WorldWideScience

Sample records for swarthmore spheromak experiment

  1. Magnetic Reconnection Results on the Swarthmore Spheromak Experiment

    Science.gov (United States)

    Kornack, T. W.; Sollins, P. K.; Brown, M. R.

    1997-11-01

    Linear and 2D arrays of magnetic probes are used to study magnetic reconnection in the Swarthmore Spheromak Experiment (SSX). Opposing coaxial plasma guns form two identical spheromaks into adjacent 0.5 m diameter copper flux conservers. The flux conservers have symmetrical openings that allow the spheromaks to merge in a controlled manner. The stable equilibrium of the spheromaks provides a reservoir of magnetic flux for reconnection experiments. Currently, the magnetic configuration of the spheromaks allows the study of counter-helicity reconnection. Preliminary analysis will be presented and may include 2D B field movies of the reconnection region, measurement of the reconnection rate and comparison to the Sweet-Parker and standard Petschek models.

  2. Fundamental Magnetofluid Physics Studies on the Swarthmore Spheromak Experiment: Reconnection and Sustainment

    International Nuclear Information System (INIS)

    Brown, M.R.

    2001-01-01

    The general goal of the Magnetofluids Laboratory at Swarthmore College is to understand how magnetofluid kinetic energy can be converted to magnetic energy as it is in the core of the earth and sun (the dynamo problem) and to understand how magnetic energy can be rapidly converted back to kinetic energy and heat as it is in solar flares (the magnetic reconnection problem). Magnetic reconnection has been studied using the Swarthmore Spheromak Experiment (SSX) which was designed and built under this Junior Faculty Grant. In SSX we generate and merge two rings of magnetized plasma called spheromaks and study their interaction. The spheromaks have many properties similar to solar flares so this work is directly relevant to basic solar physics. In addition, since the spheromak is a magnetic confinement fusion configuration, issues of formation and stability have direct impact on the fusion program

  3. Spheromak Merging Experiments on SSX

    Science.gov (United States)

    Brown, M. R.; Kornack, T. W.; Sollins, P. K.; Luh, W. J.

    1997-11-01

    Spheromak merging experiments are underway at the Swarthmore Spheromak Experiment (SSX) at Swarthmore College. The spheromaks are formed by identical magnetized plasma guns and equilibrium is established in close fitting 0.5 m diameter copper flux conservers. Partial merging is achieved through openings in the back wall. We observe the formation of a reconnection boundary layer at the interface of the two spheromaks using a linear probe array. The characteristic scale of the flux reversal is about 1 cm (consistent with the diffusion scale δ_diff, the ion Larmor radius ρi and the ion inertial length c/ω_pi). Movies of the formation and evolution of the layer will be presented. Correlations between reconnection events and pulses of soft x-rays and energetic particles will be presented if available. Plans for 2D and 3D imaging of the layer will also be discussed.

  4. Scaling studies of spheromak formation and equilibrium

    International Nuclear Information System (INIS)

    Geddes, C.G.; Kornack, T.W.; Brown, M.R.

    1998-01-01

    Formation and equilibrium studies have been performed on the Swarthmore Spheromak Experiment (SSX). Spheromaks are formed with a magnetized coaxial plasma gun and equilibrium is established in both small (d small =0.16 m) and large (d large =3d small =0.50 m) copper flux conservers. Using magnetic probe arrays it has been verified that spheromak formation is governed solely by gun physics (in particular the ratio of gun current to flux, μ 0 I gun /Φ gun ) and is independent of the flux conserver dimensions. It has also been verified that equilibrium is well described by the force free condition ∇xB=λB (λ=constant), particularly early in decay. Departures from the force-free state are due to current profile effects described by a quadratic function λ=λ(ψ). Force-free SSX spheromaks will be merged to study magnetic reconnection in simple magnetofluid structures. copyright 1998 American Institute of Physics

  5. The Spheromak path to fusion energy

    International Nuclear Information System (INIS)

    Hooper, E.B.; Barnes, C.W.; Bellan, P.M.

    1998-01-01

    experience from previous work, diagnostics, and physics support. Experiments at PPPL and Swarthmore are being conducted on the physics of magnetic reconnection, yielding physics results which should help advance the confinement work. A spheromak reactor will require steady state operation with the equilibrium fully supported by external coils. Although the present generation of experiments can provide data on the initial stages of the transition from short-pulsed operation, sustainment longer than the wall resistance time will be addressed in the proof-of-principle experiments

  6. Sustained spheromak physics experiment

    International Nuclear Information System (INIS)

    Hooper, E.B.; Bulmer, R.H.; Cohen, B.I.

    2001-01-01

    The Sustained Spheromak Physics Experiment, SSPX, will study spheromak physics with particular attention to energy confinement and magnetic fluctuations in a spheromak sustained by electrostatic helicity injection. In order to operate in a low collisionality mode, requiring T e >100 eV, vacuum techniques developed for tokamaks will be applied, and a divertor will be used for the first time in a spheromak. The discharge will operate for pulse lengths of several milliseconds, long compared to the time to establish a steady-state equilibrium but short compared to the L/R time of the flux conserver. The spheromak and helicity injector ('gun') are closely coupled, as shown by an ideal MHD model with force-free injector and edge plasmas. The current from the gun passes along the symmetry axis of the spheromak, and the resulting toroidal magnetic field causes the safety factor, q, to diverge on the separatrix. The q-profile depends on the ratio of the injector current to spheromak current and on the magnetic flux coupling the injector to the spheromak. New diagnostics include magnetic field measurements by a reflectometer operating in combined O- and X-modes and by a transient internal probe (TIP). (author)

  7. Sustained spheromak physics experiment

    International Nuclear Information System (INIS)

    Hooper, E.B.; Bulmer, R.H.; Cohen, B.I.

    1999-01-01

    The Sustained Spheromak Physics Experiment, SSPX, will study spheromak physics with particular attention to energy confinement and magnetic fluctuations in a spheromak sustained by electrostatic helicity injection. In order to operate in a low collisionality mode, requiring T e > 100 eV, vacuum techniques developed for tokamaks will be applied, and a divertor will be used for the first time in a spheromak. The discharge will operate for pulse lengths of several milliseconds, long compared to the time to establish a steady-state equilibrium but short compared to the L/R time of the flux conserver. The spheromak and helicity injector ('gun') are closely coupled, as shown by an ideal MHD model with force-free injector and edge plasmas. The current from the gun passes along the symmetry axis of the spheromak, and the resulting toroidal magnetic field causes the safety factor, q, to diverge on the separatrix. The q-profile depends on the ratio of the injector current to spheromak current and on the magnetic flux coupling the injector to the spheromak. New diagnostics include magnetic field measurements by a reflectometer operating in combined O- and X-modes and by a transient internal probe (TIP). (author)

  8. Magnetohydrodynamic Particle Acceleration Processes: SSX Experiments, Theory, and Astrophysical Applications

    International Nuclear Information System (INIS)

    Brown, Michael R.

    2006-01-01

    The purpose of the project was to provide theoretical and modeling support to the Swarthmore Spheromak Experiment (SSX). Accordingly, the theoretical effort was tightly integrated into the SSX experimental effort. During the grant period, Michael Brown and his experimental collaborators at Swarthmore, with assistance from W. Matthaeus as appropriate, made substantial progress in understanding the physics SSX plasmas

  9. Spheromak type plasma experiment apparatus

    International Nuclear Information System (INIS)

    Odagiri, Kiyoyuki; Miyauchi, Yasuyuki; Oomura, Hiroshi

    1985-01-01

    The fusion power reactor which is expected to be the most promising energy has been developed for several plasma confinement systems. Under these circumstances, Spheromak configuration has recently attracted attention because of its simple structure and efficient plasma confinement. This apparatus was ordered by the Engineering Department of University of Tokyo for basic studies of the Spheromak plasma confinement technologies. This forms Spheromak plasma according to the induction discharge system which injects this plasma with magnetic energy generated by a toroidal current in the plasma and discharges the current through the electrical feed through. Toroidal current is induced by the poloidal coil in the vessel. We worked together with the researchers of University of Tokyo to conduct experiments and confirmed the formation and confinement of Spheromak plasma in the initial test. (author)

  10. Sustained Spheromak Physics Experiment, SSPX

    International Nuclear Information System (INIS)

    Hooper, E.B.

    1997-01-01

    The Sustained Spheromak Physics Experiment is proposed for experimental studies of spheromak confinement issues in a controlled way: in steady state relative to the confinement timescale and at low collisionality. Experiments in a flux - conserver will provide data on transport in the presence of resistive modes in shear-stabilized systems and establish operating regimes which pave the way for true steady-state experiments with the equilibrium field supplied by external coils. The proposal is based on analysis of past experiments, including the achievement of T e = 400 eV in a decaying spheromak in CTX. Electrostatic helicity injection from a coaxial ''''gun'''' into a shaped flux conserver will form and sustain the plasma for several milliseconds. The flux conserver minimizes fluxline intersection with the walls and provides MHD stability. Improvements from previous experiments include modem wall conditioning (especially boronization), a divertor for density and impurity control, and a bias magnetic flux for configurational flexibility. The bias flux will provide innovative experimental opportunities, including testing helicity drive on the large-radius plasma boundary. Diagnostics include Thomson scattering for T e measurements and ultra-short pulse reflectrometry to measure density and magnetic field profiles and turbulence. We expect to operate at T e of several hundred eV, allowing improved understanding of energy and current transport due to resistive MHD turbulence during sustained operation. This will provide an exciting advance in spheromak physics and a firm basis for future experiments in the fusion regime

  11. Re-examination of spheromak experiments and opportunities

    International Nuclear Information System (INIS)

    Hooper, B.E.; Hammer, J.H.; Barnes, C.W.; Fernandez, J.C.; Wysocki, F.J.

    1996-01-01

    The results of spheromak experiments are reexamined in light of the hypothesis that the core energy confinement is considerably better than the global confinement and that it extrapolates favorably with magnetic Reynolds number S. The data in decaying spheromaks are found to be consistent with the hypothesis and with magnetic fluctuations scaling as S -1/2 and determining the electron thermal conductivity. No conclusion is drawn from the data for sustained spheromaks, indicating the importance of a new experiment to determine core energy confinement while helicity is injected. The characteristics of such an experiment are discussed, including the importance of using modern vacuum and wall-conditioning techniques and of minimizing magnetic field errors. 44 refs., 7 figs., 1 tab

  12. Resistance to Online Catalogs: A Comparative Study at Bryn Mawr and Swarthmore Colleges.

    Science.gov (United States)

    Walton, Carol; And Others

    1986-01-01

    Surveys of student and faculty attitudes toward proposed online public access catalogs were conducted in 1984 at Bryn Mawr and Swarthmore. The traditional card catalog was generally favored; only Swarthmore's faculty gave majority support to the online catalog. Differences between colleges may result from Swarthmore's greater experience with…

  13. Spheromak experiment using separate guns for formation and sustainment

    International Nuclear Information System (INIS)

    Brown, M.R.; Martin, A.

    1996-01-01

    An experiment is described that incorporates the use of separate magnetized plasma guns for formation and sustainment of a spheromak. It is shown that energy coupling efficiency approaches unity if the gun and spheromak are of comparable size. A large gun should be able to operate at lower current and therefore lower voltage. In addition, it is expected that a gun matched to the size of the spheromak will cause less perturbation to the equilibrium. It is proposed to use a smaller gun for spheromak formation and a large, efficient gun for sustainment. The theoretical basis for the experiment is developed, and the details of the experiment are described. A prediction of the equilibrium magnetic flux surfaces using the EFIT code is presented. 28 refs., 3 figs., 1 tab

  14. Magnetohydrodynamic Particle Acceleration Processes: SSX Experiments, Theory and Astrophysical Applications

    International Nuclear Information System (INIS)

    Matthaeus, W.; Brown, M.

    2006-01-01

    This is the final technical report for a funded program to provide theoretical support to the Swarthmore Spheromak Experiment. We examined mhd relaxation, reconnecton between two spheromaks, particle acceleration by these processes, and collisonless effects, e.g., Hall effect near the reconnection zone,. Throughout the project, applications to space plasma physics and astrophysics were included. Towards the end of the project we were examining a more fully turbulent relaxation associated with unconstrained dynamics in SSX. We employed experimental, spacecraft observations, analytical and numerical methods.

  15. Magnetic helicity balance in the Sustained Spheromak Plasma Experiment

    International Nuclear Information System (INIS)

    Stallard, B.W.; Hooper, E.B.; Woodruff, S.; Bulmer, R.H.; Hill, D.N.; McLean, H.S.; Wood, R.D.

    2003-01-01

    The magnetic helicity balance between the helicity input injected by a magnetized coaxial gun, the rate-of-change in plasma helicity content, and helicity dissipation in electrode sheaths and Ohmic losses have been examined in the Sustained Spheromak Plasma Experiment (SSPX) [E. B. Hooper, L. D. Pearlstein, and R. H. Bulmer, Nucl. Fusion 39, 863 (1999)]. Helicity is treated as a flux function in the mean-field approximation, allowing separation of helicity drive and losses between closed and open field volumes. For nearly sustained spheromak plasmas with low fluctuations, helicity balance analysis implies a decreasing transport of helicity from the gun input into the spheromak core at higher spheromak electron temperature. Long pulse discharges with continuously increasing helicity and larger fluctuations show higher helicity coupling from the edge to the spheromak core. The magnitude of the sheath voltage drop, inferred from cathode heating and a current threshold dependence of the gun voltage, shows that sheath losses are important and reduce the helicity injection efficiency in SSPX

  16. Sustained spheromak technology

    Energy Technology Data Exchange (ETDEWEB)

    Platts, D.A.; Sherwood, A.R.; Jarboe, T.R.; Linford, R.K.; Hoida, H.W.; Henins, I.

    1984-01-01

    The goal of these experiments is to devise a technique for driving a spheromak using dc-powered electrodes. The reduction or elimination of pulsed power components in the spheromak source would result in more attractive reactors, and simpler, cheaper experiments. This is important as experiments get larger and approach reactor size. According to some concepts, the dc spheromak would operate with plasma injection so that it would clean up any impurities produced during its formation. These features make the investigation of dc-powered spheromaks interesting. The questions that need to be answered in this investigation are: (1) can a spheromak be sustained by a dc source; and (2) can a practical source be designed to produce a hot clean plasma. After summarizing the evidence which suggests an answer to question one, the approach being taken to answer question two is discussed.

  17. Sustained spheromak technology

    International Nuclear Information System (INIS)

    Platts, D.A.; Sherwood, A.R.; Jarboe, T.R.; Linford, R.K.; Hoida, H.W.; Henins, I.

    1984-01-01

    The goal of these experiments is to devise a technique for driving a spheromak using dc-powered electrodes. The reduction or elimination of pulsed power components in the spheromak source would result in more attractive reactors, and simpler, cheaper experiments. This is important as experiments get larger and approach reactor size. According to some concepts, the dc spheromak would operate with plasma injection so that it would clean up any impurities produced during its formation. These features make the investigation of dc-powered spheromaks interesting. The questions that need to be answered in this investigation are: (1) can a spheromak be sustained by a dc source; and (2) can a practical source be designed to produce a hot clean plasma. After summarizing the evidence which suggests an answer to question one, the approach being taken to answer question two is discussed

  18. Sustained spheromak experiments in CTX

    International Nuclear Information System (INIS)

    Jarboe, T.R.; Barnes, C.W.; Henins, I.; Hoida, H.W.; Linford, R.K.; Sherwood, A.R.

    1983-01-01

    So far, spheromaks can be sustained as long as the source is injecting helicity. When the injection stops the configuration decays. Spheromks have been sustained for more than 1 ms with total lifetimes of more than 2 ms. The physical properties of the sustained spheromak are under investigation in this paper. Preliminary data indicate that (B) approx. = 2 kG, n approx. = 2 x 10 14 -cm -3 and T /sub e/ approx. = 20-30 eV. An helicity decay rate is determined from the ratio of an estimate of the helicity content of the spheromak and the rate of helicity flow from the source. In the coaxial source geometry a constant value of poloidal flux /PHI/ /sub p/ is placed inside the center electrode. By applying a voltage V between the two electrodes toroidal flux is injected (/PHI/ /sub t/ =V) which links the poloidal flux. The rate of helicity injection is then 2V/PHI/ /sub p/ . The helicity content of the spheromak is estimated by measuring the fields at one point and using the model described above to calculate the profiles. The result is that /TAU/ /sub Hel/ approx. = 200 us. This value is about the same as the /TAU/ /sub B/ 2 of a decaying spheromak with similar parameters. These results indicate that helicity injection is possible and that a large fraction (30-100%) of the injected helicity is absorbed

  19. Los Alamos Spheromak Program

    International Nuclear Information System (INIS)

    Knox, S.O.; Barnes, C.W.; Fernandez, J.C.

    1985-01-01

    The Los Alamos Spheromak Program consists of two experimental facilities. The confinement physics of sustained and decaying spheromaks are being studied in CTX, which has an extensive array of diagnostics. Experiments are directed towards extending the physics understanding of the spheromak as a magnetic confinement concept. Electrodes for the production of clean sustained spheromaks are developed on the Electrode Facility, which is more flexible in terms of experimental modifications. Improvements to helicity sources and elecrodes which are proven on the Electrode Facility are then considered for incorporation onto CTX

  20. Theoretical issues in Spheromak research

    International Nuclear Information System (INIS)

    Cohen, R. H.; Hooper, E.B.; LoDestro, L.L.; Mattor, N.; Pearlstein, L.D.; Ryutov, D.D.

    1997-01-01

    This report summarizes the state of theoretical knowledge of several physics issues important to the spheromak. It was prepared as part of the preparation for the Sustained Spheromak Physics Experiment (SSPX), which addresses these goals: energy confinement and the physics which determines it; the physics of transition from a short-pulsed experiment, in which the equilibrium and stability are determined by a conducting wall (''''flux conserver'''') to one in which the equilibrium is supported by external coils. Physics is examined in this report in four important areas. The status of present theoretical understanding is reviewed, physics which needs to be addressed more fully is identified, and tools which are available or require more development are described. Specifically, the topics include: MHD equilibrium and design, review of MHD stability, spheromak dynamo, and edge plasma in spheromaks

  1. Spheromak Physics Development

    International Nuclear Information System (INIS)

    Hooper, E.B.

    1997-01-01

    The spheromak is a Magnetic Fusion Energy (MFE) configuration, which is a leading alternative to the tokamak. It has a simple geometry which offers an opportunity to achieve the promise of fusion energy if the physics of confinement, current drive, and pressure holding capability extrapolate favorably to a reactor. Recent changes in the US MFE program, taken in response to budget constraints and programmatic directions from Congress, include a revitalization of an experimental alternative concept effort. Detailed studies of the spheromak were consequently undertaken to examine the major physics issues which need to be resolved to advance it as a fusion plasma, the optimum configuration for an advanced experiment, and its potential as a reactor. As a result of this study, we conclude that it is important to evaluate several physics issues experimentally. Such an experiment might be appropriately be named the Sustained Spheromak Physics Experiment (SSPX). It would address several critical issues, the solution to which will provide the physics basis to enable an advanced experiment. The specific scientific goals of SSPX would be to: * Demonstrate that electron and ion temperatures of a few hundred electron volts can be achieved in a steady-state spheromak plasma sustained by a magnetic dynamo (''helicity injection''). * Relate energy confinement quantitatively to the magnetic turbulence accompanying the dynamo and use this knowledge to optimize performance. * Measure the magnetic field profiles and magnetic turbulence in the plasma and relate these to the science of the magnetic dynamo which drives the current in the plasma. * Examine experimentally the pressure holding capability (''beta limit'') of the spheromak. * Understand the initial phases of the transition of the plasma from an equilibrium supported by a magnetic-flux conserving wall to one supported by external coils

  2. Overview of the HIT-SI3 spheromak experiment

    Science.gov (United States)

    Hossack, A. C.; Jarboe, T. R.; Chandra, R. N.; Morgan, K. D.; Sutherland, D. A.; Everson, C. J.; Penna, J. M.; Nelson, B. A.

    2017-10-01

    The HIT-SI and HIT-SI3 spheromak experiments (a = 23 cm) study efficient, steady-state current drive for magnetic confinement plasmas using a novel method which is ideal for low aspect ratio, toroidal geometries. Sustained spheromaks show coherent, imposed plasma motion and low plasma-generated mode activity, indicating stability. Analysis of surface magnetic fields in HIT-SI indicates large n = 0 and 1 mode amplitudes and little energy in higher modes. Within measurement uncertainties all the n = 1 energy is imposed by the injectors, rather than being plasma-generated. The fluctuating field imposed by the injectors is sufficient to sustain the toroidal current through dynamo action whereas the plasma-generated field is not (Hossack et al., Phys. Plasmas, 2017). Ion Doppler spectroscopy shows coherent, imposed plasma motion inside r 10 cm in HIT-SI and a smaller volume of coherent motion in HIT-SI3. Coherent motion indicates the spheromak is stable and a lack of plasma-generated n = 1 energy indicates the maximum q is maintained below 1 for stability during sustainment. In HIT-SI3, the imposed mode structure is varied to test the plasma response (Hossack et al., Nucl. Fusion, 2017). Imposing n = 2, n = 3, or large, rotating n = 1 perturbations is correlated with transient plasma-generated activity. Work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, under Award Number DE-FG02-96ER54361.

  3. Current drive by spheromak injection into a tokamak

    International Nuclear Information System (INIS)

    Brown, M.R.; Bellan, P.M.

    1990-01-01

    The authors report the first observation of current drive by spheromak injection into a tokamak due to the process of helicity injection. Current drive is observed in Caltech's ENCORE tokamak (30% increase, ΔI > 1 kA) only when both the tokamak and injected spheromak have the same sign of helicity (where helicity is defined as positive if current flows parallel to magnetic field lines and negative if anti-parallel). The initial increase (decrease) in current is accompanied by a sharp decrease (increase) in loop voltage and the increase in tokamak helicity is consistent with the helicity content of the injected spheromak. In addition, the injection of the spheromak raises the tokamak central density by a factor of six. The introduction of cold spheromak plasma causes sudden cooling of the tokamak discharge from 12 eV to 4 eV which results in a gradual decline in tokamak plasma current by a factor of three. In a second experiment, the authors inject spheromaks into the magnetized toroidal vacuum vessel (with no tokamak plasma). An m = 1 magnetic structure forms in the vessel after the spheromak undergoes a double tilt; once in the cylindrical entrance between gun and tokamak, then again in the tokamak vessel. A horizontal shift of the spheromak equilibrium is observed in the direction opposite that of the static toroidal field. In the absence of net toroidal flux, the structure develops a helical pitch as predicted by theory. Experiments with a number of refractory metal coatings have shown that tungsten and chrome coatings provide some improvement in spheromak parameters. They have also designed and will soon construct a larger, higher current spheromak gun with a new accelerator section for injection experiments on the Phaedrus-T tokamak

  4. Simulation of multi-pulse coaxial helicity injection in the Sustained Spheromak Physics Experiment

    Science.gov (United States)

    O'Bryan, J. B.; Romero-Talamás, C. A.; Woodruff, S.

    2018-03-01

    Nonlinear, numerical computation with the NIMROD code is used to explore magnetic self-organization during multi-pulse coaxial helicity injection in the Sustained Spheromak Physics eXperiment. We describe multiple distinct phases of spheromak evolution, starting from vacuum magnetic fields and the formation of the initial magnetic flux bubble through multiple refluxing pulses and the eventual onset of the column mode instability. Experimental and computational magnetic diagnostics agree on the onset of the column mode instability, which first occurs during the second refluxing pulse of the simulated discharge. Our computations also reproduce the injector voltage traces, despite only specifying the injector current and not explicitly modeling the external capacitor bank circuit. The computations demonstrate that global magnetic evolution is fairly robust to different transport models and, therefore, that a single fluid-temperature model is sufficient for a broader, qualitative assessment of spheromak performance. Although discharges with similar traces of normalized injector current produce similar global spheromak evolution, details of the current distribution during the column mode instability impact the relative degree of poloidal flux amplification and magnetic helicity content.

  5. Steady-state spheromak

    International Nuclear Information System (INIS)

    Jarboe, T.R.

    1982-01-01

    A major effort is being made in the national program to make the operation of axisymmetric, toroidal confinement systems steady state by the application of expensive rf current drive. Described here is a method by which such a confinement system, the spheromak, can be refluxed indefinitely through the application of dc power. As a step towards dc sustainment we have operated the present CTX source in the slow source mode with a longer power application time (approx. 0.1 ms) and successfully generated long-lived spheromaks. If the erosion of the electrodes can be controlled as well as it is with MPD arcs then dc operation should be very clean. If only a small fraction (approx. 10% for an experiment) of the poloidal flux of the spheromak connects to the source then the dc sustainment can be very efficient. The amount of connecting flux that is necessary for sustainment needs to be determined experimentally

  6. Particle confinement and fueling effects on the Maryland spheromak

    International Nuclear Information System (INIS)

    Filuk, A.B.

    1991-01-01

    The spheromak plasma confinement concept provides the opportunity to study the evolution of a nearly force-free magnetic field configuration. The plasma currents and magnetic fields are produced self-consistently, making this type of device attractive as a possible fusion reactor. At present, spheromaks are observed to have poorer particle and magnetic confinement than expected from simple theory. The purpose of this study is to examine the role of plasma density in the decay of spheromaks produced in the Maryland Spheromak experiment. Density measurements are made with an interferometer and Langmuir probe, and results are correlated with those of other plasma diagnostics to understand the sources of plasma, the spheromak formation effects on the density, and the magnitude of particle loss during the spheromak decay. A power and particle balance computer model is constructed and applied to the spheromaks studied in order to assess the impact of high density and particle loss rate on the spheromak decay. The observations and model indicate that the decay of the spheromaks is at present dominated by impurity radiation loss. The model also predicts that high density and short particle confinement time play a critical role in the spheromak power balance when the impurity levels are reduced

  7. Spheromak Impedance and Current Amplification

    International Nuclear Information System (INIS)

    Fowler, T K; Hua, D D; Stallard, B W

    2002-01-01

    It is shown that high current amplification can be achieved only by injecting helicity on the timescale for reconnection, τ REC , which determines the effective impedance of the spheromak. An approximate equation for current amplification is: dI TOR 2 /dt ∼ I 2 /τ REC - I TOR 2 /τ closed where I is the gun current, I TOR is the spheromak toroidal current and τ CLOSED is the ohmic decay time of the spheromak. Achieving high current amplification, I TOR >> I, requires τ REC CLOSED . For resistive reconnection, this requires reconnection in a cold zone feeding helicity into a hot zone. Here we propose an impedance model based on these ideas in a form that can be implemented in the Corsica-based helicity transport code. The most important feature of the model is the possibility that τ REC actually increases as the spheromak temperature increases, perhaps accounting for the ''voltage sag'' observed in some experiments, and a tendency toward a constant ratio of field to current, B ∝ I, or I TOR ∼ I. Program implications are discussed

  8. A spheromak ignition experiment reusing Mirror Fusion Test Facility (MFTF) equipment

    International Nuclear Information System (INIS)

    Fowler, T.K.

    1993-01-01

    Based on available experimental results and theory, a scenario is presented to achieve ohmic ignition in a spheromak by slow (∼ 10 sec.) helicity injection using power from the Mirror Fusion Test Facility (MFTF) substation. Some of the other parts needed (vacuum vessel, coils, power supplies, pumps, shielded building space) might also be obtained from MFTF or other salvage, as well as some components needed for intermediate experiments for additional verification of the concept (especially confinement scaling). The proposed ignition experiment would serve as proof-of-principle for the spheromak DT fusion reactor design published by Hagenson and Krakowski, with a nuclear island cost about ten times less than a tokamak of comparable power. Designs at even higher power density and lower cost might be possible using Christofilos' concept of a liquid lithium blanket. Since all structures would be protected from neutrons by the lithium blanket and the tritium inventory can be reduced by continuous removal from the liquid blanket, environmental and safety characteristics appear to be favorable

  9. Simulation of Spheromak Evolution and Energy Confinement

    International Nuclear Information System (INIS)

    Cohen, B; Hooper, E; Cohen, R; Hill, D; McLean, H; Wood, R; Woodruff, S; Sovinec, C; Cone, G

    2004-01-01

    Simulation results are presented that illustrate the formation and decay of a spheromak plasma driven by a coaxial electrostatic plasma gun, and that model the energy confinement of the plasma. The physics of magnetic reconnection during spheromak formation is also illuminated. The simulations are performed with the three-dimensional, time-dependent, resistive magnetohydrodynamic NIMROD code. The simulation results are compared to data from the SSPX spheromak experiment at the Lawrence Livermore National Laboratory. The simulation results are tracking the experiment with increasing fidelity (e.g., improved agreement with measurements of the magnetic field, fluctuation amplitudes, and electron temperature) as the simulation has been improved in its representations of the geometry of the experiment (plasma gun and flux conserver), the magnetic bias coils, and the detailed time dependence of the current source driving the plasma gun, and uses realistic parameters. The simulations are providing a better understanding of the dominant physics in SSPX, including when the flux surfaces close and the mechanisms limiting the efficiency of electrostatic drive

  10. High aspect ratio spheromak experiments

    International Nuclear Information System (INIS)

    Robertson, S.; Schmid, P.

    1987-05-01

    The Reversatron RFP (R/a = 50cm/8cm) has been operated as an ohmically heated spheromak of high aspect ratio. We find that the dynamo can drive the toroidal field upward at rates as high as 10 6 G/sec. Discharges can be initiated and ramped upward from seed fields as low as 50 G. Small toroidal bias fields of either polarity (-0.2 < F < 0.2) do not significantly affect operation. 5 refs., 3 figs

  11. Simulation of Spheromak Evolution and Energy Confinement

    International Nuclear Information System (INIS)

    Cohen, B.; Hooper, E.; Cohen, R.; Hill, D.; McLean, H.; Wood, R.; Woodruff, S.

    2004-01-01

    Simulation results are presented that illustrate the formation and decay of a spheromak plasma driven by a coaxial electrostatic plasma gun, and that model the energy confinement of the plasma. The physics of magnetic reconnection during spheromak formation is also illuminated. The simulations are performed with the three-dimensional, time-dependent, resistive magnetohydrodynamic NIMROD code. The dimensional, simulation results are compared to data from the SSPX spheromak experiment at the Lawrence Livermore National Laboratory. The simulation results are tracking the experiment with increasing fidelity (e.g., improved agreement with measurements of the magnetic field, fluctuation amplitudes, and electron temperature) as the simulation has been improved in its representations of the geometry of the experiment (plasma gun and flux conserver), the magnetic bias coils, and the detailed time dependence of the current source driving the plasma gun, and uses realistic parameters. The simulations are providing a better understanding of the dominant physics in SSPX, including when the flux surfaces close and the mechanisms limiting the efficiency of electrostatic drive

  12. Spheromak formation studies in SSPX

    International Nuclear Information System (INIS)

    Hill, D.N.; Bulmer, R.H.; Cohen, B.L.; Hooper, E.B.; LoDestro, L.L.; Mattor, N.; McLean, H.S.; Moller, J.; Pearlstein, L.D.; Ryutov, D.D.; Stallard, B.W.; Wood, R.D.; Woodruff, S.; Holcomb, C.T.; Jarboe, T.; Sovinec, C.R.; Wang, Z.; Wurden, G.

    2000-01-01

    We present results from the Sustained Spheromak Physics Experiment (SSPX) at LLNL, which has been built to study energy confinement in spheromak plasmas sustained for up to 2 ms by coaxial DC helicity injection. Peak toroidal currents as high as 600kA have been obtained in the 1m dia. (0.23m minor radius) device using injection currents between 200-400kA; these currents generate edge poloidal fields in the range of 0.2-0.4T. The internal field and current profiles are inferred from edge field measurements using the CORSICA code. Density and impurity control is obtained using baking, glow discharge cleansing, and titanium gettering, after which long plasma decay times (τ (ge) 1.5ms) are observed and impurity radiation losses are reduced from ∼50% to e (0)∼120eV and β e ∼7%. Edge field measurements show the presence of n=1 modes during the formation phase, as has been observed in other spheromaks. This mode dies away during sustainment and decay so that edge fluctuation levels as low as 1% have been measured. These results are compared with numerical simulations using the NIMROD code

  13. Field and current amplification in the SSPX spheromak

    International Nuclear Information System (INIS)

    Hill, D.N. . hilld@llnl.gov; Bulmer, R.H.; Cohen, B.I.

    2003-01-01

    Results are presented from experiments relating to magnetic field generation and current amplification in the SSPX spheromak. The SSPX spheromak plasma is driven by DC coaxial helicity injection using a 2MJ capacitor bank. Peak toroidal plasma currents of up to 0.7MA and peak edge poloidal fields of 0.3T are produced; lower current discharges can be sustained up to 3.5msec. When edge magnetic fluctuations are reduced below 1% by driving the plasma near threshold, it is possible to produce plasmas with Te > 150eV, e >∼4% and core χ e ∼30m 2 /s. Helicity balance for these plasmas suggests that sheath dissipation can be significant, pointing to the importance of maximizing the voltage on the coaxial injector. For most operational modes we find a stiff relationship between peak spheromak field and injector current, and little correlation with plasma temperature, which suggests that other processes than ohmic dissipation may limit field amplification. However, slowing spheromak buildup by limiting the initial current pulse increases the ratio of toroidal current to injected current and points to new operating regimes with more favorable current amplification. (author)

  14. Studies on spheromak plasma production by external-flux-core method, (2)

    International Nuclear Information System (INIS)

    Arata, Masanori; Katsurai, Makoto

    1984-01-01

    The spheromak technique, one of magnetic plasma containment techniques, has such arrangement of magnetic fields that the toroidal magnetic field is produced by the poloidal current flowing in plasma, and the poloidal magnetic field is produced by the toroidal current in plasma and the current in external coils. The authors proposed external flux core method as the technique of plasma formation by this spheromak method, in which the toroidal magnetic field is injected by the discharge using electrodes, whereas the poloidal magnetic field is injected by induction discharge without electrode. Its fundamental action was analyzed by computer simulation and confirmed by experiment. In this study, the behavior of the spheromak plasma produced was investigated in detail and summarized. The contents were the measurement of the spheromak configuration produced and the estimation of plasma parameters. The experimental setup, the principle of action, and the experimental results of magnetic field distribution obtained by a magnetic probe, ion current measured by an electrostatic probe, electron temperature by spectroscopic measurement and the behavior of spheromak plasma observed with an image converter camera are reported. (Kako, I.)

  15. Route to High Temperatures by Current Amplification in the Sustained Spheromak Physics Experiment (SSPX)

    International Nuclear Information System (INIS)

    Woodruff, S.; Holbomb, C. T.; Stallard, B. W.; Hill, D. N.; Hooper, E. B.; McLean, H. S.; Wood, R. D.; Bulmer, R.; Cohen, B.; Sovinec, C.; Pearlstein, L. D.

    2002-01-01

    For the spheromak to be attractive as a reactor concept it would be necessary to sustain the configuration with a low recycling power, reflected in the current amplification factor: A 1 = I tor /I gun , where I tor is the toroidal current and I gun is the gun current. It is understood that A 1 needs to be around 60 for a reactor [1], although the highest obtained so far in the spheromak has been ∼3 [2]. The spheromak is a simply connected toroidal confinement device related to the reversed field pinch in that the q-profile falls at the edge and the first wall is conducting, although the central solenoid is absent. In the spheromak, the paradigm for field generation (and hence current amplification) is the injection of helicity, K = ∫A.BdV = 2ΦΨ where φ and Ψ are linked fluxes. Helicity is additive in the process of electrostatic injection by a coaxial gun [3]: K = 2V gunΨgun , where V gun is the voltage applied between two coaxial electrodes (giving the rate of toroidal flux injection) and Ψ gun is the poloidal vacuum flux connecting them. SSPX [4] is a 1m wide coaxial-gun-driven spheromak with W-coated copper electrodes (FIGURE 1) and a uniquely programmable vacuum field configuration. SSPX was built to assess if confinement can be reasonably preserved during injection, and to address the specific physics of the processes governing helicity injection

  16. Review of spheromak research

    International Nuclear Information System (INIS)

    Jarboe, T.R.

    1994-01-01

    Spheromak research from 1979 to the present is reviewed including over 160 references. Emphasis is on understanding and interpretation of results. In addition to summarizing results some new interpretations are presented. An introduction and brief history is followed by a discussion of generalized helicity and its time derivative. Formation and sustainment are discussed including five different methods, flux core, θ-pinch z-pinch, coaxial source, conical θ-pinch, and kinked z-pinch. All methods are helicity injections. Steady-state methods and rules for designing spheromak experiments are covered, followed by equilibrium and stability. Methods of stabilizing the tilt and shift modes are discussed as well as their impact on the reactor designs. Current-driven and pressure-driven instabilities as well as relaxation in general are covered. Energy confinement is discussed in terms of helicity decay time and βs limits. The confinement in high and low open-flux geometries are compared and the reactor implications discussed. (author)

  17. Multi-pulse power injection and spheromak sustainment in SSPX

    Science.gov (United States)

    Stallard, B. W.; Hill, D. N.; Hooper, E. B.; Bulmer, R. H.; McLean, H. S.; Wood, R. D.; Woodruff, S.; Sspx Team

    2000-10-01

    Lawrence Livermore National Laboratory, Livermore, CA 94550, USA. Spheromak formation (gun injection phase) and sustainment experiments are now routine in SSPX using a multi-bank power system. Gun voltage, impedance, and power coupling show a clear current threshold dependence on gun flux (I_th~=λ_0φ_gun/μ_0), increasing with current above the threshold, and are compared with CTX results. The characteristic gun inductance, L_gun~=0.6 μH, derived from the gun voltage dependence on di/dt, is larger than expected from Corsica modeling of the spheromak equilibrium. It’s value is consistent with the n=1 ‘doughook’ mode structure reported in SPHEX and believed important for helicity injection and toroidal current drive. Results of helicity and power balance calculations of spheromak poloidal field buildup are compared with experiment and used to project sustainment with a future longer pulse power supply. This work was performed under the auspices of US DOE by the University of California Lawrence Livermore National Laboratory under Contract No. W-7405-ENG-48.

  18. Stellarmak a hybrid stellarator: Spheromak

    International Nuclear Information System (INIS)

    Hartman, C.W.

    1980-01-01

    This paper discusses hybridization of modified Stellarator-like transform windings (T-windings) with a Spheromak or Field-Reversed-Mirror configuration. This configuration, Stellarmak, retains the important topological advantage of the Spheromak or FRM of having no plasma linking conductors or blankets. The T-windings provide rotational transformation in toroidal angle of the outer poloidal field lines, in effect creating a reversed B/sub Toroidal/ Spheromak or adding average B/sub T/ to the FRM producing higher shear, increased limiting β, and possibly greater stability to kinks and tilt. The presence of field ripple in the toroidal direction may be sufficient to inhibit cancellation of directed ion current by electron drag to allow steady state operation with the toroidal as well as poloidal current maintained by neutral beams

  19. Spheromak tilting and its stability control

    International Nuclear Information System (INIS)

    Hayashi, T.; Sato, T.

    1983-01-01

    Spheromak tilting instability was studied. A numerical technique to create a rather arbitrarily-shaped spheromak like the one with a flux hole was investigated. The dynamics governing the tilting instability, namely, the influence of the magnetic index, the toroidal current (q-profile) and the resistivity upon the tilting growth rate, and the roles of magnetc reconnection upon the nonlinear development were studied. The best way to control the tilting instability was invented. The stabilizing effects of the vertical wall, the isolated conducting cylindrical belt, and the horizontal wall were studied. Central pole stabilization was also investigated. The influence of the wall condition, namely, whether the wall acted as a flux conserver in the spheromak creation stage or not is discussed. The present study has shown that the three- dimensional simulation is indeed useful and practical in not only studying the underlying physics but also finding a stabilization technique of spheromaks. (Kato, T.)

  20. Development of the STPX Spheromak System

    Science.gov (United States)

    Williams, R. L.; Clark, J.; Weatherford, C. A.

    2015-11-01

    The progress made in starting up the STPX Spheromak system, which is now installed at the Florida A&M University, is reviewed. Experimental, computational and theoretical activities are underway. The control system for firing the magnetized coaxial plasma gun and for collecting data from the diagnostic probes, based on LabView, is being tested and adapted. Preliminary results of testing the installed magnetic field probes, Langmuir triple probes, cylindrical ion probes, and optical diagnostics will be discussed. Progress in modeling this spheromak using simulation codes, such as NIMROD, will be discussed. Progress in investigating the use of algebraic topology to describe this spheromak will be reported.

  1. Prospects for spheromak fusion reactors

    International Nuclear Information System (INIS)

    Fowler, T.K.; Hua, D.D.

    1995-01-01

    The reactor study of Hagenson and Krakowski demonstrated the attractiveness of the spheromak as a compact fusion reactor, based on physics principles confirmed in CTX experiments in many respects. Most uncertain was the energy confinement time and the role of magnetic turbulence inherent in the concept. In this paper, a one-dimensional model of heat confinement, calibrated by CTX, predicts negligible heat loss by magnetic turbulence at reactor scale

  2. Design of a spheromak compressor driven by high explosives

    International Nuclear Information System (INIS)

    Henins, I.; Fernandez, J.C.; Jarboe, T.R.; Marsh, S.P.; Marklin, G.J.; Mayo, R.M.; Wysocki, F.J.

    1990-01-01

    High energy density spheromaks can be used to accelerate a thin section of the flux conserver wall to high velocities. The energy density of a spheromak, formed by conventional helicity injection into a flux conserver, can be increased by reducing the flux conserver volume after the spheromak is formed. A method of accomplishing this is by imploding one wall of the flux conserver with high explosives. The authors have embarked on a program to demonstrate that a spheromak can be used as an energy transfer medium, and that a velocity gain over high-explosive driven plate velocities can be achieved. To do this, a plasma gun helicity source that will inject a spheromak with suitable initial energy density and lifetime is needed. Also, an implodable flux conserver that remains intact and clean during the implosion must be developed. The flux conserver problem is probably the more challenging one, because very little experimental work has been done in the past on explosively driven metal plates into a high vacuum, with sizes and travel distances appropriate for their application. There are two necessary practical requirements for an explosive compression of a flux conserver. The first is that the imploding wall does not rupture. The second is that gasses or other debri are not ejected which could penetrate and poison the spheromak plasma, and thus reduce the spheromak lifetime below what is necessary to carry out the spheromak compression and the subsequent acceleration of the flyer plate. The authors have designed and fabricated a plasma gun to be used for injecting the initial spheromak plasma into the collapsible flux conserver

  3. Pressure effect on equilibrium configuration of CTCC-2 spheromak

    International Nuclear Information System (INIS)

    Nishikawa, M.; Kato, Y.; Satomi, N.; Watanabe, K.

    1990-01-01

    In CTCC-2 experiment, the initial plasma is produced by a magnetized gun and ejected into a metallic aluminum flux conserver (FC) with thickness of 15 mm. The spheromak is formed in the FC during a life time of 1.5 ms, in which the plasma is isolated from any external feeder. A choking-field-generating coil is equipped on the entrance of the spheroidal FC. The choking field is suppressing some leakage of spheromak field along the entrance duct, which is made of thin stainless steel plate (0.8 mm) for rapid penetration of the choking magnetic field. This resistive part acts as an effective plasma current limiter, which produces stable currentless region (flux hole). The flux hole increases magnetic shear without inserting a central conducting pole along the symmetric axis and is controlled to decrease with the choking field strength. Thus, in CTCC-2 spheromak, a stable oblate spheroidal boundary is rigidly fixed by the metal wall of FC and the entrance hole of FC is effectively closed by choking magnetic field, so that it is suitable to investigate precisely a fine structure of configuration. In spheromak configuration whose aspect ratio is near one, the ratio of the magnetic strength at the inner part to that at the outer part on equi-flux surface (mirror ratio) becomes very large in comparison with that of a large aspect ratio. This extreme configuration with a high mirror ratio may be associated with an anisotropic pressure effect even in collisional state like as our experimental condition. They have investigated the pressure effect on spheromak configuration in more detail. The obtained equilibrium profile is grossly explained by a theoretical profile on assuming low beta limit until now. However, the authors observe a systematic discrepancy between a measured poloidal profile and a theoretical one as mentioned

  4. New mode of operating a magnetized coaxial plasma gun for injecting magnetic helicity into a spheromak

    International Nuclear Information System (INIS)

    Woodruff, S.; Hill, D.N.; Stallard, B.W.; Bulmer, R.; Cohen, B.; Holcomb, C.T.; Hooper, E.B.; McLean, H.S.; Moller, J.; Wood, R.D.

    2003-01-01

    By operating a magnetized coaxial plasma gun continuously with just sufficient current to enable plasma ejection, large gun-voltage spikes (∼1 kV) are produced, giving the highest sustained voltage ∼500 V and highest sustained helicity injection rate observed in the Sustained Spheromak Physics Experiment. The spheromak magnetic field increases monotonically with time, exhibiting the lowest fluctuation levels observed during formation of any spheromak (B-tilde)/B≥2%). The results suggest an important mechanism for field generation by helicity injection, namely, the merging of helicity-carrying filaments

  5. New mode of operating a magnetized coaxial plasma gun for injecting magnetic helicity into a spheromak.

    Science.gov (United States)

    Woodruff, S; Hill, D N; Stallard, B W; Bulmer, R; Cohen, B; Holcomb, C T; Hooper, E B; McLean, H S; Moller, J; Wood, R D

    2003-03-07

    By operating a magnetized coaxial plasma gun continuously with just sufficient current to enable plasma ejection, large gun-voltage spikes (approximately 1 kV) are produced, giving the highest sustained voltage approximately 500 V and highest sustained helicity injection rate observed in the Sustained Spheromak Physics Experiment. The spheromak magnetic field increases monotonically with time, exhibiting the lowest fluctuation levels observed during formation of any spheromak (B/B>/=2%). The results suggest an important mechanism for field generation by helicity injection, namely, the merging of helicity-carrying filaments.

  6. Computational studies of ohmic heating in the spheromak

    International Nuclear Information System (INIS)

    Olson, R.E.

    1983-01-01

    Time-dependent computational simulations using both single-fluid O-D and two-fluid 1 1/2-D models are developed for and utilized in an investigation of the ohmic heating of a spheromak plasma. The plasma density and composition, the applied magnetic field strength, the plasma size, and the plasma current density profile are considered for their effects on the spheromak heating rate and maximum achievable temperature. The feasibility of ohmic ignition of a reactor-size spheromak plasma is also contemplated

  7. Two-fluid (plasma-neutral) Extended-MHD simulations of spheromak configurations in the HIT-SI experiment with PSI-Tet

    Science.gov (United States)

    Sutherland, D. A.; Hansen, C. J.; Jarboe, T. R.

    2017-10-01

    A self-consistent, two-fluid (plasma-neutral) dynamic neutral model has been implemented into the 3-D, Extended-MHD code PSI-Tet. A monatomic, hydrogenic neutral fluid reacts with a plasma fluid through elastic scattering collisions and three inelastic collision reactions: electron-impact ionization, radiative recombination, and resonant charge-exchange. Density, momentum, and energy are evolved for both the plasma and neutral species. The implemented plasma-neutral model in PSI-Tet is being used to simulate decaying spheromak configurations in the HIT-SI experimental geometry, which is being compare to two-photon absorption laser induced fluorescence measurements (TALIF) made on the HIT-SI3 experiment. TALIF is used to measure the absolute density and temperature of monatomic deuterium atoms. Neutral densities on the order of 1015 m-3 and neutral temperatures between 0.6-1.7 eV were measured towards the end of decay of spheromak configurations with initial toroidal currents between 10-12 kA. Validation results between TALIF measurements and PSI-Tet simulations with the implemented dynamic neutral model will be presented. Additionally, preliminary dynamic neutral simulations of the HIT-SI/HIT-SI3 spheromak plasmas sustained with inductive helicity injection will be presented. Lastly, potential benefits of an expansion of the two-fluid model into a multi-fluid model that includes multiple neutral species and tracking of charge states will be discussed.

  8. Experiments of spheromak and reversed field configuration in 2m theta pinch

    International Nuclear Information System (INIS)

    Nogi, Y.; Shimamura, S.; Ogura, H.; Osanai, Y.; Saito, K.; Shiina, S.; Yoshimura, H.

    1981-01-01

    Since the z-current produces the paramagnetic field near the electrodes, the spheromak formation is more difficult in the straight bias field. In order to help the reconnection at the coil ends, the cusp bias coils are added to both ends of the straight coil. Then the spheromak configuration is formed and the plasma is confined for 5 to 10 μs. On the other hand, the RFC continues for about 30 μs in case of the straight bias field. The confinement time is limited by the rotational instability. Although the start time of the instability is not clear, the elongation of the plasma is detected in 15 to 20 μs after the RFC is formed. The period of the rotation is slightly different every shot. Detailed study of the instability is being pursued

  9. Final Report Sustained Spheromak Physics Project FY 1997 - FY 1999

    International Nuclear Information System (INIS)

    Hooper, E.B.; Hill, D.N.

    2000-01-01

    This is the final report on the LDRD SI-funded Sustained Spheromak Physics Project for the years FY1997-FY1999, during which the SSPX spheromak was designed, built, and commissioned for operation at LLNL. The specific LDRD project covered in this report concerns the development, installation, and operation of specialized hardware and diagnostics for use on the SSPX facility in order to study energy confinement in a sustained spheromak plasma configuration. The USDOE Office of Fusion Energy Science funded the construction and routine operation of the SSPX facility. The main distinctive feature of the spheromak is that currents in the plasma itself produce the confining toroidal magnetic field, rather than external coils, which necessarily thread the vacuum vessel. There main objective of the Sustained Spheromak Physics Project was to test whether sufficient energy confinement could be maintained in a spheromak plasma sustained by DC helicity injection. Achieving central electron temperatures of several hundred eV would indicate this. In addition, we set out to determine how the energy confinement scales with T c and to relate the confinement time to the level of internal magnetic turbulence. Energy confinement and its scaling are the central technical issues for the spheromak as a fusion reactor concept. Pending the outcome of energy confinement studies now under way, the spheromak could be the basis for an attractive fusion reactor because of its compact size, simply-connected magnetic geometry, and potential for steady-state current drive

  10. Investigations into the relationship between spheromak, solar, and astrophysical plasmas

    International Nuclear Information System (INIS)

    Bellan, P.M.; Hsu, S.C.; Hansen, J.F.; Tokman, M.; Pracko, S.E.; Romero-Talamas, C.A.

    2003-01-01

    Spheromaks offer the potential for a simple, low cost fusion reactor and involve physics similar to certain solar and astrophysical phenomena. A program to improve understanding of spheromaks by exploiting this relationship is underway using (i) a planar spheromak gun and (ii) a solar prominence simulator. These devices differ in symmetry but both involve spheromak technology whereby high-voltage is applied across electrodes linking a bias magnetic flux created by external coils. The planar spheromak gun consists of a co-planar disk and annulus linked by a poloidal bias field. Application of high voltage across the gap between disk and annulus drives a current along the bias field. If the current to flux ratio exceeds the inverse of the characteristic linear dimension, a spheromak is ejected. A distinct kink forms just below the ejection threshold. The solar simulation gun consists of two adjacent electromagnets which generate a 'horse-shoe' arched bias field. A current is driven along this arched field by a capacitor bank. The current channel first undergoes pinching, then writhes, and finally bulges outwards due to the hoop force. (author)

  11. Studies of conceptual spheromak fusion reactors

    International Nuclear Information System (INIS)

    Katsurai, M.; Yamada, M.

    1982-01-01

    Preliminary design studies are carried out for a spheromak fusion reactor. Simplified circuit theory is applied to obtain the characteristic relations among various parameters of the spheromak configuration for an aspect ratio of A >or approx. 1.6. These relations are used to calculate the parameters for the conceptual designs of three types of fusion reactor: (1) the DT reactor with two-component-type operation, (2) the ignited DT reactor, and (3) the ignited catalysed-type DD reactor. With a total wall loading of approx. 4 MW.m -2 , it is found that edge magnetic fields of only approx. 4 T (DT) and approx. 9 T (Cat. DD) are required for ignited reactors of 1 m plasma (minor) radius with output powers in the gigawatt range. An assessment of various schemes of generation, compression and translation of spheromak plasmas is presented. (author)

  12. Spheromak Buildup in SSPX using a Modular Capacitor Bank

    International Nuclear Information System (INIS)

    Wood, R D; McLean, H S; Hill, D N; Hooper, E B; Romero-Talamas, C A

    2006-01-01

    The Sustained Spheromak Physics Experiment (SSPX) [1] was designed to address both magnetic field generation and confinement. The SSPX produces 1.5-3.5msec, spheromak plasmas with a 0.33m major radius and a minor radius of ∼0.23m. DC coaxial helicity injection is used to build and sustain the spheromak plasma within the flux conserver. Optimal operation is obtained by flattening the profile of λ = μ 0 j/B, consistent with reducing the drive for tearing and other MHD modes, and matching of edge current and bias flux to minimize |(delta)B/B| rms . With these optimizations, spheromak plasmas with central T e >350eV and β e ∼ 5% with toroidal fields of 0.6T [3] have been obtained. If a favorable balance between current drive efficiency and energy confinement can be shown, the spheromak has the potential to yield an attractive magnetic fusion concept [4]. The original SSPX power system consists of two lumped-circuit capacitor banks with fixed circuit parameters. This power system is used to produce an initial fast formation current pulse (10kV, 0.5MJ formation bank), followed by a lower current, 3.5ms flattop sustainment pulse (5kV, 1.5MJ sustainment bank). Experimental results indicate that a variety of injected current pulses, such as a longer sustainment flattop [5], higher and longer fast formation [6], and multiple current pulses [7], might further our understanding of magnetic field generation. Although the formation bank can be split into two independent banks capable of producing other injected current waveforms, the variety of current waveforms produced by this power system is limited. Thus, to extend the operating range of the SSPX, a new pulsed-power system has been designed and partially constructed. In this paper, we discuss the design of the programmable bank and present first results from using the bank to increase the magnetic field in SSPX

  13. Steady-state operation of spheromaks by inductive techniques

    International Nuclear Information System (INIS)

    Janos, A.

    1984-04-01

    A method to maintain a steady-state spheromak configuration inductively using the S-1 Spheromak device is described. The S-1 Spheromak formation apparatus can be utilized to inject magnetic helicity continuously (C.W., not pulsed or D.C.) into the spheromak configuration after equilibrium is achieved in the linked mode of operation. Oscillation of both poloidal- and toroidal-field currents in the flux core (psi-phi Pumping), with proper phasing, injects a net time-averaged helicity into the plasma. Steady-state maintenance relies on flux conversion, which has been earlier identified. Relevant experimental data from the operation of S-1 are described. Helicity flow has been measured and the proposed injection scheme simulated. In a reasonable time practical voltages and frequencies can inject an amount of helicity comparable to that in the initial plasma. Plasma currents can be maintained or increased. This pumping technique is similar to F-THETA Pumping of a Reversed-Field-Pinch but is applied to this inverse-pinch formation

  14. Model predictions for auxiliary heating in spheromaks

    International Nuclear Information System (INIS)

    Fauler, T.K.; Khua, D.D.

    1997-01-01

    Calculations are presented of the plasma temperature waited for under auxiliary heating in spheromaks. A model, ensuring good agreement of earlier experiments with joule heating results, is used. The model includes heat losses due to magnetic fluctuations and shows that the plasma temperatures of the kilo-electron-volt order may be achieved in a small device with the radius of 0.3 m only

  15. Advanced spheromak fusion reactor

    International Nuclear Information System (INIS)

    Fowler, T.K.

    1996-01-01

    The spheromak has no toroidal magnetic field coils or other structure along its geometric axis, and is thus more attractive than the leading magnetic fusion reactor concept, the tokamak. As a consequence of this and other attributes, the spheromak reactor may be compact and produce a power density sufficiently high to warrant consideration of a liquid 'blanket' that breeds tritium, converts neutron kinetic energy to heat, and protects the reactor vessel from severe neutron damage. However, the physics is more complex, so that considerable research is required to learn how to achieve the reactor potential. Critical physics problems and possible ways of solving them are described. The opportunities and issues associated with a possible liquid wall are considered to direct future research

  16. Heat loss by helicity injection in spheromaks

    International Nuclear Information System (INIS)

    Fowler, T.K.

    1994-01-01

    A model is presented for spheromak buildup and decay including thermal diffusivity associated with magnetic turbulence during helicity injection. It is shown that heat loss by magnetic turbulence scales more favorably than gyroBohm transport. Thus gyroBohm scaling for the proposed ignition experiment would be the conservative choice, though present experiments may be dominated by magnetic turbulence. Because of a change in boundary conditions when the gun is turned off, the model may account for the observed increase in electron temperature in CTX after turnoff

  17. A new diagnostic for spheromaks

    International Nuclear Information System (INIS)

    Boyd, D.A.

    1986-01-01

    Electron cyclotron emission from a spheromak plasma may be able to provide information about the confining magnetic field of the system. Emission generated in the extraordinary mode wit hits electric vector perpendicular to the local magnetic field at sufficiently high frequency will propagate out of the plasma while retaining the original orientation if its electric vector. Thus, a measurement of the orientation of the emergent electric vector and the emission frequency will allow one to deduce the orientation and strength of the magnetic field at the radiation source. In this paper, simple models of the Maryland spheromak are used to examine the practicality of such a diagnostic

  18. The University of Maryland spheromak fusion experiment: Final report

    International Nuclear Information System (INIS)

    Antoniades, J.A.; Chin-Fatt, C.; DeSilva, A.W.; Goldenbaum, G.C.; Hess, R.A.; Shaw, R.S.

    1986-01-01

    The spheromak is a magnetic plasma confinement configuration that features a simple magnetic structure free of coils that link the plasma torus. It offers the possibility of a simple and efficient confinement system for a fusion plasma. Design of the experimental apparatus occupied the first 15 months of the contract period. At the same time, computer studies of the formation of the spheromak plasma, using a two-dimensional MHD code were performed. After the first 12 months of the contract period, subcontracts were let for major components of the system, particularly for the liquid nitrogen cooled bias magnetic coils, the associated power supplies, and the capacitors for the reversal bank. When the design work was complete, the machining contract for the vacuum vessel was placed. At about this time, work on the operating system for the control computer was begun. The necessary hardware items for the data acquisition computer were decided upon and ordered at the end of the second year. The capacitor bank for the Z-directed current (I/sub z/ bank) was rebuilt from existing parts here, and construction of this bank and of the parts for the reversal bank was accomplished while the outside fabrication of other major parts was in progress. Switching hardware for the two capacitor banks was fabricated in house to reduce costs. As capacitors for the reversal bank were delivered, they were incorporated into the bank modules. A full description of the MS experimental hardware is described in this paper. 2 refs., 9 figs., 1 tab

  19. All plasma spheromak: the plasmak

    International Nuclear Information System (INIS)

    Koloc, P.; Ogden, J.

    1981-01-01

    There has been an evolutionary pattern established in magnetic fusion concepts. The flow in ideas follows three directions. By extrapolating this evolutionary movement, we have anticipated the concept called Spheromak and have predicted the omega of this evolution which is called PLASMAK, or Plasma Spheromak. The evolutionary directions are from open systems to closed systems, from zero or low dimensional compression schemes to three dimensional compression, and finally from plasma configurations without any self confining currents to a plasma configuration which is completely self confined except for the mechanical pressure necessary to maintain the verticle field and hoop stress. Nevertheless, the plasma is imprisoned by heavy poloidal coils and a vacuum wall

  20. Progress in the SSPX Spheromak

    International Nuclear Information System (INIS)

    McLean, H S; Woodruff, S; Hill, D N; Bulmer, R H; Cohen, B I; Hooper, E B; Moller, J; Ryutov, D D; Stallard, B W; Wood, R D; Holcomb, C T; Jarboe, T R; Romero-Talamas, C

    2003-01-01

    The spheromak, with its simply connected geometry, holds promise as a less expensive fusion reactor. It has reasonably good plasma beta and can be formed and sustained in steady state with a magnetized coaxial plasma gun. The Sustained Spheromak Physics Experiment (SSPX) shown in Fig. 1 was constructed to investigate the key issues of magnetic field generation and energy confinement. In addition to the coaxial gun, nine magnetic field coils are utilized to shape the vacuum magnetic flux. This flexibility allows operation in many different regimes producing very different plasma characteristics. Pulse length is extended and magnetic field strength is increased. Improved surface conditioning produces plasmas with low impurity content, and higher electron temperature, T e . Electron heat transport within the separatrix is reduced by a factor of 4. The results strongly suggest the existence of closed flux surfaces even though the plasma is connected to the coaxial source. The CORSICA Grad-Shafranov 2-d equilibrium code with data from edge magnetic probes along with T e and electron density ne from Thomson scattering is used to calculate internal profiles: normalized current γ = μ 0 J/B, safety factor = q, ohmic heating, thermal energy density, and thermal diffusivity = ξ e . Ohmic heating is calculated by assuming spatially constant Spitzer resistivity with Z eff =2.3 estimated by VUV spectroscopy

  1. Stability of force-free spheromak plasma in spheroidal flux conserver

    International Nuclear Information System (INIS)

    Kaneko, Shobu; Tsutsui, Hiroaki

    1988-01-01

    The Woltjer-Taylor method is applied to spheromak plasmas in spheroidal flux conservers. As models of the flux conserver, both oblate and prolate spheroidal vessels with a center conductor are used. The plasma is not assumed to be nearly spherical, and the Rayleigh-Ritz method and the finite element method are used to evaluate the eigenvalues. The oblate spheromak is shown to be stable irrespective of the shape of the flux conserver. Though the prolate spheromak is unstable if there is no center conductor, it can be stable if the center conductor is installed. (author)

  2. Increased particle confinement with the use of external dc bias field in the CTX spheromak

    International Nuclear Information System (INIS)

    Barnes, C.W.; Hoida, H.W.; Henins, I.; Fernandez, J.C.; Jarboe, T.R.; Marklin, G.J.

    1985-01-01

    Spheromaks are formed in a mesh flux conserver in the presence of an external dc bias field. The spheromaks remain stable to tilt instabilities with ratios of bias-to-spheromak flux of up to 47 +- 7%. Normally applied bias flux puts the spheromak separatrix inside the metal mesh and improves the particle confinement

  3. Ohmic heating of a spheromak to 100 eV

    Energy Technology Data Exchange (ETDEWEB)

    Jarboe, T.R.; Barnes, C.W.; Henins, I.; Hoida, H.W.; Knox, S.O.; Linford, R.K.; Sherwood, A.R.

    1984-01-01

    The first spheromaks with Thomson-scattering-measured electron temperatures of over 100 eV are described. The spheromak is generated by a magnetized coaxial plasma source in a background gas of 30 mTorr of H/sub 2/, and it is stably confined in an oblate 80 cm diam copper mesh flux conserver. The open mesh design allows rapid impurity transport out of the spheromak. The peak temperature, measured using multipoint Thomson scattering, is observed to rise from approximately 25 eV to over 100 eV in about 0.2 msec due to Ohmic heating from the decaying magnetic fields. Density (approx.5 x 10/sup 13/ cm/sup -3/) and magnetic fields (approximately 2 kG) are measured using interferometry and magnetic probes.

  4. Ohmic heating of a spheromak to 100 eV

    International Nuclear Information System (INIS)

    Jarboe, T.R.; Barnes, C.W.; Henins, I.; Hoida, H.W.; Knox, S.O.; Linford, R.K.; Sherwood, A.R.

    1984-01-01

    The first spheromaks with Thomson-scattering-measured electron temperatures of over 100 eV are described. The spheromak is generated by a magnetized coaxial plasma source in a background gas of 30 mTorr of H 2 , and it is stably confined in an oblate 80 cm diam copper mesh flux conserver. The open mesh design allows rapid impurity transport out of the spheromak. The peak temperature, measured using multipoint Thomson scattering, is observed to rise from approximately 25 eV to over 100 eV in about 0.2 msec due to Ohmic heating from the decaying magnetic fields. Density (approx.5 x 10 13 cm -3 ) and magnetic fields (approximately 2 kG) are measured using interferometry and magnetic probes

  5. Stellarator-Spheromak

    International Nuclear Information System (INIS)

    Moroz, P.E.

    1997-03-01

    A novel concept for magnetic plasma confinement, Stellarator-Spheromak (SSP), is proposed. Numerical analysis with the classical-stellarator-type outboard stellarator windings demonstrates a number of potential advantages of SSP for controlled nuclear fusion. Among the main ones are: simple and compact magnet coil configuration, absence of material structures (e.g. magnet coils or conducting walls) in the center of the torus, high rotational transform, and a possibility of MHD equilibria with very high β (pressure/magnetic pressure) of the confined plasma

  6. Controlled and spontaneous magnetic field generation in a gun-driven spheromak

    International Nuclear Information System (INIS)

    Woodruff, S.; Cohen, B.I.; Hooper, E.B.; Mclean, H.S.; Stallard, B.W.; Hill, D.N.; Holcomb, C.T.; Romero-Talamas, C.; Wood, R.D.; Cone, G.; Sovinec, C.R.

    2005-01-01

    In the Sustained Spheromak Physics Experiment, SSPX [E. B. Hooper, D. Pearlstein, and D. D. Ryutov, Nucl. Fusion 39, 863 (1999)], progress has been made in understanding the mechanisms that generate fields by helicity injection. SSPX injects helicity (linked magnetic flux) from 1 m diameter magnetized coaxial electrodes into a flux-conserving confinement region. Control of magnetic fluctuations (δB/B∼1% on the midplane edge) yields T e profiles peaked at >200 eV. Trends indicate a limiting beta (β e ∼4%-6%), and so we have been motivated to increase T e by operating with stronger magnetic field. Two new operating modes are observed to increase the magnetic field: (A) Operation with constant current and spontaneous gun voltage fluctuations. In this case, the gun is operated continuously at the threshold for ejection of plasma from the gun: stored magnetic energy of the spheromak increases gradually with δB/B∼2% and large voltage fluctuations (δV∼1 kV), giving a 50% increase in current amplification, I tor /I gun . (B) Operation with controlled current pulses. In this case, spheromak magnetic energy increases in a stepwise fashion by pulsing the gun, giving the highest magnetic fields observed for SSPX (∼0.7 T along the geometric axis). By increasing the time between pulses, a quasisteady sustainment is produced (with periodic good confinement), comparing well with resistive magnetohydrodynamic simulations. In each case, the processes that transport the helicity into the spheromak are inductive and exhibit a scaling of field with current that exceeds those previously obtained. We use our newly found scaling to suggest how to achieve higher temperatures with a series of pulses

  7. Controlled and Spontaneous Magnetic Field Generation in a Gun-Driven Spheromak

    International Nuclear Information System (INIS)

    Woodruff, S; Cohen, B I; Hooper, E B; McLean, H S; Stallard, B W; Hill, D N; Holcomb, C T; Romero-Talamas, C; Wood, R D; Cone, G; Sovinec, C R

    2005-04-01

    In the Sustained Spheromak Physics Experiment, SSPX, progress has been made in understanding the mechanisms that generate fields by helicity injection. SSPX injects helicity (linked magnetic flux) from 1-m diameter magnetized coaxial electrodes into a flux-conserving confinement region. Control of magnetic fluctuations ((delta)B/B∼1% on the midplane edge) yields T e profiles peaked at > 200eV. Trends indicate a limiting beta (β e ∼ 4-6%), and so we have been motivated to increase T e by operating with stronger magnetic field. Two new operating modes are observed to increase the magnetic field: (A) Operation with constant current and spontaneous gun voltage fluctuations. In this case, the gun is operated continuously at the threshold for ejection of plasma from the gun: stored magnetic energy of the spheromak increases gradually with (delta)B/B ∼2% and large voltage fluctuations ((delta)V ∼ 1kV), giving a 50% increase in current amplification, I tor /I gun . (B) Operation with controlled current pulses. In this case, spheromak magnetic energy increases in a stepwise fashion by pulsing the gun, giving the highest magnetic fields observed for SSPX (∼0.7T along the geometric axis). By increasing the time between pulses, a quasi-steady sustainment is produced (with periodic good confinement), comparing well with resistive MHD simulations. In each case, the processes that transport the helicity into the spheromak are inductive and exhibit a scaling of field with current that exceeds those previously obtained. We use our newly found scaling to suggest how to achieve higher temperatures with a series of pulses

  8. Stability of spheroidal spheromak plasma by use of force-free approximation

    International Nuclear Information System (INIS)

    Kaneko, Shobu; Tsutsui, Hiroaki.

    1987-09-01

    The Woltjer-Taylor method is applied to spheromak plasmas in spheroidal flux conservers. As models of the flux conserver, both oblate and prolate spheroidal vessels with a center conductor are used. The plasma is not assumed to be nearly spherical, and the Rayleigh-Ritz method and the finite element method are used to evaluate the eigenvalues. The oblate spheromak is shown to be stable irrespective of the shape of the flux conserver. Though the prolate spheromak is unstable if there is no center conductor, it can be stable if the center conductor is installed. (author)

  9. Theoretical investigation of field-line quality in a driven spheromak

    International Nuclear Information System (INIS)

    Cohen, R.H.; Cohen, B.I.; Berk, H.L.

    2003-01-01

    Theoretical studies aimed at predicting and diagnosing field-line quality in a spheromak are described. These include nonlinear 3-D MHD simulations, stability studies, analyses of confinement in spheromaks dominated by either open (stochastic) field lines or approximate flux surfaces, and a theory of fast electrons as a probe of field-line length. (author)

  10. MHD stability analysis of axisymmetric surface current model tokamaks close to the spheromak regime

    International Nuclear Information System (INIS)

    Honma, Toshihisa; Kaji, Ikuo; Fukai, Ichiro; Kito, Masafumi.

    1984-01-01

    In the toroidal coordinates, a stability analysis is presented for very low-aspect-ratio tokamaks with circular cross section which is described by a surface current model (SCM) of axisymmetric equilibria. The energy principle determining the stability of plasma is treated without any expansion of aspect ratio. Numerical results show that, owing to the occurrence of the non-axisymmetric (n=1) unstable modes, there exists no MHD-stable ideal SCM spheromak characterized by zero external toroidal vacuum field. Instead, a stable spheromak-type plasma which comes to the ideal SCM spheromak is provided by the configuration with a very weak external toroidal field. Close to the spheromak regime (1.0 1 aspect ratio< = 1.1), the minimum safety factor and the critical β-values increase mo notonically with aspect ratio decreasing from a large value, and curves of βsub(p) versus β in the marginal stability approach to an ideal SCM spheromak line βsub(p)=β. (author)

  11. Steady-state spheromak reactor studies

    International Nuclear Information System (INIS)

    Krakowski, R.A.; Hagenson, R.L.

    1985-01-01

    After summarizing the essential elements of a gun-sustained spheromak, the potential for a steady-state is explored by means of a comprehensive physics/engineering/costing model. A range of cost-optimized reactor design points is presented, and the sensitivity of cost to key physics, engineering, and operational variables is reported

  12. Progress with energy confinement time in the CTX spheromak

    International Nuclear Information System (INIS)

    Jarboe, T.R.; Fernandez, J.C.; Wysocki, F.J.; Barnes, C.W.; Henins, I.; Knox, S.O.; Marklin, G.J.

    1990-01-01

    The 0.67 m radius mesh flux conserver (MFC) in CTX was replaced by a solid flux conserver (SFC), resulting in greatly reduced field errors. Decreased spheromak open flux led to vastly improved decaying discharged, including increased global energy confinement times, τ E (from 20 to 180 μs), and corresponding magnetic energy decay times, τ B 2 (from 0.7 to 2 ms). Improved confinement allowed the observation of the pressure-driven instability (predicted by Mercier) which ejects plasma from the spheromak interior to the wall

  13. Power balance and characterization of impurities in the Maryland Spheromak

    International Nuclear Information System (INIS)

    Cote, C.

    1993-01-01

    The Maryland Spheromak is a medium size magnetically confined plasma of toroidal shape. Low T e and higher n e than expected contribute to produce a radiation dominated short-lived spheromak configuration. A pyroelectric radiation detector and a VUV spectrometer have been used for space and time-resolved measurements of radiated power and impurity line emission. Results from the bolometry and VUV spectroscopy diagnostics have been combined to give the absolute concentrations of the major impurity species together with the electron temperature. The large amount of oxygen and nitrogen ions in the plasma very early in the discharge is seen to be directly responsible for the abnormally high electron density. The dominant power loss mechanisms are found to be radiation (from impurity line emission) and electron convection to the end walls during the formation phase of the spheromak configuration, and radiation only during the decay phase

  14. Power balance and characterization of impurities in the Maryland Spheromak

    Energy Technology Data Exchange (ETDEWEB)

    Cote, Claude [Univ. of Maryland, College Park, MD (United States)

    1993-01-01

    The Maryland Spheromak is a medium size magnetically confined plasma of toroidal shape. Low Te and higher ne than expected contribute to produce a radiation dominated short-lived spheromak configuration. A pyroelectric radiation detector and a VUV spectrometer have been used for space and time-resolved measurements of radiated power and impurity line emission. Results from the bolometry and VUV spectroscopy diagnostics have been combined to give the absolute concentrations of the major impurity species together with the electron temperature. The large amount of oxygen and nitrogen ions in the plasma very early in the discharge is seen to be directly responsible for the abnormally high electron density. The dominant power loss mechanisms are found to be radiation (from impurity line emission) and electron convection to the end walls during the formation phase of the spheromak configuration, and radiation only during the decay phase.

  15. Possible signatures of dissipation from time-series analysis techniques using a turbulent laboratory magnetohydrodynamic plasma

    International Nuclear Information System (INIS)

    Schaffner, D. A.; Brown, M. R.; Rock, A. B.

    2016-01-01

    The frequency spectrum of magnetic fluctuations as measured on the Swarthmore Spheromak Experiment is broadband and exhibits a nearly Kolmogorov 5/3 scaling. It features a steepening region which is indicative of dissipation of magnetic fluctuation energy similar to that observed in fluid and magnetohydrodynamic turbulence systems. Two non-spectrum based time-series analysis techniques are implemented on this data set in order to seek other possible signatures of turbulent dissipation beyond just the steepening of fluctuation spectra. Presented here are results for the flatness, permutation entropy, and statistical complexity, each of which exhibits a particular character at spectral steepening scales which can then be compared to the behavior of the frequency spectrum.

  16. Measurement of magnetic properties of confined compact toroid plasma (spheromak)

    International Nuclear Information System (INIS)

    Hwang, Fu-Kwun.

    1991-01-01

    The theoretical aspect of the spheromak is described in this paper. The MS machine hardware will be explored along with the formation scheme and diagnostic systems. The magnetic pickup probes, their calibration procedures and the data analysis methods will be discussed. Observations from the probe measurements and magnetic properties of the MS spheromak are considered. The axisymmetric Grad-Shafranov equilibrium code calculations are presented and compared with the measurements. Magnetic helicity and its correlation with the experimental observations is described

  17. Experimental identification of the kink instability as a poloidal flux amplification mechanism for coaxial gun spheromak formation

    International Nuclear Information System (INIS)

    Hsu, S.C.; Bellan, P.M.

    2003-01-01

    The magnetohydrodynamic kink instability is observed and identified experimentally as a poloidal flux amplification mechanism for coaxial gun spheromak formation. Plasmas in this experiment fall into three distinct regimes which depend on the peak gun current to magnetic flux ratio, with (I) low values resulting in a straight plasma column with helical magnetic field, (II) intermediate values leading to kinking of the column axis, and (III) high values leading immediately to a detached plasma. Onset of column kinking agrees quantitatively with the Kruskal-Shafranov limit, and the kink acts as a dynamo which converts toroidal to poloidal flux. Regime II clearly leads to both poloidal flux amplification and the development of a spheromak configuration

  18. Experimental identification of the kink instability as a poloidal flux amplification mechanism for coaxial gun spheromak formation.

    Science.gov (United States)

    Hsu, S C; Bellan, P M

    2003-05-30

    The magnetohydrodynamic kink instability is observed and identified experimentally as a poloidal flux amplification mechanism for coaxial gun spheromak formation. Plasmas in this experiment fall into three distinct regimes which depend on the peak gun current to magnetic flux ratio, with (I) low values resulting in a straight plasma column with helical magnetic field, (II) intermediate values leading to kinking of the column axis, and (III) high values leading immediately to a detached plasma. Onset of column kinking agrees quantitatively with the Kruskal-Shafranov limit, and the kink acts as a dynamo which converts toroidal to poloidal flux. Regime II clearly leads to both poloidal flux amplification and the development of a spheromak configuration.

  19. 3-D MHD modeling and stability analysis of jet and spheromak plasmas launched into a magnetized plasma

    Science.gov (United States)

    Fisher, Dustin; Zhang, Yue; Wallace, Ben; Gilmore, Mark; Manchester, Ward; Arge, C. Nick

    2016-10-01

    The Plasma Bubble Expansion Experiment (PBEX) at the University of New Mexico uses a coaxial plasma gun to launch jet and spheromak magnetic plasma configurations into the Helicon-Cathode (HelCat) plasma device. Plasma structures launched from the gun drag frozen-in magnetic flux into the background magnetic field of the chamber providing a rich set of dynamics to study magnetic turbulence, force-free magnetic spheromaks, and shocks. Preliminary modeling is presented using the highly-developed 3-D, MHD, BATS-R-US code developed at the University of Michigan. BATS-R-US employs an adaptive mesh refinement grid that enables the capture and resolution of shock structures and current sheets, and is particularly suited to model the parameter regime under investigation. CCD images and magnetic field data from the experiment suggest the stabilization of an m =1 kink mode trailing a plasma jet launched into a background magnetic field. Results from a linear stability code investigating the effect of shear-flow as a cause of this stabilization from magnetic tension forces on the jet will be presented. Initial analyses of a possible magnetic Rayleigh Taylor instability seen at the interface between launched spheromaks and their entraining background magnetic field will also be presented. Work supported by the Army Research Office Award No. W911NF1510480.

  20. Confinement requirements for OHMIC-compressive ignition of a Spheromak plasma

    International Nuclear Information System (INIS)

    Olson, R.; Gilligan, J.; Miley, G.

    1980-01-01

    The Moving Plasmoid Reactor (MPR) is an attractive alternative magnetic fusion scheme in which Spheromak plasmoids are envisioned to be formed, compressed, burned, and expanded as the plasmoids translate through a series of linear reactor modules. Although auxiliary heating of the plasmoids may be possible, the MPR scenario would be especially interesting if ohmic decay and compression along were sufficient to heat the plasmoids to an ignition temperature. In the present work, we will study the transport conditions under which a Spheromak plasmoid could be expected to reach ignition via a combination of ohmic and compression heating

  1. Confinement requirements for ohmic-compressive ignition of a Spheromak plasma

    International Nuclear Information System (INIS)

    Olson, R.E.; Miley, G.H.

    1981-01-01

    The Moving Plasmoid Reactor (MPR) is an attractive alternative magnetic fusion scheme in which Spheromak plasmoids are envisioned to be formed, compressed, burned, and expanded as the plasmoids translate through a series of linear reactor modules. Although auxiliary heating of the plasmoids may be possible, the MPR scenario would be especially interesting if ohmic decay and compression alone is sufficient to heat the plasmoids to an ignition temperature. In the present work, we examine the transport conditions under which a Spheromak plasmoid can be expected to reach ignition via a combination of ohmic and compression heating

  2. Relaxation phenomena in the high temperature S-1 spheromak

    International Nuclear Information System (INIS)

    Ono, Y.; Ellis, R.A. Jr.; Janos, A.C.; Levinton, F.M.; Mayo, R.M.; Motley, R.W.; Ueda, Y.; Yamada, M.

    1988-06-01

    Operation of the S-1 device in a high current density (j/n/sub e/ ≥ 2 /times/ 10 -14 A/center dot/m) regime has created high electron temperature spheromaks (50eV ≤ T/sub e/ ≤ 130eV). The mechanisms and causes of the periodic relaxation events often observed in these hotter spheromak plasmas were made clear. Also, a relationship between the MHD relaxation cycle and confinement characteristics was revealed for the first time. Resistive loss at the outer edge of the plasma causes a departure from the initial force-free minimum-energy Taylor state to a MHD profile unstable to low-n ideal MHD modes; a relaxation event then returns the configuration to nearly a Taylor state. 11 refs., 5 figs

  3. Theory of the evolution of the decaying spheromak

    International Nuclear Information System (INIS)

    Sgro, A.G.; Marklin, G.; Mirin, A.A.

    1986-01-01

    The strongly nonlinear dynamics present in decaying Spheromaks has been studied by various computational methods, demonstrating the tendency of the plasma to oscillate about or approach relaxed states and resulting in new insight into the significance of minimum energy states

  4. Energy conversion and concentration in a high-current gaseous discharge: Dense plasma spheromak in plasma focus experiments

    International Nuclear Information System (INIS)

    Kukushkin, A.B.; Rantsev-Kartinov, V.A.; Terentiev, A.R.

    1995-01-01

    Experimental results are presented which verify the possibility of the self-generated transformation of the magnetic field in plasma focus discharges to give a closed, spheromak-like magnetic configuration (SLMC). The energy conversion mechanism suggests a possibility of further concentrating the plasma power density by means of natural compressing the SLMC-trapped plasma by the residual magnetic field of the plasma focus discharge

  5. The spheromak as a prototype for ultra-high-field superconducting magnets

    International Nuclear Information System (INIS)

    Furth, H.P.; Jardin, S.C.

    1987-08-01

    In view of current progress in the development of superconductor materials, the ultimate high-field limit of superconducting magnets is likely to be set by mechanical stress problems. Maximum field strength should be attainable by means of approximately force-free magnet windings having favorable ''MHD'' stability properties (so that small winding errors will not grow). Since a low-beta finite-flux-hole spheromak configuration qualifies as a suitable prototype, the theoretical and experimental spheromak research effort of the past decade has served to create a substantial technical basis for the design of ultra-high-field superconducting coils. 11 refs

  6. Structure of Maryland Spheromak plasmas

    International Nuclear Information System (INIS)

    Hess, R.; Chinfatt, C.; Cote, C.; DeSilva, A.; Filuk, A.; Goldenbaum, G.; Gauvreau, J.; Hwang, Fukwun

    1990-01-01

    Recent efforts on the Maryland Spheromak (MS) have concentrated on detailed measurement of magnetic field structures in order to better understand the formation and evolution of the spheromak configuration. These efforts were prompted by results showing a very rapid decay of the magnetic field under certain conditions. It was not known if this loss was a rapid movement of the plasma to the walls of the vacuum vessel, or by some mechanism causing a rapid decay of a more or less stationary field. To investigate the magnetic field structure in more detail, an array of magnetic probes was built that could be moved from shot to shot so as to acquire a complete map of the three magnetic field components in a plane containing the symmetry axis of the machine. Data taken with these probes in a case where the rapid loss of field occurs is given. Further analysis of the data shows that the instability that forms is a combination of tilt and shift. The initial asymmetry of the magnetic field is possibly due to the non-symmetric configuration of the reversal field coils, or the non-symmetric cabling to the I z electrodes. Future work will concentrate on eliminating the initial plasma asymmetry by eliminating any asymmetries in the machine, and on stopping the tilt/shift instability by different configurations for the passive stabilization coils

  7. Formation of a field-reversed configuration by coalescence of spheromaks

    International Nuclear Information System (INIS)

    Dasgupta, B.; Sato, Tetsuya; Hayashi, Takaya; Watanabe, Kunihiko; Watanabe, Tomohiko

    1995-01-01

    We present a numerical simulation of the slow formation of FRC by the merging of two spheromaks with opposite toroidal fluxes. A rather important feature of such a method of formation of FRC should be made explicit. A spheromak is basically a Taylor minimum energy state. On the other hand the FRC with its single component poloidal magnetic field and high plasma beta is decidedly far away from a Taylor state. So a numerical simulation of this process, besides demonstrating the feasibility of such FRC formation, is expected to show the traits in the process of transition from a Taylor state to a non-Taylor state. 5 refs., 2 figs., 1 tab

  8. Visible Spectrometer at the Compact Toroid Injection Experiment, the Sustained Spheromak Plasma Experiment and the Alcator C-Mod Tokamak for Doppler Width and Shift Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Graf, A; Howard, S; Horton, R; Hwang, D; May, M; Beiersdorfer, P; McLean, H; Terry, J

    2006-05-15

    A novel Doppler spectrometer is currently being used for ion or neutral velocity and temperature measurements on the Alcator C-Mod Tokamak. The spectrometer has an f/No. of {approx}3.1 and is appropriate for visible light (3500-6700 {angstrom}). The full width at half maximum from a line emitting calibration source has been measured to be as small as 0.4 {angstrom}. The ultimate time resolution is line brightness light limited and on the order of ms. A new photon efficient detector is being used for the setup at C-Mod. Time resolution is achieved by moving the camera during a plasma discharge in a perpendicular direction through the dispersion plane of the spectrometer causing a vertical streaking across the camera face. Initial results from C-Mod as well as previous measurements from the Compact Toroid Injection Experiment (CTIX) and the Sustained Spheromak Plasma Experiment (SSPX) are presented.

  9. Effects of passive coils on spheromak gross MHD instabilities

    International Nuclear Information System (INIS)

    Munson, C.; Janos, A.; Paul, S.; Wysocki, F.; Yamada, M.

    1983-01-01

    The experimental investigation of the effectiveness of figure-8 coils in stabilizing the n=1 tilting mode of spheromak plasmas in Proto S-1 A/B is extended. In addition, another coil configuration, the saddle coil, is examined

  10. The spheromak as a compact fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hagenson, R.L.; Krakowski, R.A.

    1987-03-01

    After summarizing the economic and utility-based rationale for compact, higher-power-density fusion reactors, the gun-sustained spheromak concept is explored as one of a number of poloidal-field-dominated confinement configurations that might improve the prospects for economically attractive and operationally simplified fusion power plants. Using a comprehensive physics/engineering/costing model for the spheromak, guided by realistic engineering constraints and physics extrapolation, a range of cost-optimized reactor design points is presented, and the sensitivity of cost to key physics, engineering, and operational variables is reported. The results presented herein provide the basis for conceptual engineering designs of key fusion-power-core (FPC) subsystems and more detailed plasma modeling of this promising, high mass-power-density concept, which stresses single-piece FPC maintenance, steady-state current drive through electrostatic magnetic helicity injection, a simplified co-axial electrode-divertor, and efficient resistive-coal equilibrium-field coils. The optimal FPC size and the cost estimates project a system that competes aggressively with the best offered by alternative energy sources while simplifying considerably the complexity that has generally been associated with most approaches to magnetic fusion energy.

  11. The spheromak as a compact fusion reactor

    International Nuclear Information System (INIS)

    Hagenson, R.L.; Krakowski, R.A.

    1987-03-01

    After summarizing the economic and utility-based rationale for compact, higher-power-density fusion reactors, the gun-sustained spheromak concept is explored as one of a number of poloidal-field-dominated confinement configurations that might improve the prospects for economically attractive and operationally simplified fusion power plants. Using a comprehensive physics/engineering/costing model for the spheromak, guided by realistic engineering constraints and physics extrapolation, a range of cost-optimized reactor design points is presented, and the sensitivity of cost to key physics, engineering, and operational variables is reported. The results presented herein provide the basis for conceptual engineering designs of key fusion-power-core (FPC) subsystems and more detailed plasma modeling of this promising, high mass-power-density concept, which stresses single-piece FPC maintenance, steady-state current drive through electrostatic magnetic helicity injection, a simplified co-axial electrode-divertor, and efficient resistive-coal equilibrium-field coils. The optimal FPC size and the cost estimates project a system that competes aggressively with the best offered by alternative energy sources while simplifying considerably the complexity that has generally been associated with most approaches to magnetic fusion energy

  12. Ion temperature measurements in the Maryland Spheromak

    International Nuclear Information System (INIS)

    Gauvreau, J.L.

    1992-01-01

    Initial spectroscopic data from MS showed evidence of ion heating as deduced from the line widths of different ion species. Detailed measurements of OIV spectral emission line profiles in space and time revealed that heating takes place at early time, before spheromak formation and is occurring within the current discharge. The measured ion temperature is several times the electron temperature and cannot be explained by classical (Spitzer) resistivity. Classically, ions are expected to have lower temperatures than the electrons and therefore, lower temperatures than observed. High ion temperatures have been observed in different RFP's and Spheromaks but are usually associated with relaxation to the Taylor state and occur in the sustainment phase. During formation, the current delivered to start the discharge is not axisymmetric and as a consequence, X-points appear in the magnetic flux. A two dimensional analysis predicts that magnetic reconnection occurring at an X-point can give rise to high ion heating rates. A simple 0-dimensional calculation showed that within the first 20 μs, a conversion of mass flow kinetic energy into ion temperature could take place due to viscosity

  13. On the jets, kinks, and spheromaks formed by a planar magnetized coaxial gun

    International Nuclear Information System (INIS)

    Hsu, S.C.; Bellan, P.M.

    2005-01-01

    Measurements of the various plasma configurations produced by a planar magnetized coaxial gun provide insight into the magnetic topology evolution resulting from magnetic helicity injection. Important features of the experiments are a very simple coaxial gun design so that all observed geometrical complexity is due to the intrinsic physical dynamics rather than the source shape and use of a fast multiple-frame digital camera which provides direct imaging of topologically complex shapes and dynamics. Three key experimental findings were obtained: (1) formation of an axial collimated jet [Hsu and Bellan, Mon. Not. R. Astron. Soc. 334, 257 (2002)] that is consistent with a magnetohydrodynamic description of astrophysical jets (2) identification of the kink instability when this jet satisfies the Kruskal-Shafranov limit, and (3) the nonlinear properties of the kink instability providing a conversion of toroidal to poloidal flux as required for spheromak formation by a coaxial magnetized source [Hsu and Bellan, Phys. Rev. Lett. 90, 215002 (2003)]. An interpretation is proposed for how the n=1 central column instability provides flux amplification during spheromak formation and sustainment, and it is shown that jet collimation can occur within one rotation of the background poloidal field

  14. Recent progress on the HESS experiment

    International Nuclear Information System (INIS)

    Mayo, R.M.; Barnes, D.C.; Freeman, B.; Henins, I.; Jarboe, T.R.; Platts, D.

    1990-01-01

    The new objective of the Los Alamos spheromak program is to assess the use of magnetized plasmas as an energy transfer medium to accelerate material objects to hyper-velocities (approx-gt 20 km/s). In meeting this objective, the authors are committed to the subordinate goals of (1) creating high field, long-lived spheromak discharges, (2) examining the technical feasibility of employing High Explosives (HE) to compress seed spheromaks, and (3) investigate the technical requirements involved in forming spheromaks by Mechanical Helicity Injection (HMI) using HE. This paper describes the recent efforts of the CTR-5, M-4, and M-6 groups at Los Alamos in assessing the feasibility of generating magnetic helicity by mechanical means in the High Explosive Spheromak Source (HESS) experiment

  15. Particle diffusion in a spheromak

    International Nuclear Information System (INIS)

    Meyerhofer, D.D.; Levinton, F.M.; Yamada, M.

    1988-01-01

    The local carbon particle diffusion coefficient was measured in the Proto S-1/C spheromak using a test particle injection scheme. When the plasma was not in a force-free Taylor state, and when there were pressure gradients in the plasma, the particle diffusion was five times that predicted by Bohm and was consistent with collisional drift wave diffusion. The diffusion appears to be driven by correlations of the fluctuating electric field and density. During the decay phase of the discharge when the plasma was in the Taylor state, the diffusion coefficient of the carbon was classical. 23 refs., 4 figs

  16. Amplification of S-1 Spheromak current by an inductive current transformer

    International Nuclear Information System (INIS)

    Jardin, S.C.; Janos, A.; Yamada, M.

    1985-11-01

    We attempt to predict the consequences of adding an inductive current transformer (OH Transformer) to the present S-1 Spheromak experiment. Axisymmetric modeling with only classical dissipation shows an increase of toroidal current and a shrinking and hollowing of the current channel, conserving toroidal flux. These unstable profiles will undergo helical reconnection, conserving helicity K = ∫ A-vector x B-vector d tau while increasing the toroidal flux and decreasing the poloidal flux so that the plasma relaxes toward the Taylor state. This flux rearrangement is modeled by a new current viscosity term in the mean-field Ohm's law which conserves helicity and dissipates energy

  17. Compression of an Accelerated Taylor State in SSX

    Science.gov (United States)

    Shrock, J. E.; Suen-Lewis, E. M.; Barbano, L. J.; Kaur, M.; Schaffner, D. A.; Brown, M. R.

    2017-10-01

    In the Swarthmore Spheromak Experiment (SSX), compact toroidal plasmas are launched from a plasma gun and evolve into minimum energy twisted Taylor states. The plumes initially have a velocity 40 km/s, density 0.4 ×1016 cm-3 , and proton temperature 20 eV . After formation, the plumes are accelerated by pulsed pinch coils with rise times τ1 / 4 = (π / 2) √{ LC } less than 1 μ s and currents Ipeak =V0 / Z =V0 /√{ L / C } on the order of 104 A. The accelerated Taylor States are abruptly stagnated in a copper flux conserver, and over the course of t plasma, the other to particle motion parallel to the field. We observe Taylor state compression most in agreement with the parallel equation of state: d / dt (P∥B2 /n3) = 0 . DOE ARPA-E ALPHA Program.

  18. Equilibrium and stability of the Los Alamos spheromak

    International Nuclear Information System (INIS)

    Marklin, G.

    1984-01-01

    The open mesh flux conserver (MFC) on the Los Alamos spheromak (CTX) has been equipped with a large number of Rogowski loops measuring the current in the individual segments of the MFC, providing a complete picture of the surface current pattern induced by the equilibrium and oscillations of the confined plasma. An analysis was made of the data from these Rogowski loops

  19. Instantaneous current and field structure of a gun-driven spheromak for two gun polarities

    International Nuclear Information System (INIS)

    Woodruff, S; Nagata, M

    2002-01-01

    The instantaneous plasma structure of the SPHEX spheromak is determined here by numerically processing data from insertable Rogowski and magnetic field probes. Data is presented and compared for two modes of gun operation: with the central electrode biased positively and negatively. It is found that while the mean-, or even instantaneous-, field structure would give the impression of a roughly axisymmetric spheromak, the instantaneous current structure does not. Hundred per cent variations in J measured at the magnetic axis can be explained by the rotation of a current filament that has a width equal to half of the radius of the flux-conserving first wall. In positive gun operation, current leaves the filament in the confinement region leading to high wall current there. In negative gun operation, wall current remains low as all injected current returns to the gun through the plasma. The plasma, in either instance, is strongly asymmetric. We discuss evidence for the existence of the current filament in other gun-driven spheromaks and coaxial plasma thrusters

  20. Critical beta for analytical spheromak equilibria

    International Nuclear Information System (INIS)

    Freire, E.M.; Clemente, R.A.

    1985-01-01

    The Mercier criterion is applied to two analytical spheromak equilibria, one with a spherical separatrix and the other with a cylindrical one of variable elongation. The maximum beta, defined as the ratio between the plasma pressure and the magnetic pressure averaged over the plasma volume, for which the criterion is satisfied on every magnetic surface, has been obtained. In the spherical model the critical beta is 0.003, while in the cylindrical case it is a function of the elongation of the separatrix with a maximum of 0.083. (author)

  1. Recent results from the Los Alamos CTX spheromak

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, C.W.; Henins, I.; Hoida, H.W.; Jarboe, T.R.; Knox, S.O.; Linford, R.K.; Platts, D.A.; Sherwood, A.R.

    1982-01-01

    Continued discharge cleaning, improved vacuum practices, and optimized plasma formation operation have resulted in the Los Alamos CTX spheromak experiment achieving 1 millisecond plasma lifetimes with average temperatures of 20 to 40 eV. Impurity radiation power loss has been reduced significantly and the plasma behavior appears to be dominated by pressure-driven instabilities causing increased particle loss. The major advance in operation has been the use of a constant, uniform background of 5 to 20 mTorr of H/sub 2/ filling the vacuum tank, flux conserver, and plasma source. This fill operation directly reduces the impurities generated in the plasma source, allows operation of the source at parameters resulting in fewer impurities, and provides a neutral source to maintain the density for long lifetimes. In this paper we present data on the improved operation of CTX, and present evidence for its ..beta..-limited operation.

  2. Recent results from the Los Alamos CTX spheromak

    International Nuclear Information System (INIS)

    Barnes, C.W.; Henins, I.; Hoida, H.W.; Jarboe, T.R.; Knox, S.O.; Linford, R.K.; Platts, D.A.; Sherwood, A.R.

    1982-01-01

    Continued discharge cleaning, improved vacuum practices, and optimized plasma formation operation have resulted in the Los Alamos CTX spheromak experiment achieving 1 millisecond plasma lifetimes with average temperatures of 20 to 40 eV. Impurity radiation power loss has been reduced significantly and the plasma behavior appears to be dominated by pressure-driven instabilities causing increased particle loss. The major advance in operation has been the use of a constant, uniform background of 5 to 20 mTorr of H 2 filling the vacuum tank, flux conserver, and plasma source. This fill operation directly reduces the impurities generated in the plasma source, allows operation of the source at parameters resulting in fewer impurities, and provides a neutral source to maintain the density for long lifetimes. In this paper we present data on the improved operation of CTX, and present evidence for its β-limited operation

  3. Field-Reversed Configuration Formation Scheme Utilizing a Spheromak and Solenoid Induction

    International Nuclear Information System (INIS)

    Gerhardt, S.P.; Belova, E.V.; Yamada, M.; Ji, H.; Ren, Y.; McGeehan, B.; Inomoto, M.

    2008-01-01

    A new field-reversed configuration (FRC) formation technique is described, where a spheromak transitions to a FRC with inductive current drive. The transition is accomplished only in argon and krypton plasmas, where low-n kink modes are suppressed; spheromaks with a lighter majority species, such as neon and helium, either display a terminal tilt-mode, or an n=2 kink instability, both resulting in discharge termination. The stability of argon and krypton plasmas through the transition is attributed to the rapid magnetic diffusion of the currents that drive the kink-instability. The decay of helicity during the transition is consistent with that expected from resistivity. This observation indicates a new scheme to form a FRC plasma, provided stability to low-n modes is maintained, as well as a unique situation where the FRC is a preferred state

  4. Sustained spheromak coaxial gun operation in the presence of an n=1 magnetic distortion

    International Nuclear Information System (INIS)

    Holcomb, C.T.; Jarboe, T.R.; Hill, D.N.; Woodruff, S.; Wood, R.D.

    2006-01-01

    The Sustained Spheromak Physics Experiment (SSPX) [E. B. Hooper, L. D. Pearlstein, and R. H. Bulmer, Nucl. Fusion 39, 863 (1999)] uses a magnetized coaxial gun to form and sustain spheromaks by helicity injection. Internal probes give the magnetic profile within the gun. An analysis of these data show that a number of commonly applied assumptions are not completely correct, and some previously unrecognized processes may be at work. Specifically, the fraction of the available vacuum flux spanning the gun that is stretched out of the gun is variable and not usually 100%. The n=1 mode that is present during sustained discharges has its largest value of δB/B within the gun, so that instantaneously B within the gun is not axisymmetric. By applying a rigid-rotor model to account for the mode, the instantaneous field and current structure within the gun are determined. The current density is also highly nonaxisymmetric and the local value of λ≡μ 0 j parallel /B is not constant, although the global value λ g ≡μ 0 I g /ψ g closely matches that expected by axisymmetric models. The current distribution near the gun muzzle suggests a cross-field current exists, and this is explained as a line-tying reaction to plasma rotation

  5. Local drift parameter, j/n/sub e/ and resistivity anomaly measurements in CTX spheromaks

    International Nuclear Information System (INIS)

    Hoida, H.W.; Barnes, C.W.; Henins, I.; Jarboe, T.R.; Marklin, G.; Buchenauer, C.J.; Knox, S.O.

    1985-01-01

    In a spheromak, the magnetic fields confining the plasma are generated primarily by internal currents rather than external coils. In order to provide information on the possible existence of current-driven microinstabilities, localized measurements of the ratio of the drift velocity of the electrons generating the internal current to their thermal velocity, V/sub d//V/sub th/ proportional to j/n/sub e/√T/sub e/ (known as the drift or streaming parameter), and j/n/sub e/ (proportional to V/sub d/) are needed. These microinstabilities are in some theories associated with an increase in the resistivity anomaly factor (eta/eta/sub Spitzer/). We present results on local measurements (at the magnetic axis) of the values of V/sub d//V/sub th/ and eta/eta/sub Spitzer/ by combining data from the spatially-resolved diagnostics employed on the CTX spheromak experiment, coupled with current density profile information from equilibrium measurements. The values of V/sub d//V/sub th/ and j/n/sub e/ appear to be correlated with local variations in eta/eta/sub Spitzer/, and can be changed by varying the plasma density. Data sets are presented for three values of n/sub e/

  6. Experimental Identification of the Kink Instability as a Poloidal Flux Amplification Mechanism for Coaxial Gun Spheromak Formation

    OpenAIRE

    Hsu, S. C.; Bellan, P. M.

    2003-01-01

    The magnetohydrodynamic kink instability is observed and identified experimentally as a poloidal flux amplification mechanism for coaxial gun spheromak formation. Plasmas in this experiment fall into three distinct regimes which depend on the peak gun current to magnetic flux ratio, with (I) low values resulting in a straight plasma column with helical magnetic field, (II) intermediate values leading to kinking of the column axis, and (III) high values leading immediately to a detached plasma...

  7. Configuration of gun-generated spheromak in effectively closed metal flux conserver

    International Nuclear Information System (INIS)

    Kato, Yushi; Nishikawa, Masahiro; Honda, Yoshihide; Satomi, Norio; Watanabe, Kenji

    1988-01-01

    In the CTCC-II spheromak experiment, the gun-generated plasma is confined in a spheroidal aluminum flux conserver (FC) with a choking coil. This coil produces the additional magnetic field to close perfectly all magnetic surfaces into the FC, i.e. the entrance hole for plasma injection is enable to be closed by magnetic field. Hence the plasma is confined in the effectively closed metal FC. In this experiment the average life time is 1.2 msec, and electron density and temperature are n e = 2 x 10 13 /cc, T e = 30 eV, respectively. The configuration with a flux hole region in which the toroidal magnetic field vanishes around the geometrical axis has been observed in the FC. The radius of the flux hole depends on the condition how the external choking field is applied. The flux hole enhances the magnetic shear near the plasma surfaces and, therefore, has a stabilizing effect even without inserting the central conducting pole. (author)

  8. Simulation study of stepwise relaxation in a spheromak plasma

    International Nuclear Information System (INIS)

    Horiuchi, Ritoku; Uchida, Masaya; Sato, Tetsuya.

    1991-10-01

    The energy relaxation process of a spheromak plasma in a flux conserver is investigated by means of a three-dimensional magnetohydrodynamic simulation. The resistive decay of an initial force-free profile brings the spheromak plasma to an m = 1/n = 2 ideal kink unstable region. It is found that the energy relaxation takes place in two steps; namely, the relaxation consists of two physically distinguished phases, and there exists an intermediate phase in between, during which the relaxation becomes inactive temporarily. The first relaxation corresponds to the transition from an axially symmetric force-free state to a helically symmetric one with an n = 2 crescent magnetic island structure via the helical kink instability. The n = 2 helical structure is nonlinearly sustained in the intermediate phase. The helical twisting of the flux tube creates a reconnection current in the vicinity of the geometrical axis. The second relaxation is triggered by the rapid growth of the n = 1 mode when the reconnection current exceeds a critical value. The helical twisting relaxes through magnetic reconnection toward an axially symmetric force-free state. It is also found that the poloidal flux reduces during the helical twisting in the first relaxation and the generation of the toroidal flux occurs through the magnetic reconnection process in the second relaxation. (author)

  9. Magnetic flux conversion and relaxation toward a minimum-energy state in S-1 spheromak plasmas

    International Nuclear Information System (INIS)

    Janos, A.

    1985-09-01

    S-1 Spheromak currents and magnetic fluxes have been measured with Rogowski coils and flux loops external to the plasma. Toroidal plasma currents up to 350 kA and spheromak configuration lifetimes over 1.0 msec have been achieved at moderate power levels. The plasma formation in the S-1 Spheromak device is based on an inductive transfer of poloidal and toroidal magnetic flux from a toroidal ''flux core'' to the plasma. Formation is programmed to guide the configuration into a force-free, minimum-energy Taylor state. Properly detailed programming of the formation process is found not to be essential since plasmas adjust themselves during formation to a final equilibrium near the Taylor state. After formation, if the plasma evolves away from the stable state, then distinct relaxation oscillation events occur which restore the configuration to that stable state. The relaxation process involves reconnection of magnetic field lines, and conversion of poloidal to toroidal magnetic flux (and vice versa) has been observed and documented. The scaling of toroidal plasma current and toroidal magnetic flux in the plasma with externally applied currents is consistent with the establishment of a Taylor state after formation. In addition, the magnetic helicity is proportional to that injected from the flux core, independent of how that helicity is generated

  10. Axisymmetric force-free states and relaxation of a spheroidal spheromak

    International Nuclear Information System (INIS)

    Throumoulopoulos, G.N.; Pantis, G.

    1990-01-01

    Axisymmetric force-free equilibrium eigenstates for a prolate as well as an oblate spheroidal Spheromak with arbitrary elongation are obtained. In the framework of the Woltjer-Taylor relaxation theory the relaxed states are also identified. A simple hypothesis for the relaxation process is introduced, which implies that the plasma relaxes from multitoroidal formations to a singly toroidal configuration, in qualitative agreement with experimental results. (author)

  11. Axisymmetric force-free states and relaxation of a spheroidal spheromak

    International Nuclear Information System (INIS)

    Throumoulopoulos, G.N.; Pantis, G.

    1990-01-01

    Axisymmetric force-free equilibrium eigenstates for a prolate as well as an oblate spheroidal spheromak with arbitrary elongation are obtained. In the framework of the Woltjer-Taylor relaxation theory the relaxed states are also identified. A simple hypothesis for the relaxation process is introduced which implies that the plasma relaxes from multitoroidal formations to a singly toroidal configuration in qualitative agreement with experimental results. (Author)

  12. Nonlinear saturation of non-resonant internal instabilities in a straight spheromak

    International Nuclear Information System (INIS)

    Park, W.; Jardin, S.C.

    1982-04-01

    An initial value numerical solution of the time dependent nonlinear ideal magnetohydrodynamic equations demonstrates that spheromak equilibria which are linearly unstable to nonresonant helical internal perturbations saturate at low amplitude without developing singularities. These instabilities thus represent the transition from an axisymmetric to a non-axisymmetric equilibrium state, caused by a peaking of the current density

  13. Current-driven instabilities of the kinetic shear Alfven wave: Application to reversed field pinches and spheromaks

    International Nuclear Information System (INIS)

    Meyerhofer, D.D.; Perkins, F.W.

    1984-01-01

    The kinetic Alfven wave is studied in a cylindrical force-free plasma with self-consistent magnetic fields. This equilibrium represents a reversed field pinch or a spheromak. The stability of the wave is found to depend on the ratio of the electron drift velocity to the Alfven velocity. This ratio varies inversely with the square root of the plasma line density. The critical line density using the Spitzer--Harm electron distribution function is found for reversed field pinches with deuterium plasmas to be approximately 2 x 10 18 and is 5 x 10 17 m -1 in spheromaks with hydrogen plasmas. The critical line density is in reasonable agreement with experimental data for reversed field pinches

  14. Current driven instabilities of the kinetic shear Alfven wave: application to reversed field pinches and spheromaks

    International Nuclear Information System (INIS)

    Meyerhofer, D.D.; Perkins, F.W.

    1984-04-01

    The kinetic Alfven wave is studied in a cylindrical force-free plasma with self-consistent magnetic fields. This equilibrium represents a reversed field pinch or a spheromak. The stability of the wave is found to depend on the ratio of the electron drift velocity to the Alfven velocity. This ratio varies inversely with the square root of the plasma line density. The critical line density using the Spitzer-Harm electron distribution function is found for reversed field pinches with deuterium plasmas to be approximately 2 x 10 18 m -1 and is 5 x 10 17 m -1 in spheromaks with hydrogen plasmas. The critical line density is in reasonable agreement with experimental data for reversed field pinches

  15. Dynamics of spheromak-like compact toroids in a drift tube

    International Nuclear Information System (INIS)

    Suzuki, Y.; Kishimoto, Y.; Hayashi, T.

    2001-01-01

    In order to supply plasma fuel confined in spheromak-like compact toroids (SCTs) to a fusion device, the SCTs must be successfully guided through a drift tube region, in which they might be influenced by the magnetic field leaking from the fusion device. To reveal the SCT dynamics in a drift tube, MHD numerical simulations, where the SCTs are accelerated in a co-axial perfectly conducting cylinder with an external magnetic field, are carried out. In addition, the effect of an extended central electrode is examined by changing the length of the inner conducting cylinder. It is revealed that the SCT penetration depth is shorter than that estimated from the conventional conducting sphere model and that the SCTs are further decelerated by extending the inner conducting cylinder. These results are consistent with the results of the compact toroid injection experiment performed on the TEXT Upgrade tokamak. Finally, the deceleration mechanism of the SCTs is discussed by comparing the simulation result with the proposed theoretical model. (author)

  16. Properties of spheromaks generated by a magnetized coaxial source

    International Nuclear Information System (INIS)

    Hoida, H.W.; Henins, I.; Jarboe, T.R.; Linford, R.K.; Lipson, J.; Marshall, J.; Platts, D.A.; Sherwood, A.R.; Tuszewski, M.

    1981-01-01

    In gun-generated spheromaks impurity contamination plays an important role in determining the energy loss. Metallic impurities can be reduced by an appropriate change of source parameters. The reduction of the level of metal impurities results in a spectrum showing a preponderance of oxygen and carbon lines and OIV radiation is observed to increase indicating a warmer plasma. However, the plasma lifetime is not changed. Discharge cleaning techniques appear to be necessary. It is still possible that electron heat conduction during the reconnection processs will be found to be important once the impurities are reduced

  17. Properties of spheromaks generated by a magnetized coaxial source

    Energy Technology Data Exchange (ETDEWEB)

    Hoida, H.W.; Henins, I.; Jarboe, T.R.; Linford, R.K.; Lipson, J.; Marshall, J.; Platts, D.A.; Sherwood, A.R.; Tuszewski, M.

    1981-01-01

    In gun-generated spheromaks impurity contamination plays an important role in determining the energy loss. Metallic impurities can be reduced by an appropriate change of source parameters. The reduction of the level of metal impurities results in a spectrum showing a preponderance of oxygen and carbon lines and OIV radiation is observed to increase indicating a warmer plasma. However, the plasma lifetime is not changed. Discharge cleaning techniques appear to be necessary. It is still possible that electron heat conduction during the reconnection processs will be found to be important once the impurities are reduced.

  18. Tearing-mode stability of a forming Spheromak plasma

    International Nuclear Information System (INIS)

    Heidbrink, W.W.; Jardin, S.C.; Chance, M.S.

    1981-10-01

    The results of numerical calculations of Δ' for a class of equilibria typical of those encountered during the early formation stage of the S1 Spheromak are presented. The equilibrium plasma is assumed to be cylindrically symmetric and pressureless. It encloses a current carrying perfect conductor (flux core) and is surrounded by a vacuum with zero longitudinal field. Stability boundaries in the space formed by the equilibrium parameters are mapped. The plasma is tearing mode stable provided B/sub z//B/sub theta/ at the flux core is below a certain critical value which depends on the equilibrium parameters. For typical equilibria, this critical value is 0.65

  19. Transport and fluctuations in high temperature spheromak plasmas

    International Nuclear Information System (INIS)

    McLean, H.S.; Wood, R.D.; Cohen, B.I.; Hooper, E.B.; Hill, D.N.; Moller, J.M.; Romero-Talamas, C.; Woodruff, S.

    2006-01-01

    Higher electron temperature (T e >350 eV) and reduced electron thermal diffusivity (χ e 2 /s) is achieved in the Sustained Spheromak Physics Experiment (SSPX) by increasing the discharge current=I gun and gun bias flux=ψ gun in a prescribed manner. The internal current and q=safety factor profile derived from equilibrium reconstruction as well as the measured magnetic fluctuation amplitude can be controlled by programming the ratio λ gun =μ 0 I gun /ψ gun . Varying λ gun above and below the minimum energy eigenvalue=λ FC of the flux conserver (∇xB-vector=λ FC B-vector) varies the q profile and produces the m/n=poloidal/toroidal magnetic fluctuation mode spectrum expected from mode-rational surfaces with q=m/n. The highest T e is measured when the gun is driven with λ gun slightly less than λ FC , producing low fluctuation amplitudes ( e as T e increases, differing from Bohm or open field line transport models where χ e increases with T e . Detailed resistive magnetohydrodynamic simulations with the NIMROD code support the analysis of energy confinement in terms of the causal link with the q profile, magnetic fluctuations associated with low-order mode-rational surfaces, and the quality of magnetic surfaces

  20. The impedance of energy efficiency of a coaxial magnetized plasma source used for spheromak formation and sustainment

    International Nuclear Information System (INIS)

    Barnes, C.W.; Jarboe, T.R.; Marklin, G.J.; Knox, S.O.; Henins, I.

    1989-01-01

    Electrostatic (dc) helicity injection has previously been shown to successfully sustain the magnetic fields of spheromaks and tokamaks. The magnitude of the injected magnetic helicity balances (within experimental error) the flux lost be resistive decay of the toroidal equilibrium. The problem of optimizing this current drive scheme hence involves maximizing the injected helicity (the voltage-connecting-flux product) while minimizing the current (which multiplied by the voltage represents the energy input and also possible damage to the electrodes). The impedance (voltage-to-current ratio) and energy efficiency of a dc helicity injection experiment are studied on the CTX spheromak. Over several years changes were made in the physical geometry of the coaxial magnetized plasmas source as well as changes in the external electrical circuit. The source could be operated over a wide range of external charging voltage (and hence current), applied axial flux, and source gas flow rate. A database of resulting voltage, helicity injection, efficiency, electron density, and rotation has been created. These experimental results are compared to an ideal magnetohydrodynamic theory of magnetic flux flow. The theory is parameterized by the dimensionless Hall parameter, the ratio of electric to mass current. For a constant Hall parameter the theory explains why the voltage depends quadratically on the current at constant flux. The theory also explains the approximately linear dependence of the impedance-to-current ratio on the current-to-flux ratio of the source. 9 refs., 6 figs

  1. Local carbon diffusion coefficient measurement in the S-1 spheromak

    International Nuclear Information System (INIS)

    Mayo, R.M.; Levinton, F.M.; Meyerhofer, D.D.; Chu, T.K.; Paul, S.F.; Yamada, M.

    1988-10-01

    The local carbon diffusion coefficient was measured in the S - 1 spheromak by detecting the radial spread of injected carbon impurity. The radial impurity density profile is determined by the balance of ionization and diffusion. Using measured local electron temperature T/sub e/ and density n/sub e/, the ionization rate is determined from which the particle diffusion coefficient is inferred. The results found in this work are consistent with Bohm diffusion. The absolute magnitude of D/sub /perpendicular// was determined to be (4/approximately/6) /times/ D/sub Bohm/. 25 refs., 13 figs., 2 tabs

  2. Selective decay in a helicity-injected spheromak

    International Nuclear Information System (INIS)

    MartInez, P L Garcia; Farengo, R

    2009-01-01

    The non-linear evolution of several unstable equilibria, representative of helicity-injected spheromak configurations inside a cylindrical flux conserver, is studied by means of three dimensional resistive MHD simulations. These equilibria are force-free (∇ x B = λ(ψ)B) but do not correspond to minimum energy states, having linear λ(ψ) profiles with negative slope. Several aspects of this process are studied (magnetic energy relaxation, selective helicity decay, relaxed profiles) for different initial A slopes. The stability threshold predicted by linear theory is recovered. The results show that complete plasma relaxation leading to a uniform A, is achieved only if the initial profile is hollow enough. The evolution for cases just above the stability threshold is more gentle and does not end in a Taylor state. The final state in these cases has a linear λ(ψ) profile, as the initial condition, but with a smaller slope.

  3. Resistive stability of the cylindrical spheromak

    International Nuclear Information System (INIS)

    DeLucia, J.; Jardin, S.C.; Glasser, A.H.

    1983-11-01

    The growth rates for resistive instabilities in a straight circular cylinder with spheromak profiles are computed by using two complementary methods. The first method employs boundary layer analysis and asymptotic matching, most valid for values of the magnetic Reynolds number S greater than or equal to 10 5 . The second method solved the full linearized resistive MHD equations as an initial value problem, utilizing zone packing around the mode rational surface. Resolution requirements limit this to S less than or equal to 10 7 . The results from these two methods agree to better than 1 in 10 3 in the overlap region 10 7 greater than or equal to S greater than or equal to 10 5 . A scan of parameter space reveals that for parabolic q-profiles, the least unstable configurations have q 0 R/a approx. 0.67. The Hall term in Ohm's Law is easily incorporated into both methods. Recalculating the resistive MHD growth rates in the presence of this term shows that the resistive interchange mode is completely stabilized for a large enough value of the ion cyclotron time

  4. Relaxation and particle diffusion in the Proto S-1/C spheromak

    International Nuclear Information System (INIS)

    Meyerhofer, D.D.

    1987-01-01

    The relationship between relaxation and particle diffusion in the Proto S-1C spheromak has been studied. The plasma was formed in a magnetic configuration which was not the minimum-energy Taylor state, and went through a period of relaxation before its magnetic configuration was that of the Taylor state. Early in the relaxation phase, the internal and external magnetic fluctuations were correlated and it was found that, at the time of peak amplitude, they had a radial structure of a tearing mode. After the reconnection of these modes, the plasma continued to evolve towards the Taylor state with only small magnetic fluctuations at the center of plasma. The local particle diffusion coefficient was measured in these Proto S-1C discharges, the technique used was to inject a delta-function source of impurities into the plasma and observe the motion of the impurities relative to the flux surface. It was found that, during the decay phase of the spheromak discharge, when the plasma was in a Taylor state, the carbon diffusion coefficient was explained classically. While the plasma was relaxing towards the Taylor state, the diffusion coefficient was 2 ∼ 4a times larger than classical. At this time, the plasma was not yet force-free. This nonclassical diffusion appears to have been caused by v/sub ExB/ velocities due to correlations between the fluctuating electric field and density. Because the v/sub ExB/ velocity acts on all of the plasma species similarly, the anomalous hydrogen-particle diffusion coefficient should have been as large as that of carbon

  5. Theory of edge plasma in a spheromak

    International Nuclear Information System (INIS)

    Hooper, E.B.

    1998-01-01

    Properties of the edge plasma in the SSPX spheromak during the plasma formation and sustainment phases are discussed. For the breakdown and formation phase, the main emphasis is on the analysis of possible plasma contamination by impurities from the electrodes of the plasma gun (helicity injector). The issue of an azimuthally uniform breakdown initiation is also discussed. After the plasma settles down in the main vacuum chamber, one has to sustain the current between the electrodes, in order to continuously inject helicity. We discuss properties of the plasma on the field lines intersecting the electrodes. We conclude that the thermal balance of this plasma is maintained by Joule heating competing with parallel heat losses to the electrodes. The resulting plasma temperature is in the range of 15 - 30 eV. Under the expected operational conditions, the ''current'' velocity of the electrons is only slightly below their thermal velocity. Implications of this observation are briefly discussed

  6. The S-1 Spheromak Control System

    International Nuclear Information System (INIS)

    Mathe, P.; Mika, R.; Oliaro, G.

    1983-01-01

    The use of a CAMAC based DEC LSI-11/23 microcomputer to perform all control functions for the S-1 Spheromak is described. The system monitors and controls the three coil systems, Toroidal, Poloidal, and Equilibrium field coils and their associated power sources, the water cooling system, the personnel and machine safety system, the machine and diagnostic timing system and the control room display and operator interface. Future requirements include control of the vacuum system, the gas injection system and interface to the PPPL Data Acquisition System DEC10. The computer is connected to five remotely located CAMAC crates by a fiber-optic serial highway operating at five megahertz. These crates contain interface modules required to control the S-1 experiment. These modules include: D/A and A/D converters, fast transient digitizers, timing modules, temperature sensing modules, CRT alphanumeric display drivers, watchdog timers, and relay and TTL parallel I/O ports. The computer itself resides in crate number0 and consists of an LSI-11/23 with hardware floating post processor, memory management, 256K bytes of memory, four RS-232 serial ports and a 30 megabyte hard disk with a one megabyte floppy disk backup. The majority of software is written in FORTRAN with a few speed critical programs written in PDP-11 MACRO assembly language. The software simulates a sequential state machine which allows easily changeable logic since all logic is represented by standard Boolean Fortran statements. The RSX-11/m operating system allows multiple tasks to be active simultaneously. This provides computing time for operator interactions, editing of critical machine parameters, data analysis and transmission of data to other computers while still maintaining the scan activity which constantly monitors machine parameters

  7. Design of spheromak injector using conical accelerator for large helical device

    Energy Technology Data Exchange (ETDEWEB)

    Miyazawa, J.; Yamada, H.; Yasui, K.; Kato, S. [National Inst. for Fusion Science, Toki, Gifu (Japan); Fukumoto, N.; Nagata, M.; Uyama, T. [Himeji Inst. of Tech., Hyogo (Japan)

    1999-11-01

    Optimization of CT injector for LHD has been carried out and conical electrode for adiabatic CT compression is adopted in the design. Point-model of CT acceleration in a co-axial electrode is solved to optimize the electrode geometry and the power supplies. Large acceleration efficiency of 34% is to be obtained with 3.2 m long conical accelerator and 40 kV - 42 kJ power supply. The operation scenario of a CT injector named SPICA mk. I (SPheromak Injector using Conical Accelerator) consisting of 0.8 m conical accelerator is discussed based on this design. (author)

  8. Magnetohydrodynamic stability of spheromak plasma in spheroidal flux conserver

    International Nuclear Information System (INIS)

    Kaneko, Shobu; Kamitani, Atsushi.

    1985-11-01

    The MHD equilibrium configurations of spheromak plasmas in a spheroidal flux conserver are determined by use of a pressure distribution whose derivative dp/dψ vanishes on the magnetic axis, and by use of an optimized distribution. Here p is the pressure and ψ is the flux function. These equilibria are shown to be stable for symmetric modes. The stability for localized modes is investigated by the Mercier criterion. The values of the maximum beta ratio β max are evaluated for both pressure distributions and are shown to become about two times larger by optimization. If the condition, q axis max are found to be less than 30 %. The oblate spheroidal flux conserver is shown to be better than the toroidal conserver with a rectangular cross section from the standpoint of stability. (author)

  9. Confinement and power balance in the S-1 spheromak

    Energy Technology Data Exchange (ETDEWEB)

    Levinton, F.M.; Meyerhofer, D.D.; Mayo, R.M.; Janos, A.C.; Ono, Y.; Ueda, Y.; Yamada, M.

    1989-07-01

    The confinement and scaling features of the S-1 spheromak have been investigated using magnetic, spectroscopic, and Thomson scattering data in conjunction with numerical modeling. Results from the multipoint Thomson scattering diagnostic shows that the central beta remains constant (/beta//sub to/ /approximately/ 5%) as the plasma current density increases from 0.68--2.1 MA/m/sup 2/. The density is observed to increase slowly over this range, while the central electron temperature increases much more rapidly. Analysis of the global plasma parameters shows a decrease in the volume average beta and energy confinement as the total current is increased. The power balance has been modeled numerically with a 0-D non-equilibrium time-dependent coronal model and is consistent with the experimental observations. 20 refs., 12 figs., 2 tabs.

  10. Confinement and power balance in the S-1 spheromak

    International Nuclear Information System (INIS)

    Levinton, F.M.; Meyerhofer, D.D.; Mayo, R.M.; Janos, A.C.; Ono, Y.; Ueda, Y.; Yamada, M.; Rochester Univ., NY; Los Alamos National Lab., NM; Princeton Univ., NJ

    1989-07-01

    The confinement and scaling features of the S-1 spheromak have been investigated using magnetic, spectroscopic, and Thomson scattering data in conjunction with numerical modeling. Results from the multipoint Thomson scattering diagnostic shows that the central beta remains constant (β to ∼ 5%) as the plasma current density increases from 0.68--2.1 MA/m 2 . The density is observed to increase slowly over this range, while the central electron temperature increases much more rapidly. Analysis of the global plasma parameters shows a decrease in the volume average beta and energy confinement as the total current is increased. The power balance has been modeled numerically with a 0-D non-equilibrium time-dependent coronal model and is consistent with the experimental observations. 20 refs., 12 figs., 2 tabs

  11. 0-D study of the compression of low temperature spheromaks

    International Nuclear Information System (INIS)

    Meyerhofer, D.D.; Hulse, R.A.; Zweibel, E.G.

    1985-09-01

    Compression of low temperature spheromak plasmas has been studied with the aid of a O-D two-fluid computer code. It is found that in a plasma which is radiation dominated, the electron temperature can be increased by up to a factor of seven for a compression of a factor of two, provided the temperature is above some critical value (approx.25eV) and the electron density particle confinement time product n/sub e/tau/sub p/ greater than or equal to 1 x 10 9 s/cm 3 . If the energy balance is dominated by particle confinement losses rather than radiation losses, the effect of compression is to raise the temperature as T/sub e/ approx.C/sup 6/5/, for constant tau/sub p/

  12. Theoretical aspects of the use of pulsed reflectometry in a spheromak plasma

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, B. J., LLNL

    1998-06-11

    Pulsed reflectometry using both ordinary (O) and extraordinary (X) modes has the potential of providing time and space-resolved measurements of the electron density, the magnitude of the magnetic field, and the magnetic shear as a function of radius. Such a diagnostic also yields the current profile from the curl of the magnetic field. This research addresses theoretical issues associated with the use of reflectometry in the SSPX spheromak experiment at the Lawrence Livermore National Laboratory. We have extended a reflectometry simulation model to accommodate O and X-mode mixed polarization and linear mode conversion between the two polarizations. A Wentzel-Kramers-Brillouin-Jeffreys (WKBJ) formula for linear mode conversion agrees reasonably well with direct numerical solutions of the wave equation, and we have reconstructed the magnetic pitch-angle profile by matching the results of the WKBJ formula with the mode conversion data observed in simulations using a least-squares determination of coefficients in trial functions for the profile. The reflectometry data also yield information on fluctuations. Instrumental issues, e.g., the effects of microwave mixers and filters on model reflectometry pulses, have been examined to optimize the performance of the reflectometry diagnostics.

  13. Review of recent experiments on magnetic reconnection in laboratory plasmas

    International Nuclear Information System (INIS)

    Yamada, M.

    1995-02-01

    The present paper reviews recent laboratory experiments on magnetic reconnection. Examples will be drawn from electron current sheet experiments, merging spheromaks, and from high temperature tokamak plasmas with the Lundquist numbers exceeding 10 7 . These recent laboratory experiments create an environment which satisfies the criteria for MHD plasma and in which the global boundary conditions can be controlled externally. Experiments with fully three dimensional reconnection are now possible. In the most recent TFTR tokamak discharges, Motional Stark effect (MSE) data have verified the existence of a partial reconnection. In the experiment of spheromak merging, a new plasma acceleration parallel to the neutral line has been indicated. Together with the relationship of these observations to the analysis of magnetic reconnection in space and in solar flares, important physics issues such as global boundary conditions, local plasma parameters, merging angle of the field lines, and the 3-D aspects of the reconnection are discussed

  14. Verification of the Taylor (minimum energy) state in the S-1 Spheromak

    International Nuclear Information System (INIS)

    Hart, G.W.; Janos, A.; Meyerhofer, D.D.; Yamada, M.

    1985-09-01

    Experimental measurements of the equilibrium in the S-1 Spheromak by use of magnetic probes inside the plasma show that the final magnetic equilibrium is one which has relaxed close to the Taylor (minimum-energy) state, even though the plasma is far from that state during formation. The comparison is made by calculating the two-dimensional μ profile of the plasma from the probe data, where μ is defined as μ 0 j/sub parallel//B. Measurements using a triple Langmuir probe provide evidence to support the conclusion that the pressure gradients in the relaxed state are confined to the edge region of the plasma

  15. Tilt and shift mode stability in a spheromak with a flux core

    Energy Technology Data Exchange (ETDEWEB)

    Finn, J.M.; Jardin, S.C.

    1984-07-01

    The stability of spheromak equilibria with a flux core, or reversal coil, is studied by means of an ideal MHD code. Results depend critically upon whether the flux hole region (the current free area just inside the separatrix) is treated as perfectly conducting plasma or as vacuum. This indicates that the tilt and shift modes persist as resistive instabilities if they are stable in ideal MHD. Specifically, for nonoptimally shaped equilibria, the flux core must nearly touch the current channel if the flux hole is vacuum, whereas the core may be slightly outside the separatrix if the flux hole has conducting plasma. A larger margin exists for optimally shaped equilibria.

  16. Global magnetic fluctuations in S-1 spheromak plasmas and relaxation toward a minimum-energy state

    International Nuclear Information System (INIS)

    Janos, A.; Hart, G.W.; Yamada, M.

    1986-01-01

    Globally coherent modes have been observed during formation in the S-1 Spheromak plasma. These modes play an important role in flux conversion and plasma relaxation toward a minimum-energy state. A significant finding is the temporal progression through the n = 5, 4, 3, 2; m = 1 mode sequence as q rises through rational fractions m/n. Peak amplitudes of the modes relative to the unperturbed field are typically less than 5%, while amplitudes as high as 20% have been observed

  17. The dynomak: An advanced spheromak reactor concept with imposed-dynamo current drive and next-generation nuclear power technologies

    Energy Technology Data Exchange (ETDEWEB)

    Sutherland, D.A., E-mail: das1990@uw.edu; Jarboe, T.R.; Morgan, K.D.; Pfaff, M.; Lavine, E.S.; Kamikawa, Y.; Hughes, M.; Andrist, P.; Marklin, G.; Nelson, B.A.

    2014-04-15

    A high-β spheromak reactor concept has been formulated with an estimated overnight capital cost that is competitive with conventional power sources. This reactor concept utilizes recently discovered imposed-dynamo current drive (IDCD) and a molten salt (FLiBe) blanket system for first wall cooling, neutron moderation and tritium breeding. Currently available materials and ITER-developed cryogenic pumping systems were implemented in this concept from the basis of technological feasibility. A tritium breeding ratio (TBR) of greater than 1.1 has been calculated using a Monte Carlo N-Particle (MCNP5) neutron transport simulation. High temperature superconducting tapes (YBCO) were used for the equilibrium coil set, substantially reducing the recirculating power fraction when compared to previous spheromak reactor studies. Using zirconium hydride for neutron shielding, a limiting equilibrium coil lifetime of at least thirty full-power years has been achieved. The primary FLiBe loop was coupled to a supercritical carbon dioxide Brayton cycle due to attractive economics and high thermal efficiencies. With these advancements, an electrical output of 1000 MW from a thermal output of 2486 MW was achieved, yielding an overall plant efficiency of approximately 40%.

  18. Magnetohydrodynamic simulation of kink instability and plasma flow during sustainment of a coaxial gun spheromak

    International Nuclear Information System (INIS)

    Kanki, Takashi; Nagata, Masayoshi; Kagei, Yasuhiro

    2010-01-01

    Kink instability and the subsequent plasma flow during the sustainment of a coaxial gun spheromak are investigated by three-dimensional nonlinear magnetohydrodynamic simulations. Analysis of the parallel current density λ profile in the central open column revealed that the n = 1 mode structure plays an important role in the relaxation and current drive. The toroidal flow (v t ≈ 37 km/s) is driven by magnetic reconnection occurring as a result of the helical kink distortion of the central open column during repetitive plasmoid ejection and merging. (author)

  19. Effect of the helicity injection rate and the Lundquist number on spheromak sustainment

    Science.gov (United States)

    García-Martínez, Pablo Luis; Lampugnani, Leandro Gabriel; Farengo, Ricardo

    2014-12-01

    The dynamics of the magnetic relaxation process during the sustainment of spheromak configurations at different helicity injection rates is studied. The three-dimensional activity is recovered using time-dependent resistive magnetohydrodynamic simulations. A cylindrical flux conserver with concentric electrodes is used to model configurations driven by a magnetized coaxial gun. Magnetic helicity is injected by tangential boundary flows. Different regimes of sustainment are identified and characterized in terms of the safety factor profile. The spatial and temporal behavior of fluctuations is described. The dynamo action is shown to be in close agreement with existing experimental data. These results are relevant to the design and operation of helicity injected devices, as well as to basic understanding of the plasma relaxation mechanism in quasi-steady state.

  20. Effect of the helicity injection rate and the Lundquist number on spheromak sustainment

    Energy Technology Data Exchange (ETDEWEB)

    García-Martínez, Pablo Luis, E-mail: pablogm@cab.cnea.gov.ar [Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Sede Andina—Universidad Nacional de Río Negro (UNRN), Av. Bustillo 9500, 8400 San Carlos de Bariloche, Río Negro (Argentina); Lampugnani, Leandro Gabriel; Farengo, Ricardo [Instituto Balseiro and Centro Atómico Bariloche (CAB-CNEA), Av. Bustillo 9500, 8400 San Carlos de Bariloche, Río Negro (Argentina)

    2014-12-15

    The dynamics of the magnetic relaxation process during the sustainment of spheromak configurations at different helicity injection rates is studied. The three-dimensional activity is recovered using time-dependent resistive magnetohydrodynamic simulations. A cylindrical flux conserver with concentric electrodes is used to model configurations driven by a magnetized coaxial gun. Magnetic helicity is injected by tangential boundary flows. Different regimes of sustainment are identified and characterized in terms of the safety factor profile. The spatial and temporal behavior of fluctuations is described. The dynamo action is shown to be in close agreement with existing experimental data. These results are relevant to the design and operation of helicity injected devices, as well as to basic understanding of the plasma relaxation mechanism in quasi-steady state.

  1. Fluctuations in three Los Alamos experiments

    International Nuclear Information System (INIS)

    Wright, B.L.

    1983-01-01

    We review results from three magnetic fusion experiments at Los Alamos: the ZT-40M, a reversed-field toroidal pinch; the CTX, a spheromak produced by a magnetized coaxial source; and the FRX-C, a field-reversed configuration generated by theta-pinch techniques. These experiments share the common feature that a major fraction of the confining magnetic field is associated with currents carried by the plasma. We emphasize here the important role that fluctuations play in the maintenance and evolution of these configurations

  2. HIFLUX: OBLATE FRCS, DOUBLE HELICES,SPHEROMAKS AND RFPS IN ONE SYSTEM

    International Nuclear Information System (INIS)

    SCHAFFER, M.J.; BOEDO, J.A.

    2003-01-01

    OAK-B135 High magnetic flux is required for thermonuclear FRC reactors and, more immediately, to advance the FRC experimental program in general. Oblate FRCs are of special interest because they are predicted to have certain improved MHD stability over elongated FRCs, and oblate FRCs may yield the most compact, magnetically confined fusion reactors. Neither oblate nor high-flux FRCs have been investigated experimentally to date. Our presently proposed technique is to make two high-flux, oppositely-handed plasmas by a pair of large, external, reversed-field pinch (RFP) sources. The plasmas would propagate as two Taylor-relaxed double-helix plasmas, to an oblate main plasma chamber, where they would relax further to a counter-helicity pair of spheromaks, which would finally merge into a single high-flux FRC. A concept for a new experimental facility, HIFLUX, to make and study high-magnetic-flux oblate Field-Reversed Configuration (FRC) plasmas, is described. Similar principles might also enable high flux non-inductive startup of other plasma devices

  3. Magnetohydrodynamic equilibrium and stability of spheromak with spheroidal plasma-vacuum interface

    International Nuclear Information System (INIS)

    Kaneko, Shobu; Kamitani, Atsushi; Takimoto, Akio.

    1985-05-01

    The analytic solutions to the Grad-Shafranov equation are obtained for a prolate and an oblate spheroidal plasma by using Hill's vortex model. Effects of a toroidal magnetic field Bsub(phi) on the MHD equilibrium configurations are investigated by using these analytic solutions. When Bsub(phi) is larger than that of the force-free configuration, the spheroidal plasmas in a vacuum magnetic field are shown to be unable in the MHD equilibrium. The several physical quantities on the equilibrium configuration are evaluated. The spheromak plasma is proved to be unstable if dp/d psi not equal 0 and d 2 V/d psi 2 >= 0 on the magnetic axis. Here p is the pressure and V(psi) the volume surrounded by a magnetic surface of psi=const. The equilibrium configurations of the spheroidal plasmas by using Hill's vortex model are shown to satisfy the above conditions, i.e., to be unstable. (author)

  4. Magnetohydrodynamic equilibrium and stability of spheromak with spheroidal plasma-vacuum interface

    International Nuclear Information System (INIS)

    Kaneko, Shobu; Kamitani, Atsushi; Takimoto, Akio

    1985-01-01

    The analytic solutions to the Grad-Shafranov equation are obtained for a prolate and an oblate spheroidal plasma by using Hill's vortex model. Effects of a toroidal magnetic field Bsub(phi) on the MHD equilibrium configurations are investigated by using these analytic solutions. When Bsub(phi) is stronger than that of the force-free configuration, the spheroidal plasmas in a vacuum magnetic field are shown to be unable in the MHD equilibrium. The several physical quantities on the equilibrium configuration are evaluated. The spheromak plasma is proved to be unstable if dp/d psi not equal 0 and d 2 V/d psi 2 >= 0 on the magnetic axis. Here p is the pressure and V(psi) the volume surrounded by a magnetic surface of psi = const. The equilibrium configurations of the spheroidal plasmas by using Hill's vortex model are shown to satisfy the above conditions, i.e., to be unstable. (author)

  5. Interaction of a spheromak-like compact toroid with a high beta spherical tokamak plasma

    International Nuclear Information System (INIS)

    Hwang, D.Q.; McLean, H.S.; Baker, K.L.; Evans, R.W.; Horton, R.D.; Terry, S.D.; Howard, S.; Schmidt, G.L.

    2000-01-01

    Recent experiments using accelerated spheromak-like compact toroids (SCTs) to fuel tokamak plasmas have quantified the penetration mechanism in the low beta regime; i.e. external magnetic field pressure dominates plasma thermal pressure. However, fusion reactor designs require high beta plasma and, more importantly, the proper plasma pressure profile. Here, the effect of the plasma pressure profile on SCT penetration, specifically, the effect of diamagnetism, is addressed. It is estimated that magnetic field pressure dominates penetration even up to 50% local beta. The combination of the diamagnetic effect on the toroidal magnetic field and the strong poloidal field at the outer major radius of a spherical tokamak will result in a diamagnetic well in the total magnetic field. Therefore, the spherical tokamak is a good candidate to test the potential trapping of an SCT in a high beta diamagnetic well. The diamagnetic effects of a high beta spherical tokamak discharge (low aspect ratio) are computed. To test the penetration of an SCT into such a diamagnetic well, experiments have been conducted of SCT injection into a vacuum field structure which simulates the diamagnetic field effect of a high beta tokamak. The diamagnetic field gradient length is substantially shorter than that of the toroidal field of the tokamak, and the results show that it can still improve the penetration of the SCT. Finally, analytic results have been used to estimate the effect of plasma pressure on penetration, and the effect of plasma pressure was found to be small in comparison with the magnetic field pressure. The penetration condition for a vacuum field only is reported. To study the diamagnetic effect in a high beta plasma, additional experiments need to be carried out on a high beta spherical tokamak. (author)

  6. Recent results of the RECE-Christa experiment

    International Nuclear Information System (INIS)

    Taggart, D.; Parker, M.; Hopman, H.; Jayakumar, R.; Fleischmann, H.H.

    1983-01-01

    This paper is primarily a description of recent experimental studies in the RECE-Christa device on the dynamics and stability characteristics of mixed-CT configurations which are generated by inducing sizable plasma ring currents in field-reversing E-layers. Other potential CT configurations, in particular the Spheromak-type, have been projected theoretically and also observed experimentally to have a strong tendency towards tilt-instability except under certain circumstances which would tend to exclude potentially very interesting reactor designs. Based on the fact that this instability has never been observed in field-reversing large-orbit electron ring experiments (probably due to coupling through the large-orbit particles between the tilt motion and the internal length parameters of the rings), it has been suggested (4) that this problem may be avoided by adding large-orbit particles carrying some of the ring current to the normal Spheromak configuration. Also, recent theoretical analyses using the angular momentum of the fact particles indicate a stabilizing tendency, although we believe this mechanism is resistively unstable. The present experiments are the first to test this situation, with the results indicating good gross stability even in cases with large plasma currents. In addition we report the generation of highly elongated E-layers and preliminary results of trapping experiments in low toroidal (B/sub theta/) fields

  7. Three dimensional simulation study of spheromak injection into magnetized plasmas

    International Nuclear Information System (INIS)

    Suzuki, Y.; Watanabe, T.H.; Sato, T.; Hayashi, T.

    2000-01-01

    The three dimensional dynamics of a spheromak-like compact toroid (SCT) plasmoid, which is injected into a magnetized target plasma region, is investigated by using MHD numerical simulations. It is found that the process of SCT penetration into this region is much more complicated than that which has been analysed so far by using a conducting sphere (CS) model. The injected SCT suffers from a tilting instability, which grows with a similar timescale to that of the SCT penetration. The instability is accompanied by magnetic reconnection between the SCT magnetic field and the target magnetic field, which disrupts the magnetic configuration of the SCT. Magnetic reconnection plays a role in supplying the high density plasma, initially confined in the SCT magnetic field, to the target region. The penetration depth of the SCT high density plasma is also examined. It is shown to be shorter than that estimated from the CS model. The SCT high density plasma is decelerated mainly by the Lorentz force of the target magnetic field, which includes not only the magnetic pressure force but also the magnetic tension force. Furthermore, by comparing the SCT plasmoid injection with the bare plasmoid injection, magnetic reconnection is considered to relax the magnetic tension force, i.e. the deceleration of the SCT plasmoid. (author)

  8. Recent results from the HIT-II and HIT-SI helicity injection current drive experiments

    International Nuclear Information System (INIS)

    Jarboe, T.R.; Hamp, W.T.; Izzo, V.A.; Nelson, B.A.; O'Neill, R.G.; Raman, R.; Redd, A.J.; Sieck, P.E.; Smith, R.J.

    2005-01-01

    Three important results are reported. 1) CHI startup has produced 100 kA of closed current without using poloidal field (PF) coils or any transformer action. The initial equilibrium is then driven to 240 kA with a 3 V transformer loop voltage, indicating high quality plasma. 2) For the first time CHI alone has produced toroidal currents (350 kA) that far exceed q a I inj , and with I p /I tf as high as 1.2. The key to these new results appears to be having the toroidal field small enough that relaxation will occur. 3) The steady inductive helicity injection spheromak experiment has operated at 5 kHz for 6 ms with current amplitudes up to 11 kA in each injector. The helicity injection rate is nearly constant with the ExB flow always into the plasma and not into the walls. NIMROD simulations of HIT-SI show a buildup of spheromak fields. (author)

  9. New vistas for developmental biology

    Indian Academy of Sciences (India)

    Author Affiliations. Scott F Gilbert1 Rocky S Tuan2. Department of Biology, Swarthmore College, 500 College Avenue, Swarthmore, PA 19081, USA; Department of Orthopaedic Surgery, Thomas Jefferson University, 1015 Walnut Street, Philadelphia, PA 19107, USA ...

  10. Reduction of plasma density in the Helicity Injected Torus with Steady Inductance experiment by using a helicon pre-ionization source

    International Nuclear Information System (INIS)

    Hossack, Aaron C.; Jarboe, Thomas R.; Victor, Brian S.; Firman, Taylor; Prager, James R.; Ziemba, Timothy; Wrobel, Jonathan S.

    2013-01-01

    A helicon based pre-ionization source has been developed and installed on the Helicity Injected Torus with Steady Inductance (HIT-SI) spheromak. The source initiates plasma breakdown by injecting impurity-free, unmagnetized plasma into the HIT-SI confinement volume. Typical helium spheromaks have electron density reduced from (2–3) × 10 19 m −3 to 1 × 10 19 m −3 . Deuterium spheromak formation is possible with density as low as 2 × 10 18 m −3 . The source also enables HIT-SI to be operated with only one helicity injector at injector frequencies above 14.5 kHz. A theory explaining the physical mechanism driving the reduction of breakdown density is presented

  11. A laboratory plasma experiment for studying magnetic dynamics of accretion discs and jets

    OpenAIRE

    Hsu, S. C.; Bellan, P. M.

    2002-01-01

    This work describes a laboratory plasma experiment and initial results which should give insight into the magnetic dynamics of accretion discs and jets. A high-speed multiple-frame CCD camera reveals images of the formation and helical instability of a collimated plasma, similar to MHD models of disc jets, and also plasma detachment associated with spheromak formation, which may have relevance to disc winds and flares. The plasmas are produced by a planar magnetized coaxial gun. The resulting...

  12. Equilibrium of the kink source experiment

    International Nuclear Information System (INIS)

    Marklin, G.

    1985-01-01

    The kink source experiment (KSX) was conceived of as a method of injecting helicity into a spheromak making special use of the m = 1 helical Taylor state. It has a Z pinch as a helicity generating source, connected to a flux conserver through an entrance region. Since the entrance region is a long (length > diameter) cyclinder, the magnetic field should be close to the helical Taylor state, which is the minimum energy configuration of a magnetized plasma in an infinite cylinder with no net flux. This paper will be concerned with modeling the actual fields in the entrance region of the KSX using zero-beta ideal MHD equilibrium theory

  13. Critical bias fields for tilting stability in the BETA-II experiment

    International Nuclear Information System (INIS)

    Dalhed, H.E.

    1981-01-01

    The PEST equilibrium code and the GATO ideal MHD stability code have been modified to study stability properties of Spheromak configurations. Of particular interest is the effect on tilting modes of perfectly conducting walls which do not link the plasma. This paper makes use of equilibria and conducting walls specifically designed to model the BETA-II experiment at LLNL. Onset of the tilting mode is determined as a function of the bias magnetic field. Comparison with available experimental data shows promising agreement with the numerical results

  14. Reduction of plasma density in the Helicity Injected Torus with Steady Inductance experiment by using a helicon pre-ionization source

    Energy Technology Data Exchange (ETDEWEB)

    Hossack, Aaron C.; Jarboe, Thomas R.; Victor, Brian S. [Department of Aeronautics and Astronautics, University of Washington, Seattle, Washington 98195 (United States); Firman, Taylor; Prager, James R.; Ziemba, Timothy [Eagle Harbor Technologies, Inc., 119 W. Denny Way, Suite 210, Seattle, Washington 98119 (United States); Wrobel, Jonathan S. [979B West Moorhead Circle, Boulder, Colorado 80305 (United States)

    2013-10-15

    A helicon based pre-ionization source has been developed and installed on the Helicity Injected Torus with Steady Inductance (HIT-SI) spheromak. The source initiates plasma breakdown by injecting impurity-free, unmagnetized plasma into the HIT-SI confinement volume. Typical helium spheromaks have electron density reduced from (2–3) × 10{sup 19} m{sup −3} to 1 × 10{sup 19} m{sup −3}. Deuterium spheromak formation is possible with density as low as 2 × 10{sup 18} m{sup −3}. The source also enables HIT-SI to be operated with only one helicity injector at injector frequencies above 14.5 kHz. A theory explaining the physical mechanism driving the reduction of breakdown density is presented.

  15. The Plasmoid Thruster Experiment (PTX)

    Science.gov (United States)

    Eskridge, Richard; Martin, Adam; Koelfgen, Syri; Lee, Mike; Smith, James W.

    2003-01-01

    A plasmoid is a compact plasma structure with an integral magnetic field. They have been studied extensively in controlled fusion research and are categorized according to the relative strength of the poloidal and toroidal magnetic field (B(phi), and B(tau), respectively). An object with B(phi)/B(tau) >> 1 is classified as a Field Reverse Configuration (FRC); if B(phi) = B(tau), it is called a Spheromak. There are a number of possible advantages to using accelerated plasmoids for in-space propulsion. A thruster based on this concept would operate by repetitively producing plasmoids and ejecting them from the device at high velocity. The plasmoid is formed inside of a single turn conical theta-pinch coil; as this process is inductive, there are no life-limiting electrodes. Similar experiments have yielded plasmoid velocities of at least 50 km/s (l), and calculations indicate that velocities in excess of 100 km/s are possible. A thruster based on this concept would be capable of producing an I(sp) in the range of 5,000 - 10,OOO s, with thrust densities of order 10(exp 5) N/m(exp 2). The current experiment is designed to produce jet powers in the range of 5-10 kW, although the concept should be scalable to higher power. The purpose of this experiment is to determine the feasibility of this plasma propulsion concept. To accomplish this, it will be necessary to determine: a.) specific impulse and thrust, b.) efficiency and mass utilization, c.) which type of plasmoid (FRC-like or Spheromak-like) gives the best performance, and d.) the characteristics required of actual thruster components (i.e., switch and capacitor technology). The plasmoid mass and velocity will be measured with a variety of diagnostics, including internal and external B-dot probes, flux loops, Langmuir probes, high-speed cameras, and an interferometer. Simulations of the plasmoid thruster using MOQUI, a time dependent MHD code, will be carried out concurrently with experimental testing. The PTX

  16. Magnetic structure in the entrance region of spheromaks sustained by a magnetized coaxial plasma gun under long pulse operation

    International Nuclear Information System (INIS)

    Amemiya, Naoyuki; Takaichi, Kazuaki; Katsurai, Makoto

    1989-01-01

    The magnetic structure in coaxial-gun-sustained spheromaks has been investigated. The plasma gun has been operated with a small axial/radial bias magnetic flux as compared to the azimuthal magnetic flux produced by the discharge current. Stronger magnetic field is observed in the entrance region (ER) than in the flux conserver (FC). In both ER and FC, the magnetic structure is nearly axisymmetric. The axial magnetic field in ER is amplified up to about sixteen times as large as the bias magnetic field. This amplification is limited by the drastic change in the magnetic structure, which occurs when the discharge current becomes very large. The magnetic structure before the drastic change is interpreted with the Bessel function model. The μ estimation shows that the magnetic structure is mainly determined by the boundary geometry, not by the external magnetic flux and current. (author)

  17. Formation and sustainment of field reversed configuration (FRC) plasmas by spheromak merging and neutral beam injection

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Masaaki [Princeton Plasma Physics Laboratory, Princeton University Princeton, New Jersey USA (United States)

    2016-03-25

    This paper briefly reviews a compact toroid reactor concept that addresses critical issues for forming, stabilizing and sustaining a field reversed configuration (FRC) with the use of plasma merging, plasma shaping, conducting shells, neutral beam injection (NBI). In this concept, an FRC plasma is generated by the merging of counter-helicity spheromaks produced by inductive discharges and sustained by the use of neutral beam injection (NBI). Plasma shaping, conducting shells, and the NBI would provide stabilization to global MHD modes. Although a specific FRC reactor design is outside the scope of the present paper, an example of a promising FRC reactor program is summarized based on the previously developed SPIRIT (Self-organized Plasmas by Induction, Reconnection and Injection Techniques) concept in order to connect this concept to the recently achieved the High Performance FRC plasmas obtained by Tri Alpha Energy [Binderbauer et al, Phys. Plasmas 22,056110, (2015)]. This paper includes a brief summary of the previous concept paper by M. Yamada et al, Plasma Fusion Res. 2, 004 (2007) and the recent experimental results from MRX.

  18. Liberal Arts Colleges in the Tumultuous 1940s: Institutional Identity and the Challenges of War and Peace

    Science.gov (United States)

    Humphrey, Jordan R.

    2010-01-01

    This dissertation examines the experiences of four private, liberal arts colleges--Dartmouth College, Earlham College, Franklin & Marshall College, and Swarthmore College--before, during, and after World War II to identify the adaptive policies implemented to meet the challenges that accompanied the war and its aftermath. Identification of these…

  19. Liberal Arts Colleges and the Production of PhD Economists

    Science.gov (United States)

    Jefferson, Philip N.; Magenheim, Ellen

    2015-01-01

    Data from the National Science Foundation (2014) indicate that at least one PhD in economics was awarded to a Swarthmore College graduate in every year since 1966. The authors' purpose in this article is to consider factors that may have contributed to the high number of PhDs in economics awarded to Swarthmore College graduates. While there is…

  20. Recent Progress on the magnetic turbulence experiment at the Bryn Mawr Plasma Laboratory

    Science.gov (United States)

    Schaffner, D. A.; Cartagena-Sanchez, C. A.; Johnson, H. K.; Fahim, L. E.; Fiedler-Kawaguchi, C.; Douglas-Mann, E.

    2017-10-01

    Recent progress is reported on the construction, implementation and testing of the magnetic turbulence experiment at the Bryn Mawr Plasma Laboratory (BMPL). The experiment at the BMPL consists of an ( 300 μs) long coaxial plasma gun discharge that injects magnetic helicity into a flux-conserving chamber in a process akin to sustained slow-formation of spheromaks. A 24cm by 2m cylindrical chamber has been constructed with a high density axial port array to enable detailed simultaneous spatial measurements of magnetic and plasma fluctuations. Careful positioning of the magnetic structure produced by the three separately pulsed coils (one internal, two external) are preformed to optimize for continuous injection of turbulent magnetized plasma. High frequency calibration of magnetic probes is also underway using a power amplifier.

  1. Increasing the magnetic helicity content of a plasma by pulsing a magnetized source.

    Science.gov (United States)

    Woodruff, S; Stallard, B W; McLean, H S; Hooper, E B; Bulmer, R; Cohen, B I; Hill, D N; Holcomb, C T; Moller, J; Wood, R D

    2004-11-12

    By operating a magnetized coaxial gun in a pulsed mode it is possible to produce large voltage pulses of duration approximately 500 mus while reaching a few kV, giving a discrete input of helicity into a spheromak. In the sustained spheromak physics experiment (SSPX), it is observed that pulsing serves to nearly double the stored magnetic energy and double the temperature. We discuss these results by comparison with 3D MHD simulations of the same phenomenon.

  2. NIMROD simulations and physics assessment of possible designs for a next generation Steady Inductive Helicity Injection HIT device

    Science.gov (United States)

    Penna, James; Morgan, Kyle; Grubb, Isaac; Jarboe, Thomas

    2017-10-01

    The Helicity Injected Torus - Steady Inductive 3 (HIT-SI3) experiment forms and maintains spheromaks via Steady Inductive Helicity Injection (SIHI) using discrete injectors that inject magnetic helicity via a non-axisymmetric perturbation and drive toroidally symmetric current. Newer designs for larger SIHI-driven spheromaks incorporate a set of injectors connected to a single external manifold to allow more freedom for the toroidal structure of the applied perturbation. Simulations have been carried out using the NIMROD code to assess the effectiveness of various imposed mode structures and injector schema in driving current via Imposed Dynamo Current Drive (IDCD). The results are presented here for varying flux conserver shapes on a device approximately 1.5 times larger than the current HIT-SI3 experiment. The imposed mode structures and spectra of simulated spheromaks are analyzed in order to examine magnetic structure and stability and determine an optimal regime for IDCD sustainment in a large device. The development of scaling laws for manifold operation is also presented, and simulation results are analyzed and assessed as part of the development path for the large scale device.

  3. Validation of extended magnetohydrodynamic simulations of the HIT-SI3 experiment using the NIMROD code

    Science.gov (United States)

    Morgan, K. D.; Jarboe, T. R.; Hossack, A. C.; Chandra, R. N.; Everson, C. J.

    2017-12-01

    The HIT-SI3 experiment uses a set of inductively driven helicity injectors to apply a non-axisymmetric current drive on the edge of the plasma, driving an axisymmetric spheromak equilibrium in a central confinement volume. These helicity injectors drive a non-axisymmetric perturbation that oscillates in time, with relative temporal phasing of the injectors modifying the mode structure of the applied perturbation. A set of three experimental discharges with different perturbation spectra are modelled using the NIMROD extended magnetohydrodynamics code, and comparisons are made to both magnetic and fluid measurements. These models successfully capture the bulk dynamics of both the perturbation and the equilibrium, though disagreements related to the pressure gradients experimentally measured exist.

  4. Performance and stability limits at near-unity aspect ratio in the Pegasus Toroidal Experiment

    International Nuclear Information System (INIS)

    Fonck, R.J.

    2002-01-01

    The Pegasus Toroidal Experiment is a mid-sized extremely-low aspect ratio (A) spherical torus (ST). It has the dual roles of exploring limits of ST behavior as A approaches 1 and studying the physics of ST plasmas in the tokamak-spheromak overlap regime. Major parameters are R 0.25 - 0.45 m, A 1.1 - 1.4, I p ≤ 0.15MA, and B t p =aB t is similar to that observed for NBI-heated START discharges. Achievable plasma current apparently is subject to a 'soft' limit of I p =I t f ≤ 1. Access to higher-current plasmas appears to be restricted by the appearance of large internal MHD activity, including m/n=2/1 and 3/2 modes. Recent experiments have begun to access ideal stability limits, with disruptions observed as q 95 approaches 5, in agreement with numerical predictions. (author)

  5. Final Technical Report - ''Determining How Magnetic Helicity Injection Really Works''

    International Nuclear Information System (INIS)

    Paul M. Bellan

    2005-01-01

    This research program involved direct observation of the complicated plasma dynamics underlying spheromak formation. Spheromaks are self-organizing magnetically dominated plasma configurations which potentially offer a simple, low-cost means for confining the plasma in a controlled thermonuclear fusion reactor. The spheromak source used in these studies was a coaxial co-planar magnetized plasma gun which was specifically designed to have the simplest relevant geometry. The simplicity of the geometry facilitated understanding of the basic physics and minimized confusion that would otherwise have resulted from complexities due to the experimental geometry. The coaxial plasma gun was mounted on one end of a large vacuum tank that had excellent optical access so the spheromak formation process could be tracked in detail using ultra-high speed cameras. The main accomplishments of this research program were (1) obtaining experimental data characterizing the detailed physics underlying spheromak formation and the development of new theoretical models motivated by these observations, (2) determining the relationship between spheromak physics and astrophysical jets, (3) developing a new high-speed camera diagnostic for the SSPX spheromak at the Lawrence Livermore National Lab, and (4) training graduate students and postdoctoral fellows

  6. Energy efficiency of the CTX magnetized coaxial plasma source

    International Nuclear Information System (INIS)

    Fernandez, J.C.; Barnes, C.W.; Jarboe, T.R.; Knox, S.O.; Platts, D.A.; McKenna, K.F.

    1985-01-01

    The energy efficiency of the CTX coaxial plasma source in creating spheromaks is determined experimentally to be in agreement with the theoretical prediction of lambda/sub sp//lambda/sub g/, where del x B = lambda/sub sp/ B in the spheromak, and lambda/sub g/ identical with μ 0 I/sub g//phi/sub g/ with I/sub g/ the source current and phi/sub g/ the magnetic flux through either source electrode. This is shown to be equivalent to magnetic helicity conservation. The spheromak impurity radiation was measured using an absolutely calibrated single chord bolometer system. The theoretical efficiency is within the experimental uncertainty of the ratio of spheromak radiated energy to source input energy in a group of ''dirty'' discharges. But the radiation measurement uncertainty is too large to determine whether a substantial part of the excess source energy not used in the production of spheromak magnetic energy is radiated from the spheromak volume

  7. Performance and stability limits at near-unity aspect ratio in the pegasus toroidal experiment

    International Nuclear Information System (INIS)

    Fonck, R.; Diem, S.; Garstka, G.; Kissick, M.; Lewicki, B.; Ostrander, C.; Probert, P.; Reinke, M.; Sontag, A.; Tritz, K.; Unterberg, E.

    2003-01-01

    The Pegasus Toroidal Experiment is a mid-sized extremely-low aspect ratio (A) spherical torus (ST). It has the dual roles of exploring limits of ST behavior as A approaches 1 and studying the physics of ST plasmas in the tokamak-spheromak overlap regime. Major parameters are R 0.25 - 0.45 m, A 1.1 - 1.4, I p T 20% have been obtained, and the operational space of beta vs I p /aB T is similar to that observed for NBI-heated START discharges. Achievable plasma current is subject to an apparent limit of I p /I tf ∼ 1. Access to higher-current plasmas appears to be restricted by the appearance of large internal MHD activity, including m/n=2/1 and 3/2 modes. Recent experiments have begun to access ideal stability limits, with disruptions observed as q 95 approaches 5, in agreement with numerical predictions for external kink mode onset. (author)

  8. Engineering design of the FRX-C experiment

    International Nuclear Information System (INIS)

    Kewish, R.W. Jr.; Bartsch, R.R.; Siemon, R.E.

    1981-01-01

    Research on Compact Toroid (CT) configurations has been greatly accelerated in the last few years because of their potential for providing a practical and economical fusion system. Los Alamos research is being concentrated on two types of configurations: (1) magnetized-gun-produced Spheromaks (configurations that contain a mixture of toroidal and poloidal fields); and (2) field-reversed configurations (FRCs) that contain purely poloidal magnetic field. This paper describes the design of FRX-C, a field-reversed theta pinch used to form FRCs

  9. Magnetic Compression Experiment at General Fusion with Simulation Results

    Science.gov (United States)

    Dunlea, Carl; Khalzov, Ivan; Hirose, Akira; Xiao, Chijin; Fusion Team, General

    2017-10-01

    The magnetic compression experiment at GF was a repetitive non-destructive test to study plasma physics applicable to Magnetic Target Fusion compression. A spheromak compact torus (CT) is formed with a co-axial gun into a containment region with an hour-glass shaped inner flux conserver, and an insulating outer wall. External coil currents keep the CT off the outer wall (levitation) and then rapidly compress it inwards. The optimal external coil configuration greatly improved both the levitated CT lifetime and the rate of shots with good compressional flux conservation. As confirmed by spectrometer data, the improved levitation field profile reduced plasma impurity levels by suppressing the interaction between plasma and the insulating outer wall during the formation process. We developed an energy and toroidal flux conserving finite element axisymmetric MHD code to study CT formation and compression. The Braginskii MHD equations with anisotropic heat conduction were implemented. To simulate plasma / insulating wall interaction, we couple the vacuum field solution in the insulating region to the full MHD solution in the remainder of the domain. We see good agreement between simulation and experiment results. Partly funded by NSERC and MITACS Accelerate.

  10. Exploiting Laboratory and Heliophysics Plasma Synergies

    Directory of Open Access Journals (Sweden)

    Jill Dahlburg

    2010-05-01

    provides direct experimental observation of reconnection dynamics; and the Swarthmore Spheromak Experiment, which provides well-diagnosed data on three-dimensional (3D null-point magnetic reconnection that is also applicable to solar active regions embedded in pre-existing coronal fields. New computer capabilities highlighted include: HYPERION, a fully compressible 3D magnetohydrodynamics (MHD code with radiation transport and thermal conduction; ORBIT-RF, a 4D Monte-Carlo code for the study of wave interactions with fast ions embedded in background MHD plasmas; the 3D implicit multi-fluid MHD spectral element code, HiFi; and, the 3D Hall MHD code VooDoo. Research synergies for these new tools are primarily in the areas of magnetic reconnection, plasma charged particle acceleration, plasma wave propagation and turbulence in a diverging magnetic field, plasma atomic processes, and magnetic dynamo behavior.

  11. Final Technical Report for NSF/DOE partnership grant ER54905; 2006-2009

    International Nuclear Information System (INIS)

    Stenzel, Reiner; Urrutia, J. Manuel

    2009-01-01

    The nonlinear physics of electron magnetohydrodynamics (EMHD) in plasmas. Time-varying wave magnetic field exceeding the background magnetic field produces highly nonlinear whistler mode since the wave dispersion depends on the total magnetic field. There exists no theory for such whistler modes. The present experimental work is the first one to explore this regime of nonlinear whistlers. A field-reversed configuration has been found which has the same vortex topology as an MHD spheromak, termed a whistler spheromak. Whistler mirrors have compressed and twisted field lines propagating in the whistler mode. Their helicity properties have been studied. Whistler spheromaks and mirrors have different propagation and damping characteristics. Wave collisions have been studied. Head-on collisions of two whistler spheromaks form a stationary field-reversed configuration (FRC) without helicity. When whistler spheromaks are excited the toroidal current flows mainly in the toroidal null line. It is only carried by electrons since ion currents and displacement currents are negligible. A change in the poloidal (axial) magnetic field induces a toroidal electric field which drives the current. Magnetic energy is dissipated and converted into electron kinetic energy. This process is called magnetic reconnection in 2D geometries, which are simplifications for theoretical convenience but rarely occur in nature. A crucial aspect of reconnection is its rate, determined by the electron collisionality. Regular Coulomb collisions can rarely account for the observed reconnection rates. In the present experiments we have also observed fast reconnection and explained it by electron transit time damping in the finite-size null layer. Electrons move faster than a whistler spheromak, hence transit through the toroidal null line where they are freely accelerated. The transit time is essentially the collision time but no particle collisions are required. Strong electron heating and visible light

  12. Princeton Plasma Physics Laboratory:

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, C.A. (ed.)

    1986-01-01

    This paper discusses progress on experiments at the Princeton Plasma Physics Laboratory. The projects and areas discussed are: Principal Parameters Achieved in Experimental Devices, Tokamak Fusion Test Reactor, Princeton Large Torus, Princeton Beta Experiment, S-1 Spheromak, Current-Drive Experiment, X-ray Laser Studies, Theoretical Division, Tokamak Modeling, Spacecraft Glow Experiment, Compact Ignition Tokamak, Engineering Department, Project Planning and Safety Office, Quality Assurance and Reliability, and Administrative Operations.

  13. Princeton Plasma Physics Laboratory:

    International Nuclear Information System (INIS)

    Phillips, C.A.

    1986-01-01

    This paper discusses progress on experiments at the Princeton Plasma Physics Laboratory. The projects and areas discussed are: Principal Parameters Achieved in Experimental Devices, Tokamak Fusion Test Reactor, Princeton Large Torus, Princeton Beta Experiment, S-1 Spheromak, Current-Drive Experiment, X-ray Laser Studies, Theoretical Division, Tokamak Modeling, Spacecraft Glow Experiment, Compact Ignition Tokamak, Engineering Department, Project Planning and Safety Office, Quality Assurance and Reliability, and Administrative Operations

  14. (Fusion energy research)

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, C.A. (ed.)

    1988-01-01

    This report discusses the following topics: principal parameters achieved in experimental devices (FY88); tokamak fusion test reactor; Princeton beta Experiment-Modification; S-1 Spheromak; current drive experiment; x-ray laser studies; spacecraft glow experiment; plasma deposition and etching of thin films; theoretical plasma; tokamak modeling; compact ignition tokamak; international thermonuclear experimental reactor; Engineering Department; Project Planning and Safety Office; quality assurance and reliability; and technology transfer.

  15. [Fusion energy research

    International Nuclear Information System (INIS)

    Phillips, C.A.

    1988-01-01

    This report discusses the following topics: principal parameters achieved in experimental devices (FY88); tokamak fusion test reactor; Princeton beta Experiment-Modification; S-1 Spheromak; current drive experiment; x-ray laser studies; spacecraft glow experiment; plasma deposition and etching of thin films; theoretical plasma; tokamak modeling; compact ignition tokamak; international thermonuclear experimental reactor; Engineering Department; Project Planning and Safety Office; quality assurance and reliability; and technology transfer

  16. Two novel compact toroidal concepts with Stellarator features

    International Nuclear Information System (INIS)

    Moroz, P.E.

    1997-07-01

    Two novel compact toroidal concepts are presented. One is the Stellarator-Spheromak (SSP) and another is the Extreme-Low-Aspect-Ratio Stellarator (ELARS). An SSP device represents a hybrid between a spherical stellarator (SS) and a spheromak. This configuration retains the main advantages of spheromaks ans has a potential for improving the spheromak concept regarding its main problems. The MHD equilibrium in an SSP with very high β of the confined plasma is demonstrated. Another concept, ELARS, represents an extreme limit of the SS approach, and considers devices with stellarator features and aspect ratios A ∼ 1. We have succeeded in finding ELARS configurations with extremely compact, modular, and simple design compatible with significant rotational transform, large plasma volume, and good particle transport characteristics

  17. Princeton Plasma Physics Laboratory: Annual report, October 1, 1986--September 30, 1987

    International Nuclear Information System (INIS)

    1987-01-01

    This report contains papers on the following topics: Principle Parameters Achieved in Experimental Devices (FY87); Tokamak Fusion Test Reactor; Princeton Beta Experiment-Modification; S-1 Spheromak; Current-Drive Experiment; X-Ray Laser Studies; Theoretical Division; Tokamak Modeling; Compact Ignition Tokamak; Engineering Department; Project Planning and Safety Office; Quality Assurance and Reliability; Administrative Operations; and PPPL Patent Invention Disclosures (FY87)

  18. Plasma response to sustainment with imposed-dynamo current drive in HIT-SI and HIT-SI3

    Science.gov (United States)

    Hossack, A. C.; Jarboe, T. R.; Chandra, R. N.; Morgan, K. D.; Sutherland, D. A.; Penna, J. M.; Everson, C. J.; Nelson, B. A.

    2017-07-01

    The helicity injected torus—steady inductive (HIT-SI) program studies efficient, steady-state current drive for magnetic confinement plasmas using a novel experimental method. Stable, high-beta spheromaks have been sustained using steady, inductive current drive. Externally induced loop voltage and magnetic flux are oscillated together so that helicity and power injection are always positive, sustaining the edge plasma current indefinitely. Imposed-dynamo current drive (IDCD) theory further shows that the entire plasma current is sustained. The method is ideal for low aspect ratio, toroidal geometries with closed flux surfaces. Experimental studies of spheromak plasmas sustained with IDCD have shown stable magnetic profiles with evidence of pressure confinement. New measurements show coherent motion of a stable spheromak in response to the imposed perturbations. On the original device two helicity injectors were mounted on either side of the spheromak and the injected mode spectrum was predominantly n  =  1. Coherent, rigid motion indicates that the spheromak is stable and a lack of plasma-generated n  =  1 energy indicates that the maximum q is maintained below 1 during sustainment. Results from the HIT-SI3 device are also presented. Three inductive helicity injectors are mounted on one side of the spheromak flux conserver. Varying the relative injector phasing changes the injected mode spectrum which includes n  =  2, 3, and higher modes.

  19. Summary of US-Japan Exchange 2004 New Directions and Physics for Compact Toroids

    Energy Technology Data Exchange (ETDEWEB)

    Intrator, T; Nagata, M; Hoffman, A; Guo, H; Steinhauer, L; Ryutov, D; Miller, R; Okada, S

    2005-08-15

    This exchange workshop was an open meeting coordinated by the P-24 Plasma Physics Group at Los Alamos National Laboratory. We brought together scientists from institutions in the US and Japan who are researching the various and complementary types of Compact Toroids (CT). Many concepts, including both experimental and theoretical investigations, are represented. The range spans Field Reversed Configuration (FRC), spheromak, Reversed Field Pinch (RFP), spherical tokamaks, linear devices dedicated to fundamental physics studies, and hybrid transitions that bridge multiple configurations. The participants represent facilities on which significant experiments are now underway: FRC Injection experiment (FIX), Translation Confinement experiment (TCS), Nihon-University Compact Torus Experiment (NUCTE), HITSI (Helicity Injection experiment, Steady Inductive Helicity Injection (HIT-SIHI)), Field Reversed Configuration experiment-Liner (FRX-L), TS-3/4, Sustained Spheromak Experiment (SSPX), Relaxation Scaling Experiment (RSX), HIST, Caltech Spheromak, or in the design process such as MRX-FRC (PPPL), Pulsed High Density experiment (PHD at UW). Several new directions and results in compact toroid (CT) research have recently emerged, including neutral-beam injection, rotating magnetic fields, flux build up from Ohmic boost coils, electrostatic helicity injection techniques, CT injection into other large devices, and high density configurations for applications to magnetized target fusion and translational compression of CT's. CT experimental programs in both the US and Japan have also shown substantial progress in the control and sustainment of CT's. Both in theory and experiment, there is increased emphasis on 3D dynamics, which is also related to astrophysical and space physics issues. 3D data visualization is now frequently used for experimental data display. There was much discussion of the effects of weak toroidal fields in FRC's and possible implications

  20. Annual report, October 1, 1979-September 30, 1980

    International Nuclear Information System (INIS)

    1981-05-01

    This annual report covers research progress on each of the following areas: (1) PLT device, (2) PDX, (3) spheromak, (4) smaller devices, (5) theory, (6) TFTR, (7) applied physics, (8) TFTR blanket module experiments, (9) advanced toroidal facility, (10) advanced projects design and analysis, (11) engineering, and (12) fabrication, operations and maintenance

  1. Annual report, October 1, 1979-September 30, 1980

    Energy Technology Data Exchange (ETDEWEB)

    1981-05-01

    This annual report covers research progress on each of the following areas: (1) PLT device, (2) PDX, (3) spheromak, (4) smaller devices, (5) theory, (6) TFTR, (7) applied physics, (8) TFTR blanket module experiments, (9) advanced toroidal facility, (10) advanced projects design and analysis, (11) engineering, and (12) fabrication, operations and maintenance. (MOW)

  2. Current drive by neutral beams, rotating magnetic fields and helicity injection in compact toroids

    International Nuclear Information System (INIS)

    Farengo, R.; Arista, N.R.; Lifschitz, A.F.; Clemente, R.A.

    2003-01-01

    The use of neutral beams (NB) for current drive and heating in spheromaks, the relaxed states of flux core spheromaks (FCS) sustained by helicity injection and the effect of ion dynamics on rotating magnetic field (RMF) current drive in spherical tokamaks (ST) are studied. (author)

  3. Los Alamos Compact Toroid, fast liner, and High-Density Z-Pinch programs

    International Nuclear Information System (INIS)

    Linford, R.K.; Hammel, J.E.; Sherwood, H.R.

    1982-01-01

    The compact Toroid and High Density Z-Pinch are two of the plasma configurations presently being studied at Los Alamos. This paper summarizes these two programs along with the recently terminated Fast Liner Program. Included in this discussion is an analysis of compact Toroid formation techniques showing the tearing and reconnection of the fields that separate the spheromak from the radial fields of the coaxial source, and the final equilibrium state of the elongated FRC in the theta-pinch coil. In addition the typical dimensions of the geometry of the Fast Liner experiments are delineated Z-pinch and electrode assembly is displayed as is a graphic of the temporal behavior of the current required for radial equilibrium. Spheromak is examined in terms of formation, gross stability, and equilibrium and field reversed configuration is discussed in terms of gross stability, equilibrium, and confinement scaling

  4. Application of a magnetized coaxial plasma gun for formation of a high-beta field-reversed configuration

    Energy Technology Data Exchange (ETDEWEB)

    Nishida, T. [College of Science and Technology, Nihon University, 1-8 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8308 (Japan); Kiguchi, T. [College of Science and Technology, Nihon University, 1-8 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8308 (Japan); Asai, T. [College of Science and Technology, Nihon University, 1-8 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8308 (Japan)]. E-mail: asai@phys.cst.nihon-u.ac.jp; Takahashi, T. [College of Science and Technology, Nihon University, 1-8 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8308 (Japan); Matsuzawa, Y. [College of Science and Technology, Nihon University, 1-8 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8308 (Japan); Okano, T. [College of Science and Technology, Nihon University, 1-8 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8308 (Japan); Nogi, Y. [College of Science and Technology, Nihon University, 1-8 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8308 (Japan)

    2006-11-15

    We have tested a field-reversed configuration (FRC) formation with a spheromak injection for the first time. In this method, initial pre-ionized plasma is injected as a magnetized spheromak-like plasmoid into the discharge chamber prior to main field reversal. The FRC plasma with an electron density of 1.3 x 10{sup 21} m{sup -3}, a separatrix radius of 0.04 m and a plasma length of 0.8 m was produced successfully in initial background plasma of about 1.6 x 10{sup 19} m{sup -3} by spheromak injection. The density is about one third of the conventional formed by the z-ionized method.

  5. Results of subscale MTF compression experiments

    Science.gov (United States)

    Howard, Stephen; Mossman, A.; Donaldson, M.; Fusion Team, General

    2016-10-01

    In magnetized target fusion (MTF) a magnetized plasma torus is compressed in a time shorter than its own energy confinement time, thereby heating to fusion conditions. Understanding plasma behavior and scaling laws is needed to advance toward a reactor-scale demonstration. General Fusion is conducting a sequence of subscale experiments of compact toroid (CT) plasmas being compressed by chemically driven implosion of an aluminum liner, providing data on several key questions. CT plasmas are formed by a coaxial Marshall gun, with magnetic fields supported by internal plasma currents and eddy currents in the wall. Configurations that have been compressed so far include decaying and sustained spheromaks and an ST that is formed into a pre-existing toroidal field. Diagnostics measure B, ne, visible and x-ray emission, Ti and Te. Before compression the CT has an energy of 10kJ magnetic, 1 kJ thermal, with Te of 100 - 200 eV, ne 5x1020 m-3. Plasma was stable during a compression factor R0/R >3 on best shots. A reactor scale demonstration would require 10x higher initial B and ne but similar Te. Liner improvements have minimized ripple, tearing and ejection of micro-debris. Plasma facing surfaces have included plasma-sprayed tungsten, bare Cu and Al, and gettering with Ti and Li.

  6. Princeton Plasma Physics Laboratory annual report, October 1, 1983-September 30, 1984

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, C.A. (ed.)

    1984-01-01

    Progress made during this reporting period is reported for each of the following areas: (1) principal parameters achieved in experimental devices, (2) TFTR, (3) PLT, (4) PBX, (5) S-1 Spheromak, (6) advanced concepts Torus-1, (7) x-ray laser studies, (8) theory, (9) tokamak modeling, (10) reactor studies, (11) spin-polarized fusion program, (12) tokamak fusion core experiment, and (13) engineering. (MOW)

  7. Princeton Plasma Physics Laboratory annual report, October 1, 1983-September 30, 1984

    International Nuclear Information System (INIS)

    Phillips, C.A.

    1984-01-01

    Progress made during this reporting period is reported for each of the following areas: (1) principal parameters achieved in experimental devices, (2) TFTR, (3) PLT, (4) PBX, (5) S-1 Spheromak, (6) advanced concepts Torus-1, (7) x-ray laser studies, (8) theory, (9) tokamak modeling, (10) reactor studies, (11) spin-polarized fusion program, (12) tokamak fusion core experiment, and (13) engineering

  8. Application of Coaxial Ion Gun for Film Generation and Ion Implantation

    Science.gov (United States)

    Takatsu, Mikio; Asai, Tomohiko; Kurumi, Satoshi; Suzuki, Kaoru; Hirose, Hideharu; Masutani, Shigeyuki

    A magnetized coaxial plasma gun (MCPG) is here utilized for deposition on high-melting-point metals. MCPGs have hitherto been studied mostly in the context of nuclear fusion research, for particle and magnetic helicity injection and spheromak formation. During spheromak formation, the electrode materials are ionized and mixed into the plasmoid. In this study, this ablation process by gun-current sputtering is enhanced for metallic thin-film generation. In the proposed system geometry, only ionized materials are electromagnetically accelerated by the self-Lorentz force, with ionized operating gas as a magnetized thermal plasmoid, contributing to the thin-film deposition. This reduces the impurity and non-uniformity of the deposited thin-film. Furthermore, as the ions are accelerated in a parallel direction to the injection axis, vertical implantation of the ions into the substrate surface is achieved. To test a potential application of the developed system, experiments were conducted involving the formation of a buffer layer on hard ceramics, for use in dental materials.

  9. Merging formation of FRC and its application to high-beta ST formation

    International Nuclear Information System (INIS)

    Ono, Y.; Inomoto, M.; Ueda, Y.; Matsuyama, T.; Ohshima, Y.; Katsurai, M.

    2001-01-01

    Merging formation of field-reversed configuration (FRC) explored not only a new scenario of highly-efficient FRC formation/amplification experiment but also a new boundary research between FRC, spheromak and spherical tokamak (ST). A new finding is that the produced FRC is transformed stably into an ultra-high-β ST by applying external toroidal field B t,ext . The toroidal field was observed to vanish around magnetic axis after the B t,ext application to the FRC, indicating formation of diamagnetic ST. The hollow current profile of FRC was maintained during the equilibrium transition, eliminating a need for the difficult hollow-current-formation process of start-up discharge of high-β ST. The energy-conversion effect of merging transformed the force-free merging spheromaks with paramagnetic current into the FRC with diamagnetic current and the further application of B t,ext did the FRC into the ultra-high-β (>60%)/diamagnetic ST, indicating the close relationship between FRC and ST in second stability. (author)

  10. Profiles in Research: Juliet Popper Shaffer

    Science.gov (United States)

    Robinson, Dan

    2005-01-01

    Robinson interviews Juliet Popper Shaffer, a scientist, who graduated from Swarthmore College in 1953 and Stanford in 1957 with degrees in psychology and concentrations in math, philosophy, and statistics. In 2004 she received the second Florence Nightingale David award given biannually by the Committee of Presidents of Statistical Societies to a…

  11. War News Radio: Conflict Education through Student Journalism

    Science.gov (United States)

    Hager, Emily

    2009-01-01

    In this essay Emily Hager presents an example of conflict education through student journalism. War News Radio is a student-organized and student-produced program developed at Swarthmore College in which participants produce for a global audience nonpartisan weekly radio shows and podcasts focused on the wars in Iraq and Afghanistan. Hager shares…

  12. The Second Student-Run Homeless Shelter

    Science.gov (United States)

    Seider, Scott C.

    2012-01-01

    From 1983-2011, the Harvard Square Homeless Shelter (HSHS) in Cambridge, Massachusetts, was the only student-run homeless shelter in the United States. However, college students at Villanova, Temple, Drexel, the University of Pennsylvania, and Swarthmore drew upon the HSHS model to open their own student-run homeless shelter in Philadelphia,…

  13. Particle transport and gas feed during gun injection

    International Nuclear Information System (INIS)

    Fowler, T K.

    1999-01-01

    It is shown that ion and neutral transport during gun injection tends to equalize the density in the spheromak to that in the open-line current channel. Since a gun operating at or near the ion saturation current requires a minimum density, because of transport these gun requirements also determine a minimum density in the spheromak that increases as the field increases. Hence attaining high fields by gun injection sets lower limits on the density, which in turn limits the temperature of the plasma and increases its ohmic resistance. Estimates of these effects are given using 0-D models calibrated to CTX, as guidance to 2-D UEDGE calculations in progress. For gun power levels in SSPX and the Pulsed Spheromak reactor, we find that buildup persists to the highest field levels of interest

  14. Annual report covering the period October 1, 1980 to September 30, 1981

    International Nuclear Information System (INIS)

    Phillips, C.A.; Jones, N.D.

    1981-01-01

    Research during this period is described for each of the following areas: (1) Princeton Large Torus, (2) Poloidal Divertor Experiment, (3) Spheromak, (4) smaller devices, (5) x-ray laser studies, (6) theory, (7) TFTR, (8) applied physics, (9) design studies for new devices, (10) advanced projects design and analysis, (11) engineering, (12) fabrication, operations, and maintenance (13) Projects Office, (14) Computer Division, (15) Administration, and (16) Graduate Education

  15. Effects of the current boundary conditions at the plasma-gun gap on density in SSPX

    Science.gov (United States)

    Kolesnikov, Roman; Lodestro, L. L.; Meyer, W. H.

    2012-10-01

    The Sustained Spheromak Physics Experiment (SSPX) was a toroidal magnetic-confinement device without toroidal magnetic-field coils or a central transformer but which generated core-plasma currents by dynamo processes driven by coaxial plasma-gun injection into a flux-conserving vessel. Record electron temperatures in a spheromak (Te˜500eV) were achieved, and final results of the SSPX program were reported in [1]. Plasma density, which depended strongly on wall conditions, was an important parameter in SSPX. It was observed that density rises with Igun and that confinement improved as the density was lowered. Shortly after the last experiments, a new feature was added to the Corsica code's solver used to reconstruct SSPX equilibria. Motivated by n=0 fields observed in NIMROD simulations of SSPX, an insulating boundary condition was implemented at the plasma-gun gap. Using this option we will perform new reconstructions of SSPX equilibria and look for correlations between the location of the separatrix (which moves up the gun wall and onto the insulating gap as Igun increases) and plasma density and magnetic-flux amplification [2].[4pt] [1] H. S. McLean, APS, DPP, Dallas, TX, 2008.[0pt] [2] E. B. Hooper et al., Nucl. Fusion 47, 1064 (2007).

  16. Validation of single-fluid and two-fluid magnetohydrodynamic models of the helicity injected torus spheromak experiment with the NIMROD code

    International Nuclear Information System (INIS)

    Akcay, Cihan; Victor, Brian S.; Jarboe, Thomas R.; Kim, Charlson C.

    2013-01-01

    We present a comparison study of 3-D pressureless resistive MHD (rMHD) and 3-D presureless two-fluid MHD models of the Helicity Injected Torus with Steady Inductive helicity injection (HIT-SI). HIT-SI is a current drive experiment that uses two geometrically asymmetric helicity injectors to generate and sustain toroidal plasmas. The comparable size of the collisionless ion skin depth d i to the resistive skin depth predicates the importance of the Hall term for HIT-SI. The simulations are run with NIMROD, an initial-value, 3-D extended MHD code. The modeled plasma density and temperature are assumed uniform and constant. The helicity injectors are modeled as oscillating normal magnetic and parallel electric field boundary conditions. The simulations use parameters that closely match those of the experiment. The simulation output is compared to the formation time, plasma current, and internal and surface magnetic fields. Results of the study indicate 2fl-MHD shows quantitative agreement with the experiment while rMHD only captures the qualitative features. The validity of each model is assessed based on how accurately it reproduces the global quantities as well as the temporal and spatial dependence of the measured magnetic fields. 2fl-MHD produces the current amplification (I tor /I inj ) and formation time τ f demonstrated by HIT-SI with similar internal magnetic fields. rMHD underestimates (I tor /I inj ) and exhibits much a longer τ f . Biorthogonal decomposition (BD), a powerful mathematical tool for reducing large data sets, is employed to quantify how well the simulations reproduce the measured surface magnetic fields without resorting to a probe-by-probe comparison. BD shows that 2fl-MHD captures the dominant surface magnetic structures and the temporal behavior of these features better than rMHD

  17. Initial Results of the SSPX Transient Internal Probe System for Measuring Toroidal Field Profiles

    Science.gov (United States)

    Holcomb, C. T.; Jarboe, T. R.; Mattick, A. T.; Hill, D. N.; McLean, H. S.; Wood, R. D.; Cellamare, V.

    2000-10-01

    Lawrence Livermore National Laboratory, Livermore, CA 94550, USA. The Sustained Spheromak Physics Experiment (SSPX) is using a field profile diagnostic called the Transient Internal Probe (TIP). TIP consists of a verdet-glass bullet that is used to measure the magnetic field by Faraday rotation. This probe is shot through the spheromak by a light gas gun at speeds near 2 km/s. An argon laser is aligned along the path of the probe. The light passes through the probe and is retro-reflected to an ellipsometer that measures the change in polarization angle. The measurement is spatially resolved down to the probes’ 1 cm length to within 15 Gauss. Initial testing results are given. This and future data will be used to determine the field profile for equilibrium reconstruction. TIP can also be used in conjunction with wall probes to map out toroidal mode amplitudes and phases internally. This work was performed under the auspices of US DOE by the University of California Lawrence Livermore National Laboratory under Contract No. W-7405-ENG-48.

  18. Numerical Study of the Formation, Ion Spin-up and Nonlinear Stability Properties of Field-reversed Configurations

    International Nuclear Information System (INIS)

    Belova, E.V.; Davidson, R.C.; Ji, H.; Yamada, M.; Cothran, C.D.; Brown, M.R.; Schaffer, M.J.

    2004-01-01

    Results of three-dimensional numerical simulations of field-reversed configurations (FRCs) are presented. Emphasis of this work is on the nonlinear evolution of magnetohydrodynamic (MHD) instabilities in kinetic FRCs and the new FRC formation method by the counter-helicity spheromak merging. Kinetic simulations show nonlinear saturation of the n = 1 tilt mode, where n is the toroidal mode number. The n = 2 and n = 3 rotational modes are observed to grow during the nonlinear phase of the tilt instability due to the ion spin-up in the toroidal direction. The ion toroidal spin-up is shown to be related to the resistive decay of the internal flux, and the resulting loss of particle confinement. Three-dimensional MHD simulations of counter-helicity spheromak merging and FRC formation show good agreement with results from the SSX-FRC experiment. Simulations show formation of an FRC in about 30 Alfven times for typical experimental parameters. The growth rate of the n = 1 tilt mode is shown to be significantly reduced compared to the MHD growth rate due to the large plasma viscosity and field-line-tying effects

  19. The Art and Science of Psychological Operations: Case Studies of Military Application. Volume One

    Science.gov (United States)

    1976-01-01

    and of the Royal Ballet against the background of the Pyramids of Giza during the city of Cairo’s millenary celebrations in 1969, accounted for only 8...Research Associate, Department of Psy- Mary chology, Swarthmore College. GESSNER, Free-lance film editor and camera as- Peter sistant. GIZA ...Army, by Richard H. Giza --------- 1100 East Asia ---------------------------------------------- 1105 Political Warfare-Qualified Application, by

  20. Experimental investigation of coaxial-gun-formed plasmas injected into a background transverse magnetic field or plasma

    Science.gov (United States)

    Zhang, Yue; Fisher, Dustin M.; Gilmore, Mark; Hsu, Scott C.; Lynn, Alan G.

    2018-05-01

    Injection of coaxial-gun-formed magnetized plasmas into a background transverse vacuum magnetic field or into a background magnetized plasma has been studied in the helicon-cathode (HelCat) linear plasma device at the University of New Mexico [M. Gilmore et al., J. Plasma Phys. 81, 345810104 (2015)]. A magnetized plasma jet launched into a background transverse magnetic field shows emergent kink stabilization of the jet due to the formation of a sheared flow in the jet above the kink stabilization threshold 0.1kVA [Y. Zhang et al., Phys. Plasmas 24, 110702 (2017)]. Injection of a spheromak-like plasma into a transverse background magnetic field led to the observation of finger-like structures on the side with a stronger magnetic field null between the spheromak and the background field. The finger-like structures are consistent with magneto-Rayleigh-Taylor instability. Jets or spheromaks launched into a background, low-β magnetized plasma show similar behavior as above, respectively, in both cases.

  1. Progress on FIR interferometry and Thomson Scattering measurements on HIT-SI3

    Science.gov (United States)

    Everson, Christopher; Jarboe, Thomas; Morgan, Kyle

    2017-10-01

    Spatially resolved measurements of the electron temperature (Te) and density (ne) will be fundamental in assessing the degree to which HIT-SI3 demonstrates closed magnetic flux and energy confinement. Further, electron temperature measurements have not yet been made on an inductively-driven spheromak. Far infrared (FIR) interferometer and Thomson Scattering (TS) systems have been installed on the HIT-SI3 spheromak. The TS system currently implemented on HIT-SI3 was originally designed for other magnetic confinement experiments, and progress continues toward modifying and optimizing for HIT-SI3 plasmas. Initial results suggest that the electron temperature is of order 10 eV. Plans to modify the TS system to provide more sensitivity and accuracy at low temperatures are presented. The line-integrated ne is measured on one chord by the FIR interferometer, with densities near 5x1019 m-3. Four cylindrical volumes have been added to the HIT-SI3 apparatus to enhance passive pumping. It is hoped that this will allow for more control of the density during the 2 ms discharges. Density measurements from before and after the installation of the passive pumping volumes are presented for comparison.

  2. Observations and modeling of magnetized plasma jets and bubbles launched into a transverse B-field

    Science.gov (United States)

    Fisher, Dustin M.; Zhang, Yue; Wallace, Ben; Gilmore, Mark; Manchester, Ward B., IV; van der Holst, Bart; Rogers, Barrett N.; Hsu, Scott C.

    2017-10-01

    Hot, dense, plasma structures launched from a coaxial plasma gun on the HelCat dual-source plasma device at the University of New Mexico drag frozen-in magnetic flux into the chamber's background magnetic field providing a rich set of dynamics to study magnetic turbulence, force-free magnetic spheromaks, shocks, as well as CME-like dynamics possibly relevant to the solar corona. Vector magnetic field data from an eleven-tipped B-dot rake probe and images from an ultra-fast camera will be presented in comparison with ongoing MHD modeling using the 3-D MHD BATS-R-US code developed at the University of Michigan. BATS-R-US employs an adaptive mesh refinement grid (AMR) that enables the capture and resolution of shock structures and current sheets and is uniquely suited for flux-rope expansion modeling. Recent experiments show a possible magnetic Rayleigh-Taylor (MRT) instability that appears asymmetrically at the interface between launched spheromaks (bubbles) and their entraining background magnetic field. Efforts to understand this instability using in situ measurements, new chamber boundary conditions, and ultra-fast camera data will be presented. Work supported by the Army Research Office Award No. W911NF1510480.

  3. Numerical Study of Field-reversed Configurations: The Formation and Ion Spin-up

    International Nuclear Information System (INIS)

    Belova, E.V.; Davidson, R.C.; Ji, H.; Yamada, M.; Cothran, C.D.; Brown, M.R.; Schaffer, M.J.

    2005-01-01

    Results of three-dimensional numerical simulations of field-reversed configurations (FRCs) are presented. Emphasis of this work is on the nonlinear evolution of magnetohydrodynamic (MHD) instabilities in kinetic FRCs, and the new FRC formation method by counter-helicity spheromak merging. Kinetic simulations show nonlinear saturation of the n = 1 tilt mode, where n is the toroidal mode number. The n = 2 and n = 3 rotational modes are observed to grow during the nonlinear phase of the tilt instability due to the ion spin-up in the toroidal direction. The ion toroidal spin-up is shown to be related to the resistive decay of the internal flux, and the resulting loss of particle confinement. Three-dimensional MHD simulations of counter-helicity spheromak merging and FRC formation show good qualitative agreement with results from the SSX-FRC experiment. The simulations show formation of an FRC in about 20-30 Alfven times for typical experimental parameters. The growth rate of the n = 1 tilt mode is shown to be significantly reduced compared to the MHD growth rate due to the large plasma viscosity and field-line-tying effects

  4. Large density amplification measured on jets ejected from a magnetized plasma gun

    OpenAIRE

    Yun, Gunsu S.; You, Setthivoine; Bellan, Paul M.

    2007-01-01

    Observation of a large density amplification in the collimating plasma jet ejected from a coplanar coaxial plasma gun is reported. The jet velocity is ~30 km s^-1 and the electron density increases from ~10^20 to 10^(22–23) m^-3. In previous spheromak experiments, electron density of the order 10^(19–21) m^-3 had been measured in the flux conserver region, but no density measurement had been reported for the source gun region. The coplanar geometry of our electrodes permits direct observation...

  5. Noninductive Current Generation in NSTX using Coaxial Helicity Injection

    International Nuclear Information System (INIS)

    Raman, R.; Jarboe, T.R.; Mueller, D.; Schaffer, M.J.; Maqueda, R.; Nelson, B.A.; Sabbagh, S.; Bell, M.; Ewig, R.; Fredrickson, E.; Gates, D.; Hosea, J.; Jardin, S.; Ji, H.; Kaita, R.; Kaye, S.M.; Kugel, H.; Lao, L.; Maingi, R.; Menard, J.; Ono, M.; Orvis, D.; Paul, S.; Peng, M.; Skinner, C.H.; Wilgen, J.B.; Zweben, S.

    2001-01-01

    Coaxial Helicity Injection (CHI) on the National Spherical Torus Experiment (NSTX) has produced 240 kA of toroidal current without the use of the central solenoid. Values of the current multiplication ratio (CHI produced toroidal current/injector current) up to 10 were obtained, in agreement with predictions. The discharges which lasted for up to 200 ms, limited only by the programmed waveform, are more than an order of magnitude longer in duration that any CHI discharges previously produced in a Spheromak or a Spherical Torus (ST)

  6. Current results from the Los Alamos CTX spheromak

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, C.W.; Henins, I.; Hoida, H.W.; Jarboe, T.R.; Knox, S.O.; Linford, R.K.; Platts, D.A.; Sherwood, A.R.

    1982-01-01

    Continued discharge cleaning, improved vacuum practices, and optimized plasma formation operation have resulted in the CTX experiment achieving 1-ms plasma lifetimes with average temperatures of 20 to 40 eV. The major advance in operation has been the use of 5 to 20 mTorr H/sub 2/ gas fill. A multipoint Thomson scattering diagnostic with 12 radial positions yields radial profiles of temperature and densities, an example of which is shown. Local ..beta..'s can be determined from the measured pressure profile, and average values are typically 15 to 20%. In clean, long-lived discharges the density decreases at a more rapid rate than the magnetic field, until it reaches a value around 2 to 4 x 10/sup 13/ cm/sup -3/ where it remains constant. This is in contrast to the colder, radiation-dominated behavior, and is taken as evidence that the plasma ..beta.. is a limit to current operation in CTX.

  7. Spatiotemporal Signal Analysis via the Phase Velocity Transform

    International Nuclear Information System (INIS)

    Mattor, Nathan

    2000-01-01

    The phase velocity transform (PVT) is an integral transform that divides a function of space and time into components that propagate at uniform phase velocities without distortion. This paper examines the PVT as a method to analyze spatiotemporal fluctuation data. The transform is extended to systems with discretely sampled data on a periodic domain, and applied to data from eight azimuthally distributed probes on the Sustained Spheromak Physics Experiment (SSPX). This reveals features not shown by Fourier analysis, particularly regarding nonsinusoidal mode structure. (c) 2000 The American Physical Society

  8. Advanced concepts in the United States fusion program

    International Nuclear Information System (INIS)

    Dove, W.F.

    1985-01-01

    The goal of the magnetic fusion program is to establish the scientific and technological base for fusion energy. Development of a variety of magnetic confinement systems is essential to achieving that goal. The role of the advanced concepts program is to conduct experimental investigations of confinement concepts other than the tokamaks and tandem mirror concepts. The present advanced concepts program consists of the reversed-field-pinch (RFP), the spheromak and the field-reversed configuration (FRC). Significant new experiments in the RFP and FRC concepts have been approved and are described

  9. Spectroscopic Investigations of Highly Charged Tungsten Ions - Atomic Spectroscopy and Fusion Plasma Diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Clementson, Joel [Lund Univ. (Sweden)

    2010-05-01

    The spectra of highly charged tungsten ions have been investigated using x-ray and extreme ultraviolet spectroscopy. These heavy ions are of interest in relativistic atomic structure theory, where high-precision wavelength measurements benchmark theoretical approaches, and in magnetic fusion research, where the ions may serve to diagnose high-temperature plasmas. The work details spectroscopic investigations of highly charged tungsten ions measured at the Livermore electron beam ion trap (EBIT) facility. Here, the EBIT-I and SuperEBIT electron beam ion traps have been employed to create, trap, and excite tungsten ions of M- and L-shell charge states. The emitted spectra have been studied in high resolution using crystal, grating, and x-ray calorimeter spectrometers. In particular, wavelengths of n = 0 M-shell transitions in K-like W55+ through Ne-like W64+, and intershell transitions in Zn-like W44+ through Co-like W47+ have been measured. Special attention is given to the Ni-like W46+ ion, which has two strong electric-dipole forbidden transitions that are of interest for plasma diagnostics. The EBIT measurements are complemented by spectral modeling using the Flexible Atomic Code (FAC), and predictions for tokamak spectra are presented. The L-shell tungsten ions have been studied at electron-beam energies of up to 122 keV and transition energies measured in Ne-like W64+ through Li-like W71+. These spectra constitute the physics basis in the design of the ion-temperature crystal spectrometer for the ITER tokamak. Tungsten particles have furthermore been introduced into the Sustained Spheromak Physics Experiment (SSPX) spheromak in Livermore in order to investigate diagnostic possibilities of extreme ultraviolet tungsten spectra for the ITER divertor. The spheromak measurement and spectral modeling using FAC suggest that tungsten ions in charge states around Er-like W6+ could be useful for

  10. EMAPS: An Efficient Multiscale Approach to Plasma Systems with Non-MHD Scale Effects

    Energy Technology Data Exchange (ETDEWEB)

    Omelchenko, Yuri A. [SciberQuest, Inc., Del Mar, CA (United States); Karimabadi, Homa [SciberQuest, Inc., Del Mar, CA (United States)

    2014-10-14

    Using Discrete-Event Simulation (DES) as a novel paradigm for time integration of large-scale physics-driven systems, we have achieved significant breakthroughs in simulations of multi-dimensional magnetized plasmas where ion kinetic and finite Larmor radius (FLR) and Hall effects play a crucial role. For these purposes we apply a unique asynchronous simulation tool: a parallel, electromagnetic Particle-in-Cell (PIC) code, HYPERS (Hybrid Particle Event-Resolved Simulator), which treats plasma electrons as a charge neutralizing fluid and solves a self-consistent set of non-radiative Maxwell, electron fluid equations and ion particle equations on a structured computational grid. HYPERS enables adaptive local time steps for particles, fluid elements and electromagnetic fields. This ensures robustness (stability) and efficiency (speed) of highly dynamic and nonlinear simulations of compact plasma systems such spheromaks, FRCs, ion beams and edge plasmas. HYPERS is a unique asynchronous code that has been designed to serve as a test bed for developing multi-physics applications not only for laboratory plasma devices but generally across a number of plasma physics fields, including astrophysics, space physics and electronic devices. We have made significant improvements to the HYPERS core: (1) implemented a new asynchronous magnetic field integration scheme that preserves local divB=0 to within round-off errors; (2) Improved staggered-grid discretizations of electric and magnetic fields. These modifications have significantly enhanced the accuracy and robustness of 3D simulations. We have conducted first-ever end-to-end 3D simulations of merging spheromak plasmas. The preliminary results show: (1) tilt-driven relaxation of a freely expanding spheromak to an m=1 Taylor helix configuration and (2) possibility of formation of a tilt-stable field-reversed configuration via merging and magnetic reconnection of two double-sided spheromaks with opposite helicities.

  11. Extreme ultra-violet movie camera for imaging microsecond time scale magnetic reconnection

    International Nuclear Information System (INIS)

    Chai, Kil-Byoung; Bellan, Paul M.

    2013-01-01

    An ultra-fast extreme ultra-violet (EUV) movie camera has been developed for imaging magnetic reconnection in the Caltech spheromak/astrophysical jet experiment. The camera consists of a broadband Mo:Si multilayer mirror, a fast decaying YAG:Ce scintillator, a visible light block, and a high-speed visible light CCD camera. The camera can capture EUV images as fast as 3.3 × 10 6 frames per second with 0.5 cm spatial resolution. The spectral range is from 20 eV to 60 eV. EUV images reveal strong, transient, highly localized bursts of EUV radiation when magnetic reconnection occurs

  12. Extreme ultra-violet movie camera for imaging microsecond time scale magnetic reconnection

    Energy Technology Data Exchange (ETDEWEB)

    Chai, Kil-Byoung; Bellan, Paul M. [Applied Physics, Caltech, 1200 E. California Boulevard, Pasadena, California 91125 (United States)

    2013-12-15

    An ultra-fast extreme ultra-violet (EUV) movie camera has been developed for imaging magnetic reconnection in the Caltech spheromak/astrophysical jet experiment. The camera consists of a broadband Mo:Si multilayer mirror, a fast decaying YAG:Ce scintillator, a visible light block, and a high-speed visible light CCD camera. The camera can capture EUV images as fast as 3.3 × 10{sup 6} frames per second with 0.5 cm spatial resolution. The spectral range is from 20 eV to 60 eV. EUV images reveal strong, transient, highly localized bursts of EUV radiation when magnetic reconnection occurs.

  13. A Challenging Solar Eruptive Event of 18 November 2003 and the Causes of the 20 November Geomagnetic Superstorm. IV. Unusual Magnetic Cloud and Overall Scenario

    Science.gov (United States)

    Grechnev, V. V.; Uralov, A. M.; Chertok, I. M.; Belov, A. V.; Filippov, B. P.; Slemzin, V. A.; Jackson, B. V.

    2014-12-01

    The geomagnetic superstorm of 20 November 2003 with Dst=-422 nT, one of the most intense in history, is not well understood. The superstorm was caused by a moderate solar eruptive event on 18 November, comprehensively studied in our preceding Papers I - III. The analysis has shown a number of unusual and extremely complex features, which presumably led to the formation of an isolated right-handed magnetic-field configuration. Here we analyze the interplanetary disturbance responsible for the 20 November superstorm, compare some of its properties with the extreme 28 - 29 October event, and reveal a compact size of the magnetic cloud (MC) and its disconnection from the Sun. Most likely, the MC had a spheromak configuration and expanded in a narrow angle of ≤ 14∘. A very strong magnetic field in the MC up to 56 nT was due to the unusually weak expansion of the disconnected spheromak in an enhanced-density environment constituted by the tails of the preceding ICMEs. Additional circumstances favoring the superstorm were i) the exact impact of the spheromak on the Earth's magnetosphere and ii) the almost exact southward orientation of the magnetic field, corresponding to the original orientation in its probable source region near the solar disk center.

  14. Real-time autocorrelator for fluorescence correlation spectroscopy based on graphical-processor-unit architecture: method, implementation, and comparative studies

    Science.gov (United States)

    Laracuente, Nicholas; Grossman, Carl

    2013-03-01

    We developed an algorithm and software to calculate autocorrelation functions from real-time photon-counting data using the fast, parallel capabilities of graphical processor units (GPUs). Recent developments in hardware and software have allowed for general purpose computing with inexpensive GPU hardware. These devices are more suited for emulating hardware autocorrelators than traditional CPU-based software applications by emphasizing parallel throughput over sequential speed. Incoming data are binned in a standard multi-tau scheme with configurable points-per-bin size and are mapped into a GPU memory pattern to reduce time-expensive memory access. Applications include dynamic light scattering (DLS) and fluorescence correlation spectroscopy (FCS) experiments. We ran the software on a 64-core graphics pci card in a 3.2 GHz Intel i5 CPU based computer running Linux. FCS measurements were made on Alexa-546 and Texas Red dyes in a standard buffer (PBS). Software correlations were compared to hardware correlator measurements on the same signals. Supported by HHMI and Swarthmore College

  15. Laboratory Experiments on Propagating Plasma Bubbles into Vacuum, Vacuum Magnetic Field, and Background Plasmas

    Science.gov (United States)

    Lynn, Alan G.; Zhang, Yue; Gilmore, Mark; Hsu, Scott

    2014-10-01

    We discuss the dynamics of plasma ``bubbles'' as they propagate through a variety of background media. These bubbles are formed by a pulsed coaxial gun with an externally applied magnetic field. Bubble parameters are typically ne ~1020 m-3, Te ~ 5 - 10 eV, and Ti ~ 10 - 15 eV. The structure of the bubbles can range from unmagnetized jet-like structures to spheromak-like structures with complex magnetic flux surfaces. Some of the background media the bubbles interact with are vacuum, vacuum with magnetic field, and other magnetized plasmas. These bubbles exhibit different qualitative behavior depending on coaxial gun parameters such as gas species, gun current, and gun bias magnetic field. Their behavior also depends on the parameters of the background they propagate through. Multi-frame fast camera imaging and magnetic probe data are used to characterize the bubble evolution under various conditions.

  16. The role of improved fusion concepts

    International Nuclear Information System (INIS)

    Nelson, D.B.; Linford, R.K.; Liu, C.S.; Logan, B.G.; Rose, P.H.

    1985-01-01

    The U.S. Dept. of Energy discusses concept improvement in the tokamak and concept improvement in the mirror. Controlled Thermonuclear Research comments on what constitutes an attractive fusion reactor, and provides a table of achieved parameters of RFP, FRC and the spheromak experiments. GA Technologies Inc. remarks on the direction which industry must take in the fusion program. The Lawrence Livermore National Laboratory concentrates on commercial reactor studies. Spectra Technology focuses on problems dealing with fusion proponents making a convincing and clear economic argument for fusion based on a mils per kilowat basis, and the large costs of flagship experiments. The Oak Ridge National Laboratory remarks on the need for an economic energy source for fusion. A table of cost of electricity contours is shown

  17. The role of improved fusion concepts

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, D.B.; Linford, R.K.; Liu, C.S.; Logan, B.G.; Rose, P.H.

    1985-06-01

    The U.S. Dept. of Energy discusses concept improvement in the tokamak and concept improvement in the mirror. Controlled Thermonuclear Research comments on what constitutes an attractive fusion reactor, and provides a table of achieved parameters of RFP, FRC and the spheromak experiments. GA Technologies Inc. remarks on the direction which industry must take in the fusion program. The Lawrence Livermore National Laboratory concentrates on commercial reactor studies. Spectra Technology focuses on problems dealing with fusion proponents making a convincing and clear economic argument for fusion based on a mils per kilowat basis, and the large costs of flagship experiments. The Oak Ridge National Laboratory remarks on the need for an economic energy source for fusion. A table of cost of electricity contours is shown.

  18. Optimization of the Magnetic Field Structure for Sustained Plasma Gun Helicity Injection for Magnetic Turbulence Studies at the Bryn Mawr Plasma Laboratory

    Science.gov (United States)

    Cartagena-Sanchez, C. A.; Schaffner, D. A.; Johnson, H. K.; Fahim, L. E.

    2017-10-01

    A long-pulsed magnetic coaxial plasma gun is being implemented and characterized at the Bryn Mawr Plasma Laboratory (BMPL). A cold cathode discharged between the cylindrical electrodes generates and launches plasma into a 24cm diameter, 2m long chamber. Three separately pulsed magnetic coils are carefully positioned to generate radial magnetic field between the electrodes at the gun edge in order to provide stuffing field. Magnetic helicity is continuously injected into the flux-conserving vacuum chamber in a process akin to sustained slow-formation of spheromaks. The aim of this source, however, is to supply long pulses of turbulent magnetized plasma for measurement rather than for sustained spheromak production. The work shown here details the optimization of the magnetic field structure for this sustained helicity injection.

  19. Environmental monitoring report for calendar year 1984

    International Nuclear Information System (INIS)

    Stencel, J.R.

    1985-05-01

    The results of the environmental monitoring program for CY84 for the Princeton Plasma Physics Laboratory (PPPL) are presented and discussed. The Princeton Large Torus (PLT), Princeton Beta Experiment (PBX), and PPPL's largest tokamak, the Tokamak Fusion Test Reactor (TFTR) had a complete year of run time. In addition, the S-1 Spheromak was in operation and the RF Test Facility came on-line. The phased approach of TFTR environmental monitoring continued with the addition of neutron monitors. During CY84 there were no adverse effects to the environment resulting from any operational program at PPPL, and the Laboratory was in compliance with all applicable Federal, State, and local environmental regulations

  20. Operation of SPHEX in helium and deuterium

    International Nuclear Information System (INIS)

    Gee, S.J.; Rusbridge, M.G.

    1994-01-01

    In the SPHEX spheromak a magnetised Marshall gun generates a toroidal plasma with embedded toroidal and poloidal magnetic fields. The resulting spheromak plasma is almost entirely governed by the programmed gun flux, Ψ G . Surprisingly then following ejection, the voltage V G between the gun electrodes attains a value which is largely independent of Ψ G . The SPHEX power supply acts as an approximate current source, consequently V G is entirely determined by the non linear load presented to it by the plasma, for any given gun current. The signature of initial gas breakdown in the gun is a period of low V G (∼ 140 V) called the pedestal. This is interpreted as the electrode sheath voltage, and persists throughout the discharge. After the initial gas breakdown, the gun voltage remains at this pedestal voltage as the gun current builds up, until the instant of plasma ejection when it starts to rise rapidly. Ejection is governed by a simple force balance at the gun muzzle, occurring when the internal azimuthal field due to the gun current exceeds the external radial field from the gun solenoid. The sharp rise in V G continues until it reaches some critical value when it abruptly stops, suggesting that a breakdown of the 'magnetic insulation' occurs, which is then subsequently maintained at a finite V G throughout the discharge. This implied breakdown cannot be 'gas like' which would tend to reduce V G to the pedestal voltage and would divert all of the gun current from the spheromak, neither of which are seen. Nor can it be due to 'short flux' linking the gun electrodes (effectively bypassing the spheromak) since this would short out the electrodes at any voltage. We propose that the observed gun voltage is limited by breakdown of the azimuthal magnetic insulation between the gun electrodes, by ions which acquire enough energy so that their Larmor diameter equals the inter electrode gap. (author) 7 refs., 4 figs

  1. Operation of SPHEX in helium and deuterium

    Energy Technology Data Exchange (ETDEWEB)

    Gee, S.J.; Rusbridge, M.G. [Manchester Univ. (United Kingdom). Dept. of Physics

    1994-12-31

    In the SPHEX spheromak a magnetised Marshall gun generates a toroidal plasma with embedded toroidal and poloidal magnetic fields. The resulting spheromak plasma is almost entirely governed by the programmed gun flux, {Psi}{sub G}. Surprisingly then following ejection, the voltage V{sub G} between the gun electrodes attains a value which is largely independent of {Psi}{sub G}. The SPHEX power supply acts as an approximate current source, consequently V{sub G} is entirely determined by the non linear load presented to it by the plasma, for any given gun current. The signature of initial gas breakdown in the gun is a period of low V{sub G} ({approx} 140 V) called the pedestal. This is interpreted as the electrode sheath voltage, and persists throughout the discharge. After the initial gas breakdown, the gun voltage remains at this pedestal voltage as the gun current builds up, until the instant of plasma ejection when it starts to rise rapidly. Ejection is governed by a simple force balance at the gun muzzle, occurring when the internal azimuthal field due to the gun current exceeds the external radial field from the gun solenoid. The sharp rise in V{sub G} continues until it reaches some critical value when it abruptly stops, suggesting that a breakdown of the `magnetic insulation` occurs, which is then subsequently maintained at a finite V{sub G} throughout the discharge. This implied breakdown cannot be `gas like` which would tend to reduce V{sub G} to the pedestal voltage and would divert all of the gun current from the spheromak, neither of which are seen. Nor can it be due to `short flux` linking the gun electrodes (effectively bypassing the spheromak) since this would short out the electrodes at any voltage. We propose that the observed gun voltage is limited by breakdown of the azimuthal magnetic insulation between the gun electrodes, by ions which acquire enough energy so that their Larmor diameter equals the inter electrode gap. (author) 7 refs., 4 figs.

  2. Compact toroid fueling of the TdeV tokamak

    International Nuclear Information System (INIS)

    Martin, F.; Raman, R.; Xiao, C.; Thomas, J.

    1993-01-01

    Compact toroids have been proposed as a means of centrally fueling tokamak reactors because of the high velocity to which they can be accelerated. These are cold (T e ∼ 10 eV), high density (n e > 10 20 m -3 ) spheromak plasmoids that are accelerated in a magnetized Marshall gun. As a proof of principle experiment, a compact toroid fueler (CTF) has been developed for injection into the TdeV tokamak. The engineering goals of the experiment are to measure and minimize the impurity content of the CT plasma and the neutral gas remaining after CT formation. Also of importance is the effect of CT central fueling on the tokamak density profile and bootstrap current, and the relaxation rate of the density profile providing information on the confinement time of the CT fuel

  3. Acceleration of a compact torus

    International Nuclear Information System (INIS)

    Hartmann, C.W.; Eddleman, J.L.; Hammer, J.H.; Kusse, B.

    1987-01-01

    The authors report the first results of a study of acceleration of spheromak-type compact toruses in the RACE experiment (plasma Ring ACceleration Experiment). The RACE apparatus consists of (1) a magnetized, coaxial plasma gun 50 cm long, 35 cm OD, 20 cm ID, (2) 600 cm long coaxial acceleration electrodes 50 cm OD, 20 cm ID, (3) a 250 kJ electrolytic capacitor bank to drive the gun solenoid for initial magnetization, (4) a 200 kJ gun bank, (5) a 260 kJ accelerator bank, and (6) magnetic probes and other diagnostics, and vacuum apparatus. To outer acceleration electrode is an extension, at larger OD, of the gun outer electrode, and the inner acceleration electrode is supported and fed by a coaxial insert in the gun center electrode as shown

  4. Conceptual design of a cassette compact toroid reactor (the zero-phase study) - Quick replacement of the reactor core

    International Nuclear Information System (INIS)

    Nishikawa, M.; Narikawa, T.; Iwamoto, M.; Watanabe, K.

    1986-01-01

    A study of a conceptual design for a ''cassette'' compact toroid reactor has been performed that emphasizes quick replacement handling. The core plasma, spheromak, is ohmically heated in a merging process between the core plasma and the gun-produced spheromak. The quick handling of replacement accomplished by using a functional material, a shape memory alloy (SMA) joint, which is proposed for release from first-wall high neutron loading in a newly devised mechanical and structural method. The SMA joint can be used for connecting or disconnecting the coupling by simply controlling the SMA temperature without the need for a robot system. Effective heat removal from the first wall and thermal and electromagnetic stress in a fusion core with very high heat flux are discussed from an engineering standpoint

  5. Compact toroid formation, compression, and acceleration

    International Nuclear Information System (INIS)

    Degnan, J.H.; Peterkin, R.E. Jr.; Baca, G.P.; Beason, J.D.; Bell, D.E.; Dearborn, M.E.; Dietz, D.; Douglas, M.R.; Englert, S.E.; Englert, T.J.; Hackett, K.E.; Holmes, J.H.; Hussey, T.W.; Kiuttu, G.F.; Lehr, F.M.; Marklin, G.J.; Mullins, B.W.; Price, D.W.; Roderick, N.F.; Ruden, E.L.; Sovinec, C.R.; Turchi, P.J.; Bird, G.; Coffey, S.K.; Seiler, S.W.; Chen, Y.G.; Gale, D.; Graham, J.D.; Scott, M.; Sommars, W.

    1993-01-01

    Research on forming, compressing, and accelerating milligram-range compact toroids using a meter diameter, two-stage, puffed gas, magnetic field embedded coaxial plasma gun is described. The compact toroids that are studied are similar to spheromaks, but they are threaded by an inner conductor. This research effort, named MARAUDER (Magnetically Accelerated Ring to Achieve Ultra-high Directed Energy and Radiation), is not a magnetic confinement fusion program like most spheromak efforts. Rather, the ultimate goal of the present program is to compress toroids to high mass density and magnetic field intensity, and to accelerate the toroids to high speed. There are a variety of applications for compressed, accelerated toroids including fast opening switches, x-radiation production, radio frequency (rf) compression, as well as charge-neutral ion beam and inertial confinement fusion studies. Experiments performed to date to form and accelerate toroids have been diagnosed with magnetic probe arrays, laser interferometry, time and space resolved optical spectroscopy, and fast photography. Parts of the experiment have been designed by, and experimental results are interpreted with, the help of two-dimensional (2-D), time-dependent magnetohydrodynamic (MHD) numerical simulations. When not driven by a second discharge, the toroids relax to a Woltjer--Taylor equilibrium state that compares favorably to the results of 2-D equilibrium calculations and to 2-D time-dependent MHD simulations. Current, voltage, and magnetic probe data from toroids that are driven by an acceleration discharge are compared to 2-D MHD and to circuit solver/slug model predictions. Results suggest that compact toroids are formed in 7--15 μsec, and can be accelerated intact with material species the same as injected gas species and entrained mass ≥1/2 the injected mass

  6. Compact toroidal plasmas: Simulations and theory

    International Nuclear Information System (INIS)

    Harned, D.S.; Hewett, D.W.; Lilliequist, C.G.

    1983-01-01

    Realistic FRC equilibria are calculated and their stability to the n=1 tilting mode is studied. Excluding kinetic effects, configurations ranging from elliptical to racetrack are unstable. Particle simulations of FRCs show that particle loss on open field lines can cause sufficient plasma rotation to drive the n=2 rotational instability. The allowed frequencies of the shear Alfven wave are calculated for use in heating of spheromaks. An expanded spheromak is introduced and its stability properties are studied. Transport calculations of CTs are described. A power balance model shows that many features of gun-generated CT plasmas can be explained by the dominance of impurity radiation. It is shown how the Taylor relaxation theory, applied to gun-generated CT plasmas, leads to the possibility of steady-state current drive. Lastly, applications of accelerated CTs are considered. (author)

  7. Magnetic reconnection and self-organized plasma systems

    International Nuclear Information System (INIS)

    Yamada, Masaaki; Ji, Hantao

    2000-01-01

    In this paper the recent results from the Magnetic Reconnection Experiment (MRX) at PPPL are discussed along with their relationship to observations from solar flares, the magnetosphere, and current carrying pinch discharges such as tokamaks, reversed field pinches, spheromaks and field reversed configurations. It is found that the reconnection speed decreases as the angle of merging field lines decreases, consistent with the well-established observation in the dayside magnetosphere. This observation can also provide a qualitative interpretation of a generally observed trend in pinch plasmas, namely that magnetic field diffuses (or reconnects) faster when magnetic shear is larger. A recently conceived research project, SPIRIT (Self-organized Plasma with Induction, Reconnection, and Injection Techniques), will also be discussed. (author)

  8. Theoretical plasma physics: Progress report, January 1, 1987-December 31, 1987

    International Nuclear Information System (INIS)

    Boozer, A.H.; Vahala, G.; Tracy, E.R.

    1987-09-01

    During the past year, research has been carried out on current drive in tokamaks and in spheromaks, fast integration techniques for magnetic field lines, alpha particle diagnostics that use CO 2 laser scattering, and plasma turbulence. This paper discusses this research

  9. Study of driven magnetic reconnection in a laboratory plasma

    International Nuclear Information System (INIS)

    Yamada, Masaaki; Ji, H.; Hsu, S.; Carter, T.; Kulsrud, R.; Bretz, N.; Jobes, F.; Ono, Yasushi; Perkins, F.

    1998-01-01

    The Magnetic Reconnection Experiment (MRX) has been constructed to investigate the fundamental physics of magnetic reconnection in a well controlled laboratory setting. This device creates an environment satisfying the criteria for a magnetohydrodynamic (MHD) plasma (S much-gt 1, ρ i much-lt L). The boundary conditions can be controlled externally, and experiments with fully three-dimensional reconnection are now possible. In the initial experiments, the effects of the third vector component of reconnecting fields have been studied. Two distinctively different shapes of neutral sheet current layers, depending on the third component, are identified during driven magnetic reconnection. Without the third component (anti-parallel or null-helicity reconnection), a thin double-Y shaped diffusion region is identified. A neutral sheet current profile is measured accurately to be as narrow as order ion gyro-radius. In the presence of an appreciable third component (co-helicity reconnection), an O-shaped diffusion region appears and grows into a spheromak configuration

  10. Generalized helicity and its time derivative

    International Nuclear Information System (INIS)

    Jarboe, T.R.; Marklin, G.J.

    1985-01-01

    Spheromaks can be sustained against resistive decay by helicity injection because they tend to obey the minimum energy principle. This principle states that a plasma-laden magnetic configuration will relax to a state of minimum energy subject to the constraint that the magnetic helicity is conserved. Use of helicity as a constraint on the minimization of energy was first proposed by Woltjer in connection with astrophysical phenomena. Helicity does decay on the resistive diffusion time. However, if helicity is created and made to flow continuoiusly into a confinement geometry, these additional linked fluxes can relax and sustain the configuration indefinitely against the resistive decay. In this paper we will present an extension of the definition of helicity to include systems where B vector can penetrate the boundary and the penetration can be varying in time. We then discuss the sustainment of RFPs and spheromaks in terms of helicity injection

  11. On the jets, kinks, and spheromaks formed by a planar magnetized coaxial gun

    OpenAIRE

    Hsu, S. C.; Bellan, P. M.

    2005-01-01

    Measurements of the various plasma configurations produced by a planar magnetized coaxial gun provide insight into the magnetic topology evolution resulting from magnetic helicity injection. Important features of the experiments are a very simple coaxial gun design so that all observed geometrical complexity is due to the intrinsic physical dynamics rather than the source shape and use of a fast multiple-frame digital camera which provides direct imaging of topologically complex shapes and dy...

  12. Princeton Plasma Physics Laboratory annual report, October 1, 1984-September 30, 1985

    International Nuclear Information System (INIS)

    Phillips, C.A.

    1985-01-01

    Summaries of research progress during this period are given for the following areas: (1) TFTR, (2) PLT, (3) PBX, (4) S-1 Spheromak, (5) Advanced Concepts Torus-1, (6) x-ray laser studies, (7) theory, (8) tokamak modeling, (9) spin-polarization, and (10) ignition studies

  13. Environmental monitoring report for calendar year 1985

    International Nuclear Information System (INIS)

    Stencel, J.R.

    1986-05-01

    The results of the environmental monitoring program for CY85 for the Princeton Plasma Physics Laboratory (PPPL) are presented and discussed. All of the tokamak machines, the Princeton Large Torus (PLT), Princeton Beta Experiment (PBX), and the Tokamak Fusion Test Reactor (TFTR), has a full year of run time. In addition, the S-1 Spheromak and the RF Test Facility were in operation. The phased approach to TFTR environmental monitoring continued with the establishment of locations for off-site monitoring. An environmental committee established in December 1984 reviewed items of environmental importance. During CY85 no adverse effects to the environmental resulted from any operational program activities at PPPL, and the Laboratory was in compliance with all applicable Federal, State, and local environmental regulations

  14. Nonlinear electron magnetohydrodynamics physics. IV. Whistler instabilities

    International Nuclear Information System (INIS)

    Urrutia, J. M.; Stenzel, R. L.; Strohmaier, K. D.

    2008-01-01

    A very large low-frequency whistler mode is excited with magnetic loop antennas in a uniform laboratory plasma. The wave magnetic field exceeds the ambient field causing in one polarity a field reversal, and a magnetic topology resembling that of spheromaks in the other polarity. These propagating ''whistler spheromaks'' strongly accelerate the electrons and create non-Maxwellian distributions in their toroidal current ring. It is observed that the locally energized electrons in the current ring excite new electromagnetic instabilities and emit whistler modes with frequencies unrelated to the applied frequency. Emissions are also observed from electrons excited in X-type neutral lines around the antenna. The properties of the excited waves such as amplitudes, frequency spectra, field topologies, propagation, polarization, growth, and damping have been investigated. The waves remain linear (B wave 0 ) and convert a small part of the electron kinetic energy into wave magnetic energy (B wave 2 /2μ 0 e )

  15. Proceedings of the third symposium on the physics and technology of compact toroids in the magnetic fusion energy program

    International Nuclear Information System (INIS)

    Siemon, R.E.

    1981-03-01

    This document contains papers contributed by the participants of the Third Symposium on Physics and Technology of Compact Toroids in the Magnetic Fusion Energy Program. Subjects include reactor aspects of compact toroids, energetic particle rings, spheromak configurations (a mixture of toroidal and poloidal fields), and field-reversed configurations

  16. A Challenging Solar Eruptive Event of 18 November 2003 and the Causes of the 20 November Geomagnetic Superstorm. III. Catastrophe of the Eruptive Filament at a Magnetic Null Point and Formation of an Opposite-Handedness CME

    Science.gov (United States)

    Uralov, A. M.; Grechnev, V. V.; Rudenko, G. V.; Myshyakov, I. I.; Chertok, I. M.; Filippov, B. P.; Slemzin, V. A.

    2014-10-01

    Our analysis in Papers I and II (Grechnev et al., Solar Phys. 289, 289, 2014b and Solar Phys. 289, 1279, 2014c) of the 18 November 2003 solar event responsible for the 20 November geomagnetic superstorm has revealed a complex chain of eruptions. In particular, the eruptive filament encountered a topological discontinuity located near the solar disk center at a height of about 100 Mm, bifurcated, and transformed into a large cloud, which did not leave the Sun. Concurrently, an additional CME presumably erupted close to the bifurcation region. The conjectures about the responsibility of this compact CME for the superstorm and its disconnection from the Sun are confirmed in Paper IV (Grechnev et al., Solar Phys. submitted, 2014a), which concludes about its probable spheromak-like structure. The present article confirms the presence of a magnetic null point near the bifurcation region and addresses the origin of the magnetic helicity of the interplanetary magnetic clouds and their connection to the Sun. We find that the orientation of a magnetic dipole constituted by dimmed regions with the opposite magnetic polarities away from the parent active region corresponded to the direction of the axial field in the magnetic cloud, while the pre-eruptive filament mismatched it. To combine all of the listed findings, we propose an intrinsically three-dimensional scheme, in which a spheromak-like eruption originates via the interaction of the initially unconnected magnetic fluxes of the eruptive filament and pre-existing ones in the corona. Through a chain of magnetic reconnections their positive mutual helicity was transformed into the self-helicity of the spheromak-like magnetic cloud.

  17. Compact toroids generated by a magnetized coaxial source in the CTX experiment

    Energy Technology Data Exchange (ETDEWEB)

    Sherwood, A.R.; Henins, I.; Hoida, H.W.; Jarboe, T.R.; McKenna, K.F.; Linford, R.K.; Marshall, J.; Platts, D.A.

    1981-01-01

    Compact toroids containing both toroidal and poloidal magnetic field (Spheromak-type) have been generated in CTX using a magnetized coaxial plasma gun. These CTs tear loose from the gun by magnetic field line reconnection, and they are trapped in flux conservers having various geometries. In a straight cylindrical flux conserver the CTs are observed to be unstable to a gross tilting mode. Stability to the tilting mode has been demonstrated in flux conservers having an oblate trapping region; however, the geometry of the entrance region leading to the trapping volume can also have important effects. Lifetimes of about 150 ..mu..s for the CTs are typically observed. Interferometric measurements give a value of about 2 x 10/sup 14/ cm/sup -3/ for the initial plasma density. The plasma temperature measured at a single spot near the minor magnetic axis decreases to around 10 eV by the time the magnetic reconnection is complete. Spectrographic measurements and pressure probe results are in agreement with this temperature. A snipper coil has been installed to induce the CT to tear loose from the gun sooner. The use of this coil is observed to speed up the magnetic field reconnection process by about a factor of 2.

  18. Compact toroids generated by a magnetized coaxial source in the CTX experiment

    International Nuclear Information System (INIS)

    Sherwood, A.R.; Henins, I.; Hoida, H.W.; Jarboe, T.R.; McKenna, K.F.; Linford, R.K.; Marshall, J.; Platts, D.A.

    1981-01-01

    Compact toroids containing both toroidal and poloidal magnetic field (Spheromak-type) have been generated in CTX using a magnetized coaxial plasma gun. These CTs tear loose from the gun by magnetic field line reconnection, and they are trapped in flux conservers having various geometries. In a straight cylindrical flux conserver the CTs are observed to be unstable to a gross tilting mode. Stability to the tilting mode has been demonstrated in flux conservers having an oblate trapping region; however, the geometry of the entrance region leading to the trapping volume can also have important effects. Lifetimes of about 150 μs for the CTs are typically observed. Interferometric measurements give a value of about 2 x 10 14 cm -3 for the initial plasma density. The plasma temperature measured at a single spot near the minor magnetic axis decreases to around 10 eV by the time the magnetic reconnection is complete. Spectrographic measurements and pressure probe results are in agreement with this temperature. A snipper coil has been installed to induce the CT to tear loose from the gun sooner. The use of this coil is observed to speed up the magnetic field reconnection process by about a factor of 2

  19. International Atomic Energy Agency Technical Committee Meeting, Innovative approaches to fusion energy, Pleasanton, CA, October 20-23, 1997

    International Nuclear Information System (INIS)

    Perkins, L. J.

    1997-01-01

    The Purpose of this Meeting is to provide a forum for discussion of approaches to fusion other than conventional tokamaks and stellarators, such as: (1) quasi-steady-state systems (mirrors, RFP's, spheromaks, FRC'S, spherical tori,...); (2) short-pulsed systems (liners, Z-pinch variants, plasma foci, novel ICF, ...); and (3) fusion technology innovations

  20. Experimental studies of compact toroids

    International Nuclear Information System (INIS)

    1991-01-01

    The Berkeley Compact Toroid Experiment (BCTX) device is a plasma device with a Marshall-gun generated, low aspect ratio toroidal plasma. The device is capable of producing spheromak-type discharges and may, with some modification, produce low-aspect ratio tokamak configurations. A unique aspect of this experimenal devie is its large lower hybrid (LH) heating system, which consists of two 450MHz klystron tubes generating 20 megawatts each into a brambilla-type launching structure. Successful operation with one klystron at virtually full power (18 MW) has been accomplished with 110 μs pulse length. A second klystron is currently installed in its socket and magnet but has not been added to the RF drive system. This report describes current activities and accomplishments and describes the anticipated results of next year's activity

  1. Present status of fusion researches in USA, 4

    International Nuclear Information System (INIS)

    Yoshikawa, Shoichi; Okabayashi, Michio

    1983-01-01

    25 years have elapsed since nuclear fusion was published at the second Geneva conference in 1958. During this period, the Plasma Physics Laboratory of Princeton University has achieved the central role in the research on toroidal system nuclear fusion devices. Also the experiment of the large tokamak TFTR started from December, 1982, recorded the longest containment time of 200 ms as the initial data, and toroidal devices look to approach one step close to the scientific verification experiment (Q = 1) of reactors. In the PPPL, in order to perfect the basis required for the realization of nuclear fusion reactors, the experimental and theoretical developments have been carried out. Plasma containment experiment has been advanced successively from stellarater through internal conductor type to tokamak, and in plasma heating, ion cyclotron heating, fast neutral particle injection heating and low region hybrid heating were successfully carried out. As the experimental apparatuses, that for poloidal divertor experiment, Princeton large torus, tokamak fusion test reactor (TFTR) and S-1 spheromak are described. From the theories developed recently, bean type tokamak, heliac-stellarator and nuclear fusion reaction utilizing μ-mesons and nuclear spin are explained. (Kako, I.)

  2. Current drive by neutral beams, rotating magnetic fields and helicity injection in compact toroids

    International Nuclear Information System (INIS)

    Farengo, R.

    2002-01-01

    A Monte-Carlo code is used to study neutral beam current drive in Spheromaks. The exact particle trajectories are followed in the self-consistent equilibria calculated including the beam current. Reducing Z(eff) does not increase the current drive efficiency because the reduction of the stopping cross section is compensated by an increase in the electron canceling current. Significant changes in the safety factor profile can be produced with relatively low beam currents. Minimum dissipation states of a flux core spheromak sustained by helicity injection are presented. Helicity balance is used as a constraint and the resistivity is considered to be non-uniform. Two types of relaxed states are found; one has a central core of open flux surrounded by a toroidal region of closed flux surfaces and the other has the open flux wrapped around the closed flux surfaces. Non-uniform resistivity effects can be very important due to the changes they produce in the safety factor profile. A hybrid, fluid electrons particle ions, code is employed to study ion dynamics in FRCs sustained by rotating magnetic fields. (author)

  3. High-beta characteristics of first and second-stable spherical tokamaks in reconnection heating experiments of TS-3

    International Nuclear Information System (INIS)

    Ono, Y.

    2002-01-01

    Novel formations of ultra-high-beta Spherical Tokamak (ST) have been developed in the TS-3 device using high power heating of merging/ reconnection. In Type-A merging, two STs were merged together to build up the plasma beta. In Type-B merging, an oblate FRC was initially formed by merging of two spheromaks with opposing toroidal field B t and was transformed into an ultra-high-beta ST by applying external B t . Ballooning stability analyses confirmed formations of the first-stable STs by Type- A merging and the second-stable STs by Type-B merging and also the unstable STs by both mergings, revealing the ballooning stability window consistent with measured high-n instabilities. We made (1) those model analyses of the produced STs for the first time using the BALLOO stability code, revealing that hollowness/ broadness of current/pressure profiles widen significantly the window to the second-stable regime. This paper also addresses (2) normalized betas of the second-stable STs as large as 6-17 for comparison with the Troyon scaling and (3) a promising scaling of the reconnection heating energy. (author)

  4. Physics issues of a proposed program, SPIRIT

    International Nuclear Information System (INIS)

    Ji, Hantao; Yamada, Masaaki

    2000-01-01

    Physics issues of the proposed program, SPIRIT (Self-organized Plasma with Induction, Reconnection, and Induction Techniques) are discussed. The main purpose of this program is to explore the physics of global stability and sustainment of compact toroids, including FRC (field reversed configuration) as well as low-aspect-ratio RFP (reversed field pinch), spheromak and spherical torus. (author)

  5. Parallel-beam correlation technique for measuring density fluctuations in plasmas with strong magnetic shear

    International Nuclear Information System (INIS)

    Jacobson, A.R.

    1981-04-01

    A laser diagnostic scheme is described which facilitates localization of density fluctuations along the line of sight. The method exploits both the generally observed anisotropy of density fluctuations in low-beta plasmas, as well as the twisting of the magnetic field which occurs across the minor diameter of reversed-field pinches, spheromaks, etc. Both interferometric and schlieren variations are discussed

  6. Safety assessment for the S-1 Spheromak

    International Nuclear Information System (INIS)

    Ellis, R. Jr.; Stencel, J.R.

    1984-02-01

    The S-1 machine is part of the Magnetic Fusion Program. The goal of the Magnetic Fusion Program is to develop and demonstrate the practical application of fusion. S-1 is an experimental device which will provide an essential link in the research effort aiming at the realization of fusion power

  7. Advanced fusion concepts project summaries, FY 1988

    International Nuclear Information System (INIS)

    1988-04-01

    This report summarizes all the projects supported by the Advanced Fusion Concepts Branch of the Applied Plasma Physics Division of the Office of Fusion Energy, US Department of Energy. Each project summary was written by the respective principal investigator using the format: title, principal investigators, funding levels, purpose, approach, progress, plans, milestones, graduate students, graduates, other professional staff, and recent publications. This report is organized into three sections: Section one contains five summaries describing work in the reversed-field pinch program being performed by a diversified group of contractors, these include a national laboratory, a private company, and several universities. Section two contains eight summaries of work from the compact toroid area which encompasses field-reversed configurations, spheromaks, and heating and formation experiments. Section three contains summaries from two other programs, a density Z-pinch experiment and high-beta Q machine experiment. The intent of this collection of project summaries is to help the contractors of the Advanced Fusion Concepts Branch understand their relationship with the rest of the branch's activities. It is also meant to provide background to those outside the program by showing the range of activities of interest of the Advanced Fusion Concepts Branch

  8. Recent results in the Los Alamos compact torus program

    International Nuclear Information System (INIS)

    Tuszewski, M.; Armstrong, W.T.; Barnes, C.W.

    1983-01-01

    A Compact Toroid is a toroidal magnetic-plasma-containment geometry in which no conductors or vacuum-chamber walls pass through the hole in the torus. Two types of compact toroids are studied experimentally and theoretically at Los Alamos: spheromaks that are oblate in shape and contain both toroidal and poloidal magnetic fields, and field-reversed configurations (FRC) that are very prolate and contain poloidal field only

  9. Impurity production and acceleration in CTIX

    Energy Technology Data Exchange (ETDEWEB)

    Buchenauer, D. [Sandia National Laboratories, MS-9161, P.O. Box 969, Livermore, CA 94550 (United States)], E-mail: dabuche@sandia.gov; Clift, W.M. [Sandia National Laboratories, MS-9161, P.O. Box 969, Livermore, CA 94550 (United States); Klauser, R.; Horton, R.D. [CTIX Group, University of California at Davis, Davis, CA 95616 (United States); Howard, S.J. [General Fusion Inc., Burnaby, BC V5A 3H4 (Canada); Brockington, S.J. [HyperV Technologies Corp., Chantilly, VA 20151 (United States); Evans, R.W.; Hwang, D.Q. [CTIX Group, University of California at Davis, Davis, CA 95616 (United States)

    2009-06-15

    The Compact Toroid Injection Experiment (CTIX) produces a high density, high velocity hydrogen plasma that maintains its configuration in free space on a MHD resistive time scale. In order to study the production and acceleration of impurities in the injector, several sets of silicon collector probes were exposed to spheromak-like CT's exiting the accelerator. Elemental analysis by Auger Electron Spectroscopy indicated the presence of O, Al, Fe, and Cu in films up to 200 A thickness (1000 CT interactions). Using a smaller number of CT interactions (10-20), implantation of Fe and Cu was measured by Auger depth profiling. The amount of impurities was found to increase with accelerating voltage and number of CT interactions while use of a solenoidal field reduced the amount. Comparison of the implanted Fe and Cu with TRIM simulations indicated that the impurities were traveling more slowly than the hydrogen CT.

  10. Two Photon Absorption Laser Induced Fluorescence for Neutral Hydrogen Profile Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Scime, Earl E. [West Virginia Univ., Morgantown, WV (United States)

    2016-09-23

    installation on their tokamak. Instead, after a no-cost extension, the apparatus was moved to the University of Washington-Seattle and successfully tested on the HIT-SI3 spheromak experiment. As a result of this project, TALIF measurements of the absolutely calibrated neutral density hydrogen and deuterium were obtained in a helicon source and in a spheromak, designs were developed for installation of a TALIF system on a tokamak, and a new, xenon-based calibration scheme was proposed and demonstrated. The xenon-calibration scheme eliminates significant problems that were identified with the standard krypton calibration scheme.

  11. Two Photon Absorption Laser Induced Fluorescence for Neutral Hydrogen Profile Measurements

    International Nuclear Information System (INIS)

    Scime, Earl E.

    2016-01-01

    tokamak. Instead, after a no-cost extension, the apparatus was moved to the University of Washington-Seattle and successfully tested on the HIT-SI3 spheromak experiment. As a result of this project, TALIF measurements of the absolutely calibrated neutral density hydrogen and deuterium were obtained in a helicon source and in a spheromak, designs were developed for installation of a TALIF system on a tokamak, and a new, xenon-based calibration scheme was proposed and demonstrated. The xenon-calibration scheme eliminates significant problems that were identified with the standard krypton calibration scheme.

  12. Spherical tokamak without external toroidal fields

    International Nuclear Information System (INIS)

    Kaw, P.K.; Avinash, K.; Srinivasan, R.

    2001-01-01

    A spherical tokamak design without external toroidal field coils is proposed. The tokamak is surrounded by a spheromak shell carrying requisite force free currents to produce the toroidal field in the core. Such equilibria are constructed and it is indicated that these equilibria are likely to have robust ideal and resistive stability. The advantage of this scheme in terms of a reduced ohmic dissipation is pointed out. (author)

  13. MHD stability studies in the Proto S-1 A/B device

    International Nuclear Information System (INIS)

    Munson, C.; Janos, A.; Newhouse, M.; Salberta, E.; Wysocki, F.; Yamada, M.

    1982-01-01

    An experimental study of the gross MHD stability properties of Spheromak plasmas in the Proto S-1 A/B device is presented. Utilizing the previously demonstrated S-1 slow formation technique, plasmas have been produced which exhibit the predicted tilting instability in a regime of slightly negative field index. A relatively simple passive coil system suggested by numerical stability studies has proven to be effective in stabilizing the observed tilting mode

  14. Comparative study of the electron density profiles in the compact torus plasma merging experiments

    International Nuclear Information System (INIS)

    Hayashiya, Hitoshi; Asaka, Takeo; Katsurai, Makoto

    2003-01-01

    Following two previous papers on the comparative studies of the electron density distributions for a single compact torus (CT) and a spherical tokamak (ST), and for the a single ST and a merged ST, a comparative study on the dynamics of the electron density profile and after the CT and ST plasma merging process was performed. The sharpness of the peak in the electron density profile around the mid-plane just after the merging of CT with a low safety factor (q value) such as RFP or spheromak is found to be related to the speed of the magnetic axis during the plasma merging process. It is also found that the electron density gradient near the plasma edge in a high q ST is larger than that of a low q CT. High q ST is found to be provided with the magnetic structure which is able to sustain a large thermal pressure by a strong j x B force. Despite these differences in the electron density profile between CT and ST during merging, the confinement characteristics evaluated from the number of electrons confined within the magnetic separatrix after the completion of the merging is almost similar between in the merging CT and in the merging ST. For all configurations, the electron density profiles after the completion of the merging are analogous to those of the corresponding single configuration produced without the merging process. (author)

  15. Compact toroids with Alfvenic flows

    International Nuclear Information System (INIS)

    Wang Zhehui; Tang, X.Z.

    2004-01-01

    The Chandrasekhar equilibria form a class of stationary ideal magnetohydrodynamics equilibria stabilized by magnetic-field-aligned Alfvenic flows. Analytic solutions of the Chandrasekhar equilibria are explicitly constructed for both field-reversed configurations and spheromaks. Favorable confinement property of nested closed flux surfaces and the ideal magnetohydrodynamic stability of the compact toroids are of interest for both magnetic trapping of high energy electrons in astrophysics and confinement of high temperature plasmas in laboratory

  16. Three-dimensional magnetohydrodynamic simulations of the Helicity Injected Torus with Steady Inductive drive

    International Nuclear Information System (INIS)

    Izzo, V.A.; Jarboe, T.R.

    2005-01-01

    The Helicity Injected Torus with Steady Inductive drive (HIT-SI) [P. E. Sieck, W. T. Hamp, V. A. Izzo, T. R. Jarboe, B. A. Nelson, R. G. O'Neill, A. J. Redd, and R. J. Smith, IEEE Conference Record-Abstracts. 31st IEEE International Conference On Plasma Science (IEEE Catalog No. 04CH37537), 2004, p. 160] is a spheromak driven by steady inductive helicity injection (SIHI) and consists of the toroidally symmetric spheromak confinement region and two nonsymmetric helicity injectors. The three-dimensional (3D) magnetohydrodynamic code NIMROD [A. H. Glasser, C. R. Sovinec, R. A. Nebel, T. A. Gianakon, S. J. Plimpton, M. S. Chu, and D. D. Schnack, Plasma Phys. Controlled Fusion, 41, A747 (1999)] is used to simulate HIT-SI operation, but the code's toroidally symmetric boundary requires a creative treatment of the injectors. Sustained HIT-SI operation is simulated with nonaxisymmetric boundary conditions. In driven simulations at low Lundquist number S no n=0 fields are generated as a result of relaxation of the predominantly n=1 injector fields until the injectors are quickly shut off. At S=500, an n=0 component arises due to relaxation during sustainment. As S is increased further, the ratio of n=0 (equilibrium) fields to n=1 (injector) fields increases. The effects of a thin insulating boundary layer on the plasma decay time are also discussed

  17. An Overview of Research and Design Activities at CTFusion

    Science.gov (United States)

    Sutherland, D. A.; Jarboe, T. R.; Hossack, A. C.

    2016-10-01

    CTFusion, a newly formed company dedicated to the development of compact, toroidal fusion energy, is a spin-off from the University of Washington that will build upon the successes of the HIT-SI research program. The mission of the company to develop net-gain fusion power cores that will serve as the heart of economical fusion power plants or radioactive-waste destroying burner reactors. The overarching vision and development plan of the company will be presented, along with a detailed justification and design for our next device, the HIT-TD (Technology Demonstration) prototype. By externally driving the edge current and imposing non-axisymmetric magnetic perturbations, HIT-TD should demonstrate the sustainment of stable spheromak configurations with Imposed-Dynamo Current Drive (IDCD), as was accomplished in the HIT-SI device, with higher current gains and temperatures than previously possible. HIT-TD, if successful, will be an instrumental step along this path to economical fusion energy, and will serve as the stepping stone to our Proof-Of-Principle device (HIT-PoP). Beyond the implications of higher performance, sustained spheromaks for fusion applications, the HIT-TD platform will provide a unique system to observe plasma self-organizational phenomena of interest for other fusion devices, and astrophysical systems as well. Lastly, preliminary nuclear engineering design simulations with the MCNP6 code of the HIT-FNSF (Fusion Nuclear Science Facility) device will be presented.

  18. In Situ Heating of the 2007 May 19 CME Ejecta Detected by STEREO/PLASTIC and ACE

    Science.gov (United States)

    2011-01-24

    Cara E. Rakowski,1 J. Martin Laming2 & Maxim Lyutikov3 ABSTRACT In situ measurements of ion charge states can provide unique insight into the heating...2010) found ideal self-similar solutions for expanding spheromak, with electric fields E = r c α̇ α er ×B (2) – 6 – (dot denotes differentiation with...the electric field should be related to the cur- rent density through Ohm’s law. Formally, the procedure described below breaks down the assumption of

  19. Tilt stability of rotating current rings with passive conductors

    International Nuclear Information System (INIS)

    Zweibel, E.G.; Pomphrey, N.

    1984-12-01

    We study the combined effects of rotation and resistive passive conductors on the stability of a rigid current in an external magnetic field. We present numerical and approximate analytical solutions to the equations of motion, which show that the ring is always tilt unstable on the resistive decay timescale of the conductors, although rotation and eddy currents may stabilize it over short times. Possible applications of our model include spheromaks which rotate or which are encircled by energetic particle rings

  20. Development of Compact Toroid Injector for C-2 FRCs

    Science.gov (United States)

    Matsumoto, Tadafumi; Sekiguchi, Junichi; Asai, Tomohiko; Gota, Hiroshi; Garate, Eusebio; Allfrey, Ian; Valentine, Travis; Smith, Brett; Morehouse, Mark; TAE Team

    2014-10-01

    Collaborative research project with Tri Alpha Energy has been started and we have developed a new compact toroid (CT) injector for the C-2 device, mainly for fueling field-reversed configurations (FRCs). The CT is formed by a magnetized coaxial plasma-gun (MCPG), which consists of coaxial cylinder electrodes; a spheromak-like plasma is generated by discharge and pushed out from the gun by Lorentz force. The inner diameter of outer electrode is 83.1 mm and the outer diameter of inner electrode is 54.0 mm. The surface of the inner electrode is coated with tungsten in order to reduce impurities coming out from the electrode. The bias coil is mounted inside of the inner electrode. We have recently conducted test experiments and achieved a supersonic CT translation speed of up to ~100 km/s. Other typical plasma parameters are as follows: electron density ~ 5 × 1021 m-3, electron temperature ~ 40 eV, and the number of particles ~0.5-1.0 × 1019. The CT injector is now planned to be installed on C-2 and the first CT injection experiment will be conducted in the near future. The detailed MCPG design as well as the test experimental results will be presented.

  1. Annual report, October 1, 1981-September 30, 1982

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, C.A. (ed.)

    1984-01-01

    The construction of the Tokamak Fusion Test Reactor (TFTR) has been proceeding in a highly satisfactory manner, giving confidence that the project schedule will be met. The vacuum vessel and toroidal-field coil systems are now in place, and the entire mechanical assembly process is about to be completed. Experimental operation of TFTR will begin with ohmic-heating studies in early CY83, and will proceed to intensive neutral-beam heating in CY84. Radio-frequency experiments on the Princeton Large Torus (PLT) have used a new 3-MW ion cyclotron heating source to demonstrate second-harmonic heating of hydrogen ions up to temperatures of 3 keV. Lower hybrid current drive has sustained plasma currents as large as 400 kA in quasi-steady state. The 7-MW neutral-beam-heating capability of the Poloidal Divertor Experiment (PDX) was utilized to investigate finite-beta stability limits. Beta values above 3% were achieved at safety factor values as low as 1.7. A physical mechanism for beta-limitation was discovered and documented: the energetic-ion-driven, fishbone mode of MHD instability. Construction of the S-1 spheromak is progressing on schedule, with preliminary experimental operation planned for early CY83.

  2. Annual report, October 1, 1981-September 30, 1982

    International Nuclear Information System (INIS)

    Phillips, C.A.

    1984-01-01

    The construction of the Tokamak Fusion Test Reactor (TFTR) has been proceeding in a highly satisfactory manner, giving confidence that the project schedule will be met. The vacuum vessel and toroidal-field coil systems are now in place, and the entire mechanical assembly process is about to be completed. Experimental operation of TFTR will begin with ohmic-heating studies in early CY83, and will proceed to intensive neutral-beam heating in CY84. Radio-frequency experiments on the Princeton Large Torus (PLT) have used a new 3-MW ion cyclotron heating source to demonstrate second-harmonic heating of hydrogen ions up to temperatures of 3 keV. Lower hybrid current drive has sustained plasma currents as large as 400 kA in quasi-steady state. The 7-MW neutral-beam-heating capability of the Poloidal Divertor Experiment (PDX) was utilized to investigate finite-beta stability limits. Beta values above 3% were achieved at safety factor values as low as 1.7. A physical mechanism for beta-limitation was discovered and documented: the energetic-ion-driven, fishbone mode of MHD instability. Construction of the S-1 spheromak is progressing on schedule, with preliminary experimental operation planned for early CY83

  3. Advances in Compact Torus research. Report on the IAEA technical committee meeting, held in Sydney, Australia, 4-7 March 1985

    Energy Technology Data Exchange (ETDEWEB)

    Durance, G

    1985-08-01

    A Compact Torus (CT) is a low-aspect-ratio, axisymmetric, closed-magnetic-field-line configuration with no vessel wall or magnetic field coils linking the hole in the plasma toroid. The potential reactor advantages include high beta, simple geometry, high power density, and translation of the toroid. FRC (Field Reversed Configuration) have negligible toroidal magnetic fields; equilibria tend to be elongated. Gross stability is observed for several Alfven times, but transport mechanisms and confinement time scaling are poorly understood. Translation experiments are expanding the accessable parameter space. Spheromaks have comparable toroidal and poloidal fields. The configuration is related to the RFP although the toroidal field is generated by internal plasma currents. Detached mode (plasma and gun or flux core not connected) and linked mode have been studied. Rotamaks use a rotating magnetic field to maintain the plasma toroidal current; the drive mechanism is analagous to an induction motor. There has been no evidence for gross instabilities although temperatures are low. Particle rings generate CT with particle gyroradii comparable to plasma dimensions. The large orbits may aid in gross MHD stability.

  4. Investigation of MHD Instabilities in Jets and Bubbles Using a Compact Coaxial Plasma Gun in a Background Magnetized Plasma

    Science.gov (United States)

    Zhang, Y.; Fisher, D. M.; Wallace, B.; Gilmore, M.; Hsu, S. C.

    2016-10-01

    A compact coaxial plasma gun is employed for experimental investigation of launching plasma into a lower density background magnetized plasma. Experiments are being conducted in the linear device HelCat at UNM. Four distinct operational regimes with qualitatively different dynamics are identified by fast CCD camera images. For regime I plasma jet formation, a global helical magnetic configuration is determined by a B-dot probe array data. Also the m =1 kink instability is observed and verified. Furthermore, when the jet is propagating into background magnetic field, a longer length and lifetime jet is formed. Axial shear flow caused by the background magnetic tension force contributes to the increased stability of the jet body. In regime II, a spheromak-like plasma bubble formation is identified when the gun plasma is injected into vacuum. In contrast, when the bubble propagates into a background magnetic field, the closed magnetic field configuration does not hold anymore and a lateral side, Reilgh-Taylor instability develops. Detailed experimental data and analysis will be presented for these cases.

  5. Dynamics of Plasma Jets and Bubbles Launched into a Transverse Background Magnetic Field

    Science.gov (United States)

    Zhang, Yue

    2017-10-01

    A coaxial magnetized plasma gun has been utilized to launch both plasma jets (open B-field) and plasma bubbles (closed B-field) into a transverse background magnetic field in the HelCat (Helicon-Cathode) linear device at the University of New Mexico. These situations may have bearing on fusion plasmas (e.g. plasma injection for tokamak fueling, ELM pacing, or disruption mitigation) and astrophysical settings (e.g. astrophysical jet stability, coronal mass ejections, etc.). The magnetic Reynolds number of the gun plasma is 100 , so that magnetic advection dominates over magnetic diffusion. The gun plasma ram pressure, ρjetVjet2 >B02 / 2μ0 , the background magnetic pressure, so that the jet or bubble can easily penetrate the background B-field, B0. When the gun axial B-field is weak compared to the gun azimuthal field, a current-driven jet is formed with a global helical magnetic configuration. Applying the transverse background magnetic field, it is observed that the n = 1 kink mode is stabilized, while magnetic probe measurements show contrarily that the safety factor q(a) drops below unity. At the same time, a sheared axial jet velocity is measured. We conclude that the tension force arising from increasing curvature of the background magnetic field induces the measured sheared flow gradient above the theoretical kink-stabilization threshold, resulting in the emergent kink stabilization of the injected plasma jet. In the case of injected bubbles, spheromak-like plasma formation is verified. However, when the spheromak plasma propagates into the transverse background magnetic field, the typical self-closed global symmetry magnetic configuration does not hold any more. In the region where the bubble toroidal field opposed the background B-field, the magneto-Rayleigh-Taylor (MRT) instability has been observed. Details of the experiment setup, diagnostics, experimental results and theoretical analysis will be presented. Supported by the National Science Foundation

  6. Numerical Studies of Magnetohydrodynamic Activity Resulting from Inductive Transients. Final Report

    International Nuclear Information System (INIS)

    Sovinec, Carl R.

    2005-01-01

    This report describes results from numerical studies of transients in magnetically confined plasmas. The work has been performed by University of Wisconsin graduate students James Reynolds and Giovanni Cone and by the Principal Investigator through support from contract DE-FG02-02ER54687, a Junior Faculty in Plasma Science award from the DOE Office of Science. Results from the computations have added significantly to our knowledge of magnetized plasma relaxation in the reversed-field pinch (RFP) and spheromak. In particular, they have distinguished relaxation activity expected in sustained configurations from transient effects that can persist over a significant fraction of the plasma discharge. We have also developed the numerical capability for studying electrostatic current injection in the spherical torus (ST). These configurations are being investigated as plasma confinement schemes in the international effort to achieve controlled thermonuclear fusion for environmentally benign energy production. Our numerical computations have been performed with the NIMROD code (http://nimrodteam.org) using local computing resources and massively parallel computing hardware at the National Energy Research Scientific Computing Center. Direct comparisons of simulation results for the spheromak with laboratory measurements verify the effectiveness of our numerical approach. The comparisons have been published in refereed journal articles by this group and by collaborators at Lawrence Livermore National Laboratory (see Section 4). In addition to the technical products, this grant has supported the graduate education of the two participating students for three years

  7. Identification of Y-shaped and O-shaped diffusion regions during magnetic reconnection in a laboratory plasma

    International Nuclear Information System (INIS)

    Yamada, Masaaki; Ji, H.; Hsu, S.; Carter, T.; Kulsrud, R.; Ono, Yasushi; Perkins, F.

    1997-01-01

    Two strikingly different shapes of diffusion regions are identified during magnetic reconnection in a magnetohydrodynamic laboratory plasma. The shapes depend on the third vector component of the reconnecting magnetic fields. Without the third component (anti-parallel or null-helicity reconnection), a thin double-Y shaped diffusion region is identified. In this case, the neutral sheet current profile is accurately measured to be as narrow as the order of the ion gyro-radius. In the presence of an appreciable third component (co-helicity reconnection), an O-shaped diffusion region appears and grows into a spheromak configuration

  8. Compact magnetic confinement fusion: Spherical torus and compact torus

    Directory of Open Access Journals (Sweden)

    Zhe Gao

    2016-05-01

    Full Text Available The spherical torus (ST and compact torus (CT are two kinds of alternative magnetic confinement fusion concepts with compact geometry. The ST is actually a sub-category of tokamak with a low aspect ratio; while the CT is a toroidal magnetic configuration with a simply-connected geometry including spheromak and field reversed pinch. The ST and CT have potential advantages for ultimate fusion reactor; while at present they can also provide unique fusion science and technology contributions for mainstream fusion research. However, some critical scientific and technology issues should be extensively investigated.

  9. Proceedings of the seventh symposium on the physics and technology of compact toroids in the Magnetic Fusion Energy Program

    International Nuclear Information System (INIS)

    Sherwood, A.R.

    1986-09-01

    The Seventh Symposium on Compact Toroid (CT) Research was held in Santa Fe, New Mexico, on May 21-23, 1985. As has been the case for the last few CT symposia, CT research progress was reported in a combination of invited talks and poster sessions. The following record of these presentations in the form of four page papers is in keeping with the format followed in previous years. We have continued the practice of dividing the papers into three subject categories - spheromak, FRC (Field Reversed Configuration), and other (mostly particle rings)

  10. Princeton Plasma Physics Laboratory annual report, October 1, 1982-September 30, 1983

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, C.A. (ed.)

    1983-01-01

    The Tokamak Fusion Test Reactor (TFTR) achieved first plasma at 3:05 a.m. on December 24, 1982. During the course of the year, the plasma current was raised to a maximum of 1 MA, and extensive confinement studies were carried out with ohmic-heated plasmas. The most important finding was that tokamak energy confinement time increases as the cube of the plasma size. The Princeton Large Torus (PLT) carried out a number of high-powered plasma-heating experiments in the ion cyclotron frequency range, and also demonstrated for the first time that a 100-kA tokamak discharge can be built up by means of rf-waves in the lower hybrid range, without any need for inductive current drive by the conventional tokamak transformer system. The Poloidal Divertor Experiment (PDX) demonstrated that substantial improvements in plasma confinement during intense neutral-beam heating can be obtained by means of either a magnetic divertor or a mechanical scoop limiter. The S-1 spheromak experiment has come into operation, with first plasma in January 1983, and machine completion in August. The soft X-ray laser development experiment continues to make strong progress towards the demonstration of laser amplification. Thus far, a single-pass gain of 3.5 has been achieved, using the 182 A line of CVI. Theoretical MHD-stability studies have shed new light on the nature of the energetic-ion-driven ''fishbone instability,'' and the utilization of the bean-shaping technique to reach higher beta values in the tokamak.

  11. Princeton Plasma Physics Laboratory annual report, October 1, 1982-September 30, 1983

    International Nuclear Information System (INIS)

    Phillips, C.A.

    1983-01-01

    The Tokamak Fusion Test Reactor (TFTR) achieved first plasma at 3:05 a.m. on December 24, 1982. During the course of the year, the plasma current was raised to a maximum of 1 MA, and extensive confinement studies were carried out with ohmic-heated plasmas. The most important finding was that tokamak energy confinement time increases as the cube of the plasma size. The Princeton Large Torus (PLT) carried out a number of high-powered plasma-heating experiments in the ion cyclotron frequency range, and also demonstrated for the first time that a 100-kA tokamak discharge can be built up by means of rf-waves in the lower hybrid range, without any need for inductive current drive by the conventional tokamak transformer system. The Poloidal Divertor Experiment (PDX) demonstrated that substantial improvements in plasma confinement during intense neutral-beam heating can be obtained by means of either a magnetic divertor or a mechanical scoop limiter. The S-1 spheromak experiment has come into operation, with first plasma in January 1983, and machine completion in August. The soft X-ray laser development experiment continues to make strong progress towards the demonstration of laser amplification. Thus far, a single-pass gain of 3.5 has been achieved, using the 182 A line of CVI. Theoretical MHD-stability studies have shed new light on the nature of the energetic-ion-driven ''fishbone instability,'' and the utilization of the bean-shaping technique to reach higher beta values in the tokamak

  12. A self-organized plasma with induction, reconnection, and injection techniques: the SPIRIT concept for field reversed configuration research

    International Nuclear Information System (INIS)

    Yamada, Masaaki; JI, Hantao; Gerhardt, Stefan P.; Belova, Elena V.; Davidson, Ronald C.; Mikkelsen, David R.

    2007-01-01

    A comprehensive research concept, known as SPIRIT, is described for the investigation of the formation, stability, and sustainment of oblate field reversed configurations (FRCs). This concept, whose name stands for Self-organized Plasma with Induction, Reconnection, and Injection Techniques (SPIRIT), allows for the study of FRC stability properties on time scales much longer than the energy confinement time. Counter-helicity merging of inductively formed spheromaks is utilized to form large-flux FRCs. These FRCs are sustained by neutral beam injection with the initial aid of compact ohmic solenoids. Stability to n=1 tilt/shift modes is provided by plasma shaping and conducting shells. Stability to n ≥ 2 co-interchange modes is achieved by a distribution of high-energy non-thermal ions provided by the neutral beam. The combination of plasma shaping, conducting shells, current sustainment, and the non-thermal beam component are expected to lead to a configuration with stability to all global MHD modes, a regime recently discovered through hybrid-MHD simulation using the HYM code. An experimental test of the concept, utilizing the existing Magnetic Reconnection Experiment (MRX) facility, is described. Initial experiments in MRX have confirmed the viability of the SPIRIT concept, and calculations indicate that the confinement of high-energy ions in MRX should be sufficient to test the SPIRIT concept. (author)

  13. Improvements to the ion Doppler spectrometer diagnostic on the HIT-SI experiments

    Science.gov (United States)

    Hossack, Aaron; Chandra, Rian; Everson, Chris; Jarboe, Tom

    2018-03-01

    An ion Doppler spectrometer diagnostic system measuring impurity ion temperature and velocity on the HIT-SI and HIT-SI3 spheromak devices has been improved with higher spatiotemporal resolution and lower error than previously described devices. Hardware and software improvements to the established technique have resulted in a record of 6.9 μs temporal and ≤2.8 cm spatial resolution in the midplane of each device. These allow Ciii and Oii flow, displacement, and temperature profiles to be observed simultaneously. With 72 fused-silica fiber channels in two independent bundles, and an f/8.5 Czerny-Turner spectrometer coupled to a video camera, frame rates of up to ten times the imposed magnetic perturbation frequency of 14.5 kHz were achieved in HIT-SI, viewing the upper half of the midplane. In HIT-SI3, frame rates of up to eight times the perturbation frequency were achieved viewing both halves of the midplane. Biorthogonal decomposition is used as a novel filtering tool, reducing uncertainty in ion temperature from ≲13 to ≲5 eV (with an instrument temperature of 8-16 eV) and uncertainty in velocity from ≲2 to ≲1 km/s. Doppler shift and broadening are calculated via the Levenberg-Marquardt algorithm, after which the errors in velocity and temperature are uniquely specified. Axisymmetric temperature profiles on HIT-SI3 for Ciii peaked near the inboard current separatrix at ≈40 eV are observed. Axisymmetric plasma displacement profiles have been measured on HIT-SI3, peaking at ≈6 cm at the outboard separatrix. Both profiles agree with the upper half of the midplane observable by HIT-SI. With its complete midplane view, HIT-SI3 has unambiguously extracted axisymmetric, toroidal current dependent rotation of up to 3 km/s. Analysis of the temporal phase of the displacement uncovers a coherent structure, locked to the applied perturbation. Previously described diagnostic systems could not achieve such results.

  14. Compact toroid theory issues and approaches: a panel report

    International Nuclear Information System (INIS)

    1985-06-01

    In the six years since the initiation of the compact toroid program by the Office of Fusion Energy, remarkable scientific advances have occurred on both field-reversed configurations (FRC) and spheromaks. This progress has been stimulated by a diverse experimental program with facilities at six laboratories, and by a small but nevertheless broad theoretical research effort encompassing more than a dozen institutions. The close coupling between theoretical and experimental programs has contributed immeasurably to this progress. This document offers guidance for future compact toroid theory by identifying and discussing the key physics issues. In most cases promising approaches to these issues are offered

  15. Magnetic vortex growth in the transition layer of a mildly relativistic plasma shock

    International Nuclear Information System (INIS)

    Murphy, G. C.; Dieckmann, M. E.; Drury, L. O'C.

    2010-01-01

    A two-dimensional particle simulation models the collision of two electron-ion plasma clouds along a quasiparallel magnetic field. The collision speed is 0.9c and the density ratio, 10. A current sheet forms at the front of the dense cloud, in which the electrons and the magnetic field reach energy equipartition with the ions. A structure composed of a solenoidal and a toroidal magnetic field grows in this sheet. It resembles the cross-section of the torus of a spheromak, which may provide the coherent magnetic fields in gamma-ray burst jets needed for their prompt emissions.

  16. New method for computing ideal MHD normal modes in axisymmetric toroidal geometry

    International Nuclear Information System (INIS)

    Wysocki, F.; Grimm, R.C.

    1984-11-01

    Analytic elimination of the two magnetic surface components of the displacement vector permits the normal mode ideal MHD equations to be reduced to a scalar form. A Galerkin procedure, similar to that used in the PEST codes, is implemented to determine the normal modes computationally. The method retains the efficient stability capabilities of the PEST 2 energy principle code, while allowing computation of the normal mode frequencies and eigenfunctions, if desired. The procedure is illustrated by comparison with earlier various of PEST and by application to tilting modes in spheromaks, and to stable discrete Alfven waves in tokamak geometry

  17. A mechanism for the dynamo terms to sustain closed-flux current, including helicity balance, by driving current which crosses the magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Jarboe, T. R.; Nelson, B. A.; Sutherland, D. A. [University of Washington, Seattle, Washington 98195 (United States)

    2015-07-15

    An analysis of imposed dynamo current drive (IDCD) [T.R. Jarboe et al., Nucl. Fusion 52 083017 (2012)] reveals: (a) current drive on closed flux surfaces seems possible without relaxation, reconnection, or other flux-surface-breaking large events; (b) the scale size of the key physics may be smaller than is often computationally resolved; (c) helicity can be sustained across closed flux; and (d) IDCD current drive is parallel to the current which crosses the magnetic field to produce the current driving force. In addition to agreeing with spheromak data, IDCD agrees with selected tokamak data.

  18. Theoretical aspects of magnetic helicity

    International Nuclear Information System (INIS)

    Hammer, J.H.

    1985-01-01

    The magnetic helicity, usually defined as K=integralA.Bdv, where A is the vector potential and B the magnetic field, measures the topological linkage of magnetic fluxes. Helicity manifests itself in the twistedness and knottedness of flux tubes. Its significance is that it is an ideal MHD invariant. While the helicity formalism has proven very useful in understanding reversed field pinch and spheromak behavior, some problems exist in applying the method consistently for complex (e.g., toroidal) conductor geometries or in situations where magnetic flux penetrates conducting walls. Recent work has attempted to generalize K to allow for all possible geometries

  19. Introduction to the m = 1 helicity source

    International Nuclear Information System (INIS)

    Platts, D.A.; Jarboe, T.R.; Wright, B.L.

    1985-01-01

    The m = 1 Helicity Source, formerly called the Kinked Z-pinch, was developed as part of the Electrode Studies program at Los Alamos. The Electrode Studies program was initiated to study the control of electrode erosion in long discharge duration spheromak sources. Erosion control is necessary to reduce plasma impurities and to obtain adequate electrode lifetimes. The first task of the Electrode Studies program is to determine, from among a variety of configurations including the coaxial one, a helicity source geometry with good prospects for erosion control. The more efficient the helicity source the easier it will be to control erosion, but the source most also be easy to diagnose and modify if it is to be a useful test bed. The various erosion control techniques which have been proposed will require extensive experimentation to evaluate and optimize. Proposed techniques include, using refractory metals, profiling of the electrodes and magnetic fields, and various gas injection schemes including porous electrodes. It is considered necessary to do these experiments on an optimized helicity source so that the electrode geometries and plasma properties will be relevant. Therefore the present Electrode Studies program is aimed at developing an improved helicity source design

  20. Start-up scenario of compact tori based on REB-injection developed in SPAC-group

    International Nuclear Information System (INIS)

    Ikuta, K.

    1981-01-01

    Quasi-static start-up of compact tori without toroidal field coil is reviewed thoroughly in a proposal of the S-1 spheromak. During the formation phase we should note that the rapid heat loss from the plasma will give a bad effect for the generation of the confinement configuration. In the case of fast start-up of the configuration plasma can safely pass over the dangerous state of the instability toward the desirable stable state with a bonus of producing hot plasma. By this reason it is intended to discuss a fast start-up scenario of the compact tori based on REB injection developed in SPAC group

  1. Theory and application of maximum magnetic energy in toroidal plasmas

    International Nuclear Information System (INIS)

    Chu, T.K.

    1992-02-01

    The magnetic energy in an inductively driven steady-state toroidal plasma is a maximum for a given rate of dissipation of energy (Poynting flux). A purely resistive steady state of the piecewise force-free configuration, however, cannot exist, as the periodic removal of the excess poloidal flux and pressure, due to heating, ruptures the static equilibrium of the partitioning rational surfaces intermittently. The rupture necessitates a plasma with a negative q'/q (as in reverse field pinches and spheromaks) to have the same α in all its force-free regions and with a positive q'/q (as in tokamaks) to have centrally peaked α's

  2. Measurement of the local particle diffusion coefficient in a magnetized plasma

    International Nuclear Information System (INIS)

    Meyerhofer, D.D.; Levinton, F.M.

    1987-02-01

    Local impurity particle diffusion coefficients have been measured in a low temperature plasma by the injection of test particles at the center of the plasma. The injection is accomplished by a high voltage discharge between two small graphite electrodes on a probe. The probe can be located anywhere in the plasma. The diffusion is observed spectroscopically. An analysis of the spatial and temporal evolution of the CII radiation from the carbon discharge can determine the parallel and perpendicular diffusion of the impurity ions. Results with the diagnostic have been obtained in the Proto S-1/C spheromak. The measured value of the diffusion coefficient in the afterglow plasma is in good agreement with classical predictions

  3. Nonlinear magnetohydrodynamics. Progress report, December 15, 1977--December 14, 1978

    International Nuclear Information System (INIS)

    Vahala, G.

    1978-01-01

    Incompressible MHD turbulence is considered for both 2D and 3D plasmas in cylindrical geometry. It is found that for virtually all initial conditions (including quiescent ones) the plasma is nonlinearly unstable in that mean square turbulent velocity fields develop. However, there is a unique stable state of extremal magnetic helicity/energy ratio for which no turbulent fields develop [in 2D with B/sub z/ = const., it is the state of extremal mean square vector potential/energy]. It is force free and is just the Taylor state. A conjecture can be put forward (based on a dual cascade argument for resistive MHD) to explain Taylor's hypothesis. In spherical geometry, the stable axisymmetric state is the spheromak

  4. GATO: an MHD stability code for axisymmetric plasmas with internal separatrices

    International Nuclear Information System (INIS)

    Bernard, L.C.; Helton, F.J.; Moore, R.W.

    1981-07-01

    The GATO code computes the growth rate of ideal magnetohydrodynamic instabilities in axisymmetric geometries with internal separatrices such as doublet and expanded spheromak. The basic method, which uses a variational principle and a Galerkin procedure to obtain a matrix eigenvalue problem, is common to the ERATO and PEST codes. A new coordinate system has been developed to handle the internal separatrix. Efficient algorithms have been developed to solve the matrix eigenvalue problem for matrices of rank as large as 40,000. Further improvement is expected using graph theoretical techniques to reorder the matrices. Using judicious mesh repartition, the marginal point can be determined with great precision. The code has been extensively used to optimize doublet and general tokamak plasmas

  5. Progress In Magnetized Target Fusion Driven by Plasma Liners

    Science.gov (United States)

    Thio, Francis Y. C.; Kirkpatrick, Ronald C.; Knapp, Charles E.; Cassibry, Jason; Eskridge, Richard; Lee, Michael; Smith, James; Martin, Adam; Wu, S. T.; Schmidt, George; hide

    2001-01-01

    Magnetized target fusion (MTF) attempts to combine the favorable attributes of magnetic confinement fusion (MCF) for energy confinement with the attributes of inertial confinement fusion (ICF) for efficient compression heating and wall-free containment of the fusing plasma. It uses a material liner to compress and contain a magnetized plasma. For practical applications, standoff drivers to deliver the imploding momentum flux to the target plasma remotely are required. Spherically converging plasma jets have been proposed as standoff drivers for this purpose. The concept involves the dynamic formation of a spherical plasma liner by the merging of plasma jets, and the use of the liner so formed to compress a spheromak or a field reversed configuration (FRC).

  6. Sources of student engagement in Introductory Physics for Life Sciences

    Science.gov (United States)

    Geller, Benjamin D.; Turpen, Chandra; Crouch, Catherine H.

    2018-06-01

    We explore the sources of student engagement with curricular content in an Introductory Physics for Life Science (IPLS) course at Swarthmore College. Do IPLS students find some life-science contexts more interesting than others, and, if so, what are the sources of these differences? We draw on three sources of student data to answer this question: (1) quantitative survey data illustrating how interested students were in particular contexts from the curriculum, (2) qualitative survey data in which students describe the source of their interest in these particular contexts, and (3) interview data in which students reflect on the contexts that were and were not of interest to them. We find that examples that make interdisciplinary connections with students' other coursework in biology and chemistry, and examples that make connections to what students perceive to be the "real world," are particularly effective at fostering interest. More generally, students describe being deeply engaged with contexts that foster a sense of coherence or have personal meaning to them. We identify various "engagement pathways" by which different life-science students engage with IPLS content, and suggest that a curriculum needs to be flexible enough to facilitate these different pathways.

  7. Data acquisition. GRAAL experiment. Hybrid reactor experiment. AMS experiment

    International Nuclear Information System (INIS)

    Barancourt, D.; Barbier, G.; Bosson, G.; Bouvier, J.; Gallin-Martel, L.; Meillon, B.; Stassi, P.; Tournier, M.

    1997-01-01

    The main activity of the data acquisition team has consisted in hardware and software developments for the GRAAL experiment with the trigger board, for the 'Reacteurs Hybrides' group with an acquisition board ADCVME8V and for the AMS experiment with the monitoring of the aerogel detector. (authors)

  8. The Experiment Factory: standardizing behavioral experiments

    Directory of Open Access Journals (Sweden)

    Vanessa V Sochat

    2016-04-01

    Full Text Available The administration of behavioral and experimental paradigms for psychology research is hindered by lack of a coordinated effort to develop and deploy standardized paradigms. While several frameworks (de Leeuw (2015; McDonnell et al. (2012; Mason and Suri (2011; Lange et al. (2015 have provided infrastructure and methods for individual research groups to develop paradigms, missing is a coordinated effort to develop paradigms linked with a system to easily deploy them. This disorganization leads to redundancy in development, divergent implementations of conceptually identical tasks, disorganized and error-prone code lacking documentation, and difficulty in replication. The ongoing reproducibility crisis in psychology and neuroscience research (Baker (2015; Open Science Collaboration (2015 highlights the urgency of this challenge: reproducible research in behavioral psychology is conditional on deployment of equivalent experiments. A large, accessible repository of experiments for researchers to develop collaboratively is most efficiently accomplished through an open source framework. Here we present the Experiment Factory, an open source framework for the development and deployment of web-based experiments. The modular infrastructure includes experiments, virtual machines for local or cloud deployment, and an application to drive these components and provide developers with functions and tools for further extension. We release this infrastructure with a deployment (http://www.expfactory.org that researchers are currently using to run a set of over 80 standardized web-based experiments on Amazon Mechanical Turk. By providing open source tools for both deployment and development, this novel infrastructure holds promise to bring reproducibility to the administration of experiments, and accelerate scientific progress by providing a shared community resource of psychological paradigms.

  9. Sustainment dynamo reexamined: nonlocal electrical conductivity of plasma in a stochastic magnetic field

    International Nuclear Information System (INIS)

    Jacobson, A.R.; Moses, R.W.

    1984-01-01

    The plasma dynamo is both an intriguing and a practical concept. The intrigue derives from attempting to explain naturally occurring and man-made plasmas whose strong field-aligned currents j/sub parallel/ apparently disobey the most naive Ohm's law j/sub parallel/ = sigma/sub parallel/E/sub parallel/. The practical importance derives from the dynamo's role both in formation and in sustainment of reversed-field pinch (RFP) and Spheromak fusion plasmas. We will examine certain features of the documented quasi-steady discharges on ZT-40M, and RFP in apparent need of a sustainment dynamo. We will show that the tail electrons (which carry j/sub parallel/) are probably wandering (along stochastic B Vector-field lines) over much of the minor radius in one mean-free-path

  10. GATO: An MHD stability code for axisymmetric plasmas with internal separatrices

    International Nuclear Information System (INIS)

    Bernard, L.C.; Helton, F.J.; Moore, R.W.

    1981-01-01

    The GATO code computes the growth rate of ideal magnetohydrodynamic instabilities in axisymmetric geometries with internal separatrices such as doublet and expanded spheromak. The basic method, which uses a variational principle and a Galerkin procedure to obtain a matrix eigenvalue problem, is common to the ERATO and PEST codes. A new coordinate system has been developed to handle the internal separatrix. Efficient algorithms have been developed to solve the matrix eigenvalue problem for matrices of rank as large as 40 000. Further improvement is expected using graph theoretical techniques to reorder the matrices. Using judicious mesh repartition, the marginal point can be determined with great precision. The code has been extensively used to optimize doublet and general tokamak plasmas. (orig.)

  11. Customer experience

    OpenAIRE

    Koperdáková, Zuzana

    2016-01-01

    Bachelor thesis deals with the theme of customer experience and terms related to this topic. The thesis consists of three parts. The first part explains the terms generally, as the experience or customer loyalty. The second part is dedicated to medotology used for Customer Experience Management. In the third part is described application of Customer Experience Management in practice, particularly in the context Touch Point Analyses in GE Money Bank.

  12. Simulator experiments: effects of NPP operator experience on performance

    International Nuclear Information System (INIS)

    Beare, A.N.; Gray, L.H.

    1984-01-01

    During the FY83 research, a simulator experiment was conducted at the control room simulator for a GE Boiling Water Reactor (BWR) NPP. The research subjects were licensed operators undergoing requalification training and shift technical advisors (STAs). This experiment was designed to investigate the effects of senior reactor operator (SRO) experience, operating crew augmentation with an STA and practice, as a crew, upon crew and individual operator performance, in response to anticipated plant transients. Sixteen two-man crews of licensed operators were employed in a 2 x 2 factorial design. The SROs leading the crews were split into high and low experience groups on the basis of their years of experience as an SRO. One half of the high- and low-SRO experience groups were assisted by an STA. The crews responded to four simulated plant casualties. A five-variable set of content-referenced performance measures was derived from task analyses of the procedurally correct responses to the four casualties. System parameters and control manipulations were recorded by the computer controlling the simulator. Data on communications and procedure use were obtained from analysis of videotapes of the exercises. Questionnaires were used to collect subject biographical information and data on subjective workload during each simulated casualty. For four of the five performance measures, no significant differences were found between groups led by high (25 to 114 months) and low (1 to 17 months as an SRO) experience SROs. However, crews led by low experience SROs tended to have significantly shorter task performance times than crews led by high experience SROs. The presence of the STA had no significant effect on overall team performance in responding to the four simulated casualties. The FY84 experiments are a partial replication and extension of the FY83 experiment, but with PWR operators and simulator

  13. Extracting Insights from Experience Designers to Enhance User Experience Design

    OpenAIRE

    Kremer, Simon; Lindemann, Udo

    2016-01-01

    User Experience (UX) summarizes how a user expects, perceives and assesses an encounter with a product. User Experience Design (UXD) aims at creating meaningful experiences. While UXD is a rather young discipline with-in product development and traditional processes predominate, other disciplines traditionally focus on creating experiences. We engaged with experience de-signers from the fields of arts, movies, sports, music and event management. By analyzing their working processes via interv...

  14. The experience sampling method: Investigating students' affective experience

    Science.gov (United States)

    Nissen, Jayson M.; Stetzer, MacKenzie R.; Shemwell, Jonathan T.

    2013-01-01

    Improving non-cognitive outcomes such as attitudes, efficacy, and persistence in physics courses is an important goal of physics education. This investigation implemented an in-the-moment surveying technique called the Experience Sampling Method (ESM) [1] to measure students' affective experience in physics. Measurements included: self-efficacy, cognitive efficiency, activation, intrinsic motivation, and affect. Data are presented that show contrasts in students' experiences (e.g., in physics vs. non-physics courses).

  15. Simulator experiments: effects of NPP operator experience on performance

    International Nuclear Information System (INIS)

    Beare, A.N.; Gray, L.H.

    1985-01-01

    Experiments are being conducted on nuclear power plant (NPP) control room training simulators by the Oak Ridge National Laboratory, its subcontractor, General Physics Corporation, and participating utilities. The experiments are sponsored by the Nuclear Regulatory Commission's (NRC) Human Factors and Safeguards Branch, Division of Risk Analysis and Operations, and are a continuation of prior research using simulators, supported by field data collection, to provide a technical basis for NRC human factors regulatory issues concerned with the operational safety of nuclear power plants. During the FY83 research, a simulator experiment was conducted at the control room simulator for a GE boiling water reactor (BWR) NPP. The research subjects were licensed operators undergoing requalification training and shift technical advisors (STAs). This experiment was designed to investigate the effects of (a) senior reactor operator (SRO) experience, (b) operating crew augmentation with an STA and (c) practice, as a crew, upon crew and individual operator performance, in response to anticipated plant transients. The FY84 experiments are a partial replication and extension of the FY83 experiment, but with PWR operators and simulator. Methodology and results to date are reported

  16. My early days in photobiology with Philip Hanawalt

    International Nuclear Information System (INIS)

    Setlow, Richard B.

    2005-01-01

    Phil and I started our careers on somewhat similar scientific paths. I had an undergraduate degree in physics from Swarthmore College and a Ph.D. degree in physics from Yale for research in the field for ultraviolet spectroscopy. Phil received an undergraduate degree in Physics from Oberlin College, joined the Yale Physics Department in 1954, and transferred to the new Biophysics Department in 1955. We began our interactions then by virtue of the fact that Phil had to take a Laboratory Course in Experimental Physics, one part of which was spectroscopy in which I was the instructor. One of my principal interests was in the effects of different wavelengths of ultraviolet (UV) radiation on proteins, viruses and bacterial cells. So what was more natural than for Phil to dream up a Ph.D. research project to investigate the effects of different wavelengths of UV on macromolecular synthesis in Escherichia coli. I became his mentor with expertise in UV, whereas he did most of the microbiological/biochemical work. Thus began a collaboration and a communicating friendship, the latter going on for 50 years. That communication was essential in elucidating some of the important steps in nucleotide excision repair-a field in which Phil is a pre-eminent scholar and investigator

  17. Experiment WA1 (CDHS Neutrino Experiment)

    CERN Multimedia

    CERN PhotoLab

    1977-01-01

    Experiment WA1, also known under CDHS (CERN, Dortmund, Heidelberg, Saclay; spokesman Jack Steinberger), was the first neutrino experiment on the SPS, in its West Area. Magnetized iron (with a toroidal field) forms the core of the detector. On its outside we see drift chambers and photomultipliers (detecting the light from the plastic scintillators further in). Peter Schilly is wearing a white coat. See also CERN Annual Report 1976, p.57.

  18. Field-reversing electron and ion rings for the confinement and heating of plasmas. Annual progress report, September 1, 1980-August 31, 1981

    International Nuclear Information System (INIS)

    Fleischmann, H.H.

    1981-09-01

    Our experimental work on the RECE-Christa device during the present period concentrated on obtaining conditions for first measurements of plasma confinement and on the generation of mixed-CT configurations. The most important results in these areas included the generation of rings with plasma currents significantly larger than originally hoped for, and - on the other hand - a failure to propagate rings efficiently in background gas densities below 1 mTorr. In addition, a digital data management system has been acquired and the respective software is being completed. Finally, theoretical work was performed on calculating banana drift orbits in Spheromak-type configurations and on developing a semi-analytic model for the equilibrium of ion rings which could be used for estimating the ring behavior during the slow-down of the ions

  19. Magnetohydrodynamic equilibrium of axisymmetric systems with toroidal rotation

    International Nuclear Information System (INIS)

    Mansur, N.L.P.

    1986-01-01

    A model for studying magnetohydrodynamic equilibrium of axisymetrically confined plasma with toroidal rotation, extended to the Grad. Shafranov equation is presented. The expression used for the scalar pressure is modifiec, and the influence of toroidal magnetic field is included, The equation for general motion of axisymetrically confined plasma, particularizing for rotation movements is described. Two cases are compared: one supposes the entropy as a function of poloidal magnetic flux and other supposes the temperature as a function of flux. The equations for these two cases obtaining a simplified expression by others approximations are established. The proposed model is compared with Shibata model, which uses density as function of flux, and with the ideal spheromak model. A set of cases taking in account experimental data is studied. (M.C.K.) [pt

  20. Relaxed and partially relaxed magnetic equilibria in tight-aspect-ratio tori

    International Nuclear Information System (INIS)

    Browning, P.K.; Clegg, J.R.; Duck, R.C.; Rusbridge, M.G.

    1993-01-01

    Force-free equilibrium magnetic fields in tight-aspect-ratio toroidal configurations are investigated. The study is mainly directed to modelling field configurations in the 'rodomak', a modification to the SPHEX gun-injected spheromak in which a current-carrying rod is inserted along the geometric axis. A family of analytical relaxed states (∇ x B = μB, μ constant) is presented for a torus of rectangular cross section, with boundary conditions allowing for flux embedded in the walls, representing the gun. Numerically calculated fields in SPHEX geometry, with μ profiles relevant to the driven phase of operation, are also given. The dependence of the field configurations and global quantities such as energy, helicity and toroidal current on the controlling parameters (gun flux, gun current and rod current) and geometry is discussed. (author)

  1. The need and prospects for improved fusion reactors

    International Nuclear Information System (INIS)

    Krakowski, R.A.; Hagenson, R.L.; Miller, R.L.

    1986-01-01

    Conceptual fusion reactor studies over the past 10-15 yr have projected systems that may be too large, complex, and costly to be of commercial interest. One main direction for improved fusion reactors points toward smaller, higher-power-density approaches. First-order economic issues (i.e., unit direct cost and cost of electricity) are used to support the need for more compact fusion reactors. The results of a number of recent conceptual designs of reversed-field pinch, spheromak, and tokamak fusion reactors are summarized as examples of more compact approaches. While a focus has been placed on increasing the fusion-power-core mass power density beyond the minimum economic threshold of 100-200 kWe/tonne, other means by which the overall attractiveness of fusion as a long-term energy source are also addressed

  2. TRIO experiment

    International Nuclear Information System (INIS)

    Clemmer, R.G.; Finn, P.A.; Malecha, R.F.

    1984-09-01

    The TRIO experiment is a test of in-situ tritium recovery and heat transfer performance of a miniaturized solid breeder blanket assembly. The assembly (capsule) was monitored for temperature and neutron flux profiles during irradiation and a sweep gas flowed through the capsule to an anaytical train wherein the amounts of tritium in its various chemical forms were determined. The capsule was designed to operate at different temperatures and sweep gas conditions. At the end of the experiment the amount of tritium retained in the solid was at a concentration of less than 0.1 wppM. More than 99.9% of tritium generated during the experiment was successfully recovered. The results of the experiment showed that the tritium inventories at the beginning and at the end of the experiment follow a relationship which appears to be characteristic of intragranular diffusion

  3. Pixel Experiments

    DEFF Research Database (Denmark)

    Petersen, Kjell Yngve; Søndergaard, Karin; Augustesen, Christina

    2015-01-01

    Pixel Experiments The term pixel is traditionally defined as any of the minute elements that together constitute a larger context or image. A pixel has its own form and is the smallest unit seen within a larger structure. In working with the potentials of LED technology in architectural lighting...... for using LED lighting in lighting design practice. The speculative experiments that have been set-up have aimed to clarify the variables that can be used as parameters in the design of lighting applications; including, for example, the structuring and software control of light. The experiments also...... elucidate and exemplify already well-known problems in relation to the experience of vertical and horizontal lighting. Pixel Experiments exist as a synergy between speculative test setups and lighting design in practice. This book is one of four books that is published in connection with the research...

  4. ARC EMCS Experiments (Seedling Growth-2) Experiment Status

    Science.gov (United States)

    Heathcote, David; Steele, Marianne

    2015-01-01

    Presentation of the status of the ARC ISS (International Space Station) Experiment, Seedling Growth-2 to the Payload Operations Investigator Working Group meeting at MSFC, Huntsville AL. The experiment employs the European Modular Cultivation System (ECMS).

  5. TRACY transient experiment databook. 2) ramp withdrawal experiment

    International Nuclear Information System (INIS)

    Nakajima, Ken; Yamane, Yuichi; Ogawa, Kazuhiko; Aizawa, Eiju; Yanagisawa, Hiroshi; Miyoshi, Yoshinori

    2002-03-01

    This is a databook of TRACY ''ramp withdrawal'' experiments. TRACY is a reactor to perform supercritical experiments using low-enriched uranyl nitrate aqueous solution. The excess reactivity of TRACY is 3$ at maximum, and it is inserted by feeding the solution to a core tank or by withdrawing a control rod, which is called as the transient rod, from the core. In the ramp withdrawal experiment, the supercritical experiment is initiated by withdrawing the transient rod from the core in a constant speed using a motor drive system. The data in the present databook consist of datasheets and graphs. Experimental conditions and typical values of measured parameters are tabulated in the datasheet. In the graph, power and temperature profiles are plotted. Those data are useful for the investigation of criticality accidents with fissile solutions, and for validation of criticality accident analysis codes. (author)

  6. Experiment prediction for Loft Nonnuclear Experiment L1-4

    International Nuclear Information System (INIS)

    White, J.R.; Berta, V.T.; Holmstrom, H.L.O.

    1977-04-01

    A computer analysis, using the WHAM and RELAP4 computer codes, was performed to predict the LOFT system thermal-hydraulic response for Experiment L1-4 of the nonnuclear (isothermal) test series. Experiment L1-4 will simulate a 200 percent double-ended offset shear in the cold leg of a four-loop large pressurized water reactor. A core simulator will be used to provide a reactor vessel pressure drop representative of the LOFT nuclear core. Experiment L1-4 will be initiated with a nominal isothermal primary coolant temperature of 282.2 0 C, a pressurizer pressure of 15.51 MPa, and a primary coolant flow of 270.9 kg/s. In general, the predictions of saturated blowdown for Experiment Ll-4 are consistent with the expected system behavior, and predicted trends agree with results from Semiscale Test S-01-4A, which simulated the Ll-4 experiment conditions

  7. Learning and Experience

    DEFF Research Database (Denmark)

    Olesen, Henning Salling

    2017-01-01

    Abstract: This chapter introduces a psycho-societal approach to theorizing learning, combining a materialist theory of socialization with a hermeneutic interpretation methodology. The term "approach" indicates the intrinsic connection between theory, empirical research process and epistemic subject....... Learning is theorized as dynamic subjective experience of (socially situated) realities, counting on individual subjectivity as well as subjective aspects of social interaction. This psycho-societal theory of subjective experiences conceptualizes individual psychic development as interactional experience...... of societal relations, producing an inner psycho-dynamic as a conscious and unconscious individual resource in future life. The symbolization of immediate sensual experiences form an individual life experience of social integration, language use being the medium of collective, social experience (knowledge...

  8. TRACY transient experiment databook. 3) Ramp feed experiment

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Ken; Yamane, Yuichi; Ogawa, Kazuhiko; Aizawa, Eiju; Yanagisawa, Hiroshi; Miyoshi, Yoshinori [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2002-03-01

    This is a databook of TRACY ''ramp feed'' experiments. TRACY is a reactor to perform supercritical experiments using low-enriched uranyl nitrate aqueous solution. The excess reactivity of TRACY is 3$ at maximum, and it is inserted by feeding the solution to a core tank or by withdrawing a control rod, which is called as the transient rod, from the core. In the ramp feed experiment, the supercritical experiment is initiated by feeding the fuel solution to the core tank in a constant feed rate. The data in the present databook consist of datasheets and graphs. Experimental conditions and typical values of measured parameters are tabulated in the datasheet. In the graph, power and temperature profiles are plotted. Those data are useful for the investigation of criticality accidents with fissile solutions, and for validation of criticality accident analysis codes. (author)

  9. The difference between traditional experiments and CFD validation benchmark experiments

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Barton L., E-mail: barton.smith@usu.edu

    2017-02-15

    Computation Fluid Dynamics provides attractive features for design, and perhaps licensing, of nuclear power plants. The most important of these features is low cost compared to experiments. However, uncertainty of CFD calculations must accompany these calculations in order for the results to be useful for important decision making. In order to properly assess the uncertainty of a CFD calculation, it must be “validated” against experimental data. Unfortunately, traditional “discovery” experiments are normally ill-suited to provide all of the information necessary for the validation exercise. Traditionally, experiments are performed to discover new physics, determine model parameters, or to test designs. This article will describe a new type of experiment; one that is designed and carried out with the specific purpose of providing Computational Fluid Dynamics (CFD) validation benchmark data. We will demonstrate that the goals of traditional experiments and validation experiments are often in conflict, making use of traditional experimental results problematic and leading directly to larger predictive uncertainty of the CFD model.

  10. The difference between traditional experiments and CFD validation benchmark experiments

    International Nuclear Information System (INIS)

    Smith, Barton L.

    2017-01-01

    Computation Fluid Dynamics provides attractive features for design, and perhaps licensing, of nuclear power plants. The most important of these features is low cost compared to experiments. However, uncertainty of CFD calculations must accompany these calculations in order for the results to be useful for important decision making. In order to properly assess the uncertainty of a CFD calculation, it must be “validated” against experimental data. Unfortunately, traditional “discovery” experiments are normally ill-suited to provide all of the information necessary for the validation exercise. Traditionally, experiments are performed to discover new physics, determine model parameters, or to test designs. This article will describe a new type of experiment; one that is designed and carried out with the specific purpose of providing Computational Fluid Dynamics (CFD) validation benchmark data. We will demonstrate that the goals of traditional experiments and validation experiments are often in conflict, making use of traditional experimental results problematic and leading directly to larger predictive uncertainty of the CFD model.

  11. The Challenging Experience Questionnaire: Characterization of challenging experiences with psilocybin mushrooms.

    Science.gov (United States)

    Barrett, Frederick S; Bradstreet, Matthew P; Leoutsakos, Jeannie-Marie S; Johnson, Matthew W; Griffiths, Roland R

    2016-12-01

    Acute adverse psychological reactions to classic hallucinogens ("bad trips" or "challenging experiences"), while usually benign with proper screening, preparation, and support in controlled settings, remain a safety concern in uncontrolled settings (such as illicit use contexts). Anecdotal and case reports suggest potential adverse acute symptoms including affective (panic, depressed mood), cognitive (confusion, feelings of losing sanity), and somatic (nausea, heart palpitation) symptoms. Responses to items from several hallucinogen-sensitive questionnaires (Hallucinogen Rating Scale, the States of Consciousness Questionnaire, and the Five-Dimensional Altered States of Consciousness questionnaire) in an Internet survey of challenging experiences with the classic hallucinogen psilocybin were used to construct and validate a Challenging Experience Questionnaire. The stand-alone Challenging Experience Questionnaire was then validated in a separate sample. Seven Challenging Experience Questionnaire factors (grief, fear, death, insanity, isolation, physical distress, and paranoia) provide a phenomenological profile of challenging aspects of experiences with psilocybin. Factor scores were associated with difficulty, meaningfulness, spiritual significance, and change in well-being attributed to the challenging experiences. The factor structure did not differ based on gender or prior struggle with anxiety or depression. The Challenging Experience Questionnaire provides a basis for future investigation of predictors and outcomes of challenging experiences with classic hallucinogens. © The Author(s) 2016.

  12. Particle physics experiments

    International Nuclear Information System (INIS)

    Stuart, G.W.

    1986-01-01

    The report of the Rutherford Appleton Laboratory describes the work carried out in 1985 on experiments approved by the Particle Physics Experiments Selection Panel. The contents consist of unedited contributions from each experiment. (author)

  13. Sharing ESA's knowledge and experience - the Erasmus Experiment Archive

    Science.gov (United States)

    Isakeit, Dieter; Sabbatini, Massimo; Carey, William

    2004-11-01

    The Erasmus Experiment Archive is an electronic database, that collects all experiments performed to date in the faciliteis that fall under the responsibility of the ESA (human spaceflight, microgravity, exploration).

  14. Design of modern experiments

    International Nuclear Information System (INIS)

    Park, Sung Hweon

    1984-03-01

    This book is for researchers and engineers, which is written to focus on practical design of experiments. It gives descriptions of conception of design of experiments, basic statistics theory, one way design of experiment, two-way layout without repetition, two-way layout with repetition, partition, a correlation analysis and regression analysis, latin squares, factorial design, design of experiment by table of orthogonal arrays, design of experiment of response surface, design of experiment on compound, Evop, and design of experiment of taguchi.

  15. Classic experiments

    CERN Multimedia

    CERN. Geneva; Franklin, M

    2001-01-01

    These will be a set of lectures on classic particle physics experiments, with emphasis on how the emasurements are made. I will discuss experiments made to measure the electric charge distribution of particles, to measure the symmetries of the weak decays, to measure the magnetic moment of the muon. As well as experiments performed which discovered new particles or resonances, like the tAU2and the J/Psi. The coverage will be general and should be understandable to someone knowing little particle physics.

  16. Researching experiences

    DEFF Research Database (Denmark)

    Gjedde, Lisa; Ingemann, Bruno

    In the beginning was - not the word - but the experience. This phenomenological approach provides the basis for this book, which focuses on how a person-in-situation experiences and constructs meaning from a variety of cultural visual events. This book presents video-based processual methods......, dialogue, moods, values and narratives have been investigated qualitatively with more than sixty informants in a range of projects. The processual methodological insights are put into a theoretical perspective and also presented as pragmatic dilemmas. Researching Experiences is relevant not only...

  17. Particle physics experiments 1986

    International Nuclear Information System (INIS)

    Stuart, G.W.

    1987-01-01

    The paper presents research work carried out in 1986 on 52 elementary particle experiments approved by the Particle Physics Experiments Selection Panel. Most of the experiments were collaborative and involved research groups from different countries. About half of the experiments were conducted at CERN, the remaining experiments employed the accelerators: LAMPT, LEP, PETRA, SLAC, and HERA. The contents consist of unedited contributions from each experiment. (U.K.)

  18. Pixel Experiments

    DEFF Research Database (Denmark)

    Petersen, Kjell Yngve; Søndergaard, Karin; Augustesen, Christina

    2015-01-01

    Pixel Experiments The term pixel is traditionally defined as any of the minute elements that together constitute a larger context or image. A pixel has its own form and is the smallest unit seen within a larger structure. In working with the potentials of LED technology in architectural lighting...... lighting design in practice, one quickly experiences and realises that there are untapped potentials in the attributes of LED technology. In this research, speculative studies have been made working with the attributes of LEDs in architectural contexts, with the ambition to ascertain new strategies...... for using LED lighting in lighting design practice. The speculative experiments that have been set-up have aimed to clarify the variables that can be used as parameters in the design of lighting applications; including, for example, the structuring and software control of light. The experiments also...

  19. Simulated experiments

    International Nuclear Information System (INIS)

    Bjerknes, R.

    1977-01-01

    A cybernetic model has been developed to elucidate some of the main principles of the growth regulation system in the epidermis of the hairless mouse. A number of actual and theoretical biological experiments have been simulated on the model. These included simulating the cell kinetics as measured by pulse labelling with tritiated thymidine and by continuous labelling with tritiated thymidine. Other simulated experiments included steady state, wear and tear, painting with a carcinogen, heredity and heredity and tumour. Numerous diagrams illustrate the results of these simulated experiments. (JIW)

  20. Organic chemistry experiment

    International Nuclear Information System (INIS)

    Mun, Seok Sik

    2005-02-01

    This book deals with organic chemistry experiments, it is divided five chapters, which have introduction, the way to write the experiment report and safety in the laboratory, basic experiment technic like recrystallization and extraction, a lot of organic chemistry experiments such as fischer esterification, ester hydrolysis, electrophilic aromatic substitution, aldol reaction, benzoin condensation, wittig reaction grignard reaction, epoxidation reaction and selective reduction. The last chapter introduces chemistry site on the internet and way to find out reference on chemistry.

  1. NIMROD Simulations of the HIT-SI and HIT-SI3 Devices

    Science.gov (United States)

    Morgan, Kyle; Jarboe, Tom; Hossack, Aaron; Chandra, Rian; Everson, Chris

    2017-10-01

    The Helicity Injected Torus with Steady Inductive helicity injection (HIT-SI) experiment uses a set of inductively driven helicity injectors to apply non-axisymmetric current drive on the edge of the plasma, driving an axisymmetric spheromak equilibrium in a central confinement volume. Significant improvements have been made to extended MHD modeling of HIT-SI, with both the resolution of disagreement at high injector frequencies in HIT-SI in addition to successes with the new upgraded HIT-SI3 device. Previous numerical studies of HIT-SI, using a zero-beta eMHD model, focused on operations with a drive frequency of 14.5 kHz, and found reduced agreement with both the magnetic profile and current amplification at higher frequencies (30-70 kHz). HIT-SI3 has three helicity injectors which are able to operate with different mode structures of perturbations through the different relative temporal phasing of the injectors. Simulations that allow for pressure gradients have been performed in the parameter regimes of both devices using the NIMROD code and show improved agreement with experimental results, most notably capturing the observed Shafranov-shift due to increased beta observed at higher finj in HIT-SI and the variety of toroidal perturbation spectra available in HIT-SI3. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences under Award Number DE-FG02- 96ER54361.

  2. Experiment Databases

    Science.gov (United States)

    Vanschoren, Joaquin; Blockeel, Hendrik

    Next to running machine learning algorithms based on inductive queries, much can be learned by immediately querying the combined results of many prior studies. Indeed, all around the globe, thousands of machine learning experiments are being executed on a daily basis, generating a constant stream of empirical information on machine learning techniques. While the information contained in these experiments might have many uses beyond their original intent, results are typically described very concisely in papers and discarded afterwards. If we properly store and organize these results in central databases, they can be immediately reused for further analysis, thus boosting future research. In this chapter, we propose the use of experiment databases: databases designed to collect all the necessary details of these experiments, and to intelligently organize them in online repositories to enable fast and thorough analysis of a myriad of collected results. They constitute an additional, queriable source of empirical meta-data based on principled descriptions of algorithm executions, without reimplementing the algorithms in an inductive database. As such, they engender a very dynamic, collaborative approach to experimentation, in which experiments can be freely shared, linked together, and immediately reused by researchers all over the world. They can be set up for personal use, to share results within a lab or to create open, community-wide repositories. Here, we provide a high-level overview of their design, and use an existing experiment database to answer various interesting research questions about machine learning algorithms and to verify a number of recent studies.

  3. Spectroscopy and titanium gettering in SPHEX

    International Nuclear Information System (INIS)

    Cunningham, G.; Giroud, C.; Summers, H.; Commission of the European Communities, Abingdon

    1994-01-01

    SPHEX is a spheromak wherein the toroidal and poloidal currents are generated and sustained by direct current injection from a Marshall gun, and organised by the effect of magnetic relaxation. In the past it has not achieved high temperature (Langmuir probes indicate a flat profile of about 20 eV), and this was thought to be due to radiation from impurities originating in the Marshall gun. For this paper, titanium has been applied to the plasma-facing surface of the flux conserver in an attempt to reduce impurity levels and plasma density. Calibrated spectrometers were used to measure plasma properties and impurity levels, both before and after application of titanium. The titanium is also found to have a surprisingly large effect on the magnetic properties, which gives some evidence regarding the relaxation mechanism. 7 refs., 2 figs., 1 tab

  4. Numerical study of two-fluid flowing equilibria of helicity-driven spherical torus plasmas

    International Nuclear Information System (INIS)

    Kanki, T.; Nagata, M.; Uyama, T.

    2004-01-01

    Two-fluid flowing equilibrium configurations of a helicity-driven spherical torus (HD-ST) are numerically determined by using the combination of the finite difference and the boundary element methods. It is found from the numerical results that electron fluids near the central conductor are tied to an external toroidal field and ion fluids are not. The magnetic configurations change from the high-q HD-ST (q>1) with paramagnetic toroidal field and low-β (volume average β value, ∼ 2%) through the helicity-driven spheromak and RFP (reverse field pinch) to the ultra low-q HD-ST (0 ∼ 18%) as the external toroidal field at the inner edge regions decreases and reverses the sign. The two-fluid effects are more significant in this equilibrium transition when the ion diamagnetic drift is dominant in the flowing two-fluid. (authors)

  5. Magnetized Target Fusion Driven by Plasma Liners

    Science.gov (United States)

    Thio, Y. C. Francis; Cassibry, Jason; Eskridge, Richard; Kirkpatrick, Ronald C.; Knapp, Charles E.; Lee, Michael; Martin, Adam; Smith, James; Wu, S. T.; Rodgers, Stephen L. (Technical Monitor)

    2001-01-01

    For practical applications of magnetized target fusion, standoff drivers to deliver the imploding momentum flux to the target plasma remotely are required. Quasi-spherically converging plasma jets have been proposed as standoff drivers for this purpose. The concept involves the dynamic formation of a quasi-spherical plasma liner by the merging of plasma jets, and the use of the liner so formed to compress a spheromak or a field reversed configuration (FRC). Theoretical analysis and computer modeling of the concept are presented. It is shown that, with the appropriate choice of the flow parameters in the liner and the target, the impact between the liner and the target plasma can be made to be shockless in the liner or to generate at most a very weak shock in the liner. Additional information is contained in the original extended abstract.

  6. The benefits of ITER for the portfolio of fusion configurations

    International Nuclear Information System (INIS)

    Goldston, R.J.

    2002-01-01

    Recent plasma science challenges are 1) what limits the pressure in plasmas? (macroscopic stability), 2) how do hot particles and plasma waves interact in the non-linear regime? (wave-particle interactions), 3) what causes plasma transport? (microscopic turbulence and transport) and 4) how can high-temperature plasma and material surface co-exist? (plasma-material interactions). This fusion plasma science is addressed using a 'Portfolio' of configurations, like Stellarator, Tokamak, Spherical Torus, Reversed Field Pinch, Spheromak, and Field Reversed Configuration. Namely, the scientific results from one configuration benefit progress in others. Recent example of this effort can be found in NCSX, NSTX and RFP. ITER will provide very significant benefits to the development of the full fusion portfolio; macroscopic stability, wave-particle interactions, microturbulence and transport, plasma-material interactions, and technical demonstration of an integrated fusion system. (author)

  7. The benefits of ITER for the portfolio of fusion configurations

    Energy Technology Data Exchange (ETDEWEB)

    Goldston, R.J. [Princeton Plasma Physics Lab., NJ (United States)

    2002-10-01

    Recent plasma science challenges are 1) what limits the pressure in plasmas? (macroscopic stability), 2) how do hot particles and plasma waves interact in the non-linear regime? (wave-particle interactions), 3) what causes plasma transport? (microscopic turbulence and transport) and 4) how can high-temperature plasma and material surface co-exist? (plasma-material interactions). This fusion plasma science is addressed using a 'Portfolio' of configurations, like Stellarator, Tokamak, Spherical Torus, Reversed Field Pinch, Spheromak, and Field Reversed Configuration. Namely, the scientific results from one configuration benefit progress in others. Recent example of this effort can be found in NCSX, NSTX and RFP. ITER will provide very significant benefits to the development of the full fusion portfolio; macroscopic stability, wave-particle interactions, microturbulence and transport, plasma-material interactions, and technical demonstration of an integrated fusion system. (author)

  8. Understanding patient experience

    DEFF Research Database (Denmark)

    Andersen, Tariq O.; Andersen, Pernille R. D.; Kornum, Anders C.

    2017-01-01

    , safety) arise from getting feedback on symptoms and from continuous and comforting interaction with clinicians. With this paper, we aim to sensitise UX researchers and designers of patient-centred e-health by proposing three UX dimensions: connectedness, comprehension, and compassion.......The term 'patient experience' is currently part of a global discourse on ways to improve healthcare. This study empirically explores what patient experience is in cardiac remote monitoring and considers the implications for user experience (UX). Through interviews around the deployment of a mobile...... app that enables patients to collaborate with clinicians, we unpack experiences in six themes and present narratives of patients' lifeworlds. We find that patients' emotions are grounded in negative feelings (uncertainty, anxiety, loss of hope) and that positive experiences (relief, reassurance...

  9. Linking consumer experiences

    DEFF Research Database (Denmark)

    Smed, Karina Madsen

    become part of the individual self, worldview, and behaviour. This paper seeks to explore links between consumer experiences through the exploration of narrative sequences in travel blogs. Findings indicate that non-consumption is a central element to the bloggers and also indicative of a community......Consumers consume products in various ways serving a number of purposes. Much attention has been paid to experiences attached to consumption, sometimes very explicitly, e.g. in tourism, the essence of which is experiences of various sorts, but often also implicitly as internalised experiences...

  10. Analytical chemistry experiment

    International Nuclear Information System (INIS)

    Park, Seung Jo; Paeng, Seong Gwan; Jang, Cheol Hyeon

    1992-08-01

    This book deals with analytical chemistry experiment with eight chapters. It explains general matters that require attention on experiment, handling of medicine with keep and class, the method for handling and glass devices, general control during experiment on heating, cooling, filtering, distillation and extraction and evaporation and dry, glass craft on purpose of the craft, how to cut glass tube and how to bend glass tube, volumetric analysis on neutralization titration and precipitation titration, gravimetric analysis on solubility product, filter and washing and microorganism experiment with necessary tool, sterilization disinfection incubation and appendixes.

  11. The Experiment

    Science.gov (United States)

    Mariana Nicoara, Floare

    2016-04-01

    My name is Nicoara Floarea and I am teacher at Secondary School Calatele and I teach students from preparatory class and the second grade . They are six-eight years old. In my activity, for introducing scientific concepts to my students, I use various and active methods or traditional methods including experiments. The experiment stimulates students' curiosity, their creativity, the understanding and knowledge taught accessibility. I propose you two such experiments: The life cycle of the plants (long-term experiment, with rigorous observation time):We use beans, wheat or other; They are grown in pots and on the cotton soaked with water,keeping under students' observation protecting them ( just soak them regularly) and we waiting the plants rise. For discussions and comments of plant embryo development we use the plants which rose on the cotton soaked with water plants at the end of the first week. Last school year we had in the pot climbing beans which in May made pods. They were not too great but our experiment was a success. The students could deduce that there will develop those big beans which after drying will be planted again. The influence of light on plants (average duration experiment with the necessary observation time): We use two pots in which plants are of the same type (two geraniums), one of them is situated so as to get direct sunlight and other plant we put in a closed box. Although we wet both plants after a week we see that the plant that benefited from sunlight has turned strain in direct sunlight, developing normally in return the plant out of the box I have yellowed leaves, photosynthesis does not She has occurred . Students will understand the vital role of the Sun in plants' life, both in the classroom and in nature. The experiment is a method of teaching students extremely pleasant, with a remarkable percentage of acquiring more knowledge.

  12. Experiments in computing: a survey.

    Science.gov (United States)

    Tedre, Matti; Moisseinen, Nella

    2014-01-01

    Experiments play a central role in science. The role of experiments in computing is, however, unclear. Questions about the relevance of experiments in computing attracted little attention until the 1980s. As the discipline then saw a push towards experimental computer science, a variety of technically, theoretically, and empirically oriented views on experiments emerged. As a consequence of those debates, today's computing fields use experiments and experiment terminology in a variety of ways. This paper analyzes experimentation debates in computing. It presents five ways in which debaters have conceptualized experiments in computing: feasibility experiment, trial experiment, field experiment, comparison experiment, and controlled experiment. This paper has three aims: to clarify experiment terminology in computing; to contribute to disciplinary self-understanding of computing; and, due to computing's centrality in other fields, to promote understanding of experiments in modern science in general.

  13. Particle physics experiments 1982

    International Nuclear Information System (INIS)

    Rousseau, M.D.; Stuart, G.

    1983-01-01

    Work carried out in 1982 on 52 experiments approved by the Particle Physics Experiments Selection Panel is described. Each experiment is listed under title, collaboration, technique, accelerator, year of running, status and spokesman. Unedited contributions are given from each experiment. (U.K.)

  14. Framework of product experience

    NARCIS (Netherlands)

    Desmet, P.; Hekkert, P.

    2007-01-01

    In this paper, we introduce a general framework for product experience that applies to all affective responses that can be experienced in human-product interaction. Three distinct components or levels of product experiences are discussed: aesthetic experience, experience of meaning, and emotional

  15. A Plasmoid Thruster for Space Propulsion

    Science.gov (United States)

    Koelfgen, Syri J.; Hawk, Clark W.; Eskridge, Richard; Smith, James W.; Martin, Adam K.

    2003-01-01

    There are a number of possible advantages to using accelerated plasmoids for in-space propulsion. A plasmoid is a compact plasma structure with an integral magnetic field. They have been studied extensively in controlled fusion research and are classified according to the relative strength of the poloidal and toroidal magnetic field (B(sub p), and B(sub t), respectively). An object with B(sub p), / B(sub t) much greater than 1 is classified as a Field Reversed Configuration (FRC); if B(sub p) approximately equal to B(sub t), it is called a Spheromak. The plasmoid thruster operates by producing FRC-like plasmoids and subsequently ejecting them from the device at a high velocity. The plasmoid is formed inside of a single-turn conical theta-pinch coil. As this process is inductive, there are no electrodes. Similar experiments have yielded plasmoid velocities of at least 50 km/s, and calculations indicate that velocities in excess of 100 km/s should be possible. This concept should be capable of producing Isp's in the range of 5,000 - 15,000 s with thrust densities on the order of 10(exp 5) N per square meters. The current experiment is designed to produce jet powers in the range of 5 - 10 kW, although the concept should be scalable to several MW's. The plasmoid mass and velocity will be measured with a variety of diagnostics, including internal and external B-dot probes, flux loops, Langmuir probes, high-speed cameras and a laser interferometer. Also of key importance will be measurements of the efficiency and mass utilization. Simulations of the plasmoid thruster using MOQUI, a time-dependent MHD code, will be carried out concurrently with experimental testing.

  16. Experience in Design and Learning Approaches – Enhancing the Framework for Experience

    Directory of Open Access Journals (Sweden)

    Merja L.M. Bauters

    2017-06-01

    Full Text Available In design and learning studies, an increasing amount of attention has been paid to experience. Many design approaches relate experience to embodiment and phenomenology. The growth in the number of applications that use the Internet of Things (IoT has shifted human interactions from mobile devices and computers to tangible, material things. In education, the pressure to learn and update skills and knowledge, especially in work environments, has underlined the challenge of understanding how workers learn from reflection while working. These directions have been fuelled by research findings in the neurosciences, embodied cognition, the extended phenomenological–cognitive system and the role of emotions in decision-making and meaning making. The perspective on experience in different disciplines varies, and the aim is often to categorise experience. These approaches provide a worthwhile view of the importance of experience in learning and design, such as the recent emphasis on conceptual and epistemological knowledge creation. In pragmatism, experience plays a considerable role in research, art, communication and reflection. Therefore, I rely on Peirce’s communicative theory of signs and Dewey’s philosophy of experience to examine how experience is connected to reflection and therefore how it is necessarily tangible.

  17. Popper's Thought Experiment Reinvestigated

    Science.gov (United States)

    Richardson, Chris; Dowling, Jonathan

    2012-02-01

    Karl Popper posed an interesting thought experiment in 1934. With it, he meant to question the completeness of quantum mechanics. He claimed that the notion of quantum entanglement leads to absurd scenarios that cannot be true in real life and that an implementation of his thought experiment would not give the results that QM predicts. Unfortunately for Popper, it has taken until recently to perform experiments that test his claims. The results of the experiments do not refute QM as Popper predicted, but neither do they confirm what Popper claimed QM predicted. Kim and Shih implemented Popper's thought experiment in the lab. The results of the experiment are not clear and have instigated many interpretations of the results. The results show some correlation between entangled photons, but not in the way that Popper thought, nor in the way a simple application of QM might predict. A ghost-imaging experiment by Strekalov, et al. sheds light on the physics behind Popper's thought experiment, but does not try to directly test it. I will build the physics of Popper's thought experiment from the ground up and show how the results of both of these experiments agree with each other and the theory of QM, but disprove Popper.

  18. Adaptive structures flight experiments

    Science.gov (United States)

    Martin, Maurice

    The topics are presented in viewgraph form and include the following: adaptive structures flight experiments; enhanced resolution using active vibration suppression; Advanced Controls Technology Experiment (ACTEX); ACTEX program status; ACTEX-2; ACTEX-2 program status; modular control patch; STRV-1b Cryocooler Vibration Suppression Experiment; STRV-1b program status; Precision Optical Bench Experiment (PROBE); Clementine Spacecraft Configuration; TECHSAT all-composite spacecraft; Inexpensive Structures and Materials Flight Experiment (INFLEX); and INFLEX program status.

  19. Experiment-o-mania

    Science.gov (United States)

    Drndarski, Marina

    2015-04-01

    Every 21st century student is expected to develop science literacy skills. As this is not part of Serbian national curriculum yet, we decided to introduce it with this project. Experiment-o-mania provides students to experience science in different and exciting way. It makes opportunity for personalized learning offering space and time to ask (why, where, how, what if) and to try. Therefore, we empower young people with skills of experimenting, and they love science back. They ask questions, make hypothesis, make problems and solve them, make mistakes, discuss about the results. Subsequently this raises the students' interest for school curriculum. This vision of science teaching is associated with inquiry-based learning. Experiment-o-mania is the unique and recognizable teaching methodology for the elementary school Drinka Pavlović, Belgrade, Serbia. Experiment-o-mania implies activities throughout the school year. They are held on extra class sessions, through science experiments, science projects or preparations for School's Days of science. Students learn to ask questions, make observations, classify data, communicate ideas, conduct experiments, analyse results and make conclusions. All science teachers participate in designing activities and experiments for students in Experiment-o-mania teaching method. But they are not alone. Teacher of fine arts, English teachers and others also take part. Students have their representatives in this team, too. This is a good way to blend knowledge among different school subject and popularize science in general. All the experiments are age appropriate and related to real life situations, local community, society and the world. We explore Fibonacci's arrays, saving energy, solar power, climate change, environmental problems, pollution, daily life situations in the country or worldwide. We introduce great scientists as Nikola Tesla, Milutin Milanković and sir Isaac Newton. We celebrate all relevant international days, weeks

  20. Channeling experiment

    International Nuclear Information System (INIS)

    Abelin, H.; Birgersson, L.; Widen, H.; Aagren, T.; Moreno, L.; Neretnieks, I.

    1990-07-01

    Channeling of water flow and tracer transport in real fractures in a granite body at Stripa have been investigated experimentally. The experimental site was located 360 m below the ground level. Two kinds of experiments were performed. In the single hole experiments, 20 cm diameter holes were drilled about 2.5 m into the rock in the plane of the fracture. Specially designed packers were used to inject water into the fracture in 5 cm intervals all along the fracture trace in the hole. The variation of the injection flowrates along the fracture were used to determine the transmissivity variations in the fracture plane. Detailed photographs were taken from inside the hole and the visual fracture aperture was compared with the injection flowrates in the same locations. Geostatistical methods were used to evaluate the results. Five holes were measured in great detail. In addition 7 holes were drilled and scanned by simpler packer systems. A double hole experiment was performed where two parallel holes were drilled in the same fracture plane at nearly 2 m distance. Pressure pulse tests were made between the holes in both directions. Tracers were injected in 5 locations in one hole and monitored for in many locations in the other hole. The single hole experiment and the double hole experiment show that most of the fracture planes are tight but that there are open sections which form connected channels over distances of at least 2 meters. It was also found in the double hole experiment that the investigated fracture was intersected by at least one fracture between the two holes which diverted a large amount of the injected tracers to several distant locations at the tunnel wall. (authours)

  1. The ERASMUS experiment archive

    Science.gov (United States)

    Isakeit, Dieter; Sabbatini, Massimo; Carey, William

    2005-08-01

    The Erasmus Experiment Archive is an electronic database, accessible through the Internet, that collects in a single reference repository scientific, technical and operational information regarding the experiments performed in the experiment facilities which fall under the responsibility of the ESA Directorate of Human Spaceflight, Microgravity and Exploration. The archive is operated, filled with content and kept up-to-date by the Erasmus User Centre. which forms part of the Directorate. The archive shares its records and is interoperable with similar experiment archives of the partner agencies NASA USA) and JAXA (Japan) through a mutually agreed standard for experiment records called the International Distributed Experiment Archive (IDEA).

  2. Review of experiments

    International Nuclear Information System (INIS)

    Chang, C.; Yodh, G.; Cutts, D.; Lanou, R.; Engels, E.; Kramer, M.; Danby, G.

    1977-01-01

    A study was made to examine the effects which raising the ISA from 200 x 200 GeV to 400 x 400 GeV would have on the ''canonical'' experiments. These were ''canonical'' in the sense that they span the full range of foreseeable physics and have served as topics in previous Summer Studies and Workshops which resulted in quite explicit hardware designs and experimental goals. The study results indicate that all of the ''canonical'' experiments survive. Some are actually improved, some are unaffected, and some require changes which are suggested. In general, the 90 0 experiments are relatively unaffected. The single arm small angle spectrometer, the wide aperture (FATS-WASP) spectrometer and the Coulomb interference experiment have the largest number of modifications suggested. No uniqueness to these solutions are claimed, and there may be more desirable radical approaches. It is, however, felt that the 400 x 400 GeV ISA not only permits the work on conceptual experiments from previous Summer Studies to be taken over entirely, but indicates areas of improvement in many of them. Specifics of the individual experiments are discussed

  3. Diagnostics for pellet experiments

    International Nuclear Information System (INIS)

    Johnson, R.R.

    1978-01-01

    The target diagnostics which are being used and planned in current laser driven ICF Experiments are described. Most of these diagnostics can be easily applied to future ion-beam fusion experiments. The status of laser fusion diagnostics has been much improved in the last 5 years and further improvements can be expected and should be available when the first ICF experiments using ion beams are performed. As an example, x-ray temporal and spatial resolutions are now approximately 5 psec and 3 μm, which is approximately a factor of 4 better than the resolution reported in the first implosion experiments. As one plans ahead for ion-beam fusion experiments it should be emphasized that high yield experiments are easier to diagnose provided adequate shielding is employed. However, in the event that the first high yield experiments fail it will be necessary to have diagnostics available to determine where the problems lie. In laser fusion it is interesting to note that higher laser powers are required now for breakeven experiments than first anticipated, mainly because some aspects of the laser-interaction physics were not recognized until the experiments were carefully diagnosed. Thus as has been pointed out, it may be necessary to increase the energy of the ion-beam driver to enable us to do breakeven experiments with high confidence

  4. Reproducible computational biology experiments with SED-ML--the Simulation Experiment Description Markup Language.

    Science.gov (United States)

    Waltemath, Dagmar; Adams, Richard; Bergmann, Frank T; Hucka, Michael; Kolpakov, Fedor; Miller, Andrew K; Moraru, Ion I; Nickerson, David; Sahle, Sven; Snoep, Jacky L; Le Novère, Nicolas

    2011-12-15

    The increasing use of computational simulation experiments to inform modern biological research creates new challenges to annotate, archive, share and reproduce such experiments. The recently published Minimum Information About a Simulation Experiment (MIASE) proposes a minimal set of information that should be provided to allow the reproduction of simulation experiments among users and software tools. In this article, we present the Simulation Experiment Description Markup Language (SED-ML). SED-ML encodes in a computer-readable exchange format the information required by MIASE to enable reproduction of simulation experiments. It has been developed as a community project and it is defined in a detailed technical specification and additionally provides an XML schema. The version of SED-ML described in this publication is Level 1 Version 1. It covers the description of the most frequent type of simulation experiments in the area, namely time course simulations. SED-ML documents specify which models to use in an experiment, modifications to apply on the models before using them, which simulation procedures to run on each model, what analysis results to output, and how the results should be presented. These descriptions are independent of the underlying model implementation. SED-ML is a software-independent format for encoding the description of simulation experiments; it is not specific to particular simulation tools. Here, we demonstrate that with the growing software support for SED-ML we can effectively exchange executable simulation descriptions. With SED-ML, software can exchange simulation experiment descriptions, enabling the validation and reuse of simulation experiments in different tools. Authors of papers reporting simulation experiments can make their simulation protocols available for other scientists to reproduce the results. Because SED-ML is agnostic about exact modeling language(s) used, experiments covering models from different fields of research

  5. Reproducible computational biology experiments with SED-ML - The Simulation Experiment Description Markup Language

    Science.gov (United States)

    2011-01-01

    Background The increasing use of computational simulation experiments to inform modern biological research creates new challenges to annotate, archive, share and reproduce such experiments. The recently published Minimum Information About a Simulation Experiment (MIASE) proposes a minimal set of information that should be provided to allow the reproduction of simulation experiments among users and software tools. Results In this article, we present the Simulation Experiment Description Markup Language (SED-ML). SED-ML encodes in a computer-readable exchange format the information required by MIASE to enable reproduction of simulation experiments. It has been developed as a community project and it is defined in a detailed technical specification and additionally provides an XML schema. The version of SED-ML described in this publication is Level 1 Version 1. It covers the description of the most frequent type of simulation experiments in the area, namely time course simulations. SED-ML documents specify which models to use in an experiment, modifications to apply on the models before using them, which simulation procedures to run on each model, what analysis results to output, and how the results should be presented. These descriptions are independent of the underlying model implementation. SED-ML is a software-independent format for encoding the description of simulation experiments; it is not specific to particular simulation tools. Here, we demonstrate that with the growing software support for SED-ML we can effectively exchange executable simulation descriptions. Conclusions With SED-ML, software can exchange simulation experiment descriptions, enabling the validation and reuse of simulation experiments in different tools. Authors of papers reporting simulation experiments can make their simulation protocols available for other scientists to reproduce the results. Because SED-ML is agnostic about exact modeling language(s) used, experiments covering models from

  6. Research using small tokamaks

    International Nuclear Information System (INIS)

    1991-05-01

    discharges, production and self-organization of a turbulent plasma column in a spheromak (''SK-CG-1''), and (iv) a planned large-aspect ratio, high-beta tokamak (HBT-EP) experiment. Refs, figs and tabs

  7. The Belle II Experiment

    CERN Document Server

    Kahn, J

    2017-01-01

    Set to begin data taking at the end of 2018, the Belle II experiment is the next-generation B-factory experiment hosted at KEK in Tsukuba, Japan. The experiment represents the cumulative effort from the collaboration of experimental and detector physics, computing, and software development. Taking everything learned from the previous Belle experiment, which ran from 1998 to 2010, Belle II aims to probe deeper than ever before into the field of heavy quark physics. By achieving an integrated luminosity of 50 ab−1 and accumulating 50 times more data than the previous experiment across its lifetime, along with a rewritten analysis framework, the Belle II experiment will push the high precision frontier of high energy physics. This paper will give an overview of the key components and development activities that make the Belle II experiment possible.

  8. Virtual neutron scattering experiments

    DEFF Research Database (Denmark)

    Overgaard, Julie Hougaard; Bruun, Jesper; May, Michael

    2016-01-01

    We describe how virtual experiments can be utilized in a learning design that prepares students for hands-on experiments at large-scale facilities. We illustrate the design by showing how virtual experiments are used at the Niels Bohr Institute in a master level course on neutron scattering....... In the last week of the course, students travel to a large-scale neutron scattering facility to perform real neutron scattering experiments. Through student interviews and survey answers, we argue, that the virtual training prepares the students to engage more fruitfully with experiments by letting them focus...... on physics and data rather than the overwhelming instrumentation. We argue that this is because they can transfer their virtual experimental experience to the real-life situation. However, we also find that learning is still situated in the sense that only knowledge of particular experiments is transferred...

  9. Charlotte Moore Sitterly: A Life of Spectroscopy

    Science.gov (United States)

    Rubin, Vera C.

    2010-01-01

    Dr. Charlotte Moore Sitterly was a scientist in an era when it was rare for a woman to have the opportunity to devote her life to forefront science. Following her graduation from Swarthmore College in 1920, she accepted a position at Princeton University as an assistant to Henry Norris Russell. In 1925 she started a study of the solar spectrum. She could then not know that she would devote much of her scientific career to gathering basic atomic data that are invaluable to the scientific community, even today. In 1931 she obtained a PhD degree at U. California, Berkeley, and returned to Princeton as a staff member of the Princeton University Observatory. In 1945 she moved to the National Bureau of Science (NBS), to supervise preparation of the widely used tables of atomic energy levels. Following the successful lunching (1946) of a V2 rocket to obtain the ultra violet spectrum of the sun, Moore started working with Richard Tousey and his group at the Naval Research Laboratory (NRL). Ultimately, they extended the solar spectrum down to 2200 angstroms. She continued her affiliations with NBS and NRL until her death in 1990. Charlotte Moore was rare scientist who devoted her career to obtaining accurate numbers, thus enabling the scientific community to open her tables and know that the data are accurate.

  10. Charlotte Moore Sitterly

    Science.gov (United States)

    Rubin, Vera C.

    2010-07-01

    Charlotte Moore Sitterly was a scientist in an era when it was rare for a woman to have the opportunity to devote her life to forefront science. Following her graduation from Swarthmore College in 1920, she accepted a position at Princeton University as an assistant to Henry Norris Russell. In 1925 she started a study of the solar spectrum. She could then not know that she would devote much of her scientific career to gathering basic atomic data that are invaluable to the scientific community, even today. In 1931 she obtained a Ph.D. degree at the University of California, Berkeley, and returned to Princeton as a staff member of the Princeton University Observatory. In 1945 Moore moved to the National Bureau of Standards (NBS), to supervise preparation of the widely-used tables of atomic energy levels. Following the successful launching (1946) of a V2 rocket to obtain the ultraviolet spectrum of the Sun, she started working also with Richard Tousey and his group at the Naval Research Laboratory (NRL). Ultimately, they extended the solar spectrum down to 2200 angstroms. She continued her affiliations with both the NBS and the NRL until her death in 1990. Charlotte Moore was a rare scientist who devoted her career to obtaining accurate numbers, thus enabling the scientific community to open her tables and know that the data are reliable.

  11. Experiments in physical chemistry

    CERN Document Server

    Wilson, J M; Denaro, A R

    1968-01-01

    Experiments in Physical Chemistry, Second Edition provides a compilation of experiments concerning physical chemistry. This book illustrates the link between the theory and practice of physical chemistry. Organized into three parts, this edition begins with an overview of those experiments that generally have a simple theoretical background. Part II contains experiments that are associated with more advanced theory or more developed techniques, or which require a greater degree of experimental skill. Part III consists of experiments that are in the nature of investigations wherein these invest

  12. Particle physics experiments 1983

    International Nuclear Information System (INIS)

    Stuart, G.W.

    1983-01-01

    The report describes work carried out in 1983 on experiments approved by the Particle Physics Experiments Selection Panel. The contents consist of unedited contributions from each experiment. (author)

  13. The Information Science Experiment System - The computer for science experiments in space

    Science.gov (United States)

    Foudriat, Edwin C.; Husson, Charles

    1989-01-01

    The concept of the Information Science Experiment System (ISES), potential experiments, and system requirements are reviewed. The ISES is conceived as a computer resource in space whose aim is to assist computer, earth, and space science experiments, to develop and demonstrate new information processing concepts, and to provide an experiment base for developing new information technology for use in space systems. The discussion covers system hardware and architecture, operating system software, the user interface, and the ground communication link.

  14. Nova target experiments

    International Nuclear Information System (INIS)

    Drake, R.P.

    1985-11-01

    The Nova laser, at the Lawrence Livermore National Laboratory, provides unique opportunities for target experiments. It has unprecedented energy on target and significant flexibility. The paper presented by John Hunt described the capabilities and the status of Nova. This paper discusses plans for future experiments using Nova, and the present status of target experiments. We plan to perform high-quality physics experiments that exploit the unique capabilities of Nova. Because this is our goal, we are fielding an extensive array of well-characterized target diagnostics to measure the emissions from the target. The first section of this paper discusses the basic target diagnostics. We are also taking care to quantify the performance of the laser

  15. Velocity Feedback Experiments

    Directory of Open Access Journals (Sweden)

    Chiu Choi

    2017-02-01

    Full Text Available Transient response such as ringing in a control system can be reduced or removed by velocity feedback. It is a useful control technique that should be covered in the relevant engineering laboratory courses. We developed velocity feedback experiments using two different low cost technologies, viz., operational amplifiers and microcontrollers. These experiments can be easily integrated into laboratory courses on feedback control systems or microcontroller applications. The intent of developing these experiments was to illustrate the ringing problem and to offer effective, low cost solutions for removing such problem. In this paper the pedagogical approach for these velocity feedback experiments was described. The advantages and disadvantages of the two different implementation of velocity feedback were discussed also.

  16. The International Heat Pipe Experiment. [international cooperation zero g experiment

    Science.gov (United States)

    Mcintosh, R.; Ollendorf, S.; Harwell, W.

    1976-01-01

    The aims of the experiment are outlined. Flight experiments included in this program were provided by NASA, Goddard Space Flight Center, ESA (European Space Agency), the German Ministry of Technology, Hughes Aircraft Company and NASA, Ames Research Center.

  17. Virtual neutron scattering experiments

    DEFF Research Database (Denmark)

    Overgaard, Julie Hougaard; Bruun, Jesper; May, Michael

    2017-01-01

    . In the last week of the course, students travel to a large-scale neutron scattering facility to perform real neutron scattering experiments. Through student interviews and survey answers, we argue, that the virtual training prepares the students to engage more fruitfully with experiments by letting them focus......We describe how virtual experiments can be utilized in a learning design that prepares students for hands-on experiments at large-scale facilities. We illustrate the design by showing how virtual experiments are used at the Niels Bohr Institute in a master level course on neutron scattering...

  18. Explicating Experience: Development of a Valid Scale of Past Hazard Experience for Tornadoes.

    Science.gov (United States)

    Demuth, Julie L

    2018-03-23

    People's past experiences with a hazard theoretically influence how they approach future risks. Yet, past hazard experience has been conceptualized and measured in wide-ranging, often simplistic, ways, resulting in mixed findings about its relationship with risk perception. This study develops a scale of past hazard experiences, in the context of tornadoes, that is content and construct valid. A conceptual definition was developed, a set of items were created to measure one's most memorable and multiple tornado experiences, and the measures were evaluated through two surveys of the public who reside in tornado-prone areas. Four dimensions emerged of people's most memorable experience, reflecting their awareness of the tornado risk that day, their personalization of the risk, the intrusive impacts on them personally, and impacts experienced vicariously through others. Two dimensions emerged of people's multiple experiences, reflecting common types of communication received and negative emotional responses. These six dimensions are novel in that they capture people's experience across the timeline of a hazard as well as intangible experiences that are both direct and indirect. The six tornado experience dimensions were correlated with tornado risk perceptions measured as cognitive-affective and as perceived probability of consequences. The varied experience-risk perception results suggest that it is important to understand the nuances of these concepts and their relationships. This study provides a foundation for future work to continue explicating past hazard experience, across different risk contexts, and for understanding its effect on risk assessment and responses. © 2018 Society for Risk Analysis.

  19. Magnetohydrodynamic stability of spheromak plasma in toroidal flux conserver with rectangular cross section, 2

    International Nuclear Information System (INIS)

    Kaneko, Shobu; Tsutsui, Hiroaki; Miyazaki, Takeshi; Taguchi, Masayoshi.

    1985-08-01

    The magnetohydrodynamic equilibrium states by Hill's vortex model and by the Coulomb-wave-function model are proved to be unstable. New MHD equilibrium configurations are determined by using another model for which dp/dψ = 0 on the magnetic axis. Here p is the pressure and ψ is the flux function. The values of the safety factor on the magnetic axis, q axis , are evaluated for these configurations. The MHD stability of these equilibrium states is investigated by the Mercier criterion. The values of the maximum beta ratio β max are evaluated for this model. The optimized pressure distributions are determined by use of the Mercier criterion and the values of β max are also evaluated for these pressure distributions. The values of β max are shown to be at most 12 %, if the condition q axis < 1 is required. (author)

  20. Particle physics experiments 1987

    International Nuclear Information System (INIS)

    Stuart, G.W.

    1988-01-01

    This report describes work carried out in 1987 on experiments approved by the Particle Physics Experiments Selection Panel (United Kingdom). The contents consist of unedited contributions from each experiment. (author)

  1. Understanding customer experience.

    Science.gov (United States)

    Meyer, Christopher; Schwager, Andre

    2007-02-01

    Anyone who has signed up for cell phone service, attempted to claim a rebate, or navigated a call center has probably suffered from a company's apparent indifference to what should be its first concern: the customer experiences that culminate in either satisfaction or disappointment and defection. Customer experience is the subjective response customers have to direct or indirect contact with a company. It encompasses every aspect of an offering: customer care, advertising, packaging, features, ease of use, reliability. Customer experience is shaped by customers' expectations, which largely reflect previous experiences. Few CEOs would argue against the significance of customer experience or against measuring and analyzing it. But many don't appreciate how those activities differ from CRM or just how illuminating the data can be. For instance, the majority of the companies in a recent survey believed they have been providing "superior" experiences to customers, but most customers disagreed. The authors describe a customer experience management (CEM) process that involves three kinds of monitoring: past patterns (evaluating completed transactions), present patterns (tracking current relationships), and potential patterns (conducting inquiries in the hope of unveiling future opportunities). Data are collected at or about touch points through such methods as surveys, interviews, focus groups, and online forums. Companies need to involve every function in the effort, not just a single customer-facing group. The authors go on to illustrate how a cross-functional CEM system is created. With such a system, companies can discover which customers are prospects for growth and which require immediate intervention.

  2. Particle physics experiments 1989

    International Nuclear Information System (INIS)

    Bairstow, R.

    1990-01-01

    This report describes work carried out in 1989 on experiments approved by the Particle Physics Experiments Selection Panel of Rutherford Appleton Laboratory. The contents consist of unedited contributions from each experiment. (author)

  3. Experiment data report for LOFT Boron dilution Experiment L6-6

    International Nuclear Information System (INIS)

    Stitt, B.D.; Divine, J.M.

    1982-06-01

    Selected pertinent and uninterpreted data from the sixth anticipated transient experiment (Experiment L6-6) conducted in the Loss-of-Fluid Test (LOFT) facility are presented. Experiment L6-6 simulated a boron dilution accident by injecting demineralized water into the primary coolant system (PCS) at a rate of 0.47 L/s while the reactor was in a cold shutdown condition with the control rods withdrawn. System pressure was maintained at approximately 285 kPa throughout the experiment. The experiment was divided into two parts. In the first part, L6-6A, a recirculation flow of 4.7 L/s was maintained through the PCS and criticality was achieved 7416 +- 10 s after the initiation of the dilution flow. The second part, L6-6B, was identical to L6-6A except that a recirculation flow of 9.5 L/s was maintained and criticality occurred at 8058 +- 10 s

  4. LDR structural experiment definition

    Science.gov (United States)

    Russell, R. A.

    1988-01-01

    A system study to develop the definition of a structural flight experiment for a large precision segmented reflector on the Space Station was accomplished by the Boeing Aerospace Company for NASA's Langley Research Center. The objective of the study was to use a Large Deployable Reflector (LDR) baseline configuration as the basis for focusing an experiment definition, so that the resulting accommodation requirements and interface constraints could be used as part of the mission requirements data base for Space Station. The primary objectives of the first experiment are to construct the primary mirror support truss and to determine its structural and thermal characteristics. Addition of an optical bench, thermal shield and primary mirror segments, and alignment of the optical components, would occur on a second experiment. The structure would then be moved to the payload point system for pointing, optical control, and scientific optical measurement for a third experiment. Experiment 1 will deploy the primary support truss while it is attached to the instrument module structure. The ability to adjust the mirror attachment points and to attach several dummy primary mirror segments with a robotic system will also be demonstrated. Experiment 2 will be achieved by adding new components and equipment to experiment one. Experiment 3 will demonstrate advanced control strategies, active adjustment of the primary mirror alignment, and technologies associated with optical sensing.

  5. Stimulated Brillouin scattering experiments

    International Nuclear Information System (INIS)

    Slater, D.C.; Berger, R.L.; Busch, G.; Kinzer, C.M.; Mayer, F.J.; Powers, L.V.; Tanner, D.J.

    1981-01-01

    This report describes two experiments in which SBS would be expected to play an important role. In the first experiment, we find a clear signature of the Brillouin backscatter of a short (100 psec) pulse from a long (approx. 50 μm) gradient length gas target plasma. The second experiment used much longer (approx. 1 nsec) pulses on spherical glass shell targets. These experiments were done with both narrow ( 30A) bandwidth laser light. Using one-dimensional, spherically symmetric fluid simulations, we have attempted to model many of the laser-plasma interaction processes which combine to determine the amount of absorbed energy in the long-pulse experiments. These simulations indicate that modest laser bandwidths are successful in reducing the level of SBS at the irradiances ( 15 W/cm 2 ) used in these experiments

  6. AGS experiments: 1985, 1986, 1987

    International Nuclear Information System (INIS)

    Depken, J.C.

    1987-01-01

    This report contains: Experimental areas layout, table of beam parameters and fluxes, experiment schedule ''as run,'' experiment long range schedule, a listing of experiments by number, two-page summaries of each experiment, also ordered by number, and publications of AGS experiments, 1982-1987

  7. Collaborative experience

    DEFF Research Database (Denmark)

    Mortensen, Thomas Bøtker

    -Doerr, 1996) and has been shown to have a positive effect to the outcome of collaborative R&D (Sampson, 2005). Anand & Khanna (2000), furthermore, hypothesized that research joint ventures are more ambiguous than marketing joint ventures and even more the licensing and showed that the effect of collaborative......Literature review: Collaborative experience has been shown to have a positive effect on the collaborative outcome in general (Anand & Khanna, 2000; Kale, Dyer & Singh, 2002). Furthermore, it has been linked to the ability to exploit the network of the firm for learning (Powell, Koput and Smith...... experience was largest the higher the hypothesized ambiguity. Theoretically contribution: This research project aims at contributing to existing literature by arguing, that collaborative experience is a moderating variable which moderates the effects on collaborative outcome from the level of complexity...

  8. Memorable Experiences with Sad Music—Reasons, Reactions and Mechanisms of Three Types of Experiences

    Science.gov (United States)

    Peltola, Henna-Riikka

    2016-01-01

    Reactions to memorable experiences of sad music were studied by means of a survey administered to a convenience (N = 1577), representative (N = 445), and quota sample (N = 414). The survey explored the reasons, mechanisms, and emotions of such experiences. Memorable experiences linked with sad music typically occurred in relation to extremely familiar music, caused intense and pleasurable experiences, which were accompanied by physiological reactions and positive mood changes in about a third of the participants. A consistent structure of reasons and emotions for these experiences was identified through exploratory and confirmatory factor analyses across the samples. Three types of sadness experiences were established, one that was genuinely negative (Grief-Stricken Sorrow) and two that were positive (Comforting Sorrow and Sweet Sorrow). Each type of emotion exhibited certain individual differences and had distinct profiles in terms of the underlying reasons, mechanisms, and elicited reactions. The prevalence of these broad types of emotional experiences suggested that positive experiences are the most frequent, but negative experiences were not uncommon in any of the samples. The findings have implications for measuring emotions induced by music and fiction in general, and call attention to the non-pleasurable aspects of these experiences. PMID:27300268

  9. Experimenting with a design experiment

    Directory of Open Access Journals (Sweden)

    Bakker, Judith

    2012-12-01

    Full Text Available The design experiment is an experimental research method that aims to help design and further develop new (policy instruments. For the development of a set of guidelines for the facilitation of citizens’ initiatives by local governments, we are experimenting with this method. It offers good opportunities for modeling interventions by testing their instrumental validity –the usefulness for the intended practical purposes. At the same time design experiments are also useful for evaluating the empirical validity of theoretical arguments and the further development of these arguments in the light of empirical evidence (by using e.g. the technique of pattern matching. We describe how we have applied this methodology in two cases and discuss our research approach. We encountered some unexpected difficulties, especially in the cooperation with professionals and citizens. These difficulties complicate the valid attribution of causal effects to the use of the new instrument. However, our preliminary conclusion is that design experiments are useful in our field of study

    El experimento de diseño es un método de investigación experimental que tiene como objetivo diseñar y desarrollar posteriormente nuevas herramientas (políticas. En este artículo experimentamos con este método para desarrollar un conjunto de directrices que permitan a los gobiernos locales facilitar las iniciativas ciudadanas. El método ofrece la oportunidad de modelar las intervenciones poniendo a prueba su validez instrumental (su utilidad para el fin práctico que se proponen. Al mismo tiempo, los experimentos de diseño son útiles también para evaluar la validez empírica de las discusiones teóricas y el posterior desarrollo de esas discusiones a la luz de la evidencia empírica (usando, por ejemplo, técnicas de concordancia de patrones. En este trabajo describimos cómo hemos aplicado este método a dos casos y discutimos nuestro enfoque de

  10. Conducting interactive experiments online.

    Science.gov (United States)

    Arechar, Antonio A; Gächter, Simon; Molleman, Lucas

    2018-01-01

    Online labor markets provide new opportunities for behavioral research, but conducting economic experiments online raises important methodological challenges. This particularly holds for interactive designs. In this paper, we provide a methodological discussion of the similarities and differences between interactive experiments conducted in the laboratory and online. To this end, we conduct a repeated public goods experiment with and without punishment using samples from the laboratory and the online platform Amazon Mechanical Turk. We chose to replicate this experiment because it is long and logistically complex. It therefore provides a good case study for discussing the methodological and practical challenges of online interactive experimentation. We find that basic behavioral patterns of cooperation and punishment in the laboratory are replicable online. The most important challenge of online interactive experiments is participant dropout. We discuss measures for reducing dropout and show that, for our case study, dropouts are exogenous to the experiment. We conclude that data quality for interactive experiments via the Internet is adequate and reliable, making online interactive experimentation a potentially valuable complement to laboratory studies.

  11. LDR structural experiment definition

    Science.gov (United States)

    Russell, Richard A.; Gates, Richard M.

    1988-01-01

    A study was performed to develop the definition of a structural flight experiment for a large precision segmented reflector that would utilize the Space Station. The objective of the study was to use the Large Deployable Reflector (LDR) baseline configuration for focusing on experiment definition activity which would identify the Space Station accommodation requirements and interface constraints. Results of the study defined three Space Station based experiments to demonstrate the technologies needed for an LDR type structure. The basic experiment configurations are the same as the JPL baseline except that the primary mirror truss is 10 meters in diameter instead of 20. The primary objectives of the first experiment are to construct the primary mirror support truss and to determine its structural and thermal characteristics. Addition of the optical bench, thermal shield and primary mirror segments and alignment of the optical components occur on the second experiment. The structure will then be moved to the payload pointing system for pointing, optical control and scientific optical measurement for the third experiment.

  12. AGS experiments---1987, 1988, 1989

    International Nuclear Information System (INIS)

    Depken, J.C.

    1989-04-01

    This report contains: Experimental Areas Layout; Table of Beam Parameters and Fluxes; Experiment Schedule ''as run''; Experiment Long Range Schedule; A listing of experiments by number; Two-page summaries of each experiment begin here, also ordered by number; Publications of AGS experiments; and List of experimenters

  13. AGS experiments, 1988, 1989, 1990

    International Nuclear Information System (INIS)

    Depken, J.C.

    1991-04-01

    This report contains: experimental areas layout; table of beam parameters and fluxes; experiment schedule ''as run''; experiment long range schedule; a listing of experiments by number; two-page summaries of each experiment begin here, also ordered by number; publications of AGS experiments; and list of experimenters

  14. Aesthetic experience of dance performances

    Directory of Open Access Journals (Sweden)

    Vukadinović Maja

    2012-01-01

    Full Text Available In this study the aesthetic experience of dance performances is investigated. The study includes construction of an instrument for measuring the aesthetic experience of dance performances and an investigation of the structure of both dancers’ and spectators’ aesthetic experience. The experiments are carried out during eight different performances of various dance forms, including classical ballet, contemporary dance, flamenco and folklore. Three factors of aesthetic experience of dance performances are identified: Dynamism, Exceptionality and Affective Evaluation. The results show that dancers’ aesthetic experience has a somewhat different factorial structure from that of the spectators’. Unlike spectators’ aesthetic experience, dancers’ aesthetic experience singles out the Excitement factor. The results are discussed within the context of dancers’ proprioception and spectators’ exteroception since these findings confirm the idea of a significant role of proprioception in dancers’ aesthetic experience.

  15. Tilting mode in field-reversed configurations

    International Nuclear Information System (INIS)

    Schwarzmeier, J.L.; Barnes, D.C.; Lewis, H.R.; Seyler, C.E.; Shestakov, A.I.

    1982-01-01

    Field Reversed Configurations (FRCs) experimentally have exhibited remarkable stability on the magnetohydrodynamic (MHD) timescale, despite numerous MHD calculations showing FRCs to be unstable. It is easy to believe that local modes are stabilized by finite Larmor radius (FLR) effects, but more puzzling is the apparent stability of FRCs against global modes, where one would expect FLR effects to be less important. In this paper we study the tilting mode, which MHD has shown to be a rapidly growing global mode. The tilting mode in FRCs is driven by the pressure gradient, and magnetic compression and field line bending are the stabilizing forces. A schematic of the evolution of the tilting mode is shown. The tilting mode is considered dangerous, because it would lead to rapid tearing across the separatrix. Unlike spheromaks, the tilting mode in FRCs has a separatrix that is fixed in space, so that the mode is strictly internal

  16. CTR plasma engineering studies. Annual progress report, 1 December 1984-30 November 1985

    International Nuclear Information System (INIS)

    Miley, G.H.

    1985-01-01

    Work under this project is focused on plasma engineering developments in support of fusion reactor studies. The work described in this annual progress report covers a variety of topics ranging from plasma transport modelling for compact tori to radiation heating of the first wall in a fusion device. Sections 2 and 3 decribe computer codes developed for use with field-reversed configurations such as spheromaks and field-reversed mirrors. Section 4 presents an evaluation of the feasibility of heating a RFP-type reactor to ignition with ohmic current input alone. Sections 5 and 6 describe new work that has been initiated on optimal control theory for fusion reactors. Sections 7 to 9 discuss recent results on alpha-particle transport, instabilities, and diagnostics. In the final section, methods for analysis of the poloidal variation in the thermal wall loading of a tokamak reactor are discussed and some typical results are presented

  17. The Challenging Experience Questionnaire: Characterization of challenging experiences with psilocybin mushrooms

    Science.gov (United States)

    Barrett, Frederick S.; Bradstreet, Matthew P.; Leoutsakos, Jeannie-Marie S.; Johnson, Matthew W.; Griffiths, Roland R.

    2017-01-01

    Acute adverse psychological reactions to classic hallucinogens (“bad trips”, or “challenging experiences”), while usually benign with proper screening, preparation, and support in controlled settings, remain a safety concern in uncontrolled settings (such as illicit use contexts). Anecdotal and case reports suggest potential adverse acute symptoms including affective (panic, depressed mood), cognitive (confusion, feelings of losing sanity), and somatic (nausea, heart palpitation) symptoms. Responses to items from several hallucinogen-sensitive questionnaires (Hallucinogen Rating Scale, the States of Consciousness Questionnaire, and the 5-Dimensional Altered States of Consciousness questionnaire) in an internet survey of challenging experiences with the classic hallucinogen psilocybin were used to construct and validate a Challenging Experience Questionnaire (CEQ). The stand-alone CEQ was then validated in a separate sample. Seven CEQ factors (grief, fear, death, insanity, isolation, physical distress, and paranoia) provide a phenomenological profile of challenging aspects of experiences with psilocybin. Factor scores were associated with the difficulty, meaningfulness, spiritual significance, and change in well-being attributed to the challenging experiences. The factor structure did not differ based on gender or prior struggle with anxiety or depression. The CEQ provides a basis for future investigation of predictors and outcomes of challenging experiences with psilocybin, and should be explored as a measure of challenging experiences with the broad class of classic hallucinogens. PMID:27856683

  18. Experiment prediction for LOFT nuclear experiments L5-1/L8-2

    International Nuclear Information System (INIS)

    Chen, T.H.; Modro, S.M.

    1982-01-01

    The LOFT Experiments L5-1 and L8-2 simulated intermediate break loss-of-coolant accidents with core uncovery. This paper compares the predictions with the measured data for these experiments. The RELAP5 code was used to perform best estimate double-blind and single-blind predictions. The double-blind calculations are performed prior to the experiment and use specified nominal initial and boundary conditions. The single-blind calculations are performed after the experiment and use measured initial and boundary conditions while maintaining all other parameters constant, including the code version. Comparisons of calculated results with experimental results are discussed; the possible causes of discrepancies are explored and explained. RELAP5 calculated system pressure, mass inventory, and fuel cladding temperature agree reasonably well with the experiment results, and only slight changes are noted between the double-blind and single-blind predictions

  19. Space Experiment Module (SEM)

    Science.gov (United States)

    Brodell, Charles L.

    1999-01-01

    The Space Experiment Module (SEM) Program is an education initiative sponsored by the National Aeronautics and Space Administration (NASA) Shuttle Small Payloads Project. The program provides nationwide educational access to space for Kindergarten through University level students. The SEM program focuses on the science of zero-gravity and microgravity. Within the program, NASA provides small containers or "modules" for students to fly experiments on the Space Shuttle. The experiments are created, designed, built, and implemented by students with teacher and/or mentor guidance. Student experiment modules are flown in a "carrier" which resides in the cargo bay of the Space Shuttle. The carrier supplies power to, and the means to control and collect data from each experiment.

  20. Radiochemical solar neutrino experiments

    International Nuclear Information System (INIS)

    Rich, R.; Spiro, M.

    1993-01-01

    This review covers the three presently running radiochemical solar neutrino experiments, namely the Chlorine, SAGE, and GALLEX experiments. The focus of the review is on a discussion of statistical consistency checks of the available data. The chlorine radiochemical experiment is conceptually simple and shows no strong indication of any statistical anomalies. It still forms the basis of the solar neutrino problem. Each of the two gallium experiments show internal statistical consistency. SAGE's recent preliminary results are consistent with the published GALLEX results. If this convergence is confirmed by a more definitive analysis, this would suggest that the combined result of the two gallium experiments, SAGE and GALLEX, be used for comparisons with theoretical expectations. 5 refs., 15 figs

  1. Inverse Cerenkov experiment

    International Nuclear Information System (INIS)

    Kimura, W.D.

    1993-01-01

    The final report describes work performed to investigate inverse Cherenkov acceleration (ICA) as a promising method for laser particle acceleration. In particular, an improved configuration of ICA is being tested in a experiment presently underway on the Accelerator Test Facility (ATF). In the experiment, the high peak power (∼ 10 GW) linearly polarized ATF CO 2 laser beam is converted to a radially polarized beam. This is beam is focused with an axicon at the Cherenkov angle onto the ATF 50-MeV e-beam inside a hydrogen gas cell, where the gas acts as the phase matching medium of the interaction. An energy gain of ∼12 MeV is predicted assuming a delivered laser peak power of 5 GW. The experiment is divided into two phases. The Phase I experiments, which were completed in the spring of 1992, were conducted before the ATF e-beam was available and involved several successful tests of the optical systems. Phase II experiments are with the e-beam and laser beam, and are still in progress. The ATF demonstrated delivery of the e-beam to the experiment in Dec. 1992. A preliminary ''debugging'' run with the e-beam and laser beam occurred in May 1993. This revealed the need for some experimental modifications, which have been implemented. The second run is tentatively scheduled for October or November 1993. In parallel to the experimental efforts has been ongoing theoretical work to support the experiment and investigate improvement and/or offshoots. One exciting offshoot has been theoretical work showing that free-space laser acceleration of electrons is possible using a radially-polarized, axicon-focused laser beam, but without any phase-matching gas. The Monte Carlo code used to model the ICA process has been upgraded and expanded to handle different types of laser beam input profiles

  2. The Game Experience Questionnaire

    NARCIS (Netherlands)

    IJsselsteijn, W.A.; de Kort, Y.A.W.; Poels, K.

    2013-01-01

    This document contains the English version of the Game Experience Questionnaire. The development and testing of the Game Experience Questionnaire is described in project Deliverable 3.3. The Game Experience Questionnaire has a modular structure and consists of : 1. The core questionnaire 2. The

  3. Do entheogen-induced mystical experiences boost the immune system? Psychedelics, peak experiences, and wellness.

    Science.gov (United States)

    Roberts, T B

    1999-01-01

    Daily events that boost the immune system (as indicated by levels of salivary immunoglobulin A), some instances of spontaneous remission, and mystical experiences seem to share a similar cluster of thoughts, feelings, moods, perceptions, and behaviors. Entheogens--psychedelic drugs used in a religious context--can also produce mystical experiences (peak experiences, states of unitive consciousness, intense primary religious experiences) with the same cluster of effects. When this happens, is it also possible that such entheogen-induced mystical experiences strengthen the immune system? Might spontaneous remissions occur more frequently under such conditions? This article advances the so called "Emxis hypothesis"--that entheogen-induced mystical experiences influence the immune system.

  4. Results of recent LOFT experiments

    International Nuclear Information System (INIS)

    Leach, L.P.; Hanson, D.J.; Batt, D.L.

    1982-01-01

    Five experiments were performed in the Loss-of-Fluid Test (LOFT) facility during the past year. The experiments conducted spanned a wide range of potential accident scenarios, including large and small break loss-of-coolant accidents (LOCAs), control rod withdrawal accidents, uncontrolled boron dilution, and anticipated transients without scram (ATWS). This summary describes these experiments and presents results available from the experiments and experiment prediction calculations. A brief overview is given for the remaining experiment planned in the LOFT Program

  5. CANDU operating experience

    International Nuclear Information System (INIS)

    McConnell, L.G.; Woodhead, L.W.; Fanjoy, G.R.; Thurygill, E.W.

    1980-05-01

    The CANDU-PHW program is based upon 38 years of heavy water reactor experience with 35 years of operating experience. Canada has had 72 reactor years of nuclear-electric operations experience with 10 nuclear units in 4 generating stations during a period of 18 years. All objectives have been met with outstanding performance: worker safety, public safety, environmental emissions, reliable electricity production, and low electricity cost. The achievement has been realized through total teamwork involving all scientific disciplines and all project functions (research, design, manufacturing, construction, and operation). (auth)

  6. Experience as Excursion

    DEFF Research Database (Denmark)

    Svabo, Connie; Shanks, Michael

    2014-01-01

    researchers and practitioners to travel – making it possible to follow experiences as they are enacted across and between places, modes of transportation, mobile mediation and assemblages of things. Drawing on the nomadic metaphysics of philosopher Michel Serres, the journeying, shifting and propagating...... qualities of experience are highlighted as part of a suggestion that design may indeed relate as much to metaphysics as to mechanics, materials science, and the psychology of the consumer and user. An Experience Design is sketched out as the choreography of temporary and shifting engagements across...

  7. Neutrino oscillation experiments

    International Nuclear Information System (INIS)

    Camilleri, L.

    1996-01-01

    Neutrino oscillation experiments (ν μ →ν e and ν μ →ν τ ) currently being performed at accelerators are reviewed. Future plans for short and long base-line experiments are summarized. (author) 10 figs., 2 tabs., 29 refs

  8. Experiment, right or wrong

    CERN Document Server

    Franklin, Allan

    2008-01-01

    In Experiment, Right or Wrong, Allan Franklin continues his investigation of the history and philosophy of experiment presented in his previous book, The Neglect of Experiment. In this new study, Franklin considers the fallibility and corrigibility of experimental results and presents detailed histories of two such episodes: 1) the experiment and the development of the theory of weak interactions from Fermi's theory in 1934 to the V-A theory of 1957 and 2) atomic parity violation experiments and the Weinberg-Salam unified theory of electroweak interactions of the 1970s and 1980s. In these episodes Franklin demonstrates not only that experimental results can be wrong, but also that theoretical calculations and the comparison between experiment and theory can also be incorrect. In the second episode, Franklin contrasts his view of an "evidence model" of science in which questions of theory choice, confirmation, and refutation are decided on the basis of reliable experimental evidence, with that proposed by the ...

  9. What Public Experience May Be – On Publicity, Communication and the Expression of Lived Experiences

    Directory of Open Access Journals (Sweden)

    Samuel Mateus

    2016-09-01

    Full Text Available The idea of public experience is often invoked in different social and academic contexts. However, it seldom deserved a reflection that specifically sought to deepen its meaning from the point of view of social life. In this article we contribute to the understanding of the uniqueness of the public form of experience. We believe that one of the best ways through which we can observe the public experience is by the objectification, performance and dramatization of the culture, i.e., the “expression of lived experiences”. There is, in publicity, the possibility of simultaneous allocation of individual and collective experiences, and it is in this sense that we can see how culture influences the shaping of experience itself. Public experience is characterized by the weaving and intertwining of singular experiences that are pluralized and plural lived experiences that are singularized, in a process where individual and society interpenetrate. The relationship between experience and publicity arises from this symbolic communion contained in the systems of thought and action of societies. The decisive role of the principle of publicity to experience consists, according with the hypothesis we wish to put forward, in making available and communicating the social world of symbolic (cultural activity. Public experience is, then, envisaged as the experience of a common world where both singular and plural definitions of the individual (taken as society converge through lived experiences and, particularly, through their expression, which can take different symbolic forms.

  10. Implanted-tritium permeation experiments

    International Nuclear Information System (INIS)

    Longhurst, G.R.; Holland, D.F.; Casper, L.A.; Hsu, P.Y.; Miller, L.G.; Schmunk, R.E.; Watts, K.D.; Wilson, C.J.; Kershner, C.J.; Rogers, M.L.

    1982-04-01

    In fusion reactors, charge exchange neutral atoms of tritium coming from the plasma will be implanted into the first wall and other interior structures. EG and G Idaho is conducting two experiments to determine the magnitude of permeation into the coolant streams and the retention of tritium in those structures. One experiment uses an ion gun to implant deuterium. The ion gun will permit measurements to be made for a variety of implantation energies and fluxes. The second experiment utilizes a fission reactor to generate a tritium implantation flux by the 3 He(n,p) 3 H reaction. This experiment will simulate the fusion reactor radiation environment. We also plan to verify a supporting analytical code development program, in progress, by these experiments

  11. The JESSICA experiment. Pt I. Improvements of the JESSICA-experiment

    Energy Technology Data Exchange (ETDEWEB)

    Nuenighoff, K.; Conrad, H.; Filges, D.; Goldenbaum, F.; Neef, R.D.; Pohl, Ch.; Schaal, H.; Stelzer, H.; Tietze-Jaensch, H.; Paul, N.; Wohlmuther, W. [Forschungszentrum Juelich GmbH, Juelich (Germany); Ninaus, W. [Technische Univ. Graz, Inst. fuer Technische Physik, Graz (Austria); Smirnov, A. [Joint Inst. of Nuclear Research, Dubna (Russian Federation)

    2004-03-01

    In this article we like to report on the progress of the JESSICA experiment. The experimental setup is described and the experimental method is presented. Proton beam monitoring and results from water and polyethylene will also be mentioned. In the end we give an outlook to the upcoming experiments with further cold moderator materials. (orig.)

  12. The JESSICA experiment. Part I. Improvements of the JESSICA-experiment

    International Nuclear Information System (INIS)

    Nuenighoff, K.; Conrad, H.; Filges, D.; Goldenbaum, F.; Neef, R.D.; Pohl, Ch.; Schaal, H.; Stelzer, H.; Tietze-Jaensch, H.; Paul, N.; Wohlmuther, W.; Ninaus, W.; Smirnov, A.

    2004-01-01

    In this article we like to report on the progress of the JESSICA experiment. The experimental setup is described and the experimental method is presented. Proton beam monitoring and results from water and polyethylene will also be mentioned. In the end we give an outlook to the upcoming experiments with further cold moderator materials. (orig.)

  13. The French experience

    CERN Document Server

    Bougard, Marie-Thérèse

    2003-01-01

    Developed for beginners, The French Experience 1 course book is designed to accompany the French Experience 1 CDs (9780563472582) but can also be used on its own to develop your reading and writing skills. You’ll gain valuable insights into French culture too.

  14. Neutrino oscillation experiments

    Energy Technology Data Exchange (ETDEWEB)

    Camilleri, L [European Organization for Nuclear Research, Geneva (Switzerland)

    1996-11-01

    Neutrino oscillation experiments ({nu}{sub {mu}}{yields}{nu}{sub e} and {nu}{sub {mu}}{yields}{nu}{sub {tau}}) currently being performed at accelerators are reviewed. Future plans for short and long base-line experiments are summarized. (author) 10 figs., 2 tabs., 29 refs.

  15. Future of neutrino experiments

    Indian Academy of Sciences (India)

    them are under construction. The next generation double beta decay experiments are sensitive to the inverted mass hierarchy. In order to explore the normal mass hierarchy, the sensitivity of the experiments still needs to be improved substantially. For example, see [32] for more details of the double beta decay experiments.

  16. AGS experiments - 1982, 1983, 1984

    International Nuclear Information System (INIS)

    Bunce, G.

    1983-01-01

    The report contains layouts of experimental areas, a table of beam parameters and fluxes, the experiment schedule as run, the experiment long range schedule, a listing of experiments by number, and a section of two-page summaries of each experiment

  17. Experience Supporting the Integration of LHC Experiments Software Framework with the LCG Middleware

    CERN Document Server

    Santinelli, Roberto

    2006-01-01

    The LHC experiments are currently preparing for data acquisition in 2007 and because of the large amount of required computing and storage resources, they decided to embrace the grid paradigm. The LHC Computing Project (LCG) provides and operates a computing infrastructure suitable for data handling, Monte Carlo production and analysis. While LCG offers a set of high level services, intended to be generic enough to accommodate the needs of different Virtual Organizations, the LHC experiments software framework and applications are very specific and focused on the computing and data models. The LCG Experiment Integration Support team works in close contact with the experiments, the middleware developers and the LCG certification and operations teams to integrate the underlying grid middleware with the experiment specific components. The strategical position between the experiments and the middleware suppliers allows EIS team to play a key role at communications level between the customers and the service provi...

  18. User Experience Dimensions

    DEFF Research Database (Denmark)

    Lykke, Marianne; Jantzen, Christian

    2016-01-01

    The present study develops a set of 10 dimensions based on a systematic understanding of the concept of experience as a holistic psychological. Seven of these are derived from a psychological conception of what experiencing and experiences are. Three supplementary dimensions spring from the obser...

  19. Social experience infrastructure

    DEFF Research Database (Denmark)

    Kvistgaard, Peter

    2006-01-01

    and explorative fashion to share with others thoughts and ideas concerning the development of new ways to construct/reconstruct recreational spaces with a better coherence with regard to designing experiences. This article claims that it is possible to design recreational spaces with good social experience...

  20. Materials science experiments in space

    Science.gov (United States)

    Gelles, S. H.; Giessen, B. C.; Glicksman, M. E.; Margrave, J. L.; Markovitz, H.; Nowick, A. S.; Verhoeven, J. D.; Witt, A. F.

    1978-01-01

    The criteria for the selection of the experimental areas and individual experiments were that the experiment or area must make a meaningful contribution to the field of material science and that the space environment was either an absolute requirement for the successful execution of the experiment or that the experiment can be more economically or more conveniently performed in space. A number of experimental areas and individual experiments were recommended for further consideration as space experiments. Areas not considered to be fruitful and others needing additional analysis in order to determine their suitability for conduct in space are also listed. Recommendations were made concerning the manner in which these materials science experiments are carried out and the related studies that should be pursued.

  1. Urban Experiments and Concrete Utopias

    DEFF Research Database (Denmark)

    Andersson, Lasse

    2009-01-01

    The paper explores how concrete urban experiments can challenge the pecuniary version of the experience city and stimulate a locally rooted and democratic version of an experience based city using heterotopias and concrete utopias as the link between top down planning and bottom up experiments...... administrations with public participation in order to shape a cultural agenda. The second part of the paper looks at two cases: NDSM in Amsterdam and Platform4 in Aalborg suggesting that it is concrete urban experiments like these that can create a link between visions and local reality in the Experience city...

  2. Experiments as politics

    NARCIS (Netherlands)

    Spears, R; Smith, HJ

    The purpose of this paper is to illustrate the political nature of laboratory experiments. Such experiments can be construed as paradigms of power, open to construction and debate, where different agents and interests are involved in a process of struggle over both (re)presentation and substance.

  3. THX Experiment Overview

    Science.gov (United States)

    Wernet, Mark; Wroblewski, Adam; Locke, Randy; Georgiadis, Nick

    2016-01-01

    This presentation provides an overview of experiments conducted at NASA GRC to provide turbulent flow measurements needed for new turbulence model development and validation. The experiments include particle image velocimetry (PIV) and hot-wire measurements of mean flow velocity and temperature fields, as well as fluctuating components.

  4. Activity Coefficients of Acetone-Chloroform Solutions: An Undergraduate Experiment. Undergraduate Experiment.

    Science.gov (United States)

    Ozog, J. Z.; Morrison, J. A.

    1983-01-01

    Presents information, laboratory procedures, and results of an undergraduate experiment in which activity coefficients for a two-component liquid-vapor system are determined. Working in pairs, students can perform the experiment with 10 solutions in a given three-hour laboratory period. (Author/JN)

  5. Experiments on ferrimagnetism

    International Nuclear Information System (INIS)

    Kraftmakher, Yaakov

    2013-01-01

    Ferrimagnetism undoubtedly deserves a proper place in the undergraduate laboratory on electricity and magnetism. Four student experiments on ferrimagnetism are considered: (i) the hysteresis loops and permeability of a ‘soft’ ferrite; (ii) the differential permeability versus a dc bias; (iii) the frequency dependence of the complex permeability and (iv) the electromagnetic interference suppression by ferrite chokes and beads. Two ferrite cores taken off a low-frequency choke and a power cord are used. The measurements are simple and straightforward and show the important properties of ferrites and their applications. The values of the permeability of the ferrite core determined in experiments (i)–(iii) are in reasonable agreement. The frequency dependence of the complex permeability of the ferrites is similar to that given by the manufacturers. The capability of absorbing electromagnetic waves in a definite frequency range shown in experiment (iv) demonstrates one of the principles of Stealth technology. The equipment necessary for the experiments can be found in many student laboratories. (paper)

  6. [The AMY experiment

    International Nuclear Information System (INIS)

    1989-01-01

    The AMY experiment is one of three major experiments at TRISTAN which is studying the states the matter produced in electron positron annihilations in the center of mass energy range of 50--65GeV. It provides information between the lower energy facilities such as PEP and PETRA and the new facilities SLC and LEP which are designed to operate in the region of the Z 0 mass near 90GeV. In the region of the AMY experiment, interaction cross sections are near their minimum of about 100pb, making it difficult to acquire large data samples during typical running cycles. This last year has seen an accumulation of about 10---12pb -1 of integrated luminosity in the energy range from 58 to 61.7GeV. Despite this limited data sample, the AMY experiment has been extremely active in attempting to extract the minimum amount of information from the data. Some of the most significant results are discussed in this paper. 9 refs

  7. Olkiluoto 3 Experience

    International Nuclear Information System (INIS)

    Tiippana, Petteri

    2011-01-01

    This paper discusses the experience from the Olkiluoto 3 nuclear power plant project from regulator's point of view. There are certain factors that have affected greatly the project progress. First, Olkiluoto 3 nuclear power plant is the first European Pressurised Reactor (EPR) being constructed. Secondly, construction of the unit started after a fairly long break in nuclear power plant construction in Europe, which had resulted in loss of experienced and qualified engineering and manufacturing resources. These factors have to be kept in mind when evaluating the experience from Olkiluoto 3. Experience discussed in this paper have to do with the licensing and regulatory oversight process, completion of the design prior to construction, experience and know-how of the participating organisations, quality management in a nuclear construction project, advanced manufacturing and construction technologies, turnkey contract with regard to licensee's responsibility, safety culture aspects in a nuclear construction project, and the role and importance of regulator's oversight. (author)

  8. Aura, Self, and Aesthetic Experience

    OpenAIRE

    Marshall Battani

    2011-01-01

    Aesthetic experiences are generated in encounters with cultural objects and such experiences are marked by the free play of cognitive and numinous experience unstructured by concepts. Kant’s famous three types of pleasure, made infamous in social theory by Pierre Bourdieu, are examined in relation to the critical theoretical concept of aura, the social psychology of “flow,” and cognitive explanations of perception to explain experience in aesthetic fields. Theories of aesthetic experience de...

  9. Experience and Its Generation

    Institute of Scientific and Technical Information of China (English)

    Chen Youqing

    2006-01-01

    Experience iS an activity that arouses emotions and generates meanings based on vivid sensation and profound compreh ension.It iS emotional,meaningful,and personal,playing a key role in the course of forming and developing one'S qualities.The psychological process of experience generation consists of such links as sensing things,arousing emotions,promoting comprehension and association,generating insights and meanings,and deepening emotional responses.Undergoing things personally by means of direct sensation,taking part in activities,and living life are the most important preconditions of experience generation.Emotional influence,situational edification,and arts edification ale extemal factors that induce experience generation.

  10. The G0 Experiment

    International Nuclear Information System (INIS)

    Nakahara, Kazutaka

    2007-01-01

    The G0 experiment measures the parity-violating asymmetries in elastic electron-proton and quasi-elastic electron-deuteron scattering over the momentum transfers 0.12 ≤ Q2 ≤ 1.0 GeV2. These asymmetries are sensitive to the strange-quark contribution to the charge and magnetization distributions of the proton. The experiment is conducted at Jefferson Laboratory using a toroidal spectrometer designed to detect forward scattered recoil protons and backward scattered elastic and quasi-elastic electrons. The forward angle experiment was completed in 2004, and the backward angle phase of the experiment is currently taking place

  11. ATLAS Experiment Brochure

    CERN Multimedia

    AUTHOR|(INSPIRE)INSPIRE-00085461

    2016-01-01

    ATLAS is one of the four major experiments at the Large Hadron Collider at CERN. It is a general-purpose particle physics experiment run by an international collaboration, and is designed to exploit the full discovery potential and the huge range of physics opportunities that the LHC provides.

  12. Peak Experience Project

    Science.gov (United States)

    Scott, Daniel G.; Evans, Jessica

    2010-01-01

    This paper emerges from the continued analysis of data collected in a series of international studies concerning Childhood Peak Experiences (CPEs) based on developments in understanding peak experiences in Maslow's hierarchy of needs initiated by Dr Edward Hoffman. Bridging from the series of studies, Canadian researchers explore collected…

  13. Experience with technology dynamics of user experience with mobile media devices

    CERN Document Server

    al-Azzawi, Ali

    2013-01-01

    With a focus on gaining an empirically derived understanding of the underlying psychological dimensions and processes behind people’s experiences with technology, this book contributes to the debate of user experience (UX) within several disciplines, including HCI, design and marketing. It analyses UX dynamics at various time scales, and explores the very nature of time and meaning in the context of UX.Experience with Technology uses personal construct theory (PCT) as a theoretical and methodological starting point to this project. Major case-studies are described that examine people’s exp

  14. AGS Experiments: 1989, 1990, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Depken, J.C.

    1992-02-01

    This report contains: Experimental areas layout; table of beam parameters and fluxes; experiment schedule ``as run``; proposed 1992 schedule; a listing of experiments by number; two-page summaries of each experiment begin here, also ordered by number; publications of AGS Experiments begin here; and list of AGS Experimenters begins here.

  15. AGS Experiments: 1989, 1990, 1991

    International Nuclear Information System (INIS)

    Depken, J.C.

    1992-02-01

    This report contains: Experimental areas layout; table of beam parameters and fluxes; experiment schedule ''as run''; proposed 1992 schedule; a listing of experiments by number; two-page summaries of each experiment begin here, also ordered by number; publications of AGS Experiments begin here; and list of AGS Experimenters begins here

  16. AGS Experiments: 1989, 1990, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Depken, J.C.

    1992-02-01

    This report contains: Experimental areas layout; table of beam parameters and fluxes; experiment schedule as run''; proposed 1992 schedule; a listing of experiments by number; two-page summaries of each experiment begin here, also ordered by number; publications of AGS Experiments begin here; and list of AGS Experimenters begins here.

  17. Welcome to the experience economy.

    Science.gov (United States)

    Pine, B J; Gilmore, J H

    1998-01-01

    First there was agriculture, then manufactured goods, and eventually services. Each change represented a step up in economic value--a way for producers to distinguish their products from increasingly undifferentiated competitive offerings. Now, as services are in their turn becoming commoditized, companies are looking for the next higher value in an economic offering. Leading-edge companies are finding that it lies in staging experiences. To reach this higher level of competition, companies will have to learn how to design, sell, and deliver experiences that customers will readily pay for. An experience occurs when a company uses services as the stage--and goods as props--for engaging individuals in a way that creates a memorable event. And while experiences have always been at the heart of the entertainment business, any company stages an experience when it engages customers in a personal, memorable way. The lessons of pioneering experience providers, including the Walt Disney Company, can help companies learn how to compete in the experience economy. The authors offer five design principles that drive the creation of memorable experiences. First, create a consistent theme, one that resonates throughout the entire experience. Second, layer the theme with positive cues--for example, easy-to-follow signs. Third, eliminate negative cues, those visual or aural messages that distract or contradict the theme. Fourth, offer memorabilia that commemorate the experience for the user. Finally, engage all five senses--through sights, sounds, and so on--to heighten the experience and thus make it more memorable.

  18. Nitrogen-detected CAN and CON experiments as alternative experiments for main chain NMR resonance assignments

    International Nuclear Information System (INIS)

    Takeuchi, Koh; Heffron, Gregory; Sun, Zhen-Yu J.; Frueh, Dominique P.; Wagner, Gerhard

    2010-01-01

    Heteronuclear direct-detection experiments, which utilize the slower relaxation properties of low γ nuclei, such as 13 C have recently been proposed for sequence-specific assignment and structural analyses of large, unstructured, and/or paramagnetic proteins. Here we present two novel 15 N direct-detection experiments. The CAN experiment sequentially connects amide 15 N resonances using 13 C α chemical shift matching, and the CON experiment connects the preceding 13 C' nuclei. When starting from the same carbon polarization, the intensities of nitrogen signals detected in the CAN or CON experiments would be expected four times lower than those of carbon resonances observed in the corresponding 13 C-detecting experiment, NCA-DIPAP or NCO-IPAP (Bermel et al. 2006b; Takeuchi et al. 2008). However, the disadvantage due to the lower γ is counteracted by the slower 15 N transverse relaxation during detection, the possibility for more efficient decoupling in both dimensions, and relaxation optimized properties of the pulse sequences. As a result, the median S/N in the 15 N observe CAN experiment is 16% higher than in the 13 C observe NCA-DIPAP experiment. In addition, significantly higher sensitivity was observed for those residues that are hard to detect in the NCA-DIPAP experiment, such as Gly, Ser and residues with high-field C α resonances. Both CAN and CON experiments are able to detect Pro resonances that would not be observed in conventional proton-detected experiments. In addition, those experiments are free from problems of incomplete deuterium-to-proton back exchange in amide positions of perdeuterated proteins expressed in D 2 O. Thus, these features and the superior resolution of 15 N-detected experiments provide an attractive alternative for main chain assignments. The experiments are demonstrated with the small model protein GB1 at conditions simulating a 150 kDa protein, and the 52 kDa glutathione S-transferase dimer, GST.

  19. The Cryogenic Test Bed experiments: Cryogenic heat pipe flight experiment CRYOHP (STS-53). Cryogenic two phase flight experiment CRYOTP (STS-62). Cryogenic flexible diode flight experiment CRYOFD

    Science.gov (United States)

    Thienel, Lee; Stouffer, Chuck

    1995-09-01

    This paper presents an overview of the Cryogenic Test Bed (CTB) experiments including experiment results, integration techniques used, and lessons learned during integration, test and flight phases of the Cryogenic Heat Pipe Flight Experiment (STS-53) and the Cryogenic Two Phase Flight Experiment (OAST-2, STS-62). We will also discuss the Cryogenic Flexible Diode Heat Pipe (CRYOFD) experiment which will fly in the 1996/97 time frame and the fourth flight of the CTB which will fly in the 1997/98 time frame. The two missions tested two oxygen axially grooved heat pipes, a nitrogen fibrous wick heat pipe and a 2-methylpentane phase change material thermal storage unit. Techniques were found for solving problems with vibration from the cryo-collers transmitted through the compressors and the cold heads, and mounting the heat pipe without introducing parasitic heat leaks. A thermally conductive interface material was selected that would meet the requirements and perform over the temperature range of 55 to 300 K. Problems are discussed with the bi-metallic thermostats used for heater circuit protection and the S-Glass suspension straps originally used to secure the BETSU PCM in the CRYOTP mission. Flight results will be compared to 1-g test results and differences will be discussed.

  20. Feel Experience Dan Think Experience Marketing Pengaruhnya Terhadap Loyalitas Konsumen Melalui Kepuasan Konsumen Sebagai Variabel Intervening

    Directory of Open Access Journals (Sweden)

    Asti Hidayati

    2017-12-01

      Key Word: feel experience, think experience marketing, customer loyalty, customer satisfaction   Abstrak : Penelitian ini bertujuan untuk mengetahui pengaruh langsung dan pengaruh tidak langsung feel experience dan think experience marketing terhadap loyalitas konsumen melalui kepuasan konsumen sebagai variabel intervening. Metode penelitian yang digunakan adalah metode kuantitatif. Jumlah sampel dalam penelitian ini sebanyak 100 responden, teknik pengambilan sampel menggunakan teknik sampling insidental. Teknik penarikan data menggunakan kuesioner. Teknik analisis data dilakukan dengan menggunakan analisis jalur (Path Analysis. Hasil penelitian ini menunjukkan bahwa feel experience mempunyai pengaruh langsung terhadap loyalitas konsumen. Think experience marketing mempunyai pengaruh tidak langsung terhadap loyalitas konsumen.    Kata  kunci: feel experience, think experience marketing, loyalitas konsumen, kepuasan konsumen

  1. Experiment prediction for LOFT nuclear experiments L5-1 and L8-2

    International Nuclear Information System (INIS)

    Chen, T.H.; Modro, S.M.

    1983-01-01

    The LOFT Experiments L5-1 and L8-2 simulated intermediate break loss-of-coolant accidents with core uncovery. This paper compares the predictions with the measured data for these experiments. The RELAP5 code was used to perform best estimate double-blind and single-blind predictions. The double-blind calculations are performed prior to the experiment and use specified nominal initial and boundary conditions. The single-blind calculations are performed after the experiment and use measured initial and boundary conditions while maintaining all other parameters constant, including the code version. Comparisons of calculated results with experimental results are discussed; the possible causes of discrepancies are explored and explained. RELAP5 calculated system pressure, mass inventory, and fuel cladding temperature agree reasonably well with the experiment results, and only slight changes are noted between the double-blind and single-blind predictions

  2. Dashboard for the LHC experiments

    International Nuclear Information System (INIS)

    Andreeva, J; Cirstoiu, C; Miguel, M D F D; Ivanchenko, A; Gaidioz, B; Herrala, J; Janulis, M; Maier, G; Maguire, E J; Rivera, R P; Rocha, R; Saiz, P; Sidorova, I; Belov, S; Berejnoj, A; Kodolova, O; Chen, Y; Chen, T; Chiu, S; Munro, C

    2008-01-01

    In this paper we present the Experiment Dashboard monitoring system, which is currently in use by four Large Hadron Collider (LHC) experiments. The goal of the Experiment Dashboard is to monitor the activities of the LHC experiments on the distributed infrastructure, providing monitoring data from the virtual organization (VO) and user perspectives. The LHC experiments are using various Grid infrastructures (LCG/EGEE, OSG, NDGF) with correspondingly various middleware flavors and job submission methods. Providing a uniform and complete view of various activities like job processing, data movement and publishing, access to distributed databases regardless of the underlying Grid flavor is the challenging task. In this paper we will describe the Experiment Dashboard concept, its framework and main monitoring applications

  3. Free-electron laser experiments in the microwave tokamak experiment

    International Nuclear Information System (INIS)

    Allen, S.L.; Brown, M.D.; Byers, J.A.; Casper, T.A.; Cohen, B.I.; Cohen, R.H.; Cummings, J.C.; Fenstermacher, M.E.; Foote, J.H.; Hooper, E.B.; Jong, R.A.; Langdon, A.B.; Lasinski, B.F.; Lasnier, C.J.; Matsuda, Y.; Meyer, W.H.; Moller, J.M.; Nexsen, W.E.; Rice, B.W.; Rognlien, T.D.; Smith, G.R.; Stallard, B.W.; Thomassen, K.I.; Throop, A.L.; Turner, W.C.; Wood, R.D.; Cook, D.R.; Makowski, M.A.; Oasa, K.; Ogawa, T.

    1990-08-01

    Microwave pulses have been injected from a free electron-laser (FEL) into the Microwave Tokamak Experiment (MTX) at up to 0.2 GW at 140 GHz in short pulses (10-ns duration) with O-mode polarization. The power transmitted through the plasma was measured in a first experimental study of high power pulse propagation in the plasma; no nonlinear effects were found at this power level. Calculations indicate that nonlinear effects may be found at the higher power densities expected in future experiments. 9 refs., 2 figs

  4. Tracking System : Suaineadh satellite experiment

    OpenAIRE

    Brengesjö, Carl; Selin, Martine

    2011-01-01

    The purpose of this bachelor thesis is to present a tracking system for the Suaineadh satellite experiment. The experiment is a part of the REXUS (Rocket EXperiments for University Students) program and the objective is to deploy a foldable web in space. The assignment of this thesis is to develop a tracking system to find the parts from the Suaineadh experiment that will land on Earth. It is important to find the parts and recover all the data that the experiment performed during the travel ...

  5. Sampling Participants' Experience in Laboratory Experiments: Complementary challenges for more complete data collection

    Directory of Open Access Journals (Sweden)

    Alan eMcAuliffe

    2016-05-01

    Full Text Available Speelman and McGann's (2013 examination of the uncritical way in which the mean is often used in psychological research raises questions both about the average's reliability and its validity. In the present paper, we argue that interrogating the validity of the mean involves, amongst other things, a better understanding of the person's experiences, the meaning of their actions, at the time that the behaviour of interest is carried out. Recently emerging approaches within Psychology and Cognitive Science have argued strongly that experience should play a more central role in our examination of behavioural data, but the relationship between experience and behaviour remains very poorly understood. We outline some of the history of the science on this fraught relationship, as well as arguing that contemporary methods for studying experience fall into one of two categories. Wide approaches tend to incorporate naturalistic behaviour settings, but sacrifice accuracy and reliability in behavioural measurement. Narrow approaches maintain controlled measurement of behaviour, but involve too specific a sampling of experience, which obscures crucial temporal characteristics. We therefore argue for a novel, mid-range sampling technique, that extends Hurlburt's Descriptive Experience Sampling, and adapts it for the controlled setting of the laboratory. This Controlled Descriptive Experience Sampling may be an appropriate tool to help calibrate both the mean and the meaning of an experimental situation with one another.

  6. Particle physics experiments 1988

    International Nuclear Information System (INIS)

    Bairstow, R.

    1989-01-01

    This report describes work carried out in 1988 on experiments approved by the Particle Physics Experiments Selection Panel. The contents consist of unedited contributions from each experiment. More than forty projects at different accelerators (SPS, ISIS, PETRA, LAMPF, LEP, HERA, BNL, ILL, LEAR) are listed. Different organisations collaborate on different projects. A brief progress report is given. References to published articles are given. (author)

  7. Overview of Experiments for Physics of Fast Reactors from the International Handbooks of Evaluated Criticality Safety Benchmark Experiments and Evaluated Reactor Physics Benchmark Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Bess, J. D.; Briggs, J. B.; Gulliford, J.; Ivanova, T.; Rozhikhin, E. V.; Semenov, M. Yu.; Tsibulya, A. M.; Koscheev, V. N.

    2017-07-01

    Overview of Experiments to Study the Physics of Fast Reactors Represented in the International Directories of Critical and Reactor Experiments John D. Bess Idaho National Laboratory Jim Gulliford, Tatiana Ivanova Nuclear Energy Agency of the Organisation for Economic Cooperation and Development E.V.Rozhikhin, M.Yu.Sem?nov, A.M.Tsibulya Institute of Physics and Power Engineering The study the physics of fast reactors traditionally used the experiments presented in the manual labor of the Working Group on Evaluation of sections CSEWG (ENDF-202) issued by the Brookhaven National Laboratory in 1974. This handbook presents simplified homogeneous model experiments with relevant experimental data, as amended. The Nuclear Energy Agency of the Organization for Economic Cooperation and Development coordinates the activities of two international projects on the collection, evaluation and documentation of experimental data - the International Project on the assessment of critical experiments (1994) and the International Project on the assessment of reactor experiments (since 2005). The result of the activities of these projects are replenished every year, an international directory of critical (ICSBEP Handbook) and reactor (IRPhEP Handbook) experiments. The handbooks present detailed models of experiments with minimal amendments. Such models are of particular interest in terms of the settlements modern programs. The directories contain a large number of experiments which are suitable for the study of physics of fast reactors. Many of these experiments were performed at specialized critical stands, such as BFS (Russia), ZPR and ZPPR (USA), the ZEBRA (UK) and the experimental reactor JOYO (Japan), FFTF (USA). Other experiments, such as compact metal assembly, is also of interest in terms of the physics of fast reactors, they have been carried out on the universal critical stands in Russian institutes (VNIITF and VNIIEF) and the US (LANL, LLNL, and others.). Also worth mentioning

  8. The OLYMPUS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Milner, R.; Hasell, D.K. [Massachusetts Institute of Technology, Cambridge, MA (United States); Kohl, M. [Hampton Univ., Hampton, VA (United States); Collaboration: The OLYMPUS Collaboration; and others

    2013-12-15

    The OLYMPUS experiment was designed to measure the ratio between the positron-proton and electron-proton elastic scattering cross sections, with the goal of determining the contribution of two-photon exchange to the elastic cross section. Two-photon exchange might resolve the discrepancy between measurements of the proton form factor ratio, {mu}{sub p}G{sup p}{sub E}/G{sup p}{sub M}, made using polarization techniques and those made in unpolarized experiments. OLYMPUS operated on the DORIS storage ring at DESY, alternating between 2.01 GeV electron and positron beams incident on an internal hydrogen gas target. The experiment used a toroidal magnetic spectrometer instrumented with drift chambers and time-of-flight detectors to measure rates for elastic scattering over the polar angular range of approximately 25 -75 . Symmetric Moeller/Bhabha calorimeters at 1.29 and telescopes of GEM and MWPC detectors at 12 served as luminosity monitors. A total luminosity of approximately 4.5 fb{sup -1} was collected over two running periods in 2012. This paper provides details on the accelerator, target, detectors, and operation of the experiment.

  9. Magnetized gun experiments

    International Nuclear Information System (INIS)

    Jarboe, T.R.; Henins, I.; Hoida, H.W.; Marshall, J.; Sherwood, A.R.

    1981-01-01

    In the Los Alamos Magnetized Gun Experiment we are attempting to produce a compact torus in a manner similar to an earlier experiment of Alfven. In our experiment a solenoidal coil is placed inside the inner electrode of a coaxial plasma gun. This coil produces an axial magnetic field inside the inner electrode which diverges and becomes a largely radial field in front of the gun muzzle. The idea is that when the gun is fired, the plasma escaping from the gun stretches these radial fields along the axial direction away from the gun, and these field lines can reconnect behind the plasma forming the poloidal field of the compact torus. The magnetic field generated by the gun current becomes the toroidal field and the major axis of the compact torus will be the same as the axis of the coaxial gun. Recent interest in this possible method of compact torus generation was stimulated by C. Hartman, and the approach is also being pursued in the field-reversed plasma gun experiment at LLL

  10. The OLYMPUS experiment

    International Nuclear Information System (INIS)

    Milner, R.; Hasell, D.K.; Kohl, M.

    2013-12-01

    The OLYMPUS experiment was designed to measure the ratio between the positron-proton and electron-proton elastic scattering cross sections, with the goal of determining the contribution of two-photon exchange to the elastic cross section. Two-photon exchange might resolve the discrepancy between measurements of the proton form factor ratio, μ p G p E /G p M , made using polarization techniques and those made in unpolarized experiments. OLYMPUS operated on the DORIS storage ring at DESY, alternating between 2.01 GeV electron and positron beams incident on an internal hydrogen gas target. The experiment used a toroidal magnetic spectrometer instrumented with drift chambers and time-of-flight detectors to measure rates for elastic scattering over the polar angular range of approximately 25 -75 . Symmetric Moeller/Bhabha calorimeters at 1.29 and telescopes of GEM and MWPC detectors at 12 served as luminosity monitors. A total luminosity of approximately 4.5 fb -1 was collected over two running periods in 2012. This paper provides details on the accelerator, target, detectors, and operation of the experiment.

  11. The OLYMPUS experiment

    Science.gov (United States)

    Milner, R.; Hasell, D. K.; Kohl, M.; Schneekloth, U.; Akopov, N.; Alarcon, R.; Andreev, V. A.; Ates, O.; Avetisyan, A.; Bayadilov, D.; Beck, R.; Belostotski, S.; Bernauer, J. C.; Bessuille, J.; Brinker, F.; Buck, B.; Calarco, J. R.; Carassiti, V.; Cisbani, E.; Ciullo, G.; Contalbrigo, M.; D'Ascenzo, N.; De Leo, R.; Diefenbach, J.; Donnelly, T. W.; Dow, K.; Elbakian, G.; Eversheim, D.; Frullani, S.; Funke, Ch.; Gavrilov, G.; Gläser, B.; Görrissen, N.; Hauschildt, J.; Henderson, B. S.; Hoffmeister, Ph.; Holler, Y.; Ice, L. D.; Izotov, A.; Kaiser, R.; Karyan, G.; Kelsey, J.; Khaneft, D.; Klassen, P.; Kiselev, A.; Krivshich, A.; Lehmann, I.; Lenisa, P.; Lenz, D.; Lumsden, S.; Ma, Y.; Maas, F.; Marukyan, H.; Miklukho, O.; Movsisyan, A.; Murray, M.; Naryshkin, Y.; O'Connor, C.; Perez Benito, R.; Perrino, R.; Redwine, R. P.; Rodríguez Piñeiro, D.; Rosner, G.; Russell, R. L.; Schmidt, A.; Seitz, B.; Statera, M.; Thiel, A.; Vardanyan, H.; Veretennikov, D.; Vidal, C.; Winnebeck, A.; Yeganov, V.

    2014-03-01

    The OLYMPUS experiment was designed to measure the ratio between the positron-proton and electron-proton elastic scattering cross-sections, with the goal of determining the contribution of two-photon exchange to the elastic cross-section. Two-photon exchange might resolve the discrepancy between measurements of the proton form factor ratio, μpGEp/GMp, made using polarization techniques and those made in unpolarized experiments. OLYMPUS operated on the DORIS storage ring at DESY, alternating between 2.01 GeV electron and positron beams incident on an internal hydrogen gas target. The experiment used a toroidal magnetic spectrometer instrumented with drift chambers and time-of-flight detectors to measure rates for elastic scattering over the polar angular range of approximately 25°-75°. Symmetric Møller/Bhabha calorimeters at 1.29° and telescopes of GEM and MWPC detectors at 12° served as luminosity monitors. A total luminosity of approximately 4.5 fb-1 was collected over two running periods in 2012. This paper provides details on the accelerator, target, detectors, and operation of the experiment.

  12. AGS experiments -- 1991, 1992, 1993

    International Nuclear Information System (INIS)

    Depken, J.C.

    1994-04-01

    This report contains: (1) FY 1993 AGS schedule as run; (2) FY 1994--95 AGS schedule; (3) AGS experiments ≥ FY 1993 (as of 30 March 1994); (4) AGS beams 1993; (5) AGS experimental area FY 1991 physics program; (6) AGS experimental area FY 1992 physics program; (7) AGS experimental area FY 1993 physics program; (8) AGS experimental area FY 1994 physics program (planned); (9) a listing of experiments by number; (10) two-page summaries of each experiment; (11) listing of publications of AGS experiments; and (12) listing of AGS experiments

  13. AGS experiments: 1990, 1991, 1992

    International Nuclear Information System (INIS)

    Depken, J.C.

    1993-04-01

    This report contains a description of the following: AGS Experimental Area - High Energy Physics FY 1993 and Heavy Ion Physics FY 1993; Table of Beam Parameters and Fluxes; Experiment Schedule ''as run''; Proposed 1993 Schedule; A listing of experiments by number; Two-page summaries of each experiment begin here, also ordered by number; Publications of AGS Experiments; and List of AGS Experimenters

  14. Molybdenum solar neutrino experiment

    International Nuclear Information System (INIS)

    Wolfsberg, K.; Cowan, G.A.; Bryant, E.A.

    1984-01-01

    The goal of the molybdenum solar neutrino experiment is to deduce the 8 B solar neutrino flux, averaged over the past several million years, from the concentration of 98 Tc in a deeply buried molybdenum deposit. The experiment is important to an understanding of stellar processes because it will shed light on the reason for the discrepancy between theory and observation of the chlorine solar neutrino experiment. Possible reasons for the discrepancy may lie in the properties of neutrinos (neutrino oscillations or massive neutrinos) or in deficiencies of the standard solar model. The chlorine experiment only measures the 8 B neutrino flux in current times and does not address possible temporal variations in the interior of the sun, which are also not considered in the standard model. In the molybdenum experiment, we plan to measure 98 Tc (4.2 Myr), also produced by 8 B neutrinos, and possibly 97 Tc (2.6 Myr), produced by lower energy neutrinos

  15. Undergraduate reactor control experiment

    International Nuclear Information System (INIS)

    Edwards, R.M.; Power, M.A.; Bryan, M.

    1992-01-01

    A sequence of reactor and related experiments has been a central element of a senior-level laboratory course at Pennsylvania State University (Penn State) for more than 20 yr. A new experiment has been developed where the students program and operate a computer controller that manipulates the speed of a secondary control rod to regulate TRIGA reactor power. Elementary feedback control theory is introduced to explain the experiment, which emphasizes the nonlinear aspect of reactor control where power level changes are equivalent to a change in control loop gain. Digital control of nuclear reactors has become more visible at Penn State with the replacement of the original analog-based TRIGA reactor control console with a modern computer-based digital control console. Several TRIGA reactor dynamics experiments, which comprise half of the three-credit laboratory course, lead to the control experiment finale: (a) digital simulation, (b) control rod calibration, (c) reactor pulsing, (d) reactivity oscillator, and (e) reactor noise

  16. Cryogenics for LHC experiments

    CERN Multimedia

    2001-01-01

    Cryogenic systems will be used by LHC experiments to maximize their performance. Institutes around the world are collaborating with CERN in the construction of these very low temperature systems. The cryogenic test facility in hall 180 for ATLAS magnets. High Energy Physics experiments have frequently adopted cryogenic versions of their apparatus to achieve optimal performance, and those for the LHC will be no exception. The two largest experiments for CERN's new flagship accelerator, ATLAS and CMS, will both use large superconducting magnets operated at 4.5 Kelvin - almost 270 degrees below the freezing point of water. ATLAS also includes calorimeters filled with liquid argon at 87 Kelvin. For the magnets, the choice of a cryogenic version was dictated by a combination economy and transparency to emerging particles. For the calorimeters, liquid argon was selected as the fluid best suited to the experiment's physics requirements. High Energy Physics experiments are the result of worldwide collaborations and...

  17. Critical experiment study on uranyl nitrate solution experiment facility

    International Nuclear Information System (INIS)

    Zhu Qingfu; Shi Yongqian; Wang Jinrong

    2005-01-01

    The Uranyl Nitrate Solution Experiment Facility was constructed for the research on nuclear criticality safety. In this paper, the configuration of the facility is introduced; a series of critical experiments on uranyl nitrate solution is described later, which were performed for various uranium concentrations under different conditions, i.e. with or without neutron absorbers in the core and with or without water-reflector outside the core. Critical volume and the minimum 235U critical mass for different uranium concentrations are presented. Finally, theoretical analysis is made on the experimental results. (authors)

  18. Touch massage, a rewarding experience.

    Science.gov (United States)

    Lindgren, Lenita; Jacobsson, Maritha; Lämås, Kristina

    2014-12-01

    This study aims to describe and analyze healthy individuals' expressed experiences of touch massage (TM). Fifteen healthy participants received whole body touch massage during 60 minutes for two separate occasions. Interviews were analyzed by narrative analysis. Four identifiable storyline was found, Touch massage as an essential need, in this storyline the participants talked about a desire and need for human touch and TM. Another storyline was about, Touch massage as a pleasurable experience and the participants talked about the pleasure of having had TM. In the third storyline Touch massage as a dynamic experience, the informants talked about things that could modulate the experience of receiving TM. In the last storyline, Touch massage influences self-awareness, the participants described how TM affected some of their psychological and physical experiences. Experiences of touch massage was in general described as pleasant sensations and the different storylines could be seen in the light of rewarding experiences. © The Author(s) 2014.

  19. Physical experience enhances science learning.

    Science.gov (United States)

    Kontra, Carly; Lyons, Daniel J; Fischer, Susan M; Beilock, Sian L

    2015-06-01

    Three laboratory experiments involving students' behavior and brain imaging and one randomized field experiment in a college physics class explored the importance of physical experience in science learning. We reasoned that students' understanding of science concepts such as torque and angular momentum is aided by activation of sensorimotor brain systems that add kinetic detail and meaning to students' thinking. We tested whether physical experience with angular momentum increases involvement of sensorimotor brain systems during students' subsequent reasoning and whether this involvement aids their understanding. The physical experience, a brief exposure to forces associated with angular momentum, significantly improved quiz scores. Moreover, improved performance was explained by activation of sensorimotor brain regions when students later reasoned about angular momentum. This finding specifies a mechanism underlying the value of physical experience in science education and leads the way for classroom practices in which experience with the physical world is an integral part of learning. © The Author(s) 2015.

  20. 1. Introduction. 2. Laboratory experiments. 3. Field experiments. 4. Integrated field-laboratory experiments. 5. Panel recommendations

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    Some recommendations for the design of laboratory and field studies in marine radioecology are formulated. The difficulties concerning the comparability of various experimental methods used to measure the fluxes of radionuclides through marine organisms and ecosystems, and also the use of laboratory results to make predictions for the natural environment are discussed. Three working groups were established during the panel meeting, to consider laboratory experiments, field studies, and the design and execution of integrated laboratory and field studies respectively. A number of supporting papers dealing with marine radioecological experiments were presented

  1. Poetic Experience

    Directory of Open Access Journals (Sweden)

    Shahab Yar Khan

    2014-01-01

    Full Text Available Nature of poetic experience is hereby redefined. The present article initially deals with the perennial nature of true poetic experience and its essential relevance to the world. It attempts to elaborate the process through which a poet is uplifted in a creative moment beyond terrestrial boundaries and is aligned with the ‘state of Perfection'. The role of successive generations of audiences in rediscovering the meaning of a poetic image is defined as life principle of all great poetry. Shakespeare is discussed as the ultimate example of this principle since his popularity remains an irreversible phenomenon

  2. Experiments and models of MHD jets and their relevance to astrophysics and solar physics

    Science.gov (United States)

    Bellan, Paul

    2017-10-01

    MHD-driven flows exist in both space and lab plasmas because the MHD force-balance equation J × B - ∇ P = 0 can only be satisfied in situations having an unusual degree of symmetry. In the normal situation where such symmetry does not exist, an arbitrary magnetic field B and its associated current J =μ0- 1 ∇ × B provide a magnetic force F = J × B having the character of a torque, i.e., ∇ × F ≠ 0 . Because ∇ × ∇ P = 0 is a mathematical identity, no pressure gradient can balance this torque so a flow is driven. Additionally, since ideal MHD has magnetic flux frozen into the frame of the moving plasma, the flow convects frozen-in magnetic flux. If the flow slows and piles up, both the plasma and the frozen-in magnetic flux will be compressed. This magnetic flux compression amplifies both the frozen-in B and its associated J . Slowing down thus increases certain components of F , in particular the pinch force associated with the electric current in the flow direction. This increased pinching causes the flow to self-collimate if the leading edge of the flow moves slower than the trailing part so there is compression in the flow frame. The result is that the flow self-collimates and forms a narrow jet. Self-collimating jets with embedded electric current and helical magnetic field are analogous to the straight cylindrical approximation of a tokamak, but now with the length of the cylinder continuously increasing and the radius depending on axial position. The flows are directed from axial regions having small radius to axial regions having large radius. The flow velocity is proportional to the axial electric current and is a significant fraction of the Alfvén velocity. Examples of these MHD-driven flows are astrophysical jets, certain solar coronal situations, and the initial plasma produced by the coaxial magnetized plasma guns used for making spheromaks. The above picture has been developed from laboratory measurements, analytic models, and numerical

  3. Remembered Experiences and Revisit Intentions

    DEFF Research Database (Denmark)

    Barnes, Stuart; Mattsson, Jan; Sørensen, Flemming

    2016-01-01

    Tourism is an experience-intensive sector in which customers seek and pay for experiences above everything else. Remembering past tourism experiences is also crucial for an understanding of the present, including the predicted behaviours of visitors to tourist destinations. We adopt a longitudinal...... approach to memory data collection from psychological science, which has the potential to contribute to our understanding of tourist behaviour. In this study, we examine the impact of remembered tourist experiences in a safari park. In particular, using matched survey data collected longitudinally and PLS...... path modelling, we examine the impact of positive affect tourist experiences on the development of revisit intentions. We find that longer-term remembered experiences have the strongest impact on revisit intentions, more so than predicted or immediate memory after an event. We also find that remembered...

  4. Concept definition for space station technology development experiments. Experiment definition, task 2

    Science.gov (United States)

    1986-01-01

    The second task of a study with the overall objective of providing a conceptual definition of the Technology Development Mission Experiments proposed by LaRC on space station is discussed. During this task, the information (goals, objectives, and experiment functional description) assembled on a previous task was translated into the actual experiment definition. Although still of a preliminary nature, aspects such as: environment, sensors, data acquisition, communications, handling, control telemetry requirements, crew activities, etc., were addressed. Sketches, diagrams, block diagrams, and timeline analyses of crew activities are included where appropriate.

  5. Experiment data report for LOFT anticipated transient without scram Experiment L9-4

    International Nuclear Information System (INIS)

    Batt, D.L.; Divine, J.M.; McKenna, K.J.

    1982-11-01

    Selected pertinent and uninterpreted data from the fourth anticipated transient with multiple failures experiment (Experiment L9-4) conducted on September 24, 1982, in the Loss-of-Fluid Test (LOFT) facility are presented. The LOFT facility is a 50-MW(t) pressurized water reactor (PWR) system with instruments that measure and provide data on the system's thermal-hydraulic and nuclear conditions. The operation of the LOFT system is typical of large [approx. 1000 MW(e)], commercial PWR operations. Experiment L9-4 simulated a loss-of-offsite-power anticipated transient without reactor scram. The loss-of-offsite-power accident led to an increase in the primary coolant system temperature and pressure. The experiment safety relief valve opened and was able to limit and control the pressure transient. In addition, subsequent heat generation was dissipated by the auxiliary feedwater flow in the secondary coolant system until the reactor was scrammed at experiment termination

  6. Virtual neutron scattering experiments - Training and preparing students for large-scale facility experiments

    Directory of Open Access Journals (Sweden)

    Julie Hougaard Overgaard

    2016-11-01

    Full Text Available Dansk Vi beskriver, hvordan virtuelle eksperimenter kan udnyttes i et læringsdesign ved at forberede de studerende til hands-on-eksperimenter ved storskalafaciliteter. Vi illustrerer designet ved at vise, hvordan virtuelle eksperimenter bruges på Niels Bohr Institutets kandidatkursus om neutronspredning. I den sidste uge af kurset, rejser studerende til et storskala neutronspredningsfacilitet for at udføre neutronspredningseksperimenter. Vi bruger studerendes udsagn om deres oplevelser til at argumentere for, at arbejdet med virtuelle experimenter forbereder de studerende til at engagere sig mere frugtbart med eksperimenter ved at lade dem fokusere på fysikken og relevante data i stedet for instrumenternes funktion. Vi hævder, at det er, fordi de kan overføre deres erfaringer med virtuelle eksperimenter til rigtige eksperimenter. Vi finder dog, at læring stadig er situeret i den forstand, at kun kendskab til bestemte eksperimenter overføres. Vi afslutter med at diskutere de muligheder, som virtuelle eksperimenter giver. English We describe how virtual experiments can be utilized in a learning design that prepares students for hands-on experiments at large-scale facilities. We illustrate the design by showing how virtual experiments are used at the Niels Bohr Institute in a master level course on neutron scattering. In the last week of the course, students travel to a large-scale neutron scattering facility to perform real neutron scattering experiments. Through student interviews and survey answers, we argue, that the virtual training prepares the students to engage more fruitfully with experiments by letting them focus on physics and data rather than the overwhelming instrumentation. We argue that this is because they can transfer their virtual experimental experience to the real-life situation. However, we also find that learning is still situated in the sense that only knowledge of particular experiments is transferred. We proceed to

  7. Nuclear power experience

    International Nuclear Information System (INIS)

    1983-01-01

    The International Conference on Nuclear Power Experience, organized by the International Atomic Energy Agency, was held at the Hofburg Conference Center, Vienna, Austria, from 13 to 17 September 1982. Almost 1200 participants and observers from 63 countries and 20 organizations attended the conference. The 239 papers presented were grouped under the following seven main topics: planning and development of nuclear power programmes; technical and economic experience of nuclear power production; the nuclear fuel cycle; nuclear safety experience; advanced systems; international safeguards; international co-operation. The proceedings are published in six volumes. The sixth volume contains a complete Contents of Volume 1 to 5, a List of Participants, Authors and Transliteration Indexes, a Subject Index and an Index of Papers by Number

  8. Crystal box experiments

    International Nuclear Information System (INIS)

    Hoffman, C.M.; Highland, V.L.; Hogan, G.E.; Hallin, A.

    1985-01-01

    The aim of these experiments is to search for several rare-decay modes of the muon and the pion and to study these decay modes should they be observed. In Exps. 400/445, the muon-number-nonconserving decays μ + αe + e + e - , μ + →e + γ, and μ + →e + γγ are being sought with a sensitivity to branching ratios of about 10 -11 relative to ordinary muon decay. Experiment 726 will search for the charge-conjugation-violating decay π 0 →3γ with a sensitivity to a branching ratio as small as 10 -9 relative to ordinary π 0 decay. Experiment 888 is a study of radiative pion decay π + →e + nu/sub e/γ

  9. Definition of Atmospheric Science Experiments and Techniques: Wake Zone Mapping Experiments

    Science.gov (United States)

    Taeusch, D. R.

    1976-01-01

    The development of a subsatellite system has been proposed for the shuttle program which would provide to the scientific community a platform for experiments which would be tethered to the shuttle spacecraft orbiting at about 200 km altitude. Experiments which can perform measurements of aeronomic interest onboard or utilizing the tethered satellite concept are described and recommended.

  10. Experience representation in information systems

    OpenAIRE

    Kaczmarek, Jan

    2014-01-01

    This thesis looks into the ways subjective dimension of experience could be represented in artificial, non-biological systems, in particular information systems. The pivotal assumption is that experience as opposed to mainstream thinking in information science is not equal to knowledge, so that experience is a broader term which encapsulates both knowledge and subjective, affective component of experience, which so far has not been properly embraced by knowledge representation theories. This ...

  11. Experience representation in information systems

    OpenAIRE

    Kaczmarek, Jan

    2014-01-01

    This thesis looks into the ways subjective dimension of experience could be represented in artificial, non-biological systems, in particular information systems. The pivotal assumption is that experience as opposed to mainstream thinking in information science is not equal to knowledge, so that experience is a broader term which encapsulates both knowledge and subjective, affective component of experience, which so far has not been properly embraced by knowledge representation theories. Th...

  12. Particle physics experiments 1984

    International Nuclear Information System (INIS)

    Stuart, G.

    1985-01-01

    The Rutherford Appleton laboratory report describes work carried out in 1984 on experiments approved by the Particle Physics selection panel. The contents consist of unedited contributions from each experiment. (author)

  13. Winter/Summer Monsoon Experiment

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Winter/Summer Monsoon Experiment (MONEX) was conducted during the First Global GARP (Global Atmospheric Research Program) Experiment (FGGE). An international...

  14. Coaxial helicity injection and n=1 relaxation activity in the HIST spherical torus

    International Nuclear Information System (INIS)

    Nagata, M.; Oguro, T.; Kagei, Y.

    2003-01-01

    In order to understand comprehensively the role of the n=1 instability and relaxation on current generation processes in helicity-driven spherical systems, we have investigated dynamics of ST plasmas produced in the HIST device by decreasing the external toroidal field (TF) and reversing its sign in time. In result, we have discovered that the ST relaxes towards flipped ST configurations through formation of reversed-field pinches (RFPs)-like magnetic field profiles. Surprisingly, it has been observed that not only toroidal flux but also poloidal flux reverses sign spontaneously during the relaxation process. The dynamics associated to self-reversal of the magnetic fields is presently investigated by using three-dimensional magnetohydrodynamic (MHD) numerical simulations. Furthermore, we have first demonstrated that a flipped ST plasma can be successfully sustained by CHI. The n=1 relaxation activity is found to be essential in the current sustainment of the flipped ST as well as the spheromak and the unflipped ST. (author)

  15. Feminilidade: alteridade e experiência Femininity: alterity and experience

    Directory of Open Access Journals (Sweden)

    Márcia Arán

    2002-06-01

    Full Text Available Este ensaio tem como objetivo desenvolver a noção de alteridade na psicanálise a partir dos conceitos de feminilidade e de experiência. Parte de uma crítica à centralidade do modelo Édipo / castração na teoria psicanalítica ­ modelo este que fundamenta uma forma de subjetivação que se faz pelo recalque como defesa ou pela renúncia pulsional - para pensar novas formas de sociabilidade. Inicialmente, procura-se analisar o destino da experiência alteritária na modernidade: o outro como estranho-familiar. Em seguida, através da análise de algumas passagens da obra freudiana, procura-se desen­ volver a noção de alteridade no registro da imanência, ou seja, como uma abertura para a diferença.The objective of this essay is to elaborate on the notion of alterity in psychoanalysis based on the concepts of femininity and experience. The point of departure is a critique of the centrality of the Oedipean/castration model in psychoanalytical theory (a model underlying a form of subjectivation resulting from repression or denial of drive in order to conceive new forms of sociabilily. The article begins by analyzing lhe fate of the altetily experience in modernity: lhe other as slrange/familiar. Next, by analyzing key passages from Freud's work, lhe author seeks to develop the notion of alterily in lhe context of immanence, that is, as an openness to difference.

  16. Experiments at CERN in 1985

    International Nuclear Information System (INIS)

    1985-11-01

    This book is a compilation of the current experimental program at CERN. The experiments listed are being performed at one of the following machines: the Super Proton Synchrotron (SPS), the Proton Synchrotron (PS) and the Synchro-Cyclotron (SC). The four experiments to be done by means of the Large Electron Positron machine (LEP) are also listed. The schematic layouts of beams and experiments at the various machines are given in the beginning of the report. The experiment goals and methods are briefly described and a schematic layout of the apparatus is included. Lists of participants and their institutions are also given. The status of the experiments (preparation, data-taking, completed) corresponds to the situation as of 1st November, 1985. ''Completed'' means only that data-taking is finished, not necessarily the analysis of the results; this status is kept for two years and then the experiment is removed from the catalogue. A complete list of all experiments published in this book since 1975 is given at the end of the catalogue. (orig./HSI)

  17. Transcendental experiences during meditation practice.

    Science.gov (United States)

    Travis, Frederick

    2014-01-01

    This article explores transcendental experiences during meditation practice and the integration of transcendental experiences and the unfolding of higher states of consciousness with waking, dreaming, and sleeping. The subject/object relationship during transcendental experiences is characterized by the absence of time, space, and body sense--the framework that gives meaning to waking experiences. Physiologically, transcendental experiences during Transcendental Meditation practice are marked by slow inhalation, along with autonomic orientation at the onset of breath changes and heightened α1 (8-10 Hz) frontal coherence. The integration of transcendental experiences with waking, dreaming, and sleeping is also marked by distinct subjective and objective markers. This integrated state, called Cosmic Consciousness in the Vedic tradition, is subjectively marked by inner self-awareness coexisting with waking, sleeping, and dreaming. Physiologically, Cosmic Consciousness is marked by the coexistence of α1 electroencephalography (EEG) with delta EEG during deep sleep, and higher brain integration, greater emotional stability, and decreased anxiety during challenging tasks. Transcendental experiences may be the engine that fosters higher human development. © 2013 New York Academy of Sciences.

  18. Experimenting with practice

    DEFF Research Database (Denmark)

    Knudsen, Hanne; Adriansen, Hanne Kirstine

    2016-01-01

    Abstract Purpose Teaching executive courses always raises the challenge of how to deal with the tension between theory and practice. The present chapter analyses the use of experiments in practice as a pedagogical approach to deal with this tension in Master’s programmes. Design/methodology/appro......Abstract Purpose Teaching executive courses always raises the challenge of how to deal with the tension between theory and practice. The present chapter analyses the use of experiments in practice as a pedagogical approach to deal with this tension in Master’s programmes. Design...... that it is important to observe the distinction between the role of the manager and the role of the student in order to meet ethical challenges, inevitably raised by experimenting with practice. Finally we argue that the experimental teaching practice can be conceptualised as a monstrous pedagogy, as the pedagogy...... pedagogy they use fort dealing with this tension. Practical implications Many Master’s programmes draw empirical data from the students’ own practice into the teaching. We argue that using experiments is highly useful to identify some of the general challenges inherent in analyses of one’s own practice...

  19. The OLYMPUS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Milner, R. [Massachusetts Institute of Technology, Cambridge, MA (United States); Hasell, D.K., E-mail: hasell@mit.edu [Massachusetts Institute of Technology, Cambridge, MA (United States); Kohl, M. [Hampton University, Hampton, VA (United States); Schneekloth, U. [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany); Akopov, N. [Alikhanyan National Science Laboratory (Yerevan Physics Institute), Yerevan (Armenia); Alarcon, R. [Arizona State University, Tempe, AZ (United States); Andreev, V.A. [Petersburg Nuclear Physics Institute, Gatchina (Russian Federation); Ates, O. [Hampton University, Hampton, VA (United States); Avetisyan, A. [Alikhanyan National Science Laboratory (Yerevan Physics Institute), Yerevan (Armenia); Bayadilov, D.; Beck, R. [Friedrich Wilhelms Universität, Bonn (Germany); Belostotski, S. [Petersburg Nuclear Physics Institute, Gatchina (Russian Federation); Bernauer, J.C.; Bessuille, J. [Massachusetts Institute of Technology, Cambridge, MA (United States); Brinker, F. [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany); Buck, B. [Massachusetts Institute of Technology, Cambridge, MA (United States); Calarco, J.R. [University of New Hampshire, Durham, NH (United States); Carassiti, V. [Università di Ferrara and Istituto Nazionale di Fisica Nucleare, Ferrara (Italy); Cisbani, E. [Istituto Superiore di Sanità and Istituto Nazionale di Fisica Nucleare, Rome (Italy); Ciullo, G. [Università di Ferrara and Istituto Nazionale di Fisica Nucleare, Ferrara (Italy); and others

    2014-03-21

    The OLYMPUS experiment was designed to measure the ratio between the positron–proton and electron–proton elastic scattering cross-sections, with the goal of determining the contribution of two-photon exchange to the elastic cross-section. Two-photon exchange might resolve the discrepancy between measurements of the proton form factor ratio, μ{sub p}G{sub E}{sup p}/G{sub M}{sup p}, made using polarization techniques and those made in unpolarized experiments. OLYMPUS operated on the DORIS storage ring at DESY, alternating between 2.01 GeV electron and positron beams incident on an internal hydrogen gas target. The experiment used a toroidal magnetic spectrometer instrumented with drift chambers and time-of-flight detectors to measure rates for elastic scattering over the polar angular range of approximately 25°–75°. Symmetric Møller/Bhabha calorimeters at 1.29° and telescopes of GEM and MWPC detectors at 12° served as luminosity monitors. A total luminosity of approximately 4.5 fb{sup −1} was collected over two running periods in 2012. This paper provides details on the accelerator, target, detectors, and operation of the experiment.

  20. Electron beam optics for the FEL experiment and IFEL experiment

    International Nuclear Information System (INIS)

    van Steenbergen, A.

    1990-01-01

    Electron beam transport system parameters for the FEL experiment and for the FEL experiment are given. The perturbation of the ''interaction region'' optics due to wiggler focussing is taken into account and a range of solutions are provided for relevant Twiss parameters in the FEL or IFEL region. Modifications of the transport optics in specific sections of the overall beam transport lines, for reasons of enhanced diagnostic capability or enhanced beam momentum analysis resolution, is also presented

  1. GARP Atlantic Tropical Experiment

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The GARP Atlantic Tropical Experiment (GATE) was the first major international experiment of the Global Atmospheric Research Program (GARP). It was conducted over...

  2. Space experiments with particle accelerators: SEPAC

    International Nuclear Information System (INIS)

    Obayashi, T.

    1978-01-01

    In this paper, the program of the space experiments with particle accelerators (SEPAC) is described. The SEPAC is to be prepared for the Space Shuttle/First Spacelab Mission. It is planned in the SEPAC to carry out the active and interactive experiments on and in the Earth's ionosphere and magnetosphere. It is also intended to make an initial performance test for the overall program of Spacelab/SEPAC experiments. The instruments to be used are electron beam accelerators, MPD arcjects, and associated diagnostic equipments. The main scientific objectives of the experiments are Vehicle Charge Neutralization, Beam Plasma Physics, and Beam Atmosphere Interactions. The SEPAC system consists of the following subsystems. Those are accelerators, monitoring and diagnostic equipments, and control and data management equipments. The SEPAC functional objectives for experiment operations are SEPAC system checkout, EBA firing test, MPD firing test, electron beam experiments, plasma beam propagation, artificial aurora excitation, equatorial aerochemistry, electron echo experiment, E parallel B experiment, passive experiments, SEPAC system deactivation, and battery charging. Most experiment procedures are carried out by the pre-set computer program. (Kato, T.)

  3. Results from neutrino experiments

    International Nuclear Information System (INIS)

    Smirnov, A.Yu.

    1993-11-01

    Recent (first or/and the best) results from the neutrino experiments are reviewed and their implications for the theory are discussed. The sense of the experiments is the searching for neutrino masses, mixing and interactions beyond the standard model. Present laboratory experiments give upper bounds on the masses and the mixing which are at the level of predictions of the ''electroweak see-saw''. Positive indications of nonzero lepton mixing follow from studies of the solar and atmospheric neutrinos. (author). 95 refs, 11 figs

  4. Tourist product in experience economy

    OpenAIRE

    Stasiak Andrzej

    2014-01-01

    The turn of the 20th and 21st c. was marked by the development of experience economy, in which the basic commodities are not specific products, but the customers’ emotions, impressions and experiences. Tourism has always been a particular “holiday experience industry”. In recent years, however, the importance of the conscious creation of emotional tourism products has become even greater; we may observe continuous efforts to multiply and intensify tourism experience. The key activities to ach...

  5. experience in school

    Directory of Open Access Journals (Sweden)

    Maria da Graça B. B. Dias

    2005-01-01

    Full Text Available An experiment investigated the effect of a make-believe fantasy mode of problem presentation on reasoning about valid conditional syllogisms in three groups of 5-year-old children: a school children from middle-class families in England; b school children from middle-class families in Brazil; and, c children from low SES families in Brazil who had never gone to school. Previous investigations had reported that the use of a fantasy context elicited significantly more logically appropriate responses from school children than did other contexts, and that children with school experiences made significantly more logically appropriate responses than did children without school experience. The present investigation extended these findings to show that the beneficial effects of a fantasy context extended to lower-class illiterate children who never had been exposed to schooling

  6. The Experience City

    DEFF Research Database (Denmark)

    Marling, Gitte; Jensen, Ole B.; Kiib, Hans

    2009-01-01

      The article take its point of departure in the pressure of the experience economy on European cities - a pressure which in recent years has found its expression in a number of comprehensive transformations of the physical and architectural environments, and new eventscapes related to fun...... and cultural experience are emerging. In the discussion of the transformation into the ‘experience economy' relevant to cities and urban areas we rarely find an analysis of the physical and spatial implications of this transformation. However, the physical, cultural and democratic consequences...... clear goals related to the improvement of social interaction, performance and cultural exchange. The article contains three sections. in section one, we present three European cases in order to relate to the wider international debate and development. In section two we present the main theoretical...

  7. "Experience Isn't Everything": How Emotion Affects the Relationship Between Experience and Cue Utilization.

    Science.gov (United States)

    Crane, Monique Frances; Brouwers, Sue; Wiggins, Mark William; Loveday, Thomas; Forrest, Kirsty; Tan, Suyin Giselle Marianne; Cyna, Allan Michael

    2018-04-01

    This research examined whether negative and positive arousal emotions modify the relationship between experience level and cue utilization among anesthetists. The capacity of a practitioner to form precise associations between clusters of features (e.g., symptoms) and events (e.g., diagnosis) and then act on them is known as cue utilization. A common assumption is that practice experience allows opportunities for cue acquisition and cue utilization. However, this relationship is often not borne out in research findings. This study investigates the role of emotional state in this relationship. An online tool (EXPERTise 2.0) was used to assess practitioner cue utilization for tasks relevant to anesthesia. The experience of positive and negative arousal emotions in the previous three days was measured, and emotion clusters were generated. Experience was measured as the composite of practice years and hours of practice experience. The moderating role of emotion on the relationship between experience and cue utilization was examined. Data on 125 anesthetists (36% female) were included in the analysis. The predicted interaction between arousal emotions and the experience level emerged. In particular, post hoc analyses revealed that anxiety-related emotions facilitated the likelihood of high cue utilization in less experienced practitioners. The findings suggest a role for emotions in cue use and suggest a functional role for normal range anxiety emotions in a simulated work-relevant task. This research illustrates the importance of understanding the potentially functional effects common negative arousal emotions may have on clinical performance, particularly for those with less experience.

  8. Plasma experiments on staged theta pinch, implosion heating experiment and Scyllac feedback-sector experiment

    International Nuclear Information System (INIS)

    Bartsch, R.R.; Buchenauer, C.J.; Cantrell, E.L.

    1977-01-01

    Results of the Los Alamos theta-pinch program in three areas of investigation are summarized: 1) In the Staged Theta Pinch, results are reported on the effects of magnetic field amplitude and time history of plasma formation. 2) In the Implosion Heating Experiment, density, internal-magnetic field and neutron measurements yield a consistent picture of the implosion which agrees with kinetic computations and with a simple dynamic model of the ions and magnetic piston. 3) In the Scyllac Feedback-Sector Experiment, the l=1, 0 equilibrium plasma parameters have been adjusted to accommodate the feedback stabilization system. With a uniform toroidal discharge tube the m=1 instability is feedback-stabilized in the vertical direction, and confinement in the toroidal direction is extended by feedback control. Results with a helical discharge tube are also reported. (author)

  9. Design of modern experiments(revised version)

    International Nuclear Information System (INIS)

    Park, Sung Hweon

    1984-03-01

    This book mentions design of modern experiments. It includes conception of design of experiments, a key statistics theory, one way design of experiment, two-way layout without repetition and with repetition, multi layout and analysis of enumerated data, partition, correlation and regression analysis, latin squares, factorial design, design of experiment by table of orthogonal arrays I, II, incomplete block design, design of response surface, design of compound experiment, Evop and steepest ascent or descent method and design of experiment of taguchi.

  10. Accelerator/Experiment Operations - FY 2016

    International Nuclear Information System (INIS)

    Blake, A.; Convery, M.; Geer, S.; Geesaman, D.; Harris, D.; Johnson, D.; Lang, K.; McFarland, K.; Messier, M.; Moore, C. D.; Newhart, D.; Reimer, P. E.; Plunkett, R.; Rominsky, M.; Sanchez, M.; Schmidt, J. J.; Shanahan, P.; Tate, C.; Thomas, J.; Donatella Torretta, Donatella Torretta; Matthew Wetstein, Matthew Wetstein

    2016-01-01

    This Technical Memorandum summarizes the Fermilab accelerator and experiment operations for FY 2016. It is one of a series of annual publications intended to gather information in one place. In this case, the information concerns the FY 2016 NOvA, MINOS+ and MINERvA experiments using the Main Injector Neutrino Beam (NuMI), the MicroBooNE experiment and the activities in the SciBooNE Hall using the Booster Neutrino Beam (BNB), and the SeaQuest experiment, LArIAT experiment and Meson Test Beam activities in the 120 GeV external switchyard beam (SY120). Each section was prepared by the relevant authors, and was then edited for inclusion in this summary.

  11. Accelerator/Experiment Operations - FY 2016

    Energy Technology Data Exchange (ETDEWEB)

    Blake, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Convery, M. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Geer, S. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Geesaman, D. [Argonne National Lab. (ANL), Argonne, IL (United States); Harris, D. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Johnson, D. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Lang, K. [Argonne National Lab. (ANL), Argonne, IL (United States); McFarland, K. [Argonne National Lab. (ANL), Argonne, IL (United States); Messier, M. [Argonne National Lab. (ANL), Argonne, IL (United States); Moore, C. D. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Newhart, D. [Fermilab; Reimer, P. E. [Argonne; Plunkett, R. [Fermilab; Rominsky, M. [Fermilab; Sanchez, M. [Iowa State U.; Schmidt, J. J. [Fermilab; Shanahan, P. [Fermilab; Tate, C. [Fermilab; Thomas, J. [University Coll. London; Donatella Torretta, Donatella Torretta [Fermilab; Matthew Wetstein, Matthew Wetstein [Iowa State University

    2016-10-01

    This Technical Memorandum summarizes the Fermilab accelerator and experiment operations for FY 2016. It is one of a series of annual publications intended to gather information in one place. In this case, the information concerns the FY 2016 NOvA, MINOS+ and MINERvA experiments using the Main Injector Neutrino Beam (NuMI), the MicroBooNE experiment and the activities in the SciBooNE Hall using the Booster Neutrino Beam (BNB), and the SeaQuest experiment, LArIAT experiment and Meson Test Beam activities in the 120 GeV external switchyard beam (SY120). Each section was prepared by the relevant authors, and was then edited for inclusion in this summary.

  12. Aura, Self, and Aesthetic Experience

    Directory of Open Access Journals (Sweden)

    Marshall Battani

    2011-01-01

    Full Text Available Aesthetic experiences are generated in encounters with cultural objects and such experiences are marked by the free play of cognitive and numinous experience unstructured by concepts. Kant’s famous three types of pleasure, made infamous in social theory by Pierre Bourdieu, are examined in relation to the critical theoretical concept of aura, the social psychology of “flow,” and cognitive explanations of perception to explain experience in aesthetic fields. Theories of aesthetic experience developed at the crossroad of critical social thought and cognitive science hold promise for a social analysis able to avoid the usual sociological pitfalls of either ignoring aesthetics or reducing it to structurally determined differences of taste.

  13. Operational experience with Dragon reactor experiment of relevance to commercial reactors

    International Nuclear Information System (INIS)

    Capp, P.D.; Simon, R.A.

    1976-01-01

    An important part of the experience gained during the first ten years of successful power operation of the Dragon Reactor is relevant to the design and operation of future High Temperature Reactors (HTRs). The aspects presented in this paper have been chosen as being particularly applicable to larger HTR systems. Core performance under a variety of conditions is surveyed with particular emphasis on a technique developed for the identification and location of unpurged releasing fuel and the presence of activation and fission products in the core area. The lessons learned during the reflector block replacement are presented. Operating experience with the primary circuit identifies the lack of mixing of gas streams within the hot plenum and the problems of gas streaming in ducts. Helium leakage from the circuit is often greater than the optimum 0.1%/d. Virtually all the leakage problems are associated with the small bore instrument pipework essential for the many experiments associated with the Dragon Reactor Experiment (DRE). Primary circuit maintenance work confirms the generally clean state of the DRE circuit but identifies 137 Cs and 110 Agsup(m) as possible hazards if fuel emitting these isotopes is irradiated. (author)

  14. IFA proof of principle experiments

    International Nuclear Information System (INIS)

    Olson, C.L.

    1979-01-01

    IFA proof of principle experiments is discussed. Controlled beam front motion experiments are reported, which demonstrate that accurate IFA programming of the motion of the potential well at the head of an IREB has been achieved. The status of IFA ion experiments is also discussed

  15. Experience Learning and Community Development

    Directory of Open Access Journals (Sweden)

    Nena Mijoč

    1996-12-01

    Full Text Available Research in the field of education, carried out in living and working environment, which has undergone so profound changes recently, is of extreme importance. In schools, courses and seminars, one cannot prepare him/herself for the changes as these are often so rapid that it is impossible to foresee them. Therefore, one can only learn by experience. In defining the term 'experience learning', the teoreticians vary greatly. In this paper, experience learning is understood as a process of learning taking part mainly outside the planned educational process and including an active and participative attitude towards environment and people. Original and direct experience can thus serve as a basis for gaining new comprehensions, for planning future activities as well as for a reinterpretation of the past experiences. Let us first mention the basic factors of successful experience learning, such as an individual's character features, possibilities for learning, learning atmosphere and positive stimulations. It has been estimated that local community can increase or decrease the possibilities for experience learning. However, the relation is active in other direction too: the more experience learning bas been asserted in a community, the greater its influence on social and cultural development of the community. On has to bear in mind that well-planned education for local community and stimulating sociocultural animation can facilitate the development of local community.

  16. College Experience Scale (EExU

    Directory of Open Access Journals (Sweden)

    Angélica Juárez

    2017-07-01

    Full Text Available The experience of being a university student (University Experiences had been poorly studied so far. However, research in this field can provide valuable information about the quality of academic life, wellbeing or stress in this population. There is a lack of psychological tests that explore this theoretical construct. The aim of this study was to develop and validate a scale for measuring Univeristy Experiences, for that reason 314 college students were invited to participate for the validation. This students coursed different careers and reported 20 years old as average age. The University Experiences Scale (EExU has adequate psychometric properties. It has a structure of four factors: experience satisfaction, support perception, experience perception and life style adjustment. This factors explain 43.1% of the variance. The grouping of the factors of the College Experience Scale concurs with data reported in the literature about such concept, however this is the first questionnaire designed for measuring it. We anticipate that future studies will seek to verify the performance of the scale in different populations of students and analyze its psychometric properties and its possible association with other psychological variables that affect college students and their health.

  17. Game user experience evaluation

    CERN Document Server

    Bernhaupt, Regina

    2015-01-01

    Evaluating interactive systems for their user experience (UX) is a standard approach in industry and research today. This book explores the areas of game design and development and Human Computer Interaction (HCI) as ways to understand the various contributing aspects of the overall gaming experience. Fully updated, extended and revised this book is based upon the original publication Evaluating User Experience in Games, and provides updated methods and approaches ranging from user- orientated methods to game specific approaches. New and emerging methods and areas explored include physiologi

  18. The MAJORANA Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Aguayo Navarrete, Estanislao; Avignone, F. T.; Back, Henning O.; Barabash, Alexander S.; Bergevin, M.; Bertrand, F.; Boswell, M.; Brudanin, V.; Busch, Matthew; Chan, Yuen-Dat; Christofferson, Cabot-Ann; Collar, J. I.; Combs, Dustin C.; Cooper, R. J.; Detwiler, Jason A.; Doe, Peter J.; Efremenko, Yuri; Egorov, Viatcheslav; Ejiri, H.; Elliott, Steven R.; Esterline, James H.; Fast, James E.; Fields, N.; Finnerty, P.; Fraenkle, Florian; Gehman, Victor M.; Giovanetti, G. K.; Green, Matthew P.; Guiseppe, Vincente; Gusey, K.; Hallin, A. L.; Hazama, R.; Henning, R.; Hime, Andrew; Hoppe, Eric W.; Horton, Mark; Howard, Stanley; Howe, M. A.; Johnson, R. A.; Keeter, K.; Keillor, Martin E.; Keller, C.; Kephart, Jeremy D.; Kidd, Mary; Knecht, A.; Kochetov, Oleg; Konovalov, S.; Kouzes, Richard T.; LaFerriere, Brian D.; LaRoque, B. H.; Leon, Jonathan D.; Leviner, L.; Loach, J. C.; MacMullin, S.; Marino, Michael G.; Martin, R. D.; Mei, Dong-Ming; Merriman, Jason H.; Miller, M. L.; Mizouni, Leila; Nomachi, Masaharu; Orrell, John L.; Overman, Nicole R.; Phillips, D.; Poon, Alan; Perumpilly, Gopakumar; Prior, Gersende; Radford, D. C.; Rielage, Keith; Robertson, R. G. H.; Ronquest, M. C.; Schubert, Alexis G.; Shima, T.; Shirchenko, M.; Snavely, Kyle J.; Sobolev, V.; Steele, David; Strain, J.; Thomas, K.; Timkin, V.; Tornow, W.; Vanyushin, I.; Varner, R. L.; Vetter, Kai; Vorren, Kris R.; Wilkerson, John; Wolfe, B. A.; Yakushev, E.; Young, A.; Yu, Chang-Hong; Yumatov, Vladimir; Zhang, C.

    2011-10-01

    The Majorana collaboration is actively pursuing research and development aimed at a tonne-scale {sup 76}Ge neutrinoless double-beta decay ({beta}{beta}(0{nu})-decay) experiment. The current, primary focus is the construction of the Majorana Demonstrator experiment, an R and D effort that will field approximately 40 kg of germanium detectors with mixed enrichment levels. This article provides a status update on the construction of the Demonstrator.

  19. Critical experiments at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Harms, Gary A.; Ford, John T.; Barber, Allison Delo

    2010-01-01

    Sandia National Laboratories (SNL) has conducted radiation effects testing for the Department of Energy (DOE) and other contractors supporting the DOE since the 1960's. Over this period, the research reactor facilities at Sandia have had a primary mission to provide appropriate nuclear radiation environments for radiation testing and qualification of electronic components and other devices. The current generation of reactors includes the Annular Core Research Reactor (ACRR), a water-moderated pool-type reactor, fueled by elements constructed from UO2-BeO ceramic fuel pellets, and the Sandia Pulse Reactor III (SPR-III), a bare metal fast burst reactor utilizing a uranium-molybdenum alloy fuel. The SPR-III is currently defueled. The SPR Facility (SPRF) has hosted a series of critical experiments. A purpose-built critical experiment was first operated at the SPRF in the late 1980's. This experiment, called the Space Nuclear Thermal Propulsion Critical Experiment (CX), was designed to explore the reactor physics of a nuclear thermal rocket motor. This experiment was fueled with highly-enriched uranium carbide fuel in annular water-moderated fuel elements. The experiment program was completed and the fuel for the experiment was moved off-site. A second critical experiment, the Burnup Credit Critical Experiment (BUCCX) was operated at Sandia in 2002. The critical assembly for this experiment was based on the assembly used in the CX modified to accommodate low-enriched pin-type fuel in water moderator. This experiment was designed as a platform in which the reactivity effects of specific fission product poisons could be measured. Experiments were carried out on rhodium, an important fission product poison. The fuel and assembly hardware for the BUCCX remains at Sandia and is available for future experimentation. The critical experiment currently in operation at the SPRF is the Seven Percent Critical Experiment (7uPCX). This experiment is designed to provide benchmark

  20. Experiments on eta-meson production

    International Nuclear Information System (INIS)

    Peng, J.C.

    1985-01-01

    Following a review of some highlights of eta-meson characteristics, the status of eta-meson production experiments is reviewed. The physics motivations and first results of two LAMPF experiments on (π,eta) reactions are discussed. Possible future experiments are also discussed. 42 refs., 12 figs., 4 tabs

  1. Double beta decay: experiments

    International Nuclear Information System (INIS)

    Fiorini, Ettore

    2006-01-01

    The results obtained so far and those of the running experiments on neutrinoless double beta decay are reviewed. The plans for second generation experiments, the techniques to be adopted and the expected sensitivities are compared and discussed

  2. Experiments at CERN in 1988

    International Nuclear Information System (INIS)

    1988-11-01

    This book is a compilation of the current experimental programme at CERN. The experiments listed are being performed at one of the following machines: The Super Proton Synchrotron (SPS), the Proton Synchrotron (PS) and the Synchro Cyclotron (SC). The four experiments planned for the Large Electron Positron machine (LEP) are also listed. The schematic layouts of beams and experimental areas at the different machines appear at the beginning of the report. The experiments are briefly described and a schematic layout of each apparatus is included together with lists of participants and institutions. The status of the experiments (preparation/data-taking/completed) corresponds to the situation at the end of 1988. The 'completed' status means that data-taking is finished, not necessarily the analysis of the results; this status is kept for two years and then the experiment is removed from the catalogue. A complete list of all the experiments published in these books since 1974 is given at the end. (orig./HSI)

  3. Data analysis for electronic experiments

    International Nuclear Information System (INIS)

    Grote, H.

    1981-01-01

    In this lecture I schell attempt to cover the principal off-line software aspects in electronic experiments. Of course, this is too ambitious an undertaking for two reasons: Firstly the field is vast, and some important aspect will certainly have escaped my attention. Secondly, the choice of methods, features, algorithms, and packages presented will be biased through my personal opinion and experience, although to some extent it is influenced as well by the opinion and experience of my colleagues, who, like myself, are working in this field at CERN. Therefore, beware. Whenever I shall claim something to be evident, a matter of experience -- a fact --it ain't necessarily so. On the other hand, it will not be entirely wrong, since our experience is based on something like 30 experiments in high-energy physics using electronic for other people, and although these people are of course misled, one has to admit their existence. (orig.)

  4. Fusion neutronics experiments and analysis

    International Nuclear Information System (INIS)

    1992-01-01

    UCLA has led the neutronics R ampersand D effort in the US for the past several years through the well-established USDOE/JAERI Collaborative Program on Fusion Neutronics. Significant contributions have been made in providing solid bases for advancing the neutronics testing capabilities in fusion reactors. This resulted from the hands-on experience gained from conducting several fusion integral experiments to quantify the prediction uncertainties of key blanket design parameters such as tritium production rate, activation, and nuclear heating, and when possible, to narrow the gap between calculational results and measurements through improving nuclear data base and codes capabilities. The current focus is to conduct the experiments in an annular configuration where the test assembly totally surrounds a simulated line source. The simulated line source is the first-of-a-kind in the scope of fusion integral experiments and presents a significant contribution to the world of fusion neutronics. The experiments proceeded through Phase IIIA to Phase IIIC in these line source simulation experiments started in 1989

  5. Authoring Immersive Mixed Reality Experiences

    Science.gov (United States)

    Misker, Jan M. V.; van der Ster, Jelle

    Creating a mixed reality experience is a complicated endeavour. From our practice as a media lab in the artistic domain we found that engineering is “only” a first step in creating a mixed reality experience. Designing the appearance and directing the user experience are equally important for creating an engaging, immersive experience. We found that mixed reality artworks provide a very good test bed for studying these topics. This chapter details three steps required for authoring mixed reality experiences: engineering, designing and directing. We will describe a platform (VGE) for creating mixed reality environments that incorporates these steps. A case study (EI4) is presented in which this platform was used to not only engineer the system, but in which an artist was given the freedom to explore the artistic merits of mixed reality as an artistic medium, which involved areas such as the look and feel, multimodal experience and interaction, immersion as a subjective emotion and game play scenarios.

  6. Staged theta pinch experiments

    International Nuclear Information System (INIS)

    Linford, R.K.; Downing, J.N.; Gribble, R.F.; Jacobson, A.R.; Platts, D.A.; Thomas, K.S.

    1976-01-01

    Two implosion heating circuits are being experimentally tested. The principal experiment in the program is the 4.5-m-long Staged Theta Pinch (STP). It uses two relatively low energy (50kJ and 100 kJ), high voltage (125 kV) capacitor banks to produce the theta pinch plasma inside the 20 cm i.d. quartz discharge tube. A lower voltage (50 kV), higher energy (750 kJ) capacitor bank is used to contain the plasma and provide a variable amount of adiabatic compression. Because the experiment produces a higher ratio of implosion heating to compressional heating than conventional theta pinches, it should be capable of producing high temperature plasmas with a much larger ratio of plasma radius to discharge tube radius than has been possible in the past. The Resonant Heating Experiment (RHX) in its initial configuration is the same as a 0.9-m-long section of the high voltage part of the STP experiment and all the plasma results here were obtained with the experiment in that configuration. Part of the implosion bank will be removed and a low inductance crowbar added to convert it to the resonant heating configuration. (U.K.)

  7. The Mobilisatsia experience

    International Nuclear Information System (INIS)

    De Boever, P.

    2005-01-01

    The hazards of long-duration manned space flight are real. In order to participate effectively in long duration orbital missions or to continue the exploration of space, the health of the astronaut must be secured. There is mounting evidence that changes in the immune response of an astronaut in short-term flights, resemble those occurring after acute stress, while the changes during long-term flights resemble those caused by chronic stress. This blunting of the immune system occurs concomitant with a relative increase in microbial contamination in the space cabin environment. Such a combination of events results in an increased probability of in-flight infectious events. Micro-organisms are subject to a genetic evolution, which may lead to the capacity to colonize new environments and to cause infections. Central players in this evolutionary process are mobile genetic elements. They help to mobilize and reorganize genes, be it within a given genome (intragenomic mobility) or between bacterial cells (intercellular mobility). Hence, the processes of genetic exchange can mobilize genetic elements between bacterial strains, and therefore play a role in determining the infectious potential. The specific confined environment and space-flight related factors (such as microgravity and cosmic radiation) may increase the frequency in which mobile genetic elements are exchanged between micro organisms. The aim of the Mobilisatsia experiment was to promote microbial gene transfer under space flight conditions during a short-term experiment conducted aboard the International Space Station (ISS). The efficiency of the gene exchange process was compared with a synchronously performed ground control experiment. An experiment was carried out with well-characterized Gram-negative reference strains and one experiment was done with Gram-positive reference strains

  8. Experience Communication and Aesthetics

    DEFF Research Database (Denmark)

    Thorlacius, Lisbeth

    to user aspect (web 2.0), the personal engagement or the community spirit. This increasing demand of experiences reflects the postmodern cultural trends where rules for how to think and behave no longer exist. This results in individualism, where the identity of the human being has changed from something......-actualization. The individualization of the human being can lead to loneliness and a need of participating in communities as a replacement of an overall fixed point in one's life. (Anthony Giddens, 1990, 1991; Zygmunt Bauman, 1997; Carsten René Jørgensen, 2002). The field of communication is consequently experiencing a great......In this article the term "experience communication" will be introduced and discussed. It will be illustrated how different concepts of aesthetical experiences are an integrated part of experience communication and how these concepts are produced within the industries of consumerism, branding...

  9. The KOSI experiments

    International Nuclear Information System (INIS)

    Huebner, W.F.

    1991-01-01

    Whipply's icy conglomerate model of the comet nucleus has enjoyed progressively increasing acceptance and success in explaining Earth-based observations of comets since its very inception (Whipple, 1950, 1951). According to this model, the nucleus is a solid body composed of frozen gases and dust. The missions to Comet Halley in 1986, in particular the Vega and the Giotto missions, have confirmed that there is a single solid nucleus that is the root of all the observed phenomena that can be associated with an active comet. Two new comet mission (CRAF and Rosetta) are planned by NASA and ESA to extract further details about the structure and composition of the nucleus. Laboratory experiments play an important role in defining and identifying the objectives of these missions. Although such experiments have been carried out in many laboratories in Europe, the Soviet Union, the USA, Israel, and Japan, the KOSI experiments are the first large-scale investigations (in spatial dimensions and duration). (KOSI is an acronym for Kometensimulation, German for comet simulation). Starting with a summary and explanation of the KOSI experiments by Grun et al. (1991) and some of the experimental limitations by Keller and Markiewicz (1991), the author reports in this special issue the progress achieved about halfway through the planned series of investigations

  10. Large scale FCI experiments in subassembly geometry. Test facility and model experiments

    International Nuclear Information System (INIS)

    Beutel, H.; Gast, K.

    A program is outlined for the study of fuel/coolant interaction under SNR conditions. The program consists of a) under water explosion experiments with full size models of the SNR-core, in which the fuel/coolant system is simulated by a pyrotechnic mixture. b) large scale fuel/coolant interaction experiments with up to 5kg of molten UO 2 interacting with liquid sodium at 300 deg C to 600 deg C in a highly instrumented test facility simulating an SNR subassembly. The experimental results will be compared to theoretical models under development at Karlsruhe. Commencement of the experiments is expected for the beginning of 1975

  11. Pictures, images, and recollective experience.

    Science.gov (United States)

    Dewhurst, S A; Conway, M A

    1994-09-01

    Five experiments investigated the influence of picture processing on recollective experience in recognition memory. Subjects studied items that differed in visual or imaginal detail, such as pictures versus words and high-imageability versus low-imageability words, and performed orienting tasks that directed processing either toward a stimulus as a word or toward a stimulus as a picture or image. Standard effects of imageability (e.g., the picture superiority effect and memory advantages following imagery) were obtained only in recognition judgments that featured recollective experience and were eliminated or reversed when recognition was not accompanied by recollective experience. It is proposed that conscious recollective experience in recognition memory is cued by attributes of retrieved memories such as sensory-perceptual attributes and records of cognitive operations performed at encoding.

  12. Handbook on the Experience Economy

    DEFF Research Database (Denmark)

    This illuminating Handbook presents the state-of-the-art in the scientific field of experience economy studies. It offers a rich and varied collection of contributions that discuss different issues of crucial importance for our understanding of the experience economy. Each chapter reflects diverse...... an insight into how receivers react to experiential elements of experience economy studies. An innovative presentation of experience economics, this is a remarkable collection of new theory and analyses. This book will prove an invaluable resource to researchers and students in management, marketing...... scientific viewpoints from disciplines including management, mainstream economics and sociology to provide a comprehensive overview. The Handbook is divided into three subsections to explore progression in the scientific field of experience economy studies. The first section focuses on fundamental debates...

  13. Operating experience feedback

    International Nuclear Information System (INIS)

    Cimesa, S.

    2007-01-01

    Slovenian Nuclear Safety Administration (SNSA) has developed its own system for tracking, screening and evaluating the operating experiences of the nuclear installations. The SNSA staff regularly tracks the operating experiences throughout the world and screens them on the bases of applicability for the Slovenian nuclear facilities. The operating experiences, which pass the screening, are thoroughly evaluated and also recent operational events in these facilities are taken into account. If needed, more information is gathered to evaluate the conditions of the Slovenian facilities and appropriate corrective actions are considered. The result might be the identification of the need for modification at the licensee, the need for modification of internal procedures in the SNSA or even the proposal for the modification of regulations. Information system helps everybody to track the process of evaluation and proper logging of activities. (author)

  14. Cooperative Prototyping Experiments

    DEFF Research Database (Denmark)

    Bødker, Susanne; Grønbæk, Kaj

    1989-01-01

    This paper describes experiments with a design technique that we denote cooperative prototyping. The experiments consider design of a patient case record system for municipal dental clinics in which we used HyperCard, an off the shelf programming environment for the Macintosh. In the ecperiments we...... tried to achieve a fluent work-like evaluation of prototypes where users envisioned future work with a computer tool, at the same time as we made on-line modifications of prototypes in cooperation with the users when breakdown occur in their work-like evaluation. The experiments showed...... that it was possible to make a number of direct manipulation changes of prototypes in cooperation with the users, in interplay with their fluent work-like evaluation of these. However, breakdown occurred in the prototyping process when we reached the limits of the direct manipulation support for modification. From...

  15. Neutron delayed choice experiments

    International Nuclear Information System (INIS)

    Bernstein, H.J.

    1986-01-01

    Delayed choice experiments for neutrons can help extend the interpretation of quantum mechanical phenomena. They may also rule out alternative explanations which static interference experiments allow. A simple example of a feasible neutron test is presented and discussed. (orig.)

  16. Experience composite worth: A combination of experience quality ...

    African Journals Online (AJOL)

    kirstam

    sity. E-mail: felix.amoah@nmmu.ac.za/felix.amoah@mandela.ac.za ... Bell 2007), positive word-of-mouth messages (Kumar, Lassar & Butaney 2014) .... involvement and tourist knowledge provide a measure of experience value associated.

  17. Authoring experience

    DEFF Research Database (Denmark)

    Knox, Jeanette Bresson Ladegaard; Svendsen, Mette Nordahl

    2015-01-01

    This article examines the storytelling aspect inphilosophizing with rehabilitating cancer patients in small Socratic dialogue groups (SDG). Recounting an experienceto illustrate a philosophical question chosen by the participantsis the traditional point of departure for the dialogicalexchange....... However, narrating is much more than abeginning point or the skeletal framework of events and itdeserves more scholarly attention than hitherto given. Storytelling pervades the whole Socratic process and impactsthe conceptual analysis in a SDG. In this article weshow how the narrative aspect became a rich...... an experiencethrough a collaborative effort, most participants hadtheir initial experience existentially refined and the chosenconcept of which the experience served as an illustrationtransformed into a moral compass to be used in self-orientationpost cancer....

  18. Towards LHC experiments

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    As plans for the LHC proton collider to be built in CERN's 27-kilometre LEP tunnel take shape, interest widens to bring in the experiments exploiting the big machine. The first public presentations of 'expressions of interest' for LHC experiments featured from 5-8 March at Evian-les-Bains on the shore of Lake Geneva, some 50 kilometres from CERN, at the special Towards the LHC Experimental Programme' meeting

  19. Shielding experiments for accelerator facilities

    Energy Technology Data Exchange (ETDEWEB)

    Nakashima, Hiroshi; Tanaka, Susumu; Sakamoto, Yukio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [and others

    2000-06-01

    A series of shielding experiments was carried out by using AVF cyclotron accelerator of TIARA at JAERI in order to validate shielding design methods for accelerator facilities in intermediate energy region. In this paper neutron transmission experiment through thick shields and radiation streaming experiment through a labyrinth are reported. (author)

  20. Shielding experiments for accelerator facilities

    International Nuclear Information System (INIS)

    Nakashima, Hiroshi; Tanaka, Susumu; Sakamoto, Yukio

    2000-01-01

    A series of shielding experiments was carried out by using AVF cyclotron accelerator of TIARA at JAERI in order to validate shielding design methods for accelerator facilities in intermediate energy region. In this paper neutron transmission experiment through thick shields and radiation streaming experiment through a labyrinth are reported. (author)