WorldWideScience

Sample records for swat model electronic

  1. Grid based calibration of SWAT hydrological models

    Directory of Open Access Journals (Sweden)

    D. Gorgan

    2012-07-01

    Full Text Available The calibration and execution of large hydrological models, such as SWAT (soil and water assessment tool, developed for large areas, high resolution, and huge input data, need not only quite a long execution time but also high computation resources. SWAT hydrological model supports studies and predictions of the impact of land management practices on water, sediment, and agricultural chemical yields in complex watersheds. The paper presents the gSWAT application as a web practical solution for environmental specialists to calibrate extensive hydrological models and to run scenarios, by hiding the complex control of processes and heterogeneous resources across the grid based high computation infrastructure. The paper highlights the basic functionalities of the gSWAT platform, and the features of the graphical user interface. The presentation is concerned with the development of working sessions, interactive control of calibration, direct and basic editing of parameters, process monitoring, and graphical and interactive visualization of the results. The experiments performed on different SWAT models and the obtained results argue the benefits brought by the grid parallel and distributed environment as a solution for the processing platform. All the instances of SWAT models used in the reported experiments have been developed through the enviroGRIDS project, targeting the Black Sea catchment area.

  2. Introducing a new open source GIS user interface for the SWAT model

    Science.gov (United States)

    The Soil and Water Assessment Tool (SWAT) model is a robust watershed modelling tool. It typically uses the ArcSWAT interface to create its inputs. ArcSWAT is public domain software which works in the licensed ArcGIS environment. The aim of this paper was to develop an open source user interface ...

  3. A GUIDED SWAT MODEL APPLICATION ON SEDIMENT YIELD MODELING IN PANGANI RIVER BASIN: LESSONS LEARNT

    Directory of Open Access Journals (Sweden)

    Preksedis M. Ndomba

    2008-01-01

    Full Text Available The overall objective of this paper is to report on the lessons learnt from applying Soil and Water Assessment Tool (SWAT in a well guided sediment yield modelling study. The study area is the upstream of Pangani River Basin (PRB, the Nyumba Ya Mungu (NYM reservoir catchment, located in the North Eastern part of Tanzania. It should be noted that, previous modeling exercises in the region applied SWAT with preassumption that inter-rill or sheet erosion was the dominant erosion type. In contrast, in this study SWAT model application was guided by results of analysis of high temporal resolution of sediment flow data and hydro-meteorological data. The runoff component of the SWAT model was calibrated from six-years (i.e. 1977¿1982 of historical daily streamflow data. The sediment component of the model was calibrated using one-year (1977-1988 daily sediment loads estimated from one hydrological year sampling programme (between March and November, 2005 rating curve. A long-term period over 37 years (i.e. 1969-2005 simulation results of the SWAT model was validated to downstream NYM reservoir sediment accumulation information. The SWAT model captured 56 percent of the variance (CE and underestimated the observed daily sediment loads by 0.9 percent according to Total Mass Control (TMC performance indices during a normal wet hydrological year, i.e., between November 1, 1977 and October 31, 1978, as the calibration period. SWAT model predicted satisfactorily the long-term sediment catchment yield with a relative error of 2.6 percent. Also, the model has identified erosion sources spatially and has replicated some erosion processes as determined in other studies and field observations in the PRB. This result suggests that for catchments where sheet erosion is dominant SWAT model may substitute the sediment-rating curve. However, the SWAT model could not capture the dynamics of sediment load delivery in some seasons to the catchment outlet.

  4. SWAT Modeling for Depression-Dominated Areas: How Do Depressions Manipulate Hydrologic Modeling?

    Directory of Open Access Journals (Sweden)

    Mohsen Tahmasebi Nasab

    2017-01-01

    Full Text Available Modeling hydrologic processes for depression-dominated areas such as the North American Prairie Pothole Region is complex and reliant on a clear understanding of dynamic filling-spilling-merging-splitting processes of numerous depressions over the surface. Puddles are spatially distributed over a watershed and their sizes, storages, and interactions vary over time. However, most hydrologic models fail to account for these dynamic processes. Like other traditional methods, depressions are filled as a required preprocessing step in the Soil and Water Assessment Tool (SWAT. The objective of this study was to facilitate hydrologic modeling for depression-dominated areas by coupling SWAT with a Puddle Delineation (PD algorithm. In the coupled PD-SWAT model, the PD algorithm was utilized to quantify topographic details, including the characteristics, distribution, and hierarchical relationships of depressions, which were incorporated into SWAT at the hydrologic response unit (HRU scale. The new PD-SWAT model was tested for a large watershed in North Dakota under real precipitation events. In addition, hydrologic modeling of a small watershed was conducted under two extreme high and low synthetic precipitation conditions. In particular, the PD-SWAT was compared against the regular SWAT based on depressionless DEMs. The impact of depressions on the hydrologic modeling of the large and small watersheds was evaluated. The simulation results for the large watershed indicated that SWAT systematically overestimated the outlet discharge, which can be attributed to the failure to account for the hydrologic effects of depressions. It was found from the PD-SWAT modeling results that at the HRU scale surface runoff initiation was significantly delayed due to the threshold control of depressions. Under the high precipitation scenario, depressions increased the surface runoff peak. However, the low precipitation scenario could not fully fill depressions to reach

  5. Regionalization of SWAT Model Parameters for Use in Ungauged Watersheds

    Directory of Open Access Journals (Sweden)

    Indrajeet Chaubey

    2010-11-01

    Full Text Available There has been a steady shift towards modeling and model-based approaches as primary methods of assessing watershed response to hydrologic inputs and land management, and of quantifying watershed-wide best management practice (BMP effectiveness. Watershed models often require some degree of calibration and validation to achieve adequate watershed and therefore BMP representation. This is, however, only possible for gauged watersheds. There are many watersheds for which there are very little or no monitoring data available, thus the question as to whether it would be possible to extend and/or generalize model parameters obtained through calibration of gauged watersheds to ungauged watersheds within the same region. This study explored the possibility of developing regionalized model parameter sets for use in ungauged watersheds. The study evaluated two regionalization methods: global averaging, and regression-based parameters, on the SWAT model using data from priority watersheds in Arkansas. Resulting parameters were tested and model performance determined on three gauged watersheds. Nash-Sutcliffe efficiencies (NS for stream flow obtained using regression-based parameters (0.53–0.83 compared well with corresponding values obtained through model calibration (0.45–0.90. Model performance obtained using global averaged parameter values was also generally acceptable (0.4 ≤ NS ≤ 0.75. Results from this study indicate that regionalized parameter sets for the SWAT model can be obtained and used for making satisfactory hydrologic response predictions in ungauged watersheds.

  6. Using the Soil and Water Assessment Tool (SWAT) to model ecosystem services: A systematic review

    Science.gov (United States)

    Francesconi, Wendy; Srinivasan, Raghavan; Pérez-Miñana, Elena; Willcock, Simon P.; Quintero, Marcela

    2016-04-01

    SWAT, a watershed modeling tool has been proposed to help quantify ecosystem services. The concept of ecosystem services incorporates the collective benefits natural systems provide primarily to human beings. It is becoming increasingly important to track the impact that human activities have on the environment in order to determine its resilience and sustainability. The objectives of this paper are to provide an overview of efforts using SWAT to quantify ecosystem services, to determine the model's capability examining various types of services, and to describe the approach used by various researchers. A literature review was conducted to identify studies in which SWAT was explicitly used for quantifying ecosystem services in terms of provisioning, regulating, supporting, and cultural aspects. A total of 44 peer reviewed publications were identified. Most of these used SWAT to quantify provisioning services (34%), regulating services (27%), or a combination of both (25%). While studies using SWAT for evaluating ecosystem services are limited (approximately 1% of SWAT's peered review publications), and usage (vs. potential) of services by beneficiaries is a current model limitation, the available literature sets the stage for the continuous development and potential of SWAT as a methodological framework for quantifying ecosystem services to assist in decision-making.

  7. Advances in the application of the SWAT model for water resources management

    Science.gov (United States)

    Jayakrishnan, R.; Srinivasan, R.; Santhi, C.; Arnold, J. G.

    2005-02-01

    Developments in computer technology have revolutionized the study of hydrologic systems and water resources management. Several computer-based hydrologic/water quality models have been developed for applications in hydrologic modelling and water resources studies. Distributed parameter models, necessary for basin-scale studies, have large input data requirements. Geographic information systems (GIS) and model-GIS interfaces aid the efficient creation of input data files required by such models. One such model available for the water resources professional is the Soil and Water Assessment Tool (SWAT), a distributed parameter model developed by the United States Department of Agriculture. This paper describes some recent advances made in the application of SWAT and the SWAT-GIS interface for water resources management. Four case studies are presented. The Hydrologic Unit Model for the United States (HUMUS) project used SWAT to conduct a national-scale analysis of the effect of management scenarios on water quantity and quality. Integration of the SWAT model with rainfall data available from the WSR-88D radar network helps us to incorporate the spatial variability of rainfall into the modelling process. This study demonstrates the usefulness of radar rainfall data in distributed hydrologic studies and the potential of SWAT for application in flood analysis and prediction. A hydrologic modelling study of the Sondu river basin in Kenya using SWAT indicates the potential for application of the model in African watersheds and points to the need for development of better model input data sets in Africa, which are critical for detailed water resources studies. The application of SWAT for water quality analysis in the Bosque river basin, Texas demonstrates the strength of the model for analysing different management scenarios to minimize point and non-point pollution, and its potential for application in total maximum daily load (TMDL) studies.

  8. Impact of Spatial Scale on Calibration and Model Output for a Grid-based SWAT Model

    Science.gov (United States)

    Pignotti, G.; Vema, V. K.; Rathjens, H.; Raj, C.; Her, Y.; Chaubey, I.; Crawford, M. M.

    2014-12-01

    The traditional implementation of the Soil and Water Assessment Tool (SWAT) model utilizes common landscape characteristics known as hydrologic response units (HRUs). Discretization into HRUs provides a simple, computationally efficient framework for simulation, but also represents a significant limitation of the model as spatial connectivity between HRUs is ignored. SWATgrid, a newly developed, distributed version of SWAT, provides modified landscape routing via a grid, overcoming these limitations. However, the current implementation of SWATgrid has significant computational overhead, which effectively precludes traditional calibration and limits the total number of grid cells in a given modeling scenario. Moreover, as SWATgrid is a relatively new modeling approach, it remains largely untested with little understanding of the impact of spatial resolution on model output. The objective of this study was to determine the effects of user-defined input resolution on SWATgrid predictions in the Upper Cedar Creek Watershed (near Auburn, IN, USA). Original input data, nominally at 30 m resolution, was rescaled for a range of resolutions between 30 and 4,000 m. A 30 m traditional SWAT model was developed as the baseline for model comparison. Monthly calibration was performed, and the calibrated parameter set was then transferred to all other SWAT and SWATgrid models to focus the effects of resolution on prediction uncertainty relative to the baseline. Model output was evaluated with respect to stream flow at the outlet and water quality parameters. Additionally, output of SWATgrid models were compared to output of traditional SWAT models at each resolution, utilizing the same scaled input data. A secondary objective considered the effect of scale on calibrated parameter values, where each standard SWAT model was calibrated independently, and parameters were transferred to SWATgrid models at equivalent scales. For each model, computational requirements were evaluated

  9. Impact Assessment of Morphological Features on Watersheds Using SWAT Model

    Science.gov (United States)

    Kaya, S.; Kutukcu, A.

    2016-12-01

    Defining the morphological characteristics of a basin enables carrying out numerous hydrological assessments such as flow value of the basin. In this study the impacts of morphological features designated for the basins on the flow were analyzed. Related to the basin flow shape, drainage density, bifurcation ratio and texture ratio were evaluated using morphological parameters. In the study, Büyük Menderes River Basin and Gediz River Basin which extend across a long valley and flow into the Aegean Sea, were selected as the study area. In the calculation of morphometric parameters regarding the basins, DTM which has 10 m spatial resolution was used. DTM was used as input data for the Soil and Water Assessment Tool - SWAT model which makes significant contributions to the modelling of big basins for hydrologists. The flow value obtained as a result of operating the model facilitates to verify the conducted morphological analyses. On account of operating the model, hydrological parameters on the basis of sub basins were also obtained, which in return makes it possible to understand the hydrological reactions within the basin. The results of the conducted study can be effectively used for integrated watershed management which requires detailed hydrological parameters can be obtained using modern tools such as numerical models.

  10. Modeling crop water productivity using a coupled SWAT-MODSIM model

    Science.gov (United States)

    This study examines the water productivity of irrigated wheat and maize yields in Karkheh River Basin (KRB) in the semi-arid region of Iran using a coupled modeling approach consisting of the hydrological model (SWAT) and the river basin water allocation model (MODSIM). Dynamic irrigation requireme...

  11. Assessing Thermally Stressful Events in a Rhode Island Coldwater Fish Habitat Using the SWAT Model

    Directory of Open Access Journals (Sweden)

    Britta Chambers

    2017-09-01

    Full Text Available It has become increasingly important to recognize historical water quality trends so that the future impacts of climate change may be better understood. Climate studies have suggested that inland stream temperatures and average streamflow will increase over the next century in New England, thereby putting aquatic species sustained by coldwater habitats at risk. In this study we evaluated two different approaches for modeling historical streamflow and stream temperature in a Rhode Island, USA, watershed with the Soil and Water Assessment Tool (SWAT, using (i original SWAT and (ii SWAT plus a hydroclimatological model component that considers both hydrological inputs and air temperature. Based on daily calibration results with six years of measured streamflow and four years of stream temperature data, we examined occurrences of stressful conditions for brook trout (Salvelinus fontinalis using the hydroclimatological model. SWAT with the hydroclimatological component improved modestly during calibration (NSE of 0.93, R2 of 0.95 compared to the original SWAT (NSE of 0.83, R2 of 0.93. Between 1980–2009, the number of stressful events, a moment in time where high or low flows occur simultaneously with stream temperatures exceeding 21 °C, increased by 55% and average streamflow increased by 60%. This study supports using the hydroclimatological SWAT component and provides an example method for assessing stressful conditions in southern New England’s coldwater habitats.

  12. Rainfall-runoff modelling of Ajay river catchment using SWAT model

    Science.gov (United States)

    Kangsabanik, Subhadip; Murmu, Sneha

    2017-05-01

    The present study is based on SWAT (Soil and Water Assessment Tool) Model which integrates the GIS information with attribute database to estimate the runoff of Ajay River catchment. Soil and Water Assessment Tool (SWAT) is a physically based distributed parameter model which has been developed to predict runoff, erosion, sediment and nutrient transport from agricultural watersheds under different management practices. The SWAT Model works in conjunction with Arc GIS. In the present study the catchment area has been delineated using the DEM (Digital Elevation Model) and then divided into 19 sub-basins. For preparation of landuse map the IRS-P6 LISS-III image has been used and the soil map is extracted from HWSD (Harmonized World Soil Database) Raster world soil map. The sub basins are further divided into 223 HRUs which stands for Hydrological Response Unit. Then by using 30 years of daily rainfall data and daily maximum and minimum temperature data SWAT simulation is done for daily, monthly and yearly basis to find out Runoff for corresponding Rainfall. The coefficient of correlation (r) for rainfall in a period and the corresponding runoff is found to be 0.9419.

  13. Simulating Flash Floods at Hourly Time-Step Using the SWAT Model

    Directory of Open Access Journals (Sweden)

    Laurie Boithias

    2017-11-01

    Full Text Available Flash floods are natural phenomena with environmental, social and economic impacts. To date, few numerical models are able to simulate hydrological processes at catchment scale at a reasonable time scale to describe flash events with accurate details. Considering a ~810 km2 Mediterranean river coastal basin (southwestern France as a study case, the objective of the present study was to assess the ability of the sub-daily module of the lumped Soil and Water Assessment Tool (SWAT to simulate discharge (1 time-continuously, by testing two sub-basin delineation schemes, two catchment sizes, and two output time-steps; and (2 at flood time-scale, by comparing the performances of SWAT to the performances of the event-based fully distributed MARINE model when simulating flash flood events. We showed that there was no benefit of decreasing the size of the minimum drainage area (e.g., from ~15 km2 down to ~1 km2 when delineating sub-basins in SWAT. We also showed that both the MARINE and SWAT models were equally able to reproduce peak discharge, flood timing and volume, and that they were both limited by rainfall and soil data. Hence, the SWAT model appears to be a reliable modelling tool to predict discharge over long periods of time in large flash-flood-prone basins.

  14. Modelling streamflow from two small South African experimental catchments using the SWAT model

    Science.gov (United States)

    Govender, M.; Everson, C. S.

    2005-02-01

    Increasing demand for timber products results in the expansion of commercial afforestation in South Africa. The conversion of indigenous seasonally dormant grassland to evergreen forests results in increased transpiration and ultimately a reduction in catchment runoff, creating a negative impact on the country's scarce water supplies. In order to assist managers in the decision-making processes it is important to be able to accurately assess and predict hydrological processes, and the impact that land use change will have on water resources. The Soil and Water Assessment Tool (SWAT) provides a means of performing these assessments. One of the key strengths of the SWAT model lies in its ability to model the relative impacts of changes in management practices, climate and vegetation on water quantity and quality.The aim of this study was to determine if the SWAT model could reasonably simulate hydrological processes in daily time steps from two small South African catchments. To verify the SWAT model a grassland (C VIgrass) and Pinus patula afforested catchment (C IIpine) were selected from the Cathedral Peak hydrological research station in the KwaZulu Natal Drakensberg mountains. These catchments were chosen because of the availability of detailed hydrological records and suitable land use.Observed and simulated streamflow for C VIgrass and C IIpine were compared. When model fits of observed and simulated streamflow for C VIgrass were acceptable, this parameter set was then used in the configuration of C IIpine. Results show that the model performs well for C VIgrass with reasonable agreement between modelled and observed data (R2 = 0.68). Comparisons for C IIpine show a total oversimulation of streamflow for the period 1950 to 1965, with deviations between observed and modelled data increasing from 1959 to 1965, due to the model not accounting for the increase in ET brought about by the maturing pine plantation.

  15. The modified SWAT model for predicting fecal coliforms in the Wachusett Reservoir Watershed, USA.

    Science.gov (United States)

    Cho, Kyung Hwa; Pachepsky, Yakov A; Kim, Joon Ha; Kim, Jung-Woo; Park, Mi-Hyun

    2012-10-01

    This study assessed fecal coliform contamination in the Wachusett Reservoir Watershed in Massachusetts, USA using Soil and Water Assessment Tool (SWAT) because bacteria are one of the major water quality parameters of concern. The bacteria subroutine in SWAT, considering in-stream bacteria die-off only, was modified in this study to include solar radiation-associated die-off and the contribution of wildlife. The result of sensitivity analysis demonstrates that solar radiation is one of the most significant fate factors of fecal coliform. A water temperature-associated function to represent the contribution of beaver activity in the watershed to fecal contamination improved prediction accuracy. The modified SWAT model provides an improved estimate of bacteria from the watershed. Our approach will be useful for simulating bacterial concentrations to provide predictive and reliable information of fecal contamination thus facilitating the implementation of effective watershed management. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Calibration and validation of the SWAT model for a forested watershed in coastal South Carolina

    Science.gov (United States)

    Devendra M. Amatya; Elizabeth B. Haley; Norman S. Levine; Timothy J. Callahan; Artur Radecki-Pawlik; Manoj K. Jha

    2008-01-01

    Modeling the hydrology of low-gradient coastal watersheds on shallow, poorly drained soils is a challenging task due to the complexities in watershed delineation, runoff generation processes and pathways, flooding, and submergence caused by tropical storms. The objective of the study is to calibrate and validate a GIS-based spatially-distributed hydrologic model, SWAT...

  17. Flow forecast by SWAT model and ANN in Pracana basin, Portugal

    NARCIS (Netherlands)

    Demirel, M.C.; Venancio, Anabela; Kahya, Ercan

    2009-01-01

    This study provides a unique opportunity to analyze the issue of flow forecast based on the soil and water assessment tool (SWAT) and artificial neural network (ANN) models. In last two decades, the ANNs have been extensively applied to various water resources system problems. In this study, the

  18. Anthropogenic factors as an element of uncertainty in hydrological modelling of water yield with SWAT

    Directory of Open Access Journals (Sweden)

    R. Corobov

    2016-05-01

    Full Text Available In 2014 the SWAT (Soil and Water Assessment Tool model was used as a basis for follow-up investigations of Moldova’s small rivers potential flow. The first step of the study included the validation of SWAT for local conditions. As an experimental area, the Cogilnic River watershed was selected. Interim steps included the watershed delineation aimed to identify the subwatersheds and the Hydrological Response Units (small entities with the same characteristics of hydrologic soil type, land use and slopes. To address these tasks, the land cover, soil and slope layers, based on the Digital Elevation Model, were integrated in the SWAT environment. These thematic layers, alongside with long-term information on local monthly maximum and minimum temperatures and precipitation, enabled reflecting the differences in hydrological conditions and defining the watershed runoff. However, the validation of the modelling outputs, carried out through comparison of a simulated water yield from the studied watershed with actual Cogilnic streamflow measures, observed in 2010-2012, showed a great discrepancy between these parameters caused by anthropogenic loading on this small river. Thus, a ‘classical’ SWAT modelling needs to account for real environmental conditions and water use in the study area.

  19. Impacts of manure application on SWAT model outputs in the Xiangxi River watershed

    Science.gov (United States)

    Liu, Ruimin; Wang, Qingrui; Xu, Fei; Men, Cong; Guo, Lijia

    2017-12-01

    SWAT (Soil and Water Assessment Tool) model has been widely used to simulate agricultural non-point source (ANPS) pollution; however, the impacts of livestock manure application on SWAT model outputs have not been well studied. The objective of this study was to investigate the environmental effects of livestock manure application based on the SWAT model in the Xiangxi River watershed, which is one of the largest tributaries of the Three Gorges Reservoir in China. Three newly-built manure databases (NB) were created and applied to different subbasins based on the actual livestock manure discharging amount. The calibration and validation values of SWAT model outputs obtained from the NB manure application and the original mixed (OM) manure were compared. The study results are as follows: (1) The livestock industry of Xingshan County developed quickly between 2005 and 2015. The downstream of the Xiangxi River (Huangliang, Shuiyuesi and Xiakou) had the largest livestock amount, and largely accounted for manure, total nitrogen (TN) and total phosphorus (TP) production (>50%). (2) The NB manure application resulted in less phosphorus pollution (1686.35 kg for ORGP and 31.70 kg for MINP) than the OM manure application. Compared with the upstream, the downstream was influenced more by the manure application. (3) The SWAT results obtained from the NB manure had a better calibration and validation values than those from the OM manure. For ORGP, R2 and NSE values were 0.77 and 0.65 for the NB manure calibration; and the same values for the OM manure were 0.72 and 0.61, respectively. For MINP, R2 values were 0.65 and 0.62 for the NB manure and the OM manure, and the NSE values were 0.60 and 0.58, respectively. The results indicated that the built-in fertilizer database in SWAT has its limitation because it is set up for the simulation in the USA. Thus, when livestock manure is considered in a SWAT simulation, a newly built fertilizer database needs to be set up to represent

  20. Prediction of phosphorus loads in an artificially drained lowland catchment using a modified SWAT model

    Science.gov (United States)

    Bauwe, Andreas; Eckhardt, Kai-Uwe; Lennartz, Bernd

    2017-04-01

    Eutrophication is still one of the main environmental problems in the Baltic Sea. Currently, agricultural diffuse sources constitute the major portion of phosphorus (P) fluxes to the Baltic Sea and have to be reduced to achieve the HELCOM targets and improve the ecological status. Eco-hydrological models are suitable tools to identify sources of nutrients and possible measures aiming at reducing nutrient loads into surface waters. In this study, the Soil and Water Assessment Tool (SWAT) was applied to the Warnow river basin (3300 km2), the second largest watershed in Germany discharging into the Baltic Sea. The Warnow river basin is located in northeastern Germany and characterized by lowlands with a high proportion of artificially drained areas. The aim of this study were (i) to estimate P loadings for individual flow fractions (point sources, surface runoff, tile flow, groundwater flow), spatially distributed on sub-basin scale. Since the official version of SWAT does not allow for the modeling of P in tile drains, we tested (ii) two different approaches of simulating P in tile drains by changing the SWAT source code. The SWAT source code was modified so that (i) the soluble P concentration of the groundwater was transferred to the tile water and (ii) the soluble P in the soil was transferred to the tiles. The SWAT model was first calibrated (2002-2011) and validated (1992-2001) for stream flow at 7 headwater catchments at a daily time scale. Based on this, the stream flow at the outlet of the Warnow river basin was simulated. Performance statistics indicated at least satisfactory model results for each sub-basin. Breaking down the discharge into flow constituents, it becomes visible that stream flow is mainly governed by groundwater and tile flow. Due to the topographic situation with gentle slopes, surface runoff played only a minor role. Results further indicate that the prediction of soluble P loads was improved by the modified SWAT versions. Major sources of

  1. A simple rule based model for scheduling farm management operations in SWAT

    Science.gov (United States)

    Schürz, Christoph; Mehdi, Bano; Schulz, Karsten

    2016-04-01

    For many interdisciplinary questions at the watershed scale, the Soil and Water Assessment Tool (SWAT; Arnold et al., 1998) has become an accepted and widely used tool. Despite its flexibility, the model is highly demanding when it comes to input data. At SWAT's core the water balance and the modeled nutrient cycles are plant growth driven (implemented with the EPIC crop growth model). Therefore, land use and crop data with high spatial and thematic resolution, as well as detailed information on cultivation and farm management practices are required. For many applications of the model however, these data are unavailable. In order to meet these requirements, SWAT offers the option to trigger scheduled farm management operations by applying the Potential Heat Unit (PHU) concept. The PHU concept solely takes into account the accumulation of daily mean temperature for management scheduling. Hence, it contradicts several farming strategies that take place in reality; such as: i) Planting and harvesting dates are set much too early or too late, as the PHU concept is strongly sensitivity to inter-annual temperature fluctuations; ii) The timing of fertilizer application, in SWAT this often occurs simultaneously on the same date in in each field; iii) and can also coincide with precipitation events. Particularly, the latter two can lead to strong peaks in modeled nutrient loads. To cope with these shortcomings we propose a simple rule based model (RBM) to schedule management operations according to realistic farmer management practices in SWAT. The RBM involves simple strategies requiring only data that are input into the SWAT model initially, such as temperature and precipitation data. The user provides boundaries of time periods for operation schedules to take place for all crops in the model. These data are readily available from the literature or from crop variety trials. The RBM applies the dates by complying with the following rules: i) Operations scheduled in the

  2. Application of WRF - SWAT OpenMI 2.0 based models integration for real time hydrological modelling and forecasting

    Science.gov (United States)

    Bugaets, Andrey; Gonchukov, Leonid

    2014-05-01

    Intake of deterministic distributed hydrological models into operational water management requires intensive collection and inputting of spatial distributed climatic information in a timely manner that is both time consuming and laborious. The lead time of the data pre-processing stage could be essentially reduced by coupling of hydrological and numerical weather prediction models. This is especially important for the regions such as the South of the Russian Far East where its geographical position combined with a monsoon climate affected by typhoons and extreme heavy rains caused rapid rising of the mountain rivers water level and led to the flash flooding and enormous damage. The objective of this study is development of end-to-end workflow that executes, in a loosely coupled mode, an integrated modeling system comprised of Weather Research and Forecast (WRF) atmospheric model and Soil and Water Assessment Tool (SWAT 2012) hydrological model using OpenMI 2.0 and web-service technologies. Migration SWAT into OpenMI compliant involves reorganization of the model into a separate initialization, performing timestep and finalization functions that can be accessed from outside. To save SWAT normal behavior, the source code was separated from OpenMI-specific implementation into the static library. Modified code was assembled into dynamic library and wrapped into C# class implemented the OpenMI ILinkableComponent interface. Development of WRF OpenMI-compliant component based on the idea of the wrapping web-service clients into a linkable component and seamlessly access to output netCDF files without actual models connection. The weather state variables (precipitation, wind, solar radiation, air temperature and relative humidity) are processed by automatic input selection algorithm to single out the most relevant values used by SWAT model to yield climatic data at the subbasin scale. Spatial interpolation between the WRF regular grid and SWAT subbasins centroid (which are

  3. SWAT Model Prediction of Phosphorus Loading in a South Carolina Karst Watershed with a Downstream Embayment

    Science.gov (United States)

    Devendra M. Amatya; Manoj K. Jha; Thomas M. Williams; Amy E. Edwards; Daniel R.. Hitchcock

    2013-01-01

    The SWAT model was used to predict total phosphorus (TP) loadings for a 1555-ha karst watershed—Chapel Branch Creek (CBC)—which drains to a lake via a reservoir-like embayment (R-E). The model was first tested for monthly streamflow predictions from tributaries draining three potential source areas as well as the downstream R-E, followed by TP loadings using data...

  4. Modeling nitrate-nitrogen load reduction strategies for the des moines river, iowa using SWAT

    Science.gov (United States)

    Schilling, K.E.; Wolter, C.F.

    2009-01-01

    The Des Moines River that drains a watershed of 16,175 km2 in portions of Iowa and Minnesota is impaired for nitrate-nitrogen (nitrate) due to concentrations that exceed regulatory limits for public water supplies. The Soil Water Assessment Tool (SWAT) model was used to model streamflow and nitrate loads and evaluate a suite of basin-wide changes and targeting configurations to potentially reduce nitrate loads in the river. The SWAT model comprised 173 subbasins and 2,516 hydrologic response units and included point and nonpoint nitrogen sources. The model was calibrated for an 11-year period and three basin-wide and four targeting strategies were evaluated. Results indicated that nonpoint sources accounted for 95% of the total nitrate export. Reduction in fertilizer applications from 170 to 50 kg/ha achieved the 38% reduction in nitrate loads, exceeding the 34% reduction required. In terms of targeting, the most efficient load reductions occurred when fertilizer applications were reduced in subbasins nearest the watershed outlet. The greatest load reduction for the area of land treated was associated with reducing loads from 55 subbasins with the highest nitrate loads, achieving a 14% reduction in nitrate loads achieved by reducing applications on 30% of the land area. SWAT model results provide much needed guidance on how to begin implementing load reduction strategies most efficiently in the Des Moines River watershed. ?? 2009 Springer Science+Business Media, LLC.

  5. Improving streamflow simulations and forecasting performance of SWAT model by assimilating remotely sensed soil moisture observations

    Science.gov (United States)

    Patil, Amol; Ramsankaran, RAAJ

    2017-12-01

    This article presents a study carried out using EnKF based assimilation of coarser-scale SMOS soil moisture retrievals to improve the streamflow simulations and forecasting performance of SWAT model in a large catchment. This study has been carried out in Munneru river catchment, India, which is about 10,156 km2. In this study, an EnkF based new approach is proposed for improving the inherent vertical coupling of soil layers of SWAT hydrological model during soil moisture data assimilation. Evaluation of the vertical error correlation obtained between surface and subsurface layers indicates that the vertical coupling can be improved significantly using ensemble of soil storages compared to the traditional static soil storages based EnKF approach. However, the improvements in the simulated streamflow are moderate, which is due to the limitations in SWAT model in reflecting the profile soil moisture updates in surface runoff computations. Further, it is observed that the durability of streamflow improvements is longer when the assimilation system effectively updates the subsurface flow component. Overall, the results of the present study indicate that the passive microwave-based coarser-scale soil moisture products like SMOS hold significant potential to improve the streamflow estimates when assimilating into large-scale distributed hydrological models operating at a daily time step.

  6. Sediment management modelling in the Blue Nile Basin using SWAT model

    Directory of Open Access Journals (Sweden)

    G. D. Betrie

    2011-03-01

    Full Text Available Soil erosion/sedimentation is an immense problem that has threatened water resources development in the Nile river basin, particularly in the Eastern Nile (Ethiopia, Sudan and Egypt. An insight into soil erosion/sedimentation mechanisms and mitigation methods plays an imperative role for the sustainable water resources development in the region. This paper presents daily sediment yield simulations in the Upper Blue Nile under different Best Management Practice (BMP scenarios. Scenarios applied in this paper are (i maintaining existing conditions, (ii introducing filter strips, (iii applying stone bunds (parallel terraces, and (iv reforestation. The Soil and Water Assessment Tool (SWAT was used to model soil erosion, identify soil erosion prone areas and assess the impact of BMPs on sediment reduction. For the existing conditions scenario, the model results showed a satisfactory agreement between daily observed and simulated sediment concentrations as indicated by Nash-Sutcliffe efficiency greater than 0.83. The simulation results showed that applying filter strips, stone bunds and reforestation scenarios reduced the current sediment yields both at the subbasins and the basin outlets. However, a precise interpretation of the quantitative results may not be appropriate because some physical processes are not well represented in the SWAT model.

  7. Calibration and Validation of the SWAT2000 Watershed Model for Phosphorus Loading to the Cannonsville Reservoir

    Science.gov (United States)

    Tolson, B. A.; Shoemaker, C. A.

    2002-12-01

    A comprehensive modeling effort was undertaken to simulate phosphorus (P) loading to the Cannonsville Reservoir in upstate New York. The Cannonsville Reservoir is one of the City of New York's drinking water supply reservoirs and drains an 1178 km2 watershed that is predominantly agricultural (dairy farming) and forested. The occurrence of eutrophic conditions in the reservoir, due to excessive P loading, resulted in the reservoir being classified as `phosphorus restricted'. This classification restricts future economic growth in the watershed when the growth directly or indirectly increases P loadings. The Soil and Water Assessment Tool (SWAT2000) was used to model the P loading to the reservoir in order to help investigate the effectiveness of proposed management options for reducing P loading. SWAT2000 is a distributed watershed model developed by the Agricultural Research Service of the United States Department of Agriculture. This study is the first to apply SWAT2000 for P loading predictions in the Northeast US. SWAT2000 model development with respect to P focused initially on developing Cannonsville Watershed specific P inputs. Agricultural practices in the watershed were generalized, initial soil P levels were determined using aggregated watershed-wide soil P test results, manure spreading was based on the available manure masses as projected from local cattle population estimates and manure production characteristics were based on local manure studies. Ten years of daily P loading data were available for calibration and validation of the model. Additional bi-weekly sampling data of surface water P concentrations across the watershed were also utilized to test the spatial performance of the model. Comparison with measured data and further analysis of model equations showed that the model equations for sediment generation under snow melt conditions required modifications. In addition a number of P model parameters required calibration. Calibration results

  8. Assessment of soil erosion risk in Komering watershed, South Sumatera, using SWAT model

    Science.gov (United States)

    Salsabilla, A.; Kusratmoko, E.

    2017-07-01

    Changes in land use watershed led to environmental degradation. Estimated loss of soil erosion is often difficult due to some factors such as topography, land use, climate and human activities. This study aims to predict soil erosion hazard and sediment yield using the Soil and Water Assessment Tools (SWAT) hydrological model. The SWAT was chosen because it can simulate the model with limited data. The study area is Komering watershed (806,001 Ha) in South Sumatera Province. There are two factors land management intervention: 1) land with agriculture, and 2) land with cultivation. These factors selected in accordance with the regulations of spatial plan area. Application of the SWAT demonstrated that the model can predict surface runoff, soil erosion loss and sediment yield. The erosion risk for each watershed can be classified and predicted its changes based on the scenarios which arranged. In this paper, we also discussed the relationship between the distribution of erosion risk and watershed's characteristics in a spatial perspective.

  9. Assessment of Climate Change Impacts on Water Resources in Zarrinehrud Basin Using SWAT Model

    Directory of Open Access Journals (Sweden)

    B. Mansouri

    2015-06-01

    Full Text Available This paper evaluate impacts of climate change on temperature, rainfall and runoff in the future Using statistical model, LARS-WG, and conceptual hydrological model, SWAT. In order to the Zarrinehrud river basin, as the biggest catchment of the Lake Urmia basin was selected as a case study. At first, for the generation of future weather data in the basin, LARS-WG model was calibrated using meteorological data and then 14 models of AOGCM were applied and results of these models were downscaled using LARS-WG model in 6 synoptic stations for period of 2015 to 2030. SWAT model was used for evaluation of climate change impacts on runoff in the basin. In order to, the model was calibrated and validated using 6 gauging stations for period of 1987-2007 and the value of R2 was between 0.49 and 0.71 for calibration and between 0.54 and 0.77 for validation. Then by introducing average of downscaled results of AOGCM models to the SWAT, runoff changes of the basin were simulated during 2015-2030. Average of results of LARS-WG model indicated that the monthly mean of minimum and maximum temperatures will increase compared to the baseline period. Also monthly average of precipitation will decrease in spring season but will increase in summer and autumn. The results showed that in addition to the amount of precipitation, its pattern will change in the future period, too. The results of runoff simulation showed that the amount of inflow to the Zarrinehrud reservoir will reduce 28.4 percent compared to the baseline period.

  10. Enabling Large Scale Fine Resolution Flood Modeling Using SWAT and LISFLOOD-FP

    Science.gov (United States)

    Liu, Z.; Rajib, A.; Merwade, V.

    2016-12-01

    Due to computational burden, most large scale hydrologic models are not created to generate streamflow hydrographs for lower order ungauged streams. Similarly, most flood inundation mapping studies are performed at major stream reaches. As a result, it is not possible to get reliable flow estimates and flood extents for vast majority of the areas where no stream gauging stations are available. The objective of this study is to loosely couple spatially distributed hydrologic model, Soil and Water Assessment Tool (SWAT), with a 1D/2D hydrodynamic model, LISFLOOD-FP, for large scale fine resolution flood inundation modeling. The model setup is created for the 491,000 km2 drainage area of the Ohio River Basin in the United States. In the current framework, SWAT model is calibrated with historical streamflow data over the past 80 years (1935-2014) to provide streamflow time-series for more than 100,000 NHDPlus stream reaches in the basin. The post-calibration evaluation shows that the simulated daily streamflow has a Nash-Sutcliffe Efficiency in the range of 0.4-0.7 against observed records across the basin. Streamflow outputs from the calibrated SWAT are subsequently used to drive LISFLOOD-FP and routed along the streams/floodplain using the built-in subgrid solver. LISFLOOD-FP is set up for the Ohio River Basin using 90m digital elevation model, and is executed on high performance computing resources at Purdue University. The flood extents produced by LISFLOOD-FP show good agreement with observed inundation. The current modeling framework lays foundation for near real-time streamflow forecasting and prediction of time-varying flood inundation maps along the NHDPlus network.

  11. Impact of Uncertainty in SWAT Model Simulations on Consequent Decisions on Optimal Crop Management Practices

    Science.gov (United States)

    Krishnan, N.; Sudheer, K. P.; Raj, C.; Chaubey, I.

    2015-12-01

    The diminishing quantities of non-renewable forms of energy have caused an increasing interest in the renewable sources of energy, such as biofuel, in the recent years. However, the demand for biofuel has created a concern for allocating grain between the fuel and food industry. Consequently, appropriate regulations that limit grain based ethanol production have been developed and are put to practice, which resulted in cultivating perennial grasses like Switch grass and Miscanthus to meet the additional cellulose demand. A change in cropping and management practice, therefore, is essential to cater the conflicting requirement for food and biofuel, which has a long-term impact on the downstream water quality. Therefore it is essential to implement optimal cropping practices to reduce the pollutant loadings. Simulation models in conjunction with optimization procedures are useful in developing efficient cropping practices in such situations. One such model is the Soil and Water Assessment Tool (SWAT), which can simulate both the water and the nutrient cycle, as well as quantify long-term impacts of changes in management practice in the watershed. It is envisaged that the SWAT model, along with an optimization algorithm, can be used to identify the optimal cropping pattern that achieves the minimum guaranteed grain production with less downstream pollution, while maximizing the biomass production for biofuel generation. However, the SWAT simulations do have a certain level of uncertainty that needs to be accounted for before making decisions. Therefore, the objectives of this study are twofold: (i) to understand how model uncertainties influence decision-making, and (ii) to develop appropriate management scenarios that account the uncertainty. The simulation uncertainty of the SWAT model is assessed using Shuffled Complex Evolutionary Metropolis Algorithm (SCEM). With the data collected from St. Joseph basin, IN, USA, the preliminary results indicate that model

  12. An Assessment of Mean Areal Precipitation Methods on Simulated Stream Flow: A SWAT Model Performance Assessment

    Directory of Open Access Journals (Sweden)

    Sean Zeiger

    2017-06-01

    Full Text Available Accurate mean areal precipitation (MAP estimates are essential input forcings for hydrologic models. However, the selection of the most accurate method to estimate MAP can be daunting because there are numerous methods to choose from (e.g., proximate gauge, direct weighted average, surface-fitting, and remotely sensed methods. Multiple methods (n = 19 were used to estimate MAP with precipitation data from 11 distributed monitoring sites, and 4 remotely sensed data sets. Each method was validated against the hydrologic model simulated stream flow using the Soil and Water Assessment Tool (SWAT. SWAT was validated using a split-site method and the observed stream flow data from five nested-scale gauging sites in a mixed-land-use watershed of the central USA. Cross-validation results showed the error associated with surface-fitting and remotely sensed methods ranging from −4.5 to −5.1%, and −9.8 to −14.7%, respectively. Split-site validation results showed the percent bias (PBIAS values that ranged from −4.5 to −160%. Second order polynomial functions especially overestimated precipitation and subsequent stream flow simulations (PBIAS = −160 in the headwaters. The results indicated that using an inverse-distance weighted, linear polynomial interpolation or multiquadric function method to estimate MAP may improve SWAT model simulations. Collectively, the results highlight the importance of spatially distributed observed hydroclimate data for precipitation and subsequent steam flow estimations. The MAP methods demonstrated in the current work can be used to reduce hydrologic model uncertainty caused by watershed physiographic differences.

  13. Modelling of hydrologic processes and potential response to climate change through the use of a multisite SWAT

    DEFF Research Database (Denmark)

    Gül, G.O.; Rosbjerg, Dan

    2010-01-01

    Hydrologic models that use components for integrated modelling of surface water and groundwater systems help conveniently simulate the dynamically linked hydrologic and hydraulic processes that govern flow conditions in watersheds. The Soil and Water Assessment Tool (SWAT) is one such model...... that allows continuous simulations over long time periods in the land phase of the hydrologic cycle by incorporating surface water and groundwater interactions. This study provides a verified structure for the SWAT to evaluate existing flow regimes in a small-sized catchment in Denmark and examines a simple...... simulation to help quantify the effects of climate change on regional water quantities. SWAT can be regarded among the alternative hydrologic simulation tools applicable for catchments with similar characteristics and of similar sizes in Denmark. However, the modellers would be required to determine a proper...

  14. Application of SWAT-HS, a lumped hillslope model to simulate hydrology in the Cannonsville Reservoir watershed, New York

    Science.gov (United States)

    Hoang, Linh; Schneiderman, Elliot; Mukundan, Rajith; Moore, Karen; Owens, Emmet; Steenhuis, Tammo

    2017-04-01

    Surface runoff is the primary mechanism transporting substances such as sediments, agricultural chemicals, and pathogens to receiving waters. In order to predict runoff and pollutant fluxes, and to evaluate management practices, it is essential to accurately predict the areas generating surface runoff, which depend on the type of runoff: infiltration-excess runoff and saturation-excess runoff. The watershed of Cannonsville reservoir is part of the New York City water supply system that provides high quality drinking water to nine million people in New York City (NYC) and nearby communities. Previous research identified saturation-excess runoff as the dominant runoff mechanism in this region. The Soil and Water Assessment Tool (SWAT) is a promising tool to simulate the NYC watershed given its broad application and good performance in many watersheds with different scales worldwide, for its ability to model water quality responses, and to evaluate the effect of management practices on water quality at the watershed scale. However, SWAT predicts runoff based mainly on soil and land use characteristics, and implicitly considers only infiltration-excess runoff. Therefore, we developed a modified version of SWAT, referred to as SWAT-Hillslope (SWAT-HS), which explicitly simulates saturation-excess runoff by redefining Hydrological Response Units (HRUs) based on wetness classes with varying soil water storage capacities, and by introducing a surface aquifer with the ability to route interflow from "drier" to "wetter" wetness classes. SWAT-HS was first tested at Town Brook, a 37 km2 headwater watershed draining to the Cannonsville reservoir using a single sub-basin for the whole watershed. SWAT-HS performed well, and predicted streamflow yielded Nash-Sutcliffe Efficiencies of 0.68 and 0.87 at the daily and monthly time steps, respectively. More importantly, it predicted the spatial distribution of saturated areas accurately. Based on the good performance in the Town Brook

  15. Management-oriented sensitivity analysis for pesticide transport in watershed-scale water quality modeling using SWAT

    Energy Technology Data Exchange (ETDEWEB)

    Luo Yuzhou [University of California, Davis, CA 95616 (United States); Wenzhou Medical College, Wenzhou 325035 (China); Zhang Minghua, E-mail: mhzhang@ucdavis.ed [University of California, Davis, CA 95616 (United States); Wenzhou Medical College, Wenzhou 325035 (China)

    2009-12-15

    The Soil and Water Assessment Tool (SWAT) was calibrated for hydrology conditions in an agricultural watershed of Orestimba Creek, California, and applied to simulate fate and transport of two organophosphate pesticides chlorpyrifos and diazinon. The model showed capability in evaluating pesticide fate and transport processes in agricultural fields and instream network. Management-oriented sensitivity analysis was conducted by applied stochastic SWAT simulations for pesticide distribution. Results of sensitivity analysis identified the governing processes in pesticide outputs as surface runoff, soil erosion, and sedimentation in the study area. By incorporating sensitive parameters in pesticide transport simulation, effects of structural best management practices (BMPs) in improving surface water quality were demonstrated by SWAT modeling. This study also recommends conservation practices designed to reduce field yield and in-stream transport capacity of sediment, such as filter strip, grassed waterway, crop residue management, and tailwater pond to be implemented in the Orestimba Creek watershed. - Selected structural BMPs are recommended for reducing loads of OP pesticides.

  16. User's guide for simulation of waste treatment (SWAT) model

    Energy Technology Data Exchange (ETDEWEB)

    Macal, C.M.

    1979-04-01

    This document is a user's guide for the Simulation of Waste Treatment (SWAT) model computer code. (A detailed description of the logic and assumptions of the model was published previously.) A flow diagram depicting the logic of the SWAT computer code is included. Several river basins or regions can be simulated in a single computer run, with each region having numerous treatment plants. Treatment plants are simulated sequentially to reduce computer storage requirements. All input to the model is in the form of cards and all output is to a line printer. The code is written in FORTRAN IV and consists of approximately 3000 statements. Using the IBM 370/195 under OS, a Gl compiler requires a region of 220K. Execution time is under two minutes for a typical run for a river basin with 23 treatment plants, with each plant having an average of one technology modification over a simulation period of 25 years. In the first section of this report a brief description of the subroutines in the model is given along with an explanation of how the subroutines function in the context of the whole program. The third section indicates formatting for input data; sample input data for a test problem are also presented. Section 4 describes the output resulting from the sample input data. A program listing appears in the appendix.

  17. Modeling seasonal variability of fecal coliform in natural surface waters using the modified SWAT

    Science.gov (United States)

    Cho, Kyung Hwa; Pachepsky, Yakov A.; Kim, Minjeong; Pyo, JongCheol; Park, Mi-Hyun; Kim, Young Mo; Kim, Jung-Woo; Kim, Joon Ha

    2016-04-01

    Fecal coliforms are indicators of pathogens and thereby, understanding of their fate and transport in surface waters is important to protect drinking water sources and public health. We compiled fecal coliform observations from four different sites in the USA and Korea and found a seasonal variability with a significant connection to temperature levels. In all observations, fecal coliform concentrations were relatively higher in summer and lower during the winter season. This could be explained by the seasonal dominance of growth or die-off of bacteria in soil and in-stream. Existing hydrologic models, however, have limitations in simulating the seasonal variability of fecal coliform. Soil and in-stream bacterial modules of the Soil and Water Assessment Tool (SWAT) model are oversimplified in that they exclude simulations of alternating bacterial growth. This study develops a new bacteria subroutine for the SWAT in an attempt to improve its prediction accuracy. We introduced critical temperatures as a parameter to simulate the onset of bacterial growth/die-off and to reproduce the seasonal variability of bacteria. The module developed in this study will improve modeling for environmental management schemes.

  18. The Soil and Water Assessment Tool (SWAT) Ecohydrological Model Circa 2015: Global Application Trends, Insights and Issues

    Science.gov (United States)

    Gassman, P. W.; Arnold, J. G.; Srinivasan, R.

    2015-12-01

    The Soil and Water Assessment Tool (SWAT) is one of the most widely used watershed-scale water quality models in the world. Over 2,000 peer-reviewed SWAT-related journal articles have been published and hundreds of other studies have been published in conference proceedings and other formats. The use of SWAT was initially concentrated in North America and Europe but has also expanded dramatically in other countries and regions during the past decade including Brazil, China, India, Iran, South Korea, Southeast Asia and eastern Africa. The SWAT model has proven to be a very flexible tool for investigating a broad range of hydrologic and water quality problems at different watershed scales and environmental conditions, and has proven very adaptable for applications requiring improved hydrologic and other enhanced simulation needs. We investigate here the various technological, networking, and other factors that have supported the expanded use of SWAT, and also highlight current worldwide simulation trends and possible impediments to future increased usage of the model. Examples of technological advances include easy access to web-based documentation, user-support groups, and SWAT literature, a variety of Geographic Information System (GIS) interface tools, pre- and post-processing calibration software and other software, and an open source code which has served as a model development catalyst for multiple user groups. Extensive networking regarding the use of SWAT has further occurred via internet-based user support groups, model training workshops, regional working groups, regional and international conferences, and targeted development workshops. We further highlight several important model development trends that have emerged during the past decade including improved hydrologic, cropping system, best management practice (BMP) and pollutant transport simulation methods. In addition, several current SWAT weaknesses will be addressed and key development needs will be

  19. GIS-Based Hydrological Modelling Using Swat: Case Study of ...

    African Journals Online (AJOL)

    Hydrological modeling tools have been increasingly used worldwide in the management of water resources at watershed level. The application of these tools have been improved in recent time through the advent of remote sensing and Geographical Information System (GIS) techniques which enhance the use of spatially ...

  20. Calibration of SWAT model for woody plant encroachment using paired experimental watershed data

    Science.gov (United States)

    Qiao, Lei; Zou, Chris B.; Will, Rodney E.; Stebler, Elaine

    2015-04-01

    Globally, rangeland has been undergoing a transition from herbaceous dominated grasslands into tree or shrub dominated woodlands with great uncertainty of associated changes in water budget. Previous modeling studies simulated the impact of woody plant encroachment on hydrological processes using models calibrated and constrained primarily by historic streamflow from intermediate sized watersheds. In this study, we calibrated the Soil and Water Assessment Tool (SWAT model), a widely used model for cropping and grazing systems, for a prolifically encroaching juniper species, eastern redcedar (Juniperus virginiana), in the south-central Great Plains using species-specific biophysical and hydrological parameters and in situ meteorological forcing from three pairs of experimental watersheds (grassland versus eastern redcedar woodland) for a period of 3-years covering a dry-to-wet cycle. The multiple paired watersheds eliminated the potentially confounding edaphic and topographic influences from changes in hydrological processes related to woody encroachment. The SWAT model was optimized with the Shuffled complexes with Principal component analysis (SP-UCI) algorithm developed from the Shuffled Complexes Evolution (SCE_UA). The mean Nash-Sutcliff coefficient (NSCE) values of the calibrated model for daily and monthly runoff from experimental watersheds reached 0.96 and 0.97 for grassland, respectively, and 0.90 and 0.84 for eastern redcedar woodland, respectively. We then validated the calibrated model with a nearby, larger watershed undergoing rapid eastern redcedar encroachment. The NSCE value for monthly streamflow over a period of 22 years was 0.79. We provide detailed biophysical and hydrological parameters for tallgrass prairie under moderate grazing and eastern redcedar, which can be used to calibrate any model for further validation and application by the hydrologic modeling community.

  1. Evalution of Long-Term Impacts of Conservation Practice Within the Little River Watershed Using the SWAT Model

    Science.gov (United States)

    The SWAT model was used to simulate the long-term impacts of conservation practices implemented within the South Georgia Little River Watershed on streamflow hydrology and water quality. Typical practices which have been implemented within the watershed include nutrient management, residue manageme...

  2. Comparison of model performance and simulated water balance using NASIM and SWAT for the Wupper River Basin, Germany

    Science.gov (United States)

    Lorza, Paula; Nottebohm, Martin; Scheibel, Marc; aus der Beek, Tim

    2017-04-01

    Under the framework of the Horizon 2020 project BINGO (Bringing INnovation to onGOing water management), climate change impacts on the water cycle in the Wupper catchment area are being studied. With this purpose, a set of hydrological models in NASIM and SWAT have been set up, calibrated, and validated for past conditions using available data. NASIM is a physically-based, lumped, hydrological model based on the water balance equation. For the upper part of the Dhünn catchment area - Wupper River's main tributary - a SWAT model was also implemented. Observed and simulated discharge by NASIM and SWAT for the drainage area upstream of Neumühle hydrometric station (close to Große Dhünn reservoir's inlet) are compared. Comparison of simulated water balance for several hydrological years between the two models is also carried out. While NASIM offers high level of detail for modelling of complex urban areas and the possibility of entering precipitation time series at fine temporal resolution (e.g. minutely data), SWAT enables to study long-term impacts offering a huge variety of input and output variables including different soil properties, vegetation and land management practices. Beside runoff, also sediment and nutrient transport can be simulated. For most calculations, SWAT operates on a daily time step. The objective of this and future work is to determine catchment responses on different meteorological events and to study parameter sensitivity of stationary inputs such as soil parameters, vegetation or land use. Model performance is assessed with different statistical metrics (relative volume error, coefficient of determination, and Nash-Sutcliffe Efficiency).

  3. Pesticide transport to tile-drained fields in SWAT model – macropore flow and sediment

    DEFF Research Database (Denmark)

    Lu, Shenglan; Trolle, Dennis; Blicher-Mathiesen, Gitte

    2015-01-01

    as a fraction of effective rainfall and transported to the tile drains directly. Macropore sediment transport is calculated similarly to the MACRO model (Jarvis et al., 1999). Mobile pesticide transport is calculated with a decay function with the flow, whereas sorbed pesticides transport is associated......Preferential flow and colloidal facilitated transport via macopores connected to tile drains are the main pathways for pesticide transport from agricultural areas to surface waters in some area. We developed a macropore flow module and a sediment transport module for the Soil and Water Assessment...... Tool (SWAT) to simulate transport of both mobile (e.g. Bentazon) and strongly sorbed (e.g. Diuron) pesticides in tile drains. Macropore flow is initiated when soil water content exceeds a threshold and rainfall intensity exceeds infiltration capacity. The amount of macropore flow is calculated...

  4. Modelling water-harvesting systems in the arid south of Tunisia using SWAT

    Directory of Open Access Journals (Sweden)

    M. Ouessar

    2009-10-01

    Full Text Available In many arid countries, runoff water-harvesting systems support the livelihood of the rural population. Little is known, however, about the effect of these systems on the water balance components of arid watersheds. The objective of this study was to adapt and evaluate the GIS-based watershed model SWAT (Soil Water Assessment Tool for simulating the main hydrologic processes in arid environments. The model was applied to the 270-km2 watershed of wadi Koutine in southeast Tunisia, which receives about 200 mm annual rain. The main adjustment for adapting the model to this dry Mediterranean environment was the inclusion of water-harvesting systems, which capture and use surface runoff for crop production in upstream subbasins, and a modification of the crop growth processes. The adjusted version of the model was named SWAT-WH. Model evaluation was performed based on 38 runoff events recorded at the Koutine station between 1973 and 1985. The model predicted that the average annual watershed rainfall of the 12-year evaluation period (209 mm was split into ET (72%, groundwater recharge (22% and outflow (6%. The evaluation coefficients for calibration and validation were, respectively, R2 (coefficient of determination 0.77 and 0.44; E (Nash-Sutcliffe coefficient 0.73 and 0.43; and MAE (Mean Absolute Error 2.6 mm and 3.0 mm, indicating that the model could reproduce the observed events reasonably well. However, the runoff record was dominated by two extreme events, which had a strong effect on the evaluation criteria. Discrepancies remained mainly due to uncertainties in the observed daily rainfall and runoff data. Recommendations for future research include the installation of additional rainfall and runoff gauges with continuous data logging and the collection of more field data to represent the soils and land use. In addition, crop growth and yield monitoring is needed for a proper evaluation of crop production, to

  5. Sediment trapping analysis of flood control reservoirs in Upstream Ciliwung River using SWAT Model

    Science.gov (United States)

    Rofiq Ginanjar, Mirwan; Putra, Santosa Sandy

    2017-06-01

    The plans of Sukamahi dam and Ciawi dam construction for Jakarta flood risk reduction purpose had been proposed as feasible solutions to be implemented. However, the risk of the dam outlets clogging, caused by the sediment, is important to be anticipated. The prediction of the max sediment concentration in the reservoir is crucial for the dam operation planning. It is important to avoid the flood outlet tunnel clogging. This paper present a hydrologic sediment budget model of The Upstream Ciliwung River Basin, with flood control dam existence scenarios. The model was constructed within SWAT (Soil and Water Assessment Tools) plugin and run inside the QGIS framework. The free hydrological data from CFSR, soil data from FAO, and topographical data from CGIAR-CSI were implemented as the model input. The model resulted the sediment concentration dynamics of the Sukamahi and Ciawi reservoirs, on some suspended sediment parameter ranges. The sediment trapping efficiency was also computed by different possible dam capacity alternatives. The research findings will give a scientific decision making base for the river authority, in term of flood control dam planning, especially in The Upstream Ciliwung River Basin.

  6. Baseflow simulation using SWAT model in an inland river basin in Tianshan Mountains, Northwest China

    Directory of Open Access Journals (Sweden)

    Y. Luo

    2012-04-01

    Full Text Available Baseflow is an important component in hydrological modeling. The complex streamflow recession process complicates the baseflow simulation. In order to simulate the snow and/or glacier melt dominated streamflow receding quickly during the high-flow period but very slowly during the low-flow period in rivers in arid and cold northwest China, the current one-reservoir baseflow approach in SWAT (Soil Water Assessment Tool model was extended by adding a slow- reacting reservoir and applying it to the Manas River basin in the Tianshan Mountains. Meanwhile, a digital filter program was employed to separate baseflow from streamflow records for comparisons. Results indicated that the two-reservoir method yielded much better results than the one-reservoir one in reproducing streamflow processes, and the low-flow estimation was improved markedly. Nash-Sutcliff efficiency values at the calibration and validation stages are 0.68 and 0.62 for the one-reservoir case, and 0.76 and 0.69 for the two-reservoir case. The filter-based method estimated the baseflow index as 0.60, while the model-based as 0.45. The filter-based baseflow responded almost immediately to surface runoff occurrence at onset of rising limb, while the model-based responded with a delay. In consideration of watershed surface storage retention and soil freezing/thawing effects on infiltration and recharge during initial snowmelt season, a delay response is considered to be more reasonable. However, a more detailed description of freezing/thawing processes should be included in soil modules so as to determine recharge to aquifer during these processes, and thus an accurate onset point of rising limb of the simulated baseflow.

  7. Analysis of the spatial variation in the parameters of the SWAT model with application in Flanders, Northern Belgium

    Directory of Open Access Journals (Sweden)

    G. Heuvelmans

    2004-01-01

    Full Text Available Operational applications of a hydrological model often require the prediction of stream flow in (future time periods without stream flow observations or in ungauged catchments. Data for a case-specific optimisation of model parameters are not available for such applications, so parameters have to be derived from other catchments or time periods. It has been demonstrated that for applications of the SWAT in Northern Belgium, temporal transfers of the parameters have less influence than spatial transfers on the performance of the model. This study examines the spatial variation in parameter optima in more detail. The aim was to delineate zones wherein model parameters can be transferred without a significant loss of model performance. SWAT was calibrated for 25 catchments that are part of eight larger sub-basins of the Scheldt river basin. Two approaches are discussed for grouping these units in zones with a uniform set of parameters: a single parameter approach considering each parameter separately and a parameter set approach evaluating the parameterisation as a whole. For every catchment, the SWAT model was run with the local parameter optima, with the average parameter values for the entire study region (Flanders, with the zones delineated with the single parameter approach and with the zones obtained by the parameter set approach. Comparison of the model performances of these four parameterisation strategies indicates that both the single parameter and the parameter set zones lead to stream flow predictions that are more accurate than if the entire study region were treated as one single zone. On the other hand, the use of zonal average parameter values results in a considerably worse model fit compared to local parameter optima. Clustering of parameter sets gives a more accurate result than the single parameter approach and is, therefore, the preferred technique for use in the parameterisation of ungauged sub-catchments as part of the

  8. Evaluation of existing and modified wetland equations in the SWAT model

    Science.gov (United States)

    The drainage significantly alters flow and nutrient pathways in small watersheds and reliable simulation at this scale is needed for effective planning of nutrient reduction strategies. The Soil and Water Assessment Tool (SWAT) has been widely utilized for prediction of flow and nutrient loads, but...

  9. Modelling land use change across elevation gradients in district Swat, Pakistan

    NARCIS (Netherlands)

    Qasim, M.; Termansen, M.; Hubacek, K.; Fleskens, L.

    2013-01-01

    District Swat is part of the high mountain Hindu-Kush Himalayan region of Pakistan. Documentation and analysis of land use change in this region is challenging due to very disparate accounts of the state of forest resources and limited accessible data. Such analysis is, however, important due to

  10. Improving SWAT model performance in the upper Blue Nile Basin using meteorological data integration and subcatchment discretization

    Science.gov (United States)

    Polanco, Erwin Isaac; Fleifle, Amr; Ludwig, Ralf; Disse, Markus

    2017-09-01

    The Blue Nile Basin is confronted by land degradation problems, insufficient agricultural production, and a limited number of developed energy sources. Hydrological models provide useful tools to better understand such complex systems and improve water resources and land management practices. In this study, SWAT was used to model the hydrological processes in the upper Blue Nile Basin. Comparisons between a Climate Forecast System Reanalysis (CFSR) and a conventional ground weather dataset were done under two sub-basin discretization levels (30 and 87 sub-basins) to create an integrated dataset to improve the spatial and temporal limitations of both datasets. A SWAT error index (SEI) was also proposed to compare the reliability of the models under different discretization levels and weather datasets. This index offers an assessment of the model quality based on precipitation and evapotranspiration. SEI demonstrates to be a reliable additional and useful method to measure the level of error of SWAT. The results showed the discrepancies of using different weather datasets with different sub-basin discretization levels. Datasets under 30 sub-basins achieved Nash-Sutcliffe coefficient (NS) values of -0.51, 0.74, and 0.84; p factors of 0.53, 0.66, and 0.70; and r factors of 1.11, 0.83, and 0.67 for the CFSR, ground, and integrated datasets, respectively. Meanwhile, models under 87 sub-basins achieved NS values of -1.54, 0.43, and 0.80; p factors of 0.36, 0.67, and 0.77; r factors of 0.93, 0.68, and 0.54 for the CFSR, ground, and integrated datasets, respectively. Based on the obtained statistical results, the integrated dataset provides a better model of the upper Blue Nile Basin.

  11. A multi basin SWAT model analysis of runoff and sedimentation in the Blue Nile, Ethiopia

    Directory of Open Access Journals (Sweden)

    Z. M. Easton

    2010-10-01

    Full Text Available A multi basin analysis of runoff and erosion in the Blue Nile Basin, Ethiopia was conducted to elucidate sources of runoff and sediment. Erosion is arguably the most critical problem in the Blue Nile Basin, as it limits agricultural productivity in Ethiopia, degrades benthos in the Nile, and results in sedimentation of dams in downstream countries. A modified version of the Soil and Water Assessment Tool (SWAT model was developed to predict runoff and sediment losses from the Ethiopian Blue Nile Basin. The model simulates saturation excess runoff from the landscape using a simple daily water balance coupled to a topographic wetness index in ways that are consistent with observed runoff processes in the basin. The spatial distribution of landscape erosion is thus simulated more correctly. The model was parameterized in a nested design for flow at eight and sediment at three locations in the basin. Subbasins ranged in size from 1.3 to 174 000 km2, and interestingly, the partitioning of runoff and infiltrating flow could be predicted by topographic information. Model predictions showed reasonable accuracy (Nash Sutcliffe Efficiencies ranged from 0.53–0.92 with measured data across all sites except Kessie, where the water budget could not be closed; however, the timing of flow was well captured. Runoff losses increased with rainfall during the monsoonal season and were greatest from areas with shallow soils and large contributing areas. Analysis of model results indicate that upland landscape erosion dominated sediment delivery to the main stem of the Blue Nile in the early part of the growing season when tillage occurs and before the soil was wetted up and plant cover was established. Once plant cover was established in mid August landscape erosion was negligible and sediment export was dominated by channel processes and re-suspension of landscape sediment deposited early in the growing season. These results imply that targeting small

  12. Spatial multiobjective optimization of agricultural conservation practices using a SWAT model and an evolutionary algorithm.

    Science.gov (United States)

    Rabotyagov, Sergey; Campbell, Todd; Valcu, Adriana; Gassman, Philip; Jha, Manoj; Schilling, Keith; Wolter, Calvin; Kling, Catherine

    2012-12-09

    Finding the cost-efficient (i.e., lowest-cost) ways of targeting conservation practice investments for the achievement of specific water quality goals across the landscape is of primary importance in watershed management. Traditional economics methods of finding the lowest-cost solution in the watershed context (e.g.,(5,12,20)) assume that off-site impacts can be accurately described as a proportion of on-site pollution generated. Such approaches are unlikely to be representative of the actual pollution process in a watershed, where the impacts of polluting sources are often determined by complex biophysical processes. The use of modern physically-based, spatially distributed hydrologic simulation models allows for a greater degree of realism in terms of process representation but requires a development of a simulation-optimization framework where the model becomes an integral part of optimization. Evolutionary algorithms appear to be a particularly useful optimization tool, able to deal with the combinatorial nature of a watershed simulation-optimization problem and allowing the use of the full water quality model. Evolutionary algorithms treat a particular spatial allocation of conservation practices in a watershed as a candidate solution and utilize sets (populations) of candidate solutions iteratively applying stochastic operators of selection, recombination, and mutation to find improvements with respect to the optimization objectives. The optimization objectives in this case are to minimize nonpoint-source pollution in the watershed, simultaneously minimizing the cost of conservation practices. A recent and expanding set of research is attempting to use similar methods and integrates water quality models with broadly defined evolutionary optimization methods(3,4,9,10,13-15,17-19,22,23,25). In this application, we demonstrate a program which follows Rabotyagov et al.'s approach and integrates a modern and commonly used SWAT water quality model(7) with a

  13. Assessment of land-use change on streamflow using GIS, remote sensing and a physically-based model, SWAT

    Directory of Open Access Journals (Sweden)

    J. Y. G. Dos Santos

    2014-09-01

    Full Text Available This study aims to assess the impact of the land-use changes between the periods 1967−1974 and 1997−2008 on the streamflow of Tapacurá catchment (northeastern Brazil using the Soil and Water Assessment Tool (SWAT model. The results show that the most sensitive parameters were the baseflow, Manning factor, time of concentration and soil evaporation compensation factor, which affect the catchment hydrology. The model calibration and validation were performed on a monthly basis, and the streamflow simulation showed a good level of accuracy for both periods. The obtained R2 and Nash-Sutcliffe Efficiency values for each period were respectively 0.82 and 0.81 for 1967−1974, and 0.93 and 0.92 for the period 1997−2008. The evaluation of the SWAT model response to the land cover has shown that the mean monthly flow, during the rainy seasons for 1967−1974, decreased when compared to 1997−2008.

  14. Streamflow in the upper Mississippi river basin as simulated by SWAT driven by 20{sup th} century contemporary results of global climate models and NARCCAP regional climate models

    Energy Technology Data Exchange (ETDEWEB)

    Takle, Eugene S.; Jha, Manoj; Lu, Er; Arritt, Raymond W.; Gutowski, William J. [Iowa State Univ. Ames, IA (United States)

    2010-06-15

    We use Soil and Water Assessment Tool (SWAT) when driven by observations and results of climate models to evaluate hydrological quantities, including streamflow, in the Upper Mississippi River Basin (UMRB) for 1981-2003 in comparison to observed streamflow. Daily meteorological conditions used as input to SWAT are taken from (1) observations at weather stations in the basin, (2) daily meteorological conditions simulated by a collection of regional climate models (RCMs) driven by reanalysis boundary conditions, and (3) daily meteorological conditions simulated by a collection of global climate models (GCMs). Regional models used are those whose data are archived by the North American Regional Climate Change Assessment Program (NARCCAP). Results show that regional models correctly simulate the seasonal cycle of precipitation, temperature, and streamflow within the basin. Regional models also capture interannual extremes represented by the flood of 1993 and the dry conditions of 2000. The ensemble means of both the GCM-driven and RCM-driven simulations by SWAT capture both the timing and amplitude of the seasonal cycle of streamflow with neither demonstrating significant superiority at the basin level. (orig.)

  15. Simulating Crop Evapotranspiration Response under Different Planting Scenarios by Modified SWAT Model in an Irrigation District, Northwest China.

    Directory of Open Access Journals (Sweden)

    Xin Liu

    Full Text Available Modelling crop evapotranspiration (ET response to different planting scenarios in an irrigation district plays a significant role in optimizing crop planting patterns, resolving agricultural water scarcity and facilitating the sustainable use of water resources. In this study, the SWAT model was improved by transforming the evapotranspiration module. Then, the improved model was applied in Qingyuan Irrigation District of northwest China as a case study. Land use, soil, meteorology, irrigation scheduling and crop coefficient were considered as input data, and the irrigation district was divided into subdivisions based on the DEM and local canal systems. On the basis of model calibration and verification, the improved model showed better simulation efficiency than did the original model. Therefore, the improved model was used to simulate the crop evapotranspiration response under different planting scenarios in the irrigation district. Results indicated that crop evapotranspiration decreased by 2.94% and 6.01% under the scenarios of reducing the planting proportion of spring wheat (scenario 1 and summer maize (scenario 2 by keeping the total cultivated area unchanged. However, the total net output values presented an opposite trend under different scenarios. The values decreased by 3.28% under scenario 1, while it increased by 7.79% under scenario 2, compared with the current situation. This study presents a novel method to estimate crop evapotranspiration response under different planting scenarios using the SWAT model, and makes recommendations for strategic agricultural water management planning for the rational utilization of water resources and development of local economy by studying the impact of planting scenario changes on crop evapotranspiration and output values in the irrigation district of northwest China.

  16. SWAT Model Application to Assess the Impact of Intensive Corn‐farming on Runoff, Sediments and Phosphorous loss from an Agricultural Watershed in Wisconsin

    Science.gov (United States)

    The potential future increase in corn-based biofuel may be expected to have a negative impact on water quality in streams and lakes of the Midwestern US due to increased agricultural chemicals usage. This study used the SWAT model to assess the impact of continuous-corn farming o...

  17. Runoff Simulation in the Upper Reaches of Heihe River Basin Based on the RIEMS–SWAT Model

    Directory of Open Access Journals (Sweden)

    Songbing Zou

    2016-10-01

    Full Text Available In the distributed hydrological simulations for complex mountain areas, large amounts of meteorological input parameters with high spatial and temporal resolutions are necessary. However, the extreme scarcity and uneven distribution of the traditional meteorological observation stations in cold and arid regions of Northwest China makes it very difficult in meeting the requirements of hydrological simulations. Alternatively, regional climate models (RCMs, which can provide a variety of distributed meteorological data with high temporal and spatial resolution, have become an effective solution to improve hydrological simulation accuracy and to further study water resource responses to human activities and global climate change. In this study, abundant and evenly distributed virtual weather stations in the upper reaches of the Heihe River Basin (HRB of Northwest China were built for the optimization of the input data, and thus a regional integrated environmental model system (RIEMS based on RCM and a distributed hydrological model of soil and water assessment tool (SWAT were integrated as a coupled climate–hydrological RIEMS-SWAT model, which was applied to simulate monthly runoff from 1995 to 2010 in the region. Results show that the simulated and observed values are close; Nash–Sutcliffe efficiency is higher than 0.65; determination coefficient (R2 values are higher than 0.70; percent bias is controlled within ±20%; and root-mean-square-error-observation standard deviation ratio is less than 0.65. These results indicate that the coupled model can present basin hydrological processes properly, and provide scientific support for prediction and management of basin water resources.

  18. Assessing the Water-Resources Potential of Istanbul by Using a Soil and Water Assessment Tool (SWAT Hydrological Model

    Directory of Open Access Journals (Sweden)

    Gokhan Cuceloglu

    2017-10-01

    Full Text Available Uncertainties due to climate change and population growth have created a critical situation for many megacities. Investigating spatio-temporal variability of water resources is, therefore, a critical initial step for water-resource management. This paper is a first study on the evaluation of water-budget components of water resources in Istanbul using a high-resolution hydrological model. In this work, the water resources of Istanbul and surrounding watersheds were modeled using the Soil and Water Assessment Tool (SWAT, which is a continuous-time, semi-distributed, process-based model. The SWAT-CUP program was used for calibration/validation of the model with uncertainty analysis using the SUFI-2 algorithm over the period 1977–2013 at 25 gauge stations. The results reveal that the annual blue-water potential of Istanbul is 3.5 billion m3, whereas the green-water flow and storage are 2.9 billion m3 and 0.7 billion m3, respectively. Watersheds located on the Asian side of the Istanbul megacity yield more blue-water resources compared to the European side, and constitute 75% of the total potential water resources. The model highlights the water potential of the city under current circumstances and gives an insight into its spatial distribution over the region. This study provides a strong basis for forthcoming studies concerning better water-resources management practices, climate change and water-quality studies, as well as other socio-economic scenario analyses in the region.

  19. Aplicación del modelo hidrológico-swat-en una microcuenca agrícola de La Pampa ondulada Application of the hydrologic model - swat - on a micro agricultural basin of the rolling Pampa

    Directory of Open Access Journals (Sweden)

    Felipe Behrends Kraemer

    2011-07-01

    Full Text Available El modelado hidrológico es a menudo el primer paso en el desarrollo de sistemas de decisión espacial para identificaráreas vulnerables a la contaminación por nutrientes, pesticidas así como también a contaminantes biológicos. En este sentido el SWAT (Soil and Water Assesment Tool fue desarrollado para predecir impactos de las prácticas de manejo de las tierras en las aguas, sedimentos y agroquímicos en cuencas hidrográficas con diferentes suelos, usos y prácticas en largos períodos de tiempo. Aunque el mismo está siendo aplicado en todo el mundo, todavía no esta difundido su uso en la Argentina, no encontrándose al momento reportes al respecto. Este modelo se utilizó en una microcuenca agrícola de la Pampa Ondulada (Argentina y fue calibrado y validado utilizando los valores de escurrimientos medidos in situ. Se encontraron buenas eficiencias a escala diaria (R²: 0,55; R² ENS: 0,52 y pobres a escala mensual (R²: 0,34; R² ENS: 0,04. En la calibración, los escurrimientos fueron sobreestimados en un 31,8% y 32,6% para la escala mensual y diaria respectivamente, mientras que en la validación se sobreestimó un 42,5% para los valores mensuales y un 41,2% para los diarios. La aplicación del SWAT en esta microcuenca agrícola resultó auspiciosa y conduce a la inclusión de dicho modelo en futuros trabajos.A hydrological model is often the first step for the development of spatial decision systems in order to identify vulnerable areas to the pollution by nutrients, pesticides as well as biological contaminants. The SWAT model was developed to predict the impact of land management on water, agrochemicals and sediments in hydrographical basins with different soils, land uses and practices for long time periods. This model is being used all over the world but it has not been applied in Argentina until present. The SWAT model was used in an agricultural microbasin in the Rolling Pampa (Argentina and was calibrated and validated

  20. Quantifying the Contribution of On-Site Wastewater Treatment Systems to Stream Discharge Using the SWAT Model.

    Science.gov (United States)

    Oliver, C W; Radcliffe, D E; Risse, L M; Habteselassie, M; Mukundan, R; Jeong, J; Hoghooghi, N

    2014-03-01

    In the southeastern United States, on-site wastewater treatment systems (OWTSs) are widely used for domestic wastewater treatment. The degree to which OWTSs represent consumptive water use has been questioned in Georgia. The goal of this study was to estimate the effect of OWTSs on streamflow in a gauged watershed in Gwinnett County, Georgia using the Soil and Water Assessment Tool (SWAT) watershed-scale model, which includes a new OWTS algorithm. Streamflow was modeled with and without the presence of OWTSs. The model was calibrated using data from 1 Jan. 2003 to 31 Dec. 2006 and validated from 1 Jan. 2007 to 31 Dec. 2010 using the auto-calibration tool SWAT-CUP 4. The daily and monthly streamflow Nash-Sutcliffe coefficients were 0.49 and 0.71, respectively, for the calibration period and 0.37 and 0.68, respectively, for the validation period, indicating a satisfactory fit. Analysis of water balance output variables between simulations showed a 3.1% increase in total water yield at the watershed scale and a 5.9% increase at the subbasin scale for a high-density OWTS area. The percent change in water yield between simulations was the greatest in dry years, implying that the influence of OWTSs on the water yield is greatest under drought conditions. Mean OWTS water use was approximately 5.7% consumptive, contrary to common assumptions by water planning agencies in Georgia. Results from this study may be used by OWTS users and by watershed planners to understand the influence of OWTSs on water quantity within watersheds in this region. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  1. Hydrological simulation in a basin of typical tropical climate and soil using the SWAT model part I: Calibration and validation tests

    Directory of Open Access Journals (Sweden)

    Donizete dos R. Pereira

    2016-09-01

    New hydrological insights: The SWAT model was qualified for simulating the Pomba River sub-basin in the sites where rainfall representation was reasonable to good. The model can be used in the simulation of maximum, average and minimum annual daily streamflow based on the paired t-test, contributing with the water resources management of region, although the model still needs to be improved, mainly in the representativeness of rainfall, to give better estimates of extreme values.

  2. Integrated modeling approach using SELECT and SWAT models to simulate source loading and in-stream conditions of fecal indicator bacteria.

    Science.gov (United States)

    Ranatunga, T.

    2016-12-01

    Modeling of fate and transport of fecal bacteria in a watershed is generally a processed based approach that considers releases from manure, point sources, and septic systems. Overland transport with water and sediments, infiltration into soils, transport in the vadose zone and groundwater, die-off and growth processes, and in-stream transport are considered as the other major processes in bacteria simulation. This presentation will discuss a simulation of fecal indicator bacteria (E.coli) source loading and in-stream conditions of a non-tidal watershed (Cedar Bayou Watershed) in South Central Texas using two models; Spatially Explicit Load Enrichment Calculation Tool (SELECT) and Soil and Water Assessment Tool (SWAT). Furthermore, it will discuss a probable approach of bacteria source load reduction in order to meet the water quality standards in the streams. The selected watershed is listed as having levels of fecal indicator bacteria that posed a risk for contact recreation and wading by the Texas Commission of Environmental Quality (TCEQ). The SELECT modeling approach was used in estimating the bacteria source loading from land categories. Major bacteria sources considered were, failing septic systems, discharges from wastewater treatment facilities, excreta from livestock (Cattle, Horses, Sheep and Goat), excreta from Wildlife (Feral Hogs, and Deer), Pet waste (mainly from Dogs), and runoff from urban surfaces. The estimated source loads were input to the SWAT model in order to simulate the transport through the land and in-stream conditions. The calibrated SWAT model was then used to estimate the indicator bacteria in-stream concentrations for future years based on H-GAC's regional land use, population and household projections (up to 2040). Based on the in-stream reductions required to meet the water quality standards, the corresponding required source load reductions were estimated.

  3. Evaluation of non-point source pollution reduction by applying best management practices using a SWAT model and QuickBird high resolution satellite imagery.

    Science.gov (United States)

    Lee, MiSeon; Park, GeunAe; Park, MinJi; Park, JongYoon; Lee, JiWan; Kim, SeongJoon

    2010-01-01

    This study evaluated the reduction effect of non-point source pollution by applying best management practices (BMPs) to a 1.21 km2 small agricultural watershed using a SWAT (Soil and Water Assessment Tool) model. Two meter QuickBird land use data were prepared for the watershed. The SWAT was calibrated and validated using daily streamflow and monthly water quality (total phosphorus (TP), total nitrogen (TN), and suspended solids (SS)) records from 1999 to 2000 and from 2001 to 2002. The average Nash and Sutcliffe model efficiency was 0.63 for the streamflow and the coefficients of determination were 0.88, 0.72, and 0.68 for SS, TN, and TP, respectively. Four BMP scenarios viz. the application of vegetation filter strip and riparian buffer system, the regulation of Universal Soil Loss Equation P factor, and the fertilizing control amount for crops were applied and analyzed.

  4. Comparative analyses of hydrological responses of two adjacent watersheds to climate variability and change using the SWAT model

    Science.gov (United States)

    Lee, Sangchul; Yeo, In-Young; Sadeghi, Ali M.; McCarty, Gregory W.; Hively, Wells D.; Lang, Megan W.; Sharifi, Amir

    2018-01-01

    Water quality problems in the Chesapeake Bay Watershed (CBW) are expected to be exacerbated by climate variability and change. However, climate impacts on agricultural lands and resultant nutrient loads into surface water resources are largely unknown. This study evaluated the impacts of climate variability and change on two adjacent watersheds in the Coastal Plain of the CBW, using the Soil and Water Assessment Tool (SWAT) model. We prepared six climate sensitivity scenarios to assess the individual impacts of variations in CO2 concentration (590 and 850 ppm), precipitation increase (11 and 21 %), and temperature increase (2.9 and 5.0 °C), based on regional general circulation model (GCM) projections. Further, we considered the ensemble of five GCM projections (2085-2098) under the Representative Concentration Pathway (RCP) 8.5 scenario to evaluate simultaneous changes in CO2, precipitation, and temperature. Using SWAT model simulations from 2001 to 2014 as a baseline scenario, predicted hydrologic outputs (water and nitrate budgets) and crop growth were analyzed. Compared to the baseline scenario, a precipitation increase of 21 % and elevated CO2 concentration of 850 ppm significantly increased streamflow and nitrate loads by 50 and 52 %, respectively, while a temperature increase of 5.0 °C reduced streamflow and nitrate loads by 12 and 13 %, respectively. Crop biomass increased with elevated CO2 concentrations due to enhanced radiation- and water-use efficiency, while it decreased with precipitation and temperature increases. Over the GCM ensemble mean, annual streamflow and nitrate loads showed an increase of ˜ 70 % relative to the baseline scenario, due to elevated CO2 concentrations and precipitation increase. Different hydrological responses to climate change were observed from the two watersheds, due to contrasting land use and soil characteristics. The watershed with a larger percent of croplands demonstrated a greater increased rate of 5.2 kg N ha-1 in

  5. Comparative analyses of hydrological responses of two adjacent watersheds to climate variability and change using the SWAT model

    Science.gov (United States)

    Lee, Sangchul; Yeo, In-Young; Sadeghi, Ali M.; McCarty, Gregory W.; Hively, Wells; Lang, Megan W.; Sharifi, Amir

    2018-01-01

    Water quality problems in the Chesapeake Bay Watershed (CBW) are expected to be exacerbated by climate variability and change. However, climate impacts on agricultural lands and resultant nutrient loads into surface water resources are largely unknown. This study evaluated the impacts of climate variability and change on two adjacent watersheds in the Coastal Plain of the CBW, using the Soil and Water Assessment Tool (SWAT) model. We prepared six climate sensitivity scenarios to assess the individual impacts of variations in CO2concentration (590 and 850 ppm), precipitation increase (11 and 21 %), and temperature increase (2.9 and 5.0 °C), based on regional general circulation model (GCM) projections. Further, we considered the ensemble of five GCM projections (2085–2098) under the Representative Concentration Pathway (RCP) 8.5 scenario to evaluate simultaneous changes in CO2, precipitation, and temperature. Using SWAT model simulations from 2001 to 2014 as a baseline scenario, predicted hydrologic outputs (water and nitrate budgets) and crop growth were analyzed. Compared to the baseline scenario, a precipitation increase of 21 % and elevated CO2 concentration of 850 ppm significantly increased streamflow and nitrate loads by 50 and 52 %, respectively, while a temperature increase of 5.0 °C reduced streamflow and nitrate loads by 12 and 13 %, respectively. Crop biomass increased with elevated CO2 concentrations due to enhanced radiation- and water-use efficiency, while it decreased with precipitation and temperature increases. Over the GCM ensemble mean, annual streamflow and nitrate loads showed an increase of  ∼  70 % relative to the baseline scenario, due to elevated CO2 concentrations and precipitation increase. Different hydrological responses to climate change were observed from the two watersheds, due to contrasting land use and soil characteristics. The watershed with a larger percent of croplands demonstrated a greater

  6. Calibration and validation of SWAT model for estimating water balance and nitrogen losses in a small agricultural watershed in central Poland

    Directory of Open Access Journals (Sweden)

    Smarzyńska Karolina

    2016-06-01

    Full Text Available Soil and Water Assessment Tool (SWAT ver. 2005 was applied to study water balance and nitrogen load pathways in a small agricultural watershed in the lowlands of central Poland. The natural flow regime of the Zgłowiączka River was strongly modified by human activity (deforestation and installation of a subsurface drainage system to facilitate stable crop production. SWAT was calibrated for daily and monthly discharge and monthly nitrate nitrogen load. Model efficiency was tested using manual techniques (subjective and evaluation statistics (objective. Values of Nash–Sutcliffe efficiency coefficient (NSE, coefficient of determination (R2 and percentage of bias for daily/monthly discharge simulations and monthly load indicated good or very good fit of simulated discharge and nitrate nitrogen load to the observed data set. Model precision and accuracy of fit was proved in validation. The calibrated and validated SWAT was used to assess water balance and nitrogen fluxes in the watershed. According to the results, the share of tile drainage in water yield is equal to 78%. The model analysis indicated the most significant pathway of NO3-N to surface waters in the study area, namely the tile drainage combined with lateral flow. Its share in total NO3-N load amounted to 89%. Identification of nitrogen fluxes in the watershed is crucial for decision makers in order to manage water resources and to implement the most effective measures to limit diffuse pollution from arable land to surface waters.

  7. Evaluation of drought impact on groundwater recharge rate using SWAT and Hydrus models on an agricultural island in western Japan

    Directory of Open Access Journals (Sweden)

    G. Jin

    2015-06-01

    Full Text Available Clarifying the variations of groundwater recharge response to a changing non-stationary hydrological process is important for efficiently managing groundwater resources, particularly in regions with limited precipitation that face the risk of water shortage. However, the rate of aquifer recharge is difficult to evaluate in terms of large annual-variations and frequency of flood events. In our research, we attempt to simulate related groundwater recharge processes under variable climate conditions using the SWAT Model, and validate the groundwater recharge using the Hydrus Model. The results show that annual average groundwater recharge comprised approximately 33% of total precipitation, however, larger variation was found for groundwater recharge and surface runoff compared to evapotranspiration, which fluctuated with annual precipitation variations. The annual variation of groundwater resources is shown to be related to precipitation. In spatial variations, the upstream is the main surface water discharge area; the middle and downstream areas are the main groundwater recharge areas. Validation by the Hydrus Model shows that the estimated and simulated groundwater levels are consistent in our research area. The groundwater level shows a quick response to the groundwater recharge rate. The rainfall intensity had a great impact on the changes of the groundwater level. Consequently, it was estimated that large spatial and temporal variation of the groundwater recharge rate would be affected by precipitation uncertainty in future.

  8. Global sensitivity analysis of a SWAT model: comparison of the variance-based and moment-independent approaches

    Science.gov (United States)

    Khorashadi Zadeh, Farkhondeh; Sarrazin, Fanny; Nossent, Jiri; Pianosi, Francesca; van Griensven, Ann; Wagener, Thorsten; Bauwens, Willy

    2015-04-01

    Uncertainty in parameters is a well-known reason of model output uncertainty which, undermines model reliability and restricts model application. A large number of parameters, in addition to the lack of data, limits calibration efficiency and also leads to higher parameter uncertainty. Global Sensitivity Analysis (GSA) is a set of mathematical techniques that provides quantitative information about the contribution of different sources of uncertainties (e.g. model parameters) to the model output uncertainty. Therefore, identifying influential and non-influential parameters using GSA can improve model calibration efficiency and consequently reduce model uncertainty. In this paper, moment-independent density-based GSA methods that consider the entire model output distribution - i.e. Probability Density Function (PDF) or Cumulative Distribution Function (CDF) - are compared with the widely-used variance-based method and their differences are discussed. Moreover, the effect of model output definition on parameter ranking results is investigated using Nash-Sutcliffe Efficiency (NSE) and model bias as example outputs. To this end, 26 flow parameters of a SWAT model of the River Zenne (Belgium) are analysed. In order to assess the robustness of the sensitivity indices, bootstrapping is applied and 95% confidence intervals are estimated. The results show that, although the variance-based method is easy to implement and interpret, it provides wider confidence intervals, especially for non-influential parameters, compared to the density-based methods. Therefore, density-based methods may be a useful complement to variance-based methods for identifying non-influential parameters.

  9. Assessing the impacts of sustainable agricultural practices for water quality improvements in the Vouga catchment (Portugal) using the SWAT model.

    Science.gov (United States)

    Rocha, João; Roebeling, Peter; Rial-Rivas, María Ermitas

    2015-12-01

    The extensive use of fertilizers has become one of the most challenging environmental issues in agricultural catchment areas. In order to reduce the negative impacts from agricultural activities and to accomplish the objectives of the European Water Framework Directive we must consider the implementation of sustainable agricultural practices. In this study, we assess sustainable agricultural practices based on reductions in N-fertilizer application rates (from 100% to 0%) and N-application methods (single, split and slow-release) across key agricultural land use classes in the Vouga catchment, Portugal. The SWAT model was used to relate sustainable agricultural practices, agricultural yields and N-NO3 water pollution deliveries. Results show that crop yields as well as N-NO3 exportation rates decrease with reductions in N-application rates and single N-application methods lead to lower crop yields and higher N-NO3 exportation rates as compared to split and slow-release N-application methods. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Macrophyte growth module for the SWAT model – impact of climate change and management on stream ecology

    DEFF Research Database (Denmark)

    Lu, Shenglan; Trolle, Dennis; Erfurt, Jytte

    To access how multiple stressors affect the water quantity and quality and stream ecology at catchment scale under various management and climate change scenarios, we implemented macrophyte growth modules for the Soil and Water Assessment Tool version 2012 (SWAT). The macrophyte growth module ori...

  11. Process-based hydrological modeling using SWAT: The effect of permafrost on water resources in the large-scale river catchment Kharaa / Mongolia

    Science.gov (United States)

    Hülsmann, L.; Geyer, T.; Karthe, D.; Priess, J.; Schweitzer, C.

    2012-04-01

    In this study, the Soil Water Assessment Tool (SWAT) was applied to obtain a better understanding of hydrological processes in the semi-arid catchment of the Kharaa River in Northern Mongolia. The transient, physical-based model SWAT was set up using spatial datasets on soil, land use, climate, and stream network provided by the project "IWRM-MoMo" to (i.) simulate the water balance components of the basin and (ii.) to identify potential gaps in the input data. We found that the SWAT model satisfactorily reflects the hydrological processes in the catchment and simulates river runoff as a response to strong rainfall events as well as to snow and ice melt. To obtain correct runoff volumes during spring, permafrost has to be considered. Permafrost-influenced soils constrain water flow in the frozen layer, so that percolation out of the active layer is hampered (Woo 2011). This effect is reproduced in SWAT by assigning an impermeable layer in the subsurface to the areas dominated by permafrost. The simulations indicate that in these regions groundwater resources are limited as a consequence of impermeable ground ice. In addition, groundwater recharge rates in the catchment are generally low due to high evaporation rates (80-90 %). Consequently the base flow contribution is small. Further studies on the estimation of groundwater recharge rates should be carried out, since groundwater is an important resource for water supply. Model results indicate that the non-uniformity of the precipitation distribution was not sufficiently covered by the interpolated input data, so that precipitation and runoff volumes are partially over- or underestimated. Since precipitation defines the overall water availability in river catchments (Baumgartner 1982), additional climate records would considerably improve model outputs. As a consequence of large evapotranspiration losses, discharge as well as groundwater recharge estimates were identified to be highly sensitive to

  12. Simulation of lateral flow with SWAT

    Science.gov (United States)

    Calibration of the SWAT model for the Goodwater Creek Experimental Watershed (GCEW) showed that percolation through the restrictive claypan layer, lateral flow above that layer, and redistribution of excess moisture up to the ground surface were not correctly simulated. In addition, surface runoff a...

  13. How to constrain multi-objective calibrations of the SWAT model using water balance components

    Science.gov (United States)

    Automated procedures are often used to provide adequate fits between hydrologic model estimates and observed data. While the models may provide good fits based upon numeric criteria, they may still not accurately represent the basic hydrologic characteristics of the represented watershed. Here we ...

  14. Evaluating the SWAT model for a low-gradient forested watershed in coastal South Carolina

    Science.gov (United States)

    D.M. Amatya; M.K. Jha.

    2011-01-01

    Modeling the hydrology of low�]gradient forested watersheds on shallow, poorly drained soils of the coastal plain is a challenging task due to complexities in watershed delineation, microtopography, evapotranspiration, runoff generation processes and pathways including flooding and submergence caused by tropical storms, and complexity of vegetation species....

  15. Algorithm Theory - SWAT 2006

    DEFF Research Database (Denmark)

    issues of theoretical algorithmics and applications in various fields including graph algorithms, computational geometry, scheduling, approximation algorithms, network algorithms, data storage and manipulation, combinatorics, sorting, searching, online algorithms, optimization, etc.......This book constitutes the refereed proceedings of the 10th Scandinavian Workshop on Algorithm Theory, SWAT 2006, held in Riga, Latvia, in July 2006. The 36 revised full papers presented together with 3 invited papers were carefully reviewed and selected from 154 submissions. The papers address all...

  16. A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model

    Science.gov (United States)

    Abbaspour, K. C.; Rouholahnejad, E.; Vaghefi, S.; Srinivasan, R.; Yang, H.; Kløve, B.

    2015-05-01

    A combination of driving forces are increasing pressure on local, national, and regional water supplies needed for irrigation, energy production, industrial uses, domestic purposes, and the environment. In many parts of Europe groundwater quantity, and in particular quality, have come under sever degradation and water levels have decreased resulting in negative environmental impacts. Rapid improvements in the economy of the eastern European block of countries and uncertainties with regard to freshwater availability create challenges for water managers. At the same time, climate change adds a new level of uncertainty with regard to freshwater supplies. In this research we build and calibrate an integrated hydrological model of Europe using the Soil and Water Assessment Tool (SWAT) program. Different components of water resources are simulated and crop yield and water quality are considered at the Hydrological Response Unit (HRU) level. The water resources are quantified at subbasin level with monthly time intervals. Leaching of nitrate into groundwater is also simulated at a finer spatial level (HRU). The use of large-scale, high-resolution water resources models enables consistent and comprehensive examination of integrated system behavior through physically-based, data-driven simulation. In this article we discuss issues with data availability, calibration of large-scale distributed models, and outline procedures for model calibration and uncertainty analysis. The calibrated model and results provide information support to the European Water Framework Directive and lay the basis for further assessment of the impact of climate change on water availability and quality. The approach and methods developed are general and can be applied to any large region around the world.

  17. SWATMOD-PREP: Graphical user interface for preparing coupled SWAT-modflow simulations

    Science.gov (United States)

    This paper presents SWATMOD-Prep, a graphical user interface that couples a SWAT watershed model with a MODFLOW groundwater flow model. The interface is based on a recently published SWAT-MODFLOW code that couples the models via mapping schemes. The spatial layout of SWATMOD-Prep guides the user t...

  18. An improved SWAT vegetation growth module and its evaluation for four tropical ecosystems

    Science.gov (United States)

    Alemayehu, Tadesse; van Griensven, Ann; Taddesse Woldegiorgis, Befekadu; Bauwens, Willy

    2017-09-01

    The Soil and Water Assessment Tool (SWAT) is a globally applied river basin ecohydrological model used in a wide spectrum of studies, ranging from land use change and climate change impacts studies to research for the development of the best water management practices. However, SWAT has limitations in simulating the seasonal growth cycles for trees and perennial vegetation in the tropics, where rainfall rather than temperature is the dominant plant growth controlling factor. Our goal is to improve the vegetation growth module of SWAT for simulating the vegetation variables - such as the leaf area index (LAI) - for tropical ecosystems. Therefore, we present a modified SWAT version for the tropics (SWAT-T) that uses a straightforward but robust soil moisture index (SMI) - a quotient of rainfall (P) and reference evapotranspiration (ETr) - to dynamically initiate a new growth cycle within a predefined period. Our results for the Mara Basin (Kenya/Tanzania) show that the SWAT-T-simulated LAI corresponds well with the Moderate Resolution Imaging Spectroradiometer (MODIS) LAI for evergreen forest, savanna grassland and shrubland. This indicates that the SMI is reliable for triggering a new annual growth cycle. The water balance components (evapotranspiration and streamflow) simulated by the SWAT-T exhibit a good agreement with remote-sensing-based evapotranspiration (ET-RS) and observed streamflow. The SWAT-T model, with the proposed vegetation growth module for tropical ecosystems, can be a robust tool for simulating the vegetation growth dynamics in hydrologic models in tropical regions.

  19. Advancing computational methods for calibration of the Soil and Water Assessment Tool (SWAT): Application for modeling climate change impacts on water resources in the Upper Neuse Watershed of North Carolina

    Science.gov (United States)

    Ercan, Mehmet Bulent

    Watershed-scale hydrologic models are used for a variety of applications from flood prediction, to drought analysis, to water quality assessments. A particular challenge in applying these models is calibration of the model parameters, many of which are difficult to measure at the watershed-scale. A primary goal of this dissertation is to contribute new computational methods and tools for calibration of watershed-scale hydrologic models and the Soil and Water Assessment Tool (SWAT) model, in particular. SWAT is a physically-based, watershed-scale hydrologic model developed to predict the impact of land management practices on water quality and quantity. The dissertation follows a manuscript format meaning it is comprised of three separate but interrelated research studies. The first two research studies focus on SWAT model calibration, and the third research study presents an application of the new calibration methods and tools to study climate change impacts on water resources in the Upper Neuse Watershed of North Carolina using SWAT. The objective of the first two studies is to overcome computational challenges associated with calibration of SWAT models. The first study evaluates a parallel SWAT calibration tool built using the Windows Azure cloud environment and a parallel version of the Dynamically Dimensioned Search (DDS) calibration method modified to run in Azure. The calibration tool was tested for six model scenarios constructed using three watersheds of increasing size (the Eno, Upper Neuse, and Neuse) for both a 2 year and 10 year simulation duration. Leveraging the cloud as an on demand computing resource allowed for a significantly reduced calibration time such that calibration of the Neuse watershed went from taking 207 hours on a personal computer to only 3.4 hours using 256 cores in the Azure cloud. The second study aims at increasing SWAT model calibration efficiency by creating an open source, multi-objective calibration tool using the Non

  20. Case Study: Effect of Climatic Characterization on River Discharge in an Alpine-Prealpine Catchment of the Spanish Pyrenees Using the SWAT Model

    Directory of Open Access Journals (Sweden)

    Leticia Palazón

    2016-10-01

    Full Text Available The new challenges in assessment of water resources demand new approaches and tools, such as the use of hydrologic models, which could serve to assist managers in the prediction, planning and management of catchment water supplies in view of increased demand of water for irrigation and climatic change. Good characterization of the spatial patterns of climate variables is of paramount importance in hydrological modelling. This is especially so when modelling mountain environments which are characterized by strong altitudinal climate gradients. However, very often there is a poor distribution of climatic stations in these areas, which in many cases, results in under representation of high altitude areas with respect to climatic data. This results in the poor performance of the models. In the present study, the Soil and Water Assessment Tool (SWAT model was applied to the Barasona reservoir catchment in the Central Spanish Pyrenees in order to assess the influence of different climatic characterizations in the monthly river discharges. Four simulations with different input data were assessed, using only the available climate data (A1; the former plus one synthetic dataset at a higher altitude (B1; and both plus the altitudinal climate gradient (A2 and B2. The model’s performance was evaluated against the river discharges for the representative periods of 2003–2005 and 1994–1996 by means of commonly used statistical measures. The best results were obtained using the altitudinal climate gradient alone (scenario A2. This study provided insight into the importance of taking into account the sources and the spatial distribution of weather data in modelling water resources in mountainous catchments.

  1. Comparison of SWAT and GeoWEPP model in predicting the impact of stone bunds on runoff and erosion processes in the Northern Ethiopian Highlands

    Science.gov (United States)

    Demelash, Nigus; Flagler, Jared; Renschler, Chris; Strohmeier, Stefan; Holzmann, Hubert; Feras, Ziadat; Addis, Hailu; Zucca, Claudio; Bayu, Wondimu; Klik, Andreas

    2017-04-01

    Soil degradation is a major issue in the Ethiopian highlands which are most suitable for agriculture and, therefore, support a major part of human population and livestock. Heavy rainstorms during the rainy season in summer create soil erosion and runoff processes which affect soil fertility and food security. In the last years programs for soil conservation and afforestation were initiated by the Ethiopian government to reduce erosion risk, retain water in the landscape and improve crop yields. The study was done in two adjacent watersheds in the Northwestern highlands of Ethiopia. One of the watersheds is developed by soil and water conservation structures (stone bunds) in 2011 and the other one is without soil and water conservation structures. Spatial distribution of soil textures and other soil properties were determined in the field and in the laboratory and a soil map was derived. A land use map was evaluated based on satellite images and ground truth data. A Digital Elevation Model of the watershed was developed based on conventional terrestrial surveying using a total station. At the outlet of the watersheds weirs with cameras were installed to measure surface runoff. During each event runoff samples were collected and sediment concentration was analyzed. The objective of this study is 1) to assess the impact of stone bunds on runoff and erosion processes by using simulation models, and 2) to compare the performance of two soil erosion models in predicting the measurements. The selected erosion models were the Soil and Water Assessment Tool (SWAT) and the Geospatial Interface to the Water Erosion Prediction Project (GeoWEPP). The simulation models were calibrated/verified for the 2011-2013 periods and validated with 2014-2015 data. Results of this comparison will be presented.

  2. Fecal bacteria source characterization and sensitivity analysis of SWAT 2005

    Science.gov (United States)

    The Soil and Water Assessment Tool (SWAT) version 2005 includes a microbial sub-model to simulate fecal bacteria transport at the watershed scale. The objectives of this study were to demonstrate methods to characterize fecal coliform bacteria (FCB) source loads and to assess the model sensitivity t...

  3. Analysing the Effects of Forest Cover and Irrigation Farm Dams on Streamflows of Water-Scarce Catchments in South Australia through the SWAT Model

    Directory of Open Access Journals (Sweden)

    Hong Hanh Nguyen

    2017-01-01

    Full Text Available To assist water resource managers with future land use planning efforts, the eco-hydrological model Soil and Water Assessment Tool (SWAT was applied to three catchments in South Australia that experience extreme low flow conditions. Particular land uses and management issues of interest included forest covers, known to affect water yields, and farm dams, known to intercept and change the hydrological dynamics in a catchment. The study achieved a satisfactory daily calibration when irrigation farm dams were incorporated in the model. For the catchment dominated by extreme low flows, a better daily simulation across a range of qualitative and quantitative metrics was gained using the base-flow static threshold optimization technique. Scenario analysis on effects of forest cover indicated an increase of surface flow and a reduction of base-flow when native eucalyptus lands were replaced by pastures and vice versa. A decreasing trend was observed for the overall water yield of catchments with more forest plantation due to the higher evapotranspiration (ET rate and the decline in surface flow. With regards to effects of irrigation farm dams, assessment on a daily time step suggested that a significant volume of water is stored in these systems with the water loss rate highest in June and July. On an annual basis, the model indicated that approximately 13.1% to 22.0% of water has been captured by farm dams for irrigation. However, the scenario analysis revealed that the purposes of use of farm dams rather than their volumetric capacities in the catchment determined the magnitude of effects on streamflows. Water extracted from farm dams for irrigation of orchards and vineyards are more likely to diminish streamflows than other land uses. Outputs from this study suggest that the water use restrictions from farm dams during recent drought periods were an effective tool to minimize impacts on streamflows.

  4. Quantifying the Uncertainty in Streamflow Predictions Using Swat for Brazos-Colorado Coastal Watershed, Texas

    Science.gov (United States)

    Mandal, D.; Bhatia, N.; Srivastav, R. K.

    2016-12-01

    Soil Water Assessment Tool (SWAT) is one of the most comprehensive hydrologic models to simulate streamflow for a watershed. The two major inputs for a SWAT model are: (i) Digital Elevation Models (DEM), and (ii) Land Use and Land Cover Maps (LULC). This study aims to quantify the uncertainty in streamflow predictions using SWAT for San Bernard River in Brazos-Colorado coastal watershed, Texas, by incorporating the respective datasets from different sources: (i) DEM data will be obtained from ASTER GDEM V2, GMTED2010, NHD DEM, and SRTM DEM datasets with ranging resolution from 1/3 arc-second to 30 arc-second, and (ii) LULC data will be obtained from GLCC V2, MRLC NLCD2011, NOAA's C-CAP, USGS GAP, and TCEQ databases. Weather variables (Precipitation and Max-Min Temperature at daily scale) will be obtained from National Climatic Data Centre (NCDC) and SWAT in-built STASGO tool will be used to obtain the soil maps. The SWAT model will be calibrated using SWAT-CUP SUFI-2 approach and its performance will be evaluated using the statistical indices of Nash-Sutcliffe efficiency (NSE), ratio of Root-Mean-Square-Error to standard deviation of observed streamflow (RSR), and Percent-Bias Error (PBIAS). The study will help understand the performance of SWAT model with varying data sources and eventually aid the regional state water boards in planning, designing, and managing hydrologic systems.

  5. Soil and Water Assessment Tool (SWAT) Global Applications

    OpenAIRE

    Arnold, J.; Srinivasan, R; Neitsch, S. (ed.); George, C.; Abbaspour, K.; Hao, F.H.; van Griensven, A.; Gosain, A.; Debels, P.; N.W. Kim; Somura, H.; Ella, Victor B.; Leon, L.; Jintrawet, A.; Manuel R. Reyes

    2009-01-01

    Summary: SWAT,the Soil and Water Assessment Tool is a river basin, or watershed, scale model developed to predict the impact of land management practices on water, sediment and agricultural chemical yields in large complex watersheds with varying soils, land use and management conditions over long periods of time. [from the editors' preamble] LTRA-5 (Agroforestry and Sustainable Vegetable Production)

  6. Improving SWAT for simulating water and carbon fluxes of forest ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Qichun; Zhang, Xuesong

    2016-11-01

    As a widely used watershed model for assessing impacts of anthropogenic and natural disturbances on water quantity and quality, the Soil and Water Assessment Tool (SWAT) has not been extensively tested in simulating water and carbon fluxes of forest ecosystems. Here, we examine SWAT simulations of evapotranspiration (ET), net primary productivity (NPP), net ecosystem exchange (NEE), and plant biomass at ten AmeriFlux forest sites across the U.S. We identify unrealistic radiation use efficiency (Bio_E), large leaf to biomass fraction (Bio_LEAF), and missing phosphorus supply from parent material weathering as the primary causes for the inadequate performance of the default SWAT model in simulating forest dynamics. By further revising the relevant parameters and processes, SWAT’s performance is substantially improved. Based on the comparison between the improved SWAT simulations and flux tower observations, we discuss future research directions for further enhancing model parameterization and representation of water and carbon cycling for forests.

  7. Assessing the impacts of future climate conditions on the effectiveness of winter cover crops in reducing nitrate loads into the Chesapeake Bay Watershed using SWAT model

    Science.gov (United States)

    Lee, Sangchul; Sadeghi, Ali M.; Yeo, In-Young; McCarty, Gregory W.; Hively, W. Dean

    2017-01-01

    Winter cover crops (WCCs) have been widely implemented in the Coastal Plain of the Chesapeake Bay watershed (CBW) due to their high effectiveness at reducing nitrate loads. However, future climate conditions (FCCs) are expected to exacerbate water quality degradation in the CBW by increasing nitrate loads from agriculture. Accordingly, the question remains whether WCCs are sufficient to mitigate increased nutrient loads caused by FCCs. In this study, we assessed the impacts of FCCs on WCC nitrate reduction efficiency on the Coastal Plain of the CBW using Soil and Water Assessment Tool (SWAT) model. Three FCC scenarios (2085 – 2098) were prepared using General Circulation Models (GCMs), considering three Intergovernmnental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) greenhouse gas emission scenarios. We also developed six representative WCC implementation scenarios based on the most commonly used planting dates and species of WCCs in this region. Simulation results showed that WCC biomass increased by ~ 58 % under FCC scenarios, due to climate conditions conducive to the WCC growth. Prior to implementing WCCs, annual nitrate loads increased by ~ 43 % under FCC scenarios compared to the baseline scenario (2001 – 2014). When WCCs were planted, annual nitrate loads were substantially reduced by ~ 48 % and WCC nitrate reduction efficiency water ~ 5 % higher under FCC scenarios relative to the baseline. The increase rate of WCC nitrate reduction efficiency varied by FCC scenarios and WCC planting methods. As CO2 concentration was higher and winters were warmer under FCC scenarios, WCCs had greater biomass and therefore showed higher nitrate reduction efficiency. In response to FCC scenarios, the performance of less effective WCC practices (e.g., barley, wheat, and late planting) under the baseline indicated ~ 14 % higher increase rate of nitrate reduction efficiency compared to ones with better effectiveness under the baseline (e

  8. Cost-effectiveness and cost-benefit analysis of BMPs in controlling agricultural nonpoint source pollution in China based on the SWAT model.

    Science.gov (United States)

    Liu, Ruimin; Zhang, Peipei; Wang, Xiujuan; Wang, Jiawei; Yu, Wenwen; Shen, Zhenyao

    2014-12-01

    Best management practices (BMPs) have been widely used in managing agricultural nonpoint source pollution (ANSP) at the watershed level. Most BMPs are related to land use, tillage management, and fertilizer levels. In total, seven BMP scenarios (Reforest1, Reforest2, No Tillage, Contour tillage, and fertilizer level 1-4) that are related to these three factors were estimated in this study. The objectives were to investigate the effectiveness and cost-benefit of these BMPs on ANSP reduction in a large tributary of the Three Gorges Reservoir (TGR) in China, which are based on the simulation results of the Soil and Water Assessment Tool (SWAT) model. The results indicated that reforestation was the most economically efficient of all BMPs, and its net benefits were up to CNY 4.36×10(7) years(-1) (about USD 7.08×10(6) years(-1)). Regarding tillage practices, no tillage practice was more environmentally friendly than other tillage practices, and contour tillage was more economically efficient. Reducing the local fertilizer level to 0.8-fold less than that of 2010 can yield a satisfactory environmental and economic efficiency. Reforestation and fertilizer management were more effective in reducing total phosphorus (TP), whereas tillage management was more effective in reducing total nitrogen (TN). When CNY 10,000 (about USD 162) was applied to reforestation, no tillage, contour tillage, and an 0.8-fold reduction in the fertilizer level, then annual TN load can be reduced by 0.08, 0.16, 0.11, and 0.04 t and annual TP load can be reduced by 0.04, 0.02, 0.01 and 0.03 t, respectively. The cost-benefit (CB) ratios of the BMPs were as follows: reforestation (207 %) > contour tillage (129 %) > no tillage (114 %) > fertilizer management (96 and 89 %). The most economical and effective BMPs can be designated as follows: BMP1 (returning arable land with slopes greater than 25° to forests and those lands with slopes of 15-25° to orchards), BMP2 (implementing no tillage

  9. Improving the Performance of Temperature Index Snowmelt Model of SWAT by Using MODIS Land Surface Temperature Data

    Science.gov (United States)

    Yang, Yan; Onishi, Takeo; Hiramatsu, Ken

    2014-01-01

    Simulation results of the widely used temperature index snowmelt model are greatly influenced by input air temperature data. Spatially sparse air temperature data remain the main factor inducing uncertainties and errors in that model, which limits its applications. Thus, to solve this problem, we created new air temperature data using linear regression relationships that can be formulated based on MODIS land surface temperature data. The Soil Water Assessment Tool model, which includes an improved temperature index snowmelt module, was chosen to test the newly created data. By evaluating simulation performance for daily snowmelt in three test basins of the Amur River, performance of the newly created data was assessed. The coefficient of determination (R 2) and Nash-Sutcliffe efficiency (NSE) were used for evaluation. The results indicate that MODIS land surface temperature data can be used as a new source for air temperature data creation. This will improve snow simulation using the temperature index model in an area with sparse air temperature observations. PMID:25165746

  10. Adequacy of TRMM satellite rainfall data in driving the SWAT modeling of Tiaoxi catchment (Taihu lake basin, China)

    Science.gov (United States)

    Li, Dan; Christakos, George; Ding, Xinxin; Wu, Jiaping

    2018-01-01

    Spatial rainfall data is an essential input to Distributed Hydrological Models (DHM), and a significant contributor to hydrological model uncertainty. Model uncertainty is higher when rain gauges are sparse, as is often the case in practice. Currently, satellite-based precipitation products increasingly provide an alternative means to ground-based rainfall estimates, in which case a rigorous product assessment is required before implementation. Accordingly, the twofold objective of this work paper was the real-world assessment of both (a) the Tropical Rainfall Measuring Mission (TRMM) rainfall product using gauge data, and (b) the TRMM product's role in forcing data for hydrologic simulations in the area of the Tiaoxi catchment (Taihu lake basin, China). The TRMM rainfall products used in this study are the Version-7 real-time 3B42RT and the post-real-time 3B42. It was found that the TRMM rainfall data showed a superior performance at the monthly and annual scales, fitting well with surface observation-based frequency rainfall distributions. The Nash-Sutcliffe Coefficient of Efficiency (NSCE) and the relative bias ratio (BIAS) were used to evaluate hydrologic model performance. The satisfactory performance of the monthly runoff simulations in the Tiaoxi study supports the view that the implementation of real-time 3B42RT allows considerable room for improvement. At the same time, post-real-time 3B42 can be a valuable tool of hydrologic modeling, water balance analysis, and basin water resource management, especially in developing countries or at remote locations in which rainfall gauges are scarce.

  11. An improved SWAT vegetation growth module and its evaluation for four tropical ecosystems

    Directory of Open Access Journals (Sweden)

    T. Alemayehu

    2017-09-01

    Full Text Available The Soil and Water Assessment Tool (SWAT is a globally applied river basin ecohydrological model used in a wide spectrum of studies, ranging from land use change and climate change impacts studies to research for the development of the best water management practices. However, SWAT has limitations in simulating the seasonal growth cycles for trees and perennial vegetation in the tropics, where rainfall rather than temperature is the dominant plant growth controlling factor. Our goal is to improve the vegetation growth module of SWAT for simulating the vegetation variables – such as the leaf area index (LAI – for tropical ecosystems. Therefore, we present a modified SWAT version for the tropics (SWAT-T that uses a straightforward but robust soil moisture index (SMI – a quotient of rainfall (P and reference evapotranspiration (ETr – to dynamically initiate a new growth cycle within a predefined period. Our results for the Mara Basin (Kenya/Tanzania show that the SWAT-T-simulated LAI corresponds well with the Moderate Resolution Imaging Spectroradiometer (MODIS LAI for evergreen forest, savanna grassland and shrubland. This indicates that the SMI is reliable for triggering a new annual growth cycle. The water balance components (evapotranspiration and streamflow simulated by the SWAT-T exhibit a good agreement with remote-sensing-based evapotranspiration (ET-RS and observed streamflow. The SWAT-T model, with the proposed vegetation growth module for tropical ecosystems, can be a robust tool for simulating the vegetation growth dynamics in hydrologic models in tropical regions.

  12. Soil Water and Temperature System (SWATS) Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Bond, D

    2005-01-01

    The soil water and temperature system (SWATS) provides vertical profiles of soil temperature, soil-water potential, and soil moisture as a function of depth below the ground surface at hourly intervals. The temperature profiles are measured directly by in situ sensors at the Central Facility and many of the extended facilities of the SGP climate research site. The soil-water potential and soil moisture profiles are derived from measurements of soil temperature rise in response to small inputs of heat. Atmospheric scientists use the data in climate models to determine boundary conditions and to estimate the surface energy flux. The data are also useful to hydrologists, soil scientists, and agricultural scientists for determining the state of the soil.

  13. Improvement of the R-SWAT-FME framework to support multiple variables and multi-objective functions

    Science.gov (United States)

    Wu, Yiping; Liu, Shu-Guang

    2014-01-01

    Application of numerical models is a common practice in the environmental field for investigation and prediction of natural and anthropogenic processes. However, process knowledge, parameter identifiability, sensitivity, and uncertainty analyses are still a challenge for large and complex mathematical models such as the hydrological/water quality model, Soil and Water Assessment Tool (SWAT). In this study, the previously developed R program language-SWAT-Flexible Modeling Environment (R-SWAT-FME) was improved to support multiple model variables and objectives at multiple time steps (i.e., daily, monthly, and annually). This expansion is significant because there is usually more than one variable (e.g., water, nutrients, and pesticides) of interest for environmental models like SWAT. To further facilitate its easy use, we also simplified its application requirements without compromising its merits, such as the user-friendly interface. To evaluate the performance of the improved framework, we used a case study focusing on both streamflow and nitrate nitrogen in the Upper Iowa River Basin (above Marengo) in the United States. Results indicated that the R-SWAT-FME performs well and is comparable to the built-in auto-calibration tool in multi-objective model calibration. Overall, the enhanced R-SWAT-FME can be useful for the SWAT community, and the methods we used can also be valuable for wrapping potential R packages with other environmental models.

  14. Calibration of Spatially Distributed Hydrological Processes and Model Parameters in SWAT Using Remote Sensing Data and an Auto-Calibration Procedure: A Case Study in a Vietnamese River Basin

    Directory of Open Access Journals (Sweden)

    Lan Thanh Ha

    2018-02-01

    Full Text Available In this paper, evapotranspiration (ET and leaf area index (LAI were used to calibrate the SWAT model, whereas remotely sensed precipitation and other climatic parameters were used as forcing data for the 6300 km2 Day Basin, a tributary of the Red River in Vietnam. The efficacy of the Sequential Uncertainty Fitting (SUFI-2 parameter sensitivity and optimization model was tested with area specific remote sensing input parameters for every Hydrological Response Units (HRU, rather than with measurements of river flow representing a large set of HRUs, i.e., a bulk calibration. Simulated monthly ET correlations with remote sensing estimates showed an R2 = 0.71, Nash–Sutcliffe Efficiency NSE = 0.65, and Kling Gupta Efficiency KGE = 0.80 while monthly LAI showed correlations of R2 = 0.59, NSE = 0.57 and KGE = 0.83 over a five-year validation period. Accumulated modelled ET over the 5-year calibration period amounted to 5713 mm compared to 6015 mm of remotely sensed ET, yielding a difference of 302 mm (5.3%. The monthly flow at two flow measurement stations were adequately estimated (R2 = 0.78 and 0.55, NSE = 0.71 and 0.63, KGE = 0.59 and 0.75 for Phu Ly and Ninh Binh, respectively. This outcome demonstrates the capability of SWAT model to obtain spatial and accurate simulation of eco-hydrological processes, also when rivers are ungauged and the water withdrawal system is complex.

  15. Development and application of SWAT to paddy rice district at watershed scale

    Science.gov (United States)

    Shi, Yuzhi; Zhang, Chi; Zhou, Huicheng

    2010-05-01

    In irrigation district, especially in paddy rice fields, agricultural irrigation water use has a great influence on the natural water cycle process at watershed scale. In this study, SWAT model was modified to simulate irrigation water demand and quantify the irrigation return flow coefficient and the irrigation impact coefficient in paddy rice fields. Due to the lack of irrigation observed data, a multi-water source module was add to SWAT to build several feasible extraction scenarios, and a new algorithm of automatic irrigation application was implemented too. According to the simulation accuracy, the optimal scenario was selected to use in the new SWAT model, and then was applied to Changge Irrigation District in Hulan River Basin, northeast China. Comparisons between the enhanced model and old one were conducted at outlet cite, sifangtai. The results showed that the proposed SWAT has higher precision during calibration and validation periods, Nash coefficient of the simulated monthly flow was from 0.74 and 0.69 to 0.88 and 0.80 respectively. in addition, the annual averaged irrigation water and return water were 78 million m3 and 41 million m3, the irrigation return flow coefficient was 0.52, average consumption of irrigation water accounted for 10% of the total runoff. In general, the developed model had been greatly improved as compared to original model. Keywords: SWAT model, hydrological modeling, rice, irrigation return flow coefficient, irrigation impact coefficient

  16. Guidelines for using sensitivity analysis and auto-calibration tools for multi-gage or multi-step calibration in SWAT

    Science.gov (United States)

    Autocalibration of a water quality model such as SWAT (Soil and Water Assessment Tool) can be a powerful, labor-saving tool. When multi-gage or multi-pollutant calibration is desired, autocalibration is essential because the time involved in manual calibration becomes prohibitive. The ArcSWAT Interf...

  17. Application of the Soil and Water Assessment Tool (SWAT Model on a small tropical island (Great River Watershed, Jamaica as a tool in Integrated Watershed and Coastal Zone Management

    Directory of Open Access Journals (Sweden)

    Orville P. Grey

    2014-09-01

    Full Text Available The Great River Watershed, located in north-west Jamaica, is critical for development, particularly for housing, tourism, agriculture, and mining. It is a source of sediment and nutrient loading to the coastal environment including the Montego Bay Marine Park. We produced a modeling framework using the Soil and Water Assessment Tool (SWAT and GIS. The calculated model performance statistics for high flow discharge yielded a Nash-Sutcliffe Efficiency (NSE value of 0.68 and a R² value of 0.70 suggesting good measured and simulated (calibrated discharge correlation. Calibration and validation results for streamflow were similar to the observed streamflows. For the dry season the simulated urban landuse scenario predicted an increase in surface runoff in excess of 150%. During the wet season it is predicted to range from 98 to 234% presenting a significant risk of flooding, erosion and other environmental issues. The model should be used for the remaining 25 watersheds in Jamaica and elsewhere in the Caribbean. The models suggests that projected landuse changes will have serious impacts on available water (streamflow, stream health, potable water treatment, flooding and sensitive coastal ecosystems.

  18. Hydrology and sediment yield calibration for the Barasona reservoir catchment (Spain) using SWAT

    Science.gov (United States)

    Palazón, Leticia; Navas, Ana

    2013-04-01

    Hydrological and soil erosion models, as Soil and Water Assessment Tool (SWAT), have become very useful tools and increasingly serve as vital components of integrated environmental assessments that provide information outside of direct field experiments and causal observation. The purpose of this study was to improve the calibration of SWAT model to use it in an alpine catchment as a simulator of processes related to water quality and soil erosion. SWAT is spatially semi-distributed, agro-hydrological model that operates on a daily time step (as a minimum) at basin scale. It is designed to predict the impact of management on water, sediment and agricultural chemical yields in ungaged catchments. SWAT provides physically based algorithms as an option to define many of the important components of the hydrologic cycle. The input requirements of the model are used to describe the climate, soil properties, topography, vegetation, and land management practices. SWAT analyzes small or large catchments by discretising into sub-basins, which are then further subdivided into hydrological response units (HRUs) with homogeneous land use, soil type and slope. SWAT model (SWAT2009) coupled with a GIS interface (ArcSWAT), was applied to the Barasona reservoir catchment located in the central Spanish Pyrenees. The 1509 km2 agro-forestry catchment presents a mountain type climate, an altitudinal range close to 3000 meters and a precipitation variation close to 1000 mm/km. The mountainous characteristics of the catchment, in addition to the scarcity of climate data in the region, require specific calibration for some processes. Snowfall and snowmelt are significant processes in the hydrologic regime of the area and were calibrated in a previous work. In this work some of the challenges of the catchment to model with SWAT which affected the hydrology and the sediment yield simulation were performed as improvement of the previous calibration. Two reservoirs, a karst system which

  19. Organizational Models of Electronic Information

    Directory of Open Access Journals (Sweden)

    Chao-chen Chen

    1997-12-01

    Full Text Available Along with the popularity of Internet, electronic information is getting more and more important. To find efficient organization methods of electronic information is the main issue for information retrieval. Many solutions have been proposed.The aim of this article is to discuss the existing organizational models of electronic information. We explain their backgrounds of developments, their environments of applications and some related issues.[Article content in Chinese

  20. Assimilating Remotely Sensed Surface Soil Moisture into SWAT using Ensemble Kalman Filter

    Science.gov (United States)

    In this study, a 1-D Ensemble Kalman Filter has been used to update the soil moisture states of the Soil and Water Assessment Tool (SWAT) model. Experiments were conducted for the Cobb Creek Watershed in southeastern Oklahoma for 2006-2008. Assimilation of in situ data proved limited success in the ...

  1. Hydrologic Response Unit Routing in SWAT to Simulate Effects of Vegetated Filter Strip for South-Korean Conditions Based on VFSMOD

    Directory of Open Access Journals (Sweden)

    Kyoung Jae Lim

    2011-08-01

    Full Text Available The Soil and Water Assessment Tool (SWAT model has been used worldwide for many hydrologic and Non-Point Source (NPS Pollution analyses on a watershed scale. However, it has many limitations in simulating the Vegetative Filter Strip (VFS because it considers only ‘filter strip width’ when the model estimates sediment trapping efficiency and does not consider the routing of sediment with overland flow which is expected to maximize the sediment trapping efficiency from upper agricultural subwatersheds to lower spatially-explicit filter strips. Therefore, the SWAT overland flow option between landuse-subwatersheds with sediment routing capability was enhanced by modifying the SWAT watershed configuration and SWAT engine based on the numerical model VFSMOD applied to South-Korean conditions. The enhanced SWAT can simulate the VFS sediment trapping efficiency for South-Korean conditions in a manner similar to the desktop VFSMOD-w system. Due to this enhancement, SWAT is applicable to simulate the effects of overland flow from upper subwatersheds to reflect increased runoff volume at the lower subwatershed, which occurs in the field if no diversion channel is installed. In this study, the enhanced SWAT model was applied to small watersheds located at Jaun-ri in South-Korea to simulate a diversion channel and spatially-explicit VFS. Sediment can be reduced by 31%, 65%, and 68%, with a diversion channel, the VFS, and the VFS with diversion channel, respectively. The enhanced SWAT should be used in estimating site-specific effects on sediment reduction with diversion channels and VFS, instead of the currently available SWAT, which does not simulate sediment routing in overland flow and does not consider other sensitive factors affecting sediment reduction with VFS.

  2. Critical review of SWAT applications in the upper Nile basin countries

    Directory of Open Access Journals (Sweden)

    A. van Griensven

    2012-09-01

    Full Text Available The Soil and Water Assessment Tool (SWAT is an integrated river basin model that is widely applied within the Nile basin. Up to date, more than 20 peer-reviewed papers describe the use of SWAT for a variety of problems in the upper Nile basin countries, such as erosion modelling, land use and climate change impact modelling and water resources management. The majority of the studies are focused on locations in the tropical highlands in Ethiopia and around Lake Victoria. The popularity of SWAT is attributed to the fact that the tool is freely available and that it is readily applicable through the development of geographic information system (GIS based interfaces and its easy linkage to sensitivity, calibration and uncertainty analysis tools. The online and free availability of basic GIS data that are required for SWAT made its applicability more straightforward even in data-scarce areas. However, the easy use of SWAT may not always lead to appropriate models which is also a consequence of the quality of the available free databases in these regions. In this paper, we aim at critically reviewing the use of SWAT in the context of the modelling purpose and problem descriptions in the tropical highlands of the Nile basin countries. To evaluate the models that are described in journal papers, a number of criteria are used to evaluate the model set-up, model performances, physical representation of the model parameters, and the correctness of the hydrological model balance. On the basis of performance indicators, the majority of the SWAT models were classified as giving satisfactory to very good results. Nevertheless, the hydrological mass balances as reported in several papers contained losses that might not be justified. Several papers also reported the use of unrealistic parameter values. More worrying is that many papers lack this information. For this reason, most of the reported SWAT models have to be evaluated critically. An important gap is

  3. Critical review of the application of SWAT in the upper Nile Basin countries

    Science.gov (United States)

    van Griensven, A.; Ndomba, P.; Yalew, S.; Kilonzo, F.

    2012-03-01

    The Soil and Water Assessment Tool (SWAT) is a hydrological simulation tool that is widely applied within the Nile basin. Up to date, more than 20 peer reviewed papers describe the use of SWAT for a variety of problems in the upper Nile basin countries, such as erosion modeling, land use modeling, climate change impact modeling and water resources management. The majority of the studies are clustered in the tropical highlands in Ethiopia and around Lake Victoria. The popularity of SWAT is attributed to the fact that the tool is freely available and that it is readily applicable through the development of Geographic Information System (GIS) based interfaces and its easy linkage to sensitivity, calibration and uncertainty analysis tools. The online and free availability of basic GIS data that are required for SWAT made its applicability more straight forward even in data scarce areas. However, the easy use of SWAT may not always lead to knowledgeable models. In this paper, we aim at critically reviewing the use of SWAT in the context of the modeling purpose and problem descriptions in the tropical highlands of the Nile Basin countries. A number of criteria are used to evaluate the model set-up, model performances, physical representation of the model parameters, and the correctness of the hydrological model balance. On the basis of performance indicators, the majority of the SWAT models were classified as giving satisfactory to very good results. Nevertheless, the hydrological mass balances as reported in several papers contained losses that might not be justified. Several papers also reported unrealistic parameter values. More worrying is that many papers lack this information. For this reason, it is difficult to give an overall positive evaluation to most of the reported SWAT models. An important gap is the lack of attention that is given to the vegetation and crop processes. None of the papers reported any adaptation to the crop parameters, or any crop related

  4. Soil Water and Temperature System (SWATS) Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Cook, David R. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-04-01

    The soil water and temperature system (SWATS) provides vertical profiles of soil temperature, soil-water potential, and soil moisture as a function of depth below the ground surface at hourly intervals. The temperature profiles are measured directly by in situ sensors at the Central Facility and many of the extended facilities of the U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility Southern Great Plains (SGP) site. The soil-water potential and soil moisture profiles are derived from measurements of soil temperature rise in response to small inputs of heat. Atmospheric scientists use the data in climate models to determine boundary conditions and to estimate the surface energy flux. The data are also useful to hydrologists, soil scientists, and agricultural scientists for determining the state of the soil.

  5. Sensitivity of different satellites gridded data over Brahmaputra Basin byusing Soil and Water Assessment Tool (SWAT)

    Science.gov (United States)

    Paul, S.; Pradhanang, S. M.; Islam, A. S.

    2016-12-01

    More than half a billion people of India, China, Nepal, Bangladesh and Bhutan are dependent on the water resources of the Brahmaputra river. With climatic and anthropogenic change of this basin region is becoming a cause of concern for future water management and sharing with transboundary riparian nations. To address such issues, robust watershed runoff modeling of the basin is essential. Soil and Water Assessment Tool (SWAT) is a widely used semi-distributed watershed model that is capable of analyzing surface runoff, stream flow, water yield, sediment and nutrient transport in a large river basin such as Brahmaputra, but the performance of runoff the model depends on the accuracy of input precipitation datasets. But for a transboundary basin like Brahmaputra, precipitation gauge data from upstream areas is either not available or not accessible to the scientific communities. Satellite rainfall products are very effective where radar datasets are absent and conventional rain gauges are sparse. However, the sensitivity of the SWAT model to different satellite data products as well as hydrologic parameters for the Brahmaputra Basin are largely unknown. Thus in this study, a comparative analysis with different satellite data product has been made to assess the runoff using SWAT model. Here, datafrom three sources: TRMM, APHRDOTIE and GPCP were used as input precipitation satellite data set and ERA-Interim was used as input temperature dataset from 1998 to 2009. The main methods used in modeling the hydrologic processes in SWAT were curve number method for runoff estimating, Penman-Monteith method for PET and Muskingum method for channel routing. Our preliminary results have revealed thatthe TRMM data product is more accurate than APHRODITE and GPCP for runoff analysis. The coefficient of determination (R2) and Nash-Sutcliffe efficiencies for both calibration and validation period from TRMM data are 0.83 and 0.72, respectively.

  6. FEST-C 1.3 & 2.0 for CMAQ Bi-directional NH3, Crop Production, and SWAT Modeling

    Science.gov (United States)

    The Fertilizer Emission Scenario Tool for CMAQ (FEST-C) is developed in a Linux environment, a festc JAVA interface that integrates 14 tools and scenario management options facilitating land use/crop data processing for the Community Multiscale Air Quality (CMAQ) modeling system ...

  7. Boltzmann-Electron Model in Aleph.

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, Thomas Patrick; Hooper, Russell

    2014-11-01

    We apply the Boltzmann-electron model in the electrostatic, particle-in-cell, finite- element code Aleph to a plasma sheath. By assuming a Boltzmann energy distribution for the electrons, the model eliminates the need to resolve the electron plasma fre- quency, and avoids the numerical "grid instability" that can cause unphysical heating of electrons. This allows much larger timesteps to be used than with kinetic electrons. Ions are treated with the standard PIC algorithm. The Boltzmann-electron model re- quires solution of a nonlinear Poisson equation, for which we use an iterative Newton solver (NOX) from the Trilinos Project. Results for the spatial variation of density and voltage in the plasma sheath agree well with an analytic model

  8. Development of stream-subsurface flow module in sub-daily simulation of Escherichia coli using SWAT

    Science.gov (United States)

    Kim, Minjeong; Boithias, Laurie; Cho, Kyung Hwa; Silvera, Norbert; Thammahacksa, Chanthamousone; Latsachack, Keooudone; Rochelle-Newall, Emma; Sengtaheuanghoung, Oloth; Pierret, Alain; Pachepsky, Yakov A.; Ribolzi, Olivier

    2017-04-01

    Water contaminated with pathogenic bacteria poses a large threat to public health, especially in the rural areas in the tropics where sanitation and drinking water facilities are often lacking. Several studies have used the Soil and Water Assessment Tool (SWAT) to predict the export of in-stream bacteria at a watershed-scale. However, SWAT is limited to in-stream processes, such as die-off, resuspension and, deposition; and it is usually implemented on a daily time step using the SCS Curve Number method, making it difficult to explore the dynamic fate and transport of bacteria during short but intense events such as flash floods in tropical humid montane headwaters. To address these issues, this study implemented SWAT on an hourly time step using the Green-Ampt infiltration method, and tested the effects of subsurface flow (LATQ+GWQ in SWAT) on bacterial dynamics. We applied the modified SWAT model to the 60-ha Houay Pano catchment in Northern Laos, using sub-daily rainfall and discharge measurements, electric conductivity-derived fractions of overland and subsurface flows, suspended sediments concentrations, and the number of fecal indicator organism Escherichia coli monitored at the catchment outlet from 2011 to 2013. We also took into account land use change by delineating the watershed with the 3-year composite land use map. The results show that low subsurface flow of less than 1 mm recovered the underestimation of E. coli numbers during the dry season, while high subsurface flow caused an overestimation during the wet season. We also found that it is more reasonable to apply the stream-subsurface flow interaction to simulate low in-stream bacteria counts. Using fecal bacteria to identify and understand the possible interactions between overland and subsurface flows may well also provide some insight into the fate of other bacteria, such as those involved in biogeochemical fluxes both in-stream and in the adjacent soils and hyporheic zones.

  9. Rotational nuclear models and electron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Moya de Guerra, E.

    1986-05-01

    A review is made of the basic formalism involved in the application of nuclear rotational models to the problem of electron scattering from axially symmetric deformed nuclei. Emphasis is made on the use of electron scattering to extract information on the nature of the collective rotational model. In this respect, the interest of using polarized beam and target is discussed with the help of illustrative examples. Concerning the nuclear structure four rotational models are considered: Two microscopic models, namely the Projected Hartree-Fock (PHF) and cranking models; and two collective models, the rigid rotor and the irrotational flow models. The problem of current conservation within the different models is also discussed.

  10. Effective electron-electron and electron-phonon interactions in the Hubbard-Holstein model

    Energy Technology Data Exchange (ETDEWEB)

    Aprea, G. [INFM-CNR SMC Center, and Dipartimento di Fisica, Universita di Roma ' La Sapienza' , piazzale Aldo Moro 5, I-00185 Rome (Italy); Di Castro, C. [INFM-CNR SMC Center, and Dipartimento di Fisica, Universita di Roma ' La Sapienza' , piazzale Aldo Moro 5, I-00185 Rome (Italy); Grilli, M. [INFM-CNR SMC Center, and Dipartimento di Fisica, Universita di Roma ' La Sapienza' , piazzale Aldo Moro 5, I-00185 Rome (Italy)]. E-mail marco.grilli@roma1.infn.it; Lorenzana, J. [INFM-CNR SMC Center, and Dipartimento di Fisica, Universita di Roma ' La Sapienza' , piazzale Aldo Moro 5, I-00185 Rome (Italy)

    2006-06-12

    We investigate the interplay between the electron-electron and the electron-phonon interaction in the Hubbard-Holstein model. We implement the flow-equation method to investigate within this model the effect of correlation on the electron-phonon effective coupling and, conversely, the effect of phonons in the effective electron-electron interaction. Using this technique we obtain analytical momentum-dependent expressions for the effective couplings and we study their behavior for different physical regimes. In agreement with other works on this subject, we find that the electron-electron attraction mediated by phonons in the presence of Hubbard repulsion is peaked at low transferred momenta. The role of the characteristic energies involved is also analyzed.

  11. Multidisciplinary Modelling Tools for Power Electronic Circuits

    DEFF Research Database (Denmark)

    Bahman, Amir Sajjad

    This thesis presents multidisciplinary modelling techniques in a Design For Reliability (DFR) approach for power electronic circuits. With increasing penetration of renewable energy systems, the demand for reliable power conversion systems is becoming critical. Since a large part of electricity...... for expensive computation facilities in DFR approach. Therefore, in this thesis focus is placed on the generation of accurate, simple and generic models to study and assess thermal and electrical behavior of power electronic circuits (especially power modules). In this thesis, different power electronic...... is processed through power electronics, highly efficient, sustainable, reliable and cost-effective power electronic devices are needed. Reliability of a product is defined as the ability to perform within its predefined functions under given conditions in a specific time. Because power electronic devices...

  12. Soil and Water Assessment Tool (SWAT) Applicability on Nutrients Loadings Prediction in Mountainous Lower Bear Malad River (LBMR) Watershed, Utah.

    Science.gov (United States)

    Salha, A. A.; Stevens, D. K.

    2014-12-01

    The application of watershed simulation models is indispensable when pollution is generated by a nonpoint source. These models should be able to simulate large complex watersheds with varying soils, land use and management conditions over long periods of time. This study presents the application of Soil and Water Assessment Tool (SWAT) to investigate, manage, and research the transport and fate of nutrients in (Subbasin HUC 16010204) Lower Bear Malad River (LBMR) watershed, Box elder County, Utah. Water quality problems arise primarily from high phosphorus and total suspended sediment concentrations that were caused by increasing agricultural and farming activities and complex network of canals and ducts of varying sizes and carrying capacities that transport water (for farming and agriculture uses). Using the available input data (Digital Elevation Model (DEM), land use/Land cover (LULC), soil map and weather and climate data for 20 years (1990-2010) to predict the water quantity and quality of the LBMR watershed using a spatially distributed model version of hydrological ArcSWAT model (ArcSWAT 2012.10_1.14). No previous studies have been found in the literature regarding an in-depth simulation study of the Lower Bear Malad River (LBMR) watershed to simulate stream flow and to quantify the associated movement of nitrogen, phosphorus, and sediment. It is expected that the model mainly will predict monthly mean total phosphorus (TP) concentration and loadings in a mountainous LBRM watershed (steep Wellsville mountain range with peak of (2,857 m)) having into consideration the snow and runoff variables affecting the prediction process. The simulated nutrient concentrations were properly consistent with observations based on the R2 and Nash- Sutcliffe fitness factors. Further, the model will be able to manage and assess the land application in that area with corresponding to proper BMPs regarding water quality management. Keywords: Water Quality Modeling; Soil and

  13. Solar models and electron screening

    OpenAIRE

    Weiss, A.; Flaskamp, M.; Tsytovich, V. N.

    2001-01-01

    We investigate the sensitivity of the solar model to changes in the nuclear reaction screening factors. We show that the sound speed profile as determined by helioseismology certainly rules out changes in the screening factors exceeding more than 10%. A slightly improved solar model could be obtained by enhancing screening by about 5% over the Salpeter value. We also discuss how envelope properties of the Sun depend on screening, too. We conclude that the solar model can be used to help settl...

  14. Status of Galileo interim radiation electron model

    Science.gov (United States)

    Garrett, H. B.; Jun, I.; Ratliff, J. M.; Evans, R. W.; Clough, G. A.; McEntire, R. W.

    2003-01-01

    Measurements of the high energy, omni-directional electron environment by the Galileo spacecraft Energetic Particle Detector (EDP) were used to develop a new model of Jupiter's trapped electron radiation in the jovian equatorial plane for the range 8 to 16 Jupiter radii.

  15. A Guideline for Successful Calibration and Uncertainty Analysis for Soil and Water Assessment: A Review of Papers from the 2016 International SWAT Conference

    Directory of Open Access Journals (Sweden)

    Karim C. Abbaspour

    2017-12-01

    Full Text Available Application of integrated hydrological models to manage a watershed’s water resources are increasingly finding their way into the decision-making processes. The Soil and Water Assessment Tool (SWAT is a multi-process model integrating hydrology, ecology, agriculture, and water quality. SWAT is a continuation of nearly 40 years of modeling efforts conducted by the United States Department of Agriculture (USDA Agricultural Research Service (ARS. A large number of SWAT-related papers have appeared in ISI journals, building a world-wide consensus around the model’s stability and usefulness. The current issue is a collection of the latest research using SWAT as the modeling tool. Most models must undergo calibration/validation and uncertainty analysis. Unfortunately, these sciences are not formal subjects of teaching in most universities and the students are often left to their own resources to calibrate their model. In this paper, we focus on calibration and uncertainty analysis highlighting some serious issues in the calibration of distributed models. A protocol for calibration is also highlighted to guide the users to obtain better modeling results. Finally, a summary of the papers published in this special issue is provided in the Appendix.

  16. SWATS: Diurnal Trends in the Soil Temperature Report

    Energy Technology Data Exchange (ETDEWEB)

    Cook, David [Argonne National Lab. (ANL), Argonne, IL (United States); Theisen, Adam [Univ. of Oklahoma, Norman, OK (United States)

    2017-06-30

    During the processing of data for the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility ARMBE2D Value-Added Product (VAP), the developers noticed that the SWATS soil temperatures did not show a decreased temporal variability with increased depth with the new E30+ Extended Facilities (EFs), unlike the older EFs at ARM’s Southern Great Plains (SGP) site. The instrument mentor analyzed the data and reported that all SWATS locations have shown this behavior but that the magnitude of the problem was greatest at EFs E31-E38. The data were analyzed to verify the initial assessments of: 1. 5 cm SWATS data were valid for all EFs and 15 cm soil temperature measurements were valid at all EFs other than E31-E38, 2. Use only nighttime SWATS soil temperature measurements to calculate daily average soil temperatures, 3. Since it seems likely that the soil temperature measurements below 15cm were affected by the solar heating of the enclosure at all but E31-38, and at all depths below 5cm at E31-38, individual measurements of soil temperature at these depths during daylight hours, and daily averages of the same, can ot be trusted on most (particularly sunny) days.

  17. Residues of cypermethrin and endosulfan in soils of Swat valley

    Directory of Open Access Journals (Sweden)

    M. Nafees

    2009-05-01

    Full Text Available Swat Valley was studied for two widely used pesticides; cypermethrin and endosulfan. A total of 63 soil samples were collected from 27 villages selected for this purpose. The collected soil samples were extracted with n-hexane, pesticides were separated, identified and quantified by a GC-ECD system. Endosulfan was 0.24 - 1.51 mg kg-1 and 0.13 - 12.67 mg kg-1 in rainfed and irrigated areas, respectively. The residual level of cypermethrin was comparatively high with a level of0.14 to 27.62 mg kg-1 and 0.05 to 73.75 mg kg-1 in rainfed and irrigated areas, respectively. For assessing the possible causes of pesticide residues in soil, 360 farmers were interviewed. It was found that both, cypermethrin and endosulfan, apart from agriculture were also widely misused for fishing in the entire stretch of River Swat and its tributaries. River Swat is used for irrigation in Swat Valley and this wide misuse of pesticides can also contribute to pesticide residue in soil.

  18. Malnutrition amongst Under-Five Years Children in Swat, Pakistan ...

    African Journals Online (AJOL)

    ... The incidence of malnutrition is about the same for both male and female children. Risk factors for malnutrition in the children include lack of education, teenage pregnancy, lack of immunization, and large family size. Keywords: Malnutrition, Gomezfs classification, Weaning time, Risk factors, Teenage pregnancy, Swat ...

  19. Comparison of performance of tile drainage routines in SWAT 2009 and 2012 in an extensively tile-drained watershed in the Midwest

    Science.gov (United States)

    Guo, Tian; Gitau, Margaret; Merwade, Venkatesh; Arnold, Jeffrey; Srinivasan, Raghavan; Hirschi, Michael; Engel, Bernard

    2018-01-01

    Subsurface tile drainage systems are widely used in agricultural watersheds in the Midwestern US and enable the Midwest area to become highly productive agricultural lands, but can also create environmental problems, for example nitrate-N contamination associated with drainage waters. The Soil and Water Assessment Tool (SWAT) has been used to model watersheds with tile drainage. SWAT2012 revisions 615 and 645 provide new tile drainage routines. However, few studies have used these revisions to study tile drainage impacts at both field and watershed scales. Moreover, SWAT2012 revision 645 improved the soil moisture based curve number calculation method, which has not been fully tested. This study used long-term (1991-2003) field site and river station data from the Little Vermilion River (LVR) watershed to evaluate performance of tile drainage routines in SWAT2009 revision 528 (the old routine) and SWAT2012 revisions 615 and 645 (the new routine). Both the old and new routines provided reasonable but unsatisfactory (NSE sediment and annual corn and soybean yield results from SWAT with the old and new tile drainage routines were compared with observed values. Generally, the new routine provided acceptable simulated tile flow (NSE = 0.48-0.65) and nitrate in tile flow (NSE = 0.48-0.68) for field sites with random pattern tile and constant tile spacing, while the old routine simulated tile flow and nitrate in tile flow results for the field site with constant tile spacing were unacceptable (NSE = 0.00-0.32 and -0.29-0.06, respectively). The new modified curve number calculation method in revision 645 (NSE = 0.50-0.81) better simulated surface runoff than revision 615 (NSE = -0.11-0.49). The calibration provided reasonable parameter sets for the old and new routines in the LVR watershed, and the validation results showed that the new routine has the potential to accurately simulate hydrologic processes in mildly sloped watersheds.

  20. Electronic Payments Profitability Extent Model

    Directory of Open Access Journals (Sweden)

    Rudolf Vohnout

    2016-12-01

    Full Text Available Cashless payments are recent phenomena, which even increased with the introduction of contactless means like NFC, PayPass or payWave. Such new methods speed-up the entire payment process and in comparison to cash transactions are much simpler and faster. But on the other hand the key question for merchant is if it is worth to have such device, which accept these new payment means or not to have the terminal at all. What is the amount of cash flow, which delimits the cash holdings to be still profitable? This paper tries to give answers to such question by presenting general profitability model, which will address defining the cash threshold amount. The aim is to show that cash holdings could be profitable up to certain amount, but after the threshold is met, cashless payment methods are fairly superior despite their additional costs.

  1. Assessing the efficacy of the SWAT auto-irrigation function to simulate Irrigation, evapotranspiration and crop response to irrigation management strategies of the Texas High Plains

    Science.gov (United States)

    The Soil and Water Assessment Tool (SWAT) model is widely used for simulation of hydrologic processes at various temporal and spatial scales. Less common are long-term simulation analyses of water balance components including agricultural management practices such as irrigation management. In the se...

  2. Electron-Ionic Model of Ball Lightening

    OpenAIRE

    Fedosin, Sergey G.; Kim, Anatolii S.

    2001-01-01

    The model of ball lightning is presented where outside electron envelope is kept by inside volume of positive charges. The moving of electron in outside envelope is a reason of strong magnetic field, which controls the state of hot ionized air inside of ball lightning. The conditions of origins of ball lightning are investigated and the values of parameters for ball lightning of maximum power are calculated.

  3. Update on the Electron Source Model

    Energy Technology Data Exchange (ETDEWEB)

    Cowee, Misa [Los Alamos National Laboratory; Winske, Dan [Los Alamos National Laboratory

    2012-07-17

    We summarize work done in FY12 on the Los Alamos Electron Source Model (ESM), which predicts the distribution of beta-decay electrons after a high altitude nuclear explosion (HANE) as a function of L, energy, and pitch angle. In the last year we have compared model results with data taken after the Russian 2 HANE test of 1962 and presented results at the HEART conference. We discuss our future plans to continue comparison with HANE data and to develop the code to allow a more complex set of initial conditions.

  4. Application of SWAT99.2 to sensitivity analysis of water balance components in unique plots in a hilly region

    Directory of Open Access Journals (Sweden)

    Jun-feng Dai

    2017-07-01

    Full Text Available Although many sensitivity analyses using the soil and water assessment tool (SWAT in a complex watershed have been conducted, little attention has been paid to the application potential of the model in unique plots. In addition, sensitivity analysis of percolation and evapotranspiration with SWAT has seldom been undertaken. In this study, SWAT99.2 was calibrated to simulate water balance components for unique plots in Southern China from 2000 to 2001, which included surface runoff, percolation, and evapotranspiration. Twenty-one parameters classified into four categories, including meteorological conditions, topographical characteristics, soil properties, and vegetation attributes, were used for sensitivity analysis through one-at-a-time (OAT sampling to identify the factor that contributed most to the variance in water balance components. The results were shown to be different for different plots, with parameter sensitivity indices and ranks varying for different water balance components. Water balance components in the broad-leaved forest and natural grass plots were most sensitive to meteorological conditions, less sensitive to vegetation attributes and soil properties, and least sensitive to topographical characteristics. Compared to those in the natural grass plot, water balance components in the broad-leaved forest plot demonstrated higher sensitivity to the maximum stomatal conductance (GSI and maximum leaf area index (BLAI.

  5. Radiation Belt Electron Dynamics: Modeling Atmospheric Losses

    Science.gov (United States)

    Selesnick, R. S.

    2003-01-01

    The first year of work on this project has been completed. This report provides a summary of the progress made and the plan for the coming year. Also included with this report is a preprint of an article that was accepted for publication in Journal of Geophysical Research and describes in detail most of the results from the first year of effort. The goal for the first year was to develop a radiation belt electron model for fitting to data from the SAMPEX and Polar satellites that would provide an empirical description of the electron losses into the upper atmosphere. This was largely accomplished according to the original plan (with one exception being that, for reasons described below, the inclusion of the loss cone electrons in the model was deferred). The main concerns at the start were to accurately represent the balance between pitch angle diffusion and eastward drift that determines the dominant features of the low altitude data, and then to accurately convert the model into simulated data based on the characteristics of the particular electron detectors. Considerable effort was devoted to achieving these ends. Once the model was providing accurate results it was applied to data sets selected from appropriate periods in 1997, 1998, and 1999. For each interval of -30 to 60 days, the model parameters were calculated daily, thus providing good short and long term temporal resolution, and for a range of radial locations from L = 2.7 to 3.9. .

  6. OpenMP-accelerated SWAT simulation using Intel C and FORTRAN compilers: Development and benchmark

    Science.gov (United States)

    Ki, Seo Jin; Sugimura, Tak; Kim, Albert S.

    2015-02-01

    We developed a practical method to accelerate execution of Soil and Water Assessment Tool (SWAT) using open (free) computational resources. The SWAT source code (rev 622) was recompiled using a non-commercial Intel FORTRAN compiler in Ubuntu 12.04 LTS Linux platform, and newly named iOMP-SWAT in this study. GNU utilities of make, gprof, and diff were used to develop the iOMP-SWAT package, profile memory usage, and check identicalness of parallel and serial simulations. Among 302 SWAT subroutines, the slowest routines were identified using GNU gprof, and later modified using Open Multiple Processing (OpenMP) library in an 8-core shared memory system. In addition, a C wrapping function was used to rapidly set large arrays to zero by cross compiling with the original SWAT FORTRAN package. A universal speedup ratio of 2.3 was achieved using input data sets of a large number of hydrological response units. As we specifically focus on acceleration of a single SWAT run, the use of iOMP-SWAT for parameter calibrations will significantly improve the performance of SWAT optimization.

  7. Developing Novel Explanatory Models for Electronics Education

    Science.gov (United States)

    Pule, Sarah; McCardle, John

    2010-01-01

    This paper explores how representations of technological concepts may be designed to help students with visual learning styles achieve successful comprehension in the field of electronics. The work accepts a wide definition of what is understood by the visualisation of a model in that it can take different external forms, but also include an…

  8. Mathematical model I. Electron and quantum mechanics

    Directory of Open Access Journals (Sweden)

    Nitin Ramchandra Gadre

    2011-03-01

    Full Text Available The basic particle electron obeys various theories like electrodynamics, quantum mechanics and special relativity. Particle under different experimental conditions behaves differently, allowing us to observe different characteristics which become basis for these theories. In this paper, we have made an attempt to suggest a classical picture by studying the requirements of these three modern theories. The basic presumption is: There must be certain structural characteristics in a particle like electron which make it obey postulates of modern theories. As it is ‘difficult’ to find structure of electron experimentally, we make a mathematical attempt. For a classical approach, we require well defined systems and we have studied a system with two charged particles, proton and electron in a hydrogen atom. An attempt has been made to give a model to describe electron as seen by the proton. We then discuss how the model can satisfy the requirements of the three modern theories in a classical manner. The paper discusses basic aspects of relativity and electrodynamics. However the focus of the paper is on quantum mechanics.

  9. Mathematical model I. Electron and quantum mechanics

    Science.gov (United States)

    Gadre, Nitin Ramchandra

    2011-03-01

    The basic particle electron obeys various theories like electrodynamics, quantum mechanics and special relativity. Particle under different experimental conditions behaves differently, allowing us to observe different characteristics which become basis for these theories. In this paper, we have made an attempt to suggest a classical picture by studying the requirements of these three modern theories. The basic presumption is: There must be certain structural characteristics in a particle like electron which make it obey postulates of modern theories. As it is `difficult' to find structure of electron experimentally, we make a mathematical attempt. For a classical approach, we require well defined systems and we have studied a system with two charged particles, proton and electron in a hydrogen atom. An attempt has been made to give a model to describe electron as seen by the proton. We then discuss how the model can satisfy the requirements of the three modern theories in a classical manner. The paper discusses basic aspects of relativity and electrodynamics. However the focus of the paper is on quantum mechanics.

  10. Modeling the Nab Experiment Electronics in SPICE

    Science.gov (United States)

    Blose, Alexander; Crawford, Christopher; Sprow, Aaron; Nab Collaboration

    2017-09-01

    The goal of the Nab experiment is to measure the neutron decay coefficients a, the electron-neutrino correlation, as well as b, the Fierz interference term to precisely test the Standard Model, as well as probe for Beyond the Standard Model physics. In this experiment, protons from the beta decay of the neutron are guided through a magnetic field into a Silicon detector. Event reconstruction will be achieved via time-of-flight measurement for the proton and direct measurement of the coincident electron energy in highly segmented silicon detectors, so the amplification circuitry needs to preserve fast timing, provide good amplitude resolution, and be packaged in a high-density format. We have designed a SPICE simulation to model the full electronics chain for the Nab experiment in order to understand the contributions of each stage and optimize them for performance. Additionally, analytic solutions to each of the components have been determined where available. We will present a comparison of the output from the SPICE model, analytic solution, and empirically determined data.

  11. Analysis of operating model of electronic invoice colombian Colombian electronic billing analysis of the operational model

    Directory of Open Access Journals (Sweden)

    Sérgio Roberto da Silva

    2016-06-01

    Full Text Available Colombia has been one of the first countries to introduce electronic billing process on a voluntary basis, from a traditional to a digital version. In this context, the article analyzes the electronic billing process implemented in Colombia and the advantages. Methodological research is applied, qualitative, descriptive and documentary; where the regulatory framework and the conceptualization of the model is identified; the process of adoption of electronic billing is analyzed, and finally the advantages and disadvantages of its implementation is analyzed. The findings indicate that the model applied in Colombia to issue an electronic billing in sending and receiving process, is not complex, but it requires a small adequate infrastructure and trained personnel to reach all sectors, especially the micro and business which is the largest business network in the country.

  12. A PEP model of the electron

    OpenAIRE

    Collins, R. L.

    2008-01-01

    One of the more profound mysteries of physics is how nature ties together EM fields to form an electron. A way to do this is examined in this study. A bare magnetic dipole containing a flux quantum spins stably, and produces an inverse square E= -vxB electric field similar to what one finds from charge. Gauss' law finds charge in this model, though there be none. For stability, a current loop about the waist of the magnetic dipole is needed and we must go beyond the classical Maxwell's equati...

  13. A semicontinuum model for the hydrated electron

    Energy Technology Data Exchange (ETDEWEB)

    Pommeret, S.; Gauduel, Y. (Ecole Polytechnique-ENS, Palaiseau (France))

    1991-05-16

    Kevan's structural model for the solvated electron has been studied in association with the spherical part of a continuum potential via an imaginary time splitting operator method (SOM). The study focuses on the influence of the continuum potential representing the second solvation shell interaction with the electron. The continuum potential is computed in the self-consistent approximation. The temperature dependence of the continuum potential allows the authors to extend their study from 77 to 300 K. The gyration radius of the solvated electron is found to be of the same order as computed by using simulation methods, and for the best value of the cavity radius more than 60% of the charge is inside the cavity. The results of the present computation are then compared to those obtained by using a full simulation approach or the semicontinuum theory. In the present work, it is interesting to note that at 300 K they have found results that are in good agreement with those computed by using a molecular dynamics approach of the medium.

  14. Model based design of electronic throttle control

    Science.gov (United States)

    Cherian, Fenin; Ranjan, Ashish; Bhowmick, Pathikrit; Rammohan, A.

    2017-11-01

    With the advent of torque based Engine Management Systems, the precise control and robust performance of the throttle body becomes a key factor in the overall performance of the vehicle. Electronic Throttle Control provides benefits such as improved air-fuel ratio for improving the vehicle performance and lower exhausts emissions to meet the stringent emission norms. Modern vehicles facilitate various features such as Cruise Control, Traction Control, Electronic Stability Program and Pre-crash systems. These systems require control over engine power without driver intervention, which is not possible with conventional mechanical throttle system. Thus these systems are integrated to function with the electronic throttle control. However, due to inherent non-linearities in the throttle body, the control becomes a difficult task. In order to eliminate the influence of this hysteresis at the initial operation of the butterfly valve, a control to compensate the shortage must be added to the duty required for starting throttle operation when the initial operation is detected. Therefore, a lot of work is being done in this field to incorporate the various nonlinearities to achieve robust control. In our present work, the ETB was tested to verify the working of the system. Calibration of the TPS sensors was carried out in order to acquire accurate throttle opening angle. The response of the calibrated system was then plotted against a step input signal. A linear model of the ETB was prepared using Simulink and its response was compared with the experimental data to find out the initial deviation of the model from the actual system. To reduce this deviation, non-linearities from existing literature were introduced to the system and a response analysis was performed to check the deviation from the actual system. Based on this investigation, an introduction of a new nonlinearity parameter can be used in future to reduce the deviation further making the control of the ETB more

  15. Assessment of Flood Frequency Alteration by Dam Construction via SWAT Simulation

    Directory of Open Access Journals (Sweden)

    Jeong Eun Lee

    2017-04-01

    Full Text Available The purpose of this study is to evaluate the impacts of the upstream Soyanggang and Chungju multi-purpose dams on the frequency of downstream floods in the Han River basin, South Korea. A continuous hydrological model, SWAT (Soil and Water Assessment Tool, was used to individually simulate regulated and unregulated daily streamflows entering the Paldang Dam, which is located at the outlet of the basin of interest. The simulation of the regulated flows by the Soyanggang and Chungju dams was calibrated with observed inflow data to the Paldang Dam. The estimated daily flood peaks were used for a frequency analysis, using the extreme Type-I distribution, for which the parameters were estimated via the L-moment method. This novel approach was applied to the study area to assess the effects of the dams on downstream floods. From the results, the two upstream dams were found to be able to reduce downstream floods by approximately 31% compared to naturally occurring floods without dam regulation. Furthermore, an approach to estimate the flood frequency based on the hourly extreme peak flow data, obtained by combining SWAT simulation and Sangal’s method, was proposed and then verified by comparison with the observation-based results. The increased percentage of floods estimated with hourly simulated data for the three scenarios of dam regulation ranged from 16.1% to 44.1%. The reduced percentages were a little higher than those for the daily-based flood frequency estimates. The developed approach allowed for better understanding of flood frequency, as influenced by dam regulation on a relatively large watershed scale.

  16. Comparison of performance of tile drainage routines in SWAT 2009 and 2012 in an extensively tile-drained watershed in the Midwest

    Directory of Open Access Journals (Sweden)

    T. Guo

    2018-01-01

    Full Text Available Subsurface tile drainage systems are widely used in agricultural watersheds in the Midwestern US and enable the Midwest area to become highly productive agricultural lands, but can also create environmental problems, for example nitrate-N contamination associated with drainage waters. The Soil and Water Assessment Tool (SWAT has been used to model watersheds with tile drainage. SWAT2012 revisions 615 and 645 provide new tile drainage routines. However, few studies have used these revisions to study tile drainage impacts at both field and watershed scales. Moreover, SWAT2012 revision 645 improved the soil moisture based curve number calculation method, which has not been fully tested. This study used long-term (1991–2003 field site and river station data from the Little Vermilion River (LVR watershed to evaluate performance of tile drainage routines in SWAT2009 revision 528 (the old routine and SWAT2012 revisions 615 and 645 (the new routine. Both the old and new routines provided reasonable but unsatisfactory (NSE  <  0.5 uncalibrated flow and nitrate loss results for a mildly sloped watershed with low runoff. The calibrated monthly tile flow, surface flow, nitrate-N in tile and surface flow, sediment and annual corn and soybean yield results from SWAT with the old and new tile drainage routines were compared with observed values. Generally, the new routine provided acceptable simulated tile flow (NSE  =  0.48–0.65 and nitrate in tile flow (NSE  =  0.48–0.68 for field sites with random pattern tile and constant tile spacing, while the old routine simulated tile flow and nitrate in tile flow results for the field site with constant tile spacing were unacceptable (NSE  =  0.00–0.32 and −0.29–0.06, respectively. The new modified curve number calculation method in revision 645 (NSE  =  0.50–0.81 better simulated surface runoff than revision 615 (NSE  =  −0.11–0.49. The calibration

  17. Model Order Reduction for Electronic Circuits:

    DEFF Research Database (Denmark)

    Hjorth, Poul G.; Shontz, Suzanne

    Electronic circuits are ubiquitous; they are used in numerous industries including: the semiconductor, communication, robotics, auto, and music industries (among many others). As products become more and more complicated, their electronic circuits also grow in size and complexity. This increased...

  18. A Model for Teaching Electronic Commerce Students

    Directory of Open Access Journals (Sweden)

    Howard C. Woodard

    2002-10-01

    Full Text Available The teaching of information technology in an ever-changing world at universities presents a challenge. Are courses taught as concepts, while ignoring hands-on courses, leaving the hands-on classes to the technical colleges or trade schools? Does this produce the best employees for industry or give students the knowledge and skills necessary to function in a high-tech world? At GeorgiaCollege & StateUniversity (GC&SU a model was developed that combines both concepts and practical hands-on skill to meet this challenge. Using this model, a program was developed that consists of classroom lecture of concepts as well as practical hands-on exercises for mastering the knowledge and developing the skills necessary to succeed in the high-tech world of electronic commerce. The students become productive day one of a new job assignment. This solves the problem of students having the "book knowledge" but not knowing how to apply what has been learned.

  19. On the Computation of Secondary Electron Emission Models

    OpenAIRE

    Clerc, Sebastien; Dennison, JR; Hoffmann, Ryan; Abbott, Jonathon

    2006-01-01

    Secondary electron emission is a critical contributor to the charge particle current balance in spacecraft charging. Spacecraft charging simulation codes use a parameterized expression for the secondary electron (SE) yield delta(Eo) as a function of the incident electron energy Eo. Simple three-step physics models of the electron penetration, transport, and emission from a solid are typically expressed in terms of the incident electron penetration depth at normal incidence R(Eo) and the mean ...

  20. Ethnobotanical Study of Tehsil Kabal, Swat District, KPK, Pakistan

    Directory of Open Access Journals (Sweden)

    Imtiaz Ahmad

    2011-01-01

    Full Text Available A total of 140 plants have been reported ethnobotanically from Tehsil Kabal, Swat District. These include the 133 plants (95% of angiosperms, 3 (2.14% of gymnosperms, and 2 (1.42% each of pteridophytes and fungi. The largest family is Lamiaceae represented by 11 species followed by Rosaceae represented by 9 species. Among angiosperms 76 (55.63% were herbs, 17 (12.78% were shrubs, and 40 (30.07% were trees; 127 plants (95.48% were dicot while 6 plants (4.51% were monocot. Most of the plants were used for more than one purpose. Generally the plants were used for medicinal, fuel, timber wood, food, and fodder for cattle purposes.

  1. Modeling Electronic Properties of Complex Oxides

    Science.gov (United States)

    Krishnaswamy, Karthik

    Complex oxides are a class of materials that have recently emerged as potential candidates for electronic applications owing to their interesting electronic properties. The goal of this dissertation is to develop a fundamental understanding of these electronic properties using a combination of first-principles approaches based on density functional theory (DFT), and Schr odinger-Poisson (SP) simulation (Abstract shortened by ProQuest.

  2. Performance of salsnes water to algae treatment (swat) technology in a continuous mode for high algae recovery

    OpenAIRE

    Ramos Barragán, Germán

    2014-01-01

    Master's thesis in Environmental technology. *KAR OK,.KONF MAI 2016* Many researchers consider efficient harvesting is the major bottleneck in cost efficient production of microalgae, contributing 20 – 30 % to total production cost. This thesis is the conclusion of a two years research project to develop Salsnes Water to Algae Treatment (SWAT) harvesting technology. SWAT uses two main processes: flocculation and filtration. The SWAT objectives were achieved, 95 % algae removal and p...

  3. RAMAN LIGHT SCATTERING IN PSEUDOSPIN-ELECTRON MODEL AT STRONG PSEUDOSPIN-ELECTRON INTERACTION

    Directory of Open Access Journals (Sweden)

    T.S.Mysakovych

    2004-01-01

    Full Text Available Anharmonic phonon contributions to Raman scattering in locally anharmonic crystal systems in the framework of the pseudospin-electron model with tunneling splitting of levels are investigated. The case of strong pseudospin-electron coupling is considered. Pseudospin and electron contributions to scattering are taken into account. Frequency dependences of Raman scattering intensity for different values of model parameters and for different polarization of scattering and incident light are investigated.

  4. The electronic-commerce-oriented virtual merchandise model

    Science.gov (United States)

    Fang, Xiaocui; Lu, Dongming

    2004-03-01

    Electronic commerce has been the trend of commerce activities. Providing with Virtual Reality interface, electronic commerce has better expressing capacity and interaction means. But most of the applications of virtual reality technology in EC, 3D model is only the appearance description of merchandises. There is almost no information concerned with commerce information and interaction information. This resulted in disjunction of virtual model and commerce information. So we present Electronic Commerce oriented Virtual Merchandise Model (ECVMM), which combined a model with commerce information, interaction information and figure information of virtual merchandise. ECVMM with abundant information provides better support to information obtainment and communication in electronic commerce.

  5. Development of a Hydrologic Connectivity Dataset for SWAT Assessments in the US

    Directory of Open Access Journals (Sweden)

    Michael J. White

    2017-11-01

    Full Text Available Model-based water quality assessments are an important informer of conservation and environmental policy in the U.S. The recently completed national scale Conservation Effects Assessment Project (CEAP is being replicated using an improved model populated with new and higher resolution data. National assessments are particularly difficult as models must operate with both a very large spatial extent (the contiguous U.S. while maintaining a level of granularity required to capture important small scale processes. In this research, we developed datasets to describe the hydrologic connectivity at the U.S. Geological Survey (USGS 12-digit Hydrologic Unit Code (HUC-12 level. Connectivity between 86,000 HUC-12s as provided by the Watershed Boundary Dataset (WBD was evaluated and corrected. We also detailed a method to resolve the highly detailed National Hydrography Dataset (NHD stream segments within each HUC-12 into vastly simplified representative channel schemes suitable for use in the recently developed Soil and Water Assessment Tool + (SWAT+ model. This representative channel approach strikes a balance between computational complexity and accurate representation of the hydrologic system. These data will be tested in the upcoming CEAP II national assessment. Until then, all the WBD corrections and NHDPlus representative channel data are provided via the web for other researchers to evaluate and utilize.

  6. Modelling of electron beam absorption in complex geometries

    Science.gov (United States)

    Klassen, Alexander; Bauereiß, Andreas; Körner, Carolin

    2014-02-01

    Computational modelling of processes that involve highly energetic electrons like electron beam melting, welding, drilling or electron beam lithography, to name but a few, requires information about the attenuation of the electron beam as it passes through the sample. Depth-dose curves as a function of electron energy, target material as well as local surface obliquity have to be provided in situ during the calculation. The most efficient way to address this issue is by employing mathematical expressions. Therefore, we propose an electron beam model based on a set of semi-empirical equations available from different published literature and on theoretical considerations. Particular stress is thereby put on accuracy and the range of validity of the theoretical approach by comparison with experimental data. Finally, we apply our model to powder-bed based additive manufacturing. The numerical results demonstrate that electron beam absorption and depth of penetration have a strong influence on the quality of the fabricated product.

  7. Orbital Models and Electronic Structure Theory

    DEFF Research Database (Denmark)

    Linderberg, Jan

    2012-01-01

    This tribute to the work by Carl Johan Ballhausen focuses on the emergence of quantitative means for the study of the electronic properties of complexes and molecules. Development, refinement and application of the orbital picture elucidated electric and magnetic features of ranges of molecules w...... when used for the interpretation of electronic transitions, electron spin resonance parameters, rotatory dispersion, nuclear quadrupole couplings as well as geometric bonding patterns. Ballhausen's profound impact on the field cannot be overestimated.......This tribute to the work by Carl Johan Ballhausen focuses on the emergence of quantitative means for the study of the electronic properties of complexes and molecules. Development, refinement and application of the orbital picture elucidated electric and magnetic features of ranges of molecules...

  8. VHDL Model of Electronic-Lock System

    Directory of Open Access Journals (Sweden)

    J. Noga

    2000-04-01

    Full Text Available The paper describes the design of an electronic-lock system which wascompleted as part of the Basic VHDL course in the Department of Controland Measurement Faculty of Electrical Engineering and Informatics,Technical University of Ostrava, Czech Republic in co-operation withthe Department if Electronic Engineering, University of Hull, GreatBritain in the frame of TEMPUS project no. S_JEP/09468-95.

  9. A kinetic model for runaway electrons in the ionosphere

    Directory of Open Access Journals (Sweden)

    G. Garcia

    2006-09-01

    Full Text Available Electrodynamic models and measurements with satellites and incoherent scatter radars predict large field aligned current densities on one side of the auroral arcs. Different authors and different kinds of studies (experimental or modeling agree that the current density can reach up to hundreds of µA/m2. This large current density could be the cause of many phenomena such as tall red rays or triggering of unstable ion acoustic waves. In the present paper, we consider the issue of electrons moving through an ionospheric gas of positive ions and neutrals under the influence of a static electric field. We develop a kinetic model of collisions including electrons/electrons, electrons/ions and electrons/neutrals collisions. We use a Fokker-Planck approach to describe binary collisions between charged particles with a long-range interaction. We present the essential elements of this collision operator: the Langevin equation for electrons/ions and electrons/electrons collisions and the Monte-Carlo and null collision methods for electrons/neutrals collisions. A computational example is given illustrating the approach to equilibrium and the impact of the different terms (electrons/electrons and electrons/ions collisions on the one hand and electrons/neutrals collisions on the other hand. Then, a parallel electric field is applied in a new sample run. In this run, the electrons move in the z direction parallel to the electric field. The first results show that all the electron distribution functions are non-Maxwellian. Furthermore, runaway electrons can carry a significant part of the total current density, up to 20% of the total current density.

  10. Climate Change Impacts and Adaptation to Flow of Swat River and Glaciers in Hindu Kush Ranges, Swat District, Pakistan (2003-2013

    Directory of Open Access Journals (Sweden)

    Saifullah Khan

    2016-06-01

    Full Text Available This work aims at the climate change impacts and adaptation to surface flow of Swat river and glacier resources in Swat river catchments area, Hindu Kush ranges, Northwest Pakistan. The data about temperature and precipitation have been collected from the Pakistan Meteorological Department, Karachi, whereas the Swat River flow data from the Irrigation Department, Peshawar, Khyber Pukhtunkhwa. Two types of climate that is humid and undifferentiated highlands prevail over the area. The total precipitation recorded has been 41.8inches (1061.7 millimeters with mean monthly precipitation of 3.5 inches (88.9 millimeters having a decrease of -0.1 inch (-2.8 millimeters. The area has been humid during 2004 and currently at the threshold of the sub-humid climates (20-40 inches. Kalam valley experiences cold long winters (7 months and short warm summers (5 months. The mean temperature reveals an increase of 0.90C, maximum temperature 0.40C and mean minimum temperature 0.50Celsius. This increase in the temperature of the area has caused water stress and retreat of glaciers and affected the permafrost condition at higher altitudes in the area. The annual flow of the Swat river is 192.2 cubic meter/seconds with a decline of -0.03 cubic m/sec from 2003 to 2013. The annual trend of water flow is directly proportional to precipitation and contrary to maximum temperature during 2003 to 2012 and shows converse condition till 2013. The decrease in the flow of Swat river seems both in winter and summer season. The glaciers and snow covered area of the Kalam valley decreases with passage of time and required mitigation. The vulnerability of the study area to climate change can be minimized by the construction of small reservoirs, river embankments, improvement in sewerage and sanitation, planning for flood water, and revision of the water management policy, implementation, and establishment of research and development funds.

  11. Molecular modeling and multiscaling issues for electronic material applications

    CERN Document Server

    Iwamoto, Nancy; Yuen, Matthew; Fan, Haibo

    Volume 1 : Molecular Modeling and Multiscaling Issues for Electronic Material Applications provides a snapshot on the progression of molecular modeling in the electronics industry and how molecular modeling is currently being used to understand material performance to solve relevant issues in this field. This book is intended to introduce the reader to the evolving role of molecular modeling, especially seen through the eyes of the IEEE community involved in material modeling for electronic applications.  Part I presents  the role that quantum mechanics can play in performance prediction, such as properties dependent upon electronic structure, but also shows examples how molecular models may be used in performance diagnostics, especially when chemistry is part of the performance issue.  Part II gives examples of large-scale atomistic methods in material failure and shows several examples of transitioning between grain boundary simulations (on the atomistic level)and large-scale models including an example ...

  12. Mathematical model I. Electron and quantum mechanics

    OpenAIRE

    Nitin Ramchandra Gadre

    2011-01-01

    The basic particle electron obeys various theories like electrodynamics, quantum mechanics and special relativity. Particle under different experimental conditions behaves differently, allowing us to observe different characteristics which become basis for these theories. In this paper, we have made an attempt to suggest a classical picture by studying the requirements of these three modern theories. The basic presumption is: There must be certain structural characteristics in a particle like...

  13. Electronic learning and constructivism: a model for nursing education.

    Science.gov (United States)

    Kala, Sasikarn; Isaramalai, Sang-Arun; Pohthong, Amnart

    2010-01-01

    Nurse educators are challenged to teach nursing students to become competent professionals, who have both in-depth knowledge and decision-making skills. The use of electronic learning methods has been found to facilitate the teaching-learning process in nursing education. Although learning theories are acknowledged as useful guides to design strategies and activities of learning, integration of these theories into technology-based courses appears limited. Constructivism is a theoretical paradigm that could prove to be effective in guiding the design of electronic learning experiences for the purpose of providing positive outcomes, such as the acquisition of knowledge and decision-making skills. Therefore, the purposes of this paper are to: describe electronic learning, present a brief overview of what is known about the outcomes of electronic learning, discuss constructivism theory, present a model for electronic learning using constructivism, and describe educators' roles emphasizing the utilization of the model in developing electronic learning experiences in nursing education.

  14. Power Electronic Packaging Design, Assembly Process, Reliability and Modeling

    CERN Document Server

    Liu, Yong

    2012-01-01

    Power Electronic Packaging presents an in-depth overview of power electronic packaging design, assembly,reliability and modeling. Since there is a drastic difference between IC fabrication and power electronic packaging, the book systematically introduces typical power electronic packaging design, assembly, reliability and failure analysis and material selection so readers can clearly understand each task's unique characteristics. Power electronic packaging is one of the fastest growing segments in the power electronic industry, due to the rapid growth of power integrated circuit (IC) fabrication, especially for applications like portable, consumer, home, computing and automotive electronics. This book also covers how advances in both semiconductor content and power advanced package design have helped cause advances in power device capability in recent years. The author extrapolates the most recent trends in the book's areas of focus to highlight where further improvement in materials and techniques can d...

  15. Hydrological effects of the increased CO2 and climate change in the Upper Mississippi River Basin using a modified SWAT

    Science.gov (United States)

    Wu, Y.; Liu, S.; Abdul-Aziz, O. I.

    2012-01-01

    Increased atmospheric CO2 concentration and climate change may significantly impact the hydrological and meteorological processes of a watershed system. Quantifying and understanding hydrological responses to elevated ambient CO2 and climate change is, therefore, critical for formulating adaptive strategies for an appropriate management of water resources. In this study, the Soil and Water Assessment Tool (SWAT) model was applied to assess the effects of increased CO2 concentration and climate change in the Upper Mississippi River Basin (UMRB). The standard SWAT model was modified to represent more mechanistic vegetation type specific responses of stomatal conductance reduction and leaf area increase to elevated CO2 based on physiological studies. For estimating the historical impacts of increased CO2 in the recent past decades, the incremental (i.e., dynamic) rises of CO2 concentration at a monthly time-scale were also introduced into the model. Our study results indicated that about 1–4% of the streamflow in the UMRB during 1986 through 2008 could be attributed to the elevated CO2 concentration. In addition to evaluating a range of future climate sensitivity scenarios, the climate projections by four General Circulation Models (GCMs) under different greenhouse gas emission scenarios were used to predict the hydrological effects in the late twenty-first century (2071–2100). Our simulations demonstrated that the water yield would increase in spring and substantially decrease in summer, while soil moisture would rise in spring and decline in summer. Such an uneven distribution of water with higher variability compared to the baseline level (1961–1990) may cause an increased risk of both flooding and drought events in the basin.

  16. Lattice Boltzmann Model for Electronic Structure Simulations

    CERN Document Server

    Mendoza, M; Succi, S

    2015-01-01

    Recently, a new connection between density functional theory and kinetic theory has been proposed. In particular, it was shown that the Kohn-Sham (KS) equations can be reformulated as a macroscopic limit of the steady-state solution of a suitable single-particle kinetic equation. By using a discrete version of this new formalism, the exchange and correlation energies of simple atoms and the geometrical configuration of the methane molecule were calculated accurately. Here, we discuss the main ideas behind the lattice kinetic approach to electronic structure computations, offer some considerations for prospective extensions, and also show additional numerical results, namely the geometrical configuration of the water molecule.

  17. Teaching Behavioral Modeling and Simulation Techniques for Power Electronics Courses

    Science.gov (United States)

    Abramovitz, A.

    2011-01-01

    This paper suggests a pedagogical approach to teaching the subject of behavioral modeling of switch-mode power electronics systems through simulation by general-purpose electronic circuit simulators. The methodology is oriented toward electrical engineering (EE) students at the undergraduate level, enrolled in courses such as "Power…

  18. Photoinduced electron transfer in model systems of photosynthesis

    NARCIS (Netherlands)

    Hofstra, U.

    1988-01-01

    This Thesis describes Investigations on photoinduced electron transfer (ET) for several compounds, serving as model systems of the natural photosynthesis. In addition, the properties of the systems, e.g. the conformation in solution and the electronic properties of the photoexcited states

  19. Environmental gamma radiation measurement in district Swat, Pakistan.

    Science.gov (United States)

    Jabbar, T; Khan, K; Subhani, M S; Akhter, P; Jabbar, A

    2008-01-01

    External exposure to environmental gamma ray sources is an important component of exposure to the public. A survey was carried out to determine activity concentration levels and associated doses from (226)Ra, (232)Th, (40)K and (137)Cs by means of high-resolution gamma ray spectrometry in the Swat district, famous for tourism. The mean concentrations for (226)Ra, (232)Th and (40)K were found to be 50.4 +/- 0.7, 34.8 +/- 0.7 and 434.5 +/- 7.4 Bq kg(-1), respectively, in soil samples, which are slightly more than the world average values. However, (137)Cs was only found in the soil sample of Barikot with an activity concentration of 34 +/- 1.2 Bq kg(-1). Only (40)K was determined in vegetation samples with an average activity of 172.2 +/- 1.7 Bq kg(-1), whereas in water samples, all radionuclides were found below lower limits of detection. The radium equivalent activity in all soil samples is lower than the limit set in the Organisation for Economic Cooperation and Development report (370 Bq kg(-1)). The value of the external exposure dose has been determined from the content of these radionuclides in soil. The average terrestrial gamma air absorbed dose rate was observed to be 62.4 nGy h(-1), which yields an annual effective dose of 0.08 mSv. The average value of the annual effective dose lies close to the global range of outdoor radiation exposure given in United Nations Scientific Committee on the Effects of Atomic Radiation. However, the main component of the radiation dose to the population residing in the study area arises from cosmic ray due to high altitude.

  20. Modelling and implementing electronic health records in Denmark

    DEFF Research Database (Denmark)

    Bernstein, Knut; Rasmussen, Morten Bruun; Vingtoft, Søren

    2003-01-01

    The Danish Health IT strategy points out that integration between electronic health records (EHR) systems has a high priority. This paper reporst reports new tendencies in modelling and integration platforms globally and how this is reflected in the natinal development....

  1. Electronic Modeling and Design for Extreme Temperatures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We are developing CAD tools, models and methodologies for electronics design for circuit operation in extreme environments with focus on very low temperatures...

  2. Electronic field emission models beyond the Fowler-Nordheim one

    Science.gov (United States)

    Lepetit, Bruno

    2017-12-01

    We propose several quantum mechanical models to describe electronic field emission from first principles. These models allow us to correlate quantitatively the electronic emission current with the electrode surface details at the atomic scale. They all rely on electronic potential energy surfaces obtained from three dimensional density functional theory calculations. They differ by the various quantum mechanical methods (exact or perturbative, time dependent or time independent), which are used to describe tunneling through the electronic potential energy barrier. Comparison of these models between them and with the standard Fowler-Nordheim one in the context of one dimensional tunneling allows us to assess the impact on the accuracy of the computed current of the approximations made in each model. Among these methods, the time dependent perturbative one provides a well-balanced trade-off between accuracy and computational cost.

  3. Development of models for exchange of electronic documents

    Energy Technology Data Exchange (ETDEWEB)

    Glavev, Victor, E-mail: viktor.glavev@gmail.com [Technical University of Sofia, Faculty of Applied Mathematics and Informatics, 8, Kl.Ohridski Blvd., 1000 Sofia (Bulgaria)

    2014-11-18

    The report presents a model for exchange of electronic documents between different government administrations. It defines electronic messages that are transmitted between them and the way that messages should be processed by software systems. The proposed approach is sufficiently general and allows use of the best applicable information technologies such as data presentation structures and communication protocols. Within the study, a simple implementation of the model is implemented and deployed in various government administrations in Republic of Bulgaria.

  4. Modeling Electronic Circular Dichroism within the Polarizable Embedding Approach

    DEFF Research Database (Denmark)

    Nørby, Morten S; Olsen, Jógvan Magnus Haugaard; Steinmann, Casper

    2017-01-01

    We present a systematic investigation of the key components needed to model single chromophore electronic circular dichroism (ECD) within the polarizable embedding (PE) approach. By relying on accurate forms of the embedding potential, where especially the inclusion of local field effects...... sampling. We show that a significant number of snapshots are needed to avoid artifacts in the calculated electronic circular dichroism parameters due to insufficient configurational sampling, thus highlighting the efficiency of the PE model....

  5. Nonlinear model for thermal effects in free-electron lasers

    OpenAIRE

    Peter, Eduardo Alcides; Endler, Antônio; Rizzato, Felipe Barbedo

    2014-01-01

    In the present work, we extend results of a previous paper [Peter et al., Phys. Plasmas 20, 12 3104 (2013)] and develop a semi-analytical model to account for thermal effects on the nonlinear dynamics of the electron beam in free-electron lasers. We relax the condition of a cold electron beam but still use the concept of compressibility, now associated with a warm beam model, to evaluate the time scale for saturation and the peak laser intensity in high-gain regimes. Although vanishing compre...

  6. Electron transfer between physically bound electron donors and acceptors: a fluorescence blob model approach.

    Science.gov (United States)

    Baig, Christine Keyes; Duhamel, Jean

    2010-11-11

    The present study reports on the applicability of the fluorescence blob model (FBM) to analyze the complex fluorescence decays obtained with DNA-intercalated ethidium bromide (EB) as it transfers an electron to copper cations bound to the DNA helix. Traditionally, the information retrieved about the electron transfer process taking place between an electron donor intercalated in DNA and an electron acceptor physically and randomly bound to DNA has been limited due to the distribution of distances that quenching can occur over, which leads to a distribution of rate constants resulting in complex fluorescence decays. These complications can be overcome by analyzing the fluorescence data with a fluorescence blob model (FBM) that allows for the study of fluorescence quenching between fluorophores and quenchers randomly spaced along a polymeric backbone. The fluorescence decays obtained for EB intercalated between two DNA base pairs (bp) as it transfers an electron to copper randomly bound to the DNA were well fit with the FBM. In the FBM analysis, electron transfer is characterized by the size of a blob in term of base pairs, N(blob), over which electron transfer occurs, as well as the rate constant of electron transfer inside a blob, k(blob). The present work demonstrates that electron transfer between intercalated EB and randomly bound copper occurs over an average distance that increases with increasing duplex length up to a duplex length of 12 bp, beyond which the distance over which electron transfer occurs remains constant with duplex length and equals 10.8 ± 0.4 bp.

  7. Computer modeling of electron and proton transport in chloroplasts.

    Science.gov (United States)

    Tikhonov, Alexander N; Vershubskii, Alexey V

    2014-07-01

    Photosynthesis is one of the most important biological processes in biosphere, which provides production of organic substances from atmospheric CO2 and water at expense of solar energy. In this review, we contemplate computer models of oxygenic photosynthesis in the context of feedback regulation of photosynthetic electron transport in chloroplasts, the energy-transducing organelles of the plant cell. We start with a brief overview of electron and proton transport processes in chloroplasts coupled to ATP synthesis and consider basic regulatory mechanisms of oxygenic photosynthesis. General approaches to computer simulation of photosynthetic processes are considered, including the random walk models of plastoquinone diffusion in thylakoid membranes and deterministic approach to modeling electron transport in chloroplasts based on the mass action law. Then we focus on a kinetic model of oxygenic photosynthesis that includes key stages of the linear electron transport, alternative pathways of electron transfer around photosystem I (PSI), transmembrane proton transport and ATP synthesis in chloroplasts. This model includes different regulatory processes: pH-dependent control of the intersystem electron transport, down-regulation of photosystem II (PSII) activity (non-photochemical quenching), the light-induced activation of the Bassham-Benson-Calvin (BBC) cycle. The model correctly describes pH-dependent feedback control of electron transport in chloroplasts and adequately reproduces a variety of experimental data on induction events observed under different experimental conditions in intact chloroplasts (variations of CO2 and O2 concentrations in atmosphere), including a complex kinetics of P700 (primary electron donor in PSI) photooxidation, CO2 consumption in the BBC cycle, and photorespiration. Finally, we describe diffusion-controlled photosynthetic processes in chloroplasts within the framework of the model that takes into account complex architecture of

  8. Template and Model Driven Development of Standardized Electronic Health Records.

    Science.gov (United States)

    Kropf, Stefan; Chalopin, Claire; Denecke, Kerstin

    2015-01-01

    Digital patient modeling targets the integration of distributed patient data into one overarching model. For this integration process, both a theoretical standard-based model and information structures combined with concrete instructions in form of a lightweight development process of single standardized Electronic Health Records (EHRs) are needed. In this paper, we introduce such a process along side a standard-based architecture. It allows the modeling and implementation of EHRs in a lightweight Electronic Health Record System (EHRS) core. The approach is demonstrated and tested by a prototype implementation. The results show that the suggested approach is useful and facilitates the development of standardized EHRSs.

  9. Developing a model for application of electronic banking based on electronic trust

    Directory of Open Access Journals (Sweden)

    Amir Hooshang Nazarpoori

    2014-05-01

    Full Text Available This study develops a model for application of electronic banking based on electronic trust among costumers of Day bank in KhoramAbad city. A sample of 150 people was selected based on stratified random sampling. Questionnaires were used for the investigation. Results indicate that technology-based factors, user-based factors, and trust had negative relationships with perceived risk types including financial, functional, personal, and private. Moreover, trust including trust in system and trust in bank had a positive relationship with tendency to use and real application of electronic banking.

  10. SWAT use of gridded observations for simulating runoff – a Vietnam river basin study

    Directory of Open Access Journals (Sweden)

    M. T. Vu

    2012-08-01

    Full Text Available Many research studies that focus on basin hydrology have applied the SWAT model using station data to simulate runoff. But over regions lacking robust station data, there is a problem of applying the model to study the hydrological responses. For some countries and remote areas, the rainfall data availability might be a constraint due to many different reasons such as lacking of technology, war time and financial limitation that lead to difficulty in constructing the runoff data. To overcome such a limitation, this research study uses some of the available globally gridded high resolution precipitation datasets to simulate runoff. Five popular gridded observation precipitation datasets: (1 Asian Precipitation Highly Resolved Observational Data Integration Towards the Evaluation of Water Resources (APHRODITE, (2 Tropical Rainfall Measuring Mission (TRMM, (3 Precipitation Estimation from Remote Sensing Information using Artificial Neural Network (PERSIANN, (4 Global Precipitation Climatology Project (GPCP, (5 a modified version of Global Historical Climatology Network (GHCN2 and one reanalysis dataset, National Centers for Environment Prediction/National Center for Atmospheric Research (NCEP/NCAR are used to simulate runoff over the Dak Bla river (a small tributary of the Mekong River in Vietnam. Wherever possible, available station data are also used for comparison. Bilinear interpolation of these gridded datasets is used to input the precipitation data at the closest grid points to the station locations. Sensitivity Analysis and Auto-calibration are performed for the SWAT model. The Nash-Sutcliffe Efficiency (NSE and Coefficient of Determination (R2 indices are used to benchmark the model performance. Results indicate that the APHRODITE dataset performed very well on a daily scale simulation of discharge having a good NSE of 0.54 and R2 of 0.55, when compared to the discharge simulation using station data (0

  11. Numerical model of the plasma formation at electron beam welding

    Science.gov (United States)

    Trushnikov, D. N.; Mladenov, G. M.

    2015-01-01

    The model of plasma formation in the keyhole in liquid metal as well as above the electron beam welding zone is described. The model is based on solution of two equations for the density of electrons and the mean electron energy. The mass transfer of heavy plasma particles (neutral atoms, excited atoms, and ions) is taken into account in the analysis by the diffusion equation for a multicomponent mixture. The electrostatic field is calculated using the Poisson equation. Thermionic electron emission is calculated for the keyhole wall. The ionization intensity of the vapors due to beam electrons and high-energy secondary and backscattered electrons is calibrated using the plasma parameters when there is no polarized collector electrode above the welding zone. The calculated data are in good agreement with experimental data. Results for the plasma parameters for excitation of a non-independent discharge are given. It is shown that there is a need to take into account the effect of a strong electric field near the keyhole walls on electron emission (the Schottky effect) in the calculation of the current for a non-independent discharge (hot cathode gas discharge). The calculated electron drift velocities are much bigger than the velocity at which current instabilities arise. This confirms the hypothesis for ion-acoustic instabilities, observed experimentally in previous research.

  12. Task Flow Modeling in Electronic Business Environments

    Directory of Open Access Journals (Sweden)

    2007-01-01

    Full Text Available In recent years, internet based commerce has developed as a new paradigm. Many factors such as "at home delivery", easy ordering, and usually lower prices contributed to the success of the e-commerce. However, more recently, companies realized that one of the major factors in having a successful internet based business is the design of a user interface that is in concordance with the users' expectations, which includes both functionality and user friendly features. The func-tionality feature of an e-business interface is one of the most important elements when discussing about a specific internet based business. In our paper, we present methods to model task flows for e-business interfaces. We strengthen our study with the design modeling of a practical scenario that may appear in an on-line commercial environment.

  13. A Model for an Electronic Information Marketplace

    Directory of Open Access Journals (Sweden)

    Wei Ge

    2005-11-01

    Full Text Available As the information content on the Internet increases, the task of locating desired information and assessing its quality becomes increasingly difficult. This development causes users to be more willing to pay for information that is focused on specific issues, verifiable, and available upon request. Thus, the nature of the Internet opens up the opportunity for information trading. In this context, the Internet cannot only be used to close the transaction, but also to deliver the product - desired information - to the user. Early attempts to implement such business models have fallen short of expectations. In this paper, we discuss the limitations of such practices and present a modified business model for information trading, which uses a reverse auction approach together with a multiple-buyer price discovery process

  14. Electron correlations in narrow energy bands: modified polar model approach

    Directory of Open Access Journals (Sweden)

    L. Didukh

    2008-09-01

    Full Text Available The electron correlations in narrow energy bands are examined within the framework of the modified form of polar model. This model permits to analyze the effect of strong Coulomb correlation, inter-atomic exchange and correlated hopping of electrons and explain some peculiarities of the properties of narrow-band materials, namely the metal-insulator transition with an increase of temperature, nonlinear concentration dependence of Curie temperature and peculiarities of transport properties of electronic subsystem. Using a variant of generalized Hartree-Fock approximation, the single-electron Green's function and quasi-particle energy spectrum of the model are calculated. Metal-insulator transition with the change of temperature is investigated in a system with correlated hopping. Processes of ferromagnetic ordering stabilization in the system with various forms of electronic DOS are studied. The static conductivity and effective spin-dependent masses of current carriers are calculated as a function of electron concentration at various DOS forms. The correlated hopping is shown to cause the electron-hole asymmetry of transport and ferromagnetic properties of narrow band materials.

  15. SWAT.nz: New-Zeland-based "Sand Waves and Turbulence" experimental programme

    Science.gov (United States)

    Coleman, Stephen; Nikora, Vladimir; Melville, Bruce; Goring, Derek; Clunie, Thomas; Friedrich, Heide

    2008-06-01

    The SWAT.nz ("New-Zealand-based Sand Waves and Turbulence") research programme was carried out to advance understanding of subaqueous sand waves. The programme was based around detailed measurements at varying scales of bed morphologies and associated flow fields as sand waves formed from plane-bed conditions and grew to equilibrium. This paper outlines the philosophy and details of the SWAT.nz programme, with the aim of providing insight into experiment and analysis design and methodologies for studies of highly-variable bed surfaces and flows. Example challenges addressed in the SWAT.nz programme include the measurement over large spatial domains of developing flow fields and three-dimensional bed morphology, including flow measurements below roughness (sand-wave) crests, and how to interpret the collected measurements. Insights into sand-wave dynamics that have arisen from the programme are presented to illustrate the values of the SWAT.nz programme and the developed methodologies. Results are presented in terms of mobile-bed processes, and flow-bed interaction and flow processes for fixed-bed roughness and erodible beds, respectively.

  16. Modeling and simulation of electronic structure, material interface and random doping in nano electronic devices

    Science.gov (United States)

    Chen, Duan; Wei, Guo-Wei

    2010-01-01

    The miniaturization of nano-scale electronic devices, such as metal oxide semiconductor field effect transistors (MOSFETs), has given rise to a pressing demand in the new theoretical understanding and practical tactic for dealing with quantum mechanical effects in integrated circuits. Modeling and simulation of this class of problems have emerged as an important topic in applied and computational mathematics. This work presents mathematical models and computational algorithms for the simulation of nano-scale MOSFETs. We introduce a unified two-scale energy functional to describe the electrons and the continuum electrostatic potential of the nano-electronic device. This framework enables us to put microscopic and macroscopic descriptions in an equal footing at nano scale. By optimization of the energy functional, we derive consistently-coupled Poisson-Kohn-Sham equations. Additionally, layered structures are crucial to the electrostatic and transport properties of nano transistors. A material interface model is proposed for more accurate description of the electrostatics governed by the Poisson equation. Finally, a new individual dopant model that utilizes the Dirac delta function is proposed to understand the random doping effect in nano electronic devices. Two mathematical algorithms, the matched interface and boundary (MIB) method and the Dirichlet-to-Neumann mapping (DNM) technique, are introduced to improve the computational efficiency of nano-device simulations. Electronic structures are computed via subband decomposition and the transport properties, such as the I-V curves and electron density, are evaluated via the non-equilibrium Green's functions (NEGF) formalism. Two distinct device configurations, a double-gate MOSFET and a four-gate MOSFET, are considered in our three-dimensional numerical simulations. For these devices, the current fluctuation and voltage threshold lowering effect induced by the discrete dopant model are explored. Numerical convergence

  17. Analyses of PWR spent fuel composition using SCALE and SWAT code systems to find correction factors for criticality safety applications adopting burnup credit

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Hee Sung; Suyama, Kenya; Mochizuki, Hiroki; Okuno, Hiroshi; Nomura, Yasushi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-01-01

    The isotopic composition calculations were performed for 26 spent fuel samples from the Obrigheim PWR reactor and 55 spent fuel samples from 7 PWR reactors using the SAS2H module of the SCALE4.4 code system with 27, 44 and 238 group cross-section libraries and the SWAT code system with the 107 group cross-section library. For the analyses of samples from the Obrigheim PWR reactor, geometrical models were constructed for each of SCALE4.4/SAS2H and SWAT. For the analyses of samples from 7 PWR reactors, the geometrical model already adopted in the SCALE/SAS2H was directly converted to the model of SWAT. The four kinds of calculation results were compared with the measured data. For convenience, the ratio of the measured to calculated values was used as a parameter. When the ratio is less than unity, the calculation overestimates the measurement, and the ratio becomes closer to unity, they have a better agreement. For many important nuclides for burnup credit criticality safety evaluation, the four methods applied in this study showed good coincidence with measurements in general. More precise observations showed, however: (1) Less unity ratios were found for Pu-239 and -241 for selected 16 samples out of the 26 samples from the Obrigheim reactor (10 samples were deselected because their burnups were measured with Cs-137 non-destructive method, less reliable than Nd-148 method the rest 16 samples were measured with); (2) Larger than unity ratios were found for Am-241 and Cm-242 for both the 16 and 55 samples; (3) Larger than unity ratios were found for Sm-149 for the 55 samples; (4) SWAT was generally accompanied by larger ratios than those of SAS2H with some exceptions. Based on the measured-to-calculated ratios for 71 samples of a combined set in which 16 selected samples and 55 samples were included, the correction factors that should be multiplied to the calculated isotopic compositions were generated for a conservative estimate of the neutron multiplication factor

  18. Modeling the customer in electronic commerce.

    Science.gov (United States)

    Helander, M G; Khalid, H M

    2000-12-01

    This paper reviews interface design of web pages for e-commerce. Different tasks in e-commerce are contrasted. A systems model is used to illustrate the information flow between three subsystems in e-commerce: store environment, customer, and web technology. A customer makes several decisions: to enter the store, to navigate, to purchase, to pay, and to keep the merchandize. This artificial environment must be designed so that it can support customer decision-making. To retain customers it must be pleasing and fun, and create a task with natural flow. Customers have different needs, competence and motivation, which affect decision-making. It may therefore be important to customize the design of the e-store environment. Future ergonomics research will have to investigate perceptual aspects, such as presentation of merchandize, and cognitive issues, such as product search and navigation, as well as decision making while considering various economic parameters. Five theories on e-commerce research are presented.

  19. Numerical modeling of electron-beam welding of dissimilar metals

    Science.gov (United States)

    Krektuleva, R. A.; Cherepanov, O. I.; Cherepanov, R. O.

    2016-11-01

    This paper is devoted to numerical modeling of heat transfer processes and estimation of thermal stresses in weld seams created by electron beam welding of heterogeneous metals. The mathematical model is based on a system of equations that includes the Lagrange's variational equation of theory of plasticity and variational equation of M. Biot's principle to simulate the heat transfer processes. The two-dimensional problems (plane strain and plane stress) are considered for estimation of thermal stresses in welds considering differences of mechanical properties of welded materials. The model is developed for simulation of temperature fields and stresses during electron beam welding.

  20. Local electronic structure in the Peyrard-Bishop-Holstein model

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Jianxin; Rasmussen, K Oe; Balatsky, A V; Bishop, A R [Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2007-04-04

    There is increasing evidence for polaronic effects on charge localization and dynamics in DNA. The Peyrard-Bishop-Holstein model has been previously suggested as an appropriate model for the description of such effects. Here we report a self-consistent study of local electronic structure within this model for both homopolymer and realistic viral P5 promoter segments. Our results indicate that both the inter-base-pair stacking interaction and the electron filling can qualitatively influence the polaronic properties in a specific DNA sequence, including features of two distinct length scales and competition with sequence-disorder induced localization.

  1. Relativistic models for quasielastic electron and neutrino-nucleus scattering

    Directory of Open Access Journals (Sweden)

    Meucci Andrea

    2012-12-01

    Full Text Available Relativistic models developed within the framework of the impulse approximation for quasielastic (QE electron scattering and successfully tested in comparison with electron-scattering data have been extended to neutrino-nucleus scattering. Different descriptions of final-state interactions (FSI in the inclusive scattering are compared. In the relativistic Green’s function (RGF model FSI are described consistently with the exclusive scattering using a complex optical potential. In the relativistic mean field (RMF model FSI are described by the same RMF potential which gives the bound states. The results of the models are compared for electron and neutrino scattering and, for neutrino scattering, with the recently measured charged-current QE (CCQE MiniBooNE cross sections.

  2. Modified binary encounter Bethe model for electron-impact ionization

    CERN Document Server

    Guerra, M; Indelicato, P; Santos, J P

    2013-01-01

    Theoretical expressions for ionization cross sections by electron impact based on the binary encounter Bethe (BEB) model, valid from ionization threshold up to relativistic energies, are proposed. The new modified BEB (MBEB) and its relativistic counterpart (MRBEB) expressions are simpler than the BEB (nonrelativistic and relativistic) expressions because they require only one atomic parameter, namely the binding energy of the electrons to be ionized, and use only one scaling term for the ionization of all sub-shells. The new models are used to calculate the K-, L- and M-shell ionization cross sections by electron impact for several atoms with Z from 6 to 83. Comparisons with all, to the best of our knowledge, available experimental data show that this model is as good or better than other models, with less complexity.

  3. A New Perspective for Modeling Power Electronics Converters : Complementarity Framework

    NARCIS (Netherlands)

    Vasca, Francesco; Iannelli, Luigi; Camlibel, M. Kanat; Frasca, Roberto

    2009-01-01

    The switching behavior of power converters with "ideal" electronic devices (EDs) makes it difficult to define a switched model that describes the dynamics of the converter in all possible operating conditions, i.e., a "complete" model. Indeed, simplifying assumptions on the sequences of modes are

  4. Modeling paraxial wave propagation in free-electron laser oscillators

    NARCIS (Netherlands)

    Karssenberg, J.G.; van der Slot, Petrus J.M.; Volokhine, I.; Verschuur, Jeroen W.J.; Boller, Klaus J.

    2006-01-01

    Modeling free-electron laser (FEL) oscillators requires calculation of both the light-beam interaction within the undulator and the light propagation outside the undulator. We have developed a paraxial optical propagation code that can be combined with various existing models of gain media, for

  5. A simple model for electron dissipation in trapped ion turbulence

    Science.gov (United States)

    Lesur, M.; Cartier-Michaud, T.; Drouot, T.; Diamond, P. H.; Kosuga, Y.; Réveillé, T.; Gravier, E.; Garbet, X.; Itoh, S.-I.; Itoh, K.

    2017-01-01

    Trapped ion resonance-driven turbulence is investigated in the presence of electron dissipation in a simplified tokamak geometry. A reduced gyrokinetic bounce-averaged model for trapped ions is adopted. Electron dissipation is modeled by a simple phase-shift δ between density and electric potential perturbations. The linear eigenfunction features a peak at the resonant energy, which becomes stronger with increasing electron dissipation. Accurately resolving this narrow peak in numerical simulation of the initial-value problem yields a stringent lower bound on the number of grid points in the energy space. Further, the radial particle flux is investigated in the presence of electron dissipation, including kinetic effects. When the density gradient is higher than the temperature gradient, and the phase-shift is finite but moderate ( δ≈0.02 ), the particle flux peaks at an order-of-magnitude above the gyro-Bohm estimate. Slight particle pinch is observed for δ<0.003 .

  6. Kinetic modelling of runaway electrons in dynamic scenarios

    CERN Document Server

    Stahl, A; Papp, G; Landreman, M; Fülöp, T

    2016-01-01

    Improved understanding of runaway-electron formation and decay processes are of prime interest for the safe operation of large tokamaks, and the dynamics of the runaway electrons during dynamical scenarios such as disruptions are of particular concern. In this paper, we present kinetic modelling of scenarios with time-dependent plasma parameters; in particular, we investigate hot-tail runaway generation during a rapid drop in plasma temperature. With the goal of studying runaway-electron generation with a self-consistent electric-field evolution, we also discuss the implementation of a conservative collision operator and demonstrate its properties. An operator for avalanche runaway-electron generation, which takes the energy dependence of the scattering cross section and the runaway distribution into account, is investigated. We show that the simpler avalanche model of Rosenbluth & Putvinskii [Nucl. Fusion 37, 1355 (1997)] can give very inaccurate results for the avalanche growth rate (either lower or hig...

  7. MODEL OF ELECTRON CLOUD INSTABILITY IN FERMILAB RECYCLER

    Energy Technology Data Exchange (ETDEWEB)

    Antipov, Sergey A. [Chicago U.; Burov, A. [Fermilab; Nagaitsev, S. [Fermilab

    2016-10-04

    An electron cloud instability might limit the intensity in the Fermilab Recycler after the PIP-II upgrade. A multibunch instability typically develops in the horizontal plane within a hundred turns and, in certain conditions, leads to beam loss. Recent studies have indicated that the instability is caused by an electron cloud, trapped in the Recycler index dipole magnets. We developed an analytical model of an electron cloud driven instability with the electrons trapped in combined function dipoles. The resulting instability growth rate of about 30 revolutions is consistent with experimental observations and qualitatively agrees with the simulation in the PEI code. The model allows an estimation of the instability rate for the future intensity upgrades.

  8. Modelling hot electron generation in short pulse target heating experiments

    Directory of Open Access Journals (Sweden)

    Sircombe N.J.

    2013-11-01

    Full Text Available Target heating experiments planned for the Orion laser facility, and electron beam driven fast ignition schemes, rely on the interaction of a short pulse high intensity laser with dense material to generate a flux of energetic electrons. It is essential that the characteristics of this electron source are well known in order to inform transport models in radiation hydrodynamics codes and allow effective evaluation of experimental results and forward modelling of future campaigns. We present results obtained with the particle in cell (PIC code EPOCH for realistic target and laser parameters, including first and second harmonic light. The hot electron distributions are characterised and their implications for onward transport and target heating are considered with the aid of the Monte-Carlo transport code THOR.

  9. USign--a security enhanced electronic consent model.

    Science.gov (United States)

    Li, Yanyan; Xie, Mengjun; Bian, Jiang

    2014-01-01

    Electronic consent becomes increasingly popular in the healthcare sector given the many benefits it provides. However, security concerns, e.g., how to verify the identity of a person who is remotely accessing the electronic consent system in a secure and user-friendly manner, also arise along with the popularity of electronic consent. Unfortunately, existing electronic consent systems do not pay sufficient attention to those issues. They mainly rely on conventional password based authentication to verify the identity of an electronic consent user, which is far from being sufficient given that identity theft threat is real and significant in reality. In this paper, we present a security enhanced electronic consent model called USign. USign enhances the identity protection and authentication for electronic consent systems by leveraging handwritten signatures everyone is familiar with and mobile computing technologies that are becoming ubiquitous. We developed a prototype of USign and conducted preliminary evaluation on accuracy and usability of signature verification. Our experimental results show the feasibility of the proposed model.

  10. ELECTRONIC CIRCUIT BOARDS NON-UNIFORM COOLING SYSTEM MODEL

    Directory of Open Access Journals (Sweden)

    D. V. Yevdulov

    2016-01-01

    Full Text Available Abstract. The paper considers a mathematical model of non-uniform cooling of electronic circuit boards. The block diagram of the system implementing this approach, the method of calculation of the electronic board temperature field, as well as the principle of its thermal performance optimizing are presented. In the considered scheme the main heat elimination from electronic board is produced by the radiator system, and additional cooling of the most temperature-sensitive components is produced by thermoelectric batteries. Are given the two-dimensional temperature fields of the electronic board during its uniform and non-uniform cooling, is carried out their comparison. As follows from the calculations results, when using a uniform overall cooling of electronic unit there is a waste of energy for the cooling 0f electronic board parts which temperature is within acceptable temperature range without the cooling system. This approach leads to the increase in the cooling capacity of used thermoelectric batteries in comparison with the desired values. This largely reduces the efficiency of heat elimination system. The use for electronic boards cooling of non-uniform local heat elimination removes this disadvantage. The obtained dependences show that in this case, the energy required to create a given temperature is smaller than when using a common uniform cooling. In this approach the temperature field of the electronic board is more uniform and the cooling is more efficient. 

  11. Ionospheric topside models compared with experimental electron density profiles

    Directory of Open Access Journals (Sweden)

    S. M. Radicella

    2005-06-01

    Full Text Available Recently an increasing number of topside electron density profiles has been made available to the scientific community on the Internet. These data are important for ionospheric modeling purposes, since the experimental information on the electron density above the ionosphere maximum of ionization is very scarce. The present work compares NeQuick and IRI models with the topside electron density profiles available in the databases of the ISIS2, IK19 and Cosmos 1809 satellites. Experimental electron content from the F2 peak up to satellite height and electron densities at fixed heights above the peak have been compared under a wide range of different conditions. The analysis performed points out the behavior of the models and the improvements needed to be assessed to have a better reproduction of the experimental results. NeQuick topside is a modified Epstein layer, with thickness parameter determined by an empirical relation. It appears that its performance is strongly affected by this parameter, indicating the need for improvements of its formulation. IRI topside is based on Booker's approach to consider two parts with constant height gradients. It appears that this formulation leads to an overestimation of the electron density in the upper part of the profiles, and overestimation of TEC.

  12. Using the Soil and Water Assessment Tool (SWAT) to assess land use impact on water resources in an East African watershed

    Science.gov (United States)

    Baker, Tracy J.; Miller, Scott N.

    2013-04-01

    SummaryLand cover and land use changes in Kenya's Rift Valley have altered the hydrologic response of the River Njoro watershed by changing the partitioning of excess rainfall into surface discharge and groundwater recharge. The watershed contributes a significant amount of water to Lake Nakuru National Park, an internationally recognized Ramsar site, as well as groundwater supplies for local communities and the city of Nakuru. Three land use maps representing a 17-year period when the region underwent significant transitions served as inputs for hydrologic modeling using the Automated Geospatial Watershed Assessment (AGWA) tool, a GIS-based hydrologic modeling system. AGWA was used to parameterize the Soil and Water Assessment Tool (SWAT), a hydrologic model suitable for assessing the relative impact of land cover change on hydrologic response. The SWAT model was calibrated using observation data taken during the 1990s with high annual concordance. Simulation results showed that land use changes have resulted in corresponding increases in surface runoff and decreases in groundwater recharge. Hydrologic changes were highly variable both spatially and temporally, and the uppermost reaches of the forested highlands were most significantly affected. These changes have negative implications for the ecological health of the river system as well as Lake Nakuru and local communities.

  13. Probabilistic Model for the Simulation of Secondary Electron Emission

    Energy Technology Data Exchange (ETDEWEB)

    Furman, M

    2004-05-17

    We provide a detailed description of a model and its computational algorithm for the secondary electron emission process. The model is based on a broad phenomenological fit to data for the secondary emission yield (SEY) and the emitted-energy spectrum. We provide two sets of values for the parameters by fitting our model to two particular data sets, one for copper and the other one for stainless steel.

  14. Empirical modeling of the total electron content in the ionosphere

    Science.gov (United States)

    Gorbachev, O. A.; Ivanov, V. B.; Ivel'Skaya, M. K.

    2012-02-01

    A method of modeling the total electron content (TEC) based on the semi-empirical ionospheric model developed in Irkutsk State University is suggested. Comparison with the Klobuchar model has shown that the proposed method provides a more accurate presentation of TEC. A conclusion is drawn that the use of this method for compensation of the ionospheric error in single-frequency navigation receivers would lead to a substantial increase in the accuracy of their positioning.

  15. Electron-scale reduced fluid models with gyroviscous effects

    Science.gov (United States)

    Passot, T.; Sulem, P. L.; Tassi, E.

    2017-08-01

    Reduced fluid models for collisionless plasmas including electron inertia and finite Larmor radius corrections are derived for scales ranging from the ion to the electron gyroradii. Based either on pressure balance or on the incompressibility of the electron fluid, they respectively capture kinetic Alfvén waves (KAWs) or whistler waves (WWs), and can provide suitable tools for reconnection and turbulence studies. Both isothermal regimes and Landau fluid closures permitting anisotropic pressure fluctuations are considered. For small values of the electron beta parameter e$ , a perturbative computation of the gyroviscous force valid at scales comparable to the electron inertial length is performed at order e)$ , which requires second-order contributions in a scale expansion. Comparisons with kinetic theory are performed in the linear regime. The spectrum of transverse magnetic fluctuations for strong and weak turbulence energy cascades is also phenomenologically predicted for both types of waves. In the case of moderate ion to electron temperature ratio, a new regime of KAW turbulence at scales smaller than the electron inertial length is obtained, where the magnetic energy spectrum decays like \\bot -13/3$ , thus faster than the \\bot -11/3$ spectrum of WW turbulence.

  16. Assessing the Efficacy of the SWAT Auto-Irrigation Function to Simulate Irrigation, Evapotranspiration, and Crop Response to Management Strategies of the Texas High Plains

    Directory of Open Access Journals (Sweden)

    Yong Chen

    2017-07-01

    Full Text Available In the semi-arid Texas High Plains, the underlying Ogallala Aquifer is experiencing continuing decline due to long-term pumping for irrigation with limited recharge. Accurate simulation of irrigation and other associated water balance components are critical for meaningful evaluation of the effects of irrigation management strategies. Modelers often employ auto-irrigation functions within models such as the Soil and Water Assessment Tool (SWAT. However, some studies have raised concerns as to whether the function is able to adequately simulate representative irrigation practices. In this study, observations of climate, irrigation, evapotranspiration (ET, leaf area index (LAI, and crop yield derived from an irrigated lysimeter field at the USDA-ARS Conservation and Production Research Laboratory at Bushland, Texas were used to evaluate the efficacy of the SWAT auto-irrigation functions. Results indicated good agreement between simulated and observed daily ET during both model calibration (2001–2005 and validation (2006–2010 periods for the baseline scenario (Nash-Sutcliffe efficiency; NSE ≥ 0.80. The auto-irrigation scenarios resulted in reasonable ET simulations under all the thresholds of soil water deficit (SWD triggers as indicated by NSE values > 0.5. However, the auto-irrigation function did not adequately represent field practices, due to the continuation of irrigation after crop maturity and excessive irrigation when SWD triggers were less than the static irrigation amount.

  17. Modeling mixed culture fermentations; the role of different electron carriers.

    Science.gov (United States)

    Kleerebezem, R; Rodríguez, J; Temudo, M F; van Loosdrecht, M C M

    2008-01-01

    A recently established mixed culture fermentation (MCF) model has been modified to account for the role of different electron carriers in the process. The MCF-model predicts the product spectrum as a function of the actual environmental conditions using a thermodynamic optimization criterion while satisfying a number of constraints. Other improvements made to the original model are the inclusion of formate as fermentation end-product, and gas-liquid mass transfer. The model is adequately capable of reproducing experimental results in terms of butyrate and formate versus hydrogen/carbon dioxide production. The model is not capable of predicting the production of an ethanol/acetate mixture as measured at higher pH-values, suggesting specific biochemical control. Catabolic acetate production can potentially be explained by anabolic requirements for a specific electron donor like NADH.

  18. The morpho-agronomic characterization study of Lens culinaris germplasm under salt marsh habitat in Swat, Pakistan

    National Research Council Canada - National Science Library

    Rabia Noor; Shujaul Mulk Khan; Fayaz Ahmad; Murtaza Hussain; Elsayed Fathi Abd_Allah; Abdulaziz A. Alqarawi; Abeer Hashem; Abdullah Aldubise

    2017-01-01

    The present research study evaluate and identify the most suitable and high yielding genotypes of Lens culinaris for the salt marsh habitat of Swat in moist temperate sort of agro climatic environment of Pakistan...

  19. The Chemical Modeling of Electronic Materials and Interconnections

    Science.gov (United States)

    Kivilahti, J. K.

    2002-12-01

    Thermodynamic and kinetic modeling, together with careful experimental work, is of great help for developing new electronic materials such as lead-free solders, their compatible metallizations and diffusion-barrier layers, as well as joining and bonding processes for advanced electronics manufacturing. When combined, these modeling techniques lead to a rationalization of the trial-and-error methods employed in the electronics industry, limiting experimentation and, thus, reducing significantly time-to-market of new products. This modeling provides useful information on the stabilities of phases (microstructures), driving forces for chemical reactions, and growth rates of reaction products occurring in interconnections or thin-film structures during processing, testing, and in longterm use of electronic devices. This is especially important when manufacturing advanced lead-free electronics where solder joint volumes are decreasing while the number of dissimilar reactive materials is increasing markedly. Therefore, a new concept of local nominal composition was introduced and applied together with the relevant ternary and multicomponent phase diagrams to some solder/conductor systems.

  20. Modelling and simulation of beam formation in electron guns

    Energy Technology Data Exchange (ETDEWEB)

    Sabchevski, S. [Bulgarian Academy of Sciences, Sofia (Bulgaria). Inst. po Elektronika; Mladenov, G. [Bulgarian Academy of Sciences, Sofia (Bulgaria). Inst. po Elektronika; Titov, A. [St. Petersburg State Electrotechnical University, St. Petersburg (Russian Federation); Barbarich, I. [St. Petersburg State Electrotechnical University, St. Petersburg (Russian Federation)

    1996-11-01

    This paper describes a new PC version of the software package GUN-EBT for computer simulation of beam formation in rotationally symmetric electron guns with thermionic cathodes. It is based on a self-consistent physical model which takes into account the beam space charge and the initial velocity effects. The theoretical framework used for both the formulation of the model and for the interpretation of the results of numerical experiments is the formalism of the charged particle dynamics in phase space. This enables not only a trajectory analysis (ray tracing) but also a phase-space analysis of beams to be performed. The package can be used as an effective tool for computer aided design and optimization of electron guns in various electron-optical systems. The operation of the package is illustrated with a typical example. (orig.).

  1. Using SWAT and Fuzzy TOPSIS to Assess the Impact of Climate Change in the Headwaters of the Segura River Basin (SE Spain

    Directory of Open Access Journals (Sweden)

    Javier Senent-Aparicio

    2017-02-01

    Full Text Available The Segura River Basin is one of the most water-stressed basins in Mediterranean Europe. If we add to the actual situation that most climate change projections forecast important decreases in water resource availability in the Mediterranean region, the situation will become totally unsustainable. This study assessed the impact of climate change in the headwaters of the Segura River Basin using the Soil and Water Assessment Tool (SWAT with bias-corrected precipitation and temperature data from two Regional Climate Models (RCMs for the medium term (2041–2070 and the long term (2071–2100 under two emission scenarios (RCP4.5 and RCP8.5. Bias correction was performed using the distribution mapping approach. The fuzzy TOPSIS technique was applied to rank a set of nine GCM–RCM combinations, choosing the climate models with a higher relative closeness. The study results show that the SWAT performed satisfactorily for both calibration (NSE = 0.80 and validation (NSE = 0.77 periods. Comparing the long-term and baseline (1971–2000 periods, precipitation showed a negative trend between 6% and 32%, whereas projected annual mean temperatures demonstrated an estimated increase of 1.5–3.3 °C. Water resources were estimated to experience a decrease of 2%–54%. These findings provide local water management authorities with very useful information in the face of climate change.

  2. Designing Electronic Performance Support Systems: Models and Instructional Strategies Employed

    Science.gov (United States)

    Nekvinda, Christopher D.

    2011-01-01

    The purpose of this qualitative study was to determine whether instructional designers and performance technologists utilize instructional design models when designing and developing electronic performance support systems (EPSS). The study also explored if these same designers were utilizing instructional strategies within their EPSS to support…

  3. Toward a generic model of trust for electronic commerce

    NARCIS (Netherlands)

    Tan, YH; Thoen, W

    2000-01-01

    The authors present a generic model of trust for electronic commerce consisting of two basic components, party trust and control trust, based on the concept that trust in a transaction with another party combines trust in the other parry and trust in the control mechanisms that ensure the successful

  4. Technical Communicator: A New Model for the Electronic Resources Librarian?

    Science.gov (United States)

    Hulseberg, Anna

    2016-01-01

    This article explores whether technical communicator is a useful model for electronic resources (ER) librarians. The fields of ER librarianship and technical communication (TC) originated and continue to develop in relation to evolving technologies. A review of the literature reveals four common themes for ER librarianship and TC. While the…

  5. Modeling of humidity-related reliability in enclosures with electronics

    DEFF Research Database (Denmark)

    Hygum, Morten Arnfeldt; Popok, Vladimir

    2015-01-01

    Reliability of electronics that operate outdoor is strongly affected by environmental factors such as temperature and humidity. Fluctuations of these parameters can lead to water condensation inside enclosures. Therefore, modelling of humidity distribution in a container with air and freely exposed...

  6. Modeling of magnetic components for power electronic converters

    Science.gov (United States)

    Hranov, Tsveti; Hinov, Nikolay

    2017-12-01

    The paper presents the modelling of magnetic components, used in the power electronic devices. Non-linear inductor and transformer are presented. During the design stage are taken into account that the converters are operated with non-sinusoidal currents and voltages. The models are realized in the MATLAB environment and their verification is done using computer simulations. The advantages of these models against the existing models are that relations between the parameters are formalized and this way the computational procedure is significantly faster. This is important in the cases when the quasi-steady-state regime in devices comes significantly slower and the investigations are requiring long simulation times.

  7. Modelling Electron Spin Accumulation in a Metallic Nanoparticle

    OpenAIRE

    Wei, Y.G.; Malec, C. E.; Davidović, D.

    2008-01-01

    A model describing spin-polarized current via discrete energy levels of a metallic nanoparticle, which has strongly asymmetric tunnel contacts to two ferromagnetic leads, is presented. In absence of spin-relaxation, the model leads to a spin-accumulation in the nanoparticle, a difference ($\\Delta\\mu$) between the chemical potentials of spin-up and spin-down electrons, proportional to the current and the Julliere's tunnel magnetoresistance. Taking into account an energy dependent spin-relaxati...

  8. A new parametrizable model of molecular electronic structure

    CERN Document Server

    Laikov, Dimitri N

    2011-01-01

    A new electronic structure model is developed in which the ground state energy of a molecular system is given by a Hartree-Fock-like expression with parametrized one- and two-electron integrals over an extended (minimal + polarization) set of orthogonalized atom-centered basis functions, the variational equations being solved formally within the minimal basis but the effect of polarization functions being included in the spirit of second-order perturbation theory. It is designed to yield good dipole polarizabilities and improved intermolecular potentials with dispersion terms. The molecular integrals include up to three-center one-electron and two-center two-electron terms, all in simple analytical forms. A method to extract the effective one-electron Hamiltonian of nonlocal-exchange Kohn-Sham theory from the coupled-cluster one-electron density matrix is designed and used to get its matrix representation in a molecule-intrinsic minimal basis as an input to the paramtrization procedure -- making a direct link...

  9. Electron Flux Models for Different Energies at Geostationary Orbit

    Science.gov (United States)

    Boynton, R. J.; Balikhin, M. A.; Sibeck, D. G.; Walker, S. N.; Billings, S. A.; Ganushkina, N.

    2016-01-01

    Forecast models were derived for energetic electrons at all energy ranges sampled by the third-generation Geostationary Operational Environmental Satellites (GOES). These models were based on Multi-Input Single-Output Nonlinear Autoregressive Moving Average with Exogenous inputs methodologies. The model inputs include the solar wind velocity, density and pressure, the fraction of time that the interplanetary magnetic field (IMF) was southward, the IMF contribution of a solar wind-magnetosphere coupling function proposed by Boynton et al. (2011b), and the Dst index. As such, this study has deduced five new 1 h resolution models for the low-energy electrons measured by GOES (30-50 keV, 50-100 keV, 100-200 keV, 200-350 keV, and 350-600 keV) and extended the existing >800 keV and >2 MeV Geostationary Earth Orbit electron fluxes models to forecast at a 1 h resolution. All of these models were shown to provide accurate forecasts, with prediction efficiencies ranging between 66.9% and 82.3%.

  10. Band electron spectrum and thermodynamic properties of the pseudospin-electron model with tunneling splitting of levels

    Directory of Open Access Journals (Sweden)

    O.Ya.Farenyuk

    2006-01-01

    Full Text Available The pseudospin-electron model with tunneling splitting of levels is considered. Generalization of dynamic mean-field method for systems with correlated hopping was applied to the investigation of the model. Electron spectra, electron concentrations, average values of pseudospins and grand canonical potential were calculated within the alloy-analogy approximation. Electron spectrum and dependencies of the electron concentrations on chemical potential were obtained. It was shown that in the alloy-analogy approximation, the model possesses the first order phase transition to ferromagnetic state with the change of chemical potential and the second order phase transition with the change of temperature.

  11. Comparison of streamflow prediction skills from NOAH-MP/RAPID, VIC/RAPID and SWAT toward an ensemble flood forecasting framework over large scales

    Science.gov (United States)

    Rajib, M. A.; Tavakoly, A. A.; Du, L.; Merwade, V.; Lin, P.

    2015-12-01

    Considering the differences in how individual models represent physical processes for runoff generation and streamflow routing, use of ensemble output is desirable in an operational streamflow estimation and flood forecasting framework. To enable the use of ensemble streamflow, comparison of multiple hydrologic models at finer spatial resolution over a large domain is yet to be explored. The objective of this work is to compare streamflow prediction skills from three different land surface/hydrologic modeling frameworks: NOAH-MP/RAPID, VIC/RAPID and SWAT, over the Ohio River Basin with a drainage area of 491,000 km2. For a uniform comparison, all the three modeling frameworks share the same setup with common weather inputs, spatial resolution, and gauge stations being employed in the calibration procedure. The runoff output from NOAH-MP and VIC land surface models is routed through a vector-based river routing model named RAPID, that is set up on the high resolution NHDPlus reaches and catchments. SWAT model is used with its default tightly coupled surface-subsurface hydrology and channel routing components to obtain streamflow for each NHDPlus reach. Model simulations are performed in two modes, including: (i) hindcasting/calibration mode in which the models are calibrated against USGS daily streamflow observations at multiple locations, and (ii) validation mode in which the calibrated models are executed at 3-hourly time interval for historical flood events. In order to have a relative assessment on the model-specific nature of biases during storm events as well as dry periods, time-series of surface runoff and baseflow components at the specific USGS gauging locations are extracted from corresponding observed/simulated streamflow data using a recursive digital filter. The multi-model comparison presented here provides insights toward future model improvements and also serves as the first step in implementing an operational ensemble flood forecasting framework

  12. ELECTRON AVALANCHE MODEL OF DIELECTRIC-VACUUM SURFACE BREAKDOWN

    Energy Technology Data Exchange (ETDEWEB)

    Lauer, E J

    2007-02-21

    The model assumes that an 'initiating event' results in positive ions on the surface near the anode and reverses the direction of the normal component of electric field so that electrons in vacuum are attracted to the dielectric locally. A sequence of surface electron avalanches progresses in steps from the anode to the cathode. For 200 kV across 1 cm, the spacing of avalanches is predicted to be about 13 microns. The time for avalanches to step from the anode to the cathode is predicted to be about a ns.

  13. Transformer Model in Wide Frequency Bandwidth for Power Electronics Systems

    Directory of Open Access Journals (Sweden)

    Carlos Gonzalez-Garcia

    2013-01-01

    Full Text Available The development of the smart grids leads to new challenges on the power electronics equipment and power transformers. The use of power electronic transformer presents several advantages, but new problems related with the application of high frequency voltage and current components come across. Thus, an accurate knowledge of the transformer behavior in a wide frequency range is mandatory. A novel modeling procedure to relate the transformer physical behavior and its frequency response by means of electrical parameters is presented. Its usability is demonstrated by an example where a power transformer is used as filter and voltage reducer in an AC-DC-AC converter.

  14. Transmission electron microscopy of a model crystalline organic, theophylline

    Science.gov (United States)

    Cattle, J.; S'ari, M.; Hondow, N.; Abellán, P.; Brown, A. P.; Brydson, R. M. D.

    2015-10-01

    We report on the use of transmission electron microscopy (TEM) to analyse the diffraction patterns of the model crystalline organic theophylline to investigate beam damage in relation to changing accelerating voltage, sample temperature and TEM grid support films. We find that samples deposited on graphene film grids have the longest lifetimes when also held at -190 °C and imaged at 200 kV accelerating voltage. Finally, atomic lattice images are obtained in bright field STEM by working close to the estimated critical electron dose for theophylline.

  15. The Development Model Electronic Commerce of Regional Agriculture

    Science.gov (United States)

    Kang, Jun; Cai, Lecai; Li, Hongchan

    With the developing of the agricultural information, it is inevitable trend of the development of agricultural electronic commercial affairs. On the basis of existing study on the development application model of e-commerce, combined with the character of the agricultural information, compared with the developing model from the theory and reality, a new development model electronic commerce of regional agriculture base on the government is put up, and such key issues as problems of the security applications, payment mode, sharing mechanisms, and legal protection are analyzed, etc. The among coordination mechanism of the region is discussed on, it is significance for regulating the development of agricultural e-commerce and promoting the regional economical development.

  16. Semantic Web applications and tools for the life sciences: SWAT4LS 2010.

    Science.gov (United States)

    Burger, Albert; Paschke, Adrian; Romano, Paolo; Marshall, M Scott; Splendiani, Andrea

    2012-01-25

    As Semantic Web technologies mature and new releases of key elements, such as SPARQL 1.1 and OWL 2.0, become available, the Life Sciences continue to push the boundaries of these technologies with ever more sophisticated tools and applications. Unsurprisingly, therefore, interest in the SWAT4LS (Semantic Web Applications and Tools for the Life Sciences) activities have remained high, as was evident during the third international SWAT4LS workshop held in Berlin in December 2010. Contributors to this workshop were invited to submit extended versions of their papers, the best of which are now made available in the special supplement of BMC Bioinformatics. The papers reflect the wide range of work in this area, covering the storage and querying of Life Sciences data in RDF triple stores, tools for the development of biomedical ontologies and the semantics-based integration of Life Sciences as well as clinicial data.

  17. Impacts of Climate and Land Use/Cover Change on Streamflow Using SWAT and a Separation Method for the Xiying River Basin in Northwestern China

    Directory of Open Access Journals (Sweden)

    Jing Guo

    2016-05-01

    Full Text Available A better understanding of the effects of climate change and land use/cover change (LUCC on streamflow promotes the long-term water planning and management in the arid regions of northwestern China. In this paper, the Soil and Water Assessment Tool (SWAT and a separation approach were used to evaluate and separate the effects of climate change and LUCC on streamflow in the Xiying River basin. The SWAT model was calibrated by the hydro-meteorological data from 1980–1989 to obtain the optimum parameters, which were validated by the subsequent application to the period between 1990–2008. Moreover, streamflow under several scenarios with different climate change and land use conditions in 1990–2008 and 2010–2069 were further investigated. Results indicate that, in the period of 1990–2008, the streamflow was dominated by climate change (i.e., changes in precipitation and temperature, which led to a 102.8% increase in the mean annual streamflow, whereas LUCC produced a decrease of 2.8%. Furthermore, in the future period of 2010–2039, the mean annual streamflow will decrease by 5.4% and 4.5% compared with the data of 1961–1990 under scenarios A2 and B2, respectively, while it will decrease by 21.2% and 16.9% in the period of 2040–2069, respectively.

  18. Modeling power electronics and interfacing energy conversion systems

    CERN Document Server

    Simões, Marcelo Godoy

    2017-01-01

    Discusses the application of mathematical and engineering tools for modeling, simulation and control oriented for energy systems, power electronics and renewable energy. This book builds on the background knowledge of electrical circuits, control of dc/dc converters and inverters, energy conversion and power electronics. The book shows readers how to apply computational methods for multi-domain simulation of energy systems and power electronics engineering problems. Each chapter has a brief introduction on the theoretical background, a description of the problems to be solved, and objectives to be achieved. Block diagrams, electrical circuits, mathematical analysis or computer code are covered. Each chapter concludes with discussions on what should be learned, suggestions for further studies and even some experimental work.

  19. SWAT-MODSIM-PSO optimization of multi-crop planning in the Karkheh River Basin, Iran, under the impacts of climate change.

    Science.gov (United States)

    Fereidoon, Majid; Koch, Manfred

    2018-02-24

    Agriculture is one of the environmental/economic sectors that may adversely be affected by climate change, especially, in already nowadays water-scarce regions, like the Middle East. One way to cope with future changes in absolute as well as seasonal (irrigation) water amounts can be the adaptation of the agricultural crop pattern in a region, i.e. by planting crops which still provide high yields and so economic benefits to farmers under such varying climate conditions. To do this properly, the whole cascade starting from climate change, effects on hydrology and surface water availability, subsequent effects on crop yield, agricultural areas available, and, finally, economic value of a multi-crop cultivation pattern must be known. To that avail, a complex coupled simulation-optimization tool SWAT-LINGO-MODSIM-PSO (SLMP) has been developed here and used to find the future optimum cultivation area of crops for the maximization of the economic benefits in five irrigation-fed agricultural plains in the south of the Karkheh River Basin (KRB) southwest Iran. Starting with the SWAT distributed hydrological model, the KR-streamflow as well as the inflow into the Karkheh-reservoir, as the major storage of irrigation water, is calibrated and validated, based on 1985-2004 observed discharge data. In the subsequent step, the SWAT-predicted streamflow is fed into the MODSIM river basin Decision Support System to simulate and optimize the water allocation between different water users (agricultural, environmental, municipal and industrial) under standard operating policy (SOP) rules. The final step is the maximization of the economic benefit in the five agricultural plains through constrained PSO (particle swarm optimization) by adjusting the cultivation areas (decision variables) of different crops (wheat, barley, maize and "others"), taking into account their specific prizes and optimal crop yields under water deficiency, with the latter computed in the LINGO

  20. Application of transmission electron tomography for modeling the renal corpuscle.

    Science.gov (United States)

    Cheng, Delfine; Shen, Sylvie; Chen, Xin-Ming; Pollock, Carol; Braet, Filip

    2013-11-01

    Structural alteration to the microanatomical organization of the glomerular filtration barrier results in proteinuria. Conventional transmission electron microscopy is an important diagnostic tool to assess the degree of ultrastructural damage of the corpusclar filtration unit. However, this approach lacks the ability to collect accurate stereological insights in a relative large tissue volume. Transmission electron tomography offers the ability to gather three-dimensional information with relative ease. Therefore, this contribution aims to highlight what electron tomography can bring to the pathologist in this challenging area of diagnostic practice. Kidney tissue was prepared for routine ultrastructural transmission electron microscopy investigation. Three-dimensional data stacks were automatically acquired by tilting semi-thin sections of 270 nm in an angular range of typically -60° to +60° with 1° increment. Subsequently, models of the filtration unit were produced by computer-assisted tracking of structures of interest. This short report illustrates the capability that transmission electron tomography can offer in the fine structure-function assessment of the porous fenestrated glomerular capillary endothelium, the underlying basement membrane and the podocyte filtration slits. Furthermore, this approach allows the generation of morphometric data about size, shape and volume alterations of the kidney's filtration barrier at the nanoscale. Copyright © 2013 Elsevier GmbH. All rights reserved.

  1. MATHEMATICAL MODELING OF EXTRACELLULAR ELECTRON TRANSFER IN BIOFILMS

    Energy Technology Data Exchange (ETDEWEB)

    Renslow, Ryan S.; Babauta, Jerome T.; Kuprat, Andrew P.; Schenk, Jim; Ivory, Cornelius; Fredrickson, Jim K.; Beyenal, Haluk

    2015-09-12

    Electrochemically active biofilms have a unique form of respiration in which they utilize solid external materials as terminal electron acceptors for their metabolism. Currently, two primary mechanisms have been identified for long-range extracellular electron transfer (EET): a diffusion- and a conduction-based mechanism. Evidence in the literature suggests that some biofilms, particularly Shewanella oneidensis, produce the requisite components for both mechanisms. In this study, a generic model is presented that incorporates the diffusion- and the conduction-based mechanisms and allows electrochemically active biofilms to utilize both simultaneously. The model was applied to S. oneidensis and Geobacter sulfurreducens biofilms using experimentally generated data found in the literature. Our simulation results show that 1) biofilms having both mechanisms available, especially if they can interact, may have a metabolic advantage over biofilms that can use only a single mechanism; 2) the thickness of G. sulfurreducens biofilms is likely not limited by conductivity; 3) accurate intrabiofilm diffusion coefficient values are critical for current generation predictions; and 4) the local biofilm potential and redox potential are two distinct parameters and cannot be assumed to have identical values. Finally, we determined that simulated cyclic and squarewave voltammetry based on our model are currently not capable of determining the specific percentages of extracellular electron transfer mechanisms in a biofilm. The developed model will be a critical tool for designing experiments to explain EET mechanisms.

  2. Power electronic converters modeling and control with case studies

    CERN Document Server

    Bacha, Seddik; Bratcu, Antoneta Iuliana

    2014-01-01

    Modern power electronic converters are involved in a very broad spectrum of applications: switched-mode power supplies, electrical-machine-motion-control, active power filters, distributed power generation, flexible AC transmission systems, renewable energy conversion systems and vehicular technology, among them. Power Electronics Converters Modeling and Control teaches the reader how to analyze and model the behavior of converters and so to improve their design and control. Dealing with a set of confirmed algorithms specifically developed for use with power converters, this text is in two parts: models and control methods. The first is a detailed exposition of the most usual power converter models: ·        switched and averaged models; ·        small/large-signal models; and ·        time/frequency models. The second focuses on three groups of control methods: ·        linear control approaches normally associated with power converters; ·        resonant controllers b...

  3. Modeling and multidimensional optimization of a tapered free electron laser

    Directory of Open Access Journals (Sweden)

    Y. Jiao

    2012-05-01

    Full Text Available Energy extraction efficiency of a free electron laser (FEL can be greatly increased using a tapered undulator and self-seeding. However, the extraction rate is limited by various effects that eventually lead to saturation of the peak intensity and power. To better understand these effects, we develop a model extending the Kroll-Morton-Rosenbluth, one-dimensional theory to include the physics of diffraction, optical guiding, and radially resolved particle trapping. The predictions of the model agree well with that of the GENESIS single-frequency numerical simulations. In particular, we discuss the evolution of the electron-radiation interaction along the tapered undulator and show that the decreasing of refractive guiding is the major cause of the efficiency reduction, particle detrapping, and then saturation of the radiation power. With this understanding, we develop a multidimensional optimization scheme based on GENESIS simulations to increase the energy extraction efficiency via an improved taper profile and variation in electron beam radius. We present optimization results for hard x-ray tapered FELs, and the dependence of the maximum extractable radiation power on various parameters of the initial electron beam, radiation field, and the undulator system. We also study the effect of the sideband growth in a tapered FEL. Such growth induces increased particle detrapping and thus decreased refractive guiding that together strongly limit the overall energy extraction efficiency.

  4. Electronic Model of a Ferroelectric Field Effect Transistor

    Science.gov (United States)

    MacLeod, Todd C.; Ho, Fat Duen; Russell, Larry (Technical Monitor)

    2001-01-01

    A pair of electronic models has been developed of a Ferroelectric Field Effect transistor. These models can be used in standard electrical circuit simulation programs to simulate the main characteristics of the FFET. The models use the Schmitt trigger circuit as a basis for their design. One model uses bipolar junction transistors and one uses MOSFET's. Each model has the main characteristics of the FFET, which are the current hysterisis with different gate voltages and decay of the drain current when the gate voltage is off. The drain current from each model has similar values to an actual FFET that was measured experimentally. T'he input and o Output resistance in the models are also similar to that of the FFET. The models are valid for all frequencies below RF levels. No attempt was made to model the high frequency characteristics of the FFET. Each model can be used to design circuits using FFET's with standard electrical simulation packages. These circuits can be used in designing non-volatile memory circuits and logic circuits and is compatible with all SPICE based circuit analysis programs. The models consist of only standard electrical components, such as BJT's, MOSFET's, diodes, resistors, and capacitors. Each model is compared to the experimental data measured from an actual FFET.

  5. Access Control Model for Sharing Composite Electronic Health Records

    Science.gov (United States)

    Jin, Jing; Ahn, Gail-Joon; Covington, Michael J.; Zhang, Xinwen

    The adoption of electronically formatted medical records, so called Electronic Health Records (EHRs), has become extremely important in healthcare systems to enable the exchange of medical information among stakeholders. An EHR generally consists of data with different types and sensitivity degrees which must be selectively shared based on the need-to-know principle. Security mechanisms are required to guarantee that only authorized users have access to specific portions of such critical record for legitimate purposes. In this paper, we propose a novel approach for modelling access control scheme for composite EHRs. Our model formulates the semantics and structural composition of an EHR document, from which we introduce a notion of authorized zones of the composite EHR at different granularity levels, taking into consideration of several important criteria such as data types, intended purposes and information sensitivities.

  6. Putting structure into context: fitting of atomic models into electron microscopic and electron tomographic reconstructions.

    Science.gov (United States)

    Volkmann, Niels

    2012-02-01

    A complete understanding of complex dynamic cellular processes such as cell migration or cell adhesion requires the integration of atomic level structural information into the larger cellular context. While direct atomic-level information at the cellular level remains inaccessible, electron microscopy, electron tomography and their associated computational image processing approaches have now matured to a point where sub-cellular structures can be imaged in three dimensions at the nanometer scale. Atomic-resolution information obtained by other means can be combined with this data to obtain three-dimensional models of large macromolecular assemblies in their cellular context. This article summarizes some recent advances in this field. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Variability of Protein Structure Models from Electron Microscopy.

    Science.gov (United States)

    Monroe, Lyman; Terashi, Genki; Kihara, Daisuke

    2017-04-04

    An increasing number of biomolecular structures are solved by electron microscopy (EM). However, the quality of structure models determined from EM maps vary substantially. To understand to what extent structure models are supported by information embedded in EM maps, we used two computational structure refinement methods to examine how much structures can be refined using a dataset of 49 maps with accompanying structure models. The extent of structure modification as well as the disagreement between refinement models produced by the two computational methods scaled inversely with the global and the local map resolutions. A general quantitative estimation of deviations of structures for particular map resolutions are provided. Our results indicate that the observed discrepancy between the deposited map and the refined models is due to the lack of structural information present in EM maps and thus these annotations must be used with caution for further applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Quantum entanglement in two-electron atomic models

    Energy Technology Data Exchange (ETDEWEB)

    Manzano, D; Plastino, A R; Dehesa, J S [Instituto Carlos I de Fisica Teorica y Computacional, Universidad de Granada, Granada E-18071 (Spain); Koga, T, E-mail: arplastino@ugr.e [Applied Chemistry Research Unit, Graduate School of Engineering, Muroran Institute of Technology, Muroran, Hokkaido 050-8585 (Japan)

    2010-07-09

    We explore the main entanglement properties exhibited by the eigenfunctions of two exactly soluble two-electron models, the Crandall atom and the Hooke atom, and compare them with the entanglement features of helium-like systems. We compute the amount of entanglement associated with the wavefunctions corresponding to the fundamental and first few excited states of these models. We investigate the dependence of the entanglement on the parameters of the models and on the quantum numbers of the eigenstates. It is found that the amount of entanglement of the system tends to increase with energy in both models. In addition, we study the entanglement of a few states of helium-like systems, which we compute using high-quality Kinoshita-like eigenfunctions. The dependence of the entanglement of helium-like atoms on the nuclear charge and on energy is found to be consistent with the trends observed in the previous two model systems.

  9. MODEL PSEUDOPOTENTIAL OF THE ELECTRON - NEGATIVE ION INTERACTION

    Directory of Open Access Journals (Sweden)

    Yu.Rudavskii

    2003-01-01

    Full Text Available Generalization of the Anderson model to describe the states of electronegative impurities in liquid-metal alloys is the main aim of the present paper. The effects of the random inner field on the charge impurity states is accounted for selfconsistently. Qualitative and quantitative estimation of hamiltonian parameters has been carried out. The limits of the proposed model applicability to a description of real systems are considered. Especially, the case of the oxygen impurity in liquid sodium is studied. The modelling of the proper electron-ionic interaction potential is the main goal of the paper. The parameters of the proposed pseudopotential are analyzed in detail. The comparison with other model potentials have been carried out. Resistivity of liquid sodium containing the oxygen impurities is calculated with utilizing the form-factor of the proposed model potential. Dependence of the resistivity on impurity concentration and on the charge states is received.

  10. Electronic Commerce Success Model: A Search for Multiple Criteria

    OpenAIRE

    Achjari, Didi; Quaddus, Mohammed A.

    2004-01-01

    The current study attempts to develop and examine framework of e-commerce success. In order to obtain comprehensive and robust measures, the framework accomodates key factors that are identified in the literature concerning the success of electronic commerce. The structural model comprises of four exogenous variables (Internal Driver, Internal Impediment, External Driver and Exgternal Impediment) and one endogenous variable (Electornic Commerce Success) eith 24 observed variables. The study t...

  11. Temporal-spatial distribution of non-point source pollution in a drinking water source reservoir watershed based on SWAT

    Directory of Open Access Journals (Sweden)

    M. Wang

    2015-05-01

    Full Text Available The conservation of drinking water source reservoirs has a close relationship between regional economic development and people’s livelihood. Research on the non-point pollution characteristics in its watershed is crucial for reservoir security. Tang Pu Reservoir watershed was selected as the study area. The non-point pollution model of Tang Pu Reservoir was established based on the SWAT (Soil and Water Assessment Tool model. The model was adjusted to analyse the temporal-spatial distribution patterns of total nitrogen (TN and total phosphorus (TP. The results showed that the loss of TN and TP in the reservoir watershed were related to precipitation in flood season. And the annual changes showed an "M" shape. It was found that the contribution of loss of TN and TP accounted for 84.5% and 85.3% in high flow years, and for 70.3% and 69.7% in low flow years, respectively. The contributions in normal flow years were 62.9% and 63.3%, respectively. The TN and TP mainly arise from Wangtan town, Gulai town, and Wangyuan town, etc. In addition, it was found that the source of TN and TP showed consistency in space.

  12. Assessment of future climate change impacts on nonpoint source pollution in snowmelt period for a cold area using SWAT.

    Science.gov (United States)

    Wang, Yu; Bian, Jianmin; Zhao, Yongsheng; Tang, Jie; Jia, Zhuo

    2018-02-05

    The source area of Liao River is a typical cold region in northeastern China, which experiences serious problems with agricultural nonpoint source pollution (NPS), it is important to understand future climate change impacts on NPS in the watershed. This issue has been investigated by coupling semi distributed hydrological model (SWAT), statistical downscaling model (SDSM) and global circulation model (GCMs). The results show that annual average temperature would rise by 2.1 °C (1.3 °C) in the 2080 s under scenario RCP8.5 (RCP4.5), and annual precipitation would increase by 67 mm (33 mm). The change in winter temperature and precipitation is most significant with an increase by 0.23 °C/10a (0.17 °C/10a) and 1.94 mm/10a (2.78 mm/10a). The future streamflow, TN and TP loads would decrease by 19.05% (10.59%), 12.27% (8.81%) and 10.63% (6.11%), respectively. Monthly average streamflow, TN and TP loads would decrease from March to November, and increase from December to February. This is because the increased precipitation and temperature in winter, which made the spring snowpack melting earlier. These study indicate the trends of nonpoint source pollution during the snowmelt period under climate change conditions, accordingly adaptation measures will be necessary.

  13. A stochastic cascade model for Auger-electron emitting radionuclides.

    Science.gov (United States)

    Lee, Boon Q; Nikjoo, Hooshang; Ekman, Jörgen; Jönsson, Per; Stuchbery, Andrew E; Kibédi, Tibor

    2016-11-01

    To benchmark a Monte Carlo model of the Auger cascade that has been developed at the Australian National University (ANU) against the literature data. The model is applicable to any Auger-electron emitting radionuclide with nuclear structure data in the format of the Evaluated Nuclear Structure Data File (ENSDF). Schönfeld's algorithms and the BrIcc code were incorporated to obtain initial vacancy distributions due to electron capture (EC) and internal conversion (IC), respectively. Atomic transition probabilities were adopted from the Evaluated Atomic Data Library (EADL) for elements with atomic number, Z = 1-100. Atomic transition energies were evaluated using a relativistic Dirac-Fock method. An energy-restriction protocol was implemented to eliminate energetically forbidden transitions from the simulations. Calculated initial vacancy distributions and average energy spectra of (123)I, (124)I, and (125)I were compared with the literature data. In addition, simulated kinetic energy spectra and frequency distributions of the number of emitted electrons and photons of the three iodine radionuclides are presented. Some examples of radiation spectra of individual decays are also given. Good agreement with the published data was achieved except for the outer-shell Auger and Coster-Kronig transitions. Nevertheless, the model needs to be compared with experimental data in a future study.

  14. Mathematical model of mass transfer at electron beam treatment

    Science.gov (United States)

    Konovalov, Sergey V.; Sarychev, Vladimir D.; Nevskii, Sergey A.; Kobzareva, Tatyana Yu.; Gromov, Victor E.; Semin, Alexander P.

    2017-01-01

    The paper proposes a model of convective mass transfer at electron beam treatment with beams in titanium alloys subjected to electro-explosion alloying by titanium diboride powder. The proposed model is based on the concept that treatment with concentrated flows of energy results in the initiation of vortices in the melted layer. The formation mechanism of these vortices rooted in the idea that the availability of temperature drop leads to the initiation of the thermo-capillary convection. For the melted layer of metal the equations of the convective heat transfer and boundary conditions in terms of the evaporated material are written. The finite element solution of these equations showed that electron-beam treatment results in the formation of multi-vortex structure that in developing captures all new areas of material. It leads to the fact that the strengthening particles are observed at the depth increasing many times the depth of their penetration according to the diffusion mechanism. The distribution of micro-hardness at depth and the thickness of strengthening zone determined from these data supported the view that proposed model of the convective mass transfer describes adequately the processes going on in the treatment with low-energy high-current electron beam.

  15. Monte Carlo model for electron degradation in xenon gas

    CERN Document Server

    Mukundan, Vrinda

    2016-01-01

    We have developed a Monte Carlo model for studying the local degradation of electrons in the energy range 9-10000 eV in xenon gas. Analytically fitted form of electron impact cross sections for elastic and various inelastic processes are fed as input data to the model. Two dimensional numerical yield spectrum, which gives information on the number of energy loss events occurring in a particular energy interval, is obtained as output of the model. Numerical yield spectrum is fitted analytically, thus obtaining analytical yield spectrum. The analytical yield spectrum can be used to calculate electron fluxes, which can be further employed for the calculation of volume production rates. Using yield spectrum, mean energy per ion pair and efficiencies of inelastic processes are calculated. The value for mean energy per ion pair for Xe is 22 eV at 10 keV. Ionization dominates for incident energies greater than 50 eV and is found to have an efficiency of 65% at 10 keV. The efficiency for the excitation process is 30%...

  16. Monte Carlo model for electron degradation in methane

    CERN Document Server

    Bhardwaj, Anil

    2015-01-01

    We present a Monte Carlo model for degradation of 1-10,000 eV electrons in an atmosphere of methane. The electron impact cross sections for CH4 are compiled and analytical representations of these cross sections are used as input to the model.model.Yield spectra, which provides information about the number of inelastic events that have taken place in each energy bin, is used to calculate the yield (or population) of various inelastic processes. The numerical yield spectra, obtained from the Monte Carlo simulations, is represented analytically, thus generating the Analytical Yield Spectra (AYS). AYS is employed to obtain the mean energy per ion pair and efficiencies of various inelastic processes.Mean energy per ion pair for neutral CH4 is found to be 26 (27.8) eV at 10 (0.1) keV. Efficiency calculation showed that ionization is the dominant process at energies >50 eV, for which more than 50% of the incident electron energy is used. Above 25 eV, dissociation has an efficiency of 27%. Below 10 eV, vibrational e...

  17. Computational electronics semiclassical and quantum device modeling and simulation

    CERN Document Server

    Vasileska, Dragica; Klimeck, Gerhard

    2010-01-01

    Starting with the simplest semiclassical approaches and ending with the description of complex fully quantum-mechanical methods for quantum transport analysis of state-of-the-art devices, Computational Electronics: Semiclassical and Quantum Device Modeling and Simulation provides a comprehensive overview of the essential techniques and methods for effectively analyzing transport in semiconductor devices. With the transistor reaching its limits and new device designs and paradigms of operation being explored, this timely resource delivers the simulation methods needed to properly model state-of

  18. The Empowerment of Plasma Modeling by Fundamental Electron Scattering Data

    Science.gov (United States)

    Kushner, Mark J.

    2015-09-01

    Modeling of low temperature plasmas addresses at least 3 goals - investigation of fundamental processes, analysis and optimization of current technologies, and prediction of performance of as yet unbuilt systems for new applications. The former modeling may be performed on somewhat idealized systems in simple gases, while the latter will likely address geometrically and electromagnetically intricate systems with complex gas mixtures, and now gases in contact with liquids. The variety of fundamental electron and ion scattering data (FSD) required for these activities increases from the former to the latter, while the accuracy required of that data probably decreases. In each case, the fidelity, depth and impact of the modeling depends on the availability of FSD. Modeling is, in fact, empowered by the availability and robustness of FSD. In this talk, examples of the impact of and requirements for FSD in plasma modeling will be discussed from each of these three perspectives using results from multidimensional and global models. The fundamental studies will focus on modeling of inductively coupled plasmas sustained in Ar/Cl2 where the electron scattering from feed gases and their fragments ultimately determine gas temperatures. Examples of the optimization of current technologies will focus on modeling of remote plasma etching of Si and Si3N4 in Ar/NF3/N2/O2 mixtures. Modeling of systems as yet unbuilt will address the interaction of atmospheric pressure plasmas with liquids Work was supported by the US Dept. of Energy (DE-SC0001939), National Science Foundation (CHE-124752), and the Semiconductor Research Corp.

  19. Modeling a Miniaturized Scanning Electron Microscope Focusing Column - Lessons Learned in Electron Optics Simulation

    Science.gov (United States)

    Loyd, Jody; Gregory, Don; Gaskin, Jessica

    2016-01-01

    This presentation discusses work done to assess the design of a focusing column in a miniaturized Scanning Electron Microscope (SEM) developed at the NASA Marshall Space Flight Center (MSFC) for use in-situ on the Moon-in particular for mineralogical analysis. The MSFC beam column design uses purely electrostatic fields for focusing, because of the severe constraints on mass and electrical power consumption imposed by the goals of lunar exploration and of spaceflight in general. The resolution of an SEM ultimately depends on the size of the focused spot of the scanning beam probe, for which the stated goal here is a diameter of 10 nanometers. Optical aberrations are the main challenge to this performance goal, because they blur the ideal geometrical optical image of the electron source, effectively widening the ideal spot size of the beam probe. In the present work the optical aberrations of the mini SEM focusing column were assessed using direct tracing of non-paraxial rays, as opposed to mathematical estimates of aberrations based on paraxial ray-traces. The geometrical ray-tracing employed here is completely analogous to ray-tracing as conventionally understood in the realm of photon optics, with the major difference being that in electron optics the lens is simply a smoothly varying electric field in vacuum, formed by precisely machined electrodes. Ray-tracing in this context, therefore, relies upon a model of the electrostatic field inside the focusing column to provide the mathematical description of the "lens" being traced. This work relied fundamentally on the boundary element method (BEM) for this electric field model. In carrying out this research the authors discovered that higher accuracy in the field model was essential if aberrations were to be reliably assessed using direct ray-tracing. This led to some work in testing alternative techniques for modeling the electrostatic field. Ultimately, the necessary accuracy was attained using a BEM

  20. Future integrated aquifer vulnerability assessment considering land use / land cover and climate change using DRASTIC and SWAT

    Science.gov (United States)

    Jang, W.; Engel, B.; Chaubey, I.

    2015-12-01

    Climate change causes significant changes to temperature regimes and precipitation patterns across the world. Such alterations in climate pose serious risks for not only inland freshwater ecosystems but also groundwater systems, and may adversely affect numerous critical services they provide to humans. All groundwater results from precipitation, and precipitation is affected by climate change. Climate change is also influenced by land use / land cover (LULC) change and vice versa. According to Intergovernmental Panel on Climate Change (IPCC) reports, climate change is caused by global warming which is generated by the increase of greenhouse gas (GHG) emissions in the atmosphere. LULC change is a major driving factor causing an increase in GHG emissions. LULC change data (years 2006-2100) will be produced by the Land Transformation Model (LTM) which simulates spatial patterns of LULC change over time. MIROC5 (years 2006-2100) will be obtained considering GCMs and ensemble characteristics such as resolution and trend of temperature and precipitation which is a consistency check with observed data from local weather stations and historical data from GCMs output data. Thus, MIROC5 will be used to account for future climate change scenarios and relationship between future climate change and alteration of groundwater quality in this study. For efficient groundwater resources management, integrated aquifer vulnerability assessments (= intrinsic vulnerability + hazard potential assessment) are required. DRASTIC will be used to evaluate intrinsic vulnerability, and aquifer hazard potential will be evaluated by Soil and Water Assessment Tool (SWAT) which can simulate pollution potential from surface and transport properties of contaminants. Thus, for effective integrated aquifer vulnerability assessment for LULC and climate change in the Midwestern United States, future projected LULC and climate data from the LTM and GCMs will be incorporated with DRASTIC and SWAT. It is

  1. Modeling radiation belt electron dynamics during GEM challenge intervals with the DREAM3D diffusion model

    NARCIS (Netherlands)

    W. Tu (Weichao); G.S. Cunningham; Y. Chen; M.G. Henderson; E. Camporeale (Enrico); G.D. Reeves (Geoffrey)

    2013-01-01

    textabstractAs a response to the Geospace Environment Modeling (GEM) “Global Radiation Belt Modeling Challenge,” a 3D diffusion model is used to simulate the radiation belt electron dynamics during two intervals of the Combined Release and Radiation Effects Satellite (CRRES) mission, 15 August to 15

  2. Modeling Radiation Belt Electron Dynamics with the DREAM3D Diffusion Model

    Energy Technology Data Exchange (ETDEWEB)

    Tu, Weichao [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Cunningham, Gregory S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Chen, Yue [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Henderson, Michael G. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Morley, Steven K. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Reeves, Geoffrey D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Blake, Bernard J. [The Aerospace Corporation, El Segundo, CA (United States); Baker, Daniel N. [Lab. for Atmospheric and Space Physics, Boulder, CO (United States); Spence, Harlan [Univ. of New Hampshire, Durham, NH (United States)

    2014-02-14

    The simulation results from our 3D diffusion model on the CRRES era suggest; our model captures the general variations of radiation belt electrons, including the dropouts and the enhancements; the overestimations inside the plasmapause can be improved by increasing the PA diffusion from hiss waves; and that better DLL and wave models are required.

  3. Electronic Commerce Success Model: A Search for Multiple Criteria

    Directory of Open Access Journals (Sweden)

    Didi Achjari

    2004-01-01

    Full Text Available The current study attempts to develop and examine framework of e-commerce success. In order to obtain comprehensive and robust measures, the framework accomodates key factors that are identified in the literature concerning the success of electronic commerce. The structural model comprises of four exogenous variables (Internal Driver, Internal Impediment, External Driver and Exgternal Impediment and one endogenous variable (Electornic Commerce Success eith 24 observed variables. The study that was administered within large Australian companies using questionaire survey concluded that benefits for both internal organization and external parties from the use of e-commerce were the main factor tro predict perceived and/or expected success of electronic commerce.

  4. The Dismantling of the Japanese Model in Consumer Electronics

    DEFF Research Database (Denmark)

    Frøslev Christensen, Jens; Holm Olesen, Michael; Kjær, Jonas

    This paper addresses an issue of great importance for the future organization of the consumerelectronics industry: the "battle" of control over component-based digitization. We are now witnessing the dismantling of the Japanese Model that has prevailed in consumer electronicsover the past 30 years....... Specialized and large-scale component suppliers have taken the lead inmost component-based innovations and have obtained increasingly powerful positions in thevalue chain of consumer electronics. This paper provides an in-depth study of the strategic andstructural ramifications of one such component...... technology. Aframework is developed to explain the reluctance of most of the large consumer electronicsgiants in developing/adopting this new technology.Key words: Consumer electronics, Industrial dynamics, Open InnovationJEL Codes: L6, L68, O32...

  5. Selective dissemination of information: discussion of electronic models

    Directory of Open Access Journals (Sweden)

    Leonardo Fernandes Souto

    2006-07-01

    Full Text Available The interactional perspective of this research focus on the characterization and analysis of electronic models of Selective Dissemination of Informations (SDI. In this way, it was searched at first references on the role of the technology in the services offered by Information Services. The interactional perspective, adopted is based on the concept of interaction proposed by Turner and on the concept of language of Bakhtin. The literature review on the practice of Selective Dissemination of the Information supplies a general view of SDI, its objectives and function. Based on these references, 3 parameters for the analysis of the SDI were stablished - filling of the interest profile, representation of the information and canals of interaction, which had been applied as an exploratory form, in 6 electronic services of SDI, chosen at random. This application allowed to refine and to develop a SDI interactional proposal.

  6. Modelling of electron transport and of sawtooth activity in tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Angioni, C

    2001-10-01

    Transport phenomena in tokamak plasmas strongly limit the particle and energy confinement and represent a crucial obstacle to controlled thermonuclear fusion. Within the vast framework of transport studies, three topics have been tackled in the present thesis: first, the computation of neoclassical transport coefficients for general axisymmetric equilibria and arbitrary collisionality regime; second, the analysis of the electron temperature behaviour and transport modelling of plasma discharges in the Tokamak a configuration Variable (TCV); third, the modelling and simulation of the sawtooth activity with different plasma heating conditions. The work dedicated to neoclassical theory has been undertaken in order to first analytically identify a set of equations suited for implementation in existing Fokker-Planck codes. Modifications of these codes enabled us to compute the neoclassical transport coefficients considering different realistic magnetic equilibrium configurations and covering a large range of variation of three key parameters: aspect ratio, collisionality, and effective charge number. A comparison of the numerical results with an analytical limit has permitted the identification of two expressions for the trapped particle fraction, capable of encapsulating the geometrical effects and thus enabling each transport coefficient to be fitted with a single analytical function. This has allowed us to provide simple analytical formulae for all the neoclassical transport coefficients valid for arbitrary aspect ratio and collisionality in general realistic geometry. This work is particularly useful for a correct evaluation of the neoclassical contribution in tokamak scenarios with large bootstrap cur- rent fraction, or improved confinement regimes with low anomalous transport and for the determination of the plasma current density profile, since the plasma conductivity is usually assumed neoclassical. These results have been included in the plasma transport code

  7. Predictive Modeling for Comfortable Death Outcome Using Electronic Health Records.

    Science.gov (United States)

    Lodhi, Muhammad Kamran; Ansari, Rashid; Yao, Yingwei; Keenan, Gail M; Wilkie, Diana J; Khokhar, Ashfaq A

    2015-01-01

    Electronic health record (EHR) systems are used in healthcare industry to observe the progress of patients. With fast growth of the data, EHR data analysis has become a big data problem. Most EHRs are sparse and multi-dimensional datasets and mining them is a challenging task due to a number of reasons. In this paper, we have used a nursing EHR system to build predictive models to determine what factors impact death anxiety, a significant problem for the dying patients. Different existing modeling techniques have been used to develop coarse-grained as well as fine-grained models to predict patient outcomes. The coarse-grained models help in predicting the outcome at the end of each hospitalization, whereas fine-grained models help in predicting the outcome at the end of each shift, therefore providing a trajectory of predicted outcomes. Based on different modeling techniques, our results show significantly accurate predictions, due to relatively noise-free data. These models can help in determining effective treatments, lowering healthcare costs, and improving the quality of end-of-life (EOL) care.

  8. Modeling electron-spin accumulation in a metallic nanoparticle

    Science.gov (United States)

    Wei, Y. G.; Malec, C. E.; Davidović, D.

    2008-07-01

    A model describing spin-polarized current via discrete energy levels of a metallic nanoparticle, which has strongly asymmetric tunnel contacts to two ferromagnetic leads, is presented. In absence of spin relaxation, the model leads to a spin accumulation in the nanoparticle, a difference (Δμ) between the chemical potentials of spin-up and spin-down electrons, proportional to the current and the Julliere tunnel magnetoresistance. Taking into account an energy dependent spin-relaxation rate Ω(ω) , Δμ as a function of bias voltage (V) exhibits a crossover from linear to a much weaker dependence, when |e|Ω(Δμ) equals the spin-polarized current through the nanoparticle. Assuming that the spin relaxation takes place via electron-phonon emission and Elliot-Yafet mechanism, the model leads to a crossover from linear to V1/5 dependence. The crossover explains recent measurements of the saturation of the spin-polarized current with V in aluminum nanoparticles, and leads to the spin-relaxation rate of ≈1.6MHz in an aluminum nanoparticle of diameter 6 nm, for a transition with an energy difference of one level spacing.

  9. Nanodosimetry of electrons: analysis by experiment and modelling.

    Science.gov (United States)

    Bantsar, A; Pszona, S

    2015-09-01

    Nanodosimetry experiments for high-energy electrons from a (131)I radioactive source interacting with gaseous nitrogen with sizes on a scale equivalent to the mass per area of a segment of DNA and nucleosome are described. The discrete ionisation cluster-size distributions were measured in experiments carried out with the Jet Counter. The experimental results were compared with those obtained by Monte Carlo modelling. The descriptors of radiation damages have been derived from the data obtained from ionisation cluster-size distributions. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Electronic Processes at Organic−Organic Interfaces: Insight from Modeling and Implications for Opto-electronic Devices †

    KAUST Repository

    Beljonne, David

    2011-02-08

    We report on the recent progress achieved in modeling the electronic processes that take place at interfaces between π-conjugated materials in organic opto-electronic devices. First, we provide a critical overview of the current computational techniques used to assess the morphology of organic: organic heterojunctions; we highlight the compromises that are necessary to handle large systems and multiple time scales while preserving the atomistic details required for subsequent computations of the electronic and optical properties. We then review some recent theoretical advances in describing the ground-state electronic structure at heterojunctions between donor and acceptor materials and highlight the role played by charge-transfer and long-range polarization effects. Finally, we discuss the modeling of the excited-state electronic structure at organic:organic interfaces, which is a key aspect in the understanding of the dynamics of photoinduced electron-transfer processes. © 2010 American Chemical Society.

  11. OpenMP parallelization of a gridded SWAT (SWATG)

    Science.gov (United States)

    Zhang, Ying; Hou, Jinliang; Cao, Yongpan; Gu, Juan; Huang, Chunlin

    2017-12-01

    Large-scale, long-term and high spatial resolution simulation is a common issue in environmental modeling. A Gridded Hydrologic Response Unit (HRU)-based Soil and Water Assessment Tool (SWATG) that integrates grid modeling scheme with different spatial representations also presents such problems. The time-consuming problem affects applications of very high resolution large-scale watershed modeling. The OpenMP (Open Multi-Processing) parallel application interface is integrated with SWATG (called SWATGP) to accelerate grid modeling based on the HRU level. Such parallel implementation takes better advantage of the computational power of a shared memory computer system. We conducted two experiments at multiple temporal and spatial scales of hydrological modeling using SWATG and SWATGP on a high-end server. At 500-m resolution, SWATGP was found to be up to nine times faster than SWATG in modeling over a roughly 2000 km2 watershed with 1 CPU and a 15 thread configuration. The study results demonstrate that parallel models save considerable time relative to traditional sequential simulation runs. Parallel computations of environmental models are beneficial for model applications, especially at large spatial and temporal scales and at high resolutions. The proposed SWATGP model is thus a promising tool for large-scale and high-resolution water resources research and management in addition to offering data fusion and model coupling ability.

  12. Model development for MODIS thermal band electronic cross-talk

    Science.gov (United States)

    Chang, Tiejun; Wu, Aisheng; Geng, Xu; Li, Yonghong; Brinkmann, Jake; Keller, Graziela; Xiong, Xiaoxiong (Jack)

    2016-10-01

    MODerate-resolution Imaging Spectroradiometer (MODIS) has 36 bands. Among them, 16 thermal emissive bands covering a wavelength range from 3.8 to 14.4 μm. After 16 years on-orbit operation, the electronic crosstalk of a few Terra MODIS thermal emissive bands develop substantial issues which cause biases in the EV brightness temperature measurements and surface feature contamination. The crosstalk effects on band 27 with center wavelength at 6.7 μm and band 29 at 8.5 μm increased significantly in recent years, affecting downstream products such as water vapor and cloud mask. The crosstalk issue can be observed from nearly monthly scheduled lunar measurements, from which the crosstalk coefficients can be derived. Most of MODIS thermal bands are saturated at moon surface temperatures and the development of an alternative approach is very helpful for verification. In this work, a physical model was developed to assess the crosstalk impact on calibration as well as in Earth view brightness temperature retrieval. This model was applied to Terra MODIS band 29 empirically for correction of Earth brightness temperature measurements. In the model development, the detector nonlinear response is considered. The impacts of the electronic crosstalk are assessed in two steps. The first step consists of determining the impact on calibration using the on-board blackbody (BB). Due to the detector nonlinear response and large background signal, both linear and nonlinear coefficients are affected by the crosstalk from sending bands. The crosstalk impact on calibration coefficients was calculated. The second step is to calculate the effects on the Earth view brightness temperature retrieval. The effects include those from affected calibration coefficients and the contamination of Earth view measurements. This model links the measurement bias with crosstalk coefficients, detector nonlinearity, and the ratio of Earth measurements between the sending and receiving bands. The correction

  13. Model Development for MODIS Thermal Band Electronic Crosstalk

    Science.gov (United States)

    Chang, Tiejun; Wu, Aisheng; Geng, Xu; Li, Yonghonh; Brinkman, Jake; Keller, Graziela; Xiong, Xiaoxiong

    2016-01-01

    MODerate-resolution Imaging Spectroradiometer (MODIS) has 36 bands. Among them, 16 thermal emissive bands covering a wavelength range from 3.8 to 14.4 m. After 16 years on-orbit operation, the electronic crosstalk of a few Terra MODIS thermal emissive bands developed substantial issues that cause biases in the EV brightness temperature measurements and surface feature contamination. The crosstalk effects on band 27 with center wavelength at 6.7 m and band 29 at 8.5 m increased significantly in recent years, affecting downstream products such as water vapor and cloud mask. The crosstalk effect is evident in the near-monthly scheduled lunar measurements, from which the crosstalk coefficients can be derived. The development of an alternative approach is very helpful for independent verification.In this work, a physical model was developed to assess the crosstalk impact on calibration as well as in Earth view brightness temperature retrieval. This model was applied to Terra MODIS band 29 empirically to correct the Earth brightness temperature measurements. In the model development, the detectors nonlinear response is considered. The impact of the electronic crosstalk is assessed in two steps. The first step consists of determining the impact on calibration using the on-board blackbody (BB). Due to the detectors nonlinear response and large background signal, both linear and nonlinear coefficients are affected by the crosstalk from sending bands. The second step is to calculate the effects on the Earth view brightness temperature retrieval. The effects include those from affected calibration coefficients and the contamination of Earth view measurements. This model links the measurement bias with crosstalk coefficients, detector non-linearity, and the ratio of Earth measurements between the sending and receiving bands. The correction of the electronic cross talk can be implemented empirically from the processed bias at different brightness temperature. The implementation

  14. Fuse Modeling for Reliability Study of Power Electronic Circuits

    DEFF Research Database (Denmark)

    Bahman, Amir Sajjad; Iannuzzo, Francesco; Blaabjerg, Frede

    2017-01-01

    This paper describes a comprehensive modeling approach on reliability of fuses used in power electronic circuits. When fuses are subjected to current pulses, cyclic temperature stress is introduced to the fuse element and will wear out the component. Furthermore, the fuse may be used in a large...... variation of ambient temperature, e.g. in deserts and the accumulated damage in the fuse elements is gradually increasing due to thermo-mechanical stress that results in resistance increase and further unexpected failures. Consequently, the electrical characteristics of the fuse like I2t, breaking capacity......-electrical models of fuses are presented by FEM simulations in order to identify the important factors affecting the performance of fuses at different ambient temperatures and cycling operation....

  15. An electronic scanner of pressure for wind tunnel models

    Science.gov (United States)

    Kauffman, Ronald C.; Coe, Charles F.

    1986-01-01

    An electronic scanner of pressure (ESOP) has been developed by NASA Ames Research Center for installation in wind tunnel models. An ESOP system consists of up to 20 pressure modules (PMs), each with 48 pressure transducers and a heater, an analog-to-digital (A/D) converter module, a microprocessor, a data controller, a monitor unit, a control and processing unit, and a heater controller. The PMs and the A/D converter module are sized to be installed in the models tested in the Ames Aerodynamics Division wind tunnels. A unique feature of the pressure module is the lack of moving parts such as a pneumatic switch used in other systems for in situ calibrations. This paper describes the ESOP system and the results of the initial testing of the system. The initial results indicate the system meets the original design goal of 0.15 percent accuracy.

  16. Modeling Blazar Spectra by Solving an Electron Transport Equation

    Science.gov (United States)

    Lewis, Tiffany; Finke, Justin; Becker, Peter A.

    2018-01-01

    Blazars are luminous active galaxies across the entire electromagnetic spectrum, but the spectral formation mechanisms, especially the particle acceleration, in these sources are not well understood. We develop a new theoretical model for simulating blazar spectra using a self-consistent electron number distribution. Specifically, we solve the particle transport equation considering shock acceleration, adiabatic expansion, stochastic acceleration due to MHD waves, Bohm diffusive particle escape, synchrotron radiation, and Compton radiation, where we implement the full Compton cross-section for seed photons from the accretion disk, the dust torus, and 26 individual broad lines. We used a modified Runge-Kutta method to solve the 2nd order equation, including development of a new mathematical method for normalizing stiff steady-state ordinary differential equations. We show that our self-consistent, transport-based blazar model can qualitatively fit the IR through Fermi g-ray data for 3C 279, with a single-zone, leptonic configuration. We use the solution for the electron distribution to calculate multi-wavelength SED spectra for 3C 279. We calculate the particle and magnetic field energy densities, which suggest that the emitting region is not always in equipartition (a common assumption), but sometimes matter dominated. The stratified broad line region (based on ratios in quasar reverberation mapping, and thus adding no free parameters) improves our estimate of the location of the emitting region, increasing it by ~5x. Our model provides a novel view into the physics at play in blazar jets, especially the relative strength of the shock and stochastic acceleration, where our model is well suited to distinguish between these processes, and we find that the latter tends to dominate.

  17. A Landau fluid model for dissipative trapped electron modes

    Energy Technology Data Exchange (ETDEWEB)

    Hedrick, C.L.; Leboeuf, J.N.; Sidikman, K.L.

    1995-09-01

    A Landau fluid model for dissipative trapped electron modes is developed which focuses on an improved description of the ion dynamics. The model is simple enough to allow nonlinear calculations with many harmonics for the times necessary to reach saturation. The model is motivated by a discussion that starts with the gyro-kinetic equation and emphasizes the importance of simultaneously including particular features of magnetic drift resonance, shear, and Landau effects. To ensure that these features are simultaneously incorporated in a Landau fluid model with only two evolution equations, a new approach to determining the closure coefficients is employed. The effect of this technique is to reduce the matching of fluid and kinetic responses to a single variable, rather than two, and to allow focusing on essential features of the fluctuations in question, rather than features that are only important for other types of fluctuations. Radially resolved nonlinear calculations of this model, advanced in time to reach saturation, are presented to partially illustrate its intended use. These calculations have a large number of poloidal and toroidal harmonics to represent the nonlinear dynamics in a converged steady state which includes cascading of energy to both short and long wavelengths.

  18. Applied economic model development algorithm for electronics company

    Directory of Open Access Journals (Sweden)

    Mikhailov I.

    2017-01-01

    Full Text Available The purpose of this paper is to report about received experience in the field of creating the actual methods and algorithms that help to simplify development of applied decision support systems. It reports about an algorithm, which is a result of two years research and have more than one-year practical verification. In a case of testing electronic components, the time of the contract conclusion is crucial point to make the greatest managerial mistake. At this stage, it is difficult to achieve a realistic assessment of time-limit and of wage-fund for future work. The creation of estimating model is possible way to solve this problem. In the article is represented an algorithm for creation of those models. The algorithm is based on example of the analytical model development that serves for amount of work estimation. The paper lists the algorithm’s stages and explains their meanings with participants’ goals. The implementation of the algorithm have made possible twofold acceleration of these models development and fulfilment of management’s requirements. The resulting models have made a significant economic effect. A new set of tasks was identified to be further theoretical study.

  19. Integrative systems modeling and multi-objective optimization

    Science.gov (United States)

    This presentation presents a number of algorithms, tools, and methods for utilizing multi-objective optimization within integrated systems modeling frameworks. We first present innovative methods using a genetic algorithm to optimally calibrate the VELMA and SWAT ecohydrological ...

  20. The MICROSCOPE Inertial sensors and their flight models electronics

    Science.gov (United States)

    Touboul, Pierre; Boulanger, Damien; Liorzou, Françoise

    2012-07-01

    Dedicated space inertial sensors have been developed for the payload of the MICROSCOPE mission which scientific objective is the test of the universality of free fall at level better than 10-15. This accuracy requires the operation of four inertial sensors on board a specific drag-free satellite, exhibiting resolution of better than 1 femto-g for data integrating period over 20 orbits. Such an outstanding resolution requires the fine electrostatic servo-control of each sensor test mass motion, free of any perturbation along its six degrees of freedom. In addition to a very accurate geometrical sensor core, highly performing electronics architecture is necessary to provide the measurement of the weak electrostatic forces and torques applied to the mass. Capacitive sensing provides the linear and attitude motion of the mass with respect to gold coated electrodes silica parts. Charges are controlled on the electrodes all around the mass to generate adequate electrical field and so electrostatic pressures in order to maintain the mass motionless with respect to the instrument structure. Digital control laws are implemented to deal with both the instrument operation flexibility and the preservation of the weak position sensor noise. The flight model electronics units have been produced and tested. All characteristics have been verified as well as the thermal sensitivities. Description of these units and test results are presented in the paper. These electronics provide not only the scientific data for the General Relativity test but also the data for the satellite orbit and attitude control. The satellite is now under production for a launch in 2016.

  1. Molecular model for a complete clathrin lattice from electron cryomicroscopy.

    Science.gov (United States)

    Fotin, Alexander; Cheng, Yifan; Sliz, Piotr; Grigorieff, Nikolaus; Harrison, Stephen C; Kirchhausen, Tomas; Walz, Thomas

    2004-12-02

    Clathrin-coated vesicles are important vehicles of membrane traffic in cells. We report the structure of a clathrin lattice at subnanometre resolution, obtained from electron cryomicroscopy of coats assembled in vitro. We trace most of the 1,675-residue clathrin heavy chain by fitting known crystal structures of two segments, and homology models of the rest, into the electron microscopy density map. We also define the position of the central helical segment of the light chain. A helical tripod, the carboxy-terminal parts of three heavy chains, projects inward from the vertex of each three-legged clathrin triskelion, linking that vertex to 'ankles' of triskelions centred two vertices away. Analysis of coats with distinct diameters shows an invariant pattern of contacts in the neighbourhood of each vertex, with more variable interactions along the extended parts of the triskelion 'legs'. These invariant local interactions appear to stabilize the lattice, allowing assembly and uncoating to be controlled by events at a few specific sites.

  2. A Model of Electron-Positron Pair Formation

    Directory of Open Access Journals (Sweden)

    Lehnert B.

    2008-01-01

    Full Text Available The elementary electron-positron pair formation process is consideredin terms of a revised quantum electrodynamic theory, with specialattention to the conservation of energy, spin, and electric charge.The theory leads to a wave-packet photon model of narrow line widthand needle-radiation properties, not being available from conventionalquantum electrodynamics which is based on Maxwell's equations. Themodel appears to be consistent with the observed pair productionprocess, in which the created electron and positron form two raysthat start within a very small region and have original directionsalong the path of the incoming photon. Conservation of angular momentum requires the photon to possess a spin, as given by the present theory but not by the conventional one. The nonzero electric field divergence further gives rise to a local intrinsic electric charge density within the photon body, whereas there is a vanishing total charge of the latter. This may explain the observed fact that the photon decays on account of the impact from an external electric field. Such a behaviour should not become possible for a photon having zero local electric charge density.

  3. A proposed model of e-trust for electronic banking

    Directory of Open Access Journals (Sweden)

    Neda Yousefi

    2015-11-01

    Full Text Available Customer’s trust is the most important and one of the key factors of success in e-commerce. However, trust is the essential aspects of e-banking adoption and the main element for building long-term relationships with the bank's customers. So the purpose of this research is to investigate the factors influencing on customer′s trust in e-banking services and prioritize them. Therefore, designed questionnaire was distributed among 177 electronic service customers in number of banks in the city of Karaj, Iran. Likert quintuplet scales were used to measure the variables. After collecting the questionnaires, the data were analyzed by structural equation modeling (by using LISREL 8.5. The results revealed that quality of electronic services such as ease of use, privacy and security, individual characteristics of customers such as disposition to trust and features of bank such as reputation, size and dependence on government, have had the greatest effect on customer′s trust in e-banking services.

  4. Monte Carlo modeling of ion beam induced secondary electrons

    Energy Technology Data Exchange (ETDEWEB)

    Huh, U., E-mail: uhuh@vols.utk.edu [Biochemistry & Cellular & Molecular Biology, University of Tennessee, Knoxville, TN 37996-0840 (United States); Cho, W. [Electrical and Computer Engineering, University of Tennessee, Knoxville, TN 37996-2100 (United States); Joy, D.C. [Biochemistry & Cellular & Molecular Biology, University of Tennessee, Knoxville, TN 37996-0840 (United States); Center for Nanophase Materials Science, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2016-09-15

    Ion induced secondary electrons (iSE) can produce high-resolution images ranging from a few eV to 100 keV over a wide range of materials. The interpretation of such images requires knowledge of the secondary electron yields (iSE δ) for each of the elements and materials present and as a function of the incident beam energy. Experimental data for helium ions are currently limited to 40 elements and six compounds while other ions are not well represented. To overcome this limitation, we propose a simple procedure based on the comprehensive work of Berger et al. Here we show that between the energy range of 10–100 keV the Berger et al. data for elements and compounds can be accurately represented by a single universal curve. The agreement between the limited experimental data that is available and the predictive model is good, and has been found to provide reliable yield data for a wide range of elements and compounds. - Highlights: • The Universal ASTAR Yield Curve was derived from data recently published by NIST. • IONiSE incorporated with the Curve will predict iSE yield for elements and compounds. • This approach can also handle other ion beams by changing basic scattering profile.

  5. Numerical model of electron cyclotron resonance ion source

    Directory of Open Access Journals (Sweden)

    V. Mironov

    2015-12-01

    Full Text Available Important features of the electron cyclotron resonance ion source (ECRIS operation are accurately reproduced with a numerical code. The code uses the particle-in-cell technique to model the dynamics of ions in ECRIS plasma. It is shown that a gas dynamical ion confinement mechanism is sufficient to provide the ion production rates in ECRIS close to the experimentally observed values. Extracted ion currents are calculated and compared to the experiment for a few sources. Changes in the simulated extracted ion currents are obtained with varying the gas flow into the source chamber and the microwave power. Empirical scaling laws for ECRIS design are studied and the underlying physical effects are discussed.

  6. Comprehensive Power Losses Model for Electronic Power Transformer

    DEFF Research Database (Denmark)

    Yue, Quanyou; Li, Canbing; Cao, Yijia

    2018-01-01

    The electronic power transformer (EPT) has highe rpower losses than the conventional transformer. However, the EPT can correct the power factor, compensate the unbalanced current and reduce the line power losses in the distribution network.Therefore, the higher losses of the EPT and the consequent......-losses and considering the impact of the non-unity power factor and the three-phase unbalanced current, the overall power losses in the distribution network when using the EPT to replace the conventional transformer is analyzed, and the conditions in which the application of the EPT can cause less power losses...... reduced power losses in the distribution network require a comprehensive consideration when comparing the power losses of theEPT and conventional transformer. In this paper, a comprehensive power losses analysis model for the EPT in distribution networks is proposed. By analyzing the EPT self...

  7. Modelling focused electron beam induced deposition beyond Langmuir adsorption

    Directory of Open Access Journals (Sweden)

    Dédalo Sanz-Hernández

    2017-10-01

    Full Text Available In this work, the continuum model for focused electron beam induced deposition (FEBID is generalized to account for multilayer adsorption processes. Two types of adsorption energies, describing both physisorption and spontaneous chemisorption, are included. Steady state solutions under no diffusion are investigated and compared under a wide range of conditions. The different growth regimes observed are fully explained by relative changes in FEBID characteristic frequencies. Additionally, we present a set of FEBID frequency maps where growth rate and surface coverage are plotted as a function of characteristic timescales. From the analysis of Langmuir, as well as homogeneous and heterogeneous multilayer maps, we infer that three types of growth regimes are possible for FEBID under no diffusion, resulting into four types of adsorption isotherms. We propose the use of these maps as a powerful tool for the analysis of FEBID processes.

  8. Finite Element Models for Electron Beam Freeform Fabrication Process

    Science.gov (United States)

    Chandra, Umesh

    2012-01-01

    Electron beam freeform fabrication (EBF3) is a member of an emerging class of direct manufacturing processes known as solid freeform fabrication (SFF); another member of the class is the laser deposition process. Successful application of the EBF3 process requires precise control of a number of process parameters such as the EB power, speed, and metal feed rate in order to ensure thermal management; good fusion between the substrate and the first layer and between successive layers; minimize part distortion and residual stresses; and control the microstructure of the finished product. This is the only effort thus far that has addressed computer simulation of the EBF3 process. The models developed in this effort can assist in reducing the number of trials in the laboratory or on the shop floor while making high-quality parts. With some modifications, their use can be further extended to the simulation of laser, TIG (tungsten inert gas), and other deposition processes. A solid mechanics-based finite element code, ABAQUS, was chosen as the primary engine in developing these models whereas a computational fluid dynamics (CFD) code, Fluent, was used in a support role. Several innovative concepts were developed, some of which are highlighted below. These concepts were implemented in a number of new computer models either in the form of stand-alone programs or as user subroutines for ABAQUS and Fluent codes. A database of thermo-physical, mechanical, fluid, and metallurgical properties of stainless steel 304 was developed. Computing models for Gaussian and raster modes of the electron beam heat input were developed. Also, new schemes were devised to account for the heat sink effect during the deposition process. These innovations, and others, lead to improved models for thermal management and prediction of transient/residual stresses and distortions. Two approaches for the prediction of microstructure were pursued. The first was an empirical approach involving the

  9. Data Mining Approaches for Modeling Complex Electronic Circuit Design Activities

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Yongjin [Ajou University, Suwon, South Korea; Omitaomu, Olufemi A [ORNL; Wang, Gi-Nam [Ajou University, Suwon, South Korea

    2008-01-01

    A printed circuit board (PCB) is an essential part of modern electronic circuits. It is made of a flat panel of insulating materials with patterned copper foils that act as electric pathways for various components such as ICs, diodes, capacitors, resistors, and coils. The size of PCBs has been shrinking over the years, while the number of components mounted on these boards has increased considerably. This trend makes the design and fabrication of PCBs ever more difficult. At the beginning of design cycles, it is important to estimate the time to complete the steps required accurately, based on many factors such as the required parts, approximate board size and shape, and a rough sketch of schematics. Current approach uses multiple linear regression (MLR) technique for time and cost estimations. However, the need for accurate predictive models continues to grow as the technology becomes more advanced. In this paper, we analyze a large volume of historical PCB design data, extract some important variables, and develop predictive models based on the extracted variables using a data mining approach. The data mining approach uses an adaptive support vector regression (ASVR) technique; the benchmark model used is the MLR technique currently being used in the industry. The strengths of SVR for this data include its ability to represent data in high-dimensional space through kernel functions. The computational results show that a data mining approach is a better prediction technique for this data. Our approach reduces computation time and enhances the practical applications of the SVR technique.

  10. Electron beam lithographic modeling assisted by artificial intelligence technology

    Science.gov (United States)

    Nakayamada, Noriaki; Nishimura, Rieko; Miura, Satoru; Nomura, Haruyuki; Kamikubo, Takashi

    2017-07-01

    We propose a new concept of tuning a point-spread function (a "kernel" function) in the modeling of electron beam lithography using the machine learning scheme. Normally in the work of artificial intelligence, the researchers focus on the output results from a neural network, such as success ratio in image recognition or improved production yield, etc. In this work, we put more focus on the weights connecting the nodes in a convolutional neural network, which are naturally the fractions of a point-spread function, and take out those weighted fractions after learning to be utilized as a tuned kernel. Proof-of-concept of the kernel tuning has been demonstrated using the examples of proximity effect correction with 2-layer network, and charging effect correction with 3-layer network. This type of new tuning method can be beneficial to give researchers more insights to come up with a better model, yet it might be too early to be deployed to production to give better critical dimension (CD) and positional accuracy almost instantly.

  11. Electron percolation in realistic models of carbon nanotube networks

    Science.gov (United States)

    Simoneau, Louis-Philippe; Villeneuve, Jérémie; Rochefort, Alain

    2015-09-01

    The influence of penetrable and curved carbon nanotubes (CNT) on the charge percolation in three-dimensional disordered CNT networks have been studied with Monte-Carlo simulations. By considering carbon nanotubes as solid objects but where the overlap between their electron cloud can be controlled, we observed that the structural characteristics of networks containing lower aspect ratio CNT are highly sensitive to the degree of penetration between crossed nanotubes. Following our efficient strategy to displace CNT to different positions to create more realistic statistical models, we conclude that the connectivity between objects increases with the hard-core/soft-shell radii ratio. In contrast, the presence of curved CNT in the random networks leads to an increasing percolation threshold and to a decreasing electrical conductivity at saturation. The waviness of CNT decreases the effective distance between the nanotube extremities, hence reducing their connectivity and degrading their electrical properties. We present the results of our simulation in terms of thickness of the CNT network from which simple structural parameters such as the volume fraction or the carbon nanotube density can be accurately evaluated with our more realistic models.

  12. A Massless-Point-Charge Model for the Electron

    Directory of Open Access Journals (Sweden)

    Daywitt W. C.

    2010-04-01

    Full Text Available "It is rather remarkable that the modern concept of electrodynamics is not quite 100 years old and yet still does not rest firmly upon uniformly accepted theoretical foundations. Maxwell's theory of the electromagnetic field is firmly ensconced in modern physics, to be sure, but the details of how charged particles are to be coupled to this field remain somewhat uncertain, despite the enormous advances in quantum electrodynamics over the past 45 years. Our theories remain mathematically ill-posed and mired in conceptual ambiguities which quantum mechanics has only moved to another arena rather than resolve. Fundamentally, we still do not understand just what is a charged particle" (Grandy W.T. Jr. Relativistic quantum mechanics of leptons and fields. Kluwer Academic Publishers, Dordrecht-London, 1991, p.367. As a partial answer to the preceeding quote, this paper presents a new model for the electron that combines the seminal work of Puthoff with the theory of the Planck vacuum (PV, the basic idea for the model following from Puthoff with the PV theory adding some important details.

  13. Python framework for kinetic modeling of electronically excited reaction pathways

    Science.gov (United States)

    Verboncoeur, John; Parsey, Guy; Guclu, Yaman; Christlieb, Andrew

    2012-10-01

    The use of plasma energy to enhance and control the chemical reactions during combustion, a technology referred to as ``plasma assisted combustion'' (PAC), can result in a variety of beneficial effects: e.g. stable lean operation, pollution reduction, and wider range of p-T operating conditions. While experimental evidence abounds, theoretical understanding of PAC is at best incomplete, and numerical tools still lack in reliable predictive capabilities. In the context of a joint experimental-numerical effort at Michigan State University, we present here an open-source modular Python framework dedicated to the dynamic optimization of non-equilibrium PAC systems. Multiple sources of experimental reaction data, e.g. reaction rates, cross-sections and oscillator strengths, are used in order to quantify the effect of data uncertainty and limiting assumptions. A collisional-radiative model (CRM) is implemented to organize reactions by importance and as a potential means of measuring a non-Maxwellian electron energy distribution function (EEDF), when coupled to optical emission spectroscopy data. Finally, we explore scaling laws in PAC parameter space using a kinetic global model (KGM) accelerated with CRM optimized reaction sequences and sparse stiff integrators.

  14. Lumped Parameter Modeling for Rapid Vibration Response Prototyping and Test Correlation for Electronic Units

    Science.gov (United States)

    Van Dyke, Michael B.

    2013-01-01

    Present preliminary work using lumped parameter models to approximate dynamic response of electronic units to random vibration; Derive a general N-DOF model for application to electronic units; Illustrate parametric influence of model parameters; Implication of coupled dynamics for unit/board design; Demonstrate use of model to infer printed wiring board (PWB) dynamics from external chassis test measurement.

  15. Short-Range Correlation Models in Electronic Structure Theory

    Science.gov (United States)

    Goldey, Matthew Bryant

    Correlation methods within electronic structure theory focus on recovering the exact electron-electron interaction from the mean-field reference. For most chemical systems, including dynamic correlation, the correlation of the movement of electrons proves to be sufficient, yet exact methods for capturing dynamic correlation inherently scale polynomially with system size despite the locality of the electron cusp. This work explores a new family of methods for enhancing the locality of dynamic correlation methodologies with an aim toward improving accuracy and scalability. The introduction of range-separation into ab initio wavefunction methods produces short-range correlation methodologies, which can be supplemented with much faster approximate methods for long-range interactions. First, I examine attenuation of second-order Moller-Plesset perturbation theory (MP2) in the aug-cc-pVDZ basis. MP2 treats electron correlation at low computational cost, but suffers from basis set superposition error (BSSE) and fundamental inaccuracies in long-range contributions. The cost differential between complete basis set (CBS) and small basis MP2 restricts system sizes where BSSE can be removed. Range-separation of MP2 could yield more tractable and/or accurate forms for short- and long-range correlation. Retaining only short-range contributions proves to be effective for MP2 in the small aug-cc-pVDZ (aDZ) basis. Using one range-separation parameter within either the complementary error function (erfc) or a sum of two error functions (terfc), superior behavior is obtained versus both MP2/aDZ and MP2/CBS for inter- and intra-molecular test sets. Attenuation of the long-range helps to cancel both BSSE and intrinsic MP2 errors. Direct scaling of the MP2 correlation energy (SMP2) proves useful as well. The resulting SMP2/aDZ, MP2(erfc, aDZ), and MP2(terfc, aDZ) methods perform far better than MP2/aDZ across systems with hydrogen-bonding, dispersion, and mixed interactions at a

  16. Modeling High Altitude EMP using a Non-Equilibrium Electron Swarm Model to Monitor Conduction Electron Evolution (LA-UR-15-26151)

    Science.gov (United States)

    Pusateri, E. N.; Morris, H. E.; Nelson, E.; Ji, W.

    2015-12-01

    Electromagnetic pulse (EMP) events in the atmosphere are important physical phenomena that occur through both man-made and natural processes, such as lightning, and can be disruptive to surrounding electrical systems. Due to the disruptive nature of EMP, it is important to accurately predict EMP evolution and propagation with computational models. In EMP, low-energy conduction electrons are produced from Compton electron or photoelectron ionizations with air. These conduction electrons continue to interact with the surrounding air and alter the EMP waveform. Many EMP simulation codes use an equilibrium ohmic model for computing the conduction current. The equilibrium model works well when the equilibration time is short compared to the rise time or duration of the EMP. However, at high altitude, the conduction electron equilibration time can be comparable to or longer than the rise time or duration of the EMP. This matters, for example, when calculating the EMP propagating upward toward a satellite. In these scenarios, the equilibrium ionization rate becomes very large for even a modest electric field. The ohmic model produces an unphysically large number of conduction electrons that prematurely and abruptly short the EMP in the simulation code. An electron swarm model, which simulates the time evolution of conduction electrons, can be used to overcome the limitations exhibited by the equilibrium ohmic model. We have developed and validated an electron swarm model in an environment characterized by electric field and pressure previously in Pusateri et al. (2015). This swarm model has been integrated into CHAP-LA, a state-of-the-art EMP code developed by researchers at Los Alamos National Laboratory, which previously calculated conduction current using an ohmic model. We demonstrate the EMP damping behavior caused by the ohmic model at high altitudes and show improvements on high altitude EMP modeling obtained by employing the swarm model.

  17. Modelling the cosmic ray electron propagation in M 51

    Science.gov (United States)

    Mulcahy, D. D.; Fletcher, A.; Beck, R.; Mitra, D.; Scaife, A. M. M.

    2016-08-01

    Context. Cosmic ray electrons (CREs) are a crucial part of the interstellar medium and are observed via synchrotron emission. While much modelling has been carried out on the CRE distribution and propagation of the Milky Way, little has been done on normal external star-forming galaxies. Recent spectral data from a new generation of radio telescopes enable us to find more robust estimations of the CRE propagation. Aims: To model the synchrotron spectral index of M 51 using the diffusion energy-loss equation and to compare the model results with the observed spectral index determined from recent low-frequency observations with LOFAR. Methods: We solve the time-dependent diffusion energy-loss equation for CREs in M 51. This is the first time that this model for CRE propagation has been solved for a realistic distribution of CRE sources, which we derive from the observed star formation rate, in an external galaxy. The radial variation of the synchrotron spectral index and scale-length produced by the model are compared to recent LOFAR and older VLA observational data and also to new observations of M 51 at 325 MHz obtained with the GMRT. Results: We find that propagation of CREs by diffusion alone is sufficient to reproduce the observed spectral index distribution in M 51. An isotropic diffusion coefficient with a value of 6.6 ± 0.2 × 1028 cm2 s-1 is found to fit best and is similar to what is seen in the Milky Way. We estimate an escape time of 11 Myr from the central galaxy to 88 Myr in the extended disk. It is found that an energy dependence of the diffusion coefficient is not important for CRE energies in the range 0.01 GeV-3 GeV. We are able to reproduce the dependence of the observed synchrotron scale-lengths on frequency, with l ∝ ν- 1 / 4 in the outer disk and l ∝ ν- 1 / 8 in the inner disk. The reduced 325 MHz image as a FITS file is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc

  18. A one-electron model for the aqueous electron that includes many-body electron-water polarization: Bulk equilibrium structure, vertical electron binding energy, and optical absorption spectrum.

    Science.gov (United States)

    Jacobson, Leif D; Herbert, John M

    2010-10-21

    Previously, we reported an electron-water pseudopotential designed to be used in conjunction with a polarizable water model, in order to describe the hydrated electron [L. D. Jacobson et al., J. Chem. Phys. 130, 124115 (2009)]. Subsequently, we found this model to be inadequate for the aqueous electron in bulk water, and here we report a reparametrization of the model. Unlike the previous model, the current version is not fit directly to any observables; rather, we use an ab initio exchange-correlation potential, along with a repulsive potential that is fit to reproduce the density maximum of the excess electron's wave function within the static-exchange approximation. The new parametrization performs at least as well as the previous model, as compared to ab initio benchmarks for (H(2)O)(n) (-) clusters, and also predicts reasonable values for the diffusion coefficient, radius of gyration, and absorption maximum of the bulk species. The new model predicts a vertical electron binding energy of 3.7 eV in bulk water, which is 1.4 eV smaller than the value obtained using nonpolarizable models; the difference represents the solvent's electronic reorganization energy following electron detachment. We find that the electron's first solvation shell is quite loose, which may be responsible for the electron's large, positive entropy of hydration. Many-body polarization alters the electronic absorption line shape in a qualitative way, giving rise to a high-energy tail that is observed experimentally but is absent in previous simulations. In our model, this feature arises from spatially diffuse excited states that are bound only by electronic reorganization (i.e., solvent polarization) following electronic excitation.

  19. Diversity and use of ethno-medicinal plants in the region of Swat, North Pakistan.

    Science.gov (United States)

    Akhtar, Naveed; Rashid, Abdur; Murad, Waheed; Bergmeier, Erwin

    2013-04-15

    Due to its diverse geographical and habitat conditions, northern Pakistan harbors a wealth of medicinal plants. The plants and their traditional use are part of the natural and cultural heritage of the region. This study was carried out to document which medicinal plant species and which plant parts are used in the region of Swat, which syndrome categories are particularly concerned, and which habitat spectrum is frequented by collectors. Finally, we assessed to which extent medicinal plants are vulnerable due to collection and habitat destruction. An ethnobotanical survey was undertaken in the Miandam area of Swat, North Pakistan. Data were collected through field assessment as well as from traditional healers and locals by means of personal interviews and semi-structured questionnaires. A total of 106 ethno-medicinal plant species belonging to 54 plant families were recorded. The most common growth forms were perennial (43%) and short-lived herbs (23%), shrubs (16%), and trees (15%). Most frequently used plant parts were leaves (24%), fruits (18%) and subterranean parts (15%). A considerable proportion of the ethno-medicinal plant species and remedies concerns gastro-intestinal disorders. The remedies were mostly prepared in the form of decoction or powder and were mainly taken orally. Eighty out of 106 ethno-medicinal plants were indigenous. Almost 50% of the plants occurred in synanthropic vegetation while slightly more than 50% were found in semi-natural, though extensively grazed, woodland and grassland vegetation. Three species (Aconitum violaceum, Colchicum luteum, Jasminum humile) must be considered vulnerable due to excessive collection. Woodlands are the main source for non-synanthropic indigenous medicinal plants. The latter include many range-restricted taxa and plants of which rhizomes and other subterranean parts are dug out for further processing as medicine. Medicinal plants are still widely used for treatment in the area of Swat. Some species of

  20. Modeling of Electron Temperature in H- Ion Source

    Science.gov (United States)

    Morishita, Takatoshi; Ogasawara, Masatada; Hatayama, Akiyoshi

    2000-05-01

    The equation of electron temperature is included in a two point numerical code for a high power hydrogen negative ion source. The calculated results of the electron temperature are in good agreement with Japan Atomic Energy Research Institute (JAERI)’s experimental results. The scaling law of electron temperature is estimated as a function of input power and gas pressure. Energy input by arc discharge, energy loss by ionization, dissociation and loss on the wall are considered in the electron energy equation. The leak width on the wall at the cusp magnet is also calculated numerically. Energy loss on the wall is dominant, and is larger than the ionization loss. In a similarly enlarged JAERI’s Kamaboko source, electron density increases and electron temperature decreases under a constant energy input per unit volume. In this situation, H- extraction current increases despite the decrease in H- density because of the enlargement of the H- extraction area.

  1. Modeling the Earth's radiation belts. A review of quantitative data based electron and proton models

    Science.gov (United States)

    Vette, J. I.; Teague, M. J.; Sawyer, D. M.; Chan, K. W.

    1979-01-01

    The evolution of quantitative models of the trapped radiation belts is traced to show how the knowledge of the various features has developed, or been clarified, by performing the required analysis and synthesis. The Starfish electron injection introduced problems in the time behavior of the inner zone, but this residue decayed away, and a good model of this depletion now exists. The outer zone electrons were handled statistically by a log normal distribution such that above 5 Earth radii there are no long term changes over the solar cycle. The transition region between the two zones presents the most difficulty, therefore the behavior of individual substorms as well as long term changes must be studied. The latest corrections to the electron environment based on new data are outlined. The proton models have evolved to the point where the solar cycle effect at low altitudes is included. Trends for new models are discussed; the feasibility of predicting substorm injections and solar wind high-speed streams make the modeling of individual events a topical activity.

  2. Electron recombination in ionized liquid argon: a computational approach based on realistic models of electron transport and reactions.

    Science.gov (United States)

    Jaskolski, Michal; Wojcik, Mariusz

    2011-05-05

    In this work, we propose a new theoretical approach to modeling the electron-ion recombination processes in ionization tracks in liquid argon at 87 K. We developed a computer simulation method using realistic models of charge transport and electron-ion reactions. By introducing the concept of one-dimensional periodicity in the track, we are able to model very large cylindrical structures of charged particles. We apply our simulation method to calculate the electron escape probability as a function of the initial ionization density in the track. The results are in quantitative agreement with experiment for radiation tracks of relatively high ionization density. At low ionization densities, the simulation results slightly overestimate the experimental data. We discuss possible reasons for this disagreement and conclude that it can be explained by the role of δ tracks (short tracks of secondary electrons) in electron-ion recombination processes. We introduce an approximate model that takes into account the presence of δ tracks and allows the experimental data obtained from a liquid-argon ionization detector to be reproduced over a wide range of ionization density.

  3. Math modeling of electronic processes and deep level ionization kinetic

    Directory of Open Access Journals (Sweden)

    A. V. Budanov

    2016-01-01

    Full Text Available Mathematical model of kinetics of charge deep levels in the forbidden band of the semiconductor, which takes into account the processes of carriers charge exchange between deep levels and both allowed bands, which adequately describes the nature of the non-exponential relaxation capacity, is proposed. A method for determining the spectrum of deep level transient spectroscopy having greater accuracy and resolution in comparison with traditional methods using a relaxation time approximation. The results of numerical experiments using the kinetics charge deep levels model in the frameworks of proposed approximations are presented. Account of generational and recombination components of charge exchange processes of all deep levels in the forbidden band of the semiconductor leads to the conclusion that the kinetics of ionization of these centers, in general, does not obey the Boltzmann statistics. Account of charge exchange processes between the deep levels a significantly effects on their recharge kinetics. Numerical analysis results show that the processes of deep levels ionization are more complicated than the staged-type kinetics. It is shown that in most cases stagedtype kinetics at deep level transient spectroscopy leads to significant methodological error in the parameters determination. From the results of numerical analysis follows, that the density of surface electronic states has a significant impact on the overall recharged kinetics of deep levels. Donor deep levels recharge analysis revealed not only the features of the deep levels ionization in semiconductors, but also allowed to answer some questions that are typical to all deep-level transient spectroscopy in general.

  4. Binding energy between the magnetic impurity electron and the conduction electrons in the Anderson-Holstein model

    Science.gov (United States)

    Narasimha Raju, Ch.; Chatterjee, Ashok

    2013-12-01

    A single-level Anderson-Holstein model is investigated using the Lang-Firsov transformation followed by a zero-phonon averaging and the Kikuchi-Morita Cluster variation method as adopted by Bose and Tanaka in the case of Anderson model. The ground state energy of the system at zero temperature and the binding energy between the magnetic impurity and the conduction electrons are calculated for the symmetric case ɛ d = -( U/2). Subsequently, the effect of the electron-phonon interaction on the ground state energy and the binding energy is investigated.

  5. Developing Argumentation Strategies in Electronic Dialogs: Is Modeling Effective?

    Science.gov (United States)

    Mayweg-Paus, Elisabeth; Macagno, Fabrizio; Kuhn, Deanna

    2016-01-01

    The study presented here examines how interacting with a more capable interlocutor influences use of argumentation strategies in electronic discourse. To address this question, 54 young adolescents participating in an intervention centered on electronic peer dialogs were randomly assigned to either an experimental or control condition. In both…

  6. Heavy metals in agricultural soils and crops and their health risks in Swat District, northern Pakistan.

    Science.gov (United States)

    Khan, Kifayatullah; Lu, Yonglong; Khan, Hizbullah; Ishtiaq, Muhammad; Khan, Sardar; Waqas, Muhammad; Wei, Luo; Wang, Tieyu

    2013-08-01

    This study assessed the concentrations of heavy metals such as cadmium (Cd), chromium (Cr), copper (Cu), manganese (Mn), nickel (Ni) and zinc (Zn) in agricultural soils and crops (fruits, grains and vegetable) and their possible human health risk in Swat District, northern Pakistan. Cd concentration was found higher than the limit (0.05 mg/kg) set by world health organization in 95% fruit and 100% vegetable samples. Moreover, the concentrations of Cr, Cu, Mn, Ni and Zn in the soils were shown significant correlations with those in the crops. The metal transfer factor (MTF) was found highest for Cd followed by Cr>Ni>Zn>Cu>Mn, while the health risk assessment revealed that there was no health risk for most of the heavy metals except Cd, which showed a high level of health risk index (HRI⩾10E-1) that would pose a potential health risk to the consumers. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Assessing ways to combat eutrophication in a Chinese drinking water reservoir using SWAT

    DEFF Research Database (Denmark)

    Nielsen, Anders; Trolle, Dennis; Me, W

    2013-01-01

    Across China, nutrient losses associated with agricultural production and domestic sewage have triggered eutrophication, and local managers are challenged to comply with drinking water quality requirements. Evidently, the improvement of water quality should be targeted holistically and encompass...... both point sources and surface activities within the watershed of a reservoir. We expanded the ordinary Soil Water Assessment Tool – (SWAT) with a widely used empirical equation to estimate total phosphorus (TP) concentrations in lakes and reservoirs. Subsequently, we examined the effects of changes...... in land and livestock management and sewage treatment on nutrient export and derived consequences for water quality in the Chinese subtropical Kaiping (Dashahe) drinking water reservoir (supplying 0.4 million people). The critical load of TP was estimated to 13.5 tonnes yr–1 in order to comply...

  8. Slow electron energy balance for hybrid models of direct-current glow discharges

    Science.gov (United States)

    Eliseev, S. I.; Bogdanov, E. A.; Kudryavtsev, A. A.

    2017-09-01

    In this paper, we present the formulation of slow electron energy balance for hybrid models of direct current (DC) glow discharge. Electrons originating from non-local ionization (secondary) contribute significantly to the energy balance of slow electrons. An approach towards calculating effective energy brought by a secondary electron to the group of slow electrons by means of Coulomb collisions is suggested. The value of effective energy shows a considerable dependence on external parameters of a discharge, such as gas pressure, type, and geometric parameters. The slow electron energy balance was implemented into a simple hybrid model that uses analytical formulation for the description of non-local ionization by fast electrons. Simulations of short (without positive column) DC glow discharge in argon are carried out for a range of gas pressures. Comparison with experimental data showed generally good agreement in terms of current-voltage characteristics, electron density, and electron temperature. Simulations also capture the trend of increasing electron density with decreasing pressure observed in the experiment. Analysis shows that for considered conditions, the product of maximum electron density ne and electron temperature Te in negative glow is independent of gas pressure and depends on the gas type, cathode material, and discharge current. Decreasing gas pressure reduces the heating rate of slow electrons during Coulomb collisions with secondary electrons, which leads to lower values of Te and, in turn, higher maximum ne.

  9. Piecewise-homogeneous model for electron side injection into linear plasma waves

    Energy Technology Data Exchange (ETDEWEB)

    Golovanov, A.A., E-mail: agolovanov256@gmail.com; Kostyukov, I.Yu., E-mail: kost@appl.sci-nnov.ru

    2016-09-01

    An analytical piecewise-homogeneous model for electron side injection into linear plasma waves is developed. The dynamics of transverse betatron oscillations are studied. Based on the characteristics of the transversal motion the longitudinal motion of electrons is described. The electron parameters for which the electron trapping and subsequent acceleration are possible are estimated. The analytical results are verified by numerical simulations in the scope of the piecewise-homogeneous model. The results predicted by this model are also compared to the results given by a more realistic inhomogeneous model. - Highlights: • A piecewise-homogeneous model of side injection into a linear wakefield is developed. • The dynamics of betatron oscillations in the focusing phase is analytically studied. • The area of parameters for electron trapping is determined. • The model is compared to a more realistic inhomogeneous model.

  10. One-electron singular spectral features of the 1D Hubbard model at finite magnetic field

    Directory of Open Access Journals (Sweden)

    J.M.P. Carmelo

    2017-01-01

    Full Text Available The momentum, electronic density, spin density, and interaction dependences of the exponents that control the (k,ω-plane singular features of the σ=↑,↓ one-electron spectral functions of the 1D Hubbard model at finite magnetic field are studied. The usual half-filling concepts of one-electron lower Hubbard band and upper Hubbard band are defined in terms of the rotated electrons associated with the model Bethe-ansatz solution for all electronic density and spin density values and the whole finite repulsion range. Such rotated electrons are the link of the non-perturbative relation between the electrons and the pseudofermions. Our results further clarify the microscopic processes through which the pseudofermion dynamical theory accounts for the one-electron matrix elements between the ground state and excited energy eigenstates.

  11. A Revised Model of Jupiter's Inner Electron Belts: Updating the Divine Radiation Model

    Science.gov (United States)

    Garrett, Henry B.; Levin, Steven M.; Bolton, Scott J.; Evans, Robin W.; Bhattacharya, Bidushi

    2005-01-01

    In 1983, Divine presented a comprehensive model of the Jovian charged particle environment that has long served as a reference for missions to Jupiter. However, in situ observations by Galileo and synchrotron observations from Earth indicate the need to update the model in the inner radiation zone. Specifically, a review of the model for 1 MeV < E < 100 MeV trapped electrons suggests that, based on the new synchrotron observations, the pitch angle distributions within L < 4 need to be updated by introducing two additional components: one near the Jovian magnetic equator and one at high magnetic latitudes. We report modifications to the model that reproduce these observations. The new model improves the fit to synchrotron emission observations and remains consistent with the original fit to the in situ Pioneer and Voyager data. Further modifications incorporating observations from the Galileo and Cassini spacecraft will be reported in the future.

  12. Challenges of 4D(ata Model for Electronic Government

    Directory of Open Access Journals (Sweden)

    Bogdan GHILIC-MICU

    2015-01-01

    Full Text Available Social evolution pyramid, built on the foundation of the ‘90s capitalist society, lead to the emergence of the informational society – years 1990 to 2005 – and knowledge society – years 2005 to 2020. The literature starts using a new concept, a new form of association – artificial intelligence society – foreseen to be established in the next time frame. All these developments of human society and translations or leaps (most of the times apparently timeless were, are and will be possible only due to the advancing information and communications technologies. The leap to Democracy 3.0, based on information and communication technologies prompts to a radical change in the majority of the classical concepts targeting society structure and the way it is guided and controlled. Thus, concepts become electronic concepts (or e-concepts through the use of new technologies. E-concepts keep the essence of the classical principles of liberty and democracy, adding a major aspect of the new way of communication and spreading ideas between people. The main problem is to quantify, analyze and foresee the way technological changes will influence not only the economic system, but also the daily life of the individual and the society. Unfortunately (or maybe fortunately, depending on the point of view, all these evolutions and technological and social developments are as many challenges for the governments of the world. In this paper we will highlight only four of the challenges facing the governments, grouped in a structured model with the following specific concepts: Big Data, Social Data, Linked Data and Mobile Data. This is an emerging paradigm of the information and communication technology supporting national and global eGovernment projects.

  13. Investigation of electron mobility and saturation velocity limits in gallium nitride using uniaxial dielectric continuum model

    Science.gov (United States)

    Park, K.; Stroscio, M. A.; Bayram, C.

    2017-06-01

    Here we introduce a uniaxial dielectric continuum model with temperature-dependent phonon mode frequencies to study temperature- and orientation-dependent polar-optical-phonon limited electron mobility and saturation velocity in uniaxial semiconductors. The formalism for calculating electron scattering rates, momentum relaxation rates, and rate of energy change as a function of the electron kinetic energy and incident electron angle with respect to the c-axis are presented and evaluated numerically. Electron-longitudinal-optical-phonon interactions are shown to depend weakly on the electron incident angle, whereas the electron-transverse-optical-phonon interactions around the emission threshold energy are observed to depend strongest on the electron incident angle when varied from π/4 to π/2 (with respect to the c-axis). We provide electron mobility and saturation velocity limits in different GaN crystal orientations as a function of temperature and electron concentration. At room temperature and for an electron density of 5 × 1018 cm-3, electron mobility limit of ˜3200 cm2/V s and electron saturation velocity limit of 3.15 × 107 cm/s are calculated. Both GaN electron mobility and saturation velocity are observed to be governed by the longitudinal-optical-phonon interaction, and their directional anisotropy is shown to vary less than 5% as the electron incident angle with respect to the c-axis is varied from 0 to π/2. Overall, we develop a theoretical formalism for calculating anisotropic properties of uniaxial wurtzite semiconductors.

  14. The Role of Electron Transport and Trapping in MOS Total-Dose Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Fleetwood, D.M.; Winokur, P.S.; Riewe, L.C.; Flament, O.; Paillet, P.; Leray, J.L.

    1999-07-19

    Radiation-induced hole and electron transport and trapping are fundamental to MOS total-dose models. Here we separate the effects of electron-hole annihilation and electron trapping on the neutralization of radiation-induced charge during switched-bias irradiation for hard and soft oxides, via combined thermally stimulated current (TSC) and capacitance-voltage measurements. We also show that present total-dose models cannot account for the thermal stability of deeply trapped electrons near the Si/SiO{sub 2} interface, or the inability of electrons in deep or shallow traps to contribute to TSC at positive bias following (1) room-temperature, (2) high-temperature, or (3) switched-bias irradiation. These results require revisions of modeling parameters and boundary conditions for hole and electron transport in SiO{sub 2}. The nature of deep and shallow electron traps in the near-interfacial SiO{sub 2} is discussed.

  15. EDUCATIONAL COMPLEX ON ELECTRICAL ENGINEERING AND ELECTRONICS BASED ON MODELING IN PROGRAM TINA

    Directory of Open Access Journals (Sweden)

    Vladimir A. Alekhin

    2014-01-01

    Full Text Available The educational complex on the electrical engineering and electronics has been developed. It contains a course of lectures and lecture notes in the electronic form, a new computer laboratory practical work and practical training. All electronic manuals are based on modeling of electric and electronic circuits in the new effective program TINA. The educational complex is being successfully used in educational process on internal and distant learning. 

  16. Improving high-altitude emp modeling capabilities by using a non-equilibrium electron swarm model to monitor conduction electron evolution

    Science.gov (United States)

    Pusateri, Elise Noel

    An Electromagnetic Pulse (EMP) can severely disrupt the use of electronic devices in its path causing a significant amount of infrastructural damage. EMP can also cause breakdown of the surrounding atmosphere during lightning discharges. This makes modeling EMP phenomenon an important research effort in many military and atmospheric physics applications. EMP events include high-energy Compton electrons or photoelectrons that ionize air and produce low energy conduction electrons. A sufficient number of conduction electrons will damp or alter the EMP through conduction current. Therefore, it is important to understand how conduction electrons interact with air in order to accurately predict the EMP evolution and propagation in the air. It is common for EMP simulation codes to use an equilibrium ohmic model for computing the conduction current. Equilibrium ohmic models assume the conduction electrons are always in equilibrium with the local instantaneous electric field, i.e. for a specific EMP electric field, the conduction electrons instantaneously reach steady state without a transient process. An equilibrium model will work well if the electrons have time to reach their equilibrium distribution with respect to the rise time or duration of the EMP. If the time to reach equilibrium is comparable or longer than the rise time or duration of the EMP then the equilibrium model would not accurately predict the conduction current necessary for the EMP simulation. This is because transport coefficients used in the conduction current calculation will be found based on equilibrium reactions rates which may differ significantly from their non-equilibrium values. We see this deficiency in Los Alamos National Laboratory's EMP code, CHAP-LA (Compton High Altitude Pulse-Los Alamos), when modeling certain EMP scenarios at high altitudes, such as upward EMP, where the ionization rate by secondary electrons is over predicted by the equilibrium model, causing the EMP to short

  17. Gyrokinetic modelling of stationary electron and impurity profiles in tokamaks

    CERN Document Server

    Skyman, Andreas; Tegnered, Daniel

    2014-01-01

    Particle transport due to Ion Temperature Gradient/Trapped Electron (ITG/TE) mode turbulence is investigated using the gyrokinetic code GENE. Both a reduced quasilinear (QL) treatment and nonlinear (NL) simulations are performed for typical tokamak parameters corresponding to ITG dominated turbulence. A selfconsistent treatment is used, where the stationary local profiles are calculated corresponding to zero particle flux simultaneously for electrons and trace impurities. The scaling of the stationary profiles with magnetic shear, safety factor, electron-to-ion temperature ratio, collisionality, toroidal sheared rotation, triangularity, and elongation is investigated. In addition, the effect of different main ion mass on the zero flux condition is discussed. The electron density gradient can significantly affect the stationary impurity profile scaling. It is therefore expected, that a selfconsistent treatment will yield results more comparable to experimental results for parameter scans where the stationary b...

  18. Electronic Modeling and Design for Extreme Temperatures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop electronics for operation at temperatures that range from -230oC to +130oC. This new technology will minimize the requirements for external...

  19. Using a matter wave model to study the structure of the electron inside an atom

    Science.gov (United States)

    Chang, Donald

    In Bohr's atomic model, the atom was conceptually modeled as a miniature solar system. With the development of the Schrödinger equation, the wave function of the electron inside an atom becomes much better known. But the electron is still regarded as a pointed object; according to the Copenhagen Interpretation, the wave function is thought to describe only the probability of finding the electron. Such an interpretation, however, has raised some conceptual questions. For example, how can a point-like electron form a chemical bond between neighboring atoms? In an attempt to overcome this difficulty, we use a matter wave theory to model the structure of an electron inside the atom. This model is inspired by noticing the similarity between a free electron and a photon; both particles behave like a corpuscular object as well as a physical wave. Thus, we hypothesize that, like the photon, an electron is an excitation wave of a real physical field. Based on this hypothesis, we have derived a basic wave equation for the free electron. We show that, in the presence of an electrical potential, this basic wave equation can lead to the Schrödinger equation. This work implies that the solution of the Schrödinger equation actually represents the physical waves of the electron. Thus, the electron inside the atom should behave more like a topologically distributive wave than a pointed object. In this presentation, we will discuss the advantages and limitations of this model.

  20. Engine modeling and control modeling and electronic management of internal combustion engines

    CERN Document Server

    Isermann, Rolf

    2014-01-01

    The increasing demands for internal combustion engines with regard to fuel consumption, emissions and driveability lead to more actuators, sensors and complex control functions. A systematic implementation of the electronic control systems requires mathematical models from basic design through simulation to calibration. The book treats physically-based as well as models based experimentally on test benches for gasoline (spark ignition) and diesel (compression ignition) engines and uses them for the design of the different control functions. The main topics are: - Development steps for engine control - Stationary and dynamic experimental modeling - Physical models of intake, combustion, mechanical system, turbocharger, exhaust, cooling, lubrication, drive train - Engine control structures, hardware, software, actuators, sensors, fuel supply, injection system, camshaft - Engine control methods, static and dynamic feedforward and feedback control, calibration and optimization, HiL, RCP, control software developm...

  1. Real-Time Robust Adaptive Modeling and Scheduling for an Electronic Commerce Server

    Science.gov (United States)

    Du, Bing; Ruan, Chun

    With the increasing importance and pervasiveness of Internet services, it is becoming a challenge for the proliferation of electronic commerce services to provide performance guarantees under extreme overload. This paper describes a real-time optimization modeling and scheduling approach for performance guarantee of electronic commerce servers. We show that an electronic commerce server may be simulated as a multi-tank system. A robust adaptive server model is subject to unknown additive load disturbances and uncertain model matching. Overload control techniques are based on adaptive admission control to achieve timing guarantees. We evaluate the performance of the model using a complex simulation that is subjected to varying model parameters and massive overload.

  2. Modeling of a Micro-Electronic Mechanical Systems (MEMS) Deformable Mirror for Simulation and Characterization

    Science.gov (United States)

    2016-09-01

    DATE September 2016 3. REPORT TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE MODELING OF A MICRO-ELECTRONIC- MECHANICAL SYSTEMS...MICRO-ELECTRONIC- MECHANICAL SYSTEMS (MEMS) DEFORMABLE MIRROR FOR SIMULATION AND CHARACTERIZATION by Mark C. Mueller September 2016 Thesis ...NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release. Distribution is unlimited. MODELING OF A

  3. Modeling the high-energy electronic state manifold of adenine: Calibration for nonlinear electronic spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Nenov, Artur, E-mail: Artur.Nenov@unibo.it; Giussani, Angelo; Segarra-Martí, Javier; Jaiswal, Vishal K. [Dipartimento di Chimica “G. Ciamician,” Università di Bologna, Via Selmi 2, IT-40126 Bologna (Italy); Rivalta, Ivan [Université de Lyon, CNRS, Institut de Chimie de Lyon, École Normale Supérieure de Lyon, 46 Allée d’Italie, F-69364 Lyon Cedex 07 (France); Cerullo, Giulio [Dipartimento di Fisica, Politecnico di Milano, IFN-CNR, Piazza Leonardo Da Vinci 32, IT-20133 Milano (Italy); Mukamel, Shaul [Department of Chemistry, University of California, Irvine, California 92697-2025 (United States); Garavelli, Marco, E-mail: marco.garavelli@unibo.it, E-mail: marco.garavelli@ens-lyon.fr [Dipartimento di Chimica “G. Ciamician,” Università di Bologna, Via Selmi 2, IT-40126 Bologna (Italy); Université de Lyon, CNRS, Institut de Chimie de Lyon, École Normale Supérieure de Lyon, 46 Allée d’Italie, F-69364 Lyon Cedex 07 (France)

    2015-06-07

    Pump-probe electronic spectroscopy using femtosecond laser pulses has evolved into a standard tool for tracking ultrafast excited state dynamics. Its two-dimensional (2D) counterpart is becoming an increasingly available and promising technique for resolving many of the limitations of pump-probe caused by spectral congestion. The ability to simulate pump-probe and 2D spectra from ab initio computations would allow one to link mechanistic observables like molecular motions and the making/breaking of chemical bonds to experimental observables like excited state lifetimes and quantum yields. From a theoretical standpoint, the characterization of the electronic transitions in the visible (Vis)/ultraviolet (UV), which are excited via the interaction of a molecular system with the incoming pump/probe pulses, translates into the determination of a computationally challenging number of excited states (going over 100) even for small/medium sized systems. A protocol is therefore required to evaluate the fluctuations of spectral properties like transition energies and dipole moments as a function of the computational parameters and to estimate the effect of these fluctuations on the transient spectral appearance. In the present contribution such a protocol is presented within the framework of complete and restricted active space self-consistent field theory and its second-order perturbation theory extensions. The electronic excited states of adenine have been carefully characterized through a previously presented computational recipe [Nenov et al., Comput. Theor. Chem. 1040–1041, 295-303 (2014)]. A wise reduction of the level of theory has then been performed in order to obtain a computationally less demanding approach that is still able to reproduce the characteristic features of the reference data. Foreseeing the potentiality of 2D electronic spectroscopy to track polynucleotide ground and excited state dynamics, and in particular its expected ability to provide

  4. HPAC (Hazard Prediction and Assessment Capability) jSWAT (Joint Seminar Wargaming Adjudication Tool) Integration; A Technical Solution

    Science.gov (United States)

    2006-09-01

    Tool is an LOD developed software package (programmed in Java) that aims to facilitate the seminar wargaming process that Army currently uses to...For display, the jSWAT package name has been truncated from “com.classforge.jswat”. Similarly, the actual client and server classes...The above example places a sulphur hexafluoride sensor in the continental US. To place Sarin samplers on Kangaroo Island we might use the

  5. Terahertz-pulse driven modulation of electronic spectra: Modeling electron-phonon coupling in charge-transfer crystals

    Science.gov (United States)

    Di Maiolo, Francesco; Masino, Matteo; Painelli, Anna

    2017-08-01

    We calculate the optical spectra of a charge-transfer crystal modulated by a terahertz pulse, accounting for electron-vibration coupling. The model Hamiltonian is parametrized against first principle calculations and adiabatic results are validated against a fully non-adiabatic calculation where relaxation phenomena are introduced via the coupling of the quantum system to a dissipative bath of classic anharmonic oscillators. The experiment is well reproduced by the proposed model with no need to introduce any ad hoc assumption on the temporal dependence of model parameters, but just accounting for the quadratic dependence of the Hubbard U on non-totally symmetric molecular coordinates.

  6. Analysis of the IMAGE RPI electron density data and CHAMP plasmasphere electron density reconstructions with focus on plasmasphere modelling

    Science.gov (United States)

    Gerzen, T.; Feltens, J.; Jakowski, N.; Galkin, I.; Reinisch, B.; Zandbergen, R.

    2016-09-01

    The electron density of the topside ionosphere and the plasmasphere contributes essentially to the overall Total Electron Content (TEC) budget affecting Global Navigation Satellite Systems (GNSS) signals. The plasmasphere can cause half or even more of the GNSS range error budget due to ionospheric propagation errors. This paper presents a comparative study of different plasmasphere and topside ionosphere data aiming at establishing an appropriate database for plasmasphere modelling. We analyze electron density profiles along the geomagnetic field lines derived from the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) satellite/Radio Plasma Imager (RPI) records of remote plasma sounding with radio waves. We compare these RPI profiles with 2D reconstructions of the topside ionosphere and plasmasphere electron density derived from GNSS based TEC measurements onboard the Challenging Minisatellite Payload (CHAMP) satellite. Most of the coincidences between IMAGE profiles and CHAMP reconstructions are detected in the region with L-shell between 2 and 5. In general the CHAMP reconstructed electron densities are below the IMAGE profile densities, with median of the CHAMP minus IMAGE residuals around -588 cm-3. Additionally, a comparison is made with electron densities derived from passive radio wave RPI measurements onboard the IMAGE satellite. Over the available 2001-2005 period of IMAGE measurements, the considered combined data from the active and passive RPI operations cover the region within a latitude range of ±60°N, all longitudes, and an L-shell ranging from 1.2 to 15. In the coincidence regions (mainly 2 ⩽ L ⩽ 4), we check the agreement between available active and passive RPI data. The comparison shows that the measurements are well correlated, with a median residual of ∼52 cm-3. The RMS and STD values of the relative residuals are around 22% and 21% respectively. In summary, the results encourage the application of IMAGE RPI data for

  7. A binary logistic regression model for the adoption of electronic ...

    African Journals Online (AJOL)

    Information and Communication Technology (ICT) is fast changing the face and tempo of the banking industry in Nigeria due to the adoption of electronic banking (e-banking). Consequently, most banks, in recent years have committed substantial investment into the development of ICT. This study examined the adoption of ...

  8. Test of theoretical models for ultrafast heterogeneous electron ...

    Indian Academy of Sciences (India)

    The energy distribution of electrons injected into acceptor states on the surface of TiO2 was measured with femtosecond two-photon photoemission. Shape and relative energetic position of these distribution curves with respect to the corresponding donor states, i.e. of perylene chromophores in the first excited singlet state ...

  9. MODELING OF ELECTRONIC GASOLINE INJECTION PROCESSES IN TWO STROKE ENGINE

    Directory of Open Access Journals (Sweden)

    Hraivoronskyi, Y.

    2013-06-01

    Full Text Available Basic provision of the processes developed mode, occurring in ignition fuel system with electronically controlled two stroke engine with positive ignition are given. Fuel injection process’ calculation results for the case of placing fuel injector into intake system presented.

  10. Modeling of Image Formation in Cryo-Electron Microscopy

    NARCIS (Netherlands)

    Vulovic, M.

    2013-01-01

    Knowledge of the structure of biological specimens is crucial for understanding life. Cryo-electron microscopy (cryo-EM) permits structural studies of biological specimen at their near-native state. The research performed in this thesis represents one of two subprojects of the FOM industrial

  11. Advanced electron crystallography through model-based imaging

    NARCIS (Netherlands)

    Van Aert, Sandra; De Backer, Annick; Martinez, Gerardo T.; den Dekker, A.J.; Van Dyck, Dirk; Bals, Sara; Van Tendeloo, Gustaaf

    2016-01-01

    The increasing need for precise determination of the atomic arrangement of non-periodic structures in materials design and the control of nanostructures explains the growing interest in quantitative transmission electron microscopy. The aim is to extract precise and accurate numbers for unknown

  12. A review of typical thermal fatigue failure models for solder joints of electronic components

    Science.gov (United States)

    Li, Xiaoyan; Sun, Ruifeng; Wang, Yongdong

    2017-09-01

    For electronic components, cyclic plastic strain makes it easier to accumulate fatigue damage than elastic strain. When the solder joints undertake thermal expansion or cold contraction, different thermal strain of the electronic component and its corresponding substrate is caused by the different coefficient of thermal expansion of the electronic component and its corresponding substrate, leading to the phenomenon of stress concentration. So repeatedly, cracks began to sprout and gradually extend [1]. In this paper, the typical thermal fatigue failure models of solder joints of electronic components are classified and the methods of obtaining the parameters in the model are summarized based on domestic and foreign literature research.

  13. Studying secondary electron behavior in EUV resists using experimentation and modeling

    Science.gov (United States)

    Narasimhan, Amrit; Grzeskowiak, Steven; Srivats, Bharath; Herbol, Henry; Wisehart, Liam; Kelly, Chris; Earley, William; Ocola, Leonidas E.; Neisser, Mark; Denbeaux, Gregory; Brainard, Robert L.

    2015-03-01

    EUV photons expose photoresists by complex interactions starting with photoionization that create primary electrons (~80 eV), followed by ionization steps that create secondary electrons (10-60 eV). Ultimately, these lower energy electrons interact with specific molecules in the resist that cause the chemical reactions which are responsible for changes in solubility. The mechanisms by which these electrons interact with resist components are key to optimizing the performance of EUV resists. An electron exposure chamber was built to probe the behavior of electrons within photoresists. Upon exposure and development of a photoresist to an electron gun, ellipsometry was used to identify the dependence of electron penetration depth and number of reactions on dose and energy. Additionally, our group has updated a robust software that uses first-principles based Monte Carlo model called "LESiS", to track secondary electron production, penetration depth, and reaction mechanisms within materials-defined environments. LESiS was used to model the thickness loss experiments to validate its performance with respect to simulated electron penetration depths to inform future modeling work.

  14. Studying thickness loss in extreme ultraviolet resists due to electron beam exposure using experiment and modeling

    Science.gov (United States)

    Narasimhan, Amrit; Grzeskowiak, Steven; Srivats, Bharath; Herbol, Henry; Wisehart, Liam; Schad, Jonathon; Kelly, Chris; Earley, William; Ocola, Leonidas E.; Neisser, Mark; Denbeaux, Greg; Brainard, Robert L.

    2015-10-01

    Extreme ultraviolet (EUV) photons expose photoresists by complex interactions starting with photoionization that create primary electrons (˜80 eV), followed by ionization steps that create secondary electrons (10 to 60 eV). Ultimately, these lower energy electrons interact with specific molecules in the resist that cause the chemical reactions which are responsible for changes in solubility. The mechanisms by which these electrons interact with resist components are key to optimizing the performance of EUV resists. A resist exposure chamber was built to probe the behavior of electrons within photoresists. Resists were exposed under electron beam and then developed; ellipsometry was used to identify the dependence of electron penetration depth and number of reactions on dose and energy. Additionally, our group has updated a robust software that uses a first principles-based Monte Carlo model called low-energy electron scattering in solids (LESiS) to track secondary electron production, penetration depth, and reaction mechanisms within materials-defined environments. LESiS was used to model the thickness loss experiments to validate its performance with respect to simulated electron penetration depths to inform future modeling work.

  15. A Comprehensive Entomological, Serological and Molecular Study of 2013 Dengue Outbreak of Swat, Khyber Pakhtunkhwa, Pakistan.

    Directory of Open Access Journals (Sweden)

    Jehangir Khan

    Full Text Available Aedes aegypti and Aedes albopictus play a fundamental role in transmission of dengue virus to humans. A single infected Aedes mosquito is capable to act as a reservoir/amplifier host for dengue virus and may cause epidemics via horizontal and vertical modes of dengue virus (DENV transmission. The present and future dengue development can be clarified by understanding the elements which help the dissemination of dengue transmission. The current study deals with molecular surveillance of dengue in addition to ecological and social context of 2013 dengue epidemics in Swat, Pakistan.Herein, we reported dengue vectors surveillance in domestic and peridomistic containers in public and private places in 7 dengue epidemic-prone sites in District Swat, Pakistan from July to November 2013. Using the Flaviviruses genus-specific reverse transcriptase (RT semi nested-PCR assay, we screened blood samples (N = 500 of dengue positive patients, 150 adult mosquito pools and 25 larval pools.The 34 adult and 7 larval mosquito pools were found positive. The adult positive pools comprised 30 pools of Ae. aegypti and 4 pools of Ae. albopictus, while among the 7 larval pools, 5 pools of Ae. aegypti and 2 pools of Ae. albopictus were positive. The detected putative genomes of dengue virus were of DENV-2 (35% in 14 mosquito pools & 39% in serum and DENV-3 (65% in 27 mosquito pools & 61% in serum. The higher vector density and dengue transmission rate was recorded in July and August (due to favorable conditions for vector growth. About 37% of Ae. aegpti and 34% Ae. albopictus mosquitoes were collected from stagnant water in drums, followed by drinking water tanks (23% & 26%, tires (20% & 18% and discarded containers (10% & 6%. Among the surveyed areas, Saidu was heavily affected (26% by dengue followed by Kanju (20% and Landikas (12%. The maximum infection was observed in the age group of 45 (25% years and was more in males (55.3% as compare to females (44.7%. The

  16. Blocking layer modeling for temperature analysis of electron transfer ...

    African Journals Online (AJOL)

    In this article, we simulate thermal effects on the electron transfer rate from three quantum dots CdSe, CdS and CdTe to three metal oxides TiO2, SnO2 and ZnO2 in the presence of four blocking layers ZnS, ZnO, TiO2 and Al2O3, in a porous quantum dot sensitized solar cell (QDSSC) structure, using Marcus theory.

  17. MODEL OF AN ELECTRONIC EDUCATIONAL RESOURCE OF NEW GENERATION

    Directory of Open Access Journals (Sweden)

    Anatoliy V. Loban

    2016-01-01

    Full Text Available The mathematical structure of the modular architecture of an electronic educational resource (EER of new generation, which allows to decompose the process of studying the subjects of the course at a hierarchically ordered set of data (knowledge and procedures for manipulating them, to determine the roles of participants of process of training of and technology the development and use of EOR in the study procrate.

  18. Basic Conditions of Validity of Electronic Contracts in Iran and UNCITRAL Model Law

    Directory of Open Access Journals (Sweden)

    Abbas Karimi

    2017-02-01

    Full Text Available Diverse activities such as electronic exchange of goods and services, instant digital content delivery, electronic funds transfer, electronic stock exchange, electronic bill of lading, commercial projects, common engineering and design, sourcing, government purchase, direct marketing and post-sales services included in e-commerce field.  Due to the increasing spread of the electronic world in all aspects, electronic contracts, in turn, was of great importance and made significant contributions in business contracts. The present study aims to investigate the concept, fundamentals and history of electronic contracts referring to UNCITRAL Model Law on Electronic Commerce and Electronic Commerce Act (1996. The results indicate that in terms of the conclusion and obligations of the parties, contract in cyberspace in general is similar to the contract in the real world and in this respect, there is no major difference between these two contexts. Potential electronic contracts considered as written ones and Electronic signatures recognized as valid as the basis of the validity of the will in electronic trading.

  19. Emerging Carbon Nanotube Electronic Circuits, Modeling, and Performance

    OpenAIRE

    Yao Xu; Ashok Srivastava; Sharma, Ashwani K.

    2010-01-01

    Current transport and dynamic models of carbon nanotube field-effect transistors are presented. A model of single-walled carbon nanotube as interconnect is also presented and extended in modeling of single-walled carbon nanotube bundles. These models are applied in studying the performances of circuits such as the complementary carbon nanotube inverter pair and carbon nanotube as interconnect. Cadence/Spectre simulations show that carbon nanotube field-effect transistor circuits can operate a...

  20. Cluster/Peace Electrons Velocity Distribution Function: Modeling the Strahl in the Solar Wind

    Science.gov (United States)

    Figueroa-Vinas, Adolfo; Gurgiolo, Chris; Goldstein, Melvyn L.

    2008-01-01

    We present a study of kinetic properties of the strahl electron velocity distribution functions (VDF's) in the solar wind. These are used to investigate the pitch-angle scattering and stability of the population to interactions with electromagnetic (whistler) fluctuations. The study is based on high time resolution data from the Cluster/PEACE electron spectrometer. Our study focuses on the mechanisms that control and regulate the pitch-angle and stability of strahl electrons in the solar wind; mechanisms that are not yet well understood. Various parameters are investigated such as the electron heat-flux and temperature anisotropy. The goal is to check whether the strahl electrons are constrained by some instability (e.g., the whistler instability), or are maintained by other types of processes. The electron heat-flux and temperature anisotropy are determined by fitting the VDF's to a spectral spherical harmonic model from which the moments are derived directly from the model coefficients.

  1. Comparative quality analysis of models of total electron content in the ionosphere

    Science.gov (United States)

    Ivanov, V. B.; Gorbachev, O. A.; Kholmogorov, A. A.

    2016-05-01

    We present a brief description and comparative analysis of the Klobuchar, GEMTEC, and NTCM-GL models of total electron content in the ionosphere. The quality of model performance against experimental data on the total electron content is compared. Statistical estimates for the residual positioning error are obtained for each of these models on the basis of the international Global Navigation Satellite Systems (GNSS) Service data. The GEMTEC and NTCM-GL models are shown to have a higher positioning accuracy than the Klobuchar model. The best results of the ionospheric error correction are provided by the GEMTEC model.

  2. New Lewis Structures through the application of the Hypertorus Electron Model

    OpenAIRE

    Omar Yepez

    2010-01-01

    The hypertorus electron model is applied to the chemical bond. As a consequence, the bond topology can be determined. A linear correlation is found between the normalized bond area and the bond energy. The normalization number is a whole number. This number is interpreted as the Lewis's electron pair. A new electron distribution in the molecule follows. This discovery prompts to review the chemical bond, as it is understood in chemistry and physics.

  3. Performance Modeling and Testing of Distributed Electronics in PV Systems; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Deline, C.

    2015-03-18

    Computer modeling is able to predict the performance of distributed power electronics (microinverters, power optimizers) in PV systems. However, details about partial shade and other mismatch must be known in order to give the model accurate information to go on. This talk will describe recent updates in NREL’s System Advisor Model program to model partial shading losses with and without distributed power electronics, along with experimental validation results. Computer modeling is able to predict the performance of distributed power electronics (microinverters, power optimizers) in PV systems. However, details about partial shade and other mismatch must be known in order to give the model accurate information to go on. This talk will describe recent updates in NREL’s System Advisor Model program to model partial shading losses.

  4. Modelling an Ar-Hg fluorescent lamp plasma using a 3 electron-temperature approximation

    Energy Technology Data Exchange (ETDEWEB)

    Hartgers, A.; Mullen, J.A.M. van der [Department of Physics, Eindhoven University of Technology, Eindhoven (Netherlands)]. E-mail: j.j.a.m.v.d.mullen@tue.nl

    2001-06-21

    By using a 3 electron-group model to describe the deviation from a Maxwellian electron energy distribution, a collisional radiative model describing a low temperature Ar-Hg plasma is greatly improved. Previously, the ionisation mechanisms of such plasmas, commonly used in fluorescent lamps, could not be satisfactory modelled. Where using a Maxwellian electron energy distribution showed the production of argon ions to be dominating over the production of mercury ions, the 3 temperature approximation yields a mercury ionization rate which is 30 times larger than the argon ionization rate. (author)

  5. Mishal: A Case Study of a Deradicalization and Emancipation Program in SWAT Valley, Pakistan

    Directory of Open Access Journals (Sweden)

    Zubair Azam

    2017-06-01

    Full Text Available Nestled in the SWAT valley lies Pakistan’s earliest known deradicalization initiative for former militants, the Mishal Deradicalization and Emancipation Program (DREP. The Deradicalization program was launched following a military operation in 2009 against the Pakistan wing of the Taliban, namely, the Tehrik-e-Taliban Pakistan (TTP. The program aimed to deradicalize and rehabilitate arrested militants, with what officials claim is a 99 percent success rate and with more than 2,500 former Taliban fighters now ‘reformed’. The program abides by a ‘no blood on hand’ policy, whereby it only takes in militants who have not caused any bodily harm to others. In this paper, we analyze the deradicalization program and highlight the limits and challenges it faces. The paper also highlights the common individual and environmental factors among the beneficiary population of the deradicalization program. This study finds that most participants of the program belonged to large or broken families with weak socio-economic profiles. Additionally, these individuals had very little technical knowledge of religion. This study also finds that the program is more oriented towards re-integration rather than deradicalization due to its policy of inducting only low and mid-level cadre militants. The program also has other severe limitations including lack of credible religious scholars, limited financial and human resources.

  6. Economically and ecologically important plant communities in high altitude coniferous forest of Malam Jabba, Swat, Pakistan.

    Science.gov (United States)

    Sher, Hassan; Al Yemeni, Mohammad

    2011-01-01

    A study on the economically important plant communities was carried out during summer 2008 in various parts of Malam Jabba valley, Swat. The principal aim of the study was phytosociological evaluation with special reference to the occurrence of commercially important medicinal plant species in coniferous forest of the study area. Secondly to prepare ethnobotanical inventory of the plant resources of the area, as well as to evaluate the conservation status of important medicinal and aromatic plants (MAPs) through rapid vulnerable assessment (RVA) procedure. The study documented 90 species of ethnobotanical importance, out of these 71 spp used as medicinal plant, 20 spp fodder plant, 10 spp vegetables, 14 spp wild fruit, 18 spp fuel wood, 9 spp furniture and agricultural tools, 9 spp thatching, fencing and hedges, 4 spp honey bee, 2 spp evil eyes, 2 spp religious and 3 spp as poison. Phytosociologically six plant communities were found, comprising five herbs-shrubs-trees communities and one meadow community. Further study is, therefore, required to quantify the availability of species and to suggest suitable method for their production and conservation. Recommendations are also given in the spheres of training in identification, sustainable collection, value addition, trade monitoring and cooperative system of marketing.

  7. A simple model for atomic layer doped field-effect transistor (ALD-FET) electronic states

    Energy Technology Data Exchange (ETDEWEB)

    Mora R, M.E. [Centro de Investigaciones en Optica, Unidad Aguascalientes. Juan de Montoro 207, Zona Centro, 20000 Aguascalientes (Mexico); Gaggero S, L.M. [Escuela de Fisica, Universidad Autonoma de Zacatecas, Av. Preparatoria 301, 98060 Zacatecas (Mexico)

    1998-12-31

    We propose a simple potential model based on the Thomas-Fermi approximation to reproduce the main properties of the electronic structure of an atomic layer doped field effect transistor. Preliminary numerical results for a Si-based ALD-FET justify why bound electronic states are not observed in the experiment. (Author)

  8. Runaway electrons from a ‘beam-bulk’ model of streamer: application to TGFs

    DEFF Research Database (Denmark)

    Chanrion, Olivier Arnaud; Bonaventura, Z.; Cinar, Deniz

    2014-01-01

    -energy electrons and ions. For a negative streamer discharge, we show how electrons are accelerated in the large electric field in the tip of the streamer and travel ahead of the streamer where they ionize the gas. In comparison to the results obtained with a classical fluid model for a negative streamer, the beam...

  9. Temperature dependence of electronic heat capacity in Holstein model of DNA

    Science.gov (United States)

    Fialko, N.; Sobolev, E.; Lakhno, V.

    2016-04-01

    The dynamics of charge migration was modeled to calculate temperature dependencies of its thermodynamic equilibrium values such as energy and electronic heat capacity in homogeneous adenine fragments. The energy varies from nearly polaron one at T ∼ 0 to midpoint of the conductivity band at high temperatures. The peak on the graph of electronic heat capacity is observed at the polaron decay temperature.

  10. Application of models for exchange of electronic documents in complex administrative services

    Science.gov (United States)

    Glavev, Victor

    2015-11-01

    The report presents application of models for exchange of electronic documents between different administrations in government and business sectors. It shows the benefits of implementing electronic exchange of documents between different local offices of one administration in government sector such as a municipality and the way it is useful for implementing complex administrative services.

  11. The 10 sheath-accelerated electrons and ions. [atmospheric models of plasma sheaths and ionospheric electron density

    Science.gov (United States)

    Shawhan, S. D.

    1975-01-01

    A model is presented that suggests that plasma sheaths form between the ionospheric plasma moving with Io and the ambient plasma corotating with Jupiter. Potentials across these sheaths could be as high as 580 kV which is the motional emf across Io's ionosphere. Electrons and ions can be accelerated across these sheaths. The sheaths may exist at the top of the Io ionosphere with characteristic thicknesses of 1/4 kilometers. The model is consistent with the Pioneer observations of 0.15 MeV electrons at the inner edge of Io's L-shell and the enhanced number density of low-energy protons at the outer edge. Ion sputtering of the Io surface is discussed and may explain the presence of atomic hydrogen and sodium in the vicinity of Io. Also these accelerated particles may be important to the formation of the Io ionosphere. High electron flux which may lead to decametric radio emissions, Jovian atmospheric heating and optical and X-ray emissions is also discussed.

  12. Modeling electron transport in the presence of electric and magnetic fields.

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Wesley C.; Drumm, Clifton Russell; Pautz, Shawn D.; Turner, C. David

    2013-09-01

    This report describes the theoretical background on modeling electron transport in the presence of electric and magnetic fields by incorporating the effects of the Lorentz force on electron motion into the Boltzmann transport equation. Electromagnetic fields alter the electron energy and trajectory continuously, and these effects can be characterized mathematically by differential operators in terms of electron energy and direction. Numerical solution techniques, based on the discrete-ordinates and finite-element methods, are developed and implemented in an existing radiation transport code, SCEPTRE.

  13. Computational modeling of stabilizing the instability of a relativistic electron beam in a dense plasma

    Energy Technology Data Exchange (ETDEWEB)

    Bobylev, Yu. V.; Panin, V. A. [Tula Pedagogical University (Russian Federation); Kuzelev, M. V. [Moscow State University (Russian Federation); Rukhadze, A. A. [Russian Academy of Sciences, Prokhorov Institute of General Physics (Russian Federation)

    2011-12-15

    The nonlinear dynamics of the instability developed upon the interaction between a relativistic electron beam and a dense plasma as a function of the beam density is numerically modeled. The appropriate solutions are obtained and analyzed.

  14. From Theory to Development: Role of Multiphysics Modeling and its Effect on Education in Electronics

    National Research Council Canada - National Science Library

    Tejinder Singh

    2013-01-01

    .... Finite element modeling(FEM) tools are very powerful tools and due to there huge advantages, electronics graduates should study these tools in their course curriculum to know how to tackle various types of physics problems...

  15. Electronics Modeling and Design for Cryogenic and Radiation Hard Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We are developing CAD tools, models and methodologies for electronics design for circuit operation in extreme environments with a focus on very low temperature and...

  16. Integration of Evidence into a Detailed Clinical Model-based Electronic Nursing Record System

    National Research Council Canada - National Science Library

    Park, Hyeoun-Ae; Min, Yul Ha; Jeon, Eunjoo; Chung, Eunja

    2012-01-01

    The purpose of this study was to test the feasibility of an electronic nursing record system for perinatal care that is based on detailed clinical models and clinical practice guidelines in perinatal care...

  17. Electronic circuit model for proton exchange membrane fuel cells

    Science.gov (United States)

    Yu, Dachuan; Yuvarajan, S.

    The proton exchange membrane (PEM) fuel cell is being investigated as an alternate power source for various applications like transportation and emergency power supplies. The paper presents a novel circuit model for a PEM fuel cell that can be used to design and analyze fuel cell power systems. The PSPICE-based model uses bipolar junction transistors (BJTs) and LC elements available in the PSPICE library with some modification. The model includes the phenomena like activation polarization, ohmic polarization, and mass transport effect present in a PEM fuel cell. The static and dynamic characteristics obtained through simulation are compared with experimental results obtained on a commercial fuel cell module.

  18. Applications of damage models to durability investigations for electronic connectors

    Energy Technology Data Exchange (ETDEWEB)

    Liao, K.-C. [Department of Mechanical Engineering, National Yunlin University of Science and Technology, 123 University Road, Section 3, Douliou, Yunlin 64002, Taiwan (China)], E-mail: kokki@yuntech.edu.tw; Chang, C.-C. [Department of Mechanical Engineering, National Yunlin University of Science and Technology, 123 University Road, Section 3, Douliou, Yunlin 64002, Taiwan (China)

    2009-01-15

    Contact forces between terminals of an electronic connector and the corresponding counterparts play an important role on signal transmission. The mated terminal with insufficient contact force might severely raise electrical resistance and induce intermittence or disconnection of current eventually. The contact force of the terminal could decay dramatically after several thousand mating/unmating cycles. Critical plane approaches are adopted to estimate the service life indicating the number of cycles as the contact force of the terminal degrades beneath the certain value in the present study. Damage parameters based on various criteria are evaluated for the terminal under the cyclic loading conditions. Relationships among the damage parameter, the contact force reduction ratio, and the number of cycles are then constructed by linking numerical results to experimental measurements. It is validated that the Smith-Watson-Topper criterion could be successfully applied to the service life assessment of the terminal.

  19. Non-LTE modeling with non-thermal electrons

    Science.gov (United States)

    Le, Hai; Scott, Howard

    2017-10-01

    We present a computational tool to simulate self-consistently the time evolution of the non-LTE kinetics and the electron energy distribution function (EEDF). The standard collisional-radiative rate equations for the atomic states are solved together with a Boltzmann-Fokker-Planck (BFP) equation for the EEDF. Both elastic and inelastic processes as well as radiative transitions are included. The EEDF is discretized on a non-uniform grid in energy space, and the numerical solution of the BFP equation is based on a set of recently developed algorithms. Several numerical examples are presented to demonstrate the capability of the code. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.

  20. Treatment of Electronic Energy Level Transition and Ionization Following the Particle-Based Chemistry Model

    Science.gov (United States)

    Liechty, Derek S.; Lewis, Mark

    2010-01-01

    A new method of treating electronic energy level transitions as well as linking ionization to electronic energy levels is proposed following the particle-based chemistry model of Bird. Although the use of electronic energy levels and ionization reactions in DSMC are not new ideas, the current method of selecting what level to transition to, how to reproduce transition rates, and the linking of the electronic energy levels to ionization are, to the author s knowledge, novel concepts. The resulting equilibrium temperatures are shown to remain constant, and the electronic energy level distributions are shown to reproduce the Boltzmann distribution. The electronic energy level transition rates and ionization rates due to electron impacts are shown to reproduce theoretical and measured rates. The rates due to heavy particle impacts, while not as favorable as the electron impact rates, compare favorably to values from the literature. Thus, these new extensions to the particle-based chemistry model of Bird provide an accurate method for predicting electronic energy level transition and ionization rates in gases.

  1. Finite Element Models for Electron Beam Freeform Fabrication Process Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research proposal offers to develop the most accurate, comprehensive and efficient finite element models to date for simulation of the...

  2. Angular momentum of captured electrons: The classical over-barrier model and its limitations

    NARCIS (Netherlands)

    Burgdörfer, J.; Morgenstern, R.; Niehaus, A.

    1987-01-01

    An existing model which incorporates angular momentum conservation for the captured electron relative to the capturing ion throughout the capture event into the classical overbarrier model is improved and extended by introducing an angular momentum uncertainty. The extended model is shown to

  3. Modeling of the electron distribution based on bremsstrahlung emission during lower hybrid current drive on PLT

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, J.E.; von Goeler, S.; Bernabei, S.; Bitter, M.; Chu, T.K.; Efthimion, P.; Fisch, N.; Hooke, W.; Hosea, J.; Jobes, F.

    1985-03-01

    Lower hybrid current drive requires the generation of a high energy electron tail anisotropic in velocity. Measurements of bremsstrahlung emission produced by this tail are compared with the calculated emission from reasonable model distributions. The physical basis and the sensitivity of this modeling process are described and the plasma properties of current driven discharges which can be derived from the model are discussed.

  4. Virtual enterprise model for the electronic components business in the Nuclear Weapons Complex

    Energy Technology Data Exchange (ETDEWEB)

    Ferguson, T.J.; Long, K.S.; Sayre, J.A. [Sandia National Labs., Albuquerque, NM (United States); Hull, A.L. [Sandia National Labs., Livermore, CA (United States); Carey, D.A.; Sim, J.R.; Smith, M.G. [Allied-Signal Aerospace Co., Kansas City, MO (United States). Kansas City Div.

    1994-08-01

    The electronic components business within the Nuclear Weapons Complex spans organizational and Department of Energy contractor boundaries. An assessment of the current processes indicates a need for fundamentally changing the way electronic components are developed, procured, and manufactured. A model is provided based on a virtual enterprise that recognizes distinctive competencies within the Nuclear Weapons Complex and at the vendors. The model incorporates changes that reduce component delivery cycle time and improve cost effectiveness while delivering components of the appropriate quality.

  5. MODELING OF QUALITY MANAGEMENT SYSTEM FOR ELECTRONIC LEARNING RESOURCES: THE INTEGRATED AND DIFFERENTIATED APPROACHES

    Directory of Open Access Journals (Sweden)

    H. M. Kravtsov

    2012-03-01

    Full Text Available Abstract. Results on modeling of quality management system of electronic information resources on the basis of the analysis of its elements functioning with use of the integrated and differentiated approaches are presented. Application of such model is illustrated on an example of calculation and optimization of parameters of a quality management system at the organization of the co-ordinated work of services of monitoring, an estimation of quality and support of electronic learning resources.

  6. Monte Carlo modeling of cavity imaging in pure iron using back-scatter electron scanning microscopy

    Science.gov (United States)

    Yan, Qiang; Gigax, Jonathan; Chen, Di; Garner, F. A.; Shao, Lin

    2016-11-01

    Backscattered electrons (BSE) in a scanning electron microscope (SEM) can produce images of subsurface cavity distributions as a nondestructive characterization technique. Monte Carlo simulations were performed to understand the mechanism of void imaging and to identify key parameters in optimizing void resolution. The modeling explores an iron target of different thicknesses, electron beams of different energies, beam sizes, and scan pitch, evaluated for voids of different sizes and depths below the surface. The results show that the void image contrast is primarily caused by discontinuity of energy spectra of backscattered electrons, due to increased outward path lengths for those electrons which penetrate voids and are backscattered at deeper depths. Size resolution of voids at specific depths, and maximum detection depth of specific voids sizes are derived as a function of electron beam energy. The results are important for image optimization and data extraction.

  7. Tree-level equivalence between a Lorentz-violating extension of QED and its dual model in electron-electron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Toniolo, Giuliano R.; Fargnoli, H.G.; Brito, L.C.T. [Universidade Federal de Lavras, Departamento de Fisica, Caixa Postal 3037, Lavras, Minas Gerais (Brazil); Scarpelli, A.P.B. [Setor Tecnico-Cientifico, Departamento de Policia Federal, Sao Paulo (Brazil)

    2017-02-15

    S-matrix amplitudes for the electron-electron scattering are calculated in order to verify the physical equivalence between two Lorentz-breaking dual models. We begin with an extended Quantum Electrodynamics which incorporates CPT-even Lorentz-violating kinetic and mass terms. Then, in a process of gauge embedding, its gauge-invariant dual model is obtained. The physical equivalence of the two models is established at tree level in the electron-electron scattering and the unpolarized cross section is calculated up to second order in the Lorentz-violating parameter. (orig.)

  8. Magnification-continuous static calibration model of a scanning-electron microscope.

    OpenAIRE

    Malti, Abed Choaib; Dembélé, Sounkalo; Piat, Nadine; Rougeot, Patrick; Salut, Roland

    2012-01-01

    International audience; We present a new calibration model of both static distortion and projection for a scanning-electron microscope (SEM). The proposed calibration model depends continuously on the magnification factor. State-of-the-art methods have proposed models to solve the static distortion and projection model but for a discrete set of low and high magnifications: at low magnifications, existing models assume static distortion and perspective projection. At high magnifications, exist...

  9. Towards successful electronic commerce strategies : a hierarchy of three management models

    OpenAIRE

    Huizingh, Eelko K.R.E.

    1999-01-01

    Although only few managers deny the potential of the Internet, many are struggling with the question how their company can best exploit electronic commerce. Managers need tools that guide them in their quest for effective Web applications. In this paper, we present three models that provide structure to this search process. Model development was guided by two requirements: the models should correspond to models managers are familiar with (e.g., process oriented) and the focus of each model sh...

  10. Optimization and testing of the GEMTEC model of total electron content in the ionosphere

    Science.gov (United States)

    Ivanov, V. B.; Gorbachev, O. A.; Kholmogorov, A. A.; Khokhryakov, D. E.

    2015-07-01

    A renewed version of the model of the total electron content in the ionosphere, GEMTEC, is presented, aimed at an increase in the accuracy of positioning of single-frequency equipment of satellite radio navigation systems. The results of testing of this model in comparison with the standard method of compensation of the ionospheric delay of radio signals using the Klobuchar model are presented. It is shown that the proposed model is much more accurate than the Klobuchar model.

  11. A comparison of single- and multi-site calibration and validation: a case study of SWAT in the Miyun Reservoir watershed, China

    Science.gov (United States)

    Bai, Jianwen; Shen, Zhenyao; Yan, Tiezhu

    2017-09-01

    An essential task in evaluating global water resource and pollution problems is to obtain the optimum set of parameters in hydrological models through calibration and validation. For a large-scale watershed, single-site calibration and validation may ignore spatial heterogeneity and may not meet the needs of the entire watershed. The goal of this study is to apply a multi-site calibration and validation of the Soil andWater Assessment Tool (SWAT), using the observed flow data at three monitoring sites within the Baihe watershed of the Miyun Reservoir watershed, China. Our results indicate that the multi-site calibration parameter values are more reasonable than those obtained from single-site calibrations. These results are mainly due to significant differences in the topographic factors over the large-scale area, human activities and climate variability. The multi-site method involves the division of the large watershed into smaller watersheds, and applying the calibrated parameters of the multi-site calibration to the entire watershed. It was anticipated that this case study could provide experience of multi-site calibration in a large-scale basin, and provide a good foundation for the simulation of other pollutants in followup work in the Miyun Reservoir watershed and other similar large areas.

  12. Electronic resource management practical perspectives in a new technical services model

    CERN Document Server

    Elguindi, Anne

    2012-01-01

    A significant shift is taking place in libraries, with the purchase of e-resources accounting for the bulk of materials spending. Electronic Resource Management makes the case that technical services workflows need to make a corresponding shift toward e-centric models and highlights the increasing variety of e-formats that are forcing new developments in the field.Six chapters cover key topics, including: technical services models, both past and emerging; staffing and workflow in electronic resource management; implementation and transformation of electronic resource management systems; the ro

  13. Electron paramagnetic resonance and transmission electron microscopy study of the interactions between asbestiform zeolite fibers and model membranes.

    Science.gov (United States)

    Cangiotti, Michela; Battistelli, Michela; Salucci, Sara; Falcieri, Elisabetta; Mattioli, Michele; Giordani, Matteo; Ottaviani, Maria Francesca

    2017-01-01

    Different asbestiform zeolite fibers of the erionite (termed GF1 and MD8, demonstrated carcinogenic) and offretite (termed BV12, suspected carcinogenic) families were investigated by analyzing the electron paramagnetic resonance (EPR) spectra of selected surfactant spin probes and transmission electron microscopy (TEM) images in the presence of model membranes-cetyltrimethylammonium (CTAB) micelles, egg-lecithin liposomes, and dimyristoylphosphatidylcholine (DMPC) liposomes. This was undertaken to obtain information on interactions occurring at a molecular level between fibers and membranes which correlate with entrance of fibers into the membrane model or location of the fibers at the external or internal membrane interfaces. For CTAB micelles, all fibers were able to enter the micelles, but the hair-like structure and chemical surface characteristics of GF1 modified the micelle structure toward a bilayer-like organization, while MD8 and BV12, being shorter fibers and with a high density of surface interacting groups, partially destroyed the micelles. For liposomes, GF1 fibers partially penetrated the core solution, but DMPC liposomes showed increasing rigidity and organization of the bilayer. Conversely, for MD8 and BV12, the fibers did not cross the membrane demonstrating a smaller membrane structure perturbation. Scolecite fibers (termed SC1), used for comparison, presented poor interactions with the model membranes. The carcinogenicity of the zeolites, as postulated in the series SC1fibers.

  14. Modeling and the analysis of control logic for a digital PWM controller based on a nano electronic single electron transistor

    Directory of Open Access Journals (Sweden)

    Rathnakannan Kailasam

    2008-01-01

    Full Text Available This paper describes the modelling and the analysis of control logic for a Nano-Device- based PWM controller. A comprehensive simple SPICE schematic model for Single Electron transistor has been proposed. The operation of basic Single Electron Transistor logic gates and SET flip flops were successfully designed and their performances analyzed. The proposed design for realizing the logic gates and flip-flops is used in constructing the PWM controller utilized for switching the buck converter circuit. The output of the converter circuit is compared with reference voltage, and when the error voltage and the reference are matched the latch is reset so as to generate the PWM signal. Due to the simplicity and accuracy of the compact model, the simulation time and speed are much faster, which makes it potentially applicable in large-scale circuit simulation. This study confirms that the SET-based PWM controller is small in size, consumes ultra low power and operates at high speeds without compromising any performance. In addition these devices are capable of measuring charges of extremely high sensitivity.

  15. Improved Dielectric Solvation Model for Electronic Structure Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Chipman, Daniel M. [Univ. of Notre Dame, IN (United States)

    2015-12-16

    This project was originally funded for the three year period from 09/01/2009 to 08/31/2012. Subsequently a No-Cost Extension was approved for a revised end date of 11/30/2013. The primary goals of the project were to develop continuum solvation models for nondielectric short-range interactions between solvent and solute that arise from dispersion, exchange, and hydrogen bonding. These goals were accomplished and are reported in the five peer-reviewed journal publications listed in the bibliography below. The secondary goals of the project included derivation of analytic gradients for the models, improvement of the cavity integration scheme, application of the models to the core-level spectroscopy of water, and several other miscellaneous items. These goals were not accomplished because they depended on completion of the primary goals, after which there was a lack of time for any additional effort.

  16. A model for hypermedia learning environments based on electronic books

    Directory of Open Access Journals (Sweden)

    Ignacio Aedo

    1997-12-01

    Full Text Available Current hypermedia learning environments do not have a common development basis. Their designers have often used ad-hoc solutions to solve the learning problems they have encountered. However, hypermedia technology can take advantage of employing a theoretical scheme - a model - which takes into account various kinds of learning activities, and solves some of the problems associated with its use in the learning process. The model can provide designers with the tools for creating a hypermedia learning system, by allowing the elements and functions involved in the definition of a specific application to be formally represented.

  17. Bloch Electron in a Magnetic Field and the Ising Model

    Science.gov (United States)

    Krasovsky, I. V.

    2000-12-01

    The spectral determinant det\\(H-ɛI\\) of the Azbel-Hofstadter Hamiltonian H is related to Onsager's partition function of the 2D Ising model for any value of magnetic flux Φ = 2πP/Q through an elementary cell, where P and Q are coprime integers. The band edges of H correspond to the critical temperature of the Ising model; the spectral determinant at these (and other points defined in a certain similar way) is independent of P. A connection of the mean of Lyapunov exponents to the asymptotic (large Q) bandwidth is indicated.

  18. Statistical Modeling of Soi Devices for Low-Power Electronics.

    Science.gov (United States)

    Phelps, Mark Joseph

    1995-01-01

    This dissertation addresses the needs of low-power, large-scale integrated circuit device design, advanced materials technology, and computer simulation for statistical modeling. The main body of work comprises the creation and implementation of a software shell (STADIUM-SOI) that automates the application of statistics to commercial technology computer-aided design tools. The objective is to demonstrate that statistical design of experiments methodology can be employed for the advanced material technology of Silicon -On-Insulator (SOI) devices. The culmination of this effort was the successful modeling of the effect of manufacturing process variation on SOI device characteristics and the automation of this procedure.

  19. Modelling and Simulation of a Synchronous Machine with Power Electronic Systems

    DEFF Research Database (Denmark)

    Chen, Zhe; Blaabjerg, Frede

    2005-01-01

    This paper reports the modeling and simulation of a synchronous machine with a power electronic interface in direct phase model. The implementation of a direct phase model of synchronous machines in MATLAB/SIMULINK is presented .The power electronic system associated with the synchronous machine...... in the systems where a detailed study is needed in order to assess the overall system stability. Simulation studies are performed under various operation conditions. It is shown that the developed model could be used for studies of various applications of synchronous machines such as in renewable and DG...... generation systems....

  20. Modeling and Control of a teletruck using electronic load sensing

    DEFF Research Database (Denmark)

    Hansen, Rico Hjerm; Iversen, Asger Malte; Jensen, Mads Schmidt

    2010-01-01

    the controller design for the ELS system, a complete model of the teletruck’s articulated arm and fluid power system is developed. To show the feasibility, a preliminary control structure for the ELS system is developed. The controller is tested on the machine, validating that features such as pump pressure...

  1. Application of the Technology Acceptance Model (TAM) in electronic ...

    African Journals Online (AJOL)

    A variety of theoretical frameworks have been used by researchers to explain online consumer behaviour in a range of contexts. Using the Technology Acceptance Model (TAM) as a theoretical foundation for identifying essential factors which assist in explaining consumers' extent of usage of online technology, the current ...

  2. A Model of Price Search Behavior in Electronic Marketplace.

    Science.gov (United States)

    Jiang, Pingjun

    2002-01-01

    Discussion of online consumer behavior focuses on the development of a conceptual model and a set of propositions to explain the main factors influencing online price search. Integrates the psychological search literature into the context of online searching by incorporating ability and cost to search for information into perceived search…

  3. AMORPHOUS SILICON ELECTRONIC STRUCTURE MODELING AND BASIC ELECTRO-PHYSICAL PARAMETERS CALCULATION

    Directory of Open Access Journals (Sweden)

    B. A. Golodenko

    2014-01-01

    Full Text Available Summary. The amorphous semiconductor has any unique processing characteristics and it is perspective material for electronic engineering. However, we have not authentic information about they atomic structure and it is essential knot for execution calculation they electronic states and electro physical properties. The author's methods give to us decision such problem. This method allowed to calculation the amorphous silicon modeling cluster atomics Cartesian coordinates, determined spectrum and density its electronic states and calculation the basics electro physical properties of the modeling cluster. At that determined numerical means of the energy gap, energy Fermi, electron concentration inside valence and conduction band for modeling cluster. The find results provides real ability for purposeful control to type and amorphous semiconductor charge carriers concentration and else provides relation between atomic construction and other amorphous substance physical properties, for example, heat capacity, magnetic susceptibility and other thermodynamic sizes.

  4. Optimization of electronic enclosure design for thermal and moisture management using calibrated models of progressive complexity

    DEFF Research Database (Denmark)

    Mohanty, Sankhya; Staliulionis, Zygimantas; Shojaee Nasirabadi, Parizad

    2016-01-01

    The thermal and moisture management of electronic enclosures are fields of high interest in recent years. It is now generally accepted that the protection of electronic devices is dependent on avoiding critical levels of relative humidity (typically 60–90%) during operations. Leveraging...... the development of rigorous calibrated CFD models as well as simple predictive numerical tools, the current paper tackles the optimization of critical features of a typical two-chamber electronic enclosure. The progressive optimization strategy begins the design parameter selection by initially using simpler...... equivalent RC-circuit models for concentration of water vapor and temperature in the electronic enclosure. After reducing the potential parameter-value space for the critical features using the RC-approach, the optimization strategy uses simpler 2D CFD models of temperature and moisture transport to further...

  5. Project: Modeling Relativistic Electrons from Nuclear Explosions in the Magnetosphere

    Energy Technology Data Exchange (ETDEWEB)

    Cowee, Misa [Los Alamos National Laboratory; Gary, S. Peter [Los Alamos National Laboratory; Winske, Dan [Los Alamos National Laboratory; Liu, Kaijun [Los Alamos National Laboratory

    2012-07-17

    We present a summary of the FY12 activities for DTRA-funded project 'Modeling Relativistic Electrons from Nuclear Explosions in the Magnetosphere'. We briefly review the outstanding scientific questions and discuss the work done in the last year to try to answer these questions. We then discuss the agenda for this Technical Meeting with the DTRA sponsors. In the last year, we have continued our efforts to understand artificial radiation belts from several different perspectives: (1) Continued development of Electron Source Model (ESM) and comparison to HANE test data; (2) Continued studies of relativistic electron scattering by waves in the natural radiation belts; (3) Began study of self-generated waves from the HANE electrons; and (4) Began modeling for the UCLA laser experiment.

  6. Electronic Properties of Random Polymers: Modelling Optical Spectra of Melanins

    Science.gov (United States)

    Bochenek, Kinga; Gudowska-Nowak, Ewa

    2003-05-01

    Melanins are a group of complex pigments of biological origin, widely spread in all species from fungi to man. Among diverse types of melanins, the human melanins, eumelanins, are brown or black nitrogen-containing pigments, mostly known for their photoprotective properties in human skin. We have undertaken theoretical studies aimed to understand absorption spectra of eumelanins and their chemical precursors. The structure of the biopigment is poorly defined, although it is believed to be composed of cross-linked heteropolymers based on indolequinones. As a basic model of the eumelanin structure, we have chosen pentamers containing hydroquinones (HQ) and/or 5,6-indolequinones (IQ) and/or semiquinones (SQ) often listed as structural melanin monomers. The eumelanin oligomers have been constructed as random compositions of basic monomers and optimized for the energy of bonding. Absorption spectra of model assemblies have been calculated within the semiempirical intermediate neglect of differential overlap (INDO) approximation. Model spectrum of eumelanin has been further obtained by sum of independent spectra of singular polymers. By comparison with experimental data it is shown that the INDO/CI method manages to reproduce well characteristic properties of experimental spectrum of synthetic eumelanins.

  7. Community Participation, Dengue Fever Prevention and Control Practices in Swat, Pakistan.

    Science.gov (United States)

    Zahir, Abdul; Ullah, Asad; Shah, Mussawar; Mussawar, Arsalan

    2016-01-01

    The aim of this study was to determine the role of community participation in prevention of dengue fever in The Swat district located in the Northern area of Khyber Pakhtunkhwa, Pakistan, which experienced a dengue fever outbreak in August, 2013. A total number of 8,963 dengue cases with 0.4% case fatality ratio were registered during the outbreak. A sample size of 354 respondents were proportionally allocated to each residential colony and then randomly selected. The association of independent variable (Community participation) and dependent variable (practices for control) were tested by using Chi Square test. Results regarding perception of practices for dengue control with community participation showed that: practices for control had significant association with organization of people to eradicate dengue mosquitoes (p=0.00), community leaders (p=0.04), community efforts (p≤0.01), use of insecticides by community people (p=0.00) and involvement of community people in awareness campaign (p=0.00). Similarly, significant associations were found between practices for control and community shared information during dengue outbreak (p=0.00), community link with health department, NGO, Other agencies (p=0.02). We conclude that the spread of dengue epidemic was aided by the ignorance, laziness of the community people and government agencies. However, the people, religious scholars, leaders and government agencies were not organized to participate in dengue prevention and eradication, hence, the chances of dengue infection increased in community. The study recommends mobilizing local communities and activating local leadership with active participation of Government and non-government organizations for initiation of preventive strategies.

  8. Atomic modeling of cryo-electron microscopy reconstructions--joint refinement of model and imaging parameters.

    Science.gov (United States)

    Chapman, Michael S; Trzynka, Andrew; Chapman, Brynmor K

    2013-04-01

    When refining the fit of component atomic structures into electron microscopic reconstructions, use of a resolution-dependent atomic density function makes it possible to jointly optimize the atomic model and imaging parameters of the microscope. Atomic density is calculated by one-dimensional Fourier transform of atomic form factors convoluted with a microscope envelope correction and a low-pass filter, allowing refinement of imaging parameters such as resolution, by optimizing the agreement of calculated and experimental maps. A similar approach allows refinement of atomic displacement parameters, providing indications of molecular flexibility even at low resolution. A modest improvement in atomic coordinates is possible following optimization of these additional parameters. Methods have been implemented in a Python program that can be used in stand-alone mode for rigid-group refinement, or embedded in other optimizers for flexible refinement with stereochemical restraints. The approach is demonstrated with refinements of virus and chaperonin structures at resolutions of 9 through 4.5 Å, representing regimes where rigid-group and fully flexible parameterizations are appropriate. Through comparisons to known crystal structures, flexible fitting by RSRef is shown to be an improvement relative to other methods and to generate models with all-atom rms accuracies of 1.5-2.5 Å at resolutions of 4.5-6 Å. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Evaluation of Distributed Model Structures in Catchment Scale Modeling to Capture Heterogeneous Landscape Characteristics

    Science.gov (United States)

    Julich, S.; Breuer, L.; Vaché, K. B.; Frede, H.

    2007-12-01

    The ability of a model to capture dominant ecological and hydrological processes is a prerequisite for the use of the model in studying impacts of landuse change on the water balance and nutrient fluxes from a watershed. However, in many cases, available model structures do not adequately represent processes of interest. In these cases, a pragmatic response is to revise the structure to better represent key processes. In this paper we outline a model application strategy designed to inject additional realism into a commonly applied model structure. Here we focus on the SWAT model in an application to the mesoscale (514 km 2) Wetter catchment, in central Germany. The catchment is characterized by a heterogeneous landscape structure and characteristics. The southwestern part is formed by a low mountain range with shallow soils over bedrock and steep slopes. Here lateral subsurface stormflow appears to be the dominant runoff generation process. The central and north- eastern regions of the basin are characterized by deep loess born soils and shallow slopes. We hypothesize that the much larger storage potential of the soils promotes vertical infiltration and storage, and that lateral runoff is much less significant. We utilize a variety of SWAT versions to evaluate the potential effects of this hypothesis on the capacity of the model to capture the measured runoff response. Our results indicate that the original SWAT- structure as well as the SWAT-G structure (which was applied to other low mountain catchments in Germany) are not able to acceptably represent the hydrograph. However, a hybrid of the two structures, specifically designed to reflect differences between the mountainous regions and the more gentle topography does result in a satisfactory representation of the hydrograph. The inclusion of elements from of both model structures (original SWAT and SWAT-G) seems to be the best way to reflect our hydrological process understanding, producing results which

  10. Modeling disease severity in multiple sclerosis using electronic health records.

    Directory of Open Access Journals (Sweden)

    Zongqi Xia

    Full Text Available To optimally leverage the scalability and unique features of the electronic health records (EHR for research that would ultimately improve patient care, we need to accurately identify patients and extract clinically meaningful measures. Using multiple sclerosis (MS as a proof of principle, we showcased how to leverage routinely collected EHR data to identify patients with a complex neurological disorder and derive an important surrogate measure of disease severity heretofore only available in research settings.In a cross-sectional observational study, 5,495 MS patients were identified from the EHR systems of two major referral hospitals using an algorithm that includes codified and narrative information extracted using natural language processing. In the subset of patients who receive neurological care at a MS Center where disease measures have been collected, we used routinely collected EHR data to extract two aggregate indicators of MS severity of clinical relevance multiple sclerosis severity score (MSSS and brain parenchymal fraction (BPF, a measure of whole brain volume.The EHR algorithm that identifies MS patients has an area under the curve of 0.958, 83% sensitivity, 92% positive predictive value, and 89% negative predictive value when a 95% specificity threshold is used. The correlation between EHR-derived and true MSSS has a mean R(2 = 0.38±0.05, and that between EHR-derived and true BPF has a mean R(2 = 0.22±0.08. To illustrate its clinical relevance, derived MSSS captures the expected difference in disease severity between relapsing-remitting and progressive MS patients after adjusting for sex, age of symptom onset and disease duration (p = 1.56×10(-12.Incorporation of sophisticated codified and narrative EHR data accurately identifies MS patients and provides estimation of a well-accepted indicator of MS severity that is widely used in research settings but not part of the routine medical records. Similar approaches

  11. An empirical model of the high-energy electron environment at Jupiter

    Science.gov (United States)

    Soria-Santacruz, M.; Garrett, H. B.; Evans, R. W.; Jun, I.; Kim, W.; Paranicas, C.; Drozdov, A.

    2016-10-01

    We present an empirical model of the energetic electron environment in Jupiter's magnetosphere that we have named the Galileo Interim Radiation Electron Model version-2 (GIRE2) since it is based on Galileo data from the Energetic Particle Detector (EPD). Inside 8RJ, GIRE2 adopts the previously existing model of Divine and Garrett because this region was well sampled by the Pioneer and Voyager spacecraft but poorly covered by Galileo. Outside of 8RJ, the model is based on 10 min averages of Galileo EPD data as well as on measurements from the Geiger Tube Telescope on board the Pioneer spacecraft. In the inner magnetosphere the field configuration is dipolar, while in the outer magnetosphere it presents a disk-like structure. The gradual transition between these two behaviors is centered at about 17RJ. GIRE2 distinguishes between the two different regions characterized by these two magnetic field topologies. Specifically, GIRE2 consists of an inner trapped omnidirectional model between 8 to 17RJ that smoothly joins onto the original Divine and Garrett model inside 8RJ and onto a GIRE2 plasma sheet model at large radial distances. The model provides a complete picture of the high-energy electron environment in the Jovian magnetosphere from ˜1 to 50RJ. The present manuscript describes in great detail the data sets, formulation, and fittings used in the model and provides a discussion of the predicted high-energy electron fluxes as a function of energy and radial distance from the planet.

  12. A model for consent-based privilege management in personal electronic health records.

    Science.gov (United States)

    Heinze, Oliver; Bergh, Björn

    2014-01-01

    One of the biggest issues in the domain of standardized, regional, crossinstitutional, personal, electronic health records is the privilege management. While many health information exchange projects use IHE-based architectures there are still unsolved questions regarding the restricting parameters a patient can use in the electronic consent configuring access control. This work determines these parameters, derives an information model of privilege management, introduces a set representation of the model and shows how to apply them to EHR architectures. The introduced model can serve as framework for health information exchanges using a consent-based privilege management. The set representation can help to understand the complexity of consent representations.

  13. Modeling Electron Competition among Nitrogen Oxides Reduction and N2O Accumulation in Hydrogenotrophic Denitrification

    DEFF Research Database (Denmark)

    Liu, Yiwen; Ngo, Huu Hao; Guo, Wenshan

    2017-01-01

    Hydrogenotrophic denitrification is a novel and sustainable process for nitrogen removal, which utilizes hydrogen as electron donor and carbon dioxide as carbon source. Recent studies have shown that nitrous oxide (N2O), a highly undesirable intermediate and potent greenhouse gas, can accumulate...... hydrogen oxidation and nitrogen reduction processes using electron carriers, in contrast to the existing models that couple these two processes and also do not consider N2O accumulation. The developed model satisfactorily describes experimental data on nitrogen oxides dynamics obtained from two independent...... during this process. In this work, a new mathematical model is developed to describe nitrogen oxides dynamics, especially N2O, during hydrogenotrophic denitrification for the first time. The model describes electron competition among the four steps of hydrogenotrophic denitrification through decoupling...

  14. Modeling heat dominated electric breakdown in air, with adaptivity to electron or ion time scales

    Science.gov (United States)

    Agnihotri, A.; Hundsdorfer, W.; Ebert, U.

    2017-09-01

    We model heat dominated electrical breakdown in air in a short planar gap. We couple the discharge dynamics in fluid approximation with the hydrodynamic motion of the air heated by the discharge. To be computationally efficient, we derive a reduced model on the ion time scale, and we switch between the full model on the electron time scale and the reduced model. We observe an ion pulse reaching the cathode, releasing electrons by secondary emission, and these electrons create another ion pulse. These cycles of ion pulses might lead to electrical breakdown. This breakdown is driven by Ohmic heating, thermal shocks and induced pressure waves, rather than by the streamer mechanism of local field enhancement at the streamer tip.

  15. ANN Modeling of Electronic Nose Based on Co-doped SnO2 Nanofiber Sensor

    Directory of Open Access Journals (Sweden)

    S. KHALDI

    2016-05-01

    Full Text Available We present in this paper a novel neural network based technique to create a model incorporates intelligence for electronic nose. The idea is to create intelligent models; the first one, called selector, can select exactly the nature of gas detected. The second intelligent model is a corrector, which can automatically compensate the electronic nose’s response characteristics and discriminating exactly the detected gas (nature and concentration, and make the response increases all time when the temperature increases. The electronic nose is based on Co-doped SnO2 nanofiber sensor. The MATLAB environment is used during the design phase and optimization. The method discriminates qualitatively and quantitatively between six gases. The advantage of the method is that it uses a small representative database so we can easily implement the model in an electrical simulator.

  16. Extension of a biochemical model for the generalized stoichiometry of electron transport limited C3 photosynthesis

    NARCIS (Netherlands)

    Yin, X.; Oijen, van M.; Schapendonk, A.H.C.M.

    2004-01-01

    The widely used steady-state model of Farquhar et al. (Planta 149: 78-90, 1980) for C-3 photosynthesis was developed on the basis of linear whole-chain (non-cyclic) electron transport. In this model, calculation of the RuBP-regeneration limited CO2-assimilation rate depends on whether it is

  17. Advanced Electronics Technologies: Challenges for Radiation Effects Testing, Modeling, and Mitigation

    Science.gov (United States)

    LaBel, Kenneth A.; Cohn, Lewis M.

    2005-01-01

    Emerging Electronics Technologies include: 1) Changes in the commercial semiconductor world; 2) Radiation Effects Sources (A sample test constraint); and 3) Challenges to Radiation Testing and Modeling: a) IC Attributes-Radiation Effects Implication b) Fault Isolation c) Scaled Geometry d) Speed e) Modeling Shortfall f) Knowledge Status

  18. An empirical validation of a unified model of electronic government adoption (UMEGA)

    NARCIS (Netherlands)

    Dwivedi, Yogesh K.; Rana, Nripendra P.; Janssen, M.F.W.H.A.; Lal, Banita; Williams, Michael D.; Clement, Marc

    In electronic government (hereafter e-government), a large variety of technology adoption models are employed, which make researchers and policymakers puzzled about which one to use. In this research, nine well-known theoretical models of information technology adoption are evaluated and 29

  19. Clustering clinical models from local electronic health records based on semantic similarity

    NARCIS (Netherlands)

    Gøeg, Kirstine Rosenbeck; Cornet, Ronald; Andersen, Stig Kjær

    2015-01-01

    Clinical models in electronic health records are typically expressed as templates which support the multiple clinical workflows in which the system is used. The templates are often designed using local rather than standard information models and terminology, which hinders semantic interoperability.

  20. Dependence of Xmax and multiplicity of electron and muon on different high energy interaction models

    Directory of Open Access Journals (Sweden)

    G Rastegarzadeh

    2010-06-01

    Full Text Available Different high energy interaction models are the applied in CORSIKA code to simulate Extensive Air Showers (EAS generated by Cosmic Rays (CR. In this work the effects of QGSJET01, QGSJETII, DPMJET, SIBYLL models on Xmax and multiplicity of secondary electrons and muons at observation level are studied.

  1. ASTROPHYSICS. Exclusion of leptophilic dark matter models using XENON100 electronic recoil data.

    Science.gov (United States)

    2015-08-21

    Laboratory experiments searching for galactic dark matter particles scattering off nuclei have so far not been able to establish a discovery. We use data from the XENON100 experiment to search for dark matter interacting with electrons. With no evidence for a signal above the low background of our experiment, we exclude a variety of representative dark matter models that would induce electronic recoils. For axial-vector couplings to electrons, we exclude cross sections above 6 × 10(-35) cm(2) for particle masses of m(χ) = 2 GeV/c(2). Independent of the dark matter halo, we exclude leptophilic models as an explanation for the long-standing DAMA/LIBRA signal, such as couplings to electrons through axial-vector interactions at a 4.4σ confidence level, mirror dark matter at 3.6σ, and luminous dark matter at 4.6σ. Copyright © 2015, American Association for the Advancement of Science.

  2. Electrostatic models of electron-driven proton transfer across a lipid membrane

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, Anatoly Yu; Nori, Franco [Advanced Science Institute, RIKEN, Wako-shi, Saitama, 351-0198 (Japan); Mourokh, Lev G [Department of Physics, Queens College, The City University of New York, Flushing, NY 11367 (United States)

    2011-06-15

    We present two models for electron-driven uphill proton transport across lipid membranes, with the electron energy converted to the proton gradient via the electrostatic interaction. In the first model, associated with the cytochrome c oxidase complex in the inner mitochondria membranes, the electrostatic coupling to the site occupied by an electron lowers the energy level of the proton-binding site, making proton transfer possible. In the second model, roughly describing the redox loop in a nitrate respiration of E. coli bacteria, an electron displaces a proton from the negative side of the membrane to a shuttle, which subsequently diffuses across the membrane and unloads the proton to its positive side. We show that both models can be described by the same approach, which can be significantly simplified if the system is separated into several clusters, with strong Coulomb interaction inside each cluster and weak transfer couplings between them. We derive and solve the equations of motion for the electron and proton creation/annihilation operators, taking into account the appropriate Coulomb terms, tunnel couplings, and the interaction with the environment. For the second model, these equations of motion are solved jointly with a Langevin-type equation for the shuttle position. We obtain expressions for the electron and proton currents and determine their dependence on the electron and proton voltage build-ups, on-site charging energies, reorganization energies, temperature, and other system parameters. We show that the quantum yield in our models can be up to 100% and the power-conversion efficiency can reach 35%.

  3. Electron Drift Resonance in the MHD-Coupled Comprehensive Inner Magnetosphere-Ionosphere Model

    Science.gov (United States)

    Komar, C. M.; Glocer, A.; Hartinger, M. D.; Murphy, K. R.; Fok, M.-C.; Kang, S.-B.

    2017-12-01

    Relativistic electrons in the outer radiation belt are highly dynamic and respond to interplanetary solar wind structures interacting with the Earth's magnetic field. A known mechanism dictating electron dynamics is the drift-resonant interaction with ultralow frequency (ULF) waves. The present work simulates the ring current and radiation belt electron populations in the bounce-averaged, kinetic Comprehensive Inner Magnetosphere-Ionosphere model coupled with the Block Adaptive Tree Solar Wind Roe-type Upwind Scheme global magnetospheric magnetohydrodynamic (MHD) code using an idealized ULF wave solar wind density driver. ULF waves generated with 10 min periods (at 1.67 mHz frequencies) in the MHD model are characterized and the corresponding energization of electrons and radial transport of electron phase space density is presented. The drift-resonant electron energy is determined in the simulation and is consistent with the electron resonance conditions in dipolar magnetic fields. The present results will be an important component of understanding inner magnetospheric dynamics and how these inner magnetospheric populations interact with ULF waves resulting from interplanetary solar wind structures.

  4. Modeling the Strahl in the Solar Wind Using CLUSTER/PEACE Electron Distribution Functions

    Science.gov (United States)

    Vinas, Adolfo F.; Gurgiolo, Chris; Nieves-Chinchilla, Teresa; Gary, S. Peter; Goldstein, Melvyn L.

    2009-01-01

    We present a study of kinetic properties of the strahl electron velocity distribution functions (VDF's) in the solar wind. These are used to investigate the pitch-angle scattering and stability of the population to interactions with electromagnetic (whistler) fluctuations. The study is based on high time resolution data from the Cluster/PEACE electron spectrometer. Our study focuses on the mechanisms that control and regulate the pitch-angle and stability of strahl electrons in the solar wind; mechanisms that are not yet well understood. Various parameters are investigated such as the strahl-electron density, temperature anisotropy, and electron heat-flux. The goal is to check whether the strahl electrons are constrained by some instability (e.g., the whistler instability), or are maintained by other types of processes. The electron heat-flux and temperature anisotropy are determined by modeling the 3D-VDFs to a spectral spherical harmonic model from which the moments are obtained directly from the spectral coefficients.

  5. Modeling laser-driven electron acceleration using WARP with Fourier decomposition

    Science.gov (United States)

    Lee, P.; Audet, T. L.; Lehe, R.; Vay, J.-L.; Maynard, G.; Cros, B.

    2016-09-01

    WARP is used with the recent implementation of the Fourier decomposition algorithm to model laser-driven electron acceleration in plasmas. Simulations were carried out to analyze the experimental results obtained on ionization-induced injection in a gas cell. The simulated results are in good agreement with the experimental ones, confirming the ability of the code to take into account the physics of electron injection and reduce calculation time. We present a detailed analysis of the laser propagation, the plasma wave generation and the electron beam dynamics.

  6. Two-Temperature Model of non-equilibrium electron relaxation: A Review

    OpenAIRE

    Singh, Navinder

    2007-01-01

    The present paper is a review of the phenomena related to non-equilibrium electron relaxation in bulk and nano-scale metallic samples. The workable Two-Temperature Model (TTM) based on Boltzmann-Bloch-Peierls (BBP) kinetic equation has been applied to study the ultra-fast(femto-second) electronic relaxation in various metallic systems. The advent of new ultra-fast (femto-second) laser technology and pump-probe spectroscopy has produced wealth of new results for micro and nano-scale electronic...

  7. Comparison of Gallium Nitride High Electron Mobility Transistors Modeling in Two and Three Dimensions

    Science.gov (United States)

    2007-12-01

    15. NUMBER OF PAGES 77 14. SUBJECT TERMS Gallium Nitride, HEMT, High Electron Mobility Transistor, Silvaco , ATLAS , modeling. 16. PRICE...Chapter II of this thesis and the Silvaco Atlas Manual from 2007 [21]. The present ATLASTM program incorporates modifications specifically for the...IEEE Trans. Electron Devices, vol. 47, pp. 2031–2036, November 2000. [21] Silvaco International, “ Silvaco International, ATLAS User’s Manual

  8. Multipole electron-density modelling of synchrotron powder diffraction data: the case of diamond

    DEFF Research Database (Denmark)

    Svendsen, H.; Overgaard, J.; Busselez, R.

    2010-01-01

    Accurate structure factors are extracted from synchrotron powder diffraction data measured on crystalline diamond based on a novel multipole model division of overlapping reflection intensities. The approach limits the spherical-atom bias in structure factors extracted from overlapping powder data...... parameter. This directly exposes a correlation between electron density and thermal parameters even for a light atom such as carbon, and it also underlines that in organic systems proper deconvolution of thermal motion is important for obtaining correct static electron densities....

  9. Long-Term Agroecosystem Research in the Central Mississippi River Basin: SWAT Simulation of Flow and Water Quality in the Goodwater Creek Experimental Watershed.

    Science.gov (United States)

    Baffaut, Claire; John Sadler, E; Ghidey, Fessehaie; Anderson, Stephen H

    2015-01-01

    Starting in 1971, stream flow and climatologic data have been collected in the Goodwater Creek Experimental Watershed, which is part of the Central Mississippi River Basin (CMRB) Long-Term Agroecosystem Research (LTAR) site. Since 1992, water quality and socio-economic data have complemented these data sets. Previous modeling efforts highlighted the challenges created by the presence of a claypan. Specific changes were introduced in the Soil and Water Assessment Tool (SWAT) (i) to better simulate percolation through and saturation above the claypan and (ii) to simulate the spatial and temporal distributions of the timing of field operations throughout the watershed. Our objectives were to document the changes introduced into the code, demonstrate that these changes improved simulation results, describe the model's parameterization, calibration, and validation, and assess atrazine [6-chloro--ethyl-'-(1-methylethyl)-1,3,5-triazine-2,4-diamine] management practices in the hydrologic context of claypan soils. Model calibration was achieved for 1993 to 2010 at a daily time step for flow and at a monthly time step for water quality constituents. The new percolation routines ensured correct balance between surface runoff and groundwater. The temporal heterogeneity of atrazine application ensured the correct frequency of daily atrazine loads. Atrazine incorporation by field cultivation resulted in a 17% simulated reduction in atrazine load without a significant increase in sediment yields. Reduced atrazine rates produced proportional reductions in simulated atrazine transport. The model can be used to estimate the impact of other drivers, e.g., changing aspects of climate, land use, cropping systems, tillage, or management practices, in this context. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  10. Simultaneous calibration of surface flow and baseflow simulations: A revisit of the SWAT model calibration framework

    Science.gov (United States)

    Accurate analysis of water flow pathways from rainfall to streams is critical for simulating water use, climate change impact, and contaminant transport. In this study, we developed a new scheme to simultaneously calibrate surface flow (SF) and baseflow (BF) simulations of Soil and Water Assessment ...

  11. Inclusion of Riparian Wetland Module (RWM) into the SWAT model for assessment of wetland hydrological benefit

    Science.gov (United States)

    Wetlands are an integral part of many agricultural watersheds. They provide multiple ecosystem functions, such as improving water quality, mitigating flooding, and serving as natural habitats. Those functions are highly depended on wetland hydrological characteristics and their connectivity to the d...

  12. The use of discrete-event simulation modeling to compare handwritten and electronic prescribing systems.

    Science.gov (United States)

    Ghany, Ahmad; Vassanji, Karim; Kuziemsky, Craig; Keshavjee, Karim

    2013-01-01

    Electronic prescribing (e-prescribing) is expected to bring many benefits to Canadian healthcare, such as a reduction in errors and adverse drug reactions. As there currently is no functioning e-prescribing system in Canada that is completely electronic, we are unable to evaluate the performance of a live system. An alternative approach is to use simulation modeling for evaluation. We developed two discrete-event simulation models, one of the current handwritten prescribing system and one of a proposed e-prescribing system, to compare the performance of these two systems. We were able to compare the number of processes in each model, workflow efficiency, and the distribution of patients or prescriptions. Although we were able to compare these models to each other, using discrete-event simulation software was challenging. We were limited in the number of variables we could measure. We discovered non-linear processes and feedback loops in both models that could not be adequately represented using discrete-event simulation software. Finally, interactions between entities in both models could not be modeled using this type of software. We have come to the conclusion that a more appropriate approach to modeling both the handwritten and electronic prescribing systems would be to use a complex adaptive systems approach using agent-based modeling or systems-based modeling.

  13. The morpho-agronomic characterization study of Lens culinaris germplasm under salt marsh habitat in Swat, Pakistan.

    Science.gov (United States)

    Noor, Rabia; Mulk Khan, Shujaul; Ahmad, Fayaz; Hussain, Murtaza; Abd Allah, Elsayed Fathi; Alqarawi, Abdulaziz A; Hashem, Abeer; Aldubise, Abdullah

    2017-11-01

    The present research study evaluate and identify the most suitable and high yielding genotypes of Lens culinaris for the salt marsh habitat of Swat in moist temperate sort of agro climatic environment of Pakistan. A total of fourteen genotypes were cultivated and analyzed through Randomized Complete Block Design (RCBD). These genotypes were AZRC-4, NL-2, NL4, NL-5, NL-6, NARC-11-1, NARC-11-2, NARC-11-3, NARC-11-4, 09503, 09505, 09506, P.Masoor-09 and Markaz-09. Different parameters i.e., germination rate, flowering, physiological maturity, plant height, biological grain yield, seed weight, pods formation and its height, pods per plants and protein content were focused specially throughout the study. Preliminary the Lentil genotypes have significant variability in all the major morpho-agronomic traits. The days to germination, 50% flowering and 100 seed weight ranged from 7 to 9, 110 to 116 days, and from 5.4 to 7.3 gm respectively. Biological yield and grain yield ranged from 5333 to 9777 kg ha-1 and 1933 to 3655 kg ha-1 respectively. Whereas, protein contents ranged from 23.21% to 28.45%. It was concluded that the genotype AZRC-4 is better varity in terms of grain yield plus in 100 seed weight and moreover, 09506 genotype was significant under salt marsh habitat in early maturing for the Swat Valley, Pakistan.

  14. Modeling of Ultrafast Laser Induced Electron Emission from TI and Graphene

    Science.gov (United States)

    2017-09-08

    distribution unlimited. graphene - semiconductor has been reported in the most recent prestigious conference in electron device: IEDM in San Francisco... graphene - semiconductor contact This IEDM paper reports a correct contact model for graphene - semiconductor interface. Models are compared with...Liang, W. Hu, A. Di Bartolomeo, S. Adam and L. K. Ang A modified Schottky model for graphene - semiconductor (3D/2D) contact: A combined theoretical and

  15. An ab initio model for the modulation of galactic cosmic-ray electrons

    Energy Technology Data Exchange (ETDEWEB)

    Engelbrecht, N. E.; Burger, R. A. [Center for Space Research, North-West University, Potchefstroom 2520 (South Africa)

    2013-12-20

    The modulation of galactic cosmic-ray electrons is studied using an ab initio three-dimensional steady state cosmic-ray modulation code in which the effects of turbulence on both the diffusion and drift of these cosmic-rays are treated as self-consistently as possible. A significant refinement is that a recent two-component turbulence transport model is used. This model yields results in reasonable agreement with observations of turbulence quantities throughout the heliosphere. The sensitivity of computed galactic electron intensities to choices of various turbulence parameters pertaining to the dissipation range of the slab turbulence spectrum, and to the choice of model of dynamical turbulence, is demonstrated using diffusion coefficients derived from the quasi-linear and extended nonlinear guiding center theories. Computed electron intensities and latitude gradients are also compared with spacecraft observations.

  16. Angular sensitivity of modeled scientific silicon charge-coupled devices to initial electron direction

    Energy Technology Data Exchange (ETDEWEB)

    Plimley, Brian, E-mail: brian.plimley@gmail.com [Nuclear Engineering Department, University of California, Berkeley, CA (United States); Coffer, Amy; Zhang, Yigong [Nuclear Engineering Department, University of California, Berkeley, CA (United States); Vetter, Kai [Nuclear Engineering Department, University of California, Berkeley, CA (United States); Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States)

    2016-08-11

    Previously, scientific silicon charge-coupled devices (CCDs) with 10.5-μm pixel pitch and a thick (650 μm), fully depleted bulk have been used to measure gamma-ray-induced fast electrons and demonstrate electron track Compton imaging. A model of the response of this CCD was also developed and benchmarked to experiment using Monte Carlo electron tracks. We now examine the trade-off in pixel pitch and electronic noise. We extend our CCD response model to different pixel pitch and readout noise per pixel, including pixel pitch of 2.5 μm, 5 μm, 10.5 μm, 20 μm, and 40 μm, and readout noise from 0 eV/pixel to 2 keV/pixel for 10.5 μm pixel pitch. The CCD images generated by this model using simulated electron tracks are processed by our trajectory reconstruction algorithm. The performance of the reconstruction algorithm defines the expected angular sensitivity as a function of electron energy, CCD pixel pitch, and readout noise per pixel. Results show that our existing pixel pitch of 10.5 μm is near optimal for our approach, because smaller pixels add little new information but are subject to greater statistical noise. In addition, we measured the readout noise per pixel for two different device temperatures in order to estimate the effect of temperature on the reconstruction algorithm performance, although the readout is not optimized for higher temperatures. The noise in our device at 240 K increases the FWHM of angular measurement error by no more than a factor of 2, from 26° to 49° FWHM for electrons between 425 keV and 480 keV. Therefore, a CCD could be used for electron-track-based imaging in a Peltier-cooled device.

  17. Effects of model approximations for electron, hole, and photon transport in swift heavy ion tracks

    Science.gov (United States)

    Rymzhanov, R. A.; Medvedev, N. A.; Volkov, A. E.

    2016-12-01

    The event-by-event Monte Carlo code, TREKIS, was recently developed to describe excitation of the electron subsystems of solids in the nanometric vicinity of a trajectory of a nonrelativistic swift heavy ion (SHI) decelerated in the electronic stopping regime. The complex dielectric function (CDF) formalism was applied in the used cross sections to account for collective response of a matter to excitation. Using this model we investigate effects of the basic assumptions on the modeled kinetics of the electronic subsystem which ultimately determine parameters of an excited material in an SHI track. In particular, (a) effects of different momentum dependencies of the CDF on scattering of projectiles on the electron subsystem are investigated. The 'effective one-band' approximation for target electrons produces good coincidence of the calculated electron mean free paths with those obtained in experiments in metals. (b) Effects of collective response of a lattice appeared to dominate in randomization of electron motion. We study how sensitive these effects are to the target temperature. We also compare results of applications of different model forms of (quasi-) elastic cross sections in simulations of the ion track kinetics, e.g. those calculated taking into account optical phonons in the CDF form vs. Mott's atomic cross sections. (c) It is demonstrated that the kinetics of valence holes significantly affects redistribution of the excess electronic energy in the vicinity of an SHI trajectory as well as its conversion into lattice excitation in dielectrics and semiconductors. (d) It is also shown that induced transport of photons originated from radiative decay of core holes brings the excess energy faster and farther away from the track core, however, the amount of this energy is relatively small.

  18. Detailed modeling of electron emission for transpiration cooling of hypersonic vehicles

    Science.gov (United States)

    Hanquist, Kyle M.; Hara, Kentaro; Boyd, Iain D.

    2017-02-01

    Electron transpiration cooling (ETC) is a recently proposed approach to manage the high heating loads experienced at the sharp leading edges of hypersonic vehicles. Computational fluid dynamics (CFD) can be used to investigate the feasibility of ETC in a hypersonic environment. A modeling approach is presented for ETC, which includes developing the boundary conditions for electron emission from the surface, accounting for the space-charge limit effects of the near-wall plasma sheath. The space-charge limit models are assessed using 1D direct-kinetic plasma sheath simulations, taking into account the thermionically emitted electrons from the surface. The simulations agree well with the space-charge limit theory proposed by Takamura et al. for emitted electrons with a finite temperature, especially at low values of wall bias, which validates the use of the theoretical model for the hypersonic CFD code. The CFD code with the analytical sheath models is then used for a test case typical of a leading edge radius in a hypersonic flight environment. The CFD results show that ETC can lower the surface temperature of sharp leading edges of hypersonic vehicles, especially at higher velocities, due to the increase in ionized species enabling higher electron heat extraction from the surface. The CFD results also show that space-charge limit effects can limit the ETC reduction of surface temperatures, in comparison to thermionic emission assuming no effects of the electric field within the sheath.

  19. Constraint-Based Modeling of Carbon Fixation and the Energetics of Electron Transfer in Geobacter metallireducens

    Energy Technology Data Exchange (ETDEWEB)

    Feist, AM; Nagarajan, H; Rotaru, AE; Tremblay, PL; Zhang, T; Nevin, KP; Lovley, DR; Zengler, K

    2014-04-24

    Geobacter species are of great interest for environmental and biotechnology applications as they can carry out direct electron transfer to insoluble metals or other microorganisms and have the ability to assimilate inorganic carbon. Here, we report on the capability and key enabling metabolic machinery of Geobacter metallireducens GS-15 to carry out CO2 fixation and direct electron transfer to iron. An updated metabolic reconstruction was generated, growth screens on targeted conditions of interest were performed, and constraint-based analysis was utilized to characterize and evaluate critical pathways and reactions in G. metallireducens. The novel capability of G. metallireducens to grow autotrophically with formate and Fe(III) was predicted and subsequently validated in vivo. Additionally, the energetic cost of transferring electrons to an external electron acceptor was determined through analysis of growth experiments carried out using three different electron acceptors (Fe(III), nitrate, and fumarate) by systematically isolating and examining different parts of the electron transport chain. The updated reconstruction will serve as a knowledgebase for understanding and engineering Geobacter and similar species. Author Summary The ability of microorganisms to exchange electrons directly with their environment has large implications for our knowledge of industrial and environmental processes. For decades, it has been known that microbes can use electrodes as electron acceptors in microbial fuel cell settings. Geobacter metallireducens has been one of the model organisms for characterizing microbe-electrode interactions as well as environmental processes such as bioremediation. Here, we significantly expand the knowledge of metabolism and energetics of this model organism by employing constraint-based metabolic modeling. Through this analysis, we build the metabolic pathways necessary for carbon fixation, a desirable property for industrial chemical production. We

  20. UROX 2.0: an interactive tool for fitting atomic models into electron-microscopy reconstructions.

    Science.gov (United States)

    Siebert, Xavier; Navaza, Jorge

    2009-07-01

    Electron microscopy of a macromolecular structure can lead to three-dimensional reconstructions with resolutions that are typically in the 30-10 A range and sometimes even beyond 10 A. Fitting atomic models of the individual components of the macromolecular structure (e.g. those obtained by X-ray crystallography or nuclear magnetic resonance) into an electron-microscopy map allows the interpretation of the latter at near-atomic resolution, providing insight into the interactions between the components. Graphical software is presented that was designed for the interactive fitting and refinement of atomic models into electron-microscopy reconstructions. Several characteristics enable it to be applied over a wide range of cases and resolutions. Firstly, calculations are performed in reciprocal space, which results in fast algorithms. This allows the entire reconstruction (or at least a sizeable portion of it) to be used by taking into account the symmetry of the reconstruction both in the calculations and in the graphical display. Secondly, atomic models can be placed graphically in the map while the correlation between the model-based electron density and the electron-microscopy reconstruction is computed and displayed in real time. The positions and orientations of the models are refined by a least-squares minimization. Thirdly, normal-mode calculations can be used to simulate conformational changes between the atomic model of an individual component and its corresponding density within a macromolecular complex determined by electron microscopy. These features are illustrated using three practical cases with different symmetries and resolutions. The software, together with examples and user instructions, is available free of charge at http://mem.ibs.fr/UROX/.

  1. Application of fuzzy logic to determine the odour intensity of model gas mixtures using electronic nose

    Science.gov (United States)

    Szulczyński, Bartosz; Gębicki, Jacek; Namieśnik, Jacek

    2018-01-01

    The paper presents the possibility of application of fuzzy logic to determine the odour intensity of model, ternary gas mixtures (α-pinene, toluene and triethylamine) using electronic nose prototype. The results obtained using fuzzy logic algorithms were compared with the values obtained using multiple linear regression (MLR) model and sensory analysis. As the results of the studies, it was found the electronic nose prototype along with the fuzzy logic pattern recognition system can be successfully used to estimate the odour intensity of tested gas mixtures. The correctness of the results obtained using fuzzy logic was equal to 68%.

  2. Monte Carlo based beam model using a photon MLC for modulated electron radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Henzen, D., E-mail: henzen@ams.unibe.ch; Manser, P.; Frei, D.; Volken, W.; Born, E. J.; Vetterli, D.; Chatelain, C.; Fix, M. K. [Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, CH-3010 Berne (Switzerland); Neuenschwander, H. [Clinic for Radiation-Oncology, Lindenhofspital Bern, CH-3012 Berne (Switzerland); Stampanoni, M. F. M. [Institute for Biomedical Engineering, ETH Zürich and Paul Scherrer Institut, CH-5234 Villigen (Switzerland)

    2014-02-15

    Purpose: Modulated electron radiotherapy (MERT) promises sparing of organs at risk for certain tumor sites. Any implementation of MERT treatment planning requires an accurate beam model. The aim of this work is the development of a beam model which reconstructs electron fields shaped using the Millennium photon multileaf collimator (MLC) (Varian Medical Systems, Inc., Palo Alto, CA) for a Varian linear accelerator (linac). Methods: This beam model is divided into an analytical part (two photon and two electron sources) and a Monte Carlo (MC) transport through the MLC. For dose calculation purposes the beam model has been coupled with a macro MC dose calculation algorithm. The commissioning process requires a set of measurements and precalculated MC input. The beam model has been commissioned at a source to surface distance of 70 cm for a Clinac 23EX (Varian Medical Systems, Inc., Palo Alto, CA) and a TrueBeam linac (Varian Medical Systems, Inc., Palo Alto, CA). For validation purposes, measured and calculated depth dose curves and dose profiles are compared for four different MLC shaped electron fields and all available energies. Furthermore, a measured two-dimensional dose distribution for patched segments consisting of three 18 MeV segments, three 12 MeV segments, and a 9 MeV segment is compared with corresponding dose calculations. Finally, measured and calculated two-dimensional dose distributions are compared for a circular segment encompassed with a C-shaped segment. Results: For 15 × 34, 5 × 5, and 2 × 2 cm{sup 2} fields differences between water phantom measurements and calculations using the beam model coupled with the macro MC dose calculation algorithm are generally within 2% of the maximal dose value or 2 mm distance to agreement (DTA) for all electron beam energies. For a more complex MLC pattern, differences between measurements and calculations are generally within 3% of the maximal dose value or 3 mm DTA for all electron beam energies. For the

  3. Complete model description of an electron beam using ACCEPT Monte Carlo simulation code

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, D.E. [Corporate Research Process Technologies Lab., St. Paul, MN (United States); Kensek, R.P. [Sandia National Labs., Albuquerque, NM (United States)

    1993-12-31

    A 3D model of a low voltage electron beam has been constructed using the ITS/ACCEPT Monte Carlo code in order to validate the code for this application and improve upon 1D slab geometry simulations. A line source description update to the code allows complete simulation of a low voltage electron beam with any filament length. Faithful reproduction of the geometric elements involved, especially the window support structure, can account for 90--95% of the dose received by routine dosimetry. With a 3D model, dose distributions in non-web articles can be determined and the effects of equipment modifications can be anticipated in advance.

  4. Modeling and Simulation of DC Power Electronics Systems Using Harmonic State Space (HSS) Method

    DEFF Research Database (Denmark)

    Kwon, Jun Bum; Wang, Xiongfei; Bak, Claus Leth

    2015-01-01

    based on the state-space averaging and generalized averaging, these also have limitations to show the same results as with the non-linear time domain simulations. This paper presents a modeling and simulation method for a large dc power electronic system by using Harmonic State Space (HSS) modeling....... Through this method, the required computation time and CPU memory for large dc power electronics systems can be reduced. Besides, the achieved results show the same results as with the non-linear time domain simulation, but with the faster simulation time which is beneficial in a large network....

  5. Kinetic modeling of the electronic response of a dielectric plasma-facing solid

    Science.gov (United States)

    Bronold, Franz X.; Fehske, Holger

    2017-07-01

    We present a self-consistent kinetic theory for the electronic response of a plasma-facing dielectric solid. Based on the Poisson equation and two sets of spatially separated Boltzmann equations, one for electrons and ions in the plasma and one for conduction band electrons and valence band holes in the dielectric, the approach gives the quasi-stationary density and potential profiles of the electric double layer forming at the interface due to the permanent influx of electrons and ions from the plasma. The two sets of Boltzmann equations are connected by quantum-mechanical matching conditions for the electron distribution functions and a semi-empirical model for hole injection mimicking the neutralization of ions at the surface. Essential for the kinetic modeling is the ambipolarity inside the wall, leading to an electron-hole recombination condition, and the merging of the double layer with the quasi-neutral, field-free regions deep inside the wall and the plasma. To indicate the feasibility as well as the potential of the approach we apply it to a collisionless, perfectly absorbing interface using intrinsic and extrinsic silicon dioxide and silicon surfaces in contact with a two-temperature hydrogen plasma as an example.

  6. Hybrid modelling of open glow discharge with account of nonlocal ionization by fast electrons

    Science.gov (United States)

    Eliseev, Stepan; Eremin, Denis; Kudryavtsev, Anatoly

    2015-11-01

    Cage and open discharges as well as hollow cathode devices are used for creating negative glow plasma. In order to perform numerical simulations of such kind of plasma object properly it is necessary to account for nonlocal excitation and ionization induced by fast electrons emitted from cathode and accelerated up to energies 102-103eV in cathode voltage drop. In this work a numerical study of open discharge in argon is presented. Simulations were performed using simple hybrid model that incorporates nonlocal ionization by fast electrons into ``extended'' fluid framework. Electron energy balance is written with account of electron heating due to coulomb interaction between ``bulks'' (with energies less than 1eV) and ``intermediate'' electrons (with energies up to inelastic collisions energy threshold). Distributions of main discharge parameters, such charged particle densities, electron temperature, electric potential, current-voltage characteristics of the discharge were obtained. Comparison with experimental results showed good agreement and suggests good applicability of the model. This work was supported by Russian Science Foundation (project #14-19-00311).

  7. Counterintuitive electron localisation from density-functional theory with polarisable solvent models

    Energy Technology Data Exchange (ETDEWEB)

    Dale, Stephen G., E-mail: sdale@ucmerced.edu [Chemistry and Chemical Biology, School of Natural Sciences, University of California, Merced, 5200 North Lake Road, Merced, California 95343 (United States); Johnson, Erin R., E-mail: erin.johnson@dal.ca [Department of Chemistry, Dalhousie University, 6274 Coburg Road, Halifax, Nova Scotia B3H 4R2 (Canada)

    2015-11-14

    Exploration of the solvated electron phenomena using density-functional theory (DFT) generally results in prediction of a localised electron within an induced solvent cavity. However, it is well known that DFT favours highly delocalised charges, rendering the localisation of a solvated electron unexpected. We explore the origins of this counterintuitive behaviour using a model Kevan-structure system. When a polarisable-continuum solvent model is included, it forces electron localisation by introducing a strong energetic bias that favours integer charges. This results in the formation of a large energetic barrier for charge-hopping and can cause the self-consistent field to become trapped in local minima thus converging to stable solutions that are higher in energy than the ground electronic state. Finally, since the bias towards integer charges is caused by the polarisable continuum, these findings will also apply to other classical polarisation corrections, as in combined quantum mechanics and molecular mechanics (QM/MM) methods. The implications for systems beyond the solvated electron, including cationic DNA bases, are discussed.

  8. Parallelization of a hydrological model using the message passing interface

    Science.gov (United States)

    Wu, Yiping; Li, Tiejian; Sun, Liqun; Chen, Ji

    2013-01-01

    With the increasing knowledge about the natural processes, hydrological models such as the Soil and Water Assessment Tool (SWAT) are becoming larger and more complex with increasing computation time. Additionally, other procedures such as model calibration, which may require thousands of model iterations, can increase running time and thus further reduce rapid modeling and analysis. Using the widely-applied SWAT as an example, this study demonstrates how to parallelize a serial hydrological model in a Windows® environment using a parallel programing technology—Message Passing Interface (MPI). With a case study, we derived the optimal values for the two parameters (the number of processes and the corresponding percentage of work to be distributed to the master process) of the parallel SWAT (P-SWAT) on an ordinary personal computer and a work station. Our study indicates that model execution time can be reduced by 42%–70% (or a speedup of 1.74–3.36) using multiple processes (two to five) with a proper task-distribution scheme (between the master and slave processes). Although the computation time cost becomes lower with an increasing number of processes (from two to five), this enhancement becomes less due to the accompanied increase in demand for message passing procedures between the master and all slave processes. Our case study demonstrates that the P-SWAT with a five-process run may reach the maximum speedup, and the performance can be quite stable (fairly independent of a project size). Overall, the P-SWAT can help reduce the computation time substantially for an individual model run, manual and automatic calibration procedures, and optimization of best management practices. In particular, the parallelization method we used and the scheme for deriving the optimal parameters in this study can be valuable and easily applied to other hydrological or environmental models.

  9. Current Analysis and Modeling of Fullerene Single-Electron Transistor at Room Temperature

    Science.gov (United States)

    Khadem Hosseini, Vahideh; Ahmadi, Mohammad Taghi; Afrang, Saeid; Ismail, Razali

    2017-07-01

    Single-electron transistors (SETs) are interesting electronic devices that have become key elements in modern nanoelectronic systems. SETs operate quickly because they use individual electrons, with the number transferred playing a key role in their switching behavior. However, rapid transmission of electrons can cause their accumulation at the island, affecting the I- V characteristic. Selection of fullerene as a nanoscale zero-dimensional material with high stability, and controllable size in the fabrication process, can overcome this charge accumulation issue and improve the reliability of SETs. Herein, the current in a fullerene SET is modeled and compared with experimental data for a silicon SET. Furthermore, a weaker Coulomb staircase and improved reliability are reported. Moreover, the applied gate voltage and fullerene diameter are found to be directly associated with the I- V curve, enabling the desired current to be achieved by controlling the fullerene diameter.

  10. DFT-based Green's function pathways model for prediction of bridge-mediated electronic coupling.

    Science.gov (United States)

    Berstis, Laura; Baldridge, Kim K

    2015-12-14

    A density functional theory-based Green's function pathway model is developed enabling further advancements towards the long-standing challenge of accurate yet inexpensive prediction of electron transfer rate. Electronic coupling predictions are demonstrated to within 0.1 eV of experiment for organic and biological systems of moderately large size, with modest computational expense. Benchmarking and comparisons are made across density functional type, basis set extent, and orbital localization scheme. The resulting framework is shown to be flexible and to offer quantitative prediction of both electronic coupling and tunneling pathways in covalently bound non-adiabatic donor-bridge-acceptor (D-B-A) systems. A new localized molecular orbital Green's function pathway method (LMO-GFM) adaptation enables intuitive understanding of electron tunneling in terms of through-bond and through-space interactions.

  11. Modelling Thomson scattering for systems with non-equilibrium electron distributions

    Directory of Open Access Journals (Sweden)

    Chapman D.A.

    2013-11-01

    Full Text Available We investigate the effect of non-equilibrium electron distributions in the analysis of Thomson scattering for a range of conditions of interest to inertial confinement fusion experiments. Firstly, a generalised one-component model based on quantum statistical theory is given in the random phase approximation (RPA. The Chihara expression for electron-ion plasmas is then adapted to include the new non-equilibrium electron physics. The theoretical scattering spectra for both diffuse and dense plasmas in which non-equilibrium electron distributions are expected to arise are considered. We find that such distributions strongly influence the spectra and are hence an important consideration for accurately determining the plasma conditions.

  12. A deterministic partial differential equation model for dose calculation in electron radiotherapy.

    Science.gov (United States)

    Duclous, R; Dubroca, B; Frank, M

    2010-07-07

    High-energy ionizing radiation is a prominent modality for the treatment of many cancers. The approaches to electron dose calculation can be categorized into semi-empirical models (e.g. Fermi-Eyges, convolution-superposition) and probabilistic methods (e.g.Monte Carlo). A third approach to dose calculation has only recently attracted attention in the medical physics community. This approach is based on the deterministic kinetic equations of radiative transfer. We derive a macroscopic partial differential equation model for electron transport in tissue. This model involves an angular closure in the phase space. It is exact for the free streaming and the isotropic regime. We solve it numerically by a newly developed HLLC scheme based on Berthon et al (2007 J. Sci. Comput. 31 347-89) that exactly preserves the key properties of the analytical solution on the discrete level. We discuss several test cases taken from the medical physics literature. A test case with an academic Henyey-Greenstein scattering kernel is considered. We compare our model to a benchmark discrete ordinate solution. A simplified model of electron interactions with tissue is employed to compute the dose of an electron beam in a water phantom, and a case of irradiation of the vertebral column. Here our model is compared to the PENELOPE Monte Carlo code. In the academic example, the fluences computed with the new model and a benchmark result differ by less than 1%. The depths at half maximum differ by less than 0.6%. In the two comparisons with Monte Carlo, our model gives qualitatively reasonable dose distributions. Due to the crude interaction model, these so far do not have the accuracy needed in clinical practice. However, the new model has a computational cost that is less than one-tenth of the cost of a Monte Carlo simulation. In addition, simulations can be set up in a similar way as a Monte Carlo simulation. If more detailed effects such as coupled electron-photon transport, bremsstrahlung

  13. Model of contamination sources of electron for radiotherapy of beams of photons; Modelo de fuentes de contaminacion de electrones para radioterapia de haces de fotones

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Infantes, W.; Lallena Rojo, A. M.; Anguiano Millan, M.

    2013-07-01

    Proposes a model of virtual sources of electrons, that allows to reproduce the sources to the input parameters of the representation of the patient. To compare performance in depth values and calculated profiles from the full simulation of the heads, with the calculated values using sources model, found that the model is capable of playing depth dose distributions and profiles. (Author)

  14. A graphical vector autoregressive modelling approach to the analysis of electronic diary data

    Directory of Open Access Journals (Sweden)

    Zipfel Stephan

    2010-04-01

    Full Text Available Abstract Background In recent years, electronic diaries are increasingly used in medical research and practice to investigate patients' processes and fluctuations in symptoms over time. To model dynamic dependence structures and feedback mechanisms between symptom-relevant variables, a multivariate time series method has to be applied. Methods We propose to analyse the temporal interrelationships among the variables by a structural modelling approach based on graphical vector autoregressive (VAR models. We give a comprehensive description of the underlying concepts and explain how the dependence structure can be recovered from electronic diary data by a search over suitable constrained (graphical VAR models. Results The graphical VAR approach is applied to the electronic diary data of 35 obese patients with and without binge eating disorder (BED. The dynamic relationships for the two subgroups between eating behaviour, depression, anxiety and eating control are visualized in two path diagrams. Results show that the two subgroups of obese patients with and without BED are distinguishable by the temporal patterns which influence their respective eating behaviours. Conclusion The use of the graphical VAR approach for the analysis of electronic diary data leads to a deeper insight into patient's dynamics and dependence structures. An increasing use of this modelling approach could lead to a better understanding of complex psychological and physiological mechanisms in different areas of medical care and research.

  15. A theoretical-electron-density databank using a model of real and virtual spherical atoms.

    Science.gov (United States)

    Nassour, Ayoub; Domagala, Slawomir; Guillot, Benoit; Leduc, Theo; Lecomte, Claude; Jelsch, Christian

    2017-08-01

    A database describing the electron density of common chemical groups using combinations of real and virtual spherical atoms is proposed, as an alternative to the multipolar atom modelling of the molecular charge density. Theoretical structure factors were computed from periodic density functional theory calculations on 38 crystal structures of small molecules and the charge density was subsequently refined using a density model based on real spherical atoms and additional dummy charges on the covalent bonds and on electron lone-pair sites. The electron-density parameters of real and dummy atoms present in a similar chemical environment were averaged on all the molecules studied to build a database of transferable spherical atoms. Compared with the now-popular databases of transferable multipolar parameters, the spherical charge modelling needs fewer parameters to describe the molecular electron density and can be more easily incorporated in molecular modelling software for the computation of electrostatic properties. The construction method of the database is described. In order to analyse to what extent this modelling method can be used to derive meaningful molecular properties, it has been applied to the urea molecule and to biotin/streptavidin, a protein/ligand complex.

  16. YUP.SCX: coaxing atomic models into medium resolution electron density maps.

    Science.gov (United States)

    Tan, Robert K-Z; Devkota, Batsal; Harvey, Stephen C

    2008-08-01

    The structures of large macromolecular complexes in different functional states can be determined by cryo-electron microscopy, which yields electron density maps of low to intermediate resolutions. The maps can be combined with high-resolution atomic structures of components of the complex, to produce a model for the complex that is more accurate than the formal resolution of the map. To this end, methods have been developed to dock atomic models into density maps rigidly or flexibly, and to refine a docked model so as to optimize the fit of the atomic model into the map. We have developed a new refinement method called YUP.SCX. The electron density map is converted into a component of the potential energy function to which terms for stereochemical restraints and volume exclusion are added. The potential energy function is then minimized (using simulated annealing) to yield a stereochemically-restrained atomic structure that fits into the electron density map optimally. We used this procedure to construct an atomic model of the 70S ribosome in the pre-accommodation state. Although some atoms are displaced by as much as 33A, they divide themselves into nearly rigid fragments along natural boundaries with smooth transitions between the fragments.

  17. Modeling of beam-target interaction during pulsed electron beam ablation of graphite: Case of melting

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Muddassir, E-mail: mx1_ali@laurentian.ca; Henda, Redhouane

    2017-02-28

    Highlights: • Modeling of ablation stage induced during pulsed electron beam ablation (PEBA). • Thermal model to describe heating, melting and vaporization of a graphite target. • Model results show good accordance with reported data in the literature. - Abstract: A one-dimensional thermal model based on a two-stage heat conduction equation is employed to investigate the ablation of graphite target during nanosecond pulsed electron beam ablation. This comprehensive model accounts for the complex physical phenomena comprised of target heating, melting and vaporization upon irradiation with a polyenergetic electron beam. Melting and vaporization effects induced during ablation are taken into account by introducing moving phase boundaries. Phase transition induced during ablation is considered through the temperature dependent thermodynamic properties of graphite. The effect of electron beam efficiency, power density, and accelerating voltage on ablation is analyzed. For an electron beam operating at an accelerating voltage of 15 kV and efficiency of 0.6, the model findings show that the target surface temperature can reach up to 7500 K at the end of the pulse. The surface begins to melt within 25 ns from the pulse start. For the same process conditions, the estimated ablation depth and ablated mass per unit area are about 0.60 μm and 1.05 μg/mm{sup 2}, respectively. Model results indicate that ablation takes place primarily in the regime of normal vaporization from the surface. The results obtained at an accelerating voltage of 15 kV and efficiency factor of 0.6 are satisfactorily in good accordance with available experimental data in the literature.

  18. A relativistic model of electron cyclotron current drive efficiency in tokamak plasmas

    Directory of Open Access Journals (Sweden)

    Lin-Liu Y.R.

    2012-09-01

    Full Text Available A fully relativistic model of electron cyclotron current drive (ECCD efficiency based on the adjoint function techniques is considered. Numerical calculations of the current drive efficiency in a tokamak by using the variational approach are performed. A fully relativistic extension of the variational principle with the modified basis functions for the Spitzer function with momentum conservation in the electron-electron collision is described in general tokamak geometry. The model developed has generalized that of Marushchenko’s (N.B . Marushchenko, et al. Fusion Sci. & Tech., 2009, which is extended for arbitrary temperatures and covers exactly the asymptotic for u ≫ 1 when Z → ∞, and suitable for ray-tracing calculations.

  19. A double-layer based model of ion confinement in electron cyclotron resonance ion source

    Science.gov (United States)

    Mascali, D.; Neri, L.; Celona, L.; Castro, G.; Torrisi, G.; Gammino, S.; Sorbello, G.; Ciavola, G.

    2014-02-01

    The paper proposes a new model of ion confinement in ECRIS, which can be easily generalized to any magnetic configuration characterized by closed magnetic surfaces. Traditionally, ion confinement in B-min configurations is ascribed to a negative potential dip due to superhot electrons, adiabatically confined by the magneto-static field. However, kinetic simulations including RF heating affected by cavity modes structures indicate that high energy electrons populate just a thin slab overlapping the ECR layer, while their density drops down of more than one order of magnitude outside. Ions, instead, diffuse across the electron layer due to their high collisionality. This is the proper physical condition to establish a double-layer (DL) configuration which self-consistently originates a potential barrier; this "barrier" confines the ions inside the plasma core surrounded by the ECR surface. The paper will describe a simplified ion confinement model based on plasma density non-homogeneity and DL formation.

  20. DQMC study on Holstein model with momentum-dependent electron-phonon coupling

    Science.gov (United States)

    Chiu, Wei-Ting; Scalettar, Richard

    We use the determinant quantum Monte Carlo (DQMC) method to study the Holstein model with a momentum-dependent electron-phonon coupling λ (q) . The correlation functions and their Fourier transformed structure factors are calculated. In addition, the single particle Green's function and spectral functions are obtained. These quantities are used to infer the nature of long-range charge order as well as the renormalization of the electron and phonon propagators. Study of this model is motivated by the suggestion that electron-phonon interaction with large ''forward scattering'' is relevant to the understanding of the physics of the thin layers of single-unit-cell iron selenide (FeSe) grown on a strontium titanate (SrTiO3) substrate, possibly giving rise to the enhanced superconducting transition temperature and replica bands seen in ARPES experiments. This work was supported by the Department of Energy under DE-SC0014671.

  1. Modeling Electronic-Nuclear Interactions for Excitation Energy Transfer Processes in Light-Harvesting Complexes.

    Science.gov (United States)

    Lee, Mi Kyung; Coker, David F

    2016-08-18

    An accurate approach for computing intermolecular and intrachromophore contributions to spectral densities to describe the electronic-nuclear interactions relevant for modeling excitation energy transfer processes in light harvesting systems is presented. The approach is based on molecular dynamics (MD) calculations of classical correlation functions of long-range contributions to excitation energy fluctuations and a separate harmonic analysis and single-point gradient quantum calculations for electron-intrachromophore vibrational couplings. A simple model is also presented that enables detailed analysis of the shortcomings of standard MD-based excitation energy fluctuation correlation function approaches. The method introduced here avoids these problems, and its reliability is demonstrated in accurate predictions for bacteriochlorophyll molecules in the Fenna-Matthews-Olson pigment-protein complex, where excellent agreement with experimental spectral densities is found. This efficient approach can provide instantaneous spectral densities for treating the influence of fluctuations in environmental dissipation on fast electronic relaxation.

  2. A double-layer based model of ion confinement in electron cyclotron resonance ion source

    Energy Technology Data Exchange (ETDEWEB)

    Mascali, D., E-mail: davidmascali@lns.infn.it; Neri, L.; Celona, L.; Castro, G.; Gammino, S.; Ciavola, G. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, via S. Sofia 62, 95123 Catania (Italy); Torrisi, G. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, via S. Sofia 62, 95123 Catania (Italy); Università Mediterranea di Reggio Calabria, Dipartimento di Ingegneria dell’Informazione, delle Infrastrutture e dell’Energia Sostenibile, Via Graziella, I-89100 Reggio Calabria (Italy); Sorbello, G. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, via S. Sofia 62, 95123 Catania (Italy); Università degli Studi di Catania, Dipartimento di Ingegneria Elettrica Elettronica ed Informatica, Viale Andrea Doria 6, 95125 Catania (Italy)

    2014-02-15

    The paper proposes a new model of ion confinement in ECRIS, which can be easily generalized to any magnetic configuration characterized by closed magnetic surfaces. Traditionally, ion confinement in B-min configurations is ascribed to a negative potential dip due to superhot electrons, adiabatically confined by the magneto-static field. However, kinetic simulations including RF heating affected by cavity modes structures indicate that high energy electrons populate just a thin slab overlapping the ECR layer, while their density drops down of more than one order of magnitude outside. Ions, instead, diffuse across the electron layer due to their high collisionality. This is the proper physical condition to establish a double-layer (DL) configuration which self-consistently originates a potential barrier; this “barrier” confines the ions inside the plasma core surrounded by the ECR surface. The paper will describe a simplified ion confinement model based on plasma density non-homogeneity and DL formation.

  3. Highly integrated digital electronic control: Digital flight control, aircraft model identification, and adaptive engine control

    Science.gov (United States)

    Baer-Riedhart, Jennifer L.; Landy, Robert J.

    1987-01-01

    The highly integrated digital electronic control (HIDEC) program at NASA Ames Research Center, Dryden Flight Research Facility is a multiphase flight research program to quantify the benefits of promising integrated control systems. McDonnell Aircraft Company is the prime contractor, with United Technologies Pratt and Whitney Aircraft, and Lear Siegler Incorporated as major subcontractors. The NASA F-15A testbed aircraft was modified by the HIDEC program by installing a digital electronic flight control system (DEFCS) and replacing the standard F100 (Arab 3) engines with F100 engine model derivative (EMD) engines equipped with digital electronic engine controls (DEEC), and integrating the DEEC's and DEFCS. The modified aircraft provides the capability for testing many integrated control modes involving the flight controls, engine controls, and inlet controls. This paper focuses on the first two phases of the HIDEC program, which are the digital flight control system/aircraft model identification (DEFCS/AMI) phase and the adaptive engine control system (ADECS) phase.

  4. Superconductor Microwave Kinetic Inductance Detectors: System Model of the Readout Electronics

    Directory of Open Access Journals (Sweden)

    F. Alimenti

    2009-06-01

    Full Text Available This paper deals with the readout electronics needed by superconductor Microwave Kinetic Inductance Detectors (MKIDs. MKIDs are typically implemented in the form of cryogenic-cooled high quality factor microwave resonator. The natural frequency of these resonators changes as a millimeter or sub-millimeter wave radiation impinges on the resonator itself. A quantitative system model of the readout electronics (very similar to that of a vector network analyzer has been implemented under ADS environment and tested by several simulation experiments. The developed model is a tool to further optimize the readout electronic and to design the frequency allocation of parallel-connected MKIDs resonators. The applications of MKIDs will be in microwave and millimeter-wave radiometric imaging as well as in radio-astronomy focal plane arrays.

  5. Comparison of Ionospheric Vertical Total Electron Content modelling approaches using spline based representations

    Science.gov (United States)

    Krypiak-Gregorczyk, Anna; Wielgosz, Pawel; Borkowski, Andrzej; Schmidt, Michael; Erdogan, Eren; Goss, Andreas

    2017-04-01

    Since electromagnetic measurements show dispersive characteristics, accurate modelling of the ionospheric electron content plays an important role for positioning and navigation applications to mitigate the effect of the ionospheric disturbances. Knowledge about the ionosphere contributes to a better understanding of space weather events as well as to forecast these events to enable protective measures in advance for electronic systems and satellite missions. In the last decades, advances in satellite technologies, data analysis techniques and models together with a rapidly growing number of analysis centres allow modelling the ionospheric electron content with an unprecedented accuracy in (near) real-time. In this sense, the representation of electron content variations in time and space with spline basis functions has gained practical importance in global and regional ionosphere modelling. This is due to their compact support and their flexibility to handle unevenly distributed observations and data gaps. In this contribution, the performances of two ionosphere models from UWM and DGFI-TUM, which are developed using spline functions are evaluated. The VTEC model of DGFI-TUM is based on tensor products of trigonometric B-spline functions in longitude and polynomial B-spline functions in latitude for a global representation. The UWM model uses two dimensional planar thin plate spline (TPS) with the Universal Transverse Mercator representation of ellipsoidal coordinates. In order to provide a smooth VTEC model, the TPS minimizes both, the squared norm of the Hessian matrix and deviations between data points and the model. In the evaluations, the differenced STEC analysis method and Jason-2 altimetry comparisons are applied.

  6. Low-latitude Model Electron Density Profiles using the IRI and CCIR ...

    African Journals Online (AJOL)

    ... electron density profiles under different solar-geophysical conditions are highlighted. The need for additional ionosonde stations in the African sector in order to incorporate the results of studies on equatorial anomaly into the models is emphasized. Nigeria Journal of Pure and Applied Physics VOLUME 1, AUGUST 2000, ...

  7. 3D Printing of Plant Golgi Stacks from Their Electron Tomographic Models.

    Science.gov (United States)

    Mai, Keith Ka Ki; Kang, Madison J; Kang, Byung-Ho

    2017-01-01

    Three-dimensional (3D) printing is an effective tool for preparing tangible 3D models from computer visualizations to assist in scientific research and education. With the recent popularization of 3D printing processes, it is now possible for individual laboratories to convert their scientific data into a physical form suitable for presentation or teaching purposes. Electron tomography is an electron microscopy method by which 3D structures of subcellular organelles or macromolecular complexes are determined at nanometer-level resolutions. Electron tomography analyses have revealed the convoluted membrane architectures of Golgi stacks, chloroplasts, and mitochondria. But the intricacy of their 3D organizations is difficult to grasp from tomographic models illustrated on computer screens. Despite the rapid development of 3D printing technologies, production of organelle models based on experimental data with 3D printing has rarely been documented. In this chapter, we present a simple guide to creating 3D prints of electron tomographic models of plant Golgi stacks using the two most accessible 3D printing technologies.

  8. Electron and Ion Conductivity Calculations using the Model of Lee and More

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, John C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-09-30

    The following notes describe the ARES implementation of the inverse of the electron conduction coefficient, using the model of Lee and More, Physics of Fluids 27, page 1273, 1984. An addendum describing the modifications for analogous ion conduction coeffiecient appears at the bottom.

  9. Electronic transport on the spatial structure of the protein: Three-dimensional lattice model

    Energy Technology Data Exchange (ETDEWEB)

    Sarmento, R.G. [Departamento de Ciências Biológicas, Universidade Federal do Piauí, 64800-000 Floriano, PI (Brazil); Frazão, N.F. [Centro de Educação e Saúde, Universidade Federal de Campina Grande, 581750-000 Cuité, PB (Brazil); Macedo-Filho, A., E-mail: amfilho@gmail.com [Campus Prof. Antonio Geovanne Alves de Sousa, Universidade Estadual do Piauí, 64260-000 Piripiri, PI (Brazil)

    2017-01-30

    Highlights: • The electronic transport on the structure of the three-dimensional lattice model of the protein is studied. • The signing of the current–voltage is directly affected by permutations of the weak bonds in the structure. • Semiconductor behave of the proteins suggest a potential application in the development of novel biosensors. - Abstract: We report a numerical analysis of the electronic transport in protein chain consisting of thirty-six standard amino acids. The protein chains studied have three-dimensional structure, which can present itself in three distinct conformations and the difference consist in the presence or absence of thirteen hydrogen-bondings. Our theoretical method uses an electronic tight-binding Hamiltonian model, appropriate to describe the protein segments modeled by the amino acid chain. We note that the presence and the permutations between weak bonds in the structure of proteins are directly related to the signing of the current–voltage. Furthermore, the electronic transport depends on the effect of temperature. In addition, we have found a semiconductor behave in the models investigated and it suggest a potential application in the development of novel biosensors for molecular diagnostics.

  10. Social influence model and electronic word of mouth: PC versus mobile internet

    OpenAIRE

    Okazaki, Shintaro

    2009-01-01

    Compared with laptop or desktop computers, mobile devices offer greater flexibility in time and space, thus enabling consumers to be connected online more continually. In addition, their small size, portability and ease of use with location-based capabilities facilitate sending and receiving timely information in the right place. Drawing upon a social influence model proposed by Dholakia et al. (2004), this paper proposes a causal model for consumer participation in electronic ...

  11. Model-based Adjustment of Droplet Characteristic for 3D Electronic Printing

    Directory of Open Access Journals (Sweden)

    Lin Na

    2017-01-01

    Full Text Available The major challenge in 3D electronic printing is the print resolution and accuracy. In this paper, a typical mode - lumped element modeling method (LEM - is adopted to simulate the droplet jetting characteristic. This modeling method can quickly get the droplet velocity and volume with a high accuracy. Experimental results show that LEM has a simpler structure with the sufficient simulation and prediction accuracy.

  12. Extended Tonks-Langmuir-type model with non-Boltzmann-distributed electrons and cold ion sources

    Science.gov (United States)

    Kamran, M.; Kuhn, S.; Tskhakaya, D. D.; Khan, M.; Khan

    2013-04-01

    A general formalism for calculating the potential distribution Φ(z) in the quasineutral region of a new class of plane Tonks-Langmuir (TL)-type bounded-plasma-system (BPS) models differing from the well-known `classical' TL model (Tonks, L. and Langmuir, I. 1929 A general theory of the plasma of an arc. Phys. Rev. 34, 876) by allowing for arbitrary (but still cold) ion sources and arbitrary electron distributions is developed. With individual particles usually undergoing microscopic collision/sink/source (CSS) events, extensive use is made here of the basic kinetic-theory concept of `CSS-free trajectories' (i.e., the characteristics of the kinetic equation). Two types of electron populations, occupying the `type-t' and `type-p' domains of electron phase space, are distinguished. By definition, the type-t and type-p domains are made up of phase points lying on type-t (`trapped') CSS-free trajectories (not intersecting the walls and closing on themselves) and type-p (`passing') ones (starting at one of the walls and ending at the other). This work being the first step, it is assumed that ɛ ≡ λ D /l -> 0+ (where λ D and l are a typical Debye length and a typical ionization length respectively) so that the system exhibits a finite quasineutral `plasma' region and two infinitesimally thin `sheath' regions associated with the `sheath-edge singularities' | dΦ/dz| z->+/-zs -> ∞. The potential in the plasma region is required to satisfy a plasma equation (quasineutrality condition) of the form n i {Φ} = n e (Φ), where the electron density n e (Φ) is given and the ion density n i {Φ} is expressed in terms of trajectory integrals of the ion kinetic equation, with the ions produced by electron-impact ionization of cold neutrals. While previous TL-type models were characterized by electrons diffusing under the influence of frequent collisions with the neutral background particles and approximated by Maxwellian (Riemann, K.-U. 2006 Plasma-sheath transition in the

  13. Interaction quench in the Holstein model: Thermalization crossover from electron- to phonon-dominated relaxation

    Science.gov (United States)

    Murakami, Yuta; Werner, Philipp; Tsuji, Naoto; Aoki, Hideo

    2015-01-01

    We study the relaxation of the Holstein model after a sudden switch-on of the interaction by means of the nonequilibrium dynamical mean field theory, with the self-consistent Migdal approximation as an impurity solver. We show that there exists a qualitative change in the thermalization dynamics as the interaction is varied in the weak-coupling regime. On the weaker interaction side of this crossover, the phonon oscillations are damped more rapidly than the electron thermalization time scale, as determined from the relaxation of the electron momentum distribution function. On the stronger interaction side, the relaxation of the electrons becomes faster than the phonon damping. In this regime, despite long-lived phonon oscillations, a thermalized momentum distribution is realized temporarily. The origin of the "thermalization crossover" found here is traced back to different behaviors of the electron and phonon self-energies as a function of the electron-phonon coupling. In addition, the importance of the phonon dynamics is demonstrated by comparing the self-consistent Migdal results with those obtained with a simpler Hartree-Fock impurity solver that neglects the phonon self-energy. The latter scheme does not properly describe the evolution and thermalization of isolated electron-phonon systems.

  14. Avaliação da carga mental de trabalho e do desempenho de medidas de mensuração: NASA TLX e SWAT Evaluation of mental workload and performance measurement: NASA TLX and SWAT

    Directory of Open Access Journals (Sweden)

    Mariane de Souza Cardoso

    2012-12-01

    Full Text Available Este estudo avalia a carga mental para atividades desempenhadas em empresa catarinense de soluções em energia e busca comparar os resultados da carga mental de trabalho encontrada a partir de dois métodos de mensuração atualmente mais usados - NASA TLX e SWAT. Por meio deste estudo avaliou-se a carga mental exigida tanto pela atividade de montagem manual, quanto de montagem automática de placas eletrônicas. Os resultados da avaliação da carga mental evidenciaram que entre as duas formas de execução da atividade, as exigências mentais mostram-se maiores na atividade de montagem manual. Os métodos de avaliação da carga mental aplicados em estudos da ergonomia possibilitam conhecer as capacidades e limitações do trabalhador, características da organização do trabalho e facilitam a apresentação quantitativa e qualitativa dos resultados. A comparação do desempenho entre os dois métodos de avaliação da carga mental, também se mostrou como uma investigação pertinente para o campo da ergonomia, já que são poucos os estudos comparativos em relação ao desempenho dos métodos. Na comparação do desempenho geral entre os dois métodos, o método NASA TLX possibilita avaliar a carga mental analisando diversas dimensões da situação de trabalho e apresenta vantagens quando comparado ao SWAT, pois pode ser facilmente aplicado e mostrou-se com maior aceitação por parte dos avaliados.This study evaluates the mental workload in some activities in an electricity generation company in Santa Catarina, Brazil and compares the mental workload measurements obtained using two commonly used measurement methods- NASA TLX and SWAT. The mental workload required by both manual and automated assembly of circuit boards was evaluated. The evaluation of the mental workload showed that comparing these two types of activities, the mental requirements appear to be higher during manual assembly tasks. The methods for assessing the mental

  15. Development of a physical and electronic model for RuO 2 nanorod rectenna devices

    Science.gov (United States)

    Dao, Justin

    Ruthenium oxide (RuO2) nanorods are an emergent technology in nanostructure devices. As the physical size of electronics approaches a critical lower limit, alternative solutions to further device miniaturization are currently under investigation. Thin-film nanorod growth is an interesting technology, being investigated for use in wireless communications, sensor systems, and alternative energy applications. In this investigation, self-assembled RuO2 nanorods are grown on a variety of substrates via a high density plasma, reactive sputtering process. Nanorods have been found to grow on substrates that form native oxide layers when exposed to air, namely silicon, aluminum, and titanium. Samples were analyzed with Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) techniques. Conductive Atomic Force Microscopy (C-AFM) measurements were performed on single nanorods to characterize structure and electrical conductivity. The C-AFM probe tip is placed on a single nanorod and I-V characteristics are measured, potentially exhibiting rectifying capabilities. An analysis of these results using fundamental semiconductor physics principles is presented. Experimental data for silicon substrates was most closely approximated by the Simmons model for direct electron tunneling, whereas that of aluminum substrates was well approximated by Fowler-Nordheim tunneling. The native oxide of titanium is regarded as a semiconductor rather than an insulator and its ability to function as a rectifier is not strong. An electronic model for these nanorods is described herein.

  16. An atomic model of brome mosaic virus using direct electron detection and real-space optimization

    Science.gov (United States)

    Wang, Zhao; Hryc, Corey F.; Bammes, Benjamin; Afonine, Pavel V.; Jakana, Joanita; Chen, Dong-Hua; Liu, Xiangan; Baker, Matthew L.; Kao, Cheng; Ludtke, Steven J.; Schmid, Michael F.; Adams, Paul D.; Chiu, Wah

    2014-01-01

    Advances in electron cryo-microscopy have enabled structure determination of macromolecules at near-atomic resolution. However, structure determination, even using de novo methods, remains susceptible to model bias and overfitting. Here we describe a complete workflow for data acquisition, image processing, all-atom modelling and validation of brome mosaic virus, an RNA virus. Data were collected with a direct electron detector in integrating mode and an exposure beyond the traditional radiation damage limit. The final density map has a resolution of 3.8 Å as assessed by two independent data sets and maps. We used the map to derive an all-atom model with a newly implemented real-space optimization protocol. The validity of the model was verified by its match with the density map and a previous model from X-ray crystallography, as well as the internal consistency of models from independent maps. This study demonstrates a practical approach to obtain a rigorously validated atomic resolution electron cryo-microscopy structure. PMID:25185801

  17. An atomic model of brome mosaic virus using direct electron detection and real-space optimization

    Science.gov (United States)

    Wang, Zhao; Hryc, Corey F.; Bammes, Benjamin; Afonine, Pavel V.; Jakana, Joanita; Chen, Dong-Hua; Liu, Xiangan; Baker, Matthew L.; Kao, Cheng; Ludtke, Steven J.; Schmid, Michael F.; Adams, Paul D.; Chiu, Wah

    2014-09-01

    Advances in electron cryo-microscopy have enabled structure determination of macromolecules at near-atomic resolution. However, structure determination, even using de novo methods, remains susceptible to model bias and overfitting. Here we describe a complete workflow for data acquisition, image processing, all-atom modelling and validation of brome mosaic virus, an RNA virus. Data were collected with a direct electron detector in integrating mode and an exposure beyond the traditional radiation damage limit. The final density map has a resolution of 3.8 Å as assessed by two independent data sets and maps. We used the map to derive an all-atom model with a newly implemented real-space optimization protocol. The validity of the model was verified by its match with the density map and a previous model from X-ray crystallography, as well as the internal consistency of models from independent maps. This study demonstrates a practical approach to obtain a rigorously validated atomic resolution electron cryo-microscopy structure.

  18. Effective electron-phonon coupling in the Hubbard-Holstein model in presence of strong correlations and density fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Citro, R. [Dipartimento di Fisica ' E.R. Caianiello' , Universita degli Studi di Salerno and CNISM, Unita di ricerca di Salerno, Via S. Allende, 84081 Baronissi (Italy)], E-mail: citro@sa.infn.it; Cojocaru, S.; Marinaro, M. [Dipartimento di Fisica ' E.R. Caianiello' , Universita degli Studi di Salerno and CNISM, Unita di ricerca di Salerno, Via S. Allende, 84081 Baronissi (Italy)

    2007-09-01

    We study the Hubbard-Holstein model in the strong coupling regime and discuss the role of electron-electron correlations, doping and phonon frequency (isotope substitution) on the effective electron-phonon coupling. A comparison with recent dynamical mean field (DMF) studies and connection with recent experimental findings in cuprate superconductors is also discussed.

  19. Electron correlations observed through intensity interferometry: study of model initial state wave functions

    Energy Technology Data Exchange (ETDEWEB)

    Feuerstein, B.; Moshammer, R.; Ullrich, J. [Freiburg Univ. (Germany); Schulz, M

    2001-07-01

    Recently, a new method of analysing electron correlations based on intensity interferometry has been applied to double ionization of He and Ne by fast ion impact [1]. The data reveal sensitively correlation effects while they appear to be very insensitive to the collision dynamics. In order to analyse the role of the initial state electron correlation a statistically defined correlation function based on intensity interferometry was calculated for the ground state of He. In a comparative study of model wave functions we demonstrate that correlation can be considered from a statistical point of view which offers a new tool to study correlation effects in many-particle systems. (orig.)

  20. Electron Correlations Observed Through Intensity Interferometry: Study of Model Initial State Wave Functions

    Science.gov (United States)

    Feuerstein, B.; Schulz, M.; Moshammer, R.; Ullrich, J.

    Recently, a new method of analysing electron correlations based on intensity interferometry has been applied to double ionization of He and Ne by fast ion impact [1]. The data reveal sensitively correlation effects while they appear to be very insensitive to the collision dynamics. In order to analyse the role of the initial state electron correlation a statistically defined correlation function based on intensity interferometry was calculated for the ground state of He. In a comparative study of model wave functions we demonstrate that correlation can be considered from a statistical point of view which offers a new tool to study correlation effects in many-particle systems.

  1. Electronic density of states of amorphous Si and Ge: Application of a molecular-liquid model

    Science.gov (United States)

    Halder, N. C.

    1980-01-01

    The electronic structures of a-Si and a-Ge have been investigated by introducing the molecular-liquid model (MLM). The theoretical structure factors have been expressed in terms of three simple parameters-nearest-neighbor distance, packing density, and coordination number. For the electronic density of states (EDS), nonlocal energy-dependent pseudopotentials have been considered to second order in perturbation theory. When compared with the experimental structure factors, the MLM structure factors agree well for the momentum transfer in the region of 0agreement with recent theoretical and experimental results.

  2. Modeling Single-Phase and Boiling Liquid Jet Impingement Cooling in Power Electronics

    Energy Technology Data Exchange (ETDEWEB)

    Narumanchi, S. V. J.; Hassani, V.; Bharathan, D.

    2005-12-01

    Jet impingement has been an attractive cooling option in a number of industries over the past few decades. Over the past 15 years, jet impingement has been explored as a cooling option in microelectronics. Recently, interest has been expressed by the automotive industry in exploring jet impingement for cooling power electronics components. This technical report explores, from a modeling perspective, both single-phase and boiling jet impingement cooling in power electronics, primarily from a heat transfer viewpoint. The discussion is from the viewpoint of the cooling of IGBTs (insulated-gate bipolar transistors), which are found in hybrid automobile inverters.

  3. Water quality modelling in the San Antonio River Basin driven by radar rainfall data

    Directory of Open Access Journals (Sweden)

    Almoutaz Elhassan

    2016-05-01

    Full Text Available Continuous monitoring of stream water quality is needed as it has significant impacts on human and ecological health and well-being. Estimating water quality between sampling dates requires model simulation based on the available geospatial and water quality data for a given watershed. Models such as the Soil and Water Assessment Tool (SWAT can be used to estimate the missing water quality data. In this study, SWAT was used to estimate water quality at a monitoring station near the outlet of the San Antonio River. Precipitation data from both rain gauges and weather radar were used to force the SWAT simulations. Virtual rain gauges which were based on weather radar data were created in the approximate centres of the 163 sub-watersheds of the San Antonio River Basin for SWAT simulations. This method was first tested in a smaller watershed in the middle of the Guadalupe River Basin resulting in increased model efficiency in simulating surface run-off. The method was then applied to the San Antonio River watershed and yielded good simulations for surface run-off (R2 = 0.7, nitrate (R2 = 0.6 and phosphate (R2 = 0.5 at the watershed outlet (Goliad, TX – USGS (United States Geological Survey gauge as compared to observed data. The study showed that the proper use of weather radar precipitation in SWAT model simulations improves the estimation of missing water quality data.

  4. 3D Modeling Activity for Novel High Power Electron Guns at SLAC

    CERN Document Server

    Krasnykh, Anatoly K

    2003-01-01

    The next generation of powerful electronic devices requires new approaches to overcome the known limitations of existing tube technology. Multi-beam and sheet beam approaches are novel concepts for the high power microwave devices. Direct and indirect modeling methods are being developed at SLAC to meet the new requirements in the 3D modeling. The direct method of solving of Poisson's equations for the multi-beam and sheet beam guns is employed in the TOPAZ 3D tool. The combination of TOPAZ 2D and EGUN (in the beginning) with MAFIA 3D and MAGIC 3D (at the end) is used in an indirect method to model the high power electron guns. Both methods complement each other to get reliable representation of the beam trajectories. Several gun ideas are under consideration at the present time. The collected results of these simulations are discussed.

  5. Optical modeling of plasma-deposited ZnO films: Electron scattering at different length scales

    Energy Technology Data Exchange (ETDEWEB)

    Knoops, Harm C. M., E-mail: H.C.M.Knoops@tue.nl; Loo, Bas W. H. van de; Smit, Sjoerd; Ponomarev, Mikhail V.; Weber, Jan-Willem; Sharma, Kashish [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Kessels, Wilhelmus M. M.; Creatore, Mariadriana, E-mail: M.Creatore@tue.nl [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands and Solliance, High Tech Campus 5, 5656 AE Eindhoven (Netherlands)

    2015-03-15

    In this work, an optical modeling study on electron scattering mechanisms in plasma-deposited ZnO layers is presented. Because various applications of ZnO films pose a limit on the electron carrier density due to its effect on the film transmittance, higher electron mobility values are generally preferred instead. Hence, insights into the electron scattering contributions affecting the carrier mobility are required. In optical models, the Drude oscillator is adopted to represent the free-electron contribution and the obtained optical mobility can be then correlated with the macroscopic material properties. However, the influence of scattering phenomena on the optical mobility depends on the considered range of photon energy. For example, the grain-boundary scattering is generally not probed by means of optical measurements and the ionized-impurity scattering contribution decreases toward higher photon energies. To understand this frequency dependence and quantify contributions from different scattering phenomena to the mobility, several case studies were analyzed in this work by means of spectroscopic ellipsometry and Fourier transform infrared (IR) spectroscopy. The obtained electrical parameters were compared to the results inferred by Hall measurements. For intrinsic ZnO (i-ZnO), the in-grain mobility was obtained by fitting reflection data with a normal Drude model in the IR range. For Al-doped ZnO (Al:ZnO), besides a normal Drude fit in the IR range, an Extended Drude fit in the UV-vis range could be used to obtain the in-grain mobility. Scattering mechanisms for a thickness series of Al:ZnO films were discerned using the more intuitive parameter “scattering frequency” instead of the parameter “mobility”. The interaction distance concept was introduced to give a physical interpretation to the frequency dependence of the scattering frequency. This physical interpretation furthermore allows the prediction of which Drude models can be used in a specific

  6. Development of a model electronic Hamiltonian for understanding electronic relaxation dynamics of [Fe(bpy){sub 3}]{sup 2+} through molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Iuchi, Satoru; Koga, Nobuaki [Graduate School of Information Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601 (Japan)

    2015-12-31

    A model electronic Hamiltonian of [Fe(bpy){sub 3}]{sup 2+}, which was recently refined for use in molecular dynamics simulations, is reviewed with some additional results. In particular, the quality of the refined model Hamiltonian is examined in terms of the vibrational frequencies and solvation structures of the lowest singlet and quintet states.

  7. The Electronic States of a Double Carbon Vacancy Defect in Pyrene: A Model Study for Graphene

    CERN Document Server

    Machado, Francisco B C; Lischka, Hans

    2016-01-01

    The electronic states occurring in a double vacancy defect for graphene nanoribbons have been calculated in detail based on a pyrene model. Extended ab initio calculations using the MR configuration interaction (MRCI) method have been performed to describe in a balanced way the manifold of electronic states derived from the dangling bonds created by initial removal of two neighboring carbon atoms from the graphene network. In total, this study took into account the characterization of 16 electronic states (eight singlets and eight triplets) considering unrelaxed and relaxed defect structures. The ground state was found to be of 1Ag character with around 50% closed shell character. The geometry optimization process leads to the formation of two five-membered rings in a pentagon octagon pentagon structure. The closed shell character increases thereby to ~70%, the analysis of unpaired density shows only small contributions confirming the chemical stability of that entity. For the unrelaxed structure the first fi...

  8. Model of electronic energy relaxation in the test-particle Monte Carlo method

    Energy Technology Data Exchange (ETDEWEB)

    Roblin, P.; Rosengard, A. [CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. des Procedes d`Enrichissement; Nguyen, T.T. [Compagnie Internationale de Services en Informatique (CISI) - Centre d`Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France)

    1994-12-31

    We previously presented a new test-particle Monte Carlo method (1) (which we call PTMC), an iterative method for solving the Boltzmann equation, and now improved and very well-suited to the collisional steady gas flows. Here, we apply a statistical method, described by Anderson (2), to treat electronic translational energy transfer by a collisional process, to atomic uranium vapor. For our study, only three levels of its multiple energy states are considered: 0,620 cm{sup -1} and an average level grouping upper levels. After presenting two-dimensional results, we apply this model to the evaporation of uranium by electron bombardment and show that the PTMC results, for given initial electronic temperatures, are in good agreement with experimental radial velocity measurements. (author). 12 refs., 1 fig.

  9. Energy deposition model based on electron scattering cross section data from water molecules

    Energy Technology Data Exchange (ETDEWEB)

    Munoz, A; Oiler, J C [Centra de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), Avenida Complutense 22, 28040 Madrid (Spain); Blanco, F [Departamento de Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid, Avenida Complutense s.n., 28040 Madrid (Spain); Gorfinkiel, J D [Department of Physiscs and Astronomy, The Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Limao-Vieira, P [Departamento de Fisica, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Maira-Vidal, A; Borge, M J G; Tengblad, O [Instituto de Estructura de la Materia, Consejo Superior de Investigaciones Cientificas (CSIC), Serrano 113-bis, 28006 Madrid, Spam (Spain); Huerga, C; Tellez, M [Hospital Universitario La Paz, paseo de la Castellana 261, 28046 Madrid (Spain); Garcia, G [Instituto de Matematicas y Fisica Fundamental, Consejo Superior de Investigaciones CientifIcas (CSIC), Serrano 113-bis, 28006 Madrid (Spain)], E-mail: g.garcia@imaff.cfmac.csic.es

    2008-10-01

    A complete set of electrons scattering cross sections by water molecules over a broad energy range, from the me V to the Me V ranges, is presented in this study. These data have been obtained by combining experiments and calculations and cover most relevant processes, both elastic and inelastic, which can take place in the considered energy range. A new Monte Carlo simulation programme has been developed using as input parameter these cross sectional data as well as experimental energy loss spectra. The simulation procedure has been applied to obtain electron tracks and energy deposition plots in water when irradiated by a Ru-106 plaque as those used for brachytherapy of ocular tumours. Finally, the low energy electron tracks provided by the present model have been compared with those obtained with other codes available in the literature.

  10. Substorm-injected protons and electrons and the injection boundary model

    Science.gov (United States)

    Konradi, A.; Semar, C. L.; Fritz, T. A.

    1975-01-01

    Analysis of observations of substorm-associated enhancements of proton and electron fluxes: (1) makes a strong case for the existence of a boundary limiting the regional particle injection associated with substorms, (2) supports the hypothesis that the injection process is almost instantaneous (less than approximately 5 min), and (3) indicates that the injection takes place within a large region extending at least several earth radii tailward of the injection boundary. The injection boundary model is superior to others in that it simultaneously explains: (1) the drift and energy dispersion of substorm-injected protons between 1 and 30 keV, (2) the relative behavior of protons with 81 deg and 27 deg pitch angles, (3) the absence of observed electrons below 30 keV, and (4) the time dispersion of impulsively injected electrons seen outside the plasmapause.

  11. Classification and ordination of understory vegetation using multivariate techniques in the Pinus wallichiana forests of Swat Valley, northern Pakistan

    Science.gov (United States)

    Rahman, Inayat Ur; Khan, Nasrullah; Ali, Kishwar

    2017-04-01

    An understory vegetation survey of the Pinus wallichiana-dominated temperate forests of Swat District was carried out to inspect the structure, composition and ecological associations of the forest vegetation. A quadrat method of sampling was used to record the floristic and phytosociological data necessary for the analysis using 300 quadrats of 10 × 10 m each. Some vegetation parameters viz. frequency and density for trees (overstory vegetation) as well as for the understory vegetation were recorded. The results revealed that in total, 92 species belonging to 77 different genera and 45 families existed in the area. The largest families were Asteraceae, Rosaceae and Lamiaceae with 12, ten and nine species, respectively. Ward's agglomerative cluster analysis for tree species resulted in three floristically and ecologically distinct community types along different topographic and soil variables. Importance value indices (IVI) were also calculated for understory vegetation and were subjected to ordination techniques, i.e. canonical correspondence analysis (CCA) and detrended correspondence analysis (DCA). DCA bi-plots for stands show that most of the stands were scattered around the centre of the DCA bi-plot, identified by two slightly scattered clusters. DCA for species bi-plot clearly identified three clusters of species revealing three types of understory communities in the study area. Results of the CCA were somewhat different from the DCA showing the impact of environmental variables on the understory species. CCA results reveal that three environmental variables, i.e. altitude, slope and P (mg/kg), have a strong influence on distribution of stands and species. Impact of tree species on the understory vegetation was also tested by CCA which showed that four tree species, i.e. P. wallichiana A.B. Jackson, Juglans regia Linn., Quercus dilatata Lindl. ex Royle and Cedrus deodara (Roxb. ex Lamb.) G. Don, have strong influences on associated understory vegetation. It

  12. Determination of the Electron Density and Electron Temperature in A Magnetron Discharge Plasma Using Optical Spectroscopy and the Collisional-Radiative Model of Argon

    Science.gov (United States)

    Evdokimov, K. E.; Konishchev, M. E.; Pichugin, V. F.; Pustovalova, A. A.; Ivanova, N. M.; Sun', Ch.

    2017-09-01

    A method for determining the electron temperature and electron density in a plasma is proposed that is based on minimization of the difference between the experimental relative intensities of the spectral argon (Ar) lines and those same intensities calculated with the aid of the collisional-radiative model. The model describes the kinetics of the ground state and 40 excited states of the Ar atom and takes into account the following processes: excitation and deactivation of the states of the atom by electron impact, radiative decay of the excited states, self-absorption of radiation, ionization of excited states by electron impact, and quenching of metastable states as a consequence of collisions with the chamber walls. Using the given method, we have investigated the plasma of a magnetron discharge on a laboratory setup for intermediate-frequency magnetron sputtering for a few selected operating regimes.

  13. Modelling coronal electron density and temperature profiles based on solar magnetic field observations

    Science.gov (United States)

    Rodríguez Gómez, J. M.; Antunes Vieira, L. E.; Dal Lago, A.; Palacios, J.; Balmaceda, L. A.; Stekel, T.

    2017-10-01

    The density and temperature profiles in the solar corona are complex to describe, the observational diagnostics is not easy. Here we present a physics-based model to reconstruct the evolution of the electron density and temperature in the solar corona based on the configuration of the magnetic field imprinted on the solar surface. The structure of the coronal magnetic field is estimated from Potential Field Source Surface (PFSS) based on magnetic field from both observational synoptic charts and a magnetic flux transport model. We use an emission model based on the ionization equilibrium and coronal abundances from CHIANTI atomic database 8.0. The preliminary results are discussed in details.

  14. Frequency Domain Modeling and Simulation of DC Power Electronic Systems Using Harmonic State Space Method

    DEFF Research Database (Denmark)

    Kwon, Jun Bum; Wang, Xiongfei; Blaabjerg, Frede

    2017-01-01

    . Through this method, the required computation time and CPU memory can be reduced, where this faster simulation can be an advantage of a large network simulation. Besides, the achieved results show the same results as the non-linear time-domain simulation. Furthermore, the HSS modeling can describe how...... with different switching frequency or harmonics from ac-dc converters makes that harmonics and frequency coupling are both problems of ac system and challenges of dc system. This paper presents a modeling and simulation method for a large dc power electronic system by using Harmonic State Space (HSS) modeling...

  15. A kinetic model for the transport of electrons in a graphene layer

    Energy Technology Data Exchange (ETDEWEB)

    Fermanian Kammerer, Clotilde, E-mail: Clotilde.Fermanian@u-pec.fr [Laboratoire d' Analyse et de Mathématiques Appliquées, Université Paris Est and CNRS, 61, avenue du Général de Gaulle, 94010 Créteil Cedex (France); Méhats, Florian, E-mail: florian.mehats@univ-rennes1.fr [Institut de Recherche Mathématique de Rennes, IPSO Inria team, Université Rennes 1 and CNRS, Campus de Beaulieu, 35042 Rennes cedex (France)

    2016-12-15

    In this article, we propose a new numerical scheme for the computation of the transport of electrons in a graphene device. The underlying quantum model for graphene is a massless Dirac equation, whose eigenvalues display a conical singularity responsible for non-adiabatic transitions between the two modes. We first derive a kinetic model which takes the form of two Boltzmann equations coupled by a collision operator modeling the non-adiabatic transitions. This collision term includes a Landau–Zener transfer term and a jump operator whose presence is essential in order to ensure a good energy conservation during the transitions. We propose an algorithmic realization of the semi-group solving the kinetic model, by a particle method. We give analytic justification of the model and propose a series of numerical experiments studying the influences of the various sources of errors between the quantum and the kinetic models.

  16. Simple Model of a Capacitive Discharge with a Bi-Maxwellian Electron Distribution

    Science.gov (United States)

    Haas, F. A.; Braithwaite, N. St. J.

    1999-10-01

    Particle and energy conservation equations are used to establish a simple model of a capacitive discharge with a bi-Maxwellian distribution. Denoting the properties of the hot and cold distributions by T_h, nh and T_c, n_c, and given Th >> T_c,and nc >> n_h, then the Bohm velocity is essentially due to T_c. The cold electrons satisfy the Boltzmann distribution and follow the Godyak and Maximov^(1) prescription for the ratio of electron density at the boundary to the centre. Neglecting ohmic heating the hot electrons are stochastically heated and lose energy to the electrodes. Tc is maintained by Coulomb collisions with the hot electrons, and energy loss to the sheaths. The latter is not to the electrodes but through stochastic heating of cold electrons which join the hot distribution. Together with particle conservation, there are three equations for T_h, T_c, n_h. Prescribing nc and comparing with data from a 100 mTorr argon plasma, Th and nh are in good agreement, while Tc agrees to considerably better than a factor of two. (1) Godyak, V.A., Soviet Radio Frequency Discharge Research, Delphic Associates, Falls Church, VA (1986).

  17. Development of a prediction model on the acceptance of electronic laboratory notebooks in academic environments.

    Science.gov (United States)

    Kloeckner, Frederik; Farkas, Robert; Franken, Tobias; Schmitz-Rode, Thomas

    2014-04-01

    Documentation of research data plays a key role in the biomedical engineering innovation processes. It makes an important contribution to the protection of intellectual property, the traceability of results and fulfilling the regulatory requirement. Because of the increasing digitalization in laboratories, an electronic alternative to the commonly-used paper-bound notebooks could contribute to the production of sophisticated documentation. However, compared to in an industrial environment, the use of electronic laboratory notebooks is not widespread in academic laboratories. Little is known about the acceptance of an electronic documentation system and the underlying reasons for this. Thus, this paper aims to establish a prediction model on the potential preference and acceptance of scientists either for paper-based or electronic documentation. The underlying data for the analysis originate from an online survey of 101 scientists in industrial, academic and clinical environments. Various parameters were analyzed to identify crucial factors for the system preference using binary logistic regression. The analysis showed significant dependency between the documentation system preference and the supposed workload associated with the documentation system (p<0.006; odds ratio=58.543) and an additional personal component. Because of the dependency of system choice on specific parameters it is possible to predict the acceptance of an electronic laboratory notebook before implementation.

  18. Modeling and simulation of low-energy electron scattering in organic and inorganic EUV photoresists

    Science.gov (United States)

    Vaglio Pret, Alessandro; Graves, Trey; Blankenship, David; Biafore, John J.

    2017-03-01

    Alternative photoresist platforms are being developed with the goal of meeting Resolution, Roughness and Sensitivity requirements for EUV lithography. Metal-based materials appear promising due to the high etch resistance, high absorption, and high resolution. However, the exposure mechanism of these materials is quite different from that of organic chemically amplified resists. The current electron-scattering model built into PROLITHTM X6.0 allows a direct comparison of the exposure mechanisms for different resist platforms: in particular, it is now possible to estimate the intrinsic resist uncertainty by evaluating electron, acid shot noise and spatial blurring, while forcing the photon shot noise contribution to zero. A comparison between organic resists and metal-based platforms reveals how the denser nature of the latter help containing the electron scattering in a much closer radius around the absorption event. The consequent electron-reaction (acid generation for photo-active-generator-containing organic materials, ligand dissociation for the metal-oxides) reflects the electron shot noise of the different platforms. The higher absorption combined with lower blur of the metaloxide materials seem to become of crucial importance for the 5 nm technology node and beyond.

  19. Gaussian Mixture Density based Analytical Model of Noise Induced Variation in Key Parameter of Electronically Tunable Device

    Directory of Open Access Journals (Sweden)

    Rawid Banchuin

    2015-03-01

    Full Text Available In this research, the Gaussian mixture density based analytical model of variation in key parameter of electronically tunable device has been originally proposed. The proposed model is applicable to any electronically tunable device with its tuning variable has been affected by any kind of noise with arbitrary parameters. It has been found from the verification by using different electronically tunable device based empirical distributions and the Kolmogorov-Smirnov tests that this novel model is very accurate. So, it has been found to be a convenient mathematical tool for the analysis and design of various electronically tunable device based circuits.

  20. Modelling electron distributions within ESA's Gaia satellite CCD pixels to mitigate radiation damage

    Science.gov (United States)

    Seabroke, G. M.; Holland, A. D.; Burt, D.; Robbins, M. S.

    2009-08-01

    The Gaia satellite is a high-precision astrometry, photometry and spectroscopic ESA cornerstone mission, currently scheduled for launch in 2012. Its primary science drivers are the composition, formation and evolution of the Galaxy. Gaia will achieve its unprecedented positional accuracy requirements with detailed calibration and correction for radiation damage. At L2, protons cause displacement damage in the silicon of CCDs. The resulting traps capture and emit electrons from passing charge packets in the CCD pixel, distorting the image PSF and biasing its centroid. Microscopic models of Gaia's CCDs are being developed to simulate this effect. The key to calculating the probability of an electron being captured by a trap is the 3D electron density within each CCD pixel. However, this has not been physically modelled for the Gaia CCD pixels. In Seabroke, Holland & Cropper (2008), the first paper of this series, we motivated the need for such specialised 3D device modelling and outlined how its future results will fit into Gaia's overall radiation calibration strategy. In this paper, the second of the series, we present our first results using Silvaco's physics-based, engineering software: the ATLAS device simulation framework. Inputting a doping profile, pixel geometry and materials into ATLAS and comparing the results to other simulations reveals that ATLAS has a free parameter, fixed oxide charge, that needs to be calibrated. ATLAS is successfully benchmarked against other simulations and measurements of a test device, identifying how to use it to model Gaia pixels and highlighting the affect of different doping approximations.

  1. Electron Beam Melting and Refining of Metals: Computational Modeling and Optimization

    Directory of Open Access Journals (Sweden)

    Veliko Donchev

    2013-10-01

    Full Text Available Computational modeling offers an opportunity for a better understanding and investigation of thermal transfer mechanisms. It can be used for the optimization of the electron beam melting process and for obtaining new materials with improved characteristics that have many applications in the power industry, medicine, instrument engineering, electronics, etc. A time-dependent 3D axis-symmetrical heat model for simulation of thermal transfer in metal ingots solidified in a water-cooled crucible at electron beam melting and refining (EBMR is developed. The model predicts the change in the temperature field in the casting ingot during the interaction of the beam with the material. A modified Pismen-Rekford numerical scheme to discretize the analytical model is developed. These equation systems, describing the thermal processes and main characteristics of the developed numerical method, are presented. In order to optimize the technological regimes, different criteria for better refinement and obtaining dendrite crystal structures are proposed. Analytical problems of mathematical optimization are formulated, discretized and heuristically solved by cluster methods. Using important for the practice simulation results, suggestions can be made for EBMR technology optimization. The proposed tool is important and useful for studying, control, optimization of EBMR process parameters and improving of the quality of the newly produced materials.

  2. Modeling and theoretical study of electronic anti-Stokes Raman scattering in quantum cascade lasers

    Science.gov (United States)

    Yousefvand, Hossein Reza

    2017-04-01

    This paper presents a self-consistent model for studying the electronic anti-Stokes (AS) Raman scattering in quantum cascade lasers (QCLs). The model is developed by employing a five-level rate-equation for the carrier dynamics in whole of the device and a two-level energy balance equations to adopt the electron-temperature in the pump and AS active regions. Using the presented model, the effect of temperature on the steady and transient characteristics of the device is investigated. Because of considering the parametric interaction between the incident and the scattered lights in the stimulated Raman process, the model accurately predicts the existence of Raman gain's saturation in both the steady and transient regimes. Additionally, using a steady-state analysis of the rate equations in the nonlinear region, an expression for the threshold current of the AS Raman laser is derived and the effects of pump power and temperature are examined. It is found that the electronic AS Raman scattering is affected by interplay between the various temperature-dependent parameters such as the pump intensity, the intrinsic gain of the nonlinear optical medium, and the longitudinal optical (LO) phonon scattering times between the states involved in the stimulated Raman process.

  3. Combination of power electronic models with the two-dimensional finite element analysis of electrical machines

    Science.gov (United States)

    Vaeaenaenen, J.

    1994-04-01

    An analysis method for power electronic drives of electrical machines is presented. The machine is modeled by a two dimensional finite element method which allows the presence of magnetically nonlinear materials and the motion of the rotor. The power electronic device connected to the machine is modeled by a nonlinear circuit model. The field and the circuit equations are coupled together as a system of equations. The power electronic circuit can have a general topology given by a net-list type input file. Specific attention is paid to the numerical stability and efficiency of the combined field-circuit formulation. The computational efficiency and the numerical reliability of the method is investigated with the aid of theoretical cases. According to results, the inclusion of the nonlinear circuit model does not increase the computational costs significantly, provided that the sparsity of the system equations is preserved. The method is tested with three practical examples. The results obtained by the method are compared with the measured ones. The first example is a permanent magnet generator feeding a diode-rectifier. In the second example, a filter circuit is added in parallel with the rectifier. The third example is a cage-induction motor fed by a static frequency converter. The computed results agree well with the measured ones.

  4. Our Electron Model vindicates Schr"odinger's Incomplete Results and Require Restatement of Heisenberg's Uncertainty Principle

    Science.gov (United States)

    McLeod, David; McLeod, Roger

    2008-04-01

    The electron model used in our other joint paper here requires revision of some foundational physics. That electron model followed from comparing the experimentally proved results of human vision models using spatial Fourier transformations, SFTs, of pincushion and Hermann grids. Visual systems detect ``negative'' electric field values for darker so-called ``illusory'' diagonals that are physical consequences of the lens SFT of the Hermann grid, distinguishing this from light ``illusory'' diagonals. This indicates that oppositely directed vectors of the separate illusions are discretely observable, constituting another foundational fault in quantum mechanics, QM. The SFT of human vision is merely the scaled SFT of QM. Reciprocal space results of wavelength and momentum mimic reciprocal relationships between space variable x and spatial frequency variable p, by the experiment mentioned. Nobel laureate physicist von B'ek'esey, physiology of hearing, 1961, performed pressure input Rect x inputs that the brain always reports as truncated Sinc p, showing again that the brain is an adjunct built by sight, preserves sign sense of EMF vectors, and is hard wired as an inverse SFT. These require vindication of Schr"odinger's actual, but incomplete, wave model of the electron as having physical extent over the wave, and question Heisenberg's uncertainty proposal.

  5. Application of two phosphorus models with different complexities in a mesoscale river catchment

    Directory of Open Access Journals (Sweden)

    B. Guse

    2007-06-01

    Full Text Available The water balance and phosphorus inputs of surface waters of the Weiße Elster catchment, Germany, have been quantified using the models GROWA/MEPhos and SWAT. A comparison of the model results shows small differences in the mean long-term total runoff for the entire study area. All relevant pathways of phosphorus transport were considered in MEPhos with phosphorus inputs resulting to about 65% from point sources. SWAT focuses on agricultural areas and estimates a phosphorus input of about 60% through erosion. The mean annual phosphorus input from erosion calculated with SWAT is six times higher than the estimation with MEPhos due to the differing model concepts. This shows the uncertainty contributed by the modelling description of phosphorus pathways.

  6. Model of two-dimensional electron gas formation at ferroelectric interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Aguado-Puente, P.; Bristowe, N. C.; Yin, B.; Shirasawa, R.; Ghosez, Philippe; Littlewood, P. B.; Artacho, Emilio

    2015-07-01

    The formation of a two-dimensional electron gas at oxide interfaces as a consequence of polar discontinuities has generated an enormous amount of activity due to the variety of interesting effects it gives rise to. Here, we study under what circumstances similar processes can also take place underneath ferroelectric thin films. We use a simple Landau model to demonstrate that in the absence of extrinsic screening mechanisms, a monodomain phase can be stabilized in ferroelectric films by means of an electronic reconstruction. Unlike in the LaAlO3/SrTiO3 heterostructure, the emergence with thickness of the free charge at the interface is discontinuous. This prediction is confirmed by performing first-principles simulations of free-standing slabs of PbTiO3. The model is also used to predict the response of the system to an applied electric field, demonstrating that the two-dimensional electron gas can be switched on and off discontinuously and in a nonvolatile fashion. Furthermore, the reversal of the polarization can be used to switch between a two-dimensional electron gas and a two-dimensional hole gas, which should, in principle, have very different transport properties. We discuss the possible formation of polarization domains and how such configuration competes with the spontaneous accumulation of free charge at the interfaces.

  7. Local electronic nematicity in the two-dimensional one-band Hubbard model.

    Science.gov (United States)

    Fang, Kun; Fernando, G W; Kocharian, A N

    2013-05-22

    Nematicity is a well-known property of liquid crystals and has been recently discussed in the context of strongly interacting electrons. An electronic nematic phase has been seen in many experiments in certain strongly correlated materials, in particular, in the pseudogap phase generic to many hole-doped cuprate superconductors. Recent measurements in high Tc superconductors have shown that even if the lattice is perfectly rotationally symmetric, the ground state can still have strongly nematic local properties. Our study of the two-dimensional one-band Hubbard model provides strong support for the recent experimental results on local rotational C4 symmetry breaking. The variational cluster approach is used here to show the possibility of an electronic nematic state and the proximity of the underlying symmetry-breaking ground state within the Hubbard model. We identify this nematic phase in the overdoped region and show that the local nematicity decreases with increasing electron filling. Our results also indicate that strong Coulomb interaction may drive the nematic phase into a phase similar to the stripe structure. The calculated spin (magnetic) correlation function in momentum space shows the effects resulting from real-space nematicity.

  8. Experimental modelling of the dipole magnet for the electron storage ring DELSY

    CERN Document Server

    Meshkov, I N; Syresin, E M

    2003-01-01

    In the Joint Institute for Nuclear Research (Dubna) the project of Dubna Electron Synchrotron (DELSY) with an electron energy of 1.2 GeV is developed. The electron storage ring in the DELSY project is planned to be created on the basis of magnetic elements, which were used earlier in the storage ring AmPS (NIKHEF, Amsterdam). The optics of the ring is necessary to be changed, its perimeter to be reduced approximately in one and a half time, the energy of electrons to be increased. The paper is devoted to the development of a modified dipole magnet of the storage ring. The preliminary estimation of geometry of the magnet pole is carried out by means of computer modelling using two- and three- dimensional codes of the magnetic field calculation SUPERFISH and RADIA. The experimental stand for the measurements of the dipole magnetic field is described. As the result of calculational and experimental modelling for the dipole magnet, the geometry of its poles was estimated, providing in the horizontal aperture +- 3...

  9. Predictive models for pressure ulcers from intensive care unit electronic health records using Bayesian networks.

    Science.gov (United States)

    Kaewprag, Pacharmon; Newton, Cheryl; Vermillion, Brenda; Hyun, Sookyung; Huang, Kun; Machiraju, Raghu

    2017-07-05

    We develop predictive models enabling clinicians to better understand and explore patient clinical data along with risk factors for pressure ulcers in intensive care unit patients from electronic health record data. Identifying accurate risk factors of pressure ulcers is essential to determining appropriate prevention strategies; in this work we examine medication, diagnosis, and traditional Braden pressure ulcer assessment scale measurements as patient features. In order to predict pressure ulcer incidence and better understand the structure of related risk factors, we construct Bayesian networks from patient features. Bayesian network nodes (features) and edges (conditional dependencies) are simplified with statistical network techniques. Upon reviewing a network visualization of our model, our clinician collaborators were able to identify strong relationships between risk factors widely recognized as associated with pressure ulcers. We present a three-stage framework for predictive analysis of patient clinical data: 1) Developing electronic health record feature extraction functions with assistance of clinicians, 2) simplifying features, and 3) building Bayesian network predictive models. We evaluate all combinations of Bayesian network models from different search algorithms, scoring functions, prior structure initializations, and sets of features. From the EHRs of 7,717 ICU patients, we construct Bayesian network predictive models from 86 medication, diagnosis, and Braden scale features. Our model not only identifies known and suspected high PU risk factors, but also substantially increases sensitivity of the prediction - nearly three times higher comparing to logistical regression models - without sacrificing the overall accuracy. We visualize a representative model with which our clinician collaborators identify strong relationships between risk factors widely recognized as associated with pressure ulcers. Given the strong adverse effect of pressure ulcers

  10. Building the atomic model for the bacterial flagellar filament by electron cryomicroscopy and image analysis.

    Science.gov (United States)

    Yonekura, Koji; Maki-Yonekura, Saori; Namba, Keiichi

    2005-03-01

    The bacterial flagellar filament is a helical propeller for bacterial locomotion. It is a well-ordered helical assembly of a single protein, flagellin, and its tubular structure is formed by 11 protofilaments, each in either of the two distinct conformations, L- and R-type, for supercoiling. We have been studying the three-dimensional structures of the flagellar filaments by electron cryomicroscopy and recently obtained a density map of the R-type filament up to 4 angstroms resolution from an image data set containing only about 41,000 molecular images. The density map showed the features of the alpha-helical backbone and some large side chains, which allowed us to build the complete atomic model as one of the first atomic models of macromolecules obtained solely by electron microscopy image analysis (Yonekura et al., 2003a). We briefly review the structure and the structure analysis, and point out essential techniques that have made this analysis possible.

  11. Modeling of a planar FEL amplifier with a sheet relativistic electron beam

    CERN Document Server

    Ginzburg, N S; Peskov, N Yu; Arzhannikov, A V; Sinitsky, S L

    2002-01-01

    The paper is devoted to the modeling of a 75 GHz planar FEL-amplifier. This amplifier is driven by a sheet electron beam (1 MeV, 2 kA) produced by the U-3 accelerator (BINP). Different approaches based on non-averaged self-consistent system of equations as well as the averaged equations were used for the description of interaction between the electron beam and the TEM-mode of the planar waveguide. Both methods demonstrated similar results with maximum gains 24-25 db, corresponding to an output power of about 250-300 MW and an efficiency of 14-17%. The 2-D version of the PIC-code KARAT was used for additional modeling. KARAT-based simulations demonstrated a maximum gain up to 22 db, output power 160-170 MW and an efficiency of 9%. The reduction of gain can be explained by the space-charge effects.

  12. Numerical study of electron beam welded butt joints with the GTN model

    Science.gov (United States)

    Tu, Haoyun; Schmauder, Siegfried; Weber, Ulrich

    2012-08-01

    The fracture behavior of S355NL electron beam welded steel joints is investigated experimentally and numerically. The simulation of crack propagation in an electron beam welded steel joint was performed with the Gurson-Tvergaard-Needleman (GTN) damage model. A parameter study of the GTN model was adopted which reveals the influence of parameters on the material behavior of notched round and compact tension specimens. Based on the combined method of metallographic investigations and numerical calibration, the GTN parameters were fixed. The same parameters were used to predict the ductile fracture of compact tension specimens with the initial crack located at different locations. Good match can be found between the numerical and experimental results in the form of force versus Crack Opening Displacement as well as fracture resistance curves.

  13. Modelling of the electron density height profiles in the mid-latitude ionospheric D-region

    Directory of Open Access Journals (Sweden)

    P. Y. Mukhtarov

    1996-06-01

    Full Text Available A new mid-latitude D-region (50-105 km model of the electron density is presented obtained on the basis of a full wave theory and by a trial-and-error inversion method. Daytime (at different solar zenith angles absorption measurements by A3-technique made in Bulgaria yielded data with the aid of which the seasonal and diurnal courses of the Ne(h-profiles were derived. Special attention is drawn to the event diurnal asymmetry, or uneven formation of the ionosphere as a function of insulation. The latter is probably connected with the influence of the diurnal fluctuations in the local temperature on the chemistry involved in the electron loss rate, as well as the diurnal variations of the main ionizing agent (NO in the D-region. That is why the Ne(h-profiles in the midlatitude D-region are modelled separately for morning and afternoon hours.

  14. Analytical, steady-state model of gain saturation in channel electron multipliers

    CERN Document Server

    Giudicotti, L

    2002-01-01

    By using the transmission line modeling (TLM) technique we derive a simple model describing the saturation of the gain in channel electron multipliers and show that it generalizes and extends a previous steady-state model due to Shikhaliev. Then by introducing a physically consistent rational approximation of the non-linear gain equation we derive an exact, steady-state, analytical solution in which, contrary to other empirical assumptions about the functional dependence of the internal voltage are not required. The model is then used to simulate a multianode microchannel plate (MCP) photomultiplier, showing that the computed gain in saturated conditions is qualitatively in agreement with published experimental data. Finally, we discuss the general validity of our model, we suggest possible measurements and comment existing data relevant for its validation.

  15. Photon and electron absorbed fractions calculated from a new tomographic rat model

    Energy Technology Data Exchange (ETDEWEB)

    Peixoto, P H R [Departamento de Energia Nuclear, Universidade Federal de Pernambuco, Av. Prof. Luiz Freire 1000, Cidade Universitaria, CEP 50740-540, Recife, PE (Brazil); Vieira, J W [Centro Federal de Educacao Tecnologica de Pernambuco, Recife, PE (Brazil); Yoriyaz, H [Instituto de Pesquisas Energeticas e Nucleares, Sao Paulo, SP (Brazil); Lima, F R A [Centro Regional de Ciencias Nucleares-CNEN, Recife, PE (Brazil)], E-mail: phrpeixoto@yahoo.com.br

    2008-10-07

    This paper describes the development of a tomographic model of a rat developed using CT images of an adult male Wistar rat for radiation transport studies. It also presents calculations of absorbed fractions (AFs) under internal photon and electron sources using this rat model and the Monte Carlo code MCNP. All data related to the developed phantom were made available for the scientific community as well as the MCNP inputs prepared for AF calculations in that phantom and also all estimated AF values, which could be used to obtain absorbed dose estimates-following the MIRD methodology-in rats similar in size to the presently developed model. Comparison between the rat model developed in this study and that published by Stabin et al (2006 J. Nucl. Med. 47 655) for a 248 g Sprague-Dawley rat, as well as between the estimated AF values for both models, has been presented.

  16. A probabilistic model of the electron transport in films of nanocrystals arranged in a cubic lattice

    Energy Technology Data Exchange (ETDEWEB)

    Kriegel, Ilka [Department of Nanochemistry, Istituto Italiano di Tecnologia (IIT), via Morego, 30, 16163 Genova (Italy); Scotognella, Francesco, E-mail: francesco.scotognella@polimi.it [Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Center for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, Via Giovanni Pascoli, 70/3, 20133 Milan (Italy)

    2016-08-01

    The fabrication of nanocrystal (NC) films, starting from colloidal dispersion, is a very attractive topic in condensed matter physics community. NC films can be employed for transistors, light emitting diodes, lasers, and solar cells. For this reason the understanding of the film conductivity is of major importance. In this paper we describe a probabilistic model that allows the prediction of the conductivity of NC films, in this case of a cubic lattice of Lead Selenide or Cadmium Selenide NCs. The model is based on the hopping probability between NCs. The results are compared to experimental data reported in literature. - Highlights: • Colloidal nanocrystal (NC) film conductivity is a topic of major importance. • We present a probabilistic model to predict the electron conductivity in NC films. • The model is based on the hopping probability between NCs. • We found a good agreement between the model and data reported in literature.

  17. An analytical model of strain isolation for stretchable and flexible electronics

    Science.gov (United States)

    Cheng, H.; Wu, J.; Li, M.; Kim, D.-H.; Kim, Y.-S.; Huang, Y.; Kang, Z.; Hwang, K. C.; Rogers, J. A.

    2011-02-01

    One important aspect of stretchable electronics design is to shield the active devices from strains through insertion of a soft layer between devices and substrate. An analytical model is established, which gives linear dependence of strain isolation on the reciprocal of strain-isolation layer thickness, and the reciprocal of device and substrate stiffness. Strain isolation is also linearly proportional to the shear modulus of strain-isolation layer and square of device length.

  18. Modelling, Analysis, and Control Aspects of a Rotating Power Electronic Brushless Doubly-Fed Induction Generator

    OpenAIRE

    Malik, Naveed ur Rehman

    2015-01-01

    This thesis deals with the modeling, analysis and control of a novel brushlessgenerator for wind power application. The generator is named as rotatingpower electronic brushless doubly-fed induction machine/generator (RPEBDFIM/G). A great advantage of the RPE-BDFIG is that the slip power recoveryis realized in a brushless manner. This is achieved by introducing an additionalmachine termed as exciter together with the rotating power electronicconverters, which are mounted on the shaft of a DFIG...

  19. Longitudinal response functions for quasielastic electron scattering in relativistic non-linear models

    CERN Document Server

    Caillon, J C

    2002-01-01

    The longitudinal response functions for quasielastic electron scattering on sup 1 sup 2 C, sup 4 sup 0 Ca and sup 5 sup 6 Fe have been calculated in relativistic non-linear models taking into account RPA correlations. For these calculations, a covariant, consistent, calculation of the nuclear matter linear response has been performed. The effect of the non-linear terms on the longitudinal response has been discussed.

  20. New global loss model of energetic and relativistic electrons based on Van Allen Probes measurements

    OpenAIRE

    Ksenia Orlova; Yuri Shprits; Maria Spasojevic

    2016-01-01

    The Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) instrument on the Van Allen Probes provides a vast quantity of fully resolved wave measurements below L = 5.5, a critical region for radiation belt acceleration and loss. EMFISIS data show that plasmaspheric hiss waves can be observed at frequencies as low as 20 Hz and provide three-component magnetic field measurements that can be directly used for electron scattering calculations. Updated models of hiss proper...

  1. Modeling of possible localized electron flux in cosmic rays with Alpha Magnetic Spectrometer measurements

    Science.gov (United States)

    Kwang-Hua, Chu Rainer

    2017-10-01

    Discrete quantum Boltzmann model together with the introduction of an external-field-tuned orientation parameter as well as the acoustic analog are adopted to study the possible localization of electron (fermion) flux in cosmic rays considering the precision measurement with the Alpha Magnetic Spectrometer (AMS) on the International Space Station (ISS). Our approximate results match qualitatively with those data measured with the AMS on the ISS.

  2. Methodology and consistency of slant and vertical assessments for ionospheric electron content models

    Science.gov (United States)

    Hernández-Pajares, Manuel; Roma-Dollase, David; Krankowski, Andrzej; García-Rigo, Alberto; Orús-Pérez, Raül

    2017-12-01

    A summary of the main concepts on global ionospheric map(s) [hereinafter GIM(s)] of vertical total electron content (VTEC), with special emphasis on their assessment, is presented in this paper. It is based on the experience accumulated during almost two decades of collaborative work in the context of the international global navigation satellite systems (GNSS) service (IGS) ionosphere working group. A representative comparison of the two main assessments of ionospheric electron content models (VTEC-altimeter and difference of Slant TEC, based on independent global positioning system data GPS, dSTEC-GPS) is performed. It is based on 26 GPS receivers worldwide distributed and mostly placed on islands, from the last quarter of 2010 to the end of 2016. The consistency between dSTEC-GPS and VTEC-altimeter assessments for one of the most accurate IGS GIMs (the tomographic-kriging GIM `UQRG' computed by UPC) is shown. Typical error RMS values of 2 TECU for VTEC-altimeter and 0.5 TECU for dSTEC-GPS assessments are found. And, as expected by following a simple random model, there is a significant correlation between both RMS and specially relative errors, mainly evident when large enough number of observations per pass is considered. The authors expect that this manuscript will be useful for new analysis contributor centres and in general for the scientific and technical community interested in simple and truly external ways of validating electron content models of the ionosphere.

  3. First assimilations of COSMIC radio occultation data into the Electron Density Assimilative Model (EDAM

    Directory of Open Access Journals (Sweden)

    M. J. Angling

    2008-02-01

    Full Text Available Ground based measurements of slant total electron content (TEC can be assimilated into ionospheric models to produce 3-D representations of ionospheric electron density. The Electron Density Assimilative Model (EDAM has been developed for this purpose. Previous tests using EDAM and ground based data have demonstrated that the information on the vertical structure of the ionosphere is limited in this type of data. The launch of the COSMIC satellite constellation provides the opportunity to use radio occultation data which has more vertical information. EDAM assimilations have been run for three time periods representing quiet, moderate and disturbed geomagnetic conditions. For each run, three data sets have been ingested – only ground based data, only COSMIC data and both ground based and COSMIC data. The results from this preliminary study show that both ground and space based data are capable of improving the representation of the vertical structure of the ionosphere. However, the analysis is limited by the incomplete deployment of the COSMIC constellation and the use of auto-scaled ionosonde data. The first of these can be addressed by repeating this type of study once full deployment has been achieved. The latter requires the manual scaling of ionosonde data; ideally an agreed data set would be scaled and made available to the community to facilitate comparative testing of assimilative models.

  4. Electronic structure of vitamin B12 within the framework of the Haldane-Anderson impurity model

    Science.gov (United States)

    Kandemir, Zafer; Mayda, Selma; Bulut, Nejat

    2015-03-01

    We study the electronic structure of vitamin B12 (cyanocobalamine C63H88CoN14O14P) by using the framework of the multi-orbital single-impurity Haldane-Anderson model of a transition-metal impurity in a semiconductor host. Here, our purpose is to understand the many-body effects originating from the transition-metal impurity. In this approach, the cobalt 3 d orbitals are treated as the impurity states placed in a semiconductor host which consists of the rest of the molecule. The parameters of the resulting effective Haldane-Anderson model are obtained within the Hartree-Fock approximation for the electronic structure of the molecule. The quantum Monte Carlo technique is then used to calculate the one-electron and magnetic correlation functions of this effective Haldane-Anderson model for vitamin B12. We find that new states form inside the semiconductor gap due to the on-site Coulomb interaction at the impurity 3 d orbitals and that these states become the highest occupied molecular orbitals. In addition, we present results on the charge distribution and spin correlations around the Co atom. We compare the results of this approach with those obtained by the density-functional theory calculations.

  5. [The identification of electronic surveying lines on 3-D digital models of dentition defects].

    Science.gov (United States)

    Wu, Lin; Lü, Pei-jun; Wang, Yong; Ai, Hong-jun; Han, Jun

    2009-02-01

    To develop a mathematical algorithm and a software package for the process of electronically surveying a scanned point cloud cast. To provide a principal premise to the subsequent computer aided design and computer aided manufacture (CAD/CAM) of removable partial denture framework, and to provide a method to improve quality control in the dental laboratory. Point cloud data of a partially edentulous cast, a mandibular Kennedy Class II Modification 2 arch, was captured using an optical scanning system with projective grating and high-resolution digital camera. Using commercial CAD/CAM software system (Geomagic Studio 6), this point cloud data was processed and the 3-D digital model of partially edentulous cast was reconstructed. From a suggested surveying angle the contour points of height were identified, and then the digital surveying lines were traced using Projection and Contour Extraction software package. The depth of undercut was measured and defined to determine the clasp termination of retainer. Electronic surveying line of 3-D digital dentition defect model was achieved. Digital surveying line defined the cast into undercut and non-undercut areas. Different virtualized paths of insertion could be automatically suggested when the cast was surveyed and analyzed from different angles. The depth of undercut was automatically measured and the retentive clasp termination was determined. The mathematical algorithm and the software package in this study can be used to survey and analyze 3-D digital models of dentition defects, and to identify an electronic surveying line.

  6. Methodology and consistency of slant and vertical assessments for ionospheric electron content models

    Science.gov (United States)

    Hernández-Pajares, Manuel; Roma-Dollase, David; Krankowski, Andrzej; García-Rigo, Alberto; Orús-Pérez, Raül

    2017-05-01

    A summary of the main concepts on global ionospheric map(s) [hereinafter GIM(s)] of vertical total electron content (VTEC), with special emphasis on their assessment, is presented in this paper. It is based on the experience accumulated during almost two decades of collaborative work in the context of the international global navigation satellite systems (GNSS) service (IGS) ionosphere working group. A representative comparison of the two main assessments of ionospheric electron content models (VTEC-altimeter and difference of Slant TEC, based on independent global positioning system data GPS, dSTEC-GPS) is performed. It is based on 26 GPS receivers worldwide distributed and mostly placed on islands, from the last quarter of 2010 to the end of 2016. The consistency between dSTEC-GPS and VTEC-altimeter assessments for one of the most accurate IGS GIMs (the tomographic-kriging GIM `UQRG' computed by UPC) is shown. Typical error RMS values of 2 TECU for VTEC-altimeter and 0.5 TECU for dSTEC-GPS assessments are found. And, as expected by following a simple random model, there is a significant correlation between both RMS and specially relative errors, mainly evident when large enough number of observations per pass is considered. The authors expect that this manuscript will be useful for new analysis contributor centres and in general for the scientific and technical community interested in simple and truly external ways of validating electron content models of the ionosphere.

  7. Interaction of magnetized electrons with a boundary sheath: investigation of a specular reflection model

    Science.gov (United States)

    Krüger, Dennis; Brinkmann, Ralf Peter

    2017-11-01

    This publication reports analytical and numerical results concerning the interaction of gyrating electrons with a plasma boundary sheath, with focus on partially magnetized technological plasmas. It is assumed that the electron Debye length {λ }{{D}} is much smaller than the electron gyroradius {r}{{L}}, and {r}{{L}} in turn much smaller than the mean free path λ and the gradient length L of the fields. Focusing on the scale of the gyroradius, the sheath is assumed as infinitesimally thin ({λ }{{D}}\\to 0), collisions are neglected (λ \\to ∞ ), the magnetic field is taken as homogeneous, and electric fields (=potential gradients) in the bulk are neglected (L\\to ∞ ). The interaction of an electron with the electric field of the plasma boundary sheath is represented by a specular reflection {v}\\to {v}-2{v}\\cdot {{e}}z {{e}}z of the velocity {v} at the plane z = 0 of a naturally oriented Cartesian coordinate system (x,y,z). The electron trajectory is then given as sequences of helical sections, with the kinetic energy ɛ and the canonical momenta p x and p y conserved, but not the position of the axis (base point {{R}}0), the slope (pitch angle χ), and the phase (gyrophase φ). A ‘virtual interaction’ which directly maps the incoming electrons to the outgoing ones is introduced and studied in dependence of the angle γ between the field and the sheath normal {{e}}z. The corresponding scattering operator is constructed, mathematically characterized, and given as an infinite matrix. An equivalent boundary condition for a transformed kinetic model is derived.

  8. A New Model for Electron Flow for Sulfate Reduction in Desulfovibrio alaskensis G20

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Kimberly L [University of Missouri, Columbia; Rapp-Giles, Barbara J [University of Missouri, Columbia; Semkiw, Elizabeth M. [University of Missouri; Porat, Iris [ORNL; Brown, Steven D [ORNL; Wall, Judy D. [University of Missouri

    2013-01-01

    To understand the energy conversion activities of the anaerobic sulfate-reducing bacteria, it is necessary to identify the components involved in electron flow. The importance of the abundant type I tetraheme cytochrome c3 (TpIc3) as an electron carrier during sulfate respiration was questioned by the previous isolation of a null mutation in the encoding gene, cycA, in Desulfovibrio alaskensis G20. Whereas respiratory growth of the CycA mutant with lactate and sulfate was little affected, growth with pyruvate and sulfate was significantly impaired. We have explored the phenotype of the CycA mutant through physiological tests and transcriptomic and proteomic analyses. Data reported here show that electrons from pyruvate oxidation do not reach adenylyl sulfate reductase, the enzyme catalyzing the first redox reaction during sulfate reduction, in the absence of either CycAor the type I cytochrome c3:menaquinone oxidoreductase, QrcABCD transmembrane complex. In contrast to the wild type, neither CycA and QrcA mutants do not grow with H2 or formate and sulfate as electron acceptor. Transcriptomic and proteomic analyses of the CycA mutant showed that transcripts and enzymes for the pathway from pyruvate to succinate were strongly decreased in the CycA mutant regardless of growth mode. Neither the CycA nor the QrcA mutant grew on fumarate alone, consistent with the omics results and a redox regulation of gene expression. We conclude that TpIc3 and the Qrc complex are essential D. alaskensis components for transfer of electrons released in the periplasm to reach the cytoplasmic adenylyl sulfate reductase and present a model that may explain the CycA phenotype through confurcation of electrons.

  9. New Model for Electron Flow for Sulfate Reduction in Desulfovibrio alaskensis G20

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Kimberly L.; Rapp-Giles, Barbara J.; Semkiw, Elizabeth S.; Porat, Iris; Brown, Steven D.; Wall, Judy D.

    2014-02-01

    To understand the energy conversion activities of the anaerobic sulfate-reducing bacteria, it is necessary to identify the components involved in electron flow. The importance of the abundant type I tetraheme cytochrome c3 (TpIc3) as an electron carrier during sulfate respiration was questioned by the previous isolation of a null mutation in the gene encoding TpIc3, cycA, in Desulfovibrio alaskensis G20. Whereas respiratory growth of the CycA mutant with lactate and sulfate was little affected, growth with pyruvate and sulfate was significantly impaired. We have explored the phenotype of the CycA mutant through physiological tests and transcriptomic and proteomic analyses. Data reported here show that electrons from pyruvate oxidation do not reach adenylyl sulfate reductase, the enzyme catalyzing the first redox reaction during sulfate reduction, in the absence of either CycA or the type I cytochrome c3:menaquinone oxidoreductase transmembrane complex, QrcABCD. In contrast to the wild type, the CycA and QrcA mutants did not grow with H2 or formate and sulfate as the electron acceptor. Transcriptomic and proteomic analyses of the CycA mutant showed that transcripts and enzymes for the pathway from pyruvate to succinate were strongly decreased in the CycA mutant regardless of the growth mode. Neither the CycA nor the QrcA mutant grew on fumarate alone, consistent with the omics results and a redox regulation of gene expression. We conclude that TpIc3 and the Qrc complex are D. alaskensis components essential for the transfer of electrons released in the periplasm to reach the cytoplasmic adenylyl sulfate reductase and present a model that may explain the CycA phenotype through confurcation of electrons.

  10. New Model for Electron Flow for Sulfate Reduction in Desulfovibrio alaskensis G20

    Energy Technology Data Exchange (ETDEWEB)

    Rapp-Giles, Barbara J [University of Missouri, Columbia; Keller, Kimberly L [University of Missouri, Columbia; Porat, Iris [ORNL; Brown, Steven D [ORNL; Semkiw, Elizabeth M. [University of Missouri; Wall, Judy D. [University of Missouri

    2014-01-01

    To understand the energy conversion activities of the anaerobic sulfate-reducing bacteria, it is necessary to identify the components involved in electron flow. The importance of the abundant type I tetraheme cytochrome c3 (TpIc3) as an electron carrier during sulfate respiration was questioned by the previous isolation of a null mutation in the gene encoding TpIc3, cycA, in Desulfovibrio alaskensis G20. Whereas respiratory growth of the CycA mutant with lactate and sulfate was little affected, growth with pyruvate and sulfate was significantly impaired. We have explored the phenotype of the CycA mutant through physiological tests and transcriptomic and proteomic analyses. Data reported here show that electrons from pyruvate oxidation do not reach adenylyl sulfate reductase, the enzyme catalyzing the first redox reaction during sulfate reduction, in the absence of either CycA or the type I cytochrome c3:menaquinone oxidoreductase transmembrane complex, QrcABCD. In contrast to the wild type, the CycA and QrcA mutants did not grow with H2 or formate and sulfate as the electron acceptor. Transcriptomic and proteomic analyses of the CycA mutant showed that transcripts and enzymes for the pathway from pyruvate to succinate were strongly decreased in the CycA mutant regardless of the growth mode. Neither the CycA nor the QrcA mutant grew on fumarate alone, consistent with the omics results and a redox regulation of gene expression. We conclude that TpIc3 and the Qrc complex are D. alaskensis components essential for the transfer of electrons released in the periplasm to reach the cytoplasmic adenylyl sulfate reductase and present a model that may explain the CycA phenotype through confurcation of electrons.

  11. Electron Paramagnetic Resonance Spectroscopy of Photosynthetic Systems and Inorganic Model Complexes.

    Science.gov (United States)

    Dexheimer, Susan Lynne

    1990-01-01

    This thesis discusses the application of parallel polarization electron paramagnetic resonance (EPR) spectroscopy, a technique sensitive to formally forbidden transitions in high spin states, to the study of the electronic structure of photosynthetic electron transfer centers and related inorganic model complexes. The theoretical basis for the origin of the parallel polarization transitions and the interpretation of the resulting spectra is presented, and experimental aspects of the detection of parallel polarization transitions are discussed. Parallel polarization EPR was used to study inorganic complexes of trivalent manganese that serve as models for the spectroscopic properties of biological electron transfer centers. X-band EPR spectra were detected from non-Kramers spin states of these complexes. EPR spectra of the S = 2 ground states of the mononuclear complexes Mn(III) tris -acetylacetonate and Mn(III) tris-picolinate and a low-lying excited state of the weakly antiferromagnetically coupled binuclear complex Mn_2(III,III) O(O_2CCH_3) _2 (HB(pz)_3) _2 (HB(pz)_3 = hydrotris(1-pyrazolyl)borate) are discussed. The spectra are interpreted using numerical simulations. Application of parallel polarization EPR to photosyntheic systems led to the detection of a new paramagnetic intermediate associated with photosynthetic water oxidation. The parallel polarization EPR signal is assigned to an S = 1 spin state of an exchange-coupled manganese center in the resting (S_1) state of the photosynthetic oxygen-evolving complex. The properties of the S _1 state parallel polarization EPR signal indicate that it corresponds to the reduced form of the species that gives rise to the previously established multiline conventional EPR signal in the light-induced S _2 state, and the behavior of the signal upon advancement to the S_2 state demonstrates the presence of two separate redox-active centers in the oxygen-evolving complex. The implications for the electronic structure of

  12. Model of e-learning with electronic educational resources of new generation

    Directory of Open Access Journals (Sweden)

    A. V. Loban

    2017-01-01

    Full Text Available Purpose of the article: improving of scientific and methodical base of the theory of the е-learning of variability. Methods used: conceptual and logical modeling of the е-learning of variability process with electronic educational resource of new generation and system analysis of the interconnection of the studied subject area, methods, didactics approaches and information and communication technologies means. Results: the formalization complex model of the е-learning of variability with electronic educational resource of new generation is developed, conditionally decomposed into three basic components: the formalization model of the course in the form of the thesaurusclassifier (“Author of e-resource”, the model of learning as management (“Coordination. Consultation. Control”, the learning model with the thesaurus-classifier (“Student”. Model “Author of e-resource” allows the student to achieve completeness, high degree of didactic elaboration and structuring of the studied material in triples of variants: modules of education information, practical task and control tasks; the result of the student’s (author’s of e-resource activity is the thesaurus-classifier. Model of learning as management is based on the principle of personal orientation of learning in computer environment and determines the logic of interaction between the lecturer and the student when determining the triple of variants individually for each student; organization of a dialogue between the lecturer and the student for consulting purposes; personal control of the student’s success (report generation and iterative search for the concept of the class assignment in the thesaurus-classifier before acquiring the required level of training. Model “Student” makes it possible to concretize the learning tasks in relation to the personality of the student and to the training level achieved; the assumption of the lecturer about the level of training of a

  13. Onion-shell model for cosmic ray electrons and radio synchrotron emission in supernova remnants

    Science.gov (United States)

    Beck, R.; Drury, L. O.; Voelk, H. J.; Bogdan, T. J.

    1985-01-01

    The spectrum of cosmic ray electrons, accelerated in the shock front of a supernova remnant (SNR), is calculated in the test-particle approximation using an onion-shell model. Particle diffusion within the evolving remnant is explicity taken into account. The particle spectrum becomes steeper with increasing radius as well as SNR age. Simple models of the magnetic field distribution allow a prediction of the intensity and spectrum of radio synchrotron emission and their radial variation. The agreement with existing observations is satisfactory in several SNR's but fails in other cases. Radiative cooling may be an important effect, especially in SNR's exploding in a dense interstellar medium.

  14. A new electronic scanner of pressure designed for installation in wind-tunnel models

    Science.gov (United States)

    Coe, C. T.; Parra, G. T.; Kauffman, R. C.

    1981-01-01

    A new electronic scanner of pressure (ESOP) has been developed by NASA Ames Research Center for installation in wind-tunnel models. An ESOP system includes up to 20 pressure modules, each with 48 pressure transducers, an A/D converter, a microprocessor, a data controller, a monitor unit, and a heater controller. The system is sized so that the pressure modules and A/D converter module can be installed within an average-size model tested in the Ames Aerodynamics Division wind tunnels. This paper describes the ESOP system, emphasizing the main element of the system - the pressure module. The measured performance of the overall system is also presented.

  15. Electron-Impact Excitation Cross Sections for Modeling Non-Equilibrium Gas

    Science.gov (United States)

    Huo, Winifred M.; Liu, Yen; Panesi, Marco; Munafo, Alessandro; Wray, Alan; Carbon, Duane F.

    2015-01-01

    In order to provide a database for modeling hypersonic entry in a partially ionized gas under non-equilibrium, the electron-impact excitation cross sections of atoms have been calculated using perturbation theory. The energy levels covered in the calculation are retrieved from the level list in the HyperRad code. The downstream flow-field is determined by solving a set of continuity equations for each component. The individual structure of each energy level is included. These equations are then complemented by the Euler system of equations. Finally, the radiation field is modeled by solving the radiative transfer equation.

  16. In Silico Modeling of Indigo and Tyrian Purple Single-Electron Nano-Transistors Using Density Functional Theory Approach

    Science.gov (United States)

    Shityakov, Sergey; Roewer, Norbert; Förster, Carola; Broscheit, Jens-Albert

    2017-07-01

    The purpose of this study was to develop and implement an in silico model of indigoid-based single-electron transistor (SET) nanodevices, which consist of indigoid molecules from natural dye weakly coupled to gold electrodes that function in a Coulomb blockade regime. The electronic properties of the indigoid molecules were investigated using the optimized density-functional theory (DFT) with a continuum model. Higher electron transport characteristics were determined for Tyrian purple, consistent with experimentally derived data. Overall, these results can be used to correctly predict and emphasize the electron transport functions of organic SETs, demonstrating their potential for sustainable nanoelectronics comprising the biodegradable and biocompatible materials.

  17. Two Fluid Model: Application of Kappa-Maxwelian Distribution for Electrons and Bi-Maxwellian Distribution for Protons

    Science.gov (United States)

    Taran, Somayeh; Safari, Hossein

    2016-07-01

    This study presents two wind model with kappa-Maxwellian function for electrons and bi-Maxwellian distribution function for protons. A set of collesionless MHD equations derived applying zeroth to fourth order moments of Volaso equation and electromagnetic Maxwell equations for plasma. The resultant equations for electron temperatures (parallel and perpendicular relative to magnetic field line) and proton temperatures differ due to the different nature of distribution functions for electrons and protons. Also, we see that, the equations for electron heat flows and proton heat flows are different. This formalism of two fluid model is a useful tool for investigation of solar wind.

  18. Model-independent quantitative measurement of nanomechanical oscillator vibrations using electron-microscope linescans

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Huan; Fenton, J. C.; Chiatti, O. [London Centre for Nanotechnology, University College London, 17–19 Gordon Street, London WC1H 0AH (United Kingdom); Warburton, P. A. [London Centre for Nanotechnology, University College London, 17–19 Gordon Street, London WC1H 0AH (United Kingdom); Department of Electronic and Electrical Engineering, University College London, Torrington Place, London WC1E 7JE (United Kingdom)

    2013-07-15

    Nanoscale mechanical resonators are highly sensitive devices and, therefore, for application as highly sensitive mass balances, they are potentially superior to micromachined cantilevers. The absolute measurement of nanoscale displacements of such resonators remains a challenge, however, since the optical signal reflected from a cantilever whose dimensions are sub-wavelength is at best very weak. We describe a technique for quantitative analysis and fitting of scanning-electron microscope (SEM) linescans across a cantilever resonator, involving deconvolution from the vibrating resonator profile using the stationary resonator profile. This enables determination of the absolute amplitude of nanomechanical cantilever oscillations even when the oscillation amplitude is much smaller than the cantilever width. This technique is independent of any model of secondary-electron emission from the resonator and is, therefore, applicable to resonators with arbitrary geometry and material inhomogeneity. We demonstrate the technique using focussed-ion-beam–deposited tungsten cantilevers of radius ∼60–170 nm inside a field-emission SEM, with excitation of the cantilever by a piezoelectric actuator allowing measurement of the full frequency response. Oscillation amplitudes approaching the size of the primary electron-beam can be resolved. We further show that the optimum electron-beam scan speed is determined by a compromise between deflection of the cantilever at low scan speeds and limited spatial resolution at high scan speeds. Our technique will be an important tool for use in precise characterization of nanomechanical resonator devices.

  19. An image-based skeletal dosimetry model for the ICRP reference newborn-internal electron sources

    Energy Technology Data Exchange (ETDEWEB)

    Pafundi, Deanna; Lee, Choonsik; Bolch, Wesley [Department of Nuclear and Radiological Engineering, University of Florida, Gainesville, FL (United States); Rajon, Didier [Department of Neurosurgery, University of Florida, Gainesville, FL (United States); Jokisch, Derek [Department of Physics and Astronomy, Francis Marion University, Florence, SC (United States)], E-mail: wbolch@ufl.edu

    2010-04-07

    In this study, a comprehensive electron dosimetry model of newborn skeletal tissues is presented. The model is constructed using the University of Florida newborn hybrid phantom of Lee et al (2007 Phys. Med. Biol. 52 3309-33), the newborn skeletal tissue model of Pafundi et al (2009 Phys. Med. Biol. 54 4497-531) and the EGSnrc-based Paired Image Radiation Transport code of Shah et al (2005 J. Nucl. Med. 46 344-53). Target tissues include the active bone marrow (surrogate tissue for hematopoietic stem cells), shallow marrow (surrogate tissue for osteoprogenitor cells) and unossified cartilage (surrogate tissue for chondrocytes). Monoenergetic electron emissions are considered over the energy range 1 keV to 10 MeV for the following source tissues: active marrow, trabecular bone (surfaces and volumes), cortical bone (surfaces and volumes) and cartilage. Transport results are reported as specific absorbed fractions according to the MIRD schema and are given as skeletal-averaged values in the paper with bone-specific values reported in both tabular and graphic format as electronic annexes (supplementary data). The method utilized in this work uniquely includes (1) explicit accounting for the finite size and shape of newborn ossification centers (spongiosa regions), (2) explicit accounting for active and shallow marrow dose from electron emissions in cortical bone as well as sites of unossified cartilage, (3) proper accounting of the distribution of trabecular and cortical volumes and surfaces in the newborn skeleton when considering mineral bone sources and (4) explicit consideration of the marrow cellularity changes for active marrow self-irradiation as applicable to radionuclide therapy of diseased marrow in the newborn child.

  20. An image-based skeletal dosimetry model for the ICRP reference newborn—internal electron sources

    Science.gov (United States)

    Pafundi, Deanna; Rajon, Didier; Jokisch, Derek; Lee, Choonsik; Bolch, Wesley

    2010-04-01

    In this study, a comprehensive electron dosimetry model of newborn skeletal tissues is presented. The model is constructed using the University of Florida newborn hybrid phantom of Lee et al (2007 Phys. Med. Biol. 52 3309-33), the newborn skeletal tissue model of Pafundi et al (2009 Phys. Med. Biol. 54 4497-531) and the EGSnrc-based Paired Image Radiation Transport code of Shah et al (2005 J. Nucl. Med. 46 344-53). Target tissues include the active bone marrow (surrogate tissue for hematopoietic stem cells), shallow marrow (surrogate tissue for osteoprogenitor cells) and unossified cartilage (surrogate tissue for chondrocytes). Monoenergetic electron emissions are considered over the energy range 1 keV to 10 MeV for the following source tissues: active marrow, trabecular bone (surfaces and volumes), cortical bone (surfaces and volumes) and cartilage. Transport results are reported as specific absorbed fractions according to the MIRD schema and are given as skeletal-averaged values in the paper with bone-specific values reported in both tabular and graphic format as electronic annexes (supplementary data). The method utilized in this work uniquely includes (1) explicit accounting for the finite size and shape of newborn ossification centers (spongiosa regions), (2) explicit accounting for active and shallow marrow dose from electron emissions in cortical bone as well as sites of unossified cartilage, (3) proper accounting of the distribution of trabecular and cortical volumes and surfaces in the newborn skeleton when considering mineral bone sources and (4) explicit consideration of the marrow cellularity changes for active marrow self-irradiation as applicable to radionuclide therapy of diseased marrow in the newborn child.