and geophysical data and...

  2. A global, high-resolution data set of ice sheet topography, cavity geometry, and ocean bathymetry

    Science.gov (United States)

    Schaffer, Janin; Timmermann, Ralph; Arndt, Jan Erik; Savstrup Kristensen, Steen; Mayer, Christoph; Morlighem, Mathieu; Steinhage, Daniel

    2016-10-01

    The ocean plays an important role in modulating the mass balance of the polar ice sheets by interacting with the ice shelves in Antarctica and with the marine-terminating outlet glaciers in Greenland. Given that the flux of warm water onto the continental shelf and into the sub-ice cavities is steered by complex bathymetry, a detailed topography data set is an essential ingredient for models that address ice-ocean interaction. We followed the spirit of the global RTopo-1 data set and compiled consistent maps of global ocean bathymetry, upper and lower ice surface topographies, and global surface height on a spherical grid with now 30 arcsec grid spacing. For this new data set, called RTopo-2, we used the General Bathymetric Chart of the Oceans (GEBCO_2014) as the backbone and added the International Bathymetric Chart of the Arctic Ocean version 3 (IBCAOv3) and the International Bathymetric Chart of the Southern Ocean (IBCSO) version 1. While RTopo-1 primarily aimed at a good and consistent representation of the Antarctic ice sheet, ice shelves, and sub-ice cavities, RTopo-2 now also contains ice topographies of the Greenland ice sheet and outlet glaciers. In particular, we aimed at a good representation of the fjord and shelf bathymetry surrounding the Greenland continent. We modified data from earlier gridded products in the areas of Petermann Glacier, Hagen Bræ, and Sermilik Fjord, assuming that sub-ice and fjord bathymetries roughly follow plausible Last Glacial Maximum ice flow patterns. For the continental shelf off Northeast Greenland and the floating ice tongue of Nioghalvfjerdsfjorden Glacier at about 79° N, we incorporated a high-resolution digital bathymetry model considering original multibeam survey data for the region. Radar data for surface topographies of the floating ice tongues of Nioghalvfjerdsfjorden Glacier and Zachariæ Isstrøm have been obtained from the data centres of Technical University of Denmark (DTU), Operation Icebridge (NASA

  3. New Multibeam Bathymetry Mosaic at NOAA/NCEI

    Science.gov (United States)

    Varner, J. D.; Cartwright, J.; Rosenberg, A. M.; Amante, C.; Sutherland, M.; Jencks, J. H.

    2017-12-01

    NOAA's National Centers for Environmental Information (NCEI) maintains an ever-growing archive of multibeam bathymetric data acquired from U.S. and international government and academic sources. The data are partitioned in the individual survey files in which they were originally received, and are stored in various formats not directly accessible by popular analysis and visualization tools. In order to improve the discoverability and accessibility of the data, NCEI created a new Multibeam Bathymetry Mosaic. Each survey was gridded at 3 arcsecond cell size and organized in an ArcGIS mosaic dataset, which was published as a set of standards-based web services usable in desktop GIS and web clients. In addition to providing a "seamless" grid of all surveys, a filter can be applied to isolate individual surveys. Both depth values in meters and shaded relief visualizations are available. The product represents the current state of the archive; no QA/QC was performed on the data before being incorporated, and the mosaic will be updated incrementally as new surveys are added to the archive. We expect the mosaic will address customer needs for visualization/extraction that existing tools (e.g. NCEI's AutoGrid) are unable to meet, and also assist data managers in identifying problem surveys, missing data, quality control issues, etc. This project complements existing efforts such as the Global Multi-Resolution Topography Data Synthesis (GMRT) at LDEO. Comprehensive visual displays of bathymetric data holdings are invaluable tools for seafloor mapping initiatives, such as Seabed 2030, that will aid in minimizing data collection redundancies and ensuring that valuable data are made available to the broadest community.

  4. Forage intake and wastage by ewes in pea/hay barley swath grazing and bale feeding systems

    Science.gov (United States)

    Harvested feed costs, particularly during the winter, are traditionally the highest input associated with a ruminant livestock operation. Although swath grazing has been practiced for over 100 years and literature exists for cattle use of swath grazing, no published results are available on use of s...

  5. Nearshore coastal bathymetry data collected in 2016 from West Ship Island to Horn Island, Gulf Islands National Seashore, Mississippi

    Science.gov (United States)

    DeWitt, Nancy T.; Stalk, Chelsea A.; Fredericks, Jake J.; Flocks, James G.; Kelso, Kyle W.; Farmer, Andrew S.; Tuten, Thomas M.; Buster, Noreen A.

    2018-04-13

    The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center, in cooperation with the U.S. Army Corps of Engineers, Mobile District, conducted bathymetric surveys of the nearshore waters surrounding Ship and Horn Islands, Gulf Islands National Seashore, Mississippi. The objective of this study was to establish base-level elevation conditions around West Ship, East Ship, and Horn Islands and their associated active littoral system prior to restoration activities. These activities include the closure of Camille Cut and the placement of sediment in the littoral zone of East Ship Island. These surveys can be compared with future surveys to monitor sediment migration patterns post-restoration and can also be measured against historic bathymetric datasets to further our understanding of island evolution.The USGS collected 667 line-kilometers (km) of single-beam bathymetry data and 844 line-km of interferometric swath bathymetry data in July 2016 under Field Activity Number 2016-347-FA. Data are provided in three datums: (1) the International Terrestrial Reference Frame of 2000 (ellipsoid height); (2) the North American Datum of 1983 (NAD83) CORS96 realization and the North American Vertical Datum of 1988 with respect to the GEOID12B model (orthometric height); and (3) NAD83 (CORS96) and Mean Lower Low Water (tidal datum). Data products, including x,y,zpoint datasets, trackline shapefiles, digital and handwritten Field Activity Collection Systems logs, 50-meter digital elevation model, and formal Federal Geographic Data Committee metadata, are available for download.

  6. MODIS/Terra Calibrated Radiances 5-Min L1B Swath 1km V006

    Data.gov (United States)

    National Aeronautics and Space Administration — The MODIS/Terra Calibrated Radiances 5-Min L1B Swath 1km (MOD021KM) contains calibrated and geolocated at-aperture radiances for 36 discrete bands located in the 0.4...

  7. Swath bathymetric investigation of the seamounts located in the Laxmi Basin, eastern Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Bhattacharya, G.C.; Murty, G.P.S.; Srinivas, K.; Chaubey, A.K.; Sudhakar, T.; Nair, R.R.

    Multibeam (hydrosweep) swath bathymetric investigations revealed the presence of a NNW trending linear seamount chain along the axial part of the Laxmi Basin in the eastern Arabian Sea, between 15~'N, 70~'15'E and 17~'20'N, 69~'E. This chain...

  8. Global Bathymetry: Machine Learning for Data Editing

    Science.gov (United States)

    Sandwell, D. T.; Tea, B.; Freund, Y.

    2017-12-01

    The accuracy of global bathymetry depends primarily on the coverage and accuracy of the sounding data and secondarily on the depth predicted from gravity. A main focus of our research is to add newly-available data to the global compilation. Most data sources have 1-12% of erroneous soundings caused by a wide array of blunders and measurement errors. Over the years we have hand-edited this data using undergraduate employees at UCSD (440 million soundings at 500 m resolution). We are developing a machine learning approach to refine the flagging of the older soundings and provide automated editing of newly-acquired soundings. The approach has three main steps: 1) Combine the sounding data with additional information that may inform the machine learning algorithm. The additional parameters include: depth predicted from gravity; distance to the nearest sounding from other cruises; seafloor age; spreading rate; sediment thickness; and vertical gravity gradient. 2) Use available edit decisions as training data sets for a boosted tree algorithm with a binary logistic objective function and L2 regularization. Initial results with poor quality single beam soundings show that the automated algorithm matches the hand-edited data 89% of the time. The results show that most of the information for detecting outliers comes from predicted depth with secondary contributions from distance to the nearest sounding and longitude. A similar analysis using very high quality multibeam data shows that the automated algorithm matches the hand-edited data 93% of the time. Again, most of the information for detecting outliers comes from predicted depth secondary contributions from distance to the nearest sounding and longitude. 3) The third step in the process is to use the machine learning parameters, derived from the training data, to edit 12 million newly acquired single beam sounding data provided by the National Geospatial-Intelligence Agency. The output of the learning algorithm will be

  9. The effect of wide swathing on wilting times and nutritive value of alfalfa haylage.

    Science.gov (United States)

    Kung, L; Stough, E C; McDonell, E E; Schmidt, R J; Hofherr, M W; Reich, L J; Klingerman, C M

    2010-04-01

    On 3 consecutive cuttings, alfalfa from a single field was mowed with a John Deere 946 mower-conditioner (4-m cut width; Moline, IL) to leave narrow swaths (NS) ranging from 1.2 to 1.52 m wide (30-37% of cutter bar width) and wide swaths (WS) ranging from 2.44 to 2.74 m wide (62-67% of cutter bar width). Samples were collected from windrows and dry matter (DM) was monitored during wilting until a target of 43 to 45% DM was obtained. Forage from random windrows (n=4-6) was harvested by hand, chopped through a forage harvester before being packed in replicated vacuum-sealed bags, and allowed to ensile for 65 d. There was no swath width x cutting interaction for any parameter tested. Over all cuttings, the resulting silage DM was not different between the NS silage (43.8%) and the WS silage (44.9%). However, wide swathing greatly reduced the time of wilting before making silage. The hours of wilting time needed to reach the targeted DM for the NS silage compared with the WS silage at cuttings 1, 2, and 3 were 50 versus 29, 54 versus 28, and 25 versus 6, respectively. At the time of ensiling, the WS silage had more water-soluble carbohydrates (5.1%) than did the NS silage (3.7%). The WS silage had a lower pH (4.58) than did the NS silage (4.66), but swath width did not affect fermentation end products (lactic acid, acetic acid, and ethanol). The NS silage had more NH(3)-N (0.26%) than did the WS silage (0.21%). Wide swathing did not affect the concentration of ash or the digestibility of NDF, but it lowered the N content (NS=3.45%; WS=3.23%) and increased the ADF content (NS=39.7%; WS=40.9%) of the resulting silage. Wide swathing can markedly reduce the time that alfalfa must wilt before it can be chopped for silage, but under good conditions, as in this study, the resulting silage quality was generally not improved. Copyright (c) 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  10. Quantification of Surf Zone Bathymetry from Video Observations of Wave Breaking

    Science.gov (United States)

    Aarninkhof, S.; Ruessink, G.

    2002-12-01

    Cost-efficient methods to quantify surf zone bathymetry with high resolution in time and space would be of great value for coastal research and management. Automated video techniques provide the potential to do so. Time-averaged video observations of the nearshore zone show bright intensities at locations where waves preferentially break. Highly similar patterns are found from model simulations of depth-induced wave breaking, which show increasing rates of wave dissipation in shallow areas like sand bars. Thus, video observations of wave breaking - at least qualitatively - reflect sub-merged beach bathymetry. In search of the quantification of this relationship, we present a new model concept to map sub-merged beach bathymetry from time-averaged video images. This is achieved by matching model-predicted and video-observed rates of wave dissipation. First, time-averaged image intensities are sampled along a cross-shore array and interpreted in terms of a wave dissipation parameter. This involves a correction for the effect of persistent foam, which is visible at time-averaged video images but not predicted by common wave propagation models. The dissipation profiles thus obtained are used to update an initial beach bathymetry through optimisation of the match between measured and modelled rates of wave dissipation. The latter is done by raising the bottom elevation in areas where the measured dissipation rate exceeds the computed dissipation and vice versa. Since the model includes video data with high resolution in time (typically multiple images over a tidal cycle), it allows for virtually continous monitoring of surfzone bathymetry . Model tests against a synthetic data set of artificially generated wave dissipation profiles have shown the model's capability to accurately reconstruct beach bathymetry, over a wide range of morphological configurations. Maximum model deviations were found in the case of highly developed bar-trough systems (bar heights up to 4 m) and

  11. Bathymetry of the waters surrounding the Elizabeth Islands, Massachusetts

    Science.gov (United States)

    Pendleton, Elizabeth A.; Andrews, Brian D.; Ackerman, Seth D.; Twichell, Dave

    2014-01-01

    The Elizabeth Islands in Massachusetts that separate Vineyard Sound from Buzzards Bay are the remnants of a moraine (unconsolidated glacial sediment deposited at an ice sheet margin; Oldale and O’Hara, 1984). The most recent glacial ice retreat in this region occurred between 25,000 and 20,000 years ago, and the subsequent rise in sea level that followed deglaciation caused differences in the seafloor character between Buzzards Bay and Vineyard Sound. The relatively rough seafloor of Vineyard Sound reflects widespread exposure of glacial material. Shoals mark the location of recessional ice contact material, and deep channels illustrate where meltwater drainage incised glacial deposits. Following ice retreat from the Elizabeth Islands, a glacial lake formed across the mouth of Buzzards Bay, when the lake drained, it scoured two deep channels at the southern end of the bay. Sea level rise began to inundate Vineyard Sound and Buzzards Bay about 8,000 years ago and continues to modify the modern seafloor (Robb and Oldale, 1977). Fine-grained marine and estuarine sediments were deposited in the partially protected setting of Buzzards Bay. These deposits, up to 10 meters in thickness, buried the high-relief glacial landscape and created the generally smooth modern seafloor. In contrast, the Vineyard Sound of today experiences strong tidal currents, which largely prevent the deposition of fine-grained material and constantly rework the glacial sand and gravel within shoals. The seafloor of the sound largely reflects the contours of the ancient glaciated landscape that existed before sea level began to rise. The bathymetric data used to create the hillshaded relief image of the seafloor were collected by the U.S. Geological Survey (USGS) in cooperation with the Massachusetts Office of Coastal Zone Management and supplemented with National Oceanic and Atmospheric Administration hydrographic survey data. The map shows the detailed bathymetry of Buzzards Bay and Vineyard

  12. Accuracy limits on rapid assessment of gently varying bathymetry

    Science.gov (United States)

    McDonald, B. Edward; Holland, Charles

    2002-05-01

    Accuracy limits for rapidly probing shallow water bathymetry are investigated as a function of bottom slope and other relevant parameters. The probe scheme [B. E. McDonald and Charles Holland, J. Acoust. Soc. Am. 110, 2767 (2001)] uses a time reversed mirror (TRM) to ensonify a thin annulus on the ocean bottom at ranges of a few km from a vertical send/ receive array. The annulus is shifted in range by variable bathymetry (perturbation theory shows that the focal annulus experiences a radial shift proportional to the integrated bathymetry along a given azimuth). The range shift implies an azimuth-dependent time of maximum reverberation. Thus the reverberant return contains information that might be inverted to give bathymetric parameters. The parameter range over which the perturbation result is accurate is explored using the RAM code for propagation in arbitrarily range-dependent environments. [Work supported by NRL.

  13. Preliminary bathymetry; approaches to Unakwik Inlet, Alaska

    Science.gov (United States)

    Post, Austin

    1980-01-01

    A map, scale 1:20,000, shows water depths, rocks, and hazards to navigation. These data are noted on track lines run by the Research Vessel Growler in Alaskan waters, where data on navigation shown on published charts are nonexistant, preliminary, or out dated. (USGS)

  14. Coastal bathymetry data collected in May 2015 from Fire Island, New York—Wilderness breach and shoreface

    Science.gov (United States)

    Nelson, Timothy R.; Miselis, Jennifer L.; Hapke, Cheryl J.; Brenner, Owen T.; Henderson, Rachel E.; Reynolds, Billy J.; Wilson, Kathleen E.

    2017-05-12

    Scientists from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center in St. Petersburg, Florida, conducted a bathymetric survey of Fire Island from May 6-20, 2015. The USGS is involved in a post-Hurricane Sandy effort to map and monitor the morphologic evolution of the wilderness breach as a part of the Hurricane Sandy Supplemental Project GS2-2B. During this study, bathymetry data were collected with single-beam echo sounders and Global Positioning Systems, which were mounted to personal watercraft, along the Fire Island shoreface and within the wilderness breach. Additional bathymetry and elevation data were collected using backpack Global Positioning Systems on flood shoals and in shallow channels within the wilderness breach.

  15. Bathymetric Position Index (BPI) Zones 5 m grid derived from gridded bathymetry of the US Territory of Guam.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Zones are derived from a focal mean analysis on bathymetry and slope. The bathymetry grid (5 m cell size) is derived from bathymetry from four sources: Multibeam...

  16. Bathymetric Position Index (BPI) Zones 5m grid derived from gridded bathymetry of Saipan Island, Commonwealth of the Northern Marianas

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Zones are derived from a focal mean analysis on bathymetry and slope. The bathymetry grid (5 m cell size) is derived from bathymetry from two sources: Multibeam...

  17. Bathymetric Position Index (BPI) Structures 5m grid derived from gridded bathymetry of Saipan Island, Commonwealth of the Northern Marianas

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Structures are derived from a focal mean analysis on bathymetry and slope. The bathymetry grid (5 m cell size) is derived from two sources: Multibeam bathymetry...

  18. Bathymetric Position Index (BPI) Structures 5 m grid derived from gridded bathymetry of the US Territory of Guam.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Structures are derived from a focal mean analysis on bathymetry and slope. The bathymetry grid (5 m cell size) is derived from bathymetry from four sources:...

  19. CRED Integrated Benthic Habitat Map for French Frigate Shoals, Northwestern Hawaiian Islands 2007

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This is an integrated benthic habitat map system which consists of a number of separate map layers including multibeam bathymetry, acoustic backscatter imagery,...

  20. CRED Integrated Benthic Habitat Map for Tutuila Island, American Samoa Year 2007

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This is an integrated benthic habitat map system which consists of a number of separate map layers including multibeam bathymetry, digital NOAA nautical charts,...

  1. Slope grid (5 m) derived from gridded bathymetry of US Territory of Guam

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Slope is derived from gridded (5 m cell size) bathymetry from four sources: Multibeam bathymetry collected by Coral Reef Ecosystem Division aboard NOAA R/V AHI, and...

  2. CRED 20m Gridded bathymetry of Nihoa Island, Hawaii, USA (Arc ASCII format)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded bathymetry (20m) of the shelf and slope environments of Nihoa Island, Hawaii, USA. The ASCII includes multibeam bathymetry from the Simrad EM120, Simrad...

  3. Gridded multibeam bathymetry of Apra Harbor, Guam U.S. Territory

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded bathymetry from Apra Harbor, Guam U.S. Territory. The netCDF and Arc ASCII grids include multibeam bathymetry from the Reson SeaBat 8125 multibeam sonar...

  4. Slope grid derived from gridded bathymetry of Ofu and Olosega Islands, Territory of American Samoa, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Slope is derived from gridded (5 m cell size) multibeam bathymetry, collected aboard R/V AHI, and bathymetry derived from multispectral IKONOS satellite imagery....

  5. CRED 20m Gridded bathymetry of Necker Island, Hawaii, USA (Arc ASCII format)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded bathymetry of the shelf and slope environments of Necker Island, Northwestern Hawaiian Islands, Hawaii, USA. This ASCII includes multibeam bathymetry from...

  6. Rugosity grid (5 m) derived from gridded bathymetry of Saipan Island, Commonwealth of the Northern Marianas

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Rugosity is derived from gridded (5 m cell size) bathymetry from two sources: Multibeam bathymetry collected by Coral Reef Ecosystem Division aboard NOAA R/V AHI,...

  7. Rugosity grid (5 m) derived from gridded bathymetry of the US Territory of Guam

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Rugosity is derived from gridded (5 m cell size) bathymetry from four sources: Multibeam bathymetry collected by Coral Reef Ecosystem Division aboard NOAA R/V AHI,...

  8. The impact of bathymetry input on flood simulations

    Science.gov (United States)

    Khanam, M.; Cohen, S.

    2017-12-01

    Flood prediction and mitigation systems are inevitable for improving public safety and community resilience all over the worldwide. Hydraulic simulations of flood events are becoming an increasingly efficient tool for studying and predicting flood events and susceptibility. A consistent limitation of hydraulic simulations of riverine dynamics is the lack of information about river bathymetry as most terrain data record water surface elevation. The impact of this limitation on the accuracy on hydraulic simulations of flood has not been well studies over a large range of flood magnitude and modeling frameworks. Advancing our understanding of this topic is timely given emerging national and global efforts for developing automated flood predictions systems (e.g. NOAA National Water Center). Here we study the response of flood simulation to the incorporation of different bathymetry and floodplain surveillance source. Different hydraulic models are compared, Mike-Flood, a 2D hydrodynamic model, and GSSHA, a hydrology/hydraulics model. We test a hypothesis that the impact of inclusion/exclusion of bathymetry data on hydraulic model results will vary in its magnitude as a function of river size. This will allow researcher and stake holders more accurate predictions of flood events providing useful information that will help local communities in a vulnerable flood zone to mitigate flood hazards. Also, it will help to evaluate the accuracy and efficiency of different modeling frameworks and gage their dependency on detailed bathymetry input data.

  9. Definition of a RACK1 Interaction Network in Drosophila melanogaster Using SWATH-MS.

    Science.gov (United States)

    Kuhn, Lauriane; Majzoub, Karim; Einhorn, Evelyne; Chicher, Johana; Pompon, Julien; Imler, Jean-Luc; Hammann, Philippe; Meignin, Carine

    2017-07-05

    Receptor for Activated protein C kinase 1 (RACK1) is a scaffold protein that has been found in association with several signaling complexes, and with the 40S subunit of the ribosome. Using the model organism Drosophila melanogaster , we recently showed that RACK1 is required at the ribosome for internal ribosome entry site (IRES)-mediated translation of viruses. Here, we report a proteomic characterization of the interactome of RACK1 in Drosophila S2 cells. We carried out Label-Free quantitation using both Data-Dependent and Data-Independent Acquisition (DDA and DIA, respectively) and observed a significant advantage for the Sequential Window Acquisition of all THeoretical fragment-ion spectra (SWATH) method, both in terms of identification of interactants and quantification of low abundance proteins. These data represent the first SWATH spectral library available for Drosophila and will be a useful resource for the community. A total of 52 interacting proteins were identified, including several molecules involved in translation such as structural components of the ribosome, factors regulating translation initiation or elongation, and RNA binding proteins. Among these 52 proteins, 15 were identified as partners by the SWATH strategy only. Interestingly, these 15 proteins are significantly enriched for the functions translation and nucleic acid binding. This enrichment reflects the engagement of RACK1 at the ribosome and highlights the added value of SWATH analysis. A functional screen did not reveal any protein sharing the interesting properties of RACK1, which is required for IRES-dependent translation and not essential for cell viability. Intriguingly however, 10 of the RACK1 partners identified restrict replication of Cricket paralysis virus (CrPV), an IRES-containing virus. Copyright © 2017 Kuhn et al.

  10. Radio-controlled boat for measuring water velocities and bathymetry

    Science.gov (United States)

    Vidmar, Andrej; Bezak, Nejc; Sečnik, Matej

    2016-04-01

    Radio-controlled boat named "Hi3" was designed and developed in order to facilitate water velocity and bathymetry measurements. The boat is equipped with the SonTek RiverSurveyor M9 instrument that is designed for measuring open channel hydraulics (discharge and bathymetry). Usually channel cross sections measurements are performed either from a bridge or from a vessel. However, these approaches have some limitations such as performing bathymetry measurements close to the hydropower plant turbine or downstream from a hydropower plant gate where bathymetry changes are often the most extreme. Therefore, the radio-controlled boat was designed, built and tested in order overcome these limitations. The boat is made from a surf board and two additional small balance support floats. Additional floats are used to improve stability in fast flowing and turbulent parts of rivers. The boat is powered by two electric motors, steering is achieved with changing the power applied to left and right motor. Furthermore, remotely controlled boat "Hi3" can be powered in two ways, either by a gasoline electric generator or by lithium batteries. Lithium batteries are lighter, quieter, but they operation time is shorter compared to an electrical generator. With the radio-controlled boat "Hi3" we can perform measurements in potentially dangerous areas such as under the lock gates at hydroelectric power plant or near the turbine outflow. Until today, the boat "Hi3" has driven more than 200 km in lakes and rivers, performing various water speed and bathymetry measurements. Moreover, in future development the boat "Hi3" will be upgraded in order to be able to perform measurements automatically. The future plans are to develop and implement the autopilot. With this approach the user will define the route that has to be driven by the boat and the boat will drive the pre-defined route automatically. This will be possible because of the very accurate differential GPS from the Sontek River

  11. ANTIMICROBIAL BIO-NONWOVEN FABRICS FOR EYES'S SWATH AND DIAPERS FOR INFANT'S INCUBATORS

    Directory of Open Access Journals (Sweden)

    ElSayed A. ElNashar

    2016-12-01

    Full Text Available An infant incubator is a piece of equipment common to pediatric hospitals, birthing centers and neonatal intensive care units. While the unit may serve several specific functions, it is generally used to provide a safe and stable environment for newborn infants, often those who were born prematurely or with an illness or disability that makes them especially vulnerable for the first several months of life. The objective of this research was to gain a better understanding of New Approach for a Bio-Nonwoven fabrics and infant's incubator in terms of the specific materials as MaterBi/PCL® as Bioplastic and the elements of comfort, drivers associated with it and its waste biodegradation by different methods. Shortly after birth, the beginning in first hours of life babies with neonatal, a byproduct of the red blood cells decomposition. Many convenient features to consider with tow basic disposable eyes` swathe and diapers on infant’s incubator options: cloth of basic disposable eyes` swathe and diapers, with their end use properties. The form design of eyes` swathe® and diapers® shapes, for infant’s incubator stage then consider convenience, cost, and environmental waste.

  12. A Decade Remote Sensing River Bathymetry with the Experimental Advanced Airborne Research LiDAR

    Science.gov (United States)

    Kinzel, P. J.; Legleiter, C. J.; Nelson, J. M.; Skinner, K.

    2012-12-01

    Since 2002, the first generation of the Experimental Advanced Airborne Research LiDAR (EAARL-A) sensor has been deployed for mapping rivers and streams. We present and summarize the results of comparisons between ground truth surveys and bathymetry collected by the EAARL-A sensor in a suite of rivers across the United States. These comparisons include reaches on the Platte River (NE), Boise and Deadwood Rivers (ID), Blue and Colorado Rivers (CO), Klamath and Trinity Rivers (CA), and the Shenandoah River (VA). In addition to diverse channel morphologies (braided, single thread, and meandering) these rivers possess a variety of substrates (sand, gravel, and bedrock) and a wide range of optical characteristics which influence the attenuation and scattering of laser energy through the water column. Root mean square errors between ground truth elevations and those measured by the EAARL-A ranged from 0.15-m in rivers with relatively low turbidity and highly reflective sandy bottoms to over 0.5-m in turbid rivers with less reflective substrates. Mapping accuracy with the EAARL-A has proved challenging in pools where bottom returns are either absent in waveforms or are of such low intensity that they are treated as noise by waveform processing algorithms. Resolving bathymetry in shallow depths where near surface and bottom returns are typically convolved also presents difficulties for waveform processing routines. The results of these evaluations provide an empirical framework to discuss the capabilities and limitations of the EAARL-A sensor as well as previous generations of post-processing software for extracting bathymetry from complex waveforms. These experiences and field studies not only provide benchmarks for the evaluation of the next generation of bathymetric LiDARs for use in river mapping, but also highlight the importance of developing and standardizing more rigorous methods to characterize substrate reflectance and in-situ optical properties at study sites

  13. SeaDataNet II - EMODNet Bathymetry - building a pan-European infrastructure for marine and ocean data management and a digital high resolution bathymetry for European seas

    Science.gov (United States)

    Schaap, Dick M. A.; Fichaut, Michele

    2015-04-01

    The second phase of the project SeaDataNet is well underway since October 2011. The main objective is to improve operations and to progress towards an efficient data management infrastructure able to handle the diversity and large volume of data collected via research cruises and monitoring activities in European marine waters and global oceans. The SeaDataNet infrastructure comprises a network of interconnected data centres and a central SeaDataNet portal. The portal provides users a unified and transparent overview of the metadata and controlled access to the large collections of data sets, managed by the interconnected data centres, and the various SeaDataNet standards and tools,. SeaDataNet is also setting and governing marine data standards, and exploring and establishing interoperability solutions to connect to other e-infrastructures on the basis of standards of ISO (19115, 19139), OGC (WMS, WFS, CS-W and SWE), and OpenSearch. The population of directories has increased considerably in cooperation and involvement in associated EU projects and initiatives. SeaDataNet now gives overview and access to more than 1.6 million data sets for physical oceanography, chemistry, geology, geophysics, bathymetry and biology from more than 100 connected data centres from 34 countries riparian to European seas. Access to marine data is also a key issue for the implementation of the EU Marine Strategy Framework Directive (MSFD). The EU communication 'Marine Knowledge 2020' underpins the importance of data availability and harmonising access to marine data from different sources. SeaDataNet qualified itself for an active role in the data management component of the EMODnet (European Marine Observation and Data network) that is promoted in the EU Communication. Starting 2009 EMODnet pilot portals have been initiated for marine data themes: digital bathymetry, chemistry, physical oceanography, geology, biology, and seabed habitat mapping. These portals are being expanded to all

  14. MODIS/Aqua Clear Radiance Statistics Indexed to Global Grid 5-Min L2 Swath 10km V006

    Data.gov (United States)

    National Aeronautics and Space Administration — The MODIS/Aqua Clear Radiance Statistics Indexed to Global Grid 5-Min L2 Swath 10km (MYDCSR_G) provides a variety of statistical measures that characterize observed...

  15. OMPS/NPP PCA SO2 Total Column 1-Orbit L2 Swath 50x50km NRT

    Data.gov (United States)

    National Aeronautics and Space Administration — The OMPS-NPP L2 NM Sulfur Dioxide (SO2) Total and Tropospheric Column swath orbital collection 2 version 2.0 product contains the retrieved sulfur dioxide (SO2)...

  16. Evaluating integration of inland bathymetry in the U.S. Geological Survey 3D Elevation Program, 2014

    Science.gov (United States)

    Miller-Corbett, Cynthia

    2016-09-01

    Inland bathymetry survey collections, survey data types, features, sources, availability, and the effort required to integrate inland bathymetric data into the U.S. Geological Survey 3D Elevation Program are assessed to help determine the feasibility of integrating three-dimensional water feature elevation data into The National Map. Available data from wading, acoustic, light detection and ranging, and combined technique surveys are provided by the U.S. Geological Survey, National Oceanic and Atmospheric Administration, U.S. Army Corps of Engineers, and other sources. Inland bathymetric data accessed through Web-hosted resources or contacts provide useful baseline parameters for evaluating survey types and techniques used for collection and processing, and serve as a basis for comparing survey methods and the quality of results. Historically, boat-mounted acoustic surveys have provided most inland bathymetry data. Light detection and ranging techniques that are beneficial in areas hard to reach by boat, that can collect dense data in shallow water to provide comprehensive coverage, and that can be cost effective for surveying large areas with good water clarity are becoming more common; however, optimal conditions and techniques for collecting and processing light detection and ranging inland bathymetry surveys are not yet well defined.Assessment of site condition parameters important for understanding inland bathymetry survey issues and results, and an evaluation of existing inland bathymetry survey coverage are proposed as steps to develop criteria for implementing a useful and successful inland bathymetry survey plan in the 3D Elevation Program. These survey parameters would also serve as input for an inland bathymetry survey data baseline. Integration and interpolation techniques are important factors to consider in developing a robust plan; however, available survey data are usually in a triangulated irregular network format or other format compatible with

  17. Ferromanganese nodules from the Central Indian Ocean Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Jauhari, P.; Pattan, J.N.

    In order to delineate a mine site for ferromanganese nodules, extensive surveys were conducted in Central Indian Ocean Basin. Mapping of the basin by multibeam swath bathymetry (Hydrosweep) has revealed many new bottom relief features...

  18. The California Seafloor Mapping Program — Providing science and geospatial data for California's State Waters

    Science.gov (United States)

    Johnson, S. Y.; Cochrane, G. R.; Golden, N. E.; Dartnell, P.; Hartwell, S. R.; Cochran, S. A.; Watt, J. T.

    2017-12-01

    The California Seafloor Mapping Program (CSMP) is a collaborative effort to develop comprehensive bathymetric, geologic, and habitat maps and data for California's State Waters, which extend for 1,350 km from the shoreline to 5.6 km offshore. CSMP began in 2007 when the California Ocean Protection Council and NOAA allocated funding for high-resolution bathymetric mapping to support the California Marine Life Protection Act and update nautical charts. Collaboration and support from the USGS and other partners has led to development and dissemination of one of the world's largest seafloor-mapping datasets. CSMP data collection includes: (1) High-resolution bathymetric and backscatter mapping using swath sonar sensors; (2) "Ground-truth" imaging from a sled mounted with video and still cameras; (3) High-resolution seismic-reflection profiling at 1 km line spacing. Processed data are all publicly available. Additionally, 25 USGS map and datasets covering one third of California's coast have been published. Each publication contains 9 to 12 pdf map sheets (1:24,000 scale), an explanatory pamphlet, and a catalog of digital geospatial data layers (about 15 to 25 per map area) with web services. Map sheets display bathymetry, backscatter, perspective views, habitats, groundtruth imagery, seismic profiles, sediment distribution and thickness, and onshore-offshore geology. The CSMP goal is to serve a large constituency, ranging from senior GIS analysts in large agencies, to local governments with limited resources, to non-governmental organizations, the private sector, and concerned citizens. CSMP data and publications provide essential science and data for ocean and coastal management, stimulate and enable research, and raise public education and awareness of coastal and ocean issues. Specific applications include: Delineation and designation of marine protected areas Characterization and modeling of benthic habitats and ecosystems Updating nautical charts Earthquake hazard

  19. 3D movies for teaching seafloor bathymetry, plate tectonics, and ocean circulation in large undergraduate classes

    Science.gov (United States)

    Peterson, C. D.; Lisiecki, L. E.; Gebbie, G.; Hamann, B.; Kellogg, L. H.; Kreylos, O.; Kronenberger, M.; Spero, H. J.; Streletz, G. J.; Weber, C.

    2015-12-01

    Geologic problems and datasets are often 3D or 4D in nature, yet projected onto a 2D surface such as a piece of paper or a projection screen. Reducing the dimensionality of data forces the reader to "fill in" that collapsed dimension in their minds, creating a cognitive challenge for the reader, especially new learners. Scientists and students can visualize and manipulate 3D datasets using the virtual reality software developed for the immersive, real-time interactive 3D environment at the KeckCAVES at UC Davis. The 3DVisualizer software (Billen et al., 2008) can also operate on a desktop machine to produce interactive 3D maps of earthquake epicenter locations and 3D bathymetric maps of the seafloor. With 3D projections of seafloor bathymetry and ocean circulation proxy datasets in a virtual reality environment, we can create visualizations of carbon isotope (δ13C) records for academic research and to aid in demonstrating thermohaline circulation in the classroom. Additionally, 3D visualization of seafloor bathymetry allows students to see features of seafloor most people cannot observe first-hand. To enhance lessons on mid-ocean ridges and ocean basin genesis, we have created movies of seafloor bathymetry for a large-enrollment undergraduate-level class, Introduction to Oceanography. In the past four quarters, students have enjoyed watching 3D movies, and in the fall quarter (2015), we will assess how well 3D movies enhance learning. The class will be split into two groups, one who learns about the Mid-Atlantic Ridge from diagrams and lecture, and the other who learns with a supplemental 3D visualization. Both groups will be asked "what does the seafloor look like?" before and after the Mid-Atlantic Ridge lesson. Then the whole class will watch the 3D movie and respond to an additional question, "did the 3D visualization enhance your understanding of the Mid-Atlantic Ridge?" with the opportunity to further elaborate on the effectiveness of the visualization.

  20. Exploring the Tectonic Evolution of the Seafloor using Roughness, Covariance, and Anisotropy in Bathymetry and Marine Gravity

    Science.gov (United States)

    Kalnins, L. M.; Simons, F.

    2017-12-01

    Between the vastness of the oceans and the technological challenges water poses, data scarcity is frequently a limiting factor in studying the tectonic and morphological evolution of the seafloor. It is therefore essential to extract maximum information from the available gravity and bathymetry data, whilst also retaining realistic estimates of uncertainties. Here, we use a frequency-domain maximum-likelihood procedure to map the roughness structure and the nature of the topographic covariance of the seafloor. Rather than requiring us to assume the covariance is Gaussian or exponential, the flexibility of the Matérn form's parameterisation (variance, range, and differentiability) lets us solve for the shape of the covariance and map out its changes without a priori assumptions.We also examine the relationship between gravity and bathymetry through their coherence and admittance, particularly the anisotropy in the relationship. We extend the robust analysis developed to map anisotropy in lithospheric strength in the continents (Kalnins et al., 2015) to the oceanic domain. This method lets us separate out measurements of anisotropy likely to be linked to anisotropy in the long-term mechanical strength of the lithosphere itself; those aligned with anisotropies in the input gravity and bathymetry data; and those that are mathematically significant, but unexplained. Ultimately, we aim to use the statistical analyses to infer geophysical parameters of interest, such as oceanic spreading rate, level of volcanic activity, and potential for energy dissipation in ocean circulation. Our first results show a general alignment of strong directions ridge-parallel and weak directions ridge-perpendicular, suggesting widespread mechanical anisotropy derived from the lithosphere's highly anisotropic formation at mid-ocean ridges. However, this pattern changes markedly near sites of significant intraplate volcanism, where little to no robust anisotropy in strength is recovered. This

  1. High Spatio-Temporal Resolution Bathymetry Estimation and Morphology

    Science.gov (United States)

    Bergsma, E. W. J.; Conley, D. C.; Davidson, M. A.; O'Hare, T. J.

    2015-12-01

    In recent years, bathymetry estimates using video images have become increasingly accurate. With the cBathy code (Holman et al., 2013) fully operational, bathymetry results with 0.5 metres accuracy have been regularly obtained at Duck, USA. cBathy is based on observations of the dominant frequencies and wavelengths of surface wave motions and estimates the depth (and hence allows inference of bathymetry profiles) based on linear wave theory. Despite the good performance at Duck, large discrepancies were found related to tidal elevation and camera height (Bergsma et al., 2014) and on the camera boundaries. A tide dependent floating pixel and camera boundary solution have been proposed to overcome these issues (Bergsma et al., under review). The video-data collection is set estimate depths hourly on a grid with resolution in the order of 10x25 meters. Here, the application of the cBathy at Porthtowan in the South-West of England is presented. Hourly depth estimates are combined and analysed over a period of 1.5 years (2013-2014). In this work the focus is on the sub-tidal region, where the best cBathy results are achieved. The morphology of the sub-tidal bar is tracked with high spatio-temporal resolution on short and longer time scales. Furthermore, the impact of the storm and reset (sudden and large changes in bathymetry) of the sub-tidal area is clearly captured with the depth estimations. This application shows that the high spatio-temporal resolution of cBathy makes it a powerful tool for coastal research and coastal zone management.

  2. Remote Sensing-Derived Bathymetry of Lake Poopó

    Directory of Open Access Journals (Sweden)

    Adalbert Arsen

    2013-12-01

    Full Text Available Located within the Altiplano at 3,686 m above sea level, Lake Poopó is remarkably shallow and very sensitive to hydrologic recharge. Progressive drying has been observed in the entire Titicaca-Poopó-Desaguadero-Salar de Coipasa (TPDS system during the last decade, causing dramatic changes to Lake Poopó’s surface and its regional water supplies. Our research aims to improve understanding of Lake Poopó water storage capacity. Thus, we propose a new method based on freely available remote sensing data to reproduce Lake Poopó bathymetry. Laser ranging altimeter ICESat (Ice, Cloud, and land Elevation Satellite is used during the lake’s lowest stages to measure vertical heights with high precision over dry land. These heights are used to estimate elevations of water contours obtained with Landsat imagery. Contour points with assigned elevation are filtered and grouped in a points cloud. Mesh gridding and interpolation function are then applied to construct 3D bathymetry. Complementary analysis of Moderate Resolution Imaging Spectroradiometer (MODIS surfaces from 2000 to 2012 combined with bathymetry gives water levels and storage evolution every 8 days.

  3. Auv Multibeam Bathymetry and Sidescan Survey of the SS Montebello wreck Offshore Cambria CA

    Science.gov (United States)

    Caress, D. W.; Thomas, H.; Conlin, D.; Thompson, D.; Paull, C. K.

    2010-12-01

    An MBARI Mapping AUV survey of the SS Montebello wreck offshore Cambria, CA collected high-resolution multibeam bathymetry and sidescan imagery of the vessel and the surrounding seafloor. The Montebello was an oil tanker that was torpedoed and sunk about 11 km offshore in 275 m water depth by a Japanese submarine on December 23, 1941. The Montebello was loaded with 3,000,000 gallons of crude oil, and there is no evidence that significant leakage of that cargo occurred at the time of the sinking or in the 69 years since. The California Department of Fish and Game’s Office of Spill Prevention and Response (OSPR) commissioned the AUV survey as part of a multi-agency Montebello Task Force effort to assess the potential pollution threat. The survey data will be used to determine the extent and general character of the wreckage for a pending Task Force report and to guide any future ROV dive or assessment activity . The AUV surveyed the wreck site from altitudes of 75 and 25 m; the low-altitude high-resolution survey consists of a grid with a 50 m line spacing both parallel and orthogonal to the ship. The 200 kHz multibeam bathymetry images the wreck from both above and from the sides with an 0.5 m lateral resolution. The combination of soundings from all of the survey lines results in a three-dimensional distribution of soundings that delineates the external morphology and some of the internal structure of the wreck. 410 kHz chirp sidescan sonar data also image the site from both directions. The bathymetry data indicate that the Montebello was pitched forward down when it impacted the bottom, crushing and breaking off the bow section. Both forward and aft deckhouses are largely intact, and in fact the multibeam images the individual decks within those structures. About half of the forward mast remains, both amidships masts and the smokestack are missing. A good deal of the deck piping and equipment appears intact, and aside from the bow, the ship’s sides appear

  4. Testing Suitability of Cell Cultures for SILAC-Experiments Using SWATH-Mass Spectrometry.

    Science.gov (United States)

    Reinders, Yvonne; Völler, Daniel; Bosserhoff, Anja-K; Oefner, Peter J; Reinders, Jörg

    2016-01-01

    Precise quantification is a major issue in contemporary proteomics. Both stable-isotope-labeling and label-free methods have been established for differential protein quantification and both approaches have different advantages and disadvantages. The present protocol uses the superior precision of label-free SWATH-mass spectrometry to test for suitability of cell lines for a SILAC-labeling approach as systematic regulations may be introduced upon incorporation of the "heavy" amino acids. The SILAC-labeled cell cultures can afterwards be used for further analyses where stable-isotope-labeling is mandatory or has substantial advantages over label-free approaches such as pulse-chase-experiments and differential protein interaction analyses based on co-immunoprecipitation. As SWATH-mass spectrometry avoids the missing-value-problem typically caused by undersampling in highly complex samples and shows superior precision for the quantification, it is better suited for the detection of systematic changes caused by the SILAC-labeling and thus, can serve as a useful tool to test cell lines for changes upon SILAC-labeling.

  5. Feedback Limiting the Coastal Response to Irregularities in Shelf Bathymetry

    Science.gov (United States)

    List, J. H.; Benedet, L.

    2007-12-01

    Observations and engineering studies have shown that non-uniform inner shelf bathymetry can influence longshore sediment transport gradients and create patterns of shoreline change. One classic example is from Grand Isle, Louisiana, where two offshore borrow pits caused two zones of shoreline accretion landward of the pits. In addition to anthropogenic cases, many natural situations exist in which irregularities in coastal planform are thought to result from offshore shoals or depressions. Recent studies using the hydrodynamic model Delft3D have successfully simulated the observed nearshore erosion and accretion patterns landward of an inner shelf borrow pit. An analysis of the momentum balance in a steady-state simulation has demonstrated that both alongshore pressure gradients (due to alongshore variations in wave setup) and radiation stress gradients (terms relevant to alongshore forcing) are important for forcing the initial pattern of nearshore sedimentation in response to the borrow pit. The response of the coast to non-uniform inner shelf bathymetry appears to be limited, however, because observed shoreline undulations are often rather subtle. (An exception may exist in the case of a very high angle wave climate.) Therefore, feedbacks in processes must exist such that growth of the shoreline salient itself modifies the transport processes in a way that limits further growth (assuming the perturbation in inner shelf bathymetry itself remains unchanged). Examination of the Delft3D momentum balance for an inner shelf pit test case demonstrates that after a certain degree of morphologic development the forcing associated with the well-known shoreline smoothing process (a.k.a., diffusion) counteracts the forcing associated with the inner shelf pit, producing a negative feedback which arrests further growth of the shoreline salient. These results provide insights into the physical processes that control shoreline changes behind inner shelf bathymetric anomalies (i

  6. Hybrid kriging methods for interpolating sparse river bathymetry point data

    Directory of Open Access Journals (Sweden)

    Pedro Velloso Gomes Batista

    Full Text Available ABSTRACT Terrain models that represent riverbed topography are used for analyzing geomorphologic changes, calculating water storage capacity, and making hydrologic simulations. These models are generated by interpolating bathymetry points. River bathymetry is usually surveyed through cross-sections, which may lead to a sparse sampling pattern. Hybrid kriging methods, such as regression kriging (RK and co-kriging (CK employ the correlation with auxiliary predictors, as well as inter-variable correlation, to improve the predictions of the target variable. In this study, we use the orthogonal distance of a (x, y point to the river centerline as a covariate for RK and CK. Given that riverbed elevation variability is abrupt transversely to the flow direction, it is expected that the greater the Euclidean distance of a point to the thalweg, the greater the bed elevation will be. The aim of this study was to evaluate if the use of the proposed covariate improves the spatial prediction of riverbed topography. In order to asses such premise, we perform an external validation. Transversal cross-sections are used to make the spatial predictions, and the point data surveyed between sections are used for testing. We compare the results from CK and RK to the ones obtained from ordinary kriging (OK. The validation indicates that RK yields the lowest RMSE among the interpolators. RK predictions represent the thalweg between cross-sections, whereas the other methods under-predict the river thalweg depth. Therefore, we conclude that RK provides a simple approach for enhancing the quality of the spatial prediction from sparse bathymetry data.

  7. Evaluating watershed protection programs in New York City's Cannonsville Reservoir source watershed using SWAT-HS

    Science.gov (United States)

    Hoang, L.; Mukundan, R.; Moore, K. E.; Owens, E. M.; Steenhuis, T. S.

    2017-12-01

    New York City (NYC)'s reservoirs supply over one billion gallons of drinking water each day to over nine million consumers in NYC and upstate communities. The City has invested more than $1.5 billion in watershed protection programs to maintain a waiver from filtration for the Catskill and Delaware Systems. In the last 25 years, the NYC Department of Environmental Protection (NYCDEP) has implemented programs in cooperation with upstate communities that include nutrient management, crop rotations, improvement of barnyards and manure storage, implementing tertiary treatment for Phosphorus (P) in wastewater treatment plants, and replacing failed septic systems in an effort to reduce P loads to water supply reservoirs. There have been several modeling studies evaluating the effect of agricultural Best Management Practices (BMPs) on P control in the Cannonsville watershed in the Delaware System. Although these studies showed that BMPs would reduce dissolved P losses, they were limited to farm-scale or watershed-scale estimates of reduction factors without consideration of the dynamic nature of overland flow and P losses from variable source areas. Recently, we developed the process-based SWAT-Hillslope (SWAT-HS) model, a modified version of the Soil and Water Assessment Tool (SWAT) that can realistically predict variable source runoff processes. The objective of this study is to use the SWAT-HS model to evaluate watershed protection programs addressing both point and non-point sources of P. SWAT-HS predicts streamflow very well for the Cannonsville watershed with a daily Nash Sutcliffe Efficiency (NSE) of 0.85 at the watershed outlet and NSE values ranging from 0.56 - 0.82 at five other locations within the watershed. Based on good hydrological prediction, we applied the model to predict P loads using detailed P inputs that change over time due to the implementation of watershed protection programs. Results from P model predictions provide improved projections of P

  8. Precise Temporal Profiling of Signaling Complexes in Primary Cells Using SWATH Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Etienne Caron

    2017-03-01

    Full Text Available Spatiotemporal organization of protein interactions in cell signaling is a fundamental process that drives cellular functions. Given differential protein expression across tissues and developmental stages, the architecture and dynamics of signaling interaction proteomes is, likely, highly context dependent. However, current interaction information has been almost exclusively obtained from transformed cells. In this study, we applied an advanced and robust workflow combining mouse genetics and affinity purification (AP-SWATH mass spectrometry to profile the dynamics of 53 high-confidence protein interactions in primary T cells, using the scaffold protein GRB2 as a model. The workflow also provided a sufficient level of robustness to pinpoint differential interaction dynamics between two similar, but functionally distinct, primary T cell populations. Altogether, we demonstrated that precise and reproducible quantitative measurements of protein interaction dynamics can be achieved in primary cells isolated from mammalian tissues, allowing resolution of the tissue-specific context of cell-signaling events.

  9. Okeanos Explorer (EX1402L2): Gulf of Mexico Mapping and Exploration

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Transit mapping operations will collect bathymetry, sub-bottom profiles, water column backscatter, and seafloor backscatter over the continental shelf and Claypile...

  10. Map of percent scleractinian coral cover and sand along camera tow tracks in west Hawaii

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This map displays optical validation observation locations and percent coverage of scleractinian coral and sand overlaid on bathymetry and landsat imagery northwest...

  11. MODIS/Aqua Temperature and Water Vapor Profiles 5-Min L2 Swath 5km V006

    Data.gov (United States)

    National Aeronautics and Space Administration — MODIS/Aqua Temperature and Water Vapor Profiles 5-Min L2 Swath 5km (MYD07_L2). MODIS was launched aboard the Aqua satellite on May 04, 2002 (1:30 pm equator crossing...

  12. Small ships don't shine: classification of ocean vessels from low resolution, large swath area SAR acquisitions

    CSIR Research Space (South Africa)

    Meyer, Rory GV

    2016-07-01

    Full Text Available the Understanding of Our Living Planet, 10-15 July 2016, Beijing, China Small ships don't shine: Classification of ocean vessels from low resolution, large swath area SAR acquisitions R. G. V. Meyer ; W. Kleynhans ; C. P. Schwegmann Abstract: Monitoring...

  13. ASTC-MIMO-TOPS Mode with Digital Beam-Forming in Elevation for High-Resolution Wide-Swath Imaging

    Directory of Open Access Journals (Sweden)

    Pingping Huang

    2015-03-01

    Full Text Available Future spaceborne synthetic aperture radar (SAR missions require complete and frequent coverage of the earth with a high resolution. Terrain Observation by Progressive Scans (TOPS is a novel wide swath mode but has impaired azimuth resolution. In this paper, an innovative extended TOPS mode named Alamouti Space-time Coding multiple-input multiple-output TOPS (ASTC-MIMO-TOPS mode combined with digital beam-forming (DBF in elevation and multi-aperture SAR signal reconstruction in azimuth is proposed. This innovative mode achieves wide-swath coverage with a high geometric resolution and also overcomes major drawbacks in conventional MIMO SAR systems. The data processing scheme of this imaging scheme is presented in detail. The designed system example of the proposed ASTC-MIMO-TOPS mode, which has the imaging capacity of a 400 km wide swath with an azimuth resolution of 3 m, is given. Its system performance analysis results and simulated imaging results on point targets demonstrate the potential of the proposed novel spaceborne SAR mode for high-resolution wide-swath (HRWS imaging.

  14. In-Swath Spray Deposition Characteristics of a Low Drift Nozzle for Low Volume Aerial Application - Preliminary Results.

    Science.gov (United States)

    CP flat-fan nozzles with selectable tips were evaluated for droplet spectra and coverage using water sensitive papers placed in the spray swath. This study used low application volumes (1, 2, and 3 GPA) at a certain spray application height as measured precisely by laser mounted in the aircraft. No...

  15. Bathymetric Position Index (BPI) Structures 5m grid derived from gridded bathymetry of Tinian Island, Aguijan Island and Tatsumi Bank, Commonwealth of the Northern Marianas

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Structures are derived from a focal mean analysis on bathymetry and slope. The bathymetry grid (5 m cell size) is derived from bathymetry from three sources:...

  16. Bathymetric Position Index (BPI) Zones 5m grid derived from gridded bathymetry of Tinian Island, Aguijan Island and Tatsumi Bank, Commonwealth of the Northern Marianas

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Zones are derived from a focal mean analysis on bathymetry and slope. The bathymetry grid (5 m cell size) is derived from bathymetry from three sources:...

  17. Bathymetry Determination via X-Band Radar Data: A New Strategy and Numerical Results

    Directory of Open Access Journals (Sweden)

    Francesco Soldovieri

    2010-07-01

    Full Text Available This work deals with the question of sea state monitoring using marine X-band radar images and focuses its attention on the problem of sea depth estimation. We present and discuss a technique to estimate bathymetry by exploiting the dispersion relation for surface gravity waves. This estimation technique is based on the correlation between the measured and the theoretical sea wave spectra and a simple analysis of the approach is performed through test cases with synthetic data. More in detail, the reliability of the estimate technique is verified through simulated data sets that are concerned with different values of bathymetry and surface currents for two types of sea spectrum: JONSWAP and Pierson-Moskowitz. The results show how the estimated bathymetry is fairly accurate for low depth values, while the estimate is less accurate as the bathymetry increases, due to a less significant role of the bathymetry on the sea surface waves as the water depth increases.

  18. Bathymetric Position Index (BPI) Structures 10 m grid derived from gridded bathymetry of Wake Island, West Central Pacific.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Structures are derived from two scales of a focal mean analysis on bathymetry and slope. The grid is based on gridded (10 m cell size) multibeam bathymetry,...

  19. Merged/integrated Bathymetric Data Derived from Multibeam Sonar, LiDAR, and Satellite-derived Bathymetry

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded multibeam bathymetry is integrated with derived bathymetry from alternate sources to provide a GIS layer with expanded spatial coverage. Integrated products...

  20. Rugosity grid derived from gridded bathymetry Ofu and Olosega Islands of the Manu'a Island group, American Samoa

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Rugosity is derived from gridded (5 m cell size) multibeam bathymetry, collected aboard R/V AHI, and bathymetry derived from multispectral IKONOS satellite imagery...

  1. Bathymetric Position Index (BPI) Structures 20 m grid derived from gridded bathymetry of Brooks Banks, Hawaii, USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Structures are derived from two scales of a focal mean analysis on bathymetry and slope. The grid is based on gridded (20 m cell size) multibeam bathymetry,...

  2. Rugosity grid derived from gridded bathymetry of Ta'u Island of the Manu'a Island group, American Samoa

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Rugosity is derived from gridded (5 m cell size) multibeam bathymetry, collected aboard R/V AHI, and bathymetry derived from multispectral IKONOS satellite imagery...

  3. Bathymetric Position Index (BPI) Zones 5 m grid derived from gridded bathymetry of Pearl and Hermes Atoll, Hawaii, USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Zones are derived from a focal mean analysis on bathymetry and slope. The grid is based on gridded (5 m cell size) multibeam bathymetry, collected aboard R/V...

  4. Bathymetric Position Index (BPI) Zones 60 m grid derived from gridded bathymetry of Wake Island, West Central Pacific.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Zones are derived from a focal mean analysis on bathymetry and slope. The grid is based on gridded (60 m cell size) multibeam bathymetry, collected aboard R/V...

  5. Bathymetric Position Index (BPI) Zones 5 m grid derived from gridded bathymetry of Kure Atoll, Hawaii, USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Zones are derived from a focal mean analysis on bathymetry and slope. The grid is based on gridded (5 m cell size) multibeam bathymetry, collected aboard R/V...

  6. Bathymetric Position Index (BPI) Zones 5 m grid derived from gridded bathymetry of Brooks Banks, Hawaii, USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Zones are derived from a focal mean analysis on bathymetry and slope. The grid is based on gridded (5 m cell size) multibeam bathymetry, collected aboard NOAA...

  7. Bathymetric Position Index (BPI) Zones 5 m grid derived from gridded bathymetry of Tau Island, Territory of American Samoa, USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Zones are derived from a focal mean analysis on bathymetry and slope. The grid is based on gridded (5 m cell size) multibeam bathymetry, collected aboard R/V...

  8. CRED 20 m Gridded bathymetry of Brooks Banks and St. Rogatien Bank, Hawaii, USA (Arc ASCII format)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded bathymetry (20m) of the shelf and slope environments of Brooks Banks and St. Rogatien, Hawaii, USA. The ASCII includes multibeam bathymetry from the Simrad...

  9. Bathymetric Position Index (BPI) Structures 5 m grid derived from gridded bathymetry of Ni'ihau Island, Hawaii, USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Structures are derived from two scales of a focal mean analysis on bathymetry and slope. The grid is based on gridded (5 m cell size) multibeam bathymetry,...

  10. Bathymetric Position Index (BPI) Structures 60 m grid derived from gridded bathymetry of Wake Island, West Central Pacific.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Structures are derived from two scales of a focal mean analysis on bathymetry and slope. The grid is based on gridded (60 m cell size) multibeam bathymetry,...

  11. Bathymetric Position Index (BPI) Zones 60 m grid derived from gridded bathymetry of the U.S. Territory of Guam.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Zones are derived from a focal mean analysis on bathymetry and slope. The grid is based on gridded (60 m cell size) multibeam bathymetry, collected aboard NOAA...

  12. Bathymetric Position Index (BPI) Structures 5 m grid derived from gridded bathymetry of Pearl and Hermes Atoll, Hawaii, USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Structures are derived from two scales of a focal mean analysis on bathymetry and slope. The grid is based on gridded (5 m cell size) multibeam bathymetry,...

  13. Bathymetric Position Index (BPI) Structures 5 m grid derived from gridded bathymetry of Kure Atoll, Hawaii, USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Structures are derived from two scales of a focal mean analysis on bathymetry and slope. The grid is based on gridded (5 m cell size) multibeam bathymetry,...

  14. Bathymetric Position Index (BPI) Zones 5 m grid derived from gridded bathymetry of French Frigate Shoals, Hawaii, USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Zones are derived from a focal mean analysis on bathymetry and slope. The grid is based on gridded (5 m cell size) multibeam bathymetry, collected aboard NOAA...

  15. Bathymetric Position Index (BPI) Zones 5 m grid derived from gridded bathymetry of Ni'ihau Island, Hawaii, USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Zones are derived from a focal mean analysis on bathymetry and slope. The grid is based on gridded (5 m cell size) multibeam bathymetry, collected aboard NOAA...

  16. Bathymetric Position Index (BPI) Structures 5 m grid derived from gridded bathymetry of French Frigate Shoals, Hawaii, USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Structures are derived from two scales of a focal mean analysis on bathymetry and slope. The grid is based on gridded (5 m cell size) multibeam bathymetry,...

  17. Bathymetric Position Index (BPI) Zones 5 m grid derived from gridded bathymetry of Rose Atoll, Territory of American Samoa, USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Zones are derived from a focal mean analysis on bathymetry and slope. The grid is based on gridded (5 m cell size) multibeam bathymetry, collected aboard R/V AHI...

  18. Bathymetric Position Index (BPI) Zones 60 m grid derived from gridded bathymetry of Rota Island, Mariana Islands, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Zones are derived from a focal mean analysis on bathymetry and slope. The grid is based on gridded (60 m cell size) multibeam bathymetry, collected aboard NOAA...

  19. Bathymetric Position Index (BPI) Zones 20 m grid derived from gridded bathymetry of Brooks Banks, Hawaii, USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Zones are derived from a focal mean analysis on bathymetry and slope. The grid is based on gridded (20 m cell size) multibeam bathymetry, collected aboard NOAA...

  20. Sampling strategies to improve passive optical remote sensing of river bathymetry

    Science.gov (United States)

    Legleiter, Carl; Overstreet, Brandon; Kinzel, Paul J.

    2018-01-01

    Passive optical remote sensing of river bathymetry involves establishing a relation between depth and reflectance that can be applied throughout an image to produce a depth map. Building upon the Optimal Band Ratio Analysis (OBRA) framework, we introduce sampling strategies for constructing calibration data sets that lead to strong relationships between an image-derived quantity and depth across a range of depths. Progressively excluding observations that exceed a series of cutoff depths from the calibration process improved the accuracy of depth estimates and allowed the maximum detectable depth ($d_{max}$) to be inferred directly from an image. Depth retrieval in two distinct rivers also was enhanced by a stratified version of OBRA that partitions field measurements into a series of depth bins to avoid biases associated with under-representation of shallow areas in typical field data sets. In the shallower, clearer of the two rivers, including the deepest field observations in the calibration data set did not compromise depth retrieval accuracy, suggesting that $d_{max}$ was not exceeded and the reach could be mapped without gaps. Conversely, in the deeper and more turbid stream, progressive truncation of input depths yielded a plausible estimate of $d_{max}$ consistent with theoretical calculations based on field measurements of light attenuation by the water column. This result implied that the entire channel, including pools, could not be mapped remotely. However, truncation improved the accuracy of depth estimates in areas shallower than $d_{max}$, which comprise the majority of the channel and are of primary interest for many habitat-oriented applications.

  1. Multibeam bathymetry and CTD measurements in two fjord systems in southeastern Greenland

    Science.gov (United States)

    Kjellerup Kjeldsen, Kristian; Weinrebe, Reimer Wilhelm; Bendtsen, Jørgen; Anker Bjørk, Anders; Kjær, Kurt Henrik

    2017-08-01

    We present bathymetry and hydrological observations collected in the summer of 2014 from two fjord systems in southeastern Greenland with a multibeam sonar system. Our results provide a detailed bathymetric map of the fjord complex around the island of Skjoldungen in Skjoldungen Fjord and the outer part of Timmiarmiut Fjord and show far greater depths compared to the International Bathymetric Chart of the Arctic Ocean. The hydrography collected shows different properties in the fjords with the bottom water masses below 240 m in Timmiarmiut Fjord being 1-2 °C warmer than in the two fjords around Skjoldungen, but data also illustrate the influence of sills on the exchange of deeper water masses within fjords. Moreover, evidence of subglacial discharge in Timmiarmiut Fjord, which is consistent with satellite observations of ice mélange set into motion, adds to our increasing understanding of the distribution of subglacial meltwater. Data are available through the PANGAEA website at pangaea.de/10.1594/PANGAEA.860627" target="_blank">https://doi.pangaea.de/10.1594/PANGAEA.860627.

  2. Multibeam bathymetry and CTD measurements in two fjord systems in southeastern Greenland

    Directory of Open Access Journals (Sweden)

    K. K. Kjeldsen

    2017-08-01

    Full Text Available We present bathymetry and hydrological observations collected in the summer of 2014 from two fjord systems in southeastern Greenland with a multibeam sonar system. Our results provide a detailed bathymetric map of the fjord complex around the island of Skjoldungen in Skjoldungen Fjord and the outer part of Timmiarmiut Fjord and show far greater depths compared to the International Bathymetric Chart of the Arctic Ocean. The hydrography collected shows different properties in the fjords with the bottom water masses below 240 m in Timmiarmiut Fjord being 1–2 °C warmer than in the two fjords around Skjoldungen, but data also illustrate the influence of sills on the exchange of deeper water masses within fjords. Moreover, evidence of subglacial discharge in Timmiarmiut Fjord, which is consistent with satellite observations of ice mélange set into motion, adds to our increasing understanding of the distribution of subglacial meltwater. Data are available through the PANGAEA website at https://doi.pangaea.de/10.1594/PANGAEA.860627.

  3. Analysis of the possibilities of using aerial photographs to determine the bathymetry in shallow coastal zone of the selected section of the Baltic Sea

    Science.gov (United States)

    Cieszynski, Lukasz; Furmanczyk, Kazimierz

    2017-04-01

    Bathymetry data for the coastal zone of the Baltic Sea are usually created in profiles based on echo sounding measurements. However, in the shallow coastal zone (up to 4 m depth), the quality and accuracy of data is insufficient because of the spatial variability of the seabed. The green laser - LIDAR - can comprise a solution for studies of such shallow areas. However, this method is still an expensive one and that is why we have decided to use the RGB digital aerial photographs to create a model for mapping the seabed of the shallow coastal zone. So far, in the 60's, researchers in the USA (Musgrove, 1969) and Russia (Zdanowicz, 1963) developed the first method of bathymetry determining from aerial panchromatic (black-white) photographs. This method was adapted for the polish conditions by Furmanczyk in 1975 and in 2014 we have returned to his concept using more advanced techniques of recording and image processing. In our study, we propose to determine the bathymetry in shallow coastal zone of the Baltic Sea by using the digital vertical aerial photographs (both single and multi-channel spectral). These photos are the high-resolution matrix (10 cm per pixel) containing values of the grey level in the individual spectral bands (RGB). This gives great possibilities to determine the bathymetry in order to analyze the changes in the marine coastal zone. Comparing the digital bathymetry maps - obtained by proposed method - in the following periods, you can develop differential maps, which reflect the movements of sea-bottom sediments. This can be used to indicate the most dynamic regions in the examined area. The model is based on the image pixel values and relative depths measured in situ (in selected checkpoints). As a result, the relation of the pixel brightness and sea depth (the algorithm) was defined. Using the algorithm, depth calculations for the whole scene were done and high resolution bathymetric map created. However, the algorithm requires numbers of

  4. A tool for NDVI time series extraction from wide-swath remotely sensed images

    Science.gov (United States)

    Li, Zhishan; Shi, Runhe; Zhou, Cong

    2015-09-01

    Normalized Difference Vegetation Index (NDVI) is one of the most widely used indicators for monitoring the vegetation coverage in land surface. The time series features of NDVI are capable of reflecting dynamic changes of various ecosystems. Calculating NDVI via Moderate Resolution Imaging Spectrometer (MODIS) and other wide-swath remotely sensed images provides an important way to monitor the spatial and temporal characteristics of large-scale NDVI. However, difficulties are still existed for ecologists to extract such information correctly and efficiently because of the problems in several professional processes on the original remote sensing images including radiometric calibration, geometric correction, multiple data composition and curve smoothing. In this study, we developed an efficient and convenient online toolbox for non-remote sensing professionals who want to extract NDVI time series with a friendly graphic user interface. It is based on Java Web and Web GIS technically. Moreover, Struts, Spring and Hibernate frameworks (SSH) are integrated in the system for the purpose of easy maintenance and expansion. Latitude, longitude and time period are the key inputs that users need to provide, and the NDVI time series are calculated automatically.

  5. Map of percent scleractinian coral cover along camera tows and ROV tracks in the Auau Channel, Island of Maui, Hawaii

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This map displays optical validation observation locations and percent coverage of scleractinian coral overlaid on bathymetry and landsat imagery. Optical data were...

  6. Map of percent scleractinian coral cover and sand along camera tows and ROV tracks of West Maui, Hawaii

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This map displays optical validation observation locations and percent coverage of scleractinian coral and sand overlaid on bathymetry and landsat imagery. Optical...

  7. USACE National Coastal Mapping Program Update

    Science.gov (United States)

    Sylvester, C.

    2017-12-01

    The Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) formed in 1998 to support the coastal mapping and charting requirements of the USACE, NAVO, NOAA and USGS. This partnership fielded three generations of airborne lidar bathymeters, executed operational data collection programs within the U.S. and overseas, and advanced research and development in airborne lidar bathymetry and complementary technologies. JALBTCX executes a USACE Headquarters-funded National Coastal Mapping Program (NCMP). Initiated in 2004, the NCMP provides high-resolution, high-accuracy elevation and imagery data along the sandy shorelines of the U.S. on a recurring basis. NCMP mapping activities are coordinated with Federal mapping partners through the Interagency Working Group on Ocean and Coastal Mapping and the 3D Elevation Program. The NCMP, currently in it's third cycle, is performing operations along the East Coast in 2017, after having completed surveys along the Gulf Coast in 2016 and conducting emergency response operations in support of Hurricane Matthew. This presentation will provide an overview of JALBTCX, its history in furthering airborne lidar bathymetry technology to meet emerging mapping requirements, current NCMP operations and data products, and Federal mapping coordination activities.

  8. Bathymetry of Ashokan, Cannonsville, Neversink, Pepacton, Rondout, and Schoharie Reservoirs, New York, 2013–15

    Science.gov (United States)

    Nystrom, Elizabeth A.

    2018-02-01

    Drinking water for New York City is supplied from several large reservoirs, including a system of reservoirs west of the Hudson River. To provide updated reservoir capacity tables and bathymetry maps of the City’s six West of Hudson reservoirs, bathymetric surveys were conducted by the U.S. Geological Survey from 2013 to 2015. Depths were surveyed with a single-beam echo sounder and real-time kinematic global positioning system along planned transects at predetermined intervals for each reservoir. A separate quality assurance dataset of echo sounder points was collected along transects at oblique angles to the main transects for accuracy assessment. Field-survey data were combined with water surface elevations in a geographic information system to create three-dimensional surfaces in the form of triangulated irregular networks (TINs) representing the elevations of the reservoir geomorphology. The TINs were linearly enforced to better represent geomorphic features within the reservoirs. The linearly enforced TINs were then used to create raster surfaces and 2-foot-interval contour maps of the reservoirs. Elevation-area-capacity tables were calculated at 0.01-foot intervals. The results of the surveys show that the total capacity of the West of Hudson reservoirs has decreased by 11.5 billion gallons (Ggal), or 2.3 percent, since construction, and the useable capacity (the volume above the minimum operating level required to deliver full flow for drinking water supply) has decreased by 7.9 Ggal (1.7 percent). The available capacity (the volume between the spillway elevation and the lowest intake or sill elevation used for drinking water supply) decreased by 9.6 Ggal (2.0 percent), and dead storage (the volume below the lowest intake or sill elevation) decreased by 1.9 Ggal (11.6 percent).

  9. Rugosity grid derived from gridded bathymetry of Ni'ihau Island, Hawaii, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Rugosity is derived from gridded (5 m cell size) multibeam bathymetry, collected aboard NOAA ship Hi'ialakai and R/V AHI using the Benthic Terrain Modeler with...

  10. Slope grid derived from gridded bathymetry of Apra Harbor, Guam U.S. Territory

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Slope is derived from gridded (1 m cell size) multibeam bathymetry, collected aboard the Survey Vessel Swamp Fox. Cell values reflect the maximum rate of change (in...

  11. Rugosity grid derived from gridded bathymetry of Apra Harbor, Guam U.S. Territory

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Rugosity is derived from gridded (1 m cell size) multibeam bathymetry, collected aboard the Survey Vessel Swamp Fox using the Terrain Modeler with rugosity methods...

  12. Bathymetry 2M Grid, US Virgin Islands, 2005, UTM 20 NAD83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a unified ESRI Grid with 2 meter cell size representing the bathymetry of selected portions of seafloor around St. Croix, St. Thomas, and St....

  13. Slope 60 m grid derived from gridded bathymetry of Guam Island, Mariana Islands, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Slope is derived from gridded (60 m cell size) multibeam bathymetry, collected aboard NOAA Ship Hiialaka'i and R/V AHI. Cell values reflect the maximum rate of...

  14. Bathymetry 2M Grid of Grammanik Bank, US Virgin Islands, 2005, UTM 20 NAD83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains an ESRI Grid with 2 meter cell size representing the bathymetry of Grammanik Bank south of St. Thomas, US Virgin Islands. NOAA's NOS/NCCOS/CCMA...

  15. Gridded multibeam bathymetry of Baker Island, Pacific Remote Island Areas, Central Pacific

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded bathymetry at 40m resolution surrounding Baker Island, within the Pacific Remote Island Areas - Central Pacific Ocean. Bottom coverage was achieved in depths...

  16. Gridded multibeam bathymetry of Howland Island, Pacific Remote Island Areas, Central Pacific

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded bathymetry at 40m resolution surrounding Howland Island, within the Pacific Remote Island Areas - Central Pacific Ocean. Bottom coverage was achieved in...

  17. Slope grid derived from gridded bathymetry of Howland Island, Pacific Remote Island Areas, Central Pacific.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Slope is derived from gridded (40 m cell size) multibeam bathymetry, collected aboard R/V AHI, and NOAA ship Hi'ialakai. Cell values reflect the maximum rate of...

  18. 60 m Rugosity grid derived from gridded bathymetry of Wake Island, West Central Pacific.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Rugosity is derived from gridded (60 m cell size) multibeam bathymetry, collected aboard NOAA ship Hi'ialakai and R/V AHI using the Benthic Terrain Modeler with...

  19. Bathymetry 1m GRID of St. Thomas, US Virgin Islands, 2004, UTM 20 WGS84

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains an ESRI Grid with 1 meter cell size representing the bathymetry of the south shore of St. Thomas, US Virgin Islands. NOAA's NOS/NCCOS/CCMA...

  20. CRED 10 m Gridded multibeam bathymetry of Wake Island, West Central Pacific

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded bathymetry shelf, bank and slope environments of Wake Island, West Central Pacific, under joint management of the United States Dept. of Interior and Air...

  1. Slope 20 m grid derived from gridded bathymetry of Brooks Banks, Hawaii, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Slope is derived from gridded (20 m cell size) multibeam bathymetry, collected aboard NOAA ship Hi'ialakai and R/V AHI. Cell values reflect the maximum rate of...

  2. Northeast Puerto Rico and Culebra Island Bathymetry Model - NOAA TIFF Image

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This GeoTiff is a bathymetry model of the seafloor of Northeast Puerto Rico that contains the shallow water area (0-35m deep) of the Northeast Ecological Reserve:...

  3. Slope grid derived from gridded bathymetry of Johnston Island, Pacific Remote Island Areas, Central Pacific.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Slope is derived from gridded (20 m cell size) multibeam bathymetry, collected aboard R/V AHI, and NOAA ship Hi'ialakai. Cell values reflect the maximum rate of...

  4. CRED 60 m Gridded multibeam bathymetry of Wake Island, West Central Pacific

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded bathymetry shelf, bank and slope environments of Wake Island, West Central Pacific, under joint management of the United States Dept. of Interior and Air...

  5. CRED 5m Gridded multibeam bathymetry of Guam Island, Guam U.S. Territory

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded bathymetry shelf, bank and slope environments of Guam Island, Guam U.S. Territory. Bottom coverage was achieved in depths between 0 and -3532 meters but this...

  6. OW Smith and Sandwell v8.2 - 1/30 Degree Bathymetry & Topography

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Global bathymetry and topography information at 1/30 degree resolution. Data collected by means of in-situ and satellite measurements.

  7. Slope 60 m grid derived from gridded bathymetry of Rota Island, Mariana Islands, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Slope is derived from gridded (60 m cell size) multibeam bathymetry, collected aboard NOAA Ship Hiialaka'i and R/V AHI. Cell values reflect the maximum rate of...

  8. Rugosity grid derived from gridded bathymetry of Howland Island, Pacific Remote Island Areas, Central Pacific

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Rugosity is derived from gridded (40 m cell size) multibeam bathymetry, collected aboard R/V AHI and NOAA ship Hi'ialakai. Cell values reflect the (surface area) /...

  9. Rugosity grid derived from gridded bathymetry of of Baker Island, Pacific Remote Island Areas, Central Pacific.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Rugosity is derived from gridded (20 m cell size) multibeam bathymetry, collected aboard R/V AHI and NOAA ship Hi'ialakai. Cell values reflect the (surface area) /...

  10. Slope grid derived from gridded bathymetry of Baker Island, Pacific Remote Island Areas, Central Pacific.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Slope is derived from gridded (20 m cell size) multibeam bathymetry, collected aboard R/V AHI, and NOAA ship Hi'ialakai. Cell values reflect the maximum rate of...

  11. Rugosity grid derived from gridded bathymetry of of Johnston Island, Pacific Remote Island Areas, Central Pacific.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Rugosity is derived from gridded (20 m cell size) multibeam bathymetry, collected aboard R/V AHI and NOAA ship Hi'ialakai. Cell values reflect the (surface area) /...

  12. Worldwide Database of Analog Marine Seismics, Bathymetry, Magnetics, and Gravity Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Analog Marine Geophysical Underway data file consists primarily of seismic data and some bathymetry, magnetics, and gravity data. Most of the data are released...

  13. CRED Rugosity grid derived from gridded bathymetry of Tutuila Island, American Samoa, South Pacific

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Rugosity is derived from gridded (5 m cell size) multibeam bathymetry, collected aboard NOAA Ship Hiialaka'i and R/V AHI, using the Benthic Terrain Modeler with...

  14. Rugosity grid derived from gridded bathymetry of Kure Atoll, Hawaii, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Rugosity is derived from gridded (5 m cell size) multibeam bathymetry, collected aboard NOAA Ship Hiialaka'i and R/V AHI, and IKONOS derived depths using the Benthic...

  15. Rugosity grid derived from gridded bathymetry of French Frigate Shoals, Hawaii, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Rugosity is derived from gridded (5 m cell size) multibeam bathymetry, collected aboard NOAA Ship Hiialaka'i and R/V AHI, using the Benthic Terrain Modeler with...

  16. Rugosity 60 m grid derived from gridded bathymetry of Rota Island, Mariana Islands, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Rugosity is derived from gridded (60 m cell size) multibeam bathymetry, collected aboard NOAA Ship Hiialaka'i and R/V AHI, using the Benthic Terrain Modeler with...

  17. Rugosity grid derived from gridded bathymetry of Pearl and Hermes Atoll, Hawaii, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Rugosity is derived from gridded (5 m cell size) multibeam bathymetry, collected aboard NOAA Ship Hiialaka'i and R/V AHI, and IKONOS derived depths using the Benthic...

  18. Rugosity 5m grid derived from gridded bathymetry of Brooks Banks, Hawaii, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Rugosity is derived from gridded (5 m cell size) multibeam bathymetry, collected aboard NOAA ship Hi'ialakai and R/V AHI using the Benthic Terrain Modeler with...

  19. Gridded multibeam bathymetry of Rota Island, Commonwealth of the Northern Mariana Islands (CNMI)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded bathymetry shelf, bank and slope environments of Rota Island, CNMI. Bottom coverage was achieved in depths between 0 and -1905 meters. The netCDF and Arc...

  20. Bathymetry of Mid Shelf Reef, US Virgin Islands 2005, 1M Grid, UTM 20 NAD83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains an ESRI Grid with 1 meter cell size representing the bathymetry of the Mid Shelf Reef south of St. Thomas, US Virgin Islands. NOAA's...

  1. OMI/Aura and MODIS/Aqua Merged Cloud Product 1-Orbit L2 Swath 13x24 km V003

    Data.gov (United States)

    National Aeronautics and Space Administration — The OMI/Aura and MODIS/Aqua Merged Cloud Product 1-Orbit L2 Swath 13x24 km (OMMYDCLD) is a Level-2 orbital product that combines cloud parameters retrieved by the...

  2. OMI/Aura and MODIS/Aqua Merged Cloud Product 1-Orbit L2 Swath 13x24 km V003 (OMMYDCLD) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — The OMI/Aura and MODIS/Aqua Merged Cloud Product 1-Orbit L2 Swath 13x24 km (OMMYDCLD) is a Level-2 orbital product that combines cloud parameters retrieved by the...

  3. Research on bathymetry estimation by Worldview-2 based with the semi-analytical model

    Science.gov (United States)

    Sheng, L.; Bai, J.; Zhou, G.-W.; Zhao, Y.; Li, Y.-C.

    2015-04-01

    South Sea Islands of China are far away from the mainland, the reefs takes more than 95% of south sea, and most reefs scatter over interested dispute sensitive area. Thus, the methods of obtaining the reefs bathymetry accurately are urgent to be developed. Common used method, including sonar, airborne laser and remote sensing estimation, are limited by the long distance, large area and sensitive location. Remote sensing data provides an effective way for bathymetry estimation without touching over large area, by the relationship between spectrum information and bathymetry. Aimed at the water quality of the south sea of China, our paper develops a bathymetry estimation method without measured water depth. Firstly the semi-analytical optimization model of the theoretical interpretation models has been studied based on the genetic algorithm to optimize the model. Meanwhile, OpenMP parallel computing algorithm has been introduced to greatly increase the speed of the semi-analytical optimization model. One island of south sea in China is selected as our study area, the measured water depth are used to evaluate the accuracy of bathymetry estimation from Worldview-2 multispectral images. The results show that: the semi-analytical optimization model based on genetic algorithm has good results in our study area;the accuracy of estimated bathymetry in the 0-20 meters shallow water area is accepted.Semi-analytical optimization model based on genetic algorithm solves the problem of the bathymetry estimation without water depth measurement. Generally, our paper provides a new bathymetry estimation method for the sensitive reefs far away from mainland.

  4. Direct Numerical Simulation of Turbulent Flow Over Complex Bathymetry

    Science.gov (United States)

    Yue, L.; Hsu, T. J.

    2017-12-01

    Direct numerical simulation (DNS) is regarded as a powerful tool in the investigation of turbulent flow featured with a wide range of time and spatial scales. With the application of coordinate transformation in a pseudo-spectral scheme, a parallelized numerical modeling system was created aiming at simulating flow over complex bathymetry with high numerical accuracy and efficiency. The transformed governing equations were integrated in time using a third-order low-storage Runge-Kutta method. For spatial discretization, the discrete Fourier expansion was adopted in the streamwise and spanwise direction, enforcing the periodic boundary condition in both directions. The Chebyshev expansion on Chebyshev-Gauss-Lobatto points was used in the wall-normal direction, assuming there is no-slip on top and bottom walls. The diffusion terms were discretized with a Crank-Nicolson scheme, while the advection terms dealiased with the 2/3 rule were discretized with an Adams-Bashforth scheme. In the prediction step, the velocity was calculated in physical domain by solving the resulting linear equation directly. However, the extra terms introduced by coordinate transformation impose a strict limitation to time step and an iteration method was applied to overcome this restriction in the correction step for pressure by solving the Helmholtz equation. The numerical solver is written in object-oriented C++ programing language utilizing Armadillo linear algebra library for matrix computation. Several benchmarking cases in laminar and turbulent flow were carried out to verify/validate the numerical model and very good agreements are achieved. Ongoing work focuses on implementing sediment transport capability for multiple sediment classes and parameterizations for flocculation processes.

  5. Greenland's 20th Century retreat illuminated - great spatial variability with strong connections to subglacial topography and fjord bathymetry

    Science.gov (United States)

    Bjork, A. A.; Kjeldsen, K. K.; Boeckel, M. V.; Korsgaard, N. J.; Fenty, I. G.; Khan, S. A.; Mouginot, J.; Morlighem, M.; Rignot, E. J.; Dowdeswell, J. A.; Kjaer, K. H.

    2017-12-01

    Mass loss acceleration from the Greenland Ice Sheet is a dominant contributor in recent global sea-level rise, and has been for several decades. While ice sheet wide mass loss has recently been documented from the end of the Little Ice Age (c. 1900 CE) to the 1980s, the detailed changes during this period remain poorly known. In this study, we map glacier margins of Greenland's 310 largest outlet glaciers in order to get the full picture of the 20th Century mass loss. We take advantage of the rich history of aerial photography over Greenland and combine photos from archives in Denmark, Norway, United Kingdom, and United States. We supplement the historical aerial photographs with declassified US spy satellite imagery and recent satellite imagery to document glacial retreat and advance on a decadal scale. With recent advances in bathymetry mapping and subglacial topography mapping, we are able to show that spatial differences in retreat throughout the last 100 years are largely controlled by the underlying topography. Our study further highlights hotspots of past rapid mass loss in Greenland, and discusses implications for periods of regional stability and advance.

  6. Historical bathymetry and bathymetric change in the Mississippi-Alabama coastal region, 1847-2009

    Science.gov (United States)

    Buster, Noreen A.; Morton, Robert A.

    2011-01-01

    Land loss and seafloor change around the Mississippi and Alabama (MS-AL) barrier islands are of great concern to the public and to local, state, and federal agencies. The islands provide wildlife protected areas and recreational land, and they serve as a natural first line of defense for the mainland against storm activity (index map on poster). Principal physical conditions that drive morphological seafloor and coastal change in this area include decreased sediment supply, sea-level rise, storms, and human activities (Otvos, 1970; Byrnes and others, 1991; Morton and others, 2004; Morton, 2008). Seafloor responses to the same processes can also affect the entire coastal zone. Sediment eroded from the barrier islands is entrained in the littoral system, where it is redistributed by alongshore currents. Wave and current activity is partially controlled by the profile of the seafloor, and this interdependency along with natural and anthropogenic influences has significant effects on nearshore environments. When a coastal system is altered by human activity such as dredging, as is the case of the MS-AL coastal region, the natural state and processes are altered, and alongshore sediment transport can be disrupted. As a result of deeply dredged channels, adjacent island migration is blocked, nearshore environments downdrift in the littoral system become sediment starved, and sedimentation around the channels is modified. Sediment deposition and erosion are reflected through seafloor evolution. In a rapidly changing coastal environment, understanding historically where and why changes are occurring is essential. To better assess the comprehensive dynamics of the MS-AL coastal zone, a 160-year evaluation of the bathymetry and bathymetric change of the region was conducted.

  7. CRED Cumulative Map of Percent Scleractinian Coral Cover along towed camera sled tracks and AUV dive tracks at Rota Island, Commonwealth of the Northern Mariana Islands

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This map displays optical validation observation locations and percent coverage of scleractinian coral overlaid on bathymetry. Optical data were collected by CRED...

  8. Constrained Inversion Of Aem Data For Mapping Of Bathymetry, Seabed Sediments And Aquifers

    DEFF Research Database (Denmark)

    Viezzoli, Andrea; Auken, Esben; Christiansen, Anders Vest

    A shallow (depth sediments and bedrock along the world's coastlines, rivers, lakes, and lagoons. Thesegeological units are extremely important, both environmentally and economically. Airborneelectromagnetic (AEM) data...... along the Murray river inAustralia. In both cases bird height was included as an inversion parameter, allowingcompensating for errors in laser altimeter reading over water....

  9. METH-33 - Performance assessment for the high resolution and wide swath (HRWS) post-Sentinel-1 SAR system

    DEFF Research Database (Denmark)

    Zonno, Mariantonietta; Maria J., Sanjuan-Ferrer,; Lopez-Dekker, Paco

    The next generation, post-Sentinel-1, ESA’s C-band synthetic aperture radar (SAR) system is conceived to provide simultaneously high azimuth resolution and wide swath width (HRWS).There are different ways in which the imaging capabilities of the HRWS SAR system can be exploited, which translate...... or numerical models and, if these are not available, real SAR images as well as numerical algorithms and some explicit simulations of the data and of the inversion process are employed. The tool uses as input the HRWS SAR instrument performance for the different applicable modes and produces as output results...

  10. SMALL ROV MARINE BOAT FOR BATHYMETRY SURVEYS OF SHALLOW WATERS – POTENTIAL IMPLEMENTATION IN MALAYSIA

    Directory of Open Access Journals (Sweden)

    K. T. Suhari

    2017-10-01

    Full Text Available Current practices in bathymetry survey (available method are indeed having some limitations. New technologies for bathymetry survey such as using unmanned boat has becoming popular in developed countries - filled in and served those limitations of existing survey methods. Malaysia as one of tropical country has it own river/water body characteristics and suitable approaches in conducting bathymetry survey. Thus, a study on this emerging technology should be conducted using enhanced version of small ROV boat with Malaysian rivers and best approaches so that the surveyors get benefits from the innovative surveying product. Among the available ROV boat for bathymetry surveying in the market, an Indonesian product called SHUMOO is among the promising products – economically and practically proven using a few sample areas in Indonesia. The boat was equipped and integrated with systems of remote sensing technology, GNSS, echo sounder and navigational engine. It was designed for riverbed surveys on shallow area such as small /medium river, lakes, reservoirs, oxidation/detention pond and other water bodies. This paper tries to highlight the needs and enhancement offered to Malaysian’ bathymetry surveyors/practitioners on the new ROV boat which make their task easier, faster, safer, economically effective and better riverbed modelling results. The discussion continues with a sample of Indonesia river (data collection and modelling since it is mostly similar to Malaysia’s river characteristics and suggests some improvement for Malaysia best practice.

  11. Small Rov Marine Boat for Bathymetry Surveys of Shallow Waters - Potential Implementation in Malaysia

    Science.gov (United States)

    Suhari, K. T.; Karim, H.; Gunawan, P. H.; Purwanto, H.

    2017-10-01

    Current practices in bathymetry survey (available method) are indeed having some limitations. New technologies for bathymetry survey such as using unmanned boat has becoming popular in developed countries - filled in and served those limitations of existing survey methods. Malaysia as one of tropical country has it own river/water body characteristics and suitable approaches in conducting bathymetry survey. Thus, a study on this emerging technology should be conducted using enhanced version of small ROV boat with Malaysian rivers and best approaches so that the surveyors get benefits from the innovative surveying product. Among the available ROV boat for bathymetry surveying in the market, an Indonesian product called SHUMOO is among the promising products - economically and practically proven using a few sample areas in Indonesia. The boat was equipped and integrated with systems of remote sensing technology, GNSS, echo sounder and navigational engine. It was designed for riverbed surveys on shallow area such as small /medium river, lakes, reservoirs, oxidation/detention pond and other water bodies. This paper tries to highlight the needs and enhancement offered to Malaysian' bathymetry surveyors/practitioners on the new ROV boat which make their task easier, faster, safer, economically effective and better riverbed modelling results. The discussion continues with a sample of Indonesia river (data collection and modelling) since it is mostly similar to Malaysia's river characteristics and suggests some improvement for Malaysia best practice.

  12. Influence of bathymetry in manganese nodule pilot mine site selection: A case study from the Central Indian Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Kodagali, V.N.

    Although manganese nodules are observed in all world oceans, known reserves cannot be only criterion in future mine sites selection and sizing. Detailed and accurate depth data is another major prerequisite. With the advent of multibeam swath...

  13. Preliminary bathymetry; Ester Passage to Eaglek Island, Alaska

    Science.gov (United States)

    Post, Austin

    1980-01-01

    A map, scale 1:20,000, shows water depths, rocks, and hazards to navigation. These data are noted on track lines run by the Research Vessel Growler in Alaskan waters, where data on navigation shown on published charts are nonexistant, preliminary, or out dated. (USGS)

  14. The beauty of being (label)-free: sample preparation methods for SWATH-MS and next-generation targeted proteomics

    Science.gov (United States)

    Campbell, Kate; Deery, Michael J.; Lilley, Kathryn S.; Ralser, Markus

    2014-01-01

    The combination of qualitative analysis with label-free quantification has greatly facilitated the throughput and flexibility of novel proteomic techniques. However, such methods rely heavily on robust and reproducible sample preparation procedures. Here, we benchmark a selection of in gel, on filter, and in solution digestion workflows for their application in label-free proteomics. Each procedure was associated with differing advantages and disadvantages. The in gel methods interrogated were cost effective, but were limited in throughput and digest efficiency. Filter-aided sample preparations facilitated reasonable processing times and yielded a balanced representation of membrane proteins, but led to a high signal variation in quantification experiments. Two in solution digest protocols, however, gave optimal performance for label-free proteomics. A protocol based on the detergent RapiGest led to the highest number of detected proteins at second-best signal stability, while a protocol based on acetonitrile-digestion, RapidACN, scored best in throughput and signal stability but came second in protein identification. In addition, we compared label-free data dependent (DDA) and data independent (SWATH) acquisition on a TripleTOF 5600 instrument. While largely similar in protein detection, SWATH outperformed DDA in quantification, reducing signal variation and markedly increasing the number of precisely quantified peptides. PMID:24741437

  15. California State Waters Map Series—Monterey Canyon and vicinity, California

    Science.gov (United States)

    Dartnell, Peter; Maier, Katherine L.; Erdey, Mercedes D.; Dieter, Bryan E.; Golden, Nadine E.; Johnson, Samuel Y.; Hartwell, Stephen R.; Cochrane, Guy R.; Ritchie, Andrew C.; Finlayson, David P.; Kvitek, Rikk G.; Sliter, Ray W.; Greene, H. Gary; Davenport, Clifton W.; Endris, Charles A.; Krigsman, Lisa M.; Dartnell, Peter; Cochran, Susan A.

    2016-06-10

    IntroductionIn 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within the 3-nautical-mile limit of California’s State Waters. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath bathymetry data, acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow subsurface geology.The Monterey Canyon and Vicinity map area lies within Monterey Bay in central California. Monterey Bay is one of the largest embayments along the west coast of the United States, spanning 36 km from its northern to southern tips (in Santa Cruz and Monterey, respectively) and 20 km along its central axis. Not only does it contain one of the broadest sections of continental shelf along California’s coast, it also contains Monterey Canyon, one of the largest and deepest submarine canyons in the world. Note that the California’s State Waters limit extends farther offshore between Santa Cruz and Monterey so that it encompasses all of Monterey Bay.The coastal area within the map area is lightly populated. The community of Moss Landing (population, 204) hosts the largest commercial fishing fleet in Monterey Bay in its harbor. The map area also includes parts of the cities of Marina (population, about 20,000) and Castroville (population, about 6,500). Fertile lowlands of the Salinas River and Pajaro River valleys largely occupy the inland part of the map area, and land use is primarily agricultural.The offshore part of the map area lies completely within the Monterey Bay National Marine Sanctuary. The

  16. Gridded bathymetry of 35 fthm Bank, and 37 fthm Bank, north of Farallon de Medinilla, CNMI, USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded bathymetry (5m) of the bank environment of 35-fthm Bank and 37 fthm Bank,CNMI USA. These netCDF and ASCII grids include multibeam bathymetry from the Reson...

  17. Review on Available Information on Wind, Water Level, Current, Geology and Bathymetry in the DanWEC Area

    DEFF Research Database (Denmark)

    Margheritini, Lucia

    level, geology and bathymetry information at the DanWEC location. The present report has been prepared under the project No. 834101 “DanWEC Vaekstforum 2011”, task 3: “Collection and presentation of basic data about wind, current, water head, bathymetry and geology for the DanWEC site at the Port...

  18. Bathymetry and acoustic backscatter of the mid and outer continental shelf, head of De Soto Canyon, northeastern Gulf of Mexico

    Science.gov (United States)

    Gardner, James V.; Hughes-Clarke, John E.; Meyer, Larry A.

    2002-01-01

    The mid to outer continental shelf off Mississippi-Alabama and off northwest Florida were the focus of US Geological Survey (USGS) multibeam echosounder (MBES) mapping cruises in 2000 and 2001, respectively. These areas were mapped to investigate the extent of "deep-water reefs" first suggested by Ludwick and Walton (1957). The reefs off Mississippi and Alabama were initially described in water depths of 60 to 120 m (Ludwick and Walton, 1957) but the 2000 mapping found reef and hardgrounds to be much more extensive than previously thought (Gardner et al., 2001). The persistent trend of reef-like features along the outer shelf of Mississippi-Alabama suggested the trend might continue along the northwest Florida mid and outer shelf so a MBES-mapping effort was mounted in 2001 to test this suggestion. It is critical to determine the accurate location, geomorphology, and types of the ridges and reefs that occur in this region to understand the Quaternary history of the area and to assess their importance as benthic habitats for fisheries. The 2001 survey found a series of shelf-depth platforms with ridges (possibly reefs) constructed on their surfaces (Gardner et al., 2002). The area known as the "head of De Soto Canyon" is the large unmapped region between the 2000 and 2001 mapped areas. The head of De Soto Canyon is an outer shelf zone with a relatively steep western wall and a much gentler eastern wall. It was unknown prior to this cruise whether the reefs of the Mississippi-Alabama shelf continue eastward into the head of De Soto Canyon and connect with the ridges and reefs mapped on the northwest Florida outer shelf. The existence of carbonate-cemented latest Quaternary to Holocene sandstones along the western wall of the head of De Soto Canyon (Shipp and Hopkins, 1978; Benson et al., 1997; W.W. Schroeder, personnel comm., 2002) is of interest because of the potential benthic habitats they may represent. Precisely georeferenced high-resolution mapping of

  19. Bathymetric Position Index (BPI) Structures 40 m grid derived from gridded bathymetry of Howland Island, Pacific Remote Island Areas, Central Pacific.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Structures are derived from two scales of a focal mean analysis on bathymetry and slope. The grid is based on gridded (40 m cell size) multibeam bathymetry,...

  20. Bathymetric Position Index (BPI) Structures 10 m grid derived from gridded bathymetry of Supply Reef, Commonwealth of the Northern Mariana Islands (CNMI), USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Structures are derived from two scales of a focal mean analysis on bathymetry and slope. The grid is based on gridded (10 m cell size) multibeam bathymetry,...

  1. Bathymetric Position Index (BPI) Zones 10 m grid derived from gridded bathymetry of Maug Island, Commonwealth of the Northern Mariana Islands, USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Zones are derived from a focal mean analysis on bathymetry and slope. The grid is based on gridded (10 m cell size) multibeam bathymetry, collected aboard NOAA...

  2. Bathymetric Position Index (BPI) Structures 20 m grid derived from gridded bathymetry of Johnston Island, Pacific Remote Island Areas, Central Pacific.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Structures are derived from two scales of a focal mean analysis on bathymetry and slope. The grid is based on gridded (20 m cell size) multibeam bathymetry,...

  3. Bathymetric Position Index (BPI) Zones 10 m grid derived from gridded bathymetry of Sarigan Island, Commonwealth of the Northern Mariana Islands, USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Zones are derived from a focal mean analysis on bathymetry and slope. The grid is based on gridded (10 m cell size) multibeam bathymetry, collected aboard NOAA...

  4. Bathymetric Position Index (BPI) Structures 10 m grid derived from gridded bathymetry of Maug Island, Commonwealth of the Northern Mariana Islands (CNMI), USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Structures are derived from two scales of a focal mean analysis on bathymetry and slope. The grid is based on gridded (10 m cell size) multibeam bathymetry,...

  5. Bathymetric Position Index (BPI) Structures 10 m grid derived from gridded bathymetry of Alamagan Island, Commonwealth of the Northern Mariana Islands (CNMI), USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Structures are derived from two scales of a focal mean analysis on bathymetry and slope. The grid is based on gridded (10 m cell size) multibeam bathymetry,...

  6. Bathymetric Position Index (BPI) Zones 5 m grid derived from gridded bathymetry of Ofu and Olosega Islands, Territory of American Samoa, USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Zones are derived from a focal mean analysis on bathymetry and slope. The grid is based on gridded (5 m cell size) multibeam bathymetry, collected aboard R/V...

  7. Bathymetric Position Index (BPI) Zones 10 m grid derived from gridded bathymetry of Asuncion Island, Commonwealth of the Northern Mariana Islands, USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Zones are derived from a focal mean analysis on bathymetry and slope. The grid is based on gridded (10 m cell size) multibeam bathymetry collected aboard NOAA...

  8. Bathymetric Position Index (BPI) Zones derived from gridded bathymetry of Farallon de Medinilla (FDM), Commonwealth of the Northern Mariana (CNMI), USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Zones are derived from a focal mean analysis on bathymetry and slope. The grid is derived from gridded (5 m cell size) bathymetry and was created using the...

  9. Bathymetric Position Index (BPI) Structures derived from gridded bathymetry of Farallon de Medinilla (FDM), Commonwealth of the Northern Mariana (CNMI), USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Structures are derived from two scales of a focal mean analysis on bathymetry and slope. The grid is based on gridded (5 m cell size) multibeam bathymetry,...

  10. Bathymetric Position Index (BPI) Structures 20 m grid derived from gridded bathymetry of Baker Island, Pacific Remote Island Areas, Central Pacific.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Structures are derived from two scales of a focal mean analysis on bathymetry and slope. The grid is based on gridded (20 m cell size) multibeam bathymetry,...

  11. Bathymetric Position Index (BPI) Structures 5 m grid derived from gridded bathymetry of Rota Island, Commonwealth of the Northern Mariana Islands (CNMI), USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Structures are derived from two scales of a focal mean analysis on bathymetry and slope. The grid is based on gridded (5 m cell size) multibeam bathymetry,...

  12. Bathymetric Position Index (BPI) Structures 10 m grid derived from gridded bathymetry of Guguan Island, Commonwealth of the Northern Mariana Islands (CNMI), USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Structures are derived from two scales of a focal mean analysis on bathymetry and slope. The grid is based on gridded (10 m cell size) multibeam bathymetry,...

  13. Bathymetric Position Index (BPI) Structures 5 m grid derived from gridded bathymetry of Ta'u Island, Territory of American Samoa, USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Structures are derived from two scales of a focal mean analysis on bathymetry and slope. The grid is based on gridded (5 m cell size) multibeam bathymetry,...

  14. Bathymetric Position Index (BPI) Structures 10 m grid derived from gridded bathymetry of Pagan Island, Commonwealth of the Northern Mariana Islands (CNMI), USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Structures are derived from two scales of a focal mean analysis on bathymetry and slope. The grid is based on gridded (10 m cell size) multibeam bathymetry,...

  15. Bathymetric Position Index (BPI) Zones 10 m grid derived from gridded bathymetry of Agrihan Island, Commonwealth of the Northern Mariana Islands, USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Zones are derived from a focal mean analysis on bathymetry and slope. The grid is based on gridded (10 m cell size) multibeam bathymetry, collected aboard NOAA...

  16. Bathymetric Position Index (BPI) Structures 10 m grid derived from gridded bathymetry of Asuncion Island, Commonwealth of the Northern Mariana Islands (CNMI), USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Structures are derived from two scales of a focal mean analysis on bathymetry and slope. The grid is based on gridded (10 m cell size) multibeam bathymetry...

  17. Bathymetric Position Index (BPI) Structures 5 m grid derived from gridded bathymetry of Ofu and Olosega Islands, Territory of American Samoa, USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Structures are derived from two scales of a focal mean analysis on bathymetry and slope. The grid is based on gridded (5 m cell size) multibeam bathymetry,...

  18. Bathymetric Position Index (BPI) Zones 5 m grid derived from gridded bathymetry of Rota Island, Commonwealth of the Northern Mariana Islands, USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Zones are derived from a focal mean analysis on bathymetry and slope. The grid is based on gridded (5 m cell size) multibeam bathymetry, collected aboard NOAA...

  19. California State Waters Map Series: offshore of San Gregorio, California

    Science.gov (United States)

    Cochrane, Guy R.; Dartnell, Peter; Greene, H. Gary; Watt, Janet T.; Golden, Nadine E.; Endris, Charles A.; Phillips, Eleyne L.; Hartwell, Stephen R.; Johnson, Samuel Y.; Kvitek, Rikk G.; Erdey, Mercedes D.; Bretz, Carrie K.; Manson, Michael W.; Sliter, Ray W.; Ross, Stephanie L.; Dieter, Bryan E.; Chin, John L.; Cochran, Susan A.; Cochrane, Guy R.; Cochran, Susan A.

    2014-01-01

    In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within the 3-nautical-mile limit of California's State Waters. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data, acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. The Offshore of San Gregorio map area is located in northern California, on the Pacific coast of the San Francisco Peninsula about 50 kilometers south of the Golden Gate. The map area lies offshore of the Santa Cruz Mountains, part of the northwest-trending Coast Ranges that run roughly parallel to the San Andreas Fault Zone. The Santa Cruz Mountains lie between the San Andreas Fault Zone and the San Gregorio Fault system. The nearest significant onshore cultural centers in the map area are San Gregorio and Pescadero, both unincorporated communities with populations well under 1,000. Both communities are situated inland of state beaches that share their names. No harbor facilities are within the Offshore of San Gregorio map area. The hilly coastal area is virtually undeveloped grazing land for sheep and cattle. The coastal geomorphology is controlled by late Pleistocene and Holocene slip in the San Gregorio Fault system. A westward bend in the San Andreas Fault Zone, southeast of the map area, coupled with right-lateral movement along the San Gregorio Fault system have caused regional folding and uplift. The coastal area consists of high coastal bluffs and vertical sea cliffs. Coastal promontories in

  20. California State Waters Map Series—Offshore of Monterey, California

    Science.gov (United States)

    Johnson, Samuel Y.; Dartnell, Peter; Hartwell, Stephen R.; Cochrane, Guy R.; Golden, Nadine E.; Watt, Janet T.; Davenport, Clifton W.; Kvitek, Rikk G.; Erdey, Mercedes D.; Krigsman, Lisa M.; Sliter, Ray W.; Maier, Katherine L.; Johnson, Samuel Y.; Cochran, Susan A.

    2016-08-18

    IntroductionIn 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within the 3-nautical-mile limit of California’s State Waters. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath bathymetry data, acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow subsurface geology.The Offshore of Monterey map area in central California is located on the Pacific Coast, about 120 km south of San Francisco. Incorporated cities in the map area include Seaside, Monterey, Marina, Pacific Grove, Carmel-by-the-Sea, and Sand City. The local economy receives significant resources from tourism, as well as from the Federal Government. Tourist attractions include the Monterey Bay Aquarium, Cannery Row, Fisherman’s Wharf, and the many golf courses near Pebble Beach, and the area serves as a gateway to the spectacular scenery and outdoor activities along the Big Sur coast to the south. Federal facilities include the Army’s Defense Language Institute, the Naval Postgraduate School, and the Fleet Numerical Meteorology and Oceanography Center (operated by the Navy). In 1994, Fort Ord army base, located between Seaside and Marina, was closed; much of former army base land now makes up the Fort Ord National Monument, managed by the U.S. Bureau of Land Management as part of the National Landscape Conservation System. In addition, part of the old Fort Ord is now occupied by California State University, Monterey Bay.The offshore part of the map area lies entirely within the Monterey Bay National

  1. Oceanographic data collected during the EX1402L2 (Gulf of Mexico Exploration and Mapping) expedition on NOAA Ship OKEANOS EXPLORER in the Gulf of Mexico from 2014-03-19 to 2014-04-04 (NODC Accession 0117723)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Transit mapping operations will collect bathymetry, sub-bottom profiles, water column backscatter, and seafloor backscatter over the continental shelf and Claypile...

  2. Multibeam bathymetry and CTD measurements in two fjord systems in southeastern Greenland

    DEFF Research Database (Denmark)

    Kjeldsen, Kristian Kjellerup; Weinrebe, Reimer Wilhelm; Bendtsen, Jørgen

    2017-01-01

    We present bathymetry and hydrological observations collected in the summer of 2014 from two fjordsystems in southeastern Greenland with a multibeam sonar system. Our results provide a detailed bathymetricmap of the fjord complex around the island of Skjoldungen in Skjoldungen Fjord and the outer...

  3. An X-Band Radar System for Bathymetry and Wave Field Analysis in a Harbour Area

    Directory of Open Access Journals (Sweden)

    Giovanni Ludeno

    2015-01-01

    Full Text Available Marine X-band radar based systems are well tested to provide information about sea state and bathymetry. It is also well known that complex geometries and non-uniform bathymetries provide a much bigger challenge than offshore scenarios. In order to tackle this issue a retrieval method is proposed, based on spatial partitioning of the data and the application of the Normalized Scalar Product (NSP, which is an innovative procedure for the joint estimation of bathymetry and surface currents. The strategy is then applied to radar data acquired around a harbour entrance, and results show that the reconstructed bathymetry compares well with ground truth data obtained by an echo-sounder campaign, thus proving the reliability of the whole procedure. The spectrum thus retrieved is then analysed to show the evidence of reflected waves from the harbour jetties, as confirmed by chain of hydrodynamic models of the sea wave field. The possibility of using a land based radar to reveal sea wave reflection is entirely new and may open up new operational applications of the system.

  4. Endeavor cruise 071 navigation and bathymetry, northern Hatteras Abyssal Plain

    International Nuclear Information System (INIS)

    Laine, E.P.; Friedrich, N.E.; McCreery, C.; Dickson, S.; Baker, M.

    1985-01-01

    Sub-bottom seismic profiling was carried out by R/V Endeavor during the summers of 1980 and 1981. Data collection was concentrated in LLWODP study area E-N3, which encompasses the northern Hatteras Abyssal Plain and the adjacent lower continental rise. Time, position, and depth were logged and marked on the seismic record at 15-minute intervals. These navigational and bathymetric data have been used to produce a time/position/depth listing, and a detailed bathymetric map of the northern Hatteras Abyssal Plain and surrounding physiographic provinces. 6 figures, 1 table

  5. Changes to subaqueous delta bathymetry following a high river flow event, Wax Lake Delta, LA, USA

    Science.gov (United States)

    Whaling, A. R.; Shaw, J.

    2017-12-01

    Sediment transport capacity is increased during high river flow (flood) events which are characterized by discharges that exceed the 15 year median daily statistic. The Wax Lake Delta (WLD) in coastal Louisiana has experienced 19 of these high flow events in the past 20 years, yet the depositional patterns of single floods are rarely measured in a field-scale deltaic setting. We characterize flood deposition and erosion patterns on the subaqueous portion of the WLD by differencing two Digital Elevation Models (DEMs) constructed from bathymetric surveys before and after the third largest flood in the WLD's recorded history. The total suspended sediment discharge for the 496 day inter-survey period was 2.14x107 cubic meters measured 21 km upstream of the delta apex. The difference map showed 1.06x107 cubic meters of sediment was deposited and 8.2x106 cubic meters was eroded, yielding 2.40x106 cubic meters of net deposition in the survey area ( 79.7 km2 ). Therefore the average deposition rate was 0.061 mm/day. Channel planform remained relatively unchanged for five out of six distributary passes however Gadwall Pass experienced a maximum channel displacement of 166 m ( 1 channel width) measured from the thalweg centerline. Channel tip extension was negligible. In addition, channel displacement was not concentrated at any portion along the channel centerline. Maximum erosion occurred within channel margins and increased upstream whereas maximum deposition occurred immediately outside the channel margins. Sediment eroded from the survey area was either subsequently re-deposited or transported out of the system. Our results show that up to 77.4% of deposition in the survey area originated from sediment eroded during the flood. Surprisingly, only 11.2% of the total suspended sediment discharge was retained in the subaqueous portion of the delta after the flood. We conclude that a high flow event does not produce channel progradation. Rather, high flow causes delta

  6. Comparision of Bathymetry and Bottom Characteristics From Hyperspectral Remote Sensing Data and Shipborne Acoustic Measurements

    Science.gov (United States)

    McIntyre, M. L.; Naar, D. F.; Carder, K. L.; Howd, P. A.; Lewis, J. M.; Donahue, B. T.; Chen, F. R.

    2002-12-01

    There is growing interest in applying optical remote sensing techniques to shallow-water geological applications such as bathymetry and bottom characterization. Model inversions of hyperspectral remote-sensing reflectance imagery can provide estimates of bottom albedo and depth. This research was conducted in support of the HyCODE (Hyperspectral Coupled Ocean Dynamics Experiment) project in order to test optical sensor performance and the use of a hyperspectral remote-sensing reflectance algorithm for shallow waters in estimating bottom depths and reflectance. The objective of this project was to compare optically derived products of bottom depths and reflectance to shipborne acoustic measurements of bathymetry and backscatter. A set of three high-resolution, multibeam surveys within an 18 km by 1.5 km shore-perpendicular transect 5 km offshore of Sarasota, Florida were collected at water depths ranging from 8 m to 16 m. These products are compared to bottom depths derived from aircraft remote-sensing data collected with the AVIRIS (Airborne Visible-Infrared Imaging Spectrometer) instrument data by means of a semi-analytical remote sensing reflectance model. The pixel size of the multibeam bathymetry and AVIRIS data are 0.25 m and 10 m, respectively. When viewed at full resolution, the multibeam bathymetry data show small-scale sedimentary bedforms (wavelength ~10m, amplitude ~1m) that are not observed in the lower resolution hyperspectral bathymetry. However, model-derived bottom depths agree well with a smoothed version of the multibeam bathymetry. Depths derived from shipborne hyperspectral measurements were accurate within 13%. In areas where diver observations confirmed biological growth and bioturbation, derived bottom depths were less accurate. Acoustic backscatter corresponds well with the aircraft hyperspectral imagery and in situ measurements of bottom reflectance. Acoustic backscatter was used to define the distribution of different bottom types

  7. Evaluating the potential for near-shore bathymetry on the Majuro Atoll, Republic of the Marshall Islands, using Landsat 8 and WorldView-3 imagery

    Science.gov (United States)

    Poppenga, Sandra K.; Palaseanu-Lovejoy, Monica; Gesch, Dean B.; Danielson, Jeffrey J.; Tyler, Dean J.

    2018-04-16

    Satellite-derived near-shore bathymetry (SDB) is becoming an increasingly important method for assessing vulnerability to climate change and natural hazards in low-lying atolls of the northern tropical Pacific Ocean. Satellite imagery has become a cost-effective means for mapping near-shore bathymetry because ships cannot collect soundings safely while operating close to the shore. Also, green laser light detection and ranging (lidar) acquisitions are expensive in remote locations. Previous research has demonstrated that spectral band ratio-based techniques, commonly called the natural logarithm approach, may lead to more precise measurements and modeling of bathymetry because of the phenomenon that different substrates at the same depth have approximately equal ratio values. The goal of this research was to apply the band ratio technique to Landsat 8 at-sensor radiance imagery and WorldView-3 atmospherically corrected imagery in the coastal waters surrounding the Majuro Atoll, Republic of the Marshall Islands, to derive near-shore bathymetry that could be incorporated into a seamless topobathymetric digital elevation model of Majuro. Attenuation of light within the water column was characterized by measuring at-sensor radiance and reflectance at different depths and calculating an attenuation coefficient. Bathymetric lidar data, collected by the U.S. Naval Oceanographic Office in 2006, were used to calibrate the SDB results. The bathymetric lidar yielded a strong linear relation with water depths. The Landsat 8-derived SDB estimates derived from the blue/green band ratio exhibited a water attenuation extinction depth of 6 meters with a coefficient of determination R2=0.9324. Estimates derived from the coastal/red band ratio had an R2=0.9597. At the same extinction depth, SDB estimates derived from WorldView-3 imagery exhibited an R2=0.9574. Because highly dynamic coastal shorelines can be affected by erosion, wetland loss, hurricanes, sea-level rise, urban

  8. CERES Clouds and Radiative Swath (CRS) data in HDF (CER_CRS_TRMM-PFM-VIRS_Edition2C)

    Science.gov (United States)

    Wielicki, Bruce A. (Principal Investigator)

    The Clouds and Radiative Swath (CRS) product contains one hour of instantaneous Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The CRS contains all of the CERES SSF product data. For each CERES footprint on the SSF the CRS also contains vertical flux profiles evaluated at four levels in the atmosphere: the surface, 500-, 70-, and 1-hPa. The CRS fluxes and cloud parameters are adjusted for consistency with a radiative transfer model and adjusted fluxes are evaluated at the four atmospheric levels for both clear-sky and total-sky. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-01-01; Stop_Date=2000-03-31] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Temporal_Resolution=1 hour; Temporal_Resolution_Range=Hourly - < Daily].

  9. CERES Clouds and Radiative Swath (CRS) data in HDF. (CER_CRS_Terra-FM2-MODIS_Edition2B)

    Science.gov (United States)

    Wielicki, Bruce A. (Principal Investigator)

    The Clouds and Radiative Swath (CRS) product contains one hour of instantaneous Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The CRS contains all of the CERES SSF product data. For each CERES footprint on the SSF the CRS also contains vertical flux profiles evaluated at four levels in the atmosphere: the surface, 500-, 70-, and 1-hPa. The CRS fluxes and cloud parameters are adjusted for consistency with a radiative transfer model and adjusted fluxes are evaluated at the four atmospheric levels for both clear-sky and total-sky. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-01-01; Stop_Date=2001-10-31] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Temporal_Resolution=1 hour; Temporal_Resolution_Range=Hourly - < Daily].

  10. CERES Clouds and Radiative Swath (CRS) data in HDF. (CER_CRS_Terra-FM2-MODIS_Edition2A

    Science.gov (United States)

    Wielicki, Bruce A. (Principal Investigator)

    The Clouds and Radiative Swath (CRS) product contains one hour of instantaneous Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The CRS contains all of the CERES SSF product data. For each CERES footprint on the SSF the CRS also contains vertical flux profiles evaluated at four levels in the atmosphere: the surface, 500-, 70-, and 1-hPa. The CRS fluxes and cloud parameters are adjusted for consistency with a radiative transfer model and adjusted fluxes are evaluated at the four atmospheric levels for both clear-sky and total-sky. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-01-01; Stop_Date=2001-10-31] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Temporal_Resolution=1 hour; Temporal_Resolution_Range=Hourly - < Daily].

  11. California State Waters Map Series: offshore of Santa Barbara, California

    Science.gov (United States)

    Johnson, Samuel Y.; Dartnell, Peter; Cochrane, Guy R.; Golden, Nadine E.; Phillips, Eleyne L.; Ritchie, Andrew C.; Greene, H. Gary; Krigsman, Lisa M.; Kvitek, Rikk G.; Dieter, Bryan E.; Endris, Charles A.; Seitz, Gordon G.; Sliter, Ray W.; Erdey, Mercedes D.; Gutierrez, Carlos I.; Wong, Florence L.; Yoklavich, Mary M.; Draut, Amy E.; Hart, Patrick E.; Conrad, James E.; Cochran, Susan A.; Johnson, Samuel Y.; Cochran, Susan A.

    2013-01-01

    In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within the 3-nautical-mile limit of California’s State Waters. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data, acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. The Offshore of Santa Barbara map area lies within the central Santa Barbara Channel region of the Southern California Bight. This geologically complex region forms a major biogeographic transition zone, separating the cold-temperate Oregonian province north of Point Conception from the warm-temperate California province to the south. The map area is in the southern part of the Western Transverse Ranges geologic province, which is north of the California Continental Borderland. Significant clockwise rotation—at least 90°—since the early Miocene has been proposed for the Western Transverse Ranges province, and geodetic studies indicate that the region is presently undergoing north-south shortening. Uplift rates (as much as 2.2 mm/yr) that are based on studies of onland marine terraces provide further evidence of significant shortening. The city of Santa Barbara, the main coastal population center in the map area, is part of a contiguous urban area that extends from Carpinteria to Goleta. This urban area was developed on the coalescing alluvial surfaces, uplifted marine terraces, and low hills that lie south of the east-west-trending Santa Ynez Mountains. Several beaches line the actively

  12. Perched Lava Pond Complex on South Rift of Axial Volcano Revealed in AUV Mapping

    Science.gov (United States)

    Paduan, J. B.; Clague, D. A.; Caress, D. W.; Thomas, H. J.

    2013-12-01

    An extraordinary lava pond complex is located on Axial Volcano's distal south rift. It was discovered in EM300 multibeam bathymetry collected in 1998, and explored and sampled with ROVs Tiburon in 2005 and Doc Ricketts in 2013. It was surveyed with the MBARI Mapping AUV D. Allan B. in 2011, in a complicated mission first flying above the levees at constant depth, then skimming ~5 m over the levees at a different constant depth to survey the floors, then twice switching to constant altitude mode to map outside the ponds. The AUV navigation was adjusted using the MB-System tool mbnavadjust so that bathymetric features match in overlapping and crossing swaths. The ~1-m resolution AUV bathymetry reveals extremely rough terrain, where low-resolution EM300 data had averaged acoustic returns and obscured details of walls, floors, a breach and surrounding flows, and gives context to the ROV observations and samples. The 6 x 1.5 km pond complex has 4 large and several smaller drained ponds with rims 67 to 106 m above the floors. The combined volume before draining was 0.56 km3. The ponds overflowed to build lobate-flow levees with elongate pillows draping outer flanks, then drained, leaving lava veneer on vertical inner walls. Levee rim depths vary by only 10 m and are deeper around the southern ponds. Deep collapse-pits in the levees suggest porosity of pond walls. The eastern levee of the northeastern pond breached, draining the interconnected ponds, and fed thick, rapidly-emplaced, sheet-flows along the complex's east side. These flows travelled at least 5.5 km down-rift and have 19-33 m deep drained ponds. They extended up-rift as well, forming a 10 x 2.5 km ponded flow with level 'bathtub rings' as high as 35 m above the floor marking that flow's high-stand. Despite the breach, at least 0.066 km3 of the molten interior of the large ponds also drained back down the eruptive fissures, as the pond floors are deeper than the sill and sea floor outside the complex. Tumulus

  13. SWATHtoMRM: Development of High-Coverage Targeted Metabolomics Method Using SWATH Technology for Biomarker Discovery.

    Science.gov (United States)

    Zha, Haihong; Cai, Yuping; Yin, Yandong; Wang, Zhuozhong; Li, Kang; Zhu, Zheng-Jiang

    2018-03-20

    The complexity of metabolome presents a great analytical challenge for quantitative metabolite profiling, and restricts the application of metabolomics in biomarker discovery. Targeted metabolomics using multiple-reaction monitoring (MRM) technique has excellent capability for quantitative analysis, but suffers from the limited metabolite coverage. To address this challenge, we developed a new strategy, namely, SWATHtoMRM, which utilizes the broad coverage of SWATH-MS technology to develop high-coverage targeted metabolomics method. Specifically, SWATH-MS technique was first utilized to untargeted profile one pooled biological sample and to acquire the MS 2 spectra for all metabolites. Then, SWATHtoMRM was used to extract the large-scale MRM transitions for targeted analysis with coverage as high as 1000-2000 metabolites. Then, we demonstrated the advantages of SWATHtoMRM method in quantitative analysis such as coverage, reproducibility, sensitivity, and dynamic range. Finally, we applied our SWATHtoMRM approach to discover potential metabolite biomarkers for colorectal cancer (CRC) diagnosis. A high-coverage targeted metabolomics method with 1303 metabolites in one injection was developed to profile colorectal cancer tissues from CRC patients. A total of 20 potential metabolite biomarkers were discovered and validated for CRC diagnosis. In plasma samples from CRC patients, 17 out of 20 potential biomarkers were further validated to be associated with tumor resection, which may have a great potential in assessing the prognosis of CRC patients after tumor resection. Together, the SWATHtoMRM strategy provides a new way to develop high-coverage targeted metabolomics method, and facilitates the application of targeted metabolomics in disease biomarker discovery. The SWATHtoMRM program is freely available on the Internet ( http://www.zhulab.cn/software.php ).

  14. Multi-omic network-based interrogation of rat liver metabolism following gastric bypass surgery featuring SWATH proteomics.

    Science.gov (United States)

    Sridharan, Gautham Vivek; D'Alessandro, Matthew; Bale, Shyam Sundhar; Bhagat, Vicky; Gagnon, Hugo; Asara, John M; Uygun, Korkut; Yarmush, Martin L; Saeidi, Nima

    2017-09-01

    Morbidly obese patients often elect for Roux-en-Y gastric bypass (RYGB), a form of bariatric surgery that triggers a remarkable 30% reduction in excess body weight and reversal of insulin resistance for those who are type II diabetic. A more complete understanding of the underlying molecular mechanisms that drive the complex metabolic reprogramming post-RYGB could lead to innovative non-invasive therapeutics that mimic the beneficial effects of the surgery, namely weight loss, achievement of glycemic control, or reversal of non-alcoholic steatohepatitis (NASH). To facilitate these discoveries, we hereby demonstrate the first multi-omic interrogation of a rodent RYGB model to reveal tissue-specific pathway modules implicated in the control of body weight regulation and energy homeostasis. In this study, we focus on and evaluate liver metabolism three months following RYGB in rats using both SWATH proteomics, a burgeoning label free approach using high resolution mass spectrometry to quantify protein levels in biological samples, as well as MRM metabolomics. The SWATH analysis enabled the quantification of 1378 proteins in liver tissue extracts, of which we report the significant down-regulation of Thrsp and Acot13 in RYGB as putative targets of lipid metabolism for weight loss. Furthermore, we develop a computational graph-based metabolic network module detection algorithm for the discovery of non-canonical pathways, or sub-networks, enriched with significantly elevated or depleted metabolites and proteins in RYGB-treated rat livers. The analysis revealed a network connection between the depleted protein Baat and the depleted metabolite taurine, corroborating the clinical observation that taurine-conjugated bile acid levels are perturbed post-RYGB.

  15. Quantification of Lysine Acetylation and Succinylation Stoichiometry in Proteins Using Mass Spectrometric Data-Independent Acquisitions (SWATH)

    Science.gov (United States)

    Meyer, Jesse G.; D'Souza, Alexandria K.; Sorensen, Dylan J.; Rardin, Matthew J.; Wolfe, Alan J.; Gibson, Bradford W.; Schilling, Birgit

    2016-11-01

    Post-translational modification of lysine residues by NƐ-acylation is an important regulator of protein function. Many large-scale protein acylation studies have assessed relative changes of lysine acylation sites after antibody enrichment using mass spectrometry-based proteomics. Although relative acylation fold-changes are important, this does not reveal site occupancy, or stoichiometry, of individual modification sites, which is critical to understand functional consequences. Recently, methods for determining lysine acetylation stoichiometry have been proposed based on ratiometric analysis of endogenous levels to those introduced after quantitative per-acetylation of proteins using stable isotope-labeled acetic anhydride. However, in our hands, we find that these methods can overestimate acetylation stoichiometries because of signal interferences when endogenous levels of acylation are very low, which is especially problematic when using MS1 scans for quantification. In this study, we sought to improve the accuracy of determining acylation stoichiometry using data-independent acquisition (DIA). Specifically, we use SWATH acquisition to comprehensively collect both precursor and fragment ion intensity data. The use of fragment ions for stoichiometry quantification not only reduces interferences but also allows for determination of site-level stoichiometry from peptides with multiple lysine residues. We also demonstrate the novel extension of this method to measurements of succinylation stoichiometry using deuterium-labeled succinic anhydride. Proof of principle SWATH acquisition studies were first performed using bovine serum albumin for both acetylation and succinylation occupancy measurements, followed by the analysis of more complex samples of E. coli cell lysates. Although overall site occupancy was low (<1%), some proteins contained lysines with relatively high acetylation occupancy.

  16. Kadının ve Kaderin “Tırpan”ı Swath Of Woman And Fate

    Directory of Open Access Journals (Sweden)

    Salim DURUKOĞLU

    2013-07-01

    Full Text Available The novel Tırpan (Swath would be the most prominent outcome of a historical and literary brainstorming about the World Women’s Day in particular and the unfortunate faith of women in general. The novel Tırpan, which first merges and then separates the concepts of woman and faith, is one or probably the only work with a thesis that comes to the mind first in that it was written with the naïve belief that the faith will show up not before but after it is lived and generally all people particularly the women can write their faith; it questions the faith or the unfortunate faith of people, especially the that of women within the boundaries of the genre of novel, expanding to cover class clashes, the breaths of Marxist ideologies, and feminist viewpoints. Inherited from an image of old tool in our mind, accompanied with the motive of Azrael claiming lives with the swath in its hands, swath gains a function beyond that of an agricultural tool in this novel. Swath changes hand from Azrael to women and the woman punishes the man who disrespects her field of existence and freedom, thus reclaims and rewrites her faith with her own hands using the swath. Swath would preserve its function as a goal and an instrument in the writer’s hand, however, in terms of its consequences it will transform into a symbol of woman’s revolution as the hammer and sickle of the Bolshevist revolution. The author, who wants to create a resisting, active and activist women spirit and mentality instead of an understanding which takes it as an escape to commit suicide by hanging themselves when they are forced to get married as a passive reaction, tries to impose the fatalist Turkish society and Turkish women with the idea that they can reclaim their faiths and direct their own lives, offering and inspiring a shift of awareness through this novel. Özelde Dünya Kadınlar Günü ve genelde kadının makus talihi ve tarihi ekseninde ve edebiyat düzleminde yapaca

  17. Bathymetry and capacity of Shawnee Reservoir, Oklahoma, 2016

    Science.gov (United States)

    Ashworth, Chad E.; Smith, S. Jerrod; Smith, Kevin A.

    2017-02-13

    Shawnee Reservoir (locally known as Shawnee Twin Lakes) is a man-made reservoir on South Deer Creek with a drainage area of 32.7 square miles in Pottawatomie County, Oklahoma. The reservoir consists of two lakes connected by an equilibrium channel. The southern lake (Shawnee City Lake Number 1) was impounded in 1935, and the northern lake (Shawnee City Lake Number 2) was impounded in 1960. Shawnee Reservoir serves as a municipal water supply, and water is transferred about 9 miles by gravity to a water treatment plant in Shawnee, Oklahoma. Secondary uses of the reservoir are for recreation, fish and wildlife habitat, and flood control. Shawnee Reservoir has a normal-pool elevation of 1,069.0 feet (ft) above North American Vertical Datum of 1988 (NAVD 88). The auxiliary spillway, which defines the flood-pool elevation, is at an elevation of 1,075.0 ft.The U.S. Geological Survey (USGS), in cooperation with the City of Shawnee, has operated a real-time stage (water-surface elevation) gage (USGS station 07241600) at Shawnee Reservoir since 2006. For the period of record ending in 2016, this gage recorded a maximum stage of 1,078.1 ft on May 24, 2015, and a minimum stage of 1,059.1 ft on April 10–11, 2007. This gage did not report reservoir storage prior to this report (2016) because a sufficiently detailed and thoroughly documented bathymetric (reservoir-bottom elevation) survey and corresponding stage-storage relation had not been published. A 2011 bathymetric survey with contours delineated at 5-foot intervals was published in Oklahoma Water Resources Board (2016), but that publication did not include a stage-storage relation table. The USGS, in cooperation with the City of Shawnee, performed a bathymetric survey of Shawnee Reservoir in 2016 and released the bathymetric-survey data in 2017. The purposes of the bathymetric survey were to (1) develop a detailed bathymetric map of the reservoir and (2) determine the relations between stage and reservoir storage

  18. California State Waters Map Series--Offshore of Ventura, California

    Science.gov (United States)

    Johnson, Samuel Y.; Dartnell, Peter; Cochrane, Guy R.; Golden, Nadine E.; Phillips, Eleyne L.; Ritchie, Andrew C.; Kvitek, Rikk G.; Greene, H. Gary; Krigsman, Lisa M.; Endris, Charles A.; Seitz, Gordon G.; Gutierrez, Carlos I.; Sliter, Ray W.; Erdey, Mercedes D.; Wong, Florence L.; Yoklavich, Mary M.; Draut, Amy E.; Hart, Patrick E.; Johnson, Samuel Y.; Cochran, Susan A.

    2013-01-01

    In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within the 3-nautical-mile limit of California’s State Waters. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data, acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. The Offshore of Ventura map area lies within the Santa Barbara Channel region of the Southern California Bight. This geologically complex region forms a major biogeographic transition zone, separating the cold-temperate Oregonian province north of Point Conception from the warm-temperate California province to the south. The map area is in the Ventura Basin, in the southern part of the Western Transverse Ranges geologic province, which is north of the California Continental Borderland. Significant clockwise rotation—at least 90°—since the early Miocene has been proposed for the Western Transverse Ranges, and the region is presently undergoing north-south shortening. The city of Ventura is the major cultural center in the map area. The Ventura River cuts through Ventura, draining the Santa Ynez Mountains and the coastal hills north of Ventura. Northwest of Ventura, the coastal zone is a narrow strip containing highway and railway transportation corridors and a few small residential clusters. Rincon Island, an island constructed for oil and gas production, lies offshore of Punta Gorda. Southeast of Ventura, the coastal zone consists of the mouth and broad, alluvial plains of the Santa Clara River

  19. California State Waters Map Series: offshore of Carpinteria, California

    Science.gov (United States)

    Johnson, Samuel Y.; Dartnell, Peter; Cochrane, Guy R.; Golden, Nadine E.; Phillips, Eleyne L.; Ritchie, Andrew C.; Kvitek, Rikk G.; Greene, H. Gary; Endris, Charles A.; Seitz, Gordon G.; Sliter, Ray W.; Erdey, Mercedes D.; Wong, Florence L.; Gutierrez, Carlos I.; Krigsman, Lisa M.; Draut, Amy E.; Hart, Patrick E.; Johnson, Samuel Y.; Cochran, Susan A.

    2013-01-01

    In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within the 3-nautical-mile limit of California’s State Waters. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data, acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. The Offshore of Carpinteria map area lies within the central Santa Barbara Channel region of the Southern California Bight. This geologically complex region forms a major biogeographic transition zone, separating the cold-temperate Oregonian province north of Point Conception from the warm-temperate California province to the south. The map area is in the southern part of the Western Transverse Ranges geologic province, which is north of the California Continental Borderland. Significant clockwise rotation—at least 90°—since the early Miocene has been proposed for the Western Transverse Ranges province, and the region is presently undergoing north-south shortening. The small city of Carpinteria is the most significant onshore cultural center in the map area; the smaller town of Summerland lies west of Carpinteria. These communities rest on a relatively flat coastal piedmont that is surrounded on the north, east, and west by hilly relief on the flanks of the Santa Ynez Mountains. El Estero, a salt marsh on the coast west of Carpinteria, is an ecologically important coastal estuary. Southeast of Carpinteria, the coastal zone is narrow strip containing highway and railway transportation corridors

  20. A geomorphologist's dream come true: synoptic high resolution river bathymetry with the latest generation of airborne dual wavelength lidar

    Science.gov (United States)

    Lague, Dimitri; Launeau, Patrick; Michon, Cyril; Gouraud, Emmanuel; Juge, Cyril; Gentile, William; Hubert-Moy, Laurence; Crave, Alain

    2016-04-01

    Airborne, terrestrial lidar and Structure From Motion have dramatically changed our approach of geomorphology, from low density/precision data, to a wealth of data with a precision adequate to actually measure topographic change across multiple scales, and its relation to vegetation. Yet, an important limitation in the context of fluvial geomorphology has been the inability of these techniques to penetrate water due to the use of NIR laser wavelengths or to the complexity of accounting for water refraction in SFM. Coastal bathymetric systems using a green lidar can penetrate clear water up to 50 m but have a resolution too coarse and deployment costs that are prohibitive for fluvial research and management. After early prototypes of narrow aperture green lidar (e.g., EEARL NASA), major lidar manufacturer are now releasing dual wavelength laser system that offer water penetration consistent with shallow fluvial bathymetry at very high resolution (> 10 pts/m²) and deployment costs that makes the technology, finally accessible. This offers unique opportunities to obtain synoptic high resolution, high precision data for academic research as well as for fluvial environment management (flood risk mapping, navigability,…). In this presentation, we report on the deployment of the latest generation Teledyne-Optech Titan dual-wavelength lidar (1064 nm + 532 nm) owned by the University of Nantes and Rennes. The instrument has been deployed over several fluvial and lacustrine environments in France. We present results and recommendation on how to optimize the bathymetric cover as a function of aerial and aquatic vegetation cover and the hydrology regime of the river. In the surveyed rivers, the penetration depth varies from 0.5 to 4 m with discrete echoes (i.e., onboard detection), heavily impacted by water clarity and bottom reflectance. Simple post-processing of the full waveform record allows to recover an additional 20 % depth. As for other lidar techniques, the main

  1. Computational modeling of river flow using bathymetry collected with an experimental, water-penetrating, green LiDAR

    Science.gov (United States)

    Kinzel, P. J.; Legleiter, C. J.; Nelson, J. M.

    2009-12-01

    Airborne bathymetric Light Detection and Ranging (LiDAR) systems designed for coastal and marine surveys are increasingly being deployed in fluvial environments. While the adaptation of this technology to rivers and streams would appear to be straightforward, currently technical challenges remain with regard to achieving high levels of vertical accuracy and precision when mapping bathymetry in shallow fluvial settings. Collectively these mapping errors have a direct bearing on hydraulic model predictions made using these data. We compared channel surveys conducted along the Platte River, Nebraska, and the Trinity River, California, using conventional ground-based methods with those made with the hybrid topographic/bathymetric Experimental Advanced Airborne Research LiDAR (EAARL). In the turbid and braided Platte River, a bathymetric-waveform processing algorithm was shown to enhance the definition of thalweg channels over a more simplified, first-surface waveform processing algorithm. Consequently flow simulations using data processed with the shallow bathymetric algorithm resulted in improved prediction of wetted area relative to the first-surface algorithm, when compared to the wetted area in concurrent aerial imagery. However, when compared to using conventionally collected data for flow modeling, the inundation extent was over predicted with the EAARL topography due to higher bed elevations measured by the LiDAR. In the relatively clear, meandering Trinity River, bathymetric processing algorithms were capable of defining a 3 meter deep pool. However, a similar bias in depth measurement was observed, with the LiDAR measuring the elevation of the river bottom above its actual position, resulting in a predicted water surface higher than that measured by field data. This contribution addresses the challenge of making bathymetric measurements with the EAARL in different environmental conditions encountered in fluvial settings, explores technical issues related to

  2. Altimetry, bathymetry and geoid variations at the Gavdos permanent Cal/Val facility

    DEFF Research Database (Denmark)

    Mertikas, Stelios P.; Daskalakis, Antonis; Tziavos, Ilias N.

    2013-01-01

    The aim of this work has been to examine the relationship of steep bathymetry in the coastal areas around the permanent Cal/Val facility of Gavdos, and their influence on the produced calibration values for the Jason-2 satellite altimeter. The paper describes how changes in seafloor topography...... (from 200 to 3500m depth over a distance of 10km) are reflected on the determined altimeter parameters using different reference surfaces for satellite calibration. Finally, it describes the relation between these parameter trends and the region’s local characteristics.Using 3.5years of Jason-2...... to be related to the general oceanographic circulation, but others of short wavelength (in the order of 1km) are because of the insufficient geoid model resolution. Along Pass No. 109, the concealed effect of bathymetry on the geoid has produced a slope of 3.1cm over 14–21km from Gavdos. Along the other Pass No...

  3. Multibeam bathymetry and CTD measurements in two fjord systems in southeastern Greenland

    DEFF Research Database (Denmark)

    Kjeldsen, Kristian Kjellerup; Weinrebe, Reimer Wilhelm; Bendtsen, Jørgen

    2017-01-01

    We present bathymetry and hydrological observations collected in the summer of 2014 from two fjordsystems in southeastern Greenland with a multibeam sonar system. Our results provide a detailed bathymetricmap of the fjord complex around the island of Skjoldungen in Skjoldungen Fjord and the outer...... of the distribution of subglacial meltwater. Data are available through the PANGAEA website at https://doi.pangaea.de/10.1594/PANGAEA.860627....

  4. Bathymetry 1M GRID of St. John (South Shore - Area 1), US Virgin Islands, 2004, UTM 20 WGS84

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains an ESRI Grid with 1 meter cell size representing the bathymetry of the south shore of St. John, US Virgin Islands. Due to the large file size...

  5. NOAA ESRI Geotiff- 1m Bathymetry of St. Thomas, US Virgin Islands, 2004, UTM 20 WGS84

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains an ESRI Geotiff with 1 meter cell size representing the bathymetry of the south shore of St. Thomas, US Virgin Islands.NOAA's NOS/NCCOS/CCMA...

  6. Bathymetry Surface Layer used to identify, delineate and classify moderate-depth benthic habitats around St. John, USVI

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This image represents a 2x2 meter resolution bathymetry surface of the moderate-depth portion of the NPS's Virgin Islands Coral Reef National Monument, south of St....

  7. CRED 40 m Gridded bathymetry of Howland Island, Pacific Remote Island Areas, Central Pacific (Arc ASCII Format)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded (40 m cell size) bathymetry of the shelf and slope environments of Howland Island, Pacific Remote Island Areas, Central Pacific. Almost complete bottom...

  8. NOAA TIFF Image - 50m Singlebeam Bathymetry, Charleston Bump - Deep Coral Priority Areas - Whiting - (2000), UTM 17N NAD83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a unified GeoTiff with 50x50 meter cell size representing the bathymetry of the Charleston Bump off of the South Atlantic Bight, derived from...

  9. NOAA TIFF Image - 50m Multibeam Bathymetry, Charleston Bump - Deep Coral Priority Areas - Whiting - (2001), UTM 17N NAD83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a unified GeoTiff with 50x50 meter cell size representing the bathymetry of the Charleston Bump off of the South Atlantic Bight, derived from...

  10. Gridded multibeam bathymetry of Aguijan, Tinian, Farallon de Medinilla and Saipan Islands and Tatsumi and Marpi Banks, CNMI

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded bathymetry shelf, bank and slope environments of Aguijan, Tinian, Farallon de Medinilla and Saipan Islands and Tatsumi and Marpi Banks, CNMI. Bottom coverage...

  11. NOAA TIFF Image - 3m Bathymetry Slope, Florida Deep Coral Areas - Lost Coast Explorer - (2010), UTM 17N NAD83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a unified GeoTiff with 3x3 meter cell size representing bathymetry of several deep coral priority areas off the Atlantic Coast of Florida,...

  12. Bathymetry 1M GRID of St. Croix (Buck Island), US Virgin Islands, 2004, UTM 20 WGS84

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains an ESRI Grid with 1 meter cell size representing the bathymetry of the north shore of Buck Island St. Croix, US Virgin Islands. NOAA's...

  13. NOAA TIFF Image - 3m Bathymetry Mosaic, Florida Deep Coral Areas - Lost Coast Explorer - (2010), UTM 17N NAD83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a unified GeoTiff with 3x3 meter cell size representing bathymetry of several deep coral priority areas off the Atlantic Coast of Florida,...

  14. NOAA TIFF Image - 3m Bathymetry, Florida Deep Coral Areas (Jacksonville) - Lost Coast Explorer - (2010), UTM 17N NAD83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a unified GeoTiff with 3x3 meter cell size representing bathymetry of several deep coral priority areas off the Atlantic Coast of Florida,...

  15. CRED 60 m Gridded bathymetry and IKONOS estimated depths of UTM Zone 2, Northwestern Hawaiian Islands, USA (Arc ASCII format)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded bathymetry and IKONOS estimated depths of the shelf and slope environments of the Northwestern Hawaiian Islands, USA within UTM Zone 2. Bottom coverage was...

  16. CRED 5 m Gridded bathymetry of Jarvis Island, Pacific Remote Island Areas, Central Pacific (Arc ASCII Format)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded (5 m cell size) bathymetry of the shelf and slope environments of Jarvis Island, Pacific Remote Island Areas, Central Pacific. Almost complete bottom...

  17. CRED 5 m Gridded bathymetry of Baker Island, Pacific Remote Island Areas, Central Pacific (Arc ASCII Format)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded (5 m cell size) bathymetry of the shelf and slope environments of Baker Island, Pacific Remote Isand Areas, Central Pacific. Almost complete bottom coverage...

  18. Bathymetry 1M Grid of St. Croix (Buck Island), US Virgin Islands 2005, UTM 20 NAD83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains an ESRI Grid with 1 meter cell size representing the bathymetry of the north shore of St. Croix (Buck Island), US Virgin Islands. NOAA's...

  19. Bathymetric Position Index (BPI) Zones derived from gridded bathymetry of Swains Island,Territory of American Samoa, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Zones are derived from gridded (40 m cell size) multibeam bathymetry, collected aboard R/V AHI and NOAA ship Hi'ialakai. BPI Zones was created using the Benthic...

  20. CRED 20m Gridded bathymetry and IKONOS estimated depths of Pearl and Hermes Atoll, Hawaii, USA (Arc ASCII format)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded bathymetry and IKONOS estimated depths of the shelf and slope environments of Pearl and Hermes Atoll, Hawaii, USA. Bottom coverage was achieved in depths...

  1. CRED 5 m Gridded bathymetry and IKONOS estimated depths of Pearl and Hermes Atoll, Hawaii, USA (Arc ASCII format)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded bathymetry and IKONOS estimated depths of the shelf and slope environments of Pearl and Hermes Atoll, Hawaii, USA. Bottom coverage was achieved in depths...

  2. CRED 20 m Gridded bathymetry and IKONOS estimated depths of Pearl and Hermes Atoll, Hawaii, USA (NetCDF format)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded bathymetry and IKONOS estimated depths of the shelf and slope environments of Pearl and Hermes Atoll, Hawaii, USA. Bottom coverage was achieved in depths...

  3. CRED 5 m Gridded bathymetry and IKONOS estimated depths of Pearl and Hermes Atoll, Hawaii, USA (NetCDF format)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded bathymetry and IKONOS estimated depths of the shelf and slope environments of Pearl and Hermes Atoll, Hawaii, USA. Bottom coverage was achieved in depths...

  4. NOAA ESRI Geotiff - 3m Multibeam Bathymetry, Puerto Rico (Isla de Vieques) - UTM 20N NAD83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains an ESRI Geotiff with 3 meter cell size representing the bathymetry of a selected portion of seafloor south of Isla de Vieques in Puerto Rico,...

  5. Slope 10 m grid derived from gridded bathymetry of Agrihan Island, Commonwealth of the Northern Mariana Islands (CNMI), USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Slope is derived from gridded (10 m cell size) multibeam bathymetry, collected aboard NOAA Ship Hiialaka'i and R/V AHI. Cell values reflect the maximum rate of...

  6. Slope 10 m grid derived from gridded bathymetry of Pagan Island, Commonwealth of the Northern Mariana Islands (CNMI), USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Slope is derived from gridded (10 m cell size) multibeam bathymetry, collected aboard NOAA Ship Hiialaka'i and R/V AHI. Cell values reflect the maximum rate of...

  7. Slope 10 m grid derived from gridded bathymetry of Guguan Island, Commonwealth of the Northern Mariana Islands (CNMI), USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Slope is derived from gridded (10 m cell size) multibeam bathymetry, collected aboard NOAA Ship Hiialaka'i and R/V AHI. Cell values reflect the maximum rate of...

  8. Slope 10 m grid derived from gridded bathymetry of Maug Island, Commonwealth of the Northern Mariana Islands (CNMI), USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Slope is derived from gridded (10 m cell size) multibeam bathymetry, collected aboard NOAA Ship Hiialaka'i and R/V AHI. Cell values reflect the maximum rate of...

  9. Slope 10 m grid derived from gridded bathymetry of Asuncion Island, Commonwealth of the Northern Mariana Islands (CNMI), USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Slope is derived from gridded (10 m cell size) multibeam bathymetry collected aboard NOAA Ship Hiialaka'i and R/V AHI. Cell values reflect the maximum rate of change...

  10. Slope 10 m grid derived from gridded bathymetry of Sarigan Island, Commonwealth of the Northern Mariana Islands (CNMI), USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Slope is derived from gridded (10 m cell size) multibeam bathymetry, collected aboard NOAA Ship Hiialaka'i and R/V AHI. Cell values reflect the maximum rate of...

  11. Slope 5 m grid derived from gridded bathymetry of Rota Island, Commonwealth of the Northern Mariana Islands (CNMI), USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Slope is derived from gridded (5 m cell size) multibeam bathymetry, collected aboard NOAA Ship Hiialaka'i and R/V AHI. Cell values reflect the maximum rate of change...

  12. Slope 10 m grid derived from gridded bathymetry of Supply Reef, Commonwealth of the Northern Mariana Islands (CNMI), USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Slope is derived from gridded (10 m cell size) multibeam bathymetry, collected aboard NOAA Ship Hiialaka'i and R/V AHI. Cell values reflect the maximum rate of...

  13. CRED 60m Gridded bathymetry and IKONOS estimated depths of UTM Zone 3, Northwestern Hawaiian Islands, USA (Arc ASCII format)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded bathymetry and IKONOS estimated depths of the shelf and slope environments of the Northwestern Hawaiian Islands, USA within UTM Zone 3. Bottom coverage was...

  14. NOAA ESRI Geotiff - 3m Multibeam Bathymetry, Puerto Rico (Isla de Vieques) - UTM 20N NAD83 (NCEI Accession 0131852)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains an ESRI Geotiff with 3 meter cell size representing the bathymetry of a selected portion of seafloor south of Isla de Vieques in Puerto Rico,...

  15. CRED 40 m Gridded bathymetry of Baker Island, Pacific Remote Island Areas, Central Pacific (Arc ASCII Format)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded (40 m cell size) bathymetry of the shelf and slope environments of Baker Island, Pacific Remote Island Areas, Central Pacific. Almost complete bottom...

  16. Bathymetric Position Index (BPI) Structures derived from gridded bathymetry of Swains Island,Territory of American Samoa, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Structures are derived from gridded (40 m cell size) multibeam bathymetry, collected aboard R/V AHI and NOAA ship Hi'ialakai. BPI Zones was created using the...

  17. Rugosity 10 m grid derived from gridded bathymetry of Alamagan Island, Commonwealth of the Northern Mariana Islands (CNMI), USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Rugosity is derived from gridded (10 m cell size) multibeam bathymetry, collected aboard NOAA Ship Hi'ialakai and R/V AHI, using the Benthic Terrain Modeler with...

  18. Rugosity 10 m grid derived from gridded bathymetry of Pagan Island, Commonwealth of the Northern Mariana Islands (CNMI), USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Rugosity is derived from gridded (10 m cell size) multibeam bathymetry, collected aboard NOAA Ship Hiialaka'i and R/V AHI, using the Benthic Terrain Modeler with...

  19. Rugosity 10 m grid derived from gridded bathymetry of Agrihan Island, Commonwealth of the Northern Mariana Islands (CNMI), USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Rugosity is derived from gridded (10 m cell size) multibeam bathymetry, collected aboard NOAA Ship Hiialaka'i and R/V AHI, using the Benthic Terrain Modeler with...

  20. Rugosity 10 m grid derived from gridded bathymetry of Maug Island, Commonwealth of the Northern Mariana Islands (CNMI), USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Rugosity is derived from gridded (10 m cell size) multibeam bathymetry, collected aboard NOAA Ship Hiialaka'i and R/V AHI, using the Benthic Terrain Modeler with...

  1. Rugosity 10 m grid derived from gridded bathymetry of Asuncion Island, Commonwealth of the Northern Mariana Islands (CNMI), USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Rugosity is derived from gridded (10 m cell size) multibeam bathymetry collected aboard NOAA Ship Hiialaka'i and R/V AHI, using the Benthic Terrain Modeler with...

  2. Rugosity 10 m grid derived from gridded bathymetry of Guguan Island, Commonwealth of the Northern Mariana Islands (CNMI), USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Rugosity is derived from gridded (5 m cell size) multibeam bathymetry, collected aboard NOAA Ship Hiialaka'i and R/V AHI, using the Benthic Terrain Modeler with...

  3. NOAA ESRI Geotiff- 1m Bathymetry of St. Croix (Buck Island), US Virgin Islands, 2004, UTM 20 WGS84

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains an ESRI Geotiff with 1 meter cell size representing the bathymetry of the north shore of Buck Island St. Croix, US Virgin Islands.NOAA's...

  4. Seafloor Bathymetry Image of South of Santa Rosa Island, Channel Islands National Marine Sanctuary (8m resolution tif)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This image represents an 8 meter resolution bathymetry of the seafloor south of Santa Rosa Island in Channel Islands National Marine Sanctuary. It was acquired using...

  5. Seafloor Bathymetry Image of North of Santa Rosa Island, Channel Islands National Marine Sanctuary (8m resolution tif)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This image represents an 8 meter resolution bathymetry of the seafloor north of Santa Rosa Island in Channel Islands National Marine Sanctuary. It was acquired using...

  6. Fast and low-cost method for VBES bathymetry generation in coastal areas

    Science.gov (United States)

    Sánchez-Carnero, N.; Aceña, S.; Rodríguez-Pérez, D.; Couñago, E.; Fraile, P.; Freire, J.

    2012-12-01

    Sea floor topography is key information in coastal area management. Nowadays, LiDAR and multibeam technologies provide accurate bathymetries in those areas; however these methodologies are yet too expensive for small customers (fishermen associations, small research groups) willing to keep a periodic surveillance of environmental resources. In this paper, we analyse a simple methodology for vertical beam echosounder (VBES) bathymetric data acquisition and postprocessing, using low-cost means and free customizable tools such as ECOSONS and gvSIG (that is compared with industry standard ArcGIS). Echosounder data was filtered, resampled and, interpolated (using kriging or radial basis functions). Moreover, the presented methodology includes two data correction processes: Monte Carlo simulation, used to reduce GPS errors, and manually applied bathymetric line transformations, both improving the obtained results. As an example, we present the bathymetry of the Ría de Cedeira (Galicia, NW Spain), a good testbed area for coastal bathymetry methodologies given its extension and rich topography. The statistical analysis, performed by direct ground-truthing, rendered an upper bound of 1.7 m error, at 95% confidence level, and 0.7 m r.m.s. (cross-validation provided 30 cm and 25 cm, respectively). The methodology presented is fast and easy to implement, accurate outside transects (accuracy can be estimated), and can be used as a low-cost periodical monitoring method.

  7. Surfzone Currents Over Irregular Bathymetry: Drifter Observations and Numerical Model Results

    Science.gov (United States)

    Schmidt, W. E.; Slinn, D. N.; Guza, R. T.

    2002-12-01

    Surfzone currents on alongshore variable bathymetry were observed with recently developed GPS-tracked drifters and numerically modeled with the time-dependent, nonlinear shallow water equations. These currents, forced by alongshore inhomogeneous pressure and radiation stress gradients, contain flow features difficult to resolve with fixed instrument arrays, such as rips, eddies, and meanders. Drifters were repeatedly released and recovered near Scripps Beach, La Jolla, California, in July 2000, 2001, and 2002. The most recent deployment of 10 drifters yielded about 32 hours of drifter data for each 5 hour deployment day. Offshore wave heights were moderate, between 0.3-1.0 m. The bathymetry, measured over a 600-700 m alongshore span with a GPS- and sonar-equipped jetski (2001 and 2002 deployments), was alongshore inhomogeneous primarily where an irregularly shaped bar-trough feature spanned the surf zone. The model simulations suggest that the alongshore inhomogeneous bathymetry strongly influences the location and strength of the observed flow features. Research supported by the California Sea Grant College Program and the Office of Naval Research.

  8. OESbathy version 1.0: a method for reconstructing ocean bathymetry with realistic continental shelf-slope-rise structures

    OpenAIRE

    A. Goswami; P. L. Olson; L. A. Hinnov; A. Gnanadesikan

    2015-01-01

    We present a method for reconstructing global ocean bathymetry that uses a plate cooling model for the oceanic lithosphere, the age distribution of the oceanic crust, global oceanic sediment thicknesses, plus shelf-slope-rise structures calibrated at modern active and passive continental margins. Our motivation is to reconstruct realistic ocean bathymetry based on parameterized relationships of present-day variables that can be applied to global oceans in th...

  9. Response to Comment on "Sensitivity of seafloor bathymetry to climate-driven fluctuations in mid-ocean ridge magma supply".

    Science.gov (United States)

    Olive, J-A; Behn, M D; Ito, G; Buck, W R; Escartín, J; Howell, S

    2016-07-15

    Tolstoy reports the existence of a characteristic 100 thousand year (ky) period in the bathymetry of fast-spreading seafloor but does not argue that sea level change is a first-order control on seafloor morphology worldwide. Upon evaluating the overlap between tectonic and Milankovitch periodicities across spreading rates, we reemphasize that fast-spreading ridges are the best potential recorders of a sea level signature in seafloor bathymetry. Copyright © 2016, American Association for the Advancement of Science.

  10. Effects of cross-education on the muscle after a period of unilateral limb immobilization using a shoulder sling and swathe.

    Science.gov (United States)

    Magnus, Charlene R A; Barss, Trevor S; Lanovaz, Joel L; Farthing, Jonathan P

    2010-12-01

    The purpose of this study was to apply cross-education during 4 wk of unilateral limb immobilization using a shoulder sling and swathe to investigate the effects on muscle strength, muscle size, and muscle activation. Twenty-five right-handed participants were assigned to one of three groups as follows: the Immob + Train group wore a sling and swathe and strength trained (n = 8), the Immob group wore a sling and swathe and did not strength train (n = 8), and the Control group received no treatment (n = 9). Immobilization was applied to the nondominant (left) arm. Strength training consisted of maximal isometric elbow flexion and extension of the dominant (right) arm 3 days/wk. Torque (dynamometer), muscle thickness (ultrasound), maximal voluntary activation (interpolated twitch), and electromyography (EMG) were measured. The change in right biceps and triceps brachii muscle thickness [7.0 ± 1.9 and 7.1 ± 2.2% (SE), respectively] was greater for Immob + Train than Immob (0.4 ± 1.2 and -1.9 ± 1.7%) and Control (0.8 ± 0.5 and 0.0 ± 1.1%, P effect on maximal voluntary activation or EMG. The cross-education effect on the immobilized limb was greater after elbow extension training. This study suggests that strength training the nonimmobilized limb benefits the immobilized limb for muscle size and strength.

  11. Mapping out Map Libraries

    Directory of Open Access Journals (Sweden)

    Ferjan Ormeling

    2008-09-01

    Full Text Available Discussing the requirements for map data quality, map users and their library/archives environment, the paper focuses on the metadata the user would need for a correct and efficient interpretation of the map data. For such a correct interpretation, knowledge of the rules and guidelines according to which the topographers/cartographers work (such as the kind of data categories to be collected, and the degree to which these rules and guidelines were indeed followed are essential. This is not only valid for the old maps stored in our libraries and archives, but perhaps even more so for the new digital files as the format in which we now have to access our geospatial data. As this would be too much to ask from map librarians/curators, some sort of web 2.0 environment is sought where comments about data quality, completeness and up-to-dateness from knowledgeable map users regarding the specific maps or map series studied can be collected and tagged to scanned versions of these maps on the web. In order not to be subject to the same disadvantages as Wikipedia, where the ‘communis opinio’ rather than scholarship, seems to be decisive, some checking by map curators of this tagged map use information would still be needed. Cooperation between map curators and the International Cartographic Association ( ICA map and spatial data use commission to this end is suggested.

  12. Bathymetry and Sediment-Storage Capacity Change in Three Reservoirs on the Lower Susquehanna River, 1996-2008

    Science.gov (United States)

    Langland, Michael J.

    2009-01-01

    The Susquehanna River transports a substantial amount of the sediment and nutrient load to the Chesapeake Bay. Upstream of the bay, three large dams and their associated reservoirs trap a large amount of the transported sediment and associated nutrients. During the fall of 2008, the U.S. Geological Survey in cooperation with the Pennsylvania Department of Environmental Protection completed bathymetric surveys of three reservoirs on the lower Susquehanna River to provide an estimate of the remaining sediment-storage capacity. Previous studies indicated the upper two reservoirs were in equilibrium with long-term sediment storage; only the most downstream reservoir retained capacity to trap sediments. A differential global positioning system (DGPS) instrument was used to provide the corresponding coordinate position. Bathymetry data were collected using a single beam 210 kHz (kilohertz) echo sounder at pre-defined transects that matched previous surveys. Final horizontal (X and Y) and vertical (Z) coordinates of the geographic positions and depth to bottom were used to create bathymetric maps of the reservoirs. Results indicated that from 1996 to 2008 about 14,700,000 tons of sediment were deposited in the three reservoirs with the majority (12,000,000 tons) being deposited in Conowingo Reservoir. Approximately 20,000 acre-feet or 30,000,000 tons of remaining storage capacity is available in Conowingo Reservoir. At current transport (3,000,000 tons per year) and deposition (2,000,000 tons per year) rates and with no occurrence of major scour events due to floods, the remaining capacity may be filled in 15 to 20 years. Once the remaining sediment-storage capacity in the reservoirs is filled, sediment and associated phosphorus loads entering the Chesapeake Bay are expected to increase.

  13. California State Waters Map Series—Offshore of Gaviota, California

    Science.gov (United States)

    Johnson, Samuel Y.; Dartnell, Peter; Cochrane, Guy R.; Hartwell, Stephen R.; Golden, Nadine E.; Kvitek, Rikk G.; Davenport, Clifton W.; Johnson, Samuel Y.; Cochran, Susan A.

    2018-04-20

    IntroductionIn 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within the 3-nautical-mile limit of California’s State Waters. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data, acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow subsurface geology.The map area is in the southern part of the Western Transverse Ranges geologic province, which is north of the California Continental Borderland. Significant clockwise rotation—at least 90°—since the early Miocene has been proposed for the Western Transverse Ranges province, and the region is presently undergoing north-south shortening. The offshore part of the map area lies south of the steep south flank of the Santa Ynez Mountains. The crest of the range, which has a maximum elevation of about 760 m in the map area, lies about 4 km north of the shoreline.Gaviota is an unincorporated community that has a sparse population (less than 100), and the coastal zone is largely open space that is locally used for cattle grazing. The Union Pacific railroad tracks extend westward along the coast through the entire map area, within a few hundred meters of the shoreline. Highway 101 crosses the eastern part of the map area, also along the coast, then turns north (inland) and travels through Cañada de la Gaviota and Gaviota Pass en route to Buellton. Gaviota State Park lies at the mouth of Cañada de la Gaviota. West of Gaviota, the onland coastal zone is occupied by the Hollister Ranch, a privately owned

  14. Investigation of Acoustic Vector Sensor Data Processing in the Presence of Highly Variable Bathymetry

    Science.gov (United States)

    2014-06-01

    shelf 10 region to the north of the canyon. The impact of this 3-dimensional (3D) variable bathymetry, which may be combined with the effects of...weaker arrivals at large negative angles, consistent with the earliest bottom reflections on the left. The impact of the bottom-path reflections from...nzout*(nrout+1)*ny))),’bof’); for ifr =1:64, for ir=1:nrout+1, for iy=1:ny, data=fread(fid3,2*nzout,’float32’); fwrite(fid,data

  15. Bathymetry and ocean properties beneath Pine Island Glacier revealed by Autosub3 and implications for recent ice stream evolution (Invited)

    Science.gov (United States)

    Jenkins, A.; Dutrieux, P.; McPhail, S.; Perrett, J.; Webb, A.; White, D.; Jacobs, S. S.

    2009-12-01

    The Antarctic ice sheet, which represents the largest of all potential contributors to sea level rise, appears to be losing mass at a rate that has accelerated over recent decades. Ice loss is focussed in a number of key drainage basins where dynamical changes in the outlet glaciers have led to increased discharge. The synchronous response of several independent glaciers, coupled with the observation that thinning is most rapid over their floating termini, is generally taken as an indicator that the changes have been driven from the ocean. Some of the most significant changes have been observed on Pine Island Glacier, where thinning, acceleration and grounding line retreat have all been observed, primarily through satellite remote sensing. Even during the relatively short satellite record, rates of change have been observed to increase. Between 20th and 30th January 2009 the Autosub3 autonomous underwater vehicle was deployed from host ship RVIB Nathaniel B Palmer on six sorties into the ocean cavity beneath Pine Island Glacier. Total track length was 887 km (taking 167 hours) of which 510 km (taking 94 hours) were beneath the glacier. Some of the main aims were to map both the seabed beneath and the underside of the glacier and to investigate how warm Circumpolar Deep Water (CDW) flows beneath Pine Island Glacier and determines its melt rate. Among the instruments carried by Autosub-3 were a Seabird CTD, with dual conductivity and temperature sensors plus a dissolved oxygen sensor and a transmissometer, a multi-beam echosounder that could be configured to look up or down, and two Acoustic Doppler Current Profilers (ADCPs): an upward-looking 300 kHz instrument and a downward-looking 150 kHz instrument, providing a record of ice draft and seabed depth along the vehicle track. The ADCP data reveal an apparently continuous ridge with an undulating crest that extends across the cavity about 30km in from the current ice front. This topographic feature blocks CDW inflow

  16. Bathymetry and retreat of Southeast Greenland glaciers from Operation IceBridge and Ocean Melting Greenland data

    Science.gov (United States)

    Millan, R.; Rignot, E. J.; Morlighem, M.; Bjork, A. A.; Mouginot, J.; Wood, M.

    2017-12-01

    Southeast Greenland has been one of the largest contributors to ice mass loss in Greenland in part because of significant changes in glacier dynamics. The leading hypothesis for the changes in glacier dynamics is that enhanced thermal forcing from the ocean has dislodged a number of glaciers from their anchoring positions and some of them retreated rapidly along a reverse bed. The glaciers response has been observed to vary significantly from one fjord to the next, but until now there was not enough data to understand or interpret these changes. In particular, there was no data on glacier bed topography and seafloor bathymetry in the fjords. Here we present the results of new fjord mapping by the NASA Ocean Melting Greenland mission combined with a recent high-resolution airborne gravity survey by NASA Operation IceBridge. We combine these data with a reconstruction of the bed using a mass conservation approach upstream extending into the glacial fjords for the first time. In the fjord and along the ice-ocean transition, we employ a 3D inversion of gravity data to infer the bed elevation along a set of 9 survey boxes spanning south of Helheim Glacier to the southern tip of Southeast Greenland. We combine the results with an analysis of the glacier front history since the 1930's and Conductivity Temperature Depth data obtained in the fjord by OMG in 2016. The data reveals bed elevations several 100-m deeper than previously thought, for almost all the glaciers, up to 500 m for some of them. For many glaciers, the bed profiles help to completely understand the history of retreat of the glaciers. For instance, glaciers stranded on sills have been stable; glaciers on a reverse slope have retreated rapidly; and glaciers with a normal slope have retreated slowly. The mapping also helps document the extent of the marine portion of the glacier basins. In many of the fjords, we document the presence of warm, salty Atlantic Water which fuels large melt rates. We employ

  17. Improved Model for Depth Bias Correction in Airborne LiDAR Bathymetry Systems

    Directory of Open Access Journals (Sweden)

    Jianhu Zhao

    2017-07-01

    Full Text Available Airborne LiDAR bathymetry (ALB is efficient and cost effective in obtaining shallow water topography, but often produces a low-accuracy sounding solution due to the effects of ALB measurements and ocean hydrological parameters. In bathymetry estimates, peak shifting of the green bottom return caused by pulse stretching induces depth bias, which is the largest error source in ALB depth measurements. The traditional depth bias model is often applied to reduce the depth bias, but it is insufficient when used with various ALB system parameters and ocean environments. Therefore, an accurate model that considers all of the influencing factors must be established. In this study, an improved depth bias model is developed through stepwise regression in consideration of the water depth, laser beam scanning angle, sensor height, and suspended sediment concentration. The proposed improved model and a traditional one are used in an experiment. The results show that the systematic deviation of depth bias corrected by the traditional and improved models is reduced significantly. Standard deviations of 0.086 and 0.055 m are obtained with the traditional and improved models, respectively. The accuracy of the ALB-derived depth corrected by the improved model is better than that corrected by the traditional model.

  18. Neural networks for the generation of sea bed models using airborne lidar bathymetry data

    Science.gov (United States)

    Kogut, Tomasz; Niemeyer, Joachim; Bujakiewicz, Aleksandra

    2016-06-01

    Various sectors of the economy such as transport and renewable energy have shown great interest in sea bed models. The required measurements are usually carried out by ship-based echo sounding, but this method is quite expensive. A relatively new alternative is data obtained by airborne lidar bathymetry. This study investigates the accuracy of these data, which was obtained in the context of the project `Investigation on the use of airborne laser bathymetry in hydrographic surveying'. A comparison to multi-beam echo sounding data shows only small differences in the depths values of the data sets. The IHO requirements of the total horizontal and vertical uncertainty for laser data are met. The second goal of this paper is to compare three spatial interpolation methods, namely Inverse Distance Weighting (IDW), Delaunay Triangulation (TIN), and supervised Artificial Neural Networks (ANN), for the generation of sea bed models. The focus of our investigation is on the amount of required sampling points. This is analyzed by manually reducing the data sets. We found that the three techniques have a similar performance almost independently of the amount of sampling data in our test area. However, ANN are more stable when using a very small subset of points.

  19. Neural networks for the generation of sea bed models using airborne lidar bathymetry data

    Directory of Open Access Journals (Sweden)

    Kogut Tomasz

    2016-06-01

    Full Text Available Various sectors of the economy such as transport and renewable energy have shown great interest in sea bed models. The required measurements are usually carried out by ship-based echo sounding, but this method is quite expensive. A relatively new alternative is data obtained by airborne lidar bathymetry. This study investigates the accuracy of these data, which was obtained in the context of the project ‘Investigation on the use of airborne laser bathymetry in hydrographic surveying’. A comparison to multi-beam echo sounding data shows only small differences in the depths values of the data sets. The IHO requirements of the total horizontal and vertical uncertainty for laser data are met. The second goal of this paper is to compare three spatial interpolation methods, namely Inverse Distance Weighting (IDW, Delaunay Triangulation (TIN, and supervised Artificial Neural Networks (ANN, for the generation of sea bed models. The focus of our investigation is on the amount of required sampling points. This is analyzed by manually reducing the data sets. We found that the three techniques have a similar performance almost independently of the amount of sampling data in our test area. However, ANN are more stable when using a very small subset of points.

  20. Performance Assessment of High Resolution Airborne Full Waveform LiDAR for Shallow River Bathymetry

    Directory of Open Access Journals (Sweden)

    Zhigang Pan

    2015-04-01

    Full Text Available We evaluate the performance of full waveform LiDAR decomposition algorithms with a high-resolution single band airborne LiDAR bathymetry system in shallow rivers. A continuous wavelet transformation (CWT is proposed and applied in two fluvial environments, and the results are compared to existing echo retrieval methods. LiDAR water depths are also compared to independent field measurements. In both clear and turbid water, the CWT algorithm outperforms the other methods if only green LiDAR observations are available. However, both the definition of the water surface, and the turbidity of the water significantly influence the performance of the LiDAR bathymetry observations. The results suggest that there is no single best full waveform processing algorithm for all bathymetric situations. Overall, the optimal processing strategies resulted in a determination of water depths with a 6 cm mean at 14 cm standard deviation for clear water, and a 16 cm mean and 27 cm standard deviation in more turbid water.

  1. California State Waters Map Series—Offshore of Santa Cruz, California

    Science.gov (United States)

    Cochrane, Guy R.; Dartnell, Peter; Johnson, Samuel Y.; Erdey, Mercedes D.; Golden, Nadine E.; Greene, H. Gary; Dieter, Bryan E.; Hartwell, Stephen R.; Ritchie, Andrew C.; Finlayson, David P.; Endris, Charles A.; Watt, Janet T.; Davenport, Clifton W.; Sliter, Ray W.; Maier, Katherine L.; Krigsman, Lisa M.; Cochrane, Guy R.; Cochran, Susan A.

    2016-03-24

    IntroductionIn 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within the limit of California’s State Waters. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data, acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow subsurface geology.The Offshore of Santa Cruz map area is located in central California, on the Pacific Coast about 98 km south of San Francisco. The city of Santa Cruz (population, about 63,000), the largest incorporated city in the map area and the county seat of Santa Cruz County, lies on uplifted marine terraces between the shoreline and the northwest-trending Santa Cruz Mountains, part of California’s Coast Ranges. All of California’s State Waters in the map area is part of the Monterey Bay National Marine Sanctuary.The map area is cut by an offshore section of the San Gregorio Fault Zone, and it lies about 20 kilometers southwest of the San Andreas Fault Zone. Regional folding and uplift along the coast has been attributed to a westward bend in the San Andreas Fault Zone and to right-lateral movement along the San Gregorio Fault Zone. Most of the coastal zone is characterized by low, rocky cliffs and sparse, small pocket beaches backed by low, terraced hills. Point Santa Cruz, which forms the north edge of Monterey Bay, provides protection for the beaches in the easternmost part of the map area by sheltering them from the predominantly northwesterly waves.The shelf in the map area is underlain by variable amounts (0 to 25 m) of

  2. Identifying Urinary and Serum Exosome Biomarkers for Radiation Exposure Using a Data Dependent Acquisition and SWATH-MS Combined Workflow

    International Nuclear Information System (INIS)

    Kulkarni, Shilpa; Koller, Antonius; Mani, Kartik M.; Wen, Ruofeng; Alfieri, Alan; Saha, Subhrajit; Wang, Jian; Patel, Purvi; Bandeira, Nuno; Guha, Chandan

    2016-01-01

    Purpose: Early and accurate assessment of radiation injury by radiation-responsive biomarkers is critical for triage and early intervention. Biofluids such as urine and serum are convenient for such analysis. Recent research has also suggested that exosomes are a reliable source of biomarkers in disease progression. In the present study, we analyzed total urine proteome and exosomes isolated from urine or serum for potential biomarkers of acute and persistent radiation injury in mice exposed to lethal whole body irradiation (WBI). Methods and Materials: For feasibility studies, the mice were irradiated at 10.4 Gy WBI, and urine and serum samples were collected 24 and 72 hours after irradiation. Exosomes were isolated and analyzed using liquid chromatography mass spectrometry/mass spectrometry-based workflow for radiation exposure signatures. A data dependent acquisition and SWATH-MS combined workflow approach was used to identify significantly exosome biomarkers indicative of acute or persistent radiation-induced responses. For the validation studies, mice were exposed to 3, 6, 8, or 10 Gy WBI, and samples were analyzed for comparison. Results: A comparison between total urine proteomics and urine exosome proteomics demonstrated that exosome proteomic analysis was superior in identifying radiation signatures. Feasibility studies identified 23 biomarkers from urine and 24 biomarkers from serum exosomes after WBI. Urinary exosome signatures identified different physiological parameters than the ones obtained in serum exosomes. Exosome signatures from urine indicated injury to the liver, gastrointestinal, and genitourinary tracts. In contrast, serum showed vascular injuries and acute inflammation in response to radiation. Selected urinary exosomal biomarkers also showed changes at lower radiation doses in validation studies. Conclusions: Exosome proteomics revealed radiation- and time-dependent protein signatures after WBI. A total of 47 differentially secreted

  3. Identifying Urinary and Serum Exosome Biomarkers for Radiation Exposure Using a Data Dependent Acquisition and SWATH-MS Combined Workflow

    Energy Technology Data Exchange (ETDEWEB)

    Kulkarni, Shilpa [Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York (United States); Koller, Antonius [Proteomics Center, Stony Brook University School of Medicine, Stony Brook, New York (United States); Proteomics Shared Resource, Herbert Irving Comprehensive Cancer Center, New York, New York (United States); Mani, Kartik M. [Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York (United States); Wen, Ruofeng [Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York (United States); Alfieri, Alan; Saha, Subhrajit [Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York (United States); Wang, Jian [Center for Computational Mass Spectrometry, University of California, San Diego, California (United States); Department of Computer Science and Engineering, University of California, San Diego, California (United States); Patel, Purvi [Proteomics Shared Resource, Herbert Irving Comprehensive Cancer Center, New York, New York (United States); Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York (United States); Bandeira, Nuno [Center for Computational Mass Spectrometry, University of California, San Diego, California (United States); Department of Computer Science and Engineering, University of California, San Diego, California (United States); Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, California (United States); Guha, Chandan, E-mail: cguha@montefiore.org [Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York (United States); and others

    2016-11-01

    Purpose: Early and accurate assessment of radiation injury by radiation-responsive biomarkers is critical for triage and early intervention. Biofluids such as urine and serum are convenient for such analysis. Recent research has also suggested that exosomes are a reliable source of biomarkers in disease progression. In the present study, we analyzed total urine proteome and exosomes isolated from urine or serum for potential biomarkers of acute and persistent radiation injury in mice exposed to lethal whole body irradiation (WBI). Methods and Materials: For feasibility studies, the mice were irradiated at 10.4 Gy WBI, and urine and serum samples were collected 24 and 72 hours after irradiation. Exosomes were isolated and analyzed using liquid chromatography mass spectrometry/mass spectrometry-based workflow for radiation exposure signatures. A data dependent acquisition and SWATH-MS combined workflow approach was used to identify significantly exosome biomarkers indicative of acute or persistent radiation-induced responses. For the validation studies, mice were exposed to 3, 6, 8, or 10 Gy WBI, and samples were analyzed for comparison. Results: A comparison between total urine proteomics and urine exosome proteomics demonstrated that exosome proteomic analysis was superior in identifying radiation signatures. Feasibility studies identified 23 biomarkers from urine and 24 biomarkers from serum exosomes after WBI. Urinary exosome signatures identified different physiological parameters than the ones obtained in serum exosomes. Exosome signatures from urine indicated injury to the liver, gastrointestinal, and genitourinary tracts. In contrast, serum showed vascular injuries and acute inflammation in response to radiation. Selected urinary exosomal biomarkers also showed changes at lower radiation doses in validation studies. Conclusions: Exosome proteomics revealed radiation- and time-dependent protein signatures after WBI. A total of 47 differentially secreted

  4. The Surge, Wave, and Tide Hydrodynamics (SWaTH) network of the U.S. Geological Survey—Past and future implementation of storm-response monitoring, data collection, and data delivery

    Science.gov (United States)

    Verdi, Richard J.; Lotspeich, R. Russell; Robbins, Jeanne C.; Busciolano, Ronald J.; Mullaney, John R.; Massey, Andrew J.; Banks, William S.; Roland, Mark A.; Jenter, Harry L.; Peppler, Marie C.; Suro, Thomas P.; Schubert, Christopher E.; Nardi, Mark R.

    2017-06-20

    After Hurricane Sandy made landfall along the northeastern Atlantic coast of the United States on October 29, 2012, the U.S. Geological Survey (USGS) carried out scientific investigations to assist with protecting coastal communities and resources from future flooding. The work included development and implementation of the Surge, Wave, and Tide Hydrodynamics (SWaTH) network consisting of more than 900 monitoring stations. The SWaTH network was designed to greatly improve the collection and timely dissemination of information related to storm surge and coastal flooding. The network provides a significant enhancement to USGS data-collection capabilities in the region impacted by Hurricane Sandy and represents a new strategy for observing and monitoring coastal storms, which should result in improved understanding, prediction, and warning of storm-surge impacts and lead to more resilient coastal communities.As innovative as it is, SWaTH evolved from previous USGS efforts to collect storm-surge data needed by others to improve storm-surge modeling, warning, and mitigation. This report discusses the development and implementation of the SWaTH network, and some of the regional stories associated with the landfall of Hurricane Sandy, as well as some previous events that informed the SWaTH development effort. Additional discussions on the mechanics of inundation and how the USGS is working with partners to help protect coastal communities from future storm impacts are also included.

  5. WATER SURFACE RECONSTRUCTION IN AIRBORNE LASER BATHYMETRY FROM REDUNDANT BED OBSERVATIONS

    Directory of Open Access Journals (Sweden)

    G. Mandlburger

    2017-09-01

    Full Text Available In airborne laser bathymetry knowledge of exact water level heights is a precondition for applying run-time and refraction correction of the raw laser beam travel path in the medium water. However, due to specular reflection especially at very smooth water surfaces often no echoes from the water surface itself are recorded (drop outs. In this paper, we first discuss the feasibility of reconstructing the water surface from redundant observations of the water bottom in theory. Furthermore, we provide a first practical approach for solving this problem, suitable for static and locally planar water surfaces. It minimizes the bottom surface deviations of point clouds from individual flight strips after refraction correction. Both theoretical estimations and practical results confirm the potential of the presented method to reconstruct water level heights in dm precision. Achieving good results requires enough morphological details in the scene and that the water bottom topography is captured from different directions.

  6. Identifikasi Kedalaman Laut (Bathymetry berdasarkan Warna Permukaan Laut pada Citra Satelit menggunakan Metode ANFIS

    Directory of Open Access Journals (Sweden)

    Diwan Mukti Pambuko

    2013-10-01

    mengetahui warna permukaan pada posisi tersebut dapat dibuat sebuah sistem yang bisa mengidentifikasi kedalaman laut pada posisi tertentu dari warna pada permukaan laut tersebut. Sistem yang dibangun ini menggunakan data kedalaman laut hasil pengukuran manual dan dipadukan dengan data gambar satelit pada posisi yang sama. Kemudian dilakukan proses learning menggunakan teknik Neuro-Fuzzy dengan metode ANFIS (Adaptive Neuro-Fuzzy Inference System dengan kinerja model identifikasi dapat diketahui dari nilai MAPE (Mean Absolute Percentage Error dan MSE (Mean Square Error. Hasil dari pembuatan model identifikasi, diperoleh sistem yang dapat melakukan identifikasi sangat baik dengan error yang diperoleh pada saat proses pengujian sebesar MAPE 9.0024 % dan MSE 0.0034. Kata kunci: bathymetry, citra satelit, neuro-fuzzy, ANFIS

  7. A global high-resolution data set of ice sheet topography, cavity geometry and ocean bathymetry

    DEFF Research Database (Denmark)

    Schaffer, Janin; Timmermann, Ralph; Arndt, Jan Erik

    2016-01-01

    of the Southern Ocean (IBCSO) version 1. While RTopo-1 primarily aimed at a good and consistent representation of the Antarctic ice sheet, ice shelves, and sub-ice cavities, RTopo-2now also contains ice topographies of the Greenland ice sheet and outlet glaciers. In particular, we aimed at agood representation....... For the continental shelf off Northeast Greenland and the floating ice tongue of Nioghalvfjerdsfjorden Glacier at about79 N, we incorporated a high-resolution digital bathymetry model considering original multibeam survey datafor the region. Radar data for surface topographies of the floating ice tongues...... for the geometry of Getz, Abbot, andFimbul ice shelf cavities. The data set is available in full and in regional subsets in NetCDF format from thePANGAEA database at doi:10.1594/PANGAEA.856844....

  8. Approaching bathymetry estimation from high resolution multispectral satellite images using a neuro-fuzzy technique

    Science.gov (United States)

    Corucci, Linda; Masini, Andrea; Cococcioni, Marco

    2011-01-01

    This paper addresses bathymetry estimation from high resolution multispectral satellite images by proposing an accurate supervised method, based on a neuro-fuzzy approach. The method is applied to two Quickbird images of the same area, acquired in different years and meteorological conditions, and is validated using truth data. Performance is studied in different realistic situations of in situ data availability. The method allows to achieve a mean standard deviation of 36.7 cm for estimated water depths in the range [-18, -1] m. When only data collected along a closed path are used as a training set, a mean STD of 45 cm is obtained. The effect of both meteorological conditions and training set size reduction on the overall performance is also investigated.

  9. Bank Topography, Bathymetry, and Current Velocity of the Lower Elwha River, Clallam County, Washington, May 2006

    Science.gov (United States)

    Curran, Christopher A.; Konrad, Christopher P.; Dinehart, Randal L.; Moran, Edward H.

    2008-01-01

    The removal of two dams from the mainstem of the Elwha River is expected to cause a broad range of changes to the river and nearby coastal ecosystem. The U.S. Geological Survey has documented aspects of the condition of the river to allow analysis of ecological responses to dam removal. This report documents the bank topography, river bathymetry, and current velocity data collected along the lower 0.5 kilometer of the Elwha River, May 15-17, 2006. This information supplements nearshore and beach surveys done in 2006 as part of the U.S. Geological Survey Coastal Habitats in Puget Sound program near the Elwha River delta in the Strait of Juan de Fuca, Washington.

  10. Observations of Bathymetry-Induced Ocean Roughness Modulation in In-situ Surface Slope Measurements and Coincident Airborne SAR Images

    NARCIS (Netherlands)

    Gommenginger, C.P.; Robinson, I.S.; Willoughby, J.; Greidanus, H.S.F.; Taylor, V.

    1999-01-01

    Empirical results from a field experiment in the southern North Sea have demonstrated the possibility to detect bathymetry-induced sea surface roughness modulation in the coastal zone using high frequency in-situ slope measurements provided by the Towed Laser Slopemeter. A strong correlation between

  11. CRED Gridded Bathymetry of the 1955 Eruption Site and Seamount (100-022) in the Northwestern Hawaiian Islands

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — File 100-022b is a 60-m ASCII grid of depth data collected near 1955 Eruption Site multibeam bathymetry data from a SeaBeam 210 sonar aboard the R/V...

  12. CRED Gridded Bathymetry of Nihoa Island and transit to Kauai (100-026) in the Northwestern Hawaiian Islands

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — File 100-026b is a 60-m ASCII grid of depth data collected near Nihoa multibeam bathymetry data from a SeaBeam 210 sonar aboard the R/V Kai'imikai-O-Kanaloa...

  13. CRED Gridded Bathymetry of St. Rogatien and Brooks Banks (100-018) in the Northwestern Hawaiian Islands

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — File 100-018b is a 60-m ASCII grid of depth data collected near St. Rogatien multibeam bathymetry data from a SeaBeam 210 sonar aboard the R/V Kai'imikai-O-Kanaloa...

  14. Evaluation of iTRAQ and SWATH-MS for the Quantification of Proteins Associated with Insulin Resistance in Human Duodenal Biopsy Samples.

    Directory of Open Access Journals (Sweden)

    Sylvie Bourassa

    Full Text Available Insulin resistance (IR is associated with increased production of triglyceride-rich lipoproteins of intestinal origin. In order to assess whether insulin resistance affects the proteins involved in lipid metabolism, we used two mass spectrometry based quantitative proteomics techniques to compare the intestinal proteome of 14 IR patients to that of 15 insulin sensitive (IS control patients matched for age and waist circumference. A total of 3886 proteins were identified by the iTRAQ (Isobaric Tags for Relative and Absolute Quantitation mass spectrometry approach and 2290 by the SWATH-MS strategy (Serial Window Acquisition of Theoretical Spectra. Using these two methods, 208 common proteins were identified with a confidence corresponding to FDR < 1%, and quantified with p-value < 0.05. The quantification of those 208 proteins has a Pearson correlation coefficient (r2 of 0.728 across the two techniques. Gene Ontology analyses of the differentially expressed proteins revealed that annotations related to lipid metabolic process and oxidation reduction process are overly represented in the set of under-expressed proteins in IR subjects. Furthermore, both methods quantified proteins of relevance to IR. These data also showed that SWATH-MS is a promising and compelling alternative to iTRAQ for protein quantitation of complex mixtures.

  15. High-resolution bathymetry as a primary exploration tool for seafloor massive sulfide deposits - lessons learned from exploration on the Mid-Atlantic and Juan de Fuca Ridges, and northern Lau Basin

    Science.gov (United States)

    Jamieson, J. W.; Clague, D. A.; Petersen, S.; Yeo, I. A.; Escartin, J.; Kwasnitschka, T.

    2016-12-01

    High-resolution, autonomous underwater vehicle (AUV)-derived multibeam bathymetry is increasingly being used as an exploration tool for delineating the size and extent of hydrothermal vent fields and associated seafloor massive sulfide deposits. However, because of the limited amount of seafloor that can be surveyed during a single dive, and the challenges associated with distinguishing hydrothermal chimneys and mounds from other volcanic and tectonic features using solely bathymetric data, AUV mapping surveys have largely been employed as a secondary exploration tool once hydrothermal sites have been discovered using other exploration methods such as plume, self-potential and TV surveys, or ROV and submersible dives. Visual ground-truthing is often required to attain an acceptable level of confidence in the hydrothermal origin of features identified in AUV-derived bathymetry. Here, we present examples of high-resolution bathymetric surveys of vent fields from a variety of tectonic environments, including slow- and intermediate-rate mid-ocean ridges, oceanic core complexes and back arc basins. Results illustrate the diversity of sulfide deposit morphologies, and the challenges associated with identifying hydrothermal features in different tectonic environments. We present a developing set of criteria that can be used to distinguish hydrothermal deposits in bathymetric data, and how AUV surveys can be used either on their own or in conjunction with other exploration techniques as a primary exploration tool.

  16. Unmanned aerial vehicle observations of water surface elevation and bathymetry in the cenotes and lagoons of the Yucatan Peninsula, Mexico

    Science.gov (United States)

    Bandini, Filippo; Lopez-Tamayo, Alejandro; Merediz-Alonso, Gonzalo; Olesen, Daniel; Jakobsen, Jakob; Wang, Sheng; Garcia, Monica; Bauer-Gottwein, Peter

    2018-04-01

    Observations of water surface elevation (WSE) and bathymetry of the lagoons and cenotes of the Yucatán Peninsula (YP) in southeast Mexico are of hydrogeological interest. Observations of WSE (orthometric water height above mean sea level, amsl) are required to inform hydrological models, to estimate hydraulic gradients and groundwater flow directions. Measurements of bathymetry and water depth (elevation of the water surface above the bed of the water body) improve current knowledge on how lagoons and cenotes connect through the complicated submerged cave systems and the diffuse flow in the rock matrix. A novel approach is described that uses unmanned aerial vehicles (UAVs) to monitor WSE and bathymetry of the inland water bodies on the YP. UAV-borne WSE observations were retrieved using a radar and a global navigation satellite system on-board a multi-copter platform. Water depth was measured using a tethered floating sonar controlled by the UAV. This sonar provides depth measurements also in deep and turbid water. Bathymetry (wet-bed elevation amsl) can be computed by subtracting water depth from WSE. Accuracy of the WSE measurements is better than 5-7 cm and accuracy of the water depth measurements is estimated to be 3.8% of the actual water depth. The technology provided accurate measurements of WSE and bathymetry in both wetlands (lagoons) and cenotes. UAV-borne technology is shown to be a more flexible and lower cost alternative to manned aircrafts. UAVs allow monitoring of remote areas located in the jungle of the YP, which are difficult to access by human operators.

  17. California State Waters Map Series: offshore of Half Moon Bay, California

    Science.gov (United States)

    Cochrane, Guy R.; Dartnell, Peter; Greene, H. Gary; Johnson, Samuel Y.; Golden, Nadine E.; Hartwell, Stephen R.; Dieter, Bryan E.; Manson, Michael W.; Sliter, Ray W.; Ross, Stephanie L.; Watt, Janet T.; Endris, Charles A.; Kvitek, Rikk G.; Phillips, Eleyne L.; Erdey, Mercedes D.; Chin, John L.; Bretz, Carrie K.

    2014-01-01

    In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within the 3-nautical-mile limit of California’s State Waters. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data, acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. The Offshore of Half Moon Bay map area is located in northern California, on the Pacific coast of the San Francisco Peninsula about 40 kilometers south of the Golden Gate. The city of Half Moon Bay, which is situated on the east side of the Half Moon Bay embayment, is the nearest significant onshore cultural center in the map area, with a population of about 11,000. The Pillar Point Harbor at the north edge of Half Moon Bay offers a protected landing for boats and provides other marine infrastructure. The map area lies offshore of the Santa Cruz Mountains, part of the northwest-trending Coast Ranges that run roughly parallel to the San Andreas Fault Zone. The Santa Cruz Mountains lie between the San Andreas Fault Zone and the San Gregorio Fault system. The flat coastal area, which is the most recent of numerous marine terraces, was formed by wave erosion about 105 thousand years ago. The higher elevation of this same terrace west of the Half Moon Bay Airport is caused by uplift on the Seal Cove Fault, a splay of the San Gregorio Fault Zone. Although originally incised into the rising terrain horizontally, the ancient terrace surface has been gently folded into a northwest-plunging syncline by

  18. What Will Science Gain From Mapping the World Ocean Floor?

    Science.gov (United States)

    Jakobsson, M.

    2017-12-01

    It is difficult to estimate how much of the World Ocean floor topography (bathymetry) that has been mapped. Estimates range from a few to more than ten percent of the World Ocean area. The most recent version of the bathymetric grid compiled by the General Bathymetric Chart of the Oceans (GEBCO) has bathymetric control points in 18% of the 30 x 30 arc second large grid cells. The depth values for the rest of the cells are obtained through interpolation guided by satellite altimetry in deep water. With this statistic at hand, it seems tenable to suggest that there are many scientific discoveries to be made from a complete high-resolution mapping of the World Ocean floor. In this presentation, some of our recent scientific discoveries based on modern multibeam bathymetric mapping will be highlighted and discussed. For example, how multibeam mapping provided evidence for a km-thick ice shelf covering the entire Arctic Ocean during peak glacial conditions, a hypothesis proposed nearly half a century ago, and how groundwater escape features are visible in high-resolution bathymetry in the Baltic Sea, with potential implications for the freshwater budget and distribution of nutrients and pollutants. Presented examples will be placed in the context of mapping resolution, systematic surveys versus mapping along transits, and scientific hypothesis driven mapping versus ocean exploration. The newly announced Nippon Foundation - GEBCO Seabed 2030 project has the vision to map 100% of the World Ocean floor mapped by 2030. Are there specific scientific areas where we can expect new discoveries from all mapping data collected through the Seabed 2030 project? Are there outstanding hypothesis that can be tested from a fully mapped World Ocean floor?

  19. Remote Sensing of Sub-Surface Suspended Sediment Concentration by Using the Range Bias of Green Surface Point of Airborne LiDAR Bathymetry

    Directory of Open Access Journals (Sweden)

    Xinglei Zhao

    2018-04-01

    Full Text Available Suspended sediment concentrations (SSCs have been retrieved accurately and effectively through waveform methods by using green-pulse waveforms of airborne LiDAR bathymetry (ALB. However, the waveform data are commonly difficult to analyze. Thus, this paper proposes a 3D point-cloud method for remote sensing of SSCs in calm waters by using the range biases of green surface points of ALB. The near water surface penetrations (NWSPs of green lasers are calculated on the basis of the green and reference surface points. The range biases (ΔS are calculated by using the corresponding NWSPs and beam-scanning angles. In situ measured SSCs (C and range biases (ΔS are used to establish an empirical C-ΔS model at SSC sampling stations. The SSCs in calm waters are retrieved by using the established C-ΔS model. The proposed method is applied to a practical ALB measurement performed by Optech Coastal Zone Mapping and Imaging LiDAR. The standard deviations of the SSCs retrieved by the 3D point-cloud method are less than 20 mg/L.

  20. Improvements to the swath-level near-surface atmospheric state parameter retrievals within the NRL Ocean Surface Flux System (NFLUX)

    Science.gov (United States)

    May, J. C.; Rowley, C. D.; Meyer, H.

    2017-12-01

    The Naval Research Laboratory (NRL) Ocean Surface Flux System (NFLUX) is an end-to-end data processing and assimilation system used to provide near-real-time satellite-based surface heat flux fields over the global ocean. The first component of NFLUX produces near-real-time swath-level estimates of surface state parameters and downwelling radiative fluxes. The focus here will be on the satellite swath-level state parameter retrievals, namely surface air temperature, surface specific humidity, and surface scalar wind speed over the ocean. Swath-level state parameter retrievals are produced from satellite sensor data records (SDRs) from four passive microwave sensors onboard 10 platforms: the Special Sensor Microwave Imager/Sounder (SSMIS) sensor onboard the DMSP F16, F17, and F18 platforms; the Advanced Microwave Sounding Unit-A (AMSU-A) sensor onboard the NOAA-15, NOAA-18, NOAA-19, Metop-A, and Metop-B platforms; the Advanced Technology Microwave Sounder (ATMS) sensor onboard the S-NPP platform; and the Advanced Microwave Scannin Radiometer 2 (AMSR2) sensor onboard the GCOM-W1 platform. The satellite SDRs are translated into state parameter estimates using multiple polynomial regression algorithms. The coefficients to the algorithms are obtained using a bootstrapping technique with all available brightness temperature channels for a given sensor, in addition to a SST field. For each retrieved parameter for each sensor-platform combination, unique algorithms are developed for ascending and descending orbits, as well as clear vs cloudy conditions. Each of the sensors produces surface air temperature and surface specific humidity retrievals. The SSMIS and AMSR2 sensors also produce surface scalar wind speed retrievals. Improvement is seen in the SSMIS retrievals when separate algorithms are used for the even and odd scans, with the odd scans performing better than the even scans. Currently, NFLUX treats all SSMIS scans as even scans. Additional improvement in all of

  1. Preliminary bathymetry of Blackstone Bay and Neoglacial changes of Blackstone Glaciers, Alaska

    Science.gov (United States)

    Post, Austin

    1980-01-01

    Preliminary bathymetry (at 1:20,000 scale) and scientific studies of Blackstone Bay Alaska, by the Research Vessel Growler in 1978 disclose that the head of the bay consists of two basins separated by Willard Island and a submarine ridge. Both basins are closed on the north by terminal-moraine bars where Blackstone Glacier and its tributaries terminated as recently as about A.D. 1350; a carbon-14 date of 580 years before present on Badger Point, and old trees farther up the bay, disclose that the glaciers retreated to two narrow inlets at the head of the bay before 1400. The inlets were still glacier-covered until at least 1909. Glaciers in both inlets have continued to retreat; at present they terminate at the head of tidewater, where they discharge small icebergs. Only relatively thin sediments have accumulated in the eastern basin south of the terminal-moraine bar, and most of the bottom is hard and irregular as disclosed by soundings and profiles. The northern part of Blackstone Bay is very deep; at more than 1,100 feet below sea level a large, level accumulation of sediment is present which is presumably as much as 1,000 feet deep and has been accumulating since late Pleistocene glaciers retreated. (USGS)

  2. Single-beam bathymetry data collected in 2015 from Grand Bay, Alabama-Mississippi

    Science.gov (United States)

    DeWitt, Nancy T.; Stalk, Chelsea A.; Smith, Christopher G.; Locker, Stanley D.; Fredericks, Jake J.; McCloskey, Terrence A.; Wheaton, Cathryn J.

    2017-12-01

    As part of the Sea-level and Storm Impacts on Estuarine Environments and Shorelines (SSIEES) project, scientists from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center conducted a single-beam bathymetry survey within the estuarine, open-bay, and tidal creek environments of Grand Bay, Alabama-Mississippi, from May to June 2015. The goal of the SSIEES project is to assess the physical controls of sediment and material exchange between wetlands and estuarine environments along the northern Gulf of Mexico, specifically Grand Bay, Alabama-Mississippi; Vermilion Bay, Louisiana; and, along the east coast, within Chincoteague Bay, Virginia-Maryland. The data described in this report provide baseline bathymetric information for future research investigating wetland-marsh evolution, sediment transport, erosion, recent and long-term geomorphic change, and can also support the modeling of changes in response to restoration and storm impacts. The survey area encompasses more than 40 square kilometers of Grand Bay’s waters.

  3. Preliminary bathymetry of Northwestern Fiord and Neoglacial changes of Northwestern Glacier

    Science.gov (United States)

    Post, Austin

    1980-01-01

    The first preliminary bathymetry (at 1:20,000 scale) and other scientific investigations of Northwestern Fiord, Alaska, were conducted by the Research Vessel Growler in 1978, disclosing this 10.5-mile-long branched waterway to be a deep basin enclosed by a terminal-moraine shoal. The basin was formerly filled by Northwestern Glacier, which began a drastic retreat around 1909 and reached the head of the main arm around 1960. Soundings and profiles show the main channel to be as much as 970 feet deep and to have the typical U shape of a severely glacially eroded valley; since the glacier 's retreat, sediments have formed nearly level deposits in the deepest reaches, while the rest of the basin has a hard, rocky bottom. Preneoglacial forest debris dated by carbon-14 indicates Northwestern Glacier to have advanced into the fiord prior to 1,385 years before present (B.P.); a branch glacier evidently advanced into forest 1,635 years B.P. The combined glaciers from several arms culminated on the present terminal-moraine shoal around 1894. (USGS)

  4. Satellite-Derived Bathymetry: Accuracy Assessment on Depths Derivation Algorithm for Shallow Water Area

    Science.gov (United States)

    Said, N. M.; Mahmud, M. R.; Hasan, R. C.

    2017-10-01

    Over the years, the acquisition technique of bathymetric data has evolved from a shipborne platform to airborne and presently, utilising space-borne acquisition. The extensive development of remote sensing technology has brought in the new revolution to the hydrographic surveying. Satellite-Derived Bathymetry (SDB), a space-borne acquisition technique which derives bathymetric data from high-resolution multispectral satellite imagery for various purposes recently considered as a new promising technology in the hydrographic surveying industry. Inspiring by this latest developments, a comprehensive study was initiated by National Hydrographic Centre (NHC) and Universiti Teknologi Malaysia (UTM) to analyse SDB as a means for shallow water area acquisition. By adopting additional adjustment in calibration stage, a marginal improvement discovered on the outcomes from both Stumpf and Lyzenga algorithms where the RMSE values for the derived (predicted) depths were 1.432 meters and 1.728 meters respectively. This paper would deliberate in detail the findings from the study especially on the accuracy level and practicality of SDB over the tropical environmental setting in Malaysia.

  5. California State Waters Map Series — Offshore of Point Conception, California

    Science.gov (United States)

    Johnson, Samuel Y.; Dartnell, Peter; Cochrane, Guy R.; Hartwell, Stephen R.; Golden, Nadine E.; Kvitek, Rikk G.; Davenport, Clifton W.; Johnson, Samuel Y.; Cochran, Susan A.

    2018-04-20

    IntroductionIn 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within the 3-nautical-mile limit of California’s State Waters. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data, acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow subsurface geology.The Offshore of Point Conception map area is in the westernmost part of the Western Transverse Ranges geologic province, which is north of the California Continental Borderland. Significant clockwise rotation—at least 90°—since the early Miocene has been proposed for the Western Transverse Ranges province, and this region is presently undergoing north-south shortening. The offshore part of the map area lies south of the steep south and west flanks of the Santa Ynez Mountains. The crest of the range, which has a maximum elevation of about 340 m in the map area, lies about 5 km north and east of the arcuate shoreline.The onland part of the coastal zone is remote and sparsely populated. The road to Jalama Beach County Park provides the only public coastal access in the entire map area. North of this county park, the coastal zone is part of Vandenberg Air Force Base. South of Jalama Beach County Park, most of the coastal zone is part of the Cojo-Jalama Ranch, purchased by the Nature Conservancy in December 2017. A relatively small part of the coastal zone in the eastern part of the map area lies within the privately owned Hollister Ranch. The nearest significant commercial centers are Lompoc

  6. Comment on "Sensitivity of seafloor bathymetry to climate-driven fluctuations in mid-ocean ridge magma supply".

    Science.gov (United States)

    Tolstoy, Maya

    2016-07-15

    Olive et al (Reports, 16 October 2015, p. 310) and Goff (Technical Comment, 4 September 2015, p. 1065) raise important concerns with respect to recent findings of Milankovitch cycles in seafloor bathymetry. However, their results inherently support that the Southern East Pacific Rise is the optimum place to look for such signals and, in fact, models match those observations quite closely. Copyright © 2016, American Association for the Advancement of Science.

  7. Detecting Trend and Seasonal Changes in Bathymetry Derived from HICO Imagery: A Case Study of Shark Bay, Western Australia

    Science.gov (United States)

    Garcia, Rodrigo A.; Fearns, Peter R. C. S.; Mckinna, Lachlan I. W.

    2014-01-01

    The Hyperspectral Imager for the Coastal Ocean (HICO) aboard the International Space Station has offered for the first time a dedicated space-borne hyperspectral sensor specifically designed for remote sensing of the coastal environment. However, several processing steps are required to convert calibrated top-of-atmosphere radiances to the desired geophysical parameter(s). These steps add various amounts of uncertainty that can cumulatively render the geophysical parameter imprecise and potentially unusable if the objective is to analyze trends and/or seasonal variability. This research presented here has focused on: (1) atmospheric correction of HICO imagery; (2) retrieval of bathymetry using an improved implementation of a shallow water inversion algorithm; (3) propagation of uncertainty due to environmental noise through the bathymetry retrieval process; (4) issues relating to consistent geo-location of HICO imagery necessary for time series analysis, and; (5) tide height corrections of the retrieved bathymetric dataset. The underlying question of whether a temporal change in depth is detectable above uncertainty is also addressed. To this end, nine HICO images spanning November 2011 to August 2012, over the Shark Bay World Heritage Area, Western Australia, were examined. The results presented indicate that precision of the bathymetric retrievals is dependent on the shallow water inversion algorithm used. Within this study, an average of 70% of pixels for the entire HICO-derived bathymetry dataset achieved a relative uncertainty of less than +/-20%. A per-pixel t-test analysis between derived bathymetry images at successive timestamps revealed observable changes in depth to as low as 0.4 m. However, the present geolocation accuracy of HICO is relatively poor and needs further improvements before extensive time series analysis can be performed.

  8. Mapping the seabed and habitats in National Marine Sanctuaries - Examples from the East, Gulf and West Coasts

    Science.gov (United States)

    Valentine, Page C.; Cochrane, Guy R.; Scanlon, Kathryn M.

    2003-01-01

    The National Marine Sanctuary System requires seabed and habitat maps to serve as a basis for managing sanctuary resources and for conducting research. NOAA, the agency that manages the sanctuaries, and the USGS have conducted mapping projects in three sanctuaries (Stellwagen Bank NMS, Flower Garden Banks NMS, and Channel Islands NMS) with an emphasis on collaboration of geologists and biologists from the two agencies and from academic institutions. Mapping of seabed habitats is a developing field that requires the integration of geologic and biologic studies and the use of swath imaging techniques such as multibeam and sidescan sonar. Major products of swath mapping are shaded-relief topographic imagery which shows seabed features in great detail, and backscatter imagery which provides an indication of the types of materials that constitute the seabed. Sea floor images provide an excellent basis for conducting the groundtruthing studies (using video, photo, and sampling techniques) that are required to collect the data necessary for making meaningful interpretative maps of the seabed. The compilation of interpretive maps showing seabed environments and habitats also requires the development of a sea floor classification system that will be a basis for comparing, managing, and researching characteristic areas of the seabed. Seabed maps of the sanctuaries are proving useful for management and research decisions that address commercial and recreational fishing, habitat disturbance, engineering projects, tourism, and cultural resources.

  9. NOAA ESRI Geotiff- 1m Bathymetry of St. John (South Shore - Area 1), US Virgin Islands, 2004, UTM 20 WGS84

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains an ESRI Geotiff with 1 meter cell size representing the bathymetry of the south shore of St. John, US Virgin Islands. Due to the large file...

  10. NOAA TIFF Image - 2m Multibeam Bathymetry, US Virgin Islands - Vieques Island - Project NF-09-01 - (2009), UTM 20N NAD83 (NCEI Accession 0131857)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a unified ESRI Grid with 2x2 meter cell size representing the bathymetry of two selected portions of seafloor - one area southwest of Vieques...

  11. NOAA TIFF Image - 2m Multibeam Bathymetry, US Virgin Islands - Vieques Island - Project NF-09-01 - (2009), UTM 20N NAD83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a unified ESRI Geotiff with 2x2 meter cell size representing the bathymetry of a selected portion of seafloor southwest of Vieques Island,...

  12. NOAA ESRI Grid - 3m Multibeam Bathymetry, Puerto Rico (Isla de Mona) - Project NF-08-04, , UTM 19N NAD83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains an ESRI Grid with 3 meter cell size representing the bathymetry of selected portions of seafloor around Isla de Mona in Puerto Rico, derived...

  13. NOAA TIFF Image - 3m Multibeam Bathymetry, Miami, South Atlantic Bight - Deep Coral Priority Areas - Lost Coast Explorer - (2010), UTM 17N NAD83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a unified GeoTiff with 3x3 meter cell size representing the bathymetry of the continental shelf off of Jacksonville, FL in the South Atlantic...

  14. NOAA ESRI Grid- 5m Multibeam Bathymetry of St. Croix (Buck Island), US Virgin Islands, Project NF-05-05, 2005, UTM 20 NAD83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains an ESRI Grid with 5 meter cell size representing the bathymetry of the north shore of St. Croix (Buck Island), US Virgin Islands.NOAA's...

  15. NOAA ESRI Geotiff- 1m Multibeam Bathymetry of St. Croix (Buck Island), US Virgin Islands, Project NF-05-05, 2005, UTM 20 NAD83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains an ESRI Geotiff with 1 meter cell size representing the bathymetry of the north shore of St. Croix (Buck Island), US Virgin Islands.NOAA's...

  16. Multibeam bathymetry and sediment depth data at select locations on the Des Plaines River near Joliet, Illinois, February 13–14, 2017

    Data.gov (United States)

    Department of the Interior — These data are high-resolution bathymetry (river bottom elevation) in XYZ format and measurements of sediment depth in CSV format, generated from the February 13–14,...

  17. CRED 20 m Gridded bathymetry and IKONOS estimated depths of Northampton Seamounts to Laysan Island, Northwestern Hawaiian Islands, USA (NetCDF format)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded bathymetry and IKONOS estimated depths of the shelf and slope environments of Northampton Seamounts to Laysan Island, Northwestern Hawaiian Islands, Hawaii,...

  18. Study of 3D bathymetry modelling using LAPAN Surveillance Unmanned Aerial Vehicle 02 (LSU-02) photo data with stereo photogrammetry technique, Wawaran Beach, Pacitan, East Java, Indonesia

    Science.gov (United States)

    Sari, N. M.; Nugroho, J. T.; Chulafak, G. A.; Kushardono, D.

    2018-05-01

    Coastal is an ecosystem that has unique object and phenomenon. The potential of the aerial photo data with very high spatial resolution covering coastal area is extensive. One of the aerial photo data can be used is LAPAN Surveillance UAV 02 (LSU-02) photo data which is acquired in 2016 with a spatial resolution reaching 10cm. This research aims to create an initial bathymetry model with stereo photogrammetry technique using LSU-02 data. In this research the bathymetry model was made by constructing 3D model with stereo photogrammetry technique that utilizes the dense point cloud created from overlapping of those photos. The result shows that the 3D bathymetry model can be built with stereo photogrammetry technique. It can be seen from the surface and bathymetry transect profile.

  19. NOAA TIFF Image - 50m Multibeam Bathymetry, Charleston Bump - Deep Coral Priority Areas - Little Hales - (2003), UTM 17N NAD83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a unified GeoTiff with 30x30 meter cell size representing the bathymetry of the Charleston Bump off of the South Atlantic Bight, derived from...

  20. NOAA ESRI Grid - 6m Multibeam Bathymetry, Puerto Rico (Tourmaline Bank) - Project NF-08-04, , UTM 19N NAD83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains an ESRI Grid with 6 meter cell size representing the bathymetry of selected portions of seafloor around Tourmaline Bank in Puerto Rico, derived...

  1. NOAA ESRI Grid - 10m Bathymetry around Abrir La Sierra Bank, Puerto Rico, Project NF-07-06, 2007, UTM 19 NAD 83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains an ESRI Grid with 10 meter cell size representing the bathymetry of selected portions of seafloor around Abrir La Sierra Bank in Puerto Rico,...

  2. NOAA TIFF Image - 30m Multibeam Bathymetry, Charleston Bump - Deep Coral Priority Areas - Nancy Foster - (2006), UTM 17N NAD83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a unified GeoTiff with 30x30 meter cell size representing the bathymetry of the Charleston Bump off of the South Atlantic Bight, derived from...

  3. NOAA TIFF Image - 1m Multibeam Bathymetry, US Virgin Islands - Vieques Island (El Seco) - Project NF-09-01 - (2009), UTM 20N NAD83 (NCEI Accession 0131857)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a unified ESRI Grid with 1x1 meter cell size representing the bathymetry of El Seco, a selected portion of seafloor east of Vieques Island,...

  4. NOAA ESRI Geotiff - 10m Bathymetry around Abrir La Sierra Bank, Puerto Rico, Project NF-07-06, 2007, UTM 19 NAD 83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains an ESRI Geotiff with 10 meter cell size representing the bathymetry of selected portions of seafloor around Abrir La Sierra Bank in Puerto...

  5. NOAA ESRI Geotiff- 1m Multibeam Bathymetry of St. Croix (Buck Island), US Virgin Islands, Project NF-05-05, 2005, UTM 20 NAD83 (NCEI Accession 0131860)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains an ESRI Geotiff with 1 meter cell size representing the bathymetry of the north shore of St. Croix (Buck Island), US Virgin Islands.NOAA's...

  6. Bathymetry of NPS's Virgin Islands Coral Reef National Monument (Inshore), St. John, US Virgin Islands 2005, 1M Grid, UTM 20 NAD83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains an ESRI Grid with 1 meter cell size representing the bathymetry of an inshore portion of the NPS's Virgin Islands Coral Reef National Monument,...

  7. NOAA ESRI Geotiff - 5m Bathymetry around Isla de Mona, Puerto Rico, Project NF-07-06, 2007, UTM 19 NAD 83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains an ESRI Geotiff with 5 meter cell size representing the bathymetry of selected portions of seafloor around Isla De Mona in Puerto Rico, derived...

  8. NOAA ESRI Geotiff - 3m Bathymetry around Isla de Mona, Puerto Rico, Project NF-07-06, 2007, UTM 19 NAD 83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains an ESRI Geotiff with 3 meter cell size representing the bathymetry of selected portions of seafloor around Isla De Mona in Puerto Rico, derived...

  9. NOAA ESRI Grid - 3m Multibeam Bathymetry, Puerto Rico (Tourmaline Bank) - Project NF-08-04, , UTM 19N NAD83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains an ESRI Grid with 3 meter cell size representing the bathymetry of selected portions of seafloor around Tourmaline Bank in Puerto Rico, derived...

  10. NOAA TIFF Image - 1m Multibeam Bathymetry, US Virgin Islands - St. John Shelf - Project NF-10-03 - (2010), UTM 20N NAD83 (NCEI Accession 0131854)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a GeoTIFF with 1x1 meter cell size representing the bathymetry of St. John Shelf, a selected portion of seafloor south of St. John, USVI,...

  11. NOAA ESRI Grid - 6m Multibeam Bathymetry, Puerto Rico (Isla de Mona) - Project NF-08-04, , UTM 19N NAD83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains an ESRI Grid with 6 meter cell size representing the bathymetry of selected portions of seafloor around Isla de Mona in Puerto Rico, derived...

  12. NOAA ESRI Geotiff- 1m Multibeam Bathymetry of Mid Shelf Reef, US Virgin Islands, Project NF-05-05, 2005, UTM 20 NAD83 (NCEI Accession 0131860)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains an ESRI Geotiff with 1 meter cell size representing the bathymetry of the Mid Shelf Reef south of St. Thomas, US Virgin Islands.NOAA's...

  13. NOAA TIFF Image - 1m Multibeam Bathymetry, US Virgin Islands - St. John Shelf - Project NF-10-03 - (2010), UTM 20N NAD83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a GeoTIFF with 1x1 meter cell size representing the bathymetry of St. John Shelf, a selected portion of seafloor south of St. John, USVI,...

  14. NOAA ESRI Geotiff - 2m Multibeam Bathymetry of Puerto Rico (La Parguera), Project NF-06-03, 2006, UTM 19 NAD83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains an ESRI Geotiff with 2 meter cell size representing the bathymetry of the southwest shore of La Parguera, Puerto Rico. NOAA's NOS/NCCOS/CCMA...

  15. NOAA ESRI Geotiff - 5m Bathymetry around Bajo de Cico, Puerto Rico, Project NF-07-06, 2007, UTM 19 NAD 83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains an ESRI Geotiff with 5 meter cell size representing the bathymetry of selected portions of seafloor around Bajo De Cico in Puerto Rico, derived...

  16. NOS ESRI Grid, St. Croix (Buck Island), 2006: 3M Multibeam Bathymetry of, US Virgin Islands, Project NF-06-03, UTM 20 NAD83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains an ESRI Grid with 3 meter cell size representing the bathymetry of the north shore of St. Croix, U.S. Virgin Islands. NOAA's NOS/NCCOS/CCMA...

  17. NOAA ESRI Grid - 3m Bathymetry around Isla de Mona, Puerto Rico, Project NF-07-06, 2007, UTM 19 NAD 83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains an ESRI Grid with 3 meter cell size representing the bathymetry of selected portions of seafloor around Isla De Mona in Puerto Rico, derived...

  18. Bathymetry 2M Grid of NPS's Salt River Bay National Historical Park and Ecological Reserve, St. Croix, US Virgin Islands, 2005, UTM 20 NAD83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains an ESRI Grid with 2 meter cell size representing the bathymetry of the a portion of the NPS's Salt River Bay National Historical Park and...

  19. NOAA ESRI Grid - 9m Multibeam Bathymetry, Puerto Rico (Isla de Mona) - Project NF-08-04, UTM 19N NAD83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains an ESRI Grid with 9 meter cell size representing the bathymetry of selected portions of seafloor around Isla de Mona in Puerto Rico, derived...

  20. NOAA TIFF Image - 30m Multibeam Bathymetry, Charleston Bump - Deep Coral Priority Areas - Thomas Jefferson - (2007), UTM 17N NAD83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a unified GeoTiff with 30x30 meter cell size representing the bathymetry of the Charleston Bump off of the South Atlantic Bight, derived from...

  1. NOAA TIFF Image - 10m Multibeam Bathymetry, South Atlantic Bight - Deep Coral Priority Areas - NOAA Ship Nancy Foster - (2010), UTM 17N NAD83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a unified GeoTiff with 10x10 meter cell size representing the bathymetry of several deep coral priority areas off the South Atlantic Bight,...

  2. NOAA TIFF Image - 10m Bathymetry Mosaic, South Atlantic Bight - Deep Coral Priority Areas - NOAA Ron Brown - (2010), UTM 17N NAD83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a unified GeoTiff with 10x10 meter cell size representing the bathymetry (depth) of several deep coral priority areas off the South Atlantic...

  3. NOAA TIFF Image - 30m Multibeam Bathymetry, South Atlantic Bight - Deep Coral Priority Areas - Navy Pathfinder - (2003), UTM 17N NAD83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a unified GeoTiff with 30x30 meter cell size representing the bathymetry of several deep coral priority areas off the South Atlantic Bight,...

  4. NOAA TIFF Image - 10m Multibeam Bathymetry, South Atlantic Bight - Deep Coral Priority Areas - NOAA Ship Nancy Foster - (2007), UTM 17N NAD83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a unified GeoTiff with 10x10 meter cell size representing the bathymetry of several deep coral priority areas off the South Atlantic Bight,...

  5. CRED 60 m Gridded bathymetry and IKONOS estimated depths of UTM Zone 2, Northwestern Hawaiian Islands, USA (NetCDF format)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded bathymetry and IKONOS estimated depths of the shelf and slope environments of the Northwestern Hawaiian Islands, USA within UTM Zone 2. Bottom coverage was...

  6. NOAA TIFF Image - 3m Bathymetry Mosaic, Florida Deep Coral Areas (Miami) - Lost Coast Explorer - (2010), UTM 17N NAD83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a unified GeoTiff with 3x3 meter cell size representing bathymetry of several deep coral priority areas off the Atlantic Coast of Florida,...

  7. NOAA ESRI Grid - 5m Bathymetry around Abrir La Sierra Bank, Puerto Rico, Project NF-07-06, 2007, UTM 19 NAD 83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains an ESRI Grid with 5 meter cell size representing the bathymetry of selected portions of seafloor around Abrir La Sierra Bank in Puerto Rico,...

  8. CRED 5m Gridded bathymetry of the banktop and slope environments of Northeast Bank (sometimes called "Muli" Seamount), American Samoa (NetCDF Format)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded (5 m cell size) bathymetry of the banktop and slope environments of Northeast Bank (sometimes called "Muli" Seamount), American Samoa, South Pacific. Almost...

  9. Bathymetric Bathymetric Position Index (BPI) Zones 20 m grid derived from gridded bathymetry of Baker Island, Pacific Remote Island Areas, Central Pacific.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Zones are derived from gridded (20 m cell size) multibeam bathymetry, collected aboard R/V AHI and NOAA ship Hi'ialakai. BPI Zones was created using the Benthic...

  10. Bathymetric Bathymetric Position Index (BPI) Zones 20 m grid derived from gridded bathymetry of Johnston Island, Pacific Remote Island Areas, Central Pacific.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Zones are derived from gridded (20 m cell size) multibeam bathymetry, collected aboard R/V AHI and NOAA ship Hi'ialakai. BPI Zones was created using the Benthic...

  11. Bathymetric Bathymetric Position Index (BPI) Zones 40 m grid derived from gridded bathymetry of Howland Island, Pacific Remote Island Areas, Central Pacific.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Zones are derived from gridded (40 m cell size) multibeam bathymetry, collected aboard R/V AHI and NOAA ship Hi'ialakai. BPI Zones was created using the Benthic...

  12. NOAA ESRI Geotiff- 2m Multibeam Bathymetry of Grammanik Bank, US Virgin Islands, Project NF-05-05, 2005, UTM 20 NAD83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains an ESRI Geotiff with 2 meter cell size representing the bathymetry of Grammanik Bank south of St. Thomas, US Virgin Islands.NOAA's...

  13. NOAA ESRI Geotiff- 2m Multibeam Bathymetry of Grammanik Bank, US Virgin Islands, Project NF-05-05, 2005, UTM 20 NAD83 (NCEI Accession 0131860)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains an ESRI Geotiff with 2 meter cell size representing the bathymetry of Grammanik Bank south of St. Thomas, US Virgin Islands.NOAA's...

  14. Rugosity grid derived from gridded bathymetry of Thirty-Five Fathom Bank and Thirty-Seven Fathom Bank, Commonwealth of the Northern Marianas.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Rugosity is derived from gridded (5 m cell size) multibeam bathymetry, aboard NOAA Ship Oscar Elton Sette. Cell values reflect the (surface area) / (planimetric...

  15. Slope 10 m grid derived from gridded bathymetry of Farallon de Pajaros (Uracas) Island, Commonwealth of the Northern Mariana Islands (CNMI), USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Slope is derived from gridded (10 m cell size) multibeam bathymetry, collected aboard NOAA Ship Hiialaka'i and R/V AHI. Cell values reflect the maximum rate of...

  16. CRED 60 m Gridded bathymetry and IKONOS estimated depths of UTM Zone 3, Northwestern Hawaiian Islands, USA (netCDF format)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded bathymetry and IKONOS estimated depths of the shelf and slope environments of the Northwestern Hawaiian Islands, USA within UTM Zone 3. Bottom coverage was...

  17. CRED 60 m Gridded bathymetry and IKONOS estimated depths of UTM Zone 1, Northwestern Hawaiian Islands, USA (NetCDF format)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded bathymetry and IKONOS estimated depths of the shelf and slope environments of the Northwestern Hawaiian Islands, USA within UTM Zone 1. Bottom coverage was...

  18. NOS ESRI Grid, Unified 10m Multibeam Bathymetry La Parguera, Puerto Rico and Buck Island, St. Croix 2006: Project NF-06-03, UTM 20 NAD83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a unified ESRI Grid with 10 meter cell size representing the bathymetry of selected portions of seafloor around La Parguera, P.R. and Buck...

  19. NOAA ESRI Grid Puerto Rico, La Parguera, 2006: 3M Multibeam Bathymetry, Project NF-06-03, UTM 19 NAD83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains an ESRI Grid with 3 meter cell size representing the bathymetry of the southwest shore of La Parguera, Puerto Rico. NOAA's NOS/NCCOS/CCMA...

  20. Rugosity 10 m grid derived from gridded bathymetry of Farallon de Pajaros (Uracas) Island, Commonwealth of the Northern Mariana Islands (CNMI), USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Rugosity is derived from gridded (10 m cell size) multibeam bathymetry, collected aboard NOAA Ship Hiialaka'i and R/V AHI, using the Benthic Terrain Modeler with...