WorldWideScience

Sample records for swat soil water

  1. Soil Water and Temperature System (SWATS) Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Cook, David R. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-04-01

    The soil water and temperature system (SWATS) provides vertical profiles of soil temperature, soil-water potential, and soil moisture as a function of depth below the ground surface at hourly intervals. The temperature profiles are measured directly by in situ sensors at the Central Facility and many of the extended facilities of the U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility Southern Great Plains (SGP) site. The soil-water potential and soil moisture profiles are derived from measurements of soil temperature rise in response to small inputs of heat. Atmospheric scientists use the data in climate models to determine boundary conditions and to estimate the surface energy flux. The data are also useful to hydrologists, soil scientists, and agricultural scientists for determining the state of the soil.

  2. Transferability of SWAT Models between SWAT2009 and SWAT2012.

    Science.gov (United States)

    Seo, Mijin; Yen, Haw; Kim, Min-Kyeong; Jeong, Jaehak

    2014-05-01

    In recent years, the Soil and Water Assessment Tool (SWAT) has experienced upgrades with enhanced functionalities and modeling capacities as it gets to the current version, SWAT2012. Changes in the SWAT code on a specific process may result in propagating influences in the output of other related processes. In this study, the characteristic significance of the enhancements in SWAT code was investigated using the two recent versions, SWAT2009 and SWAT2012. Using a global optimization technique, each model was calibrated for flow, sediment, and nutrient and then tested for transferability of parameters between the models. Results indicate that flow and water quality output were well calibrated with both models. However, the calibrated parameters determined by SWAT2009 and SWAT2012 were noticeably different, due mostly to the enhancements made in SWAT2012. Our results indicate that only the stream flow result was reliable when the models were upgraded or downgraded between the two versions after calibration. Sediment prediction was marginally reliable. SWAT parameters were nontransferrable if nutrient was the main output. The differences are due to various reasons, such as disparities in algorithms at the process level and propagation of the resulting uncertainty into higher-order processes. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  3. Validating soil phosphorus routines in the SWAT model

    Science.gov (United States)

    Phosphorus transfer from agricultural soils to surface waters is an important environmental issue. Commonly used models like SWAT have not always been updated to reflect improved understanding of soil P transformations and transfer to runoff. Our objective was to validate the ability of the P routin...

  4. Comment on “Modeling Miscanthus in the Soil and Water Assessment Tool (SWAT) to Simulate Its Water Quality Effects As a Bioenergy Crop”

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xuesong; Izaurralde, Roberto C.; Arnold, J. G.; Sammons, N. B.; Manowitz, David H.; Thomson, Allison M.; Williams, J.R.

    2011-07-01

    In this paper, the authors comment on several mistakes made in a journal paper "Modeling Miscanthus in the Soil and Water Assessment Tool (SWAT) to Simulate Its Water Quality Effects As a Bioenergy Crop" published on Environmental Scienece & Technology, based on field measurements from Great Lakes Bioenergy Research Center, Carbon Sequestration in Terrestrial Ecosystems, and published literature. Our comment has led to the development of another version of SWAT to include better process based description of radiation use efficiency and root-shoot growth.

  5. Improving SWAT for simulating water and carbon fluxes of forest ecosystems

    International Nuclear Information System (INIS)

    Yang, Qichun; Zhang, Xuesong

    2016-01-01

    As a widely used watershed model for assessing impacts of anthropogenic and natural disturbances on water quantity and quality, the Soil and Water Assessment Tool (SWAT) has not been extensively tested in simulating water and carbon fluxes of forest ecosystems. Here, we examine SWAT simulations of evapotranspiration (ET), net primary productivity (NPP), net ecosystem exchange (NEE), and plant biomass at ten AmeriFlux forest sites across the U.S. We identify unrealistic radiation use efficiency (Bio-E), large leaf to biomass fraction (Bio-LEAF), and missing phosphorus supply from parent material weathering as the primary causes for the inadequate performance of the default SWAT model in simulating forest dynamics. By further revising the relevant parameters and processes, SWAT's performance is substantially improved. Based on the comparison between the improved SWAT simulations and flux tower observations, we discuss future research directions for further enhancing model parameterization and representation of water and carbon cycling for forests. - Graphical abstract: Evaluating and improving SWAT simulations of water and carbon cycling over ten AmeriFlux sites across the United States. - Highlights: • The default forest parameterization in SWAT results in inadequate simulations of water and carbon. • Radiation use efficiency, leaf to biomass fraction, and parent material weathering processes are modified. • Revised SWAT provides improved simulations of evapotranspiration and net ecosystem exchange

  6. Improving SWAT for simulating water and carbon fluxes of forest ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Qichun [Joint Global Change Research Institute, Pacific Northwest National Lab, College Park, MD 20740 (United States); Zhang, Xuesong, E-mail: xuesong.zhang@pnnl.gov [Joint Global Change Research Institute, Pacific Northwest National Lab, College Park, MD 20740 (United States); Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI 48824 (United States)

    2016-11-01

    As a widely used watershed model for assessing impacts of anthropogenic and natural disturbances on water quantity and quality, the Soil and Water Assessment Tool (SWAT) has not been extensively tested in simulating water and carbon fluxes of forest ecosystems. Here, we examine SWAT simulations of evapotranspiration (ET), net primary productivity (NPP), net ecosystem exchange (NEE), and plant biomass at ten AmeriFlux forest sites across the U.S. We identify unrealistic radiation use efficiency (Bio-E), large leaf to biomass fraction (Bio-LEAF), and missing phosphorus supply from parent material weathering as the primary causes for the inadequate performance of the default SWAT model in simulating forest dynamics. By further revising the relevant parameters and processes, SWAT's performance is substantially improved. Based on the comparison between the improved SWAT simulations and flux tower observations, we discuss future research directions for further enhancing model parameterization and representation of water and carbon cycling for forests. - Graphical abstract: Evaluating and improving SWAT simulations of water and carbon cycling over ten AmeriFlux sites across the United States. - Highlights: • The default forest parameterization in SWAT results in inadequate simulations of water and carbon. • Radiation use efficiency, leaf to biomass fraction, and parent material weathering processes are modified. • Revised SWAT provides improved simulations of evapotranspiration and net ecosystem exchange.

  7. Effects of soil data resolution on SWAT model stream flow and water quality predictions.

    Science.gov (United States)

    Geza, Mengistu; McCray, John E

    2008-08-01

    The prediction accuracy of agricultural nonpoint source pollution models such as Soil and Water Assessment Tool (SWAT) depends on how well model input spatial parameters describe the characteristics of the watershed. The objective of this study was to assess the effects of different soil data resolutions on stream flow, sediment and nutrient predictions when used as input for SWAT. SWAT model predictions were compared for the two US Department of Agriculture soil databases with different resolution, namely the State Soil Geographic database (STATSGO) and the Soil Survey Geographic database (SSURGO). Same number of sub-basins was used in the watershed delineation. However, the number of HRUs generated when STATSGO and SSURGO soil data were used is 261 and 1301, respectively. SSURGO, with the highest spatial resolution, has 51 unique soil types in the watershed distributed in 1301 HRUs, while STATSGO has only three distributed in 261 HRUS. As a result of low resolution STATSGO assigns a single classification to areas that may have different soil types if SSURGO were used. SSURGO included Hydrologic Response Units (HRUs) with soil types that were generalized to one soil group in STATSGO. The difference in the number and size of HRUs also has an effect on sediment yield parameters (slope and slope length). Thus, as a result of the discrepancies in soil type and size of HRUs stream flow predicted was higher when SSURGO was used compared to STATSGO. SSURGO predicted less stream loading than STATSGO in terms of sediment and sediment-attached nutrients components, and vice versa for dissolved nutrients. When compared to mean daily measured flow, STATSGO performed better relative to SSURGO before calibration. SSURGO provided better results after calibration as evaluated by R(2) value (0.74 compared to 0.61 for STATSGO) and the Nash-Sutcliffe coefficient of Efficiency (NSE) values (0.70 and 0.61 for SSURGO and STATSGO, respectively) although both are in the same satisfactory

  8. The Soil and Water Assessment Tool (SWAT) Ecohydrological Model Circa 2015: Global Application Trends, Insights and Issues

    Science.gov (United States)

    Gassman, P. W.; Arnold, J. G.; Srinivasan, R.

    2015-12-01

    The Soil and Water Assessment Tool (SWAT) is one of the most widely used watershed-scale water quality models in the world. Over 2,000 peer-reviewed SWAT-related journal articles have been published and hundreds of other studies have been published in conference proceedings and other formats. The use of SWAT was initially concentrated in North America and Europe but has also expanded dramatically in other countries and regions during the past decade including Brazil, China, India, Iran, South Korea, Southeast Asia and eastern Africa. The SWAT model has proven to be a very flexible tool for investigating a broad range of hydrologic and water quality problems at different watershed scales and environmental conditions, and has proven very adaptable for applications requiring improved hydrologic and other enhanced simulation needs. We investigate here the various technological, networking, and other factors that have supported the expanded use of SWAT, and also highlight current worldwide simulation trends and possible impediments to future increased usage of the model. Examples of technological advances include easy access to web-based documentation, user-support groups, and SWAT literature, a variety of Geographic Information System (GIS) interface tools, pre- and post-processing calibration software and other software, and an open source code which has served as a model development catalyst for multiple user groups. Extensive networking regarding the use of SWAT has further occurred via internet-based user support groups, model training workshops, regional working groups, regional and international conferences, and targeted development workshops. We further highlight several important model development trends that have emerged during the past decade including improved hydrologic, cropping system, best management practice (BMP) and pollutant transport simulation methods. In addition, several current SWAT weaknesses will be addressed and key development needs will be

  9. SWATS: Diurnal Trends in the Soil Temperature Report

    Energy Technology Data Exchange (ETDEWEB)

    Cook, David [Argonne National Lab. (ANL), Argonne, IL (United States); Theisen, Adam [Univ. of Oklahoma, Norman, OK (United States)

    2017-06-30

    During the processing of data for the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility ARMBE2D Value-Added Product (VAP), the developers noticed that the SWATS soil temperatures did not show a decreased temporal variability with increased depth with the new E30+ Extended Facilities (EFs), unlike the older EFs at ARM’s Southern Great Plains (SGP) site. The instrument mentor analyzed the data and reported that all SWATS locations have shown this behavior but that the magnitude of the problem was greatest at EFs E31-E38. The data were analyzed to verify the initial assessments of: 1. 5 cm SWATS data were valid for all EFs and 15 cm soil temperature measurements were valid at all EFs other than E31-E38, 2. Use only nighttime SWATS soil temperature measurements to calculate daily average soil temperatures, 3. Since it seems likely that the soil temperature measurements below 15cm were affected by the solar heating of the enclosure at all but E31-38, and at all depths below 5cm at E31-38, individual measurements of soil temperature at these depths during daylight hours, and daily averages of the same, can ot be trusted on most (particularly sunny) days.

  10. Improving SWAT for simulating water and carbon fluxes of forest ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Qichun; Zhang, Xuesong

    2016-11-01

    As a widely used watershed model for assessing impacts of anthropogenic and natural disturbances on water quantity and quality, the Soil and Water Assessment Tool (SWAT) has not been extensively tested in simulating water and carbon fluxes of forest ecosystems. Here, we examine SWAT simulations of evapotranspiration (ET), net primary productivity (NPP), net ecosystem exchange (NEE), and plant biomass at ten AmeriFlux forest sites across the U.S. We identify unrealistic radiation use efficiency (Bio_E), large leaf to biomass fraction (Bio_LEAF), and missing phosphorus supply from parent material weathering as the primary causes for the inadequate performance of the default SWAT model in simulating forest dynamics. By further revising the relevant parameters and processes, SWAT’s performance is substantially improved. Based on the comparison between the improved SWAT simulations and flux tower observations, we discuss future research directions for further enhancing model parameterization and representation of water and carbon cycling for forests.

  11. Advancing representation of hydrologic processes in the Soil and Water Assessment Tool (SWAT) through integration of the TOPographic MODEL (TOPMODEL) features

    Science.gov (United States)

    Chen, J.; Wu, Y.

    2012-01-01

    This paper presents a study of the integration of the Soil and Water Assessment Tool (SWAT) model and the TOPographic MODEL (TOPMODEL) features for enhancing the physical representation of hydrologic processes. In SWAT, four hydrologic processes, which are surface runoff, baseflow, groundwater re-evaporation and deep aquifer percolation, are modeled by using a group of empirical equations. The empirical equations usually constrain the simulation capability of relevant processes. To replace these equations and to model the influences of topography and water table variation on streamflow generation, the TOPMODEL features are integrated into SWAT, and a new model, the so-called SWAT-TOP, is developed. In the new model, the process of deep aquifer percolation is removed, the concept of groundwater re-evaporation is refined, and the processes of surface runoff and baseflow are remodeled. Consequently, three parameters in SWAT are discarded, and two new parameters to reflect the TOPMODEL features are introduced. SWAT-TOP and SWAT are applied to the East River basin in South China, and the results reveal that, compared with SWAT, the new model can provide a more reasonable simulation of the hydrologic processes of surface runoff, groundwater re-evaporation, and baseflow. This study evidences that an established hydrologic model can be further improved by integrating the features of another model, which is a possible way to enhance our understanding of the workings of catchments.

  12. A fully integrated SWAT-MODFLOW hydrologic model

    Science.gov (United States)

    The Soil and Water Assessment Tool (SWAT) and MODFLOW models are being used worldwide for managing surface and groundwater water resources. The SWAT models hydrological processes occurring at the surface including shallow aquifers, while MODFLOW simulate groundwater processes. However, neither SWAT ...

  13. Assessment of soil erosion risk in Komering watershed, South Sumatera, using SWAT model

    Science.gov (United States)

    Salsabilla, A.; Kusratmoko, E.

    2017-07-01

    Changes in land use watershed led to environmental degradation. Estimated loss of soil erosion is often difficult due to some factors such as topography, land use, climate and human activities. This study aims to predict soil erosion hazard and sediment yield using the Soil and Water Assessment Tools (SWAT) hydrological model. The SWAT was chosen because it can simulate the model with limited data. The study area is Komering watershed (806,001 Ha) in South Sumatera Province. There are two factors land management intervention: 1) land with agriculture, and 2) land with cultivation. These factors selected in accordance with the regulations of spatial plan area. Application of the SWAT demonstrated that the model can predict surface runoff, soil erosion loss and sediment yield. The erosion risk for each watershed can be classified and predicted its changes based on the scenarios which arranged. In this paper, we also discussed the relationship between the distribution of erosion risk and watershed's characteristics in a spatial perspective.

  14. Residues of cypermethrin and endosulfan in soils of Swat valley

    Directory of Open Access Journals (Sweden)

    M. Nafees

    2009-05-01

    Full Text Available Swat Valley was studied for two widely used pesticides; cypermethrin and endosulfan. A total of 63 soil samples were collected from 27 villages selected for this purpose. The collected soil samples were extracted with n-hexane, pesticides were separated, identified and quantified by a GC-ECD system. Endosulfan was 0.24 - 1.51 mg kg-1 and 0.13 - 12.67 mg kg-1 in rainfed and irrigated areas, respectively. The residual level of cypermethrin was comparatively high with a level of0.14 to 27.62 mg kg-1 and 0.05 to 73.75 mg kg-1 in rainfed and irrigated areas, respectively. For assessing the possible causes of pesticide residues in soil, 360 farmers were interviewed. It was found that both, cypermethrin and endosulfan, apart from agriculture were also widely misused for fishing in the entire stretch of River Swat and its tributaries. River Swat is used for irrigation in Swat Valley and this wide misuse of pesticides can also contribute to pesticide residue in soil.

  15. Modeling Agricultural Watersheds with the Soil and Water Assessment Tool (SWAT): Calibration and Validation with a Novel Procedure for Spatially Explicit HRUs.

    Science.gov (United States)

    Teshager, Awoke Dagnew; Gassman, Philip W; Secchi, Silvia; Schoof, Justin T; Misgna, Girmaye

    2016-04-01

    Applications of the Soil and Water Assessment Tool (SWAT) model typically involve delineation of a watershed into subwatersheds/subbasins that are then further subdivided into hydrologic response units (HRUs) which are homogeneous areas of aggregated soil, landuse, and slope and are the smallest modeling units used within the model. In a given standard SWAT application, multiple potential HRUs (farm fields) in a subbasin are usually aggregated into a single HRU feature. In other words, the standard version of the model combines multiple potential HRUs (farm fields) with the same landuse/landcover, soil, and slope, but located at different places of a subbasin (spatially non-unique), and considers them as one HRU. In this study, ArcGIS pre-processing procedures were developed to spatially define a one-to-one match between farm fields and HRUs (spatially unique HRUs) within a subbasin prior to SWAT simulations to facilitate input processing, input/output mapping, and further analysis at the individual farm field level. Model input data such as landuse/landcover (LULC), soil, crop rotation, and other management data were processed through these HRUs. The SWAT model was then calibrated/validated for Raccoon River watershed in Iowa for 2002-2010 and Big Creek River watershed in Illinois for 2000-2003. SWAT was able to replicate annual, monthly, and daily streamflow, as well as sediment, nitrate and mineral phosphorous within recommended accuracy in most cases. The one-to-one match between farm fields and HRUs created and used in this study is a first step in performing LULC change, climate change impact, and other analyses in a more spatially explicit manner.

  16. Hydrological modeling of the pipestone creek watershed using the Soil Water Assessment Tool (SWAT: Assessing impacts of wetland drainage on hydrology

    Directory of Open Access Journals (Sweden)

    Cesar Perez-Valdivia

    2017-12-01

    Full Text Available Study region: Prairie Pothole Region of North America. Study focus: The Prairie Pothole Region of North America has experienced extensive wetland drainage, potentially impacting peak flows and annual flow volumes. Some of this drainage has occurred in closed basins, possibly impacting lake water levels of these systems. In this study we investigated the potential impact of wetland drainage on peak flows and annual volumes in a 2242 km2 watershed located in southeastern Saskatchewan (Canada using the Soil Water Assessment Tool (SWAT model. New hydrological insights: The SWAT model, which had been calibrated and validated at daily and monthly time steps for the 1997–2009 period, was used to assess the impact of wetland drainage using three hypothetical scenarios that drained 15, 30, and 50% of the non-contributing drainage area. Results of these simulations suggested that drainage increased spring peak flows by about 50, 79 and 113%, respectively while annual flow volumes increased by about 43, 68, and 98% in each scenario. Years that were wetter than normal presented increased peak flows and annual flow volumes below the average of the simulated period. Alternatively, summer peak flows presented smaller increases in terms of percentages during the simulated period. Keywords: Soil Water Assessment Tool (SWAT, Wetland drainage, Peak flow, Annual volume, Prairie Pothole Region

  17. A Guideline for Successful Calibration and Uncertainty Analysis for Soil and Water Assessment: A Review of Papers from the 2016 International SWAT Conference

    Directory of Open Access Journals (Sweden)

    Karim C. Abbaspour

    2017-12-01

    Full Text Available Application of integrated hydrological models to manage a watershed’s water resources are increasingly finding their way into the decision-making processes. The Soil and Water Assessment Tool (SWAT is a multi-process model integrating hydrology, ecology, agriculture, and water quality. SWAT is a continuation of nearly 40 years of modeling efforts conducted by the United States Department of Agriculture (USDA Agricultural Research Service (ARS. A large number of SWAT-related papers have appeared in ISI journals, building a world-wide consensus around the model’s stability and usefulness. The current issue is a collection of the latest research using SWAT as the modeling tool. Most models must undergo calibration/validation and uncertainty analysis. Unfortunately, these sciences are not formal subjects of teaching in most universities and the students are often left to their own resources to calibrate their model. In this paper, we focus on calibration and uncertainty analysis highlighting some serious issues in the calibration of distributed models. A protocol for calibration is also highlighted to guide the users to obtain better modeling results. Finally, a summary of the papers published in this special issue is provided in the Appendix.

  18. Evaluation of alternative surface runoff accounting procedures using the SWAT model

    Science.gov (United States)

    For surface runoff estimation in the Soil and Water Assessment Tool (SWAT) model, the curve number (CN) procedure is commonly adopted to calculate surface runoff by utilizing antecedent soil moisture condition (SCSI) in field. In the recent version of SWAT (SWAT2005), an alternative approach is ava...

  19. Management-oriented sensitivity analysis for pesticide transport in watershed-scale water quality modeling using SWAT.

    Science.gov (United States)

    Luo, Yuzhou; Zhang, Minghua

    2009-12-01

    The Soil and Water Assessment Tool (SWAT) was calibrated for hydrology conditions in an agricultural watershed of Orestimba Creek, California, and applied to simulate fate and transport of two organophosphate pesticides chlorpyrifos and diazinon. The model showed capability in evaluating pesticide fate and transport processes in agricultural fields and instream network. Management-oriented sensitivity analysis was conducted by applied stochastic SWAT simulations for pesticide distribution. Results of sensitivity analysis identified the governing processes in pesticide outputs as surface runoff, soil erosion, and sedimentation in the study area. By incorporating sensitive parameters in pesticide transport simulation, effects of structural best management practices (BMPs) in improving surface water quality were demonstrated by SWAT modeling. This study also recommends conservation practices designed to reduce field yield and in-stream transport capacity of sediment, such as filter strip, grassed waterway, crop residue management, and tailwater pond to be implemented in the Orestimba Creek watershed.

  20. Management-oriented sensitivity analysis for pesticide transport in watershed-scale water quality modeling using SWAT

    International Nuclear Information System (INIS)

    Luo Yuzhou; Zhang Minghua

    2009-01-01

    The Soil and Water Assessment Tool (SWAT) was calibrated for hydrology conditions in an agricultural watershed of Orestimba Creek, California, and applied to simulate fate and transport of two organophosphate pesticides chlorpyrifos and diazinon. The model showed capability in evaluating pesticide fate and transport processes in agricultural fields and instream network. Management-oriented sensitivity analysis was conducted by applied stochastic SWAT simulations for pesticide distribution. Results of sensitivity analysis identified the governing processes in pesticide outputs as surface runoff, soil erosion, and sedimentation in the study area. By incorporating sensitive parameters in pesticide transport simulation, effects of structural best management practices (BMPs) in improving surface water quality were demonstrated by SWAT modeling. This study also recommends conservation practices designed to reduce field yield and in-stream transport capacity of sediment, such as filter strip, grassed waterway, crop residue management, and tailwater pond to be implemented in the Orestimba Creek watershed. - Selected structural BMPs are recommended for reducing loads of OP pesticides.

  1. Management-oriented sensitivity analysis for pesticide transport in watershed-scale water quality modeling using SWAT

    Energy Technology Data Exchange (ETDEWEB)

    Luo Yuzhou [University of California, Davis, CA 95616 (United States); Wenzhou Medical College, Wenzhou 325035 (China); Zhang Minghua, E-mail: mhzhang@ucdavis.ed [University of California, Davis, CA 95616 (United States); Wenzhou Medical College, Wenzhou 325035 (China)

    2009-12-15

    The Soil and Water Assessment Tool (SWAT) was calibrated for hydrology conditions in an agricultural watershed of Orestimba Creek, California, and applied to simulate fate and transport of two organophosphate pesticides chlorpyrifos and diazinon. The model showed capability in evaluating pesticide fate and transport processes in agricultural fields and instream network. Management-oriented sensitivity analysis was conducted by applied stochastic SWAT simulations for pesticide distribution. Results of sensitivity analysis identified the governing processes in pesticide outputs as surface runoff, soil erosion, and sedimentation in the study area. By incorporating sensitive parameters in pesticide transport simulation, effects of structural best management practices (BMPs) in improving surface water quality were demonstrated by SWAT modeling. This study also recommends conservation practices designed to reduce field yield and in-stream transport capacity of sediment, such as filter strip, grassed waterway, crop residue management, and tailwater pond to be implemented in the Orestimba Creek watershed. - Selected structural BMPs are recommended for reducing loads of OP pesticides.

  2. Validation of SWAT+ at field level and comparison with previous SWAT models in simulating hydrologic quantity

    Science.gov (United States)

    GAO, J.; White, M. J.; Bieger, K.; Yen, H.; Arnold, J. G.

    2017-12-01

    Over the past 20 years, the Soil and Water Assessment Tool (SWAT) has been adopted by many researches to assess water quantity and quality in watersheds around the world. As the demand increases in facilitating model support, maintenance, and future development, the SWAT source code and data have undergone major modifications over the past few years. To make the model more flexible in terms of interactions of spatial units and processes occurring in watersheds, a completely revised version of SWAT (SWAT+) was developed to improve SWAT's ability in water resource modelling and management. There are only several applications of SWAT+ in large watersheds, however, no study pays attention to validate the new model at field level and assess its performance. To test the basic hydrologic function of SWAT+, it was implemented in five field cases across five states in the U.S. and compared the SWAT+ created results with that from the previous models at the same fields. Additionally, an automatic calibration tool was used to test which model is easier to be calibrated well in a limited number of parameter adjustments. The goal of the study was to evaluate the performance of SWAT+ in simulating stream flow on field level at different geographical locations. The results demonstrate that SWAT+ demonstrated similar performance with previous SWAT model, but the flexibility offered by SWAT+ via the connection of different spatial objects can result in a more accurate simulation of hydrological processes in spatial, especially for watershed with artificial facilities. Autocalibration shows that SWAT+ is much easier to obtain a satisfied result compared with the previous SWAT. Although many capabilities have already been enhanced in SWAT+, there exist inaccuracies in simulation. This insufficiency will be improved with advancements in scientific knowledge on hydrologic process in specific watersheds. Currently, SWAT+ is prerelease, and any errors are being addressed.

  3. Modeling Miscanthus in the soil and water assessment tool (SWAT) to simulate its water quality effects as a bioenergy crop.

    Science.gov (United States)

    Ng, Tze Ling; Eheart, J Wayland; Cai, Ximing; Miguez, Fernando

    2010-09-15

    There is increasing interest in perennial grasses as a renewable source of bioenergy and feedstock for second-generation cellulosic biofuels. The primary objective of this study is to estimate the potential effects on riverine nitrate load of cultivating Miscanthus x giganteus in place of conventional crops. In this study, the Soil and Water Assessment Tool (SWAT) is used to model miscanthus growth and streamwater quality in the Salt Creek watershed in Illinois. SWAT has a built-in crop growth component, but, as miscanthus is relatively new as a potentially commercial crop, data on the SWAT crop growth parameters for the crop are lacking. This leads to the second objective of this study, which is to estimate those parameters to facilitate the modeling of miscanthus in SWAT. Results show a decrease in nitrate load that depends on the percent land use change to miscanthus and the amount of nitrogen fertilizer applied to the miscanthus. Specifically, assuming a nitrogen fertilization rate for miscanthus of 90 kg-N/ha, a 10%, 25%, and 50% land use change to miscanthus will lead to decreases in nitrate load of about 6.4%, 16.5%, and 29.6% at the watershed outlet, respectively. Likewise, nitrate load may be reduced by lowering the fertilizer application rate, but not proportionately. When fertilization drops from 90 to 30 kg-N/ha the difference in nitrate load decrease is less than 1% when 10% of the watershed is miscanthus and less than 6% when 50% of the watershed is miscanthus. It is also found that the nitrate load decrease from converting less than half the watershed to miscanthus from corn and soybean in 1:1 rotation surpasses that from converting the whole watershed to just soybean.

  4. Application of SWAT99.2 to sensitivity analysis of water balance components in unique plots in a hilly region

    Directory of Open Access Journals (Sweden)

    Jun-feng Dai

    2017-07-01

    Full Text Available Although many sensitivity analyses using the soil and water assessment tool (SWAT in a complex watershed have been conducted, little attention has been paid to the application potential of the model in unique plots. In addition, sensitivity analysis of percolation and evapotranspiration with SWAT has seldom been undertaken. In this study, SWAT99.2 was calibrated to simulate water balance components for unique plots in Southern China from 2000 to 2001, which included surface runoff, percolation, and evapotranspiration. Twenty-one parameters classified into four categories, including meteorological conditions, topographical characteristics, soil properties, and vegetation attributes, were used for sensitivity analysis through one-at-a-time (OAT sampling to identify the factor that contributed most to the variance in water balance components. The results were shown to be different for different plots, with parameter sensitivity indices and ranks varying for different water balance components. Water balance components in the broad-leaved forest and natural grass plots were most sensitive to meteorological conditions, less sensitive to vegetation attributes and soil properties, and least sensitive to topographical characteristics. Compared to those in the natural grass plot, water balance components in the broad-leaved forest plot demonstrated higher sensitivity to the maximum stomatal conductance (GSI and maximum leaf area index (BLAI.

  5. Modeling the Impacts of Spatial Heterogeneity in the Castor Watershed on Runoff, Sediment, and Phosphorus Loss Using SWAT: I. Impacts of Spatial Variability of Soil Properties.

    Science.gov (United States)

    Boluwade, Alaba; Madramootoo, Chandra

    2013-01-01

    Spatial accuracy of hydrologic modeling inputs influences the output from hydrologic models. A pertinent question is to know the optimal level of soil sampling or how many soil samples are needed for model input, in order to improve model predictions. In this study, measured soil properties were clustered into five different configurations as inputs to the Soil and Water Assessment Tool (SWAT) simulation of the Castor River watershed (11-km 2 area) in southern Quebec, Canada. SWAT is a process-based model that predicts the impacts of climate and land use management on water yield, sediment, and nutrient fluxes. SWAT requires geographical information system inputs such as the digital elevation model as well as soil and land use maps. Mean values of soil properties are used in soil polygons (soil series); thus, the spatial variability of these properties is neglected. The primary objective of this study was to quantify the impacts of spatial variability of soil properties on the prediction of runoff, sediment, and total phosphorus using SWAT. The spatial clustering of the measured soil properties was undertaken using the regionalized with dynamically constrained agglomerative clustering and partitioning method. Measured soil data were clustered into 5, 10, 15, 20, and 24 heterogeneous regions. Soil data from the Castor watershed which have been used in previous studies was also set up and termed "Reference". Overall, there was no significant difference in runoff simulation across the five configurations including the reference. This may be attributable to SWAT's use of the soil conservation service curve number method in flow simulation. Therefore having high spatial resolution inputs for soil data may not necessarily improve predictions when they are used in hydrologic modeling.

  6. Introducing a new open source GIS user interface for the SWAT model

    Science.gov (United States)

    The Soil and Water Assessment Tool (SWAT) model is a robust watershed modelling tool. It typically uses the ArcSWAT interface to create its inputs. ArcSWAT is public domain software which works in the licensed ArcGIS environment. The aim of this paper was to develop an open source user interface ...

  7. Modeling the impact of nitrogen fertilizer application and tile drain configuration on nitrate leaching using SWAT

    Science.gov (United States)

    Recently, the Soil and Water Assessment Tool (SWAT) was revised to improve the partitioning of runoff and tile drainage in poorly drained soils by modifying the algorithm for computing the soil moisture retention parameter. In this study, the revised SWAT model was used to evaluate the sensitivity a...

  8. Hydrology and sediment yield calibration for the Barasona reservoir catchment (Spain) using SWAT

    Science.gov (United States)

    Palazón, Leticia; Navas, Ana

    2013-04-01

    Hydrological and soil erosion models, as Soil and Water Assessment Tool (SWAT), have become very useful tools and increasingly serve as vital components of integrated environmental assessments that provide information outside of direct field experiments and causal observation. The purpose of this study was to improve the calibration of SWAT model to use it in an alpine catchment as a simulator of processes related to water quality and soil erosion. SWAT is spatially semi-distributed, agro-hydrological model that operates on a daily time step (as a minimum) at basin scale. It is designed to predict the impact of management on water, sediment and agricultural chemical yields in ungaged catchments. SWAT provides physically based algorithms as an option to define many of the important components of the hydrologic cycle. The input requirements of the model are used to describe the climate, soil properties, topography, vegetation, and land management practices. SWAT analyzes small or large catchments by discretising into sub-basins, which are then further subdivided into hydrological response units (HRUs) with homogeneous land use, soil type and slope. SWAT model (SWAT2009) coupled with a GIS interface (ArcSWAT), was applied to the Barasona reservoir catchment located in the central Spanish Pyrenees. The 1509 km2 agro-forestry catchment presents a mountain type climate, an altitudinal range close to 3000 meters and a precipitation variation close to 1000 mm/km. The mountainous characteristics of the catchment, in addition to the scarcity of climate data in the region, require specific calibration for some processes. Snowfall and snowmelt are significant processes in the hydrologic regime of the area and were calibrated in a previous work. In this work some of the challenges of the catchment to model with SWAT which affected the hydrology and the sediment yield simulation were performed as improvement of the previous calibration. Two reservoirs, a karst system which

  9. Grid based calibration of SWAT hydrological models

    Directory of Open Access Journals (Sweden)

    D. Gorgan

    2012-07-01

    Full Text Available The calibration and execution of large hydrological models, such as SWAT (soil and water assessment tool, developed for large areas, high resolution, and huge input data, need not only quite a long execution time but also high computation resources. SWAT hydrological model supports studies and predictions of the impact of land management practices on water, sediment, and agricultural chemical yields in complex watersheds. The paper presents the gSWAT application as a web practical solution for environmental specialists to calibrate extensive hydrological models and to run scenarios, by hiding the complex control of processes and heterogeneous resources across the grid based high computation infrastructure. The paper highlights the basic functionalities of the gSWAT platform, and the features of the graphical user interface. The presentation is concerned with the development of working sessions, interactive control of calibration, direct and basic editing of parameters, process monitoring, and graphical and interactive visualization of the results. The experiments performed on different SWAT models and the obtained results argue the benefits brought by the grid parallel and distributed environment as a solution for the processing platform. All the instances of SWAT models used in the reported experiments have been developed through the enviroGRIDS project, targeting the Black Sea catchment area.

  10. Applications of the SWAT Model Special Section: Overview and Insights.

    Science.gov (United States)

    Gassman, Philip W; Sadeghi, Ali M; Srinivasan, Raghavan

    2014-01-01

    The Soil and Water Assessment Tool (SWAT) model has emerged as one of the most widely used water quality watershed- and river basin-scale models worldwide, applied extensively for a broad range of hydrologic and/or environmental problems. The international use of SWAT can be attributed to its flexibility in addressing water resource problems, extensive networking via dozens of training workshops and the several international conferences that have been held during the past decade, comprehensive online documentation and supporting software, and an open source code that can be adapted by model users for specific application needs. The catalyst for this special collection of papers was the 2011 International SWAT Conference & Workshops held in Toledo, Spain, which featured over 160 scientific presentations representing SWAT applications in 37 countries. This special collection presents 22 specific SWAT-related studies, most of which were presented at the 2011 SWAT Conference; it represents SWAT applications on five different continents, with the majority of studies being conducted in Europe and North America. The papers cover a variety of topics, including hydrologic testing at a wide range of watershed scales, transport of pollutants in northern European lowland watersheds, data input and routing method effects on sediment transport, development and testing of potential new model algorithms, and description and testing of supporting software. In this introduction to the special section, we provide a synthesis of these studies within four main categories: (i) hydrologic foundations, (ii) sediment transport and routing analyses, (iii) nutrient and pesticide transport, and (iv) scenario analyses. We conclude with a brief summary of key SWAT research and development needs. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  11. Integrated Approach to Inform the New York City Water Supply System Coupling SAR Remote Sensing Observations and the SWAT Watershed Model

    Science.gov (United States)

    Tesser, D.; Hoang, L.; McDonald, K. C.

    2017-12-01

    Efforts to improve municipal water supply systems increasingly rely on an ability to elucidate variables that drive hydrologic dynamics within large watersheds. However, fundamental model variables such as precipitation, soil moisture, evapotranspiration, and soil freeze/thaw state remain difficult to measure empirically across large, heterogeneous watersheds. Satellite remote sensing presents a method to validate these spatially and temporally dynamic variables as well as better inform the watershed models that monitor the water supply for many of the planet's most populous urban centers. PALSAR 2 L-band, Sentinel 1 C-band, and SMAP L-band scenes covering the Cannonsville branch of the New York City (NYC) water supply watershed were obtained for the period of March 2015 - October 2017. The SAR data provides information on soil moisture, free/thaw state, seasonal surface inundation, and variable source areas within the study site. Integrating the remote sensing products with watershed model outputs and ground survey data improves the representation of related processes in the Soil and Water Assessment Tool (SWAT) utilized to monitor the NYC water supply. PALSAR 2 supports accurate mapping of the extent of variable source areas while Sentinel 1 presents a method to model the timing and magnitude of snowmelt runoff events. SMAP Active Radar soil moisture product directly validates SWAT outputs at the subbasin level. This blended approach verifies the distribution of soil wetness classes within the watershed that delineate Hydrologic Response Units (HRUs) in the modified SWAT-Hillslope. The research expands the ability to model the NYC water supply source beyond a subset of the watershed while also providing high resolution information across a larger spatial scale. The global availability of these remote sensing products provides a method to capture fundamental hydrology variables in regions where current modeling efforts and in situ data remain limited.

  12. A generalized methodology for identification of threshold for HRU delineation in SWAT model

    Science.gov (United States)

    M, J.; Sudheer, K.; Chaubey, I.; Raj, C.

    2016-12-01

    The distributed hydrological model, Soil and Water Assessment Tool (SWAT) is a comprehensive hydrologic model widely used for making various decisions. The simulation accuracy of the distributed hydrological model differs due to the mechanism involved in the subdivision of the watershed. Soil and Water Assessment Tool (SWAT) considers sub-dividing the watershed and the sub-basins into small computing units known as 'hydrologic response units (HRU). The delineation of HRU is done based on unique combinations of land use, soil types, and slope within the sub-watersheds, which are not spatially defined. The computations in SWAT are done at HRU level and are then aggregated up to the sub-basin outlet, which is routed through the stream system. Generally, the HRUs are delineated by considering a threshold percentage of land use, soil and slope are to be given by the modeler to decrease the computation time of the model. The thresholds constrain the minimum area for constructing an HRU. In the current HRU delineation practice in SWAT, the land use, soil and slope of the watershed within a sub-basin, which is less than the predefined threshold, will be surpassed by the dominating land use, soil and slope, and introduce some level of ambiguity in the process simulations in terms of inappropriate representation of the area. But the loss of information due to variation in the threshold values depends highly on the purpose of the study. Therefore this research studies the effects of threshold values of HRU delineation on the hydrological modeling of SWAT on sediment simulations and suggests guidelines for selecting the appropriate threshold values considering the sediment simulation accuracy. The preliminary study was done on Illinois watershed by assigning different thresholds for land use and soil. A general methodology was proposed for identifying an appropriate threshold for HRU delineation in SWAT model that considered computational time and accuracy of the simulation

  13. ASSESSMENT OF WATER BALANCE OF A WATERSHED USING SWAT MODEL FOR WATER RESOURCES MANAGEMENT

    OpenAIRE

    Sandra George; Sathian, K.K.

    2016-01-01

    An attempt has been made in this study to assess the hydrological behavior of the Kurumali sub basin of Karuvannur river basin using SWAT model and other geospatial technologies. All the thematic maps and attribute information of the watershed have been collected from various Government agencies. SWAT model has been set up for the Kurumali sub basin by inputting the digital thematic maps, physical properties of soil and climatic parameters. Total area of the watershed corresponding to the out...

  14. Soil and Water Assessment Tool: Historical Development, Applications, and Future Research Directions, The

    OpenAIRE

    Philip W. Gassman; Manuel R. Reyes; Colleen H. Green; Jeffrey G. Arnold

    2007-01-01

    The Soil and Water Assessment Tool (SWAT) model is a continuation of nearly 30 years of modeling efforts conducted by the U.S. Department of Agriculture (USDA), Agricultural Research Service. SWAT has gained international acceptance as a robust interdisciplinary watershed modeling tool, as evidenced by international SWAT conferences, hundreds of SWAT-related papers presented at numerous scientific meetings, and dozens of articles published in peer-reviewed journals. The model has also been ad...

  15. Developing a Resource for Implementing ArcSWAT Using Global Datasets

    Science.gov (United States)

    Taggart, M.; Caraballo Álvarez, I. O.; Mueller, C.; Palacios, S. L.; Schmidt, C.; Milesi, C.; Palmer-Moloney, L. J.

    2015-12-01

    This project developed a comprehensive user manual outlining methods for adapting and implementing global datasets for use within ArcSWAT for international and worldwide applications. The Soil and Water Assessment Tool (SWAT) is a hydrologic model that looks at a number of hydrologic variables including runoff and the chemical makeup of water at a given location on the Earth's surface using Digital Elevation Models (DEM), land cover, soil, and weather data. However, the application of ArcSWAT for projects outside of the United States is challenging as there is no standard framework for inputting global datasets into ArcSWAT. This project aims to remove this obstacle by outlining methods for adapting and implementing these global datasets via the user manual. The manual takes the user through the processes of data conditioning while providing solutions and suggestions for common errors. The efficacy of the manual was explored using examples from watersheds located in Puerto Rico, Mexico and Western Africa. Each run explored the various options for setting up a ArcSWAT project as well as a range of satellite data products and soil databases. Future work will incorporate in-situ data for validation and calibration of the model and outline additional resources to assist future users in efficiently implementing the model for worldwide applications. The capacity to manage and monitor freshwater availability is of critical importance in both developed and developing countries. As populations grow and climate changes, both the quality and quantity of freshwater are affected resulting in negative impacts on the health of the surrounding population. The use of hydrologic models such as ArcSWAT can help stakeholders and decision makers understand the future impacts of these changes enabling informed and substantiated decisions.

  16. Improving streamflow simulations and forecasting performance of SWAT model by assimilating remotely sensed soil moisture observations

    Science.gov (United States)

    Patil, Amol; Ramsankaran, RAAJ

    2017-12-01

    This article presents a study carried out using EnKF based assimilation of coarser-scale SMOS soil moisture retrievals to improve the streamflow simulations and forecasting performance of SWAT model in a large catchment. This study has been carried out in Munneru river catchment, India, which is about 10,156 km2. In this study, an EnkF based new approach is proposed for improving the inherent vertical coupling of soil layers of SWAT hydrological model during soil moisture data assimilation. Evaluation of the vertical error correlation obtained between surface and subsurface layers indicates that the vertical coupling can be improved significantly using ensemble of soil storages compared to the traditional static soil storages based EnKF approach. However, the improvements in the simulated streamflow are moderate, which is due to the limitations in SWAT model in reflecting the profile soil moisture updates in surface runoff computations. Further, it is observed that the durability of streamflow improvements is longer when the assimilation system effectively updates the subsurface flow component. Overall, the results of the present study indicate that the passive microwave-based coarser-scale soil moisture products like SMOS hold significant potential to improve the streamflow estimates when assimilating into large-scale distributed hydrological models operating at a daily time step.

  17. Hydrosedimentological modeling of watershed in southeast Brazil, using SWAT

    Directory of Open Access Journals (Sweden)

    Maria Lúcia Calijuri

    2010-08-01

    Full Text Available The quantitative evaluation of soil loss due to erosion, of water loss and of load sediments that reach water bodies is fundamental to the environmental planning of a watershed, contributing to the process of decision for best options for soil tillage and water quality maintenance. Estimates of these data have been accomplished throughout the world using empiric or conceptual models. Besides being economically viable in scenarios development, environmental models may contribute to the location of critical areas, leading to emergency contention operations caused by erosive processes. Among these models, we highlight the SWAT (Soil and Water Assessment Tool which was applied in São Bartolomeu watershed, located in the Zona da Mata, Minas Gerais state, southeastern Brazil, to identify areas of greater sensitivity to erosion considering the soil type and land use. To validate the model, 10 experimental plots were installed in the dominant crops of the watershed between 2006 and 2008, for monitoring the runoff and soil losses under natural rainfall. Field results and simulations showed the SWAT efficiency for sediment yield and soil losses estimations, as they are influenced by factors such as soil moisture, rainfall intensity, soil type and land use (dominated by Oxisols, Ultisols, Inceptisols and Entisols. These losses can be reduced significantly by improving crops management of. A simulation scenario replacing pastures cover by Eucalyptus was introduced, which significantly reduced soil loss in many parts of the watershed.

  18. Application of SWAT to assess the effects of land use change in the Murchison Bay catchment in Uganda

    Science.gov (United States)

    The Soil and Water Assessment Tool (SWAT) is a versatile model presently used worldwide to evaluate water quality and hydrological concerns under varying land use and environmental conditions. In this study, SWAT was used to simulate streamflow and to estimate sediment yield and nutrients loss from ...

  19. Guidelines for using sensitivity analysis and auto-calibration tools for multi-gage or multi-step calibration in SWAT

    Science.gov (United States)

    Autocalibration of a water quality model such as SWAT (Soil and Water Assessment Tool) can be a powerful, labor-saving tool. When multi-gage or multi-pollutant calibration is desired, autocalibration is essential because the time involved in manual calibration becomes prohibitive. The ArcSWAT Interf...

  20. Evapotranspiration and Precipitation inputs for SWAT model using remotely sensed observations

    Science.gov (United States)

    The ability of numerical models, such as the Soil and Water Assessment Tool (or SWAT), to accurately represent the partition of the water budget and describe sediment loads and other pollutant conditions related to water quality strongly depends on how well spatiotemporal variability in precipitatio...

  1. Soil water content, runoff and soil loss prediction in a small ungauged agricultural basin in the Mediterranean region using the Soil and Water Assessment Tool

    OpenAIRE

    Ramos Martín, Ma. C. (Ma. Concepción); Martínez Casasnovas, José Antonio

    2015-01-01

    The aim of the present work was to evaluate the possibilities of using sub-basin data for calibration of the Soil and Water Assessment Tool (SWAT) model in a small (46 ha) ungauged basin (i.e. where the water flow is not systematically measured) and its response. This small basin was located in the viticultural Anoia-Penedès region (North-east Spain), which suffers severe soil erosion. The data sources were: daily weather data from an observatory located close to the basin; a detailed soil ma...

  2. SWAT Model Configuration, Calibration and Validation for Lake Champlain Basin

    Science.gov (United States)

    The Soil and Water Assessment Tool (SWAT) model was used to develop phosphorus loading estimates for sources in the Lake Champlain Basin. This document describes the model setup and parameterization, and presents calibration results.

  3. Rainfall estimation in SWAT: An alternative method to simulate orographic precipitation

    Science.gov (United States)

    Galván, L.; Olías, M.; Izquierdo, T.; Cerón, J. C.; Fernández de Villarán, R.

    2014-02-01

    The input of water from precipitation is one of the most important aspects of a hydrologic model because it controls the basin's water budget. The model should reproduce the amount and distribution of rainfall in the basin, spatially and temporally. SWAT (Soil and Water Assessment Tool) is one of the most widely used hydrologic models. In this paper the rainfall estimation in SWAT is revised, focusing on the treatment of orographic precipitation. SWAT was applied to the Odiel river basin (SW Spain), with a surface of 2300 km2. Results show that SWAT does not reflect reallisticaly the spatial distribution of rainfall in the basin. In relation to orographic precipitation, SWAT estimates the daily precipitation in elevation bands by adding a constant amount to the recorded precipitation in the rain gauge, which depends on the increase in precipitation with altitude and the difference between the mean elevation of each band and the elevation of the recording gauge. This does not reflect rainfall in the subbasin because the increase in precipitation with altitude actually it is not constant, but depends on the amount of rainfall. An alternative methodology to represent the temporal distribution of orographic precipitation is proposed. After simulation, the deviation of runoff volume using the SWAT elevation bands was appreciably higher than that obtained with the proposed methodology.

  4. Analisis Laju Sedimen DAS Serayu Hulu dengan Menggunakan Model SWAT

    Directory of Open Access Journals (Sweden)

    Nugroho Christanto

    2018-03-01

    Full Text Available Wilayah DAS Serayu Hulu merupakan DAS prioritas yang memerlukan langkah pengelolaan yang komprehensif. Aplikasi model Soil and Water Assessment Tool (SWAT dapat digunakan sebagai media untuk  perencanaan konservasi ataupun evaluasi respon DAS (debit aliran permukaan, sedimen dan pencemaran sungai. Tujuan utama dari penelitian ini adalah menjalankan model SWAT di DAS Serayu Hulu untuk mengetahui laju sedimen di wilayah ini. Pemodelan SWAT membutuhkan sejumlah input parameter berupa relief, tanah, tutupan lahan dan pengelolaan lahan. Pedogeomorfologi digunakan sebagai batas satuan tanah karena tidak tersedianya peta tanah di wilayah penelitian. Hasil Penerapan model SWAT di DAS Serayu Hulu menghasilkan nilai yang cukup memuaskan, hal ini ditunjukkan nilai R2 mencapai 0,94. Hasil pemodelan SWAT dengan menggunakan data selama 10 tahun (2004-2013 menunjukkan bahwa DAS Serayu Hulu memiliki rerata hasil sedimen sebesar 1.926.900 ton/tahun. Sub DAS 8,9 11, 17, 18, dan 19 merupakan penghasil sedimen tertinggi di DAS Serayu Hulu dengan hasil sedimen 43.931– 121.434 ton/ha/tahun.

  5. Assessing ways to combat eutrophication in a Chinese drinking water reservoir using SWAT

    DEFF Research Database (Denmark)

    Nielsen, Anders; Trolle, Dennis; Me, W

    2013-01-01

    Across China, nutrient losses associated with agricultural production and domestic sewage have triggered eutrophication, and local managers are challenged to comply with drinking water quality requirements. Evidently, the improvement of water quality should be targeted holistically and encompass...... in land and livestock management and sewage treatment on nutrient export and derived consequences for water quality in the Chinese subtropical Kaiping (Dashahe) drinking water reservoir (supplying 0.4 million people). The critical load of TP was estimated to 13.5 tonnes yr–1 in order to comply...... both point sources and surface activities within the watershed of a reservoir. We expanded the ordinary Soil Water Assessment Tool – (SWAT) with a widely used empirical equation to estimate total phosphorus (TP) concentrations in lakes and reservoirs. Subsequently, we examined the effects of changes...

  6. SWAT application in intensive irrigation systems: Model modification, calibration and validation

    OpenAIRE

    Dechmi, Farida; Burguete, Javier; Skhiri, Ahmed

    2012-01-01

    The Soil and Water Assessment Tool (SWAT) is a well established, distributed, eco-hydrologic model. However, using the study case of an agricultural intensive irrigated watershed, it was shown that all the model versions are not able to appropriately reproduce the total streamflow in such system when the irrigation source is outside the watershed. The objective of this study was to modify the SWAT2005 version for correctly simulating the main hydrological processes. Crop yield, total streamfl...

  7. Modifying the Soil and Water Assessment Tool to Simulate Cropland Carbon Flux: Model Development and Initial Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xuesong; Izaurralde, Roberto C.; Arnold, Jeffrey; Williams, Jimmy R.; Srinivasan, Raghavan

    2013-10-01

    Climate change is one of the most compelling modern issues and has important implications for almost every aspect of natural and human systems. The Soil and Water Assessment Tool (SWAT) model has been applied worldwide to support sustainable land and water management in a changing climate. However, the inadequacies of the existing carbon algorithm in SWAT limit its application in assessing impacts of human activities on CO2 emission, one important source of greenhouse gases (GHGs) that traps heat in the earth system and results in global warming. In this research, we incorporate a revised version of the CENTURY carbon model into SWAT to describe dynamics of soil organic matter (SOM)- residue and simulate land-atmosphere carbon exchange.

  8. OpenMP-accelerated SWAT simulation using Intel C and FORTRAN compilers: Development and benchmark

    Science.gov (United States)

    Ki, Seo Jin; Sugimura, Tak; Kim, Albert S.

    2015-02-01

    We developed a practical method to accelerate execution of Soil and Water Assessment Tool (SWAT) using open (free) computational resources. The SWAT source code (rev 622) was recompiled using a non-commercial Intel FORTRAN compiler in Ubuntu 12.04 LTS Linux platform, and newly named iOMP-SWAT in this study. GNU utilities of make, gprof, and diff were used to develop the iOMP-SWAT package, profile memory usage, and check identicalness of parallel and serial simulations. Among 302 SWAT subroutines, the slowest routines were identified using GNU gprof, and later modified using Open Multiple Processing (OpenMP) library in an 8-core shared memory system. In addition, a C wrapping function was used to rapidly set large arrays to zero by cross compiling with the original SWAT FORTRAN package. A universal speedup ratio of 2.3 was achieved using input data sets of a large number of hydrological response units. As we specifically focus on acceleration of a single SWAT run, the use of iOMP-SWAT for parameter calibrations will significantly improve the performance of SWAT optimization.

  9. [Nitrogen non-point source pollution identification based on ArcSWAT in Changle River].

    Science.gov (United States)

    Deng, Ou-Ping; Sun, Si-Yang; Lü, Jun

    2013-04-01

    The ArcSWAT (Soil and Water Assessment Tool) model was adopted for Non-point source (NPS) nitrogen pollution modeling and nitrogen source apportionment for the Changle River watershed, a typical agricultural watershed in Southeast China. Water quality and hydrological parameters were monitored, and the watershed natural conditions (including soil, climate, land use, etc) and pollution sources information were also investigated and collected for SWAT database. The ArcSWAT model was established in the Changle River after the calibrating and validating procedures of the model parameters. Based on the validated SWAT model, the contributions of different nitrogen sources to river TN loading were quantified, and spatial-temporal distributions of NPS nitrogen export to rivers were addressed. The results showed that in the Changle River watershed, Nitrogen fertilizer, nitrogen air deposition and nitrogen soil pool were the prominent pollution sources, which contributed 35%, 32% and 25% to the river TN loading, respectively. There were spatial-temporal variations in the critical sources for NPS TN export to the river. Natural sources, such as soil nitrogen pool and atmospheric nitrogen deposition, should be targeted as the critical sources for river TN pollution during the rainy seasons. Chemical nitrogen fertilizer application should be targeted as the critical sources for river TN pollution during the crop growing season. Chemical nitrogen fertilizer application, soil nitrogen pool and atmospheric nitrogen deposition were the main sources for TN exported from the garden plot, forest and residential land, respectively. However, they were the main sources for TN exported both from the upland and paddy field. These results revealed that NPS pollution controlling rules should focus on the spatio-temporal distribution of NPS pollution sources.

  10. Flow forecast by SWAT model and ANN in Pracana basin, Portugal

    NARCIS (Netherlands)

    Demirel, M.C.; Venancio, Anabela; Kahya, Ercan

    2009-01-01

    This study provides a unique opportunity to analyze the issue of flow forecast based on the soil and water assessment tool (SWAT) and artificial neural network (ANN) models. In last two decades, the ANNs have been extensively applied to various water resources system problems. In this study, the

  11. Calibration and validation of the SWAT model for predicting daily ET for irrigated crops in the Texas High Plains using lysimetric data

    Science.gov (United States)

    The Soil and Water Assessment Tool (SWAT) model has been used to assess the impacts of alternative agricultural management practices on non-point source pollution in watersheds of various topography and scale throughout the world. Water balance is the driving force behind all processes of SWAT, as i...

  12. Sodium-water reaction test facility (SWAT-3)

    International Nuclear Information System (INIS)

    Shimazu, Hisashi; Ukechi, Kazutoshi; Sasakura, Kazutake; Kusunoki, Junichi

    1976-01-01

    In the development of the liquid metal cooled fast breeder reactor (LMFBR), the steam generator (SG) is considered one of the most important components. The Power Reactor and Nuclear Fuel Development Corporation (PNC) is now promoting the research and development of the SG system used with the prototype fast breeder reactor ''Monju''. In this research, the phenomena of the sodium-water reaction in the SG are the key which must be investigated for the solution of problems. The test facility (SWAT-3) simulating Monju's SG on the scale of 1/2.5 was designed, fabricated and installed by IHI at Oarai Engineering Center of PNC, its pre-operation being accomplished in February 1975. The purpose of SWAT-3 is summarized as follows: (1) To perform an overall test on the safety of Monju's SG and intermediate heat transport system under the design condition against sodium-water reaction accidents. (2) To investigate the damage of the SG structure caused by the sodium-water reaction, and the possibility of repair and recovery operations. The first test was accomplished successfully on June 9, 1975. As a result of the test, the fundamental function of this test facility was proven to be satisfactory as expected. (auth.)

  13. Improvement of the R-SWAT-FME framework to support multiple variables and multi-objective functions

    Science.gov (United States)

    Wu, Yiping; Liu, Shu-Guang

    2014-01-01

    Application of numerical models is a common practice in the environmental field for investigation and prediction of natural and anthropogenic processes. However, process knowledge, parameter identifiability, sensitivity, and uncertainty analyses are still a challenge for large and complex mathematical models such as the hydrological/water quality model, Soil and Water Assessment Tool (SWAT). In this study, the previously developed R program language-SWAT-Flexible Modeling Environment (R-SWAT-FME) was improved to support multiple model variables and objectives at multiple time steps (i.e., daily, monthly, and annually). This expansion is significant because there is usually more than one variable (e.g., water, nutrients, and pesticides) of interest for environmental models like SWAT. To further facilitate its easy use, we also simplified its application requirements without compromising its merits, such as the user-friendly interface. To evaluate the performance of the improved framework, we used a case study focusing on both streamflow and nitrate nitrogen in the Upper Iowa River Basin (above Marengo) in the United States. Results indicated that the R-SWAT-FME performs well and is comparable to the built-in auto-calibration tool in multi-objective model calibration. Overall, the enhanced R-SWAT-FME can be useful for the SWAT community, and the methods we used can also be valuable for wrapping potential R packages with other environmental models.

  14. Fecal bacteria source characterization and sensitivity analysis of SWAT 2005

    Science.gov (United States)

    The Soil and Water Assessment Tool (SWAT) version 2005 includes a microbial sub-model to simulate fecal bacteria transport at the watershed scale. The objectives of this study were to demonstrate methods to characterize fecal coliform bacteria (FCB) source loads and to assess the model sensitivity t...

  15. Application Of Hydrological Models In Poorly Gauged Watersheds A Review Of The Usage Of The Soil And Water Assessment Tool SWAT In Kenya

    Directory of Open Access Journals (Sweden)

    Wambugu Mwangi

    2017-08-01

    Full Text Available In water-scarce developing countries river basins are some of the most valued natural resources but many are poorly gauged and have incomplete hydrological and climate records. In the recent years tropical rivers are increasingly becoming erratic with many hydrologists attributing this variability to combined effects of landscape-specific anthropogenic activities and climate change. Uncertainties about the impacts of climate change compound the challenges attributed to poor and often inconsistent river monitoring data. Under data-scarce conditions and with the increasing land use intensification and urbanization modelling approaches become a useful tool in planning and management of water resources. In this paper we review the application and usability of the Soil and Water Assessment Tool SWAT model in conventional planning practice in the management of water resources is poorly-gauged tropical watersheds of Kenya. We assess the technical implications of the model in Intergrated Water Resources management IWRM and its applicability as a planning and management tool for water resources in the era of climate change.

  16. Code modernization and modularization of APEX and SWAT watershed simulation models

    Science.gov (United States)

    SWAT (Soil and Water Assessment Tool) and APEX (Agricultural Policy / Environmental eXtender) are respectively large and small watershed simulation models derived from EPIC Environmental Policy Integrated Climate), a field-scale agroecology simulation model. All three models are coded in FORTRAN an...

  17. Modifying the Soil and Water Assessment Tool to simulate cropland carbon flux: Model development and initial evaluation

    International Nuclear Information System (INIS)

    Zhang, Xuesong; Izaurralde, R. César; Arnold, Jeffrey G.; Williams, Jimmy R.; Srinivasan, Raghavan

    2013-01-01

    Climate change is one of the most compelling modern issues and has important implications for almost every aspect of natural and human systems. The Soil and Water Assessment Tool (SWAT) model has been applied worldwide to support sustainable land and water management in a changing climate. However, the inadequacies of the existing carbon algorithm in SWAT limit its application in assessing impacts of human activities on CO 2 emission, one important source of greenhouse gasses (GHGs) that traps heat in the earth system and results in global warming. In this research, we incorporate a revised version of the CENTURY carbon model into SWAT to describe dynamics of soil organic matter (SOM)-residue and simulate land–atmosphere carbon exchange. We test this new SWAT-C model with daily eddy covariance (EC) observations of net ecosystem exchange (NEE) and evapotranspiration (ET) and annual crop yield at six sites across the U.S. Midwest. Results show that SWAT-C simulates well multi-year average NEE and ET across the spatially distributed sites and capture the majority of temporal variation of these two variables at a daily time scale at each site. Our analyses also reveal that performance of SWAT-C is influenced by multiple factors, such as crop management practices (irrigated vs. rainfed), completeness and accuracy of input data, crop species, and initialization of state variables. Overall, the new SWAT-C demonstrates favorable performance for simulating land–atmosphere carbon exchange across agricultural sites with different soils, climate, and management practices. SWAT-C is expected to serve as a useful tool for including carbon flux into consideration in sustainable watershed management under a changing climate. We also note that extensive assessment of SWAT-C with field observations is required for further improving the model and understanding potential uncertainties of applying it across large regions with complex landscapes. - Highlights: • Expanding the SWAT

  18. Modifying the Soil and Water Assessment Tool to simulate cropland carbon flux: Model development and initial evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xuesong; Izaurralde, R. César [Joint Global Change Research Institute, Pacific Northwest National Laboratory and University of Maryland, College Park, MD 20740 (United States); Arnold, Jeffrey G. [Grassland, Soil and Water Research Laboratory USDA-ARS, Temple, TX 76502 (United States); Williams, Jimmy R. [Blackland Research and Extension Center, AgriLIFE Research, 720 E. Blackland Road, Temple, TX 76502 (United States); Srinivasan, Raghavan [Spatial Sciences Laboratory in the Department of Ecosystem Science and Management, Texas A and M University, College Stations, TX 77845 (United States)

    2013-10-01

    Climate change is one of the most compelling modern issues and has important implications for almost every aspect of natural and human systems. The Soil and Water Assessment Tool (SWAT) model has been applied worldwide to support sustainable land and water management in a changing climate. However, the inadequacies of the existing carbon algorithm in SWAT limit its application in assessing impacts of human activities on CO{sub 2} emission, one important source of greenhouse gasses (GHGs) that traps heat in the earth system and results in global warming. In this research, we incorporate a revised version of the CENTURY carbon model into SWAT to describe dynamics of soil organic matter (SOM)-residue and simulate land–atmosphere carbon exchange. We test this new SWAT-C model with daily eddy covariance (EC) observations of net ecosystem exchange (NEE) and evapotranspiration (ET) and annual crop yield at six sites across the U.S. Midwest. Results show that SWAT-C simulates well multi-year average NEE and ET across the spatially distributed sites and capture the majority of temporal variation of these two variables at a daily time scale at each site. Our analyses also reveal that performance of SWAT-C is influenced by multiple factors, such as crop management practices (irrigated vs. rainfed), completeness and accuracy of input data, crop species, and initialization of state variables. Overall, the new SWAT-C demonstrates favorable performance for simulating land–atmosphere carbon exchange across agricultural sites with different soils, climate, and management practices. SWAT-C is expected to serve as a useful tool for including carbon flux into consideration in sustainable watershed management under a changing climate. We also note that extensive assessment of SWAT-C with field observations is required for further improving the model and understanding potential uncertainties of applying it across large regions with complex landscapes. - Highlights: • Expanding the

  19. The modified SWAT model for predicting fecal coliform in the Wachusett Reservoir Watershed, USA

    Science.gov (United States)

    Fecal contamination has been an issue for water quality because fecal coliform bacteria are used as an indicator organism to detect pathogens in water. In order to assess fecal contamination in the Wachusett Reservoir Watershed in Massachusetts, USA, the Soil and Water Assessment Tool (SWAT), a comm...

  20. Modeling crop water productivity using a coupled SWAT-MODSIM model

    Science.gov (United States)

    This study examines the water productivity of irrigated wheat and maize yields in Karkheh River Basin (KRB) in the semi-arid region of Iran using a coupled modeling approach consisting of the hydrological model (SWAT) and the river basin water allocation model (MODSIM). Dynamic irrigation requireme...

  1. Calibration and validation of the SWAT model for predicting daily ET over irrigated crops in the Texas High Plains using lysimetric data

    Science.gov (United States)

    The Soil Water Assessment Tool (SWAT) is a widely used watershed model for simulating stream flow, overland flow, sediment, pesticide, and bacterial loading in response to management practices. All SWAT processes are directly dependent upon the accurate representation of hydrology. Evapotranspiratio...

  2. Calibration and validation of SWAT model for estimating water balance and nitrogen losses in a small agricultural watershed in central Poland

    Directory of Open Access Journals (Sweden)

    Smarzyńska Karolina

    2016-06-01

    Full Text Available Soil and Water Assessment Tool (SWAT ver. 2005 was applied to study water balance and nitrogen load pathways in a small agricultural watershed in the lowlands of central Poland. The natural flow regime of the Zgłowiączka River was strongly modified by human activity (deforestation and installation of a subsurface drainage system to facilitate stable crop production. SWAT was calibrated for daily and monthly discharge and monthly nitrate nitrogen load. Model efficiency was tested using manual techniques (subjective and evaluation statistics (objective. Values of Nash–Sutcliffe efficiency coefficient (NSE, coefficient of determination (R2 and percentage of bias for daily/monthly discharge simulations and monthly load indicated good or very good fit of simulated discharge and nitrate nitrogen load to the observed data set. Model precision and accuracy of fit was proved in validation. The calibrated and validated SWAT was used to assess water balance and nitrogen fluxes in the watershed. According to the results, the share of tile drainage in water yield is equal to 78%. The model analysis indicated the most significant pathway of NO3-N to surface waters in the study area, namely the tile drainage combined with lateral flow. Its share in total NO3-N load amounted to 89%. Identification of nitrogen fluxes in the watershed is crucial for decision makers in order to manage water resources and to implement the most effective measures to limit diffuse pollution from arable land to surface waters.

  3. Modeling riverine nitrate export from an East-Central Illinois watershed using SWAT.

    Science.gov (United States)

    Hu, X; McIsaac, G F; David, M B; Louwers, C A L

    2007-01-01

    Reliable water quality models are needed to forecast the water quality consequences of different agricultural nutrient management scenarios. In this study, the Soil and Water Assessment Tool (SWAT), version 2000, was applied to simulate streamflow, riverine nitrate (NO(3)) export, crop yield, and watershed nitrogen (N) budgets in the upper Embarras River (UER) watershed in east-central Illinois, which has extensive maize-soybean cultivation, large N fertilizer input, and extensive tile drainage. During the calibration (1994-2002) and validation (1985-1993) periods, SWAT simulated monthly and annual stream flows with Nash-Sutcliffe coefficients (E) ranging from 0.67 to 0.94 and R(2) from 0.75 to 0.95. For monthly and annual NO(3) loads, E ranged from -0.16 to 0.45 and R(2) from 0.36 to 0.74. Annual maize and soybean yields were simulated with relative errors ranging from -10 to 6%. The model was then used to predict the changes in NO(3) output with N fertilizer application rates 10 to 50% lower than original application rates in UER. The calibrated SWAT predicted a 10 to 43% decrease in NO(3) export from UER and a 6 to 38% reduction in maize yield in response to the reduction in N fertilizer. The SWAT model markedly overestimated NO(3) export during major wet periods. Moreover, SWAT estimated soybean N fixation rates considerably greater than literature values, and some simulated changes in the N cycle in response to fertilizer reduction seemed to be unrealistic. Improving these aspects of SWAT could lead to more reliable predictions in the water quality outcomes of nutrient management practices in tile-drained watersheds.

  4. Modeling of discharge and sediment transport through the SWAT model in the basin of Harraza (Northwest of Algeria

    Directory of Open Access Journals (Sweden)

    Faiza Hallouz

    2018-04-01

    Full Text Available The objective of this study is to model discharge and solid erosion quantification through a small agricultural watershed by applying the SWAT model (Soil and Water Assessment Tools on the Wadi Harraza’s basin of which is part of Wadi Cheliff’s basin, with an average altitude of 500 m, drains an area of 568 sq km. Soil and Water Assessment Tool (SWAT, version 2009 model integrated with Geographic Information System (ArcGIS, version 10.0 were used to simulate the discharge and sediment concentration of Wadi Harraza’s basin for the period from 2004 to 2009. Model calibration and validation were performed for monthly time periods using Sequential Uncertainty Fitting 2 (SUFI-2, version 2 within SWAT-CUP. Our calibration and validation outputs for monthly simulation showed a good model performance for discharges. Thus the evolution of the average total annual sediment in the Wadi Harraza’s basin which will be deposited in the Wadi Cheliff, is estimated at 54.24 t ha−1. Keywords: SWAT model, Basin, Wadi Harraza, SUFI-2, Discharges, Sediment

  5. Analisis Debit Sungai Dengan Menggunakan Model SWAT pada DAS Cipasauran, Banten

    Directory of Open Access Journals (Sweden)

    Maulana Ibrahim Rau

    2015-10-01

    Full Text Available Total water demand at non industrial and industrial region in Cilegon is increasing. With its water production capacity of 2,000 l/s, PT Krakatau Tirta Industri cannot fulfill the amount number of demand from the industrial and domestic sectors at Cilegon. To cover the shortage of water supply of ±600 l/s, PT KTI requires taking water from Cipasauran Watershed. The objective of this study was to analyze river discharge of Cipasauran Watershed using SWAT model. Input data such as soil characteristics, climate data, landuse, and hydrology data at the area of the watershed were gathered and put at the data input file. In SWAT simulation, 4 processes were done, i.e. watershed delineation, hydrological response unit (HRU forming, data process and SWAT simulation, and visualization process. The result showed that the daily and monthly calibration process crossed 84% and 83% with the 95PPU area, with daily and monthly p-factor value of 0.84 and 0.83. Thus, calibrated model result was valid, though R2 and NS value were not satisfied. Using the validated SWAT model, the daily discharge in Cipasauran Watershed was about 0 - 3.309 m3/s, whereas the monthly discharge was 0.648 - 3.266m3/s. This showed that daily and monthly PT KTI’s water demand of 0.6 m3/s were fulfilled about 98.22% and 100%. Within the future time, the SWAT model could be potentially used as an assessment for predictive scenarios. However, to gain optimum results, well-observed and precise data is highly required, especially for such calibrations and validations.

  6. Modelling of hydrologic processes and potential response to climate change through the use of a multisite SWAT

    DEFF Research Database (Denmark)

    Gül, G.O.; Rosbjerg, Dan

    2010-01-01

    Hydrologic models that use components for integrated modelling of surface water and groundwater systems help conveniently simulate the dynamically linked hydrologic and hydraulic processes that govern flow conditions in watersheds. The Soil and Water Assessment Tool (SWAT) is one such model...... that allows continuous simulations over long time periods in the land phase of the hydrologic cycle by incorporating surface water and groundwater interactions. This study provides a verified structure for the SWAT to evaluate existing flow regimes in a small-sized catchment in Denmark and examines a simple...... simulation to help quantify the effects of climate change on regional water quantities. SWAT can be regarded among the alternative hydrologic simulation tools applicable for catchments with similar characteristics and of similar sizes in Denmark. However, the modellers would be required to determine a proper...

  7. Ethiopian Central Rift Valley basin hydrologic modelling using HEC-HMS and ArcSWAT

    Science.gov (United States)

    Pascual-Ferrer, Jordi; Candela, Lucila; Pérez-Foguet, Agustí

    2013-04-01

    An Integrated Water Resources Management (IWRM) shall be applied to achieve a sustainable development, to increase population incomes without affecting lives of those who are highly dependent on the environment. First step should be to understand water dynamics at basin level, starting by modeling the basin water resources. For model implementation, a large number of data and parameters are required, but those are not always available, especially in some developing countries where different sources may have different data, there is lack of information on data collection, etc. The Ethiopian Central Rift Valley (CRV) is an endorheic basin covering an area of approximately 10,000 km2. For the period 1996-2005, the average annual volume of rainfall accounted for 9.1 Mm3, and evapotranspiration for 8 Mm3 (Jansen et al., 2007). From the environmental point of view, basin ecosystems are endangered due to human activities. Also, poverty is widespread all over the basin, with population mainly living from agriculture on a subsistence economy. Hence, there is an urgent need to set an IWRM, but datasets required for water dynamics simulation are not too reliable. In order to reduce uncertainty of numerical simulation, two semi-distributed open software hydrologic models were implemented: HEC-HMS and ArcSWAT. HEC-HMS was developed by the United States Army Corps of Engineers (USACoE) Hydrologic Engineering Center (HEC) to run precipitation-runoff simulations for a variety of applications in dendritic watershed systems. ArcSWAT includes the SWAT (Soil and Water Assessment Tool, Arnold et al., 1998) model developed for the USDA Agricultural Research Service into ArcGIS (ESRI®). SWAT was developed to assess the impact of land management practices on large complex watersheds with varying soils, land use and management conditions over long periods of time (Neitsch et al., 2005). According to this, ArcSWAT would be the best option for IWRM implementation in the basin. However

  8. The modified SWAT model for predicting fecal coliforms in the Wachusett Reservoir Watershed, USA.

    Science.gov (United States)

    Cho, Kyung Hwa; Pachepsky, Yakov A; Kim, Joon Ha; Kim, Jung-Woo; Park, Mi-Hyun

    2012-10-01

    This study assessed fecal coliform contamination in the Wachusett Reservoir Watershed in Massachusetts, USA using Soil and Water Assessment Tool (SWAT) because bacteria are one of the major water quality parameters of concern. The bacteria subroutine in SWAT, considering in-stream bacteria die-off only, was modified in this study to include solar radiation-associated die-off and the contribution of wildlife. The result of sensitivity analysis demonstrates that solar radiation is one of the most significant fate factors of fecal coliform. A water temperature-associated function to represent the contribution of beaver activity in the watershed to fecal contamination improved prediction accuracy. The modified SWAT model provides an improved estimate of bacteria from the watershed. Our approach will be useful for simulating bacterial concentrations to provide predictive and reliable information of fecal contamination thus facilitating the implementation of effective watershed management. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Adapting SWAT hillslope erosion model to predict sediment concentrations and yields in large Basins.

    Science.gov (United States)

    Vigiak, Olga; Malagó, Anna; Bouraoui, Fayçal; Vanmaercke, Matthias; Poesen, Jean

    2015-12-15

    The Soil and Water Assessment Tool (SWAT) is used worldwide for water quality assessment and planning. This paper aimed to assess and adapt SWAT hillslope sediment yield model (Modified Universal Soil Loss Equation, MUSLE) for applications in large basins, i.e. when spatial data is coarse and model units are large; and to develop a robust sediment calibration method for large regions. The Upper Danube Basin (132,000km(2)) was used as case study representative of large European Basins. The MUSLE was modified to reduce sensitivity of sediment yields to the Hydrologic Response Unit (HRU) size, and to identify appropriate algorithms for estimating hillslope length (L) and slope-length factor (LS). HRUs gross erosion was broadly calibrated against plot data and soil erosion map estimates. Next, mean annual SWAT suspended sediment concentrations (SSC, mg/L) were calibrated and validated against SSC data at 55 gauging stations (622 station-years). SWAT annual specific sediment yields in subbasin reaches (RSSY, t/km(2)/year) were compared to yields measured at 33 gauging stations (87station-years). The best SWAT configuration combined a MUSLE equation modified by the introduction of a threshold area of 0.01km(2) where L and LS were estimated with flow accumulation algorithms. For this configuration, the SSC residual interquartile was less than +/-15mg/L both for the calibration (1995-2004) and the validation (2005-2009) periods. The mean SSC percent bias for 1995-2009 was 24%. RSSY residual interquartile was within +/-10t/km(2)/year, with a mean RSSY percent bias of 12%. Residuals showed no bias with respect to drainage area, slope, or spatial distribution. The use of multiple data types at multiple sites enabled robust simulation of sediment concentrations and yields of the region. The MUSLE modifications are recommended for use in large basins. Based on SWAT simulations, we present a sediment budget for the Upper Danube Basin. Copyright © 2015. Published by Elsevier B.V.

  10. Evaluation of the hooghoudt and kirkham tile drain equations in the soil and water assessment tool to simulate tile flow and nitrate-nitrogen.

    Science.gov (United States)

    Moriasi, Daniel N; Gowda, Prasanna H; Arnold, Jeffrey G; Mulla, David J; Ale, Srinivasulu; Steiner, Jean L; Tomer, Mark D

    2013-11-01

    Subsurface tile drains in agricultural systems of the midwestern United States are a major contributor of nitrate-N (NO-N) loadings to hypoxic conditions in the Gulf of Mexico. Hydrologic and water quality models, such as the Soil and Water Assessment Tool, are widely used to simulate tile drainage systems. The Hooghoudt and Kirkham tile drain equations in the Soil and Water Assessment Tool have not been rigorously tested for predicting tile flow and the corresponding NO-N losses. In this study, long-term (1983-1996) monitoring plot data from southern Minnesota were used to evaluate the SWAT version 2009 revision 531 (hereafter referred to as SWAT) model for accurately estimating subsurface tile drain flows and associated NO-N losses. A retention parameter adjustment factor was incorporated to account for the effects of tile drainage and slope changes on the computation of surface runoff using the curve number method (hereafter referred to as Revised SWAT). The SWAT and Revised SWAT models were calibrated and validated for tile flow and associated NO-N losses. Results indicated that, on average, Revised SWAT predicted monthly tile flow and associated NO-N losses better than SWAT by 48 and 28%, respectively. For the calibration period, the Revised SWAT model simulated tile flow and NO-N losses within 4 and 1% of the observed data, respectively. For the validation period, it simulated tile flow and NO-N losses within 8 and 2%, respectively, of the observed values. Therefore, the Revised SWAT model is expected to provide more accurate simulation of the effectiveness of tile drainage and NO-N management practices. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  11. Simulating Landscape Sediment Transport Capacity by Using a Modified SWAT Model.

    Science.gov (United States)

    Bonumá, Nadia B; Rossi, Colleen G; Arnold, Jeffrey G; Reichert, José M; Minella, Jean P; Allen, Peter M; Volk, Martin

    2014-01-01

    Sediment delivery from hillslopes to rivers is spatially variable and may lead to long-term delays between initial erosion and related sediment yield at the watershed outlet. Consideration of spatial variability is important for developing sound strategies for water quality improvement and soil protection at the watershed scale. Hence, the Soil and Water Assessment Tool (SWAT) was modified and tested in this study to simulate the landscape transport capacity of sediment. The study area was the steeply sloped Arroio Lino watershed in southern Brazil. Observed sediment yield data at the watershed outlet were used to calibrate and validate a modified SWAT model. For the calibration period, the modified model performed better than the unaltered SWAT2009 version; the models achieved Nash-Sutcliffe efficiency (NSE) values of 0.7 and -0.1, respectively. Nash-Sutcliffe efficiencies were less for the validation period, but the modified model's NSE was higher than the unaltered model (-1.4 and -12.1, respectively). Despite the relatively low NSE values, the results of this first test are promising because the model modifications lowered the percent bias in sediment yield from 73 to 18%. Simulation results for the modified model indicated that approximately 60% of the mobilized soil is deposited along the landscape before it reaches the river channels. This research demonstrates the modified model's ability to simulate sediment yield in watersheds with steep slopes. The results suggest that integration of the sediment deposition routine in SWAT increases accuracy in steeper areas while significantly improving its ability to predict the spatial distribution of sediment deposition areas. Further work is needed regarding (i) improved strategies for spatially distributed sediment transport measurements (for improving process knowledge and model evaluation) and (ii) extensive model tests in other well instrumented experimental watersheds with differing topographic configurations

  12. Pathogen Transport and Fate Modeling in the Upper Salem River Watershed Using SWAT Model

    Science.gov (United States)

    SWAT (Soil and Water Assessment Tool) is a dynamic watershed model that is applied to simulate the impact of land management practices on water quality over a continuous period. The Upper Salem River, located in Salem County New Jersey, is listed by the New Jersey Department of ...

  13. Pesticide modelling for a small catchment using SWAT-2000.

    Science.gov (United States)

    Kannan, Narayanan; White, Sue M; Worrall, Fred; Whelan, Mick J

    2006-01-01

    Pesticides in stream flow from the 142 ha Colworth catchment in Bedfordshire, UK were monitored from October 1999 to December 2000. About 47% of the catchment is tile-drained and different pesticides and cropping patterns have recently been evaluated in terms of their effect on nutrient and pesticide losses to the stream. The data from Colworth were used to test soil and water assessment tool (SWAT) 2000 predictions of pesticide concentrations at the catchment outlet. A sound model set-up to carry out pesticide modelling was created by means of hydrological modelling with proper simulation of crop growth and evapotranspiration. The pesticides terbuthylazine, terbutryn, cyanazine and bentazone were modelled. There was close agreement between SWAT-predicted pesticide concentration values and observations. Scenario trials were conducted to explore management options for reducing pesticide loads arriving at the catchment outlet. The results obtained indicate that SWAT can be used as a tool to understand pesticide behavior at the catchment scale.

  14. Assessment of Riparian Buffer Impacts Within the Little River Watershed in Georgia USA with the SWAT Model

    Science.gov (United States)

    Computer based hydrologic and water quality models have proven to be useful tools for examining alternative management scenarios and their impact on the environment. This examination can be an important component of watershed-scale evaluations. The Soil and Water Assessment Tool (SWAT), is a water...

  15. SWAT Check: A Screening Tool to Assist Users in the Identification of Potential Model Application Problems.

    Science.gov (United States)

    White, Michael J; Harmel, R Daren; Arnold, Jeff G; Williams, Jimmy R

    2014-01-01

    The Soil and Water Assessment Tool (SWAT) is a basin-scale hydrologic model developed by the United States Department of Agriculture Agricultural Research Service. SWAT's broad applicability, user-friendly model interfaces, and automatic calibration software have led to a rapid increase in the number of new users. These advancements also allow less experienced users to conduct SWAT modeling applications. In particular, the use of automated calibration software may produce simulated values that appear appropriate because they adequately mimic measured data used in calibration and validation. Autocalibrated model applications (and often those of unexperienced modelers) may contain input data errors and inappropriate parameter adjustments not readily identified by users or the autocalibration software. The objective of this research was to develop a program to assist users in the identification of potential model application problems. The resulting "SWAT Check" is a stand-alone Microsoft Windows program that (i) reads selected SWAT output and alerts users of values outside the typical range; (ii) creates process-based figures for visualization of the appropriateness of output values, including important outputs that are commonly ignored; and (iii) detects and alerts users of common model application errors. By alerting users to potential model application problems, this software should assist the SWAT community in developing more reliable modeling applications. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  16. Macrophyte growth module for the SWAT model – impact of climate change and management on stream ecology

    DEFF Research Database (Denmark)

    Lu, Shenglan; Trolle, Dennis; Erfurt, Jytte

    To access how multiple stressors affect the water quantity and quality and stream ecology at catchment scale under various management and climate change scenarios, we implemented macrophyte growth modules for the Soil and Water Assessment Tool version 2012 (SWAT). The macrophyte growth module...

  17. Assessing Thermally Stressful Events in a Rhode Island Coldwater Fish Habitat Using the SWAT Model

    Directory of Open Access Journals (Sweden)

    Britta Chambers

    2017-09-01

    Full Text Available It has become increasingly important to recognize historical water quality trends so that the future impacts of climate change may be better understood. Climate studies have suggested that inland stream temperatures and average streamflow will increase over the next century in New England, thereby putting aquatic species sustained by coldwater habitats at risk. In this study we evaluated two different approaches for modeling historical streamflow and stream temperature in a Rhode Island, USA, watershed with the Soil and Water Assessment Tool (SWAT, using (i original SWAT and (ii SWAT plus a hydroclimatological model component that considers both hydrological inputs and air temperature. Based on daily calibration results with six years of measured streamflow and four years of stream temperature data, we examined occurrences of stressful conditions for brook trout (Salvelinus fontinalis using the hydroclimatological model. SWAT with the hydroclimatological component improved modestly during calibration (NSE of 0.93, R2 of 0.95 compared to the original SWAT (NSE of 0.83, R2 of 0.93. Between 1980–2009, the number of stressful events, a moment in time where high or low flows occur simultaneously with stream temperatures exceeding 21 °C, increased by 55% and average streamflow increased by 60%. This study supports using the hydroclimatological SWAT component and provides an example method for assessing stressful conditions in southern New England’s coldwater habitats.

  18. Application of WRF - SWAT OpenMI 2.0 based models integration for real time hydrological modelling and forecasting

    Science.gov (United States)

    Bugaets, Andrey; Gonchukov, Leonid

    2014-05-01

    Intake of deterministic distributed hydrological models into operational water management requires intensive collection and inputting of spatial distributed climatic information in a timely manner that is both time consuming and laborious. The lead time of the data pre-processing stage could be essentially reduced by coupling of hydrological and numerical weather prediction models. This is especially important for the regions such as the South of the Russian Far East where its geographical position combined with a monsoon climate affected by typhoons and extreme heavy rains caused rapid rising of the mountain rivers water level and led to the flash flooding and enormous damage. The objective of this study is development of end-to-end workflow that executes, in a loosely coupled mode, an integrated modeling system comprised of Weather Research and Forecast (WRF) atmospheric model and Soil and Water Assessment Tool (SWAT 2012) hydrological model using OpenMI 2.0 and web-service technologies. Migration SWAT into OpenMI compliant involves reorganization of the model into a separate initialization, performing timestep and finalization functions that can be accessed from outside. To save SWAT normal behavior, the source code was separated from OpenMI-specific implementation into the static library. Modified code was assembled into dynamic library and wrapped into C# class implemented the OpenMI ILinkableComponent interface. Development of WRF OpenMI-compliant component based on the idea of the wrapping web-service clients into a linkable component and seamlessly access to output netCDF files without actual models connection. The weather state variables (precipitation, wind, solar radiation, air temperature and relative humidity) are processed by automatic input selection algorithm to single out the most relevant values used by SWAT model to yield climatic data at the subbasin scale. Spatial interpolation between the WRF regular grid and SWAT subbasins centroid (which are

  19. Prediction of phosphorus loads in an artificially drained lowland catchment using a modified SWAT model

    Science.gov (United States)

    Bauwe, Andreas; Eckhardt, Kai-Uwe; Lennartz, Bernd

    2017-04-01

    Eutrophication is still one of the main environmental problems in the Baltic Sea. Currently, agricultural diffuse sources constitute the major portion of phosphorus (P) fluxes to the Baltic Sea and have to be reduced to achieve the HELCOM targets and improve the ecological status. Eco-hydrological models are suitable tools to identify sources of nutrients and possible measures aiming at reducing nutrient loads into surface waters. In this study, the Soil and Water Assessment Tool (SWAT) was applied to the Warnow river basin (3300 km2), the second largest watershed in Germany discharging into the Baltic Sea. The Warnow river basin is located in northeastern Germany and characterized by lowlands with a high proportion of artificially drained areas. The aim of this study were (i) to estimate P loadings for individual flow fractions (point sources, surface runoff, tile flow, groundwater flow), spatially distributed on sub-basin scale. Since the official version of SWAT does not allow for the modeling of P in tile drains, we tested (ii) two different approaches of simulating P in tile drains by changing the SWAT source code. The SWAT source code was modified so that (i) the soluble P concentration of the groundwater was transferred to the tile water and (ii) the soluble P in the soil was transferred to the tiles. The SWAT model was first calibrated (2002-2011) and validated (1992-2001) for stream flow at 7 headwater catchments at a daily time scale. Based on this, the stream flow at the outlet of the Warnow river basin was simulated. Performance statistics indicated at least satisfactory model results for each sub-basin. Breaking down the discharge into flow constituents, it becomes visible that stream flow is mainly governed by groundwater and tile flow. Due to the topographic situation with gentle slopes, surface runoff played only a minor role. Results further indicate that the prediction of soluble P loads was improved by the modified SWAT versions. Major sources of

  20. Development of a station based climate database for SWAT and APEX assessments in the U.S.

    Science.gov (United States)

    Water quality simulation models such as the Soil and Water Assessment Tool (SWAT) and Agricultural Policy EXtender (APEX) are widely used in the U.S. These models require large amounts of spatial and tabular data to simulate the natural world. Accurate and seamless daily climatic data are critical...

  1. Using StorAge Selection Functions to Improve Simulation of Groundwater Nitrate Lag Times in the SWAT Modeling Framework.

    Science.gov (United States)

    Wilusz, D. C.; Fuka, D.; Cho, C.; Ball, W. P.; Easton, Z. M.; Harman, C. J.

    2017-12-01

    Intensive agriculture and atmospheric deposition have dramatically increased the input of reactive nitrogen into many watersheds worldwide. Reactive nitrogen can leach as nitrate into groundwater, which is stored and eventually released over years to decades into surface waters, potentially degrading water quality. To simulate the fate and transport of groundwater nitrate, many researchers and practitioners use the Soil and Water Assessment Tool (SWAT) or an enhanced version of SWAT that accounts for topographically-driven variable source areas (TopoSWAT). Both SWAT and TopoSWAT effectively assume that nitrate in the groundwater reservoir is well-mixed, which is known to be a poor assumption at many sites. In this study, we describe modifications to TopoSWAT that (1) relax the assumption of groundwater well-mixedness, (2) more flexibly parameterize groundwater transport as a time-varying distribution of travel times using the recently developed theory of rank StorAge Selection (rSAS) functions, and (3) allow for groundwater age to be represented by position on the hillslope or hydrological distance from the stream. The approach conceptualizes the groundwater aquifer as a population of water parcels entering as recharge with a particular nitrate concentration, aging as they move through storage, and eventually exiting as baseflow. The rSAS function selects the distribution of parcel ages that exit as baseflow based on a parameterized probability distribution; this distribution can be adjusted to preferentially select different distributions of young and old parcels in storage so as to reproduce (in principle) any form of transport. The modified TopoSWAT model (TopoSWAT+rSAS) is tested at a small agricultural catchment in the Eastern Shore, MD with an extensive hydrologic and hydrochemical data record for calibration and evaluation. The results examine (1) the sensitivity of TopoSWAT+rSAS modeling of nitrate transport to assumptions about the distribution of travel

  2. Evaluating the Efficiency of a Multi-core Aware Multi-objective Optimization Tool for Calibrating the SWAT Model

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Izaurralde, R. C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zong, Z. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Thomson, A. M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2012-08-20

    The efficiency of calibrating physically-based complex hydrologic models is a major concern in the application of those models to understand and manage natural and human activities that affect watershed systems. In this study, we developed a multi-core aware multi-objective evolutionary optimization algorithm (MAMEOA) to improve the efficiency of calibrating a worldwide used watershed model (Soil and Water Assessment Tool (SWAT)). The test results show that MAMEOA can save about 1-9%, 26-51%, and 39-56% time consumed by calibrating SWAT as compared with sequential method by using dual-core, quad-core, and eight-core machines, respectively. Potential and limitations of MAMEOA for calibrating SWAT are discussed. MAMEOA is open source software.

  3. Hydrological modeling of the Simly Dam watershed (Pakistan using GIS and SWAT model

    Directory of Open Access Journals (Sweden)

    Shimaa M. Ghoraba

    2015-09-01

    Full Text Available Modern mathematical models have been developed for studying the complex hydrological processes of a watershed and their direct relation to weather, topography, geology and land use. In this study the hydrology of Simly Dam watershed located in Saon River basin at the north-east of Islamabad is modeled, using the Soil and Water Assessment Tool (SWAT. It aims to simulate the stream flow, establish the water balance and estimate the monthly volume inflow to Simly Dam in order to help the managers to plan and handle this important reservoir. The ArcSWAT interface implemented in the ArcGIS software was used to delineate the study area and its sub-components, combine the data layers and edit the model database. The model was calibrated from 1990 to 2001 and evaluated from 2002 to 2011. Based on four recommended statistical coefficients, the evaluation indicates a good performance for both calibration and validation periods and acceptable agreement between measured and simulated values of both annual and monthly scale discharge. The water balance components were correctly estimated and the Simly Dam inflow was successfully reproduced with Coefficient of Determination (R2 of 0.75. These results revealed that if properly calibrated, SWAT model can be used efficiently in semi-arid regions to support water management policies.

  4. Modeling phosphorus in the Lake Allatoona watershed using SWAT: I. Developing phosphorus parameter values.

    Science.gov (United States)

    Radcliffe, D E; Lin, Z; Risse, L M; Romeis, J J; Jackson, C R

    2009-01-01

    Lake Allatoona is a large reservoir north of Atlanta, GA, that drains an area of about 2870 km2 scheduled for a phosphorus (P) total maximum daily load (TMDL). The Soil and Water Assessment Tool (SWAT) model has been widely used for watershed-scale modeling of P, but there is little guidance on how to estimate P-related parameters, especially those related to in-stream P processes. In this paper, methods are demonstrated to individually estimate SWAT soil-related P parameters and to collectively estimate P parameters related to stream processes. Stream related parameters were obtained using the nutrient uptake length concept. In a manner similar to experiments conducted by stream ecologists, a small point source is simulated in a headwater sub-basin of the SWAT models, then the in-stream parameter values are adjusted collectively to get an uptake length of P similar to the values measured in the streams in the region. After adjusting the in-stream parameters, the P uptake length estimated in the simulations ranged from 53 to 149 km compared to uptake lengths measured by ecologists in the region of 11 to 85 km. Once the a priori P-related parameter set was developed, the SWAT models of main tributaries to Lake Allatoona were calibrated for daily transport. Models using SWAT P parameters derived from the methods in this paper outperformed models using default parameter values when predicting total P (TP) concentrations in streams during storm events and TP annual loads to Lake Allatoona.

  5. Development of blow down and sodium-water reaction jet analysis codes-Validation by sodium-water reaction tests (SWAT-1R)

    International Nuclear Information System (INIS)

    Hiroshi Seino; Akikazu Kurihara; Isao Ono; Koji Jitsu

    2005-01-01

    Blow down analysis code (LEAP-BLOW) and sodium-water reaction jet analysis code (LEAP-JET) have been developed in order to improve the evaluation method on sodium-water reaction event in the steam generator (SG) of a sodium cooled fast breeder reactor (FBR). The validation analyses by these two codes were carried out using the data of Sodium-Water Reaction Test (SWAT-1R). The following main results have been obtained through this validation: (1) The calculational results by LEAP-BLOW such as internal pressure and water flow rate show good agreement with the results of the SWAT- 1R test. (2) The LEAP-JET code can qualitatively simulate the behavior of sodium-water reaction. However, it is found that the code has tendency to overestimate the maximum temperature of the reaction jet. (authors)

  6. Slope effects on SWAT modeling in a mountainous basin

    OpenAIRE

    Yacoub López, Cristina; Pérez Foguet, Agustí

    2013-01-01

    The soil and water assessment tool (SWAT) is a distributed basin model that includes the option of defining spatial discretization in terms of terrain slope. Influence of terrain slope in runoff results from mountain basins is a determining factor in its simulation results; however, its use as a criterion for basin discretization and for the parameter calibration has not yet been analyzed. In this study, this influence is analyzed for calibrations using two different cases. Ten discretization...

  7. Streamflow data assimilation in SWAT model using Extended Kalman Filter

    Science.gov (United States)

    Sun, Leqiang; Nistor, Ioan; Seidou, Ousmane

    2015-12-01

    The Extended Kalman Filter (EKF) is coupled with the Soil and Water Assessment Tools (SWAT) model in the streamflow assimilation of the upstream Senegal River in West Africa. Given the large number of distributed variables in SWAT, only the average watershed scale variables are included in the state vector and the Hydrological Response Unit (HRU) scale variables are updated with the a posteriori/a priori ratio of their watershed scale counterparts. The Jacobian matrix is calculated numerically by perturbing the state variables. Both the soil moisture and CN2 are significantly updated in the wet season, yet they have opposite update patterns. A case study for a large flood forecast shows that for up to seven days, the streamflow forecast is moderately improved using the EKF-subsequent open loop scheme but significantly improved with a newly designed quasi-error update scheme. The former has better performances in the flood rising period while the latter has better performances in the recession period. For both schemes, the streamflow forecast is improved more significantly when the lead time is shorter.

  8. A multi-objective approach to improve SWAT model calibration in alpine catchments

    Science.gov (United States)

    Tuo, Ye; Marcolini, Giorgia; Disse, Markus; Chiogna, Gabriele

    2018-04-01

    Multi-objective hydrological model calibration can represent a valuable solution to reduce model equifinality and parameter uncertainty. The Soil and Water Assessment Tool (SWAT) model is widely applied to investigate water quality and water management issues in alpine catchments. However, the model calibration is generally based on discharge records only, and most of the previous studies have defined a unique set of snow parameters for an entire basin. Only a few studies have considered snow observations to validate model results or have taken into account the possible variability of snow parameters for different subbasins. This work presents and compares three possible calibration approaches. The first two procedures are single-objective calibration procedures, for which all parameters of the SWAT model were calibrated according to river discharge alone. Procedures I and II differ from each other by the assumption used to define snow parameters: The first approach assigned a unique set of snow parameters to the entire basin, whereas the second approach assigned different subbasin-specific sets of snow parameters to each subbasin. The third procedure is a multi-objective calibration, in which we considered snow water equivalent (SWE) information at two different spatial scales (i.e. subbasin and elevation band), in addition to discharge measurements. We tested these approaches in the Upper Adige river basin where a dense network of snow depth measurement stations is available. Only the set of parameters obtained with this multi-objective procedure provided an acceptable prediction of both river discharge and SWE. These findings offer the large community of SWAT users a strategy to improve SWAT modeling in alpine catchments.

  9. Application of the SWAT model to the Xiangjiang river watershed in subtropical central China.

    Science.gov (United States)

    Luo, Qiao; Li, Yong; Wang, Kelin; Wu, Jinshui

    2013-01-01

    The Soil and Water Assessment Tool (SWAT) model was applied to simulate the water balance in the Xiangjiang river watershed for current and planning scenarios of land uses. The model was first calibrated for the period from 1998 to 2002 and then validated for the period from 2003 to 2007 using the observed stream flow data from four monitoring gages within the watershed. The determination coefficient of linear regression of the observed and simulated monthly stream flows (R(2)) and their Nash-Sutcliffe Index (NSI) was used to evaluate model performance. All values of R(2) and NSI were above 0.8 and ranged from 0.82 to 0.92, which indicates that the SWAT model was capable of simulating the stream flow in the Xiangjiang river watershed. The calibrated and validated SWAT model was then applied to study the hydrological response of three land use change scenarios. Runoff was reduced by increasing the areas of forest and grassland while simultaneously decreasing the areas of agricultural and urban land. In the recent and future land use planning for the Xiangjiang river watershed, the hydrological effect should be considered in regional water management and erosion control.

  10. Hydrologic evaluation of a Mediterranean watershed using the SWAT model with multiple PET estimation methods

    Science.gov (United States)

    The Penman-Monteith method suggested by the Food Agricultural Organization in the Irrigation and drainage paper 56 (FAO-56 P-M) was used to evaluate surface runoff and sediment yield predictions by the Soil and Water Assessment Tool (SWAT) model at the outlet of an experimental watershed in Sicily. ...

  11. Use of a watershed model to characterize the fate and transport of fluometuron, a soil-applied cotton herbicide, in surface water

    Science.gov (United States)

    Coupe, R.H.

    2007-01-01

    The Soil and Water Assessment Tool (SWAT) was used to characterize the fate and transport of fluometuron (a herbicide used on cotton) in the Bogue Phalia Basin in northwestern Mississippi, USA. SWAT is a basin-scale watershed model, able to simulate hydrological, chemical, and sediment transport processes. After adjustments to a few parameters (specifically the SURLAG variable, the runoff curve number, Manning's N for overland flow, soil available water capacity, and the base-flow alpha factor) the SWAT model fit the observed streamflow well (the Coefficient of Efficiency and R2 were greater than 60). The results from comparing observed fluometuron concentrations with simulated concentrations were reasonable. The simulated concentrations (which were daily averages) followed the pattern of observed concentrations (instantaneous values) closely, but could be off in magnitude at times. Further calibration might have improved the fit, but given the uncertainties in the input data, it was not clear that any improvement would be due to a better understanding of the input variables. ?? 2007 Taylor & Francis.

  12. The Impacts of Different Meteorology Data Sets on Nitrogen Fate and Transport in the SWAT Watershed Model

    Science.gov (United States)

    In this study, we investigated how different meteorology data sets impacts nitrogen fate and transport responses in the Soil and Water Assessment Tool (SWAT) model. We used two meteorology data sets: National Climatic Data Center (observed) and Mesoscale Model 5/Weather Research ...

  13. Outline of sodium-water reaction test in case of large leak with SWAT-3 testing equipments

    International Nuclear Information System (INIS)

    Sato, Minoru

    1978-01-01

    The key component in sodium-cooled fast reactors in steam generators, and the sodium-water reaction owing to the break of heating tubes may cause serious damages in equipments and pipings. The main factor controlling this phenomenon is the rate of leak of water. When the rate of water leak is small, the propagation of heating tube breaking may occur owing to ''wastage phenomenon'', on the other hand, when the rate of water leak is large, the phenomena of explosive pressure and flow occur due to the reaction heat and a large quantity of hydrogen generated by the reaction. In PNC, the testing equipments of SWAT-2 for small water leak and SWAT-1 for large leak were constructed, and the development test has been carried out to establish the method of safety design experimentally. The synthetic test equipment for the safety of steam generators, SWAT-3, was constructed to carry out the large water leak test in the scale close to actual plants. The object of the test, the outline of the test equipment, the phenomena of pressure and flow in the water injection test, the confirmation of the occurrence of secondary breaking of adjacent heating tubes, and the disposal of reaction products are described in this paper. This test is till going on, and the final conclusion will be reported later. (Kako, I.)

  14. SWAT Modeling for Depression-Dominated Areas: How Do Depressions Manipulate Hydrologic Modeling?

    Directory of Open Access Journals (Sweden)

    Mohsen Tahmasebi Nasab

    2017-01-01

    Full Text Available Modeling hydrologic processes for depression-dominated areas such as the North American Prairie Pothole Region is complex and reliant on a clear understanding of dynamic filling-spilling-merging-splitting processes of numerous depressions over the surface. Puddles are spatially distributed over a watershed and their sizes, storages, and interactions vary over time. However, most hydrologic models fail to account for these dynamic processes. Like other traditional methods, depressions are filled as a required preprocessing step in the Soil and Water Assessment Tool (SWAT. The objective of this study was to facilitate hydrologic modeling for depression-dominated areas by coupling SWAT with a Puddle Delineation (PD algorithm. In the coupled PD-SWAT model, the PD algorithm was utilized to quantify topographic details, including the characteristics, distribution, and hierarchical relationships of depressions, which were incorporated into SWAT at the hydrologic response unit (HRU scale. The new PD-SWAT model was tested for a large watershed in North Dakota under real precipitation events. In addition, hydrologic modeling of a small watershed was conducted under two extreme high and low synthetic precipitation conditions. In particular, the PD-SWAT was compared against the regular SWAT based on depressionless DEMs. The impact of depressions on the hydrologic modeling of the large and small watersheds was evaluated. The simulation results for the large watershed indicated that SWAT systematically overestimated the outlet discharge, which can be attributed to the failure to account for the hydrologic effects of depressions. It was found from the PD-SWAT modeling results that at the HRU scale surface runoff initiation was significantly delayed due to the threshold control of depressions. Under the high precipitation scenario, depressions increased the surface runoff peak. However, the low precipitation scenario could not fully fill depressions to reach

  15. Automating calibration, sensitivity and uncertainty analysis of complex models using the R package Flexible Modeling Environment (FME): SWAT as an example

    Science.gov (United States)

    Wu, Y.; Liu, S.

    2012-01-01

    Parameter optimization and uncertainty issues are a great challenge for the application of large environmental models like the Soil and Water Assessment Tool (SWAT), which is a physically-based hydrological model for simulating water and nutrient cycles at the watershed scale. In this study, we present a comprehensive modeling environment for SWAT, including automated calibration, and sensitivity and uncertainty analysis capabilities through integration with the R package Flexible Modeling Environment (FME). To address challenges (e.g., calling the model in R and transferring variables between Fortran and R) in developing such a two-language coupling framework, 1) we converted the Fortran-based SWAT model to an R function (R-SWAT) using the RFortran platform, and alternatively 2) we compiled SWAT as a Dynamic Link Library (DLL). We then wrapped SWAT (via R-SWAT) with FME to perform complex applications including parameter identifiability, inverse modeling, and sensitivity and uncertainty analysis in the R environment. The final R-SWAT-FME framework has the following key functionalities: automatic initialization of R, running Fortran-based SWAT and R commands in parallel, transferring parameters and model output between SWAT and R, and inverse modeling with visualization. To examine this framework and demonstrate how it works, a case study simulating streamflow in the Cedar River Basin in Iowa in the United Sates was used, and we compared it with the built-in auto-calibration tool of SWAT in parameter optimization. Results indicate that both methods performed well and similarly in searching a set of optimal parameters. Nonetheless, the R-SWAT-FME is more attractive due to its instant visualization, and potential to take advantage of other R packages (e.g., inverse modeling and statistical graphics). The methods presented in the paper are readily adaptable to other model applications that require capability for automated calibration, and sensitivity and uncertainty

  16. Estimation of transported pollutant load in Ardila catchment using the SWAT model

    OpenAIRE

    DURÃO, A.; LEITÃO, P.; BRITO, D.; FERNANDES, R.M.; NEVES, R.; MORAIS, M.

    2011-01-01

    Excess of organic matter and nutrients in the water body promotes algae blooms, which can accelerate the eutrophication process, situation often observed in the Ardila river. This river was identified as very polluted and classified as critical for Alqueva-Pedrogão System. The aim of this study was to estimate the transported nutrients load in a transboundary catchment using the SWAT (Soil and Water Assessment Tool) model and to determine the contribution off nutrients load in the entire catc...

  17. Soil and Water Assessment Tool soil loss simulation at the sub-basin scale in the Alt Penedès-Anoia vineyard region (Ne Spain) in the 2000s

    OpenAIRE

    Martínez Casasnovas, José Antonio; Ramos Martín, Ma. C. (Ma. Concepción); Benites, Grace

    2016-01-01

    This paper evaluates soil loss due to water erosion in an area of 32,362 ha with a predominant land use of vineyards (Alt Penedès-Anoia region, Catalonia, Spain). The Soil and Water Assessment Tool (SWAT) was used incorporating daily climatic data for the period 2000-2010 and also detailed soil and land use maps. Particular attention was given to the universal soil loss equation cover and management factor (C factor) of vineyards, with a minimum value of 0·15 being determined for this crop. T...

  18. Multivariate Bias Correction Procedures for Improving Water Quality Predictions from the SWAT Model

    Science.gov (United States)

    Arumugam, S.; Libera, D.

    2017-12-01

    Water quality observations are usually not available on a continuous basis for longer than 1-2 years at a time over a decadal period given the labor requirements making calibrating and validating mechanistic models difficult. Further, any physical model predictions inherently have bias (i.e., under/over estimation) and require post-simulation techniques to preserve the long-term mean monthly attributes. This study suggests a multivariate bias-correction technique and compares to a common technique in improving the performance of the SWAT model in predicting daily streamflow and TN loads across the southeast based on split-sample validation. The approach is a dimension reduction technique, canonical correlation analysis (CCA) that regresses the observed multivariate attributes with the SWAT model simulated values. The common approach is a regression based technique that uses an ordinary least squares regression to adjust model values. The observed cross-correlation between loadings and streamflow is better preserved when using canonical correlation while simultaneously reducing individual biases. Additionally, canonical correlation analysis does a better job in preserving the observed joint likelihood of observed streamflow and loadings. These procedures were applied to 3 watersheds chosen from the Water Quality Network in the Southeast Region; specifically, watersheds with sufficiently large drainage areas and number of observed data points. The performance of these two approaches are compared for the observed period and over a multi-decadal period using loading estimates from the USGS LOADEST model. Lastly, the CCA technique is applied in a forecasting sense by using 1-month ahead forecasts of P & T from ECHAM4.5 as forcings in the SWAT model. Skill in using the SWAT model for forecasting loadings and streamflow at the monthly and seasonal timescale is also discussed.

  19. Spatial Mapping of Agricultural Water Productivity Using the SWAT Model

    Science.gov (United States)

    Thokal, Rajesh Tulshiram; Gorantiwar, S. D.; Kothari, Mahesh; Bhakar, S. R.; Nandwana, B. P.

    2015-03-01

    The Sina river basin is facing both episodic and chronic water shortages due to intensive irrigation development. The main objective of this study was to characterize the hydrologic processes of the Sina river basin and assess crop water productivity using the distributed hydrologic model, SWAT. In the simulation year (1998-1999), the inflow to reservoir from upstream side was the major contributor to the reservoir accounting for 92 % of the total required water release for irrigation purpose (119.5 Mm3), while precipitation accounted for 4.1 Mm3. Annual release of water for irrigation was 119.5 Mm3 out of which 54 % water was diverted for irrigation purpose, 26 % was wasted as conveyance loss, average discharge at the command outlet was estimated as 4 % and annual average ground-water recharge coefficient was in the range of 13-17 %. Various scenarios involving water allocation rule were tested with the goal of increasing economic water productivity values in the Sina Irrigation Scheme. Out of those, only most benefited allocation rule is analyzed in this paper. Crop yield varied from 1.98 to 25.9 t/ha, with the majority of the area between 2.14 and 2.78 t/ha. Yield and WP declined significantly in loamy soils of the irrigation command. Crop productivity in the basin was found in the lower range when compared with potential and global values. The findings suggested that there was a potential to improve further. Spatial variations in yield and WP were found to be very high for the crops grown during rabi season, while those were low for the crops grown during kharif season. The crop yields and WP during kharif season were more in the lower reach of the irrigation commands, where loamy soil is more concentrated. Sorghum in both seasons was most profitable. Sorghum fetched net income fivefold that of sunflower, two and half fold of pearl millet and one and half fold of mung beans as far as crop during kharif season were concerned and it fetched fourfold that of

  20. Hydrological modeling of the Simly Dam watershed (Pakistan) using GIS and SWAT model

    OpenAIRE

    Shimaa M. Ghoraba

    2015-01-01

    Modern mathematical models have been developed for studying the complex hydrological processes of a watershed and their direct relation to weather, topography, geology and land use. In this study the hydrology of Simly Dam watershed located in Saon River basin at the north-east of Islamabad is modeled, using the Soil and Water Assessment Tool (SWAT). It aims to simulate the stream flow, establish the water balance and estimate the monthly volume inflow to Simly Dam in order to help the manage...

  1. Evaluation of the applicability of the SWAT model in an arid piedmont plain oasis.

    Science.gov (United States)

    Wu, Yong; Li, Changyou; Zhang, Chengfu; Shi, Xiaohong; Bourque, Charles P-A; Zhao, Shengnan

    2016-01-01

    Hetao Oasis is located in a typical piedmont alluvial plain bounded by the Langshan Mountain Range in the north, desert in the west, and the Yellow River in the south. Agricultural activities within the oasis significantly impact the hydrological cycle and water quality in downstream locations. The research uses the Soil and Water Assessment Tool (SWAT) for a piedmont plain by defining the watershed boundary as coinciding with the natural mountain ridge, the border between the oasis and the desert, and the Yellow River. The model simulates water discharge with coefficient of determination and a Nash-Sutcliffe model efficiency of 0.78 and 0.62 during model calibration, and 0.75 and 0.69 during model validation, suggesting that delineation of the watershed as carried out in this research is suitable for piedmont plain topography. From the results, the mountains contribute 28.4% to the water discharge at the outlet of the watershed, and water-use efficiency of irrigated water is about 40%, which is consistent with field-based measurements. Methodologies used in delineating watershed boundaries and parameterizing SWAT provide a solid foundation for water balance studies in other regions of the world with similar topography.

  2. Hydrologic and atrazine simulation of the Cedar Creek Watershed using the SWAT model.

    Science.gov (United States)

    Larose, M; Heathman, G C; Norton, L D; Engel, B

    2007-01-01

    One of the major factors contributing to surface water contamination in agricultural areas is the use of pesticides. The Soil and Water Assessment Tool (SWAT) is a hydrologic model capable of simulating the fate and transport of pesticides in an agricultural watershed. The SWAT model was used in this study to estimate stream flow and atrazine (2-chloro-4-(ethylamino)-6-(isopropylamino)-s-triazine) losses to surface water in the Cedar Creek Watershed (CCW) within the St. Joseph River Basin in northeastern Indiana. Model calibration and validation periods consisted of five and two year periods, respectively. The National Agricultural Statistics Survey (NASS) 2001 land cover classification and the Soil Survey Geographic (SSURGO) database were used as model input data layers. Data from the St. Joseph River Watershed Initiative and the Soil and Water Conservation Districts of Allen, Dekalb, and Noble counties were used to represent agricultural practices in the watershed which included the type of crops grown, tillage practices, fertilizer, and pesticide application rates. Model results were evaluated based on efficiency coefficient values, standard statistical measures, and visual inspection of the measured and simulated hydrographs. The Nash and Sutcliffe model efficiency coefficients (E(NS)) for monthly and daily stream flow calibration and validation ranged from 0.51 to 0.66. The E(NS) values for atrazine calibration and validation ranged from 0.43 to 0.59. All E(NS) values were within the range of acceptable model performance standards. The results of this study indicate that the model is an effective tool in capturing the dynamics of stream flow and atrazine concentrations on a large-scale agricultural watershed in the midwestern USA.

  3. SWAT application in intensive irrigation systems: Model modification, calibration and validation

    Science.gov (United States)

    Dechmi, Farida; Burguete, Javier; Skhiri, Ahmed

    2012-11-01

    SummaryThe Soil and Water Assessment Tool (SWAT) is a well established, distributed, eco-hydrologic model. However, using the study case of an agricultural intensive irrigated watershed, it was shown that all the model versions are not able to appropriately reproduce the total streamflow in such system when the irrigation source is outside the watershed. The objective of this study was to modify the SWAT2005 version for correctly simulating the main hydrological processes. Crop yield, total streamflow, total suspended sediment (TSS) losses and phosphorus load calibration and validation were performed using field survey information and water quantity and quality data recorded during 2008 and 2009 years in Del Reguero irrigated watershed in Spain. The goodness of the calibration and validation results was assessed using five statistical measures, including the Nash-Sutcliffe efficiency (NSE). Results indicated that the average annual crop yield and actual evapotranspiration estimations were quite satisfactory. On a monthly basis, the values of NSE were 0.90 (calibration) and 0.80 (validation) indicating that the modified model could reproduce accurately the observed streamflow. The TSS losses were also satisfactorily estimated (NSE = 0.72 and 0.52 for the calibration and validation steps). The monthly temporal patterns and all the statistical parameters indicated that the modified SWAT-IRRIG model adequately predicted the total phosphorus (TP) loading. Therefore, the model could be used to assess the impacts of different best management practices on nonpoint phosphorus losses in irrigated systems.

  4. Assessing the efficacy of the SWAT auto-irrigation function to simulate Irrigation, evapotranspiration and crop response to irrigation management strategies of the Texas High Plains

    Science.gov (United States)

    The Soil and Water Assessment Tool (SWAT) model is widely used for simulation of hydrologic processes at various temporal and spatial scales. Less common are long-term simulation analyses of water balance components including agricultural management practices such as irrigation management. In the se...

  5. PEMODELAN DAERAH TANGKAPAN AIR WADUK KELILING DENGAN MODEL SWAT (Keliling Reservoir Catchment Area Modeling Using SWAT Model

    Directory of Open Access Journals (Sweden)

    Teuku Ferijal

    2015-05-01

    Full Text Available This study aimed to model watershed area of Keliling Reservoir using SWAT model. The reservoir is located in Aceh Besar District, Province of Aceh. The model was setup using 90m x 90m digital elevation model, land use data extracted from remote sensing data and soil characteristic obtained from laboratory analysis on soil samples. Model was calibrated using observed daily reservoir volume and the model performance was analyzed using RMSE-observations standard deviation ratio (RSR, Nash-Sutcliffe efficiency (NSE and percent bias (PBIAS. The model delineated the study area into 3,448 Ha having 13 subwatersheds and 76 land units (HRUs. The watershed is mostly covered by forest (53% and grassland (31%. The analysis revealed the 10 most sensitive parameters i.e. GW_DELAY, CN2, REVAPMN, ALPHA_BF, SOL_AWC, GW_REVAP, GWQMN, CH_K2 and ESCO. Model performances were categorized into very good for monthly reservoir volume with ENS 0.95, RSR 0.23, and PBIAS 2.97. The model performance decreased when it used to analyze daily reservoir inflow with ENS 0.55, RSR 0.67, and PBIAS 3.46. Keywords: Keliling Reservoir, SWAT, Watershed   ABSTRAK Penelitian ini bertujuan untuk untuk memodelkan daerah tangkapan air Waduk Keliling dengan menggunakan Model SWAT. Waduk Keliling terletak di Kabupaten Aceh Besar, Propinsi Aceh. Dalam penelitian ini Model SWAT dikembangkan berdasarkan data digital elevasi model resolusi 90 m x90 m, tata guna lahan yang diperoleh dari intepretasi citra satelit dan data soil dari hasil analisa sampel tanah yang diperoleh di daerah penelitian. Model dikalibrasi dengan data volume waduk dan kinerja model dianalisa menggunakan parameter rasio akar rata-rata kuadrat error dan standard deviasi observasi (RSR, efesiensi Nash-Sutcliffe (NSE dan persentase bias (PBIAS. Hasil deleniasi untuk daerah penelitian menghasilkan suatu DAS dengan luas 3,448 Ha dan memiliki 13 Sub DAS yang dikelompokkan menjadi 76 unit lahan. Sebagian besar wilayah study

  6. The Assessment of Green Water Based on the SWAT Model: A Case Study in the Hai River Basin, China

    Directory of Open Access Journals (Sweden)

    Kui Zhu

    2018-06-01

    Full Text Available Green water accounts for two-thirds of precipitation, and the proportion could be even higher in dry years. Conflicts between water supply and demand have gradually become severe in the Hai River Basin (HRB due to the socio-economic development. Thus, the exploitation and the utilization of green water have attracted increasing attention. By gathering the related hydrological, meteorological, and geographic data, the spatiotemporal distribution of green water in HRB and the impacts of land use types on green water are analyzed based on the SWAT (Soil and Water Assessment Tool model in this study. Furthermore, three new indices are proposed for evaluation, including the maximum possible storage of green water (MSGW, the consumed green water (CGW, and the utilizable green water (UGW. The results show that (1 the MSGW is relatively low in plain areas and its spatial distribution is significantly associated with the soil type; (2 according to the evaluation results of CGW and UGW in HRB, a further improvement of utilization efficiency of green water could be achieved; (3 in general, the utilization efficiency of precipitation in farmlands is higher than other land use types, which means that the planting of appropriate plants could be helpful to enhance the utilization efficiency of green water. Our results summarize the spatiotemporal distribution of green water resource and provide a reference for water resources management in other water-short agricultural areas.

  7. A Comparison of SWAT and ANN Models for Daily Runoff Simulation in Different Climatic Zones of Peninsular Spain

    Directory of Open Access Journals (Sweden)

    Patricia Jimeno-Sáez

    2018-02-01

    Full Text Available Streamflow data are of prime importance to water-resources planning and management, and the accuracy of their estimation is very important for decision making. The Soil and Water Assessment Tool (SWAT and Artificial Neural Network (ANN models have been evaluated and compared to find a method to improve streamflow estimation. For a more complete evaluation, the accuracy and ability of these streamflow estimation models was also established separately based on their performance during different periods of flows using regional flow duration curves (FDCs. Specifically, the FDCs were divided into five sectors: very low, low, medium, high and very high flow. This segmentation of flow allows analysis of the model performance for every important discharge event precisely. In this study, the models were applied in two catchments in Peninsular Spain with contrasting climatic conditions: Atlantic and Mediterranean climates. The results indicate that SWAT and ANNs were generally good tools in daily streamflow modelling. However, SWAT was found to be more successful in relation to better simulation of lower flows, while ANNs were superior at estimating higher flows in all cases.

  8. Spatial and temporal changes of water quality, and SWAT modeling of Vosvozis river basin, North Greece.

    Science.gov (United States)

    Boskidis, Ioannis; Gikas, Georgios D; Pisinaras, Vassilios; Tsihrintzis, Vassilios A

    2010-09-01

    The results of an investigation of the quantitative and qualitative characteristics of Vosvozis river in Northern Greece is presented. For the purposes of this study, three gaging stations were installed along Vosvozis river, where water quantity and quality measurements were conducted for the period August 2005 to November 2006. Water discharge, temperature, pH, dissolved oxygen (DO) and electrical conductivity (EC) were measured in situ using appropriate equipment. The collected water samples were analyzed in the laboratory for the determination of nitrate, nitrite and ammonium nitrogen, total Kjeldalh nitrogen (TKN), orthophosphate (OP), total phosphorus (TP), COD, and BOD. Agricultural diffuse sources provided the major source of nitrate nitrogen loads during the wet period. During the dry period (from June to October), the major nutrient (N, P) and COD, BOD sources were point sources. The trophic status of Vosvozis river during the monitoring period was determined as eutrophic, based on Dodds classification scheme. Moreover, the SWAT model was used to simulate hydrographs and nutrient loads. SWAT was validated with the measured data. Predicted hydrographs and pollutographs were plotted against observed values and showed good agreement. The validated model was used to test eight alternative scenarios concerning different cropping management approaches. The results of these scenarios indicate that nonpoint source pollution is the prevailing type of pollution in the study area. The SWAT model was found to satisfactorily simulate processes in ephemeral river basins and is an effective tool in water resources management.

  9. Experiences on removal of sodium-water reaction products in SWAT-3

    International Nuclear Information System (INIS)

    Tanabe, H.; Hiroi, H.; Sato, M.; Otaka, J.

    2002-01-01

    This report summarizes experiences and information concerning the removal of sodium water reaction products (SMRP) obtained through large leak tests of the Steam Generator Safety Test Facility (SWAT-3) at PNC/OEC, which were conducted to validate the safety design of steam generators of a prototype LMFBR Monju. The following three problems are discussed here: (1) drainability of SWRP, (2) removal of SWRP by using a cold trap, and (3) steam cleaning of SWRP. (author)

  10. A GUIDED SWAT MODEL APPLICATION ON SEDIMENT YIELD MODELING IN PANGANI RIVER BASIN: LESSONS LEARNT

    Directory of Open Access Journals (Sweden)

    Preksedis Marco Ndomba

    2008-12-01

    Full Text Available The overall objective of this paper is to report on the lessons learnt from applying Soil and Water Assessment Tool (SWAT in a well guided sediment yield modelling study. The study area is the upstream of Pangani River Basin (PRB, the Nyumba Ya Mungu (NYM reservoir catchment, located in the North Eastern part of Tanzania. It should be noted that, previous modeling exercises in the region applied SWAT with preassumption that inter-rill or sheet erosion was the dominant erosion type. In contrast, in this study SWAT model application was guided by results of analysis of high temporal resolution of sediment flow data and hydro-meteorological data. The runoff component of the SWAT model was calibrated from six-years (i.e. 1977–1982 of historical daily streamflow data. The sediment component of the model was calibrated using one-year (1977–1988 daily sediment loads estimated from one hydrological year sampling programme (between March and November, 2005 rating curve. A long-term period over 37 years (i.e. 1969–2005 simulation results of the SWAT model was validated to downstream NYM reservoir sediment accumulation information. The SWAT model captured 56 percent of the variance (CE and underestimated the observed daily sediment loads by 0.9 percent according to Total Mass Control (TMC performance indices during a normal wet hydrological year, i.e., between November 1, 1977 and October 31, 1978, as the calibration period. SWAT model predicted satisfactorily the long-term sediment catchment yield with a relative error of 2.6 percent. Also, the model has identified erosion sources spatially and has replicated some erosion processes as determined in other studies and field observations in the PRB. This result suggests that for catchments where sheet erosion is dominant SWAT model may substitute the sediment-rating curve. However, the SWAT model could not capture the dynamics of sediment load delivery in some seasons to the catchment outlet.

  11. A GUIDED SWAT MODEL APPLICATION ON SEDIMENT YIELD MODELING IN PANGANI RIVER BASIN: LESSONS LEARNT

    Directory of Open Access Journals (Sweden)

    Preksedis M. Ndomba

    2008-01-01

    Full Text Available The overall objective of this paper is to report on the lessons learnt from applying Soil and Water Assessment Tool (SWAT in a well guided sediment yield modelling study. The study area is the upstream of Pangani River Basin (PRB, the Nyumba Ya Mungu (NYM reservoir catchment, located in the North Eastern part of Tanzania. It should be noted that, previous modeling exercises in the region applied SWAT with preassumption that inter-rill or sheet erosion was the dominant erosion type. In contrast, in this study SWAT model application was guided by results of analysis of high temporal resolution of sediment flow data and hydro-meteorological data. The runoff component of the SWAT model was calibrated from six-years (i.e. 1977¿1982 of historical daily streamflow data. The sediment component of the model was calibrated using one-year (1977-1988 daily sediment loads estimated from one hydrological year sampling programme (between March and November, 2005 rating curve. A long-term period over 37 years (i.e. 1969-2005 simulation results of the SWAT model was validated to downstream NYM reservoir sediment accumulation information. The SWAT model captured 56 percent of the variance (CE and underestimated the observed daily sediment loads by 0.9 percent according to Total Mass Control (TMC performance indices during a normal wet hydrological year, i.e., between November 1, 1977 and October 31, 1978, as the calibration period. SWAT model predicted satisfactorily the long-term sediment catchment yield with a relative error of 2.6 percent. Also, the model has identified erosion sources spatially and has replicated some erosion processes as determined in other studies and field observations in the PRB. This result suggests that for catchments where sheet erosion is dominant SWAT model may substitute the sediment-rating curve. However, the SWAT model could not capture the dynamics of sediment load delivery in some seasons to the catchment outlet.

  12. Application of the SWAT model to an endorheic watershed in the Central Spanish Pre-Pyrenees: Methodological approach and preliminary results

    Science.gov (United States)

    Gaspar, Leticia; White, Sue; Navas, Ana; López-Vicente, Manuel; Palazón, Leticia

    2013-04-01

    Modelling runoff and sediment transport at watershed scale are key tools to predict hydrological and sediment processes, identify soil sediment sources and estimate sediment yield, with the purpose of better managing soil and water resources. This study aims to apply the SWAT model in an endorheic watershed in the Central Spanish Pre-Pyrenees, where there have been a number of previous field-based studies on sediment sources and transfers. The Soil and Water Assessment Tool (SWAT) is a process based semi-distributed watershed scale hydrologic model, which can provide a high level of spatial detail by allowing the watershed to be divided into sub-basins. This study addresses the challenge of applying the SWAT model to an endorheic watershed that drains to a central lake, without external output, and without a network of permanent rivers. In this case it has been shown that the SWAT model does not correctly reproduce the stream network when using automatic watershed delineation, even with a high resolution Digital Elevation Model (5 x 5 metres). For this purpose, different approaches needed to be considered, such as i) user-defined watersheds and streams, ii) burning in a stream network or iii) modelling each sub-watershed separately. The objective of this study was to develop a new methodological approach for correctly simulating the main hydrological processes in an endorheic and complex karst watershed of the Spanish Pre-Pyrenees. The Estanque de Arriba Lake watershed (74 ha) is an endorheic system located in the Spanish Central Pre-Pyrenees. This watershed holds a small and permanent lake of fresh water (1.7 ha) and is a Site of Community Importance (European NATURA 2000 network). The study area is characterized by an abrupt topography with altitude range between 679 and 862 m and an average slope gradient of 24 %. Steep slopes (> 24 %) occupy the northern part of the watershed, whereas gentle slopes (

  13. Modification of SWAT model for simulation of organic matter in Korean watersheds.

    Science.gov (United States)

    Jang, Jae-Ho; Jung, Kwang-Wook; Gyeong Yoon, Chun

    2012-01-01

    The focus of water quality modeling of Korean streams needs to be shifted from dissolved oxygen to algae or organic matter. In particular, the structure of water quality models should be modified to simulate the biochemical oxygen demand (BOD), which is a key factor in calculating total maximum daily loads (TMDLs) in Korea, using 5-day BOD determined in the laboratory (Bottle BOD(5)). Considering the limitations in simulating organic matter under domestic conditions, we attempted to model total organic carbon (TOC) as well as BOD by using a watershed model. For this purpose, the Soil and Water Assessment Tool (SWAT) model was modified and extended to achieve better correspondence between the measured and simulated BOD and TOC concentrations. For simulated BOD in the period 2004-2008, the Nash-Sutcliffe model efficiency coefficient increased from a value of -2.54 to 0.61. Another indicator of organic matter, namely, the simulated TOC concentration showed that the modified SWAT adequately reflected the observed values. The improved model can be used to predict organic matter and hence, may be a potential decision-making tool for TMDLs. However, it needs further testing for longer simulation periods and other catchments.

  14. Pesticide transport to tile-drained fields in SWAT model – macropore flow and sediment

    DEFF Research Database (Denmark)

    Lu, Shenglan; Trolle, Dennis; Blicher-Mathiesen, Gitte

    2015-01-01

    Tool (SWAT) to simulate transport of both mobile (e.g. Bentazon) and strongly sorbed (e.g. Diuron) pesticides in tile drains. Macropore flow is initiated when soil water content exceeds a threshold and rainfall intensity exceeds infiltration capacity. The amount of macropore flow is calculated...... to macropore sediment transport. Simulated tile drain discharge, sediment and pesticide loads are calibrated against data from intensively monitored tile-drained fields and streams in Denmark....

  15. Critical review of SWAT applications in the upper Nile basin countries

    Directory of Open Access Journals (Sweden)

    A. van Griensven

    2012-09-01

    Full Text Available The Soil and Water Assessment Tool (SWAT is an integrated river basin model that is widely applied within the Nile basin. Up to date, more than 20 peer-reviewed papers describe the use of SWAT for a variety of problems in the upper Nile basin countries, such as erosion modelling, land use and climate change impact modelling and water resources management. The majority of the studies are focused on locations in the tropical highlands in Ethiopia and around Lake Victoria. The popularity of SWAT is attributed to the fact that the tool is freely available and that it is readily applicable through the development of geographic information system (GIS based interfaces and its easy linkage to sensitivity, calibration and uncertainty analysis tools. The online and free availability of basic GIS data that are required for SWAT made its applicability more straightforward even in data-scarce areas. However, the easy use of SWAT may not always lead to appropriate models which is also a consequence of the quality of the available free databases in these regions. In this paper, we aim at critically reviewing the use of SWAT in the context of the modelling purpose and problem descriptions in the tropical highlands of the Nile basin countries. To evaluate the models that are described in journal papers, a number of criteria are used to evaluate the model set-up, model performances, physical representation of the model parameters, and the correctness of the hydrological model balance. On the basis of performance indicators, the majority of the SWAT models were classified as giving satisfactory to very good results. Nevertheless, the hydrological mass balances as reported in several papers contained losses that might not be justified. Several papers also reported the use of unrealistic parameter values. More worrying is that many papers lack this information. For this reason, most of the reported SWAT models have to be evaluated critically. An important gap is

  16. Comparison of performance of tile drainage routines in SWAT 2009 and 2012 in an extensively tile-drained watershed in the Midwest

    Science.gov (United States)

    Guo, Tian; Gitau, Margaret; Merwade, Venkatesh; Arnold, Jeffrey; Srinivasan, Raghavan; Hirschi, Michael; Engel, Bernard

    2018-01-01

    Subsurface tile drainage systems are widely used in agricultural watersheds in the Midwestern US and enable the Midwest area to become highly productive agricultural lands, but can also create environmental problems, for example nitrate-N contamination associated with drainage waters. The Soil and Water Assessment Tool (SWAT) has been used to model watersheds with tile drainage. SWAT2012 revisions 615 and 645 provide new tile drainage routines. However, few studies have used these revisions to study tile drainage impacts at both field and watershed scales. Moreover, SWAT2012 revision 645 improved the soil moisture based curve number calculation method, which has not been fully tested. This study used long-term (1991-2003) field site and river station data from the Little Vermilion River (LVR) watershed to evaluate performance of tile drainage routines in SWAT2009 revision 528 (the old routine) and SWAT2012 revisions 615 and 645 (the new routine). Both the old and new routines provided reasonable but unsatisfactory (NSE runoff. The calibrated monthly tile flow, surface flow, nitrate-N in tile and surface flow, sediment and annual corn and soybean yield results from SWAT with the old and new tile drainage routines were compared with observed values. Generally, the new routine provided acceptable simulated tile flow (NSE = 0.48-0.65) and nitrate in tile flow (NSE = 0.48-0.68) for field sites with random pattern tile and constant tile spacing, while the old routine simulated tile flow and nitrate in tile flow results for the field site with constant tile spacing were unacceptable (NSE = 0.00-0.32 and -0.29-0.06, respectively). The new modified curve number calculation method in revision 645 (NSE = 0.50-0.81) better simulated surface runoff than revision 615 (NSE = -0.11-0.49). The calibration provided reasonable parameter sets for the old and new routines in the LVR watershed, and the validation results showed that the new routine has the potential to accurately

  17. Interpretation of Landscape Scale SWAT Model Outputs in the Western Lake Erie Basin: Potential Implications for Conservation Decision-Making

    Science.gov (United States)

    Johnson, M. V. V.; Behrman, K. D.; Atwood, J. D.; White, M. J.; Norfleet, M. L.

    2017-12-01

    There is substantial interest in understanding how conservation practices and agricultural management impact water quality, particularly phosphorus dynamics, in the Western Lake Erie Basin (WLEB). In 2016, the US and Canada accepted total phosphorus (TP) load targets recommended by the Great Lakes Water Quality Agreement Annex 4 Objectives and Targets Task Team; these were 6,000 MTA delivered to Lake Erie and 3,660 MTA delivered to WLEB. Outstanding challenges include development of metrics to determine achievement of these goals, establishment of sufficient monitoring capacity to assess progress, and identification of appropriate conservation practices to achieve the most cost-effective results. Process-based modeling can help inform decisions to address these challenges more quickly than can system observation. As part of the NRCS-led Conservation Effects Assessment Project (CEAP), the Soil Water Assessment Tool (SWAT) was used to predict impacts of conservation practice adoption reported by farmers on TP loss and load delivery dynamics in WLEB. SWAT results suggest that once the conservation practices in place in 2003-06 and 2012 are fully functional, TP loads delivered to WLEB will average 3,175 MTA and 3,084 MTA, respectively. In other words, SWAT predicts that currently adopted practices are sufficient to meet Annex 4 TP load targets. Yet, WLEB gauging stations show Annex 4 goals are unmet. There are several reasons the model predictions and current monitoring efforts are not in agreement: 1. SWAT assumes full functionality of simulated conservation practices; 2. SWAT does not simulate changing management over time, nor impacts of past management on legacy loads; 3. SWAT assumes WLEB hydrological system equilibrium under simulated management. The SWAT model runs used to construct the scenarios that informed the Annex 4 targets were similarly constrained by model assumptions. It takes time for a system to achieve equilibrium when management changes and it

  18. [Coupling SWAT and CE-QUAL-W2 models to simulate water quantity and quality in Shanmei Reservoir watershed].

    Science.gov (United States)

    Liu, Mei-Bing; Chen, Dong-Ping; Chen, Xing-Wei; Chen, Ying

    2013-12-01

    A coupled watershed-reservoir modeling approach consisting of a watershed distributed model (SWAT) and a two-dimensional laterally averaged model (CE-QUAL-W2) was adopted for simulating the impact of non-point source pollution from upland watershed on water quality of Shanmei Reservoir. Using the daily serial output from Shanmei Reservoir watershed by SWAT as the input to Shanmei Reservoir by CE-QUAL-W2, the coupled modeling was calibrated for runoff and outputs of sediment and pollutant at watershed scale and for elevation, temperature, nitrate, ammonium and total nitrogen in Shanmei Reservoir. The results indicated that the simulated values agreed fairly well with the observed data, although the calculation precision of downstream model would be affected by the accumulative errors generated from the simulation of upland model. The SWAT and CE-QUAL-W2 coupled modeling could be used to assess the hydrodynamic and water quality process in complex watershed comprised of upland watershed and downstream reservoir, and might further provide scientific basis for positioning key pollution source area and controlling the reservoir eutrophication.

  19. Evaluation of non-point source pollution reduction by applying best management practices using a SWAT model and QuickBird high resolution satellite imagery.

    Science.gov (United States)

    Lee, MiSeon; Park, GeunAe; Park, MinJi; Park, JongYoon; Lee, JiWan; Kim, SeongJoon

    2010-01-01

    This study evaluated the reduction effect of non-point source pollution by applying best management practices (BMPs) to a 1.21 km2 small agricultural watershed using a SWAT (Soil and Water Assessment Tool) model. Two meter QuickBird land use data were prepared for the watershed. The SWAT was calibrated and validated using daily streamflow and monthly water quality (total phosphorus (TP), total nitrogen (TN), and suspended solids (SS)) records from 1999 to 2000 and from 2001 to 2002. The average Nash and Sutcliffe model efficiency was 0.63 for the streamflow and the coefficients of determination were 0.88, 0.72, and 0.68 for SS, TN, and TP, respectively. Four BMP scenarios viz. the application of vegetation filter strip and riparian buffer system, the regulation of Universal Soil Loss Equation P factor, and the fertilizing control amount for crops were applied and analyzed.

  20. Evaluating watershed protection programs in New York City's Cannonsville Reservoir source watershed using SWAT-HS

    Science.gov (United States)

    Hoang, L.; Mukundan, R.; Moore, K. E.; Owens, E. M.; Steenhuis, T. S.

    2017-12-01

    New York City (NYC)'s reservoirs supply over one billion gallons of drinking water each day to over nine million consumers in NYC and upstate communities. The City has invested more than $1.5 billion in watershed protection programs to maintain a waiver from filtration for the Catskill and Delaware Systems. In the last 25 years, the NYC Department of Environmental Protection (NYCDEP) has implemented programs in cooperation with upstate communities that include nutrient management, crop rotations, improvement of barnyards and manure storage, implementing tertiary treatment for Phosphorus (P) in wastewater treatment plants, and replacing failed septic systems in an effort to reduce P loads to water supply reservoirs. There have been several modeling studies evaluating the effect of agricultural Best Management Practices (BMPs) on P control in the Cannonsville watershed in the Delaware System. Although these studies showed that BMPs would reduce dissolved P losses, they were limited to farm-scale or watershed-scale estimates of reduction factors without consideration of the dynamic nature of overland flow and P losses from variable source areas. Recently, we developed the process-based SWAT-Hillslope (SWAT-HS) model, a modified version of the Soil and Water Assessment Tool (SWAT) that can realistically predict variable source runoff processes. The objective of this study is to use the SWAT-HS model to evaluate watershed protection programs addressing both point and non-point sources of P. SWAT-HS predicts streamflow very well for the Cannonsville watershed with a daily Nash Sutcliffe Efficiency (NSE) of 0.85 at the watershed outlet and NSE values ranging from 0.56 - 0.82 at five other locations within the watershed. Based on good hydrological prediction, we applied the model to predict P loads using detailed P inputs that change over time due to the implementation of watershed protection programs. Results from P model predictions provide improved projections of P

  1. Hydrologic Response Unit Routing in SWAT to Simulate Effects of Vegetated Filter Strip for South-Korean Conditions Based on VFSMOD

    Directory of Open Access Journals (Sweden)

    Kyoung Jae Lim

    2011-08-01

    Full Text Available The Soil and Water Assessment Tool (SWAT model has been used worldwide for many hydrologic and Non-Point Source (NPS Pollution analyses on a watershed scale. However, it has many limitations in simulating the Vegetative Filter Strip (VFS because it considers only ‘filter strip width’ when the model estimates sediment trapping efficiency and does not consider the routing of sediment with overland flow which is expected to maximize the sediment trapping efficiency from upper agricultural subwatersheds to lower spatially-explicit filter strips. Therefore, the SWAT overland flow option between landuse-subwatersheds with sediment routing capability was enhanced by modifying the SWAT watershed configuration and SWAT engine based on the numerical model VFSMOD applied to South-Korean conditions. The enhanced SWAT can simulate the VFS sediment trapping efficiency for South-Korean conditions in a manner similar to the desktop VFSMOD-w system. Due to this enhancement, SWAT is applicable to simulate the effects of overland flow from upper subwatersheds to reflect increased runoff volume at the lower subwatershed, which occurs in the field if no diversion channel is installed. In this study, the enhanced SWAT model was applied to small watersheds located at Jaun-ri in South-Korea to simulate a diversion channel and spatially-explicit VFS. Sediment can be reduced by 31%, 65%, and 68%, with a diversion channel, the VFS, and the VFS with diversion channel, respectively. The enhanced SWAT should be used in estimating site-specific effects on sediment reduction with diversion channels and VFS, instead of the currently available SWAT, which does not simulate sediment routing in overland flow and does not consider other sensitive factors affecting sediment reduction with VFS.

  2. Application of the Soil and Water Assessment Tool (SWAT Model on a small tropical island (Great River Watershed, Jamaica as a tool in Integrated Watershed and Coastal Zone Management

    Directory of Open Access Journals (Sweden)

    Orville P. Grey

    2014-09-01

    Full Text Available The Great River Watershed, located in north-west Jamaica, is critical for development, particularly for housing, tourism, agriculture, and mining. It is a source of sediment and nutrient loading to the coastal environment including the Montego Bay Marine Park. We produced a modeling framework using the Soil and Water Assessment Tool (SWAT and GIS. The calculated model performance statistics for high flow discharge yielded a Nash-Sutcliffe Efficiency (NSE value of 0.68 and a R² value of 0.70 suggesting good measured and simulated (calibrated discharge correlation. Calibration and validation results for streamflow were similar to the observed streamflows. For the dry season the simulated urban landuse scenario predicted an increase in surface runoff in excess of 150%. During the wet season it is predicted to range from 98 to 234% presenting a significant risk of flooding, erosion and other environmental issues. The model should be used for the remaining 25 watersheds in Jamaica and elsewhere in the Caribbean. The models suggests that projected landuse changes will have serious impacts on available water (streamflow, stream health, potable water treatment, flooding and sensitive coastal ecosystems.

  3. Assessment of land-use change on streamflow using GIS, remote sensing and a physically-based model, SWAT

    Directory of Open Access Journals (Sweden)

    J. Y. G. Dos Santos

    2014-09-01

    Full Text Available This study aims to assess the impact of the land-use changes between the periods 1967−1974 and 1997−2008 on the streamflow of Tapacurá catchment (northeastern Brazil using the Soil and Water Assessment Tool (SWAT model. The results show that the most sensitive parameters were the baseflow, Manning factor, time of concentration and soil evaporation compensation factor, which affect the catchment hydrology. The model calibration and validation were performed on a monthly basis, and the streamflow simulation showed a good level of accuracy for both periods. The obtained R2 and Nash-Sutcliffe Efficiency values for each period were respectively 0.82 and 0.81 for 1967−1974, and 0.93 and 0.92 for the period 1997−2008. The evaluation of the SWAT model response to the land cover has shown that the mean monthly flow, during the rainy seasons for 1967−1974, decreased when compared to 1997−2008.

  4. A Comparison of SWAT and ANN Models for Daily Runoff Simulation in Different Climatic Zones of Peninsular Spain

    OpenAIRE

    Patricia Jimeno-Sáez; Javier Senent-Aparicio; Julio Pérez-Sánchez; David Pulido-Velazquez

    2018-01-01

    Streamflow data are of prime importance to water-resources planning and management, and the accuracy of their estimation is very important for decision making. The Soil and Water Assessment Tool (SWAT) and Artificial Neural Network (ANN) models have been evaluated and compared to find a method to improve streamflow estimation. For a more complete evaluation, the accuracy and ability of these streamflow estimation models was also established separately based on their performance during differe...

  5. Effects of Land Use Change on Sediment and Water Yields in Yang Ming Shan National Park, Taiwan

    Directory of Open Access Journals (Sweden)

    Thomas C. C. Huang

    2015-01-01

    Full Text Available The Soil and Water Assessment Tool (SWAT is a watershed-based, semi-distributed hydrologic model for simulating hydrological processes at different spatial scales. The SWAT hydrology and erosion/sediment components are first validated after the hydrologic components calibration. The SWAT model also utilizes geographic information system (GIS and digital elevation model (DEM to delineate watersheds and extract the stream network. This study applies SWAT model to assess the impacts of land use change on soil and water losses from Yang Ming Shan National Park Watershed in northern Taiwan. Although the government has formulated regulations to limit the development, however, intense human activities, such as farming and building construction, still continue to exist. This study utilized two land-use data periods, one in 1996 and another in 2007, along with the SWAT model to simulate soil and water losses in Yang Ming Shan National Park. Based on the baseline scenario, the SWAT model was also successful in simulating the future scenario. Study results for scenario 2007, as compared to 1996 baseline period indicate that land use change shows forest land decreases about 6.9%, agricultural land increases about 9.5%, and causes sediment yield increase of 0.25 t/ha. Human activities deserve more attention when assessing soil and water losses because of their inevitable impacts. Government needs to modify land development policies and plans for land use change detection using satellite imagery to avoid illegal development activities.

  6. Soil erosion dynamics response to landscape pattern

    NARCIS (Netherlands)

    Ouyang, W.; Skidmore, A.K.; Hao, F.; Wang, T.

    2010-01-01

    Simulating soil erosion variation with a temporal land use database reveals long-term fluctuations in landscape patterns, as well as priority needs for soil erosion conservation. The application of a multi-year land use database in support of a Soil Water Assessment Tool (SWAT) led to an accurate

  7. Modeling nitrate-nitrogen load reduction strategies for the Des Moines River, Iowa using SWAT.

    Science.gov (United States)

    Schilling, Keith E; Wolter, Calvin F

    2009-10-01

    The Des Moines River that drains a watershed of 16,175 km(2) in portions of Iowa and Minnesota is impaired for nitrate-nitrogen (nitrate) due to concentrations that exceed regulatory limits for public water supplies. The Soil Water Assessment Tool (SWAT) model was used to model streamflow and nitrate loads and evaluate a suite of basin-wide changes and targeting configurations to potentially reduce nitrate loads in the river. The SWAT model comprised 173 subbasins and 2,516 hydrologic response units and included point and nonpoint nitrogen sources. The model was calibrated for an 11-year period and three basin-wide and four targeting strategies were evaluated. Results indicated that nonpoint sources accounted for 95% of the total nitrate export. Reduction in fertilizer applications from 170 to 50 kg/ha achieved the 38% reduction in nitrate loads, exceeding the 34% reduction required. In terms of targeting, the most efficient load reductions occurred when fertilizer applications were reduced in subbasins nearest the watershed outlet. The greatest load reduction for the area of land treated was associated with reducing loads from 55 subbasins with the highest nitrate loads, achieving a 14% reduction in nitrate loads achieved by reducing applications on 30% of the land area. SWAT model results provide much needed guidance on how to begin implementing load reduction strategies most efficiently in the Des Moines River watershed.

  8. A simple rule based model for scheduling farm management operations in SWAT

    Science.gov (United States)

    Schürz, Christoph; Mehdi, Bano; Schulz, Karsten

    2016-04-01

    For many interdisciplinary questions at the watershed scale, the Soil and Water Assessment Tool (SWAT; Arnold et al., 1998) has become an accepted and widely used tool. Despite its flexibility, the model is highly demanding when it comes to input data. At SWAT's core the water balance and the modeled nutrient cycles are plant growth driven (implemented with the EPIC crop growth model). Therefore, land use and crop data with high spatial and thematic resolution, as well as detailed information on cultivation and farm management practices are required. For many applications of the model however, these data are unavailable. In order to meet these requirements, SWAT offers the option to trigger scheduled farm management operations by applying the Potential Heat Unit (PHU) concept. The PHU concept solely takes into account the accumulation of daily mean temperature for management scheduling. Hence, it contradicts several farming strategies that take place in reality; such as: i) Planting and harvesting dates are set much too early or too late, as the PHU concept is strongly sensitivity to inter-annual temperature fluctuations; ii) The timing of fertilizer application, in SWAT this often occurs simultaneously on the same date in in each field; iii) and can also coincide with precipitation events. Particularly, the latter two can lead to strong peaks in modeled nutrient loads. To cope with these shortcomings we propose a simple rule based model (RBM) to schedule management operations according to realistic farmer management practices in SWAT. The RBM involves simple strategies requiring only data that are input into the SWAT model initially, such as temperature and precipitation data. The user provides boundaries of time periods for operation schedules to take place for all crops in the model. These data are readily available from the literature or from crop variety trials. The RBM applies the dates by complying with the following rules: i) Operations scheduled in the

  9. Simulation of agricultural non-point source pollution in Xichuan by using SWAT model

    Science.gov (United States)

    Xing, Linan; Zuo, Jiane; Liu, Fenglin; Zhang, Xiaohui; Cao, Qiguang

    2018-02-01

    This paper evaluated the applicability of using SWAT to access agricultural non-point source pollution in Xichuan area. In order to build the model, DEM, soil sort and land use map, climate monitoring data were collected as basic database. The SWAT model was calibrated and validated for the SWAT was carried out using streamflow, suspended solids, total phosphorus and total nitrogen records from 2009 to 2011. Errors, coefficient of determination and Nash-Sutcliffe coefficient were considered to evaluate the applicability. The coefficient of determination were 0.96, 0.66, 0.55 and 0.66 for streamflow, SS, TN, and TP, respectively. Nash-Sutcliffe coefficient were 0.93, 0.5, 0.52 and 0.63, respectively. The results all meet the requirements. It suggested that the SWAT model can simulate the study area.

  10. Evaluation of best management practices under intensive irrigation using SWAT model

    OpenAIRE

    Dechmi, Farida; Skhiri, Ahmed

    2013-01-01

    Land management practices such as conservation tillage and optimum irrigation are routinely used to reduce non-point source pollution and improve water quality. The calibrated and validated SWAT-IRRIG model is the first modified SWAT version that reproduces well the irrigation return flows (IRF) when the irrigation source is outside of the watershed. The application of this SWAT version in intensive irrigated systems permits to better evaluate the best management practices (BMPs) in such syst...

  11. Impact of Direct Soil Moisture and Revised Soil Moisture Index Methods on Hydrologic Predictions in an Arid Climate

    Directory of Open Access Journals (Sweden)

    Milad Jajarmizadeh

    2014-01-01

    Full Text Available The soil and water assessment tool (SWAT is a physically based model that is used extensively to simulate hydrologic processes in a wide range of climates around the world. SWAT uses spatial hydrometeorological data to simulate runoff through the computation of a retention curve number. The objective of the present study was to compare the performance of two approaches used for the calculation of curve numbers in SWAT, that is, the Revised Soil Moisture Index (SMI, which is based on previous meteorological conditions, and the Soil Moisture Condition II (SMCII, which is based on soil features for the prediction of flow. The results showed that the sensitive parameters for the SMI method are land-use and land-cover features. However, for the SMCII method, the soil and the channel are the sensitive parameters. The performances of the SMI and SMCII methods were analyzed using various indices. We concluded that the fair performance of the SMI method in an arid region may be due to the inherent characteristics of the method since it relies mostly on previous meteorological conditions and does not account for the soil features of the catchment.

  12. Assessment of the SWAT model to simulate a watershed with limited available data in the Pampas region, Argentina.

    Science.gov (United States)

    Romagnoli, Martín; Portapila, Margarita; Rigalli, Alfredo; Maydana, Gisela; Burgués, Martín; García, Carlos M

    2017-10-15

    Argentina has been among the world leaders in the production and export of agricultural products since the 1990s. The Carcarañá River Lower Basin (CRLB), a cropland of the Pampas region supplied by extensive rainfall, is located in an area with few streamgauging and other hydrologic/water-quality stations. Therefore, limited hydrologic data are available resulting in limited water-resources assessment. This work explores the application of Soil and Water Assessment Tool (SWAT) model to the CRLB in the Santa Fe province of the Pampas region. The analysis of field and remote-sensing data characterizing hydrology, water quality, soil types, land use/land cover, management practices, and crop yield, guarantee a comprehensive SWAT modeling approach. A combined manual and automated calibration and validation process incorporating sensitivity and uncertainty analysis is performed using information concerning interior watershed processes. Eleven N/P fertilizer rates are selected to simulate the impact of N fertilizer on crop yield, plant uptake, as well as runoff and leaching losses. Different indices (partial factor productivity, agronomic efficiency, apparent crop recovery efficiency of applied nutrient, internal utilization efficiency, and physiological efficiency) are considered to assess nitrogen-use efficiency. The overall quality of the fit is satisfactory considering the input data limitations. This work provides, for the first time in Argentina, a reliable tool to simulate yield response to soil quality and water availability capable to meet defined environmental targets to support decision making on planning public policies and private activities on the Pampas region. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Application of SELECT and SWAT models to simulate source load, fate, and transport of fecal bacteria in watersheds.

    Science.gov (United States)

    Ranatunga, T.

    2017-12-01

    Modeling of fate and transport of fecal bacteria in a watershed is a processed based approach that considers releases from manure, point sources, and septic systems. Overland transport with water and sediments, infiltration into soils, transport in the vadose zone and groundwater, die-off and growth processes, and in-stream transport are considered as the other major processes in bacteria simulation. This presentation will discuss a simulation of fecal indicator bacteria source loading and in-stream conditions of a non-tidal watershed (Cedar Bayou Watershed) in South Central Texas using two models; Spatially Explicit Load Enrichment Calculation Tool (SELECT) and Soil and Water Assessment Tool (SWAT). Furthermore, it will discuss a probable approach of bacteria source load reduction in order to meet the water quality standards in the streams. The selected watershed is listed as having levels of fecal indicator bacteria that posed a risk for contact recreation and wading by the Texas Commission of Environmental Quality (TCEQ). The SELECT modeling approach was used in estimating the bacteria source loading from land categories. Major bacteria sources considered were, failing septic systems, discharges from wastewater treatment facilities, excreta from livestock (Cattle, Horses, Sheep and Goat), excreta from Wildlife (Feral Hogs, and Deer), Pet waste (mainly from Dogs), and runoff from urban surfaces. The estimated source loads from SELECT model were input to the SWAT model, and simulate the bacteria transport through the land and in-stream. The calibrated SWAT model was then used to estimate the indicator bacteria in-stream concentrations for future years based on regional land use, population and household forecast (up to 2040). Based on the reductions required to meet the water quality standards in-stream, the corresponding required source load reductions were estimated.

  14. Using the soil and water assessment tool to estimate dissolved inorganic nitrogen water pollution abatement cost functions in central portugal.

    Science.gov (United States)

    Roebeling, P C; Rocha, J; Nunes, J P; Fidélis, T; Alves, H; Fonseca, S

    2014-01-01

    Coastal aquatic ecosystems are increasingly affected by diffuse source nutrient water pollution from agricultural activities in coastal catchments, even though these ecosystems are important from a social, environmental and economic perspective. To warrant sustainable economic development of coastal regions, we need to balance marginal costs from coastal catchment water pollution abatement and associated marginal benefits from coastal resource appreciation. Diffuse-source water pollution abatement costs across agricultural sectors are not easily determined given the spatial heterogeneity in biophysical and agro-ecological conditions as well as the available range of best agricultural practices (BAPs) for water quality improvement. We demonstrate how the Soil and Water Assessment Tool (SWAT) can be used to estimate diffuse-source water pollution abatement cost functions across agricultural land use categories based on a stepwise adoption of identified BAPs for water quality improvement and corresponding SWAT-based estimates for agricultural production, agricultural incomes, and water pollution deliveries. Results for the case of dissolved inorganic nitrogen (DIN) surface water pollution by the key agricultural land use categories ("annual crops," "vineyards," and "mixed annual crops & vineyards") in the Vouga catchment in central Portugal show that no win-win agricultural practices are available within the assessed BAPs for DIN water quality improvement. Estimated abatement costs increase quadratically in the rate of water pollution abatement, with largest abatement costs for the "mixed annual crops & vineyards" land use category (between 41,900 and 51,900 € tDIN yr) and fairly similar abatement costs across the "vineyards" and "annual crops" land use categories (between 7300 and 15,200 € tDIN yr). Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  15. Impacts of manure application on SWAT model outputs in the Xiangxi River watershed

    Science.gov (United States)

    Liu, Ruimin; Wang, Qingrui; Xu, Fei; Men, Cong; Guo, Lijia

    2017-12-01

    SWAT (Soil and Water Assessment Tool) model has been widely used to simulate agricultural non-point source (ANPS) pollution; however, the impacts of livestock manure application on SWAT model outputs have not been well studied. The objective of this study was to investigate the environmental effects of livestock manure application based on the SWAT model in the Xiangxi River watershed, which is one of the largest tributaries of the Three Gorges Reservoir in China. Three newly-built manure databases (NB) were created and applied to different subbasins based on the actual livestock manure discharging amount. The calibration and validation values of SWAT model outputs obtained from the NB manure application and the original mixed (OM) manure were compared. The study results are as follows: (1) The livestock industry of Xingshan County developed quickly between 2005 and 2015. The downstream of the Xiangxi River (Huangliang, Shuiyuesi and Xiakou) had the largest livestock amount, and largely accounted for manure, total nitrogen (TN) and total phosphorus (TP) production (>50%). (2) The NB manure application resulted in less phosphorus pollution (1686.35 kg for ORGP and 31.70 kg for MINP) than the OM manure application. Compared with the upstream, the downstream was influenced more by the manure application. (3) The SWAT results obtained from the NB manure had a better calibration and validation values than those from the OM manure. For ORGP, R2 and NSE values were 0.77 and 0.65 for the NB manure calibration; and the same values for the OM manure were 0.72 and 0.61, respectively. For MINP, R2 values were 0.65 and 0.62 for the NB manure and the OM manure, and the NSE values were 0.60 and 0.58, respectively. The results indicated that the built-in fertilizer database in SWAT has its limitation because it is set up for the simulation in the USA. Thus, when livestock manure is considered in a SWAT simulation, a newly built fertilizer database needs to be set up to represent

  16. Quantifying the Contribution of On-Site Wastewater Treatment Systems to Stream Discharge Using the SWAT Model.

    Science.gov (United States)

    Oliver, C W; Radcliffe, D E; Risse, L M; Habteselassie, M; Mukundan, R; Jeong, J; Hoghooghi, N

    2014-03-01

    In the southeastern United States, on-site wastewater treatment systems (OWTSs) are widely used for domestic wastewater treatment. The degree to which OWTSs represent consumptive water use has been questioned in Georgia. The goal of this study was to estimate the effect of OWTSs on streamflow in a gauged watershed in Gwinnett County, Georgia using the Soil and Water Assessment Tool (SWAT) watershed-scale model, which includes a new OWTS algorithm. Streamflow was modeled with and without the presence of OWTSs. The model was calibrated using data from 1 Jan. 2003 to 31 Dec. 2006 and validated from 1 Jan. 2007 to 31 Dec. 2010 using the auto-calibration tool SWAT-CUP 4. The daily and monthly streamflow Nash-Sutcliffe coefficients were 0.49 and 0.71, respectively, for the calibration period and 0.37 and 0.68, respectively, for the validation period, indicating a satisfactory fit. Analysis of water balance output variables between simulations showed a 3.1% increase in total water yield at the watershed scale and a 5.9% increase at the subbasin scale for a high-density OWTS area. The percent change in water yield between simulations was the greatest in dry years, implying that the influence of OWTSs on the water yield is greatest under drought conditions. Mean OWTS water use was approximately 5.7% consumptive, contrary to common assumptions by water planning agencies in Georgia. Results from this study may be used by OWTS users and by watershed planners to understand the influence of OWTSs on water quantity within watersheds in this region. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  17. Field scale modeling to estimate phosphorus and sediment load reductions using a newly developed graphical user interface for soil and water assessment tool

    Science.gov (United States)

    Streams throughout the North Canadian River watershed in northwest Oklahoma, USA have elevated levels of nutrients and sediment. SWAT (Soil and Water Assessment Tool) was used to identify areas that likely contributed disproportionate amounts of phosphorus (P) and sediment to Lake Overholser, the re...

  18. A comparison of SWAT, HSPF and SHETRAN/GOPC for modelling phosphorus export from three catchments in Ireland.

    Science.gov (United States)

    Nasr, Ahmed; Bruen, Michael; Jordan, Philip; Moles, Richard; Kiely, Gerard; Byrne, Paul

    2007-03-01

    Recent extensive water quality surveys in Ireland revealed that diffuse phosphorus (P) pollution originating from agricultural land and transported by runoff and subsurface flows is the primary cause of the deterioration of surface water quality. P transport from land to water can be described by mathematical models that vary in modelling approach, complexity and scale (plot, field and catchment). Here, three mathematical models (soil water and analysis tools (SWAT), hydrological simulation program-FORTRAN (HSPF) and système hydrologique Européen TRANsport (SHETRAN)/grid oriented phosphorus component (GOPC)) of diffuse P pollution have been tested in three Irish catchments to explore their suitability in Irish conditions for future use in implementing the European Water Framework Directive. After calibrating the models, their daily flows and total phosphorus (TP) exports are compared and assessed. The HSPF model was the best at simulating the mean daily discharge while SWAT gave the best calibration results for daily TP loads. Annual TP exports for the three models and for two empirical models were compared with measured data. No single model is consistently better in estimating the annual TP export for all three catchments.

  19. Modeling nitrate-nitrogen load reduction strategies for the des moines river, iowa using SWAT

    Science.gov (United States)

    Schilling, K.E.; Wolter, C.F.

    2009-01-01

    The Des Moines River that drains a watershed of 16,175 km2 in portions of Iowa and Minnesota is impaired for nitrate-nitrogen (nitrate) due to concentrations that exceed regulatory limits for public water supplies. The Soil Water Assessment Tool (SWAT) model was used to model streamflow and nitrate loads and evaluate a suite of basin-wide changes and targeting configurations to potentially reduce nitrate loads in the river. The SWAT model comprised 173 subbasins and 2,516 hydrologic response units and included point and nonpoint nitrogen sources. The model was calibrated for an 11-year period and three basin-wide and four targeting strategies were evaluated. Results indicated that nonpoint sources accounted for 95% of the total nitrate export. Reduction in fertilizer applications from 170 to 50 kg/ha achieved the 38% reduction in nitrate loads, exceeding the 34% reduction required. In terms of targeting, the most efficient load reductions occurred when fertilizer applications were reduced in subbasins nearest the watershed outlet. The greatest load reduction for the area of land treated was associated with reducing loads from 55 subbasins with the highest nitrate loads, achieving a 14% reduction in nitrate loads achieved by reducing applications on 30% of the land area. SWAT model results provide much needed guidance on how to begin implementing load reduction strategies most efficiently in the Des Moines River watershed. ?? 2009 Springer Science+Business Media, LLC.

  20. Parameterization and Uncertainty Analysis of SWAT model in Hydrological Simulation of Chaohe River Basin

    Science.gov (United States)

    Jie, M.; Zhang, J.; Guo, B. B.

    2017-12-01

    As a typical distributed hydrological model, the SWAT model also has a challenge in calibrating parameters and analysis their uncertainty. This paper chooses the Chaohe River Basin China as the study area, through the establishment of the SWAT model, loading the DEM data of the Chaohe river basin, the watershed is automatically divided into several sub-basins. Analyzing the land use, soil and slope which are on the basis of the sub-basins and calculating the hydrological response unit (HRU) of the study area, after running SWAT model, the runoff simulation values in the watershed are obtained. On this basis, using weather data, known daily runoff of three hydrological stations, combined with the SWAT-CUP automatic program and the manual adjustment method are used to analyze the multi-site calibration of the model parameters. Furthermore, the GLUE algorithm is used to analyze the parameters uncertainty of the SWAT model. Through the sensitivity analysis, calibration and uncertainty study of SWAT, the results indicate that the parameterization of the hydrological characteristics of the Chaohe river is successful and feasible which can be used to simulate the Chaohe river basin.

  1. Prediction of land use changes based on land change modeler and attribution of changes in the water balance of Ganga basin to land use change using the SWAT model

    Science.gov (United States)

    Anand, J.; Gosain, A. K.; Khosa, R.

    2017-12-01

    Conflicts between increasing irrigated agricultural area, commercial crops, shifting cultivation and ever increasing domestic and industrial demand has already been a cause of tension in the society over water in the Ganga River Basin, India. For the development of sustainable water resource strategies, it is essential to establish interaction between landuse changes and local hydrology through proper assessment. Precisely, seeing how change in each LULC affects hydrologic regimes, or conversely evaluating which LULC shall be appropriate for the local hydrological regime can help decision makers to incorporate in the policy instruments. In this study, we assess hydrologic regimes of the Ganga River basin with landuse change. Catchment hydrologic responses were simulated using Soil and Water Assessment Tool (SWAT). Meteorological data from IMD of 0.25°×0.25° spatial resolution were taken as the climate inputs. Simulated stream flow was compared at different gauge stations distributed across the Gang basin and its tributaries. Urbanization was the topmost contributor to the increase in surface runoff and water yield. While, increased irrigation demands was the dominant contributor to the water consumption and also added to the increased evapotranspiration. In addition scenarios have been generated to study the impact of landuse change on various components of hydrology including groundwater recharge, with different cropping patterns and increased irrigation efficiency to determine various mitigation strategies that can be adopted. This study can be important tool in quantifying the changes in hydrological components in response to changes made in landuse in especially basins undergoing rapid commercialization. This shall provide substantive information to the decision makers required to develop ameliorative strategies. Keywords: Landuse and Landcover change, Hydrologic model, Soil Water Assessment Tool (SWAT), Urbanization, Ganga River, Watershed hydrology.

  2. SWAT-based streamflow and embayment modeling of Karst-affected Chapel branch watershed, South Carolina

    Science.gov (United States)

    Devendra Amatya; M. Jha; A.E. Edwards; T.M. Williams; D.R. Hitchcock

    2011-01-01

    SWAT is a GIS-based basin-scale model widely used for the characterization of hydrology and water quality of large, complex watersheds; however, SWAT has not been fully tested in watersheds with karst geomorphology and downstream reservoir-like embayment. In this study, SWAT was applied to test its ability to predict monthly streamflow dynamics for a 1,555 ha karst...

  3. Sediment predictions in Wadi Al-Naft using soil water assessment tool

    Directory of Open Access Journals (Sweden)

    Alwan Imzahim Abdulkareem

    2018-01-01

    Full Text Available Sediment production is the amount of sediment in the unit area that is transported through the basin by water transfer over a specified period of time. The main aim of present study is to predict sediment yield of Wadi, Al-Naft watershed with 8820 Km2area, that is located in the North-East of Diyala Governorate in Iraq, using Soil-Water Assessment Tool, (SWAT and to predict the impact of land management and the input data including the land use, soil type, and soil texture maps which are obtained from Landsat-8 satellite image. Digital Elevation Model,(DEM with resolution (14 14 meter is used to delineate the watershed with the aid of model. Three Land-sat images were used to cover the study area which were mosaic processed and the study area masked- up from the mosaic, image. The area of study has been registries by Arc-GIS 10.2 and digitized the soil hydrologic group through assistant of Soil Plant Assistant Water Model, (SPAW which was progressed by USDA, Agricultural, Research Service, using the data of soil textural and organic matter from Food and Agriculture Organization (FAO, the available water content, saturated hydraulic conductivity, and bulk density. The results of average, sediment depth and the maximum upland sediment for simulation period (2010-2020 were predicted to be (1.7 mm, and (12.57 Mg/ha, respectively.

  4. Application of the Soil and Water Assessment Tool (SWAT) to predict the impact of best management practices in Jatigede Catchment Area

    Science.gov (United States)

    Ridwansyah, Iwan; Fakhrudin, M.; Wibowo, Hendro; Yulianti, Meti

    2018-02-01

    Cimanuk watershed is one of the national priority watersheds for rehabilitation considering its critical condition. In this area, Jatigede Reservoir operates, which is the second largest reservoir in Indonesia, after Jatiluhur Reservoir. The reservoir performs several functions, including flood control, irrigation for 90.000 ha of rice fields, water supply of 3.500 litres per second, and power generation of 110 MW. In 2004 the Jatigede Reservoir catchment area had a critical land area of 40.875 ha (28% of the catchment area). The sedimentation rate in Cimanuk River at Eretan station shows a high rate (5.32 mm/year), which potentially decreases the function of Jatigede Reservoir. Therefore, a strategy of Best Management Practice’s (BMP’s) is required to mitigate the problem by using SWAT hydrology modelling. The aim of this study is to examine the impact of BMP’s on surface runoff and sediment yield in Jatigede Reservoir Catchment Area. Simulations were conducted using land use in 2011. The results of this study suggest that SWAT model is considered as a reasonable modelling of BMP’s simulation concerning Nash-Sutcliffe Coefficients (0.71). The simulation is using terraces, silt pit, and dam trenches as BMP’s techniques. The BMP’s application can reduce surface runoff from 99.7 mm to 75.8 mm, and decrease sediment yield from 61.9 ton/ha/year to 40.8 ton/ha/year.

  5. Development of Web-Based RECESS Model for Estimating Baseflow Using SWAT

    Directory of Open Access Journals (Sweden)

    Gwanjae Lee

    2014-04-01

    Full Text Available Groundwater has received increasing attention as an important strategic water resource for adaptation to climate change. In this regard, the separation of baseflow from streamflow and the analysis of recession curves make a significant contribution to integrated river basin management. The United States Geological Survey (USGS RECESS model adopting the master-recession curve (MRC method can enhance the accuracy with which baseflow may be separated from streamflow, compared to other baseflow-separation schemes that are more limited in their ability to reflect various watershed/aquifer characteristics. The RECESS model has been widely used for the analysis of hydrographs, but the applications using RECESS were only available through Microsoft-Disk Operating System (MS-DOS. Thus, this study aims to develop a web-based RECESS model for easy separation of baseflow from streamflow, with easy applications for ungauged regions. RECESS on the web derived the alpha factor, which is a baseflow recession constant in the Soil Water Assessment Tool (SWAT, and this variable was provided to SWAT as the input. The results showed that the alpha factor estimated from the web-based RECESS model improved the predictions of streamflow and recession. Furthermore, these findings showed that the baseflow characteristics of the ungauged watersheds were influenced by the land use and slope angle of watersheds, as well as by precipitation and streamflow.

  6. Comparison of performance of tile drainage routines in SWAT 2009 and 2012 in an extensively tile-drained watershed in the Midwest

    Directory of Open Access Journals (Sweden)

    T. Guo

    2018-01-01

    Full Text Available Subsurface tile drainage systems are widely used in agricultural watersheds in the Midwestern US and enable the Midwest area to become highly productive agricultural lands, but can also create environmental problems, for example nitrate-N contamination associated with drainage waters. The Soil and Water Assessment Tool (SWAT has been used to model watersheds with tile drainage. SWAT2012 revisions 615 and 645 provide new tile drainage routines. However, few studies have used these revisions to study tile drainage impacts at both field and watershed scales. Moreover, SWAT2012 revision 645 improved the soil moisture based curve number calculation method, which has not been fully tested. This study used long-term (1991–2003 field site and river station data from the Little Vermilion River (LVR watershed to evaluate performance of tile drainage routines in SWAT2009 revision 528 (the old routine and SWAT2012 revisions 615 and 645 (the new routine. Both the old and new routines provided reasonable but unsatisfactory (NSE  <  0.5 uncalibrated flow and nitrate loss results for a mildly sloped watershed with low runoff. The calibrated monthly tile flow, surface flow, nitrate-N in tile and surface flow, sediment and annual corn and soybean yield results from SWAT with the old and new tile drainage routines were compared with observed values. Generally, the new routine provided acceptable simulated tile flow (NSE  =  0.48–0.65 and nitrate in tile flow (NSE  =  0.48–0.68 for field sites with random pattern tile and constant tile spacing, while the old routine simulated tile flow and nitrate in tile flow results for the field site with constant tile spacing were unacceptable (NSE  =  0.00–0.32 and −0.29–0.06, respectively. The new modified curve number calculation method in revision 645 (NSE  =  0.50–0.81 better simulated surface runoff than revision 615 (NSE  =  −0.11–0.49. The calibration

  7. Modeling Fate and Transport of Fecal Coliform Bacteria Using SWAT 2005 (Case Study: Jajrood River Watershed, Iran)

    Science.gov (United States)

    Maghrebi, M.; Tajrishy, M.

    2010-12-01

    Jajrood River watershed is one of the main drinking water resources of the capital city of Tehran, Iran. In addition it has been available as many recreational usages especially in the warm months. As a result of being located near one of the crowded cities of the world, a variety of microbial pollutions is commonly perceived in the Jajrood River. Among them, there are strong concerns about fecal coliform bacteria concentration. This article aimed to model fate and transport of fecal coliform bacteria in Jajrood River watershed using Soil and Water Assessment Tool (SWAT) model version 2005. Potential pollutant sources in the study area were detected and quantified for modeling purposes. In spite of being lack of knowledge about bacteria die-off rate in small river bodies, as well as in other watershed-based forms, fecal coliform bacteria die-off rates were estimated using both laboratory and field data investigations with some simplifications. The SWAT model was calibrated over an extended time period (1997-2002) for this watershed. The river flow calibrated using SUFI-2 software and resulted in a very good outputs (R2=0.82, E=0.81). Furthermore SWAT model was validated over January 2003 to September 2005 in the study area and has resulted in good outputs (R2=0.61, E=0.57). This research illustrates SWAT 2005 capability to model fecal coliform bacteria in a populated watershed, and deals with most of watershed microbial pollution sources that are usually observed in developing countries. Fecal coliform concentration simulation results were mostly in the same order in comparison with real data. However, Differences were judged to be related to lack of input data. In this article different aspects of SWAT capabilities for modeling of fecal coliform bacteria concentration will be reviewed and it will present new insights in bacteria modeling procedures especially for mountainous, high populated and small sized watersheds.

  8. Historical Streamflow Series Analysis Applied to Furnas HPP Reservoir Watershed Using the SWAT Model

    Directory of Open Access Journals (Sweden)

    Viviane de Souza Dias

    2018-04-01

    Full Text Available Over the last few years, the operation of the Furnas Hydropower Plant (HPP reservoir, located in the Grande River Basin, has been threatened due to a significant reduction in inflow. In the region, hydrological modelling tools are being used and tested to support decision making and water sustainability. In this study, the streamflow was modelled in the area of direct influence of the Furnas HPP reservoir, and the Soil and Water Assessment Tool (SWAT model performance was verified for studies in the region. Analyses of sensitivity and uncertainty were undertaken using the Sequential Uncertainty Fitting algorithm (SUFI-2 with a Calibration Uncertainty Program (SWAT-CUP. The hydrological modelling, at a monthly scale, presented good results in the calibration (NS 0.86, with a slight reduction of the coefficient in the validation period (NS 0.64. The results suggested that this tool could be applied in future hydrological studies in the region of study. With the consideration that special attention should be given to the historical series used in the calibration and validation of the models. It is important to note that this region has high demands for water resources, primarily for agricultural use. Water demands must also be taken into account in future hydrological simulations. The validation of this methodology led to important contributions to the management of water resources in regions with tropical climates, whose climatological and geological reality resembles the one studied here.

  9. SWAT2: The improved SWAT code system by incorporating the continuous energy Monte Carlo code MVP

    International Nuclear Information System (INIS)

    Mochizuki, Hiroki; Suyama, Kenya; Okuno, Hiroshi

    2003-01-01

    SWAT is a code system, which performs the burnup calculation by the combination of the neutronics calculation code, SRAC95 and the one group burnup calculation code, ORIGEN2.1. The SWAT code system can deal with the cell geometry in SRAC95. However, a precise treatment of resonance absorptions by the SRAC95 code using the ultra-fine group cross section library is not directly applicable to two- or three-dimensional geometry models, because of restrictions in SRAC95. To overcome this problem, SWAT2 which newly introduced the continuous energy Monte Carlo code, MVP into SWAT was developed. Thereby, the burnup calculation by the continuous energy in any geometry became possible. Moreover, using the 147 group cross section library called SWAT library, the reactions which are not dealt with by SRAC95 and MVP can be treated. OECD/NEA burnup credit criticality safety benchmark problems Phase-IB (PWR, a single pin cell model) and Phase-IIIB (BWR, fuel assembly model) were calculated as a verification of SWAT2, and the results were compared with the average values of calculation results of burnup calculation code of each organization. Through two benchmark problems, it was confirmed that SWAT2 was applicable to the burnup calculation of the complicated geometry. (author)

  10. Aplicación del modelo hidrológico SWAT a la cuenca del río Meca (Huelva, España)

    OpenAIRE

    Galván González, Laura; Olías Álvarez, Manuel; Fernández de Villarán San Juan, Rubén; Domingo Santos, Juan Manuel

    2007-01-01

    Acid mine drainage (AMD) is the main pollutant source in the Odiel river basin (SW Spain). Stream-flow data constitute a tool to assess the pollutant load transported by the drainage network, as well as to evaluate the possible impact of restoration measurements along the river. Due to the malfunctioning of the available stream-gauges and in order to sham the Odiel river behavior, a water model is being elaborated using the tool SWAT (Soil and Water Assessment Tool), developed by ...

  11. Integrated burnup calculation code system SWAT

    International Nuclear Information System (INIS)

    Suyama, Kenya; Hirakawa, Naohiro; Iwasaki, Tomohiko.

    1997-11-01

    SWAT is an integrated burnup code system developed for analysis of post irradiation examination, transmutation of radioactive waste, and burnup credit problem. It enables us to analyze the burnup problem using neutron spectrum depending on environment of irradiation, combining SRAC which is Japanese standard thermal reactor analysis code system and ORIGEN2 which is burnup code widely used all over the world. SWAT makes effective cross section library based on results by SRAC, and performs the burnup analysis with ORIGEN2 using that library. SRAC and ORIGEN2 can be called as external module. SWAT has original cross section library on based JENDL-3.2 and libraries of fission yield and decay data prepared from JNDC FP Library second version. Using these libraries, user can use latest data in the calculation of SWAT besides the effective cross section prepared by SRAC. Also, User can make original ORIGEN2 library using the output file of SWAT. This report presents concept and user's manual of SWAT. (author)

  12. Water quality modelling in the San Antonio River Basin driven by radar rainfall data

    OpenAIRE

    Almoutaz Elhassan; Hongjie Xie; Ahmed A. Al-othman; James Mcclelland; Hatim O. Sharif

    2016-01-01

    Continuous monitoring of stream water quality is needed as it has significant impacts on human and ecological health and well-being. Estimating water quality between sampling dates requires model simulation based on the available geospatial and water quality data for a given watershed. Models such as the Soil and Water Assessment Tool (SWAT) can be used to estimate the missing water quality data. In this study, SWAT was used to estimate water quality at a monitoring station near the outlet of...

  13. Effect of National-Scale Afforestation on Forest Water Supply and Soil Loss in South Korea, 1971–2010

    Directory of Open Access Journals (Sweden)

    Gang Sun Kim

    2017-06-01

    Full Text Available Afforestation of forests in South Korea may provide an example of the benefit of afforestation on precipitation storage and erosion control. In this study, we presented the effects of afforestation on water supply and soil loss prevention. A spatio-temporal simulation of forest water yield and soil loss was performed from 1971–2010 using InVEST water yield and SWAT models. A forest stock change map was produced by combining land cover data and National Forest Inventory data. The forest water yield increased about twice with changes in forest stock and climate from 1971–2010 and showed a spatially homogeneous water supply capacity. In the same period, the soil loss decreased more than three times, and the volatility of soil loss, in the 2010s, was smaller than before. The analysis of the change in forest stock without considering climate change showed an increase of 43% in forest water yield and a decrease of 87% in soil loss. An increase in precipitation increased the water yield, but also increased the soil loss volume. A change in forest stock led to positive changes in both. This study presents functional positive effects of the afforestation program in South Korea that can be useful in various afforestation programs in other countries.

  14. Calibration of a Field-Scale Soil and Water Assessment Tool (SWAT Model with Field Placement of Best Management Practices in Alger Creek, Michigan

    Directory of Open Access Journals (Sweden)

    Katherine R. Merriman

    2018-03-01

    Full Text Available Subwatersheds within the Great Lakes “Priority Watersheds” were targeted by the Great Lakes Restoration Initiative (GLRI to determine the effectiveness of the various best management practices (BMPs from the U.S. Department of Agriculture-Natural Resources Conservation Service National Conservation Planning (NCP Database. A Soil and Water Assessment Tool (SWAT model is created for Alger Creek, a 50 km2 tributary watershed to the Saginaw River in Michigan. Monthly calibration yielded very good Nash–Sutcliffe efficiency (NSE ratings for flow, sediment, total phosphorus (TP, dissolved reactive phosphorus (DRP, and total nitrogen (TN (0.90, 0.79, 0.87, 0.88, and 0.77, respectively, and satisfactory NSE rating for nitrate (0.51. Two-year validation results in at least satisfactory NSE ratings for flow, sediment, TP, DRP, and TN (0.83, 0.54, 0.73, 0.53, and 0.60, respectively, and unsatisfactory NSE rating for nitrate (0.28. The model estimates the effect of BMPs at the field and watershed scales. At the field-scale, the most effective single practice at reducing sediment, TP, and DRP is no-tillage followed by cover crops (CC; CC are the most effective single practice at reducing nitrate. The most effective BMP combinations include filter strips, which can have a sizable effect on reducing sediment and phosphorus loads. At the watershed scale, model results indicate current NCP BMPs result in minimal sediment and nutrient reductions (<10%.

  15. Calibration of a field-scale Soil and Water Assessment Tool (SWAT) model with field placement of best management practices in Alger Creek, Michigan

    Science.gov (United States)

    Merriman-Hoehne, Katherine R.; Russell, Amy M.; Rachol, Cynthia M.; Daggupati, Prasad; Srinivasan, Raghavan; Hayhurst, Brett A.; Stuntebeck, Todd D.

    2018-01-01

    Subwatersheds within the Great Lakes “Priority Watersheds” were targeted by the Great Lakes Restoration Initiative (GLRI) to determine the effectiveness of the various best management practices (BMPs) from the U.S. Department of Agriculture-Natural Resources Conservation Service National Conservation Planning (NCP) Database. A Soil and Water Assessment Tool (SWAT) model is created for Alger Creek, a 50 km2 tributary watershed to the Saginaw River in Michigan. Monthly calibration yielded very good Nash–Sutcliffe efficiency (NSE) ratings for flow, sediment, total phosphorus (TP), dissolved reactive phosphorus (DRP), and total nitrogen (TN) (0.90, 0.79, 0.87, 0.88, and 0.77, respectively), and satisfactory NSE rating for nitrate (0.51). Two-year validation results in at least satisfactory NSE ratings for flow, sediment, TP, DRP, and TN (0.83, 0.54, 0.73, 0.53, and 0.60, respectively), and unsatisfactory NSE rating for nitrate (0.28). The model estimates the effect of BMPs at the field and watershed scales. At the field-scale, the most effective single practice at reducing sediment, TP, and DRP is no-tillage followed by cover crops (CC); CC are the most effective single practice at reducing nitrate. The most effective BMP combinations include filter strips, which can have a sizable effect on reducing sediment and phosphorus loads. At the watershed scale, model results indicate current NCP BMPs result in minimal sediment and nutrient reductions (<10%).

  16. Aplicación del modelo hidrológico-swat-en una microcuenca agrícola de La Pampa ondulada Application of the hydrologic model - swat - on a micro agricultural basin of the rolling Pampa

    Directory of Open Access Journals (Sweden)

    Felipe Behrends Kraemer

    2011-07-01

    Full Text Available El modelado hidrológico es a menudo el primer paso en el desarrollo de sistemas de decisión espacial para identificaráreas vulnerables a la contaminación por nutrientes, pesticidas así como también a contaminantes biológicos. En este sentido el SWAT (Soil and Water Assesment Tool fue desarrollado para predecir impactos de las prácticas de manejo de las tierras en las aguas, sedimentos y agroquímicos en cuencas hidrográficas con diferentes suelos, usos y prácticas en largos períodos de tiempo. Aunque el mismo está siendo aplicado en todo el mundo, todavía no esta difundido su uso en la Argentina, no encontrándose al momento reportes al respecto. Este modelo se utilizó en una microcuenca agrícola de la Pampa Ondulada (Argentina y fue calibrado y validado utilizando los valores de escurrimientos medidos in situ. Se encontraron buenas eficiencias a escala diaria (R²: 0,55; R² ENS: 0,52 y pobres a escala mensual (R²: 0,34; R² ENS: 0,04. En la calibración, los escurrimientos fueron sobreestimados en un 31,8% y 32,6% para la escala mensual y diaria respectivamente, mientras que en la validación se sobreestimó un 42,5% para los valores mensuales y un 41,2% para los diarios. La aplicación del SWAT en esta microcuenca agrícola resultó auspiciosa y conduce a la inclusión de dicho modelo en futuros trabajos.A hydrological model is often the first step for the development of spatial decision systems in order to identify vulnerable areas to the pollution by nutrients, pesticides as well as biological contaminants. The SWAT model was developed to predict the impact of land management on water, agrochemicals and sediments in hydrographical basins with different soils, land uses and practices for long time periods. This model is being used all over the world but it has not been applied in Argentina until present. The SWAT model was used in an agricultural microbasin in the Rolling Pampa (Argentina and was calibrated and validated

  17. Development of LEAP-JET code for sodium-water reaction analysis. Validation by sodium-water reaction tests (SWAT-1R)

    International Nuclear Information System (INIS)

    Seino, Hiroshi; Hamada, Hirotsugu

    2004-03-01

    The sodium-water reaction event in an FBR steam generator (SG) has influence on the safety, economical efficiency, etc. of the plant, so that the selection of design base leak (DBL) of the SG is considered as one of the important matters. The clarification of the sodium-water reaction phenomenon and the development of an analysis model are necessary to estimate the sodium-water reaction event with high accuracy and rationality in selecting the DBL. The reaction jet model is pointed out as a part of the necessary improvements to evaluate the overheating tube rupture of large SGs, since the behavior of overheating tube rupture is largely affected by the reaction jet conditions outside the tube. Therefore, LEAP-JET has been developed as an analysis code for the simulation of sodium-water reactions. This document shows the validation of the LEAP-JET code by the Sodium-Water Reaction Test (SWAT-1R). The following results have been obtained: (1) The reaction rate constant, K, is estimated at between 0.001≤K≤0.1 from the LEAP-JET analysis of the SWAT-1R data. (2) The analytical results on the high-temperature region and the behaviors of reaction consumption (Na, H 2 O) and products (H 2 , NaOH, Na 2 O) are considered to be physically reasonable. (3) The LEAP-JET analysis shows the tendency of overestimation in the maximum temperature and temperature distribution of the reaction jet. (4) In the LEAP-JET analysis, the numerical calculation becomes unstably, especially in the mesh containing quite small sodium mass. Therefore, it is necessary to modify the computational algorism to stabilize it and obtain the optimum value of K in sodium-water reactions. (author)

  18. Temporal-spatial distribution of non-point source pollution in a drinking water source reservoir watershed based on SWAT

    Directory of Open Access Journals (Sweden)

    M. Wang

    2015-05-01

    Full Text Available The conservation of drinking water source reservoirs has a close relationship between regional economic development and people’s livelihood. Research on the non-point pollution characteristics in its watershed is crucial for reservoir security. Tang Pu Reservoir watershed was selected as the study area. The non-point pollution model of Tang Pu Reservoir was established based on the SWAT (Soil and Water Assessment Tool model. The model was adjusted to analyse the temporal-spatial distribution patterns of total nitrogen (TN and total phosphorus (TP. The results showed that the loss of TN and TP in the reservoir watershed were related to precipitation in flood season. And the annual changes showed an "M" shape. It was found that the contribution of loss of TN and TP accounted for 84.5% and 85.3% in high flow years, and for 70.3% and 69.7% in low flow years, respectively. The contributions in normal flow years were 62.9% and 63.3%, respectively. The TN and TP mainly arise from Wangtan town, Gulai town, and Wangyuan town, etc. In addition, it was found that the source of TN and TP showed consistency in space.

  19. Transforming SWAT for continental-scale high-resolution modeling of floodplain dynamics: opportunities and challenges

    Science.gov (United States)

    Rajib, A.; Merwade, V.; Liu, Z.; Lane, C.; Golden, H. E.; Tavakoly, A. A.; Follum, M. L.

    2017-12-01

    There have been many initiatives to develop frameworks for continental-scale modeling and mapping floodplain dynamics. The choice of a model for such needs should be governed by its suitability to be executed in high performance cyber platforms, ability to integrate supporting hydraulic/hydrodynamic tools, and ability to assimilate earth observations. Furthermore, disseminating large volume of outputs for public use and interoperability with similar frameworks should be considered. Considering these factors, we have conducted a series of modeling experiments and developed a suite of cyber-enabled platforms that have transformed Soil and Water Assessment Tool (SWAT) into an appropriate model for use in a continental-scale, high resolution, near real-time flood information framework. Our first experiment uses a medium size watershed in Indiana, USA and attempts burning-in a high resolution, National Hydrography Dataset Plus(NHDPlus) into the SWAT model. This is crucial with a view to make the outputs comparable with other global/national initiatives. The second experiment is built upon the first attempt to add a modified landscape representation in the model which differentiates between the upland and floodplain processes. Our third experiment involves two separate efforts: coupling SWAT with a hydrodynamic model LISFLOOD-FP and a new generation, low complexity hydraulic model AutoRoute. We have executed the prototype "loosely-coupled" models for the Upper Mississippi-Ohio River Basin in the USA, encompassing 1 million square km drainage area and nearly 0.2 million NHDPlus river reaches. The preliminary results suggest reasonable accuracy for both streamflow and flood inundation. In this presentation, we will also showcase three cyber-enabled platforms, including SWATShare to run and calibrate large scale SWAT models online using high performance computational resources, HydroGlobe to automatically extract and assimilate multiple remotely sensed earth observations in

  20. Annual theme report (October 2007 to September 2008) for the environmental impact (SWAT modeling) component of "Agroforestry and Sustainable Vegetable Production in Southeast Asian Watersheds" project

    OpenAIRE

    Ella, Victor B.

    2008-01-01

    The implementation of the Environmental Impact (SWAT Modeling) component of this SANREM CRSP project in year 3 was highlighted by further work on SWAT model development in Indonesia, Philippines and Vietnam. In all three countries, additional input data have been collected over the past year for SWAT modeling purposes. Data Elevation Models (DEMs), land use maps and soil maps have also been prepared in all three countries. In the Philippines, SWAT model has been developed for assessing the hy...

  1. Snowmelt water drives higher soil erosion than rainfall water in a mid-high latitude upland watershed

    Science.gov (United States)

    Wu, Yuyang; Ouyang, Wei; Hao, Zengchao; Yang, Bowen; Wang, Li

    2018-01-01

    The impacts of precipitation and temperature on soil erosion are pronounced in mid-high latitude areas, which lead to seasonal variations in soil erosion. Determining the critical erosion periods and the reasons behind the increased erosion loads are essential for soil management decisions. Hence, integrated approaches combining experiments and modelling based on field investigations were applied to investigate watershed soil erosion characteristics and the dynamics of water movement through soils. Long-term and continuous data for surface runoff and soil erosion variation characteristics of uplands in a watershed were observed via five simulations by the Soil and Water Assessment Tool (SWAT). In addition, laboratory experiments were performed to quantify the actual soil infiltrabilities in snowmelt seasons (thawed treatment) and rainy seasons (non-frozen treatment). The results showed that over the course of a year, average surface runoff and soil erosion reached peak values of 31.38 mm and 1.46 t ha-1 a-1, respectively, in the month of April. They also ranked high in July and August, falling in the ranges of 23.73 mm to 24.91 mm and 0.55 t ha-1 a-1 to 0.59 t ha-1 a-1, respectively. With the infiltration time extended, thawed soils showed lower infiltrabilities than non-frozen soils, and the differences in soil infiltration amounts between these two were considerable. These results highlighted that soil erosion was very closely and positively correlated with surface runoff. Soil loss was higher in snowmelt periods than in rainy periods due to the higher surface runoff in early spring, and the decreased soil infiltrability in snowmelt periods contributed much to this higher surface runoff. These findings are helpful for identification of critical soil erosion periods when making soil management before critical months, especially those before snowmelt periods.

  2. Water quantity and quality optimization modeling of dams operation based on SWAT in Wenyu River Catchment, China.

    Science.gov (United States)

    Zhang, Yongyong; Xia, Jun; Chen, Junfeng; Zhang, Minghua

    2011-02-01

    Water quantity and quality joint operation is a new mode in the present dams' operation research. It has become a hot topic in governmental efforts toward integrated basin improvement. This paper coupled a water quantity and quality joint operation model (QCmode) and genetic algorithm with Soil and Water Assessment Tool (SWAT). Together, these tools were used to explore a reasonable operation of dams and floodgates at the basin scale. Wenyu River Catchment, a key area in Beijing, was selected as the case study. Results showed that the coupled water quantity and quality model of Wenyu River Catchment more realistically simulates the process of water quantity and quality control by dams and floodgates. This integrated model provides the foundation for research of water quantity and quality optimization on dam operation in Wenyu River Catchment. The results of this modeling also suggest that current water quality of Wenyu River will improve following the implementation of the optimized operation of the main dams and floodgates. By pollution control and water quantity and quality joint operation of dams and floodgates, water quality of Wenyu river will change significantly, and the available water resources will increase by 134%, 32%, 17%, and 82% at the downstream sites of Sha River Reservoir, Lutong Floodgate, Xinpu Floodgate, and Weigou Floodgate, respectively. The water quantity and quality joint operation of dams will play an active role in improving water quality and water use efficiency in Wenyu River Basin. The research will provide the technical support for water pollution control and ecological restoration in Wenyu River Catchment and could be applied to other basins with large number of dams. Its application to the Wenyu River Catchment has a great significance for the sustainable economic development of Beijing City.

  3. SWAT meta-modeling as support of the management scenario analysis in large watersheds.

    Science.gov (United States)

    Azzellino, A; Çevirgen, S; Giupponi, C; Parati, P; Ragusa, F; Salvetti, R

    2015-01-01

    In the last two decades, numerous models and modeling techniques have been developed to simulate nonpoint source pollution effects. Most models simulate the hydrological, chemical, and physical processes involved in the entrainment and transport of sediment, nutrients, and pesticides. Very often these models require a distributed modeling approach and are limited in scope by the requirement of homogeneity and by the need to manipulate extensive data sets. Physically based models are extensively used in this field as a decision support for managing the nonpoint source emissions. A common characteristic of this type of model is a demanding input of several state variables that makes the calibration and effort-costing in implementing any simulation scenario more difficult. In this study the USDA Soil and Water Assessment Tool (SWAT) was used to model the Venice Lagoon Watershed (VLW), Northern Italy. A Multi-Layer Perceptron (MLP) network was trained on SWAT simulations and used as a meta-model for scenario analysis. The MLP meta-model was successfully trained and showed an overall accuracy higher than 70% both on the training and on the evaluation set, allowing a significant simplification in conducting scenario analysis.

  4. Revised SWAT. The integrated burnup calculation code system

    International Nuclear Information System (INIS)

    Suyama, Kenya; Mochizuki, Hiroki; Kiyosumi, Takehide

    2000-07-01

    SWAT is an integrated burnup code system developed for analysis of post irradiation examination, transmutation of radioactive waste, and burnup credit problem. This report shows an outline and a user's manual of revised SWAT. This revised SWAT includes expansion of functions, increasing supported machines, and correction of several bugs reported from users of previous SWAT. (author)

  5. Revised SWAT. The integrated burnup calculation code system

    Energy Technology Data Exchange (ETDEWEB)

    Suyama, Kenya; Mochizuki, Hiroki [Department of Fuel Cycle Safety Research, Nuclear Safety Research Center, Tokai Research Establishment, Japan Atomic Energy Research Institute, Tokai, Ibaraki (Japan); Kiyosumi, Takehide [The Japan Research Institute, Ltd., Tokyo (Japan)

    2000-07-01

    SWAT is an integrated burnup code system developed for analysis of post irradiation examination, transmutation of radioactive waste, and burnup credit problem. This report shows an outline and a user's manual of revised SWAT. This revised SWAT includes expansion of functions, increasing supported machines, and correction of several bugs reported from users of previous SWAT. (author)

  6. Evaluation of precipitation input for SWAT modeling in Alpine catchment: A case study in the Adige river basin (Italy).

    Science.gov (United States)

    Tuo, Ye; Duan, Zheng; Disse, Markus; Chiogna, Gabriele

    2016-12-15

    Precipitation is often the most important input data in hydrological models when simulating streamflow. The Soil and Water Assessment Tool (SWAT), a widely used hydrological model, only makes use of data from one precipitation gauge station that is nearest to the centroid of each subbasin, which is eventually corrected using the elevation band method. This leads in general to inaccurate representation of subbasin precipitation input data, particularly in catchments with complex topography. To investigate the impact of different precipitation inputs on the SWAT model simulations in Alpine catchments, 13years (1998-2010) of daily precipitation data from four datasets including OP (Observed precipitation), IDW (Inverse Distance Weighting data), CHIRPS (Climate Hazards Group InfraRed Precipitation with Station data) and TRMM (Tropical Rainfall Measuring Mission) has been considered. Both model performances (comparing simulated and measured streamflow data at the catchment outlet) as well as parameter and prediction uncertainties have been quantified. For all three subbasins, the use of elevation bands is fundamental to match the water budget. Streamflow predictions obtained using IDW inputs are better than those obtained using the other datasets in terms of both model performance and prediction uncertainty. Models using the CHIRPS product as input provide satisfactory streamflow estimation, suggesting that this satellite product can be applied to this data-scarce Alpine region. Comparing the performance of SWAT models using different precipitation datasets is therefore important in data-scarce regions. This study has shown that, precipitation is the main source of uncertainty, and different precipitation datasets in SWAT models lead to different best estimate ranges for the calibrated parameters. This has important implications for the interpretation of the simulated hydrological processes. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Soil and Water Assessment Tool model predictions of annual maximum pesticide concentrations in high vulnerability watersheds.

    Science.gov (United States)

    Winchell, Michael F; Peranginangin, Natalia; Srinivasan, Raghavan; Chen, Wenlin

    2018-05-01

    Recent national regulatory assessments of potential pesticide exposure of threatened and endangered species in aquatic habitats have led to increased need for watershed-scale predictions of pesticide concentrations in flowing water bodies. This study was conducted to assess the ability of the uncalibrated Soil and Water Assessment Tool (SWAT) to predict annual maximum pesticide concentrations in the flowing water bodies of highly vulnerable small- to medium-sized watersheds. The SWAT was applied to 27 watersheds, largely within the midwest corn belt of the United States, ranging from 20 to 386 km 2 , and evaluated using consistent input data sets and an uncalibrated parameterization approach. The watersheds were selected from the Atrazine Ecological Exposure Monitoring Program and the Heidelberg Tributary Loading Program, both of which contain high temporal resolution atrazine sampling data from watersheds with exceptionally high vulnerability to atrazine exposure. The model performance was assessed based upon predictions of annual maximum atrazine concentrations in 1-d and 60-d durations, predictions critical in pesticide-threatened and endangered species risk assessments when evaluating potential acute and chronic exposure to aquatic organisms. The simulation results showed that for nearly half of the watersheds simulated, the uncalibrated SWAT model was able to predict annual maximum pesticide concentrations within a narrow range of uncertainty resulting from atrazine application timing patterns. An uncalibrated model's predictive performance is essential for the assessment of pesticide exposure in flowing water bodies, the majority of which have insufficient monitoring data for direct calibration, even in data-rich countries. In situations in which SWAT over- or underpredicted the annual maximum concentrations, the magnitude of the over- or underprediction was commonly less than a factor of 2, indicating that the model and uncalibrated parameterization

  8. Impacts of Irrigation Practices on Groundwater Recharge in Mississippi Delta Using coupled SWAT-MODFLOW Model

    Science.gov (United States)

    Gao, F.; Feng, G.; Han, M.; Jenkins, J.; Ouyang, Y.

    2017-12-01

    The Lower Mississippi River alluvial plain (refers to as MS Delta), located in the northwest state of Mississippi, is one of the most productive agricultural region in the U.S. The primary crops grown in this region are soybean, corn, cotton, and rice. Approximately 80% water from the alluvial aquifer in MS Delta are withdrawn for irrigation, which makes it the most used aquifer in the State. As a result, groundwater level has declined > 6 m since 1970, which threaten the sustainability of irrigated agriculture in this region. The objectives of this study were to: 1) couple the SWAT and MODFLOW then calibrate and validate the incorporated model outputs for stream flow, groundwater level and evapotranspiration (ET) in MS Delta; 2) simulate the groundwater recharge as affected by a) conventional irrigation scheme, b) no irrigation scheme, c) ET based and soil moisture based full irrigation schedules using all groundwater, and d) ET and soil moisture based full irrigation schedule using different percentages of surface and ground water. Results indicated that the coupled model performed well during the calibration and validation for daily stream flow at three USGS gauge stations. (R2=0.7; Nash-Sutcliffe efficiency (NSE) varied from 0.6 to 0.7; Root Mean Square Error (RMSE) ranged from 20 to 27 m3/s). The values of determination coefficient R2 for groundwater level were 0.95 for calibration and 0.88 for validation, their NSE values were 0.99 and 0.93, respectively. The values of RMSE for groundwater level during the calibration and validation period were 0.51 and 0.59 m. The values of R2, NSE and RMSE between SWAT-MODFLOW simulated actual evapotranspiration (ET) and remote sensing evapotranspiration (ET) were 0.52, 0.51 and 28.1 mm. The simulated total average monthly groundwater recharge had lower values of 19 mm/month in the crop season than 30 mm/month in the crop off-growing season. The SWAT-MODFLOW can be a useful tool for not only simulating the recharge in MS

  9. Assessing the Efficacy of the SWAT Auto-Irrigation Function to Simulate Irrigation, Evapotranspiration, and Crop Response to Management Strategies of the Texas High Plains

    Directory of Open Access Journals (Sweden)

    Yong Chen

    2017-07-01

    Full Text Available In the semi-arid Texas High Plains, the underlying Ogallala Aquifer is experiencing continuing decline due to long-term pumping for irrigation with limited recharge. Accurate simulation of irrigation and other associated water balance components are critical for meaningful evaluation of the effects of irrigation management strategies. Modelers often employ auto-irrigation functions within models such as the Soil and Water Assessment Tool (SWAT. However, some studies have raised concerns as to whether the function is able to adequately simulate representative irrigation practices. In this study, observations of climate, irrigation, evapotranspiration (ET, leaf area index (LAI, and crop yield derived from an irrigated lysimeter field at the USDA-ARS Conservation and Production Research Laboratory at Bushland, Texas were used to evaluate the efficacy of the SWAT auto-irrigation functions. Results indicated good agreement between simulated and observed daily ET during both model calibration (2001–2005 and validation (2006–2010 periods for the baseline scenario (Nash-Sutcliffe efficiency; NSE ≥ 0.80. The auto-irrigation scenarios resulted in reasonable ET simulations under all the thresholds of soil water deficit (SWD triggers as indicated by NSE values > 0.5. However, the auto-irrigation function did not adequately represent field practices, due to the continuation of irrigation after crop maturity and excessive irrigation when SWD triggers were less than the static irrigation amount.

  10. Evaluation of soil and water conservation measures in a semi-arid river basin in Tunisia using SWAT

    Science.gov (United States)

    The Merguellil catchment (Central Tunisia) is a typical Mediterranean semi-arid basin which suffers from regular water shortage aggravated by current droughts. During the recent decades the continuous construction of small and large dams and Soil and Water Conservation Works (i.e. Contour ridges) ha...

  11. Assessment of terrain slope influence in SWAT modeling of Andean watersheds

    Science.gov (United States)

    Yacoub, C.; Pérez-Foguet, A.

    2009-04-01

    Hydrological processes in the Andean Region are difficult to model. Large range of altitudes involved (from over 4000 meters above sea level, masl, to zero) indicates the high variability of rainfall, temperature and other climate variables. Strong runoff and extreme events as landslides and floods are the consequence of high slopes of terrain, especially in the upper part of the basins. Strong seasonality of rain and complex ecosystems (vulnerable to climate changes and anthropogenic activities) helps these processes. Present study focuses in a particular watershed from Peruvian Andes, the Jequetepeque River. The distributed watershed simulation model, Soil and Water Assessment Tool (SWAT) is applied to model run-off and sediments transport through the basin with data from 1997 to 2006. Specifically, the study focuses in the assessment of the influence of considering terrain slope variation in the definition of Hydrographical Response Units within SWAT. The Jequetepeque watershed (4 372.5 km2) is located in the north part of Peru. River flows east to west, to the Pacific Ocean. Annual average precipitation ranges from 0 to 1100 mm and altitude from 0 to 4188 masl. The "Gallito Ciego" reservoir (400 masl) separates upper-middle part from lower part of the watershed. It stores water for supplying the people from the big cities on the coast and for extensive agriculture uses. Upper-middle part of the watershed covers 3564.8 km2. It ranges from 400 to 4188 masl in no more that 80 km, with slopes up to 20%. Main activities are agricultural and livestock and mining and about 80% of the population are rural. Annual mean temperature drops from 25.4 °C at the reservoir to less than 4 °C in the upper part. Also the highest rainfall variability is found in the upper-middle part of the watershed. Erosion produced by extreme events like 1997/98 "el Niño" Phenomenon is silting the reservoir faster than expected. Moreover, anthropogenic activities like agriculture and

  12. Use of the soil and water assessment tool to scale sediment delivery from field to watershed in an agricultural landscape with topographic depressions.

    Science.gov (United States)

    Almendinger, James E; Murphy, Marylee S; Ulrich, Jason S

    2014-01-01

    For two watersheds in the northern Midwest United States, we show that landscape depressions have a significant impact on watershed hydrology and sediment yields and that the Soil and Water Assessment Tool (SWAT) has appropriate features to simulate these depressions. In our SWAT models of the Willow River in Wisconsin and the Sunrise River in Minnesota, we used Pond and Wetland features to capture runoff from about 40% of the area in each watershed. These depressions trapped considerable sediment, yet further reductions in sediment yield were required for calibration and achieved by reducing the Universal Soil Loss Equation (USLE) cropping-practice (P) factor to 0.40 to 0.45. We suggest terminology to describe annual sediment yields at different conceptual spatial scales and show how SWAT output can be partitioned to extract data at each of these scales. These scales range from plot-scale yields calculated with the USLE to watershed-scale yields measured at the outlet. Intermediate scales include field, upland, pre-riverine, and riverine scales, in descending order along the conceptual flow path from plot to outlet. Sediment delivery ratios, when defined as watershed-scale yields as a percentage of plot-scale yields, ranged from 1% for the Willow watershed (717 km) to 7% for the Sunrise watershed (991 km). Sediment delivery ratios calculated from published relations based on watershed area alone were about 5 to 6%, closer to pre-riverine-scale yields in our watersheds. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  13. Applicability of the SWAT model for hydrologic simulation in Paraopeba river basin, MG

    Directory of Open Access Journals (Sweden)

    Matheus Fonseca Durães

    2011-12-01

    Full Text Available The SWAT model (Soil and Water Assessment Tool was applied for simulating the hydrologic pattern of Paraopeba river basin, in Minas Gerais state, under different land use and occupation scenarios, looking to support basin management actions. The model parameters were calibrated and validated, with respect to the data observed from 1983 to 2005. The basin was assessed at the ‘Porto do Mesquita’ gauging station and change in land use and occupation was based on the annual growth scenarios proposed in the partial report of Paraopeba basin’s master plan. The model was found to be highly sensitive to baseflow, its main calibration variable. Statistical analyses produced a Nash-Sutcliffe coefficient above 0.75, which is considered good and acceptable. The SWAT model provided satisfactory results in simulating hydrologic pattern under different scenarios of land use change, demonstrating that it can be applied for forecasting discharge in the aforesaid basin. The current land use scenario provided a peak discharge simulation of 1250 m³ s-1, while in years 2019 and 2029 peak discharge simulations were 1190 m³ s-1 and 1230 m³ s-1 respectively. The 2019 scenario provided the best results with respect to baseflow increase and peak discharge reduction.

  14. Small hydropower spot prediction using SWAT and a diversion algorithm, case study: Upper Citarum Basin

    Science.gov (United States)

    Kardhana, Hadi; Arya, Doni Khaira; Hadihardaja, Iwan K.; Widyaningtyas, Riawan, Edi; Lubis, Atika

    2017-11-01

    Small-Scale Hydropower (SHP) had been important electric energy power source in Indonesia. Indonesia is vast countries, consists of more than 17.000 islands. It has large fresh water resource about 3 m of rainfall and 2 m of runoff. Much of its topography is mountainous, remote but abundant with potential energy. Millions of people do not have sufficient access to electricity, some live in the remote places. Recently, SHP development was encouraged for energy supply of the places. Development of global hydrology data provides opportunity to predict distribution of hydropower potential. In this paper, we demonstrate run-of-river type SHP spot prediction tool using SWAT and a river diversion algorithm. The use of Soil and Water Assessment Tool (SWAT) with input of CFSR (Climate Forecast System Re-analysis) of 10 years period had been implemented to predict spatially distributed flow cumulative distribution function (CDF). A simple algorithm to maximize potential head of a location by a river diversion expressing head race and penstock had been applied. Firm flow and power of the SHP were estimated from the CDF and the algorithm. The tool applied to Upper Citarum River Basin and three out of four existing hydropower locations had been well predicted. The result implies that this tool is able to support acceleration of SHP development at earlier phase.

  15. DEM Resolution Impact on the Estimation of the Physical Characteristics of Watersheds by Using SWAT

    Directory of Open Access Journals (Sweden)

    Waranyu Buakhao

    2016-01-01

    Full Text Available A digital elevation model (DEM is an important spatial input for automatic extraction of topographic parameters for the soil and water assessment tool (SWAT. The objective of this study was to investigate the impact of DEM resolution (from 5 to 90 m on the delineation process of a SWAT model with two types of watershed characteristics (flat area and mountain area and three sizes of watershed area (about 20,000, 200,000, and 1,500,000 hectares. The results showed that the total lengths of the streamline, main channel slope, watershed area, and area slope were significantly different when using the DEM datasets to delineate. Delineation using the SRTM DEM (90 m, ASTER DEM (30 m, and LDD DEM (5 m for all watershed characteristics showed that the watershed sizes and shapes obtained were only slightly different, whereas the area slopes obtained were significantly different. The total lengths of the generated streams increased when the resolution of the DEM used was higher. The stream slopes obtained using the small area sizes were insignificant, whereas the slopes obtained using the large area sizes were significantly different. This suggests that water resource model users should use the ASTER DEM as opposed to a finer resolution DEM for model input to save time for the model calibration and validation.

  16. Hydrological effects of the increased CO2 and climate change in the Upper Mississippi River Basin using a modified SWAT

    Science.gov (United States)

    Wu, Y.; Liu, S.; Abdul-Aziz, O. I.

    2012-01-01

    Increased atmospheric CO2 concentration and climate change may significantly impact the hydrological and meteorological processes of a watershed system. Quantifying and understanding hydrological responses to elevated ambient CO2 and climate change is, therefore, critical for formulating adaptive strategies for an appropriate management of water resources. In this study, the Soil and Water Assessment Tool (SWAT) model was applied to assess the effects of increased CO2 concentration and climate change in the Upper Mississippi River Basin (UMRB). The standard SWAT model was modified to represent more mechanistic vegetation type specific responses of stomatal conductance reduction and leaf area increase to elevated CO2 based on physiological studies. For estimating the historical impacts of increased CO2 in the recent past decades, the incremental (i.e., dynamic) rises of CO2 concentration at a monthly time-scale were also introduced into the model. Our study results indicated that about 1–4% of the streamflow in the UMRB during 1986 through 2008 could be attributed to the elevated CO2 concentration. In addition to evaluating a range of future climate sensitivity scenarios, the climate projections by four General Circulation Models (GCMs) under different greenhouse gas emission scenarios were used to predict the hydrological effects in the late twenty-first century (2071–2100). Our simulations demonstrated that the water yield would increase in spring and substantially decrease in summer, while soil moisture would rise in spring and decline in summer. Such an uneven distribution of water with higher variability compared to the baseline level (1961–1990) may cause an increased risk of both flooding and drought events in the basin.

  17. Using SWAT-MODFLOW to simulate groundwater flow and groundwater-surface water interactions in an intensively irrigated stream-aquifer system

    Science.gov (United States)

    Wei, X.; Bailey, R. T.

    2017-12-01

    Agricultural irrigated watersheds in semi-arid regions face challenges such as waterlogging, high soil salinity, reduced crop yield, and leaching of chemical species due to extreme shallow water tables resulting from long-term intensive irrigation. Hydrologic models can be used to evaluate the impact of land management practices on water yields and groundwater-surface water interactions in such regions. In this study, the newly developed SWAT-MODFLOW, a coupled surface/subsurface hydrologic model, is applied to a 950 km2 watershed in the Lower Arkansas River Valley (southeastern Colorado). The model accounts for the influence of canal diversions, irrigation applications, groundwater pumping, and earth canal seepage losses. The model provides a detailed description of surface and subsurface flow processes, thereby enabling detailed description of watershed processes such as runoff, infiltration, in-streamflow, three-dimensional groundwater flow in a heterogeneous aquifer system with sources and sinks (e.g. pumping, seepage to subsurface drains), and spatially-variable surface and groundwater exchange. The model was calibrated and tested against stream discharge from 5 stream gauges in the Arkansas River and its tributaries, groundwater levels from 70 observation wells, and evapotranspiration (ET) data estimated from satellite (ReSET) data during the 1999 to 2007 period. Since the water-use patterns within the study area are typical of many other irrigated river valleys in the United States and elsewhere, this modeling approach is transferable to other regions.

  18. Soil Temperature and Moisture Profile (STAMP) System Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Cook, David R. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-11-01

    The soil temperature and moisture profile system (STAMP) provides vertical profiles of soil temperature, soil water content (soil-type specific and loam type), plant water availability, soil conductivity, and real dielectric permittivity as a function of depth below the ground surface at half-hourly intervals, and precipitation at one-minute intervals. The profiles are measured directly by in situ probes at all extended facilities of the SGP climate research site. The profiles are derived from measurements of soil energy conductivity. Atmospheric scientists use the data in climate models to determine boundary conditions and to estimate the surface energy flux. The data are also useful to hydrologists, soil scientists, and agricultural scientists for determining the state of the soil. The STAMP system replaced the SWATS system in early 2016.

  19. Present changes in water soil erosion hazard and the response to suspended sediment load in the Czech landscape

    Science.gov (United States)

    Kliment, Zdenek; Langhammer, Jakub; Kadlec, Jiří; Vyslouzilová, Barbora

    2014-05-01

    A noticeable change in water soil erosion hazard and an increase of extreme meteorological effects at the same time have marked the Czech landscape in the last twenty years. Formerly cultivated areas have been grassed or forested in mountain and sub mountain regions. Crop management has also been substantially changed. Longer and more frequently dry periods, more intensive local rainfalls and more gentle winter periods we can observe in the present climate development. The aim of this contribution is to demonstrate the importance and spatial relationship between changes in water soil erosion hazard by way of example of model river basins in different areas of the Czech Republic. The field research, remote sensing data, GIS and model approaches (MEFEM- multicriteria erosion factors evaluation model, USLE, RUSLE, WaTEM/SEDEM, AnnAGNPS and SWAT) were used for erosion hazard assessment. The findings were comparing with the balance, regime and trends of suspended load. Research in the model Blšanka River basin, based on our fifteen-year monitoring of suspended load, can be considered as basic (Kliment et al. 2008, Langhammer et al. 2013). KLIMENT, Z., KADLEC, J., LANGHAMMER, J., 2008. Evaluation of suspended load changes using AnnAGNPS and SWAT semi-empirical models. Catena, 73(3): 286-299. LANGHAMMER, J., MATOUŠKOVÁ, M., KLIMENT, Z., 2013. Assessment of spatial and temporal changes of ecological status of streams in Czechia: a geographical approach. Geografie, 118(4): 309-333

  20. A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model

    Science.gov (United States)

    Abbaspour, K. C.; Rouholahnejad, E.; Vaghefi, S.; Srinivasan, R.; Yang, H.; Kløve, B.

    2015-05-01

    A combination of driving forces are increasing pressure on local, national, and regional water supplies needed for irrigation, energy production, industrial uses, domestic purposes, and the environment. In many parts of Europe groundwater quantity, and in particular quality, have come under sever degradation and water levels have decreased resulting in negative environmental impacts. Rapid improvements in the economy of the eastern European block of countries and uncertainties with regard to freshwater availability create challenges for water managers. At the same time, climate change adds a new level of uncertainty with regard to freshwater supplies. In this research we build and calibrate an integrated hydrological model of Europe using the Soil and Water Assessment Tool (SWAT) program. Different components of water resources are simulated and crop yield and water quality are considered at the Hydrological Response Unit (HRU) level. The water resources are quantified at subbasin level with monthly time intervals. Leaching of nitrate into groundwater is also simulated at a finer spatial level (HRU). The use of large-scale, high-resolution water resources models enables consistent and comprehensive examination of integrated system behavior through physically-based, data-driven simulation. In this article we discuss issues with data availability, calibration of large-scale distributed models, and outline procedures for model calibration and uncertainty analysis. The calibrated model and results provide information support to the European Water Framework Directive and lay the basis for further assessment of the impact of climate change on water availability and quality. The approach and methods developed are general and can be applied to any large region around the world.

  1. Evapotranspiration management based on the application of SWAT for balancing water consumption: A case study in Guantao, China

    Science.gov (United States)

    Liu, Bin; Gan, Hong

    2018-06-01

    Rapid social and economic development results in increased demand for water resources. This can lead to the unsustainable development and exploitation of water resources which in turn causes significant environmental problems. Conventional water resource management approaches, such as supply and demand management strategies, frequently fail to restore regional water balance. This paper introduces the concept of water consumption balance, the balance between actual evapotranspiration (ET) and target ET, and establishes a framework to realize regional water balance. The framework consists of three stages: (1) determination of target ET and actual ET; (2) quantification of the water-saving requirements for the region; and (3) reduction of actual ET by implementing various water saving management strategies. Using this framework, a case study was conducted for Guantao County, China. The SWAT model was utilized to aid in the selection of the best water saving management strategy by comparing the ET of different irrigation methods and crop pattern adjustments. Simulation results revealed that determination of SWAT model parameters using remote sensing ET is feasible and that the model is a valuable tool for ET management. Irrigation was found to have a greater influence on the ET of winter wheat as compared to that of maize, indicating that reduction in winter wheat cultivation is the most effective way to reduce regional ET. However, the effect of water-saving irrigation methods on the reduction of ET was not obvious. This indicates that it would be difficult to achieve regional ET reduction using water-saving irrigation methods only. Furthermore, selecting the best water saving management strategy by relying solely on the amount of reduced ET was insufficient, because it ignored the impact of water conservation measures on the livelihood of the agricultural community. Incorporating these considerations with our findings, we recommend changing the current irrigation

  2. Incorporating rainfall uncertainty in a SWAT model: the river Zenne basin (Belgium) case study

    Science.gov (United States)

    Tolessa Leta, Olkeba; Nossent, Jiri; van Griensven, Ann; Bauwens, Willy

    2013-04-01

    The European Union Water Framework Directive (EU-WFD) called its member countries to achieve a good ecological status for all inland and coastal water bodies by 2015. According to recent studies, the river Zenne (Belgium) is far from this objective. Therefore, an interuniversity and multidisciplinary project "Towards a Good Ecological Status in the river Zenne (GESZ)" was launched to evaluate the effects of wastewater management plans on the river. In this project, different models have been developed and integrated using the Open Modelling Interface (OpenMI). The hydrologic, semi-distributed Soil and Water Assessment Tool (SWAT) is hereby used as one of the model components in the integrated modelling chain in order to model the upland catchment processes. The assessment of the uncertainty of SWAT is an essential aspect of the decision making process, in order to design robust management strategies that take the predicted uncertainties into account. Model uncertainty stems from the uncertainties on the model parameters, the input data (e.g, rainfall), the calibration data (e.g., stream flows) and on the model structure itself. The objective of this paper is to assess the first three sources of uncertainty in a SWAT model of the river Zenne basin. For the assessment of rainfall measurement uncertainty, first, we identified independent rainfall periods, based on the daily precipitation and stream flow observations and using the Water Engineering Time Series PROcessing tool (WETSPRO). Secondly, we assigned a rainfall multiplier parameter for each of the independent rainfall periods, which serves as a multiplicative input error corruption. Finally, we treated these multipliers as latent parameters in the model optimization and uncertainty analysis (UA). For parameter uncertainty assessment, due to the high number of parameters of the SWAT model, first, we screened out its most sensitive parameters using the Latin Hypercube One-factor-At-a-Time (LH-OAT) technique

  3. Modeling of Faecal Contamination in Water from Catchment to Shellfish Growing Area

    OpenAIRE

    Bougeard, Morgane; Le Saux, Jean-claude; Perenne, Nicolas; Le Guyader, Soizick; Pommepuy, Monique

    2009-01-01

    During rainstorms, watersheds can introduce large amounts of faecal pollution into the rivers and sea, leading to shellfish contamination. In this study, we assessed Escherichia coli fluxes from a catchment, and their impact on estuarine water quality, using two assembled models. For the catchment, the agro-hydrological model SWAT was implemented integrating land uses, soil, topography, rainfall and other climatic data on Daoulas watershed (France). Initially, the SWAT model was calibrated an...

  4. Comparative analyses of hydrological responses of two adjacent watersheds to climate variability and change using the SWAT model

    Science.gov (United States)

    Lee, Sangchul; Yeo, In-Young; Sadeghi, Ali M.; McCarty, Gregory W.; Hively, Wells; Lang, Megan W.; Sharifi, Amir

    2018-01-01

    Water quality problems in the Chesapeake Bay Watershed (CBW) are expected to be exacerbated by climate variability and change. However, climate impacts on agricultural lands and resultant nutrient loads into surface water resources are largely unknown. This study evaluated the impacts of climate variability and change on two adjacent watersheds in the Coastal Plain of the CBW, using the Soil and Water Assessment Tool (SWAT) model. We prepared six climate sensitivity scenarios to assess the individual impacts of variations in CO2concentration (590 and 850 ppm), precipitation increase (11 and 21 %), and temperature increase (2.9 and 5.0 °C), based on regional general circulation model (GCM) projections. Further, we considered the ensemble of five GCM projections (2085–2098) under the Representative Concentration Pathway (RCP) 8.5 scenario to evaluate simultaneous changes in CO2, precipitation, and temperature. Using SWAT model simulations from 2001 to 2014 as a baseline scenario, predicted hydrologic outputs (water and nitrate budgets) and crop growth were analyzed. Compared to the baseline scenario, a precipitation increase of 21 % and elevated CO2 concentration of 850 ppm significantly increased streamflow and nitrate loads by 50 and 52 %, respectively, while a temperature increase of 5.0 °C reduced streamflow and nitrate loads by 12 and 13 %, respectively. Crop biomass increased with elevated CO2 concentrations due to enhanced radiation- and water-use efficiency, while it decreased with precipitation and temperature increases. Over the GCM ensemble mean, annual streamflow and nitrate loads showed an increase of  ∼  70 % relative to the baseline scenario, due to elevated CO2 concentrations and precipitation increase. Different hydrological responses to climate change were observed from the two watersheds, due to contrasting land use and soil characteristics. The watershed with a larger percent of croplands demonstrated a greater

  5. Comparative analyses of hydrological responses of two adjacent watersheds to climate variability and change using the SWAT model

    Science.gov (United States)

    Lee, Sangchul; Yeo, In-Young; Sadeghi, Ali M.; McCarty, Gregory W.; Hively, Wells D.; Lang, Megan W.; Sharifi, Amir

    2018-01-01

    Water quality problems in the Chesapeake Bay Watershed (CBW) are expected to be exacerbated by climate variability and change. However, climate impacts on agricultural lands and resultant nutrient loads into surface water resources are largely unknown. This study evaluated the impacts of climate variability and change on two adjacent watersheds in the Coastal Plain of the CBW, using the Soil and Water Assessment Tool (SWAT) model. We prepared six climate sensitivity scenarios to assess the individual impacts of variations in CO2 concentration (590 and 850 ppm), precipitation increase (11 and 21 %), and temperature increase (2.9 and 5.0 °C), based on regional general circulation model (GCM) projections. Further, we considered the ensemble of five GCM projections (2085-2098) under the Representative Concentration Pathway (RCP) 8.5 scenario to evaluate simultaneous changes in CO2, precipitation, and temperature. Using SWAT model simulations from 2001 to 2014 as a baseline scenario, predicted hydrologic outputs (water and nitrate budgets) and crop growth were analyzed. Compared to the baseline scenario, a precipitation increase of 21 % and elevated CO2 concentration of 850 ppm significantly increased streamflow and nitrate loads by 50 and 52 %, respectively, while a temperature increase of 5.0 °C reduced streamflow and nitrate loads by 12 and 13 %, respectively. Crop biomass increased with elevated CO2 concentrations due to enhanced radiation- and water-use efficiency, while it decreased with precipitation and temperature increases. Over the GCM ensemble mean, annual streamflow and nitrate loads showed an increase of ˜ 70 % relative to the baseline scenario, due to elevated CO2 concentrations and precipitation increase. Different hydrological responses to climate change were observed from the two watersheds, due to contrasting land use and soil characteristics. The watershed with a larger percent of croplands demonstrated a greater increased rate of 5.2 kg N ha-1 in

  6. Streamflow in the upper Mississippi river basin as simulated by SWAT driven by 20{sup th} century contemporary results of global climate models and NARCCAP regional climate models

    Energy Technology Data Exchange (ETDEWEB)

    Takle, Eugene S.; Jha, Manoj; Lu, Er; Arritt, Raymond W.; Gutowski, William J. [Iowa State Univ. Ames, IA (United States)

    2010-06-15

    We use Soil and Water Assessment Tool (SWAT) when driven by observations and results of climate models to evaluate hydrological quantities, including streamflow, in the Upper Mississippi River Basin (UMRB) for 1981-2003 in comparison to observed streamflow. Daily meteorological conditions used as input to SWAT are taken from (1) observations at weather stations in the basin, (2) daily meteorological conditions simulated by a collection of regional climate models (RCMs) driven by reanalysis boundary conditions, and (3) daily meteorological conditions simulated by a collection of global climate models (GCMs). Regional models used are those whose data are archived by the North American Regional Climate Change Assessment Program (NARCCAP). Results show that regional models correctly simulate the seasonal cycle of precipitation, temperature, and streamflow within the basin. Regional models also capture interannual extremes represented by the flood of 1993 and the dry conditions of 2000. The ensemble means of both the GCM-driven and RCM-driven simulations by SWAT capture both the timing and amplitude of the seasonal cycle of streamflow with neither demonstrating significant superiority at the basin level. (orig.)

  7. Evaluating Impacts of climate and land use changes on streamflow using SWAT and land use models based CESM1-CAM5 Climate scenarios

    Science.gov (United States)

    Lin, Tzu Ping; Lin, Yu Pin; Lien, Wan Yu

    2015-04-01

    Climate change projects have various levels of impacts on hydrological cycles around the world. The impact of climate change and uncertainty of climate projections from general circulation models (GCMs) from the Coupled Model Intercomparison Project (CMIP5) which has been just be released in Taiwan, 2014. Since the streamflow run into ocean directly due to the steep terrain and the rainfall difference between wet and dry seasons is apparent; as a result, the allocation water resource reasonable is very challenge in Taiwan, particularly under climate change. The purpose of this study was to evaluate the impacts of climate and land use changes on a small watershed in Taiwan. The AR5 General Circulation Models(GCM) output data was adopted in this study and was downscaled from the monthly to the daily weather data as the input data of hydrological model such as Soil and Water Assessment Tool (SWAT) model in this study. The spatially explicit land uses change model, the Conservation of Land Use and its Effects at Small regional extent (CLUE-s), was applied to simulate land use scenarios in 2020-2039. Combined climate and land use change scenarios were adopted as input data of the hydrological model, the SWAT model, to estimate the future streamflows. With the increasing precipitation, increasing urban area and decreasing agricultural and grass land, the annual streamflow in the most of twenty-three subbasins were also increased. Besides, due to the increasing rainfall in wet season and decreasing rainfall in dry season, the difference of streamflow between wet season and dry season are also increased. This result indicates a more stringent challenge on the water resource management in future. Therefore, impacts on water resource caused by climate change and land use change should be considered in water resource planning for the Datuan river watershed. Keywords: SWAT, GCM, CLUE-s, streamflow, climate change, land use change

  8. Geomorphological hazards in Swat valley, Pakistan

    International Nuclear Information System (INIS)

    Usman, A.

    1999-01-01

    This study attempts to describe, interpret and analyze, in depth, the varied geomorphological hazards and their impacts prevailing in the swat valley locate in the northern hilly and mountainous regions of Pakistan. The hills and mountains re zones of high geomorphological activity with rapid rates of weathering, active tectonic activities, abundant precipitation, rapid runoff and heavy sediment transport. Due to the varied topography, lithology, steep slope, erodible soil, heavy winter snowfall and intensive rainfall in the spring and summer seasons, several kinds of geomorphological hazards, such as geomorphic gravitational hazards, Fluvial hazards, Glacial hazards, Geo tectonic hazards, are occurring frequently in swat valley. Amongst them, geomorphic gravitational hazards, such as rock fall rock slide, debris slide mud flow avalanches, are major hazards in mountains and hills while fluvial hazards and sedimentation are mainly confined to the alluvial plain and lowlands of the valley. The Getechtonic hazards, on the other hand, have wide spread distribution in the valley the magnitude and occurrence of each king of hazard is thus, varied according to intensity of process and physical geographic environment. This paper discusses the type distribution and damage due to the various geomorphological hazards and their reduction treatments. The study would to be of particular importance and interest to both natural and social scientists, as well as planner, environmentalists and decision-makers for successful developmental interventions in the region. (author)

  9. An Assessment of Mean Areal Precipitation Methods on Simulated Stream Flow: A SWAT Model Performance Assessment

    Directory of Open Access Journals (Sweden)

    Sean Zeiger

    2017-06-01

    Full Text Available Accurate mean areal precipitation (MAP estimates are essential input forcings for hydrologic models. However, the selection of the most accurate method to estimate MAP can be daunting because there are numerous methods to choose from (e.g., proximate gauge, direct weighted average, surface-fitting, and remotely sensed methods. Multiple methods (n = 19 were used to estimate MAP with precipitation data from 11 distributed monitoring sites, and 4 remotely sensed data sets. Each method was validated against the hydrologic model simulated stream flow using the Soil and Water Assessment Tool (SWAT. SWAT was validated using a split-site method and the observed stream flow data from five nested-scale gauging sites in a mixed-land-use watershed of the central USA. Cross-validation results showed the error associated with surface-fitting and remotely sensed methods ranging from −4.5 to −5.1%, and −9.8 to −14.7%, respectively. Split-site validation results showed the percent bias (PBIAS values that ranged from −4.5 to −160%. Second order polynomial functions especially overestimated precipitation and subsequent stream flow simulations (PBIAS = −160 in the headwaters. The results indicated that using an inverse-distance weighted, linear polynomial interpolation or multiquadric function method to estimate MAP may improve SWAT model simulations. Collectively, the results highlight the importance of spatially distributed observed hydroclimate data for precipitation and subsequent steam flow estimations. The MAP methods demonstrated in the current work can be used to reduce hydrologic model uncertainty caused by watershed physiographic differences.

  10. SWIM (Soil and Water Integrated Model)

    Energy Technology Data Exchange (ETDEWEB)

    Krysanova, V; Wechsung, F; Arnold, J; Srinivasan, R; Williams, J

    2000-12-01

    The model SWIM (Soil and Water Integrated Model) was developed in order to provide a comprehensive GIS-based tool for hydrological and water quality modelling in mesoscale and large river basins (from 100 to 10,000 km{sup 2}), which can be parameterised using regionally available information. The model was developed for the use mainly in Europe and temperate zone, though its application in other regions is possible as well. SWIM is based on two previously developed tools - SWAT and MATSALU (see more explanations in section 1.1). The model integrates hydrology, vegetation, erosion, and nutrient dynamics at the watershed scale. SWIM has a three-level disaggregation scheme 'basin - sub-basins - hydrotopes' and is coupled to the Geographic Information System GRASS (GRASS, 1993). A robust approach is suggested for the nitrogen and phosphorus modelling in mesoscale watersheds. SWIM runs under the UNIX environment. Model test and validation were performed sequentially for hydrology, crop growth, nitrogen and erosion in a number of mesoscale watersheds in the German part of the Elbe drainage basin. A comprehensive scheme of spatial disaggregation into sub-basins and hydrotopes combined with reasonable restriction on a sub-basin area allows performing the assessment of water resources and water quality with SWIM in mesoscale river basins. The modest data requirements represent an important advantage of the model. Direct connection to land use and climate data provides a possibility to use the model for analysis of climate change and land use change impacts on hydrology, agricultural production, and water quality. (orig.)

  11. Using SWAT and Fuzzy TOPSIS to Assess the Impact of Climate Change in the Headwaters of the Segura River Basin (SE Spain

    Directory of Open Access Journals (Sweden)

    Javier Senent-Aparicio

    2017-02-01

    Full Text Available The Segura River Basin is one of the most water-stressed basins in Mediterranean Europe. If we add to the actual situation that most climate change projections forecast important decreases in water resource availability in the Mediterranean region, the situation will become totally unsustainable. This study assessed the impact of climate change in the headwaters of the Segura River Basin using the Soil and Water Assessment Tool (SWAT with bias-corrected precipitation and temperature data from two Regional Climate Models (RCMs for the medium term (2041–2070 and the long term (2071–2100 under two emission scenarios (RCP4.5 and RCP8.5. Bias correction was performed using the distribution mapping approach. The fuzzy TOPSIS technique was applied to rank a set of nine GCM–RCM combinations, choosing the climate models with a higher relative closeness. The study results show that the SWAT performed satisfactorily for both calibration (NSE = 0.80 and validation (NSE = 0.77 periods. Comparing the long-term and baseline (1971–2000 periods, precipitation showed a negative trend between 6% and 32%, whereas projected annual mean temperatures demonstrated an estimated increase of 1.5–3.3 °C. Water resources were estimated to experience a decrease of 2%–54%. These findings provide local water management authorities with very useful information in the face of climate change.

  12. Model analysis of check dam impacts on long-term sediment and water budgets in southeast Arizona, USA

    Science.gov (United States)

    Norman, Laura M.; Niraula, Rewati

    2016-01-01

    The objective of this study was to evaluate the effect of check dam infrastructure on soil and water conservation at the catchment scale using the Soil and Water Assessment Tool (SWAT). This paired watershed study includes a watershed treated with over 2000 check dams and a Control watershed which has none, in the West Turkey Creek watershed, Southeast Arizona, USA. SWAT was calibrated for streamflow using discharge documented during the summer of 2013 at the Control site. Model results depict the necessity to eliminate lateral flow from SWAT models of aridland environments, the urgency to standardize geospatial soils data, and the care for which modelers must document altering parameters when presenting findings. Performance was assessed using the percent bias (PBIAS), with values of ±2.34%. The calibrated model was then used to examine the impacts of check dams at the Treated watershed. Approximately 630 tons of sediment is estimated to be stored behind check dams in the Treated watershed over the 3-year simulation, increasing water quality for fish habitat. A minimum precipitation event of 15 mm was necessary to instigate the detachment of soil, sediments, or rock from the study area, which occurred 2% of the time. The resulting watershed model is useful as a predictive framework and decision-support tool to consider long-term impacts of restoration and potential for future restoration.

  13. Relationships between water table and model simulated ET

    Science.gov (United States)

    Prem B. Parajuli; Gretchen F. Sassenrath; Ying Ouyang

    2013-01-01

    This research was conducted to develop relationships among evapotranspiration (ET), percolation (PERC), groundwater discharge to the stream (GWQ), and water table fluctuations through a modeling approach. The Soil and Water Assessment Tool (SWAT) hydrologic and crop models were applied in the Big Sunflower River watershed (BSRW; 7660 km2) within the Yazoo River Basin...

  14. Soil transmitted helminthiasis in different occupational groups in Swat, Khyber Pakhtunkhwa, Pakistan.

    Science.gov (United States)

    Khan, Wali; Nisa, Noorun; Khan, Aly

    2017-07-01

    We investigated the prevalence of geohelminth parasites in farmers, education concerned and shepherd of Swat, Khyber Pakhtunkhwa, Pakistan. A total of 1041 stool samples were examined from January 2006 to December 2008 using direct smear (Normal saline and Lugol's Iodine solution) the concentration methods and procedures. Seven hundred and sixty three (73.2%) individuals were found infected with one or more than one geohelminth parasites. Four hundred and eighteen (54.7%) were infected with single parasite and three hundred forty five (45.3%) with multiple infections. Ascaris lumbricoides 460 (53.0%), Trichuris trichura 228 (26.2%), Enterobius vermicularis 123 (14.1%) and Ancylostoma duedenale 56 (6.45%) were detected. The adults were found more parasitized than children and males were more infected than females. Shepherds were found more infected than farmers and education concerned. Although Swat is an area with poor hygiene located in temperate zone near the border of Afghanistan and China. The prevalence of reported geohelminth parasites here compared with the same studies is unexpectedly high. These types of studies should continue time to time to know the hazardous of such parasitic infections for the betterment of the human health.

  15. Improvement and application of the PCPF-1@SWAT2012 model for predicting pesticide transport: A case study of the Sakura River watershed.

    Science.gov (United States)

    Tu, Le Hoang; Boulange, Julien; Iwafune, Takashi; Yadav, Ishwar Chandra; Watanabe, Hirozumi

    2018-04-15

    The PCPF-1@SWAT model was previously developed to simulate the fate and transport of rice pesticide in watersheds. However, the current model is deficient in characterize the rice paddy area and is incompatible with the ArcSWAT2012 program. In this study, we modified original PCPF1@SWAT model to develop new PCPF1@SWAT2012 model to address the deficiency of rice paddy area and utilizing the ArcSWAT2012 program. Next, the new model was applied in Sakura River watershed, Ibaraki, Japan in order to simulate the transport of four herbicides including mefenacet, pretilachlor, bensulfuron-methyl and imazosulfuron. The result showed that the simulated water flow rate by the PCPF1@SWAT2012 was well predicted with the observed data. The calculated NSE (0.73) and PBIAS (-20.38), suggested the satisfactory performance of the model. Besides, the concentrations of herbicides simulated by the PCPF-1@SWAT2012 model were in good agreement with the observed data. Statistical indices, NSE and RMSE estimated for mefenacet (0.69 and 0.18), pretilachlor (0.86 and 0.18), bensulfuronmethyl (0.46 and 0.21) and imazosulfuron (0.64 and 0.28) indicated satisfactory predictions, respectively. The PCPF-1@SWAT2012 model is capable of well simulating the water flow rate and transport of herbicides in given watershed, comprising different land use types, including rice paddy area. This article is protected by copyright. All rights reserved.

  16. Water quality modelling in the San Antonio River Basin driven by radar rainfall data

    Directory of Open Access Journals (Sweden)

    Almoutaz Elhassan

    2016-05-01

    Full Text Available Continuous monitoring of stream water quality is needed as it has significant impacts on human and ecological health and well-being. Estimating water quality between sampling dates requires model simulation based on the available geospatial and water quality data for a given watershed. Models such as the Soil and Water Assessment Tool (SWAT can be used to estimate the missing water quality data. In this study, SWAT was used to estimate water quality at a monitoring station near the outlet of the San Antonio River. Precipitation data from both rain gauges and weather radar were used to force the SWAT simulations. Virtual rain gauges which were based on weather radar data were created in the approximate centres of the 163 sub-watersheds of the San Antonio River Basin for SWAT simulations. This method was first tested in a smaller watershed in the middle of the Guadalupe River Basin resulting in increased model efficiency in simulating surface run-off. The method was then applied to the San Antonio River watershed and yielded good simulations for surface run-off (R2 = 0.7, nitrate (R2 = 0.6 and phosphate (R2 = 0.5 at the watershed outlet (Goliad, TX – USGS (United States Geological Survey gauge as compared to observed data. The study showed that the proper use of weather radar precipitation in SWAT model simulations improves the estimation of missing water quality data.

  17. Scaling and design report of ECC performance test facility (SWAT) of SMART

    International Nuclear Information System (INIS)

    Cho, Seok; Ko, Yong Ju; Cho, Young Il; Kim, Jeong Tak; Choi, Nam Hyun; Shin Yong Chul; Park, Choon Kyong; Kwon, Tae Soon; Lee, Sung Jae

    2010-12-01

    SWAT (SMART ECC Water Asymmetric Two-phase choking test facility) was designed by 1/5 scaling ratio using the modified linear scaling method. The design characteristics of the SMART such that the elevation of RCP suction nozzles is the same with that of the ECC injection nozzles are maintained to reduce a distortion caused by the gravitational effect. Thermal hydraulic phenomena in a test facility designed by the modified linear scaling method can be simulated more accurately than those by the full-height and reduced area scaling method. The main part of the test section is SG-side upper down-comer. The boundary conditions are saturated steam and water flow condition and drain flow rate to control the collapsed water level in the down-comer. The test data of the SWAT can produce the well-defined boundary condition to validate the thermal hydraulic analysis code for the SMART

  18. Scaling and design report of ECC performance test facility (SWAT) of SMART

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Seok; Ko, Yong Ju; Cho, Young Il; Kim, Jeong Tak; Choi, Nam Hyun; Shin Yong Chul; Park, Choon Kyong; Kwon, Tae Soon; Lee, Sung Jae [KAERI, Daejeon (Korea, Republic of)

    2010-12-15

    SWAT (SMART ECC Water Asymmetric Two-phase choking test facility) was designed by 1/5 scaling ratio using the modified linear scaling method. The design characteristics of the SMART such that the elevation of RCP suction nozzles is the same with that of the ECC injection nozzles are maintained to reduce a distortion caused by the gravitational effect. Thermal hydraulic phenomena in a test facility designed by the modified linear scaling method can be simulated more accurately than those by the full-height and reduced area scaling method. The main part of the test section is SG-side upper down-comer. The boundary conditions are saturated steam and water flow condition and drain flow rate to control the collapsed water level in the down-comer. The test data of the SWAT can produce the well-defined boundary condition to validate the thermal hydraulic analysis code for the SMART

  19. Runoff Simulation in the Upper Reaches of Heihe River Basin Based on the RIEMS–SWAT Model

    Directory of Open Access Journals (Sweden)

    Songbing Zou

    2016-10-01

    Full Text Available In the distributed hydrological simulations for complex mountain areas, large amounts of meteorological input parameters with high spatial and temporal resolutions are necessary. However, the extreme scarcity and uneven distribution of the traditional meteorological observation stations in cold and arid regions of Northwest China makes it very difficult in meeting the requirements of hydrological simulations. Alternatively, regional climate models (RCMs, which can provide a variety of distributed meteorological data with high temporal and spatial resolution, have become an effective solution to improve hydrological simulation accuracy and to further study water resource responses to human activities and global climate change. In this study, abundant and evenly distributed virtual weather stations in the upper reaches of the Heihe River Basin (HRB of Northwest China were built for the optimization of the input data, and thus a regional integrated environmental model system (RIEMS based on RCM and a distributed hydrological model of soil and water assessment tool (SWAT were integrated as a coupled climate–hydrological RIEMS-SWAT model, which was applied to simulate monthly runoff from 1995 to 2010 in the region. Results show that the simulated and observed values are close; Nash–Sutcliffe efficiency is higher than 0.65; determination coefficient (R2 values are higher than 0.70; percent bias is controlled within ±20%; and root-mean-square-error-observation standard deviation ratio is less than 0.65. These results indicate that the coupled model can present basin hydrological processes properly, and provide scientific support for prediction and management of basin water resources.

  20. Development of experimental method for self-wastage behavior in sodium-water reaction. Development of test rig (SWAT-2R) and study for experimental procedure

    International Nuclear Information System (INIS)

    Abe, Yuta; Shimoyama, Kazuhito; Kurihara, Akikazu

    2014-07-01

    In case of water leak from a penetrated crack on a tube of steam generator in the sodium cooled fast reactor (SFR), self-wastage, that increases the size of leak, may take place by corrosion related to chemical reaction between sodium and water. If the self-wastage continues in a certain period of time, the intact tube bundle may be damaged as a result of enlarged leak. For the safety evaluation of the accident, JAEA has been developing the analytical method of self-wastage using the multi-dimensional sodium-water reaction code. Experiments conducted so far used mainly crack-type test pieces. However, reproducibility was limited and it was difficult to evaluate individual effects of the phenomena in detail. This report describes the development of new experimental rig (SWAT-2R). SWAT-2R enables to examine corrosion effecting factors that were ambiguous in the previous studies. The report includes description of development of micro-leak test piece, examination of experimental procedure. The results will provide fundamental data for validation of the self-wastage analytical method. (author)

  1. Single-objective vs. multi-objective autocalibration in modelling total suspended solids and phosphorus in a small agricultural watershed with SWAT.

    Science.gov (United States)

    Rasolomanana, Santatriniaina Denise; Lessard, Paul; Vanrolleghem, Peter A

    2012-01-01

    To obtain greater precision in modelling small agricultural watersheds, a shorter simulation time step is beneficial. A daily time step better represents the dynamics of pollutants in the river and provides more realistic simulation results. However, with a daily evaluation performance, good fits are rarely obtained. With the Shuffled Complex Evolution (SCE) method embedded in the Soil and Water Assessment Tool (SWAT), two calibration approaches are available, single-objective or multi-objective optimization. The goal of the present study is to evaluate which approach can improve the daily performance with SWAT, in modelling flow (Q), total suspended solids (TSS) and total phosphorus (TP). The influence of weights assigned to the different variables included in the objective function has also been tested. The results showed that: (i) the model performance depends not only on the choice of calibration approach, but essentially on the influential parameters; (ii) the multi-objective calibration estimating at once all parameters related to all measured variables is the best approach to model Q, TSS and TP; (iii) changing weights does not improve model performance; and (iv) with a single-objective optimization, an excellent water quality modelling performance may hide a loss of performance of predicting flows and unbalanced internal model components.

  2. Soil and Soil Water Relationships

    OpenAIRE

    Easton, Zachary M.; Bock, Emily

    2017-01-01

    Discusses the relationships between soil, water and plants. Discusses different types of soil, and how these soils hold water. Provides information about differences in soil drainage. Discusses the concept of water balance.

  3. Hydrological simulation in a basin of typical tropical climate and soil using the SWAT model part I: Calibration and validation tests

    Directory of Open Access Journals (Sweden)

    Donizete dos R. Pereira

    2016-09-01

    New hydrological insights: The SWAT model was qualified for simulating the Pomba River sub-basin in the sites where rainfall representation was reasonable to good. The model can be used in the simulation of maximum, average and minimum annual daily streamflow based on the paired t-test, contributing with the water resources management of region, although the model still needs to be improved, mainly in the representativeness of rainfall, to give better estimates of extreme values.

  4. Incorporation of the equilibrium temperature approach in a Soil and Water Assessment Tool hydroclimatological stream temperature model

    Science.gov (United States)

    Du, Xinzhong; Shrestha, Narayan Kumar; Ficklin, Darren L.; Wang, Junye

    2018-04-01

    Stream temperature is an important indicator for biodiversity and sustainability in aquatic ecosystems. The stream temperature model currently in the Soil and Water Assessment Tool (SWAT) only considers the impact of air temperature on stream temperature, while the hydroclimatological stream temperature model developed within the SWAT model considers hydrology and the impact of air temperature in simulating the water-air heat transfer process. In this study, we modified the hydroclimatological model by including the equilibrium temperature approach to model heat transfer processes at the water-air interface, which reflects the influences of air temperature, solar radiation, wind speed and streamflow conditions on the heat transfer process. The thermal capacity of the streamflow is modeled by the variation of the stream water depth. An advantage of this equilibrium temperature model is the simple parameterization, with only two parameters added to model the heat transfer processes. The equilibrium temperature model proposed in this study is applied and tested in the Athabasca River basin (ARB) in Alberta, Canada. The model is calibrated and validated at five stations throughout different parts of the ARB, where close to monthly samplings of stream temperatures are available. The results indicate that the equilibrium temperature model proposed in this study provided better and more consistent performances for the different regions of the ARB with the values of the Nash-Sutcliffe Efficiency coefficient (NSE) greater than those of the original SWAT model and the hydroclimatological model. To test the model performance for different hydrological and environmental conditions, the equilibrium temperature model was also applied to the North Fork Tolt River Watershed in Washington, United States. The results indicate a reasonable simulation of stream temperature using the model proposed in this study, with minimum relative error values compared to the other two models

  5. Environmental gamma radiation measurement in District Swat (Pakistan))

    International Nuclear Information System (INIS)

    Jabbar, T.; Khan, K.; Akhter, P.; Jabbar, A.; Subhani, M.S.

    2008-01-01

    External exposure to environmental gamma ray sources is an important component of exposure to the public. A survey was carried out to determine activity concentration levels and associated doses from 226 Ra, 232 Th, 40 K and 137 Cs by means of high-resolution gamma ray spectrometry in the Swat district, famous for tourism. The mean concentrations for 226 Ra, 232 Th and 40 K were found to be 50.4 ± 0.7, 34.8 ± 0.7 and 434.5 ± 7.4 Bq kg -1 , respectively, in soil samples, which are slightly more than the world average values. However, 137 Cs was only found in the soil sample of Barikot with an activity concentration of 34 ± 1.2 Bq kg -1 . Only 40 K was determined in vegetation samples with an average activity of 172.2 ± 1.7 Bq kg -1 , whereas in water samples, all radionuclides were found below lower limits of detection. The radium equivalent activity in all soil samples is lower than the limit set in the Organisation for Economic Cooperation and Development report (370 Bq kg -1 ). The value of the external exposure dose has been determined from the content of these radionuclides in soil. The average terrestrial gamma air absorbed dose rate was observed to be 62.4 nGy h -1 , which yields an annual effective dose of 0.08 mSv. The average value of the annual effective dose lies close to the global range of outdoor radiation exposure given in United Nations Scientific Committee on the Effects of Atomic Radiation. However, the main component of the radiation dose to the population residing in the study area arises from cosmic ray due to high altitude. (authors)

  6. Calibration and validation of the SWAT model for a forested watershed in coastal South Carolina

    Science.gov (United States)

    Devendra M. Amatya; Elizabeth B. Haley; Norman S. Levine; Timothy J. Callahan; Artur Radecki-Pawlik; Manoj K. Jha

    2008-01-01

    Modeling the hydrology of low-gradient coastal watersheds on shallow, poorly drained soils is a challenging task due to the complexities in watershed delineation, runoff generation processes and pathways, flooding, and submergence caused by tropical storms. The objective of the study is to calibrate and validate a GIS-based spatially-distributed hydrologic model, SWAT...

  7. Multimodeling Framework for Predicting Water Quality in Fragmented Agriculture-Forest Ecosystems

    Science.gov (United States)

    Rose, J. B.; Guber, A.; Porter, W. F.; Williams, D.; Tamrakar, S.; Dechen Quinn, A.

    2012-12-01

    Both livestock and wildlife are major contributors of nonpoint pollution of surface water bodies. The interactions among them can substantially increase the chance of contamination especially in fragmented agriculture-forest landscapes, where wildlife (e.g. white tailed deer) can transmit diseases between remote farms. Unfortunately, models currently available for predicting fate and transport of microorganisms in these ecosystems do not account for such interactions. The objectives of this study are to develop and test a multimodeling framework that assesses the risk of microbial contamination of surface water caused by wildlife-livestock interactions in fragmented agriculture-forest ecosystems. The framework consists of a modified Soil Water Assessment Tool (SWAT), KINematic Runoff and EROSion model (KINEROS2) with the add-on module STWIR (Microorganism Transport with Infiltration and Runoff), RAMAS GIS, SIR compartmental model and Quantitative Microbial Risk Assessment model (QMRA). The watershed-scale model SWAT simulates plant biomass growth, wash-off of microorganisms from foliage and soil, overland and in-stream microbial transport, microbial growth, and die-off in foliage and soil. RAMAS GIS model predicts the most probable habitat and subsequent population of white-tailed deer based on land use and crop biomass. KINEROS-STWIR simulates overland transport of microorganisms released from soil, surface applied manure, and fecal deposits during runoff events at high temporal and special resolutions. KINEROS-STWIR and RAMAS GIS provide input for an SIR compartmental model which simulates disease transmission within and between deer groups. This information is used in SWAT model to account for transmission and deposition of pathogens by white tailed deer in stream water, foliage and soil. The QMRA approach extends to microorganisms inactivated in forage and water consumed by deer. Probabilities of deer infections and numbers of infected animals are computed

  8. ANALISIS CURAH HUJAN DAN DEBIT MODEL SWAT DENGAN METODE MOVING AVERAGE DI DAS CILIWUNG HULU

    Directory of Open Access Journals (Sweden)

    Defri Satiya Zuma

    2017-09-01

    Full Text Available Watershed can be regarded as a hydrological system that has a function in transforming rainwater as an input into outputs such as flow and sediment. The transformation of inputs into outputs has specific forms and properties. The transformation involves many processes, including processes occurred on the surface of the land, river basins, in soil and aquifer. This study aimed to apply the SWAT model  in  Ciliwung Hulu Watershed, asses the effect of average rainfall  on 3 days, 5 days, 7 days and 10 days of the hydrological characteristics in Ciliwung Hulu Watershed. The correlation coefficient (r between rainfall and discharge was positive, it indicated that there was an unidirectional relationship between rainfall and discharge in the upstream, midstream and downstream of the watershed. The upper limit ratio of discharge had a downward trend from upstream to downstream, while the lower limit ratio of  discharge had an upward trend from upstream to downstream. It showed that the discharge peak in Ciliwung  Hulu Watershed from upstream to downstream had a downward trend while the baseflow from upstream to downstream had an upward trend. It showed that the upstream of Ciliwung Hulu Watershed had the highest ratio of discharge peak  and baseflow so it needs the soil and water conservations and technical civil measures. The discussion concluded that the SWAT model could be well applied in Ciliwung Hulu Watershed, the most affecting average rainfall on the hydrological characteristics was the average rainfall of 10 days. On average  rainfall of 10 days, all components had contributed maximally for river discharge.

  9. ESTIMATIVA DO BALANÇO SEDIMENTAR DA BACIA DO RIO TIJUCAS (SC-BRASIL A PARTIR DA APLICAÇÃO DO MODELO HIDROLÓGICO SWAT / ESTIMATE OF SEDIMENT BUDGET OF THE TIJUCAS RIVER BASIN APPLYING SWAT HYDROLOGIC MODEL

    Directory of Open Access Journals (Sweden)

    Jean Berná Paim

    2009-12-01

    Full Text Available Adopt a basin as a hydrological unit to understand the physical processes related to the water and sediment production is important because its characteristics (area, shape and topography can determine its use in a sustainable manner. This study is aim in the test of the applicability of hydrologic model SWAT (Soil and Water Assessment Tool in the Tijucas River Basin to quantify the water and sediment production along it sub-basins. Together, geoprocessing techniques were applied with the creation of a database of geographical information to describe the region. On this database is included the daily precipitation an temperature data of the gauges distributed on the watershed, soil data, a land use map and the digital elevation model (DEM to create the Hydrologic Response Units (HRU’s. A time series with flow values and sediment concentration measured are very important to calibrate and validate the model output parameters. After the calibration of the initial results, the Flow Gauge number 102 presented a Nash and Sutcliffe Coefficient - COE = 0.6 indicating a good adjust of the model. The results were used to create a sediment production map for Tijucas River Basin, when the 10 years average ranged between 0.5 ton/ha and 9.0 ton/ha in some sub-basins.

  10. Assessment of NASA's Physiographic and Meteorological Datasets as Input to HSPF and SWAT Hydrological Models

    Science.gov (United States)

    Alacron, Vladimir J.; Nigro, Joseph D.; McAnally, William H.; OHara, Charles G.; Engman, Edwin Ted; Toll, David

    2011-01-01

    This paper documents the use of simulated Moderate Resolution Imaging Spectroradiometer land use/land cover (MODIS-LULC), NASA-LIS generated precipitation and evapo-transpiration (ET), and Shuttle Radar Topography Mission (SRTM) datasets (in conjunction with standard land use, topographical and meteorological datasets) as input to hydrological models routinely used by the watershed hydrology modeling community. The study is focused in coastal watersheds in the Mississippi Gulf Coast although one of the test cases focuses in an inland watershed located in northeastern State of Mississippi, USA. The decision support tools (DSTs) into which the NASA datasets were assimilated were the Soil Water & Assessment Tool (SWAT) and the Hydrological Simulation Program FORTRAN (HSPF). These DSTs are endorsed by several US government agencies (EPA, FEMA, USGS) for water resources management strategies. These models use physiographic and meteorological data extensively. Precipitation gages and USGS gage stations in the region were used to calibrate several HSPF and SWAT model applications. Land use and topographical datasets were swapped to assess model output sensitivities. NASA-LIS meteorological data were introduced in the calibrated model applications for simulation of watershed hydrology for a time period in which no weather data were available (1997-2006). The performance of the NASA datasets in the context of hydrological modeling was assessed through comparison of measured and model-simulated hydrographs. Overall, NASA datasets were as useful as standard land use, topographical , and meteorological datasets. Moreover, NASA datasets were used for performing analyses that the standard datasets could not made possible, e.g., introduction of land use dynamics into hydrological simulations

  11. Use of Decision Tables to Simulate Management in SWAT+

    Directory of Open Access Journals (Sweden)

    Jeffrey G. Arnold

    2018-05-01

    Full Text Available Decision tables have been used for many years in data processing and business applications to simulate complex rule sets. Several computer languages have been developed based on rule systems and they are easily programmed in several current languages. Land management and river–reservoir models simulate complex land management operations and reservoir management in highly regulated river systems. Decision tables are a precise yet compact way to model the rule sets and corresponding actions found in these models. In this study, we discuss the suitability of decision tables to simulate management in the river basin scale Soil and Water Assessment Tool (SWAT+ model. Decision tables are developed to simulate automated irrigation and reservoir releases. A simple auto irrigation application of decision tables was developed using plant water stress as a condition for irrigating corn in Texas. Sensitivity of the water stress trigger and irrigation application amounts were shown on soil moisture and corn yields. In addition, the Grapevine Reservoir near Dallas, Texas was used to illustrate the use of decision tables to simulate reservoir releases. The releases were conditioned on reservoir volumes and flood season. The release rules as implemented by the decision table realistically simulated flood releases as evidenced by a daily Nash–Sutcliffe Efficiency (NSE of 0.52 and a percent bias of −1.1%. Using decision tables to simulate management in land, river, and reservoir models was shown to have several advantages over current approaches, including: (1 mature technology with considerable literature and applications; (2 ability to accurately represent complex, real world decision-making; (3 code that is efficient, modular, and easy to maintain; and (4 tables that are easy to maintain, support, and modify.

  12. Assessment of integrated watershed health based on the natural environment, hydrology, water quality, and aquatic ecology

    Directory of Open Access Journals (Sweden)

    S. R. Ahn

    2017-11-01

    Full Text Available Watershed health, including the natural environment, hydrology, water quality, and aquatic ecology, is assessed for the Han River basin (34 148 km2 in South Korea by using the Soil and Water Assessment Tool (SWAT. The evaluation procedures follow those of the Healthy Watersheds Assessment by the U.S. Environmental Protection Agency (EPA. Six components of the watershed landscape are examined to evaluate the watershed health (basin natural capacity: stream geomorphology, hydrology, water quality, aquatic habitat condition, and biological condition. In particular, the SWAT is applied to the study basin for the hydrology and water-quality components, including 237 sub-watersheds (within a standard watershed on the Korea Hydrologic Unit Map along with three multipurpose dams, one hydroelectric dam, and three multifunction weirs. The SWAT is calibrated (2005–2009 and validated (2010–2014 by using each dam and weir operation, the flux-tower evapotranspiration, the time-domain reflectometry (TDR soil moisture, and groundwater-level data for the hydrology assessment, and by using sediment, total phosphorus, and total nitrogen data for the water-quality assessment. The water balance, which considers the surface–groundwater interactions and variations in the stream-water quality, is quantified according to the sub-watershed-scale relationship between the watershed hydrologic cycle and stream-water quality. We assess the integrated watershed health according to the U.S. EPA evaluation process based on the vulnerability levels of the natural environment, water resources, water quality, and ecosystem components. The results indicate that the watershed's health declined during the most recent 10-year period of 2005–2014, as indicated by the worse results for the surface process metric and soil water dynamics compared to those of the 1995–2004 period. The integrated watershed health tended to decrease farther downstream within the watershed.

  13. Experiments on injection performance of SMART ECC facility using SWAT

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Young Il; Cho, Seok; Ko, Yung Joo; Min, Kyoung Ho; Shin, Yong Cheol; Kwon, Tae Soon; Yi, Sung Jae; Lee, Won Jae [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    SMART (System-integrated Modular Advanced ReacTor), an advanced integrated PWR is now in the under developing stages by KAERI. Such integral PWR excludes large-size piping of the primary system of conventional PWR and incorporates the SGs into RPV, which means no LBLOCA could occur in SMART. Therefore, the SBLOCA is considered as a major DBA (Design Basis Accident) in SMART and it is mainly analyzed by using TASS/SMR computer code. The TASS/SMR code should be validated using experimental data from both Integral Effect Test and Separate Effect Test facilities. To investigate injection performance of the ECC system, on SET facility, named as SWAT (SMART ECC Water Asymmetric Two-phase choking test facility), has been constructed at KAERI. The SWAT simulates the geometric configurations of the SG-side upper downcomer annulus and ECCSs of those of SMART. It is designed based on the modified linear scaling method with a scaling ratio of 1/5, to preserve the geometrical similarity and minimize gravitational distortion. The purpose of the SWAT tests is to investigate the safety injection performance, such as the ECC bypass in the downcomer and the penetration rate in the core during the SBLOCA, and hence to produce experimental data to validate and the prediction capability of safety analysis codes, TASS/SMR

  14. Simulating Crop Evapotranspiration Response under Different Planting Scenarios by Modified SWAT Model in an Irrigation District, Northwest China.

    Science.gov (United States)

    Liu, Xin; Wang, Sufen; Xue, Han; Singh, Vijay P

    2015-01-01

    Modelling crop evapotranspiration (ET) response to different planting scenarios in an irrigation district plays a significant role in optimizing crop planting patterns, resolving agricultural water scarcity and facilitating the sustainable use of water resources. In this study, the SWAT model was improved by transforming the evapotranspiration module. Then, the improved model was applied in Qingyuan Irrigation District of northwest China as a case study. Land use, soil, meteorology, irrigation scheduling and crop coefficient were considered as input data, and the irrigation district was divided into subdivisions based on the DEM and local canal systems. On the basis of model calibration and verification, the improved model showed better simulation efficiency than did the original model. Therefore, the improved model was used to simulate the crop evapotranspiration response under different planting scenarios in the irrigation district. Results indicated that crop evapotranspiration decreased by 2.94% and 6.01% under the scenarios of reducing the planting proportion of spring wheat (scenario 1) and summer maize (scenario 2) by keeping the total cultivated area unchanged. However, the total net output values presented an opposite trend under different scenarios. The values decreased by 3.28% under scenario 1, while it increased by 7.79% under scenario 2, compared with the current situation. This study presents a novel method to estimate crop evapotranspiration response under different planting scenarios using the SWAT model, and makes recommendations for strategic agricultural water management planning for the rational utilization of water resources and development of local economy by studying the impact of planting scenario changes on crop evapotranspiration and output values in the irrigation district of northwest China.

  15. Simulating Crop Evapotranspiration Response under Different Planting Scenarios by Modified SWAT Model in an Irrigation District, Northwest China.

    Directory of Open Access Journals (Sweden)

    Xin Liu

    Full Text Available Modelling crop evapotranspiration (ET response to different planting scenarios in an irrigation district plays a significant role in optimizing crop planting patterns, resolving agricultural water scarcity and facilitating the sustainable use of water resources. In this study, the SWAT model was improved by transforming the evapotranspiration module. Then, the improved model was applied in Qingyuan Irrigation District of northwest China as a case study. Land use, soil, meteorology, irrigation scheduling and crop coefficient were considered as input data, and the irrigation district was divided into subdivisions based on the DEM and local canal systems. On the basis of model calibration and verification, the improved model showed better simulation efficiency than did the original model. Therefore, the improved model was used to simulate the crop evapotranspiration response under different planting scenarios in the irrigation district. Results indicated that crop evapotranspiration decreased by 2.94% and 6.01% under the scenarios of reducing the planting proportion of spring wheat (scenario 1 and summer maize (scenario 2 by keeping the total cultivated area unchanged. However, the total net output values presented an opposite trend under different scenarios. The values decreased by 3.28% under scenario 1, while it increased by 7.79% under scenario 2, compared with the current situation. This study presents a novel method to estimate crop evapotranspiration response under different planting scenarios using the SWAT model, and makes recommendations for strategic agricultural water management planning for the rational utilization of water resources and development of local economy by studying the impact of planting scenario changes on crop evapotranspiration and output values in the irrigation district of northwest China.

  16. Health risks associated with heavy metals in the drinking water of Swat, northern Pakistan.

    Science.gov (United States)

    Lu, Yonglong; Khan, Hizbullah; Zakir, Shahida; Ihsanullah; Khan, Sardar; Khan, Akbar Ali; Wei, Luo; Wang, Tieyu

    2013-10-01

    The concentrations of heavy metals such as Cd, Cr, Cu, Mn, Ni, Pb and Zn were investigated in drinking water sources (surface and groundwater) collected from Swat valley, Khyber Pakhtunkhwa, Pakistan. The potential health risks of heavy metals to the local population and their possible source apportionment were also studied. Heavy metal concentrations were analysed using atomic absorption spectrometer and compared with permissible limits set by Pakistan Environmental Protection Agency and World Health Organization. The concentrations of Cd, Cr, Ni and Pb were higher than their respective permissible limits, while Cu, Mn and Zn concentrations were observed within their respective limits. Health risk indicators such as chronic daily intake (CDI) and health risk index (HRI) were calculated for adults and children separately. CDIs and HRIs of heavy metals were found in the order of Cr > Mn > Ni > Zn > Cd > Cu > Pb and Cd > Ni > Mn > Cr > Cu > Pb > Zn, respectively. HRIs of selected heavy metals in the drinking water were less than 1, indicating no health risk to the local people. Multivariate and univariate statistical analyses showed that geologic and anthropogenic activities were the possible sources of water contamination with heavy metals in the study area.

  17. Trail Creek II: Modeling Flow and E. Coli Concentrations in a Small Urban Stream using SWAT

    Science.gov (United States)

    Radcliffe, D. E.; Saintil, T.

    2017-12-01

    Pathogens are one of the leading causes of stream and river impairment in the State of Georgia. The common presence of fecal bacteria is driven by several factors including rapid population growth stressing pre-existing and ageing infrastructure, urbanization and poor planning, increase percent imperviousness, urban runoff, municipal discharges, sewage, pet/wildlife waste and leaky septic tanks. The Trail Creek watershed, located in Athens-Clarke County, Georgia covers about 33 km2. Stream segments within Trail Creek violate the GA standard due to high levels of fecal coliform bacteria. In this study, the Soil and Water Assessment Tool (SWAT) modeling software was used to predict E. coli bacteria concentrations during baseflow and stormflow. Census data from the county was used for human and animal population estimates and the Fecal Indicator Tool to generate the number of colony forming units of E. Coli for each source. The model was calibrated at a daily time step with one year of monitored streamflow and E. coli bacteria data using SWAT-CUP and the SUFI2 algorithm. To simulate leaking sewer lines, we added point sources in the five subbasins in the SWAT model with the greatest length of sewer line within 50 m of the stream. The flow in the point sources were set to 5% of the stream flow and the bacteria count set to that of raw sewage (30,000 cfu/100 mL). The calibrated model showed that the average load during 2003-2013 at the watershed outlet was 13 million cfu per month. Using the calibrated model, we simulated scenarios that assumed leaking sewers were repaired in one of the five subbasins with point sources. The reduction ranged from 10 to 46%, with the largest reduction in subbasin in the downtown area. Future modeling work will focus on the use of green infrastructure to address sources of bacteria.

  18. Multi-Objective Validation of SWAT for Sparsely-Gauged West African River Basins—A Remote Sensing Approach

    Directory of Open Access Journals (Sweden)

    Thomas Poméon

    2018-04-01

    Full Text Available Predicting freshwater resources is a major concern in West Africa, where large parts of the population depend on rain-fed subsistence agriculture. However, a steady decline in the availability of in-situ measurements of climatic and hydrologic variables makes it difficult to simulate water resource availability with hydrological models. In this study, a modeling framework was set up for sparsely-gauged catchments in West Africa using the Soil and Water Assessment Tool (SWAT, whilst largely relying on remote sensing and reanalysis inputs. The model was calibrated using two different strategies and validated using discharge measurements. New in this study is the use of a multi-objective validation conducted to further investigate the performance of the model, where simulated actual evapotranspiration, soil moisture, and total water storage were evaluated using remote sensing data. Results show that the model performs well (R2 calibration: 0.52 and 0.51; R2 validation: 0.63 and 0.61 and the multi-objective validation reveals good agreement between predictions and observations. The study reveals the potential of using remote sensing data in sparsely-gauged catchments, resulting in good performance and providing data for evaluating water balance components that are not usually validated. The modeling framework presented in this study is the basis for future studies, which will address model response to extreme drought and flood events and further examine the coincidence with Gravity Recovery and Climate Experiment (GRACE total water storage retrievals.

  19. Soil water management

    International Nuclear Information System (INIS)

    Nielsen, D.R.; Cassel, D.K.

    1984-01-01

    The use of radiation and tracer techniques in investigations into soil water management in agriculture, hydrology etc. is described. These techniques include 1) neutron moisture gauges to monitor soil water content and soil water properties, 2) gamma radiation attenuation for measuring the total density of soil and soil water content, 3) beta radiation attenuation for measuring changes in the water status of crop plants and 4) radioactive and stable tracers for identifying pathways, reactions and retention times of the constituents in soils and groundwater aquifers. The number and spacing of soil observations that should be taken to represent the management unit are also considered. (U.K.)

  20. Future water availability in the largest freshwater Mediterranean lake is at great risk as evidenced from simulations with the SWAT model.

    Science.gov (United States)

    Bucak, Tuba; Trolle, Dennis; Andersen, Hans Estrup; Thodsen, Hans; Erdoğan, Şeyda; Levi, Eti E; Filiz, Nur; Jeppesen, Erik; Beklioğlu, Meryem

    2017-03-01

    Inter- and intra-annual water level fluctuations and changes in water flow regime are intrinsic characteristics of Mediterranean lakes. Additionally, considering climate change projections for the water-limited Mediterranean region, increased air temperatures and decreased precipitation are anticipated, leading to dramatic declines in lake water levels as well as severe water scarcity problems. The study site, Lake Beyşehir, the largest freshwater lake in the Mediterranean basin, is - like other Mediterranean lakes - threatened by climatic changes and over-abstraction of water for irrigated crop farming. Therefore, implementation of strict water level management policies is required. In this study, an integrated modeling approach was used to predict the future water levels of Lake Beyşehir in response to potential future changes in climate and land use. Water level estimation was performed by linking the catchment model Soil and Water Assessment Tool (SWAT) with a Support Vector Regression model (ε-SVR). The projected increase in temperature and decrease in precipitation based on the climate change models led to an enhanced potential evapotranspiration and reduced total runoff. On the other hand, the effects of various land use scenarios within the catchment appeared to be comparatively insignificant. According to the ε-SVR model results, changes in hydrological processes caused a water level reduction for all scenarios. Moreover, the MPI-ESM-MR General Circulation Model outputs produced the most dramatic results by predicting that Lake Beyşehir may dry out by the 2040s with the current outflow regime. The results indicate that shallow Mediterranean lakes may face a severe risk of drying out and losing their ecosystem values in the near future if the current intensity of water abstraction is not reduced. In addition, the results also demonstrate that outflow management and sustainable use of water sources are vital to sustain lake ecosystems in water

  1. Analysis of climate change impact on runoff and sediment delivery in a Great Lake watershed using SWAT

    Science.gov (United States)

    Verma, S.; Bhattarai, R.; Cooke, R.

    2011-12-01

    The green house gas loading of the atmosphere has been increasing since the mid 19th century which threatens to dramatically change the earth's climate in the 21st Century. Scientific evidences show that earth's global average surface temperature has risen some 0.75°C (1.3°F) since 1850. Third Assessment Report (TAR) from the Intergovernmental Panel on Climate Change (IPCC) concluded that human activities have increased the atmospheric concentration of greenhouse gases (GHGs), which will result in a warming world and other changes in the climate. TAR has projected an increase in globally average surface temperature of 1.4 to 5.8 °C and an increase in precipitation of 5 to 20 % over the period of 1990 to 2100. Assuming a global temperature increase of between 2.8 and 5.2 °C, it was estimated a 7-15% increase in global evaporation and precipitation rates. Global warming and subsequent climate change could raise sea level by several tens of centimeters in the next fifty years. Such a rise may erode beaches, worsen coastal flooding and threaten water quality in estuaries and aquifers. With the climate already changing and further change in climate highly likely to happen, study of impact of climate and the adaptation is a necessary component of any response to climate change. The objective of this study is to analyze the impact of climate change on runoff and sediment delivery in a Great Lake watershed located in Northern Ohio. Maumee River watershed is predominantly an agricultural watershed with an area of 6330 sq mile and drains to Lake Erie. Agricultural area covers about 89.9% of the watershed while wooded area covers 7.3%, 1.2% is urban area and other land uses account for 1.6%. Water Quality Laboratory, Heidelberg College has monitored the watershed for last 25 years. The Soil and Water Assessment Tool (SWAT) model is used for both water quantity and water quality simulations for past and future scenarios. SWAT is a continuous, long-term watershed scale

  2. Analysis of Best Management Practices Implementation on Water Quality Using the Soil and Water Assessment Tool

    Directory of Open Access Journals (Sweden)

    Jason Motsinger

    2016-04-01

    Full Text Available The formation of hypoxic zone in the Gulf of Mexico can be traced to agricultural watersheds in the Midwestern United States that are artificially drained in order to make the land suitable for agriculture. A number of best management practices (BMPs have been introduced to improve the water quality in the region but their relative effectivenss of these BMPs in reducing nutrient load has not been properly quantified. In order to determine the BMPs useful for reducing nutrient discharge from a tile drained watershed, a Soil and Water Assessment Tool (SWAT model was calibrated and validated for water flow and nitrate load using experimental data from the Little Vermillion River (LVR watershed in east-central Illinois. Then, the performance of four common BMPs (reduced tillage, cover crop, filter strip and wetlands were evaluated. For BMPs, the usage of rye as cover crop performed the best in reducing nitrate discharge from the watershed as a single BMP, with an average annual nitrate load reduction of 54.5%. Combining no tillage and rye cover crops had varying results over the period simulated, but the average nitrate reduction was better than using rye cover crops with conventional tillage, with the average annual nitrate discharge decreased by 60.5% (an improvement of 13% over rye only.

  3. Spatial and Temporal Responses of Soil Erosion to Climate Change Impacts in a Transnational Watershed in Southeast Asia

    OpenAIRE

    Pham Quy Giang; Le Thi Giang; Kosuke Toshiki

    2017-01-01

    It has been widely predicted that Southeast Asia is among the regions facing the most severe climate change impacts. Despite this forecast, little research has been published on the potential impacts of climate change on soil erosion in this region. This study focused on the impact of climate change on spatial and temporal patterns of soil erosion in the Laos–Vietnam transnational Upper Ca River Watershed. The Soil and Water Assessment Tool (SWAT) coupled with downscaled global climate models...

  4. Publishing and sharing of hydrologic models through WaterHUB

    Science.gov (United States)

    Merwade, V.; Ruddell, B. L.; Song, C.; Zhao, L.; Kim, J.; Assi, A.

    2011-12-01

    Most hydrologists use hydrologic models to simulate the hydrologic processes to understand hydrologic pathways and fluxes for research, decision making and engineering design. Once these tasks are complete including publication of results, the models generally are not published or made available to the public for further use and improvement. Although publication or sharing of models is not required for journal publications, sharing of models may open doors for new collaborations, and avoids duplication of efforts if other researchers are interested in simulating a particular watershed for which a model already exists. For researchers, who are interested in sharing models, there are limited avenues to publishing their models to the wider community. Towards filling this gap, a prototype cyberinfrastructure (CI), called WaterHUB, is developed for sharing hydrologic data and modeling tools in an interactive environment. To test the utility of WaterHUB for sharing hydrologic models, a system to publish and share SWAT (Soil Water Assessment Tool) is developed. Users can utilize WaterHUB to search and download existing SWAT models, and also upload new SWAT models. Metadata such as the name of the watershed, name of the person or agency who developed the model, simulation period, time step, and list of calibrated parameters also published with individual model.

  5. Utilization of Electronic Learning System in Swat Rural Areas

    Directory of Open Access Journals (Sweden)

    Nazir Ahmed Sangi

    2017-12-01

    Full Text Available As developments in electronic technologies i.e. personal computers, laptops, tablets, mobiles and wearable devices, the way of learning is also changing. Therefore, utilization of Information and Communication Technology (ICT has great important role in schools and colleges. ICT is using by students, teachers and societies in District Swat, KP, Pakistan in the form of mobiles internet (for social contact and chat, computers internet (for knowledge exploration and entertainment and multimedia (for teaching and learning. One of the difficulties involved in rural areas’ students of District Swat is that they cannot join class rooms due to their poor livelihood condition and far away from schools and colleges. Especially most of the females of rural areas of Swat do not come to schools and colleges for their family tradition and culture. Various questions were examined in every aspect of educational technologies in this study. We surveyed 50 responded randomly at District Swat from different schools and colleges and discovered that the responded were generally positive and have great interest about e-learning in Swat. The use of proposed electronic system for the learning, the literacy rate will increase in rural areas and students will achieve their individual goals.

  6. Developing Land Use Land Cover Maps for the Lower Mekong Basin to Aid SWAT Hydrologic Modeling

    Science.gov (United States)

    Spruce, J.; Bolten, J. D.; Srinivasan, R.

    2017-12-01

    This presentation discusses research to develop Land Use Land Cover (LULC) maps for the Lower Mekong Basin (LMB). Funded by a NASA ROSES Disasters grant, the main objective was to produce updated LULC maps to aid the Mekong River Commission's (MRC's) Soil and Water Assessment Tool (SWAT) hydrologic model. In producing needed LULC maps, temporally processed MODIS monthly NDVI data for 2010 were used as the primary data source for classifying regionally prominent forest and agricultural types. The MODIS NDVI data was derived from processing MOD09 and MYD09 8-day reflectance data with the Time Series Product Tool, a custom software package. Circa 2010 Landsat multispectral data from the dry season were processed into top of atmosphere reflectance mosaics and then classified to derive certain locally common LULC types, such as urban areas and industrial forest plantations. Unsupervised ISODATA clustering was used to derive most LULC classifications. GIS techniques were used to merge MODIS and Landsat classifications into final LULC maps for Sub-Basins (SBs) 1-8 of the LMB. The final LULC maps were produced at 250-meter resolution and delivered to the MRC for use in SWAT modeling for the LMB. A map accuracy assessment was performed for the SB 7 LULC map with 14 classes. This assessment was performed by comparing random locations for sampled LULC types to geospatial reference data such as Landsat RGBs, MODIS NDVI phenologic profiles, high resolution satellite data from Google Map/Earth, and other reference data from the MRC (e.g., crop calendars). LULC accuracy assessment results for SB 7 indicated an overall agreement to reference data of 81% at full scheme specificity. However, by grouping 3 deciduous forest classes into 1 class, the overall agreement improved to 87%. The project enabled updated LULC maps, plus more specific rice types were classified compared to the previous LULC maps. The LULC maps from this project should improve the use of SWAT for modeling

  7. Analysing the Effects of Forest Cover and Irrigation Farm Dams on Streamflows of Water-Scarce Catchments in South Australia through the SWAT Model

    Directory of Open Access Journals (Sweden)

    Hong Hanh Nguyen

    2017-01-01

    Full Text Available To assist water resource managers with future land use planning efforts, the eco-hydrological model Soil and Water Assessment Tool (SWAT was applied to three catchments in South Australia that experience extreme low flow conditions. Particular land uses and management issues of interest included forest covers, known to affect water yields, and farm dams, known to intercept and change the hydrological dynamics in a catchment. The study achieved a satisfactory daily calibration when irrigation farm dams were incorporated in the model. For the catchment dominated by extreme low flows, a better daily simulation across a range of qualitative and quantitative metrics was gained using the base-flow static threshold optimization technique. Scenario analysis on effects of forest cover indicated an increase of surface flow and a reduction of base-flow when native eucalyptus lands were replaced by pastures and vice versa. A decreasing trend was observed for the overall water yield of catchments with more forest plantation due to the higher evapotranspiration (ET rate and the decline in surface flow. With regards to effects of irrigation farm dams, assessment on a daily time step suggested that a significant volume of water is stored in these systems with the water loss rate highest in June and July. On an annual basis, the model indicated that approximately 13.1% to 22.0% of water has been captured by farm dams for irrigation. However, the scenario analysis revealed that the purposes of use of farm dams rather than their volumetric capacities in the catchment determined the magnitude of effects on streamflows. Water extracted from farm dams for irrigation of orchards and vineyards are more likely to diminish streamflows than other land uses. Outputs from this study suggest that the water use restrictions from farm dams during recent drought periods were an effective tool to minimize impacts on streamflows.

  8. Comparison of HSPF and SWAT models performance for runoff and sediment yield prediction.

    Science.gov (United States)

    Im, Sangjun; Brannan, Kevin M; Mostaghimi, Saied; Kim, Sang Min

    2007-09-01

    A watershed model can be used to better understand the relationship between land use activities and hydrologic/water quality processes that occur within a watershed. The physically based, distributed parameter model (SWAT) and a conceptual, lumped parameter model (HSPF), were selected and their performance were compared in simulating runoff and sediment yields from the Polecat Creek watershed in Virginia, which is 12,048 ha in size. A monitoring project was conducted in Polecat Creek watershed during the period of October 1994 to June 2000. The observed data (stream flow and sediment yield) from the monitoring project was used in the calibration/validations of the models. The period of September 1996 to June 2000 was used for the calibration and October 1994 to December 1995 was used for the validation of the models. The outputs from the models were compared to the observed data at several sub-watershed outlets and at the watershed outlet of the Polecat Creek watershed. The results indicated that both models were generally able to simulate stream flow and sediment yields well during both the calibration/validation periods. For annual and monthly loads, HSPF simulated hydrologic and sediment yield more accurately than SWAT at all monitoring sites within the watershed. The results of this study indicate that both the SWAT and HSPF watershed models performed sufficiently well in the simulation of stream flow and sediment yield with HSPF performing moderately better than SWAT for simulation time-steps greater than a month.

  9. Soil erosion and sediment yield and their relationships with vegetation cover in upper stream of the Yellow River.

    Science.gov (United States)

    Ouyang, Wei; Hao, Fanghua; Skidmore, Andrew K; Toxopeus, A G

    2010-12-15

    Soil erosion is a significant concern when considering regional environmental protection, especially in the Yellow River Basin in China. This study evaluated the temporal-spatial interaction of land cover status with soil erosion characteristics in the Longliu Catchment of China, using the Soil and Water Assessment Tool (SWAT) model. SWAT is a physical hydrological model which uses the RUSLE equation as a sediment algorithm. Considering the spatial and temporal scale of the relationship between soil erosion and sediment yield, simulations were undertaken at monthly and annual temporal scales and basin and sub-basin spatial scales. The corresponding temporal and spatial Normalized Difference Vegetation Index (NDVI) information was summarized from MODIS data, which can integrate regional land cover and climatic features. The SWAT simulation revealed that the annual soil erosion and sediment yield showed similar spatial distribution patterns, but the monthly variation fluctuated significantly. The monthly basin soil erosion varied from almost no erosion load to 3.92 t/ha and the maximum monthly sediment yield was 47,540 tones. The inter-annual simulation focused on the spatial difference and relationship with the corresponding vegetation NDVI value for every sub-basin. It is concluded that, for this continental monsoon climate basin, the higher NDVI vegetation zones prevented sediment transport, but at the same time they also contributed considerable soil erosion. The monthly basin soil erosion and sediment yield both correlated with NDVI, and the determination coefficients of their exponential correlation model were 0.446 and 0.426, respectively. The relationships between soil erosion and sediment yield with vegetation NDVI indicated that the vegetation status has a significant impact on sediment formation and transport. The findings can be used to develop soil erosion conservation programs for the study area. Copyright © 2010 Elsevier B.V. All rights reserved.

  10. Improvement of the variable storage coefficient method with water surface gradient as a variable

    Science.gov (United States)

    The variable storage coefficient (VSC) method has been used for streamflow routing in continuous hydrological simulation models such as the Agricultural Policy/Environmental eXtender (APEX) and the Soil and Water Assessment Tool (SWAT) for more than 30 years. APEX operates on a daily time step and ...

  11. Assessment of Climate Change Impacts on Water Resources in Zarrinehrud Basin Using SWAT Model

    Directory of Open Access Journals (Sweden)

    B. Mansouri

    2015-06-01

    Full Text Available This paper evaluate impacts of climate change on temperature, rainfall and runoff in the future Using statistical model, LARS-WG, and conceptual hydrological model, SWAT. In order to the Zarrinehrud river basin, as the biggest catchment of the Lake Urmia basin was selected as a case study. At first, for the generation of future weather data in the basin, LARS-WG model was calibrated using meteorological data and then 14 models of AOGCM were applied and results of these models were downscaled using LARS-WG model in 6 synoptic stations for period of 2015 to 2030. SWAT model was used for evaluation of climate change impacts on runoff in the basin. In order to, the model was calibrated and validated using 6 gauging stations for period of 1987-2007 and the value of R2 was between 0.49 and 0.71 for calibration and between 0.54 and 0.77 for validation. Then by introducing average of downscaled results of AOGCM models to the SWAT, runoff changes of the basin were simulated during 2015-2030. Average of results of LARS-WG model indicated that the monthly mean of minimum and maximum temperatures will increase compared to the baseline period. Also monthly average of precipitation will decrease in spring season but will increase in summer and autumn. The results showed that in addition to the amount of precipitation, its pattern will change in the future period, too. The results of runoff simulation showed that the amount of inflow to the Zarrinehrud reservoir will reduce 28.4 percent compared to the baseline period.

  12. Evaluating Uncertainty of Runoff Simulation using SWAT model of the Feilaixia Watershed in China Based on the GLUE Method

    Science.gov (United States)

    Chen, X.; Huang, G.

    2017-12-01

    In recent years, distributed hydrological models have been widely used in storm water management, water resources protection and so on. Therefore, how to evaluate the uncertainty of the model reasonably and efficiently becomes a hot topic today. In this paper, the soil and water assessment tool (SWAT) model is constructed for the study area of China's Feilaixia watershed, and the uncertainty of the runoff simulation is analyzed by GLUE method deeply. Taking the initial parameter range of GLUE method as the research core, the influence of different initial parameter ranges on model uncertainty is studied. In this paper, two sets of parameter ranges are chosen as the object of study, the first one (range 1) is recommended by SWAT-CUP and the second one (range 2) is calibrated by SUFI-2. The results showed that under the same number of simulations (10,000 times), the overall uncertainty obtained by the range 2 is less than the range 1. Specifically, the "behavioral" parameter sets for the range 2 is 10000 and for the range 1 is 4448. In the calibration and the validation, the ratio of P-factor to R-factor for range 1 is 1.387 and 1.391, and for range 2 is 1.405 and 1.462 respectively. In addition, the simulation result of range 2 is better with the NS and R2 slightly higher than range 1. Therefore, it can be concluded that using the parameter range calibrated by SUFI-2 as the initial parameter range for the GLUE is a way to effectively capture and evaluate the simulation uncertainty.

  13. Algorithm Theory - SWAT 2006

    DEFF Research Database (Denmark)

    This book constitutes the refereed proceedings of the 10th Scandinavian Workshop on Algorithm Theory, SWAT 2006, held in Riga, Latvia, in July 2006. The 36 revised full papers presented together with 3 invited papers were carefully reviewed and selected from 154 submissions. The papers address all...

  14. Soil tension mediates isotope fractionation during soil water evaporation

    Science.gov (United States)

    Gaj, Marcel; McDonnell, Jeffrey

    2017-04-01

    Isotope tracing of the water cycle is increasing in its use and usefulness. Many new studies are extracting soil waters and relating these to streamflow, groundwater recharge and plant transpiration. Nevertheless, unlike isotope fractionation factors from open water bodies, soil water fractionation factors are poorly understood and until now, only empirically derived. In contrast to open water evaporation where temperature, humidity and vapor pressure gradient define fractionation (as codified in the well-known Craig and Gordon model), soil water evaporation includes additionally, fractionation by matrix effects. There is yet no physical explanation of kinetic and equilibrium fraction from soil water within the soil profile. Here we present a simple laboratory experiment with four admixtures of soil grain size (from sand to silt to clay). Oven-dried samples were spiked with water of known isotopic composition at different soil water contents. Soils were then stored in sealed bags and the headspace filled with dry air and allowed to equilibrate for 24hours. Isotopic analysis of the headspace vapor was done with a Los Gatos Inc. water vapor isotope analyzer. Soil water potential of subsamples were measured with a water potential meter. We show for the first time that soil tension controls isotope fractionation in the resident soil water. Below a Pf 3.5 the δ-values of 18O and 2H of the headspace vapor is more positive and increases with increasing soil water potential. Surprisingly, we find that the relationship between soil tension and equilibrium fractionation is independent of soil type. However, δ-values of each soil type plot along a distinct evaporation line. These results indicate that equilibrium fractionation is affected by soil tension in addition to temperature. Therefore, at high soil water tension (under dry conditions) equilibrium fractionation is not consistent with current empirical formulations that ignore these effects. These findings may have

  15. Comparison of MODIS and SWAT evapotranspiration over a complex terrain at different spatial scales

    Science.gov (United States)

    Abiodun, Olanrewaju O.; Guan, Huade; Post, Vincent E. A.; Batelaan, Okke

    2018-05-01

    In most hydrological systems, evapotranspiration (ET) and precipitation are the largest components of the water balance, which are difficult to estimate, particularly over complex terrain. In recent decades, the advent of remotely sensed data based ET algorithms and distributed hydrological models has provided improved spatially upscaled ET estimates. However, information on the performance of these methods at various spatial scales is limited. This study compares the ET from the MODIS remotely sensed ET dataset (MOD16) with the ET estimates from a SWAT hydrological model on graduated spatial scales for the complex terrain of the Sixth Creek Catchment of the Western Mount Lofty Ranges, South Australia. ET from both models was further compared with the coarser-resolution AWRA-L model at catchment scale. The SWAT model analyses are performed on daily timescales with a 6-year calibration period (2000-2005) and 7-year validation period (2007-2013). Differences in ET estimation between the SWAT and MOD16 methods of up to 31, 19, 15, 11 and 9 % were observed at respectively 1, 4, 9, 16 and 25 km2 spatial resolutions. Based on the results of the study, a spatial scale of confidence of 4 km2 for catchment-scale evapotranspiration is suggested in complex terrain. Land cover differences, HRU parameterisation in AWRA-L and catchment-scale averaging of input climate data in the SWAT semi-distributed model were identified as the principal sources of weaker correlations at higher spatial resolution.

  16. Effects of input data information content on the uncertainty of simulating water resources

    Science.gov (United States)

    Camargos, Carla; Julich, Stefan; Bach, Martin; Breuer, Lutz

    2017-04-01

    Hydrological models like the Soil and Water Assessment Tool (SWAT) demand a large variety of spatial input data. These are commonly available in different resolutions and result from different preprocessing methodologies. Effort is made to apply the most specific data as possible for the study area, which features heterogeneous landscape elements. Most often, modelers prefer to use regional data, especially with fine resolution, which is not always available. Instead, global datasets are considered that are more general. This study investigates how the use of global and regional input datasets may affect the simulation performance and uncertainty of the model. We analyzed eight different setups for the SWAT model, combining two of each Digital Elevation Models (DEM), soil and land use maps of diverse spatial resolution and information content. The models were calibrated to discharge at two stations across the mesoscale Haute-Sûre catchment, which is partly located in the north of Luxembourg and partly in the southeast of Belgium. The region is a rural area of about 743 km2 and mainly covered by forests and complex agricultural system and arable lands. As part of the catchment, the Upper-Sûre Lake is an important source of drinking water for Luxembourgish population, satisfying 30% of the country's demand. The Metropolis Markov Chain Monte Carlo algorithm implemented in the SPOTPY python package was used to infer posterior parameter distributions and assess parameter uncertainty. We are optimizing the mean of the Nash-Sutcliffe Efficiency (NSE) and the logarithm of NSE. We focused on soil physical, groundwater, main channel, land cover management and basin physical process parameters. Preliminary results indicate that the model has the best performance when using the regional DEM and land use map and the global soil map, indicating that SWAT cannot necessarily make use of additional soil information if they are not substantially effecting soil hydrological fluxes

  17. Land use change impacts on discharge analysis using SWAT model at Ciherang Pondok DAM catchment area

    Science.gov (United States)

    Utamahadi, M. A.; Pandjaitan, N. H.; Rau, M. I.

    2018-05-01

    The prompt increase of population influenced the requirement for new regions to fulfill people’s primary needs. Its increased land use change and caused many impacts on the environment, including watersheds as well. Ciherang Pondok DAM catchment area is part of Cisadane watershed and was selected as the research area. This research aimed to analyse the water supply and water discharge change caused by the Urban Planning (RTRW) in 2020. The analysis was conducted using soil and water assessment tools (SWAT) model. Stages of this research were catchment area delineation, HRU identification, calibration and validation of models, and prediction of discharge and water demand. The result showed that RTRW of 2020 increased the maximum discharge of 1.6 m3/s and decreased the minimum discharge of 0.01 m3/s, hence the maximum and minimum discharge ratio increased 0.26% from 2016. Output discharge in 2020 at Ciherang Pondok Dam Catchment Area was classified as well, with discharge of 6.72 – 126.2 m3/s, and could fulfil water demand. For the best result, it is better to use climate data from weather stations inside the study area and it is required an improvement in data archiving system.

  18. Modelling soil-water dynamics in the rootzone of structured and water-repellent soils

    Science.gov (United States)

    Brown, Hamish; Carrick, Sam; Müller, Karin; Thomas, Steve; Sharp, Joanna; Cichota, Rogerio; Holzworth, Dean; Clothier, Brent

    2018-04-01

    In modelling the hydrology of Earth's critical zone, there are two major challenges. The first is to understand and model the processes of infiltration, runoff, redistribution and root-water uptake in structured soils that exhibit preferential flows through macropore networks. The other challenge is to parametrise and model the impact of ephemeral hydrophobicity of water-repellent soils. Here we have developed a soil-water model, which is based on physical principles, yet possesses simple functionality to enable easier parameterisation, so as to predict soil-water dynamics in structured soils displaying time-varying degrees of hydrophobicity. Our model, WEIRDO (Water Evapotranspiration Infiltration Redistribution Drainage runOff), has been developed in the APSIM Next Generation platform (Agricultural Production Systems sIMulation). The model operates on an hourly time-step. The repository for this open-source code is https://github.com/APSIMInitiative/ApsimX. We have carried out sensitivity tests to show how WEIRDO predicts infiltration, drainage, redistribution, transpiration and soil-water evaporation for three distinctly different soil textures displaying differing hydraulic properties. These three soils were drawn from the UNSODA (Unsaturated SOil hydraulic Database) soils database of the United States Department of Agriculture (USDA). We show how preferential flow process and hydrophobicity determine the spatio-temporal pattern of soil-water dynamics. Finally, we have validated WEIRDO by comparing its predictions against three years of soil-water content measurements made under an irrigated alfalfa (Medicago sativa L.) trial. The results provide validation of the model's ability to simulate soil-water dynamics in structured soils.

  19. Assessment of TRMM Products and Their Influence on Hydrologic Models within the Middle East and North Africa (MENA) Region Using the Soil and Water Assessment Tool (SWAT)

    Science.gov (United States)

    Milewski, A.; El Kadiri, R.; Durham, M. C.

    2013-12-01

    Satellite remote sensing datasets have been increasingly employed as an ancillary source of essential hydrologic measurements used for the modeling of hydrologic fluxes. Precipitation is one of the most important meteorological forcing parameter in hydrological investigations and land surface modeling, yet it is largely unknown or misused in water budgets and hydrologic models. The Tropical Rainfall Measurement Mission (TRMM) satellite products are widely being used by the scientific community due to the general spatial and temporal paucity of precipitation data in many parts of world and particularly in the Middle East and North Africa (MENA) region. This research utilized a two-fold approach towards understanding the accuracy of satellite-based rainfall and its application in hydrologic models First, we evaluated the uncertainty, accuracy, and precision of various rainfall satellite products (i.e. TRMM 3B42 V6, TRMM 3B42 V7, TRMM 3B42 V7a and TRMM 3B42 RT) in comparison to in situ gauge data from more than 150 rain gauges in Morocco and across the MENA region. Our analyses extend over many parts of the MENA region in order to assess the effect that different climatic regimes and topographic characteristics have on each TRMM product. Secondly, we analyzed and compared the hydrologic fluxes produced from different modeling inputs for several watersheds within the MENA region. SWAT (Soil and Water Assessment Tool) hydrologic models have been developed for the Oum Er Rbia (Morocco), Asyuti (Egypt), and the Sakarya (Turkey) watersheds. SWAT models produced for each watershed include, one model for each of the four satellite TRMM product (STBM-V6, STBM-V7, STBM-V7a, and STBM-RT) and one model for rain gauge based model (RGBM). Findings indicate the best correlation between field-based and satellite-based rainfall measurements is the TRMM V7a (Pearson coefficient: 0.875) product, followed by TRMM V7 (Pearson coefficient: 0.84), then TRMM V6 (Pearson coefficient: 0

  20. Multi-gauge Calibration for modeling the Semi-Arid Santa Cruz Watershed in Arizona-Mexico Border Area Using SWAT

    Science.gov (United States)

    Niraula, Rewati; Norman, Laura A.; Meixner, Thomas; Callegary, James B.

    2012-01-01

    In most watershed-modeling studies, flow is calibrated at one monitoring site, usually at the watershed outlet. Like many arid and semi-arid watersheds, the main reach of the Santa Cruz watershed, located on the Arizona-Mexico border, is discontinuous for most of the year except during large flood events, and therefore the flow characteristics at the outlet do not represent the entire watershed. Calibration is required at multiple locations along the Santa Cruz River to improve model reliability. The objective of this study was to best portray surface water flow in this semiarid watershed and evaluate the effect of multi-gage calibration on flow predictions. In this study, the Soil and Water Assessment Tool (SWAT) was calibrated at seven monitoring stations, which improved model performance and increased the reliability of flow, in the Santa Cruz watershed. The most sensitive parameters to affect flow were found to be curve number (CN2), soil evaporation and compensation coefficient (ESCO), threshold water depth in shallow aquifer for return flow to occur (GWQMN), base flow alpha factor (Alpha_Bf), and effective hydraulic conductivity of the soil layer (Ch_K2). In comparison, when the model was established with a single calibration at the watershed outlet, flow predictions at other monitoring gages were inaccurate. This study emphasizes the importance of multi-gage calibration to develop a reliable watershed model in arid and semiarid environments. The developed model, with further calibration of water quality parameters will be an integral part of the Santa Cruz Watershed Ecosystem Portfolio Model (SCWEPM), an online decision support tool, to assess the impacts of climate change and urban growth in the Santa Cruz watershed.

  1. Comparison of MODIS and SWAT evapotranspiration over a complex terrain at different spatial scales

    Directory of Open Access Journals (Sweden)

    O. O. Abiodun

    2018-05-01

    Full Text Available In most hydrological systems, evapotranspiration (ET and precipitation are the largest components of the water balance, which are difficult to estimate, particularly over complex terrain. In recent decades, the advent of remotely sensed data based ET algorithms and distributed hydrological models has provided improved spatially upscaled ET estimates. However, information on the performance of these methods at various spatial scales is limited. This study compares the ET from the MODIS remotely sensed ET dataset (MOD16 with the ET estimates from a SWAT hydrological model on graduated spatial scales for the complex terrain of the Sixth Creek Catchment of the Western Mount Lofty Ranges, South Australia. ET from both models was further compared with the coarser-resolution AWRA-L model at catchment scale. The SWAT model analyses are performed on daily timescales with a 6-year calibration period (2000–2005 and 7-year validation period (2007–2013. Differences in ET estimation between the SWAT and MOD16 methods of up to 31, 19, 15, 11 and 9 % were observed at respectively 1, 4, 9, 16 and 25 km2 spatial resolutions. Based on the results of the study, a spatial scale of confidence of 4 km2 for catchment-scale evapotranspiration is suggested in complex terrain. Land cover differences, HRU parameterisation in AWRA-L and catchment-scale averaging of input climate data in the SWAT semi-distributed model were identified as the principal sources of weaker correlations at higher spatial resolution.

  2. Hydrological Responses of Climate and Land Use/Cover Changes in Tao'er River Basin Based on the SWAT Model

    Science.gov (United States)

    Liu, J.; Kou, L.

    2015-12-01

    Abstract: The changes of both climate and land use/cover have some impact on the water resources. For Tao'er River Basin, these changes have a direct impact on the land use pattern adjustment, wetland protection, connection project between rivers and reservoirs, local social and economic development, etc. Therefore, studying the impact of climate and land use/cover changes is of great practical significance. The Soil and Water Assessment Tool (SWAT) is used as the research method. With historical actual measured runoff data and the yearly land use classification caught by satellite remote sensing maps, analyze the impact of climate change on the runoff of Tao'er River. And according to the land use/cover classification of 1990, 2000 and 2010, analyze the land use/cover change in the recent 30 years, the impact of the land use/cover change on the river runoff and the contribution coefficient of farmland, woodland, grassland and other major land-use types to the runoff. These studies can provide some references to the rational allocation of water resource and adjustment of land use structure in this area.

  3. Test results of Run-1 and Run-2 in steam generator safety test facility (SWAT-3)

    International Nuclear Information System (INIS)

    Kurihara, A.; Yatabe, Toshio; Tanabe, Hiromi; Hiroi, Hiroshi

    2003-07-01

    Large leak sodium-water reaction tests were carried out using SWAT-1 rig and SWAT-3 facility in Power Reactor and Nuclear Fuel Development Corporation (PNC) O-arai Engineering Center to obtain the data on the design of the prototype LMFBR Monju steam generator against a large leak accident. This report provides the results of SWAT-3 Runs 1 and 2. In Runs 1 and 2, the heat transfer tube bundle of the evaporator, fabricated by TOSHIBA/IHI, were used, and the pressure relief line was located at the top of evaporator. The water injection rates in the evaporator were 6.7 kg/s and 14.2 (initial)-9.7 kg/s in Runs 1 and 2 respectively, which corresponded to 3.3 tubes and 7.1 (initial)-4.8 tubes failure in actual size system according to iso-velocity modeling. Approximately two hundreds of measurement points were provided to collect data such as pressure, temperature, strain, sodium level, void, thrust load, acceleration, displacement, flow rate, and so on in each run. Initial spike pressures were 1.13 MPa and 2.62 MPa nearest to injection point in Runs 1 and 2 respectively, and the maximum quasi-steady pressures in evaporator were 0.49 MPa and 0.67 MPa in Runs 1 and 2. No secondary tube failure was observed. The rupture disc of evaporator (RD601) burst at 1.1s in Run-1 and at 0.7s in Run-2 after water injected, and the pressure relief system was well-functioned though a few items for improvement were found. (author)

  4. The influence of changes in land use and landscape patterns on soil erosion in a watershed.

    Science.gov (United States)

    Zhang, Shanghong; Fan, Weiwei; Li, Yueqiang; Yi, Yujun

    2017-01-01

    It is very important to have a good understanding of the relation between soil erosion and landscape patterns so that soil and water conservation in river basins can be optimized. In this study, this relationship was explored, using the Liusha River Watershed, China, as a case study. A distributed water and sediment model based on the Soil and Water Assessment Tool (SWAT) was developed to simulate soil erosion from different land use types in each sub-basin of the Liusha River Watershed. Observed runoff and sediment data from 1985 to 2005 and land use maps from 1986, 1995, and 2000 were used to calibrate and validate the model. The erosion modulus for each sub-basin was calculated from SWAT model results using the different land use maps and 12 landscape indices were chosen and calculated to describe the land use in each sub-basin for the different years. The variations in instead of the absolute amounts of the erosion modulus and the landscape indices for each sub-basin were used as the dependent and independent variables, respectively, for the regression equations derived from multiple linear regression. The results indicated that the variations in the erosion modulus were closely related to changes in the large patch index, patch cohesion index, modified Simpson's evenness index, and the aggregation index. From the regression equation and the corresponding landscape indices, it was found that watershed erosion can be reduced by decreasing the physical connectivity between patches, improving the evenness of the landscape patch types, enriching landscape types, and enhancing the degree of aggregation between the landscape patches. These findings will be useful for water and soil conservation and for optimizing the management of watershed landscapes. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Effect of land use change on water discharge in Srepok watershed, Central Highland, Viet Nam

    Directory of Open Access Journals (Sweden)

    Nguyen Thi Ngoc Quyen

    2014-09-01

    Full Text Available Srepok watershed plays an important role in Central Highland in Viet Nam. It impacts to developing social-economic conditions. Therefore, it is necessary to research elements which impact to natural resources in this watershed. The Soil and Water Assessment Tool (SWAT model and Geography Information System (GIS were used to simulate water discharge in the Srepok watershed. The objectives of the research were to apply GIS and SWAT model for simulation water discharge and then, we assessed land use change which impacted on water discharge in the watershed. The observed stream flow data from Ban Don Stream gauge station was used to calibrate for the period from 1981 to 2000 and then validate for the period from 2001 to 2009. After using SWAT-CUP software to calibration, NSI reached 0.63 and R square value achieved 0.64 from 2004 to 2008 in calibration and NSI gained good level at 0.74 and R square got 0.75 from 2009 to 2012 in validation step at Ban Don Station. After that, land cover in 2010 was processed like land cover in 2000 and set up SWAT model again. The simulated water discharge in scenario 1 (land use 2000 was compared with scenario 2 (land use 2010, the simulation result was not significant difference between two scenarios because the change of area of land use was not much enough to affect the fluctuation of water discharge. However, the effect of land cover on water resource could be seen clearly via total water yield. The percentage of surface flow in 2000 was twice times more than in 2010; retard and base flow in 2000 was slightly more than in 2010. Therefore, decreased surface flow, increased infiltration capacity of water and enriched base flow resulted in the growth of land cover.

  6. Analyzing the water budget and hydrological characteristics and responses to land use in a monsoonal climate river basin in South China

    Science.gov (United States)

    Wu, Yiping; Chen, Ji

    2013-01-01

    Hydrological models have been increasingly used by hydrologists and water resource managers to understand natural processes and human activities that affect watersheds. In this study, we use the physically based model, Soil and Water Assessment Tool (SWAT), to investigate the hydrological processes in the East River Basin in South China, a coastal area dominated by monsoonal climate. The SWAT model was calibrated using 8-year (1973–1980) record of the daily streamflow at the basin outlet (Boluo station), and then validated using data collected during the subsequent 8 years (1981–1988). Statistical evaluation shows that SWAT can consistently simulate the streamflow of the East River with monthly Nash–Sutcliffe efficiencies of 0.93 for calibration and 0.90 for validation at the Boluo station. We analyzed the model simulations with calibrated parameters, presented the spatiotemporal distribution of the key hydrological components, and quantified their responses to different land uses. Watershed managers can use the results of this study to understand hydrological features and evaluate water resources of the East River in terms of sustainable development and effective management.

  7. Soil physics and the water management of spatially variable soils

    International Nuclear Information System (INIS)

    Youngs, E.G.

    1983-01-01

    The physics of macroscopic soil-water behaviour in inert porous materials has been developed by considering water flow to take place in a continuum. This requires the flow region to consist of an assembly of representative elementary volumes, repeated throughout space and small compared with the scale of observations. Soil-water behaviour in swelling soils may also be considered as a continuum phenomenon so long as the soil is saturated and swells and shrinks in the normal range. Macroscale heterogeneity superimposed on the inherent microscale heterogeneity can take many forms and may pose difficulties in the definition and measurement of soil physical properties and also in the development and use of predictive theories of soil-water behaviour. Thus, measurement techniques appropriate for uniform soils are often inappropriate, and criteria for soil-water management, obtained from theoretical considerations of behaviour in equivalent uniform soils, are not applicable without modification when there is soil heterogeneity. The spatial variability of soil-water properties is shown in results from field experiments concerned with water flow measurements; these illustrate both stochastic and deterministic heterogeneity in soil-water properties. Problems of water management of spatially variable soils when there is stochastic heterogeneity appear to present an insuperable problem in the application of theory. However, for soils showing deterministic heterogeneity, soil-water theory has been used in the solution of soil-water management problems. Thus, scaling using similar media theory has been applied to the infiltration of water into soils that vary over a catchment area. Also, the drain spacing to control the water-table height in soils in which the hydraulic conductivity varies with depth has been calculated using groundwater seepage theory. (author)

  8. A new R-SWAT Decision Making Framework for the Efficient Allocation of Best Management Practices

    OpenAIRE

    UDIAS MOINELO ANGEL; MALAGO ANNA; REYNAUD ARNAUD; PASTORI MARCO; VIGIAK OLGA; BOURAOUI Faycal

    2015-01-01

    The work presents and illustrates the application of R-SWAT-DM, a new R framework designed for Decision Making (DM), related to the implementation of Best Management Practices (BMPs), for restoring and protecting the good ecological status of freshwater bodies. R-SWAT-DM combines the use of the SWAT watershed model, the spatial representation of BMPs and an economic component. The SWAT model served as the nonpoint source pollution estimator for current conditions (base line) as well as for sc...

  9. SWATMOD-PREP: Graphical user interface for preparing coupled SWAT-modflow simulations

    Science.gov (United States)

    This paper presents SWATMOD-Prep, a graphical user interface that couples a SWAT watershed model with a MODFLOW groundwater flow model. The interface is based on a recently published SWAT-MODFLOW code that couples the models via mapping schemes. The spatial layout of SWATMOD-Prep guides the user t...

  10. Predicting impacts of increased CO2 and climate change on the water cycle and water quality in the semiarid James River Basin of the Midwestern USA

    International Nuclear Information System (INIS)

    Wu, Yiping; Liu, Shuguang; Gallant, Alisa L.

    2012-01-01

    Emissions of greenhouse gases and aerosols from human activities continue to alter the climate and likely will have significant impacts on the terrestrial hydrological cycle and water quality, especially in arid and semiarid regions. We applied an improved Soil and Water Assessment Tool (SWAT) to evaluate impacts of increased atmospheric CO 2 concentration and potential climate change on the water cycle and nitrogen loads in the semiarid James River Basin (JRB) in the Midwestern United States. We assessed responses of water yield, soil water content, groundwater recharge, and nitrate nitrogen (NO 3 –N) load under hypothetical climate-sensitivity scenarios in terms of CO 2 , precipitation, and air temperature. We extended our predictions of the dynamics of these hydrological variables into the mid-21st century with downscaled climate projections integrated across output from six General Circulation Models. Our simulation results compared against the baseline period 1980 to 2009 suggest the JRB hydrological system is highly responsive to rising levels of CO 2 concentration and potential climate change. Under our scenarios, substantial decrease in precipitation and increase in air temperature by the mid-21st century could result in significant reduction in water yield, soil water content, and groundwater recharge. Our model also estimated decreased NO 3 –N load to streams, which could be beneficial, but a concomitant increase in NO 3 –N concentration due to a decrease in streamflow likely would degrade stream water and threaten aquatic ecosystems. These results highlight possible risks of drought, water supply shortage, and water quality degradation in this basin. - Highlights: ► We used a modified version of SWAT to more accurately simulate the effects of CO 2 . ► Our sensitivity analysis indicated this basin is very responsive to climate change. ► Downscaled GCM outputs showed decreased precipitation and increased temperature. ► There may be large

  11. Assessment the effect of homogenized soil on soil hydraulic properties and soil water transport

    Science.gov (United States)

    Mohawesh, O.; Janssen, M.; Maaitah, O.; Lennartz, B.

    2017-09-01

    Soil hydraulic properties play a crucial role in simulating water flow and contaminant transport. Soil hydraulic properties are commonly measured using homogenized soil samples. However, soil structure has a significant effect on the soil ability to retain and to conduct water, particularly in aggregated soils. In order to determine the effect of soil homogenization on soil hydraulic properties and soil water transport, undisturbed soil samples were carefully collected. Five different soil structures were identified: Angular-blocky, Crumble, Angular-blocky (different soil texture), Granular, and subangular-blocky. The soil hydraulic properties were determined for undisturbed and homogenized soil samples for each soil structure. The soil hydraulic properties were used to model soil water transport using HYDRUS-1D.The homogenized soil samples showed a significant increase in wide pores (wCP) and a decrease in narrow pores (nCP). The wCP increased by 95.6, 141.2, 391.6, 3.9, 261.3%, and nCP decreased by 69.5, 10.5, 33.8, 72.7, and 39.3% for homogenized soil samples compared to undisturbed soil samples. The soil water retention curves exhibited a significant decrease in water holding capacity for homogenized soil samples compared with the undisturbed soil samples. The homogenized soil samples showed also a decrease in soil hydraulic conductivity. The simulated results showed that water movement and distribution were affected by soil homogenizing. Moreover, soil homogenizing affected soil hydraulic properties and soil water transport. However, field studies are being needed to find the effect of these differences on water, chemical, and pollutant transport under several scenarios.

  12. Water repellent soils: the case for unsaturated soil mechanics

    Directory of Open Access Journals (Sweden)

    Beckett Christopher

    2016-01-01

    Full Text Available Water repellent (or “hydrophobic” or “non-wetting” soils have been studied by soil scientists for well over a century. These soils are typified by poor water infiltration, which leads to increased soil erosion and poor crop growth. However, the importance of water repellence on determining soil properties is now becoming recognised by geotechnical engineers. Water repellent soils may, for example, offer novel solutions for the design of cover systems overlying municipal or mine waste storage facilities. However, investigations into factors affecting their mechanical properties have only recently been initiated. This purpose of this paper is to introduce geotechnical engineers to the concept of water repellent soils and to discuss how their properties can be evaluated under an unsaturated soils framework. Scenarios in which water repellent properties might be relevant in geotechnical applications are presented and methods to quantify these properties in the laboratory and in the field examined.

  13. Climate and Landuse Change Impacts on hydrological processes and soil erosion in a dry Mediterranean agro-forested catchment, southern Portugal

    Science.gov (United States)

    Santos, Juliana; Nunes, João Pedro; Sampaio, Elsa; Moreira, Madalena; Lima, Júlio; Jacinto, Rita; Corte-Real, João

    2014-05-01

    Climate change is expected to increase aridity in the Mediterranean rim of Europe, due to decreasing rainfall and increasing temperatures. This could lead to impacts on soil erosion, since the lower rainfall could nevertheless become concentrated in higher intensity events during the wet season, while the more arid conditions could reduce vegetation cover, also due to climate-induced land-use changes. In consequence, there is an interest in understanding how climate change will affect the interaction between the timing of extreme rainfall events, hydrological processes, vegetation growth, soil cover and soil erosion. To study this issue, the SWAT eco-hydrological model was applied to Guadalupe, an agro-forested catchment (446 ha) located close to the city of Évora, with a Mediterranean inland climate. The landcover is a mix of dispersed cork oak forests ("montado"), annual crops, and agroforesty regions where the cork oaks are associated with crops or pasture; this land cover is representative of the dry regions of southern Portugal and Spain. The catchment has been instrumented since 2011 with a hydrometric station (water discharge and suspended sediment concentration data) and a soil moisture measurement station. There is also observed data of actual evapotranspiration, LAI and biomass production (in pasture; from 1999 and 2008) and runoff data and sediment yield measured in six 16m2 plots. Water balance, vegetation growth, soil erosion and sediment yield in SWAT was calibrated with this dataset. This work will present the dataset, modeling process, results for impacts of climate and land-use change scenarios for vegetation growth, soil erosion and sediment export, considering the climate and socio-economic scenarios A1b and B1 (based on SRES storylines). Climate scenarios were created by statistical downscaling from Global Circulation Models (GCMs) for the period 2071-2100 (30 years). The reference period was 1971-2000 (30 years). The SWAT model was used to

  14. The Influence of Soil Particle on Soil Condensation Water

    OpenAIRE

    Hou Xinwei; Chen Hao; Li Xiangquan; Cui Xiaomei; Liu Lingxia; Wang Zhenxing

    2013-01-01

    The experiment results showed that the indoor experiment formed from the volume of soil hygroscopic water increased gradually with decreasing size of soil particles. In the outdoor experiments, the results showed that the formed condensation water in medium sand was greater than it was in fine sand; the soil hot condensation water was mainly formed in the top layer of soil between 0-5 cm. We also found that covering the soil surface with stones can increase the volume of formed soil condensat...

  15. prediction of the impacts of climate changes on the stream flow

    African Journals Online (AJOL)

    HOD

    Soil and Water Assessment Tool, (SWAT) model was used to predict the impacts of Climate Change on Ajali River watershed ... Climate is the synthesis of atmospheric conditions characteristic of a .... generator available in the SWAT model.

  16. Pesticide transport simulation in a tropical catchment by SWAT

    International Nuclear Information System (INIS)

    Bannwarth, M.A.; Sangchan, W.; Hugenschmidt, C.; Lamers, M.; Ingwersen, J.; Ziegler, A.D.; Streck, T.

    2014-01-01

    The application of agrochemicals in Southeast Asia is increasing in rate, variety and toxicity with alarming speed. Understanding the behavior of these different contaminants within the environment require comprehensive monitoring programs as well as accurate simulations with hydrological models. We used the SWAT hydrological model to simulate the fate of three different pesticides, one of each usage type (herbicide, fungicide and insecticide) in a mountainous catchment in Northern Thailand. Three key parameters were identified: the sorption coefficient, the decay coefficient and the coefficient controlling pesticide percolation. We yielded satisfactory results simulating pesticide load dynamics during the calibration period (NSE: 0.92–0.67); the results during the validation period were also acceptable (NSE: 0.61–0.28). The results of this study are an important step in understanding the modeling behavior of these pesticides in SWAT and will help to identify thresholds of worst-case scenarios in order to assess the risk for the environment. - Highlights: • We performed a global LH-sensitivity analysis of all pesticide related parameters. • Key physical parameters are associated to percolation, degradation and sorption. • We simulated the measured loads of three different pesticides. • We performed an uncertainty analysis of all pesticide simulations. • All Pesticides differed considerably in their sensitivity and simulation behavior. - Pesticide load simulations of three pesticides were modeled by SWAT, providing clues on how to handle pesticides in future SWAT studies

  17. Development and testing of an in-stream phosphorus cycling model for the soil and water assessment tool.

    Science.gov (United States)

    White, Michael J; Storm, Daniel E; Mittelstet, Aaron; Busteed, Philip R; Haggard, Brian E; Rossi, Colleen

    2014-01-01

    The Soil and Water Assessment Tool is widely used to predict the fate and transport of phosphorus (P) from the landscape through streams and rivers. The current in-stream P submodel may not be suitable for many stream systems, particularly those dominated by attached algae and those affected by point sources. In this research, we developed an alternative submodel based on the equilibrium P concentration concept coupled with a particulate scour and deposition model. This submodel was integrated with the SWAT model and applied to the Illinois River Watershed in Oklahoma, a basin influenced by waste water treatment plant discharges and extensive poultry litter application. The model was calibrated and validated using measured data. Highly variable in-stream P concentrations and equilibrium P concentration values were predicted spatially and temporally. The model also predicted the gradual storage of P in streambed sediments and the resuspension of this P during periodic high-flow flushing events. Waste water treatment plants were predicted to have a profound effect on P dynamics in the Illinois River due to their constant discharge even under base flow conditions. A better understanding of P dynamics in stream systems using the revised submodel may lead to the development of more effective mitigation strategies to control the impact of P from point and nonpoint sources. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  18. Performance evaluation of TDT soil water content and watermark soil water potential sensors

    Science.gov (United States)

    This study evaluated the performance of digitized Time Domain Transmissometry (TDT) soil water content sensors (Acclima, Inc., Meridian, ID) and resistance-based soil water potential sensors (Watermark 200, Irrometer Company, Inc., Riverside, CA) in two soils. The evaluation was performed by compar...

  19. Sustainable Soil Water Management Systems

    OpenAIRE

    Basch, G.; Kassam, A.; Friedrich, T.; Santos, F.L.; Gubiani, P.I.; Calegari, A.; Reichert, J.M.; dos Santos, D.R.

    2012-01-01

    Soil quality and its management must be considered as key elements for an effective management of water resources, given that the hydrological cycle and land management are intimately linked (Bossio et al. 2007). Soil degradation has been described by Bossio et al. (2010) as the starting point of a negative cycle of soil-water relationships, creating a positive, self-accelerating feedback loop with important negative impacts on water cycling and water productivity. Therefore, sustainable soil...

  20. Validation of integrated burnup code system SWAT2 by the analyses of isotopic composition of spent nuclear fuel

    International Nuclear Information System (INIS)

    Suyama, K.; Mochizuki, H.; Okuno, H.; Miyoshi, Y.

    2004-01-01

    This paper provides validation results of SWAT2, the revised version of SWAT, which is a code system combining point burnup code ORIGEN2 and continuous energy Monte Carlo code MVP, by the analysis of post irradiation examinations (PIEs). Some isotopes show differences of calculation results between SWAT and SWAT2. However, generally, the differences are smaller than the error of PIE analysis that was reported in previous SWAT validation activity, and improved results are obtained for several important fission product nuclides. This study also includes comparison between an assembly and a single pin cell geometry models. (authors)

  1. Assessment of the Environmental Fate of the Herbicides Flufenacet and Metazachlor with the SWAT Model.

    Science.gov (United States)

    Fohrer, Nicola; Dietrich, Antje; Kolychalow, Olga; Ulrich, Uta

    2014-01-01

    This study aims to assess the environmental fate of the commonly used herbicides flufenacet and metazachlor in the Northern German Lowlands with the ecohydrological Soil and Water Assessment Tool (SWAT model) and to test the sensitivity of pesticide-related input parameters on the modeled transport dynamics. The river discharge of the Kielstau watershed was calibrated (Nash-Sutcliffe efficiency [NSE], 0.83; = 0.84) and validated (NSE, 0.76; = 0.77) for a daily time step. The environmental fate of metazachlor (NSE, 0.68; = 0.62) and flufenacet (NSE, 0.13; = 0.51) was simulated adequately. In comparison to metazachlor, the simulated flufenacet concentration and loads show a lower model efficiency due to the weaker simulation of the stream flow. The in-stream herbicide loads were less than 0.01% of the applied amount in the observed time period and thus not in conflict with European Environmental Legislation. The sensitivity analysis showed that, besides the accurate simulation of stream flow, the parameterization of the temporal and spatial distribution of the herbicide application throughout the watershed is the key factor for appropriate modeling results, whereas the physicochemical properties of the pesticides play a minor role in the modeling process. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  2. Free internet datasets for streamflow modelling using SWAT in the Johor river basin, Malaysia

    International Nuclear Information System (INIS)

    Tan, M L

    2014-01-01

    Streamflow modelling is a mathematical computational approach that represents terrestrial hydrology cycle digitally and is used for water resources assessment. However, such modelling endeavours require a large amount of data. Generally, governmental departments produce and maintain these data sets which make it difficult to obtain this data due to bureaucratic constraints. In some countries, the availability and quality of geospatial and climate datasets remain a critical issue due to many factors such as lacking of ground station, expertise, technology, financial support and war time. To overcome this problem, this research used public domain datasets from the Internet as ''input'' to a streamflow model. The intention is simulate daily and monthly streamflow of the Johor River Basin in Malaysia. The model used is the Soil and Water Assessment Tool (SWAT). As input free data including a digital elevation model (DEM), land use information, soil and climate data were used. The model was validated by in-situ streamflow information obtained from Rantau Panjang station for the year 2006. The coefficient of determination and Nash-Sutcliffe efficiency were 0.35/0.02 for daily simulated streamflow and 0.92/0.21 for monthly simulated streamflow, respectively. The results show that free data can provide a better simulation at a monthly scale compared to a daily basis in a tropical region. A sensitivity analysis and calibration procedure should be conducted in order to maximize the ''goodness-of-fit'' between simulated and observed streamflow. The application of Internet datasets promises an acceptable performance of streamflow modelling. This research demonstrates that public domain data is suitable for streamflow modelling in a tropical river basin within acceptable accuracy

  3. Free internet datasets for streamflow modelling using SWAT in the Johor river basin, Malaysia

    Science.gov (United States)

    Tan, M. L.

    2014-02-01

    Streamflow modelling is a mathematical computational approach that represents terrestrial hydrology cycle digitally and is used for water resources assessment. However, such modelling endeavours require a large amount of data. Generally, governmental departments produce and maintain these data sets which make it difficult to obtain this data due to bureaucratic constraints. In some countries, the availability and quality of geospatial and climate datasets remain a critical issue due to many factors such as lacking of ground station, expertise, technology, financial support and war time. To overcome this problem, this research used public domain datasets from the Internet as "input" to a streamflow model. The intention is simulate daily and monthly streamflow of the Johor River Basin in Malaysia. The model used is the Soil and Water Assessment Tool (SWAT). As input free data including a digital elevation model (DEM), land use information, soil and climate data were used. The model was validated by in-situ streamflow information obtained from Rantau Panjang station for the year 2006. The coefficient of determination and Nash-Sutcliffe efficiency were 0.35/0.02 for daily simulated streamflow and 0.92/0.21 for monthly simulated streamflow, respectively. The results show that free data can provide a better simulation at a monthly scale compared to a daily basis in a tropical region. A sensitivity analysis and calibration procedure should be conducted in order to maximize the "goodness-of-fit" between simulated and observed streamflow. The application of Internet datasets promises an acceptable performance of streamflow modelling. This research demonstrates that public domain data is suitable for streamflow modelling in a tropical river basin within acceptable accuracy.

  4. In-situ measurements of soil-water conductivity

    International Nuclear Information System (INIS)

    Murphy, C.E.

    1978-01-01

    Radionuclides and other environmentally important materials often move in association with water. In terrestrial ecosystems, the storage and movement of water in the soil is of prime importance to the hydrologic cycle of the ecosystem. The soil-water conductivity (the rate at which water moves through the soil) is a necessary input to models of soil-water movement. In situ techniques for measurement of soil-water conductivity have the advantage of averaging soil-water properties over larger areas than most laboratory methods. The in situ techniques also cause minimum disturbance of the soil under investigation. Results of measurements using a period of soil-water drainage after initial wetting indicate that soil-water conductivity and its variation with soil-water content can be determined with reasonable accuracy for the plot where the measurements were made. Further investigations are being carried out to look at variability between plots within a soil type

  5. Improving the spatial representation of basin hydrology and flow processes in the SWAT model

    OpenAIRE

    Rathjens, Hendrik

    2014-01-01

    This dissertation aims at improving the spatial representation of basin hydrology and flow processes in the SWAT model. Die vorliegende Dissertation stellt die methodischen Grundlage zur räumlich differenzierten Modellierung mit dem Modell SWAT dar.

  6. Temporal diagnostic analysis of the SWAT model to detect dominant periods of poor model performance

    Science.gov (United States)

    Guse, Björn; Reusser, Dominik E.; Fohrer, Nicola

    2013-04-01

    Hydrological models generally include thresholds and non-linearities, such as snow-rain-temperature thresholds, non-linear reservoirs, infiltration thresholds and the like. When relating observed variables to modelling results, formal methods often calculate performance metrics over long periods, reporting model performance with only few numbers. Such approaches are not well suited to compare dominating processes between reality and model and to better understand when thresholds and non-linearities are driving model results. We present a combination of two temporally resolved model diagnostic tools to answer when a model is performing (not so) well and what the dominant processes are during these periods. We look at the temporal dynamics of parameter sensitivities and model performance to answer this question. For this, the eco-hydrological SWAT model is applied in the Treene lowland catchment in Northern Germany. As a first step, temporal dynamics of parameter sensitivities are analyzed using the Fourier Amplitude Sensitivity test (FAST). The sensitivities of the eight model parameters investigated show strong temporal variations. High sensitivities were detected for two groundwater (GW_DELAY, ALPHA_BF) and one evaporation parameters (ESCO) most of the time. The periods of high parameter sensitivity can be related to different phases of the hydrograph with dominances of the groundwater parameters in the recession phases and of ESCO in baseflow and resaturation periods. Surface runoff parameters show high parameter sensitivities in phases of a precipitation event in combination with high soil water contents. The dominant parameters give indication for the controlling processes during a given period for the hydrological catchment. The second step included the temporal analysis of model performance. For each time step, model performance was characterized with a "finger print" consisting of a large set of performance measures. These finger prints were clustered into

  7. Cooperation on impingement wastage experiment of Mod. 9Cr-1Mo steel using SWAT-1R sodium-water reaction test facility

    International Nuclear Information System (INIS)

    Beauchamp, F.; Allou, A.; Nishimura, M.; Umeda, R.

    2013-01-01

    Conclusion: • 6 experiments were carried out in the SWAT-1R facility of JAEA Oarai R&D Center to study the wastage resistance of the Mod. 9Cr-1Mo steel (T91) straight tubes. • These experiments were performed under the cooperation between CEA and JAEA. • The experiments were conducted successfully: - all the tubes were punctured by the reaction jet, - wastage and steam/water leak rates were obtained, - experimental results brought some new determining sets of wastage data on T91. • This fruitful cooperation has contributed to: - expanding the wastage database on T91, - upgrading wastage rates prediction from modelling, - the safety demonstration of future steam generators units

  8. Assessing the impacts of sustainable agricultural practices for water quality improvements in the Vouga catchment (Portugal) using the SWAT model.

    Science.gov (United States)

    Rocha, João; Roebeling, Peter; Rial-Rivas, María Ermitas

    2015-12-01

    The extensive use of fertilizers has become one of the most challenging environmental issues in agricultural catchment areas. In order to reduce the negative impacts from agricultural activities and to accomplish the objectives of the European Water Framework Directive we must consider the implementation of sustainable agricultural practices. In this study, we assess sustainable agricultural practices based on reductions in N-fertilizer application rates (from 100% to 0%) and N-application methods (single, split and slow-release) across key agricultural land use classes in the Vouga catchment, Portugal. The SWAT model was used to relate sustainable agricultural practices, agricultural yields and N-NO3 water pollution deliveries. Results show that crop yields as well as N-NO3 exportation rates decrease with reductions in N-application rates and single N-application methods lead to lower crop yields and higher N-NO3 exportation rates as compared to split and slow-release N-application methods. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Erosivity, surface runoff, and soil erosion estimation using GIS-coupled runoff-erosion model in the Mamuaba catchment, Brazil.

    Science.gov (United States)

    Marques da Silva, Richarde; Guimarães Santos, Celso Augusto; Carneiro de Lima Silva, Valeriano; Pereira e Silva, Leonardo

    2013-11-01

    This study evaluates erosivity, surface runoff generation, and soil erosion rates for Mamuaba catchment, sub-catchment of Gramame River basin (Brazil) by using the ArcView Soil and Water Assessment Tool (AvSWAT) model. Calibration and validation of the model was performed on monthly basis, and it could simulate surface runoff and soil erosion to a good level of accuracy. Daily rainfall data between 1969 and 1989 from six rain gauges were used, and the monthly rainfall erosivity of each station was computed for all the studied years. In order to evaluate the calibration and validation of the model, monthly runoff data between January 1978 and April 1982 from one runoff gauge were used as well. The estimated soil loss rates were also realistic when compared to what can be observed in the field and to results from previous studies around of catchment. The long-term average soil loss was estimated at 9.4 t ha(-1) year(-1); most of the area of the catchment (60%) was predicted to suffer from a low- to moderate-erosion risk (soil erosion was estimated to exceed > 12 t ha(-1) year(-1). Expectedly, estimated soil loss was significantly correlated with measured rainfall and simulated surface runoff. Based on the estimated soil loss rates, the catchment was divided into four priority categories (low, moderate, high and very high) for conservation intervention. The study demonstrates that the AvSWAT model provides a useful tool for soil erosion assessment from catchments and facilitates the planning for a sustainable land management in northeastern Brazil.

  10. Phytoecological evaluation with detail floristic appraisal of the vegetation arround Malam Jabba, Swat, Pakistan.

    Science.gov (United States)

    Rashid, Abdur; Swati, Mohammad Farooq; Sher, Hassan; Al-Yemeni, Mohammad N

    2011-12-01

    To determine the present status of plant communities and their possible association with the habitat in Malam Jabba, Swat, Pakistan. A study on the phytoecology was conducted in various ecologically important sites of Malam Jabba, Swat, Pakistan from 2002 to 2004. The altitude of these sites ranged from 1 200 m to 3 200 m. Quadrat method was used for evaluation of plants communities and the data on these attributes was converted to relative values. The plant communities were named after 3 leading species with highest importance values. Biological spectrum of the flora based on the life form was prepared by following Raunkiar's life form classes. The floristic composition and structure of the study area were found to be 200 species belonging to 75 families. Asteraceae, Lamiaceae and Poaceae were important families in the study area. The biological spectrum showed that therophytic and hemicrytophytic life form and micro-nonophyllous leaf sizes were dominant in the area. The air and soil temperatures were decreasing with increasing elevation. Both the air and soil temperatures were relatively higher in south slopes than on the northeast slopes. The vegetation analysis of the area indicated eleven plant communities around the area. The present vegetation is the relics of moist temperate coniferous forest in the area. The communities reflect highly deteriorated conditions. Both the structure and composition of the surrounding vegetation were associated with the types of habitats. The conservation of the remaining populations of the reported communities will be best achieved by proper time of sustainable harvesting. It is only possible with the participation of local communities.

  11. A multi basin SWAT model analysis of runoff and sedimentation in the Blue Nile, Ethiopia

    Directory of Open Access Journals (Sweden)

    Z. M. Easton

    2010-10-01

    Full Text Available A multi basin analysis of runoff and erosion in the Blue Nile Basin, Ethiopia was conducted to elucidate sources of runoff and sediment. Erosion is arguably the most critical problem in the Blue Nile Basin, as it limits agricultural productivity in Ethiopia, degrades benthos in the Nile, and results in sedimentation of dams in downstream countries. A modified version of the Soil and Water Assessment Tool (SWAT model was developed to predict runoff and sediment losses from the Ethiopian Blue Nile Basin. The model simulates saturation excess runoff from the landscape using a simple daily water balance coupled to a topographic wetness index in ways that are consistent with observed runoff processes in the basin. The spatial distribution of landscape erosion is thus simulated more correctly. The model was parameterized in a nested design for flow at eight and sediment at three locations in the basin. Subbasins ranged in size from 1.3 to 174 000 km2, and interestingly, the partitioning of runoff and infiltrating flow could be predicted by topographic information. Model predictions showed reasonable accuracy (Nash Sutcliffe Efficiencies ranged from 0.53–0.92 with measured data across all sites except Kessie, where the water budget could not be closed; however, the timing of flow was well captured. Runoff losses increased with rainfall during the monsoonal season and were greatest from areas with shallow soils and large contributing areas. Analysis of model results indicate that upland landscape erosion dominated sediment delivery to the main stem of the Blue Nile in the early part of the growing season when tillage occurs and before the soil was wetted up and plant cover was established. Once plant cover was established in mid August landscape erosion was negligible and sediment export was dominated by channel processes and re-suspension of landscape sediment deposited early in the growing season. These results imply that targeting small

  12. Atmospheric Radiation Measurement Program facilities newsletter, January 2001.; TOPICAL

    International Nuclear Information System (INIS)

    Holdridge, D. J.

    2001-01-01

    In the realm of global climate modeling, numerous variables affect the state of the atmosphere and climate. One important area is soil moisture and temperature. The ARM Program uses several types of instruments to gather soil moisture information. An example is the soil water and temperature system (SWATS). A SWATS is located at each of 21 extended facility sites within the CART site boundary. Each system is configured to measure soil moisture and temperature at eight distinct subsurface levels. A special set of probes used in the SWATS measures soil temperature, soil-water potential, and volumetric water content. Sensors are placed at eight different depths below the soil surface, starting at approximately 5 cm (2 in.) below the surface and ending as deep as 175 cm (69 in.). Each site has two identical sets of probes buried 1 m (3.3 ft) apart, to yield duplicate measurements as a quality control measure. At some sites, impenetrable soil or rock layers prevented installation of probes at the deeper levels. The sensors are connected to an electronic data logger that collects and stores the data. Communication equipment transfers data from the site. All of the electronic equipment is housed in a weatherproof enclosure mounted on a concrete slab

  13. Future integrated aquifer vulnerability assessment considering land use / land cover and climate change using DRASTIC and SWAT

    Science.gov (United States)

    Jang, W.; Engel, B.; Chaubey, I.

    2015-12-01

    Climate change causes significant changes to temperature regimes and precipitation patterns across the world. Such alterations in climate pose serious risks for not only inland freshwater ecosystems but also groundwater systems, and may adversely affect numerous critical services they provide to humans. All groundwater results from precipitation, and precipitation is affected by climate change. Climate change is also influenced by land use / land cover (LULC) change and vice versa. According to Intergovernmental Panel on Climate Change (IPCC) reports, climate change is caused by global warming which is generated by the increase of greenhouse gas (GHG) emissions in the atmosphere. LULC change is a major driving factor causing an increase in GHG emissions. LULC change data (years 2006-2100) will be produced by the Land Transformation Model (LTM) which simulates spatial patterns of LULC change over time. MIROC5 (years 2006-2100) will be obtained considering GCMs and ensemble characteristics such as resolution and trend of temperature and precipitation which is a consistency check with observed data from local weather stations and historical data from GCMs output data. Thus, MIROC5 will be used to account for future climate change scenarios and relationship between future climate change and alteration of groundwater quality in this study. For efficient groundwater resources management, integrated aquifer vulnerability assessments (= intrinsic vulnerability + hazard potential assessment) are required. DRASTIC will be used to evaluate intrinsic vulnerability, and aquifer hazard potential will be evaluated by Soil and Water Assessment Tool (SWAT) which can simulate pollution potential from surface and transport properties of contaminants. Thus, for effective integrated aquifer vulnerability assessment for LULC and climate change in the Midwestern United States, future projected LULC and climate data from the LTM and GCMs will be incorporated with DRASTIC and SWAT. It is

  14. Estimating shallow groundwater recharge in the headwaters of the Liverpool Plains using SWAT

    OpenAIRE

    Sun, H.; Cornish, P.S.

    2005-01-01

    Metadata only record A physically based catchment model (SWAT) was used for recharge estimation in the headwaters of the Liverpool Plains in NSW, Australia. The study used water balance modelling at the catchment scale to derive parameters for long-term recharge estimation. The derived parameters were further assessed at a subcatchment scale. Modelling results suggest that recharge occurs only in wet years, and is dominated by a few significant years or periods. The results were matched by...

  15. Measured and simulated soil water evaporation from four Great Plains soils

    Science.gov (United States)

    The amount of soil water lost during stage one and stage two soil water evaporation is of interest to crop water use modelers. The ratio of measured soil surface temperature (Ts) to air temperature (Ta) was tested as a signal for the transition in soil water evaporation from stage one to stage two d...

  16. Effects of Input Data Content on the Uncertainty of Simulating Water Resources

    Directory of Open Access Journals (Sweden)

    Carla Camargos

    2018-05-01

    Full Text Available The widely used, partly-deterministic Soil and Water Assessment Tool (SWAT requires a large amount of spatial input data, such as a digital elevation model (DEM, land use, and soil maps. Modelers make an effort to apply the most specific data possible for the study area to reflect the heterogeneous characteristics of landscapes. Regional data, especially with fine resolution, is often preferred. However, such data is not always available and can be computationally demanding. Despite being coarser, global data are usually free and available to the public. Previous studies revealed the importance for single investigations of different input maps. However, it remains unknown whether higher-resolution data can lead to reliable results. This study investigates how global and regional input datasets affect parameter uncertainty when estimating river discharges. We analyze eight different setups for the SWAT model for a catchment in Luxembourg, combining different land-use, elevation, and soil input data. The Metropolis–Hasting Markov Chain Monte Carlo (MCMC algorithm is used to infer posterior model parameter uncertainty. We conclude that our higher resolved DEM improves the general model performance in reproducing low flows by 10%. The less detailed soil-map improved the fit of low flows by 25%. In addition, more detailed land-use maps reduce the bias of the model discharge simulations by 50%. Also, despite presenting similar parameter uncertainty (P-factor ranging from 0.34 to 0.41 and R-factor from 0.41 to 0.45 for all setups, the results show a disparate parameter posterior distribution. This indicates that no assessment of all sources of uncertainty simultaneously is compensated by the fitted parameter values. We conclude that our result can give some guidance for future SWAT applications in the selection of the degree of detail for input data.

  17. Predicting impacts of increased CO{sub 2} and climate change on the water cycle and water quality in the semiarid James River Basin of the Midwestern USA

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yiping, E-mail: ywu@usgs.gov [ASRC Research and Technology Solutions, contractor to the U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center, Sioux Falls, SD 57198 (United States); Liu, Shuguang, E-mail: sliu@usgs.gov [U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center, Sioux Falls, SD 57198 (United States); Geographic Information Science Center of Excellence, South Dakota State University, Brookings, SD 57007 (United States); Gallant, Alisa L., E-mail: gallant@usgs.gov [U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center, Sioux Falls, SD 57198 (United States); Geographic Information Science Center of Excellence, South Dakota State University, Brookings, SD 57007 (United States)

    2012-07-15

    Emissions of greenhouse gases and aerosols from human activities continue to alter the climate and likely will have significant impacts on the terrestrial hydrological cycle and water quality, especially in arid and semiarid regions. We applied an improved Soil and Water Assessment Tool (SWAT) to evaluate impacts of increased atmospheric CO{sub 2} concentration and potential climate change on the water cycle and nitrogen loads in the semiarid James River Basin (JRB) in the Midwestern United States. We assessed responses of water yield, soil water content, groundwater recharge, and nitrate nitrogen (NO{sub 3}-N) load under hypothetical climate-sensitivity scenarios in terms of CO{sub 2}, precipitation, and air temperature. We extended our predictions of the dynamics of these hydrological variables into the mid-21st century with downscaled climate projections integrated across output from six General Circulation Models. Our simulation results compared against the baseline period 1980 to 2009 suggest the JRB hydrological system is highly responsive to rising levels of CO{sub 2} concentration and potential climate change. Under our scenarios, substantial decrease in precipitation and increase in air temperature by the mid-21st century could result in significant reduction in water yield, soil water content, and groundwater recharge. Our model also estimated decreased NO{sub 3}-N load to streams, which could be beneficial, but a concomitant increase in NO{sub 3}-N concentration due to a decrease in streamflow likely would degrade stream water and threaten aquatic ecosystems. These results highlight possible risks of drought, water supply shortage, and water quality degradation in this basin. - Highlights: Black-Right-Pointing-Pointer We used a modified version of SWAT to more accurately simulate the effects of CO{sub 2}. Black-Right-Pointing-Pointer Our sensitivity analysis indicated this basin is very responsive to climate change. Black

  18. The Pennsylvania Phosphorus Index and TopoSWAT: A comparison of transport components and approaches

    Science.gov (United States)

    The regional Chesapeake Bay Conservation Innovation Grant Initiative includes comparison of TopoSWAT results and Phosphorus Index (P Index) evaluations of eight study watersheds throughout the Chesapeake Bay watershed. While similarities exist between the P Index and TopoSWAT, further comparison of ...

  19. SWAT-MODSIM-PSO optimization of multi-crop planning in the Karkheh River Basin, Iran, under the impacts of climate change.

    Science.gov (United States)

    Fereidoon, Majid; Koch, Manfred

    2018-07-15

    Agriculture is one of the environmental/economic sectors that may adversely be affected by climate change, especially, in already nowadays water-scarce regions, like the Middle East. One way to cope with future changes in absolute as well as seasonal (irrigation) water amounts can be the adaptation of the agricultural crop pattern in a region, i.e. by planting crops which still provide high yields and so economic benefits to farmers under such varying climate conditions. To do this properly, the whole cascade starting from climate change, effects on hydrology and surface water availability, subsequent effects on crop yield, agricultural areas available, and, finally, economic value of a multi-crop cultivation pattern must be known. To that avail, a complex coupled simulation-optimization tool SWAT-LINGO-MODSIM-PSO (SLMP) has been developed here and used to find the future optimum cultivation area of crops for the maximization of the economic benefits in five irrigation-fed agricultural plains in the south of the Karkheh River Basin (KRB) southwest Iran. Starting with the SWAT distributed hydrological model, the KR-streamflow as well as the inflow into the Karkheh-reservoir, as the major storage of irrigation water, is calibrated and validated, based on 1985-2004 observed discharge data. In the subsequent step, the SWAT-predicted streamflow is fed into the MODSIM river basin Decision Support System to simulate and optimize the water allocation between different water users (agricultural, environmental, municipal and industrial) under standard operating policy (SOP) rules. The final step is the maximization of the economic benefit in the five agricultural plains through constrained PSO (particle swarm optimization) by adjusting the cultivation areas (decision variables) of different crops (wheat, barley, maize and "others"), taking into account their specific prizes and optimal crop yields under water deficiency, with the latter computed in the LINGO

  20. Measuring Soil Water Potential for Water Management in Agriculture: A Review

    Directory of Open Access Journals (Sweden)

    Marco Bittelli

    2010-05-01

    Full Text Available Soil water potential is a soil property affecting a large variety of bio-physical processes, such as seed germination, plant growth and plant nutrition. Gradients in soil water potential are the driving forces of water movement, affecting water infiltration, redistribution, percolation, evaporation and plants’ transpiration. The total soil water potential is given by the sum of gravity, matric, osmotic and hydrostatic potential. The quantification of the soil water potential is necessary for a variety of applications both in agricultural and horticultural systems such as optimization of irrigation volumes and fertilization. In recent decades, a large number of experimental methods have been developed to measure the soil water potential, and a large body of knowledge is now available on theory and applications. In this review, the main techniques used to measure the soil water potential are discussed. Subsequently, some examples are provided where the measurement of soil water potential is utilized for a sustainable use of water resources in agriculture.

  1. Evaluating the importance of surface soil contributions to reservoir sediment in alpine environments: a combined modelling and fingerprinting approach in the Posets-Maladeta Natural Park

    Science.gov (United States)

    Palazón, L.; Gaspar, L.; Latorre, B.; Blake, W. H.; Navas, A.

    2014-09-01

    Soil in alpine environments plays a key role in the development of ecosystem services and in order to maintain and preserve this important resource, information is required on processes that lead to soil erosion. Similar to other mountain alpine environments, the Benasque catchment is characterised by temperatures below freezing that can last from November to April, intense rainfall events, typically in spring and autumn, and rugged topography which makes assessment of erosion challenging. Indirect approaches to soil erosion assessment, such as combined model approaches, offer an opportunity to evaluate soil erosion in such areas. In this study (i) the SWAT (Soil and Water Assessment Tool) hydrological and erosion model and (ii) sediment fingerprinting procedures were used in parallel to assess the viability of a combined modelling and tracing approach to evaluate soil erosion processes in the area of the Posets-Maladeta Natural Park (central Spanish Pyrenees). Soil erosion rates and sediment contribution of potential sediment sources defined by soil type (Kastanozems/Phaeozems; Fluvisols and Cambisols) were assessed. The SWAT model suggested that, with the highest specific sediment yields, Cambisols are the main source of sediment in the Benasque catchment and Phaeozems and Fluvisols were identified as the lowest sediment contributors. Spring and winter model runs gave the highest and lowest specific sediment yield, respectively. In contrast, sediment fingerprinting analysis identified Fluvisols, which dominate the riparian zone, as the main sediment source at the time of sampling. This indicates the importance of connectivity as well as potential differences in the source dynamic of material in storage versus that transported efficiently from the system at times of high flow. The combined approach enabled us to better understand soil erosion processes in the Benasque alpine catchment, wherein SWAT identified areas of potential high sediment yield in large flood

  2. A Comparison of Soil-Water Sampling Techniques

    Science.gov (United States)

    Tindall, J. A.; Figueroa-Johnson, M.; Friedel, M. J.

    2007-12-01

    The representativeness of soil pore water extracted by suction lysimeters in ground-water monitoring studies is a problem that often confounds interpretation of measured data. Current soil water sampling techniques cannot identify the soil volume from which a pore water sample is extracted, neither macroscopic, microscopic, or preferential flowpath. This research was undertaken to compare values of extracted suction lysimeters samples from intact soil cores with samples obtained by the direct extraction methods to determine what portion of soil pore water is sampled by each method. Intact soil cores (30 centimeter (cm) diameter by 40 cm height) were extracted from two different sites - a sandy soil near Altamonte Springs, Florida and a clayey soil near Centralia in Boone County, Missouri. Isotopically labeled water (O18? - analyzed by mass spectrometry) and bromide concentrations (KBr- - measured using ion chromatography) from water samples taken by suction lysimeters was compared with samples obtained by direct extraction methods of centrifugation and azeotropic distillation. Water samples collected by direct extraction were about 0.25 ? more negative (depleted) than that collected by suction lysimeter values from a sandy soil and about 2-7 ? more negative from a well structured clayey soil. Results indicate that the majority of soil water in well-structured soil is strongly bound to soil grain surfaces and is not easily sampled by suction lysimeters. In cases where a sufficient volume of water has passed through the soil profile and displaced previous pore water, suction lysimeters will collect a representative sample of soil pore water from the sampled depth interval. It is suggested that for stable isotope studies monitoring precipitation and soil water, suction lysimeter should be installed at shallow depths (10 cm). Samples should also be coordinated with precipitation events. The data also indicate that each extraction method be use to sample a different

  3. The SWAT approach for pipeline watercourse crossings

    Energy Technology Data Exchange (ETDEWEB)

    Jasper, Steve [WorleyParsons Calgary, Pipeline Systems Business Unit, Calgary, AB (Canada)], email: steve.jasper@worleyparsons.com; Harris, Jason D. [Triton Environmental Consultants Ltd., Terrace, British Columbia (Canada)], email: jharris@triton-env.com; Doering, Raymond [Enbridge Northern Gateway Pipelines, Calgary, AB (Canada)], email: raymond.doering@enbridge.com

    2010-07-01

    In a pipeline project, watercourse crossings are an important environmental and technical challenge. In identifying the best crossing location and method, many factors must be taken into account such as fish habitat, access, geotechnical and hydrological issues. The aim of this paper is to present a program used in a major pipeline project to assess crossings of sensitive watercourses. This program was implemented in the Enbridge Northern Gateway project which extends from Bruderheim, Alberta, to Kitimat, British Columbia, crossing over 750 watercourses. A sensitive watercourse assessment (SWAT) team composed of a fisheries biologist, a pipeline watercourse construction specialist and other personnel carried out assessments on the 200 sensitive watercourses identified. This program led to recommendations to shift the crossing location at 40% of the sensitive sites. This project showed that setting up a SWAT team be helpful in choosing the best location, method and construction timing for a crossing.

  4. Characterization of emerald from Gujar Kili, Swat, Pakistan

    International Nuclear Information System (INIS)

    Qureshi, A.A.; Akram, M.; Khattak, N.U.; Khan, H.A.

    1997-01-01

    The green gem variety of beryl family having Cr as colouring agent is known as emerald. Thirteen emerald occurrences are known from northern Pakistan. These occurrences are in Mohamand Agency, Bajuar Agency, Swat District, Indus Kohistan and Gilgit which are located exclusively in the metamorphosed ophiolitic melange of the Indus Suture Zone. The ophiolitic rocks of this suture are the source of Cr which colours the beryl to make it emerald. Studies have been carried out for the characterisation of emerald from one locality, Gujar Kili in Swat district, using petrographic, XRD, XRF and fission track techniques. The Gujar Kili emerald is of green to deep green colour good quality gemstone and contains inclusions in some cases. In general, the Gujar Kili emerald has high Mg, Fe, Cr, V and Al values as compared to average composition of natural emeralds of Swat District. Two mineralogical phases, namely beryl and chrysoberyl have been identified in the four Gujar Kili samples analysed by us. The XRD data for the beryl and chrysoberyl is also presented. The Cr which colours the beryl to make it emerald, does not substitute any element in the beryl structure, rather it is present as an impurity in the crystal matrix. A new etchant to reveal fission tracks in a very short time is also being reported in this paper. (author)

  5. Impact assessment of salt iodization on the prevalence of goiter in district Swat

    International Nuclear Information System (INIS)

    Akhtar, J.; Zahoor-Ullah; Paracha, P.I.; Lutfullah, G.

    2004-01-01

    Background: To eliminate Iodine Deficiency Disorders, (IDD) universal salt iodization is the widely practiced intervention. District Swat (a hilly area of NWFP, highly endemic for IDDs is selected as a first model district of the province for salt iodization program. Objectives: To find out the proportion of the families using iodized salt, iodine contents of the salts used by the families, urinary iodine levels in school children and the effect on goiter prevalence in Swat selected as a model district in 1998. Subject and Methods: The study was conducted in 960 children of both sexes, age 8-10 years in primary schools of district Swat in the year 2000. A replicate model used for base line study in 1998 was adopted. The students were clinically examined for goiter using palpation method. 960 edible salt samples for its iodine content and 240 urine samples for iodine level were analysed. Results: The overall goiter prevalence was found to be 52 and 45% in boys and girls respectively. 23% salt samples were found un-iodized, while in 25.6% the iodine content was less than 7ppm. The results revealed 18% decrease in total goiter rate and 35% increase in the use of iodized salt from the base line survey conducted in 1998, in school children of district Swat. Conclusions: The study revealed that since the area of Swat is still highly endemic for Iodine Deficiency Disorders, sustained efforts are required to ensure 100% salt iodization. (author)

  6. Modeling of soil erosion and sediment transport in the East River Basin in southern China

    Science.gov (United States)

    Wu, Yping; Chen, Ji

    2012-01-01

    Soil erosion is a major global environmental problem that has caused many issues involving land degradation, sedimentation of waterways, ecological degradation, and nonpoint source pollution. Therefore, it is significant to understand the processes of soil erosion and sediment transport along rivers, and this can help identify the erosion prone areas and find potential measures to alleviate the environmental effects. In this study, we investigated soil erosion and identified the most seriously eroded areas in the East River Basin in southern China using a physically-based model, Soil and Water Assessment Tool (SWAT). We also introduced a classical sediment transport method (Zhang) into SWAT and compared it with the built-in Bagnold method in simulating sediment transport process along the river. The derived spatial soil erosion map and land use based erosion levels can explicitly illustrate the identification and prioritization of the critical soil erosion areas in this basin. Our results also indicate that erosion is quite sensitive to soil properties and slope. Comparison of Bagnold and Zhang methods shows that the latter can give an overall better performance especially in tracking the peak and low sediment concentrations along the river. We also found that the East River is mainly characterized by sediment deposition in most of the segments and at most times of a year. Overall, the results presented in this paper can provide decision support for watershed managers about where the best management practices (conservation measures) can be implemented effectively and at low cost. The methods we used in this study can also be of interest in sediment modeling for other basins worldwide.

  7. Modeling of soil erosion and sediment transport in the East River Basin in southern China.

    Science.gov (United States)

    Wu, Yiping; Chen, Ji

    2012-12-15

    Soil erosion is a major global environmental problem that has caused many issues involving land degradation, sedimentation of waterways, ecological degradation, and nonpoint source pollution. Therefore, it is significant to understand the processes of soil erosion and sediment transport along rivers, and this can help identify the erosion prone areas and find potential measures to alleviate the environmental effects. In this study, we investigated soil erosion and identified the most seriously eroded areas in the East River Basin in southern China using a physically-based model, Soil and Water Assessment Tool (SWAT). We also introduced a classical sediment transport method (Zhang) into SWAT and compared it with the built-in Bagnold method in simulating sediment transport process along the river. The derived spatial soil erosion map and land use based erosion levels can explicitly illustrate the identification and prioritization of the critical soil erosion areas in this basin. Our results also indicate that erosion is quite sensitive to soil properties and slope. Comparison of Bagnold and Zhang methods shows that the latter can give an overall better performance especially in tracking the peak and low sediment concentrations along the river. We also found that the East River is mainly characterized by sediment deposition in most of the segments and at most times of a year. Overall, the results presented in this paper can provide decision support for watershed managers about where the best management practices (conservation measures) can be implemented effectively and at low cost. The methods we used in this study can also be of interest in sediment modeling for other basins worldwide. Published by Elsevier B.V.

  8. Characterization of soil water content variability and soil texture using GPR groundwave techniques

    Energy Technology Data Exchange (ETDEWEB)

    Grote, K.; Anger, C.; Kelly, B.; Hubbard, S.; Rubin, Y.

    2010-08-15

    Accurate characterization of near-surface soil water content is vital for guiding agricultural management decisions and for reducing the potential negative environmental impacts of agriculture. Characterizing the near-surface soil water content can be difficult, as this parameter is often both spatially and temporally variable, and obtaining sufficient measurements to describe the heterogeneity can be prohibitively expensive. Understanding the spatial correlation of near-surface soil water content can help optimize data acquisition and improve understanding of the processes controlling soil water content at the field scale. In this study, ground penetrating radar (GPR) methods were used to characterize the spatial correlation of water content in a three acre field as a function of sampling depth, season, vegetation, and soil texture. GPR data were acquired with 450 MHz and 900 MHz antennas, and measurements of the GPR groundwave were used to estimate soil water content at four different times. Additional water content estimates were obtained using time domain reflectometry measurements, and soil texture measurements were also acquired. Variograms were calculated for each set of measurements, and comparison of these variograms showed that the horizontal spatial correlation was greater for deeper water content measurements than for shallower measurements. Precipitation and irrigation were both shown to increase the spatial variability of water content, while shallowly-rooted vegetation decreased the variability. Comparison of the variograms of water content and soil texture showed that soil texture generally had greater small-scale spatial correlation than water content, and that the variability of water content in deeper soil layers was more closely correlated to soil texture than were shallower water content measurements. Lastly, cross-variograms of soil texture and water content were calculated, and co-kriging of water content estimates and soil texture

  9. SWAT4.0 - The integrated burnup code system driving continuous energy Monte Carlo codes MVP, MCNP and deterministic calculation code SRAC

    International Nuclear Information System (INIS)

    Kashima, Takao; Suyama, Kenya; Takada, Tomoyuki

    2015-03-01

    There have been two versions of SWAT depending on details of its development history: the revised SWAT that uses the deterministic calculation code SRAC as a neutron transportation solver, and the SWAT3.1 that uses the continuous energy Monte Carlo code MVP or MCNP5 for the same purpose. It takes several hours, however, to execute one calculation by the continuous energy Monte Carlo code even on the super computer of the Japan Atomic Energy Agency. Moreover, two-dimensional burnup calculation is not practical using the revised SWAT because it has problems on production of effective cross section data and applying them to arbitrary fuel geometry when a calculation model has multiple burnup zones. Therefore, SWAT4.0 has been developed by adding, to SWAT3.1, a function to utilize the deterministic code SARC2006, which has shorter calculation time, as an outer module of neutron transportation solver for burnup calculation. SWAT4.0 has been enabled to execute two-dimensional burnup calculation by providing an input data template of SRAC2006 to SWAT4.0 input data, and updating atomic number densities of burnup zones in each burnup step. This report describes outline, input data instruction, and examples of calculations of SWAT4.0. (author)

  10. A SWAT model validation of nested-scale contemporaneous stream flow, suspended sediment and nutrients from a multiple-land-use watershed of the central USA.

    Science.gov (United States)

    Zeiger, Sean J; Hubbart, Jason A

    2016-12-01

    There is an ongoing need to validate the accuracy of predictive model simulated pollutant yields, particularly from multiple-land-use (i.e. forested, agricultural, and urban) watersheds. However, there are seldom sufficient observed data sets available that supply requisite spatial and temporal resolution and coupled multi-parameter constituents for rigorous model performance assessment. Four years of hydroclimate and water quality data were used to validate SWAT model estimates of monthly stream flow, suspended sediment, total phosphorus, nitrate, nitrite, ammonium, and total inorganic nitrogen from 5 nested-scale gauging sites located in a multiple-land-use watershed of the central USA. The uncalibrated SWAT model satisfactorily simulated monthly stream flow with Nash-Sutcliffe efficiency (NSE) values ranging from 0.50 near the headwaters, to 0.75 near the watershed outlet. However, the uncalibrated model did not accurately simulate monthly sediment, total phosphorus, nitrate, nitrite, ammonium, and total inorganic nitrogen with NSE valuesSWAT model to multiple gauging sites within the watershed improved estimates of monthly stream flow (NSE=0.83), sediment (NSE=0.78), total phosphorus (NSE=0.81), nitrate (NSE=0.90), and total inorganic nitrogen (NSE=0.86). However, NSE values were model performance decreased for sediment, nitrate, and total inorganic nitrogen during the validation period with NSE valuesSWAT model to multiple gauging sites and provide guidance to SWAT model (or similar models) users wishing to improve model performance at multiple scales. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Baseflow simulation using SWAT model in an inland river basin in Tianshan Mountains, Northwest China

    Directory of Open Access Journals (Sweden)

    Y. Luo

    2012-04-01

    Full Text Available Baseflow is an important component in hydrological modeling. The complex streamflow recession process complicates the baseflow simulation. In order to simulate the snow and/or glacier melt dominated streamflow receding quickly during the high-flow period but very slowly during the low-flow period in rivers in arid and cold northwest China, the current one-reservoir baseflow approach in SWAT (Soil Water Assessment Tool model was extended by adding a slow- reacting reservoir and applying it to the Manas River basin in the Tianshan Mountains. Meanwhile, a digital filter program was employed to separate baseflow from streamflow records for comparisons. Results indicated that the two-reservoir method yielded much better results than the one-reservoir one in reproducing streamflow processes, and the low-flow estimation was improved markedly. Nash-Sutcliff efficiency values at the calibration and validation stages are 0.68 and 0.62 for the one-reservoir case, and 0.76 and 0.69 for the two-reservoir case. The filter-based method estimated the baseflow index as 0.60, while the model-based as 0.45. The filter-based baseflow responded almost immediately to surface runoff occurrence at onset of rising limb, while the model-based responded with a delay. In consideration of watershed surface storage retention and soil freezing/thawing effects on infiltration and recharge during initial snowmelt season, a delay response is considered to be more reasonable. However, a more detailed description of freezing/thawing processes should be included in soil modules so as to determine recharge to aquifer during these processes, and thus an accurate onset point of rising limb of the simulated baseflow.

  12. Soil Water: Advanced Crop and Soil Science. A Course of Study.

    Science.gov (United States)

    Miller, Larry E.

    The course of study represents the fourth of six modules in advanced crop and soil science and introduces the agriculture student to the topic of soil water. Upon completing the three day module, the student will be able to classify water as to its presence in the soil, outline the hydrological cycle, list the ways water is lost from the soil,…

  13. Soil-Water Repellency Characteristic Curves for Soil Profiles with Organic Carbon Gradients

    DEFF Research Database (Denmark)

    Wijewardana, Nadeeka Senani; Muller, Karin; Moldrup, Per

    2016-01-01

    Soil water repellency (SWR) of soils is a property with significant consequences for agricultural water management, water infiltration, contaminant transport, and for soil erosion. It is caused by the presence of hydrophobic agents on mineral grain surfaces. Soils were samples in different depths......, and the sessile drop method (SDM). The aim to (i) compare the methods, (ii) characterize the soil-water repellency characteristic curves (SWRCC) being SWR as a function of the volumetric soil-water content (θ) or matric potential (ψ), and (iii) find relationships between SWRCC parameters and SOC content. The WDPT...... at three forest sites in Japan and three pasture sites in New Zealand, covering soil organic carbon (SOC) contents between 1 and 26%. The SWR was measured over a range of water contents by three common methods; the water drop penetration time (WDPT) test, the molarity of an ethanol droplet (MED) method...

  14. Watershed Modeling with ArcSWAT and SUFI2 In Cisadane Catchment Area: Calibration and Validation of River Flow Prediction

    Directory of Open Access Journals (Sweden)

    Iwan Ridwansyah

    2014-04-01

    Full Text Available Increasing of natural resources utilization as a result of population growth and economic development has caused severe damage on the watershed. The impacts of natural disasters such as floods, landslides and droughts become more frequent. Cisadane Catchment Area is one of 108 priority watershed in Indonesia. SWAT is currently applied world wide and considered as a versatile model that can be used to integrate multiple environmental processes, which support more effective watershed management and the development of better informed policy decision. The objective of this study is to examine the applicability of SWAT model for modeling mountainous catchments, focusing on Cisadane catchment Area in west Java Province, Indonesia. The SWAT model simulation was done for the periods of 2005 – 2010 while it used landuse information in 2009. Methods of Sequential Uncertainty Fitting ver. 2 (SUFI2 and combine with manual calibration were used in this study to calibrate a rainfall-runoff. The Calibration is done on 2007 and the validation on 2009, the R2 and Nash Sutchliffe Efficiency (NSE of the calibration were 0.71 and 0.72 respectively and the validation are 0.708 and 0.7 respectively. The monthly average of surface runoff and total water yield from the simulation were 27.7 mm and 2718.4 mm respectively. This study showed SWAT model can be a potential monitoring tool especially for watersheds in Cisadane Catchment Area or in the tropical regions. The model can be used for another purpose, especially in watershed management.

  15. Large-scale hydrological modeling for calculating water stress indices: implications of improved spatiotemporal resolution, surface-groundwater differentiation, and uncertainty characterization.

    Science.gov (United States)

    Scherer, Laura; Venkatesh, Aranya; Karuppiah, Ramkumar; Pfister, Stephan

    2015-04-21

    Physical water scarcities can be described by water stress indices. These are often determined at an annual scale and a watershed level; however, such scales mask seasonal fluctuations and spatial heterogeneity within a watershed. In order to account for this level of detail, first and foremost, water availability estimates must be improved and refined. State-of-the-art global hydrological models such as WaterGAP and UNH/GRDC have previously been unable to reliably reflect water availability at the subbasin scale. In this study, the Soil and Water Assessment Tool (SWAT) was tested as an alternative to global models, using the case study of the Mississippi watershed. While SWAT clearly outperformed the global models at the scale of a large watershed, it was judged to be unsuitable for global scale simulations due to the high calibration efforts required. The results obtained in this study show that global assessments miss out on key aspects related to upstream/downstream relations and monthly fluctuations, which are important both for the characterization of water scarcity in the Mississippi watershed and for water footprints. Especially in arid regions, where scarcity is high, these models provide unsatisfying results.

  16. Importance of soil-water relation in assessment endpoint in bioremediated soils: Plant growth and soil physical properties

    International Nuclear Information System (INIS)

    Li, X.; Sawatsky, N.

    1995-01-01

    Much effort has been focused on defining the end-point of bioremediated soils by chemical analysis (Alberta Tier 1 or CCME Guideline for Contaminated Soils) or toxicity tests. However, these tests do not completely assess the soil quality, or the capability of soil to support plant growth after bioremediation. This study compared barley (Hordeum vulgare) growth on: (i) non-contaminated, agricultural topsoil, (2) oil-contaminated soil (4% total extractable hydrocarbons, or TEH), and (3) oil-contaminated soil treated by bioremediation (< 2% TEH). Soil physical properties including water retention, water uptake, and water repellence were measured. The results indicated that the growth of barley was significantly reduced by oil-contamination of agricultural topsoil. Furthermore, bioremediation did not improve the barley yield. The lack of effects from bioremediation was attributed to development of water repellence in hydrocarbon contaminated soils. There seemed to be a critical water content around 18% to 20% in contaminated soils. Above this value the water uptake by contaminated soil was near that of the agricultural topsoil. For lower water contents, there was a strong divergence in sorptivity between contaminated and agricultural topsoil. For these soils, water availability was likely the single most important parameter controlling plant growth. This parameter should be considered in assessing endpoint of bioremediation for hydrocarbon contaminated soils

  17. Isotopic fractionation of soil water during evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Leopoldo, P R [Faculdade de Ciencias Medicas e Biologicas de Botucatu (Brazil); Salati, E; Matsui, E [Centro de Energia Nuclear na Agricultura, Piracicaba (Brazil)

    1974-07-01

    The study of the variation of D/H relation in soil water during evaporation is studied. The isotopic fractionation of soil water has been observed in two soils of light and heavy texture. Soil columns were utilized. Soil water was extracted in a system operated under low pressure and the gaseous hydrogen was obtained by decomposition of the water and was analyzed in a GD-150 mass spectrometer for deuterium content. The variation of the delta sub(eta) /sup 0///sub 00/ value during evaporation showed that for water held at potentials below 15 atm, the deuterium content of soil water stays practically constant. For water held at potentials higher than 15 atm, corresponding to the third stage of evaporation, there is a strong tendency of a constant increase of delta sub(eta) /sup 0///sub 00/ of the remaining water.

  18. Modelling soil water dynamics and crop water uptake at the field level

    NARCIS (Netherlands)

    Kabat, P.; Feddes, R.A.

    1995-01-01

    Parametrization approaches to model soil water dynamics and crop water uptake at field level were analysed. Averaging and numerical difficulties in applying numerical soil water flow models to heterogeneous soils are highlighted. Simplified parametrization approaches to the soil water flow, such as

  19. Soil Water Retention Curve

    Science.gov (United States)

    Johnson, L. E.; Kim, J.; Cifelli, R.; Chandra, C. V.

    2016-12-01

    Potential water retention, S, is one of parameters commonly used in hydrologic modeling for soil moisture accounting. Physically, S indicates total amount of water which can be stored in soil and is expressed in units of depth. S can be represented as a change of soil moisture content and in this context is commonly used to estimate direct runoff, especially in the Soil Conservation Service (SCS) curve number (CN) method. Generally, the lumped and the distributed hydrologic models can easily use the SCS-CN method to estimate direct runoff. Changes in potential water retention have been used in previous SCS-CN studies; however, these studies have focused on long-term hydrologic simulations where S is allowed to vary at the daily time scale. While useful for hydrologic events that span multiple days, the resolution is too coarse for short-term applications such as flash flood events where S may not recover its full potential. In this study, a new method for estimating a time-variable potential water retention at hourly time-scales is presented. The methodology is applied for the Napa River basin, California. The streamflow gage at St Helena, located in the upper reaches of the basin, is used as the control gage site to evaluate the model performance as it is has minimal influences by reservoirs and diversions. Rainfall events from 2011 to 2012 are used for estimating the event-based SCS CN to transfer to S. As a result, we have derived the potential water retention curve and it is classified into three sections depending on the relative change in S. The first is a negative slope section arising from the difference in the rate of moving water through the soil column, the second is a zero change section representing the initial recovery the potential water retention, and the third is a positive change section representing the full recovery of the potential water retention. Also, we found that the soil water moving has traffic jam within 24 hours after finished first

  20. Using expert knowledge of the hydrological system to constrain multi-objective calibration of SWAT models

    Science.gov (United States)

    The SWAT model is a helpful tool to predict hydrological processes in a study catchment and their impact on the river discharge at the catchment outlet. For reliable discharge predictions, a precise simulation of hydrological processes is required. Therefore, SWAT has to be calibrated accurately to ...

  1. Characterizing snowmelt regime of the river swat - a case study

    International Nuclear Information System (INIS)

    Malik, M.A.

    2015-01-01

    Snowmelt generates 70 to 80% of runoff of Indus River and its tributaries. Forecasting snowmelt generated flow is important for water management, reservoir operation and channel diversion. River Swat being not direct contributor to the existing reservoirs remained out of focus for characterizing its snowmelt regime. Thirty years (1971-2000) data of upper Swat catchment above Kalam gauging station was acquired from WAPDA. Normal monthly values over the period and average monthly values of each year were determined for stream flow, precipitation and temperature together with average monthly values of weighted and maximum temperature. Snowmelt regime was ascertained from plot of normal values of flow, precipitation and temperature. Using temperature index approach, average monthly flow over the snowmelt months (April, May and June) in terms of mm depth over the catchment was regressed on all the temperature indices using exponential, power and third degree polynomial functions. Tmax was found the best index for snowmelt with R2 as 0.902 for the third degree polynomial function. Runoff coefficient (ROC) for the total precipitation was conceptualized and through iteration was found as T max 100. The optimized value of ROC was used to segregate rain induced and snowmelt induced runoff. The segregated snowmelt induced runoff was again regressed on Tmax using the same function which slightly improved R2 to 0.916. The model was tested for four years of data and forecasted flow was found reasonable in the context of simplicity of the approach. (author)

  2. Hydrologic modelling of the effect of snowmelt and temperature on a ...

    Indian Academy of Sciences (India)

    Theoretically, the snowmelt process should be influenced by temperature changes. ... the snowmelt-runoff using the snowfall-snowmelt routine in Soil and Water Assessment Tool (SWAT). .... infiltration, evapotranspiration, soil and snow.

  3. Large scale sodium-water reaction tests for Monju steam generators

    International Nuclear Information System (INIS)

    Sato, M.; Hiroi, H.; Hori, M.

    1976-01-01

    To demonstrate the safe design of the steam generator system of the prototype fast reactor Monju against the postulated large leak sodium-water reaction, a large scale test facility SWAT-3 was constructed. SWAT-3 is a 1/2.5 scale model of the Monju secondary loop on the basis of the iso-velocity modeling. Two tests have been conducted in SWAT-3 since its construction. The test items using SWAT-3 are discussed, and the description of the facility and the test results are presented

  4. Predicting fecal coliform using the interval-to-interval approach and SWAT in the Miyun watershed, China.

    Science.gov (United States)

    Bai, Jianwen; Shen, Zhenyao; Yan, Tiezhu; Qiu, Jiali; Li, Yangyang

    2017-06-01

    Pathogens in manure can cause waterborne-disease outbreaks, serious illness, and even death in humans. Therefore, information about the transformation and transport of bacteria is crucial for determining their source. In this study, the Soil and Water Assessment Tool (SWAT) was applied to simulate fecal coliform bacteria load in the Miyun Reservoir watershed, China. The data for the fecal coliform were obtained at three sampling sites, Chenying (CY), Gubeikou (GBK), and Xiahui (XH). The calibration processes of the fecal coliform were conducted using the CY and GBK sites, and validation was conducted at the XH site. An interval-to-interval approach was designed and incorporated into the processes of fecal coliform calibration and validation. The 95% confidence interval of the predicted values and the 95% confidence interval of measured values were considered during calibration and validation in the interval-to-interval approach. Compared with the traditional point-to-point comparison, this method can improve simulation accuracy. The results indicated that the simulation of fecal coliform using the interval-to-interval approach was reasonable for the watershed. This method could provide a new research direction for future model calibration and validation studies.

  5. Soil erosion and sediment yield, a double barrel problem in South Africa's only large river network without a dam

    Science.gov (United States)

    Le Roux, Jay

    2016-04-01

    Soil erosion not only involves the loss of fertile topsoil but is also coupled with sedimentation of dams, a double barrel problem in semi-arid regions where water scarcity is frequent. Due to increasing water requirements in South Africa, the Department of Water and Sanitation is planning water resource development in the Mzimvubu River Catchment, which is the only large river network in the country without a dam. Two dams are planned including a large irrigation dam and a hydropower dam. However, previous soil erosion studies indicate that large parts of the catchment is severely eroded. Previous studies, nonetheless, used mapping and modelling techniques that represent only a selection of erosion processes and provide insufficient information about the sediment yield. This study maps and models the sediment yield comprehensively by means of two approaches over a five-year timeframe between 2007 and 2012. Sediment yield contribution from sheet-rill erosion was modelled with ArcSWAT (a graphical user interface for SWAT in a GIS), whereas gully erosion contributions were estimated using time-series mapping with SPOT 5 imagery followed by gully-derived sediment yield modelling in a GIS. Integration of the sheet-rill and gully results produced a total sediment yield map, with an average of 5 300 t km-2 y-1. Importantly, the annual average sediment yield of the areas where the irrigation dam and hydropower dam will be built is around 20 000 t km-2 y-1. Without catchment rehabilitation, the life expectancy of the irrigation dam and hydropower dam could be 50 and 40 years respectively.

  6. Three Principles of Water Flow in Soils

    Science.gov (United States)

    Guo, L.; Lin, H.

    2016-12-01

    Knowledge of water flow in soils is crucial to understanding terrestrial hydrological cycle, surface energy balance, biogeochemical dynamics, ecosystem services, contaminant transport, and many other Critical Zone processes. However, due to the complex and dynamic nature of non-uniform flow, reconstruction and prediction of water flow in natural soils remain challenging. This study synthesizes three principles of water flow in soils that can improve modeling water flow in soils of various complexity. The first principle, known as the Darcy's law, came to light in the 19th century and suggested a linear relationship between water flux density and hydraulic gradient, which was modified by Buckingham for unsaturated soils. Combining mass balance and the Buckingham-Darcy's law, L.A. Richards quantitatively described soil water change with space and time, i.e., Richards equation. The second principle was proposed by L.A. Richards in the 20th century, which described the minimum pressure potential needed to overcome surface tension of fluid and initiate water flow through soil-air interface. This study extends this principle to encompass soil hydrologic phenomena related to varied interfaces and microscopic features and provides a more cohesive explanation of hysteresis, hydrophobicity, and threshold behavior when water moves through layered soils. The third principle is emerging in the 21st century, which highlights the complex and evolving flow networks embedded in heterogeneous soils. This principle is summarized as: Water moves non-uniformly in natural soils with a dual-flow regime, i.e., it follows the least-resistant or preferred paths when "pushed" (e.g., by storms) or "attracted" (e.g., by plants) or "restricted" (e.g., by bedrock), but moves diffusively into the matrix when "relaxed" (e.g., at rest) or "touched" (e.g., adsorption). The first principle is a macroscopic view of steady-state water flow, the second principle is a microscopic view of interface

  7. Soil water diffusivity as a function of water content and time

    International Nuclear Information System (INIS)

    Guerrini, I.A.

    1976-04-01

    The soil-water diffusivity has been studied as a function of water content and time. From the idea of studying the horizontal movement of water in swelling soils, a simple formulation has been achieved which allows for the diffusivity, water content dependency and time dependency, to be estimated, not only of this kind of soil, but for any other soil as well. It was observed that the internal rearrangement of soil particles is a more important phenomenon than swelling, being responsible for time dependency. The method 2γ is utilized, which makes it possible to simultaneously determine the water content and density, point by point, in a soil column. The diffusivity data thus obtained are compared to those obtained when time dependency is not considered. Finally, a new soil parameter, α, is introduced and the values obtained agrees with the internal rearrangment assumption and time dependency for diffusivity (Author) [pt

  8. Stochastic estimation of plant-available soil water under fluctuating water table depths

    Science.gov (United States)

    Or, Dani; Groeneveld, David P.

    1994-12-01

    Preservation of native valley-floor phreatophytes while pumping groundwater for export from Owens Valley, California, requires reliable predictions of plant water use. These predictions are compared with stored soil water within well field regions and serve as a basis for managing groundwater resources. Soil water measurement errors, variable recharge, unpredictable climatic conditions affecting plant water use, and modeling errors make soil water predictions uncertain and error-prone. We developed and tested a scheme based on soil water balance coupled with implementation of Kalman filtering (KF) for (1) providing physically based soil water storage predictions with prediction errors projected from the statistics of the various inputs, and (2) reducing the overall uncertainty in both estimates and predictions. The proposed KF-based scheme was tested using experimental data collected at a location on the Owens Valley floor where the water table was artificially lowered by groundwater pumping and later allowed to recover. Vegetation composition and per cent cover, climatic data, and soil water information were collected and used for developing a soil water balance. Predictions and updates of soil water storage under different types of vegetation were obtained for a period of 5 years. The main results show that: (1) the proposed predictive model provides reliable and resilient soil water estimates under a wide range of external conditions; (2) the predicted soil water storage and the error bounds provided by the model offer a realistic and rational basis for decisions such as when to curtail well field operation to ensure plant survival. The predictive model offers a practical means for accommodating simple aspects of spatial variability by considering the additional source of uncertainty as part of modeling or measurement uncertainty.

  9. Water SA - Vol 43, No 3 (2017)

    African Journals Online (AJOL)

    Impacts of DEM resolution and area threshold value uncertainty on the drainage network derived using SWAT · EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT ... A modified version of the SMAR model for estimating root-zone soil moisture from time-series of surface soil moisture · EMAIL FREE FULL TEXT EMAIL FREE ...

  10. Dynamic modeling of organophosphate pesticide load in surface water in the northern San Joaquin Valley watershed of California

    Energy Technology Data Exchange (ETDEWEB)

    Luo Yuzhou [Department of Land, Air and Water Resources, University of California, Davis, CA 95616 (United States); Institute of Watershed Science and Environmental Ecology, Wenzhou Medical College, Wenzhou, 325000 (China); Zhang Xuyang [Department of Land, Air and Water Resources, University of California, Davis, CA 95616 (United States); Liu Xingmei [Department of Land, Air and Water Resources, University of California, Davis, CA 95616 (United States); Institute of Soil, Water and Environmental Science, Zhejiang University, Hangzhou 310029 (China); Ficklin, Darren [Department of Land, Air and Water Resources, University of California, Davis, CA 95616 (United States); Zhang Minghua [Department of Land, Air and Water Resources, University of California, Davis, CA 95616 (United States); Institute of Watershed Science and Environmental Ecology, Wenzhou Medical College, Wenzhou, 325000 (China)], E-mail: mhzhang@ucdavis.edu

    2008-12-15

    The hydrology, sediment, and pesticide transport components of the Soil and Water Assessment Tool (SWAT) were evaluated on the northern San Joaquin Valley watershed of California. The Nash-Sutcliffe coefficients for monthly stream flow and sediment load ranged from 0.49 to 0.99 over the watershed during the study period of 1992-2005. The calibrated SWAT model was applied to simulate fate and transport processes of two organophosphate pesticides of diazinon and chlorpyrifos at watershed scale. The model generated satisfactory predictions of dissolved pesticide loads relative to the monitoring data. The model also showed great success in capturing spatial patterns of dissolved diazinon and chlorpyrifos loads according to the soil properties and landscape morphology over the large agricultural watershed. This study indicated that curve number was the major factor influencing the hydrology while pesticide fate and transport were mainly affected by surface runoff and pesticide application and in the study area. - Major factors governing the instream loads of organophosphate pesticides are magnitude and timing of surface runoff and pesticide application.

  11. Dynamic modeling of organophosphate pesticide load in surface water in the northern San Joaquin Valley watershed of California

    International Nuclear Information System (INIS)

    Luo Yuzhou; Zhang Xuyang; Liu Xingmei; Ficklin, Darren; Zhang Minghua

    2008-01-01

    The hydrology, sediment, and pesticide transport components of the Soil and Water Assessment Tool (SWAT) were evaluated on the northern San Joaquin Valley watershed of California. The Nash-Sutcliffe coefficients for monthly stream flow and sediment load ranged from 0.49 to 0.99 over the watershed during the study period of 1992-2005. The calibrated SWAT model was applied to simulate fate and transport processes of two organophosphate pesticides of diazinon and chlorpyrifos at watershed scale. The model generated satisfactory predictions of dissolved pesticide loads relative to the monitoring data. The model also showed great success in capturing spatial patterns of dissolved diazinon and chlorpyrifos loads according to the soil properties and landscape morphology over the large agricultural watershed. This study indicated that curve number was the major factor influencing the hydrology while pesticide fate and transport were mainly affected by surface runoff and pesticide application and in the study area. - Major factors governing the instream loads of organophosphate pesticides are magnitude and timing of surface runoff and pesticide application

  12. Evapotranspiration sensitivity to air temperature across a snow-influenced watershed: Space-for-time substitution versus integrated watershed modeling

    Science.gov (United States)

    Jepsen, S. M.; Harmon, T. C.; Ficklin, D. L.; Molotch, N. P.; Guan, B.

    2018-01-01

    Changes in long-term, montane actual evapotranspiration (ET) in response to climate change could impact future water supplies and forest species composition. For scenarios of atmospheric warming, predicted changes in long-term ET tend to differ between studies using space-for-time substitution (STS) models and integrated watershed models, and the influence of spatially varying factors on these differences is unclear. To examine this, we compared warming-induced (+2 to +6 °C) changes in ET simulated by an STS model and an integrated watershed model across zones of elevation, substrate available water capacity, and slope in the snow-influenced upper San Joaquin River watershed, Sierra Nevada, USA. We used the Soil Water and Assessment Tool (SWAT) for the watershed modeling and a Budyko-type relationship for the STS modeling. Spatially averaged increases in ET from the STS model increasingly surpassed those from the SWAT model in the higher elevation zones of the watershed, resulting in 2.3-2.6 times greater values from the STS model at the watershed scale. In sparse, deep colluvium or glacial soils on gentle slopes, the SWAT model produced ET increases exceeding those from the STS model. However, watershed areas associated with these conditions were too localized for SWAT to produce spatially averaged ET-gains comparable to the STS model. The SWAT model results nevertheless demonstrate that such soils on high-elevation, gentle slopes will form ET "hot spots" exhibiting disproportionately large increases in ET, and concomitant reductions in runoff yield, in response to warming. Predicted ET responses to warming from STS models and integrated watershed models may, in general, substantially differ (e.g., factor of 2-3) for snow-influenced watersheds exhibiting an elevational gradient in substrate water holding capacity and slope. Long-term water supplies in these settings may therefore be more resilient to warming than STS model predictions would suggest.

  13. Validation of a spatial–temporal soil water movement and plant water uptake model

    KAUST Repository

    HEPPELL, J.

    2014-06-01

    © 2014, (publisher). All rights reserved. Management and irrigation of plants increasingly relies on accurate mathematical models for the movement of water within unsaturated soils. Current models often use values for water content and soil parameters that are averaged over the soil profile. However, many applications require models to more accurately represent the soil–plant–atmosphere continuum, in particular, water movement and saturation within specific parts of the soil profile. In this paper a mathematical model for water uptake by a plant root system from unsaturated soil is presented. The model provides an estimate of the water content level within the soil at different depths, and the uptake of water by the root system. The model was validated using field data, which include hourly water content values at five different soil depths under a grass/herb cover over 1 year, to obtain a fully calibrated system for plant water uptake with respect to climate conditions. When compared quantitatively to a simple water balance model, the proposed model achieves a better fit to the experimental data due to its ability to vary water content with depth. To accurately model the water content in the soil profile, the soil water retention curve and saturated hydraulic conductivity needed to vary with depth.

  14. Climate change impacts under CMIP5 RCP scenarios on water resources of the Kelantan River Basin, Malaysia

    Science.gov (United States)

    Tan, Mou Leong; Ibrahim, Ab Latif; Yusop, Zulkifli; Chua, Vivien P.; Chan, Ngai Weng

    2017-06-01

    This study aims to evaluate the potential impacts of climate change on water resources of the Kelantan River Basin in north-eastern Peninsular Malaysia using the Soil and Water Assessment Tool (SWAT) model. Thirty-six downscaled climate projections from five General Circulation Models (GCMs) under the three Representative Concentration Pathways (RCPs) 2.6, 4.5 and 8.5 scenarios for the periods of 2015-2044 and 2045-2074 were incorporated into the calibrated SWAT model. Differences of these scenarios were calculated by comparing to the 1975-2004 baseline period. Overall, the SWAT model performed well in monthly streamflow simulation, with the Nash-Sutcliffe efficiency values of 0.75 and 0.63 for calibration and validation, respectively. Based on the ensemble of five GCMs, the annual rainfall and maximum temperature are projected to increase by 1.2-8.7% and 0.6-2.1 °C, respectively. This corresponds to the increases in the annual streamflow (14.6-27.2%), evapotranspiration (0.3-2.7%), surface runoff (46.8-90.2%) and water yield (14.2-26.5%) components. The study shows an increase of monthly rainfall during the wet season, and decrease during the dry season. Therefore, the monthly streamflow and surface runoff are likely to increase significantly in November, December and January. In addition, slight decreases in the monthly water yield are found between June and October (1.9-8.9%) during the 2015-2044 period. These findings could act as a scientific reference to develop better climate adaptation strategies.

  15. Soil water repellency at old crude oil spill sites

    International Nuclear Information System (INIS)

    Roy, J.L.

    1999-08-01

    This thesis presents the current state of knowledge regarding the cause of soil water repellency and characterizes disaggregated nonwettable surface soils found at old crude oil spill sites. Pollution-induced water repellency generally develops following prolonged exposures of soil to liquid- or vapour-phase petroleum hydrocarbons. The condition varies significantly in terms of severity and persistence. Soil water repellency retards plant growth and disturbs the hydrological balance of ecosystems. Disaggregated water-repellent soils are also very susceptible to dispersal by erosion, posing a threat to the productivity of surrounding soils. The author described the probable causes of soil water repellency under the following three main themes: (1) accumulation of hydrophobic organic material in soil, (2) redistribution and re-organisation of this material in soil, and (3) stabilisation of the hydrophobic organic material. This final process is necessary to ensure persistence of induced water repellency symptoms. Petroleum residues as water-repellent substances in weathered nonwettable oil-contaminated soils were also discussed and a hypothesis about soil water repellency was presented which deals with flexible conformation in organic matter coatings. Processes leading to the development of soil water repellency following crude oil contamination were also described. It was determined that soil water repellency is a function of the packing density and the chain conformation of amphiphilic organic molecules in the outermost layer of soil organic matter coatings. This research suggests that the fractional coverage of alkyl chains on soil particle surfaces determines the degree of water repellency that is displayed by soil. It was shown that prompt remediation of some oil-contaminated plots can effectively prevent the development of soil water repellency. 4 refs., 32 tabs., 22 figs., 5 appendices

  16. Soils and water [Chapter 18

    Science.gov (United States)

    Goran Berndes; Heather Youngs; Maria Victoria Ramos Ballester; Heitor Cantarella; Annette L. Cowie; Graham Jewitt; Luiz Antonio Martinelli; Dan Neary

    2015-01-01

    Bioenergy production can have positive or negative impacts on soil and water. To best understand these impacts, the effects of bioenergy systems on water and soil resources should be assessed as part of an integrated analysis considering environmental, social and economic dimensions. Bioenergy production systems that are strategically integrated in the landscape to...

  17. Effect of farmyard manure, mineral fertilizers and mung bean residues on some microbiological properties of eroded soil in district Swat

    Directory of Open Access Journals (Sweden)

    M. Naeem

    2009-05-01

    Full Text Available The present study was conducted to evaluate the efficacy of organic and inorganic fertilizers and mung bean residues on improving microbiological properties of eroded lands of District Swat, North West Frontier Province (NWFP Pakistan under wheat-mung bean-wheat cropping system during 2006 to 2008. The experiment was laid out in RCBD split-plot arrangement. Mung bean was grown and a basal dose of 25-60 kg N-P2O5 ha-1 was applied. After mung bean harvest, three residues management practices, i.e., R+ (mung bean residues incorporated into soil, R- (mung bean residues removed and F (fallow were performed in the main-plots. Sub-plot factor consisted of six fertilizer treatments for wheat crop i.e., T1 (control, T2 (120 kg N ha-1, T3 (120-90-0 kg N-P2O5-K2O ha-1, T4 (120-90-60 kg N-P2O5-K2O ha-1, T5 (90-90-60 kg N-P2O5-K2O + 10 t FYM ha-1 and T6 (60-90-60 kg N-P2O5- K2O + 20 t FYM ha-1. The results showed that microbial activity, microbial biomass-C and-N, mineralizable C and N were highest with T6 as well as with the incorporation of mung bean residues (R+. Compared with control, T6 increased microbial biomass C, N, mineralizable C and N by 33.8, 164.1, 35.5 and 110.6% at surface and 38.4, 237.5, 38.7 and 124.1% at sub-surface soil, respectively, while R+ compared with fallow increased these properties by 33.7, 47.4, 21.4 and 32.2% at surface and 36.8, 51, 21.9 and 35.4% at sub-surface soil, respectively. Inclusion of mung bean with its residues incorporated and application of 20 t FYM ha-1 and reducing inorganic N fertilizer to 60 kg N ha-1 for wheat is recommended for improving microbiological properties of slightly eroded lands

  18. Using soil water sensors to improve irrigation management

    Science.gov (United States)

    Irrigation water management has to do with the appropriate application of water to soils, in terms of amounts, rates, and timing to satisfy crop water demands while protecting the soil and water resources from degradation. In this regard, sensors can be used to monitor the soil water status; and som...

  19. Prediction of the Soil Water Characteristic from Soil Particle Volume Fractions

    DEFF Research Database (Denmark)

    Naveed, Muhammad; Møldrup, Per; Tuller, Markus

    2012-01-01

    Modelling water distribution and flow in partially saturated soils requires knowledge of the soil-water characteristic (SWC). However, measurement of the SWC is challenging and time-consuming, and in some cases not feasible. This study introduces two predictive models (Xw-model and Xw......*-model) for the SWC, derived from readily available soil properties such as texture and bulk density. A total of 46 soils from different horizons at 15 locations across Denmark were used for models evaluation. The Xw-model predicts the volumetric water content as a function of volumetric fines content (organic matter...... (organic matter, clay, silt, fine and coarse sand), variably included in the model depending on the pF value. The volumetric content of a particular soil particle size fraction was included in the model if it was assumed to contribute to the pore size fraction still occupied with water at the given p...

  20. Governing equations of transient soil water flow and soil water flux in multi-dimensional fractional anisotropic media and fractional time

    OpenAIRE

    M. L. Kavvas; A. Ercan; J. Polsinelli

    2017-01-01

    In this study dimensionally consistent governing equations of continuity and motion for transient soil water flow and soil water flux in fractional time and in fractional multiple space dimensions in anisotropic media are developed. Due to the anisotropy in the hydraulic conductivities of natural soils, the soil medium within which the soil water flow occurs is essentially anisotropic. Accordingly, in this study the fractional dimensions in two horizontal and one vertical di...

  1. Organic compounds in hot-water-soluble fractions from water repellent soils

    Science.gov (United States)

    Atanassova, Irena; Doerr, Stefan

    2014-05-01

    Water repellency (WR) is a soil property providing hydrophobic protection and preventing rapid microbial decomposition of organic matter entering the soil with litter or plant residues. Global warming can cause changes in WR, thus influencing water storage and plant productivity. Here we assess two different approaches for analysis of organic compounds composition in hot water extracts from accelerated solvent extraction (ASE) of water repellent soils. Extracts were lyophilized, fractionated on SiO2 (sand) and SPE cartridge, and measured by GC/MS. Dominant compounds were aromatic acids, short chain dicarboxylic acids (C4-C9), sugars, short chain fatty acids (C8-C18), and esters of stearic and palmitic acids. Polar compounds (mainly sugars) were adsorbed on applying SPE clean-up procedure, while esters were highly abundant. In addition to the removal of polar compounds, hydrophobic esters and hydrocarbons (alkanes and alkenes particle wettability and C dynamics in soils. Key words: soil water repellency, hot water soluble carbon (HWSC), GC/MS, hydrophobic compounds

  2. Improved Lower Mekong River Basin Hydrological Decision Making Using NASA Satellite-based Earth Observation Systems

    Science.gov (United States)

    Bolten, J. D.; Mohammed, I. N.; Srinivasan, R.; Lakshmi, V.

    2017-12-01

    Better understanding of the hydrological cycle of the Lower Mekong River Basin (LMRB) and addressing the value-added information of using remote sensing data on the spatial variability of soil moisture over the Mekong Basin is the objective of this work. In this work, we present the development and assessment of the LMRB (drainage area of 495,000 km2) Soil and Water Assessment Tool (SWAT). The coupled model framework presented is part of SERVIR, a joint capacity building venture between NASA and the U.S. Agency for International Development, providing state-of-the-art, satellite-based earth monitoring, imaging and mapping data, geospatial information, predictive models, and science applications to improve environmental decision-making among multiple developing nations. The developed LMRB SWAT model enables the integration of satellite-based daily gridded precipitation, air temperature, digital elevation model, soil texture, and land cover and land use data to drive SWAT model simulations over the Lower Mekong River Basin. The LMRB SWAT model driven by remote sensing climate data was calibrated and verified with observed runoff data at the watershed outlet as well as at multiple sites along the main river course. Another LMRB SWAT model set driven by in-situ climate observations was also calibrated and verified to streamflow data. Simulated soil moisture estimates from the two models were then examined and compared to a downscaled Soil Moisture Active Passive Sensor (SMAP) 36 km radiometer products. Results from this work present a framework for improving SWAT performance by utilizing a downscaled SMAP soil moisture products used for model calibration and validation. Index Terms: 1622: Earth system modeling; 1631: Land/atmosphere interactions; 1800: Hydrology; 1836 Hydrological cycles and budgets; 1840 Hydrometeorology; 1855: Remote sensing; 1866: Soil moisture; 6334: Regional Planning

  3. Development of an Evapotranspiration Data Assimilation Technique for Streamflow Estimates: A Case Study in a Semi-Arid Region

    Directory of Open Access Journals (Sweden)

    Ying Zhang

    2017-09-01

    Full Text Available Streamflow estimates are substantially important as fresh water shortages increase in arid and semi-arid regions where evapotranspiration (ET is a significant contribution to the water balance. In this regard, evapotranspiration data can be assimilated into a distributed hydrological model (SWAT, Soil and Water Assessment Tool for improving streamflow estimates. The SWAT model has been widely used for streamflow estimations, but the applications combining SWAT and ET products were rare. Thus, this study aims to develop a SWAT-based evapotranspiration data assimilation system. In particular, SWAT is gridded at Hydrologic Response Unit (HRU level to incorporate gridded ET products acquired from the remote sensing-based ETMonitor model. In the modeling case, Gridded SWAT (GSWAT shows a good agreement of streamflow modeling with the original SWAT. Such a scant margin between them is due to the modeling domain mismatch caused by different HRU delineations. In the ET assimilation case, we carry out a synthetic data experiment to illustrate the state augmentation Direct Insertion (DI method and a real data experiment for the upper Heihe River Basin. The results demonstrate the benefits of the ET assimilation for improving hydrologic processes representations. In the future, more remotely sensed data can be assimilated into the data assimilation system to provide more reliable hydrological predictions.

  4. SWAT Model Application to Assess the Impact of Intensive Corn‐farming on Runoff, Sediments and Phosphorous loss from an Agricultural Watershed in Wisconsin

    Science.gov (United States)

    The potential future increase in corn-based biofuel may be expected to have a negative impact on water quality in streams and lakes of the Midwestern US due to increased agricultural chemicals usage. This study used the SWAT model to assess the impact of continuous-corn farming o...

  5. Field soil-water properties measured through radiation techniques

    International Nuclear Information System (INIS)

    1984-07-01

    This report shows a major effort to make soil physics applicable to the behaviour of the field soils and presents a rich and diverse set of data which are essential for the development of effective soil-water management practices that improve and conserve the quality and quantity of agricultural lands. This piece of research has shown that the neutron moisture meter together with some complementary instruments like tensiometers, can be used not only to measure soil water contents but also be extremely handy to measure soil hydraulic characteristics and soil water flow. It is, however, recognized that hydraulic conductivity is highly sensitive to small changes in soil water content and texture, being extremely variable spatially and temporally

  6. Improvement on reaction model for sodium-water reaction jet code and application analysis

    International Nuclear Information System (INIS)

    Itooka, Satoshi; Saito, Yoshinori; Okabe, Ayao; Fujimata, Kazuhiro; Murata, Shuuichi

    2000-03-01

    In selecting the reasonable DBL on steam generator (SG), it is necessary to improve analytical method for estimating the sodium temperature on failure propagation due to overheating. Improvement on sodium-water reaction (SWR) jet code (LEAP-JET ver.1.30) and application analysis to the water injection tests for confirmation of code propriety were performed. On the improvement of the code, a gas-liquid interface area density model was introduced to develop a chemical reaction model with a little dependence on calculation mesh size. The test calculation using the improved code (LEAP-JET ver.1.40) were carried out with conditions of the SWAT-3·Run-19 test and an actual scale SG. It is confirmed that the SWR jet behavior on the results and the influence to analysis result of a model are reasonable. For the application analysis to the water injection tests, water injection behavior and SWR jet behavior analyses on the new SWAT-1 (SWAT-1R) and SWAT-3 (SWAT-3R) tests were performed using the LEAP-BLOW code and the LEAP-JET code. In the application analysis of the LEAP-BLOW code, parameter survey study was performed. As the results, the condition of the injection nozzle diameter needed to simulate the water leak rate was confirmed. In the application analysis of the LEAP-JET code, temperature behavior of the SWR jet was investigated. (author)

  7. Water transport in desert alluvial soil

    International Nuclear Information System (INIS)

    Kearl, P.M.

    1982-04-01

    Safe storage of radioactive waste buried in an arid alluvial soil requires extensive site characterization of the physical process influencing moisture movement which could act as a transport medium for the migration of radionuclides. The field portion of this study included an infiltration plot instrumented with thermocouple psychrometers and neturon moisture probe access holes. Baseline information shows a zone of higher moisture content at approximately 1.5 m (5 ft) in depth. A sprinkler system simulated a 500-year precipitation event. Results revealed water penetrated the soil to 0.9 m (2.9 ft). Due to the low moisture content, vapor transport was primarily responsible for water movement at this depth. Temperature gradients are substantially responsible for vapor transport by preferentially sorting water-vapor molecules from the surrounding air by using the soil as a molecular sieve. Adsorbed and capillary water vapor pressure increases in response to a temperature increase and releases additional water to the soil pore atmosphere to be diffused away

  8. Soil water regime under homogeneous eucalyptus and pine forests

    International Nuclear Information System (INIS)

    Lima, W.P.; Reichardt, K.

    1977-01-01

    Measurement of precipitation and monthly soil water content during two consecutive years, in 6-year old plantations of eucalypt and pine, and also in an open plot containing natural herbaceous vegetation, were used to compare the soil water regime of these vegetation covers. Precipitation was measured in the open plot with a recording and a non-recording rain gage. Soil water was assessed by the neutron scattering technique to a depth of 1,80 meters. Results indicate that there was, in general, water available in the soil over the entire period of study in all three vegetation conditions. The annual range of soil water in eucalypt, pine, and in natural herbaceous vegetation was essentially similar. The analysis of the average soil water regime showed that the soil under herbaceous vegetation was, generally, more umid than the soil under eucalypt and pine during the period of soil water recharge (September through February); during the period of soil water depletion, the opposite was true. Collectively, the results permit the conclusion that there were no adverse effects on the soil water regime which could be ascribed to reflorestation with eucalypt or pine, as compared with that observed for the natural herbaceous vegetation [pt

  9. Mechanical impedance of soil crusts and water content in loamy soils

    Science.gov (United States)

    Josa March, Ramon; Verdú, Antoni M. C.; Mas, Maria Teresa

    2013-04-01

    Soil crust development affects soil water dynamics and soil aeration. Soil crusts act as mechanical barriers to fluid flow and, as their mechanical impedance increases with drying, they also become obstacles to seedling emergence. As a consequence, the emergence of seedling cohorts (sensitive seeds) might be reduced. However, this may be of interest to be used as an effective system of weed control. Soil crusting is determined by several factors: soil texture, rain intensity, sedimentation processes, etc. There are different ways to characterize the crusts. One of them is to measure their mechanical impedance (MI), which is linked to their moisture level. In this study, we measured the evolution of the mechanical impedance of crusts formed by three loamy soil types (clay loam, loam and sandy clay loam, USDA) with different soil water contents. The aim of this communication was to establish a mathematical relationship between the crust water content and its MI. A saturated soil paste was prepared and placed in PVC cylinders (50 mm diameter and 10 mm height) arranged on a plastic tray. Previously the plastic tray was sprayed with a hydrophobic liquid to prevent the adherence of samples. The samples on the plastic tray were left to air-dry under laboratory conditions until their IM was measured. To measure IM, a food texture analyzer was used. The equipment incorporates a mobile arm, a load cell to apply force and a probe. The arm moves down vertically at a constant rate and the cylindrical steel probe (4 mm diameter) penetrates the soil sample vertically at a constant rate. The equipment is provided with software to store data (time, vertical distance and force values) at a rate of up to 500 points per second. Water content in crust soil samples was determined as the loss of weight after oven-drying (105°C). From the results, an exponential regression between MI and the water content was obtained (determination coefficient very close to 1). This methodology allows

  10. Soil-Water Characteristic Curves of Red Clay treated by Ionic Soil Stabilizer

    Science.gov (United States)

    Cui, D.; Xiang, W.

    2009-12-01

    The relationship of red clay particle with water is an important factor to produce geological disaster and environmental damage. In order to reduce the role of adsorbed water of red clay in WuHan, Ionic Soil Stabilizer (ISS) was used to treat the red clay. Soil Moisture Equipment made in U.S.A was used to measure soil-water characteristic curve of red clay both in natural and stabilized conditions in the suction range of 0-500kPa. The SWCC results were used to interpret the red clay behavior due to stabilizer treatment. In addition, relationship were compared between the basic soil and stabilizer properties such as water content, dry density, liquid limit, plastic limit, moisture absorption rate and stabilizer dosages. The analysis showed that the particle density and specific surface area increase, the dehydration rate slows and the thickness of water film thins after treatment with Ionic Soil Stabilizer. After treatment with the ISS, the geological disasters caused by the adsorbed water of red clay can be effectively inhibited.

  11. Use of neutron water and gamma density gauges in soil water studies

    International Nuclear Information System (INIS)

    Kirda, C.

    1990-01-01

    Irrigation practices should be improved to increase effective use of water and thereby increasing irrigated areas as well as securing soil productivity under irrigated agriculture. Under dry farming systems of rainfed agriculture, different tillage practices should be tested for improved soil water conservation and rain harvesting. The research work addressing the above mentioned problems requires methods to measure soil water content accurately and conveniently. In the following article, the methods which are currently used to measure field soil water content were discussed. 34 refs, 13 figs, 13 tabs

  12. Characterization of field-measured soil-water properties

    International Nuclear Information System (INIS)

    Nielsen, D.R.; Reichardt, K.; Wierenga, P.J.

    1983-01-01

    As part of a five-year co-ordinated research programme of the International Atomic Energy Agency, the Use of Radiation and Isotope Techniques in Studies of Soil-Water Regimes, soil physicists examined soil-water properties of one or two field sites in 11 different countries (Brazil, Belgium, Cyprus, Chile, Israel, Japan, Madagascar, Nigeria, Senegal, Syria and Thailand). The results indicate that the redistribution method yields values of soil-water properties that have a large degree of uncertainty, and that this uncertainty is not necessarily related to the kind of soil being analysed. Regardless of the fundamental cause of this uncertainty (experimental and computational errors versus natural soil variability), the conclusion is that further developments of field technology depend upon stochastic rather than deterministic concepts

  13. Integration of Water Resource Models with Fayetteville Shale Decision Support and Information System

    Energy Technology Data Exchange (ETDEWEB)

    Cothren, Jackson; Thoma, Greg; DiLuzio, Mauro; Limp, Fred

    2013-06-30

    Significant issues can arise with the timing, location, and volume of surface water withdrawals associated with hydraulic fracturing of gas shale reservoirs as impacted watersheds may be sensitive, especially in drought years, during low flow periods, or during periods of the year when activities such as irrigation place additional demands on the surface supply of water. Significant energy production and associated water withdrawals may have a cumulative impact to watersheds over the short-term. Hence, hydraulic fracturing based on water withdrawal could potentially create shifts in the timing and magnitude of low or high flow events or change the magnitude of river flow at daily, monthly, seasonal, or yearly time scales. These changes in flow regimes can result in dramatically altered river systems. Currently little is known about the impact of fracturing on stream flow behavior. Within this context the objective of this study is to assess the impact of the hydraulic fracturing on the water balance of the Fayetteville Shale play area and examine the potential impacts of hydraulic fracturing on river flow regime at subbasin scale. This project addressed that need with four unique but integrated research and development efforts: 1) Evaluate the predictive reliability of the Soil and Water Assessment Tool (SWAT) model based at a variety of scales (Task/Section 3.5). The Soil and Water Assessment Tool (SWAT) model was used to simulate the across-scale water balance and the respective impact of hydraulic fracturing. A second hypothetical scenario was designed to assess the current and future impacts of water withdrawals for hydraulic fracturing on the flow regime and on the environmental flow components (EFCs) of the river. The shifting of these components, which present critical elements to water supply and water quality, could influence the ecological dynamics of river systems. For this purpose, we combined the use of SWAT model and Richter et al.’s (1996

  14. [Effects of soil wetting pattern on the soil water-thermal environment and cotton root water consumption under mulched drip irrigation].

    Science.gov (United States)

    Li, Dong-wei; Li, Ming-si; Liu, Dong; Lyu, Mou-chao; Jia, Yan-hui

    2015-08-01

    Abstract: To explore the effects of soil wetting pattern on soil water-thermal environment and water consumption of cotton root under mulched drip irrigation, a field experiment with three drip intensities (1.69, 3.46 and 6.33 L · h(-1)), was carried out in Shihezi, Xinjiang Autonomous Region. The soil matric potential, soil temperature, cotton root distribution and water consumption were measured during the growing period of cotton. The results showed that the main factor influencing the soil temperature of cotton under plastic mulch was sunlight. There was no significant difference in the soil temperature and root water uptake under different treatments. The distribution of soil matrix suction in cotton root zone under plastic mulch was more homogeneous under ' wide and shallow' soil wetting pattern (W633). Under the 'wide and shallow' soil wetting pattern, the average difference of cotton root water consumption between inner row and outer row was 0.67 mm · d(-1), which was favorable to the cotton growing trimly at both inner and outer rows; for the 'narrow and deep' soil wetting pattern (W169), the same index was 0.88 mm · d(-1), which was unfavorable to cotton growing uniformly at both inner and outer rows. So, we should select the broad-shallow type soil wetting pattern in the design of drip irrigation under mulch.

  15. Non-destructive estimates of soil carbonic anhydrase activity and associated soil water oxygen isotope composition

    Science.gov (United States)

    Jones, Sam P.; Ogée, Jérôme; Sauze, Joana; Wohl, Steven; Saavedra, Noelia; Fernández-Prado, Noelia; Maire, Juliette; Launois, Thomas; Bosc, Alexandre; Wingate, Lisa

    2017-12-01

    The contribution of photosynthesis and soil respiration to net land-atmosphere carbon dioxide (CO2) exchange can be estimated based on the differential influence of leaves and soils on budgets of the oxygen isotope composition (δ18O) of atmospheric CO2. To do so, the activity of carbonic anhydrases (CAs), a group of enzymes that catalyse the hydration of CO2 in soils and plants, needs to be understood. Measurements of soil CA activity typically involve the inversion of models describing the δ18O of CO2 fluxes to solve for the apparent, potentially catalysed, rate of CO2 hydration. This requires information about the δ18O of CO2 in isotopic equilibrium with soil water, typically obtained from destructive, depth-resolved sampling and extraction of soil water. In doing so, an assumption is made about the soil water pool that CO2 interacts with, which may bias estimates of CA activity if incorrect. Furthermore, this can represent a significant challenge in data collection given the potential for spatial and temporal variability in the δ18O of soil water and limited a priori information with respect to the appropriate sampling resolution and depth. We investigated whether we could circumvent this requirement by inferring the rate of CO2 hydration and the δ18O of soil water from the relationship between the δ18O of CO2 fluxes and the δ18O of CO2 at the soil surface measured at different ambient CO2 conditions. This approach was tested through laboratory incubations of air-dried soils that were re-wetted with three waters of different δ18O. Gas exchange measurements were made on these soils to estimate the rate of hydration and the δ18O of soil water, followed by soil water extraction to allow for comparison. Estimated rates of CO2 hydration were 6.8-14.6 times greater than the theoretical uncatalysed rate of hydration, indicating that CA were active in these soils. Importantly, these estimates were not significantly different among water treatments, suggesting

  16. Assessing the cumulative impacts of geographically isolated wetlands on watershed hydrology using the SWAT model coupled with improved wetland modules.

    Science.gov (United States)

    Lee, S; Yeo, I-Y; Lang, M W; Sadeghi, A M; McCarty, G W; Moglen, G E; Evenson, G R

    2018-06-07

    Despite recognizing the importance of wetlands in the Coastal Plain of the Chesapeake Bay Watershed (CBW) in terms of ecosystem services, our understanding of wetland functions has mostly been limited to individual wetlands and overall catchment-scale wetland functions have rarely been investigated. This study is aimed at assessing the cumulative impacts of wetlands on watershed hydrology for an agricultural watershed within the Coastal Plain of the CBW using the Soil and Water Assessment Tool (SWAT). We employed two improved wetland modules for enhanced representation of physical processes and spatial distribution of riparian wetlands (RWs) and geographically isolated wetlands (GIWs). This study focused on GIWs as their hydrological impacts on watershed hydrology are poorly understood and GIWs are poorly protected. Multiple wetland scenarios were prepared by removing all or portions of the baseline GIW condition indicated by the U.S. Fish and Wildlife Service National Wetlands Inventory geospatial dataset. We further compared the impacts of GIWs and RWs on downstream flow (i.e., streamflow at the watershed outlet). Our simulation results showed that GIWs strongly influenced downstream flow by altering water transport mechanisms in upstream areas. Loss of all GIWs reduced both water routed to GIWs and water infiltrated into the soil through the bottom of GIWs, leading to an increase in surface runoff of 9% and a decrease in groundwater flow of 7% in upstream areas. These changes resulted in increased variability of downstream flow in response to extreme flow conditions. GIW loss also induced an increase in month to month variability of downstream flow and a decrease in the baseflow contribution to streamflow. Loss of all GIWs was shown to cause a greater fluctuation of downstream flow than loss of all RWs for this study site, due to a greater total water storage capacity of GIWs. Our findings indicate that GIWs play a significant role in controlling hydrological

  17. Large zero-tension plate lysimeters for soil water and solute collection in undisturbed soils

    Directory of Open Access Journals (Sweden)

    A. Peters

    2009-09-01

    Full Text Available Water collection from undisturbed unsaturated soils to estimate in situ water and solute fluxes in the field is a challenge, in particular if soils are heterogeneous. Large sampling devices are required if preferential flow paths are present. We present a modular plate system that allows installation of large zero-tension lysimeter plates under undisturbed soils in the field. To investigate the influence of the lysimeter on the water flow field in the soil, a numerical 2-D simulation study was conducted for homogeneous soils with uni- and bimodal pore-size distributions and stochastic Miller-Miller heterogeneity. The collection efficiency was found to be highly dependent on the hydraulic functions, infiltration rate, and lysimeter size, and was furthermore affected by the degree of heterogeneity. In homogeneous soils with high saturated conductivities the devices perform poorly and even large lysimeters (width 250 cm can be bypassed by the soil water. Heterogeneities of soil hydraulic properties result into a network of flow channels that enhance the sampling efficiency of the lysimeter plates. Solute breakthrough into zero-tension lysimeter occurs slightly retarded as compared to the free soil, but concentrations in the collected water are similar to the mean flux concentration in the undisturbed soil. To validate the results from the numerical study, a dual tracer study with seven lysimeters of 1.25×1.25 m area was conducted in the field. Three lysimeters were installed underneath a 1.2 m filling of contaminated silty sand, the others deeper in the undisturbed soil. The lysimeters directly underneath the filled soil material collected water with a collection efficiency of 45%. The deeper lysimeters did not collect any water. The arrival of the tracers showed that almost all collected water came from preferential flow paths.

  18. A comparison of single- and multi-site calibration and validation: a case study of SWAT in the Miyun Reservoir watershed, China

    Science.gov (United States)

    Bai, Jianwen; Shen, Zhenyao; Yan, Tiezhu

    2017-09-01

    An essential task in evaluating global water resource and pollution problems is to obtain the optimum set of parameters in hydrological models through calibration and validation. For a large-scale watershed, single-site calibration and validation may ignore spatial heterogeneity and may not meet the needs of the entire watershed. The goal of this study is to apply a multi-site calibration and validation of the Soil andWater Assessment Tool (SWAT), using the observed flow data at three monitoring sites within the Baihe watershed of the Miyun Reservoir watershed, China. Our results indicate that the multi-site calibration parameter values are more reasonable than those obtained from single-site calibrations. These results are mainly due to significant differences in the topographic factors over the large-scale area, human activities and climate variability. The multi-site method involves the division of the large watershed into smaller watersheds, and applying the calibrated parameters of the multi-site calibration to the entire watershed. It was anticipated that this case study could provide experience of multi-site calibration in a large-scale basin, and provide a good foundation for the simulation of other pollutants in followup work in the Miyun Reservoir watershed and other similar large areas.

  19. Characteristics of water infiltration in layered water repellent soils

    Science.gov (United States)

    Hydrophobic soil can influence soil water infiltration, but information regarding the impacts of different levels of hydrophobicity within a layered soil profile is limited. An infiltration study was conducted to determine the effects of different levels of hydrophobicity and the position of the hyd...

  20. Influence of salinity and water content on soil microorganisms

    Directory of Open Access Journals (Sweden)

    Nan Yan

    2015-12-01

    Full Text Available Salinization is one of the most serious land degradation problems facing world. Salinity results in poor plant growth and low soil microbial activity due to osmotic stress and toxic ions. Soil microorganisms play a pivotal role in soils through mineralization of organic matter into plant available nutrients. Therefore it is important to maintain high microbial activity in soils. Salinity tolerant soil microbes counteract osmotic stress by synthesizing osmolytes which allows them to maintain their cell turgor and metabolism. Osmotic potential is a function of the salt concentration in the soil solution and therefore affected by both salinity (measured as electrical conductivity at a certain water content and soil water content. Soil salinity and water content vary in time and space. Understanding the effect of changes in salinity and water content on soil microorganisms is important for crop production, sustainable land use and rehabilitation of saline soils. In this review, the effects of soil salinity and water content on microbes are discussed to guide future research into management of saline soils.

  1. Predicting and mapping soil available water capacity in Korea.

    Science.gov (United States)

    Hong, Suk Young; Minasny, Budiman; Han, Kyung Hwa; Kim, Yihyun; Lee, Kyungdo

    2013-01-01

    The knowledge on the spatial distribution of soil available water capacity at a regional or national extent is essential, as soil water capacity is a component of the water and energy balances in the terrestrial ecosystem. It controls the evapotranspiration rate, and has a major impact on climate. This paper demonstrates a protocol for mapping soil available water capacity in South Korea at a fine scale using data available from surveys. The procedures combined digital soil mapping technology with the available soil map of 1:25,000. We used the modal profile data from the Taxonomical Classification of Korean Soils. The data consist of profile description along with physical and chemical analysis for the modal profiles of the 380 soil series. However not all soil samples have measured bulk density and water content at -10 and -1500 kPa. Thus they need to be predicted using pedotransfer functions. Furthermore, water content at -10 kPa was measured using ground samples. Thus a correction factor is derived to take into account the effect of bulk density. Results showed that Andisols has the highest mean water storage capacity, followed by Entisols and Inceptisols which have loamy texture. The lowest water retention is Entisols which are dominated by sandy materials. Profile available water capacity to a depth of 1 m was calculated and mapped for Korea. The western part of the country shows higher available water capacity than the eastern part which is mountainous and has shallower soils. The highest water storage capacity soils are the Ultisols and Alfisols (mean of 206 and 205 mm, respectively). Validation of the maps showed promising results. The map produced can be used as an indication of soil physical quality of Korean soils.

  2. Predicting and mapping soil available water capacity in Korea

    Directory of Open Access Journals (Sweden)

    Suk Young Hong

    2013-04-01

    Full Text Available The knowledge on the spatial distribution of soil available water capacity at a regional or national extent is essential, as soil water capacity is a component of the water and energy balances in the terrestrial ecosystem. It controls the evapotranspiration rate, and has a major impact on climate. This paper demonstrates a protocol for mapping soil available water capacity in South Korea at a fine scale using data available from surveys. The procedures combined digital soil mapping technology with the available soil map of 1:25,000. We used the modal profile data from the Taxonomical Classification of Korean Soils. The data consist of profile description along with physical and chemical analysis for the modal profiles of the 380 soil series. However not all soil samples have measured bulk density and water content at −10 and −1500 kPa. Thus they need to be predicted using pedotransfer functions. Furthermore, water content at −10 kPa was measured using ground samples. Thus a correction factor is derived to take into account the effect of bulk density. Results showed that Andisols has the highest mean water storage capacity, followed by Entisols and Inceptisols which have loamy texture. The lowest water retention is Entisols which are dominated by sandy materials. Profile available water capacity to a depth of 1 m was calculated and mapped for Korea. The western part of the country shows higher available water capacity than the eastern part which is mountainous and has shallower soils. The highest water storage capacity soils are the Ultisols and Alfisols (mean of 206 and 205 mm, respectively. Validation of the maps showed promising results. The map produced can be used as an indication of soil physical quality of Korean soils.

  3. Response of three soil water sensors to variable solution electrical conductivity in different soils

    Science.gov (United States)

    Commercial dielectric soil water sensors may improve management of irrigated agriculture by providing continuous field soil water information. Use of these sensors is partly limited by sensor sensitivity to variations in soil salinity and texture, which force expensive, time consuming, soil specific...

  4. Stream Flow Simulation of a Snow-Fed Mountainous Basin Using the SWAT Model

    Science.gov (United States)

    Shukla, S.; Kansal, M. L.; Jain, S. K.

    2017-12-01

    Hydrological budget of the Satluj River (a major tributary of Indus river system) in Western Himalaya, is dominated by monsoonal rainfall and snowmelt during the non-monsoon months. The river watershed experiences extensive snowfall in the winters and snowmelt runoff substantially contributes to the streamflow of the river in the spring and summer months. In order to understand the hydrologic response of Satluj basin, hydrological modeling study is carried out using a semi distributed hydrological model Soil and Water Assessment Tool (SWAT), for the period of thirty years (1985-2014). The basic intent of this study is to derive the parameters required for runoff modeling using the geospatial database. The Sequential Uncertainty Fitting (SUFI-2) algorithm is used to calibrate and validate the model and incorporate uncertainties in the analysis. The results are validated with the observed daily streamflow data at Rampur, in terms of Nash-Sutcliffe Coefficient (NSC), R2 and Root Mean Square Error (RMSE). Further, the snowmelt-runoff mechanism is modelled by relating the temperature changes to the elevation band in the basin. The northern part of the basin and the south part of the basin on the high elevation zones have the coldest maximum temperatures that is about 7°C. It is found that the average contribution of snow and glacier runoff in the annual flow of the Satluj River at Rampur is about 66% and remaining 34% is from rainfall.

  5. Modeling of runoff pollution load in a data scarce situation using ...

    African Journals Online (AJOL)

    This study used Soil Water Assessment Tool (SWAT) to simulate temporal-spatial distribution of surface water runoff (river flow), sediment and nutrient generation in Sondu watershed, and to identify soil erosion and nutrient source hot spots. Annual sediment generation to the lake is 80,000 t/yr composed of mainly silt while ...

  6. Moditored unsaturated soil transport processes as a support for large scale soil and water management

    Science.gov (United States)

    Vanclooster, Marnik

    2010-05-01

    The current societal demand for sustainable soil and water management is very large. The drivers of global and climate change exert many pressures on the soil and water ecosystems, endangering appropriate ecosystem functioning. The unsaturated soil transport processes play a key role in soil-water system functioning as it controls the fluxes of water and nutrients from the soil to plants (the pedo-biosphere link), the infiltration flux of precipitated water to groundwater and the evaporative flux, and hence the feed back from the soil to the climate system. Yet, unsaturated soil transport processes are difficult to quantify since they are affected by huge variability of the governing properties at different space-time scales and the intrinsic non-linearity of the transport processes. The incompatibility of the scales between the scale at which processes reasonably can be characterized, the scale at which the theoretical process correctly can be described and the scale at which the soil and water system need to be managed, calls for further development of scaling procedures in unsaturated zone science. It also calls for a better integration of theoretical and modelling approaches to elucidate transport processes at the appropriate scales, compatible with the sustainable soil and water management objective. Moditoring science, i.e the interdisciplinary research domain where modelling and monitoring science are linked, is currently evolving significantly in the unsaturated zone hydrology area. In this presentation, a review of current moditoring strategies/techniques will be given and illustrated for solving large scale soil and water management problems. This will also allow identifying research needs in the interdisciplinary domain of modelling and monitoring and to improve the integration of unsaturated zone science in solving soil and water management issues. A focus will be given on examples of large scale soil and water management problems in Europe.

  7. Impacts of Cropland Changes on Water Balance, Sediment and Nutrient Transport in Eden River, UK

    Science.gov (United States)

    Huang, Yumei; Quinn, Paul; Liang, Qiuhua; Adams, Russell

    2017-04-01

    Water is the key to food and human life. Farming is the main part of economic and society in Eden, with approximately 2000 farms which covers 95% of under crops. However, with the growth of farming practice and global climate changes, Eden has presented great challenges and bringing uncertainty in the water quality caused by the agricultural diffuse pollution. This expected to reduce negative impacts of the water diffuse pollution from agriculture in Eden. Therefore, there is a high need to ensure effective water resource management to enhance water quality, to address the flow pathways and sediment transport in different farming practice and cropland changes. Hence we need to understand nutrient and the hydrological flow pathways from soil to Hillslope to channel. The aim of this research is to evaluate the impacts of different cropland changes on water balance, sediment and nutrient transport. By using the hydrological models Soil and Water Assessment Tool (SWAT) and the Catchment Runoff Attenuation Flux Tool (CRAFT), it can show the sediment and nutrient export from the load for each flow pathways (overland flow, soil water flow and ground water flow). We will show results from a small research catchment (10km2) area to the whole of Eden (800km2) at a daily time step.

  8. Watershed-Scale Modeling of Land-Use and Altered Environment Impacts on Aquatic Weed Growth in the Delta

    Science.gov (United States)

    Bubenheim, David; Potter, Christopher; Zhang, Minghua

    2016-01-01

    The California Sacramento-San Joaquin River Delta is the hub for California's water supply, conveying water from Northern to Southern California agriculture and communities while supporting important ecosystem services, agriculture, and communities in the Delta. Changes in climate, long-term drought, and water quality have all been suspected as playing role in the dramatic expansion of invasive aquatic plants and their impact on ecosystems of the San Francisco Bay / California Delta complex. NASA Ames Research Center, USDA-Agricultural Research Service, the State of California, UC Davis, and local governments have partnered under a USDA sponsored project (DRAAWP) to develop science-based, adaptive-management strategies for invasive aquatic plants in Sacramento-San Joaquin Delta. Critical to developing management strategies is to understand how the Delta is affected by both the magnitude of fluctuations in land-use and climate / drought induced altered environments and how the plants respond to these altered environments. We utilize the Soil Water Assessment Tool (SWAT), a watershed-scale model developed to quantify the impact of land management practices in large and complex watersheds on water quality, as the backbone for a customized Delta model - Delta-SWAT. The model uses land-use, soils, elevation, and hydrologic routing to characterize pesticide and nutrient transport from the Sacramento and San Joaquin rivers watersheds and loading into the Delta. Land-use within the Delta, as well as water extraction to supply those functions, and the resulting return of water to Delta waterways are included in Delta-SWAT. Hydrologic transport within the Delta has required significant attention to address the lack of elevation driven transport processes. Delta-SWAT water quality trend estimates are compared with water quality monitoring conducted throughout the Delta. Aquatic plant response to water quality and other environmental factors is carried out using a customized

  9. Predicting Phosphorus Dynamics Across Physiographic Regions Using a Mixed Hortonian Non-Hortonian Hydrology Model

    Science.gov (United States)

    Collick, A.; Easton, Z. M.; Auerbach, D.; Buchanan, B.; Kleinman, P. J. A.; Fuka, D.

    2017-12-01

    Predicting phosphorus (P) loss from agricultural watersheds depends on accurate representation of the hydrological and chemical processes governing P mobility and transport. In complex landscapes, P predictions are complicated by a broad range of soils with and without restrictive layers, a wide variety of agricultural management, and variable hydrological drivers. The Soil and Water Assessment Tool (SWAT) is a watershed model commonly used to predict runoff and non-point source pollution transport, but is commonly only used with Hortonian (traditional SWAT) or non-Hortonian (SWAT-VSA) initializations. Many shallow soils underlain by a restricting layer commonly generate saturation excess runoff from variable source areas (VSA), which is well represented in a re-conceptualized version, SWAT-VSA. However, many watersheds exhibit traits of both infiltration excess and saturation excess hydrology internally, based on the hydrologic distance from the stream, distribution of soils across the landscape, and characteristics of restricting layers. The objective of this research is to provide an initial look at integrating distributed predictive capabilities that consider both Hortonian and Non-Hortonian solutions simultaneously within a single SWAT-VSA initialization. We compare results from all three conceptual watershed initializations against measured surface runoff and stream P loads and to highlight the model's ability to drive sub-field management of P. All three initializations predict discharge similarly well (daily Nash-Sutcliffe Efficiencies above 0.5), but the new conceptual SWAT-VSA initialization performed best in predicting P export from the watershed, while also identifying critical source areas - those areas generating large runoff and P losses at the sub field level. These results support the use of mixed Hortonian non-Hortonian SWAT-VSA initializations in predicting watershed-scale P losses and identifying critical source areas of P loss in landscapes

  10. Water erosion and soil water infiltration in different stages of corn development and tillage systems

    Directory of Open Access Journals (Sweden)

    Daniel F. de Carvalho

    2015-11-01

    Full Text Available ABSTRACTThis study evaluated soil and water losses, soil water infiltration and infiltration rate models in soil tillage systems and corn (Zea mays, L. development stages under simulated rainfall. The treatments were: cultivation along contour lines, cultivation down the slope and exposed soil. Soil losses and infiltration in each treatment were quantified for rains applied using a portable simulator, at 0, 30, 60 and 75 days after planting. Infiltration rates were estimated using the models of Kostiakov-Lewis, Horton and Philip. Based on the obtained results, the combination of effects between soil tillage system and corn development stages reduces soil and water losses. The contour tillage system promoted improvements in soil physical properties, favoring the reduction of erosion in 59.7% (water loss and 86.6% (soil loss at 75 days after planting, and the increase in the stable infiltration rate in 223.3%, compared with the exposed soil. Associated to soil cover, contour cultivation reduces soil and water losses, and the former is more influenced by management. Horton model is the most adequate to represent soil water infiltration rate under the evaluated conditions.

  11. Pengaruh Curah Hujan Rata-rata Tahunan terhadap Indeks Erosi dan Umur Waduk pada DAS Citarum Hulu

    Directory of Open Access Journals (Sweden)

    Bakhtiar Bakhtiar

    2014-11-01

    Full Text Available The aim of this study is to find out the effect of annual rainfall on the erosion index and the life of a reservoir. The erosion index is defined as the total soil loss divided by the tolerable soil loss. The life of a reservoir is affected by the amount of sediment flowing into the reservoir and sediment trap, which is a function of the effective capacity of the reservoir and the inflowing water. Soil and Water Assessment Tool (SWAT version 2005 model was incorporated into this study to simulate hydrological processes taking place in the catchment. ArcSWAT (ArcGIS Interface for SWAT 2005 program was used as a preprocessing tool to write in input files to be executed by SWAT.SWAT model involves a great number of parameters. Hence, its reliability depends so much on the data availability and some parameter adjustments. From the calibration and validation results on annual data, the model is considerably of good performance. This was proven from the coefficient of correlation (r, coefficient of determination (R2, model efficiency (ME, and index of agreement (IA which are close to 1 except for the sediment inflow. The difference between the observed and simulated sediment inflow resulted because the SWAT model accounts for the annual variation in precipitation and mean inflow discharge which is not manifested in the observed data. The modeling results revealed that the average inflowing sediment into the reservoir is 5,102,000 ton/year resulting in 46.18 year effective life of the reservoir which corresponds to the critical degree of 1.15. The graph plotting the values of the sediment inflow and the critical degree of the reservoir life reveals a linear relationship.

  12. Flow of gasoline-in-water microemulsion through water-saturated soil columns

    International Nuclear Information System (INIS)

    Ouyang, Y.; Mansell, R.S.; Rhue, R.D.

    1995-01-01

    Much consideration has been given to the use of surfactants to clean up nonaqueous phase liquids (NAPLs) from contaminated soil and ground water. Although this emulsification technique has shown significant potential for application in environmental remediation practices, a major obstacle leading to low washing efficiency is the potential formation of macroemulsion with unfavorable flow characteristics in porous media. This study investigated influences of the flow of leaded-gasoline-in-water (LG/W) microemulsion upon the transport of gasoline and lead (Pb) species in water-saturated soil columns. Two experiments were performed: (1) the immiscible displacement of leaded gasoline and (2) the miscible displacement of LG/W microemulsion through soil columns, followed by sequentially flushing with NaCl solution and a water/surfactant/cosurfactant (W/S/CoS) mixture. Comparison of breakthrough curves (BTC) for gasoline between the two experiments shows that about 90% of gasoline and total Pb were removed from the soil columns by NaCl solution in the LG/W microemulsion experiment as compared to 40% removal of gasoline and 10% removal of total Pb at the same process in the leaded gasoline experiment. Results indicate that gasoline and Pb species moved much more effectively through soil during miscible flow of LG/W microemulsion than during immiscible flow of leaded gasoline. In contrast to the adverse effects of macroemulsion on the transport of NAPLs, microemulsion was found to enhance the transport of gasoline through water-saturated soil. Mass balance analysis shows that the W/S/CoS mixture had a high capacity for removing residual gasoline and Pb species from contaminated soil. Comparison of water-pressure differences across the soil columns for the two experiments indicates that pore clogging by gasoline droplets was greatly minimized in the LG/W microemulsion experiment

  13. Soil process modelling in CZO research: gains in data harmonisation and model validation

    Science.gov (United States)

    van Gaans, Pauline; Andrianaki, Maria; Kobierska, Florian; Kram, Pavel; Lamacova, Anna; Lair, Georg; Nikolaidis, Nikos; Duffy, Chris; Regelink, Inge; van Leeuwen, Jeroen P.; de Ruiter, Peter

    2014-05-01

    Various soil process models were applied to four European Critical Zone observatories (CZOs), the core research sites of the FP7 project SoilTrEC: the Damma glacier forefield (CH), a set of three forested catchments on geochemically contrasing bedrocks in the Slavkov Forest (CZ), a chronosequence of soils in the former floodplain of the Danube of Fuchsenbigl/Marchfeld (AT), and the Koiliaris catchments in the north-western part of Crete, (GR). The aim of the modelling exercises was to apply and test soil process models with data from the CZOs for calibration/validation, identify potential limits to the application scope of the models, interpret soil state and soil functions at key stages of the soil life cycle, represented by the four SoilTrEC CZOs, contribute towards harmonisation of data and data acquisition. The models identified as specifically relevant were: The Penn State Integrated Hydrologic Model (PIHM), a fully coupled, multiprocess, multi-scale hydrologic model, to get a better understanding of water flow and pathways, The Soil and Water Assessment Tool (SWAT), a deterministic, continuous time (daily time step) basin scale model, to evaluate the impact of soil management practices, The Rothamsted Carbon model (Roth-C) to simulate organic carbon turnover and the Carbon, Aggregation, and Structure Turnover (CAST) model to include the role of soil aggregates in carbon dynamics, The Ligand Charge Distribution (LCD) model, to understand the interaction between organic matter and oxide surfaces in soil aggregate formation, and The Terrestrial Ecology Model (TEM) to obtain insight into the link between foodweb structure and carbon and nutrient turnover. With some exceptions all models were applied to all four CZOs. The need for specific model input contributed largely to data harmonisation. The comparisons between the CZOs turned out to be of great value for understanding the strength and limitations of the models, as well as the differences in soil conditions

  14. Characteristics of soil under variations in clay, water saturation, and water flow rates, and the implications upon soil remediation

    International Nuclear Information System (INIS)

    Aikman, M.; Mirotchnik, K.; Kantzas, A.

    1997-01-01

    A potential remediation method for hydrocarbon contaminated soils was discussed. The new method was based on the use of proven and economic petroleum reservoir engineering methods for soil remediation. The methods that were applied included water and gas displacement methods together with horizontal boreholes as the flow inlet and outlets. This system could be used in the case of spills that seep beneath a plant or other immovable infrastructure which requires in-situ treatment schemes to decontaminate the soil. A study was conducted to characterize native soils and water samples from industrial plants in central Alberta and Sarnia, Ontario and to determine the variables that impact upon the flow conditions of synthetic test materials. The methods used to characterize the soils included X-Ray computed tomographic analysis, grain size and density measurements, and X-Ray diffraction. Clay content, initial water saturation, and water and gas flow rate were the variables that impacted on the flow conditions

  15. Water table fluctuations and soil biogeochemistry: An experimental approach using an automated soil column system

    Science.gov (United States)

    Rezanezhad, F.; Couture, R.-M.; Kovac, R.; O'Connell, D.; Van Cappellen, P.

    2014-02-01

    Water table fluctuations significantly affect the biological and geochemical functioning of soils. Here, we introduce an automated soil column system in which the water table regime is imposed using a computer-controlled, multi-channel pump connected to a hydrostatic equilibrium reservoir and a water storage reservoir. The potential of this new system is illustrated by comparing results from two columns filled with 45 cm of the same homogenized riparian soil. In one soil column the water table remained constant at -20 cm below the soil surface, while in the other the water table oscillated between the soil surface and the bottom of the column, at a rate of 4.8 cm d-1. The experiment ran for 75 days at room temperature (25 ± 2 °C). Micro-sensors installed at -10 and -30 cm below the soil surface in the stable water table column recorded constant redox potentials on the order of 600 and -200 mV, respectively. In the fluctuating water table column, redox potentials at the same depths oscillated between oxidizing (∼700 mV) and reducing (∼-100 mV) conditions. Pore waters collected periodically and solid-phase analyses on core material obtained at the end of the experiment highlighted striking geochemical differences between the two columns, especially in the time series and depth distributions of Fe, Mn, K, P and S. Soil CO2 emissions derived from headspace gas analysis exhibited periodic variations in the fluctuating water table column, with peak values during water table drawdown. Transient redox conditions caused by the water table fluctuations enhanced microbial oxidation of soil organic matter, resulting in a pronounced depletion of particulate organic carbon in the midsection of the fluctuating water table column. Denaturing Gradient Gel Electrophoresis (DGGE) revealed the onset of differentiation of the bacterial communities in the upper (oxidizing) and lower (reducing) soil sections, although no systematic differences in microbial community structure

  16. Theory of evapotranspiration. 2. Soil and intercepted water evaporation

    OpenAIRE

    Budagovskyi, Anatolij Ivanovič; Novák, Viliam

    2011-01-01

    Evaporation of water from the soil is described and quantified. Formation of the soil dry surface layer is quantitatively described, as a process resulting from the difference between the evaporation and upward soil water flux to the soil evaporating level. The results of evaporation analysis are generalized even for the case of water evaporation from the soil under canopy and interaction between evaporation rate and canopy transpiration is accounted for. Relationships describing evapotranspi...

  17. Improvement of Water Movement in an Undulating Sandy Soil Prone to Water Repellency

    NARCIS (Netherlands)

    Oostindie, K.; Dekker, L.W.; Wesseling, J.G.; Ritsema, C.J.

    2011-01-01

    The temporal dynamics of water repellency in soils strongly influence water flow. We investigated the variability of soil water content in a slight slope on a sandy fairway exhibiting water-repellent behavior. A time domain reflectometry (TDR) array of 60 probes measured water contents at 3-h

  18. NUTRIENT BALANCE IN WATER HARVESTING SOILS

    Directory of Open Access Journals (Sweden)

    Díaz, F

    2005-05-01

    Full Text Available Dryland farming on Fuerteventura and Lanzarote (Canary Islands, Spain, which has an annual rainfall of less than 150 mm/year, has been based traditionally on water harvesting techniques (known locally as “gavias”. Periods of high productivity alternate with those of very low yield. The systems are sustainable in that they reduce erosive processes, contribute to soil and soil-water conservation and are largely responsible for maintaining the soil’s farming potential. In this paper we present the chemical fertility status and nutrient balance of soils in five “gavia” systems. The results are compared with those obtained in adjacent soils where this water harvesting technique is not used. The main crops are wheat, barley, maize, lentils and chick-peas. Since neither organic nor inorganic fertilisers are used, nutrients are derived mainly from sediments carried by runoff water. Nutrients are lost mainly through crop harvesting and harvest residues. The soils where water harvesting is used have lower salt and sodium in the exchange complex, are higher in carbon, nitrogen, copper and zinc and have similar phosphorous and potassium content. It is concluded that the systems improve the soil’s natural fertility and also that natural renovation of nutrients occurs thanks to the surface deposits of sediments, which mix with the arable layer. The system helps ensure adequate fertility levels, habitual in arid regions, thus allowing dryland farming to be carried out.

  19. Degradation process modelization in of metallic drink containers, in soil, in water and in water-soil interaction

    International Nuclear Information System (INIS)

    Rieiro, I.; Trivino, V.; Gutierrez, T.; Munoz, J.; Larrea, M. T.

    2013-01-01

    This study asses the environmental pollution by metal release that takes place during prolonged exposures when metallic drink containers are accidentally settle in the soil in a uncontrolled way, For comparative purposes, the F111 steel and the aluminium alloy 3003, widely used for the fabrication of these containers, are also considered. A experimental design is proposed to simulate the environmental pollution during prolonged exposures. Analytical indicators have been obtained determining the metallic concentration from three types of mediums; water, water in presence of soil, and absorption-adsorption in soil. An analytical methodology has been developed by Atomic Emission Spectrometry with ICP as exciting source (ICP-OES) for metallic quantification. The method was validated using Certified Reference Materials (CRMs) of soil and water and the precision obtained varies from 5.39 to 5.86% and from 5.75 to 6.27%, respectively according to of the element studied. A statistical descriptive study followed by a factorial analysis (linear general model) has been carried out for the treatment of the experimental data packages. The metallic quantification for the three mediums shows that the soil inhibits metallic solubility in water. The process to make packages reduces in both cases their metallic cession. (Author)

  20. CHASE-PL—Future Hydrology Data Set: Projections of Water Balance and Streamflow for the Vistula and Odra Basins, Poland

    Directory of Open Access Journals (Sweden)

    Mikołaj Piniewski

    2017-04-01

    Full Text Available There is considerable concern that the water resources of Central and Eastern Europe region can be adversely affected by climate change. Projections of future water balance and streamflow conditions can be obtained by forcing hydrological models with the output from climate models. In this study, we employed the SWAT hydrological model driven with an ensemble of nine bias-corrected EURO-CORDEX climate simulations to generate future hydrological projections for the Vistula and Odra basins in two future horizons (2024–2050 and 2074–2100 under two Representative Concentration Pathways (RCPs. The data set consists of three parts: (1 model inputs; (2 raw model outputs; (3 aggregated model outputs. The first one allows the users to reproduce the outputs or to create the new ones. The second one contains the simulated time series of 10 variables simulated by SWAT: precipitation, snow melt, potential evapotranspiration, actual evapotranspiration, soil water content, percolation, surface runoff, baseflow, water yield and streamflow. The third one consists of the multi-model ensemble statistics of the relative changes in mean seasonal and annual variables developed in a GIS format. The data set should be of interest of climate impact scientists, water managers and water-sector policy makers. In any case, it should be noted that projections included in this data set are associated with high uncertainties explained in this data descriptor paper.

  1. Effects of fire ash on soil water retention

    NARCIS (Netherlands)

    Stoof, C.R.; Wesseling, J.G.; Ritsema, C.J.

    2010-01-01

    Despite the pronounced effect of fire on soil hydrological systems, information on the direct effect of fire on soil water retention characteristics is limited and contradictory. To increase understanding in this area, the effect of fire on soil water retention was evaluated using laboratory burning

  2. Field, laboratory and estimated soil-water content limits

    African Journals Online (AJOL)

    2005-01-21

    Jan 21, 2005 ... silt (0.002 to 0.05 mm) percentage to estimate the soil-water content at a given soil-water .... ar and br are the intercept and slope values of the regres- .... tions use the particle size classification of the South African Soil.

  3. Fly ash dynamics in soil-water systems

    International Nuclear Information System (INIS)

    Sharma, S.; Fulekar, M.H.; Jayalakshmi, C.P.

    1989-01-01

    Studies regarding the effluents and coal ashes (or fly ash) resulting from coal burning are numerous, but their disposal and interactions with the soil and water systems and their detailed environmental impact assessment with concrete status reports on a global scale are scanty. Fly ash dynamics in soil and water systems are reviewed. After detailing the physical composition of fly ash, physicochemical changes in soil properties due to fly ash amendment are summarized. Areas covered include texture and bulk density, moisture retention, change in chemical equilibria, and effects of fly ash on soil microorganisms. Plant growth in amended soils is discussed, as well as plant uptake and accumulation of trace elements. In order to analyze the effect of fly ash on the physicochemical properties of water, several factors must be considered, including surface morphology of fly ash, pH of the ash sluice water, pH adjustments, leachability and solubility, and suspended ash and settling. The dynamics of fly ash in water systems is important due to pollution of groundwater resources from toxic components such as trace metals. Other factors summarized are bioaccumulation and biomagnification, human health effects of contaminants, and the impact of radionuclides in fly ash. Future research needs should focus on reduction of the environmental impact of fly ash and increasing utilization of fly ash as a soil amendment. 110 refs., 2 figs., 10 tabs

  4. Wetting properties of fungi mycelium alter soil infiltration and soil water repellency in a γ-sterilized wettable and repellent soil.

    Science.gov (United States)

    Chau, Henry Wai; Goh, Yit Kheng; Vujanovic, Vladimir; Si, Bing Cheng

    2012-12-01

    Soil water repellency (SWR) has a drastic impact on soil quality resulting in reduced infiltration, increased runoff, increased leaching, reduced plant growth, and increased soil erosion. One of the causes of SWR is hydrophobic fungal structures and exudates that change the soil-water relationship. The objective of this study was to determine whether SWR and infiltration could be manipulated through inoculation with fungi. The effect of fungi on SWR was investigated through inoculation of three fungal strains (hydrophilic -Fusarium proliferatum, chrono-amphiphilic -Trichoderma harzianum, and hydrophobic -Alternaria sp.) on a water repellent soil (WR-soil) and a wettable soil (W-soil). The change in SWR and infiltration was assessed by the water repellency index and cumulative infiltration respectively. F. proliferatum decreased the SWR on WR-soil and slightly increased SWR in W-soil, while Alternaria sp. increased SWR in both the W-soil and the WR-soil. Conversely T. harzianum increased the SWR in the W-soil and decreased the SWR in the WR-soil. All strains showed a decrease in infiltration in W-soil, while only the F. proliferatum and T. harzianum strain showed improvement in infiltration in the WR-soil. The ability of fungi to alter the SWR and enmesh soil particles results in changes to the infiltration dynamics in soil. Copyright © 2012 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  5. Effect of restoring soil hydrological poperties on water conservation

    NARCIS (Netherlands)

    Moore, D.; Kostka, S.J.; Boerth, T.J.; Franklin, M.A.; Ritsema, C.J.; Dekker, L.W.; Oostindie, K.; Stoof, C.R.; Park, D.M.

    2008-01-01

    Water repellency in soil is more wide spread than previously thought ¿ and has a significant impact on irrigation efficiency and water conservation. Soil water repellency has been identified in many soil types under a wide array of climatic conditions world wide. Consequences include increased

  6. Integrated water-crop-soil-management system for evaluating the quality of irrigation water

    International Nuclear Information System (INIS)

    Pla-Sentis, I.

    1983-01-01

    The authors make use of an independent balance of the salts and ions present in the water available for irrigation, based on the residence times in the soil solution that are allowed by solubility limits and drainage conditions, to develop an efficient system for evaluating the quality of such water which combines the factors: water, crop, soil and management. The system is based on the principle that such quality depends not only on the concentration and composition of the salts dissolved in the water, but also on existing possibilities and limitations in using and managing it in respect of the soil and crops, with allowance for the crop's tolerance of salinity, drainage conditions and hydrological properties of the soils, climate and current or potential practices for the management of the irrigation. If this system is used to quantify approximately the time behaviour of the concentration and composition of the salts in the soil solution, it is possible not only to predict the effects on soil, crops and drainage water, but also to evaluate the various combinations of irrigation water, soil, crops and management and to select the most suitable. It is also useful for fairly accurately diagnosing current problems of salinity and for identifying alternatives and possibilities for reclamation. Examples of its use for these purposes in Venezuela are presented with particular reference to the diagnosis of the present and future development of ''salino-sodic'' and ''sodic'' soils by means of low-salt irrigation water spread over agricultural soils with very poor drainage in a sub-humid or semi-arid tropical climate. The authors also describe the use of radiation techniques for gaining an understanding of the relations between the factors making up the system and for improving the quantitative evaluations required to diagnose problems and to select the best management methods for the available irrigation water. (author)

  7. CO2 response to rewetting of hydrophobic soils - Can soil water repellency inhibit the 'Birch effect'?

    Science.gov (United States)

    Sanchez-Garcia, Carmen; Urbanek, Emilia; Doerr, Stefan

    2017-04-01

    Rewetting of dry soils is known to cause a short-term CO2 pulse commonly known as the 'Birch effect'. The displacement of CO2 with water during the process of wetting has been recognised as one of the sources of this pulse. The 'Birch effect' has been extensively observed in many soils, but some studies report a lack of such phenomenon, suggesting soil water repellency (SWR) as a potential cause. Water infiltration in water repellent soils can be severely restricted, causing overland flow or increased preferential flow, resulting in only a small proportion of soil pores being filled with water and therefore small gas-water replacement during wetting. Despite the suggestions of a different response of CO2 fluxes to wetting under hydrophobic conditions, this theory has never been tested. The aim of this study is to test the hypothesis that CO2 pulse does not occur during rewetting of water repellent soils. Dry homogeneous soils at water-repellent and wettable status have been rewetted with different amounts of water. CO2 flux as a response to wetting has been continuously measured with the CO2 flux analyser. Delays in infiltration and non-uniform heterogeneous water flow were observed in water repellent soils, causing an altered response in the CO2 pulse in comparison to typically observed 'Birch effect' in wettable systems. The main conclusion from the study is that water repellency not only affects water relations in soil, but has also an impact on greenhouse gas production and transport and therefore should be included as an important parameter during the sites monitoring and modelling of gas fluxes.

  8. Contribution of soil electric resistivity measurements to the studies on soil/grapevine water relations

    Directory of Open Access Journals (Sweden)

    Etienne Goulet

    2006-06-01

    Full Text Available The classical techniques that allow to quantify the soil water status such as the gravimetric method or the use of neutrons probes do not give access to the volume of soil explored by the plant root system. On the contrary, electric tomography can be used to have a global vision on the water exchange area between soil and plant. The measurement of soil electric resistivity, as a non destructive, spatially integrative technique, has recently been introduced into viticulture. The use of performing equipment and adapted software allows for rapid data processing and gives the possibility to spatialize the variations of soil texture or humidity in two or three dimensions. Soil electric resistivity has been tested for the last three years at the Experimental Unit on Grapevine and Vine, INRA, Angers, France, to study the water supply to the vine in different “terroir” conditions. Resistivity measurements were carried out with the resistivity meter Syscal R1+ (Iris Instruments, France equipped with 21 electrodes. Those electrodes were lined up on the soil surface in a direction perpendiculary to 5 grapevine rows with an electrode spacing of 0.5 m. and a dipole-dipole arrangement. Resistivity measurements were performed on the same place at different times in order to study soil moisture variations. This experimental set up has permitted to visualise the soil stratification and individualize some positive electric anomalies corresponding to preferential drying ; this desiccation could be attributed to grapevine root activity. The soil bulk subject to the water up-take could be defined more precisely and in some types of soil, available water may even be quantified. Terroir effect on grapevine root activity has also been shown up on two different experimental parcels through electric tomography and first results indicate that it is possible to monitor the effects of soil management (inter-row grassing or different rootstocks on the water supply to the

  9. Net carbon allocation in soybean seedlings as influenced by soil water stress at two soil temperatures

    International Nuclear Information System (INIS)

    McCoy, E.L.; Boersma, L.; Ekasingh, M.

    1990-01-01

    The influence of water stress at two soil temperatures on allocation of net photoassimilated carbon in soybean (Glycine max [L.] Merr.) was investigated using compartmental analysis. The experimental phase employed classical 14 C labeling methodology with plants equilibrated at soil water potentials of -0.04, -0.25 and -0.50 MPa; and soil temperatures of 25 and 10C. Carbon immobilization in the shoot apex generally followed leaf elongation rates with decreases in both parameters at increasing water stress at both soil temperatures. However, where moderate water stress resulted in dramatic declines in leaf elongation rates, carbon immobilization rates were sharply decreased only at severe water stress levels. Carbon immobilization was decreased in the roots and nodules of the nonwater stressed treatment by the lower soil temperature. This relation was reversed with severe water stress, and carbon immobilization in the roots and nodules was increased at the lower soil temperature. Apparently, the increased demand for growth and/or carbon storage in these tissues with increased water stress overcame the low soil temperature limitations. Both carbon pool sizes and partitioning of carbon to the sink tissues increased with moderate water stress at 25C soil temperature. Increased pool sizes were consistent with whole plant osmotic adjustment at moderate water stress. Increased partitioning to the sinks was consistent with carbon translocation processes being less severely influenced by water stress than is photosynthesis

  10. Moisture variability resulting from water repellency in Dutch soils

    NARCIS (Netherlands)

    Dekker, L.W.

    1998-01-01

    The present study suggests that many soils in the Netherlands, in natural as well as in agricultural areas, may be water repellent to some degree, challenging the common perception that soil water repellency is only an interesting aberration. When dry, water repellent soils resist or retard

  11. Effects of soil management techniques on soil water erosion in apricot orchards.

    Science.gov (United States)

    Keesstra, Saskia; Pereira, Paulo; Novara, Agata; Brevik, Eric C; Azorin-Molina, Cesar; Parras-Alcántara, Luis; Jordán, Antonio; Cerdà, Artemi

    2016-05-01

    Soil erosion is extreme in Mediterranean orchards due to management impact, high rainfall intensities, steep slopes and erodible parent material. Vall d'Albaida is a traditional fruit production area which, due to the Mediterranean climate and marly soils, produces sweet fruits. However, these highly productive soils are left bare under the prevailing land management and marly soils are vulnerable to soil water erosion when left bare. In this paper we study the impact of different agricultural land management strategies on soil properties (bulk density, soil organic matter, soil moisture), soil water erosion and runoff, by means of simulated rainfall experiments and soil analyses. Three representative land managements (tillage/herbicide/covered with vegetation) were selected, where 20 paired plots (60 plots) were established to determine soil losses and runoff. The simulated rainfall was carried out at 55mmh(-1) in the summer of 2013 (soil moisture) for one hour on 0.25m(2) circular plots. The results showed that vegetation cover, soil moisture and organic matter were significantly higher in covered plots than in tilled and herbicide treated plots. However, runoff coefficient, total runoff, sediment yield and soil erosion were significantly higher in herbicide treated plots compared to the others. Runoff sediment concentration was significantly higher in tilled plots. The lowest values were identified in covered plots. Overall, tillage, but especially herbicide treatment, decreased vegetation cover, soil moisture, soil organic matter, and increased bulk density, runoff coefficient, total runoff, sediment yield and soil erosion. Soil erosion was extremely high in herbicide plots with 0.91Mgha(-1)h(-1) of soil lost; in the tilled fields erosion rates were lower with 0.51Mgha(-1)h(-1). Covered soil showed an erosion rate of 0.02Mgha(-1)h(-1). These results showed that agricultural management influenced water and sediment dynamics and that tillage and herbicide

  12. Příprava podkladů pro modelování odtoku a odnosu látek v prostředí SWAT

    OpenAIRE

    HOMOLKA, Jan

    2012-01-01

    This bachelor thesis is dealing with preparation bases for modelation draining and carrying materials in SWAT model. Thesis includes literature search about basis of SWAT model, SWAT development, preferences and imprefections of this model. It?s also going over various modelations and general division. Further describes necessary input data, their types and requirements without which would be impossible to complete this task. I?ve chosen Jenín stream basin located near village Jenín which is ...

  13. SOIL WATER BALANCE APPROACH IN ROOT ZONE OF MAIZE (95 ...

    African Journals Online (AJOL)

    DR. AMINU

    It is usual practice to use available soil water content as a criterion for deciding when irrigation is needed. Soil water content is determined by using soil measuring techniques (capacitance probe) that describe the depletion of available soil water see fig1 and 2. The irrigation scheduling is based on the water treatment (i.e. ...

  14. Soil water sensor response to bulk electrical conductivity

    Science.gov (United States)

    Soil water monitoring using electromagnetic (EM) sensors can facilitate observations of water content at high temporal and spatial resolutions. These sensors measure soil dielectric permittivity (Ka) which is largely a function of volumetric water content. However, bulk electrical conductivity BEC c...

  15. Theoretical study of soil water balance and process of soil moisture evaporation

    Directory of Open Access Journals (Sweden)

    Yu. A. Savel'ev

    2017-01-01

    Full Text Available Nearly a half of all grain production in the Russian Federation is grown in dry regions. But crop production efficiency there depends on amount of moisture, available to plants. However deficit of soil moisture is caused not only by a lack of an atmospheric precipitation, but also inefficient water saving: losses reach 70 percent. With respect thereto it is important to reveal the factors influencing intensity of soil moisture evaporation and to develop methods of decrease in unproductive moisture losses due to evaporation. The authors researched soil water balance theoretically and determined the functional dependences of moisture loss on evaporation. Intensity of moisture evaporation depends on physicomechanical characteristics of the soil, a consistence of its surface and weather conditions. To decrease losses of moisture for evaporation it is necessary, first, to improve quality of crumbling of the soil and therefore to reduce the evaporating surface of the soil. Secondly - to create the protective mulching layer which will allow to enhance albedo of the soil and to reduce its temperature that together will reduce unproductive evaporative water losses and will increase its inflow in case of condensation from air vapors. The most widespread types of soil cultivation are considered: disk plowing and stubble mulch plowing. Agricultural background «no tillage» was chosen as a control. Subsoil mulching tillage has an essential advantage in a storage of soil moisture. So, storage of soil moisture after a disking and in control (without tillage decreased respectively by 24.9 and 19.8 mm while at the mulching tillage this indicator revised down by only 15.6 mm. The mulching layer has lower heat conductivity that provides decrease in unproductive evaporative water losses.

  16. Changes of the water isotopic composition in unsaturated soils

    International Nuclear Information System (INIS)

    Feurdean, Victor; Feurdean, Lucia

    2001-01-01

    Based on the spatial and temporal variations of the stable isotope content in precipitation - as input in subsurface - and the mixing processes, the deuterium content in the water that moves in unsaturated zones was used to determine the most conducive season to recharge, the mechanisms for infiltration of snow or rain precipitation in humid, semi-arid or arid conditions, the episodic cycles of infiltration water mixing with the already present soil water and water vapor and whether infiltration water is or is not from local precipitation. Oscillations in the isotopic profiles of soil moisture can be used to estimate the following aspects: where piston or diffusive flow is the dominant mechanisms of water infiltration; the average velocities of the water movement in vadose zone; the influence of vegetation cover, soil type and slope exposure on the dynamics of water movement in soil; the conditions required for infiltration such as: the matrix, gravity, pressure and osmotic potentials during drainage in unsaturated soil. (authors)

  17. Pore-water chemistry explains zinc phytotoxicity in soil.

    Science.gov (United States)

    Kader, Mohammed; Lamb, Dane T; Correll, Ray; Megharaj, Mallavarapu; Naidu, Ravi

    2015-12-01

    Zinc (Zn) is a widespread soil contaminant arising from a numerous anthropogenic sources. However, adequately predicting toxicity of Zn to ecological receptors remains difficult due to the complexity of soil characteristics. In this study, we examined solid-solution partitioning using pore-water data and toxicity of Zn to cucumber (Cucumis sativus L.) in spiked soils. Pore-water effective concentration (ECx, x=10%, 20% and 50% reduction) values were negatively related to pH, indicating lower Zn pore water concentration were needed to cause phytotoxicity at high pH soils. Total dissolved zinc (Znpw) and free zinc (Zn(2+)) in soil-pore water successfully described 78% and 80.3% of the variation in relative growth (%) in the full dataset. When the complete data set was used (10 soils), the estimated EC50pw was 450 and 79.2 µM for Znpw and Zn(2+), respectively. Total added Zn, soil pore water pH (pHpw) and dissolve organic carbon (DOC) were the best predictors of Znpw and Zn(2+) in pore-water. The EC10 (total loading) values ranged from 179 to 5214 mg/kg, depending on soil type. Only pH measurements in soil were related to ECx total Zn data. The strongest relationship to ECx overall was pHca, although pHw and pHpw were in general related to Zn ECx. Similarly, when a solution-only model was used to predict Zn in shoot, DOC was negatively related to Zn in shoot, indicating a reduction in uptake/ translocation of Zn from solution with increasing DOC. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Japanese position paper on sodium-water reaction testing and design

    International Nuclear Information System (INIS)

    Sato, M.; Hiroi, H.; Tanabe, H.; Miyake, O.; Kuroha, M.; Hoshi, Y.

    1984-01-01

    PNC has been developing the steam generator with helically coiled heat transfer tube bundle and downcommer tubes for the prototype fast reactor Monju since 1968. To establish the safety design against the sodium-water reaction accident was one of the most important R and D items at the start of the development. PNC started the experimental study initially in the large leak region in 1970. Until now, during twelve years, the experimental studies have been performed, which covers the phenomena from a micro leak to a large one, with the use of the SWAT-1 rig, SWAT-2 loop, SWAT-3 loop, and SWAT-4 rigs. The reliable leak detection system is necessary to minimize the damage by the sodium-water reaction. Two groups of efforts have been paid for developing the detection system. One is to develop the leak detector itself, and another is to grasp the hydrogen transport behavior in the sodium in the steam generator and the secondary piping system. Four sodium loops have been used for the development. The development of computer codes has also progressed in parallel with the sodium-water reaction experiments. Three codes have been accomplished for the design tools against the sodium-water reaction. Through the efforts mentioned above, sufficient experiences were obtained for designing and operating the Monju steam generator system

  19. Response of the water status of soybean to changes in soil water potentials controlled by the water pressure in microporous tubes

    Science.gov (United States)

    Steinberg, S. L.; Henninger, D. L.

    1997-01-01

    Water transport through a microporous tube-soil-plant system was investigated by measuring the response of soil and plant water status to step change reductions in the water pressure within the tubes. Soybeans were germinated and grown in a porous ceramic 'soil' at a porous tube water pressure of -0.5 kpa for 28 d. During this time, the soil matric potential was nearly in equilibrium with tube water pressure. Water pressure in the porous tubes was then reduced to either -1.0, -1.5 or -2.0 kPa. Sap flow rates, leaf conductance and soil, root and leaf water potentials were measured before and after this change. A reduction in porous tube water pressure from -0.5 to -1.0 or -1.5 kPa did not result in any significant change in soil or plant water status. A reduction in porous tube water pressure to -2.0 kPa resulted in significant reductions in sap flow, leaf conductance, and soil, root and leaf water potentials. Hydraulic conductance, calculated as the transpiration rate/delta psi between two points in the water transport pathway, was used to analyse water transport through the tube-soil-plant continuum. At porous tube water pressures of -0.5 to-1.5 kPa soil moisture was readily available and hydraulic conductance of the plant limited water transport. At -2.0 kPa, hydraulic conductance of the bulk soil was the dominant factor in water movement.

  20. Uso da terra e perda de solo na Bacia Hidrográfica do Rio Colônia, Bahia Land use and soil loss in the Colônia River Watershed, Bahia

    Directory of Open Access Journals (Sweden)

    Vinícius de A. Silva

    2011-03-01

    Full Text Available Mudanças no uso da terra muitas vezes potencializam a erosão hídrica acarretando perda de água, solo, nutriente e matéria orgânica dos sistemas agrícolas, razão por que se estimou a perda de solo na bacia hidrográfica do rio Colônia, na Bahia, nos últimos vinte e sete anos, utilizando-se o software SWAT (Soil and Water Assessment Tool. Para tal, procedeu-se à digitalização de mapas temáticos, interpretação de fotografias aéreas de 1975; classificação supervisionada de imagens de satélites de 2002 e produção de mapas de uso da terra. O SWAT foi utilizado na obtenção de mapas temáticos digitais por sub-bacia hidrográfica do rio Colônia, quantificação das perdas de solo em cada sub-bacia e nas formas de usos obtidos por conceito teórico, simulando as inclusões de áreas de preservação permanente, bem como mata em toda a superfície das sub-bacias. Estima-se que, entre 1975 e 2002, a média de perda de solo na bacia hidrográfica do rio Colônia foi de 47 t ha-1 ano-1 e em 2002 a estimativa de perda de solo foi de 46,64 t ha-1 ano-1. Na simulação de um cenário teórico de área de preservação permanente (APP e mata, ocorreu diminuição da média da perda de solo em toda a bacia hidrográfica do rio Colônia de, respectivamente, 9,09 t ha-1 ano-1 e 20,91 t ha-1 ano-1.Land use changes most of the time increases the hydric erosion leading to loss of water, nutrients and organic matter in agricultural systems. Thus, aiming to estimate the soil loss in the watershed of Colonia River, in Bahia, in the last twenty-seven years, the software SWAT (Soil and Water Assessment Tool was used. For the purpose, a digitalization thematic map (Arc View, interpretation of aerial photographs from 1975, supervised classification of 2002 satellite images and a land use map generation were developed. The SWAT software was used for obtaining a digital thematic map for every sub-basin of Colonia River Watershed, soil loss

  1. Development of soil water regime under spruce stands

    Directory of Open Access Journals (Sweden)

    Tužinský Ladislav

    2017-06-01

    Full Text Available The aim of this paper is to analyse the water regime of soils under spruce ecosystems in relation to long-lasting humid and drought periods in the growing seasons 1991-2013. The dominant interval humidity in observing growing seasons is semiuvidic interval with soil moisture between hydro-limits maximal capillary capacity (MCC and point of diminished availability (PDA. Gravitationally seepage concentrated from accumulated winter season, water from melting snow and existing atmospheric precipitation occurs in the soil only at the beginning of the growing season. The supplies of soil water are significantly decreasing in the warm climate and precipitant deficient days. The greatest danger from drought threatens Norway spruce during the summer months and it depends on the duration of dry days, water supply at the beginning of the dry days, air temperature and the intensity of evapotranspiration. In the surface layers of the soil, with the maximum occurrence of active roots, the water in semiarid interval area between hydro-limits PDA and wilting point (WP decreases during the summer months. In the culminating phase occurs the drying to moisture state with capillary stationary and the insufficient supply of available water for the plants. Physiological weakening of Norway spruce caused by set of outlay components of the water balance is partially reduced by delivering of water by capillary action from deeper horizons. In extremely dry periods, soil moisture is decreasing also throughout the soil profile (0-100 cm into the bottom third of the variation margin hydro-limits MCC-PDA in the category of capillary less moving and for plants of low supply of usable water (60-90 mm. The issue of deteriorated health state of spruce ecosystems is considered to be actual. Changes and developments of hydropedological conditions which interfere the mountain forests represent the increasing danger of the drought for the spruce.

  2. Soil water sensors:Problems, advances and potential for irrigation scheduling

    Science.gov (United States)

    Irrigation water management has to do with the appropriate application of water to soils, in terms of amounts, rates, and timing to satisfy crop water demands, while protecting the soil and water resources from degradation. In this regard, sensors can be used to monitor the soil water status; and so...

  3. Simulation of filter strips influence on runoff and soil and nutrient losses under different rainfall patterns in a small vineyard catchment

    Science.gov (United States)

    Ramos, Maria C.; Benito, Carolina

    2014-05-01

    This work presents the analysis of the influence of filter strips on soil and water losses in a small catchment, whose main land use is grape vines. The watershed was located in the municipality of Piera (Barcelona, Spain). Other crops like olive trees, winter barley and alfalfa were also found, as well as some residential areas. Soil and water losses were simulated using the Soil and Water Assessment Tool (SWAT). The model was calibrated and validated using soil water and runoff data collected in the field during the period May 2010- May 2012. Then, the model was run for the period 2000-2011, which included years with different rainfall amounts and characteristics. Soil losses with and without that soil conservation measure was compared. The annual rainfall recorded during the analysed years ranged from 329.8 to 785 mm with different rainfall distributions within the year. Runoff rates ranged from 17 to 141 mm, which represented respectively 4.7 and 21% of total precipitation. Both extreme situations were recorded in the driest years of the series, with precipitation below the average. Soil losses ranged between 0.31 Mg/ha in the driest year and 13.9 Mg/ha, in the wettest. The simulation of soil losses with the introduction of filter strips 3m width in the vineyards resulted in a reduction of soil losses up to 68% in relation to the situation without that soil conservation measure. This soil loss decrease represented an additional nutrient loss reduction (up to 66% for N_organic, up to 64% of P_organic and between 6.5 and 40% of N_nitrate, depending on rainfall characteristics).

  4. Soil water status under perennial and annual pastures on an acid duplex soil

    International Nuclear Information System (INIS)

    Heng, L.K.; White, R.E.; Chen, D.

    2000-01-01

    A comprehensive field study of soil water balance, nitrogen (N) cycling, pasture management and animal production was carried out on an acid duplex soil at Book Book near Wagga Wagga in southern New South Wales. The experiment, carried out over a 3-year period, tested the hypothesis that sown perennial grass pastures improve the sustainability of a grazing system through better use of water and N. The treatments were: annual pastures without lime (AP-), annual pastures with lime (AP+), perennial pastures without lime (PP-) and perennial pastures with lime (PP+). Soil water measurement was made using a neutron probe on one set of the treatments comprising four adjacent paddocks. Over three winter and spring periods, the results showed that perennial grass pastures, especially PP+, consistently extracted about 40 mm more soil water each year than did the annual grass pastures. As a result, surface runoff, sub-surface flow and deep drainage (percolation below 180 cm depth) were about 40 mm less from the perennial pastures. The soil water status of the four pasture treatments was simulated reasonably well using a simple soil water model. Together with the long-term simulation of deep drainage, using past meteorological records, it is shown that proper management of perennial pastures can reduce recharge to groundwater and make pastoral systems more sustainable in the high rainfall zone. However, to completely reduce recharge, more-deeply rooted plants or trees are needed. (author)

  5. [Effects of brackish water irrigation on soil enzyme activity, soil CO2 flux and organic matter decomposition].

    Science.gov (United States)

    Zhang, Qian-qian; Wang, Fei; Liu, Tao; Chu, Gui-xin

    2015-09-01

    Brackish water irrigation utilization is an important way to alleviate water resource shortage in arid region. A field-plot experiment was set up to study the impact of the salinity level (0.31, 3.0 or 5.0 g · L(-1) NaCl) of irrigated water on activities of soil catalase, invertase, β-glucosidase, cellulase and polyphenoloxidase in drip irrigation condition, and the responses of soil CO2 flux and organic matter decomposition were also determined by soil carbon dioxide flux instrument (LI-8100) and nylon net bag method. The results showed that in contrast with fresh water irrigation treatment (CK), the activities of invertase, β-glucosidase and cellulase in the brackish water (3.0 g · L(-1)) irrigation treatment declined by 31.7%-32.4%, 29.7%-31.6%, 20.8%-24.3%, respectively, while soil polyphenoloxidase activity was obviously enhanced with increasing the salinity level of irrigated water. Compared to CK, polyphenoloxidase activity increased by 2.4% and 20.5%, respectively, in the brackish water and saline water irrigation treatments. Both soil microbial biomass carbon and microbial quotient decreased with increasing the salinity level, whereas, microbial metabolic quotient showed an increasing tendency with increasing the salinity level. Soil CO2 fluxes in the different treatments were in the order of CK (0.31 g · L(-1)) > brackish water irrigation (3.0 g · L(-1)) ≥ saline water irrigation (5.0 g · L(-1)). Moreover, CO2 flux from plastic film mulched soil was always much higher than that from no plastic film mulched soil, regardless the salinity of irrigated water. Compared with CK, soil CO2 fluxes in the saline water and brackish water treatments decreased by 29.8% and 28.2% respectively in the boll opening period. The decomposition of either cotton straw or alfalfa straw in the different treatments was in the sequence of CK (0.31 g · L(-1)) > brackish water irrigation (3.0 g · L(-1)) > saline water treatment (5.0 g · L(-1)). The organic matter

  6. Hydrological Scenario Using Tools and Applications Available in enviroGRIDS Portal

    Science.gov (United States)

    Bacu, V.; Mihon, D.; Stefanut, T.; Rodila, D.; Cau, P.; Manca, S.; Soru, C.; Gorgan, D.

    2012-04-01

    Nowadays the decision makers but also citizens are concerning with the sustainability and vulnerability of land management practices on various aspects and in particular on water quality and quantity in complex watersheds. The Black Sea Catchment is an important watershed in the Central and East Europe. In the FP7 project enviroGRIDS [1] was developed a Web Portal that incorporates different tools and applications focused on geospatial data management, hydrologic model calibration, execution and visualization and training activities. This presentation highlights, from the end-user point of view, the scenario related with hydrological models using the tools and applications available in the enviroGRIDS Web Portal [2]. The development of SWAT (Soil Water Assessment Tool) hydrological models is a well known procedure for the hydrological specialists [3]. Starting from the primary data (information related to weather, soil properties, topography, vegetation, and land management practices of the particular watershed) that are used to develop SWAT hydrological models, to specific reports, about the water quality in the studied watershed, the hydrological specialist will use different applications available in the enviroGRIDS portal. The tools and applications available through the enviroGRIDS portal are not dealing with the building up of the SWAT hydrological models. They are mainly focused on: calibration procedure (gSWAT [4]) - uses the GRID computational infrastructure to speed-up the calibration process; development of specific scenarios (BASHYT [5]) - starts from an already calibrated SWAT hydrological model and defines new scenarios; execution of scenarios (gSWATSim [6]) - executes the scenarios exported from BASHYT; visualization (BASHYT) - displays charts, tables and maps. Each application is built-up as a stack of functional layers. We combine different layers of applications by vertical interoperability in order to build the desired complex functionality. On

  7. Potensi bambu swat (gigantochloa verticillata sebagai material karbon aktif untuk adsorbed natural gas (ANG

    Directory of Open Access Journals (Sweden)

    Dewa Ngakan Ketut Putra Negara

    2017-03-01

    Full Text Available Abstrak: Bambu merupakan material biomassa yang banyak diteliti, diproduksi sebagai karbon aktif dan diaplikasikan di berbagaibidang kehidupan. Namun sangat sedikit bahkan hampir tidak ditemukan referensi yang membahas kegunaan karbonaktif dari bambusebagai adsorbent untuk Adsorbed Natural Gas (ANG. Penelitian ini difokuskan untukmengkarakterisasai dan menevaluasi potensi bambu swat (Gigantochloa verticillata sebagai material dasar karbon aktifuntuk aplikasi ANG. Pengujian yang dilakukan meliputi uji proximate, uji ultimate, uji komposisi kimia dan pengamatanstruktur mikro. Hasil penelitian menunjukkan bahwa bambuswat memiliki kandungan lignin 22,9920%, selulosa44,2247%, volatile 88’32%, carbon 43,42%,ash 1,83%, silica (1,8664% dan nitrogen 1,7065%. Bambu swat memilikiikatan pembuluh yang terdiri atas satu ikatan pembuluh (xilem dan floem dan dua ikatan serat yang terletak di sebelahdalam dan luar dari ikatan pembuluh.Secara umum dapat dikatakan bahwa bamboo jenis ini memiliki kandungansellulosa, volatile dan karbon yang cukup tinggi serta ash, silica, hydrogen dan nitrogen yang rendah sehinggabambuswat sangat berpotensi digunakan sebagai material sumber karbon aktif.Kata kunci: Karbon aktif, bambu swat, ANG, lignin, sellulosa, analisa ultimate dan proximates Abstract: Bamboo is a biomass material widely researched, produced as activated carbon and applied in various life fields.However, very little or almost no references were found with regard to utilization of bamboo activated carbon asadsorbent for Adsorbed Natural Gas (ANG. This study is concerned to characterize and evaluate potency of bambooswat (Gigantochloa verticillata as aprecursor of activated carbon for ANG application. Examinations conducted wereproximate, ultimate, chemical composisition tests and microstructure observation. The results showed that bambooswathave a lignin content 22.9920%, cellulose 44.2247%, volatile 88.32%, carbon 43.42%, ash 1.83%, silica 1.8664% andnitrogen

  8. Application of genetic algorithm to land use optimization for non-point source pollution control based on CLUE-S and SWAT

    Science.gov (United States)

    Wang, Qingrui; Liu, Ruimin; Men, Cong; Guo, Lijia

    2018-05-01

    The genetic algorithm (GA) was combined with the Conversion of Land Use and its Effect at Small regional extent (CLUE-S) model to obtain an optimized land use pattern for controlling non-point source (NPS) pollution. The performance of the combination was evaluated. The effect of the optimized land use pattern on the NPS pollution control was estimated by the Soil and Water Assessment Tool (SWAT) model and an assistant map was drawn to support the land use plan for the future. The Xiangxi River watershed was selected as the study area. Two scenarios were used to simulate the land use change. Under the historical trend scenario (Markov chain prediction), the forest area decreased by 2035.06 ha, and was mainly converted into paddy and dryland area. In contrast, under the optimized scenario (genetic algorithm (GA) prediction), up to 3370 ha of dryland area was converted into forest area. Spatially, the conversion of paddy and dryland into forest occurred mainly in the northwest and southeast of the watershed, where the slope land occupied a large proportion. The organic and inorganic phosphorus loads decreased by 3.6% and 3.7%, respectively, in the optimized scenario compared to those in the historical trend scenario. GA showed a better performance in optimized land use prediction. A comparison of the land use patterns in 2010 under the real situation and in 2020 under the optimized situation showed that Shennongjia and Shuiyuesi should convert 1201.76 ha and 1115.33 ha of dryland into forest areas, respectively, which represented the greatest changes in all regions in the watershed. The results of this study indicated that GA and the CLUE-S model can be used to optimize the land use patterns in the future and that SWAT can be used to evaluate the effect of land use optimization on non-point source pollution control. These methods may provide support for land use plan of an area.

  9. An overview of soil water sensors for salinity & irrigation management

    Science.gov (United States)

    Irrigation water management has to do with the appropriate application of water to soils, in terms of amounts, rates, and timing to satisfy crop water demands while protecting the soil and water resources from degradation. Accurate irrigation management is even more important in salt affected soils ...

  10. Bacterial polyextremotolerant bioemulsifiers from arid soils improve water retention capacity and humidity uptake in sandy soil

    KAUST Repository

    Raddadi, Noura

    2018-05-31

    Water stress is a critical issue for plant growth in arid sandy soils. Here, we aimed to select bacteria producing polyextremotolerant surface-active compounds capable of improving water retention and humidity uptake in sandy soils.From Tunisian desert and saline systems, we selected eleven isolates able to highly emulsify different organic solvents. The bioemulsifying activities were stable with 30% NaCl, at 4 and 120 °C and in a pH range 4-12. Applications to a sandy soil of the partially purified surface-active compounds improved soil water retention up to 314.3% compared to untreated soil. Similarly, after 36 h of incubation, the humidity uptake rate of treated sandy soil was up to 607.7% higher than untreated controls.Overall, results revealed that polyextremotolerant bioemulsifiers of bacteria from arid and desert soils represent potential sources to develop new natural soil-wetting agents for improving water retention in arid soils.

  11. Bacterial polyextremotolerant bioemulsifiers from arid soils improve water retention capacity and humidity uptake in sandy soil

    KAUST Repository

    Raddadi, Noura; Giacomucci, Lucia; Marasco, Ramona; Daffonchio, Daniele; Cherif, Ameur; Fava, Fabio

    2018-01-01

    Water stress is a critical issue for plant growth in arid sandy soils. Here, we aimed to select bacteria producing polyextremotolerant surface-active compounds capable of improving water retention and humidity uptake in sandy soils.From Tunisian desert and saline systems, we selected eleven isolates able to highly emulsify different organic solvents. The bioemulsifying activities were stable with 30% NaCl, at 4 and 120 °C and in a pH range 4-12. Applications to a sandy soil of the partially purified surface-active compounds improved soil water retention up to 314.3% compared to untreated soil. Similarly, after 36 h of incubation, the humidity uptake rate of treated sandy soil was up to 607.7% higher than untreated controls.Overall, results revealed that polyextremotolerant bioemulsifiers of bacteria from arid and desert soils represent potential sources to develop new natural soil-wetting agents for improving water retention in arid soils.

  12. Bacterial polyextremotolerant bioemulsifiers from arid soils improve water retention capacity and humidity uptake in sandy soil.

    Science.gov (United States)

    Raddadi, Noura; Giacomucci, Lucia; Marasco, Ramona; Daffonchio, Daniele; Cherif, Ameur; Fava, Fabio

    2018-05-31

    Water stress is a critical issue for plant growth in arid sandy soils. Here, we aimed to select bacteria producing polyextremotolerant surface-active compounds capable of improving water retention and humidity uptake in sandy soils. From Tunisian desert and saline systems, we selected eleven isolates able to highly emulsify different organic solvents. The bioemulsifying activities were stable with 30% NaCl, at 4 and 120 °C and in a pH range 4-12. Applications to a sandy soil of the partially purified surface-active compounds improved soil water retention up to 314.3% compared to untreated soil. Similarly, after 36 h of incubation, the humidity uptake rate of treated sandy soil was up to 607.7% higher than untreated controls. Overall, results revealed that polyextremotolerant bioemulsifiers of bacteria from arid and desert soils represent potential sources to develop new natural soil-wetting agents for improving water retention in arid soils.

  13. Complex linkage between soil, soil water, atmosphere and Eucalyptus Plantations

    Science.gov (United States)

    Shukla, C.; Tiwari, K. N.

    2017-12-01

    Eucalyptus is most widely planted genus grown in waste land of eastern region of India to meet the pulp industry requirements. Sustainability of these plantations is of concern because in spite of higher demand water and nutrients of plantations, they are mostly planted on low-fertility soils. This study has been conducted to quantify effect of 25 years old, a fully established eucalyptus plantations on i.) Alteration in physico-chemical and hydrological properties of soil of eucalyptus plantation in comparison to soil of natural grassland and ii.) Spatio-temporal variation in soil moisture under eucalyptus plantations. Soil physico-chemical properties of two adjacent plots covered with eucatuptus and natural grasses were analyzed for three consecutive depths (i.e. 0-30 cm, 30-60 cm and 60-90 cm) with five replications in each plot. Soil infiltration rate and saturated hydraulic conductivity (Ks) were measured in-situ to incorporate the influence of macro porosity caused due to roots of plantations. Daily soil moisture at an interval of 10 cm upto 160 cm depth with 3 replications and Leaf Area Index (LAI) at an interval of 15 days with 5 replications were recorded over the year. Significant variations found at level of 0.05 between soil properties of eucalyptus and natural grass land confirm the effect of plantations on soil properties. Comparative results of soil properties show significant alteration in soil texture such as percent of sand, organic matter and Ks found more by 20%, 9% and 22% respectively in eucalyptus plot as compare to natural grass land. Available soil moisture (ASM) was found constantly minimum in top soil excluding rainy season indicate upward movement of water and nutrients during dry season. Seasonal variation in temperature (T), relative humidity (RH) and leaf area index (LAI) influenced the soil moisture extraction phenomenon. This study clearly stated the impact of long term establishment of eucalyptus plantations make considerable

  14. Performance of chromatographic systems to model soil-water sorption.

    Science.gov (United States)

    Hidalgo-Rodríguez, Marta; Fuguet, Elisabet; Ràfols, Clara; Rosés, Martí

    2012-08-24

    A systematic approach for evaluating the goodness of chromatographic systems to model the sorption of neutral organic compounds by soil from water is presented in this work. It is based on the examination of the three sources of error that determine the overall variance obtained when soil-water partition coefficients are correlated against chromatographic retention factors: the variance of the soil-water sorption data, the variance of the chromatographic data, and the variance attributed to the dissimilarity between the two systems. These contributions of variance are easily predicted through the characterization of the systems by the solvation parameter model. According to this method, several chromatographic systems besides the reference octanol-water partition system have been selected to test their performance in the emulation of soil-water sorption. The results from the experimental correlations agree with the predicted variances. The high-performance liquid chromatography system based on an immobilized artificial membrane and the micellar electrokinetic chromatography systems of sodium dodecylsulfate and sodium taurocholate provide the most precise correlation models. They have shown to predict well soil-water sorption coefficients of several tested herbicides. Octanol-water partitions and high-performance liquid chromatography measurements using C18 columns are less suited for the estimation of soil-water partition coefficients. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. [Effects of land use changes on soil water conservation in Hainan Island, China].

    Science.gov (United States)

    Wen, Zhi; Zhao, He; Liu, Lei; OuYang, Zhi Yun; Zheng, Hua; Mi, Hong Xu; Li, Yan Min

    2017-12-01

    In tropical areas, a large number of natural forests have been transformed into other plantations, which affected the water conservation function of terrestrial ecosystems. In order to clari-fy the effects of land use changes on soil water conservation function, we selected four typical land use types in the central mountainous region of Hainan Island, i.e., natural forests with stand age greater than 100 years (VF), secondary forests with stand age of 10 years (SF), areca plantations with stand age of 12 years (AF) and rubber plantations with stand age of 35 years (RF). The effects of land use change on soil water holding capacity and water conservation (presented by soil water index, SWI) were assessed. The results showed that, compared with VF, the soil water holding capacity index of other land types decreased in the top soil layer (0-10 cm). AF had the lowest soil water holding capacity in all soil layers. Soil water content and maximum water holding capacity were significantly related to canopy density, soil organic matter and soil bulk density, which indicated that canopy density, soil organic matter and compactness were important factors influencing soil water holding capacity. Compared to VF, soil water conservation of SF, AF and RF were reduced by 27.7%, 54.3% and 11.5%, respectively. The change of soil water conservation was inconsistent in different soil layers. Vegetation canopy density, soil organic matter and soil bulk density explained 83.3% of the variance of soil water conservation. It was suggested that land use conversion had significantly altered soil water holding capacity and water conservation function. RF could keep the soil water better than AF in the research area. Increasing soil organic matter and reducing soil compaction would be helpful to improve soil water holding capacity and water conservation function in land management.

  16. Soil volumetric water content measurements using TDR technique

    Directory of Open Access Journals (Sweden)

    S. Vincenzi

    1996-06-01

    Full Text Available A physical model to measure some hydrological and thermal parameters in soils will to be set up. The vertical profiles of: volumetric water content, matric potential and temperature will be monitored in different soils. The volumetric soil water content is measured by means of the Time Domain Reflectometry (TDR technique. The result of a test to determine experimentally the reproducibility of the volumetric water content measurements is reported together with the methodology and the results of the analysis of the TDR wave forms. The analysis is based on the calculation of the travel time of the TDR signal in the wave guide embedded in the soil.

  17. [Foliar water use efficiency of Platycladus orientalis sapling under different soil water contents].

    Science.gov (United States)

    Zhang, Yong E; Yu, Xin Xiao; Chen, Li Hua; Jia, Guo Dong; Zhao, Na; Li, Han Zhi; Chang, Xiao Min

    2017-07-18

    The determination of plant foliar water use efficiency will be of great value to improve our understanding about mechanism of plant water consumption and provide important basis of regional forest ecosystem management and maintenance, thus, laboratory controlled experiments were carried out to obtain Platycladus orientalis sapling foliar water use efficiency under five different soil water contents, including instantaneous water use efficiency (WUE gs ) derived from gas exchange and short-term water use efficiency (WUE cp ) caculated using carbon isotope model. The results showed that, controlled by stomatal conductance (g s ), foliar net photosynthesis rate (P n ) and transpiration rate (T r ) increased as soil water content increased, which both reached maximum va-lues at soil water content of 70%-80% field capacity (FC), while WUE gs reached a maximum of 7.26 mmol·m -2 ·s -1 at the lowest soil water content (35%-45% FC). Both δ 13 C of water-soluble leaf and twig phloem material achieved maximum values at the lowest soil water content (35%-45% FC). Besides, δ 13 C values of leaf water-soluble compounds were significantly greater than that of phloem exudates, indicating that there was depletion in 13 C in twig phloem compared with leaf water-soluble compounds and no obvious fractionation in the process of water-soluble material transportation from leaf to twig. Foliar WUE cp also reached a maximum of 7.26 mmol·m -2 ·s -1 at the lowest soil water content (35%-45% FC). There was some difference between foliar WUE gs and WUE cp under the same condition, and the average difference was 0.52 mmol·m -2 ·s -1 . The WUE gs had great space-time variability, by contrast, WUE cp was more representative. It was concluded that P. orientalis sapling adapted to drought condition by increasing water use efficiency and decreasing physiological activity.

  18. Modeling Soil Water Retention Curves in the Dry Range Using the Hygroscopic Water Content

    DEFF Research Database (Denmark)

    Chen, Chong; Hu, Kelin; Arthur, Emmanuel

    2014-01-01

    Accurate information on the dry end (matric potential less than −1500 kPa) of soil water retention curves (SWRCs) is crucial for studying water vapor transport and evaporation in soils. The objectives of this study were to assess the potential of the Oswin model for describing the water adsorption...... curves of soils and to predict SWRCs at the dry end using the hygroscopic water content at a relative humidity of 50% (θRH50). The Oswin model yielded satisfactory fits to dry-end SWRCs for soils dominated by both 2:1 and 1:1 clay minerals. Compared with the Oswin model, the Campbell and Shiozawa model...... for soils dominated by 2:1 and 1:1 clays, respectively. Comparison of the Oswin model combined with the Kelvin equation, with water potential estimated from θRH50 (Oswin-KRH50), CS model combined with the Arthur equation (CS-A), and CS-K model, with water potential obtained from θRH50 (CS-KRH50) indicated...

  19. Percolation behavior of tritiated water into a soil packed bed

    Energy Technology Data Exchange (ETDEWEB)

    Honda, T.; Katayama, K.; Uehara, K.; Fukada, S. [Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga, Fukuoka (Japan); Takeishi, T. [Faculty of Engineering, Kyushu University, Motooka Nishi-ku, Fukuoka (Japan)

    2015-03-15

    A large amount of cooling water is used in a D-T fusion reactor. The cooling water will contain tritium with high concentration because tritium can permeate metal walls at high temperature easily. A development of tritium handling technology for confining tritiated water in the fusion facility is an important issue. In addition, it is also important to understand tritium behavior in environment assuming severe accidents. In this study, percolation experiments of tritiated water in soil packed bed were carried out and tritium behavior in soil was discussed. Six soil samples were collected in Hakozaki campus of Kyushu University. These particle densities were of the same degree as that of general soils and moisture contents were related to BET surface area. For two soil samples used in the percolation experiment of tritiated water, saturated hydraulic conductivity agreed well with the estimating value by Creager. Tritium retention ratio in the soil packed bed was larger than water retention. This is considered to be due to an effect of tritium sorption on the surface of soil particles. The isotope exchange capacity estimated by assuming that H/T ratio of supplied tritiated water and H/T ratio of surface water of soil particle was equal was comparable to that on cement paste and mortar which were obtained by exposure of tritiated water vapor. (authors)

  20. Percolation behavior of tritiated water into a soil packed bed

    International Nuclear Information System (INIS)

    Honda, T.; Katayama, K.; Uehara, K.; Fukada, S.; Takeishi, T.

    2015-01-01

    A large amount of cooling water is used in a D-T fusion reactor. The cooling water will contain tritium with high concentration because tritium can permeate metal walls at high temperature easily. A development of tritium handling technology for confining tritiated water in the fusion facility is an important issue. In addition, it is also important to understand tritium behavior in environment assuming severe accidents. In this study, percolation experiments of tritiated water in soil packed bed were carried out and tritium behavior in soil was discussed. Six soil samples were collected in Hakozaki campus of Kyushu University. These particle densities were of the same degree as that of general soils and moisture contents were related to BET surface area. For two soil samples used in the percolation experiment of tritiated water, saturated hydraulic conductivity agreed well with the estimating value by Creager. Tritium retention ratio in the soil packed bed was larger than water retention. This is considered to be due to an effect of tritium sorption on the surface of soil particles. The isotope exchange capacity estimated by assuming that H/T ratio of supplied tritiated water and H/T ratio of surface water of soil particle was equal was comparable to that on cement paste and mortar which were obtained by exposure of tritiated water vapor. (authors)

  1. Observing plants dealing with soil water stress: Daily soil moisture fluctuations derived from polymer tensiometers

    Science.gov (United States)

    van der Ploeg, Martine; de Rooij, Gerrit

    2014-05-01

    Periods of soil water deficit often occur within a plant's life cycle, even in temperate deciduous and rain forests (Wilson et al. 2001, Grace 1999). Various experiments have shown that roots are able to sense the distribution of water in the soil, and produce signals that trigger changes in leaf expansion rate and stomatal conductance (Blackman and Davies 1985, Gollan et al. 1986, Gowing et al. 1990 Davies and Zhang 1991, Mansfield and De Silva 1994, Sadras and Milroy 1996). Partitioning of water and air in the soil, solute distribution in soil water, water flow through the soil, and water availability for plants can be determined according to the distribution of the soil water potential (e.g. Schröder et al. 2013, Kool et al. 2014). Understanding plant water uptake under dry conditions has been compromised by hydrological instrumentation with low accuracy in dry soils due to signal attenuation, or a compromised measurement range (Whalley et al. 2013). Development of polymer tensiometers makes it possible to study the soil water potential over a range meaningful for studying plant responses to water stress (Bakker et al. 2007, Van der Ploeg et al. 2008, 2010). Polymer tensiometer data obtained from a lysimeter experiment (Van der Ploeg et al. 2008) were used to analyse day-night fluctuations of soil moisture in the vicinity of maize roots. To do so, three polymer tensiometers placed in the middle of the lysimeter from a control, dry and very dry treatment (one lysimeter per treatment) were used to calculate water content changes over 12 hours. These 12 hours corresponded with the operation of the growing light. Soil water potential measurements in the hour before the growing light was turned on or off were averaged. The averaged value was used as input for the van Genuchten (1980) model. Parameters for the model were obtained from laboratory determination of water retention, with a separate model parameterization for each lysimeter setup. Results show daily

  2. Relationship between root water uptake and soil respiration: A modeling perspective

    Science.gov (United States)

    Teodosio, Bertrand; Pauwels, Valentijn R. N.; Loheide, Steven P.; Daly, Edoardo

    2017-08-01

    Soil moisture affects and is affected by root water uptake and at the same time drives soil CO2 dynamics. Selecting root water uptake formulations in models is important since this affects the estimation of actual transpiration and soil CO2 efflux. This study aims to compare different models combining the Richards equation for soil water flow to equations describing heat transfer and air-phase CO2 production and flow. A root water uptake model (RWC), accounting only for root water compensation by rescaling water uptake rates across the vertical profile, was compared to a model (XWP) estimating water uptake as a function of the difference between soil and root xylem water potential; the latter model can account for both compensation (XWPRWC) and hydraulic redistribution (XWPHR). Models were compared in a scenario with a shallow water table, where the formulation of root water uptake plays an important role in modeling daily patterns and magnitudes of transpiration rates and CO2 efflux. Model simulations for this scenario indicated up to 20% difference in the estimated water that transpired over 50 days and up to 14% difference in carbon emitted from the soil. The models showed reduction of transpiration rates associated with water stress affecting soil CO2 efflux, with magnitudes of soil CO2 efflux being larger for the XWPHR model in wet conditions and for the RWC model as the soil dried down. The study shows the importance of choosing root water uptake models not only for estimating transpiration but also for other processes controlled by soil water content.

  3. Spatiotemporal impacts of LULC changes on hydrology from the perspective of runoff generation mechanism using SWAT model with evolving parameters

    Science.gov (United States)

    Li, Y.; Chang, J.; Luo, L.

    2017-12-01

    It is of great importance for water resources management to model the truly hydrological process under changing environment, especially under significant changes of underlying surfaces like the Wei River Bain (WRB) where the subsurface hydrology is highly influenced by human activities, and to systematically investigate the interactions among LULC change, streamflow variation and changes in runoff generation process. Therefore, we proposed the idea of evolving parameters in hydrological model (SWAT) to reflect the changes in physical environment with different LULC conditions. Then with these evolving parameters, the spatiotemporal impacts of LULC changes on streamflow were quantified, and qualitative analysis was conducted to further explore how LULC changes affect the streamflow from the perspective of runoff generation mechanism. Results indicate the following: 1) evolving parameter calibration is not only effective but necessary to ensure the validity of the model when dealing with significant changes in underlying surfaces due to human activities. 2) compared to the baseline period, the streamflow in wet seasons increased in the 1990s but decreased in the 2000s. While at yearly and dry seasonal scales, the streamflow decreased in both two decades; 3) the expansion of cropland is the major contributor to the reduction of surface water component, thus causing the decline in streamflow at yearly and dry seasonal scales. While compared to the 1990s, the expansions of woodland in the middle stream and grassland in the downstream are the main stressors that increased the soil water component, thus leading to the more decline of the streamflow in the 2000s.

  4. SWAT (Student Weekend Arborist Team): A Model for Land Grant Institutions and Cooperative Extension Systems to Conduct Street Tree Inventories

    Science.gov (United States)

    Cowett, F.D.; Bassuk, N.L.

    2012-01-01

    SWAT (Student Weekend Arborist Team) is a program affiliated with Cornell University and Extension founded to conduct street tree inventories in New York State communities with 10,000 residents or fewer, a group of communities underserved in community forestry planning. Between 2002 and 2010, SWAT conducted 40 inventories, and data from these…

  5. Effects of soil and water conservation practices on selected soil ...

    African Journals Online (AJOL)

    Although different types of soil and water conservation practices (SWCPs) were introduced, the sustainable use of these practices is far below expectations, and soil erosion continues to be a severe problem in Ethiopia. Therefore, this study was conducted at Debre Yakobe Micro-Watershed (DYMW), Northwest Ethiopia ...

  6. Water Drainage from Unsaturated Soils in a Centrifuge Permeameter

    Science.gov (United States)

    Ornelas, G.; McCartney, J.; Zhang, M.

    2013-12-01

    This study involves an analysis of water drainage from an initially saturated silt layer in a centrifuge permeameter to evaluate the hydraulic properties of the soil layer in unsaturated conditions up to the point where the water phase becomes discontinuous. These properties include the soil water retention curve (SWRC) and the hydraulic conductivity function (HCF). The hydraulic properties of unsaturated silt are used in soil-atmosphere interaction models that take into account the role of infiltration and evaporation of water from soils due to atmospheric interaction. These models are often applied in slope stability analyses, landfill cover design, aquifer recharge analyses, and agricultural engineering. The hydraulic properties are also relevant to recent research concerning geothermal heating and cooling, as they can be used to assess the insulating effects of soil around underground heat exchangers. This study employs a high-speed geotechnical centrifuge to increase the self-weight of a compacted silt specimen atop a filter plate. Under a centrifuge acceleration of N times earth's gravity, the concept of geometric similitude indicates that the water flow process in a small-scale soil layer will be similar to those in a soil layer in the field that is N times thicker. The centrifuge acceleration also results in an increase in the hydraulic gradient across the silt specimen, which causes water to flow out of the pores following Darcy's law. The drainage test was performed until the rate of liquid water flow out of the soil layer slowed to a negligible level, which corresponds to the transition point at which further water flow can only occur due to water vapor diffusion following Fick's law. The data from the drainage test in the centrifuge were used to determine the SWRC and HCF at different depths in the silt specimen, which compared well with similar properties defined using other laboratory tests. The transition point at which liquid water flow stopped (and

  7. CO2 efflux from soils with seasonal water repellency

    Science.gov (United States)

    Urbanek, Emilia; Doerr, Stefan H.

    2017-10-01

    Soil carbon dioxide (CO2) emissions are strongly dependent on pore water distribution, which in turn can be modified by reduced wettability. Many soils around the world are affected by soil water repellency (SWR), which reduces infiltration and results in diverse moisture distribution. SWR is temporally variable and soils can change from wettable to water-repellent and vice versa throughout the year. Effects of SWR on soil carbon (C) dynamics, and specifically on CO2 efflux, have only been studied in a few laboratory experiments and hence remain poorly understood. Existing studies suggest soil respiration is reduced with increasing severity of SWR, but the responses of soil CO2 efflux to varying water distribution created by SWR are not yet known.Here we report on the first field-based study that tests whether SWR indeed reduces soil CO2 efflux, based on in situ measurements carried out over three consecutive years at a grassland and pine forest sites under the humid temperate climate of the UK.Soil CO2 efflux was indeed very low on occasions when soil exhibited consistently high SWR and low soil moisture following long dry spells. Low CO2 efflux was also observed when SWR was absent, in spring and late autumn when soil temperatures were low, but also in summer when SWR was reduced by frequent rainfall events. The highest CO2 efflux occurred not when soil was wettable, but when SWR, and thus soil moisture, was spatially patchy, a pattern observed for the majority of the measurement period. Patchiness of SWR is likely to have created zones with two different characteristics related to CO2 production and transport. Zones with wettable soil or low persistence of SWR with higher proportion of water-filled pores are expected to provide water with high nutrient concentration resulting in higher microbial activity and CO2 production. Soil zones with high SWR persistence, on the other hand, are dominated by air-filled pores with low microbial activity, but facilitating O2

  8. Characteristics of soil water retention curve at macro-scale

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Scale adaptable hydrological models have attracted more and more attentions in the hydrological modeling research community, and the constitutive relationship at the macro-scale is one of the most important issues, upon which there are not enough research activities yet. Taking the constitutive relationships of soil water movement--soil water retention curve (SWRC) as an example, this study extends the definition of SWRC at the micro-scale to that at the macro-scale, and aided by Monte Carlo method we demonstrate that soil property and the spatial distribution of soil moisture will affect the features of SWRC greatly. Furthermore, we assume that the spatial distribution of soil moisture is the result of self-organization of climate, soil, ground water and soil water movement under the specific boundary conditions, and we also carry out numerical experiments of soil water movement at the vertical direction in order to explore the relationship between SWRC at the macro-scale and the combinations of climate, soil, and groundwater. The results show that SWRCs at the macro-scale and micro-scale presents totally different features, e.g., the essential hysteresis phenomenon which is exaggerated with increasing aridity index and rising groundwater table. Soil property plays an important role in the shape of SWRC which will even lead to a rectangular shape under drier conditions, and power function form of SWRC widely adopted in hydrological model might be revised for most situations at the macro-scale.

  9. A new unconditionally stable and consistent quasi-analytical in-stream water quality solution scheme for CSTR-based water quality simulators

    Science.gov (United States)

    Woldegiorgis, Befekadu Taddesse; van Griensven, Ann; Pereira, Fernando; Bauwens, Willy

    2017-06-01

    Most common numerical solutions used in CSTR-based in-stream water quality simulators are susceptible to instabilities and/or solution inconsistencies. Usually, they cope with instability problems by adopting computationally expensive small time steps. However, some simulators use fixed computation time steps and hence do not have the flexibility to do so. This paper presents a novel quasi-analytical solution for CSTR-based water quality simulators of an unsteady system. The robustness of the new method is compared with the commonly used fourth-order Runge-Kutta methods, the Euler method and three versions of the SWAT model (SWAT2012, SWAT-TCEQ, and ESWAT). The performance of each method is tested for different hypothetical experiments. Besides the hypothetical data, a real case study is used for comparison. The growth factors we derived as stability measures for the different methods and the R-factor—considered as a consistency measure—turned out to be very useful for determining the most robust method. The new method outperformed all the numerical methods used in the hypothetical comparisons. The application for the Zenne River (Belgium) shows that the new method provides stable and consistent BOD simulations whereas the SWAT2012 model is shown to be unstable for the standard daily computation time step. The new method unconditionally simulates robust solutions. Therefore, it is a reliable scheme for CSTR-based water quality simulators that use first-order reaction formulations.

  10. Monitoring changes in soil water content on adjustable soil slopes of a soil column using time domain reflectometry (TDR) techniques

    International Nuclear Information System (INIS)

    Wan Zakaria Wan Muhd Tahir; Lakam Anak Mejus; Johari Abdul Latif

    2004-01-01

    Time Domain Reflectometry (TDR) is one of non-destructive methods and widely used in hydrology and soil science for accurate and flexible measurement of soil water content The TDR technique is based on measuring the dielectric constant of soil from the propagation of an electromagnetic pulse traveling along installed probe rods (parallel wire transmission line). An adjustable soil column i.e., 80 cm (L) x 35 cm (H) x 44 cm (W) instrumented with six pairs of vertically installed CS615 reflectometer probes (TDR rods) was developed and wetted under a laboratory simulated rainfall and their sub-surface moisture variations as the slope changes were monitored using TDR method Soil samples for gravimetric determination of water content, converted to a volume basis were taken at selected times and locations after the final TDR reading for every slope change made of the soil column Comparisons of water contents by TDR with those from grawmetric samples at different slopes of soil column were examined. The accuracy was found to be comparable and to some extent dependent upon the variability of the soil. This study also suggests that the response of slope (above 20 degrees) to the gradual increase in water content profile may cause soil saturation faster and increased overland flow (runoff especially on weak soil conditions

  11. Predicting Impacts of Increased CO2 and Climate Change on the Water Cycle and Water Quality in the Semiarid James River Basin of the Midwestern USA

    Science.gov (United States)

    Wu, Yiping; Liu, Shu-Guang; Gallant, Alisa L.

    2012-01-01

    Emissions of greenhouse gases and aerosols from human activities continue to alter the climate and likely will have significant impacts on the terrestrial hydrological cycle and water quality, especially in arid and semiarid regions. We applied an improved Soil and Water Assessment Tool (SWAT) to evaluate impacts of increased atmospheric CO2 concentration and potential climate change on the water cycle and nitrogen loads in the semiarid James River Basin (JRB) in the Midwestern United States. We assessed responses of water yield, soil water content, groundwater recharge, and nitrate nitrogen (NO3–N) load under hypothetical climate-sensitivity scenarios in terms of CO2, precipitation, and air temperature. We extended our predictions of the dynamics of these hydrological variables into the mid-21st century with downscaled climate projections integrated across output from six General Circulation Models. Our simulation results compared against the baseline period 1980 to 2009 suggest the JRB hydrological system is highly responsive to rising levels of CO2 concentration and potential climate change. Under our scenarios, substantial decrease in precipitation and increase in air temperature by the mid-21st century could result in significant reduction in water yield, soil water content, and groundwater recharge. Our model also estimated decreased NO3–N load to streams, which could be beneficial, but a concomitant increase in NO3–N concentration due to a decrease in streamflow likely would degrade stream water and threaten aquatic ecosystems. These results highlight possible risks of drought, water supply shortage, and water quality degradation in this basin.

  12. INCIDENCE OF NAMATODE PARASITES IN COMMERCIAL LAYERS IN SWAT

    OpenAIRE

    R.S. Sayyed, M.S. Phulan1, W.M. Bhatti1, M. Pardehi and Shamsher Ali

    2000-01-01

    Research was conducted on 400 guts of commercial layers collected from various shops at District Swat during April to September 1998. Out of 400 guts, 36 per cent were positive for nematodes, Mixed infestation of nematodes and cestodes was found in 4.75 per cent layers. Incidence rate of Ascaridia galli, Heterakis gallinarum and Subulura brumpli was 25.75, 8.25 and 2 per cent, respectively.

  13. Soil variability and effectiveness of soil and water conservation in the Sahel.

    NARCIS (Netherlands)

    Hien, F.G.; Rietkerk, M.; Stroosnijder, L.

    1997-01-01

    Sahelian sylvopastoral lands often degrade into bare and crusted areas where regeneration of soil and vegetation is impossible in the short term unless soil and water conservation measures are implemented. Five combinations of tillage with and without mulch on three crust type/soil type combinations

  14. Soil water repellency of the artificial soil and natural soil in rocky slopes as affected by the drought stress and polyacrylamide.

    Science.gov (United States)

    Chen, Zhang; Wang, Ruixin; Han, Pengyuan; Sun, Hailong; Sun, Haifeng; Li, Chengjun; Yang, Lixia

    2018-04-01

    Soil water repellency (SWR) causes reduced soil water storage, enhanced runoff and reduced ecosystem productivity. Therefore, characterization of SWR is a prerequisite for effective environmental management. SWR has been reported under different soils, land uses and regions of the world, particularly in forest land and after wildfires; however, the understanding of this variable in the artificial soil of rocky slope eco-engineering is still rather limited. This study presented the characterization of SWR in the artificial soil affected by the polyacrylamide (PAM) and drought stress. There were two molecular weights of PAM, and the CK was without PAM application. Three types of soil were studied: natural soil and two types of artificial soil which have been sprayed for 1y and 5y, respectively. The drought stress experiments had three drought gradients, lasted for three weeks. Water repellency index (WRI) and soil-water contact angle (β) were determined using intrinsic sorptivity method by measuring the water sorptivity (S W ) and ethanol sorptivity (S E ) in all soil samples. The results showed that (1) Polyacrylamide treatments significantly increased S W by 3% to 38%, and reduced S E by 1% to 15%, WRI by 6% to 38%, β by 3% to 23% compared to the control group. Polyacrylamide treatments also increased water-stable aggregates content and total porosity by 22% to 33%, 11% to 20% relative to the control, while PAM with a higher molecular weight performed best. (2) The interaction between PAM and drought stress had a significant effect on WRI and β for all soil types (Pnatural soil. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Soil water content plays an important role in soil-atmosphere exchange of carbonyl sulfide (OCS)

    Science.gov (United States)

    Yi, Zhigang; Behrendt, Thomas; Bunk, Rüdiger; Wu, Dianming; Kesselmeier, Jürgen

    2016-04-01

    Carbonyl sulfide (OCS) is a quite stable gas in the troposphere and is transported up to the stratosphere, where it contributes to the sulfate aerosol layer (Crutzen 1976). The tropospheric concentration seems to be quite constant, indicating a balance between sinks and sources. Recent work by Sandoval-Soto et al. (2005) demonstrated the enormous strength of the vegetation sink and the urgent needs to understand the sinks and sources. The role of soils is a matter of discussion (Kesselmeier et al., 1999; Van Diest and Kesselmeier, 2008; Maseyk et al., 2014; Whelan et al., 2015). To better understand the influence of soil water content and OCS mixing ratio on OCS fluxes, we used an OCS analyzer (LGR COS/CO Analyzer 907-0028, Los Gatos, CA, USA) coupled with automated soil chamber system (Behrendt et al., 2014) to measure the OCS fluxes with a slow drying of four different types of soil (arable wheat soil in Mainz, blueberry soil in Waldstein, spruce soil in Waldstein and needle forest soil in Finland). Results showed that OCS fluxes as well as the optimum soil water content for OCS uptake varied significantly for different soils. The net production rates changed significantly with the soil drying out from 100% to about 5% water holding capacity (WHC), implying that soil water content play an important role in the uptake processes. The production and uptake processes were distinguished by the regression of OCS fluxes under different OCS mixing ratios. OCS compensation points (CP) were found to differ significantly for different soil types and water content, with the lowest CP at about 20% WHC, implying that when estimating the global budgets of OCS, especially for soils fluxes, soil water content should be taken into serious consideration. References Crutzen, P. J. 1976, Geophys. Res. Lett., 3, 73-76. Sandoval-Soto, L. et al., 2005, Biogeosciences, 2, 125-132. Kesselmeier, J. et al., 1999, J. Geophys. Res., 104, 11577-11584. Van Diest, H. and Kesselmeier, J. 2008

  16. The dependence of water potential in shoots of Picea abies on air and soil water status

    Directory of Open Access Journals (Sweden)

    A. Sellin

    Full Text Available Where there is sufficient water storage in the soil the water potential (Ψx in shoots of Norway spruce [Picea abies (L. Karst.] is strongly governed by the vapour pressure deficit of the atmosphere, while the mean minimum values of Ψx usually do not drop below –1.5 MPa under meteorological conditions in Estonia. If the base water potential (Ψb is above –0.62 MPa, the principal factor causing water deficiency in shoots of P. abies may be either limited soil water reserves or atmospheric evaporative demand depending on the current level of the vapour pressure deficit. As the soil dries the stomatal control becomes more efficient in preventing water losses from the foliage, and the leaf water status, in turn, less sensitive to atmospheric demand. Under drought conditions, if Ψb falls below –0.62 MPa, the trees' water stress is mainly caused by low soil water availability. Further declines in the shoot water potential (below –1.5 MPa can be attributed primarily to further decreases in the soil water, i.e. to the static water stress.Key words. Hydrology (evapotranspiration · plant ecology · soil moisture.

  17. Water evaporation from bare soil at Paraiba, Brazil

    International Nuclear Information System (INIS)

    Lima, Jose Romualdo de Sousa; Antonino, Antonio Celso D.; Lira, Carlos A. Brayner de O.; Maciel Netto, Andre; Silva, Ivandro de Franca da; Souza, Jeffson Cavalcante de

    2002-01-01

    Measurements were accomplished in a 4,0 ha area in Centro de Ciencias Agrarias, UFPB, Areia City, Paraiba State, Brazil (6 deg C 58'S, 35 deg C 41'W and 645 m), aiming to determine water evaporation from bare soil, by energy and water balance approaches. Rain gauge, net radiometer, pyranometer and sensor for measuring the temperature and the relative humidity of the air and the speed of the wind, in two levels above the soil surface, were used to solve the energy balance equations. In the soil, two places were fitted with instruments, each one with two thermal probes, installed horizontally in the depths z1 = 2,0 cm and z2 = 8,0 cm, and a heat flux plate, for the measurement of the heat flux in the soil, the z1 = 5,0 cm. The measured data were stored every 30 minutes in a data logger. For the calculation of the water balance, three tensio-neutronics sites were installed, containing: an access tube for neutrons probe and eight tensiometers. The values of soil evaporation obtained by water balance were lower than obtained by energy balance because of the variability of the water balance terms. (author)

  18. Evaluation of evapotranspiration methods for model validation in a semi-arid watershed in northern China

    Directory of Open Access Journals (Sweden)

    K. Schneider

    2007-05-01

    Full Text Available This study evaluates the performance of four evapotranspiration methods (Priestley-Taylor, Penman-Monteith, Hargreaves and Makkink of differing complexity in a semi-arid environment in north China. The results are compared to observed water vapour fluxes derived from eddy flux measurements. The analysis became necessary after discharge simulations using an automatically calibrated version of the Soil and Water Assessment Tool (SWAT failed to reproduce runoff measurements. Although the study area receives most of the annual rainfall during the vegetation period, high temperatures can cause water scarcity. We investigate which evapotranspiration method is most suitable for this environment and whether the model performance of SWAT can be improved with the most adequate evapotranspiration method.

    The evapotranspiration models were tested in two consecutive years with different rainfall amounts. In general, the simple Hargreaves and Makkink equations outmatch the more complex Priestley-Taylor and Penman-Monteith methods, although their performance depended on water availability. Effects on the quality of SWAT runoff simulations, however, remained minor. Although evapotranspiration is an important process in the hydrology of this steppe environment, our analysis indicates that other driving factors still need to be identified to improve SWAT simulations.

  19. Soil and ground-water remediation techniques

    International Nuclear Information System (INIS)

    Beck, P.

    1996-01-01

    Urban areas typically contain numerous sites underlain by soils or ground waters which are contaminated to levels that exceed clean-up guidelines and are hazardous to public health. Contamination most commonly results from the disposal, careless use and spillage of chemicals, or the historic importation of contaminated fill onto properties undergoing redevelopment. Contaminants of concern in soil and ground water include: inorganic chemicals such as heavy metals; radioactive metals; salt and inorganic pesticides, and a range of organic chemicals included within petroleum fuels, coal tar products, PCB oils, chlorinated solvents, and pesticides. Dealing with contaminated sites is a major problem affecting all urban areas and a wide range of different remedial technologies are available. This chapter reviews the more commonly used methods for ground-water and soil remediation, paying particular regard to efficiency and applicability of specific treatments to different site conditions. (author). 43 refs., 1 tab., 27 figs

  20. The assessment of land use change impact on watersheds runoff using SWAT: case study of Urmia Lake in Iran

    Science.gov (United States)

    Jabbari, Anahita; Jarihani, Ben; Rezaie, Hossein

    2015-04-01

    Lake Urmia, long counted among the world's largest saltwater lakes, contains only 5% of the amount of water it did just 20 years ago. The decline is generally blamed on a combination of drought, increased water diversion for irrigated agriculture within the lake's watershed and land use mismanagement. It has been believed that land use changes in Lake Urmia basin is one of the most important factors in shrinkage of Urmia Lake in recent decades. Transforming the traditional agricultural practices (i.e., wheat) to the more water consuming practices (i.e., apple orchards) is one of the most important reasons increased agricultural water consumption in the watershed. In this study we assessed the effect of the land use changes of watershed in hydrological runoff processing in the Nazloo chai watershed, one of the most important river basins of the Urmia Lake basin. Actually the rapid and at the same time unreasonable transformations of land use in farm lands of Urmia lake sub basins, extremely has been raised the amount of blue water (surface or groundwater) consumption in watershed which leads to dramatic decrement of watershed runoff amounts. One of the most unfavorable consequences of land use change was changing the blue and green (rainwater insofar as it does not become runoff) water usage patterns in watershed, in addition to water use increment. The soil and water assessment tool (SWAT), one of the most important and reliable models which was used to model the rainfall runoff, has been used in current study. The land use maps were extracted from Landsat images archives for the most severe turning points in respect of land use change in the recent 30 years. After calibrating the model, several land use patterns of historical data were used in the model to produce the runoff. The results showed the strong relation between land use change and runoff reduction in the Lake Urmia basin.

  1. Water infiltration into homogeneous soils: a new concept

    International Nuclear Information System (INIS)

    Manfredni, S.

    1977-10-01

    A new concept for the analytical description of the process of water infiltration into homogeneous soils is presented. The concept uses a new definition of a 'gravitational diffusivity' which permits the generalization of both cases, horizontal and vertical infiltration. The efficiency of the new concept in describing the infiltration process, for short and intermediate times, is proved through experimental data obtained during water infiltration into air-dry soil columns. Its advantages are discussed comparing soil water contents predicted by the numerical solution proposed by PHILLIP (1955, 1957) [pt

  2. Validation of a spatial–temporal soil water movement and plant water uptake model

    KAUST Repository

    HEPPELL, J.; PAYVANDI, S.; ZYGALAKIS, K.C.; SMETHURST, J.; FLIEGE, J.; ROOSE, T.

    2014-01-01

    © 2014, (publisher). All rights reserved. Management and irrigation of plants increasingly relies on accurate mathematical models for the movement of water within unsaturated soils. Current models often use values for water content and soil

  3. Water repellent soils: a state-of-the-art

    Science.gov (United States)

    Leonard F. DeBano

    1981-01-01

    Water repellency in soils was first described by Schreiner and Shorey (1910), who found that some soils in California could not be wetted and thereby were not suitable for agriculture. Waxy organic substances were responsible for the water repellency. Other studies in the early 1900's on the fairy ring phenomenon suggested that water repellency could be caused by...

  4. Predictions of soil-water potentials in the north-western Sonoran Desert

    Energy Technology Data Exchange (ETDEWEB)

    Young, D.R.; Nobel, P.S.

    1986-03-01

    A simple computer model was developed to predict soil-water potential at a Sonoran Desert site. The variability of precipitation there, coupled with the low water-holding capacity of the sandy soil, result in large temporal and spatial variations in soil-water potential. Predicted soil-water potentials for depths of 5, 10 and 20 cm were in close agreement with measured values as the soil dried after an application of water. Predicted values at a depth of 10 cm, the mean rooting depth of Agave deserti and other succulents common at the study site, also agreed with soil-water potentials measured in the field throughout 1 year. Both soil-water potential and evaporation from the soil surface were very sensitive to simulated changes in the hydraulic conductivity of the soil. The annual duration of soil moisture adequate for succulents was dependent on the rainfall as well as on the spacing and amount of individual rainfalls. The portion of annual precipitation evaporated from the soil surface varied from 73% in a dry year (77 mm precipitation) to 59% in a wet year (597 mm). Besides using the actual precipitation events, simulations were performed using the figures for total monthly precipitation. Based on the average number of rainfalls for a particular month, the rainfall was distributed throughout the month in the model. Predictions using both daily and monthly inputs were in close agreement, especially for the number of days during a year when the soil-water potential was sufficient for water absorption by the succulent plants (above -0.5 MPa).

  5. Model development for prediction of soil water dynamics in plant production.

    Science.gov (United States)

    Hu, Zhengfeng; Jin, Huixia; Zhang, Kefeng

    2015-09-01

    Optimizing water use in agriculture and medicinal plants is crucially important worldwide. Soil sensor-controlled irrigation systems are increasingly becoming available. However it is questionable whether irrigation scheduling based on soil measurements in the top soil could make best use of water for deep-rooted crops. In this study a mechanistic model was employed to investigate water extraction by a deep-rooted cabbage crop from the soil profile throughout crop growth. The model accounts all key processes governing water dynamics in the soil-plant-atmosphere system. Results show that the subsoil provides a significant proportion of the seasonal transpiration, about a third of water transpired over the whole growing season. This suggests that soil water in the entire root zone should be taken into consideration in irrigation scheduling, and for sensor-controlled irrigation systems sensors in the subsoil are essential for detecting soil water status for deep-rooted crops.

  6. Estimation of areal soil water content through microwave remote sensing

    NARCIS (Netherlands)

    Oevelen, van P.J.

    2000-01-01

    In this thesis the use of microwave remote sensing to estimate soil water content is investigated. A general framework is described which is applicable to both passive and active microwave remote sensing of soil water content. The various steps necessary to estimate areal soil water content

  7. Uranium in soils and water; Uran in Boden und Wasser

    Energy Technology Data Exchange (ETDEWEB)

    Dienemann, Claudia; Utermann, Jens

    2012-07-15

    The report of the Umweltbundesamt (Federal Environmental Agency) on uranium in soils and water covers the following chapters: (1) Introduction. (2) Deposits and properties: Use of uranium; toxic effects on human beings, uranium in ground water and drinking water, uranium in surface waters, uranium in soils, uranium in the air. (3) Legal regulations. (4) Uranium deposits, uranium mining, polluted area recultivation. (5) Diffuse uranium entry in soils and water: uranium insertion due to fertilizers, uranium insertion due to atmospheric precipitation, uranium insertion from the air. (6) Diffuse uranium release from soils and transfer in to the food chain. (7) Conclusions and recommendations.

  8. Water Erosion in Different Slope Lengths on Bare Soil

    Directory of Open Access Journals (Sweden)

    Bárbara Bagio

    Full Text Available ABSTRACT Water erosion degrades the soil and contaminates the environment, and one influential factor on erosion is slope length. The aim of this study was to quantify losses of soil (SL and water (WL in a Humic Cambisol in a field experiment under natural rainfall conditions from July 4, 2014 to June 18, 2015 in individual events of 41 erosive rains in the Southern Plateau of Santa Catarina and to estimate soil losses through the USLE and RUSLE models. The treatments consisted of slope lengths of 11, 22, 33, and 44 m, with an average degree of slope of 8 %, on bare and uncropped soil that had been cultivated with corn prior to the study. At the end of the corn cycle, the stalk residue was removed from the surface, leaving the roots of the crop in the soil. Soil loss by water erosion is related linearly and positively to the increase in slope length in the span between 11 and 44 m. Soil losses were related to water losses and the Erosivity Index (EI30, while water losses were related to rain depth. Soil losses estimated by the USLE and RUSLE model showed lower values than the values observed experimentally in the field, especially the values estimated by the USLE. The values of factor L calculated for slope length of 11, 22, 33, and 44 m for the two versions (USLE and RUSLE of the soil loss prediction model showed satisfactory results in relation to the values of soil losses observed.

  9. Case Study: Effect of Climatic Characterization on River Discharge in an Alpine-Prealpine Catchment of the Spanish Pyrenees Using the SWAT Model

    Directory of Open Access Journals (Sweden)

    Leticia Palazón

    2016-10-01

    Full Text Available The new challenges in assessment of water resources demand new approaches and tools, such as the use of hydrologic models, which could serve to assist managers in the prediction, planning and management of catchment water supplies in view of increased demand of water for irrigation and climatic change. Good characterization of the spatial patterns of climate variables is of paramount importance in hydrological modelling. This is especially so when modelling mountain environments which are characterized by strong altitudinal climate gradients. However, very often there is a poor distribution of climatic stations in these areas, which in many cases, results in under representation of high altitude areas with respect to climatic data. This results in the poor performance of the models. In the present study, the Soil and Water Assessment Tool (SWAT model was applied to the Barasona reservoir catchment in the Central Spanish Pyrenees in order to assess the influence of different climatic characterizations in the monthly river discharges. Four simulations with different input data were assessed, using only the available climate data (A1; the former plus one synthetic dataset at a higher altitude (B1; and both plus the altitudinal climate gradient (A2 and B2. The model’s performance was evaluated against the river discharges for the representative periods of 2003–2005 and 1994–1996 by means of commonly used statistical measures. The best results were obtained using the altitudinal climate gradient alone (scenario A2. This study provided insight into the importance of taking into account the sources and the spatial distribution of weather data in modelling water resources in mountainous catchments.

  10. Measured soil water concentrations of cadmium and zinc in plant pots and estimated leaching outflows from contaminated soils

    DEFF Research Database (Denmark)

    Holm, P.E.; Christensen, T.H.

    1998-01-01

    Soil water concentrations of cadmium and zinc were measured in plant pots with 15 contaminated soils which differed in origin, texture, pH (5.1-7.8) and concentrations of cadmium (0.2-17 mg Cd kg(-1)) and zinc (36-1300 mg Zn kg(-1)). The soil waters contained total concentrations of 0.5 to 17 mu g...... to 0.1% per year of the total soil content of cadmium and zinc. The measured soil water concentrations of cadmium and zinc did not correlate linearly with the corresponding soil concentrations but correlated fairly well with concentrations measured in Ca(NO(3))(2) extracts of the soils and with soil...... water concentrations estimated from soil concentrations and pH. Such concentration estimates may be useful for estimating amounts of cadmium and zinc being leached from soils....

  11. Evaluation of different field methods for measuring soil water infiltration

    Science.gov (United States)

    Pla-Sentís, Ildefonso; Fonseca, Francisco

    2010-05-01

    Soil infiltrability, together with rainfall characteristics, is the most important hydrological parameter for the evaluation and diagnosis of the soil water balance and soil moisture regime. Those balances and regimes are the main regulating factors of the on site water supply to plants and other soil organisms and of other important processes like runoff, surface and mass erosion, drainage, etc, affecting sedimentation, flooding, soil and water pollution, water supply for different purposes (population, agriculture, industries, hydroelectricity), etc. Therefore the direct measurement of water infiltration rates or its indirect deduction from other soil characteristics or properties has become indispensable for the evaluation and modelling of the previously mentioned processes. Indirect deductions from other soil characteristics measured under laboratory conditions in the same soils, or in other soils, through the so called "pedo-transfer" functions, have demonstrated to be of limited value in most of the cases. Direct "in situ" field evaluations have to be preferred in any case. In this contribution we present the results of past experiences in the measurement of soil water infiltration rates in many different soils and land conditions, and their use for deducing soil water balances under variable climates. There are also presented and discussed recent results obtained in comparing different methods, using double and single ring infiltrometers, rainfall simulators, and disc permeameters, of different sizes, in soils with very contrasting surface and profile characteristics and conditions, including stony soils and very sloping lands. It is concluded that there are not methods universally applicable to any soil and land condition, and that in many cases the results are significantly influenced by the way we use a particular method or instrument, and by the alterations in the soil conditions by the land management, but also due to the manipulation of the surface

  12. Development of an integrated method for long-term water quality prediction using seasonal climate forecast

    Directory of Open Access Journals (Sweden)

    J. Cho

    2016-10-01

    Full Text Available The APEC Climate Center (APCC produces climate prediction information utilizing a multi-climate model ensemble (MME technique. In this study, four different downscaling methods, in accordance with the degree of utilizing the seasonal climate prediction information, were developed in order to improve predictability and to refine the spatial scale. These methods include: (1 the Simple Bias Correction (SBC method, which directly uses APCC's dynamic prediction data with a 3 to 6 month lead time; (2 the Moving Window Regression (MWR method, which indirectly utilizes dynamic prediction data; (3 the Climate Index Regression (CIR method, which predominantly uses observation-based climate indices; and (4 the Integrated Time Regression (ITR method, which uses predictors selected from both CIR and MWR. Then, a sampling-based temporal downscaling was conducted using the Mahalanobis distance method in order to create daily weather inputs to the Soil and Water Assessment Tool (SWAT model. Long-term predictability of water quality within the Wecheon watershed of the Nakdong River Basin was evaluated. According to the Korean Ministry of Environment's Provisions of Water Quality Prediction and Response Measures, modeling-based predictability was evaluated by using 3-month lead prediction data issued in February, May, August, and November as model input of SWAT. Finally, an integrated approach, which takes into account various climate information and downscaling methods for water quality prediction, was presented. This integrated approach can be used to prevent potential problems caused by extreme climate in advance.

  13. Modelling land use change across elevation gradients in district Swat, Pakistan

    NARCIS (Netherlands)

    Qasim, M.; Termansen, M.; Hubacek, K.; Fleskens, L.

    2013-01-01

    District Swat is part of the high mountain Hindu-Kush Himalayan region of Pakistan. Documentation and analysis of land use change in this region is challenging due to very disparate accounts of the state of forest resources and limited accessible data. Such analysis is, however, important due to

  14. A one-dimensional model for simulating soil water movement ...

    African Journals Online (AJOL)

    ... regression analysis revealed the relati-onship to be exponential. The values of calculated and measured soil water content and total evapotranspiration decreased with number of days after rain or irrigation. The nodal soil water content also decreased with the soil depth. (Journal of Applied Science and Technology: 2001 ...

  15. Assessment of produced water contaminated soils to determine remediation requirements

    International Nuclear Information System (INIS)

    Clodfelter, C.

    1995-01-01

    Produced water and drilling fluids can impact the agricultural properties of soil and result in potential regulatory and legal liabilities. Produced water typically is classified as saline or a brine and affects surface soils by increasing the sodium and chloride content. Sources of produced water which can lead to problems include spills from flowlines and tank batteries, permitted surface water discharges and pit areas, particularly the larger pits including reserve pits, emergency pits and saltwater disposal pits. Methods to assess produced water spills include soil sampling with various chemical analyses and surface geophysical methods. A variety of laboratory analytical methods are available for soil assessment which include electrical conductivity, sodium adsorption ratio, cation exchange capacity, exchangeable sodium percent and others. Limiting the list of analytical parameters to reduce cost and still obtain the data necessary to assess the extent of contamination and determine remediation requirements can be difficult. The advantage to using analytical techniques is that often regulatory remediation standards are tied to soil properties determined from laboratory analysis. Surface geophysical techniques can be an inexpensive method to rapidly determine the extent and relative magnitude of saline soils. Data interpretations can also provide an indication of the horizontal as well as the vertical extent of impacted soils. The following discussion focuses on produced water spills on soil and assessment of the impacted soil. Produced water typically contains dissolved hydrocarbons which are not addressed in this discussion

  16. Estimation of the climate change impact on a catchment water balance using an ensemble of GCMs

    Science.gov (United States)

    Reshmidevi, T. V.; Nagesh Kumar, D.; Mehrotra, R.; Sharma, A.

    2018-01-01

    This work evaluates the impact of climate change on the water balance of a catchment in India. Rainfall and hydro-meteorological variables for current (20C3M scenario, 1981-2000) and two future time periods: mid of the 21st century (2046-2065) and end of the century (2081-2100) are simulated using Modified Markov Model-Kernel Density Estimation (MMM-KDE) and k-nearest neighbor downscaling models. Climate projections from an ensemble of 5 GCMs (MPI-ECHAM5, BCCR-BCM2.0, CSIRO-mk3.5, IPSL-CM4, and MRI-CGCM2) are used in this study. Hydrologic simulations for the current as well as future climate scenarios are carried out using Soil and Water Assessment Tool (SWAT) integrated with ArcGIS (ArcSWAT v.2009). The results show marginal reduction in runoff ratio, annual streamflow and groundwater recharge towards the end of the century. Increased temperature and evapotranspiration project an increase in the irrigation demand towards the end of the century. Rainfall projections for the future shows marginal increase in the annual average rainfall. Short and moderate wet spells are projected to decrease, whereas short and moderate dry spells are projected to increase in the future. Projected reduction in streamflow and groundwater recharge along with the increase in irrigation demand is likely to aggravate the water stress in the region under the future scenario.

  17. Effects of pH-Induced Changes in Soil Physical Characteristics on the Development of Soil Water Erosion

    Directory of Open Access Journals (Sweden)

    Shinji Matsumoto

    2018-04-01

    Full Text Available Soil water erosion is frequently reported as serious problem in soils in Southeast Asia with tropical climates, and the variations in pH affect the development of the erosion. This study investigated the effects of changes in pH on soil water erosion based on changes in the physical properties of the simulated soils with pH adjusted from 2.0 to 10.0 through artificial rainfall tests. The zeta potential was entirely shifted to positive direction at each pH condition due to Al, Ca, and Mg. In the pH range of 6.0 to 2.0, the aggregation of soil particles resulting from the release of Al3+ from clay minerals and/or molecular attraction between soil particles caused the plastic index (IP of the soil to decrease. The decrease in IP led to the development of soil water erosion at the pH range. When the pH exceeded 6.0, the repulsive force generated by the negative charges on soil particles decreased IP, resulting in accelerated erosion by water. The results suggest that changes in pH causes physical properties of the soil to change through changes of the zeta potential in the clayey soil rich in Al, Ca, and Mg, leading to the development of soil water erosion.

  18. Soil CO2 Dynamics in a Tree Island Soil of the Pantanal: The Role of Soil Water Potential

    Science.gov (United States)

    Johnson, Mark S.; Couto, Eduardo Guimarães; Pinto Jr, Osvaldo B.; Milesi, Juliana; Santos Amorim, Ricardo S.; Messias, Indira A. M.; Biudes, Marcelo Sacardi

    2013-01-01

    The Pantanal is a biodiversity hotspot comprised of a mosaic of landforms that differ in vegetative assemblages and flooding dynamics. Tree islands provide refuge for terrestrial fauna during the flooding period and are particularly important to the regional ecosystem structure. Little soil CO2 research has been conducted in this region. We evaluated soil CO2 dynamics in relation to primary controlling environmental parameters (soil temperature and soil water). Soil respiration was computed using the gradient method using in situ infrared gas analyzers to directly measure CO2 concentration within the soil profile. Due to the cost of the sensors and associated equipment, this study was unreplicated. Rather, we focus on the temporal relationships between soil CO2 efflux and related environmental parameters. Soil CO2 efflux during the study averaged 3.53 µmol CO2 m−2 s−1, and was equivalent to an annual soil respiration of 1220 g C m−2 y−1. This efflux value, integrated over a year, is comparable to soil C stocks for 0–20 cm. Soil water potential was the measured parameter most strongly associated with soil CO2 concentrations, with high CO2 values observed only once soil water potential at the 10 cm depth approached zero. This relationship was exhibited across a spectrum of timescales and was found to be significant at a daily timescale across all seasons using conditional nonparametric spectral Granger causality analysis. Hydrology plays a significant role in controlling CO2 efflux from the tree island soil, with soil CO2 dynamics differing by wetting mechanism. During the wet-up period, direct precipitation infiltrates soil from above and results in pulses of CO2 efflux from soil. The annual flood arrives later, and saturates soil from below. While CO2 concentrations in soil grew very high under both wetting mechanisms, the change in soil CO2 efflux was only significant when soils were wet from above. PMID:23762259

  19. Natural and fire-induced soil water repellency in a Portugese Shrubland

    NARCIS (Netherlands)

    Stoof, C.R.; Moore, D.; Ritsema, C.J.; Dekker, L.W.

    2011-01-01

    Post-fire land degradation is often attributed to fire-induced soil water repellency, despite the fact that soil water repellency is a natural phenomenon in many soils and is therefore not necessarily caused by fire. To improve our understanding of the role of soil water repellency in causing

  20. [Soil infiltration of snowmelt water in the southern Gurbantunggut Desert, Xinjiang, China].

    Science.gov (United States)

    Hu, Shun-jun; Chen, Yong-bao; Zhu, Hai

    2015-04-01

    Soil infiltration of snow-melt water is an important income item of water balance in arid desert. The soil water content in west slope, east slope and interdune of sand dune in the southern Gurbantunggut Desert was monitored before snowfall and after snow melting during the winters of 2012-2013 and 2013-2014. According to the principle of water balance, soil infiltration of snow-melt in the west slope, east slope, interdune and landscape scale was calculated, and compared with the results measured by cylinder method. The results showed that the soil moisture recharge from unfrozen layer of unsaturated soil to surface frozen soil was negligible because the soil moisture content before snowfall was lower, soil infiltration of snow-melt water was the main source of soil water of shallow soil, phreatic water did not evaporate during freezing period, and did not get recharge after the snow melting. Snowmelt water in the west slope, east slope, interdune and landscape scale were 20-43, 27-43, 32-45, 26-45 mm, respectively.

  1. Effect of top soil wettability on water evaporation and plant growth.

    Science.gov (United States)

    Gupta, Bharat; Shah, D O; Mishra, Brijesh; Joshi, P A; Gandhi, Vimal G; Fougat, R S

    2015-07-01

    In general, agricultural soil surfaces being hydrophilic in nature get easily wetted by water. The water beneath the soil moves through capillary effect and comes to the surface of the soil and thereafter evaporates into the surrounding air due to atmospheric conditions such as sunlight, wind current, temperature and relative humidity. To lower the water loss from soil, an experiment was designed in which a layer of hydrophobic soil was laid on the surface of ordinary hydrophilic soil. This technique strikingly decreased loss of water from the soil. The results indicated that the evaporation rate significantly decreased and 90% of water was retained in the soil in 83 h by the hydrophobic layer of 2 cm thickness. A theoretical calculation based on diffusion of water vapour (gas phase) through hydrophobic capillaries provide a meaningful explanation of experimental results. A greater retention of water in the soil by this approach can promote the growth of plants, which was confirmed by growing chick pea (Cicer arietinum) plants and it was found that the length of roots, height of shoot, number of branches, number of leaves, number of secondary roots, biomass etc. were significantly increased upon covering the surface with hydrophobic soil in comparison to uncovered ordinary hydrophilic soil of identical depth. Such approach can also decrease the water consumption by the plants particularly grown indoors in residential premises, green houses and poly-houses etc. and also can be very useful to prevent water loss and enhance growth of vegetation in semi-arid regions. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Analyses for experiment on sodium-water reaction temperature by the CHAMPAGNE code

    International Nuclear Information System (INIS)

    Yoshioka, Naoki; Kishida, Masako; Yamada, Yumi

    2000-03-01

    In this work, analyses on sodium-water reaction temperature in the new SWAT-1(SWAT-1R) test were completed by the CHAMPAGNE code in order to understand void and velocity distribution in sodium system, which was difficult to be measured in experiments. The application method of the RELAP5/Mod2 code was investigated to LMFBR steam generator (SG) blow down analysis, too. The following results were obtained. (1) Analyses on sodium-water reaction temperature in the SWAT-1R test. 1) Analyses were carried out for the SWAT-1R test under the condition water leak rate 600 g/s by treating the pressure loss coefficient, the interface friction coefficient and the coefficient related to reaction rate as parameters. The effect and mechanism of each parameter on the shape of reaction zone were well understood by these analyses. 2) The void and velocity distribution in sodium system were estimated by use of the most suitable parameters. These analytical results are expected to be useful for planning of the SWAT-1R test and evaluation of test result. (2) Investigation of the RELAP5/Mod2 code. 1) The items to be improved in the RELAP5/Mod2 code were clarified to apply this code to the FBR SG blow down analysis. 2) One of these items was an addition of the shell-side (sodium-side) model. A sodium-side model was designed and added to the RELAP5/Mod2 code. Test calculations were carried out by this improved code and the basic function of this code was confirmed. (author)

  3. INCIDENCE OF NAMATODE PARASITES IN COMMERCIAL LAYERS IN SWAT

    Directory of Open Access Journals (Sweden)

    R.S. Sayyed, M.S. Phulan1, W.M. Bhatti1, M. Pardehi and Shamsher Ali

    2000-04-01

    Full Text Available Research was conducted on 400 guts of commercial layers collected from various shops at District Swat during April to September 1998. Out of 400 guts, 36 per cent were positive for nematodes, Mixed infestation of nematodes and cestodes was found in 4.75 per cent layers. Incidence rate of Ascaridia galli, Heterakis gallinarum and Subulura brumpli was 25.75, 8.25 and 2 per cent, respectively.

  4. Grey water impact on soil physical properties

    Directory of Open Access Journals (Sweden)

    Miguel L. Murcia-Sarmiento

    2014-01-01

    Full Text Available Due to the increasing demand for food produced by the increase in population, water as an indispensable element in the growth cycle of plants every day becomes a fundamental aspect of production. The demand for the use of this resource is necessary to search for alternatives that should be evaluated to avoid potential negative impacts. In this paper, the changes in some physical properties of soil irrigated with synthetic gray water were evaluated. The experimental design involved: one factor: home water and two treatments; without treated water (T1 and treated water (T2. The variables to consider in the soil were: electrical conductivity (EC, exchangeable sodium percentage (ESP, average weighted diameter (MWD and soil moisture retention (RHS. The water used in drip irrigation high frequency was monitored by tensiometer for producing a bean crop (Phaseolous vulgaris L. As filtration system used was employed a unit composed of a sand filter (FLA and a subsurface flow wetland artificial (HFSS. The treatments showed significant differences in the PSI and the RHS. The FLA+HFSS system is an alternative to the gray water treatment due to increased sodium retention.

  5. Water Quality Effects of Miscanthus as a Bioenergy Crop

    Science.gov (United States)

    Ng, T.; Eheart, J. W.; Cai, X.

    2009-12-01

    There is increasing interest in perennial grasses as a renewable source of bioenergy and biofuels. Under the right conditions, environmental advantages of cultivating such crops, relative to conventional row crops, include reductions in greenhouse gas emissions and waterborne pollutants, increased biodiversity and improved soil properties. This study focuses on the riverine nitrate load of cultivating miscanthus in lieu of conventional crops. Miscanthus has been identified as a high-yielding, low-input perennial grass suitable as a feedstock for cellulosic ethanol production and power generation by biomass combustion. To achieve the objective of this study, the Soil and Water Assessment Tool (SWAT) is used to model runoff and stream water quality in the Salt Creek watershed in East-Central Illinois. The watershed is agricultural and its nitrogen export, like that of most other agricultural watersheds in the region, is a major contributor to hypoxia in the Gulf of Mexico. SWAT is a hydrologic model with a built-in crop growth component. However, as miscanthus is relatively new as a crop of interest, data for the SWAT crop growth parameters for it are lacking. This study reports an evaluation of those parameters and an application of them to estimate the potential reduction in nitrate load from miscanthus cultivation under various scenarios. The miscanthus growth parameters are divided into three subsets. The first subset contains those parameters describing optimal growth under zero stress conditions, while the second contains those used to estimate nitrogen stress. Those parameters that are remaining (namely, maximum root depth and phosphorus and temperature stress parameters) are included in the third subset. To calibrate for the parameters in the first subset, simulated data from another miscanthus growth model are used. That other model is highly mechanistic and has been validated (no calibration is necessary because of its degree of mechanisticity) using

  6. Fluorescent probes for understanding soil water repellency: the novel application of a chemist's tool to soil science

    Science.gov (United States)

    Balshaw, Helen M.; Davies, Matthew L.; Doerr, Stefan H.; Douglas, Peter

    2015-04-01

    Food security and production is one of the key global issues faced by society. It has become essential to work the land efficiently, through better soil management and agronomy whilst protecting the environment from air and water pollution. The failure of soil to absorb water - soil water repellency can lead to major environmental problems such as increased overland flow and soil erosion, poor uptake of agricultural chemicals, and increased risk of groundwater pollution due to the rapid transfer of contaminants and nutrient leaching through uneven wetting and preferential flow pathways. Understanding the causes of soil hydrophobicity is essential for the development of effective methods for its amelioration, supporting environmental stability and food security. Organic compounds deposited on soil mineral or aggregate surfaces have long been recognised as a major factor in causing soil water repellency. It is widely accepted that the main groups of compounds responsible are long-chain acids, alkanes and other organic compounds with hydrophobic properties. However, when reapplied to sands and soils, the degree of water repellency induced by these compounds and mixtures varied widely with compound type, amount, and mixture, in a seemingly unpredictable way. Fluorescent and phosphorescent probes are widely used in chemistry and biochemistry due to their sensitive response to their physical and chemical environment, such as polarity, and viscosity. However, they have to-date not been used to study soil water repellency. Here we present preliminary work on the evaluation of fluorescent probes as tools to study two poorly understood features that determine the degree of wettability for water repellent soils: (i) the distribution of organics on soils; (ii) the changes in polarity at soil surfaces required for water drops to infiltrate. In our initial work we have examined probes adsorbed onto model soils, prepared by adsorption of specific organics onto acid washed sand

  7. Estimating respiration of roots in soil: interactions with soil CO2, soil temperature and soil water content

    NARCIS (Netherlands)

    Bouma, T.J.; Nielsen, K.F.; Eissenstat, D.M.; Lynch, J.P.

    1997-01-01

    Little information is available on the variability of the dynamics of the actual and observed root respiration rate in relation to abiotic factors. In this study, we describe I) interactions between soil CO2 concentration, temperature, soil water content and root respiration, and II) the effect of

  8. Sensitivity analysis for hydrology and pesticide supply towards the river in SWAT

    Science.gov (United States)

    Holvoet, K.; van Griensven, A.; Seuntjens, P.; Vanrolleghem, P. A.

    The dynamic behaviour of pesticides in river systems strongly depends on varying climatological conditions and agricultural management practices. To describe this behaviour at the river-basin scale, integrated hydrological and water quality models are needed. A crucial step in understanding the various processes determining pesticide fate is to perform a sensitivity analysis. Sensitivity analysis for hydrology and pesticide supply in SWAT (Soil and Water Assessment Tool) will provide useful support for the development of a reliable hydrological model and will give insight in which parameters are most sensitive concerning pesticide supply towards rivers. The study was performed on the Nil catchment in Belgium. In this study we utilised an LH-OAT sensitivity analysis. The LH-OAT method combines the One-factor-At-a-Time (OAT) design and Latin Hypercube (LH) sampling by taking the Latin Hypercube samples as initial points for an OAT design. By means of the LH-OAT sensitivity analysis, the dominant hydrological parameters were determined and a reduction of the number of model parameters was performed. Dominant hydrological parameters were the curve number (CN2), the surface runoff lag (surlag), the recharge to deep aquifer (rchrg_dp) and the threshold depth of water in the shallow aquifer (GWQMN). Next, the selected parameters were estimated by manual calibration. Hereby, the Nash-Sutcliffe coefficient of efficiency improved from an initial value of -22.4 to +0.53. In the second part, sensitivity analyses were performed to provide insight in which parameters or model inputs contribute most to variance in pesticide output. The results of this study show that for the Nil catchment, hydrologic parameters are dominant in controlling pesticide predictions. The other parameter that affects pesticide concentrations in surface water is ‘apfp_pest’, which meaning was changed into a parameter that controls direct losses to the river system (e.g., through the clean up of spray

  9. Water repellency of clay, sand and organic soils in Finland

    Directory of Open Access Journals (Sweden)

    K. RASA

    2008-12-01

    Full Text Available Water repellency (WR delays soil wetting process, increases preferential flow and may give rise to surface runoff and consequent erosion. WR is commonly recognized in the soils of warm and temperate climates. To explore the occurrence of WR in soils in Finland, soil R index was studied on 12 sites of different soil types. The effects of soil management practice, vegetation age, soil moisture and drying temperature on WR were studied by a mini-infiltrometer with samples from depths of 0-5 and 5-10 cm. All studied sites exhibited WR (R index >1.95 at the time of sampling. WR increased as follows: sand (R = 1.8-5.0 < clay (R = 2.4-10.3 < organic (R = 7.9-undefined. At clay and sand, WR was generally higher at the soil surface and at the older sites (14 yr., where organic matter is accumulated. Below 41 vol. % water content these mineral soils were water repellent whereas organic soil exhibited WR even at saturation. These results show that soil WR also reduces water infiltration at the prevalent field moisture regime in the soils of boreal climate. The ageing of vegetation increases WR and on the other hand, cultivation reduces or hinders the development of WR.;

  10. [Contribution of soil water at various depths to water consumption of rainfed winter wheat in the Loess tableland, China].

    Science.gov (United States)

    Cheng, Li Ping; Liu, Wen Zhao

    2017-07-18

    Soil water and stem water were collected in jointing and heading stages of the rainfed winter wheat in the Changwu Loess tableland, and the stable isotopic compositions of hydrogen and oxygen in water samples were measured to analyze the contribution of soil water at various depths to water consumption of winter wheat. The results showed that the isotopes were enriched in soil and wheat stem water in comparison with that in precipitation. Under the condition of no dry layer in soil profile, the contributions to wheat water consumption in jointing and heading stages were 5.4% and 2.6% from soil water at 0-30 cm depth, 73.4% and 67.3% at 60-90 cm depth (the main water source for winter wheat), and 7.9% and 13.5% below 120 cm depth, respectively. With the wheat growth, the contribution of soil water below the depth of 90 cm increased. It was concluded that soil evaporation mainly consumed soil water in 0-30 cm depth and wheat transpiration mainly consumed soil water below 60 cm depth in the experimental period. In the production practice, it is necessary to increase rainwater storage ratio during the summer fallow period, and apply reasonable combination of nitrogen and phosphorus fertilizers in order to increase soil moisture before wheat sowing, promote the wheat root developing deep downwards and raise the deep soil water utilization ratio.

  11. Irrigation with saline-sodic water: effects on two clay soils

    Directory of Open Access Journals (Sweden)

    Giovanna Cucci

    2013-05-01

    Full Text Available The results of a 4-year experiment aimed at evaluating the effect of irrigation with saline-sodic water on the soil are reported. The research was carried out at the Campus of the Agricultural Faculty of Bari University (Italy on 2 clay soils (Bologna – T1 and Locorotondo – T2. The soils were cropped to borlotto bean (Phaseolus vulgaris L., capsicum (Capsicum annuum L., sunflower (Helianthus annuus L., wheat (Triticum durum Desf grown in succession; the crops were irrigated with 9 saline-sodic types of water and subjected to two different leaching fractions (10% and 20% of the watering volume. The 9 solutions were obtained dissolving in de-ionised water weighted amounts of sodium chloride (NaCl and calcium chloride (CaCl2, deriving from the combination of 3 saline concentrations and 3 sodicity levels. The crops were irrigated whenever the water lost by evapotranspiration from the soil contained in the pots was equal to 30% of the soil maximum available water. The results showed that, though the soils were leached during the watering period, they showed a high salt accumulation. Consequently, the saturated soil extract electrical conductivity increased from initial values of 0.65 and 0.68 dS m-1 to 11.24 and 13.61 dS m-1 at the end of the experiment, for the soils T1 and T2, respectively. The saline concentration increase in irrigation water caused in both soils a progressive increase in exchangeable sodium, and a decrease in exchangeable calcium and non-significant variations in exchangeable potassium (K and magnesium (Mg.

  12. Behavior of Agricultural water users induced hydro-climatic cycle change in Heihe River Basin, in the northwest of china

    Science.gov (United States)

    Wu, F.; Deng, X.; Cai, X.; Zhang, X.; Zhang, Q.

    2017-12-01

    Water allocation unbalance is the most important driving force of ecological degradation in the Heihe River Basin, where it seems the lifeblood of environment and human society. Water commute complex and frequent in soil, atmosphere, surface and ground face. The balance analysis of Water's transformation based on the WRF (Weather Research Forecasting) and SWAT (Soil and Water Assessment Tool) simulations, puts forward the application of land governance in arid and semi-arid region. In this study, we designed an irrigation scheme using local field experiences and incorporated the irrigation scheme into WRF/Noah-MP model. Then, to test the effects of irrigation scheme on performance of WRF/Noah-MP model, we carried out two simulations with the Heihe watershed, Northwest China, as a case study area. Firstly, the irrigation simulation is meanly about 860 mm across all of 671 cropland grid cells within the Heihe watershed and gradually increases from about 500 mm nearby the foot of Qilian Mountain to the maximum about 1500 mm in the middle and lower reach of Heihe River. Both of regional mean value and spatial heterogeneity are close to ground measurements. Secondly, the irrigation simulation dramatically reduced the mean bias of specified humidity to -0.47 g kg-1 (accounting for 6.0% of observation) and RMSE of temperature to 0.47 °C, respectively, since the irrigation enhanced the surface latent heat and weakened sensible heat to atmosphere. Thirdly, Across the 8 agricultural sites, the correlation coefficient and RMSE increased from 0.75 to 0.80. Finally, we found the surface runoff will increase by 0.46% with SWAT model at irrigation months. Therefore, the irrigation may led to expansion of cultivated land through transformation from groundwater to surface water at some degree. Water authorities should strengthen the tough water management measures to implement measures of total quantity control and raise the efficiency of water resources.

  13. Association of water spectral indices with plant and soil water relations in contrasting wheat genotypes.

    Science.gov (United States)

    Gutierrez, Mario; Reynolds, Matthew P; Klatt, Arthur R

    2010-07-01

    Spectral reflectance indices can be used to estimate the water status of plants in a rapid, non-destructive manner. Water spectral indices were measured on wheat under a range of water-deficit conditions in field-based yield trials to establish their relationship with water relations parameters as well as available volumetric soil water (AVSW) to indicate soil water extraction patterns. Three types of wheat germplasm were studied which showed a range of drought adaptation; near-isomorphic sister lines from an elite/elite cross, advanced breeding lines, and lines derived from interspecific hybridization with wild relatives (synthetic derivative lines). Five water spectral indices (one water index and four normalized water indices) based on near infrared wavelengths were determined under field conditions between the booting and grain-filling stages of crop development. Among all water spectral indices, one in particular, which was denominated as NWI-3, showed the most consistent associations with water relations parameters and demonstrated the strongest associations in all three germplasm sets. NWI-3 showed a strong linear relationship (r(2) >0.6-0.8) with leaf water potential (psi(leaf)) across a broad range of values (-2.0 to -4.0 MPa) that were determined by natural variation in the environment associated with intra- and inter-seasonal affects. Association observed between NWI-3 and canopy temperature (CT) was consistent with the idea that genotypes with a better hydration status have a larger water flux (increased stomatal conductance) during the day. NWI-3 was also related to soil water potential (psi(soil)) and AVSW, indicating that drought-adapted lines could extract more water from deeper soil profiles to maintain favourable water relations. NWI-3 was sufficiently sensitive to detect genotypic differences (indicated by phenotypic and genetic correlations) in water status at the canopy and soil levels indicating its potential application in precision

  14. Movement of Irrigation Water in Soil from a Surface Emitter

    Directory of Open Access Journals (Sweden)

    Ibrahim Abbas Dawood

    2016-09-01

    Full Text Available rickle irrigation is one of the most conservative irrigation techniques since it implies supplying water directly on the soil through emitters. Emitters dissipate energy of water at the end of the trickle irrigation system and provide water at emission points. The area wetted by an emitter depends upon the discharge of emitter, soil texture, initial soil water content, and soil permeability. The objectives of this research were to predict water distribution profiles through different soils for different conditions and quantify the distribution profiles in terms of main characteristics of soil and emitter. The wetting patterns were simulated at the end of each hour for a total time of application of 12 hrs, emitter discharges of 0.5, 0.75, 1, 2, 3, 4, and 5 lph, and five initial volumetric soil water contents. Simulation of water flow from a single surface emitter was carried out by using the numerically-based software Hydrus-2D/3D, Version 2.04. Two approaches were used in developing formulas to predict the domains of the wetted pattern. In order to verify the results obtained by implementing the software Hydrus-2D/3D a field experiment was conducted to measure the wetted diameter and compare measured values with simulated ones. The results of the research showed that the developed formulas to express the wetted diameter and depth in terms of emitter discharge, time of application, and initial soil water content are very general and can be used with very good accuracy.

  15. Measuring Low Concentrations of Liquid Water in Soil

    Science.gov (United States)

    Buehler, Martin

    2009-01-01

    An apparatus has been developed for measuring the low concentrations of liquid water and ice in relatively dry soil samples. Designed as a prototype of instruments for measuring the liquidwater and ice contents of Lunar and Martian soils, the apparatus could also be applied similarly to terrestrial desert soils and sands. The apparatus is a special-purpose impedance spectrometer: Its design is based on the fact that the electrical behavior of a typical soil sample is well approximated by a network of resistors and capacitors in which resistances decrease and capacitances increase (and, hence, the magnitude of impedance decreases) with increasing water content.

  16. Neutron probe measurement of soil water content close to soil surface

    International Nuclear Information System (INIS)

    Faleiros, M.C.; Ravelo S, A.; Souza, M.D. de

    1993-01-01

    The problem of neutron probe soil water content measurements close to soil surface is analysed from the spatial variability and also from the slow neutron loss to the atmosphere points of view. Results obtained on a dark red latosol of the county of Piracicaba, SP, indicate the possibility of precisely measuring the neutron sphere of influence when different media are used on soil surface. (author). 7 refs, 5 figs, 1 tab

  17. Approaches and challenges of soil water monitoring in an irrigated vineyard

    Science.gov (United States)

    Nolz, Reinhard; Loiskandl, Willibald

    2016-04-01

    Monitoring of water content is an approved method to quantify certain components of the soil water balance, for example as basis for hydrological studies and soil water management. Temporal soil water data also allow controlling water status by means of demand-oriented irrigation. Regarding spatial variability of water content due to soil characteristics, plant water uptake and other non-uniformities, it is a great challenge to select a location that is most likely representing soil water status of a larger area (e.g. an irrigated field). Although such an approach might not satisfy the requirements of precision farming - which becomes more and more related to industrial agriculture - it can help improving water use efficiency of small-scale farming. In this regard, specific conditions can be found in typical vineyards in the eastern part of Austria, where grapes are grown for high quality wine production. Generally, the local dry-subhumid climate supports grape development. However, irrigation is temporarily essential in order to guarantee stable yields and high quality. As the local winegrowers traditionally control irrigation based on their experience, there is a potential to improve irrigation management by means of soil water data. In order to gain experience with regard to irrigation management, soil water status was determined in a small vineyard in Austria (47°48'16'' N, 17°01'57'' E, 118 m elevation). The vineyard was equipped with a subsurface drip irrigation system and access tubes for measuring water content in soil profiles. The latter was measured using a portable device as well as permanently installed multi-sensor capacitance probes. Soil samples were taken at chosen dates and gravimetrically analyzed in the laboratory. Water content data were analyzed using simple statistical procedures and the temporal stability concept. Soil water content was interpreted considering different environmental conditions, including rainfall and irrigation periods

  18. Measuring and understanding soil water repellency through novel interdisciplinary approaches

    Science.gov (United States)

    Balshaw, Helen; Douglas, Peter; Doerr, Stefan; Davies, Matthew

    2017-04-01

    Food security and production is one of the key global issues faced by society. It has become evermore essential to work the land efficiently, through better soil management and agronomy whilst protecting the environment from air and water pollution. The failure of soil to absorb water - soil water repellency - can lead to major environmental problems such as increased overland flow and soil erosion, poor uptake of agricultural chemicals and increased risk of groundwater pollution due to the rapid transfer of contaminants and nutrient leaching through uneven wetting and preferential flow pathways. Understanding the causes of soil hydrophobicity is essential for the development of effective methods for its amelioration, supporting environmental stability and food security. Organic compounds deposited on soil mineral or aggregate surfaces have long been recognised as a major factor in causing soil water repellency. It is widely accepted that the main groups of compounds responsible are long-chain acids, alkanes and other organic compounds with hydrophobic properties. However, when reapplied to sands and soils, the degree of water repellency induced by these compounds and mixtures varied widely with compound type, amount and mixture, in a seemingly unpredictable way. Our research to date involves two new approaches for studying soil wetting. 1) We challenge the theoretical basis of current ideas on the measured water/soil contact angle measurements. Much past and current discussion involves Wenzel and Cassie-Baxter models to explain anomalously high contact angles for organics on soils, however here we propose that these anomalously high measured contact angles are a consequence of the measurement of a water drop on an irregular non-planar surface rather than the thermodynamic factors of the Cassie-Baxter and Wenzel models. In our analysis we have successfully used a much simpler geometric approach for non-flat surfaces such as soil. 2) Fluorescent and phosphorescent

  19. Water erosion and soil water infiltration in different stages of corn development and tillage systems

    OpenAIRE

    Daniel F. de Carvalho; Eliete N. Eduardo; Wilk S. de Almeida; Lucas A. F. Santos; Teodorico Alves Sobrinho

    2015-01-01

    ABSTRACTThis study evaluated soil and water losses, soil water infiltration and infiltration rate models in soil tillage systems and corn (Zea mays, L.) development stages under simulated rainfall. The treatments were: cultivation along contour lines, cultivation down the slope and exposed soil. Soil losses and infiltration in each treatment were quantified for rains applied using a portable simulator, at 0, 30, 60 and 75 days after planting. Infiltration rates were estimated using the models...

  20. The estimation of soil water fluxes using lysimeter data

    Science.gov (United States)

    Wegehenkel, M.

    2009-04-01

    The validation of soil water balance models regarding soil water fluxes in the field is still a problem. This requires time series of measured model outputs. In our study, a soil water balance model was validated using lysimeter time series of measured model outputs. The soil water balance model used in our study was the Hydrus-1D-model. This model was tested by a comparison of simulated with measured daily rates of actual evapotranspiration, soil water storage, groundwater recharge and capillary rise. These rates were obtained from twelve weighable lysimeters with three different soils and two different lower boundary conditions for the time period from January 1, 1996 to December 31, 1998. In that period, grass vegetation was grown on all lysimeters. These lysimeters are located in Berlin, Germany. One potential source of error in lysimeter experiments is preferential flow caused by an artificial channeling of water due to the occurrence of air space between the soil monolith and the inside wall of the lysimeters. To analyse such sources of errors, Hydrus-1D was applied with different modelling procedures. The first procedure consists of a general uncalibrated appli-cation of Hydrus-1D. The second one includes a calibration of soil hydraulic parameters via inverse modelling of different percolation events with Hydrus-1D. In the third procedure, the model DUALP_1D was applied with the optimized hydraulic parameter set to test the hy-pothesis of the existence of preferential flow paths in the lysimeters. The results of the different modelling procedures indicated that, in addition to a precise determination of the soil water retention functions, vegetation parameters such as rooting depth should also be taken into account. Without such information, the rooting depth is a calibration parameter. However, in some cases, the uncalibrated application of both models also led to an acceptable fit between measured and simulated model outputs.

  1. Aggregating available soil water holding capacity data for crop yield models

    Science.gov (United States)

    Seubert, C. E.; Daughtry, C. S. T.; Holt, D. A.; Baumgardner, M. F.

    1984-01-01

    The total amount of water available to plants that is held against gravity in a soil is usually estimated as the amount present at -0.03 MPa average water potential minus the amount present at -1.5 MPa water potential. This value, designated available water-holding capacity (AWHC), is a very important soil characteristic that is strongly and positively correlated to the inherent productivity of soils. In various applications, including assessing soil moisture status over large areas, it is necessary to group soil types or series as to their productivity. Current methods to classify AWHC of soils consider only total capacity of soil profiles and thus may group together soils which differ greatly in AWHC as a function of depth in the profile. A general approach for evaluating quantitatively the multidimensional nature of AWHC in soils is described. Data for 902 soil profiles, representing 184 soil series, in Indiana were obtained from the Soil Characterization Laboratory at Purdue University. The AWHC for each of ten 150-mm layers in each soil was established, based on soil texture and parent material. A multivariate clustering procedure was used to classify each soil profile into one of 4, 8, or 12 classes based upon ten-dimensional AWHC values. The optimum number of classes depends on the range of AWHC in the population of oil profiles analyzed and on the sensitivity of a crop to differences in distribution of water within the soil profile.

  2. Assessing interactions of hydrophilic nanoscale TiO{sub 2} with soil water

    Energy Technology Data Exchange (ETDEWEB)

    Priester, John H.; Ge, Yuan; Chang, Vivian [University of California, Santa Barbara, Bren School of Environmental Science and Management (United States); Stoimenov, Peter K. [University of California, Santa Barbara, Department of Chemistry and Biochemistry (United States); Schimel, Joshua P. [University of California, Santa Barbara, Earth Research Institute (United States); Stucky, Galen D. [University of California, Santa Barbara, UC Center for the Environmental Implications of Nanotechnology (United States); Holden, Patricia A., E-mail: holden@bren.ucsb.edu [University of California, Santa Barbara, Bren School of Environmental Science and Management (United States)

    2013-09-15

    The implications of manufactured nanoscale materials (MNMs) in unsaturated soil are mostly unknown. Owing to its widespread use, nanoscale (n) TiO{sub 2} is expected to enter soils where its accumulation could impact soil processes. Yet fundamental information is lacking regarding nTiO{sub 2} in situ wettability, i.e., interactions with soil water that relate to nTiO{sub 2} exposure and bioavailability. To probe nTiO{sub 2} interactions with soil water, we amended a natural soil with 20 mg per g of P25 nTiO{sub 2}, a high-production, hydrophilic MNM that, based on its small size (25 nm nominal), provides ample specific surface area (SSA) for water sorption. We then measured nTiO{sub 2}-amended soil SSA, and conducted a dynamic water vapor conditioning experiment. Early time-course water sorption into soil, with and without nTiO{sub 2}, was clearly diffusional. Over 9 months, soil water content asymptotically equilibrated. However, despite amending with nTiO{sub 2} levels that increased the soil SSA by 16 %, measured water sorption rates and endpoint soil water contents were mostly unchanged by P25 nTiO{sub 2}. Our results indicate that as-manufactured hydrophilic P25 nTiO{sub 2} was hydrophobic in soil, a finding relevant to nTiO{sub 2} bioavailability and transport.

  3. WATER INFILTRATION IN TWO CULTIVATED SOILS IN SOUTHERN BRAZIL

    Directory of Open Access Journals (Sweden)

    Ildegardis Bertol

    2015-04-01

    Full Text Available Infiltration is the passage of water through the soil surface, influenced by the soil type and cultivation and by the soil roughness, surface cover and water content. Infiltration absorbs most of the rainwater and is therefore crucial for planning mechanical conservation practices to manage runoff. This study determined water infiltration in two soil types under different types of management and cultivation, with simulated rainfall of varying intensity and duration applied at different times, and to adjust the empirical model of Horton to the infiltration data. The study was conducted in southern Brazil, on Dystric Nitisol (Nitossolo Bruno aluminoférrico húmico and Humic Cambisol (Cambissolo Húmico alumínico léptico soils to assess the following situations: simulated rains on the Nitisol from 2001 to 2012 in 31 treatments, differing in crop type, sowing direction, type of soil opener on the seeder, amount and type of crop residue and amount of liquid swine manure applied; on the Cambisol, rains were simlated from 2006 to 2012 and 18 treatments were evaluated, differing in crop, seeding direction and crop residue type. The constant of the water infiltration rate into the soil varies significantly with the soil type (30.2 mm h-1 in the Nitisol and 6.6 mm h-1 in the Cambisol, regardless of the management system, application time and rain intensity and duration. At the end of rainfalls, soil-water infiltration varies significantly with the management system, with the timing of application and rain intensity and duration, with values ranging from 13 to 59 mm h-1, in the two studied soils. The characteristics of the sowing operation in terms of relief, crop type and amount and type of crop residue influenced soil water infiltration: in the Nitisol, the values of contour and downhill seeding vary between 27 and 43 mm h-1, respectively, with crop residues of corn, wheat and soybean while in the Cambisol, the variation is between 2 and 36 mm h-1

  4. The recent similarity hypotheses to describe water infiltration into homogeneous soils

    OpenAIRE

    Reichardt,Klaus; Timm,Luís Carlos; Dourado-Neto,Durval

    2016-01-01

    ABSTRACT A similarity hypothesis recently presented to describe horizontal infiltration into homogeneous soils, developed for coarse-textured soils like sieved marine sand, implies that the soil water retention function θ(h) is the mirror image of an extended Boltzmann transform function θ(λ2). A second hypothesis applicable to vertical infiltration suggests that the soil water retention function θ(h) is also the mirror image of the soil water profile θ(z). Using prev...

  5. Development of a soil water dispersion index (SOWADIN) for testing the effectiveness of a soil-wetting agent

    International Nuclear Information System (INIS)

    Sawada, Y.; Aylmore, L.A.G.; Hainsworth, J.M.

    1989-01-01

    Computer-assisted tomography (CAT) applied to gamma-ray attenuation measurement has been used to develop an index termed the soil water dispersion index (SOWADIN), which describes quantitatively the amount and distribution of water in soil columns. The index, which is determined by classifying pixels in a scanned slice into three categories according to their attenuation coefficients, contains two numerical values. The first value corresponds to the water content of the scanned slice and the second value is a measure of the dispersion of the water throughout the slice. Artificially wetted zones were created in soil columns to give one-third of the scanned layer wetted with various patterns of wetted-area distribution. The SOWADIN values obtained accurately reflected the differences in water distribution associated with the different patterns. Application of SOWADIN to columns of a water-repellent sand before and after treatment with a soil-wetting agent clearly illustrates both the increase in water content and improvement in water distribution in the soil column following treatment. 33 refs., 3 figs., 2 tabs

  6. Model for tritiated water transport in soil

    International Nuclear Information System (INIS)

    Galeriu, D.; Paunescu, N.

    1999-01-01

    Chemical forms of tritium released from nuclear facilities are mostly water (HTO) and hydrogen (HT, TT). Elemental tritium is inert in vegetation and superior animals, but the microorganisms from soil oxidize HT to HTO. After an atmospheric HT emission, in short time an equivalent quantity of HTO is re-emitted from soil. In the vicinity of a tritium source the spatial and temporary distribution of HTO is dependent on the chemical form of tritium releases. During routine tritium releases (continuously and constant releases), the local distribution of tritium reaches equilibrium, and specific activities of tritium in environmental compartments are almost equal. The situation is very different after an accidental emission. Having in view, harmful effects of tritium when it is incorporated into the body several models were developed for environmental tritium transport and dose assessment. The tritium transport into the soil is an important part of the environmental tritium behavior, but, unfortunately, in spite of the importance of this problem the corresponding modeling is unsatisfactory. The aim of this paper was the improvement of the TRICAIAP model, and the application of the model to BIOMOVS scenario. The BIOMOVS scenario predicts HTO concentrations in soil during 30 days, after one hour atmospheric HTO emission. The most important conclusions of the paper are: the principal carrier of tritium into the soil is water; the transfer processes are the reactions of water in soil and the diffusion due to concentration gradient; atmosphere-soil transport is dependent of surface characteristics (granulation, humidity, roughness, etc.); the conversion rate of HT to HTO is not well known and is dependent on active microorganism concentration in soil and on soil humidity. More experimental data are needed to decrease the uncertainty of transfer parameter, for the definition of the influence of vegetation, etc. (authors)

  7. Modelling soil water content variations under drought stress on soil column cropped with winter wheat

    Directory of Open Access Journals (Sweden)

    Csorba Szilveszter

    2014-12-01

    Full Text Available Mathematical models are effective tools for evaluating the impact of predicted climate change on agricultural production, but it is difficult to test their applicability to future weather conditions. We applied the SWAP model to assess its applicability to climate conditions, differing from those, for which the model was developed. We used a database obtained from a winter wheat drought stress experiment. Winter wheat was grown in six soil columns, three having optimal water supply (NS, while three were kept under drought-stressed conditions (S. The SWAP model was successfully calibrated against measured values of potential evapotranspiration (PET, potential evaporation (PE and total amount of water (TSW in the soil columns. The Nash-Sutcliffe model efficiency coefficient (N-S for TWS for the stressed columns was 0.92. For the NS treatment, we applied temporally variable soil hydraulic properties because of soil consolidation caused by regular irrigation. This approach improved the N-S values for the wetting-drying cycle from -1.77 to 0.54. We concluded that the model could be used for assessing the effects of climate change on soil water regime. Our results indicate that soil water balance studies should put more focus on the time variability of structuredependent soil properties.

  8. Thematic issue on soil water infiltration

    Science.gov (United States)

    Infiltration is the term applied to the process of water entry into the soil, generally by downward flow through all or part of the soil surface. Understanding of infiltration concept and processes has greatly improved, over the past 30 years, and new insights have been given into modeling of non-un...

  9. Water management in sandy soil using neutron scattering method

    International Nuclear Information System (INIS)

    Mohamed, K.M.

    2011-01-01

    This study was carried out during 2008/2009 at the Experimental Field of Soil and Water Research Department, Nuclear Research Center, Atomic Energy Authority, Inshas in a newly reclaimed sandy soil. The aims of this work are,- determine soil moisture tension within the active root zone and - detecting the behavior of soil moisture within the active root zoon by defines the total hydraulic potential within the soil profile to predict both of actual evapotranspiration and rate of moisture depletion This work also is aimed to study soil water distribution under drip irrigation system.- reducing water deep percolation under the active root depth.This study included two factors, the first one is the irrigation intervals, and the second one is the application rate of organic manure. Irrigation intervals were 5, 10 and 15 days, besides three application rates of organic manure (0 m 3 /fed, 20 m 3 /fed. and 30 m 3 /fed.) in -three replicates under drip irrigation system, Onion was used as an indicator plant. Obtained data show, generally, that neutron scattering technique and soil moisture retention curve model helps more to study the water behavior in the soil profile.Application of organic manure and irrigation to field capacity is a good way to minimize evapotranspiration and deep percolation, which was zero mm/day in the treated treatments.The best irrigation interval for onion plant, in the studied soil, was 5 days with 30m 3 /fad. an application rate of organic manure.Parameter α of van Genuchent's 1980 model was affected by the additions of organic manure, which was decreased by addition of organic manure decreased it. Data also showed that n parameter was decreased by addition of organic manure Using surfer program is a good tool to describe the water distribution in two directions (vertical and horizontal) through soil profile.

  10. Simulated wetland conservation-restoration effects on water quantity and quality at watershed scale.

    Science.gov (United States)

    Wang, Xixi; Shang, Shiyou; Qu, Zhongyi; Liu, Tingxi; Melesse, Assefa M; Yang, Wanhong

    2010-07-01

    Wetlands are one of the most important watershed microtopographic features that affect hydrologic processes (e.g., routing) and the fate and transport of constituents (e.g., sediment and nutrients). Efforts to conserve existing wetlands and/or to restore lost wetlands require that watershed-level effects of wetlands on water quantity and water quality be quantified. Because monitoring approaches are usually cost or logistics prohibitive at watershed scale, distributed watershed models such as the Soil and Water Assessment Tool (SWAT), enhanced by the hydrologic equivalent wetland (HEW) concept developed by Wang [Wang, X., Yang, W., Melesse, A.M., 2008. Using hydrologic equivalent wetland concept within SWAT to estimate streamflow in watersheds with numerous wetlands. Trans. ASABE 51 (1), 55-72.], can be a best resort. However, there is a serious lack of information about simulated effects using this kind of integrated modeling approach. The objective of this study was to use the HEW concept in SWAT to assess effects of wetland restoration within the Broughton's Creek watershed located in southwestern Manitoba, and of wetland conservation within the upper portion of the Otter Tail River watershed located in northwestern Minnesota. The results indicated that the HEW concept allows the nonlinear functional relations between watershed processes and wetland characteristics (e.g., size and morphology) to be accurately represented in the models. The loss of the first 10-20% of the wetlands in the Minnesota study area would drastically increase the peak discharge and loadings of sediment, total phosphorus (TP), and total nitrogen (TN). On the other hand, the justifiable reductions of the peak discharge and loadings of sediment, TP, and TN in the Manitoba study area may require that 50-80% of the lost wetlands be restored. Further, the comparison between the predicted restoration and conservation effects revealed that wetland conservation seems to deserve a higher priority

  11. Effect of Soil Water Content on the Distribution of Diuron into Organomineral Aggregates of Highly Weathered Tropical Soils.

    Science.gov (United States)

    Regitano, Jussara B; Rocha, Wadson S D; Bonfleur, Eloana J; Milori, Debora; Alleoni, Luís R F

    2016-05-25

    We evaluated the effects of soil water content on the retention of diuron and its residual distribution into organomineral aggregates in four Brazilian oxisols. (14)C-Diuron was incubated for days at 25, 50, and 75% of maximum water-holding capacity for each soil. After 42 days, the physical fractionation method was used to obtain >150, 53-150, 20-53, 2-20, and retention increased with increasing soil water content for all soils. At lower soil water content, diuron's retention was higher in the sandier soil. It was mostly retained in the fine (retention was higher in the coarse aggregates (>53 μm). The sorption coefficients (Kd and Koc) generated by batch studies should be carefully used because they do not provide information about aggregation and diffusion effects on pesticides soil sorption.

  12. Difficulties in the evaluation and measuring of soil water infiltration

    Science.gov (United States)

    Pla-Sentís, Ildefonso

    2013-04-01

    Soil water infiltration is the most important hydrological parameter for the evaluation and diagnosis of the soil water balance and soil moisture regime. Those balances and regimes are the main regulating factors of the on site water supply to plants and other soil organisms and of other important processes like runoff, surface and mass erosion, drainage, etc, affecting sedimentation, flooding, soil and water pollution, water supply for different purposes (population, agriculture, industries, hydroelectricity), etc. Therefore the evaluation and measurement of water infiltration rates has become indispensable for the evaluation and modeling of the previously mentioned processes. Infiltration is one of the most difficult hydrological parameters to evaluate or measure accurately. Although the theoretical aspects of the process of soil water infiltration are well known since the middle of the past century, when several methods and models were already proposed for the evaluation of infiltration, still nowadays such evaluation is not frequently enough accurate for the purposes being used. This is partially due to deficiencies in the methodology being used for measuring infiltration, including some newly proposed methods and equipments, and in the use of non appropriate empirical models and approaches. In this contribution we present an analysis and discussion about the main difficulties found in the evaluation and measurement of soil water infiltration rates, and the more commonly committed errors, based on the past experiences of the author in the evaluation of soil water infiltration in many different soils and land conditions, and in their use for deducing soil water balances under variable and changing climates. It is concluded that there are not models or methods universally applicable to any soil and land condition, and that in many cases the results are significantly influenced by the way we use a particular method or instrument, and by the alterations in the soil

  13. Isotope fractionation of sandy-soil water during evaporation - an experimental study.

    Science.gov (United States)

    Rao, Wen-Bo; Han, Liang-Feng; Tan, Hong-Bing; Wang, Shuai

    2017-06-01

    Soil samples containing water with known stable isotopic compositions were prepared. The soil water was recovered by using vacuum/heat distillation. The experiments were held under different conditions to control rates of water evaporation and water recovery. Recoveries, δ 18 O and δ 2 H values of the soil water were determined. Analyses of the data using a Rayleigh distillation model indicate that under the experimental conditions only loosely bound water is extractable in cases where the recovery is smaller than 100 %. Due to isotopic exchange between vapour and remaining water in the micro channels or capillaries of the soil matrix, isotopic fractionation may take place under near-equilibrium conditions. This causes the observed relationship between δ 2 H and δ 18 O of the extracted water samples to have a slope close to 8. The results of this study may indicate that, in arid zones when soil that initially contains water dries out, the slope of the relationship between δ 2 H and δ 18 O values should be close to 8. Thus, a smaller slope, as observed by some groundwater and soil water samples in arid zones, may be caused by evaporation of water before the water has entered the unsaturated zone.

  14. Post-fire interactions between soil water repellency, soil fertility and plant growth in soil collected from a burned piñon-juniper woodland

    Science.gov (United States)

    Fernelius, Kaitlynn J.; Madsen, Matthew D.; Hopkins, Bryan G.; Bansal, Sheel; Anderson, Val J.; Eggett, Dennis L.; Roundy, Bruce A.

    2017-01-01

    Woody plant encroachment can increase nutrient resources in the plant-mound zone. After a fire, this zone is often found to be water repellent. This study aimed to understand the effects of post-fire water repellency on soil water and inorganic nitrogen and their effects on plant growth of the introduced annual Bromus tectorum and native bunchgrass Pseudoroegneria spicata. Plots centered on burned Juniperus osteosperma trees were either left untreated or treated with surfactant to ameliorate water repellency. After two years, we excavated soil from the untreated and treated plots and placed it in zerotension lysimeter pots. In the greenhouse, half of the pots received an additional surfactant treatment. Pots were seeded separately with B. tectorum or P. spicata. Untreated soils had high runoff, decreased soilwater content, and elevated NO3eN in comparison to surfactant treated soils. The two plant species typically responded similar to the treatments. Above-ground biomass and microbial activity (estimated through soil CO2 gas emissions) was 16.8-fold and 9.5-fold higher in the surfactant-treated soils than repellent soils, respectably. This study demonstrates that water repellency can influence site recovery by decreasing soil water content, promoting inorganic N retention, and impairing plant growth and microbial activity.

  15. Implementing a physical soil water flow model with minimal soil characteristics and added value offered by surface soil moisture measurements assimilation.

    Science.gov (United States)

    Chanzy, André

    2010-05-01

    Soil moisture is a key variable for many soil physical and biogeochemical processes. Its dynamic results from water fluxes in soil and at its boundaries, as well as soil water storage properties. If the water flows are dominated by diffusive processes, modelling approaches based on the Richard's equation or the Philip and de Vries coupled heat and water flow equations lead to a satisfactory representation of the soil moisture dynamic. However, It requires the characterization of soil hydraulic functions, the initialisation and the boundary conditions, which are expensive to obtain. The major problem to assess soil moisture for decision making or for representing its spatiotemporal evolution over complex landscape is therefore the lack of information to run the models. The aim of the presentation is to analyse how a soil moisture model can be implemented when only climatic data and basic soil information are available (soil texture, organic matter) and what would be the added of making a few soil moisture measurements. We considered the field scale, which is the key scale for decision making application (the field being the management unit for farming system) and landscape modelling (field size being comparable to the computation unit of distributed hydrological models). The presentation is limited to the bare soil case in order to limit the complexity of the system and the TEC model based on Philip and De Vries equations is used in this study. The following points are addressed: o the within field spatial variability. This spatial variability can be induced by the soil hydraulic properties and/or by the amount of infiltrated water induced by water rooting towards infiltration areas. We analyse how an effective parameterization of soil properties and boundary conditions can be used to simulate the field average moisture. o The model implementation with limited information. We propose strategies that can be implemented when information are limited to soil texture and

  16. Field-measured, hourly soil water evaporation stages in relation to reference evapotranspiration rate and soil to air temperature ratio

    Science.gov (United States)

    Soil water evaporation takes critical water supplies away from crops, especially in areas where both rainfall and irrigation water are limited. This study measured bare soil water evaporation from clay loam, silt loam, sandy loam, and fine sand soils. It found that on average almost half of the ir...

  17. Spatial and Temporal Responses of Soil Erosion to Climate Change Impacts in a Transnational Watershed in Southeast Asia

    Directory of Open Access Journals (Sweden)

    Pham Quy Giang

    2017-03-01

    Full Text Available It has been widely predicted that Southeast Asia is among the regions facing the most severe climate change impacts. Despite this forecast, little research has been published on the potential impacts of climate change on soil erosion in this region. This study focused on the impact of climate change on spatial and temporal patterns of soil erosion in the Laos–Vietnam transnational Upper Ca River Watershed. The Soil and Water Assessment Tool (SWAT coupled with downscaled global climate models (GCMs was employed for simulation. Soil erosion in the watershed was mostly found as “hill-slope erosion”, which occurred seriously in the upstream area where topography is dominated by numerous steep hills with sparse vegetation cover. However, under the impact of climate change, it is very likely that soil erosion rate in the downstream area will increase at a higher rate than in its upstream area due to a greater increase in precipitation. Seasonally, soil erosion is predicted to increase significantly in the warmer and wetter climate of the wet season, when higher erosive power of an increased amount and intensity of rainfall is accompanied by higher sediment transport capacity. The results of this study provide useful information for decision makers to plan where and when soil conservation practice should be focused.

  18. Hydrological Responses of Weather Conditions and Crop Change of Agricultural Area in the Rincon Valley, New Mexico

    Science.gov (United States)

    Ahn, S.; Sheng, Z.; Abudu, S.

    2017-12-01

    Hydrologic cycle of agricultural area has been changing due to the impacts of climate and land use changes (crop coverage changes) in an arid region of Rincon Valley, New Mexico. This study is to evaluate the impacts of weather condition and crop coverage change on hydrologic behavior of agricultural area in Rincon Valley (2,466km2) for agricultural watershed management using a watershed-scale hydrologic model, SWAT (Soil and Water Assessment Tool). The SWAT model was developed to incorporate irrigation of different crops using auto irrigation function. For the weather condition and crop coverage change evaluation, three spatial crop coverages including a normal (2008), wet (2009), and dry (2011) years were prepared using USDA crop data layer (CDL) for fourteen different crops. The SWAT model was calibrated for the period of 2001-2003 and validated for the period of 2004-2006 using daily-observed streamflow data. Scenario analysis was performed for wet and dry years based on the unique combinations of crop coverages and releases from Caballo Reservoir. The SWAT model simulated the present vertical water budget and horizontal water transfer considering irrigation practices in the Rincon Valley. Simulation results indicated the temporal and spatial variability for irrigation and non-irrigation seasons of hydrologic cycle in agricultural area in terms of surface runoff, evapotranspiration, infiltration, percolation, baseflow, soil moisture, and groundwater recharge. The water supply of the dry year could not fully cover whole irrigation period due to dry weather conditions, resulting in reduction of crop acreage. For extreme weather conditions, the temporal variation of water budget became robust, which requires careful irrigation management of the agricultural area. The results could provide guidelines for farmers to decide crop patterns in response to different weather conditions and water availability.

  19. Evaluating Capability of Devils Lake Emergency Outlets in Lowering Lake Water Levels While Controlling flooding Damage to Downstream

    Science.gov (United States)

    Shabani, A.; Zhang, X.

    2017-12-01

    Devils Lake is an endorheic lake locate in the Red River of the North Basin with a natural outlet at a level of 444.7 meters above the sea level flowing into the Sheyenne River. Historical accumulation of salts has dramatically increased the concentration of salts in the lake, particularly of the sulfates, that are much greater than the surrounding water bodies. Since 1993, the lake water level has risen by nearly 10 meters and caused extensive flooding in the surrounding area, and greatly increased the chance of natural spillage to the Sheyenne River. To mitigate Devils Lake flooding and to prevent its natural spillage, two outlets were constructed at the west and east sides of the lake to drain the water to the Sheyenne River in a controlled fashion. However, pumping water from Devils Lake has degraded water quality of the Sheyenne River. In an earlier study, we coupled Soil and Water Assessment Tools (SWAT) and CE-QUAL-W2 models to investigate the changes of sulfate distribution as the lake water level rises. We found that, while operating the two outlets has lowered Devils Lake water level by 0.7 meter, it has also significantly impaired the Sheyenne River water quality, increasing the Sheyenne River average sulfate concentration from 105 to 585 mg l-1 from 2012 to 2014 In this study, we investigate the impact of the outlets on the Sheyenne River floodplain by coupling SWAT and HEC-RAS model. The SWAT model performed well in simulating daily streamflow in the Sheyenne River with R2>0.56 and ENS > 0.52. The simulated water depths and floodplain by HEC-RAS model for the Sheyenne River agreed well with observations. Operating the outlets from April to October can draw down the Devil Lake water level by 0.45 m, but the drained water would almost double the extension of the Sheyenne River floodplain and elevate the sulfate concentration in the Sheyenne River above the 450 mg l-1 North Dakota sulfate concentration standard for stream class I. Operating the outlets is

  20. Analysis of the NASA AirMOSS Root Zone Soil Water and Soil Temperature from Three North American Ecosystems

    Science.gov (United States)

    Hagimoto, Y.; Cuenca, R. H.

    2015-12-01

    Root zone soil water and temperature are controlling factors for soil organic matter accumulation and decomposition which contribute significantly to the CO2 flux of different ecosystems. An in-situ soil observation protocol developed at Oregon State University has been deployed to observe soil water and temperature dynamics in seven ecological research sites in North America as part of the NASA AirMOSS project. Three instrumented profiles defining a transect of less than 200 m are installed at each site. All three profiles collect data for in-situ water and temperature dynamics employing seven soil water and temperature sensors installed at seven depth levels and one infrared surface temperature sensor monitoring the top of the profile. In addition, two soil heat flux plates and associated thermocouples are installed at one of three profiles at each site. At each profile, a small 80 cm deep access hole is typically made, and all below ground sensors are installed into undisturbed soil on the side of the hole. The hole is carefully refilled and compacted so that root zone soil water and temperature dynamics can be observed with minimum site disturbance. This study focuses on the data collected from three sites: a) Tonzi Ranch, CA; b) Metolius, OR and c) BERMS Old Jack Pine Site, Saskatchewan, Canada. The study describes the significantly different seasonal root zone water and temperature dynamics under the various physical and biological conditions at each site. In addition, this study compares the soil heat flux values estimated by the standard installation using the heat flux plates and thermocouples installed near the surface with those estimated by resolving the soil heat storage based on the soil water and temperature data collected over the total soil profile.

  1. The effect of soil macrofauna on water regime of post mining soils

    Czech Academy of Sciences Publication Activity Database

    Frouz, Jan; Kuráž, V.

    2008-01-01

    Roč. 10, - (2008) ISSN 1029-7006. [EGU General Assembly 2008. 13.04.2008-18.04.2008, Vienna] Institutional research plan: CEZ:AV0Z60660521 Keywords : soil macrofauna * water regime * post mining soil s Subject RIV: EH - Ecology, Behaviour

  2. Soil water evaporation and crop residues

    Science.gov (United States)

    Crop residues have value when left in the field and also when removed from the field and sold as a commodity. Reducing soil water evaporation (E) is one of the benefits of leaving crop residues in place. E was measured beneath a corn canopy at the soil suface with nearly full coverage by corn stover...

  3. Modeling pesticide loadings from the San Joaquin watershed into the Sacramento-San Joaquin Delta using SWAT

    Science.gov (United States)

    Chen, H.; Zhang, M.

    2016-12-01

    The Sacramento-San Joaquin Delta is an ecologically rich, hydrologically complex area that serves as the hub of California's water supply. However, pesticides have been routinely detected in the Delta waterways, with concentrations exceeding the benchmark for the protection of aquatic life. Pesticide loadings into the Delta are partially attributed to the San Joaquin watershed, a highly productive agricultural watershed located upstream. Therefore, this study aims to simulate pesticide loadings to the Delta by applying the Soil and Water Assessment Tool (SWAT) model to the San Joaquin watershed, under the support of the USDA-ARS Delta Area-Wide Pest Management Program. Pesticide use patterns in the San Joaquin watershed were characterized by combining the California Pesticide Use Reporting (PUR) database and GIS analysis. Sensitivity/uncertainty analyses and multi-site calibration were performed in the simulation of stream flow, sediment, and pesticide loads along the San Joaquin River. Model performance was evaluated using a combination of graphic and quantitative measures. Preliminary results indicated that stream flow was satisfactorily simulated along the San Joaquin River and the major eastern tributaries, whereas stream flow was less accurately simulated in the western tributaries, which are ephemeral small streams that peak during winter storm events and are mainly fed by irrigation return flow during the growing season. The most sensitive parameters to stream flow were CN2, SOL_AWC, HRU_SLP, SLSUBBSN, SLSOIL, GWQMN and GW_REVAP. Regionalization of parameters is important as the sensitivity of parameters vary significantly spatially. In terms of evaluation metric, NSE tended to overrate model performance when compared to PBIAS. Anticipated results will include (1) pesticide use pattern analysis, (2) calibration and validation of stream flow, sediment, and pesticide loads, and (3) characterization of spatial patterns and temporal trends of pesticide yield.

  4. Water resources of the Black Sea Basin at high spatial and temporal resolution

    Science.gov (United States)

    Rouholahnejad, Elham; Abbaspour, Karim C.; Srinivasan, Raghvan; Bacu, Victor; Lehmann, Anthony

    2014-07-01

    The pressure on water resources, deteriorating water quality, and uncertainties associated with the climate change create an environment of conflict in large and complex river system. The Black Sea Basin (BSB), in particular, suffers from ecological unsustainability and inadequate resource management leading to severe environmental, social, and economical problems. To better tackle the future challenges, we used the Soil and Water Assessment Tool (SWAT) to model the hydrology of the BSB coupling water quantity, water quality, and crop yield components. The hydrological model of the BSB was calibrated and validated considering sensitivity and uncertainty analysis. River discharges, nitrate loads, and crop yields were used to calibrate the model. Employing grid technology improved calibration computation time by more than an order of magnitude. We calculated components of water resources such as river discharge, infiltration, aquifer recharge, soil moisture, and actual and potential evapotranspiration. Furthermore, available water resources were calculated at subbasin spatial and monthly temporal levels. Within this framework, a comprehensive database of the BSB was created to fill the existing gaps in water resources data in the region. In this paper, we discuss the challenges of building a large-scale model in fine spatial and temporal detail. This study provides the basis for further research on the impacts of climate and land use change on water resources in the BSB.

  5. Root growth, water uptake, and sap flow of winter wheat in response to different soil water conditions

    Science.gov (United States)

    Cai, Gaochao; Vanderborght, Jan; Langensiepen, Matthias; Schnepf, Andrea; Hüging, Hubert; Vereecken, Harry

    2018-04-01

    How much water can be taken up by roots and how this depends on the root and water distributions in the root zone are important questions that need to be answered to describe water fluxes in the soil-plant-atmosphere system. Physically based root water uptake (RWU) models that relate RWU to transpiration, root density, and water potential distributions have been developed but used or tested far less. This study aims at evaluating the simulated RWU of winter wheat using the empirical Feddes-Jarvis (FJ) model and the physically based Couvreur (C) model for different soil water conditions and soil textures compared to sap flow measurements. Soil water content (SWC), water potential, and root development were monitored noninvasively at six soil depths in two rhizotron facilities that were constructed in two soil textures: stony vs. silty, with each of three water treatments: sheltered, rainfed, and irrigated. Soil and root parameters of the two models were derived from inverse modeling and simulated RWU was compared with sap flow measurements for validation. The different soil types and water treatments resulted in different crop biomass, root densities, and root distributions with depth. The two models simulated the lowest RWU in the sheltered plot of the stony soil where RWU was also lower than the potential RWU. In the silty soil, simulated RWU was equal to the potential uptake for all treatments. The variation of simulated RWU among the different plots agreed well with measured sap flow but the C model predicted the ratios of the transpiration fluxes in the two soil types slightly better than the FJ model. The root hydraulic parameters of the C model could be constrained by the field data but not the water stress parameters of the FJ model. This was attributed to differences in root densities between the different soils and treatments which are accounted for by the C model, whereas the FJ model only considers normalized root densities. The impact of differences in

  6. Modeling Spatial Soil Water Dynamics in a Tropical Floodplain, East Africa

    Directory of Open Access Journals (Sweden)

    Geofrey Gabiri

    2018-02-01

    Full Text Available Analyzing the spatial and temporal distribution of soil moisture is critical for ecohydrological processes and for sustainable water management studies in wetlands. The characterization of soil moisture dynamics and its influencing factors in agriculturally used wetlands pose a challenge in data-scarce regions such as East Africa. High resolution and good-quality time series soil moisture data are rarely available and gaps are frequent due to measurement constraints and device malfunctioning. Soil water models that integrate meteorological conditions and soil water storage may significantly overcome limitations due to data gaps at a point scale. The purpose of this study was to evaluate if the Hydrus-1D model would adequately simulate soil water dynamics at different hydrological zones of a tropical floodplain in Tanzania, to determine controlling factors for wet and dry periods and to assess soil water availability. The zones of the Kilombero floodplain were segmented as riparian, middle, and fringe along a defined transect. The model was satisfactorily calibrated (coefficient of determination; R2 = 0.54–0.92, root mean square error; RMSE = 0.02–0.11 on a plot scale using measured soil moisture content at soil depths of 10, 20, 30, and 40 cm. Satisfying statistical measures (R2 = 0.36–0.89, RMSE = 0.03–0.13 were obtained when calibrations for one plot were validated with measured soil moisture for another plot within the same hydrological zone. Results show the transferability of the calibrated Hydrus-1D model to predict soil moisture for other plots with similar hydrological conditions. Soil water storage increased towards the riparian zone, at 262.8 mm/a while actual evapotranspiration was highest (1043.9 mm/a at the fringe. Overbank flow, precipitation, and groundwater control soil moisture dynamics at the riparian and middle zone, while at the fringe zone, rainfall and lateral flow from mountains control soil moisture during the

  7. The role of Soil Water Retention Curve in slope stability analysis in unsaturated and heterogeneous soils.

    Science.gov (United States)

    Antinoro, Chiara; Arnone, Elisa; Noto, Leonardo V.

    2015-04-01

    The mechanisms of rainwater infiltration causing slope instability had been analyzed and reviewed in many scientific works. Rainwater infiltration into unsaturated soil increases the degree of saturation, hence affecting the shear strength properties and thus the probability of slope failure. It has been widely proved that the shear strength properties change with the soil water suction in unsaturated soils; therefore, the accuracy to predict the relationship between soil water content and soil water suction, parameterized by the soil-water characteristic curve, has significant effects on the slope stability analysis. The aim of this study is to investigate how the characterization of SWRC of differently structured unsaturated soils affects the slope stability on a simple infinite slope. In particular, the unimodal and bimodal distributions of the soil pore size were compared. Samples of 40 soils, highly different in terms of structure and texture, were collected and used to calibrate two bimodal SWRCs, i.e. Ross and Smettem (1993) and Dexter et al., (2008). The traditional unimodal van Genuchten (1980) model was also applied for comparison. Slope stability analysis was conducted in terms of Factor of Safety (FS) by applying the infinite slope model for unsaturated soils. In the used formulation, the contribution of the suction effect is tuned by a parameter 'chi' in a rate proportional to the saturation conditions. Different parameterizations of this term were also compared and analyzed. Results indicated that all three SWRC models showed good overall performance in fitting the sperimental SWRCs. Both the RS and DE models described adequately the water retention data for soils with a bimodal behavior confirmed from the analysis of pore size distribution, but the best performance was obtained by DE model confirmed. In terms of FS, the tree models showed very similar results as soil moisture approached to the saturated condition; however, within the residual zone

  8. Scaling Soil Microbe-Water Interactions from Pores to Ecosystems

    Science.gov (United States)

    Manzoni, S.; Katul, G. G.

    2014-12-01

    The spatial scales relevant to soil microbial activity are much finer than scales relevant to whole-ecosystem function and biogeochemical cycling. On the one hand, how to link such different scales and develop scale-aware biogeochemical and ecohydrological models remains a major challenge. On the other hand, resolving these linkages is becoming necessary for testing ecological hypotheses and resolving data-theory inconsistencies. Here, the relation between microbial respiration and soil moisture expressed in water potential is explored. Such relation mediates the water availability effects on ecosystem-level heterotrophic respiration and is of paramount importance for understanding CO2 emissions under increasingly variable rainfall regimes. Respiration has been shown to decline as the soil dries in a remarkably consistent way across climates and soil types (open triangles in Figure). Empirical models based on these respiration-moisture relations are routinely used in Earth System Models to predict moisture effects on ecosystem respiration. It has been hypothesized that this consistency in microbial respiration decline is due to breakage of water film continuity causing in turn solute diffusion limitations in dry conditions. However, this hypothesis appears to be at odds with what is known about soil hydraulic properties. Water film continuity estimated from soil water retention (SWR) measurements at the 'Darcy' scale breaks at far less negative water potential (micro-level relevant to microbial activity. Such downscaling resolves the inconsistency between respiration thresholds and hydrological thresholds. This result, together with observations of residual microbial activity well below -15 MPa (dashed back curve in Figure), lends support to the hypothesis that soil microbes are substrate-limited in dry conditions.

  9. Water storage change estimation from in situ shrinkage measurements of clay soils

    NARCIS (Netherlands)

    Brake, te B.; Ploeg, van der M.J.; Rooij, de G.H.

    2012-01-01

    Water storage in the unsaturated zone is a major determinant of the hydrological behaviour of the soil, but methods to quantify soil water storage are limited. The objective of this study is to assess the applicability of clay soil surface elevation change measurements to estimate soil water storage

  10. Soil permittivity response to bulk electrical conductivity for selected soil water sensors

    Science.gov (United States)

    Bulk electrical conductivity can dominate the low frequency dielectric loss spectrum in soils, masking changes in the real permittivity and causing errors in estimated water content. We examined the dependence of measured apparent permittivity (Ka) on bulk electrical conductivity in contrasting soil...

  11. Accumulation of Cd in agricultural soil under long-term reclaimed water irrigation

    International Nuclear Information System (INIS)

    Chen, Weiping; Lu, Sidan; Peng, Chi; Jiao, Wentao; Wang, Meie

    2013-01-01

    Safety of agricultural irrigation with reclaimed water is of great concern as some potential hazardous compounds like heavy metals may be accumulated in soils over time. Impacts of long-term reclaimed water on soil Cd pollution were evaluated based on the field investigation in two main crop areas in Beijing with long irrigation history and on simulation results of STEM-profile model. Under long-term reclaimed water, Cd content in the top 20 cm soil layer was greatly elevated and was more than 2 times higher than that in the deep soil layer. There was very small differences between the field measured and model simulated Cd content in the plow layer (top 20 cm) and entire soil layer. Long-term model prediction showed that reclaimed water irrigation had a low environmental risk of soil Cd pollution, but the risk would be aggravated when there were high metal loading from other sources. The risk is also depending on the soil and plant properties. -- Highlights: •Root zone soil Cd content was elevated by one time under long-term reclaimed water irrigation. •The STEM-profile model can well track the Cd balance in the soil profile. •Reclaimed water irrigation plays a limited role on soil Cd accumulation in Beijing croplands. -- There was a low risk of soil Cd pollution under long-term reclaimed water irrigation

  12. Radioecology of tritiated water in subarctic soils and vegetation

    International Nuclear Information System (INIS)

    Salonen, L.; Miettinen, J.K.

    1982-01-01

    The residence times of tritium in various types of soils and plants have been determined in southern and northern Finland. The experiments were conducted in forest and agricultural environments where tritiated water was applied to the soil surface in the form of a single fall of rain. After that the movement and loss of tritiated water from the unsaturated zone was followed over a 2-4-year period in some forest areas. Uptake and loss of tritium in the tissue-free water and organic compounds of some native plants was studied in each area. The results indicated that in the subarctic area the half-residence times of tritium in soils and plants were greatly dependent on the climatic conditions at the time of the labelling and during the short growing seasons and also on the rate of water movement in the soil. In the experiments started during the best growing season the half-residence times in soil and plants do not differ from those determined in more temperate latitudes. (author)

  13. COSMOS soil water sensor compared with EM sensor network & weighing lysimeter

    Science.gov (United States)

    Soil water sensing methods are widely used to characterize the root zone and below, but only a few are capable of delivering water content data with accuracy for the entire soil profile such that evapotranspiration (ET) can be determined by soil water balance and irrigations can be scheduled with mi...

  14. Effect of Irrigation Water Type on Infiltration Rates of Sandy Soil

    International Nuclear Information System (INIS)

    Al-Omran, A.M.; Al-Matrood, S.M.; Choudhary, M.I.

    2004-01-01

    A laboratory experiment was conducted to test the effect of three water types (tap water, well water and sewage water) on the infiltration rate of three soils varying in texture (sand. loamy sand and sandy loam). A stationary rainfall simulator dispensing water at a rate of 45 mm h-1, connected to the different sources of water, was used to measure the infiltration rates. A total of 5 runs were carried out using each water quality. The volume of runoff against the time was recorded at each 5 minute interval. The infiltration rate was calculated as the difference between the water applied and the excesses water measured as surface runoff. Infiltration rate at first run were rapid in all the three soils and then progressively declined as the number of runs increased. The same trend was observed for each water quality tested. The reduction in infiltration rate with increasing number of runs for prewetted surface than for the initial dry surface was attributed to break down and settling of fine particles that took place earlier during prewetting. The infiltration curves for all the three soils when irrigared with different qualities of water was not distinguishable. The relationship between infiltration rate as function of time for the treatments applied were tested using Kostiakov equation I=bt-n. The infiltration data gave a coefficient of determination R2 >0.90 for all the treatments. The infiltration parameters B, and n varied strongly with respect to soil texture. Values of B decreased with changing soil textures, being highest for the sandy soil, and lowest for the sandy loamy soil, whereas n values showed the opposite trend. It was concluded that effect of soil texture on the infiltration rate was very pronounced while water qualities showed a little effect. (author)

  15. Sensible heat balance measurements of soil water evaporation beneath a maize canopy

    Science.gov (United States)

    Soil water evaporation is an important component of the water budget in a cropped field. Few methods are available for continuous and independent measurement of soil water evaporation. A sensible heat balance (SHB) approach has recently been demonstrated for continuously determining soil water evapo...

  16. Modeling and Prediction of Soil Water Vapor Sorption Isotherms

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Tuller, Markus; Moldrup, Per

    2015-01-01

    Soil water vapor sorption isotherms describe the relationship between water activity (aw) and moisture content along adsorption and desorption paths. The isotherms are important for modeling numerous soil processes and are also used to estimate several soil (specific surface area, clay content.......93) for a wide range of soils; and (ii) develop and test regression models for estimating the isotherms from clay content. Preliminary results show reasonable fits of the majority of the investigated empirical and theoretical models to the measured data although some models were not capable to fit both sorption...... directions accurately. Evaluation of the developed prediction equations showed good estimation of the sorption/desorption isotherms for tested soils....

  17. Simulation of a low-gradient Coastal Plain watershed using the SWAT landscape model

    Science.gov (United States)

    Accurate representation of landscape processes in natural resource models requires distributed representation of basin hydrology and transport processes. To better represent these processes, a landscape version of the SWAT model has been developed. The model has been modified to represent the runo...

  18. Pedotransfer functions to estimate soil water content at field capacity ...

    Indian Academy of Sciences (India)

    20

    available scarce water resources in dry land agriculture, but direct measurement thereof for multiple locations in the field is not always feasible. Therefore, pedotransfer functions (PTFs) were developed to estimate soil water retention at FC and PWP for dryland soils of India. A soil database available for Arid Western India ...

  19. Modeling Bacteria-Water Interactions in Soil: EPS Dynamics Under Evaporative Conditions

    Science.gov (United States)

    Furrer, J.; Hinestroza, H. F.; Guo, Y. S.; Gage, D. J.; Cho, Y. K.; Shor, L. M.

    2017-12-01

    The soil habitat represents a major linkage between the water and carbon cycles: the ability of soils to sequester or release carbon is determined primarily by soil moisture. Water retention and distribution in soils controls the abundance and activity of soil microbes. Microbes in turn impact water retention by creating biofilms, composed of extracellular polymeric substances (EPS). We model the effects of bacterial EPS on water retention at the pore scale. We use the lattice Boltzmann method (LBM), a well-established fluid dynamics modeling platform, and modify it to include the effects of water uptake and release by the swelling/shrinking EPS phase. The LB model is implemented in 2-D, with a non-ideal gas equation of state that allows condensation and evaporation of fluid in pore spaces. Soil particles are modeled according to experimentally determined particle size distributions and include realistic pore geometries, in contrast to many soil models which use spherical soil particles for simplicity. Model results are compared with evaporation experiments in soil micromodels and other simpler experimental systems, and model parameters are tuned to match experimental results. Drying behavior and solid-gel contact angle of EPS produced by the soil bacteria Sinorhizobium meliloti has been characterized and compared to the behavior of deionized water under the same conditions. The difference in behavior between the fluids is used to parameterize the model. The model shows excellent qualitative agreement for soil micromodels with both aggregated and non-aggregated particle arrangements under no-EPS conditions, and reproduces realistic drying behavior for EPS. This work represents a multi-disciplinary approach to understanding microbe-soil interactions at the pore scale.

  20. Semantic Web applications and tools for the life sciences: SWAT4LS 2010.

    Science.gov (United States)

    Burger, Albert; Paschke, Adrian; Romano, Paolo; Marshall, M Scott; Splendiani, Andrea

    2012-01-25

    As Semantic Web technologies mature and new releases of key elements, such as SPARQL 1.1 and OWL 2.0, become available, the Life Sciences continue to push the boundaries of these technologies with ever more sophisticated tools and applications. Unsurprisingly, therefore, interest in the SWAT4LS (Semantic Web Applications and Tools for the Life Sciences) activities have remained high, as was evident during the third international SWAT4LS workshop held in Berlin in December 2010. Contributors to this workshop were invited to submit extended versions of their papers, the best of which are now made available in the special supplement of BMC Bioinformatics. The papers reflect the wide range of work in this area, covering the storage and querying of Life Sciences data in RDF triple stores, tools for the development of biomedical ontologies and the semantics-based integration of Life Sciences as well as clinicial data.