WorldWideScience

Sample records for swarm intelligence techniques

  1. PERFORMANCE OF PID CONTROLLER OF NONLINEAR SYSTEM USING SWARM INTELLIGENCE TECHNIQUES

    Directory of Open Access Journals (Sweden)

    Neeraj Jain

    2016-07-01

    Full Text Available In this paper swarm intelligence based PID controller tuning is proposed for a nonlinear ball and hoop system. Particle swarm optimization (PSO, Artificial bee colony (ABC, Bacterial foraging optimization (BFO is some example of swarm intelligence techniques which are focused for PID controller tuning. These algorithms are also tested on perturbed ball and hoop model. Integral square error (ISE based performance index is used for finding the best possible value of controller parameters. Matlab software is used for designing the ball and hoop model. It is found that these swarm intelligence techniques have easy implementation & lesser settling & rise time compare to conventional methods.

  2. Components of Swarm Intelligence

    Energy Technology Data Exchange (ETDEWEB)

    David Bruemmer; Donald Dudenhoeffer; Matthew Anderson; Mark McKay

    2004-03-01

    This paper discusses the successes and failures over the past three years as efforts at the Idaho National Engineering and Environmental Laboratory (INEEL) have developed and evaluated robot behaviors that promote the emergence of swarm intelligence. Using a team of 12 small robots with the ability to respond to light and sound, the INEEL has investigated the fundamental advantages of swarm behavior as well as the limitations of this approach. The paper discusses the ways in which biology has inspired this work and the ways in which adherence to the biological model has proven to be both a benefit and hindrance to developing a fieldable system. The paper outlines how a hierarchical command and control structure can be imposed in order to permit human control at a level of group abstraction and discusses experimental results that show how group performance scales as different numbers of robots are utilized. Lastly, the paper outlines the applications for which the resulting capabilities have been applied and demonstrated.

  3. A New Stochastic Technique for Painlevé Equation-I Using Neural Network Optimized with Swarm Intelligence

    Directory of Open Access Journals (Sweden)

    Muhammad Asif Zahoor Raja

    2012-01-01

    Full Text Available A methodology for solution of Painlevé equation-I is presented using computational intelligence technique based on neural networks and particle swarm optimization hybridized with active set algorithm. The mathematical model of the equation is developed with the help of linear combination of feed-forward artificial neural networks that define the unsupervised error of the model. This error is minimized subject to the availability of appropriate weights of the networks. The learning of the weights is carried out using particle swarm optimization algorithm used as a tool for viable global search method, hybridized with active set algorithm for rapid local convergence. The accuracy, convergence rate, and computational complexity of the scheme are analyzed based on large number of independents runs and their comprehensive statistical analysis. The comparative studies of the results obtained are made with MATHEMATICA solutions, as well as, with variational iteration method and homotopy perturbation method.

  4. Organic Computing and Swarm Intelligence

    Science.gov (United States)

    Merkle, Daniel; Middendorf, Martin; Scheidler, Alexander

    The relations between swarm intelligence and organic computing are discussed in this chapter. The aim of organic computing is to design and study computing systems that consist of many autonomous components and show forms of collective behavior. Such organic computing systems (OC systems) should possess self-x properties (e.g., self-healing, self-managing, self-optimizing), have a decentralized control, and be adaptive to changing requirements of their user. Examples of OC systems are described in this chapter and two case studies are presented that show in detail that OC systems share important properties with social insect colonies and how methods of swarm intelligence can be used to solve problems in organic computing.

  5. Wind Energy Potential Assessment and Forecasting Research Based on the Data Pre-Processing Technique and Swarm Intelligent Optimization Algorithms

    Directory of Open Access Journals (Sweden)

    Zhilong Wang

    2016-11-01

    Full Text Available Accurate quantification and characterization of a wind energy potential assessment and forecasting is significant to optimal wind farm design, evaluation and scheduling. However, wind energy potential assessment and forecasting remain difficult and challenging research topics at present. Traditional wind energy assessment and forecasting models usually ignore the problem of data pre-processing as well as parameter optimization, which leads to low accuracy. Therefore, this paper aims to assess the potential of wind energy and forecast the wind speed in four locations in China based on the data pre-processing technique and swarm intelligent optimization algorithms. In the assessment stage, the cuckoo search (CS algorithm, ant colony (AC algorithm, firefly algorithm (FA and genetic algorithm (GA are used to estimate the two unknown parameters in the Weibull distribution. Then, the wind energy potential assessment results obtained by three data-preprocessing approaches are compared to recognize the best data-preprocessing approach and process the original wind speed time series. While in the forecasting stage, by considering the pre-processed wind speed time series as the original data, the CS and AC optimization algorithms are adopted to optimize three neural networks, namely, the Elman neural network, back propagation neural network, and wavelet neural network. The comparison results demonstrate that the new proposed wind energy assessment and speed forecasting techniques produce promising assessments and predictions and perform better than the single assessment and forecasting components.

  6. Swarm Intelligence Optimization and Its Applications

    Science.gov (United States)

    Ding, Caichang; Lu, Lu; Liu, Yuanchao; Peng, Wenxiu

    Swarm Intelligence is a computational and behavioral metaphor for solving distributed problems inspired from biological examples provided by social insects such as ants, termites, bees, and wasps and by swarm, herd, flock, and shoal phenomena in vertebrates such as fish shoals and bird flocks. An example of successful research direction in Swarm Intelligence is ant colony optimization (ACO), which focuses on combinatorial optimization problems. Ant algorithms can be viewed as multi-agent systems (ant colony), where agents (individual ants) solve required tasks through cooperation in the same way that ants create complex social behavior from the combined efforts of individuals.

  7. Multi-objective swarm intelligence theoretical advances and applications

    CERN Document Server

    Jagadev, Alok; Panda, Mrutyunjaya

    2015-01-01

    The aim of this book is to understand the state-of-the-art theoretical and practical advances of swarm intelligence. It comprises seven contemporary relevant chapters. In chapter 1, a review of Bacteria Foraging Optimization (BFO) techniques for both single and multiple criterions problem is presented. A survey on swarm intelligence for multiple and many objectives optimization is presented in chapter 2 along with a topical study on EEG signal analysis. Without compromising the extensive simulation study, a comparative study of variants of MOPSO is provided in chapter 3. Intractable problems like subset and job scheduling problems are discussed in chapters 4 and 7 by different hybrid swarm intelligence techniques. An attempt to study image enhancement by ant colony optimization is made in chapter 5. Finally, chapter 7 covers the aspect of uncertainty in data by hybrid PSO.       

  8. Estimation of Power System Stabilizer Parameters Using Swarm Intelligence Techniques to Improve Small Signal Stability of Power System

    Directory of Open Access Journals (Sweden)

    Hossein Soleymani

    2017-08-01

    Full Text Available Interconnection of the power system utilities and grids offers a formidable dispute in front of design engineers. With the interconnections, power system has emerged as a more intricate and nonlinear system. Recent years small signal stability problems have achieved much significance along with the conventional transient constancy problems. Transient stability of the power system can be attained with high gain and fast acting Automatic Voltage Regulators (AVRs. Yet, AVRs establish negative damping in the system. Propagation of small signals is hazardous for system’s health and offers a potential threat to system’s oscillatory stability. These small signals have magnitude of 0.2 to 2 Hz. The professional control tactic to develop system damping is Power System Stabilizer (PSS.This paper presents application of swarm intelligence for PSS parameter estimation issue on standard IEEE 10 Generator 39 Bus power network (New England. Realization of the objective function is done with the help of interpolation investigation using MATLAB. The system performance is compared with the conventional optimization algorithms like Genetic Algorithm (GA and Particle Swarm Optimization (PSO based PSS controller. The strength of proposed controller is tested by examining various operating conditions. An Eigen property analysis is done on this system i.e. before installing PSS, and after the employment of GA and PSO tuned PSSs. A significant comparison is carried out with GA and PSO on the basis of convergence uniqueness and dynamic response of speed deviation curves of various generators.

  9. Handbook of swarm intelligence concepts, principles and applications

    CERN Document Server

    Shi, Yuhui; Panigrahi, Bijaya Ketan

    2011-01-01

    Recent work on the behavior of swarming creatures such as bees posits an innate collective intelligence that gives rise to myriad computational problem-solving techniques. This volume is both an introduction to the topic and a survey of leading-edge research.

  10. Intelligent discrete particle swarm optimization for multiprocessor task scheduling problem

    Directory of Open Access Journals (Sweden)

    S Sarathambekai

    2017-03-01

    Full Text Available Discrete particle swarm optimization is one of the most recently developed population-based meta-heuristic optimization algorithm in swarm intelligence that can be used in any discrete optimization problems. This article presents a discrete particle swarm optimization algorithm to efficiently schedule the tasks in the heterogeneous multiprocessor systems. All the optimization algorithms share a common algorithmic step, namely population initialization. It plays a significant role because it can affect the convergence speed and also the quality of the final solution. The random initialization is the most commonly used method in majority of the evolutionary algorithms to generate solutions in the initial population. The initial good quality solutions can facilitate the algorithm to locate the optimal solution or else it may prevent the algorithm from finding the optimal solution. Intelligence should be incorporated to generate the initial population in order to avoid the premature convergence. This article presents a discrete particle swarm optimization algorithm, which incorporates opposition-based technique to generate initial population and greedy algorithm to balance the load of the processors. Make span, flow time, and reliability cost are three different measures used to evaluate the efficiency of the proposed discrete particle swarm optimization algorithm for scheduling independent tasks in distributed systems. Computational simulations are done based on a set of benchmark instances to assess the performance of the proposed algorithm.

  11. Solving Fractional Programming Problems based on Swarm Intelligence

    Science.gov (United States)

    Raouf, Osama Abdel; Hezam, Ibrahim M.

    2014-04-01

    This paper presents a new approach to solve Fractional Programming Problems (FPPs) based on two different Swarm Intelligence (SI) algorithms. The two algorithms are: Particle Swarm Optimization, and Firefly Algorithm. The two algorithms are tested using several FPP benchmark examples and two selected industrial applications. The test aims to prove the capability of the SI algorithms to solve any type of FPPs. The solution results employing the SI algorithms are compared with a number of exact and metaheuristic solution methods used for handling FPPs. Swarm Intelligence can be denoted as an effective technique for solving linear or nonlinear, non-differentiable fractional objective functions. Problems with an optimal solution at a finite point and an unbounded constraint set, can be solved using the proposed approach. Numerical examples are given to show the feasibility, effectiveness, and robustness of the proposed algorithm. The results obtained using the two SI algorithms revealed the superiority of the proposed technique among others in computational time. A better accuracy was remarkably observed in the solution results of the industrial application problems.

  12. Multi-Robot Motion Planning Using Swarm Intelligence

    Directory of Open Access Journals (Sweden)

    Gerasimos G. Rigatos

    2008-11-01

    Full Text Available Swarm intelligence theory is proposed for motion planning of multi-robot systems. Multiple particles start from different points in the solutions space and interact to each other while moving towards the goal position. Swarm intelligence theory is a derivative-free approach to the problem of multi-robotcooperation which works by searching iteratively in regions defined by each robot's best previous move and the best previous move of its neighbors. The method's performance is evaluated through simulation tests.

  13. Multi-Robot Motion Planning Using Swarm Intelligence

    Directory of Open Access Journals (Sweden)

    Gerasimos G. Rigatos

    2008-06-01

    Full Text Available Swarm intelligence theory is proposed for motion planning of multi-robot systems. Multiple particles start from different points in the solutions space and interact to each other while moving towards the goal position. Swarm intelligence theory is a derivative-free approach to the problem of multi-robotcooperation which works by searching iteratively in regions defined by each robot's best previous move and the best previous move of its neighbors. The method's performance is evaluated through simulation tests.

  14. Swarm intelligence metaheuristics for enhanced data analysis and optimization.

    Science.gov (United States)

    Hanrahan, Grady

    2011-09-21

    The swarm intelligence (SI) computing paradigm has proven itself as a comprehensive means of solving complicated analytical chemistry problems by emulating biologically-inspired processes. As global optimum search metaheuristics, associated algorithms have been widely used in training neural networks, function optimization, prediction and classification, and in a variety of process-based analytical applications. The goal of this review is to provide readers with critical insight into the utility of swarm intelligence tools as methods for solving complex chemical problems. Consideration will be given to algorithm development, ease of implementation and model performance, detailing subsequent influences on a number of application areas in the analytical, bioanalytical and detection sciences.

  15. The Swarm Computing Approach to Business Intelligence

    Directory of Open Access Journals (Sweden)

    Schumann Andrew

    2015-07-01

    Full Text Available We have proposed to use some features of swarm behaviours in modelling business processes. Due to these features we deal with a propagation of business processes in all accessible directions. This propagation is involved into our formalization instead of communicating sequential processes. As a result, we have constructed a business process diagram language based on the swarm behavior and an extension of that language in the form of reflexive management language.

  16. Adaptive Fuzzy-Lyapunov Controller Using Biologically Inspired Swarm Intelligence

    Directory of Open Access Journals (Sweden)

    Alejandro Carrasco Elizalde

    2008-01-01

    Full Text Available The collective behaviour of swarms produces smarter actions than those achieved by a single individual. Colonies of ants, flocks of birds and fish schools are examples of swarms interacting with their environment to achieve a common goal. This cooperative biological intelligence is the inspiration for an adaptive fuzzy controller developed in this paper. Swarm intelligence is used to adjust the parameters of the membership functions used in the adaptive fuzzy controller. The rules of the controller are designed using a computing-with-words approach called Fuzzy-Lyapunov synthesis to improve the stability and robustness of an adaptive fuzzy controller. Computing-with-words provides a powerful tool to manipulate numbers and symbols, like words in a natural language.

  17. Recent advances in swarm intelligence and evolutionary computation

    CERN Document Server

    2015-01-01

    This timely review volume summarizes the state-of-the-art developments in nature-inspired algorithms and applications with the emphasis on swarm intelligence and bio-inspired computation. Topics include the analysis and overview of swarm intelligence and evolutionary computation, hybrid metaheuristic algorithms, bat algorithm, discrete cuckoo search, firefly algorithm, particle swarm optimization, and harmony search as well as convergent hybridization. Application case studies have focused on the dehydration of fruits and vegetables by the firefly algorithm and goal programming, feature selection by the binary flower pollination algorithm, job shop scheduling, single row facility layout optimization, training of feed-forward neural networks, damage and stiffness identification, synthesis of cross-ambiguity functions by the bat algorithm, web document clustering, truss analysis, water distribution networks, sustainable building designs and others. As a timely review, this book can serve as an ideal reference f...

  18. Adaptive Remote-Sensing Techniques Implementing Swarms of Mobile Agents

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, S.M.; Loubriel, G.M.; Rbinett, R.D. III; Stantz, K.M.; Trahan, M.W.; Wagner, J.S.

    1999-04-01

    This paper focuses on our recent work at Sandia National Laboratories toward engineering a physics-based swarm of mobile vehicles for distributed sensing applications. Our goal is to coordinate a sensor array that optimizes sensor coverage and multivariate signal analysis by implementing artificial intelligence and evolutionary computational techniques. These intelligent control systems integrate both globally operating decision-making systems and locally cooperative information-sharing modes using genetically-trained neural networks. Once trained, neural networks have the ability to enhance real-time operational responses to dynamical environments, such as obstacle avoidance, responding to prevailing wind patterns, and overcoming other natural obscurants or interferences (jammers). The swarm realizes a collective set of sensor neurons with simple properties incorporating interactions based on basic community rules (potential fields) and complex interconnecting functions based on various neural network architectures, Therefore, the swarm is capable of redundant heterogeneous measurements which furnishes an additional degree of robustness and fault tolerance not afforded by conventional systems, while accomplishing such cognitive tasks as generalization, error correction, pattern recognition, and sensor fission. The robotic platforms could be equipped with specialized sensor devices including transmit/receive dipole antennas, chemical or biological sniffers in combination with recognition analysis tools, communication modulators, and laser diodes. Our group has been studying the collective behavior of an autonomous, multi-agent system applied to emerging threat applications. To accomplish such tasks, research in the fields of robotics, sensor technology, and swarms are being conducted within an integrated program. Mission scenarios under consideration include ground penetrating impulse radar (GPR) for detection of under-ground structures, airborne systems, and plume

  19. A Solution Quality Assessment Method for Swarm Intelligence Optimization Algorithms

    Science.gov (United States)

    Wang, Gai-Ge; Zou, Kuansheng; Zhang, Jianhua

    2014-01-01

    Nowadays, swarm intelligence optimization has become an important optimization tool and wildly used in many fields of application. In contrast to many successful applications, the theoretical foundation is rather weak. Therefore, there are still many problems to be solved. One problem is how to quantify the performance of algorithm in finite time, that is, how to evaluate the solution quality got by algorithm for practical problems. It greatly limits the application in practical problems. A solution quality assessment method for intelligent optimization is proposed in this paper. It is an experimental analysis method based on the analysis of search space and characteristic of algorithm itself. Instead of “value performance,” the “ordinal performance” is used as evaluation criteria in this method. The feasible solutions were clustered according to distance to divide solution samples into several parts. Then, solution space and “good enough” set can be decomposed based on the clustering results. Last, using relative knowledge of statistics, the evaluation result can be got. To validate the proposed method, some intelligent algorithms such as ant colony optimization (ACO), particle swarm optimization (PSO), and artificial fish swarm algorithm (AFS) were taken to solve traveling salesman problem. Computational results indicate the feasibility of proposed method. PMID:25013845

  20. Computational intelligence techniques in bioinformatics.

    Science.gov (United States)

    Hassanien, Aboul Ella; Al-Shammari, Eiman Tamah; Ghali, Neveen I

    2013-12-01

    Computational intelligence (CI) is a well-established paradigm with current systems having many of the characteristics of biological computers and capable of performing a variety of tasks that are difficult to do using conventional techniques. It is a methodology involving adaptive mechanisms and/or an ability to learn that facilitate intelligent behavior in complex and changing environments, such that the system is perceived to possess one or more attributes of reason, such as generalization, discovery, association and abstraction. The objective of this article is to present to the CI and bioinformatics research communities some of the state-of-the-art in CI applications to bioinformatics and motivate research in new trend-setting directions. In this article, we present an overview of the CI techniques in bioinformatics. We will show how CI techniques including neural networks, restricted Boltzmann machine, deep belief network, fuzzy logic, rough sets, evolutionary algorithms (EA), genetic algorithms (GA), swarm intelligence, artificial immune systems and support vector machines, could be successfully employed to tackle various problems such as gene expression clustering and classification, protein sequence classification, gene selection, DNA fragment assembly, multiple sequence alignment, and protein function prediction and its structure. We discuss some representative methods to provide inspiring examples to illustrate how CI can be utilized to address these problems and how bioinformatics data can be characterized by CI. Challenges to be addressed and future directions of research are also presented and an extensive bibliography is included. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. A new hybrid optimization method inspired from swarm intelligence: Fuzzy adaptive swallow swarm optimization algorithm (FASSO

    Directory of Open Access Journals (Sweden)

    Mehdi Neshat

    2015-11-01

    Full Text Available In this article, the objective was to present effective and optimal strategies aimed at improving the Swallow Swarm Optimization (SSO method. The SSO is one of the best optimization methods based on swarm intelligence which is inspired by the intelligent behaviors of swallows. It has been able to offer a relatively strong method for solving optimization problems. However, despite its many advantages, the SSO suffers from two shortcomings. Firstly, particles movement speed is not controlled satisfactorily during the search due to the lack of an inertia weight. Secondly, the variables of the acceleration coefficient are not able to strike a balance between the local and the global searches because they are not sufficiently flexible in complex environments. Therefore, the SSO algorithm does not provide adequate results when it searches in functions such as the Step or Quadric function. Hence, the fuzzy adaptive Swallow Swarm Optimization (FASSO method was introduced to deal with these problems. Meanwhile, results enjoy high accuracy which are obtained by using an adaptive inertia weight and through combining two fuzzy logic systems to accurately calculate the acceleration coefficients. High speed of convergence, avoidance from falling into local extremum, and high level of error tolerance are the advantages of proposed method. The FASSO was compared with eleven of the best PSO methods and SSO in 18 benchmark functions. Finally, significant results were obtained.

  2. Creating Virtual Communities by Means of Swarm Intelligence

    Directory of Open Access Journals (Sweden)

    Lucian Hancu

    2011-01-01

    Full Text Available

    During centuries, observing the behavior of wild species has always been fascinating and full of mysteries. Modeling human interactions based on those revealed on the wilderness conducts to innovative solutions, but also poses unexpected issues. In this article, we describe our approach of creating communities of virtual entities by means of swarm intelligence. We discuss the algorithm of creating the virtual communities along with the issues that arise when modeling business entities as individuals of the swarm.

  3. Mining Customer Change Model Based on Swarm Intelligence

    Science.gov (United States)

    Jin, Peng; Zhu, Yunlong

    Understanding and adapting to changes of customer behavior is an important aspect of surviving in a continuously changing market environment for a modern company. The concept of customer change model mining is introduced and its process is analyzed in this paper. A customer change model mining method based on swarm intelligence is presented, and the strategies of pheromone updating and items searching are given. Finally, an examination on two customer datasets of a telecom company illuminates that this method can achieve customer change model efficiently.

  4. Dynamic Alliance of Agriculture Productslogistics Based on Swarm Intelligence

    Science.gov (United States)

    Yao, Xinsheng; Cui, Yan; Ying, Jilai; Wei, Jianguang

    Along with the growing up of the Chinese generalized agriculture, the agriculture products logistics demands are increasing quickly in quality and quantity. Oppositely, the service of agriculture products logistics is slowly. It is very essential to study the logistics service mode suited to the tendency of the agriculture products logistics demand. The paper analyzes the common characteristic between the agriculture products logistics individual and the intelligence individual. Then, by the swarm intelligence, thedynamic alliance of agriculture products logistics is presented, the construction algorithm and the application method are given too. The paper provides a better operable development mode for the agriculture products logistics in China, which has directive meaning to improve the logistics efficiency for the socialistic new economy development and the New County Construction.

  5. Swarm intelligence. A whole new way to think about business.

    Science.gov (United States)

    Bonabeau, E; Meyer, C

    2001-05-01

    What do ants and bees have to do with business? A great deal, it turns out. Individually, social insects are only minimally intelligent, and their work together is largely self-organized and unsupervised. Yet collectively they're capable of finding highly efficient solutions to difficult problems and can adapt automatically to changing environments. Over the past 20 years, the authors and other researchers have developed rigorous mathematical models to describe this phenomenon, which has been dubbed "swarm intelligence," and they are now applying them to business. Their research has already helped several companies develop more efficient ways to schedule factory equipment, divide tasks among workers, organize people, and even plot strategy. Emulating the way ants find the shortest path to a new food supply, for example, has led researchers at Hewlett-Packard to develop software programs that can find the most efficient way to route phone traffic over a telecommunications network. South-west Airlines has used a similar model to efficiently route cargo. To allocate labor, honeybees appear to follow one simple but powerful rule--they seem to specialize in a particular activity unless they perceive an important need to perform another function. Using that model, researchers at Northwestern University have devised a system for painting trucks that can automatically adapt to changing conditions. In the future, the authors speculate, a company might structure its entire business using the principles of swarm intelligence. The result, they believe, would be the ultimate self-organizing enterprise--one that could adapt quickly and instinctively to fast-changing markets.

  6. Computational Swarming: A Cultural Technique for Generative Architecture

    Directory of Open Access Journals (Sweden)

    Sebastian Vehlken

    2014-11-01

    Full Text Available After a first wave of digital architecture in the 1990s, the last decade saw some approaches where agent-based modelling and simulation (ABM was used for generative strategies in architectural design. By taking advantage of the self-organisational capabilities of computational agent collectives whose global behaviour emerges from the local interaction of a large number of relatively simple individuals (as it does, for instance, in animal swarms, architects are able to understand buildings and urbanscapes in a novel way as complex spaces that are constituted by the movement of multiple material and informational elements. As a major, zoo-technological branch of ABM, Computational Swarm Intelligence (SI coalesces all kinds of architectural elements – materials, people, environmental forces, traffic dynamics, etc. – into a collective population. Thereby, SI and ABM initiate a shift from geometric or parametric planning to time-based and less prescriptive software tools.Agent-based applications of this sort are used to model solution strategies in a number of areas where opaque and complex problems present themselves – from epidemiology to logistics, and from market simulations to crowd control. This article seeks to conceptualise SI and ABM as a fundamental and novel cultural technique for governing dynamic processes, taking their employment in generative architectural design as a concrete example. In order to avoid a rather conventional application of philosophical theories to this field, the paper explores how the procedures of such technologies can be understood in relation to the media-historical concept of Cultural Techniques.

  7. MAKHA—A New Hybrid Swarm Intelligence Global Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Ahmed M.E. Khalil

    2015-06-01

    Full Text Available The search for efficient and reliable bio-inspired optimization methods continues to be an active topic of research due to the wide application of the developed methods. In this study, we developed a reliable and efficient optimization method via the hybridization of two bio-inspired swarm intelligence optimization algorithms, namely, the Monkey Algorithm (MA and the Krill Herd Algorithm (KHA. The hybridization made use of the efficient steps in each of the two original algorithms and provided a better balance between the exploration/diversification steps and the exploitation/intensification steps. The new hybrid algorithm, MAKHA, was rigorously tested with 27 benchmark problems and its results were compared with the results of the two original algorithms. MAKHA proved to be considerably more reliable and more efficient in tested problems.

  8. An intelligent scheduling method based on improved particle swarm optimization algorithm for drainage pipe network

    Science.gov (United States)

    Luo, Yaqi; Zeng, Bi

    2017-08-01

    This paper researches the drainage routing problem in drainage pipe network, and propose an intelligent scheduling method. The method relates to the design of improved particle swarm optimization algorithm, the establishment of the corresponding model from the pipe network, and the process by using the algorithm based on improved particle swarm optimization to find the optimum drainage route in the current environment.

  9. Optimization of Transformation Coefficients Using Direct Search and Swarm Intelligence

    Directory of Open Access Journals (Sweden)

    Manusov V.Z.

    2017-04-01

    Full Text Available This research considers optimization of tap position of transformers in power systems to reduce power losses. Now, methods based on heuristic rules and fuzzy logic, or methods that optimize parts of the whole system separately, are applied to this problem. The first approach requires expert knowledge about processes in the network. The second methods are not able to consider all the interrelations of system’s parts, while changes in segment affect the entire system. Both approaches are tough to implement and require adjustment to the tasks solved. It needs to implement algorithms that can take into account complex interrelations of optimized variables and self-adapt to optimization task. It is advisable to use algorithms given complex interrelations of optimized variables and independently adapting from optimization tasks. Such algorithms include Swarm Intelligence algorithms. Their main features are self-organization, which allows them to automatically adapt to conditions of tasks, and the ability to efficiently exit from local extremes. Thus, they do not require specialized knowledge of the system, in contrast to fuzzy logic. In addition, they can efficiently find quasi-optimal solutions converging to the global optimum. This research applies Particle Swarm Optimization algorithm (PSO. The model of Tajik power system used in experiments. It was found out that PSO is much more efficient than greedy heuristics and more flexible and easier to use than fuzzy logic. PSO allows reducing active power losses from 48.01 to 45.83 MW (4.5%. With al, the effect of using greedy heuristics or fuzzy logic is two times smaller (2.3%.

  10. Self-organizing control strategy for asteroid intelligent detection swarm based on attraction and repulsion

    Science.gov (United States)

    An, Meiyan; Wang, Zhaokui; Zhang, Yulin

    2017-01-01

    The self-organizing control strategy for asteroid intelligent detection swarm, which is considered as a space application instance of intelligent swarm, is developed. The leader-follower model for the asteroid intelligent detection swarm is established, and the further analysis is conducted for massive asteroid and small asteroid. For a massive asteroid, the leader spacecraft flies under the gravity field of the asteroid. For a small asteroid, the asteroid gravity is negligible, and a trajectory planning method is proposed based on elliptic cavity virtual potential field. The self-organizing control strategy for the follower spacecraft is developed based on a mechanism of velocity planning and velocity tracking. The simulation results show that the self-organizing control strategy is valid for both massive asteroid and small asteroid, and the exploration swarm forms a stable configuration.

  11. Infrared and visible image fusion using discrete cosine transform and swarm intelligence for surveillance applications

    Science.gov (United States)

    Paramanandham, Nirmala; Rajendiran, Kishore

    2018-01-01

    A novel image fusion technique is presented for integrating infrared and visible images. Integration of images from the same or various sensing modalities can deliver the required information that cannot be delivered by viewing the sensor outputs individually and consecutively. In this paper, a swarm intelligence based image fusion technique using discrete cosine transform (DCT) domain is proposed for surveillance application which integrates the infrared image with the visible image for generating a single informative fused image. Particle swarm optimization (PSO) is used in the fusion process for obtaining the optimized weighting factor. These optimized weighting factors are used for fusing the DCT coefficients of visible and infrared images. Inverse DCT is applied for obtaining the initial fused image. An enhanced fused image is obtained through adaptive histogram equalization for a better visual understanding and target detection. The proposed framework is evaluated using quantitative metrics such as standard deviation, spatial frequency, entropy and mean gradient. The experimental results demonstrate the outperformance of the proposed algorithm over many other state- of- the- art techniques reported in literature.

  12. Generating a Multiphase Equation of State with Swarm Intelligence

    Science.gov (United States)

    Cox, Geoffrey

    2017-06-01

    Hydrocode calculations require knowledge of the variation of pressure of a material with density and temperature, which is given by the equation of state. An accurate model needs to account for discontinuities in energy, density and properties of a material across a phase boundary. When generating a multiphase equation of state the modeller attempts to balance the agreement between the available data for compression, expansion and phase boundary location. However, this can prove difficult because minor adjustments in the equation of state for a single phase can have a large impact on the overall phase diagram. Recently, Cox and Christie described a method for combining statistical-mechanics-based condensed matter physics models with a stochastic analysis technique called particle swarm optimisation. The models produced show good agreement with experiment over a wide range of pressure-temperature space. This talk details the general implementation of this technique, shows example results, and describes the types of analysis that can be performed with this method.

  13. The Study of Intelligent Vehicle Navigation Path Based on Behavior Coordination of Particle Swarm.

    Science.gov (United States)

    Han, Gaining; Fu, Weiping; Wang, Wen

    2016-01-01

    In the behavior dynamics model, behavior competition leads to the shock problem of the intelligent vehicle navigation path, because of the simultaneous occurrence of the time-variant target behavior and obstacle avoidance behavior. Considering the safety and real-time of intelligent vehicle, the particle swarm optimization (PSO) algorithm is proposed to solve these problems for the optimization of weight coefficients of the heading angle and the path velocity. Firstly, according to the behavior dynamics model, the fitness function is defined concerning the intelligent vehicle driving characteristics, the distance between intelligent vehicle and obstacle, and distance of intelligent vehicle and target. Secondly, behavior coordination parameters that minimize the fitness function are obtained by particle swarm optimization algorithms. Finally, the simulation results show that the optimization method and its fitness function can improve the perturbations of the vehicle planning path and real-time and reliability.

  14. Adaptive Remote-Sensing Techniques Implementing Swarms of Mobile Agents

    Energy Technology Data Exchange (ETDEWEB)

    Asher, R.B.; Cameron, S.M.; Loubriel, G.M.; Robinett, R.D.; Stantz, K.M.; Trahan, M.W.; Wagner, J.S.

    1998-11-25

    In many situations, stand-off remote-sensing and hazard-interdiction techniques over realistic operational areas are often impractical "and difficult to characterize. An alternative approach is to implement an adap- tively deployable array of sensitive agent-specific devices. Our group has been studying the collective be- havior of an autonomous, multi-agent system applied to chedbio detection and related emerging threat applications, The current physics-based models we are using coordinate a sensor array for mukivanate sig- nal optimization and coverage as re,alized by a swarm of robots or mobile vehicles. These intelligent control systems integrate'glob"ally operating decision-making systems and locally cooperative learning neural net- works to enhance re+-timp operational responses to dynarnical environments examples of which include obstacle avoidance, res~onding to prevailing wind patterns, and overcoming other natural obscurants or in- terferences. Collectively',tkensor nefirons with simple properties, interacting according to basic community rules, can accomplish complex interconnecting functions such as generalization, error correction, pattern recognition, sensor fusion, and localization. Neural nets provide a greater degree of robusmess and fault tolerance than conventional systems in that minor variations or imperfections do not impair performance. The robotic platforms would be equipped with sensor devices that perform opticaI detection of biologicais in combination with multivariate chemical analysis tools based on genetic and neural network algorithms, laser-diode LIDAR analysis, ultra-wideband short-pulsed transmitting and receiving antennas, thermal im- a:ing sensors, and optical Communication technology providing robust data throughput pathways. Mission scenarios under consideration include ground penetrating radar (GPR) for detection of underground struc- tures, airborne systems, and plume migration and mitigation. We will describe our

  15. A Dynamic Recommender System for Improved Web Usage Mining and CRM Using Swarm Intelligence.

    Science.gov (United States)

    Alphy, Anna; Prabakaran, S

    2015-01-01

    In modern days, to enrich e-business, the websites are personalized for each user by understanding their interests and behavior. The main challenges of online usage data are information overload and their dynamic nature. In this paper, to address these issues, a WebBluegillRecom-annealing dynamic recommender system that uses web usage mining techniques in tandem with software agents developed for providing dynamic recommendations to users that can be used for customizing a website is proposed. The proposed WebBluegillRecom-annealing dynamic recommender uses swarm intelligence from the foraging behavior of a bluegill fish. It overcomes the information overload by handling dynamic behaviors of users. Our dynamic recommender system was compared against traditional collaborative filtering systems. The results show that the proposed system has higher precision, coverage, F1 measure, and scalability than the traditional collaborative filtering systems. Moreover, the recommendations given by our system overcome the overspecialization problem by including variety in recommendations.

  16. A Dynamic Recommender System for Improved Web Usage Mining and CRM Using Swarm Intelligence

    Directory of Open Access Journals (Sweden)

    Anna Alphy

    2015-01-01

    Full Text Available In modern days, to enrich e-business, the websites are personalized for each user by understanding their interests and behavior. The main challenges of online usage data are information overload and their dynamic nature. In this paper, to address these issues, a WebBluegillRecom-annealing dynamic recommender system that uses web usage mining techniques in tandem with software agents developed for providing dynamic recommendations to users that can be used for customizing a website is proposed. The proposed WebBluegillRecom-annealing dynamic recommender uses swarm intelligence from the foraging behavior of a bluegill fish. It overcomes the information overload by handling dynamic behaviors of users. Our dynamic recommender system was compared against traditional collaborative filtering systems. The results show that the proposed system has higher precision, coverage, F1 measure, and scalability than the traditional collaborative filtering systems. Moreover, the recommendations given by our system overcome the overspecialization problem by including variety in recommendations.

  17. Industry Cluster's Adaptive Co-competition Behavior Modeling Inspired by Swarm Intelligence

    Science.gov (United States)

    Xiang, Wei; Ye, Feifan

    Adaptation helps the individual enterprise to adjust its behavior to uncertainties in environment and hence determines a healthy growth of both the individuals and the whole industry cluster as well. This paper is focused on the study on co-competition adaptation behavior of industry cluster, which is inspired by swarm intelligence mechanisms. By referencing to ant cooperative transportation and ant foraging behavior and their related swarm intelligence approaches, the cooperative adaptation and competitive adaptation behavior are studied and relevant models are proposed. Those adaptive co-competition behaviors model can be integrated to the multi-agent system of industry cluster to make the industry cluster model more realistic.

  18. Effectively Tackling Reinsurance Problems by Using Evolutionary and Swarm Intelligence Algorithms

    Directory of Open Access Journals (Sweden)

    Sancho Salcedo-Sanz

    2014-04-01

    Full Text Available This paper is focused on solving different hard optimization problems that arise in the field of insurance and, more specifically, in reinsurance problems. In this area, the complexity of the models and assumptions considered in the definition of the reinsurance rules and conditions produces hard black-box optimization problems (problems in which the objective function does not have an algebraic expression, but it is the output of a system (usually a computer program, which must be solved in order to obtain the optimal output of the reinsurance. The application of traditional optimization approaches is not possible in this kind of mathematical problem, so new computational paradigms must be applied to solve these problems. In this paper, we show the performance of two evolutionary and swarm intelligence techniques (evolutionary programming and particle swarm optimization. We provide an analysis in three black-box optimization problems in reinsurance, where the proposed approaches exhibit an excellent behavior, finding the optimal solution within a fraction of the computational cost used by inspection or enumeration methods.

  19. Multi-Working Modes Product-Color Planning Based on Evolutionary Algorithms and Swarm Intelligence

    Directory of Open Access Journals (Sweden)

    Man Ding

    2010-01-01

    Full Text Available In order to assist designer in color planning during product development, a novel synthesized evaluation method is presented to evaluate color-combination schemes of multi-working modes products (MMPs. The proposed evaluation method considers color-combination images in different working modes as evaluating attributes, to which the corresponding weights are assigned for synthesized evaluation. Then a mathematical model is developed to search for optimal color-combination schemes of MMP based on the proposed evaluation method and two powerful search techniques known as Evolution Algorithms (EAs and Swarm Intelligence (SI. In the experiments, we present a comparative study for two EAs, namely, Genetic Algorithm (GA and Difference Evolution (DE, and one SI algorithm, namely, Particle Swarm Optimization (PSO, on searching for color-combination schemes of MMP problem. All of the algorithms are evaluated against a test scenario, namely, an Arm-type aerial work platform, which has two working modes. The results show that the DE obtains the superior solution than the other two algorithms for color-combination scheme searching problem in terms of optimization accuracy and computation robustness. Simulation results demonstrate that the proposed method is feasible and efficient.

  20. Algorithmic requirements for swarm intelligence in differently coupled collective systems.

    Science.gov (United States)

    Stradner, Jürgen; Thenius, Ronald; Zahadat, Payam; Hamann, Heiko; Crailsheim, Karl; Schmickl, Thomas

    2013-05-01

    Swarm systems are based on intermediate connectivity between individuals and dynamic neighborhoods. In natural swarms self-organizing principles bring their agents to that favorable level of connectivity. They serve as interesting sources of inspiration for control algorithms in swarm robotics on the one hand, and in modular robotics on the other hand. In this paper we demonstrate and compare a set of bio-inspired algorithms that are used to control the collective behavior of swarms and modular systems: BEECLUST, AHHS (hormone controllers), FGRN (fractal genetic regulatory networks), and VE (virtual embryogenesis). We demonstrate how such bio-inspired control paradigms bring their host systems to a level of intermediate connectivity, what delivers sufficient robustness to these systems for collective decentralized control. In parallel, these algorithms allow sufficient volatility of shared information within these systems to help preventing local optima and deadlock situations, this way keeping those systems flexible and adaptive in dynamic non-deterministic environments.

  1. Using swarm intelligence to boost the root cause analysis process and enhance patient safety.

    Science.gov (United States)

    2016-03-01

    In an effort to strengthen patient safety, leadership at the University of Kentucky HealthCare (UKHC) decided to replace its traditional approach to root cause analysis (RCA) with a process based on swarm intelligence, a concept borrowed from other industries. Under this process, when a problem or error is identified, staff quickly hold a swarm--a meeting in which all those involved in the incident or problem quickly evaluate why the issue occurred and identify potential solutions for implementation. A pillar of the swarm concept is a mandate that there be no punishments or finger-pointing during the swarms. The idea is to encourage staff to be forthcoming to achieve effective solutions. Typically, swarms last for one hour and result in action plans designed to correct problems or deficiencies within a specific period of time. The ED was one of the first areas where UKHC applied swarms. For example, hospital administrators note that the approach has been used to address issues involving patient flow, triage protocols, assessments, overcrowding, and boarding. After seven years, incident reporting at UKHC has increased by 52%, and the health system has experienced a 37% decrease in the observed-to-expected mortality ratio.

  2. Artificial intelligence techniques in Prolog

    CERN Document Server

    Shoham, Yoav

    1993-01-01

    Artificial Intelligence Techniques in Prolog introduces the reader to the use of well-established algorithmic techniques in the field of artificial intelligence (AI), with Prolog as the implementation language. The techniques considered cover general areas such as search, rule-based systems, and truth maintenance, as well as constraint satisfaction and uncertainty management. Specific application domains such as temporal reasoning, machine learning, and natural language are also discussed.Comprised of 10 chapters, this book begins with an overview of Prolog, paying particular attention to Prol

  3. Knowledge Management and Problem Solving in Real Time: The Role of Swarm Intelligence

    Directory of Open Access Journals (Sweden)

    Chris W Callaghan

    2016-06-01

    Full Text Available Knowledge management research applied to the development of real-time research capability, or capability to solve societal problems in hours and days instead of years and decades, is perhaps increasingly important, given persistent global problems such as the Zika virus and rapidly developing antibiotic resistance. Drawing on swarm intelligence theory, this paper presents an approach to real-time research problem-solving in the form of a framework for understanding the complexity of real-time research and the challenges associated with maximizing collaboration. The objective of this research is to make explicit certain theoretical, methodological, and practical implications deriving from new literature on emerging technologies and new forms of problem solving and to offer a model of real-time problem solving based on a synthesis of the literature. Drawing from ant colony, bee colony, and particle swarm optimization, as well as other population-based metaheuristics, swarm intelligence principles are derived in support of improved effectiveness and efficiency for multidisciplinary human swarm problem-solving. This synthesis seeks to offer useful insights into the research process, by offering a perspective of what maximized collaboration, as a system, implies for real-time problem solving.

  4. Swarm Intelligence-Based Smart Energy Allocation Strategy for Charging Stations of Plug-In Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Imran Rahman

    2015-01-01

    Full Text Available Recent researches towards the use of green technologies to reduce pollution and higher penetration of renewable energy sources in the transportation sector have been gaining popularity. In this wake, extensive participation of plug-in hybrid electric vehicles (PHEVs requires adequate charging allocation strategy using a combination of smart grid systems and smart charging infrastructures. Daytime charging stations will be needed for daily usage of PHEVs due to the limited all-electric range. Intelligent energy management is an important issue which has already drawn much attention of researchers. Most of these works require formulation of mathematical models with extensive use of computational intelligence-based optimization techniques to solve many technical problems. In this paper, gravitational search algorithm (GSA has been applied and compared with another member of swarm family, particle swarm optimization (PSO, considering constraints such as energy price, remaining battery capacity, and remaining charging time. Simulation results obtained for maximizing the highly nonlinear objective function evaluate the performance of both techniques in terms of best fitness.

  5. Hybrid swarm intelligence optimization approach for optimal data storage position identification in wireless sensor networks.

    Science.gov (United States)

    Mohanasundaram, Ranganathan; Periasamy, Pappampalayam Sanmugam

    2015-01-01

    The current high profile debate with regard to data storage and its growth have become strategic task in the world of networking. It mainly depends on the sensor nodes called producers, base stations, and also the consumers (users and sensor nodes) to retrieve and use the data. The main concern dealt here is to find an optimal data storage position in wireless sensor networks. The works that have been carried out earlier did not utilize swarm intelligence based optimization approaches to find the optimal data storage positions. To achieve this goal, an efficient swam intelligence approach is used to choose suitable positions for a storage node. Thus, hybrid particle swarm optimization algorithm has been used to find the suitable positions for storage nodes while the total energy cost of data transmission is minimized. Clustering-based distributed data storage is utilized to solve clustering problem using fuzzy-C-means algorithm. This research work also considers the data rates and locations of multiple producers and consumers to find optimal data storage positions. The algorithm is implemented in a network simulator and the experimental results show that the proposed clustering and swarm intelligence based ODS strategy is more effective than the earlier approaches.

  6. Swarm intelligence in fish? The difficulty in demonstrating distributed and self-organised collective intelligence in (some) animal groups.

    Science.gov (United States)

    Ioannou, Christos C

    2017-08-01

    Larger groups often have a greater ability to solve cognitive tasks compared to smaller ones or lone individuals. This is well established in social insects, navigating flocks of birds, and in groups of prey collectively vigilant for predators. Research in social insects has convincingly shown that improved cognitive performance can arise from self-organised local interactions between individuals that integrates their contributions, often referred to as swarm intelligence. This emergent collective intelligence has gained in popularity and been directly applied to groups of other animals, including fish. Despite being a likely mechanism at least partially explaining group performance in vertebrates, I argue here that other possible explanations are rarely ruled out in empirical studies. Hence, evidence for self-organised collective (or 'swarm') intelligence in fish is not as strong as it would first appear. These other explanations, the 'pool-of-competence' and the greater cognitive ability of individuals when in larger groups, are also reviewed. Also discussed is why improved group performance in general may be less often observed in animals such as shoaling fish compared to social insects. This review intends to highlight the difficulties in exploring collective intelligence in animal groups, ideally leading to further empirical work to illuminate these issues. Copyright © 2016 The Author. Published by Elsevier B.V. All rights reserved.

  7. Hybrid Swarm Intelligence Energy Efficient Clustered Routing Algorithm for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Rajeev Kumar

    2016-01-01

    Full Text Available Currently, wireless sensor networks (WSNs are used in many applications, namely, environment monitoring, disaster management, industrial automation, and medical electronics. Sensor nodes carry many limitations like low battery life, small memory space, and limited computing capability. To create a wireless sensor network more energy efficient, swarm intelligence technique has been applied to resolve many optimization issues in WSNs. In many existing clustering techniques an artificial bee colony (ABC algorithm is utilized to collect information from the field periodically. Nevertheless, in the event based applications, an ant colony optimization (ACO is a good solution to enhance the network lifespan. In this paper, we combine both algorithms (i.e., ABC and ACO and propose a new hybrid ABCACO algorithm to solve a Nondeterministic Polynomial (NP hard and finite problem of WSNs. ABCACO algorithm is divided into three main parts: (i selection of optimal number of subregions and further subregion parts, (ii cluster head selection using ABC algorithm, and (iii efficient data transmission using ACO algorithm. We use a hierarchical clustering technique for data transmission; the data is transmitted from member nodes to the subcluster heads and then from subcluster heads to the elected cluster heads based on some threshold value. Cluster heads use an ACO algorithm to discover the best route for data transmission to the base station (BS. The proposed approach is very useful in designing the framework for forest fire detection and monitoring. The simulation results show that the ABCACO algorithm enhances the stability period by 60% and also improves the goodput by 31% against LEACH and WSNCABC, respectively.

  8. DESIGN OF MICROSTRIP RADIATOR USING PARTICLE SWARM OPTIMIZATION TECHNIQUE

    Directory of Open Access Journals (Sweden)

    Yogesh Kumar Choukiker

    2011-09-01

    Full Text Available An inset feed Microstrip radiator has been designed and developed for operation at 2.4GHz frequency. The Microstrip patch antenna (MPA parameters were designed using IE3D®TM EM simulator (version 14.0 and optimized with an evolutionary stochastic optimizer i.e. Particle Swarm Optimization (PSO technique. Optimized results show that the antenna has a bandwidth of 33.54 MHz (<-10dB in the range 2.38355 GHz to 2.41709 GHz and a maximum return loss of -43.87dB at the resonant frequency of 2.4 GHz. The patch antenna is fabricated and the important parameters like return loss, VSWR etc were measured. The measured parameters match with the simulated results well within the tolerable limits.

  9. Gold rush - A swarm dynamics in games

    Science.gov (United States)

    Zelinka, Ivan; Bukacek, Michal

    2017-07-01

    This paper is focused on swarm intelligence techniques and its practical use in computer games. The aim is to show how a swarm dynamics can be generated by multiplayer game, then recorded, analyzed and eventually controlled. In this paper we also discuss possibility to use swarm intelligence instead of game players. Based on our previous experiments two games, using swarm algorithms are mentioned briefly here. The first one is strategy game StarCraft: Brood War, and TicTacToe in which SOMA algorithm has also take a role of player against human player. Open research reported here has shown potential benefit of swarm computation in the field of strategy games and players strategy based on swarm behavior record and analysis. We propose new game called Gold Rush as an experimental environment for human or artificial swarm behavior and consequent analysis.

  10. Parameter estimation of Lorenz chaotic system using a hybrid swarm intelligence algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Lazzús, Juan A., E-mail: jlazzus@dfuls.cl; Rivera, Marco; López-Caraballo, Carlos H.

    2016-03-11

    A novel hybrid swarm intelligence algorithm for chaotic system parameter estimation is present. For this purpose, the parameters estimation on Lorenz systems is formulated as a multidimensional problem, and a hybrid approach based on particle swarm optimization with ant colony optimization (PSO–ACO) is implemented to solve this problem. Firstly, the performance of the proposed PSO–ACO algorithm is tested on a set of three representative benchmark functions, and the impact of the parameter settings on PSO–ACO efficiency is studied. Secondly, the parameter estimation is converted into an optimization problem on a three-dimensional Lorenz system. Numerical simulations on Lorenz model and comparisons with results obtained by other algorithms showed that PSO–ACO is a very powerful tool for parameter estimation with high accuracy and low deviations. - Highlights: • PSO–ACO combined particle swarm optimization with ant colony optimization. • This study is the first research of PSO–ACO to estimate parameters of chaotic systems. • PSO–ACO algorithm can identify the parameters of the three-dimensional Lorenz system with low deviations. • PSO–ACO is a very powerful tool for the parameter estimation on other chaotic system.

  11. Swarm intelligence based on modified PSO algorithm for the optimization of axial-flow pump impeller

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Fuqing; Kim, Chol Min; Ahn, Seok Young [Pusan National University, Busan (Korea, Republic of); Park, Hong Seok [Ulsan University, Ulsan (Korea, Republic of)

    2015-11-15

    This paper presents a multi-objective optimization of the impeller shape of an axial-flow pump based on the Modified particle swarm optimization (MPSO) algorithm. At first, an impeller shape was designed and used as a reference in the optimization process then NPSHr and η of the axial flow pump were numerically investigated by using the commercial software ANSYS with the design variables concerning hub angle β{sub h}, chord angle β{sub c}, cascade solidity of chord σ{sub c} and maximum thickness of blade H. By using the Group method of data handling (GMDH) type neural networks in commercial software DTREG, the corresponding polynomial representation for NPSHr and η with respect to the design variables were obtained. A benchmark test was employed to evaluate the performance of the MPSO algorithm in comparison with other particle swarm algorithms. Later the MPSO approach was used for Pareto based optimization. Finally, the MPSO optimization result and CFD simulation result were compared in a re-evaluation process. By using swarm intelligence based on the modified PSO algorithm, better performance pump with higher efficiency and lower NPSHr could be obtained. This novel algorithm was successfully applied for the optimization of axial-flow pump impeller shape design.

  12. Simulation on Vessel Intelligent Collision Avoidance Based on Artificial Fish Swarm Algorithm

    Directory of Open Access Journals (Sweden)

    Li Weifeng

    2016-10-01

    Full Text Available TAs the rapid development of the ship equipments and navigation technology, vessel intelligent collision avoidance theory was researched world widely. Meantime, more and more ship intelligent collision avoidance products are put into use. It not only makes the ship much safer, but also lighten the officers work intensity and improve the ship’s economy. The paper based on the International Regulation for Preventing Collision at sea and ship domain theories, with the ship proceeding distance when collision avoidance as the objective function, through the artificial fish swarm algorithm to optimize the collision avoidance path, and finally simulates overtaking situation, crossing situation and head-on situation three classic meeting situation of ships on the sea by VC++ computer language. Calculation and simulation results are basically consistent with the actual situation which certifies that its validity.

  13. Transformer Incipient Fault Prediction Using Combined Artificial Neural Network and Various Particle Swarm Optimisation Techniques.

    Science.gov (United States)

    Illias, Hazlee Azil; Chai, Xin Rui; Abu Bakar, Ab Halim; Mokhlis, Hazlie

    2015-01-01

    It is important to predict the incipient fault in transformer oil accurately so that the maintenance of transformer oil can be performed correctly, reducing the cost of maintenance and minimise the error. Dissolved gas analysis (DGA) has been widely used to predict the incipient fault in power transformers. However, sometimes the existing DGA methods yield inaccurate prediction of the incipient fault in transformer oil because each method is only suitable for certain conditions. Many previous works have reported on the use of intelligence methods to predict the transformer faults. However, it is believed that the accuracy of the previously proposed methods can still be improved. Since artificial neural network (ANN) and particle swarm optimisation (PSO) techniques have never been used in the previously reported work, this work proposes a combination of ANN and various PSO techniques to predict the transformer incipient fault. The advantages of PSO are simplicity and easy implementation. The effectiveness of various PSO techniques in combination with ANN is validated by comparison with the results from the actual fault diagnosis, an existing diagnosis method and ANN alone. Comparison of the results from the proposed methods with the previously reported work was also performed to show the improvement of the proposed methods. It was found that the proposed ANN-Evolutionary PSO method yields the highest percentage of correct identification for transformer fault type than the existing diagnosis method and previously reported works.

  14. Transformer Incipient Fault Prediction Using Combined Artificial Neural Network and Various Particle Swarm Optimisation Techniques.

    Directory of Open Access Journals (Sweden)

    Hazlee Azil Illias

    Full Text Available It is important to predict the incipient fault in transformer oil accurately so that the maintenance of transformer oil can be performed correctly, reducing the cost of maintenance and minimise the error. Dissolved gas analysis (DGA has been widely used to predict the incipient fault in power transformers. However, sometimes the existing DGA methods yield inaccurate prediction of the incipient fault in transformer oil because each method is only suitable for certain conditions. Many previous works have reported on the use of intelligence methods to predict the transformer faults. However, it is believed that the accuracy of the previously proposed methods can still be improved. Since artificial neural network (ANN and particle swarm optimisation (PSO techniques have never been used in the previously reported work, this work proposes a combination of ANN and various PSO techniques to predict the transformer incipient fault. The advantages of PSO are simplicity and easy implementation. The effectiveness of various PSO techniques in combination with ANN is validated by comparison with the results from the actual fault diagnosis, an existing diagnosis method and ANN alone. Comparison of the results from the proposed methods with the previously reported work was also performed to show the improvement of the proposed methods. It was found that the proposed ANN-Evolutionary PSO method yields the highest percentage of correct identification for transformer fault type than the existing diagnosis method and previously reported works.

  15. Swarm Intelligence-Based Hybrid Models for Short-Term Power Load Prediction

    Directory of Open Access Journals (Sweden)

    Jianzhou Wang

    2014-01-01

    Full Text Available Swarm intelligence (SI is widely and successfully applied in the engineering field to solve practical optimization problems because various hybrid models, which are based on the SI algorithm and statistical models, are developed to further improve the predictive abilities. In this paper, hybrid intelligent forecasting models based on the cuckoo search (CS as well as the singular spectrum analysis (SSA, time series, and machine learning methods are proposed to conduct short-term power load prediction. The forecasting performance of the proposed models is augmented by a rolling multistep strategy over the prediction horizon. The test results are representative of the out-performance of the SSA and CS in tuning the seasonal autoregressive integrated moving average (SARIMA and support vector regression (SVR in improving load forecasting, which indicates that both the SSA-based data denoising and SI-based intelligent optimization strategy can effectively improve the model’s predictive performance. Additionally, the proposed CS-SSA-SARIMA and CS-SSA-SVR models provide very impressive forecasting results, demonstrating their strong robustness and universal forecasting capacities in terms of short-term power load prediction 24 hours in advance.

  16. Multiobjective RFID Network Optimization Using Multiobjective Evolutionary and Swarm Intelligence Approaches

    Directory of Open Access Journals (Sweden)

    Hanning Chen

    2014-01-01

    Full Text Available The development of radio frequency identification (RFID technology generates the most challenging RFID network planning (RNP problem, which needs to be solved in order to operate the large-scale RFID network in an optimal fashion. RNP involves many objectives and constraints and has been proven to be a NP-hard multi-objective problem. The application of evolutionary algorithm (EA and swarm intelligence (SI for solving multiobjective RNP (MORNP has gained significant attention in the literature, but these algorithms always transform multiple objectives into a single objective by weighted coefficient approach. In this paper, we use multiobjective EA and SI algorithms to find all the Pareto optimal solutions and to achieve the optimal planning solutions by simultaneously optimizing four conflicting objectives in MORNP, instead of transforming multiobjective functions into a single objective function. The experiment presents an exhaustive comparison of three successful multiobjective EA and SI, namely, the recently developed multiobjective artificial bee colony algorithm (MOABC, the nondominated sorting genetic algorithm II (NSGA-II, and the multiobjective particle swarm optimization (MOPSO, on MORNP instances of different nature, namely, the two-objective and three-objective MORNP. Simulation results show that MOABC proves to be more superior for planning RFID networks than NSGA-II and MOPSO in terms of optimization accuracy and computation robustness.

  17. Application of Swarm Intelligence Based Routingprotocols for Wireless Adhoc Sensor Network

    Directory of Open Access Journals (Sweden)

    Mrutyunjaya PANDA

    2011-07-01

    Full Text Available The enormous growth of wireless sensor network (WSN research has opined challenges about their ease in implementation and performance evaluation. Efficient swarm intelligence based routing protocols that can be used to obtain the application specific service guarantee are the key design issues in designing a WSN model. In this paper, an experimental testbed is designed with 100 sensor nodes deployed in a dense environment to address the scalability and performance issues of WSN. In this paper, we use Flooded Piggyback (FP and SC-MCBR ant colony based routing along with AODV and MCBR Tree in order to design an efficient WSN model. Finally, simulation results are presented with various performance measures to understand the efficacy of the proposed WSN design.

  18. Multi-modulus algorithm based on global artificial fish swarm intelligent optimization of DNA encoding sequences.

    Science.gov (United States)

    Guo, Y C; Wang, H; Wu, H P; Zhang, M Q

    2015-12-21

    Aimed to address the defects of the large mean square error (MSE), and the slow convergence speed in equalizing the multi-modulus signals of the constant modulus algorithm (CMA), a multi-modulus algorithm (MMA) based on global artificial fish swarm (GAFS) intelligent optimization of DNA encoding sequences (GAFS-DNA-MMA) was proposed. To improve the convergence rate and reduce the MSE, this proposed algorithm adopted an encoding method based on DNA nucleotide chains to provide a possible solution to the problem. Furthermore, the GAFS algorithm, with its fast convergence and global search ability, was used to find the best sequence. The real and imaginary parts of the initial optimal weight vector of MMA were obtained through DNA coding of the best sequence. The simulation results show that the proposed algorithm has a faster convergence speed and smaller MSE in comparison with the CMA, the MMA, and the AFS-DNA-MMA.

  19. Swarm intelligence of artificial bees applied to In-Core Fuel Management Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Santos de Oliveira, Iona Maghali, E-mail: ioliveira@con.ufrj.br [Nuclear Engineering Program, Federal University of Rio de Janeiro, P.O. Box 68509, Zip Code 21945-970, Rio de Janeiro, RJ (Brazil); Schirru, Roberto, E-mail: schirru@lmp.ufrj.br [Nuclear Engineering Program, Federal University of Rio de Janeiro, P.O. Box 68509, Zip Code 21945-970, Rio de Janeiro, RJ (Brazil)

    2011-05-15

    Research highlights: > We present Artificial Bee Colony with Random Keys (ABCRK) for In-Core Fuel Management Optimization. > Its performance is examined through the optimization of a Brazilian '2-loop' PWR. > Feasibility of using ABCRK is shown against some well known population-based algorithms. > Additional advantage includes the utilization of fewer control parameters. - Abstract: Artificial Bee Colony (ABC) algorithm is a relatively new member of swarm intelligence. ABC tries to simulate the intelligent behavior of real honey bees in food foraging and can be used for solving continuous optimization and multi-dimensional numeric problems. This paper introduces the Artificial Bee Colony with Random Keys (ABCRK), a modified ABC algorithm for solving combinatorial problems such as the In-Core Fuel Management Optimization (ICFMO). The ICFMO is a hard combinatorial optimization problem in Nuclear Engineering which during many years has been solved by expert knowledge. It aims at getting the best arrangement of fuel in the nuclear reactor core that leads to a maximization of the operating time. As a consequence, the operation cost decreases and money is saved. In this study, ABCRK is used for optimizing the ICFMO problem of a Brazilian '2-loop' Pressurized Water Reactor (PWR) Nuclear Power Plant (NPP) and the results obtained with the proposed algorithm are compared with those obtained by Genetic Algorithms (GA) and Particle Swarm Optimization (PSO). The results show that the performance of the ABCRK algorithm is better than or similar to that of other population-based algorithms, with the advantage of employing fewer control parameters.

  20. Cooperative Behaviours with Swarm Intelligence in Multirobot Systems for Safety Inspections in Underground Terrains

    Directory of Open Access Journals (Sweden)

    Chika Yinka-Banjo

    2014-01-01

    Full Text Available Underground mining operations are carried out in hazardous environments. To prevent disasters from occurring, as often as they do in underground mines, and to prevent safety routine checkers from disasters during safety inspection checks, multirobots are suggested to do the job of safety inspection rather than human beings and single robots. Multirobots are preferred because the inspection task will be done in the minimum amount of time. This paper proposes a cooperative behaviour for a multirobot system (MRS to achieve a preentry safety inspection in underground terrains. A hybrid QLACS swarm intelligent model based on Q-Learning (QL and the Ant Colony System (ACS was proposed to achieve this cooperative behaviour in MRS. The intelligent model was developed by harnessing the strengths of both QL and ACS algorithms. The ACS optimizes the routes used for each robot while the QL algorithm enhances the cooperation between the autonomous robots. A description of a communicating variation within the QLACS model for cooperative behavioural purposes is presented. The performance of the algorithms in terms of without communication, with communication, computation time, path costs, and the number of robots used was evaluated by using a simulation approach. Simulation results show achieved cooperative behaviour between robots.

  1. Computational intelligence techniques in health care

    CERN Document Server

    Zhou, Wengang; Satheesh, P

    2016-01-01

    This book presents research on emerging computational intelligence techniques and tools, with a particular focus on new trends and applications in health care. Healthcare is a multi-faceted domain, which incorporates advanced decision-making, remote monitoring, healthcare logistics, operational excellence and modern information systems. In recent years, the use of computational intelligence methods to address the scale and the complexity of the problems in healthcare has been investigated. This book discusses various computational intelligence methods that are implemented in applications in different areas of healthcare. It includes contributions by practitioners, technology developers and solution providers.

  2. Artificial intelligence techniques for rational decision making

    CERN Document Server

    Marwala, Tshilidzi

    2014-01-01

    Develops insights into solving complex problems in engineering, biomedical sciences, social science and economics based on artificial intelligence. Some of the problems studied are in interstate conflict, credit scoring, breast cancer diagnosis, condition monitoring, wine testing, image processing and optical character recognition. The author discusses and applies the concept of flexibly-bounded rationality which prescribes that the bounds in Nobel Laureate Herbert Simon's bounded rationality theory are flexible due to advanced signal processing techniques, Moore's Law and artificial intellig

  3. Comparison of swarm intelligence optimization with nonnegative weighted least squares for Raman spectra estimation

    Science.gov (United States)

    Srinivas, Nisha; Mallick, Mahendra; Osadciw, Lisa A.

    2010-04-01

    Raman spectroscopy is a powerful technique for determining the chemical composition of a substance. Our objective is to determine the chemical composition of an unknown substance given a reference library of Raman spectra. The unknown spectrum is expressed as a linear combination of the reference library spectra and the non-zero mixing coefficients represent the presence of individual substances, which are not known. This approach is known as the supervised learning method. The mixing coefficients are usually estimated using the nonnegative least squares (NNLS) or nonnegative weighted least squares (NNWLS). This problem is a constrained estimation problem due to the presence of the nonnegativity constraint. In this paper, we present a swarm based algorithm, the particle swarm optimization (PSO), to estimate the mixing coefficients and Raman spectra. The PSO is used to determine the mixing coefficients. PSO efficiently finds an optimum solution. Results are presented for simulated data obtained from the Jennifer Kelly Raman spectra library. The reference library consists of Raman spectra for nine minerals and the measured spectrum is simulated by using spectrum/spectra of single/multiple minerals. We compare the root mean square error (RMSE) for parameter estimation and measurement residual and computational time of the NNWLS and nonnegative weighted PSO (NNWPSO) algorithms.

  4. Artificial Intelligence Techniques: Applications for Courseware Development.

    Science.gov (United States)

    Dear, Brian L.

    1986-01-01

    Introduces some general concepts and techniques of artificial intelligence (natural language interfaces, expert systems, knowledge bases and knowledge representation, heuristics, user-interface metaphors, and object-based environments) and investigates ways these techniques might be applied to analysis, design, development, implementation, and…

  5. Location Prediction-Based Data Dissemination Using Swarm Intelligence in Opportunistic Cognitive Networks

    Directory of Open Access Journals (Sweden)

    Jie Li

    2014-01-01

    Full Text Available Swarm intelligence is widely used in the application of communication networks. In this paper we adopt a biologically inspired strategy to investigate the data dissemination problem in the opportunistic cognitive networks (OCNs. We model the system as a centralized and distributed hybrid system including a location prediction server and a pervasive environment deploying the large-scale human-centric devices. To exploit such environment, data gathering and dissemination are fundamentally based on the contact opportunities. To tackle the lack of contemporaneous end-to-end connectivity in opportunistic networks, we apply ant colony optimization as a cognitive heuristic technology to formulate a self-adaptive dissemination-based routing scheme in opportunistic cognitive networks. This routing strategy has attempted to find the most appropriate nodes conveying messages to the destination node based on the location prediction information and intimacy between nodes, which uses the online unsupervised learning on geographical locations and the biologically inspired algorithm on the relationship of nodes to estimate the delivery probability. Extensive simulation is carried out on the real-world traces to evaluate the accuracy of the location prediction and the proposed scheme in terms of transmission cost, delivery ratio, average hops, and delivery latency, which achieves better routing performances compared to the typical routing schemes in OCNs.

  6. A Swarm Intelligent Algorithm Based Route Maintaining Protocol for Mobile Sink Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Xiaoming Wu

    2015-01-01

    Full Text Available Recent studies have shown that mobile sink can be a solution to solve the problem that energy consumption of sensor nodes is not balanced in wireless sensor networks (WSNs. Caused by the sink mobility, the paths between the sensor nodes and the sink change frequently and have profound influence on the lifetime of WSN. It is necessary to design a protocol that can find efficient routings between the mobile sink and nodes but does not consume too many network resources. In this paper, we propose a swarm intelligent algorithm based route maintaining protocol to resolve this issue. The protocol utilizes the concentric ring mechanism to guide the route researching direction and adopts the optimal routing selection to maintain the data delivery route in mobile sink WSN. Using the immune based artificial bee colony (IABC algorithm to optimize the forwarding path, the routing maintaining protocol could find an alternative routing path quickly and efficiently when the coordinate of sink is changed in WSN. The results of our extensive experiments demonstrate that our proposed route maintaining protocol is able to balance the network traffic load and prolong the network lifetime.

  7. Swarm intelligence for multi-objective optimization of synthesis gas production

    Science.gov (United States)

    Ganesan, T.; Vasant, P.; Elamvazuthi, I.; Ku Shaari, Ku Zilati

    2012-11-01

    In the chemical industry, the production of methanol, ammonia, hydrogen and higher hydrocarbons require synthesis gas (or syn gas). The main three syn gas production methods are carbon dioxide reforming (CRM), steam reforming (SRM) and partial-oxidation of methane (POM). In this work, multi-objective (MO) optimization of the combined CRM and POM was carried out. The empirical model and the MO problem formulation for this combined process were obtained from previous works. The central objectives considered in this problem are methane conversion, carbon monoxide selectivity and the hydrogen to carbon monoxide ratio. The MO nature of the problem was tackled using the Normal Boundary Intersection (NBI) method. Two techniques (Gravitational Search Algorithm (GSA) and Particle Swarm Optimization (PSO)) were then applied in conjunction with the NBI method. The performance of the two algorithms and the quality of the solutions were gauged by using two performance metrics. Comparative studies and results analysis were then carried out on the optimization results.

  8. PARALLEL IMPLEMENTATION OF CROSS-LAYER OPTIMIZATION - A PERFORMANCE EVALUATION BASED ON SWARM INTELLIGENCE

    Directory of Open Access Journals (Sweden)

    Vanaja Gokul

    2012-01-01

    Full Text Available In distributed systems real time optimizations need to be performed dynamically for better utilization of the network resources. Real time optimizations can be performed effectively by using Cross Layer Optimization (CLO within the network operating system. This paper presents the performance evaluation of Cross Layer Optimization (CLO in comparison with the traditional approach of Single-Layer Optimization (SLO. In the parallel implementation of the approaches the experimental study carried out indicates that the CLO results in a significant improvement in network utilization when compared to SLO. A variant of the Particle Swarm Optimization technique that utilizes Digital Pheromones (PSODP for better performance has been used here. A significantly higher speed up in performance was observed from the parallel implementation of CLO that used PSODP on a cluster of nodes.

  9. Artifical intelligence techniques in power systems

    Energy Technology Data Exchange (ETDEWEB)

    Warwick, K.; Ekwue, A.; Aggarwal, R. [eds.

    1997-12-31

    Research in artificial intelligence has developed many techniques and methodologies that can be either adapted or used directly to solve complex power system problems. A variety of such problems are covered in this book including reactive power control, alarm analysis, fault diagnosis, protection systems and load forecasting. Methods such as knowledge-based (expert) systems, fuzzy logic, neural networks and genetic algorithms are all first introduced and then investigated in terms of their applicability in the power systems field. The book, therefore, serves as both an introduction to the use of artificial intelligence techniques for those from a power systems background and as an overview of the power systems implementation area for those from an artificial intelligence computing or control background. It is structured so that it is suitable for various levels of reader, covering basic principles as well as applications and case studies. The most popular methods and the most fruitful application fields are considered in more detail. (UK)

  10. Swarm Intelligence Based Multi-phase OPF For Peak Power Loss Reduction In A Smart Grid

    OpenAIRE

    Anwar, Adnan; Mahmood, A. N.

    2014-01-01

    Recently there has been increasing interest in improving smart grids efficiency using computational intelligence. A key challenge in future smart grid is designing Optimal Power Flow tool to solve important planning problems including optimal DG capacities. Although, a number of OPF tools exists for balanced networks there is a lack of research for unbalanced multi-phase distribution networks. In this paper, a new OPF technique has been proposed for the DG capacity planning of a smart grid. D...

  11. Computational Intelligence Techniques for New Product Design

    CERN Document Server

    Chan, Kit Yan; Dillon, Tharam S

    2012-01-01

    Applying computational intelligence for product design is a fast-growing and promising research area in computer sciences and industrial engineering. However, there is currently a lack of books, which discuss this research area. This book discusses a wide range of computational intelligence techniques for implementation on product design. It covers common issues on product design from identification of customer requirements in product design, determination of importance of customer requirements, determination of optimal design attributes, relating design attributes and customer satisfaction, integration of marketing aspects into product design, affective product design, to quality control of new products. Approaches for refinement of computational intelligence are discussed, in order to address different issues on product design. Cases studies of product design in terms of development of real-world new products are included, in order to illustrate the design procedures, as well as the effectiveness of the com...

  12. Artificial intelligence techniques in power systems

    Energy Technology Data Exchange (ETDEWEB)

    Laughton, M.A.

    1997-12-31

    Since the early to mid 1980s much of the effort in power systems analysis has turned away from the methodology of formal mathematical modelling which came from the fields of operations research, control theory and numerical analysis to the less rigorous techniques of artificial intelligence (AI). Today the main AI techniques found in power systems applications are those utilising the logic and knowledge representations of expert systems, fuzzy systems, artificial neural networks (ANN) and, more recently, evolutionary computing. These techniques will be outlined in this chapter and the power system applications indicated. (Author)

  13. Diagnosis of class using swarm intelligence applied to problem of identification of nuclear transient

    Energy Technology Data Exchange (ETDEWEB)

    Villas Boas Junior, Manoel; Strauss, Edilberto, E-mail: junior@lmp.ufrj.b [Instituto Federal de Educacao, Ciencia e Tecnologia do Ceara/ Universidade do Estado do Ceara, Itaperi, CE (Brazil). Mestrado Integrado em Computacao Aplicada; Nicolau, Andressa dos Santos; Schirru, Roberto, E-mail: andressa@lmp.ufrj.b [Coordenacao dos Programas de Pos-Graduacao de Engenharia (PEN/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Mello, Flavio Luis de [Universidade Federal do Rio de Janeiro (POLI/UFRJ), RJ (Brazil). Escola Politecnica. Dept. de Engenharia Eletronica e Computacao

    2011-07-01

    This article presents a computational model of the diagnostic system of transient. The model makes use of segmentation techniques applied to support decision making, based on identification of classes and optimized by Particle Swarm Optimization algorithm (PSO). The method proposed aims to classify an anomalous event in the signatures of three classes of the design basis transients postulated for the Angra 2 nuclear plant, where the PSO algorithm is used as a method of separation of classes, being responsible for finding the best centroid prototype vector of each accident/transient, ie equivalent to Voronoi vector that maximizes the number of correct classifications. To make the calculation of similarity between the set of the variables anomalous event in a given time t, and the prototype vector of variables of accident/transients, the metrics of Manhattan, Euclidean and Minkowski were used. The results obtained by the method proposed were compatible with others methods reported in the literature, allowing a solution that approximates the ideal solution, ie the Voronoi vectors. (author)

  14. The Weighted Support Vector Machine Based on Hybrid Swarm Intelligence Optimization for Icing Prediction of Transmission Line

    Directory of Open Access Journals (Sweden)

    Xiaomin Xu

    2015-01-01

    Full Text Available Not only can the icing coat on transmission line cause the electrical fault of gap discharge and icing flashover but also it will lead to the mechanical failure of tower, conductor, insulators, and others. It will bring great harm to the people’s daily life and work. Thus, accurate prediction of ice thickness has important significance for power department to control the ice disaster effectively. Based on the analysis of standard support vector machine, this paper presents a weighted support vector machine regression model based on the similarity (WSVR. According to the different importance of samples, this paper introduces the weighted support vector machine and optimizes its parameters by hybrid swarm intelligence optimization algorithm with the particle swarm and ant colony (PSO-ACO, which improves the generalization ability of the model. In the case study, the actual data of ice thickness and climate in a certain area of Hunan province have been used to predict the icing thickness of the area, which verifies the validity and applicability of this proposed method. The predicted results show that the intelligent model proposed in this paper has higher precision and stronger generalization ability.

  15. Finite-element-model updating using computational intelligence techniques applications to structural dynamics

    CERN Document Server

    Marwala, Tshilidzi

    2010-01-01

    Finite element models (FEMs) are widely used to understand the dynamic behaviour of various systems. FEM updating allows FEMs to be tuned better to reflect measured data and may be conducted using two different statistical frameworks: the maximum likelihood approach and Bayesian approaches. Finite Element Model Updating Using Computational Intelligence Techniques applies both strategies to the field of structural mechanics, an area vital for aerospace, civil and mechanical engineering. Vibration data is used for the updating process. Following an introduction a number of computational intelligence techniques to facilitate the updating process are proposed; they include: • multi-layer perceptron neural networks for real-time FEM updating; • particle swarm and genetic-algorithm-based optimization methods to accommodate the demands of global versus local optimization models; • simulated annealing to put the methodologies into a sound statistical basis; and • response surface methods and expectation m...

  16. Neighbor Selection in Peer-to-Peer Overlay Networks: A Swarm Intelligence Approach

    Science.gov (United States)

    Liu, Hongbo; Abraham, Ajith; Badr, Youakim

    Peer-to-peer (P2P) topology has a significant influence on the performance, search efficiency and functionality, and scalability of the application. In this chapter, we investigate a multi-swarm approach to the problem of neighbor selection in P2P networks. Particle swarm share some common characteristics with P2P in the dynamic socially environment. Each particle encodes the upper half of the peer-connection matrix through the undirected graph, which reduces the search space dimension. The portion of the adjustment to the velocity influenced by the individual’s cognition, the group cognition from multi-swarms, and the social cognition from the whole swarm, makes an important influence on the particles’ ergodic and synergetic performance. We also attempt to theoretically prove that the multi-swarm optimization algorithm converges with a probability of 1 towards the global optima. The performance of our approach is evaluated and compared with other two different algorithms. The results indicate that it usually required shorter time to obtain better results than the other considered methods, specially for large scale problems.

  17. A Modified Particle Swarm Optimization Technique for Finding Optimal Designs for Mixture Models

    Science.gov (United States)

    Wong, Weng Kee; Chen, Ray-Bing; Huang, Chien-Chih; Wang, Weichung

    2015-01-01

    Particle Swarm Optimization (PSO) is a meta-heuristic algorithm that has been shown to be successful in solving a wide variety of real and complicated optimization problems in engineering and computer science. This paper introduces a projection based PSO technique, named ProjPSO, to efficiently find different types of optimal designs, or nearly optimal designs, for mixture models with and without constraints on the components, and also for related models, like the log contrast models. We also compare the modified PSO performance with Fedorov's algorithm, a popular algorithm used to generate optimal designs, Cocktail algorithm, and the recent algorithm proposed by [1]. PMID:26091237

  18. THD Minimization from H-Bridge Cascaded Multilevel Inverter Using Particle Swarm Optimization Technique

    Directory of Open Access Journals (Sweden)

    MUDASIR AHMED MEMON

    2017-01-01

    Full Text Available In this paper, PSO (Particle Swarm Optimization based technique is proposed to derive optimized switching angles that minimizes the THD (Total Harmonic Distortion and reduces the effect of selected low order non-triple harmonics from the output of the multilevel inverter. Conventional harmonic elimination techniques have plenty of limitations, and other heuristic techniques also not provide the satisfactory results. In this paper, single phase symmetrical cascaded H-Bridge 11-Level multilevel inverter is considered, and proposed algorithm is utilized to obtain the optimized switching angles that reduced the effect of 5th, 7th, 11th and 13th non-triplen harmonics from the output voltage of the multilevel inverter. A simulation result indicates that this technique outperforms other methods in terms of minimizing THD and provides high-quality output voltage waveform.

  19. An Adaptive Image Enhancement Technique by Combining Cuckoo Search and Particle Swarm Optimization Algorithm

    Science.gov (United States)

    Ye, Zhiwei; Wang, Mingwei; Hu, Zhengbing; Liu, Wei

    2015-01-01

    Image enhancement is an important procedure of image processing and analysis. This paper presents a new technique using a modified measure and blending of cuckoo search and particle swarm optimization (CS-PSO) for low contrast images to enhance image adaptively. In this way, contrast enhancement is obtained by global transformation of the input intensities; it employs incomplete Beta function as the transformation function and a novel criterion for measuring image quality considering three factors which are threshold, entropy value, and gray-level probability density of the image. The enhancement process is a nonlinear optimization problem with several constraints. CS-PSO is utilized to maximize the objective fitness criterion in order to enhance the contrast and detail in an image by adapting the parameters of a novel extension to a local enhancement technique. The performance of the proposed method has been compared with other existing techniques such as linear contrast stretching, histogram equalization, and evolutionary computing based image enhancement methods like backtracking search algorithm, differential search algorithm, genetic algorithm, and particle swarm optimization in terms of processing time and image quality. Experimental results demonstrate that the proposed method is robust and adaptive and exhibits the better performance than other methods involved in the paper. PMID:25784928

  20. An Adaptive Image Enhancement Technique by Combining Cuckoo Search and Particle Swarm Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Zhiwei Ye

    2015-01-01

    Full Text Available Image enhancement is an important procedure of image processing and analysis. This paper presents a new technique using a modified measure and blending of cuckoo search and particle swarm optimization (CS-PSO for low contrast images to enhance image adaptively. In this way, contrast enhancement is obtained by global transformation of the input intensities; it employs incomplete Beta function as the transformation function and a novel criterion for measuring image quality considering three factors which are threshold, entropy value, and gray-level probability density of the image. The enhancement process is a nonlinear optimization problem with several constraints. CS-PSO is utilized to maximize the objective fitness criterion in order to enhance the contrast and detail in an image by adapting the parameters of a novel extension to a local enhancement technique. The performance of the proposed method has been compared with other existing techniques such as linear contrast stretching, histogram equalization, and evolutionary computing based image enhancement methods like backtracking search algorithm, differential search algorithm, genetic algorithm, and particle swarm optimization in terms of processing time and image quality. Experimental results demonstrate that the proposed method is robust and adaptive and exhibits the better performance than other methods involved in the paper.

  1. An adaptive image enhancement technique by combining cuckoo search and particle swarm optimization algorithm.

    Science.gov (United States)

    Ye, Zhiwei; Wang, Mingwei; Hu, Zhengbing; Liu, Wei

    2015-01-01

    Image enhancement is an important procedure of image processing and analysis. This paper presents a new technique using a modified measure and blending of cuckoo search and particle swarm optimization (CS-PSO) for low contrast images to enhance image adaptively. In this way, contrast enhancement is obtained by global transformation of the input intensities; it employs incomplete Beta function as the transformation function and a novel criterion for measuring image quality considering three factors which are threshold, entropy value, and gray-level probability density of the image. The enhancement process is a nonlinear optimization problem with several constraints. CS-PSO is utilized to maximize the objective fitness criterion in order to enhance the contrast and detail in an image by adapting the parameters of a novel extension to a local enhancement technique. The performance of the proposed method has been compared with other existing techniques such as linear contrast stretching, histogram equalization, and evolutionary computing based image enhancement methods like backtracking search algorithm, differential search algorithm, genetic algorithm, and particle swarm optimization in terms of processing time and image quality. Experimental results demonstrate that the proposed method is robust and adaptive and exhibits the better performance than other methods involved in the paper.

  2. Swarm Intelligence-Enhanced Detection of Non-Small-Cell Lung Cancer Using Tumor-Educated Platelets.

    Science.gov (United States)

    Best, Myron G; Sol, Nik; In 't Veld, Sjors G J G; Vancura, Adrienne; Muller, Mirte; Niemeijer, Anna-Larissa N; Fejes, Aniko V; Tjon Kon Fat, Lee-Ann; Huis In 't Veld, Anna E; Leurs, Cyra; Le Large, Tessa Y; Meijer, Laura L; Kooi, Irsan E; Rustenburg, François; Schellen, Pepijn; Verschueren, Heleen; Post, Edward; Wedekind, Laurine E; Bracht, Jillian; Esenkbrink, Michelle; Wils, Leon; Favaro, Francesca; Schoonhoven, Jilian D; Tannous, Jihane; Meijers-Heijboer, Hanne; Kazemier, Geert; Giovannetti, Elisa; Reijneveld, Jaap C; Idema, Sander; Killestein, Joep; Heger, Michal; de Jager, Saskia C; Urbanus, Rolf T; Hoefer, Imo E; Pasterkamp, Gerard; Mannhalter, Christine; Gomez-Arroyo, Jose; Bogaard, Harm-Jan; Noske, David P; Vandertop, W Peter; van den Broek, Daan; Ylstra, Bauke; Nilsson, R Jonas A; Wesseling, Pieter; Karachaliou, Niki; Rosell, Rafael; Lee-Lewandrowski, Elizabeth; Lewandrowski, Kent B; Tannous, Bakhos A; de Langen, Adrianus J; Smit, Egbert F; van den Heuvel, Michel M; Wurdinger, Thomas

    2017-08-14

    Blood-based liquid biopsies, including tumor-educated blood platelets (TEPs), have emerged as promising biomarker sources for non-invasive detection of cancer. Here we demonstrate that particle-swarm optimization (PSO)-enhanced algorithms enable efficient selection of RNA biomarker panels from platelet RNA-sequencing libraries (n = 779). This resulted in accurate TEP-based detection of early- and late-stage non-small-cell lung cancer (n = 518 late-stage validation cohort, accuracy, 88%; AUC, 0.94; 95% CI, 0.92-0.96; p < 0.001; n = 106 early-stage validation cohort, accuracy, 81%; AUC, 0.89; 95% CI, 0.83-0.95; p < 0.001), independent of age of the individuals, smoking habits, whole-blood storage time, and various inflammatory conditions. PSO enabled selection of gene panels to diagnose cancer from TEPs, suggesting that swarm intelligence may also benefit the optimization of diagnostics readout of other liquid biopsy biosources. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Properties of a Formal Method to Model Emergence in Swarm-Based Systems

    Science.gov (United States)

    Rouff, Christopher; Vanderbilt, Amy; Truszkowski, Walt; Rash, James; Hinchey, Mike

    2004-01-01

    Future space missions will require cooperation between multiple satellites and/or rovers. Developers are proposing intelligent autonomous swarms for these missions, but swarm-based systems are difficult or impossible to test with current techniques. This viewgraph presentation examines the use of formal methods in testing swarm-based systems. The potential usefulness of formal methods in modeling the ANTS asteroid encounter mission is also examined.

  4. Artificial Intelligence and Economic Theories

    OpenAIRE

    Marwala, Tshilidzi; Hurwitz, Evan

    2017-01-01

    The advent of artificial intelligence has changed many disciplines such as engineering, social science and economics. Artificial intelligence is a computational technique which is inspired by natural intelligence such as the swarming of birds, the working of the brain and the pathfinding of the ants. These techniques have impact on economic theories. This book studies the impact of artificial intelligence on economic theories, a subject that has not been extensively studied. The theories that...

  5. Optimal Power Flow Solution for Combined Economic Emission dispatch Problem using Particle Swarm Optimization Technique

    Directory of Open Access Journals (Sweden)

    P. Ajay - D - Vimal Raj

    2007-03-01

    Full Text Available This paper presents a Particle Swarm Optimization (PSO based algorithm for Optimal Power Flow (OPF in Combined Economic Emission Dispatch (CEED environment of thermal units while satisfying the constraints such as generator capacity limits, power balance and line flow limits. Particle Swarm Optimization is a population based stochastic optimization, developed by Kennedy and Eberhart [12], in which members within a group share the information among them to achieve the global best position. This method is dynamic in nature and it overcomes the shortcomings of other evolutionary computation techniques such as premature convergence and provides high quality solutions. The performance of the proposed method has been demonstrated on IEEE 30 bus system with six generating units. The problem has been formulated as a single optimization problem to obtain the solution for optimal power flow problem with combined fuel cost and environment impact as objectives. The results obtained by the proposed method are better than any other evolutionary computation techniques proposed so far.

  6. Inteligencia colectiva: enfoque para el análisis de redes/Swarm intelligence: approach to the analysis of networks/Inteligência colectiva: abordagem para a análise de redes

    National Research Council Canada - National Science Library

    Claudia Eugenia Toca Torres

    2014-01-01

      By using a review of English literature on Swarm Intelligence and other meta-heuristics over the last sixteen years, the state of the art of three of its features, self-organization, flexibility and...

  7. Discrete PID Tuning Using Artificial Intelligence Techniques

    Directory of Open Access Journals (Sweden)

    Petr DOLEŽEL

    2009-06-01

    Full Text Available PID controllers are widely used in industry these days due to their useful properties such as simple tuning or robustness. While they are applicable to many control problems, they can perform poorly in some applications. Highly nonlinear system control with constrained manipulated variable can be mentioned as an example. The point of the paper is to string together convenient qualities of conventional PID control and progressive techniques based on Artificial Intelligence. Proposed control method should deal with even highly nonlinear systems. To be more specific, there is described new method of discrete PID controller tuning in this paper. This method tunes discrete PID controller parameters online through the use of genetic algorithm and neural model of controlled system in order to control successfully even highly nonlinear systems. After method description and some discussion, there is performed control simulation and comparison to one chosen conventional control method.

  8. Application of Genetic Algorithm and Particle Swarm Optimization techniques for improved image steganography systems

    Directory of Open Access Journals (Sweden)

    Jude Hemanth Duraisamy

    2016-01-01

    Full Text Available Image steganography is one of the ever growing computational approaches which has found its application in many fields. The frequency domain techniques are highly preferred for image steganography applications. However, there are significant drawbacks associated with these techniques. In transform based approaches, the secret data is embedded in random manner in the transform coefficients of the cover image. These transform coefficients may not be optimal in terms of the stego image quality and embedding capacity. In this work, the application of Genetic Algorithm (GA and Particle Swarm Optimization (PSO have been explored in the context of determining the optimal coefficients in these transforms. Frequency domain transforms such as Bandelet Transform (BT and Finite Ridgelet Transform (FRIT are used in combination with GA and PSO to improve the efficiency of the image steganography system.

  9. Memory Based Machine Intelligence Techniques in VLSI hardware

    OpenAIRE

    James, Alex Pappachen

    2012-01-01

    We briefly introduce the memory based approaches to emulate machine intelligence in VLSI hardware, describing the challenges and advantages. Implementation of artificial intelligence techniques in VLSI hardware is a practical and difficult problem. Deep architectures, hierarchical temporal memories and memory networks are some of the contemporary approaches in this area of research. The techniques attempt to emulate low level intelligence tasks and aim at providing scalable solutions to high ...

  10. Critical Comparison of Multi-objective Optimization Methods: Genetic Algorithms versus Swarm Intelligence

    Directory of Open Access Journals (Sweden)

    V. Sedenka

    2010-09-01

    Full Text Available The paper deals with efficiency comparison of two global evolutionary optimization methods implemented in MATLAB. Attention is turned to an elitist Non-dominated Sorting Genetic Algorithm (NSGA-II and a novel multi-objective Particle Swarm Optimization (PSO. The performance of optimizers is compared on three different test functions and on a cavity resonator synthesis. The microwave resonator is modeled using the Finite Element Method (FEM. The hit rate and the quality of the Pareto front distribution are classified.

  11. Automatic detection of solitary pulmonary nodules using swarm intelligence optimized neural networks on CT images

    Directory of Open Access Journals (Sweden)

    Ezhil E. Nithila

    2017-06-01

    Full Text Available Lung Cancer is one of the most dangerous diseases that cause a large number of deaths. Early detection and analysis will be the only remedy. Computer-Aided Diagnosis (CAD plays a key role in the early detection and diagnosis of lung cancer. This paper develops a CAD system that focus on new heuristic search algorithm to optimize the Back Propagation Neural Network (BPNN in characterizing nodule from non-nodules. The proposed CAD system consists of four main stages: (i image acquisition (ii lesion detection, (iii texture feature extraction and (iv tumor characterization using a classifier. The optimization mechanism employs Particle Swarm Optimization (PSO with new inertia weight for NN in order to investigate the classification rate of these algorithms in reducing the problems of trapping in local minima and the slow convergence rate of current evolutionary learning algorithms. The experiments were conducted on CT images to classify into nodule and non-nodule from the tumor region of interest. The performance of the CAD system was evaluated for the texture characterized images taken from LIDC-IDRI and SPIE-AAPM databases. Due to improved inertia weight used in Particle Swarm (PS the CAD achieves highest classification accuracy of 98% for solid nodules, 99.5% for part solid nodules and 97.2% for non solid nodules respectively. The experimental results suggest that the developed CAD system has great potential and promise in the automatic diagnosis of tumors of lung.

  12. USE OF ARTIFICIAL INTELLIGENCE TECHNIQUES IN QUALITY IMPROVING PROCESS

    Directory of Open Access Journals (Sweden)

    KALİTE İYİLEŞTİRME SÜRECİNDE YAPAY ZEKÃ KAYA

    2005-01-01

    Full Text Available Today, changing of competition conditions and customer preferences caused to happen many differences in the viewpoint of firms' quality studies. At the same time, improvements in computer technologies accelerated use of artificial intelligence. Artificial intelligence technologies are being used to solve many industry problems. In this paper, we investigated the use of artificial intelligence techniques to solve quality problems. The artificial intelligence techniques, which are used in quality improving process in the recent years, are artificial neural networks, expert systems, genetic algorithms and fuzzy logic.

  13. An efficient swarm intelligence approach to feature selection based on invasive weed optimization: Application to multivariate calibration and classification using spectroscopic data.

    Science.gov (United States)

    Sheykhizadeh, Saheleh; Naseri, Abdolhossein

    2018-04-05

    Variable selection plays a key role in classification and multivariate calibration. Variable selection methods are aimed at choosing a set of variables, from a large pool of available predictors, relevant to the analyte concentrations estimation, or to achieve better classification results. Many variable selection techniques have now been introduced among which, those which are based on the methodologies of swarm intelligence optimization have been more respected during a few last decades since they are mainly inspired by nature. In this work, a simple and new variable selection algorithm is proposed according to the invasive weed optimization (IWO) concept. IWO is considered a bio-inspired metaheuristic mimicking the weeds ecological behavior in colonizing as well as finding an appropriate place for growth and reproduction; it has been shown to be very adaptive and powerful to environmental changes. In this paper, the first application of IWO, as a very simple and powerful method, to variable selection is reported using different experimental datasets including FTIR and NIR data, so as to undertake classification and multivariate calibration tasks. Accordingly, invasive weed optimization - linear discrimination analysis (IWO-LDA) and invasive weed optimization- partial least squares (IWO-PLS) are introduced for multivariate classification and calibration, respectively. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Intelligent techniques in engineering management theory and applications

    CERN Document Server

    Onar, Sezi

    2015-01-01

    This book presents recently developed intelligent techniques with applications and theory in the area of engineering management. The involved applications of intelligent techniques such as neural networks, fuzzy sets, Tabu search, genetic algorithms, etc. will be useful for engineering managers, postgraduate students, researchers, and lecturers. The book has been written considering the contents of a classical engineering management book but intelligent techniques are used for handling the engineering management problem areas. This comprehensive characteristics of the book makes it an excellent reference for the solution of complex problems of engineering management. The authors of the chapters are well-known researchers with their previous works in the area of engineering management.

  15. A NOVEL APPROACH TO FIND OPTIMIZED NEUTRON ENERGY GROUP STRUCTURE IN MOX THERMAL LATTICES USING SWARM INTELLIGENCE

    Directory of Open Access Journals (Sweden)

    M. AKBARI

    2013-12-01

    Full Text Available Energy group structure has a significant effect on the results of multigroup transport calculations. It is known that UO2–PUO2 (MOX is a recently developed fuel which consumes recycled plutonium. For such fuel which contains various resonant nuclides, the selection of energy group structure is more crucial comparing to the UO2 fuels. In this paper, in order to improve the accuracy of the integral results in MOX thermal lattices calculated by WIMSD-5B code, a swarm intelligence method is employed to optimize the energy group structure of WIMS library. In this process, the NJOY code system is used to generate the 69 group cross sections of WIMS code for the specified energy structure. In addition, the multiplication factor and spectral indices are compared against the results of continuous energy MCNP-4C code for evaluating the energy group structure. Calculations performed in four different types of H2O moderated UO2–PuO2 (MOX lattices show that the optimized energy structure obtains more accurate results in comparison with the WIMS original structure.

  16. A Hybrid Swarm Intelligence Algorithm for Intrusion Detection Using Significant Features

    Directory of Open Access Journals (Sweden)

    P. Amudha

    2015-01-01

    Full Text Available Intrusion detection has become a main part of network security due to the huge number of attacks which affects the computers. This is due to the extensive growth of internet connectivity and accessibility to information systems worldwide. To deal with this problem, in this paper a hybrid algorithm is proposed to integrate Modified Artificial Bee Colony (MABC with Enhanced Particle Swarm Optimization (EPSO to predict the intrusion detection problem. The algorithms are combined together to find out better optimization results and the classification accuracies are obtained by 10-fold cross-validation method. The purpose of this paper is to select the most relevant features that can represent the pattern of the network traffic and test its effect on the success of the proposed hybrid classification algorithm. To investigate the performance of the proposed method, intrusion detection KDDCup’99 benchmark dataset from the UCI Machine Learning repository is used. The performance of the proposed method is compared with the other machine learning algorithms and found to be significantly different.

  17. A Hybrid Swarm Intelligence Algorithm for Intrusion Detection Using Significant Features.

    Science.gov (United States)

    Amudha, P; Karthik, S; Sivakumari, S

    2015-01-01

    Intrusion detection has become a main part of network security due to the huge number of attacks which affects the computers. This is due to the extensive growth of internet connectivity and accessibility to information systems worldwide. To deal with this problem, in this paper a hybrid algorithm is proposed to integrate Modified Artificial Bee Colony (MABC) with Enhanced Particle Swarm Optimization (EPSO) to predict the intrusion detection problem. The algorithms are combined together to find out better optimization results and the classification accuracies are obtained by 10-fold cross-validation method. The purpose of this paper is to select the most relevant features that can represent the pattern of the network traffic and test its effect on the success of the proposed hybrid classification algorithm. To investigate the performance of the proposed method, intrusion detection KDDCup'99 benchmark dataset from the UCI Machine Learning repository is used. The performance of the proposed method is compared with the other machine learning algorithms and found to be significantly different.

  18. Intelligent transportation systems data compression using wavelet decomposition technique.

    Science.gov (United States)

    2009-12-01

    Intelligent Transportation Systems (ITS) generates massive amounts of traffic data, which posts : challenges for data storage, transmission and retrieval. Data compression and reconstruction technique plays an : important role in ITS data procession....

  19. A new technique to design planar dipole antennas by using Bezier curve and Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Homsup Nuttaka

    2016-09-01

    Full Text Available This research presents a new technique which includes the principle of a Bezier curve and Particle Swarm Optimization (PSO together, in order to design the planar dipole antenna for the two different targets. This technique can improve the characteristics of the antennas by modifying copper textures on the antennas with a Bezier curve. However, the time to process an algorithm will be increased due to the expansion of the solution space in optimization process. So as to solve this problem, the suitable initial parameters need to be set. Therefore this research initialized parameters with reference antenna parameters (a reference antenna operates on 2.4 GHz for IEEE 802.11 b/g/n WLAN standards which resulted in the proposed designs, rapidly converted into the goals. The goal of the first design is to reduce the size of the antenna. As a result, the first antenna is reduced in the substrate size from areas of 5850 mm2 to 2987 mm2 (48.93% approximately and can also operates at 2.4 GHz (2.37 GHz to 2.51 GHz. The antenna with dual band application is presented in the second design. The second antenna is operated at 2.4 GHz (2.40 GHz to 2.49 GHz and 5 GHz (5.10 GHz to 5.45 GHz for IEEE 802.11 a/b/g/n WLAN standards.

  20. Intelligent bioinformatics : the application of artificial intelligence techniques to bioinformatics problems

    National Research Council Canada - National Science Library

    Keedwell, Edward

    2005-01-01

    ... Intelligence and Computer Science 3.1 Introduction to search 3.2 Search algorithms 3.3 Heuristic search methods 3.4 Optimal search strategies 3.5 Problems with search techniques 3.6 Complexity of...

  1. Intelligent bioinformatics: the application of artificial intelligence techniques to bioinformatics problems

    National Research Council Canada - National Science Library

    Keedwell, Edward; Narayanan, Ajit

    2005-01-01

    ... Intelligence and Computer Science 3.1 Introduction to search 3.2 Search algorithms 3.3 Heuristic search methods 3.4 Optimal search strategies 3.5 Problems with search techniques 3.6 Complexity of...

  2. Multi-Sensor Information Fusion for Optimizing Electric Bicycle Routes Using a Swarm Intelligence Algorithm

    Directory of Open Access Journals (Sweden)

    Daniel H. De La Iglesia

    2017-10-01

    Full Text Available The use of electric bikes (e-bikes has grown in popularity, especially in large cities where overcrowding and traffic congestion are common. This paper proposes an intelligent engine management system for e-bikes which uses the information collected from sensors to optimize battery energy and time. The intelligent engine management system consists of a built-in network of sensors in the e-bike, which is used for multi-sensor data fusion; the collected data is analysed and fused and on the basis of this information the system can provide the user with optimal and personalized assistance. The user is given recommendations related to battery consumption, sensors, and other parameters associated with the route travelled, such as duration, speed, or variation in altitude. To provide a user with these recommendations, artificial neural networks are used to estimate speed and consumption for each of the segments of a route. These estimates are incorporated into evolutionary algorithms in order to make the optimizations. A comparative analysis of the results obtained has been conducted for when routes were travelled with and without the optimization system. From the experiments, it is evident that the use of an engine management system results in significant energy and time savings. Moreover, user satisfaction increases as the level of assistance adapts to user behavior and the characteristics of the route.

  3. Multi-Sensor Information Fusion for Optimizing Electric Bicycle Routes Using a Swarm Intelligence Algorithm

    Science.gov (United States)

    Villarubia, Gabriel; De Paz, Juan F.; Bajo, Javier

    2017-01-01

    The use of electric bikes (e-bikes) has grown in popularity, especially in large cities where overcrowding and traffic congestion are common. This paper proposes an intelligent engine management system for e-bikes which uses the information collected from sensors to optimize battery energy and time. The intelligent engine management system consists of a built-in network of sensors in the e-bike, which is used for multi-sensor data fusion; the collected data is analysed and fused and on the basis of this information the system can provide the user with optimal and personalized assistance. The user is given recommendations related to battery consumption, sensors, and other parameters associated with the route travelled, such as duration, speed, or variation in altitude. To provide a user with these recommendations, artificial neural networks are used to estimate speed and consumption for each of the segments of a route. These estimates are incorporated into evolutionary algorithms in order to make the optimizations. A comparative analysis of the results obtained has been conducted for when routes were travelled with and without the optimization system. From the experiments, it is evident that the use of an engine management system results in significant energy and time savings. Moreover, user satisfaction increases as the level of assistance adapts to user behavior and the characteristics of the route. PMID:29088087

  4. Multi-Sensor Information Fusion for Optimizing Electric Bicycle Routes Using a Swarm Intelligence Algorithm.

    Science.gov (United States)

    De La Iglesia, Daniel H; Villarrubia, Gabriel; De Paz, Juan F; Bajo, Javier

    2017-10-31

    The use of electric bikes (e-bikes) has grown in popularity, especially in large cities where overcrowding and traffic congestion are common. This paper proposes an intelligent engine management system for e-bikes which uses the information collected from sensors to optimize battery energy and time. The intelligent engine management system consists of a built-in network of sensors in the e-bike, which is used for multi-sensor data fusion; the collected data is analysed and fused and on the basis of this information the system can provide the user with optimal and personalized assistance. The user is given recommendations related to battery consumption, sensors, and other parameters associated with the route travelled, such as duration, speed, or variation in altitude. To provide a user with these recommendations, artificial neural networks are used to estimate speed and consumption for each of the segments of a route. These estimates are incorporated into evolutionary algorithms in order to make the optimizations. A comparative analysis of the results obtained has been conducted for when routes were travelled with and without the optimization system. From the experiments, it is evident that the use of an engine management system results in significant energy and time savings. Moreover, user satisfaction increases as the level of assistance adapts to user behavior and the characteristics of the route.

  5. Optimization of DNA Sensor Model Based Nanostructured Graphene Using Particle Swarm Optimization Technique

    Directory of Open Access Journals (Sweden)

    Hediyeh Karimi

    2013-01-01

    Full Text Available It has been predicted that the nanomaterials of graphene will be among the candidate materials for postsilicon electronics due to their astonishing properties such as high carrier mobility, thermal conductivity, and biocompatibility. Graphene is a semimetal zero gap nanomaterial with demonstrated ability to be employed as an excellent candidate for DNA sensing. Graphene-based DNA sensors have been used to detect the DNA adsorption to examine a DNA concentration in an analyte solution. In particular, there is an essential need for developing the cost-effective DNA sensors holding the fact that it is suitable for the diagnosis of genetic or pathogenic diseases. In this paper, particle swarm optimization technique is employed to optimize the analytical model of a graphene-based DNA sensor which is used for electrical detection of DNA molecules. The results are reported for 5 different concentrations, covering a range from 0.01 nM to 500 nM. The comparison of the optimized model with the experimental data shows an accuracy of more than 95% which verifies that the optimized model is reliable for being used in any application of the graphene-based DNA sensor.

  6. New approaches in intelligent control techniques, methodologies and applications

    CERN Document Server

    Kountchev, Roumen

    2016-01-01

    This volume introduces new approaches in intelligent control area from both the viewpoints of theory and application. It consists of eleven contributions by prominent authors from all over the world and an introductory chapter. This volume is strongly connected to another volume entitled "New Approaches in Intelligent Image Analysis" (Eds. Roumen Kountchev and Kazumi Nakamatsu). The chapters of this volume are self-contained and include summary, conclusion and future works. Some of the chapters introduce specific case studies of various intelligent control systems and others focus on intelligent theory based control techniques with applications. A remarkable specificity of this volume is that three chapters are dealing with intelligent control based on paraconsistent logics.

  7. A Game Theoretic Approach to Swarm Robotics

    Directory of Open Access Journals (Sweden)

    S. N. Givigi

    2006-01-01

    Full Text Available In this article, we discuss some techniques for achieving swarm intelligent robots through the use of traits of personality. Traits of personality are characteristics of each robot that, altogether, define the robot's behaviours. We discuss the use of evolutionary psychology to select a set of traits of personality that will evolve due to a learning process based on reinforcement learning. The use of Game Theory is introduced, and some simulations showing its potential are reported.

  8. ARTIFICIAL INTELLIGENCE PLANNING TECHNIQUES FOR ADAPTIVE VIRTUAL COURSE CONSTRUCTION

    OpenAIRE

    NÉSTOR DARÍO DUQUE; DEMETRIO ARTURO OVALLE

    2011-01-01

    This paper aims at presenting a planning model for adapting the behavior of virtual courses based on artificial intelligence techniques, in particular using not only a multi-agent system approach, but also artificial intelligence planning methods. The design and implementation of the system by means of a pedagogical multi-agent approach and the definition of a framework to specify the adaptation strategy allow us to incorporate several pedagogical and technological approaches that are in acco...

  9. New approaches in intelligent image analysis techniques, methodologies and applications

    CERN Document Server

    Nakamatsu, Kazumi

    2016-01-01

    This book presents an Introduction and 11 independent chapters, which are devoted to various new approaches of intelligent image processing and analysis. The book also presents new methods, algorithms and applied systems for intelligent image processing, on the following basic topics: Methods for Hierarchical Image Decomposition; Intelligent Digital Signal Processing and Feature Extraction; Data Clustering and Visualization via Echo State Networks; Clustering of Natural Images in Automatic Image Annotation Systems; Control System for Remote Sensing Image Processing; Tissue Segmentation of MR Brain Images Sequence; Kidney Cysts Segmentation in CT Images; Audio Visual Attention Models in Mobile Robots Navigation; Local Adaptive Image Processing; Learning Techniques for Intelligent Access Control; Resolution Improvement in Acoustic Maps. Each chapter is self-contained with its own references. Some of the chapters are devoted to the theoretical aspects while the others are presenting the practical aspects and the...

  10. Improving Energy Saving Techniques by Ambient Intelligence Scheduling

    DEFF Research Database (Denmark)

    Cristani, Matteo; Karafili, Erisa; Tomazzoli, Claudio

    2015-01-01

    Energy saving is one of the most challenging aspects of modern ambient intelligence technologies, for both domestic and business usages. In this paper we show how to combine Ambient Intelligence and Artificial Intelligence techniques to solve the problem of scheduling a set of devices under a given...... set of constraints, like limits to the maximal energy usage (Energy Span) and maximal energy absorption (Energy Peak). We provide a method that can be used to schedule the usage of devices in a given environment in a way that respects the input constraints. We adapt an existent approach to scheduling...... for Ambient Intelligence to a specific framework and exhibit a sample usage for a real life system, Elettra, that is in use in an industrial context....

  11. APPLYING ARTIFICIAL INTELLIGENCE TECHNIQUES TO HUMAN-COMPUTER INTERFACES

    DEFF Research Database (Denmark)

    Sonnenwald, Diane H.

    1988-01-01

    A description is given of UIMS (User Interface Management System), a system using a variety of artificial intelligence techniques to build knowledge-based user interfaces combining functionality and information from a variety of computer systems that maintain, test, and configure customer telephone...

  12. E-learning systems intelligent techniques for personalization

    CERN Document Server

    Klašnja-Milićević, Aleksandra; Ivanović, Mirjana; Budimac, Zoran; Jain, Lakhmi C

    2017-01-01

    This monograph provides a comprehensive research review of intelligent techniques for personalisation of e-learning systems. Special emphasis is given to intelligent tutoring systems as a particular class of e-learning systems, which support and improve the learning and teaching of domain-specific knowledge. A new approach to perform effective personalization based on Semantic web technologies achieved in a tutoring system is presented. This approach incorporates a recommender system based on collaborative tagging techniques that adapts to the interests and level of students' knowledge. These innovations are important contributions of this monograph. Theoretical models and techniques are illustrated on a real personalised tutoring system for teaching Java programming language. The monograph is directed to, students and researchers interested in the e-learning and personalization techniques. .

  13. Determination of rock depth using artificial intelligence techniques

    OpenAIRE

    Viswanathan, R.; Samui, Pijush

    2016-01-01

    This article adopts three artificial intelligence techniques, Gaussian Process Regression (GPR), Least Square Support Vector Machine (LSSVM) and Extreme Learning Machine (ELM), for prediction of rock depth (d) at any point in Chennai. GPR, ELM and LSSVM have been used as regression techniques. Latitude and longitude are also adopted as inputs of the GPR, ELM and LSSVM models. The performance of the ELM, GPR and LSSVM models has been compared. The developed ELM, GPR and LSSVM models produce sp...

  14. Solving Systems of Equations with Techniques from Artificial Intelligence

    Directory of Open Access Journals (Sweden)

    Irina Maria Terfaloaga

    2015-07-01

    Full Text Available A frequent problem in numerical analysis is solving the systems of equations. That problem has generated in time a great interest among mathematicians and computer scientists, as evidenced by the large number of numerical methods developed. Besides the classical numerical methods, in the last years were proposed methods inspired by techniques from artificial intelligence. Hybrid methods have been also proposed along the time [15, 19]. The goal of this study is to make a survey of methods inspired from artificial intelligence for solving systems of equations

  15. Artificial intelligence techniques for voltage control

    Energy Technology Data Exchange (ETDEWEB)

    Ekwue, A.; Cheng, D.T.Y.; Macqueen, J.F.

    1997-12-31

    In electric power systems, the advantages of reactive power dispatching or optimisation include improved utilisation of reactive power sources and hence reduction in reactive power flows and real losses of the system; unloading of the system and equipment as a result of reactive flow reduction; the power factors of generation are improved and system security is enhanced; reduced voltage gradients and somewhat higher voltages which result across the system from improved operation; deferred capital investment is new reactive power sources as a result of improved utilisation of existing equipment; and for the National Grid Company plc (NGC), the main advantage is reduced out-of-merit operation. The problem of reactive power control has been studied and widely reported in the literature. Non-linear programming methods as well as linear programming techniques for constraint dispatch have been described. Static optimisation of reactive power sources by the use of sensitivity analysis was described by Kishore and Hill. Long range optimum var planning has been considered and the optimum amount and location of network reactive compensation so as to maintain the system voltage within the desired limits, while operating under normal and various insecurity states, have also been studied using several methods. The objective of this chapter is therefore to review conventional methods as well as AI techniques for reactive power control. (Author)

  16. Swarm Intelligence-Enhanced Detection of Non-Small-Cell Lung Cancer Using Tumor-Educated Platelets

    NARCIS (Netherlands)

    Best, Myron G.; Sol, Nik; In ‘t Veld, Sjors G.J.G.; Vancura, Adrienne; Muller, Mirte; Niemeijer, Anna Larissa N.; Fejes, Aniko V.; Tjon Kon Fat, Lee Ann; Huis in 't Veld, Anna E; Leurs, Cyra; Le Large, Tessa Y.; Meijer, Laura L.; Kooi, Irsan E.; Rustenburg, François; Schellen, Pepijn; Verschueren, Heleen; Post, Edward; Wedekind, Laurine E.; Bracht, Jillian; Esenkbrink, Michelle; Wils, Leon; Favaro, Francesca; Schoonhoven, Jilian D.; Tannous, Jihane; Meijers-Heijboer, Hanne; Kazemier, Geert; Giovannetti, Elisa; Reijneveld, Jaap C.; Idema, Sander; Killestein, Joep; Heger, Michal; de Jager, Saskia C.; Urbanus, Rolf T.; Hoefer, Imo E.; Pasterkamp, Gerard; Mannhalter, Christine; Gomez-Arroyo, Jose; Bogaard, Harm-Jan; Noske, David P.; Vandertop, W. Peter; van den Broek, Daan; Ylstra, Bauke; Nilsson, R. Jonas A; Wesseling, Pieter; Karachaliou, Niki; Rosell, Rafael; Lee-Lewandrowski, Elizabeth; Lewandrowski, Kent B.; Tannous, Bakhos A.; de Langen, Adrianus J.; Smit, Egbert F.; van den Heuvel, Michel M; Wurdinger, Thomas

    2017-01-01

    Blood-based liquid biopsies, including tumor-educated blood platelets (TEPs), have emerged as promising biomarker sources for non-invasive detection of cancer. Here we demonstrate that particle-swarm optimization (PSO)-enhanced algorithms enable efficient selection of RNA biomarker panels from

  17. Multiple Target Localization with Bistatic Radar Using Heuristic Computational Intelligence Techniques

    Directory of Open Access Journals (Sweden)

    Fawad Zaman

    2015-01-01

    Full Text Available We assume Bistatic Phase Multiple Input Multiple Output radar having passive Centrosymmetric Cross Shape Sensor Array (CSCA on its receiver. Let the transmitter of this Bistatic radar send coherent signals using a subarray that gives a fairly wide beam with a large solid angle so as to cover up any potential relevant target in the near field. We developed Heuristic Computational Intelligence (HCI based techniques to jointly estimate the range, amplitude, and elevation and azimuth angles of these multiple targets impinging on the CSCA. In this connection, first the global search optimizers, that is,are developed separately Particle Swarm Optimization (PSO and Differential Evolution (DE are developed separately, and, to enhance the performances further, both of them are hybridized with a local search optimizer called Active Set Algorithm (ASA. Initially, the performance of PSO, DE, PSO hybridized with ASA, and DE hybridized with ASA are compared with each other and then with some traditional techniques available in literature using root mean square error (RMSE as figure of merit.

  18. Gravity inversion of a fault by Particle swarm optimization (PSO).

    Science.gov (United States)

    Toushmalani, Reza

    2013-01-01

    Particle swarm optimization is a heuristic global optimization method and also an optimization algorithm, which is based on swarm intelligence. It comes from the research on the bird and fish flock movement behavior. In this paper we introduce and use this method in gravity inverse problem. We discuss the solution for the inverse problem of determining the shape of a fault whose gravity anomaly is known. Application of the proposed algorithm to this problem has proven its capability to deal with difficult optimization problems. The technique proved to work efficiently when tested to a number of models.

  19. Drone Swarms

    Science.gov (United States)

    2017-05-25

    motion,” provides a method that combines situational awareness, elusiveness, mass, speed, mobility, and surprise to physically and cognitively overwhelm...Napoleon’s Great Army at Ulm, provide operational shock and cognitive dissonance to opposing military systems and personnel. In Swarming and the...Scythians, Alexander used similar anti-swarm methods that bottlenose dolphins use to catch swarming fish. In order to catch fish utilizing swarms

  20. A survey of computational intelligence techniques in protein function prediction.

    Science.gov (United States)

    Tiwari, Arvind Kumar; Srivastava, Rajeev

    2014-01-01

    During the past, there was a massive growth of knowledge of unknown proteins with the advancement of high throughput microarray technologies. Protein function prediction is the most challenging problem in bioinformatics. In the past, the homology based approaches were used to predict the protein function, but they failed when a new protein was different from the previous one. Therefore, to alleviate the problems associated with homology based traditional approaches, numerous computational intelligence techniques have been proposed in the recent past. This paper presents a state-of-the-art comprehensive review of various computational intelligence techniques for protein function predictions using sequence, structure, protein-protein interaction network, and gene expression data used in wide areas of applications such as prediction of DNA and RNA binding sites, subcellular localization, enzyme functions, signal peptides, catalytic residues, nuclear/G-protein coupled receptors, membrane proteins, and pathway analysis from gene expression datasets. This paper also summarizes the result obtained by many researchers to solve these problems by using computational intelligence techniques with appropriate datasets to improve the prediction performance. The summary shows that ensemble classifiers and integration of multiple heterogeneous data are useful for protein function prediction.

  1. Application of Artificial Intelligence Techniques in Unmanned Aerial Vehicle Flight

    Science.gov (United States)

    Bauer, Frank H. (Technical Monitor); Dufrene, Warren R., Jr.

    2003-01-01

    This paper describes the development of an application of Artificial Intelligence for Unmanned Aerial Vehicle (UAV) control. The project was done as part of the requirements for a class in Artificial Intelligence (AI) at Nova southeastern University and as an adjunct to a project at NASA Goddard Space Flight Center's Wallops Flight Facility for a resilient, robust, and intelligent UAV flight control system. A method is outlined which allows a base level application for applying an AI method, Fuzzy Logic, to aspects of Control Logic for UAV flight. One element of UAV flight, automated altitude hold, has been implemented and preliminary results displayed. A low cost approach was taken using freeware, gnu, software, and demo programs. The focus of this research has been to outline some of the AI techniques used for UAV flight control and discuss some of the tools used to apply AI techniques. The intent is to succeed with the implementation of applying AI techniques to actually control different aspects of the flight of an UAV.

  2. Determination of rock depth using artificial intelligence techniques

    Directory of Open Access Journals (Sweden)

    R. Viswanathan

    2016-01-01

    Full Text Available This article adopts three artificial intelligence techniques, Gaussian Process Regression (GPR, Least Square Support Vector Machine (LSSVM and Extreme Learning Machine (ELM, for prediction of rock depth (d at any point in Chennai. GPR, ELM and LSSVM have been used as regression techniques. Latitude and longitude are also adopted as inputs of the GPR, ELM and LSSVM models. The performance of the ELM, GPR and LSSVM models has been compared. The developed ELM, GPR and LSSVM models produce spatial variability of rock depth and offer robust models for the prediction of rock depth.

  3. Swarming and mating behavior of male Anopheles arabiensis Patton (Diptera: Culicidae) in an area of the Sterile Insect Technique Project in Dongola, northern Sudan.

    Science.gov (United States)

    Hassan, Mo'awia M; Zain, Hussam M; Basheer, Mohammed A; Elhaj, Hassab-Elrasoul F; El-Sayed, Badria B

    2014-04-01

    The problems facing the conventional mosquito control methods including resistance to insecticides have led to the development of alternative methods such as the Sterile Insect Technique (SIT) to suppress populations of the malaria vector Anopheles arabiensis in northern Sudan. This method entails the release of large numbers of irradiated males to compete against wild conspecifics for mating with virgin females in the field. The swarming and mating behaviors of this species were conducted at two field sites during the period 2009-2012 in Dongola, northern Sudan. Observations were made in the field sites and in a contained semi-field enclosure. In addition, participation of released irradiated-marked males in the swarms of wild mosquito was investigated. Swarms were observed on sunset in the vicinity of larval habitats around irrigation channel and stopped with the onset of the darkness about 21-25 min after the start. Swarms were observed above visual markers such as palm trees, bare ground, and manure. Several couples were observed leaving the swarms in copula in the direction of the sunlight. The majority of copulations were observed within 12-15 min of the start of swarming. Relatively low insemination rates (28%) of females collected from coupling pairs were observed. Irradiated-marked males were observed to join the natural swarms regularly, indicating their probable competitiveness with the other wild males. These findings enhance the feasibility of staging an SIT campaign against malaria vector in Northern State-Sudan. Copyright © 2013 International Atomic Energy Agency 2013. Published by Elsevier B.V. All rights reserved.

  4. Weighted Fuzzy Interpolative Reasoning Based on the Slopes of Fuzzy Sets and Particle Swarm Optimization Techniques.

    Science.gov (United States)

    Chen, Shyi-Ming; Hsin, Wen-Chyuan

    2015-07-01

    In this paper, we propose a new weighted fuzzy interpolative reasoning method for sparse fuzzy rule-based systems based on the slopes of fuzzy sets. We also propose a particle swarm optimization (PSO)-based weights-learning algorithm to automatically learn the optimal weights of the antecedent variables of fuzzy rules for weighted fuzzy interpolative reasoning. We apply the proposed weighted fuzzy interpolative reasoning method using the proposed PSO-based weights-learning algorithm to deal with the computer activity prediction problem, the multivariate regression problems, and the time series prediction problems. The experimental results show that the proposed weighted fuzzy interpolative reasoning method using the proposed PSO-based weights-learning algorithm outperforms the existing methods for dealing with the computer activity prediction problem, the multivariate regression problems, and the time series prediction problems.

  5. Evolution of Collective Behaviors for a Real Swarm of Aquatic Surface Robots

    Science.gov (United States)

    Duarte, Miguel; Costa, Vasco; Gomes, Jorge; Rodrigues, Tiago; Silva, Fernando; Oliveira, Sancho Moura; Christensen, Anders Lyhne

    2016-01-01

    Swarm robotics is a promising approach for the coordination of large numbers of robots. While previous studies have shown that evolutionary robotics techniques can be applied to obtain robust and efficient self-organized behaviors for robot swarms, most studies have been conducted in simulation, and the few that have been conducted on real robots have been confined to laboratory environments. In this paper, we demonstrate for the first time a swarm robotics system with evolved control successfully operating in a real and uncontrolled environment. We evolve neural network-based controllers in simulation for canonical swarm robotics tasks, namely homing, dispersion, clustering, and monitoring. We then assess the performance of the controllers on a real swarm of up to ten aquatic surface robots. Our results show that the evolved controllers transfer successfully to real robots and achieve a performance similar to the performance obtained in simulation. We validate that the evolved controllers display key properties of swarm intelligence-based control, namely scalability, flexibility, and robustness on the real swarm. We conclude with a proof-of-concept experiment in which the swarm performs a complete environmental monitoring task by combining multiple evolved controllers. PMID:26999614

  6. Evolution of Collective Behaviors for a Real Swarm of Aquatic Surface Robots.

    Directory of Open Access Journals (Sweden)

    Miguel Duarte

    Full Text Available Swarm robotics is a promising approach for the coordination of large numbers of robots. While previous studies have shown that evolutionary robotics techniques can be applied to obtain robust and efficient self-organized behaviors for robot swarms, most studies have been conducted in simulation, and the few that have been conducted on real robots have been confined to laboratory environments. In this paper, we demonstrate for the first time a swarm robotics system with evolved control successfully operating in a real and uncontrolled environment. We evolve neural network-based controllers in simulation for canonical swarm robotics tasks, namely homing, dispersion, clustering, and monitoring. We then assess the performance of the controllers on a real swarm of up to ten aquatic surface robots. Our results show that the evolved controllers transfer successfully to real robots and achieve a performance similar to the performance obtained in simulation. We validate that the evolved controllers display key properties of swarm intelligence-based control, namely scalability, flexibility, and robustness on the real swarm. We conclude with a proof-of-concept experiment in which the swarm performs a complete environmental monitoring task by combining multiple evolved controllers.

  7. Evolution of Collective Behaviors for a Real Swarm of Aquatic Surface Robots.

    Science.gov (United States)

    Duarte, Miguel; Costa, Vasco; Gomes, Jorge; Rodrigues, Tiago; Silva, Fernando; Oliveira, Sancho Moura; Christensen, Anders Lyhne

    2016-01-01

    Swarm robotics is a promising approach for the coordination of large numbers of robots. While previous studies have shown that evolutionary robotics techniques can be applied to obtain robust and efficient self-organized behaviors for robot swarms, most studies have been conducted in simulation, and the few that have been conducted on real robots have been confined to laboratory environments. In this paper, we demonstrate for the first time a swarm robotics system with evolved control successfully operating in a real and uncontrolled environment. We evolve neural network-based controllers in simulation for canonical swarm robotics tasks, namely homing, dispersion, clustering, and monitoring. We then assess the performance of the controllers on a real swarm of up to ten aquatic surface robots. Our results show that the evolved controllers transfer successfully to real robots and achieve a performance similar to the performance obtained in simulation. We validate that the evolved controllers display key properties of swarm intelligence-based control, namely scalability, flexibility, and robustness on the real swarm. We conclude with a proof-of-concept experiment in which the swarm performs a complete environmental monitoring task by combining multiple evolved controllers.

  8. Recent advances on artificial intelligence and learning techniques in cognitive radio networks

    National Research Council Canada - National Science Library

    Abbas, Nadine; Nasser, Youssef; Ahmad, Karim El

    2015-01-01

    ... of the radio spectrum. For efficient real-time process, the cognitive radio is usually combined with artificial intelligence and machine-learning techniques so that an adaptive and intelligent allocation is achieved...

  9. Artificial intelligence techniques for scheduling Space Shuttle missions

    Science.gov (United States)

    Henke, Andrea L.; Stottler, Richard H.

    1994-01-01

    Planning and scheduling of NASA Space Shuttle missions is a complex, labor-intensive process requiring the expertise of experienced mission planners. We have developed a planning and scheduling system using combinations of artificial intelligence knowledge representations and planning techniques to capture mission planning knowledge and automate the multi-mission planning process. Our integrated object oriented and rule-based approach reduces planning time by orders of magnitude and provides planners with the flexibility to easily modify planning knowledge and constraints without requiring programming expertise.

  10. Intelligent techniques in signal processing for multimedia security

    CERN Document Server

    Santhi, V

    2017-01-01

    This book proposes new algorithms to ensure secured communications and prevent unauthorized data exchange in secured multimedia systems. Focusing on numerous applications’ algorithms and scenarios, it offers an in-depth analysis of data hiding technologies including watermarking, cryptography, encryption, copy control, and authentication. The authors present a framework for visual data hiding technologies that resolves emerging problems of modern multimedia applications in several contexts including the medical, healthcare, education, and wireless communication networking domains. Further, it introduces several intelligent security techniques with real-time implementation. As part of its comprehensive coverage, the book discusses contemporary multimedia authentication and fingerprinting techniques, while also proposing personal authentication/recognition systems based on hand images, surveillance system security using gait recognition, face recognition under restricted constraints such as dry/wet face condi...

  11. Comparison of Back propagation neural network and Back propagation neural network Based Particle Swarm intelligence in Diagnostic Breast Cancer

    Directory of Open Access Journals (Sweden)

    Farahnaz SADOUGHI

    2014-03-01

    Full Text Available Breast cancer is the most commonly diagnosed cancer and the most common cause of death in women all over the world. Use of computer technology supporting breast cancer diagnosing is now widespread and pervasive across a broad range of medical areas. Early diagnosis of this disease can greatly enhance the chances of long-term survival of breast cancer victims. Artificial Neural Networks (ANN as mainly method play important role in early diagnoses breast cancer. This paper studies Levenberg Marquardet Backpropagation (LMBP neural network and Levenberg Marquardet Backpropagation based Particle Swarm Optimization(LMBP-PSO for the diagnosis of breast cancer. The obtained results show that LMBP and LMBP based PSO system provides higher classification efficiency. But LMBP based PSO needs minimum training and testing time. It helps in developing Medical Decision System (MDS for breast cancer diagnosing. It can also be used as secondary observer in clinical decision making.

  12. Predicting Complexation Thermodynamic Parameters of β-Cyclodextrin with Chiral Guests by Using Swarm Intelligence and Support Vector Machines

    Directory of Open Access Journals (Sweden)

    Luckhana Lawtrakul

    2009-05-01

    Full Text Available The Particle Swarm Optimization (PSO and Support Vector Machines (SVMs approaches are used for predicting the thermodynamic parameters for the 1:1 inclusion complexation of chiral guests with β-cyclodextrin. A PSO is adopted for descriptor selection in the quantitative structure-property relationships (QSPR of a dataset of 74 chiral guests due to its simplicity, speed, and consistency. The modified PSO is then combined with SVMs for its good approximating properties, to generate a QSPR model with the selected features. Linear, polynomial, and Gaussian radial basis functions are used as kernels in SVMs. All models have demonstrated an impressive performance with R2 higher than 0.8.

  13. Unsupervised learning of mixture models based on swarm intelligence and neural networks with optimal completion using incomplete data

    Directory of Open Access Journals (Sweden)

    Ahmed R. Abas

    2012-07-01

    Full Text Available In this paper, a new algorithm is presented for unsupervised learning of finite mixture models (FMMs using data set with missing values. This algorithm overcomes the local optima problem of the Expectation-Maximization (EM algorithm via integrating the EM algorithm with Particle Swarm Optimization (PSO. In addition, the proposed algorithm overcomes the problem of biased estimation due to overlapping clusters in estimating missing values in the input data set by integrating locally-tuned general regression neural networks with Optimal Completion Strategy (OCS. A comparison study shows the superiority of the proposed algorithm over other algorithms commonly used in the literature in unsupervised learning of FMM parameters that result in minimum mis-classification errors when used in clustering incomplete data set that is generated from overlapping clusters and these clusters are largely different in their sizes.

  14. Artificial intelligence techniques for embryo and oocyte classification.

    Science.gov (United States)

    Manna, Claudio; Nanni, Loris; Lumini, Alessandra; Pappalardo, Sebastiana

    2013-01-01

    One of the most relevant aspects in assisted reproduction technology is the possibility of characterizing and identifying the most viable oocytes or embryos. In most cases, embryologists select them by visual examination and their evaluation is totally subjective. Recently, due to the rapid growth in the capacity to extract texture descriptors from a given image, a growing interest has been shown in the use of artificial intelligence methods for embryo or oocyte scoring/selection in IVF programmes. This work concentrates the efforts on the possible prediction of the quality of embryos and oocytes in order to improve the performance of assisted reproduction technology, starting from their images. The artificial intelligence system proposed in this work is based on a set of Levenberg-Marquardt neural networks trained using textural descriptors (the local binary patterns). The proposed system was tested on two data sets of 269 oocytes and 269 corresponding embryos from 104 women and compared with other machine learning methods already proposed in the past for similar classification problems. Although the results are only preliminary, they show an interesting classification performance. This technique may be of particular interest in those countries where legislation restricts embryo selection. One of the most relevant aspects in assisted reproduction technology is the possibility of characterizing and identifying the most viable oocytes or embryos. In most cases, embryologists select them by visual examination and their evaluation is totally subjective. Recently, due to the rapid growth in our capacity to extract texture descriptors from a given image, a growing interest has been shown in the use of artificial intelligence methods for embryo or oocyte scoring/selection in IVF programmes. In this work, we concentrate our efforts on the possible prediction of the quality of embryos and oocytes in order to improve the performance of assisted reproduction technology

  15. Applying Sequential Particle Swarm Optimization Algorithm to Improve Power Generation Quality

    Directory of Open Access Journals (Sweden)

    Abdulhafid Sallama

    2014-10-01

    Full Text Available Swarm Optimization approach is a heuristic search method whose mechanics are inspired by the swarming or collaborative behaviour of biological populations. It is used to solve constrained, unconstrained, continuous and discrete problems. Swarm intelligence systems are widely used and very effective in solving standard and large-scale optimization, provided that the problem does not require multi solutions. In this paper, particle swarm optimisation technique is used to optimise fuzzy logic controller (FLC for stabilising a power generation and distribution network that consists of four generators. The system is subject to different types of faults (single and multi-phase. Simulation studies show that the optimised FLC performs well in stabilising the network after it recovers from a fault. The controller is compared to multi-band and standard controllers.

  16. A Survey on Using Artificial Intelligence Techniques in the Software Development Process

    OpenAIRE

    K. Hema Shankari; Dr. R.Thirumalaiselvi

    2014-01-01

    Software engineering and artificial intelligence are the two important fields of the computer science. Artificial Intelligence is about making machines intelligent, while Software engineering is knowledge –intensive activity, requiring extensive knowledge of the application domain and of the target software itself. This study intends to review the techniques developed in artificial intelligence from the standpoint of their application in software engineering. The goal of this rese...

  17. Application of Artificial Intelligence and Data Mining Techniques to Financial Markets

    OpenAIRE

    Katarína Hilovska; Peter Koncz

    2012-01-01

    The aim of artificial intelligence is to discover mechanisms of adaptation in a changing environment with utilisation of intelligence, for instance in the ability to exclude unlikely solutions. Artificial intelligence methods have extensive application in different fields such as medicine, games, transportation, or heavy industry. This paper deals with interdisciplinary issues – interconnection of artificial intelligence and finance. The paper briefly describes techniques of data mining, expe...

  18. Training Software in Artificial-Intelligence Computing Techniques

    Science.gov (United States)

    Howard, Ayanna; Rogstad, Eric; Chalfant, Eugene

    2005-01-01

    The Artificial Intelligence (AI) Toolkit is a computer program for training scientists, engineers, and university students in three soft-computing techniques (fuzzy logic, neural networks, and genetic algorithms) used in artificial-intelligence applications. The program promotes an easily understandable tutorial interface, including an interactive graphical component through which the user can gain hands-on experience in soft-computing techniques applied to realistic example problems. The tutorial provides step-by-step instructions on the workings of soft-computing technology, whereas the hands-on examples allow interaction and reinforcement of the techniques explained throughout the tutorial. In the fuzzy-logic example, a user can interact with a robot and an obstacle course to verify how fuzzy logic is used to command a rover traverse from an arbitrary start to the goal location. For the genetic algorithm example, the problem is to determine the minimum-length path for visiting a user-chosen set of planets in the solar system. For the neural-network example, the problem is to decide, on the basis of input data on physical characteristics, whether a person is a man, woman, or child. The AI Toolkit is compatible with the Windows 95,98, ME, NT 4.0, 2000, and XP operating systems. A computer having a processor speed of at least 300 MHz, and random-access memory of at least 56MB is recommended for optimal performance. The program can be run on a slower computer having less memory, but some functions may not be executed properly.

  19. Operation optimization of distributed generation using artificial intelligent techniques

    Directory of Open Access Journals (Sweden)

    Mahmoud H. Elkazaz

    2016-06-01

    Full Text Available Future smart grids will require an observable, controllable and flexible network architecture for reliable and efficient energy delivery. The use of artificial intelligence and advanced communication technologies is essential in building a fully automated system. This paper introduces a new technique for online optimal operation of distributed generation (DG resources, i.e. a hybrid fuel cell (FC and photovoltaic (PV system for residential applications. The proposed technique aims to minimize the total daily operating cost of a group of residential homes by managing the operation of embedded DG units remotely from a control centre. The target is formed as an objective function that is solved using genetic algorithm (GA optimization technique. The optimal settings of the DG units obtained from the optimization process are sent to each DG unit through a fully automated system. The results show that the proposed technique succeeded in defining the optimal operating points of the DGs that affect directly the total operating cost of the entire system.

  20. Application of PSO (particle swarm optimization) and GA (genetic algorithm) techniques on demand estimation of oil in Iran

    Energy Technology Data Exchange (ETDEWEB)

    Assareh, E.; Behrang, M.A. [Department of Mechanical Engineering, Young Researchers Club, Islamic Azad University, Dezful Branch (Iran, Islamic Republic of); Assari, M.R. [Department of Mechanical Engineering, Engineering Faculty, Jundi Shapour University, Dezful (Iran, Islamic Republic of); Ghanbarzadeh, A. [Department of Mechanical Engineering, Engineering Faculty, Shahid Chamran University, Ahvaz (Iran, Islamic Republic of)

    2010-12-15

    This paper presents application of PSO (Particle Swarm Optimization) and GA (Genetic Algorithm) techniques to estimate oil demand in Iran, based on socio-economic indicators. The models are developed in two forms (exponential and linear) and applied to forecast oil demand in Iran. PSO-DEM and GA-DEM (PSO and GA demand estimation models) are developed to estimate the future oil demand values based on population, GDP (gross domestic product), import and export data. Oil consumption in Iran from 1981 to 2005 is considered as the case of this study. The available data is partly used for finding the optimal, or near optimal values of the weighting parameters (1981-1999) and partly for testing the models (2000-2005). For the best results of GA, the average relative errors on testing data were 2.83% and 1.72% for GA-DEM{sub exponential} and GA-DEM{sub linear}, respectively. The corresponding values for PSO were 1.40% and 1.36% for PSO-DEM{sub exponential} and PSO-DEM{sub linear}, respectively. Oil demand in Iran is forecasted up to year 2030. (author)

  1. International Conference on Frontiers of Intelligent Computing : Theory and Applications

    CERN Document Server

    Udgata, Siba; Biswal, Bhabendra

    2014-01-01

    This volume contains the papers presented at the Second International Conference on Frontiers in Intelligent Computing: Theory and Applications (FICTA-2013) held during 14-16 November 2013 organized by Bhubaneswar Engineering College (BEC), Bhubaneswar, Odisha, India. It contains 63 papers focusing on application of intelligent techniques which includes evolutionary computation techniques like genetic algorithm, particle swarm optimization techniques, teaching-learning based optimization etc  for various engineering applications such as data mining, Fuzzy systems, Machine Intelligence and ANN, Web technologies and Multimedia applications and Intelligent computing and Networking etc.

  2. Cooperative Control of Swarms of Unmanned Aerial Vehicles

    NARCIS (Netherlands)

    De Vries, E.; Subbarao, K.

    2011-01-01

    Potential function based swarm control is a technique using artificial potential functions to generate steering commands resulting in swarming behavior. This means that the vehicles in the swarm autonomously take care of flying in formation, resulting in steering the swarm, instead of all the

  3. Artificial intelligence techniques for clutter identification with polarimetric radar signatures

    Science.gov (United States)

    Islam, Tanvir; Rico-Ramirez, Miguel A.; Han, Dawei; Srivastava, Prashant K.

    2012-06-01

    The use of different artificial intelligence (AI) techniques for clutter signals identification in the context of radar based precipitation estimation is presented. The clutter signals considered are because of ground clutter, sea clutter and anomalous propagation whereas the explored AI techniques include the support vector machine (SVM), the artificial neural network (ANN), the decision tree (DT), and the nearest neighbour (NN) systems. Eight different radar measurement combinations comprising of various polarimetric spectral signatures — the reflectivity (ZH), differential reflectivity (ZDR), differential propagation phase (ΦDP), cross-correlation coefficient (ρHV), velocity (V) and spectral width (W) from a C-band polarimetric radar are taken into account as input vectors to the AI systems. The results reveal that all four AI classifiers can identify the clutter echoes with around 98-99% accuracy when all radar input signatures are used. As standalone input vectors, the polarimetric textures of the ΦDP and the ZDR have also demonstrated excellent skills distinguishing clutter echoes with an accuracy of 97-98% approximately. If no polarimetric signature is available, a combination of the texture of ZH, V and W representing typical measurements from a single-polarization Doppler radar may be used for clutter identification, but with a lower accuracy when compared to the use of polarimetric radar measurements. In contrast, the use of ZH or W alone is found less reliable for clutter classification. Among the AI techniques, the SVM has a slightly better score in terms of various clutter identification indicators as compared to the others. Conversely, the NN algorithm has shown a lower performance in identifying the clutter echoes correctly considering the standalone radar signatures as inputs. Despite this, the performance among the different AI techniques is comparable indicating the suitability of the developed systems, and this is further supported when

  4. Artificial Intelligence Techniques for Predicting and Mapping Daily Pan Evaporation

    Science.gov (United States)

    Arunkumar, R.; Jothiprakash, V.; Sharma, Kirty

    2017-08-01

    In this study, Artificial Intelligence techniques such as Artificial Neural Network (ANN), Model Tree (MT) and Genetic Programming (GP) are used to develop daily pan evaporation time-series (TS) prediction and cause-effect (CE) mapping models. Ten years of observed daily meteorological data such as maximum temperature, minimum temperature, relative humidity, sunshine hours, dew point temperature and pan evaporation are used for developing the models. For each technique, several models are developed by changing the number of inputs and other model parameters. The performance of each model is evaluated using standard statistical measures such as Mean Square Error, Mean Absolute Error, Normalized Mean Square Error and correlation coefficient (R). The results showed that daily TS-GP (4) model predicted better with a correlation coefficient of 0.959 than other TS models. Among various CE models, CE-ANN (6-10-1) resulted better than MT and GP models with a correlation coefficient of 0.881. Because of the complex non-linear inter-relationship among various meteorological variables, CE mapping models could not achieve the performance of TS models. From this study, it was found that GP performs better for recognizing single pattern (time series modelling), whereas ANN is better for modelling multiple patterns (cause-effect modelling) in the data.

  5. Artificial Intelligence Techniques for Predicting and Mapping Daily Pan Evaporation

    Science.gov (United States)

    Arunkumar, R.; Jothiprakash, V.; Sharma, Kirty

    2017-09-01

    In this study, Artificial Intelligence techniques such as Artificial Neural Network (ANN), Model Tree (MT) and Genetic Programming (GP) are used to develop daily pan evaporation time-series (TS) prediction and cause-effect (CE) mapping models. Ten years of observed daily meteorological data such as maximum temperature, minimum temperature, relative humidity, sunshine hours, dew point temperature and pan evaporation are used for developing the models. For each technique, several models are developed by changing the number of inputs and other model parameters. The performance of each model is evaluated using standard statistical measures such as Mean Square Error, Mean Absolute Error, Normalized Mean Square Error and correlation coefficient (R). The results showed that daily TS-GP (4) model predicted better with a correlation coefficient of 0.959 than other TS models. Among various CE models, CE-ANN (6-10-1) resulted better than MT and GP models with a correlation coefficient of 0.881. Because of the complex non-linear inter-relationship among various meteorological variables, CE mapping models could not achieve the performance of TS models. From this study, it was found that GP performs better for recognizing single pattern (time series modelling), whereas ANN is better for modelling multiple patterns (cause-effect modelling) in the data.

  6. Inter-cooperative collective intelligence techniques and applications

    CERN Document Server

    Bessis, Nik

    2014-01-01

    This book covers the latest advances in the rapid growing field of inter-cooperative collective intelligence aiming the integration and cooperation of various computational resources, networks and intelligent processing paradigms to collectively build intelligence and advanced decision support and interfaces for end-users. The book brings a comprehensive view of the state-of-the-art in the field of integration of sensor networks, IoT and Cloud computing, massive and intelligent querying and processing of data. As a result, the book presents lessons learned so far and identifies new research issues, challenges and opportunities for further research and development agendas. Emerging areas of applications are also identified and usefulness of inter-cooperative collective intelligence is envisaged.   Researchers, software developers, practitioners and students interested in the field of inter-cooperative collective intelligence will find the comprehensive coverage of this book useful for their research, academic...

  7. Particle Swarm and Ant Colony Approaches in Multiobjective Optimization

    Science.gov (United States)

    Rao, S. S.

    2010-10-01

    The social behavior of groups of birds, ants, insects and fish has been used to develop evolutionary algorithms known as swarm intelligence techniques for solving optimization problems. This work presents the development of strategies for the application of two of the popular swarm intelligence techniques, namely the particle swarm and ant colony methods, for the solution of multiobjective optimization problems. In a multiobjective optimization problem, the objectives exhibit a conflicting nature and hence no design vector can minimize all the objectives simultaneously. The concept of Pareto-optimal solution is used in finding a compromise solution. A modified cooperative game theory approach, in which each objective is associated with a different player, is used in this work. The applicability and computational efficiencies of the proposed techniques are demonstrated through several illustrative examples involving unconstrained and constrained problems with single and multiple objectives and continuous and mixed design variables. The present methodologies are expected to be useful for the solution of a variety of practical continuous and mixed optimization problems involving single or multiple objectives with or without constraints.

  8. Self-consistency of electron-THF cross sections using electron swarm techniques

    Science.gov (United States)

    Casey, M. J. E.; de Urquijo, J.; Serkovic Loli, L. N.; Cocks, D. G.; Boyle, G. J.; Jones, D. B.; Brunger, M. J.; White, R. D.

    2017-11-01

    The drift velocity and first Townsend ionization coefficient of electrons in gaseous tetrahydrofuran are measured over the range of reduced electric fields 4-1000 Td using a pulsed-Townsend technique. The measured drift velocities and Townsend ionization coefficients are subsequently used, in conjunction with a multi-term Boltzmann equation analysis, as a further discriminative assessment on the accuracy and completeness of a recently proposed set of electron-THF vapor cross sections. In addition, the sensitivity of the transport coefficients to uncertainties in the existing cross sections is presented. As a result of that analysis, a refinement of the momentum transfer cross section for electron-THF scattering is presented, along with modifications to the neutral dissociation and dissociative electron attachment cross sections. With these changes to the cross section database, we find relatively good self-consistency between the measured and simulated drift velocities and Townsend coefficients.

  9. APPLICATION OF ARTIFICIAL INTELLIGENCE TECHNIQUES IN PROCESS FAULT DIAGNOSIS

    Directory of Open Access Journals (Sweden)

    M.A. HUSSAIN

    2007-12-01

    Full Text Available Chemical processes are systems that include complicated network of material, energy and process flow. As time passes, the performance of chemical process gradually degrades due to the deterioration of process equipments and components. The early detection and diagnosis of faults in chemical processes is very important both from the viewpoint of plant safety as well as reduced manufacturing costs. The conventional way used in fault detection and diagnosis is through the use of models of the process, which is not easy to be achieved in many cases. In recent years, an artificial intelligence technique such as neural network has been successfully used for pattern recognition and as such it can be suitable for use in fault diagnosis of processes [1]. The application of neural network methods in process fault detection and diagnosis is demonstrated in this work in two case studies using simulated chemical plant systems. Both systems were successfully diagnosed of the faults introduced in them. The neural networks were able to generalise to successfully diagnosed fault combinations it was not explicitly trained upon. Thus, neural network can be fully applied in industries as it has shown several advantages over the conventional way in fault diagnosis.

  10. Applications of computational intelligence techniques for solving the revived optimal power flow problem

    Energy Technology Data Exchange (ETDEWEB)

    AlRashidi, M.R. [Electrical Engineering Department, College of Technological Studies, Shuwaikh (Kuwait); El-Hawary, M.E. [Department of Electrical and Computer Engineering, Dalhousie University, Halifax, NS B3J 2X4 (Canada)

    2009-04-15

    Computational intelligence tools are attracting added attention in different research areas and research in power systems is not different. This paper provides an overview of major computational issues with regard to the optimal power flow (OPF). Then, it offers a brief summary of major computational intelligence tools. A detailed coverage of most OPF related research work that make use of modern computational intelligence techniques is presented next. (author)

  11. Fractional order Darwinian particle swarm optimization applications and evaluation of an evolutionary algorithm

    CERN Document Server

    Couceiro, Micael

    2015-01-01

    This book examines the bottom-up applicability of swarm intelligence to solving multiple problems, such as curve fitting, image segmentation, and swarm robotics. It compares the capabilities of some of the better-known bio-inspired optimization approaches, especially Particle Swarm Optimization (PSO), Darwinian Particle Swarm Optimization (DPSO) and the recently proposed Fractional Order Darwinian Particle Swarm Optimization (FODPSO), and comprehensively discusses their advantages and disadvantages. Further, it demonstrates the superiority and key advantages of using the FODPSO algorithm, suc

  12. Measured Effects of Provocation and Emotional Mastery Techniques in Fostering Emotional Intelligence among Nigerian Adolescents

    Science.gov (United States)

    Ogunyemi, Ajibola Olusoga

    2008-01-01

    Introduction: This study investigated the effects of provocation and emotional mastery programmes at fostering emotional intelligence of Nigerian adolescents. The study also aimed to establish whether gender will moderate the effects of the two techniques on emotional intelligence skills of adolescents. Method: The study employed a…

  13. Swarm robotics and minimalism

    Science.gov (United States)

    Sharkey, Amanda J. C.

    2007-09-01

    Swarm Robotics (SR) is closely related to Swarm Intelligence, and both were initially inspired by studies of social insects. Their guiding principles are based on their biological inspiration and take the form of an emphasis on decentralized local control and communication. Earlier studies went a step further in emphasizing the use of simple reactive robots that only communicate indirectly through the environment. More recently SR studies have moved beyond these constraints to explore the use of non-reactive robots that communicate directly, and that can learn and represent their environment. There is no clear agreement in the literature about how far such extensions of the original principles could go. Should there be any limitations on the individual abilities of the robots used in SR studies? Should knowledge of the capabilities of social insects lead to constraints on the capabilities of individual robots in SR studies? There is a lack of explicit discussion of such questions, and researchers have adopted a variety of constraints for a variety of reasons. A simple taxonomy of swarm robotics is presented here with the aim of addressing and clarifying these questions. The taxonomy distinguishes subareas of SR based on the emphases and justifications for minimalism and individual simplicity.

  14. artificial intelligenCE planning techniques FOR ADAPTIVE VIRTUAL COURSE construction

    National Research Council Canada - National Science Library

    NÉSTOR DARÍO DUQUE; DEMETRIO ARTURO OVALLE

    2011-01-01

      This paper aims at presenting a planning model for adapting the behavior of virtual courses based on artificial intelligence techniques, in particular using not only a multi-agent system approach...

  15. Prediction of coal grindability based on petrography, proximate and ultimate analysis using neural networks and particle swarm optimization technique

    Energy Technology Data Exchange (ETDEWEB)

    Modarres, Hamid Reza; Kor, Mohammad; Abkhoshk, Emad; Alfi, Alireza; Lower, James C.

    2009-06-15

    In recent years, use of artificial neural networks have increased for estimation of Hardgrove grindability index (HGI) of coals. For training of the neural networks, gradient descent methods such as Backpropagaition (BP) method are used frequently. However they originally showed good performance in some non-linearly separable problems, but have a very slow convergence and can get stuck in local minima. In this paper, to overcome the lack of gradient descent methods, a novel particle swarm optimization and artificial neural network was employed for predicting the HGI of Kentucky coals by featuring eight coal parameters. The proposed approach also compared with two kinds of artificial neural network (generalized regression neural network and back propagation neural network). Results indicate that the neural networks - particle swarm optimization method gave the most accurate HGI prediction.

  16. Assessing the Value of Structured Analytic Techniques in the U.S. Intelligence Community

    Science.gov (United States)

    2016-01-01

    to assess whether SATs in general or specific SATs are improving the quality of analysis. One primarily qualitative method of evaluating these...assessing these techniques would be to initiate qualitative reviews of their contribu- tion in bodies of intelligence production on a variety of topics...Analytic Techniques, and Why Do Analysts Use Them? SATs are methods of organizing and stimulating thinking about intelligence problems. These methods

  17. Celestial Navigation Fix Based on Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Tsou Ming-Cheng

    2015-09-01

    Full Text Available A technique for solving celestial fix problems is proposed in this study. This method is based on Particle Swarm Optimization from the field of swarm intelligence, utilizing its superior optimization and searching abilities to obtain the most probable astronomical vessel position. In addition to being applicable to two-body fix, multi-body fix, and high-altitude observation problems, it is also less reliant on the initial dead reckoning position. Moreover, by introducing spatial data processing and display functions in a Geographical Information System, calculation results and chart work used in Circle of Position graphical positioning can both be integrated. As a result, in addition to avoiding tedious and complicated computational and graphical procedures, this work has more flexibility and is more robust when compared to other analytical approaches.

  18. Design optimum frac jobs using virtual intelligence techniques

    Science.gov (United States)

    Mohaghegh, Shahab; Popa, Andrei; Ameri, Sam

    2000-10-01

    Designing optimal frac jobs is a complex and time-consuming process. It usually involves the use of a two- or three-dimensional computer model. For the computer models to perform as intended, a wealth of input data is required. The input data includes wellbore configuration and reservoir characteristics such as porosity, permeability, stress and thickness profiles of the pay layers as well as the overburden layers. Among other essential information required for the design process is fracturing fluid type and volume, proppant type and volume, injection rate, proppant concentration and frac job schedule. Some of the parameters such as fluid and proppant types have discrete possible choices. Other parameters such as fluid and proppant volume, on the other hand, assume values from within a range of minimum and maximum values. A potential frac design for a particular pay zone is a combination of all of these parameters. Finding the optimum combination is not a trivial process. It usually requires an experienced engineer and a considerable amount of time to tune the parameters in order to achieve desirable outcome. This paper introduces a new methodology that integrates two virtual intelligence techniques, namely, artificial neural networks and genetic algorithms to automate and simplify the optimum frac job design process. This methodology requires little input from the engineer beyond the reservoir characterizations and wellbore configuration. The software tool that has been developed based on this methodology uses the reservoir characteristics and an optimization criteria indicated by the engineer, for example a certain propped frac length, and provides the detail of the optimum frac design that will result in the specified criteria. An ensemble of neural networks is trained to mimic the two- or three-dimensional frac simulator. Once successfully trained, these networks are capable of providing instantaneous results in response to any set of input parameters. These

  19. Hacking web intelligence open source intelligence and web reconnaissance concepts and techniques

    CERN Document Server

    Chauhan, Sudhanshu

    2015-01-01

    Open source intelligence (OSINT) and web reconnaissance are rich topics for infosec professionals looking for the best ways to sift through the abundance of information widely available online. In many cases, the first stage of any security assessment-that is, reconnaissance-is not given enough attention by security professionals, hackers, and penetration testers. Often, the information openly present is as critical as the confidential data. Hacking Web Intelligence shows you how to dig into the Web and uncover the information many don't even know exists. The book takes a holistic approach

  20. Seismic activity prediction using computational intelligence techniques in northern Pakistan

    Science.gov (United States)

    Asim, Khawaja M.; Awais, Muhammad; Martínez-Álvarez, F.; Iqbal, Talat

    2017-10-01

    Earthquake prediction study is carried out for the region of northern Pakistan. The prediction methodology includes interdisciplinary interaction of seismology and computational intelligence. Eight seismic parameters are computed based upon the past earthquakes. Predictive ability of these eight seismic parameters is evaluated in terms of information gain, which leads to the selection of six parameters to be used in prediction. Multiple computationally intelligent models have been developed for earthquake prediction using selected seismic parameters. These models include feed-forward neural network, recurrent neural network, random forest, multi layer perceptron, radial basis neural network, and support vector machine. The performance of every prediction model is evaluated and McNemar's statistical test is applied to observe the statistical significance of computational methodologies. Feed-forward neural network shows statistically significant predictions along with accuracy of 75% and positive predictive value of 78% in context of northern Pakistan.

  1. Seismic activity prediction using computational intelligence techniques in northern Pakistan

    Science.gov (United States)

    Asim, Khawaja M.; Awais, Muhammad; Martínez-Álvarez, F.; Iqbal, Talat

    2017-09-01

    Earthquake prediction study is carried out for the region of northern Pakistan. The prediction methodology includes interdisciplinary interaction of seismology and computational intelligence. Eight seismic parameters are computed based upon the past earthquakes. Predictive ability of these eight seismic parameters is evaluated in terms of information gain, which leads to the selection of six parameters to be used in prediction. Multiple computationally intelligent models have been developed for earthquake prediction using selected seismic parameters. These models include feed-forward neural network, recurrent neural network, random forest, multi layer perceptron, radial basis neural network, and support vector machine. The performance of every prediction model is evaluated and McNemar's statistical test is applied to observe the statistical significance of computational methodologies. Feed-forward neural network shows statistically significant predictions along with accuracy of 75% and positive predictive value of 78% in context of northern Pakistan.

  2. Artificial Intelligence Techniques for Controlling Spacecraft Power System

    OpenAIRE

    Hanaa T. El-Madany; Faten H. Fahmy; Ninet M. A. El-Rahman; Hassen T. Dorrah

    2011-01-01

    Advancements in the field of artificial intelligence (AI) made during this decade have forever changed the way we look at automating spacecraft subsystems including the electrical power system. AI have been used to solve complicated practical problems in various areas and are becoming more and more popular nowadays. In this paper, a mathematical modeling and MATLAB–SIMULINK model for the different components of the spacecraft power system is presented. Also, a control sys...

  3. Color Regeneration from Reflective Color Sensor Using an Artificial Intelligent Technique

    OpenAIRE

    Hayriye Altural; Ömer Galip Saracoglu

    2010-01-01

    A low-cost optical sensor based on reflective color sensing is presented. Artificial neural network models are used to improve the color regeneration from the sensor signals. Analog voltages of the sensor are successfully converted to RGB colors. The artificial intelligent models presented in this work enable color regeneration from analog outputs of the color sensor. Besides, inverse modeling supported by an intelligent technique enables the sensor probe for use of a colorimetric sensor that...

  4. Color regeneration from reflective color sensor using an artificial intelligent technique.

    Science.gov (United States)

    Saracoglu, Ömer Galip; Altural, Hayriye

    2010-01-01

    A low-cost optical sensor based on reflective color sensing is presented. Artificial neural network models are used to improve the color regeneration from the sensor signals. Analog voltages of the sensor are successfully converted to RGB colors. The artificial intelligent models presented in this work enable color regeneration from analog outputs of the color sensor. Besides, inverse modeling supported by an intelligent technique enables the sensor probe for use of a colorimetric sensor that relates color changes to analog voltages.

  5. Fuzzy forecasting based on two-factors second-order fuzzy-trend logical relationship groups and particle swarm optimization techniques.

    Science.gov (United States)

    Chen, Shyi-Ming; Manalu, Gandhi Maruli Tua; Pan, Jeng-Shyang; Liu, Hsiang-Chuan

    2013-06-01

    In this paper, we present a new method for fuzzy forecasting based on two-factors second-order fuzzy-trend logical relationship groups and particle swarm optimization (PSO) techniques. First, we fuzzify the historical training data of the main factor and the secondary factor, respectively, to form two-factors second-order fuzzy logical relationships. Then, we group the two-factors second-order fuzzy logical relationships into two-factors second-order fuzzy-trend logical relationship groups. Then, we obtain the optimal weighting vector for each fuzzy-trend logical relationship group by using PSO techniques to perform the forecasting. We also apply the proposed method to forecast the Taiwan Stock Exchange Capitalization Weighted Stock Index and the NTD/USD exchange rates. The experimental results show that the proposed method gets better forecasting performance than the existing methods.

  6. Swarm Optimization Methods in Microwave Imaging

    Directory of Open Access Journals (Sweden)

    Andrea Randazzo

    2012-01-01

    Full Text Available Swarm intelligence denotes a class of new stochastic algorithms inspired by the collective social behavior of natural entities (e.g., birds, ants, etc.. Such approaches have been proven to be quite effective in several applicative fields, ranging from intelligent routing to image processing. In the last years, they have also been successfully applied in electromagnetics, especially for antenna synthesis, component design, and microwave imaging. In this paper, the application of swarm optimization methods to microwave imaging is discussed, and some recent imaging approaches based on such methods are critically reviewed.

  7. Intelligent manipulation technique for multi-branch robotic systems

    Science.gov (United States)

    Chen, Alexander Y. K.; Chen, Eugene Y. S.

    1990-01-01

    New analytical development in kinematics planning is reported. The INtelligent KInematics Planner (INKIP) consists of the kinematics spline theory and the adaptive logic annealing process. Also, a novel framework of robot learning mechanism is introduced. The FUzzy LOgic Self Organized Neural Networks (FULOSONN) integrates fuzzy logic in commands, control, searching, and reasoning, the embedded expert system for nominal robotics knowledge implementation, and the self organized neural networks for the dynamic knowledge evolutionary process. Progress on the mechanical construction of SRA Advanced Robotic System (SRAARS) and the real time robot vision system is also reported. A decision was made to incorporate the Local Area Network (LAN) technology in the overall communication system.

  8. Artificial intelligence techniques for automatic screening of amblyogenic factors.

    Science.gov (United States)

    Van Eenwyk, Jonathan; Agah, Arvin; Giangiacomo, Joseph; Cibis, Gerhard

    2008-01-01

    To develop a low-cost automated video system to effectively screen children aged 6 months to 6 years for amblyogenic factors. In 1994 one of the authors (G.C.) described video vision development assessment, a digitizable analog video-based system combining Brückner pupil red reflex imaging and eccentric photorefraction to screen young children for amblyogenic factors. The images were analyzed manually with this system. We automated the capture of digital video frames and pupil images and applied computer vision and artificial intelligence to analyze and interpret results. The artificial intelligence systems were evaluated by a tenfold testing method. The best system was the decision tree learning approach, which had an accuracy of 77%, compared to the "gold standard" specialist examination with a "refer/do not refer" decision. Criteria for referral were strabismus, including microtropia, and refractive errors and anisometropia considered to be amblyogenic. Eighty-two percent of strabismic individuals were correctly identified. High refractive errors were also correctly identified and referred 90% of the time, as well as significant anisometropia. The program was less correct in identifying more moderate refractive errors, below +5 and less than -7. Although we are pursuing a variety of avenues to improve the accuracy of the automated analysis, the program in its present form provides acceptable cost benefits for detecting ambylogenic factors in children aged 6 months to 6 years.

  9. Merging the fields of swarm robotics and new media: Perceiving swarm robotics as new media

    Directory of Open Access Journals (Sweden)

    Monika O. Ivanova

    2014-06-01

    Full Text Available The aim of this paper is to provide evidence that swarm robotic systems can be perceived as new media objects. A thorough description of the five principles of new media proposed by Lev Manovich in “The Language of New Media” is presented. This is complemented by a state of the art on swarm robotics with an in-depth comparison of the characteristics of both fields. Also presented are examples of swarm robotics used in new media installations in order to illustrate the cutting-edge applications of robotics and artificial intelligence achieved through the unity of bothfields. The hypothesis of this research is that a novel point of view would be introduced by examining the field of swarm robotics through the scope of new media, which would benefit thework of both new media and swarm robotic researchers.

  10. Particle swarm optimization with random keys applied to the nuclear reactor reload problem

    Energy Technology Data Exchange (ETDEWEB)

    Meneses, Anderson Alvarenga de Moura [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE). Programa de Engenharia Nuclear; Fundacao Educacional de Macae (FUNEMAC), RJ (Brazil). Faculdade Professor Miguel Angelo da Silva Santos; Machado, Marcelo Dornellas; Medeiros, Jose Antonio Carlos Canedo; Schirru, Roberto [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE). Programa de Engenharia Nuclear]. E-mails: ameneses@con.ufrj.br; marcelo@lmp.ufrj.br; canedo@lmp.ufrj.br; schirru@lmp.ufrj.br

    2007-07-01

    In 1995, Kennedy and Eberhart presented the Particle Swarm Optimization (PSO), an Artificial Intelligence metaheuristic technique to optimize non-linear continuous functions. The concept of Swarm Intelligence is based on the socials aspects of intelligence, it means, the ability of individuals to learn with their own experience in a group as well as to take advantage of the performance of other individuals. Some PSO models for discrete search spaces have been developed for combinatorial optimization, although none of them presented satisfactory results to optimize a combinatorial problem as the nuclear reactor fuel reloading problem (NRFRP). In this sense, we developed the Particle Swarm Optimization with Random Keys (PSORK) in previous research to solve Combinatorial Problems. Experiences demonstrated that PSORK performed comparable to or better than other techniques. Thus, PSORK metaheuristic is being applied in optimization studies of the NRFRP for Angra 1 Nuclear Power Plant. Results will be compared with Genetic Algorithms and the manual method provided by a specialist. In this experience, the problem is being modeled for an eight-core symmetry and three-dimensional geometry, aiming at the minimization of the Nuclear Enthalpy Power Peaking Factor as well as the maximization of the cycle length. (author)

  11. Swarm Robot Systems Based on the Evolution of Personality Traits

    OpenAIRE

    Jr., Sidney Nascimento GIVIGI; SCHWARTZ, Howard M.

    2007-01-01

    Game theory may be very useful in modeling and analyzing swarms of robots. Using game theory in conjunction with traits of personalities, we achieve intelligent swarm robots. Traits of personality are characteristics of each robot that define the robots' behaviours. The environment is represented as a game and due to the evolution of the traits through a learning process, we show how the robots may react intelligently to changes in the environment. A proof of convergence f...

  12. Intrusion Detection Systems Based on Artificial Intelligence Techniques in Wireless Sensor Networks

    OpenAIRE

    Nabil Ali Alrajeh; Lloret, J.

    2013-01-01

    Intrusion detection system (IDS) is regarded as the second line of defense against network anomalies and threats. IDS plays an important role in network security. There are many techniques which are used to design IDSs for specific scenario and applications. Artificial intelligence techniques are widely used for threats detection. This paper presents a critical study on genetic algorithm, artificial immune, and artificial neural network (ANN) based IDSs techniques used in wireless sensor netw...

  13. Advances in Intelligent Modelling and Simulation Artificial Intelligence-Based Models and Techniques in Scalable Computing

    CERN Document Server

    Khan, Samee; Burczy´nski, Tadeusz

    2012-01-01

    One of the most challenging issues in today’s large-scale computational modeling and design is to effectively manage the complex distributed environments, such as computational clouds, grids, ad hoc, and P2P networks operating under  various  types of users with evolving relationships fraught with  uncertainties. In this context, the IT resources and services usually belong to different owners (institutions, enterprises, or individuals) and are managed by different administrators. Moreover, uncertainties are presented to the system at hand in various forms of information that are incomplete, imprecise, fragmentary, or overloading, which hinders in the full and precise resolve of the evaluation criteria, subsequencing and selection, and the assignment scores. Intelligent scalable systems enable the flexible routing and charging, advanced user interactions and the aggregation and sharing of geographically-distributed resources in modern large-scale systems.   This book presents new ideas, theories, models...

  14. Comparison of Artificial Intelligence Techniques for river flow forecasting

    Science.gov (United States)

    Firat, M.

    2008-01-01

    The use of Artificial Intelligence methods is becoming increasingly common in the modeling and forecasting of hydrological and water resource processes. In this study, applicability of Adaptive Neuro Fuzzy Inference System (ANFIS) and Artificial Neural Network (ANN) methods, Generalized Regression Neural Networks (GRNN) and Feed Forward Neural Networks (FFNN), and Auto-Regressive (AR) models for forecasting of daily river flow is investigated and Seyhan River and Cine River was chosen as case study area. For the Seyhan River, the forecasting models are established using combinations of antecedent daily river flow records. On the other hand, for the Cine River, daily river flow and rainfall records are used in input layer. For both stations, the data sets are divided into three subsets, training, testing and verification data set. The river flow forecasting models having various input structures are trained and tested to investigate the applicability of ANFIS and ANN and AR methods. The results of all models for both training and testing are evaluated and the best fit input structures and methods for both stations are determined according to criteria of performance evaluation. Moreover the best fit forecasting models are also verified by verification set which was not used in training and testing processes and compared according to criteria. The results demonstrate that ANFIS model is superior to the GRNN and FFNN forecasting models, and ANFIS can be successfully applied and provide high accuracy and reliability for daily river flow forecasting.

  15. Comparison of Artificial Intelligence Techniques for river flow forecasting

    Directory of Open Access Journals (Sweden)

    M. Firat

    2008-01-01

    Full Text Available The use of Artificial Intelligence methods is becoming increasingly common in the modeling and forecasting of hydrological and water resource processes. In this study, applicability of Adaptive Neuro Fuzzy Inference System (ANFIS and Artificial Neural Network (ANN methods, Generalized Regression Neural Networks (GRNN and Feed Forward Neural Networks (FFNN, and Auto-Regressive (AR models for forecasting of daily river flow is investigated and Seyhan River and Cine River was chosen as case study area. For the Seyhan River, the forecasting models are established using combinations of antecedent daily river flow records. On the other hand, for the Cine River, daily river flow and rainfall records are used in input layer. For both stations, the data sets are divided into three subsets, training, testing and verification data set. The river flow forecasting models having various input structures are trained and tested to investigate the applicability of ANFIS and ANN and AR methods. The results of all models for both training and testing are evaluated and the best fit input structures and methods for both stations are determined according to criteria of performance evaluation. Moreover the best fit forecasting models are also verified by verification set which was not used in training and testing processes and compared according to criteria. The results demonstrate that ANFIS model is superior to the GRNN and FFNN forecasting models, and ANFIS can be successfully applied and provide high accuracy and reliability for daily river flow forecasting.

  16. Intelligence.

    Science.gov (United States)

    Sternberg, Robert J

    2012-09-01

    Intelligence is the ability to learn from past experience and, in general, to adapt to, shape, and select environments. Aspects of intelligence are measured by standardized tests of intelligence. Average raw (number-correct) scores on such tests vary across the life span and also across generations, as well as across ethnic and socioeconomic groups. Intelligence can be understood in part in terms of the biology of the brain-especially with regard to the functioning in the prefrontal cortex. Measured values correlate with brain size, at least within humans. The heritability coefficient (ratio of genetic to phenotypic variation) is between 0.4 and 0.8. But genes always express themselves through environment. Heritability varies as a function of a number of factors, including socioeconomic status and range of environments. Racial-group differences in measured intelligence have been reported, but race is a socially constructed rather than biological variable. As a result, these differences are difficult to interpret. Different cultures have different conceptions of the nature of intelligence, and also require different skills in order to express intelligence in the environment. WIREs Cogn Sci 2012 doi: 10.1002/wcs.1193 For further resources related to this article, please visit the WIREs website. Copyright © 2012 John Wiley & Sons, Ltd.

  17. Using Game Theory Techniques and Concepts to Develop Proprietary Models for Use in Intelligent Games

    Science.gov (United States)

    Christopher, Timothy Van

    2011-01-01

    This work is about analyzing games as models of systems. The goal is to understand the techniques that have been used by game designers in the past, and to compare them to the study of mathematical game theory. Through the study of a system or concept a model often emerges that can effectively educate students about making intelligent decisions…

  18. Crude oil price forecasting based on hybridizing wavelet multiple linear regression model, particle swarm optimization techniques, and principal component analysis.

    Science.gov (United States)

    Shabri, Ani; Samsudin, Ruhaidah

    2014-01-01

    Crude oil prices do play significant role in the global economy and are a key input into option pricing formulas, portfolio allocation, and risk measurement. In this paper, a hybrid model integrating wavelet and multiple linear regressions (MLR) is proposed for crude oil price forecasting. In this model, Mallat wavelet transform is first selected to decompose an original time series into several subseries with different scale. Then, the principal component analysis (PCA) is used in processing subseries data in MLR for crude oil price forecasting. The particle swarm optimization (PSO) is used to adopt the optimal parameters of the MLR model. To assess the effectiveness of this model, daily crude oil market, West Texas Intermediate (WTI), has been used as the case study. Time series prediction capability performance of the WMLR model is compared with the MLR, ARIMA, and GARCH models using various statistics measures. The experimental results show that the proposed model outperforms the individual models in forecasting of the crude oil prices series.

  19. Landau Theory of Adaptive Integration in Computational Intelligence

    CERN Document Server

    Plewczynski, Dariusz

    2010-01-01

    Computational Intelligence (CI) is a sub-branch of Artificial Intelligence paradigm focusing on the study of adaptive mechanisms to enable or facilitate intelligent behavior in complex and changing environments. There are several paradigms of CI [like artificial neural networks, evolutionary computations, swarm intelligence, artificial immune systems, fuzzy systems and many others], each of these has its origins in biological systems [biological neural systems, natural Darwinian evolution, social behavior, immune system, interactions of organisms with their environment]. Most of those paradigms evolved into separate machine learning (ML) techniques, where probabilistic methods are used complementary with CI techniques in order to effectively combine elements of learning, adaptation, evolution and Fuzzy logic to create heuristic algorithms that are, in some sense, intelligent. The current trend is to develop consensus techniques, since no single machine learning algorithms is superior to others in all possible...

  20. Intelligence

    Science.gov (United States)

    Sternberg, Robert J.

    2012-01-01

    Intelligence is the ability to learn from experience and to adapt to, shape, and select environments. Intelligence as measured by (raw scores on) conventional standardized tests varies across the lifespan, and also across generations. Intelligence can be understood in part in terms of the biology of the brain—especially with regard to the functioning in the prefrontal cortex—and also correlates with brain size, at least within humans. Studies of the effects of genes and environment suggest that the heritability coefficient (ratio of genetic to phenotypic variation) is between .4 and .8, although heritability varies as a function of socioeconomic status and other factors. Racial differences in measured intelligence have been observed, but race is a socially constructed rather than biological variable, so such differences are difficult to interpret. PMID:22577301

  1. Intelligence.

    Science.gov (United States)

    Sternberg, Robert J

    2012-03-01

    Intelligence is the ability to learn from experience and to adapt to, shape, and select environments. Intelligence as measured by (raw scores on) conventional standardized tests varies across the lifespan, and also across generations. Intelligence can be understood in part in terms of the biology of the brain-especially with regard to the functioning in the prefrontal cortex-and also correlates with brain size, at least within humans. Studies of the effects of genes and environment suggest that the heritability coefficient (ratio of genetic to phenotypic variation) is between .4 and .8, although heritability varies as a function of socioeconomic status and other factors. Racial differences in measured intelligence have been observed, but race is a socially constructed rather than biological variable, so such differences are difficult to interpret.

  2. A scoping study of intelligent databases: Potential applications of artificial intelligence techniques in a demand-side management database: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Howard, H.C.; Pachavis, N.L.; Talukdar, S.N.; Fenves, S.J.; Rehak, D.R.

    1986-11-01

    Aggregate databases of demand-side management (DSM) information are approaching a third stage of evolution. The first readily-available compilations of DSM information were in printed form. In the second (and current) stage of the development of DSM databases, the techniques of conventional database management systems (DBMSs) are being used to provide on-line reference databases. With the development of artificial intelligence (AI) techniques for information retrieval and extraction, it is now becoming possible to construct intelligent databases of DSM information. This report examines the available artificial intelligence techniques in the areas of database management and information retrieval for their applicability to the development of an intelligent information center for demand-side management. 53 refs., 3 figs.

  3. ON THE PREDICTION OF CHAOTIC DYNAMICS WITH ARTIFICIAL INTELLIGENCE TECHNIQUES

    OpenAIRE

    CIOBANU DUMITRU

    2012-01-01

    Because of sensitive dependence on initial conditions (SDIC), characteristic to chaotic systems, the prediction of such system can be made with an accepted accuracy only for relatively small number of steps ahead. Using artificial techniques like neural networks and support vector machine to predict chaotic dynamics present advantages over traditional methods and usually they offers better results. In this paper, I highlight some of these advantages.

  4. Optimization of brushless direct current motor design using an intelligent technique.

    Science.gov (United States)

    Shabanian, Alireza; Tousiwas, Armin Amini Poustchi; Pourmandi, Massoud; Khormali, Aminollah; Ataei, Abdolhay

    2015-07-01

    This paper presents a method for the optimal design of a slotless permanent magnet brushless DC (BLDC) motor with surface mounted magnets using an improved bee algorithm (IBA). The characteristics of the motor are expressed as functions of motor geometries. The objective function is a combination of losses, volume and cost to be minimized simultaneously. This method is based on the capability of swarm-based algorithms in finding the optimal solution. One sample case is used to illustrate the performance of the design approach and optimization technique. The IBA has a better performance and speed of convergence compared with bee algorithm (BA). Simulation results show that the proposed method has a very high/efficient performance. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  5. Locating multiple optima using particle swarm optimization

    CSIR Research Space (South Africa)

    Brits, R

    2007-01-01

    Full Text Available Many scientific and engineering applications require optimization methods to find more than one solution to multimodal optimization problems. This paper presents a new particle swarm optimization (PSO) technique to locate and refine multiple...

  6. ATC enhancement using TCSC via artificial intelligent techniques

    Energy Technology Data Exchange (ETDEWEB)

    Rashidinejad, M.; Gharaveisi, A.A. [Department of Electrical Engineering, Shahid Bahonar University of Kerman, Kerman (Iran); Farahmand, H. [International Research Center for Science and Technology, Mahan (Iran); Fotuhi-Firuzabad, M. [Department of Electrical Engineering, Sharif University of Technology, Azadi Ave., Tehran (Iran)

    2008-01-15

    Procurement of optimum available transfer capability (ATC) in the restructured electricity industry is a crucial challenge with regards to open access to transmission network. This paper presents an approach to determine the optimum location and optimum capacity of TCSC in order to improve ATC as well as voltage profile. Real genetic algorithm (RGA) associated with analytical hierarchy process (AHP) and fuzzy sets are implemented as a hybrid heuristic technique in this paper to optimize such a complicated problem. The effectiveness of the proposed methodology is examined through different case studies. (author)

  7. International Conference on Frontiers of Intelligent Computing : Theory and Applications

    CERN Document Server

    Udgata, Siba; Biswal, Bhabendra

    2013-01-01

    The volume contains the papers presented at FICTA 2012: International Conference on Frontiers in Intelligent Computing: Theory and Applications held on December 22-23, 2012 in Bhubaneswar engineering College, Bhubaneswar, Odissa, India. It contains 86 papers contributed by authors from the globe. These research papers mainly focused on application of intelligent techniques which includes evolutionary computation techniques like genetic algorithm, particle swarm optimization techniques, teaching-learning based optimization etc  for various engineering applications such as data mining, image processing, cloud computing, networking etc.

  8. Plagiarism Detection Using Artificial Intelligence Technique In Multiple Files

    Directory of Open Access Journals (Sweden)

    Mausumi Sahu

    2015-08-01

    Full Text Available Plagiarism relates to the act of taking information or ideas of someone else and demand it as your own. Basically it reproduce the existing information in modified format. In every field of education it becomes a serious issue. Various techniques and tools are derived these days to detect plagiarism. Various types of plagiarism are there like text matching copy paste grammar based method etc.This paper proposes a new method implemented in a program where we utilise a text set to identify the copied part by comparing with some existing multiple files. Here we put the concept of a machine learning language i.e k-NN. It helps us to identify whether a paper is plagiarized or not.

  9. Automatic Satellite Telemetry Analysis for SSA using Artificial Intelligence Techniques

    Science.gov (United States)

    Stottler, R.; Mao, J.

    In April 2016, General Hyten, commander of Air Force Space Command, announced the Space Enterprise Vision (SEV) (http://www.af.mil/News/Article-Display/Article/719941/hyten-announces-space-enterprise-vision/). The SEV addresses increasing threats to space-related systems. The vision includes an integrated approach across all mission areas (communications, positioning, navigation and timing, missile warning, and weather data) and emphasizes improved access to data across the entire enterprise and the ability to protect space-related assets and capabilities. "The future space enterprise will maintain our nation's ability to deliver critical space effects throughout all phases of conflict," Hyten said. Satellite telemetry is going to become available to a new audience. While that telemetry information should be valuable for achieving Space Situational Awareness (SSA), these new satellite telemetry data consumers will not know how to utilize it. We were tasked with applying AI techniques to build an infrastructure to process satellite telemetry into higher abstraction level symbolic space situational awareness and to initially populate that infrastructure with useful data analysis methods. We are working with two organizations, Montana State University (MSU) and the Air Force Academy, both of whom control satellites and therefore currently analyze satellite telemetry to assess the health and circumstances of their satellites. The design which has resulted from our knowledge elicitation and cognitive task analysis is a hybrid approach which combines symbolic processing techniques of Case-Based Reasoning (CBR) and Behavior Transition Networks (BTNs) with current Machine Learning approaches. BTNs are used to represent the process and associated formulas to check telemetry values against anticipated problems and issues. CBR is used to represent and retrieve BTNs that represent an investigative process that should be applied to the telemetry in certain circumstances

  10. Software Engineering and Swarm-Based Systems

    Science.gov (United States)

    Hinchey, Michael G.; Sterritt, Roy; Pena, Joaquin; Rouff, Christopher A.

    2006-01-01

    We discuss two software engineering aspects in the development of complex swarm-based systems. NASA researchers have been investigating various possible concept missions that would greatly advance future space exploration capabilities. The concept mission that we have focused on exploits the principles of autonomic computing as well as being based on the use of intelligent swarms, whereby a (potentially large) number of similar spacecraft collaborate to achieve mission goals. The intent is that such systems not only can be sent to explore remote and harsh environments but also are endowed with greater degrees of protection and longevity to achieve mission goals.

  11. Improved Space Surveillance Network (SSN) Scheduling using Artificial Intelligence Techniques

    Science.gov (United States)

    Stottler, D.

    There are close to 20,000 cataloged manmade objects in space, the large majority of which are not active, functioning satellites. These are tracked by phased array and mechanical radars and ground and space-based optical telescopes, collectively known as the Space Surveillance Network (SSN). A better SSN schedule of observations could, using exactly the same legacy sensor resources, improve space catalog accuracy through more complementary tracking, provide better responsiveness to real-time changes, better track small debris in low earth orbit (LEO) through efficient use of applicable sensors, efficiently track deep space (DS) frequent revisit objects, handle increased numbers of objects and new types of sensors, and take advantage of future improved communication and control to globally optimize the SSN schedule. We have developed a scheduling algorithm that takes as input the space catalog and the associated covariance matrices and produces a globally optimized schedule for each sensor site as to what objects to observe and when. This algorithm is able to schedule more observations with the same sensor resources and have those observations be more complementary, in terms of the precision with which each orbit metric is known, to produce a satellite observation schedule that, when executed, minimizes the covariances across the entire space object catalog. If used operationally, the results would be significantly increased accuracy of the space catalog with fewer lost objects with the same set of sensor resources. This approach inherently can also trade-off fewer high priority tasks against more lower-priority tasks, when there is benefit in doing so. Currently the project has completed a prototyping and feasibility study, using open source data on the SSN's sensors, that showed significant reduction in orbit metric covariances. The algorithm techniques and results will be discussed along with future directions for the research.

  12. Development of a Car Racing Simulator Game Using Artificial Intelligence Techniques

    Directory of Open Access Journals (Sweden)

    Marvin T. Chan

    2015-01-01

    Full Text Available This paper presents a car racing simulator game called Racer, in which the human player races a car against three game-controlled cars in a three-dimensional environment. The objective of the game is not to defeat the human player, but to provide the player with a challenging and enjoyable experience. To ensure that this objective can be accomplished, the game incorporates artificial intelligence (AI techniques, which enable the cars to be controlled in a manner that mimics natural driving. The paper provides a brief history of AI techniques in games, presents the use of AI techniques in contemporary video games, and discusses the AI techniques that were implemented in the development of Racer. A comparison of the AI techniques implemented in the Unity platform with traditional AI search techniques is also included in the discussion.

  13. Smart Collections: Can Artificial Intelligence Tools and Techniques Assist with Discovering, Evaluating and Tagging Digital Learning Resources?

    Science.gov (United States)

    Leibbrandt, Richard; Yang, Dongqiang; Pfitzner, Darius; Powers, David; Mitchell, Pru; Hayman, Sarah; Eddy, Helen

    2010-01-01

    This paper reports on a joint proof of concept project undertaken by researchers from the Flinders University Artificial Intelligence Laboratory in partnership with information managers from the Education Network Australia (edna) team at Education Services Australia to address the question of whether artificial intelligence techniques could be…

  14. The use of artificial intelligence techniques to improve the multiple payload integration process

    Science.gov (United States)

    Cutts, Dannie E.; Widgren, Brian K.

    1992-01-01

    A maximum return of science and products with a minimum expenditure of time and resources is a major goal of mission payload integration. A critical component then, in successful mission payload integration is the acquisition and analysis of experiment requirements from the principal investigator and payload element developer teams. One effort to use artificial intelligence techniques to improve the acquisition and analysis of experiment requirements within the payload integration process is described.

  15. Developing synthetic data generation software for artificial intelligence techniques used in smart home systems

    OpenAIRE

    GÜNEŞ, Hüseyin; ORTA, Emre; AKDAŞ, Davut

    2016-01-01

    Nowadays artificial intelligence techniques such as artificial neuralnetworks, support vector machines, fuzzy logic, Markov models etc. have beenstarted to use in smart home systems to automate actions executed byinhabitants. In order to make sure that algorithms work correctly, they need tobe tested and improved. For that, we need data sets to use in testing. Thesedatas could be generated in real life environment, as well as in virtualenvironment with ease. Synthetic data generation software...

  16. Making smart cities smarter using artificial intelligence techniques for smarter mobility

    OpenAIRE

    Vázquez Salceda, Javier; Álvarez Napagao, Sergio; Tejeda Gómez, José Arturo; Oliva Felipe, Luis Javier; Garcia Gasulla, Dario; Gómez Sebastià, Ignasi; Codina Busquet, Víctor

    2014-01-01

    The term Smart City is tipically applied to urban and metropolitan areas where Information and Communication Technologies provide ways to enable social, cultural and urban development, improving social and political capacities and/or efficiency. In this paper we will show the potential of Artificial Intelligence techniques for augmenting ICT solutions to both increase the cities competiveness but also the active participation of citizens in those processes, making Smart Cities smarter. As exa...

  17. Development of a Car Racing Simulator Game Using Artificial Intelligence Techniques

    OpenAIRE

    Chan, Marvin T.; Chan, Christine W.; Gelowitz, Craig

    2015-01-01

    This paper presents a car racing simulator game called Racer, in which the human player races a car against three game-controlled cars in a three-dimensional environment. The objective of the game is not to defeat the human player, but to provide the player with a challenging and enjoyable experience. To ensure that this objective can be accomplished, the game incorporates artificial intelligence (AI) techniques, which enable the cars to be controlled in a manner that mimics natural driving. ...

  18. Increasing the Intelligence of Virtual Sales Assistants through Knowledge Modeling Techniques

    OpenAIRE

    Molina, Martin

    2001-01-01

    Shopping agents are web-based applications that help consumers to find appropriate products in the context of e-commerce. In this paper we argue about the utility of advanced model-based techniques that recently have been proposed in the fields of Artificial Intelligence and Knowledge Engineering, in order to increase the level of support provided by this type of applications. We illustrate this approach with a virtual sales assistant that dynamically configures a product according to the nee...

  19. Method and apparatus for optimizing operation of a power generating plant using artificial intelligence techniques

    Science.gov (United States)

    Wroblewski, David [Mentor, OH; Katrompas, Alexander M [Concord, OH; Parikh, Neel J [Richmond Heights, OH

    2009-09-01

    A method and apparatus for optimizing the operation of a power generating plant using artificial intelligence techniques. One or more decisions D are determined for at least one consecutive time increment, where at least one of the decisions D is associated with a discrete variable for the operation of a power plant device in the power generating plant. In an illustrated embodiment, the power plant device is a soot cleaning device associated with a boiler.

  20. Detection of drugs and explosives using neutron computerized tomography and artificial intelligence techniques

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, F.J.O. [Instituto de Engenharia Nuclear, Cidade Universitaria, Rio de Janeiro, CEP 21945-970, Caixa Postal 68550 (Brazil)], E-mail: fferreira@ien.gov.br; Crispim, V.R.; Silva, A.X. [DNC/Poli, PEN COPPE CT, UFRJ Universidade Federal do Rio de Janeiro, CEP 21941-972, Caixa Postal 68509, Rio de Janeiro (Brazil)

    2010-06-15

    In this study the development of a methodology to detect illicit drugs and plastic explosives is described with the objective of being applied in the realm of public security. For this end, non-destructive assay with neutrons was used and the technique applied was the real time neutron radiography together with computerized tomography. The system is endowed with automatic responses based upon the application of an artificial intelligence technique. In previous tests using real samples, the system proved capable of identifying 97% of the inspected materials.

  1. Detection of drugs and explosives using neutron computerized tomography and artificial intelligence techniques.

    Science.gov (United States)

    Ferreira, F J O; Crispim, V R; Silva, A X

    2010-06-01

    In this study the development of a methodology to detect illicit drugs and plastic explosives is described with the objective of being applied in the realm of public security. For this end, non-destructive assay with neutrons was used and the technique applied was the real time neutron radiography together with computerized tomography. The system is endowed with automatic responses based upon the application of an artificial intelligence technique. In previous tests using real samples, the system proved capable of identifying 97% of the inspected materials. Copyright 2010 Elsevier Ltd. All rights reserved.

  2. Recent advances in knowledge-based paradigms and applications enhanced applications using hybrid artificial intelligence techniques

    CERN Document Server

    Jain, Lakhmi

    2014-01-01

    This book presents carefully selected contributions devoted to the modern perspective of AI research and innovation. This collection covers several areas of applications and motivates new research directions. The theme across all chapters combines several domains of AI research , Computational Intelligence and Machine Intelligence including an introduction to  the recent research and models. Each of the subsequent chapters reveals leading edge research and innovative solution that employ AI techniques with an applied perspective. The problems include classification of spatial images, early smoke detection in outdoor space from video images, emergent segmentation from image analysis, intensity modification in images, multi-agent modeling and analysis of stress. They all are novel pieces of work and demonstrate how AI research contributes to solutions for difficult real world problems that benefit the research community, industry and society.

  3. ARTIFICIAL INTELLIGENCE TECHNIQUES FOR ESTIMATING THE EFFORT IN SOFTWARE DEVELOPMENT PROJECTS

    Directory of Open Access Journals (Sweden)

    Ferreira, G., Gálvez, D.,

    2015-06-01

    Full Text Available Among the most popular algorithmic cost and efforts estimation models are COCOMO, SLIM, Function Points. However, since the 90s, the models based on Artificial Intelligence techniques, mainly in Machine Learning techniques have been used to improve the accuracy of the estimates. These models are based on two fundamental aspects: the use of data collected in previous projects where estimates were performed and the application of various knowledge extraction techniques, with the idea of making estimates more efficiently, effectively and, if possible, with greater precision. The aim of this paper is to present an analysis of some of these techniques and how they are been applied in estimating the effort of software projects.

  4. Intelligent Heuristic Techniques for the Optimization of the Transshipment and Storage Operations at Maritime Container Terminals

    Directory of Open Access Journals (Sweden)

    Christopher Expósito-Izquierdo

    2017-02-01

    Full Text Available This paper summarizes the main contributions of the Ph.D. thesis of Christopher Exp\\'osito-Izquierdo. This thesis seeks to develop a wide set of intelligent heuristic and meta-heuristic algorithms aimed at solving some of the most highlighted optimization problems associated with the transshipment and storage of containers at conventional maritime container terminals. Under the premise that no optimization technique can have a better performance than any other technique under all possible assumptions, the main point of interest in the domain of maritime logistics is to propose optimization techniques superior in terms of effectiveness and computational efficiency to previous proposals found in the scientific literature when solving individual optimization problems under realistic scenarios. Simultaneously, these optimization techniques should be enough competitive to be potentially implemented in practice. }}

  5. Particle Swarm Optimization

    Science.gov (United States)

    Venter, Gerhard; Sobieszczanski-Sobieski Jaroslaw

    2002-01-01

    The purpose of this paper is to show how the search algorithm known as particle swarm optimization performs. Here, particle swarm optimization is applied to structural design problems, but the method has a much wider range of possible applications. The paper's new contributions are improvements to the particle swarm optimization algorithm and conclusions and recommendations as to the utility of the algorithm, Results of numerical experiments for both continuous and discrete applications are presented in the paper. The results indicate that the particle swarm optimization algorithm does locate the constrained minimum design in continuous applications with very good precision, albeit at a much higher computational cost than that of a typical gradient based optimizer. However, the true potential of particle swarm optimization is primarily in applications with discrete and/or discontinuous functions and variables. Additionally, particle swarm optimization has the potential of efficient computation with very large numbers of concurrently operating processors.

  6. Glowworm swarm optimization theory, algorithms, and applications

    CERN Document Server

    Kaipa, Krishnanand N

    2017-01-01

    This book provides a comprehensive account of the glowworm swarm optimization (GSO) algorithm, including details of the underlying ideas, theoretical foundations, algorithm development, various applications, and MATLAB programs for the basic GSO algorithm. It also discusses several research problems at different levels of sophistication that can be attempted by interested researchers. The generality of the GSO algorithm is evident in its application to diverse problems ranging from optimization to robotics. Examples include computation of multiple optima, annual crop planning, cooperative exploration, distributed search, multiple source localization, contaminant boundary mapping, wireless sensor networks, clustering, knapsack, numerical integration, solving fixed point equations, solving systems of nonlinear equations, and engineering design optimization. The book is a valuable resource for researchers as well as graduate and undergraduate students in the area of swarm intelligence and computational intellige...

  7. A REVIEW OF SWARMING UNMANNED AERIAL VEHICLES

    Directory of Open Access Journals (Sweden)

    CORNEA Mihai

    2016-11-01

    Full Text Available This paper in if fact an overview of state of the art in mobile multi-robot systems as an initial part of our research in implementing a system based on swarm robotics concepts to be used in natural disaster search and rescue missions. The system is to be composed of a group of drones that can detect survivor mobile cell signals and exhibit some other features as well. This paper surveys the swarm robotics research landscape to provide a theoretical background to the implementation and help determine the techniques available to create the system. The Particle swarm optimization (PSO and Glowworm swarm optimization (GSO algorithms are briefly described and there is also insight into Bird flocking behavior and the model behind it

  8. Survey of Methods and Algorithms of Robot Swarm Aggregation

    Science.gov (United States)

    E Shlyakhov, N.; Vatamaniuk, I. V.; Ronzhin, A. L.

    2017-01-01

    The paper considers the problem of swarm aggregation of autonomous robots with the use of three methods based on the analogy of the behavior of biological objects. The algorithms substantiating the requirements for hardware realization of sensor, computer and network resources and propulsion devices are presented. Techniques for efficiency estimation of swarm aggregation via space-time characteristics are described. The developed model of the robot swarm reconfiguration into a predetermined three-dimensional shape is presented.

  9. An Intelligent Harmonic Synthesis Technique for Air-Gap Eccentricity Fault Diagnosis in Induction Motors

    Science.gov (United States)

    Li, De Z.; Wang, Wilson; Ismail, Fathy

    2017-11-01

    Induction motors (IMs) are commonly used in various industrial applications. To improve energy consumption efficiency, a reliable IM health condition monitoring system is very useful to detect IM fault at its earliest stage to prevent operation degradation, and malfunction of IMs. An intelligent harmonic synthesis technique is proposed in this work to conduct incipient air-gap eccentricity fault detection in IMs. The fault harmonic series are synthesized to enhance fault features. Fault related local spectra are processed to derive fault indicators for IM air-gap eccentricity diagnosis. The effectiveness of the proposed harmonic synthesis technique is examined experimentally by IMs with static air-gap eccentricity and dynamic air-gap eccentricity states under different load conditions. Test results show that the developed harmonic synthesis technique can extract fault features effectively for initial IM air-gap eccentricity fault detection.

  10. Solving Multi-Pollutant Emission Dispatch Problem Using Computational Intelligence Technique

    Directory of Open Access Journals (Sweden)

    Nur Azzammudin Rahmat

    2016-06-01

    Full Text Available Economic dispatch is a crucial process conducted by the utilities to correctly determine the satisfying amount of power to be generated and distributed to the consumers. During the process, the utilities also consider pollutant emission as the consequences of fossil-fuel consumption. Fossil-fuel includes petroleum, coal, and natural gas; each has its unique chemical composition of pollutants i.e. sulphur oxides (SOX, nitrogen oxides (NOX and carbon oxides (COX. This paper presents multi-pollutant emission dispatch problem using computational intelligence technique. In this study, a novel emission dispatch technique is formulated to determine the amount of the pollutant level. It utilizes a pre-developed optimization technique termed as differential evolution immunized ant colony optimization (DEIANT for the emission dispatch problem. The optimization results indicated high level of COX level, regardless of any type of fossil fuel consumed.

  11. Role of Artificial Intelligence Techniques (Automatic Classifiers) in Molecular Imaging Modalities in Neurodegenerative Diseases.

    Science.gov (United States)

    Cascianelli, Silvia; Scialpi, Michele; Amici, Serena; Forini, Nevio; Minestrini, Matteo; Fravolini, Mario Luca; Sinzinger, Helmut; Schillaci, Orazio; Palumbo, Barbara

    2017-01-01

    Artificial Intelligence (AI) is a very active Computer Science research field aiming to develop systems that mimic human intelligence and is helpful in many human activities, including Medicine. In this review we presented some examples of the exploiting of AI techniques, in particular automatic classifiers such as Artificial Neural Network (ANN), Support Vector Machine (SVM), Classification Tree (ClT) and ensemble methods like Random Forest (RF), able to analyze findings obtained by positron emission tomography (PET) or single-photon emission tomography (SPECT) scans of patients with Neurodegenerative Diseases, in particular Alzheimer's Disease. We also focused our attention on techniques applied in order to preprocess data and reduce their dimensionality via feature selection or projection in a more representative domain (Principal Component Analysis - PCA - or Partial Least Squares - PLS - are examples of such methods); this is a crucial step while dealing with medical data, since it is necessary to compress patient information and retain only the most useful in order to discriminate subjects into normal and pathological classes. Main literature papers on the application of these techniques to classify patients with neurodegenerative disease extracting data from molecular imaging modalities are reported, showing that the increasing development of computer aided diagnosis systems is very promising to contribute to the diagnostic process.

  12. Artificial Intelligence (AI techniques to analyze the determinants attributes in housing prices

    Directory of Open Access Journals (Sweden)

    Julia M. Núñez Tabale

    2016-12-01

    Full Text Available The econometric approach to obtain the value of a property began with hedonic modelling, which were based on a set of property attributes, internal or external, associated to each particular dwelling. The final sale value can be estimated, and also the marginal prices of each exogenous explanatory variable. A good alternative to the hedonic approach is based on several Artificial Intelligence (AI techniques, such as artificial neural networks (ANN, these tend to be more precise. Both methodologies are compared, and a case study is developed using data from Seville, the larger town in the South of Spain.

  13. Intelligent techniques for system identification and controller tuning in pH process

    Directory of Open Access Journals (Sweden)

    K. Valarmathi

    2009-03-01

    Full Text Available This paper presents an application of Artificial Neural Network (ANN and Genetic Algorithm (GA for system identification for controller tuning in a pH process. In this paper, the ANN based approach is applied to estimate the system parameters. Once the variations in parameters are identified frequently, GA optimally tunes the controller. The simulation results show that the proposed intelligent technique is effective in identifying the parameters and has resulted in a minimum value of the Integral Square Error, peak overshoot and minimum settling time as compared to conventional methods. The experimental results show that their performance is superior and it matches favorably with the simulation results.

  14. Modeling dynamic swarms

    KAUST Repository

    Ghanem, Bernard

    2013-01-01

    This paper proposes the problem of modeling video sequences of dynamic swarms (DSs). We define a DS as a large layout of stochastically repetitive spatial configurations of dynamic objects (swarm elements) whose motions exhibit local spatiotemporal interdependency and stationarity, i.e., the motions are similar in any small spatiotemporal neighborhood. Examples of DS abound in nature, e.g., herds of animals and flocks of birds. To capture the local spatiotemporal properties of the DS, we present a probabilistic model that learns both the spatial layout of swarm elements (based on low-level image segmentation) and their joint dynamics that are modeled as linear transformations. To this end, a spatiotemporal neighborhood is associated with each swarm element, in which local stationarity is enforced both spatially and temporally. We assume that the prior on the swarm dynamics is distributed according to an MRF in both space and time. Embedding this model in a MAP framework, we iterate between learning the spatial layout of the swarm and its dynamics. We learn the swarm transformations using ICM, which iterates between estimating these transformations and updating their distribution in the spatiotemporal neighborhoods. We demonstrate the validity of our method by conducting experiments on real and synthetic video sequences. Real sequences of birds, geese, robot swarms, and pedestrians evaluate the applicability of our model to real world data. © 2012 Elsevier Inc. All rights reserved.

  15. Swarming UAS II

    Science.gov (United States)

    2010-05-05

    employed biomimicry to model a swarm of UAS as a colony of ants, where each UAS dynamically updates a global memory map, allowing pheromone-like...matter of design, DSE-R-0808 employed biomimicry to model a swarm of UAS as a colony of ants, where each UAS dynamically updates a global memory map

  16. Computational intelligence techniques for identifying the pectoral muscle region in mammograms

    Science.gov (United States)

    Rickard, H. Erin; Villao, Ruben G.; Elmaghraby, Adel S.

    2012-02-01

    Segmentation of the pectoral muscle is an imperative task in mammographic image analysis. The pectoral edge is specifically examined by radiologists for abnormal axillary lymph nodes, serves as one of the axes in 3-dimensional reconstructions, and is one of the fundamental landmarks in mammogram registration and comparison. However, this region interferes with intensity-based image processing methods and may bias cancer detection algorithms. The purpose of this study was to develop and evaluate computational intelligence techniques for identifying the pectoral muscle region in medio-lateral oblique (MLO) view mammograms. After removal of the background region, the mammograms were segmented using a K-clustered self-organizing map (SOM). Morphological operations were then applied to obtain an initial estimate of the pectoral muscle region. Shape-based analysis determined which of the K estimates to use in the final segmentation. The algorithm has been applied to 250 MLO-view Lumisys mammograms from the Digital Database for Screening Mammography (DDSM). Upon examination, it was discovered that three of the original mammograms did not contain the pectoral muscle and one contained a clear defect. Of the 246 remaining, 95.94% were considered to have successfully identified the pectoral muscle region. The results provide a compelling argument for the effectiveness of computational intelligence techniques for identifying the pectoral muscle region in MLO-view mammograms.

  17. The Joint Use of Artificial Intelligence Techniques for Diagnostication and Prediction

    Directory of Open Access Journals (Sweden)

    Sorin Vlad

    2007-01-01

    Full Text Available The paper presents some aspects regarding thejoint use of artificial intelligence techniques for the activityevolution diagnostication and prediction by means of a set ofindexes. Starting from the indexes set a measure on thepatterns set is defined, measure representing a scalar valuethat characterizes the activity analyzed at each time moment.A pattern is defined by the values of the indexes set at a giventime. Over the classes set obtained by means of theclassification and recognition techniques is defined a relationthat allows the representation of the evolution from negativeevolution toward positive evolution. For the diagnosticationand prediction the following tools are used here: regressionalmodels, pattern recognition and multilayer perceptron. Thedata set used in experiments describes the evolution of theBucharest Stock Exchange (BSE. The paper presents:REFORME software written by the authors and theexperiments carried out in order to analyze the activity ofBSE.

  18. REVIEW OF HEART DISEASE PREDICTION SYSTEM USING DATA MINING AND HYBRID INTELLIGENT TECHNIQUES

    Directory of Open Access Journals (Sweden)

    R. Chitra

    2013-07-01

    Full Text Available The Healthcare industry generally clinical diagnosis is done mostly by doctor’s expertise and experience. Computer Aided Decision Support System plays a major role in medical field. With the growing research on heart disease predicting system, it has become important to categories the research outcomes and provides readers with an overview of the existing heart disease prediction techniques in each category. Neural Networks are one of many data mining analytical tools that can be utilized to make predictions for medical data. From the study it is observed that Hybrid Intelligent Algorithm improves the accuracy of the heart disease prediction system. The commonly used techniques for Heart Disease Prediction and their complexities are summarized in this paper.

  19. Application of intelligent techniques for classification of bacteria using protein sequence-derived features.

    Science.gov (United States)

    Banerjee, Amit Kumar; Ravi, Vadlamani; Murty, U S N; Sengupta, Neelava; Karuna, Batepatti

    2013-07-01

    Standard molecular experimental methodologies and mathematical procedures often fail to answer many phylogeny and classification related issues. Modern artificial intelligent-based techniques, such as radial basis function, genetic algorithm, artificial neural network, and support vector machines are of ample potential in this regard. Reliance on a large number of essential parameters will aid in enhanced robustness, reliability, and better accuracy as opposed to single molecular parameter. This study was conducted with dataset of computed protein physicochemical properties belonging to 20 different bacterial genera. A total of 57 sequential and structural parameters derived from protein sequences were considered for the initial classification. Feature selection based techniques were employed to find out the most important features influencing the dataset. Various amino acids, hydrophobicity, relative sulfur percentage, and codon number were selected as important parameters during the study. Comparative analyses were performed applying RapidMiner data mining platform. Support vector machine proved to be the best method with maximum accuracy of more than 91%.

  20. From Swarm Intelligence to Swarm Malice: An Appeal

    OpenAIRE

    Stephan Weichert

    2016-01-01

    In social networks, controversy, provocation, and incitement mutate quickly to an explosive mixture. Journalists, who aim for a factual moderation, are often highly frustrated to meet the criticism of trolls and haters. The essay addresses the following questions: How can newsrooms cope with the massively growing feedback from users? What responsibility carries the media and the civil society in designing a constructive net debate culture? And are there alternatives to foster an open-minded p...

  1. From Swarm Intelligence to Swarm Malice: An Appeal

    Directory of Open Access Journals (Sweden)

    Stephan Weichert

    2016-03-01

    Full Text Available In social networks, controversy, provocation, and incitement mutate quickly to an explosive mixture. Journalists, who aim for a factual moderation, are often highly frustrated to meet the criticism of trolls and haters. The essay addresses the following questions: How can newsrooms cope with the massively growing feedback from users? What responsibility carries the media and the civil society in designing a constructive net debate culture? And are there alternatives to foster an open-minded public discourse?

  2. Chicken Swarm Optimization Based on Elite Opposition-Based Learning

    Directory of Open Access Journals (Sweden)

    Chiwen Qu

    2017-01-01

    Full Text Available Chicken swarm optimization is a new intelligent bionic algorithm, simulating the chicken swarm searching for food in nature. Basic algorithm is likely to fall into a local optimum and has a slow convergence rate. Aiming at these deficiencies, an improved chicken swarm optimization algorithm based on elite opposition-based learning is proposed. In cock swarm, random search based on adaptive t distribution is adopted to replace that based on Gaussian distribution so as to balance the global exploitation ability and local development ability of the algorithm. In hen swarm, elite opposition-based learning is introduced to promote the population diversity. Dimension-by-dimension greedy search mode is used to do local search for individual of optimal chicken swarm in order to improve optimization precision. According to the test results of 18 standard test functions and 2 engineering structure optimization problems, this algorithm has better effect on optimization precision and speed compared with basic chicken algorithm and other intelligent optimization algorithms.

  3. From hybrid swarms to swarms of hybrids

    Science.gov (United States)

    The introgression of modern humans (Homo sapiens) with Neanderthals 40,000 YBP after a half-million years of separation, may have led to the best example of a hybrid swarm on earth. Modern trade and transportation in support of the human hybrids has continued to introduce additional species, genotyp...

  4. MAGNAS - Magnetic Nanoprobe SWARM

    DEFF Research Database (Denmark)

    Lubberstedt, H.; Koebel, D.; Hansen, Flemming

    2005-01-01

    This paper presents the Magnetic Nano-Probe Swarm mission utilising a constellation of several swarms of nano-satellites in order to acquire simultaneous measurements of the geomagnetic field resolving the local field gradients. The space segment comprises of up to 4 S/C swarms each consisting...... of up to 6 nano-satellites (Nano-Probes) and 1 mother spacecraft (MSC) to be launched with a single launcher in polar low Earth orbits. The Nano-Probes. equipped with magnetometer payloads operate in the vicinity of the MSCs. The MSCs will eject the NPs after acquisition of the initial orbits. provide...

  5. Adaptive cockroach swarm algorithm

    Science.gov (United States)

    Obagbuwa, Ibidun C.; Abidoye, Ademola P.

    2017-07-01

    An adaptive cockroach swarm optimization (ACSO) algorithm is proposed in this paper to strengthen the existing cockroach swarm optimization (CSO) algorithm. The ruthless component of CSO algorithm is modified by the employment of blend crossover predator-prey evolution method which helps algorithm prevent any possible population collapse, maintain population diversity and create adaptive search in each iteration. The performance of the proposed algorithm on 16 global optimization benchmark function problems was evaluated and compared with the existing CSO, cuckoo search, differential evolution, particle swarm optimization and artificial bee colony algorithms.

  6. Selectively-informed particle swarm optimization.

    Science.gov (United States)

    Gao, Yang; Du, Wenbo; Yan, Gang

    2015-03-19

    Particle swarm optimization (PSO) is a nature-inspired algorithm that has shown outstanding performance in solving many realistic problems. In the original PSO and most of its variants all particles are treated equally, overlooking the impact of structural heterogeneity on individual behavior. Here we employ complex networks to represent the population structure of swarms and propose a selectively-informed PSO (SIPSO), in which the particles choose different learning strategies based on their connections: a densely-connected hub particle gets full information from all of its neighbors while a non-hub particle with few connections can only follow a single yet best-performed neighbor. Extensive numerical experiments on widely-used benchmark functions show that our SIPSO algorithm remarkably outperforms the PSO and its existing variants in success rate, solution quality, and convergence speed. We also explore the evolution process from a microscopic point of view, leading to the discovery of different roles that the particles play in optimization. The hub particles guide the optimization process towards correct directions while the non-hub particles maintain the necessary population diversity, resulting in the optimum overall performance of SIPSO. These findings deepen our understanding of swarm intelligence and may shed light on the underlying mechanism of information exchange in natural swarm and flocking behaviors.

  7. Intelligent Technique for Signal Processing to Identify the Brain Disorder for Epilepsy Captures Using Fuzzy Systems

    Directory of Open Access Journals (Sweden)

    Gurumurthy Sasikumar

    2016-01-01

    Full Text Available The new direction of understand the signal that is created from the brain organization is one of the main chores in the brain signal processing. Amid all the neurological disorders the human brain epilepsy is measured as one of the extreme prevalent and then programmed artificial intelligence detection technique is an essential due to the crooked and unpredictable nature of happening of epileptic seizures. We proposed an Improved Fuzzy firefly algorithm, which would enhance the classification of the brain signal efficiently with minimum iteration. An important bunching technique created on fuzzy logic is the Fuzzy C means. Together in the feature domain with the spatial domain the features gained after multichannel EEG signals remained combined by means of fuzzy algorithms. And for better precision segmentation process the firefly algorithm is applied to optimize the Fuzzy C-means membership function. Simultaneously for the efficient clustering method the convergence criteria are set. On the whole the proposed technique yields more accurate results and that gives an edge over other techniques. This proposed algorithm result compared with other algorithms like fuzzy c means algorithm and PSO algorithm.

  8. Improved Cat Swarm Optimization for Simultaneous Allocation of DSTATCOM and DGs in Distribution Systems

    Directory of Open Access Journals (Sweden)

    Neeraj Kanwar

    2015-01-01

    Full Text Available This paper addresses a new methodology for the simultaneous optimal allocation of DSTATCOM and DG in radial distribution systems to maximize power loss reduction while maintaining better node voltage profiles under multilevel load profile. Cat Swarm Optimization (CSO is one of the recently developed powerful swarm intelligence-based optimization techniques that mimics the natural behavior of cats but usually suffers from poor convergence and accuracy while subjected to large dimension problem. Therefore, an Improved CSO (ICSO technique is proposed to efficiently solve the problem where the seeking mode of CSO is modified to enhance its exploitation potential. In addition, the problem search space is virtually squeezed by suggesting an intelligent search approach which smartly scans the problem search space. Further, the effect of network reconfiguration has also been investigated after optimally placing DSTATCOMs and DGs in the distribution network. The suggested measures enhance the convergence and accuracy of the algorithm without loss of diversity. The proposed method is investigated on 69-bus test distribution system and the application results are very promising for the operation of smart distribution systems.

  9. The Swarm Magnetometry Package

    DEFF Research Database (Denmark)

    Merayo, José M.G.; Jørgensen, John Leif; Friis-Christensen, Eigil

    2008-01-01

    The Swarm mission under the ESA's Living Planet Programme is planned for launch in 2010 and consists of a constellation of three satellites at LEO. The prime objective of Swarm is to measure the geomagnetic field with unprecedented accuracy in space and time. The magnetometry package consists of ...... of an extremely accurate and stable vector magnetometer, which is co-mounted in an optical bench together with a start tracker system to ensure mechanical stability of the measurements....

  10. Particle swarm optimization of a neural network model in a ...

    Indian Academy of Sciences (India)

    sets of cutting conditions and noting the root mean square (RMS) value of spindle motor current as well as ... A multi- objective optimization of hard turning using neural network modelling and swarm intelligence ... being used in this study), and these activated values in turn become the starting signals for the next adjacent ...

  11. A Novel Artificial Fish Swarm Algorithm for Recalibration of Fiber Optic Gyroscope Error Parameters

    Directory of Open Access Journals (Sweden)

    Yanbin Gao

    2015-05-01

    Full Text Available The artificial fish swarm algorithm (AFSA is one of the state-of-the-art swarm intelligent techniques, which is widely utilized for optimization purposes. Fiber optic gyroscope (FOG error parameters such as scale factors, biases and misalignment errors are relatively unstable, especially with the environmental disturbances and the aging of fiber coils. These uncalibrated error parameters are the main reasons that the precision of FOG-based strapdown inertial navigation system (SINS degraded. This research is mainly on the application of a novel artificial fish swarm algorithm (NAFSA on FOG error coefficients recalibration/identification. First, the NAFSA avoided the demerits (e.g., lack of using artificial fishes’ pervious experiences, lack of existing balance between exploration and exploitation, and high computational cost of the standard AFSA during the optimization process. To solve these weak points, functional behaviors and the overall procedures of AFSA have been improved with some parameters eliminated and several supplementary parameters added. Second, a hybrid FOG error coefficients recalibration algorithm has been proposed based on NAFSA and Monte Carlo simulation (MCS approaches. This combination leads to maximum utilization of the involved approaches for FOG error coefficients recalibration. After that, the NAFSA is verified with simulation and experiments and its priorities are compared with that of the conventional calibration method and optimal AFSA. Results demonstrate high efficiency of the NAFSA on FOG error coefficients recalibration.

  12. Triaxial Accelerometer Error Coefficients Identification with a Novel Artificial Fish Swarm Algorithm

    Directory of Open Access Journals (Sweden)

    Yanbin Gao

    2015-01-01

    Full Text Available Artificial fish swarm algorithm (AFSA is one of the state-of-the-art swarm intelligence techniques, which is widely utilized for optimization purposes. Triaxial accelerometer error coefficients are relatively unstable with the environmental disturbances and aging of the instrument. Therefore, identifying triaxial accelerometer error coefficients accurately and being with lower costs are of great importance to improve the overall performance of triaxial accelerometer-based strapdown inertial navigation system (SINS. In this study, a novel artificial fish swarm algorithm (NAFSA that eliminated the demerits (lack of using artificial fishes’ previous experiences, lack of existing balance between exploration and exploitation, and high computational cost of AFSA is introduced at first. In NAFSA, functional behaviors and overall procedure of AFSA have been improved with some parameters variations. Second, a hybrid accelerometer error coefficients identification algorithm has been proposed based on NAFSA and Monte Carlo simulation (MCS approaches. This combination leads to maximum utilization of the involved approaches for triaxial accelerometer error coefficients identification. Furthermore, the NAFSA-identified coefficients are testified with 24-position verification experiment and triaxial accelerometer-based SINS navigation experiment. The priorities of MCS-NAFSA are compared with that of conventional calibration method and optimal AFSA. Finally, both experiments results demonstrate high efficiency of MCS-NAFSA on triaxial accelerometer error coefficients identification.

  13. A novel artificial fish swarm algorithm for recalibration of fiber optic gyroscope error parameters.

    Science.gov (United States)

    Gao, Yanbin; Guan, Lianwu; Wang, Tingjun; Sun, Yunlong

    2015-05-05

    The artificial fish swarm algorithm (AFSA) is one of the state-of-the-art swarm intelligent techniques, which is widely utilized for optimization purposes. Fiber optic gyroscope (FOG) error parameters such as scale factors, biases and misalignment errors are relatively unstable, especially with the environmental disturbances and the aging of fiber coils. These uncalibrated error parameters are the main reasons that the precision of FOG-based strapdown inertial navigation system (SINS) degraded. This research is mainly on the application of a novel artificial fish swarm algorithm (NAFSA) on FOG error coefficients recalibration/identification. First, the NAFSA avoided the demerits (e.g., lack of using artificial fishes' pervious experiences, lack of existing balance between exploration and exploitation, and high computational cost) of the standard AFSA during the optimization process. To solve these weak points, functional behaviors and the overall procedures of AFSA have been improved with some parameters eliminated and several supplementary parameters added. Second, a hybrid FOG error coefficients recalibration algorithm has been proposed based on NAFSA and Monte Carlo simulation (MCS) approaches. This combination leads to maximum utilization of the involved approaches for FOG error coefficients recalibration. After that, the NAFSA is verified with simulation and experiments and its priorities are compared with that of the conventional calibration method and optimal AFSA. Results demonstrate high efficiency of the NAFSA on FOG error coefficients recalibration.

  14. Simulation and prediction for energy dissipaters and stilling basins design using artificial intelligence technique

    Directory of Open Access Journals (Sweden)

    Mostafa Ahmed Moawad Abdeen

    2015-12-01

    Full Text Available Water with large velocities can cause considerable damage to channels whose beds are composed of natural earth materials. Several stilling basins and energy dissipating devices have been designed in conjunction with spillways and outlet works to avoid damages in canals’ structures. In addition, lots of experimental and traditional mathematical numerical works have been performed to profoundly investigate the accurate design of these stilling basins and energy dissipaters. The current study is aimed toward introducing the artificial intelligence technique as new modeling tool in the prediction of the accurate design of stilling basins. Specifically, artificial neural networks (ANNs are utilized in the current study in conjunction with experimental data to predict the length of the hydraulic jumps occurred in spillways and consequently the stilling basin dimensions can be designed for adequate energy dissipation. The current study showed, in a detailed fashion, the development process of different ANN models to accurately predict the hydraulic jump lengths acquired from different experimental studies. The results obtained from implementing these models showed that ANN technique was very successful in simulating the hydraulic jump characteristics occurred in stilling basins. Therefore, it can be safely utilized in the design of these basins as ANN involves minimum computational and financial efforts and requirements compared with experimental work and traditional numerical techniques such as finite difference or finite elements.

  15. Analysis of the Emergence in Swarm Model Based on Largest Lyapunov Exponent

    Directory of Open Access Journals (Sweden)

    Yu Wu

    2011-01-01

    Full Text Available Emergent behaviors of collective intelligence systems, exemplified by swarm model, have attracted broad interests in recent years. However, current research mostly stops at observational interpretations and qualitative descriptions of emergent phenomena and is essentially short of quantitative analysis and evaluation. In this paper, we conduct a quantitative study on the emergence of swarm model by using chaos analysis of complex dynamic systems. This helps to achieve a more exact understanding of emergent phenomena. In particular, we evaluate the emergent behaviors of swarm model quantitatively by using the chaos and stability analysis of swarm model based on largest Lyapunov exponent. It is concluded that swarm model is at the edge of chaos when emergence occurs, and whether chaotic or stable at the beginning, swarm model will converge to stability with the elapse of time along with interactions among agents.

  16. Competitive Intelligence.

    Science.gov (United States)

    Bergeron, Pierrette; Hiller, Christine A.

    2002-01-01

    Reviews the evolution of competitive intelligence since 1994, including terminology and definitions and analytical techniques. Addresses the issue of ethics; explores how information technology supports the competitive intelligence process; and discusses education and training opportunities for competitive intelligence, including core competencies…

  17. Determination of oil well production performance using artificial neural network (ANN linked to the particle swarm optimization (PSO tool

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Ahmadi

    2015-06-01

    In this work, novel and rigorous methods based on two different types of intelligent approaches including the artificial neural network (ANN linked to the particle swarm optimization (PSO tool are developed to precisely forecast the productivity of horizontal wells under pseudo-steady-state conditions. It was found that there is very good match between the modeling output and the real data taken from the literature, so that a very low average absolute error percentage is attained (e.g., <0.82%. The developed techniques can be also incorporated in the numerical reservoir simulation packages for the purpose of accuracy improvement as well as better parametric sensitivity analysis.

  18. A Review and Performance Investigation of NPCC Based UPQC by Using Various Artificial Intelligence Techniques

    Directory of Open Access Journals (Sweden)

    Venkata Rami Reddy K

    2017-03-01

    Full Text Available This paper presents a comprehensive review and performance investigation of Neutral Point Clamped Converter (NPCC based Unified Power Quality Conditioner (UPQC by using Artificial Intelligent (AI techniques. A Novel application of various levels of Diode Clamped Multi-Level Inverters [DCMLI] with Anti Phase Opposition and Disposition (APOD Pulse Width Modulation (PWM Scheme to Unified Power Quality Conditioner (UPQC. The Power Quality problem became a burning issues since the starting of high voltage AC transmission system. Hence, in this article it has been discussed to mitigate the PQ issues in high voltage AC systems through a three phase four wire Unified Power Quality Conditioner (UPQC under non-linear loads. The emphasised PQ problems such as voltage and current harmonics along with voltage sags and swells have also been discussed with improved performance. Also, it proposes to control the DCMLI based UPQC through conventional control schemes. Thus application of these control technique makes the system performance in par with the standards and also compared with existing system. The simulation results based on MATLAB/Simulink are discussed in detail to support the concept developed in the paper.

  19. Digital image analysis in breast pathology-from image processing techniques to artificial intelligence.

    Science.gov (United States)

    Robertson, Stephanie; Azizpour, Hossein; Smith, Kevin; Hartman, Johan

    2017-11-07

    Breast cancer is the most common malignant disease in women worldwide. In recent decades, earlier diagnosis and better adjuvant therapy have substantially improved patient outcome. Diagnosis by histopathology has proven to be instrumental to guide breast cancer treatment, but new challenges have emerged as our increasing understanding of cancer over the years has revealed its complex nature. As patient demand for personalized breast cancer therapy grows, we face an urgent need for more precise biomarker assessment and more accurate histopathologic breast cancer diagnosis to make better therapy decisions. The digitization of pathology data has opened the door to faster, more reproducible, and more precise diagnoses through computerized image analysis. Software to assist diagnostic breast pathology through image processing techniques have been around for years. But recent breakthroughs in artificial intelligence (AI) promise to fundamentally change the way we detect and treat breast cancer in the near future. Machine learning, a subfield of AI that applies statistical methods to learn from data, has seen an explosion of interest in recent years because of its ability to recognize patterns in data with less need for human instruction. One technique in particular, known as deep learning, has produced groundbreaking results in many important problems including image classification and speech recognition. In this review, we will cover the use of AI and deep learning in diagnostic breast pathology, and other recent developments in digital image analysis. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Artificial intelligent techniques for optimizing water allocation in a reservoir watershed

    Science.gov (United States)

    Chang, Fi-John; Chang, Li-Chiu; Wang, Yu-Chung

    2014-05-01

    This study proposes a systematical water allocation scheme that integrates system analysis with artificial intelligence techniques for reservoir operation in consideration of the great uncertainty upon hydrometeorology for mitigating droughts impacts on public and irrigation sectors. The AI techniques mainly include a genetic algorithm and adaptive-network based fuzzy inference system (ANFIS). We first derive evaluation diagrams through systematic interactive evaluations on long-term hydrological data to provide a clear simulation perspective of all possible drought conditions tagged with their corresponding water shortages; then search the optimal reservoir operating histogram using genetic algorithm (GA) based on given demands and hydrological conditions that can be recognized as the optimal base of input-output training patterns for modelling; and finally build a suitable water allocation scheme through constructing an adaptive neuro-fuzzy inference system (ANFIS) model with a learning of the mechanism between designed inputs (water discount rates and hydrological conditions) and outputs (two scenarios: simulated and optimized water deficiency levels). The effectiveness of the proposed approach is tested on the operation of the Shihmen Reservoir in northern Taiwan for the first paddy crop in the study area to assess the water allocation mechanism during drought periods. We demonstrate that the proposed water allocation scheme significantly and substantially avails water managers of reliably determining a suitable discount rate on water supply for both irrigation and public sectors, and thus can reduce the drought risk and the compensation amount induced by making restrictions on agricultural use water.

  1. Data Mining for Business Intelligence Concepts, Techniques, and Applications in Microsoft Office Excel(r) with XLMiner(r)

    CERN Document Server

    Shmueli, Galit; Bruce, Peter C

    2011-01-01

    Data Mining for Business Intelligence, Second Edition uses real data and actual cases to illustrate the applicability of data mining (DM) intelligence in the development of successful business models. Featuring complimentary access to XLMiner, the Microsoft Office Excel add-in, this book allows readers to follow along and implement algorithms at their own speed, with a minimal learning curve. In addition, students and practitioners of DM techniques are presented with hands-on, business-oriented applications. An abundant amount of exercises and examples, now doubled in number in the second edit

  2. Hierarchical Swarm Model: A New Approach to Optimization

    Directory of Open Access Journals (Sweden)

    Hanning Chen

    2010-01-01

    Full Text Available This paper presents a novel optimization model called hierarchical swarm optimization (HSO, which simulates the natural hierarchical complex system from where more complex intelligence can emerge for complex problems solving. This proposed model is intended to suggest ways that the performance of HSO-based algorithms on complex optimization problems can be significantly improved. This performance improvement is obtained by constructing the HSO hierarchies, which means that an agent in a higher level swarm can be composed of swarms of other agents from lower level and different swarms of different levels evolve on different spatiotemporal scale. A novel optimization algorithm (named PS2O, based on the HSO model, is instantiated and tested to illustrate the ideas of HSO model clearly. Experiments were conducted on a set of 17 benchmark optimization problems including both continuous and discrete cases. The results demonstrate remarkable performance of the PS2O algorithm on all chosen benchmark functions when compared to several successful swarm intelligence and evolutionary algorithms.

  3. Joint global optimization of tomographic data based on particle swarm optimization and decision theory

    Science.gov (United States)

    Paasche, H.; Tronicke, J.

    2012-04-01

    In many near surface geophysical applications multiple tomographic data sets are routinely acquired to explore subsurface structures and parameters. Linking the model generation process of multi-method geophysical data sets can significantly reduce ambiguities in geophysical data analysis and model interpretation. Most geophysical inversion approaches rely on local search optimization methods used to find an optimal model in the vicinity of a user-given starting model. The final solution may critically depend on the initial model. Alternatively, global optimization (GO) methods have been used to invert geophysical data. They explore the solution space in more detail and determine the optimal model independently from the starting model. Additionally, they can be used to find sets of optimal models allowing a further analysis of model parameter uncertainties. Here we employ particle swarm optimization (PSO) to realize the global optimization of tomographic data. PSO is an emergent methods based on swarm intelligence characterized by fast and robust convergence towards optimal solutions. The fundamental principle of PSO is inspired by nature, since the algorithm mimics the behavior of a flock of birds searching food in a search space. In PSO, a number of particles cruise a multi-dimensional solution space striving to find optimal model solutions explaining the acquired data. The particles communicate their positions and success and direct their movement according to the position of the currently most successful particle of the swarm. The success of a particle, i.e. the quality of the currently found model by a particle, must be uniquely quantifiable to identify the swarm leader. When jointly inverting disparate data sets, the optimization solution has to satisfy multiple optimization objectives, at least one for each data set. Unique determination of the most successful particle currently leading the swarm is not possible. Instead, only statements about the Pareto

  4. Springer handbook of computational intelligence

    CERN Document Server

    Pedrycz, Witold

    2015-01-01

    This is the first book covering the basics and the state of the art and important applications of the complete growing discipline of computational intelligence. This comprehensive handbook presents a unique synergy of various approaches and new qualities to be gained by using hybrid approaches, incl. inspirations from biology and living organisms and animate systems. The text is organized in 7 main parts foundations, fuzzy sets, rough sets, evolutionary computation, neural networks, swarm intelligence and hybrid computational intelligence systems.

  5. DEVELOPMENT OF A VIRTUAL INTELLIGENCE TECHNIQUE FOR THE UPSTREAM OIL INDUSTRY

    Energy Technology Data Exchange (ETDEWEB)

    Iraj A. Salehi; Shahab D. Mohaghegh; Samuel Ameri

    2004-09-01

    The objective of the research and development work reported in this document was to develop a Virtual Intelligence Technique for optimization of the Preferred Upstream Management Practices (PUMP) for the upstream oil industry. The work included the development of a software tool for identification and optimization of the most influential parameters in upstream common practices as well as geological, geophysical and reservoir engineering studies. The work was performed in cooperation with three independent producing companies--Newfield Exploration, Chesapeake Energy, and Triad Energy--operating in the Golden Trend, Oklahoma. In order to protect data confidentiality, these companies are referred to as Company One, Two, Three in a randomly selected order. These producing companies provided geological, completion, and production data on 320 wells and participated in frequent technical discussions throughout the project. Research and development work was performed by Gas Technology Institute (GTI), West Virginia University (WVU), and Intelligent Solutions Inc. (ISI). Oklahoma Independent Petroleum Association (OIPA) participated in technology transfer and data acquisition efforts. Deliverables from the project are the present final report and a user-friendly software package (Appendix D) with two distinct functions: a characterization tool that identifies the most influential parameters in the upstream operations, and an optimization tool that seeks optimization by varying a number of influential parameters and investigating the coupled effects of these variations. The electronic version of this report is also included in Appendix D. The Golden Trend data were used for the first cut optimization of completion procedures. In the subsequent step, results from soft computing runs were used as the guide for detailed geophysical and reservoir engineering studies that characterize the cause-and-effect relationships between various parameters. The general workflow and the main

  6. Particle Swarm Optimization Toolbox

    Science.gov (United States)

    Grant, Michael J.

    2010-01-01

    The Particle Swarm Optimization Toolbox is a library of evolutionary optimization tools developed in the MATLAB environment. The algorithms contained in the library include a genetic algorithm (GA), a single-objective particle swarm optimizer (SOPSO), and a multi-objective particle swarm optimizer (MOPSO). Development focused on both the SOPSO and MOPSO. A GA was included mainly for comparison purposes, and the particle swarm optimizers appeared to perform better for a wide variety of optimization problems. All algorithms are capable of performing unconstrained and constrained optimization. The particle swarm optimizers are capable of performing single and multi-objective optimization. The SOPSO and MOPSO algorithms are based on swarming theory and bird-flocking patterns to search the trade space for the optimal solution or optimal trade in competing objectives. The MOPSO generates Pareto fronts for objectives that are in competition. A GA, based on Darwin evolutionary theory, is also included in the library. The GA consists of individuals that form a population in the design space. The population mates to form offspring at new locations in the design space. These offspring contain traits from both of the parents. The algorithm is based on this combination of traits from parents to hopefully provide an improved solution than either of the original parents. As the algorithm progresses, individuals that hold these optimal traits will emerge as the optimal solutions. Due to the generic design of all optimization algorithms, each algorithm interfaces with a user-supplied objective function. This function serves as a "black-box" to the optimizers in which the only purpose of this function is to evaluate solutions provided by the optimizers. Hence, the user-supplied function can be numerical simulations, analytical functions, etc., since the specific detail of this function is of no concern to the optimizer. These algorithms were originally developed to support entry

  7. Xarxa social (Swarm)

    OpenAIRE

    Capdevila Piro, Antonio

    2012-01-01

    Aquesta memòria presenta les línies generals que s'han seguit per tal d'implementar una aplicació anomenada SWARM. En aquest document es recullen les bases del nostre projecte utilitzant el llenguatge de programació C# i fent servir altres eines i frameworks per les diferents capes de què consta el projecte, com poden ser Silverlight o WCF. Esta memoria presenta las líneas generales que se han seguido para implementar una aplicación llamada SWARM. En este documento se recogen las bases de ...

  8. Swarms, phase transitions, and collective intelligence

    Energy Technology Data Exchange (ETDEWEB)

    Millonas, M.M. [Texas Univ., Austin, TX (United States). Dept. of Physics

    1992-12-31

    A model of the collective behavior of a large number of locally acting organisms is proposed. The model is intended to be realistic, but turns out to fit naturally into the category of connectionist models, Like all connectionist models, its properties can be divided into the categories of structure, dynamics, and learning. The space in which the organisms move is discretized, and is modeled by a lattice of nodes, or cells. Each cell hag a specified volume, and is connected to other cells in the space in a definite way. Organisms move probabilistically between local cells in this space, but with weights dependent on local morphogenic substances, or morphogens. The morphogens are in turn are effected by the passage of an organism. The evolution of the morphogens, and the corresponding constitutes of the organisms constitutes the collective behavior of the group. The generic properties of such systems are analyzed, and a number of results are obtained. The model has various types of phase transitions and self-organizing properties controlled both by the level of the noise, and other parameters. It is hoped that the present mode; might serve as a paradigmatic example of a complex cooperative system in nature. In particular this model can be used to explore the relation of phase transitions to at least three important issues encountered in artificial life. Firstly, that of emergence as complex adaptive behavior. Secondly, as an exploration of second order phase transitions in biological systems. Lastly, to derive behavioral criteria for the evolution of collective behavior in social organisms. The model is then applied to the specific case of ants moving on a lattice. The local behavior of the ants is inspired by the actual behavior observed in the laboratory, and analytic results for the collective behavior are compared to the corresponding laboratory results. Monte carlo simulations are used as illustrations.

  9. Swarms, phase transitions, and collective intelligence

    Energy Technology Data Exchange (ETDEWEB)

    Millonas, M.M. (Texas Univ., Austin, TX (United States). Dept. of Physics)

    1992-01-01

    A model of the collective behavior of a large number of locally acting organisms is proposed. The model is intended to be realistic, but turns out to fit naturally into the category of connectionist models, Like all connectionist models, its properties can be divided into the categories of structure, dynamics, and learning. The space in which the organisms move is discretized, and is modeled by a lattice of nodes, or cells. Each cell hag a specified volume, and is connected to other cells in the space in a definite way. Organisms move probabilistically between local cells in this space, but with weights dependent on local morphogenic substances, or morphogens. The morphogens are in turn are effected by the passage of an organism. The evolution of the morphogens, and the corresponding constitutes of the organisms constitutes the collective behavior of the group. The generic properties of such systems are analyzed, and a number of results are obtained. The model has various types of phase transitions and self-organizing properties controlled both by the level of the noise, and other parameters. It is hoped that the present mode; might serve as a paradigmatic example of a complex cooperative system in nature. In particular this model can be used to explore the relation of phase transitions to at least three important issues encountered in artificial life. Firstly, that of emergence as complex adaptive behavior. Secondly, as an exploration of second order phase transitions in biological systems. Lastly, to derive behavioral criteria for the evolution of collective behavior in social organisms. The model is then applied to the specific case of ants moving on a lattice. The local behavior of the ants is inspired by the actual behavior observed in the laboratory, and analytic results for the collective behavior are compared to the corresponding laboratory results. Monte carlo simulations are used as illustrations.

  10. State Space Composition Technique for Intelligent Wheel Chair Adapting to Environment.

    Science.gov (United States)

    Hamagami, Tomoki; Hirata, Hironori

    This paper describes a state space composition technique for the adaptation to environment in the autonomous behavior of intelligent wheel chair (IWC).In the product like IWC with actual sensors, composing state space is difficult problem since environmental information can not be observed sufficiently from restricted sensor inputs.A lot of states observed from same environment position raise the fail of the learning and adaptation with active learning approach.In order to compensate for the effects of the sensor configuration, that is sensor position, angle and precision, a normalization processing of position detector is introduced.In sensor normalization process, IWC scans present environment via range sensors with executing spot-turn, and prepare scan-patterns of each sensor.Then the normalization process adjusts the phase and dynamic range of each pattern to the reference sensor scan-pattern, analyzing phase differences and scale factors of each pattern against reference pattern.Using phase difference and scale factors, automated state space composition is possible.From the simulation experiment with both artificial and real-worlddraft, the automated state space construction is confirmed as a practical approach for pre-processing for environment learning and adaptation.

  11. Application of Artificial Intelligence (AI) Programming Techniques to Tactical Guidance for Fighter Aircraft

    Science.gov (United States)

    McManus, John W.; Goodrich, Kenneth H.

    1989-01-01

    A research program investigating the use of Artificial Intelligence (AI) techniques to aid in the development of a Tactical Decision Generator (TDG) for Within-Visual-Range (WVR) air combat engagements is discussed. The application of AI methods for development and implementation of the TDG is presented. The history of the Adaptive Maneuvering Logic (AML) program is traced and current versions of the AML program are compared and contrasted with the TDG system. The Knowledge-Based Systems (KBS) used by the TDG to aid in the decision-making process are outlined in detail and example rules are presented. The results of tests to evaluate the performance of the TDG versus a version of AML and versus human pilots in the Langley Differential Maneuvering Simulator (DMS) are presented. To date, these results have shown significant performance gains in one-versus-one air combat engagements, and the AI-based TDG software has proven to be much easier to modify than the updated FORTRAN AML programs.

  12. Using Intelligent Techniques in Construction Project Cost Estimation: 10-Year Survey

    Directory of Open Access Journals (Sweden)

    Abdelrahman Osman Elfaki

    2014-01-01

    Full Text Available Cost estimation is the most important preliminary process in any construction project. Therefore, construction cost estimation has the lion’s share of the research effort in construction management. In this paper, we have analysed and studied proposals for construction cost estimation for the last 10 years. To implement this survey, we have proposed and applied a methodology that consists of two parts. The first part concerns data collection, for which we have chosen special journals as sources for the surveyed proposals. The second part concerns the analysis of the proposals. To analyse each proposal, the following four questions have been set. Which intelligent technique is used? How have data been collected? How are the results validated? And which construction cost estimation factors have been used? From the results of this survey, two main contributions have been produced. The first contribution is the defining of the research gap in this area, which has not been fully covered by previous proposals of construction cost estimation. The second contribution of this survey is the proposal and highlighting of future directions for forthcoming proposals, aimed ultimately at finding the optimal construction cost estimation. Moreover, we consider the second part of our methodology as one of our contributions in this paper. This methodology has been proposed as a standard benchmark for construction cost estimation proposals.

  13. Artificial Intelligence Techniques for the Estimation of Direct Methanol Fuel Cell Performance

    Science.gov (United States)

    Hasiloglu, Abdulsamet; Aras, Ömür; Bayramoglu, Mahmut

    2016-04-01

    Artificial neural networks and neuro-fuzzy inference systems are well known artificial intelligence techniques used for black-box modelling of complex systems. In this study, Feed-forward artificial neural networks (ANN) and adaptive neuro-fuzzy inference system (ANFIS) are used for modelling the performance of direct methanol fuel cell (DMFC). Current density (I), fuel cell temperature (T), methanol concentration (C), liquid flow-rate (q) and air flow-rate (Q) are selected as input variables to predict the cell voltage. Polarization curves are obtained for 35 different operating conditions according to a statistically designed experimental plan. In modelling study, various subsets of input variables and various types of membership function are considered. A feed -forward architecture with one hidden layer is used in ANN modelling. The optimum performance is obtained with the input set (I, T, C, q) using twelve hidden neurons and sigmoidal activation function. On the other hand, first order Sugeno inference system is applied in ANFIS modelling and the optimum performance is obtained with the input set (I, T, C, q) using sixteen fuzzy rules and triangular membership function. The test results show that ANN model estimates the polarization curve of DMFC more accurately than ANFIS model.

  14. Epileptic seizure predictors based on computational intelligence techniques: a comparative study with 278 patients.

    Science.gov (United States)

    Alexandre Teixeira, César; Direito, Bruno; Bandarabadi, Mojtaba; Le Van Quyen, Michel; Valderrama, Mario; Schelter, Bjoern; Schulze-Bonhage, Andreas; Navarro, Vincent; Sales, Francisco; Dourado, António

    2014-05-01

    The ability of computational intelligence methods to predict epileptic seizures is evaluated in long-term EEG recordings of 278 patients suffering from pharmaco-resistant partial epilepsy, also known as refractory epilepsy. This extensive study in seizure prediction considers the 278 patients from the European Epilepsy Database, collected in three epilepsy centres: Hôpital Pitié-là-Salpêtrière, Paris, France; Universitätsklinikum Freiburg, Germany; Centro Hospitalar e Universitário de Coimbra, Portugal. For a considerable number of patients it was possible to find a patient specific predictor with an acceptable performance, as for example predictors that anticipate at least half of the seizures with a rate of false alarms of no more than 1 in 6 h (0.15 h⁻¹). We observed that the epileptic focus localization, data sampling frequency, testing duration, number of seizures in testing, type of machine learning, and preictal time influence significantly the prediction performance. The results allow to face optimistically the feasibility of a patient specific prospective alarming system, based on machine learning techniques by considering the combination of several univariate (single-channel) electroencephalogram features. We envisage that this work will serve as benchmark data that will be of valuable importance for future studies based on the European Epilepsy Database. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  15. New evaluation methods for conceptual design selection using computational intelligence techniques

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Hong Zhong; Liu, Yu; Li, Yanfeng; Wang, Zhonglai [University of Electronic Science and Technology of China, Chengdu (China); Xue, Lihua [Higher Education Press, Beijing (China)

    2013-03-15

    The conceptual design selection, which aims at choosing the best or most desirable design scheme among several candidates for the subsequent detailed design stage, oftentimes requires a set of tools to conduct design evaluation. Using computational intelligence techniques, such as fuzzy logic, neural network, genetic algorithm, and physical programming, several design evaluation methods are put forth in this paper to realize the conceptual design selection under different scenarios. Depending on whether an evaluation criterion can be quantified or not, the linear physical programming (LPP) model and the RAOGA-based fuzzy neural network (FNN) model can be utilized to evaluate design alternatives in conceptual design stage. Furthermore, on the basis of Vanegas and Labib's work, a multi-level conceptual design evaluation model based on the new fuzzy weighted average (NFWA) and the fuzzy compromise decision-making method is developed to solve the design evaluation problem consisting of many hierarchical criteria. The effectiveness of the proposed methods is demonstrated via several illustrative examples.

  16. Social interactions in myxobacterial swarming.

    Directory of Open Access Journals (Sweden)

    Yilin Wu

    2007-12-01

    Full Text Available Swarming, a collective motion of many thousands of cells, produces colonies that rapidly spread over surfaces. In this paper, we introduce a cell-based model to study how interactions between neighboring cells facilitate swarming. We chose to study Myxococcus xanthus, a species of myxobacteria, because it swarms rapidly and has well-defined cell-cell interactions mediated by type IV pili and by slime trails. The aim of this paper is to test whether the cell contact interactions, which are inherent in pili-based S motility and slime-based A motility, are sufficient to explain the observed expansion of wild-type swarms. The simulations yield a constant rate of swarm expansion, which has been observed experimentally. Also, the model is able to quantify the contributions of S motility and A motility to swarming. Some pathogenic bacteria spread over infected tissue by swarming. The model described here may shed some light on their colonization process.

  17. ARGUMENTS ON USING COMPUTER-ASSISTED AUDIT TECHNIQUES (CAAT AND BUSINESS INTELLIGENCE TO IMPROVE THE WORK OF THE FINANCIAL AUDITOR

    Directory of Open Access Journals (Sweden)

    Ciprian-Costel, MUNTEANU

    2014-11-01

    Full Text Available In the 21st century, one of the most efficient ways to achieve an independent audit and quality opinion is by using information from the organization database, mainly documents in electronic format. With the help of Computer-Assisted Audit Techniques (CAAT, the financial auditor analyzes part or even all the data about a company in reference to other information within or outside the entity. The main purpose of this paper is to show the benefits of evolving from traditional audit techniques and tools to modern and , why not, visionary CAAT, which are supported by business intelligence systems. Given the opportunity to perform their work in IT environments, the auditors would start using the tools of business intelligence, a key factor which contributes to making successful business decisions . CAAT enable auditors to test large amount of data quickly and accurately and therefore increase the confidence they have in their opinion.

  18. Synthetic collective intelligence.

    Science.gov (United States)

    Solé, Ricard; Amor, Daniel R; Duran-Nebreda, Salva; Conde-Pueyo, Núria; Carbonell-Ballestero, Max; Montañez, Raúl

    2016-10-01

    Intelligent systems have emerged in our biosphere in different contexts and achieving different levels of complexity. The requirement of communication in a social context has been in all cases a determinant. The human brain, probably co-evolving with language, is an exceedingly successful example. Similarly, social insects complex collective decisions emerge from information exchanges between many agents. The difference is that such processing is obtained out of a limited individual cognitive power. Computational models and embodied versions using non-living systems, particularly involving robot swarms, have been used to explore the potentiality of collective intelligence. Here we suggest a novel approach to the problem grounded in the genetic engineering of unicellular systems, which can be modified in order to interact, store memories or adapt to external stimuli in collective ways. What we label as Synthetic Swarm Intelligence defines a parallel approach to the evolution of computation and swarm intelligence and allows to explore potential embodied scenarios for decision making at the microscale. Here, we consider several relevant examples of collective intelligence and their synthetic organism counterparts. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Modelling and analysis of ozone concentration by artificial intelligent techniques for estimating air quality

    Science.gov (United States)

    Taylan, Osman

    2017-02-01

    High ozone concentration is an important cause of air pollution mainly due to its role in the greenhouse gas emission. Ozone is produced by photochemical processes which contain nitrogen oxides and volatile organic compounds in the lower atmospheric level. Therefore, monitoring and controlling the quality of air in the urban environment is very important due to the public health care. However, air quality prediction is a highly complex and non-linear process; usually several attributes have to be considered. Artificial intelligent (AI) techniques can be employed to monitor and evaluate the ozone concentration level. The aim of this study is to develop an Adaptive Neuro-Fuzzy inference approach (ANFIS) to determine the influence of peripheral factors on air quality and pollution which is an arising problem due to ozone level in Jeddah city. The concentration of ozone level was considered as a factor to predict the Air Quality (AQ) under the atmospheric conditions. Using Air Quality Standards of Saudi Arabia, ozone concentration level was modelled by employing certain factors such as; nitrogen oxide (NOx), atmospheric pressure, temperature, and relative humidity. Hence, an ANFIS model was developed to observe the ozone concentration level and the model performance was assessed by testing data obtained from the monitoring stations established by the General Authority of Meteorology and Environment Protection of Kingdom of Saudi Arabia. The outcomes of ANFIS model were re-assessed by fuzzy quality charts using quality specification and control limits based on US-EPA air quality standards. The results of present study show that the ANFIS model is a comprehensive approach for the estimation and assessment of ozone level and is a reliable approach to produce more genuine outcomes.

  20. Collective motion of predictive swarms.

    Directory of Open Access Journals (Sweden)

    Nathaniel Rupprecht

    Full Text Available Theoretical models of populations and swarms typically start with the assumption that the motion of agents is governed by the local stimuli. However, an intelligent agent, with some understanding of the laws that govern its habitat, can anticipate the future, and make predictions to gather resources more efficiently. Here we study a specific model of this kind, where agents aim to maximize their consumption of a diffusing resource, by attempting to predict the future of a resource field and the actions of other agents. Once the agents make a prediction, they are attracted to move towards regions that have, and will have, denser resources. We find that the further the agents attempt to see into the future, the more their attempts at prediction fail, and the less resources they consume. We also study the case where predictive agents compete against non-predictive agents and find the predictors perform better than the non-predictors only when their relative numbers are very small. We conclude that predictivity pays off either when the predictors do not see too far into the future or the number of predictors is small.

  1. Intelligent Platform for Model Updating in a Structural Health Monitoring System

    Directory of Open Access Journals (Sweden)

    Danhui Dan

    2014-01-01

    Full Text Available The main aim of this study is to develop an automated smart software platform to improve the time-consuming and laborious process of model updating. We investigate the key techniques of model updating based on intelligent optimization algorithms, that is, accuracy judgment methods for basic finite element model, parameter choice theory based on sensitivity analysis, commonly used objective functions and their construction methods, particle swarm optimization, and other intelligent optimization algorithms. An intelligent model updating prototype software framework is developed using the commercial software systems ANSYS and MATLAB. A parameterized finite element modeling technique is proposed to suit different bridge types and different model updating requirements. An objective function library is built to fit different updating targets. Finally, two case studies are conducted to verify the feasibility of the techniques used by the proposed software platform.

  2. Decade Review (1999-2009): Artificial Intelligence Techniques in Student Modeling

    Science.gov (United States)

    Drigas, Athanasios S.; Argyri, Katerina; Vrettaros, John

    Artificial Intelligence applications in educational field are getting more and more popular during the last decade (1999-2009) and that is why much relevant research has been conducted. In this paper, we present the most interesting attempts to apply artificial intelligence methods such as fuzzy logic, neural networks, genetic programming and hybrid approaches such as neuro - fuzzy systems and genetic programming neural networks (GPNN) in student modeling. This latest research trend is a part of every Intelligent Tutoring System and aims at generating and updating a student model in order to modify learning content to fit individual needs or to provide reliable assessment and feedback to student's answers. In this paper, we make a brief presentation of methods used to point out their qualities and then we attempt a navigation to the most representative studies sought in the decade of our interest after classifying them according to the principal aim they attempted to serve.

  3. Application of orthogonal array technique and particle swarm optimization approach in surface roughness modification when face milling AISI1045 steel parts

    Science.gov (United States)

    Azadi Moghaddam, Masoud; Kolahan, Farhad

    2016-12-01

    Face milling is an important and common machining operation because of its versatility and capability to produce various surfaces. Face milling is a machining process of removing material by the relative motion between a work piece and rotating cutter with multiple cutting edges. It is an interrupted cutting operation in which the teeth of the milling cutter enter and exit the work piece during each revolution. This paper is concerned with the experimental and numerical study of face milling of AISI1045. The proposed approach is based on statistical analysis on the experimental data gathered using Taguchi design matrix. Surface roughness is the most important performance characteristics of the face milling process. In this study the effect of input face milling process parameters on surface roughness of AISI1045 steel milled parts have been studied. The input parameters are cutting speed ( v), feed rate ( f z ) and depth of cut ( a p ). The experimental data are gathered using Taguchi L9 design matrix. In order to establish the relations between the input and the output parameters, various regression functions have been fitted on the data based on output characteristics. The significance of the process parameters on the quality characteristics of the process was also evaluated quantitatively using the analysis of variance method. Then, statistical analysis and validation experiments have been carried out to compare and select the best and most fitted models. In the last section of this research, mathematical model has been developed for surface roughness prediction using particle swarm optimization (PSO) on the basis of experimental results. The model developed for optimization has been validated by confirmation experiments. It has been found that the predicted roughness using PSO is in good agreement with the actual surface roughness.

  4. Intelligent Search Method Based ACO Techniques for a Multistage Decision Problem EDP/LFP

    Directory of Open Access Journals (Sweden)

    Mostefa RAHLI

    2006-07-01

    Full Text Available The implementation of a numerical library of calculation based optimization in electrical supply networks area is in the centre of the current research orientations, thus, our project in a form given is centred on the development of platform NMSS1. It's a software environment which will preserve many efforts as regards calculations of charge, smoothing curves, losses calculation and economic planning of the generated powers [23].The operational research [17] in a hand and the industrial practice in the other, prove that the means and processes of simulation reached a level of very appreciable reliability and mathematical confidence [4, 5, 14]. It is of this expert observation that many processes make confidence to the results of simulation.The handicaps of this approach or methodology are that it makes base its judgments and handling on simplified assumptions and constraints whose influence was deliberately neglected to be added to the cost to spend [14].By juxtaposing the methods of simulation with artificial intelligence techniques, gathering set of numerical methods acquires an optimal reliability whose assurance can not leave doubt.Software environment NMSS [23] can be a in the field of the rallying techniques of simulation and electric network calculation via a graphic interface. In the same software integrate an AI capability via a module expert system.Our problem is a multistage case where are completely dependant and can't be performed separately.For a multistage problem [21, 22], the results obtained from a credible (large size problem calculation, makes the following question: Could choice of numerical methods set make the calculation of a complete problem using more than two treatments levels, a total error which will be the weakest one possible? It is well-known according to algorithmic policy; each treatment can be characterized by a function called mathematical complexity. This complexity is in fact a coast (a weight overloading

  5. Estimation of Sub Hourly Glacier Albedo Values Using Artificial Intelligence Techniques

    Science.gov (United States)

    Moya Quiroga, Vladimir; Mano, Akira; Asaoka, Yoshihiro; Udo, Keiko; Kure, Shuichi; Mendoza, Javier

    2013-04-01

    Glaciers are the most important fresh water reservoirs storing about 67% of total fresh water. Unfortunately, they are retreating and some small glaciers have already disappeared. Thus, snow glacier melt (SGM) estimation plays an important role in water resources management. Whether SGM is estimated by complete energy balance or a simplified method, albedo is an important data present in most of the methods. However, this is a variable value depending on the ground surface and local conditions. The present research presents a new approach for estimating sub hourly albedo values using different artificial intelligence techniques such as artificial neural networks and decision trees along with measured and easy to obtain data. . The models were developed using measured data from the Zongo-Ore station located in the Bolivian tropical glacier Zongo (68°10' W, 16°15' S). This station automatically records every 30 minutes several meteorological parameters such as incoming short wave radiation, outgoing short wave radiation, temperature or relative humidity. The ANN model used was the Multi Layer Perceptron, while the decision tree used was the M5 model. Both models were trained using the WEKA software and validated using the cross validation method. After analysing the model performances, it was concluded that the decision tree models have a better performance. The model with the best performance was then validated with measured data from the Equatorian tropical glacier Antizana (78°09'W, 0°28'S). The model predicts the sub hourly albedo with an overall mean absolute error of 0.103. The highest errors occur for albedo measured values higher than 0.9. Considering that this is an extreme value coincident with low measured values of incoming short wave radiation, it is reasonable to assume that such values include errors due to censored data. Assuming a maximum albedo of 0.9 improved the accuracy of the model reducing the MAE to less than 0.1. Considering that the

  6. Predicting daily ragweed pollen concentrations using Computational Intelligence techniques over two heavily polluted areas in Europe.

    Science.gov (United States)

    Csépe, Zoltán; Makra, László; Voukantsis, Dimitris; Matyasovszky, István; Tusnády, Gábor; Karatzas, Kostas; Thibaudon, Michel

    2014-04-01

    Forecasting ragweed pollen concentration is a useful tool for sensitive people in order to prepare in time for high pollen episodes. The aim of the study is to use methods of Computational Intelligence (CI) (Multi-Layer Perceptron, M5P, REPTree, DecisionStump and MLPRegressor) for predicting daily values of Ambrosia pollen concentrations and alarm levels for 1-7 days ahead for Szeged (Hungary) and Lyon (France), respectively. Ten-year daily mean ragweed pollen data (within 1997-2006) are considered for both cities. 10 input variables are used in the models including pollen level or alarm level on the given day, furthermore the serial number of the given day of the year within the pollen season and altogether 8 meteorological variables. The study has novelties as (1) daily alarm thresholds are firstly predicted in the aerobiological literature; (2) data-driven modelling methods including neural networks have never been used in forecasting daily Ambrosia pollen concentration; (3) algorithm J48 has never been used in palynological forecasts; (4) we apply a rarely used technique, namely factor analysis with special transformation, to detect the importance of the influencing variables in defining the pollen levels for 1-7 days ahead. When predicting pollen concentrations, for Szeged Multi-Layer Perceptron models deliver similar results with tree-based models 1 and 2 days ahead; while for Lyon only Multi-Layer Perceptron provides acceptable result. When predicting alarm levels, the performance of Multi-Layer Perceptron is the best for both cities. It is presented that the selection of the optimal method depends on climate, as a function of geographical location and relief. The results show that the more complex CI methods perform well, and their performance is case-specific for ≥2 days forecasting horizon. A determination coefficient of 0.98 (Ambrosia, Szeged, one day and two days ahead) using Multi-Layer Perceptron ranks this model the best one in the literature

  7. An apparatus to measure electrical charge of bubble swarms.

    Science.gov (United States)

    Uddin, S; Jin, L; Mirnezami, M; Finch, J A

    2013-01-01

    An apparatus has been developed to characterize bubble charge by measuring the swarm potential of gas bubbles. The technique allows in-process measurement of all system variables associated with bubble surface electrical charge: swarm potential, solution conductivity, gas holdup, pH and bubble size distribution. The method was validated by comparing with literature iso-electric point (iep) values. Bubble swarm potential was measured as a function of concentration and pH for a series of non-ionic surfactant frothers, ionic surfactant collectors and multivalent metal ions. Results showed good agreement with established theory and prior experimental findings. The setup is a step towards measurement of charge on flotation size range of bubble swarms. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. From hybrid swarms to swarms of hybrids

    Science.gov (United States)

    Stohlgren, Thomas J.; Szalanski, Allen L; Gaskin, John F.; Young, Nicholas E.; West, Amanda; Jarnevich, Catherine S.; Tripodi, Amber

    2014-01-01

    Science has shown that the introgression or hybridization of modern humans (Homo sapiens) with Neanderthals up to 40,000 YBP may have led to the swarm of modern humans on earth. However, there is little doubt that modern trade and transportation in support of the humans has continued to introduce additional species, genotypes, and hybrids to every country on the globe. We assessed the utility of species distributions modeling of genotypes to assess the risk of current and future invaders. We evaluated 93 locations of the genus Tamarix for which genetic data were available. Maxent models of habitat suitability showed that the hybrid, T. ramosissima x T. chinensis, was slightly greater than the parent taxa (AUCs > 0.83). General linear models of Africanized honey bees, a hybrid cross of Tanzanian Apis mellifera scutellata and a variety of European honey bee including A. m. ligustica, showed that the Africanized bees (AUC = 0.81) may be displacing European honey bees (AUC > 0.76) over large areas of the southwestern U.S. More important, Maxent modeling of sub-populations (A1 and A26 mitotypes based on mDNA) could be accurately modeled (AUC > 0.9), and they responded differently to environmental drivers. This suggests that rapid evolutionary change may be underway in the Africanized bees, allowing the bees to spread into new areas and extending their total range. Protecting native species and ecosystems may benefit from risk maps of harmful invasive species, hybrids, and genotypes.

  9. Are Myxobacteria intelligent?

    Directory of Open Access Journals (Sweden)

    Armin Dale Kaiser

    2013-11-01

    Full Text Available Intelligence is understood in different ways. Because humans are proud of their ability to speak, intelligence often includes the ability to communicate with others, to plan for the future, and to solve frequently encountered problems. Myxobacteria are among the most socially adept and ubiquitous of bacteria that live in the soil. To survive in nature, Myxobacteria communicate with their peers, using signals that elicit specific responses. Both swarming-growth and starvation-induced fruiting body development depend upon the specificity and effectiveness of signals passed between cells. Dynamic swarms spread outward, forming regular multi-cellular and multi-layered structures as they spread. Several different extra-cellular signals have been identified for fruiting body development and one is hypothesized for swarm development. Some extra-cellular signals are small, diffusible molecules. Others are protein molecules. The swarm signal appears to consist of structurally complex, protein to protein, contact junctions between pairs of side by side aligned cells. Each junction persists for less than a minute before disconnecting. After separating, both cells move on to make similar, transient connections with other cells. Eventually, the signal spreads across a prescribed population of communicating cells.

  10. Swarm Optimization-Based Magnetometer Calibration for Personal Handheld Devices

    Directory of Open Access Journals (Sweden)

    Naser El-Sheimy

    2012-09-01

    Full Text Available Inertial Navigation Systems (INS consist of accelerometers, gyroscopes and a processor that generates position and orientation solutions by integrating the specific forces and rotation rates. In addition to the accelerometers and gyroscopes, magnetometers can be used to derive the user heading based on Earth’s magnetic field. Unfortunately, the measurements of the magnetic field obtained with low cost sensors are usually corrupted by several errors, including manufacturing defects and external electro-magnetic fields. Consequently, proper calibration of the magnetometer is required to achieve high accuracy heading measurements. In this paper, a Particle Swarm Optimization (PSO-based calibration algorithm is presented to estimate the values of the bias and scale factor of low cost magnetometers. The main advantage of this technique is the use of the artificial intelligence which does not need any error modeling or awareness of the nonlinearity. Furthermore, the proposed algorithm can help in the development of Pedestrian Navigation Devices (PNDs when combined with inertial sensors and GPS/Wi-Fi for indoor navigation and Location Based Services (LBS applications.

  11. Particle swarm optimization algorithm based low cost magnetometer calibration

    Science.gov (United States)

    Ali, A. S.; Siddharth, S., Syed, Z., El-Sheimy, N.

    2011-12-01

    Inertial Navigation Systems (INS) consist of accelerometers, gyroscopes and a microprocessor provide inertial digital data from which position and orientation is obtained by integrating the specific forces and rotation rates. In addition to the accelerometers and gyroscopes, magnetometers can be used to derive the absolute user heading based on Earth's magnetic field. Unfortunately, the measurements of the magnetic field obtained with low cost sensors are corrupted by several errors including manufacturing defects and external electro-magnetic fields. Consequently, proper calibration of the magnetometer is required to achieve high accuracy heading measurements. In this paper, a Particle Swarm Optimization (PSO) based calibration algorithm is presented to estimate the values of the bias and scale factor of low cost magnetometer. The main advantage of this technique is the use of the artificial intelligence which does not need any error modeling or awareness of the nonlinearity. The estimated bias and scale factor errors from the proposed algorithm improve the heading accuracy and the results are also statistically significant. Also, it can help in the development of the Pedestrian Navigation Devices (PNDs) when combined with the INS and GPS/Wi-Fi especially in the indoor environments

  12. Intelligent Adaptation and Personalization Techniques in Computer-Supported Collaborative Learning

    CERN Document Server

    Demetriadis, Stavros; Xhafa, Fatos

    2012-01-01

    Adaptation and personalization have been extensively studied in CSCL research community aiming to design intelligent systems that adaptively support eLearning processes and collaboration. Yet, with the fast development in Internet technologies, especially with the emergence of new data technologies and the mobile technologies, new opportunities and perspectives are opened for advanced adaptive and personalized systems. Adaptation and personalization are posing new research and development challenges to nowadays CSCL systems. In particular, adaptation should be focused in a multi-dimensional way (cognitive, technological, context-aware and personal). Moreover, it should address the particularities of both individual learners and group collaboration. As a consequence, the aim of this book is twofold. On the one hand, it discusses the latest advances and findings in the area of intelligent adaptive and personalized learning systems. On the other hand it analyzes the new implementation perspectives for intelligen...

  13. Processing Techniques for Intelligibility Improvement to Speech with Co-Channel Interference.

    Science.gov (United States)

    1983-09-01

    qo • °. .. . . - - .. - -. . .. . ... .. v Sentence Desired Speaker Sentence Number of Number (Interfering Speaker Sentence) Scored Words 1 fairy tales ...the last pitch value calcu- lated for the preceding voiced speech. While both methods failed to yield improved intelligibility over the unpro- cessed...by measur- ing the background noise level just before the start of the utterance, and then using this energy value as a threshold to detect pause

  14. An adaptive neural swarm approach for intrusion defense in ad hoc networks

    Science.gov (United States)

    Cannady, James

    2011-06-01

    Wireless sensor networks (WSN) and mobile ad hoc networks (MANET) are being increasingly deployed in critical applications due to the flexibility and extensibility of the technology. While these networks possess numerous advantages over traditional wireless systems in dynamic environments they are still vulnerable to many of the same types of host-based and distributed attacks common to those systems. Unfortunately, the limited power and bandwidth available in WSNs and MANETs, combined with the dynamic connectivity that is a defining characteristic of the technology, makes it extremely difficult to utilize traditional intrusion detection techniques. This paper describes an approach to accurately and efficiently detect potentially damaging activity in WSNs and MANETs. It enables the network as a whole to recognize attacks, anomalies, and potential vulnerabilities in a distributive manner that reflects the autonomic processes of biological systems. Each component of the network recognizes activity in its local environment and then contributes to the overall situational awareness of the entire system. The approach utilizes agent-based swarm intelligence to adaptively identify potential data sources on each node and on adjacent nodes throughout the network. The swarm agents then self-organize into modular neural networks that utilize a reinforcement learning algorithm to identify relevant behavior patterns in the data without supervision. Once the modular neural networks have established interconnectivity both locally and with neighboring nodes the analysis of events within the network can be conducted collectively in real-time. The approach has been shown to be extremely effective in identifying distributed network attacks.

  15. Particle swarm optimization and genetic algorithm as feature selection techniques for the QSAR modeling of imidazo[1,5-a]pyrido[3,2-e]pyrazines, inhibitors of phosphodiesterase 10A.

    Science.gov (United States)

    Goodarzi, Mohammad; Saeys, Wouter; Deeb, Omar; Pieters, Sigrid; Vander Heyden, Yvan

    2013-12-01

    Quantitative structure-activity relationship (QSAR) modeling was performed for imidazo[1,5-a]pyrido[3,2-e]pyrazines, which constitute a class of phosphodiesterase 10A inhibitors. Particle swarm optimization (PSO) and genetic algorithm (GA) were used as feature selection techniques to find the most reliable molecular descriptors from a large pool. Modeling of the relationship between the selected descriptors and the pIC50 activity data was achieved by linear [multiple linear regression (MLR)] and non-linear [locally weighted regression (LWR) based on both Euclidean (E) and Mahalanobis (M) distances] methods. In addition, a stepwise MLR model was built using only a limited number of quantum chemical descriptors, selected because of their correlation with the pIC50 . The model was not found interesting. It was concluded that the LWR model, based on the Euclidean distance, applied on the descriptors selected by PSO has the best prediction ability. However, some other models behaved similarly. The root-mean-squared errors of prediction (RMSEP) for the test sets obtained by PSO/MLR, GA/MLR, PSO/LWRE, PSO/LWRM, GA/LWRE, and GA/LWRM models were 0.333, 0.394, 0.313, 0.333, 0.421, and 0.424, respectively. The PSO-selected descriptors resulted in the best prediction models, both linear and non-linear. © 2013 John Wiley & Sons A/S.

  16. Use of conditional rule structure to automate clinical decision support: a comparison of artificial intelligence and deterministic programming techniques.

    Science.gov (United States)

    Friedman, R H; Frank, A D

    1983-08-01

    A rule-based computer system was developed to perform clinical decision-making support within a medical information system, oncology practice, and clinical research. This rule-based system, which has been programmed using deterministic rules, possesses features of generalizability, modularity of structure, convenience in rule acquisition, explanability, and utility for patient care and teaching, features which have been identified as advantages of artificial intelligence (AI) rule-based systems. Formal rules are primarily represented as conditional statements; common conditions and actions are stored in system dictionaries so that they can be recalled at any time to form new decision rules. Important similarities and differences exist in the structure of this system and clinical computer systems utilizing artificial intelligence (AI) production rule techniques. The non-AI rule-based system possesses advantages in cost and ease of implementation. The degree to which significant medical decision problems can be solved by this technique remains uncertain as does whether the more complex AI methodologies will be required.

  17. Analysis of lineament swarms in a Precambrian metamorphic rocks ...

    Indian Academy of Sciences (India)

    Addressing the geologic significance of lineaments and their correlation with joints/fractures is still unclear. The present study attempts to analyse the lineament swarms developed in a Precambrian metamorphic terrain in India using both unfiltered and filtered techniques. The unfiltered analysis technique shows that the ...

  18. Analysis of lineament swarms in a Precambrian metamorphic rocks ...

    Indian Academy of Sciences (India)

    Addressing the geologic significance of lineaments and their correlation with joints/fractures is still unclear. The present study attempts to analyse the lineament swarms developed in a Precambrian meta- morphic terrain in India using both unfiltered and filtered techniques. The unfiltered analysis technique shows that the ...

  19. Cosmological parameter estimation using Particle Swarm Optimization

    Science.gov (United States)

    Prasad, J.; Souradeep, T.

    2014-03-01

    Constraining parameters of a theoretical model from observational data is an important exercise in cosmology. There are many theoretically motivated models, which demand greater number of cosmological parameters than the standard model of cosmology uses, and make the problem of parameter estimation challenging. It is a common practice to employ Bayesian formalism for parameter estimation for which, in general, likelihood surface is probed. For the standard cosmological model with six parameters, likelihood surface is quite smooth and does not have local maxima, and sampling based methods like Markov Chain Monte Carlo (MCMC) method are quite successful. However, when there are a large number of parameters or the likelihood surface is not smooth, other methods may be more effective. In this paper, we have demonstrated application of another method inspired from artificial intelligence, called Particle Swarm Optimization (PSO) for estimating cosmological parameters from Cosmic Microwave Background (CMB) data taken from the WMAP satellite.

  20. Prediction of Human Intestinal Absorption of Compounds Using Artificial Intelligence Techniques.

    Science.gov (United States)

    Kumar, Rajnish; Sharma, Anju; Siddiqui, Mohammed Haris; Tiwari, Rajesh Kumar

    2017-01-01

    Information about Pharmacokinetics of compounds is an essential component of drug design and development. Modeling the pharmacokinetic properties require identification of the factors effecting absorption, distribution, metabolism and excretion of compounds. There have been continuous attempts in the prediction of intestinal absorption of compounds using various Artificial intelligence methods in the effort to reduce the attrition rate of drug candidates entering to preclinical and clinical trials. Currently, there are large numbers of individual predictive models available for absorption using machine learning approaches. Six Artificial intelligence methods namely, Support vector machine, k- nearest neighbor, Probabilistic neural network, Artificial neural network, Partial least square and Linear discriminant analysis were used for prediction of absorption of compounds. Prediction accuracy of Support vector machine, k- nearest neighbor, Probabilistic neural network, Artificial neural network, Partial least square and Linear discriminant analysis for prediction of intestinal absorption of compounds was found to be 91.54%, 88.33%, 84.30%, 86.51%, 79.07% and 80.08% respectively. Comparative analysis of all the six prediction models suggested that Support vector machine with Radial basis function based kernel is comparatively better for binary classification of compounds using human intestinal absorption and may be useful at preliminary stages of drug design and development. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. ANALYSIS DATA SETS USING HYBRID TECHNIQUES APPLIED ARTIFICIAL INTELLIGENCE BASED PRODUCTION SYSTEMS INTEGRATED DESIGN

    Directory of Open Access Journals (Sweden)

    Daniel-Petru GHENCEA

    2017-06-01

    Full Text Available The paper proposes a prediction model of behavior spindle from the point of view of the thermal deformations and the level of the vibrations by highlighting and processing the characteristic equations. This is a model analysis for the shaft with similar electro-mechanical characteristics can be achieved using a hybrid analysis based on artificial intelligence (genetic algorithms - artificial neural networks - fuzzy logic. The paper presents a prediction mode obtaining valid range of values for spindles with similar characteristics based on measured data sets from a few spindles test without additional measures being required. Extracting polynomial functions of graphs resulting from simultaneous measurements and predict the dynamics of the two features with multi-objective criterion is the main advantage of this method.

  2. Perbandingan Metode Gaussian Particle Swarm Optimization (GPSO dan Lagrange Multiplier pada Masalah Economic Dispatch

    Directory of Open Access Journals (Sweden)

    Siti Komsiyah

    2012-06-01

    Full Text Available On electric power system operation, economic planning problem is one variable to take into account due to operational cost efficiency. Economic Dispatch problem of electric power generation is discussed in this study to manage the output division on several units based on the the required load demand, with minimum operating cost yet is able to satisfy equality and inequality constraint of all units and system. In this study the Economic Dispatch problem which has non linear cost function is solved using swarm intelligent method is Gaussian Particle Swarm Optimization (GPSO and Lagrange Multiplier. GPSO is a population-based stochastic algorithms which their moving is inspired by swarm intelligent and probabilities theories. To analize its accuracy, the Economic Dispatch solution by GPSO method is compared with Lagrange Multiplier method. From the test result it is proved that GPSO method gives economic planning calculation better than Lagrange Multiplier does.

  3. Neuro-Fuzzy DC Motor Speed Control Using Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Boumediene ALLAOUA

    2009-12-01

    Full Text Available This paper presents an application of Adaptive Neuro-Fuzzy Inference System (ANFIS control for DC motor speed optimized with swarm collective intelligence. First, the controller is designed according to Fuzzy rules such that the systems are fundamentally robust. Secondly, an adaptive Neuro-Fuzzy controller of the DC motor speed is then designed and simulated; the ANFIS has the advantage of expert knowledge of the Fuzzy inference system and the learning capability of neural networks. Finally, the ANFIS is optimized by Swarm Intelligence. Digital simulation results demonstrate that the deigned ANFIS-Swarm speed controller realize a good dynamic behavior of the DC motor, a perfect speed tracking with no overshoot, give better performance and high robustness than those obtained by the ANFIS alone.

  4. Swarming behavior in plant roots.

    Directory of Open Access Journals (Sweden)

    Marzena Ciszak

    Full Text Available Interactions between individuals that are guided by simple rules can generate swarming behavior. Swarming behavior has been observed in many groups of organisms, including humans, and recent research has revealed that plants also demonstrate social behavior based on mutual interaction with other individuals. However, this behavior has not previously been analyzed in the context of swarming. Here, we show that roots can be influenced by their neighbors to induce a tendency to align the directions of their growth. In the apparently noisy patterns formed by growing roots, episodic alignments are observed as the roots grow close to each other. These events are incompatible with the statistics of purely random growth. We present experimental results and a theoretical model that describes the growth of maize roots in terms of swarming.

  5. Particle Swarm Optimization applied to combinatorial problem aiming the fuel recharge problem solution in a nuclear reactor; Particle swarm optimization aplicado ao problema combinatorio com vistas a solucao do problema de recarga em um reator nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Meneses, Anderson Alvarenga de Moura; Schirru, Roberto [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Programa de Engenharia Nuclear]. E-mail: ameneses@con.ufrj.br; schirru@lmp.ufrj.br

    2005-07-01

    This work focuses on the usage the Artificial Intelligence technique Particle Swarm Optimization (PSO) to optimize the fuel recharge at a nuclear reactor. This is a combinatorial problem, in which the search of the best feasible solution is done by minimizing a specific objective function. However, in this first moment it is possible to compare the fuel recharge problem with the Traveling Salesman Problem (TSP), since both of them are combinatorial, with one advantage: the evaluation of the TSP objective function is much more simple. Thus, the proposed methods have been applied to two TSPs: Oliver 30 and Rykel 48. In 1995, KENNEDY and EBERHART presented the PSO technique to optimize non-linear continued functions. Recently some PSO models for discrete search spaces have been developed for combinatorial optimization. Although all of them having different formulation from the ones presented here. In this paper, we use the PSO theory associated with to the Random Keys (RK)model, used in some optimizations with Genetic Algorithms. The Particle Swarm Optimization with Random Keys (PSORK) results from this association, which combines PSO and RK. The adaptations and changings in the PSO aim to allow the usage of the PSO at the nuclear fuel recharge. This work shows the PSORK being applied to the proposed combinatorial problem and the obtained results. (author)

  6. A Novel Model on Curve Fitting and Particle Swarm Optimization for Vertical Handover in Heterogeneous Wireless Networks

    OpenAIRE

    Shidrokh Goudarzi; Wan Haslina Hassan; Mohammad Hossein Anisi; Seyed Ahmad Soleymani; Parvaneh Shabanzadeh

    2015-01-01

    The vertical handover mechanism is an essential issue in the heterogeneous wireless environments where selection of an efficient network that provides seamless connectivity involves complex scenarios. This study uses two modules that utilize the particle swarm optimization (PSO) algorithm to predict and make an intelligent vertical handover decision. In this paper, we predict the received signal strength indicator parameter using the curve fitting based particle swarm optimization (CF-PSO) an...

  7. Genetic Learning Particle Swarm Optimization.

    Science.gov (United States)

    Gong, Yue-Jiao; Li, Jing-Jing; Zhou, Yicong; Li, Yun; Chung, Henry Shu-Hung; Shi, Yu-Hui; Zhang, Jun

    2016-10-01

    Social learning in particle swarm optimization (PSO) helps collective efficiency, whereas individual reproduction in genetic algorithm (GA) facilitates global effectiveness. This observation recently leads to hybridizing PSO with GA for performance enhancement. However, existing work uses a mechanistic parallel superposition and research has shown that construction of superior exemplars in PSO is more effective. Hence, this paper first develops a new framework so as to organically hybridize PSO with another optimization technique for "learning." This leads to a generalized "learning PSO" paradigm, the *L-PSO. The paradigm is composed of two cascading layers, the first for exemplar generation and the second for particle updates as per a normal PSO algorithm. Using genetic evolution to breed promising exemplars for PSO, a specific novel *L-PSO algorithm is proposed in the paper, termed genetic learning PSO (GL-PSO). In particular, genetic operators are used to generate exemplars from which particles learn and, in turn, historical search information of particles provides guidance to the evolution of the exemplars. By performing crossover, mutation, and selection on the historical information of particles, the constructed exemplars are not only well diversified, but also high qualified. Under such guidance, the global search ability and search efficiency of PSO are both enhanced. The proposed GL-PSO is tested on 42 benchmark functions widely adopted in the literature. Experimental results verify the effectiveness, efficiency, robustness, and scalability of the GL-PSO.

  8. Intelligent Computer Graphics 2012

    CERN Document Server

    Miaoulis, Georgios

    2013-01-01

    In Computer Graphics, the use of intelligent techniques started more recently than in other research areas. However, during these last two decades, the use of intelligent Computer Graphics techniques is growing up year after year and more and more interesting techniques are presented in this area.   The purpose of this volume is to present current work of the Intelligent Computer Graphics community, a community growing up year after year. This volume is a kind of continuation of the previously published Springer volumes “Artificial Intelligence Techniques for Computer Graphics” (2008), “Intelligent Computer Graphics 2009” (2009), “Intelligent Computer Graphics 2010” (2010) and “Intelligent Computer Graphics 2011” (2011).   Usually, this kind of volume contains, every year, selected extended papers from the corresponding 3IA Conference of the year. However, the current volume is made from directly reviewed and selected papers, submitted for publication in the volume “Intelligent Computer Gr...

  9. Artificial intelligence techniques applied to the development of a decision-support system for diagnosing celiac disease.

    Science.gov (United States)

    Tenório, Josceli Maria; Hummel, Anderson Diniz; Cohrs, Frederico Molina; Sdepanian, Vera Lucia; Pisa, Ivan Torres; de Fátima Marin, Heimar

    2011-11-01

    Celiac disease (CD) is a difficult-to-diagnose condition because of its multiple clinical presentations and symptoms shared with other diseases. Gold-standard diagnostic confirmation of suspected CD is achieved by biopsying the small intestine. To develop a clinical decision-support system (CDSS) integrated with an automated classifier to recognize CD cases, by selecting from experimental models developed using intelligence artificial techniques. A web-based system was designed for constructing a retrospective database that included 178 clinical cases for training. Tests were run on 270 automated classifiers available in Weka 3.6.1 using five artificial intelligence techniques, namely decision trees, Bayesian inference, k-nearest neighbor algorithm, support vector machines and artificial neural networks. The parameters evaluated were accuracy, sensitivity, specificity and area under the ROC curve (AUC). AUC was used as a criterion for selecting the CDSS algorithm. A testing database was constructed including 38 clinical CD cases for CDSS evaluation. The diagnoses suggested by CDSS were compared with those made by physicians during patient consultations. The most accurate method during the training phase was the averaged one-dependence estimator (AODE) algorithm (a Bayesian classifier), which showed accuracy 80.0%, sensitivity 0.78, specificity 0.80 and AUC 0.84. This classifier was integrated into the web-based decision-support system. The gold-standard validation of CDSS achieved accuracy of 84.2% and k=0.68 (pdeveloping of a computer-assisted environment to support CD diagnosis. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  10. Artificial intelligence techniques applied to the development of a decision–support system for diagnosing celiac disease

    Science.gov (United States)

    Tenório, Josceli Maria; Hummel, Anderson Diniz; Cohrs, Frederico Molina; Sdepanian, Vera Lucia; Pisa, Ivan Torres; de Fátima Marin, Heimar

    2013-01-01

    Background Celiac disease (CD) is a difficult-to-diagnose condition because of its multiple clinical presentations and symptoms shared with other diseases. Gold-standard diagnostic confirmation of suspected CD is achieved by biopsying the small intestine. Objective To develop a clinical decision–support system (CDSS) integrated with an automated classifier to recognize CD cases, by selecting from experimental models developed using intelligence artificial techniques. Methods A web-based system was designed for constructing a retrospective database that included 178 clinical cases for training. Tests were run on 270 automated classifiers available in Weka 3.6.1 using five artificial intelligence techniques, namely decision trees, Bayesian inference, k-nearest neighbor algorithm, support vector machines and artificial neural networks. The parameters evaluated were accuracy, sensitivity, specificity and area under the ROC curve (AUC). AUC was used as a criterion for selecting the CDSS algorithm. A testing database was constructed including 38 clinical CD cases for CDSS evaluation. The diagnoses suggested by CDSS were compared with those made by physicians during patient consultations. Results The most accurate method during the training phase was the averaged one-dependence estimator (AODE) algorithm (a Bayesian classifier), which showed accuracy 80.0%, sensitivity 0.78, specificity 0.80 and AUC 0.84. This classifier was integrated into the web-based decision–support system. The gold-standard validation of CDSS achieved accuracy of 84.2% and k = 0.68 (p developing of a computer-assisted environment to support CD diagnosis. PMID:21917512

  11. An intensive insulinotherapy mobile phone application built on artificial intelligence techniques.

    Science.gov (United States)

    Curran, Kevin; Nichols, Eric; Xie, Ermai; Harper, Roy

    2010-01-01

    Software to help control diabetes is currently an embryonic market with the main activity to date focused mainly on the development of noncomputerized solutions, such as cardboard calculators or computerized solutions that use "flat" computer models, which are applied to each person without taking into account their individual lifestyles. The development of true, mobile device-driven health applications has been hindered by the lack of tools available in the past and the sheer lack of mobile devices on the market. This has now changed, however, with the availability of pocket personal computer handsets. This article describes a solution in the form of an intelligent neural network running on mobile devices, allowing people with diabetes access to it regardless of their location. Utilizing an easy to learn and use multipanel user interface, people with diabetes can run the software in real time via an easy to use graphical user interface. The neural network consists of four neurons. The first is glucose. If the user's current glucose level is within the target range, the glucose weight is then multiplied by zero. If the glucose level is high, then there will be a positive value multiplied to the weight, resulting in a positive amount of insulin to be injected. If the user's glucose level is low, then the weights will be multiplied by a negative value, resulting in a decrease in the overall insulin dose. A minifeasibility trial was carried out at a local hospital under a consultant endocrinologist in Belfast. The short study ran for 2 weeks with six patients. The main objectives were to investigate the user interface, test the remote sending of data over a 3G network to a centralized server at the university, and record patient data for further proofing of the neural network. We also received useful feedback regarding the user interface and the feasibility of handing real-world patients a new mobile phone. Results of this short trial confirmed to a large degree that

  12. Application of data mining and artificial intelligence techniques to mass spectrometry data for knowledge discovery

    Directory of Open Access Journals (Sweden)

    Hugo López-Fernández

    2016-05-01

    Full Text Available Mass spectrometry using matrix assisted laser desorption ionization coupled to time of flight analyzers (MALDI-TOF MS has become popular during the last decade due to its high speed, sensitivity and robustness for detecting proteins and peptides. This allows quickly analyzing large sets of samples are in one single batch and doing high-throughput proteomics. In this scenario, bioinformatics methods and computational tools play a key role in MALDI-TOF data analysis, as they are able handle the large amounts of raw data generated in order to extract new knowledge and useful conclusions. A typical MALDI-TOF MS data analysis workflow has three main stages: data acquisition, preprocessing and analysis. Although the most popular use of this technology is to identify proteins through their peptides, analyses that make use of artificial intelligence (AI, machine learning (ML, and statistical methods can be also carried out in order to perform biomarker discovery, automatic diagnosis, and knowledge discovery. In this research work, this workflow is deeply explored and new solutions based on the application of AI, ML, and statistical methods are proposed. In addition, an integrated software platform that supports the full MALDI-TOF MS data analysis workflow that facilitate the work of proteomics researchers without advanced bioinformatics skills has been developed and released to the scientific community.

  13. Predicting the accuracy of multiple sequence alignment algorithms by using computational intelligent techniques.

    Science.gov (United States)

    Ortuño, Francisco M; Valenzuela, Olga; Pomares, Hector; Rojas, Fernando; Florido, Javier P; Urquiza, Jose M; Rojas, Ignacio

    2013-01-07

    Multiple sequence alignments (MSAs) have become one of the most studied approaches in bioinformatics to perform other outstanding tasks such as structure prediction, biological function analysis or next-generation sequencing. However, current MSA algorithms do not always provide consistent solutions, since alignments become increasingly difficult when dealing with low similarity sequences. As widely known, these algorithms directly depend on specific features of the sequences, causing relevant influence on the alignment accuracy. Many MSA tools have been recently designed but it is not possible to know in advance which one is the most suitable for a particular set of sequences. In this work, we analyze some of the most used algorithms presented in the bibliography and their dependences on several features. A novel intelligent algorithm based on least square support vector machine is then developed to predict how accurate each alignment could be, depending on its analyzed features. This algorithm is performed with a dataset of 2180 MSAs. The proposed system first estimates the accuracy of possible alignments. The most promising methodologies are then selected in order to align each set of sequences. Since only one selected algorithm is run, the computational time is not excessively increased.

  14. Artificial intelligence techniques point out differences in classification performance between light and standard bovine carcasses.

    Science.gov (United States)

    Díez, J; Bahamonde, A; Alonso, J; López, S; Del Coz, J J; Quevedo, J R; Ranilla, J; Luaces, O; Alvarez, I; Royo, L J; Goyache, F

    2003-07-01

    The validity of the official SEUROP bovine carcass classification to grade light carcasses by means of three well reputed Artificial Intelligence algorithms has been tested to assess possible differences in the behavior of the classifiers in affecting the repeatability of grading. We used two training sets consisting of 65 and 162 examples respectively of light and standard carcass classifications, including up to 28 different attributes describing carcass conformation. We found that the behavior of the classifiers is different when they are dealing with a light or a standard carcass. Classifiers follow SEUROP rules more rigorously when they grade standard carcasses using attributes characterizing carcass profiles and muscular development. However, when they grade light carcasses, they include attributes characterizing body size or skeletal development. A reconsideration of the SEUROP classification system for light carcasses may be recommended to clarify and standardize this specific beef market in the European Union. In addition, since conformation of light and standard carcasses can be considered different traits, this could affect sire evaluation programs to improve carcass conformation scores from data from markets presenting a great variety of ages and weights of slaughtered animals.

  15. Daily water level forecasting using wavelet decomposition and artificial intelligence techniques

    Science.gov (United States)

    Seo, Youngmin; Kim, Sungwon; Kisi, Ozgur; Singh, Vijay P.

    2015-01-01

    Reliable water level forecasting for reservoir inflow is essential for reservoir operation. The objective of this paper is to develop and apply two hybrid models for daily water level forecasting and investigate their accuracy. These two hybrid models are wavelet-based artificial neural network (WANN) and wavelet-based adaptive neuro-fuzzy inference system (WANFIS). Wavelet decomposition is employed to decompose an input time series into approximation and detail components. The decomposed time series are used as inputs to artificial neural networks (ANN) and adaptive neuro-fuzzy inference system (ANFIS) for WANN and WANFIS models, respectively. Based on statistical performance indexes, the WANN and WANFIS models are found to produce better efficiency than the ANN and ANFIS models. WANFIS7-sym10 yields the best performance among all other models. It is found that wavelet decomposition improves the accuracy of ANN and ANFIS. This study evaluates the accuracy of the WANN and WANFIS models for different mother wavelets, including Daubechies, Symmlet and Coiflet wavelets. It is found that the model performance is dependent on input sets and mother wavelets, and the wavelet decomposition using mother wavelet, db10, can further improve the efficiency of ANN and ANFIS models. Results obtained from this study indicate that the conjunction of wavelet decomposition and artificial intelligence models can be a useful tool for accurate forecasting daily water level and can yield better efficiency than the conventional forecasting models.

  16. Demonstration of plant fluorescence by imaging technique and Intelligent FluoroSensor

    Science.gov (United States)

    Lenk, Sándor; Gádoros, Patrik; Kocsányi, László; Barócsi, Attila

    2015-10-01

    Photosynthesis is a process that converts carbon-dioxide into organic compounds, especially into sugars, using the energy of sunlight. The absorbed light energy is used mainly for photosynthesis initiated at the reaction centers of chlorophyll-protein complexes, but part of it is lost as heat and chlorophyll fluorescence. Therefore, the measurement of the latter can be used to estimate the photosynthetic activity. The basic method, when illuminating intact leaves with strong light after a dark adaptation of at least 20 minutes resulting in a transient change of fluorescence emission of the fluorophore chlorophyll-a called `Kautsky effect', is demonstrated by an imaging setup. The experimental kit includes a high radiant blue LED and a CCD camera (or a human eye) equipped with a red transmittance filter to detect the changing fluorescence radiation. However, for the measurement of several fluorescence parameters, describing the plant physiological processes in detail, the variation of several excitation light sources and an adequate detection method are needed. Several fluorescence induction protocols (e.g. traditional Kautsky, pulse amplitude modulated and excitation kinetic), are realized in the Intelligent FluoroSensor instrument. Using it, students are able to measure different plant fluorescence induction curves, quantitatively determine characteristic parameters and qualitatively interpret the measured signals.

  17. Generic, scalable and decentralized fault detection for robot swarms

    Science.gov (United States)

    Christensen, Anders Lyhne; Timmis, Jon

    2017-01-01

    Robot swarms are large-scale multirobot systems with decentralized control which means that each robot acts based only on local perception and on local coordination with neighboring robots. The decentralized approach to control confers number of potential benefits. In particular, inherent scalability and robustness are often highlighted as key distinguishing features of robot swarms compared with systems that rely on traditional approaches to multirobot coordination. It has, however, been shown that swarm robotics systems are not always fault tolerant. To realize the robustness potential of robot swarms, it is thus essential to give systems the capacity to actively detect and accommodate faults. In this paper, we present a generic fault-detection system for robot swarms. We show how robots with limited and imperfect sensing capabilities are able to observe and classify the behavior of one another. In order to achieve this, the underlying classifier is an immune system-inspired algorithm that learns to distinguish between normal behavior and abnormal behavior online. Through a series of experiments, we systematically assess the performance of our approach in a detailed simulation environment. In particular, we analyze our system’s capacity to correctly detect robots with faults, false positive rates, performance in a foraging task in which each robot exhibits a composite behavior, and performance under perturbations of the task environment. Results show that our generic fault-detection system is robust, that it is able to detect faults in a timely manner, and that it achieves a low false positive rate. The developed fault-detection system has the potential to enable long-term autonomy for robust multirobot systems, thus increasing the usefulness of robots for a diverse repertoire of upcoming applications in the area of distributed intelligent automation. PMID:28806756

  18. Generic, scalable and decentralized fault detection for robot swarms.

    Science.gov (United States)

    Tarapore, Danesh; Christensen, Anders Lyhne; Timmis, Jon

    2017-01-01

    Robot swarms are large-scale multirobot systems with decentralized control which means that each robot acts based only on local perception and on local coordination with neighboring robots. The decentralized approach to control confers number of potential benefits. In particular, inherent scalability and robustness are often highlighted as key distinguishing features of robot swarms compared with systems that rely on traditional approaches to multirobot coordination. It has, however, been shown that swarm robotics systems are not always fault tolerant. To realize the robustness potential of robot swarms, it is thus essential to give systems the capacity to actively detect and accommodate faults. In this paper, we present a generic fault-detection system for robot swarms. We show how robots with limited and imperfect sensing capabilities are able to observe and classify the behavior of one another. In order to achieve this, the underlying classifier is an immune system-inspired algorithm that learns to distinguish between normal behavior and abnormal behavior online. Through a series of experiments, we systematically assess the performance of our approach in a detailed simulation environment. In particular, we analyze our system's capacity to correctly detect robots with faults, false positive rates, performance in a foraging task in which each robot exhibits a composite behavior, and performance under perturbations of the task environment. Results show that our generic fault-detection system is robust, that it is able to detect faults in a timely manner, and that it achieves a low false positive rate. The developed fault-detection system has the potential to enable long-term autonomy for robust multirobot systems, thus increasing the usefulness of robots for a diverse repertoire of upcoming applications in the area of distributed intelligent automation.

  19. Swarm, genetic and evolutionary programming algorithms applied to multiuser detection

    Directory of Open Access Journals (Sweden)

    Paul Jean Etienne Jeszensky

    2005-02-01

    Full Text Available In this paper, the particles swarm optimization technique, recently published in the literature, and applied to Direct Sequence/Code Division Multiple Access systems (DS/CDMA with multiuser detection (MuD is analyzed, evaluated and compared. The Swarm algorithm efficiency when applied to the DS-CDMA multiuser detection (Swarm-MuD is compared through the tradeoff performance versus computational complexity, being the complexity expressed in terms of the number of necessary operations in order to reach the performance obtained through the optimum detector or the Maximum Likelihood detector (ML. The comparison is accomplished among the genetic algorithm, evolutionary programming with cloning and Swarm algorithm under the same simulation basis. Additionally, it is proposed an heuristics-MuD complexity analysis through the number of computational operations. Finally, an analysis is carried out for the input parameters of the Swarm algorithm in the attempt to find the optimum parameters (or almost-optimum for the algorithm applied to the MuD problem.

  20. Optimal PMU Placement By Improved Particle Swarm Optimization

    DEFF Research Database (Denmark)

    Rather, Zakir Hussain; Liu, Leo; Chen, Zhe

    2013-01-01

    This paper presents an improved method of binary particle swarm optimization (IBPSO) technique for optimal phasor measurement unit (PMU) placement in a power network for complete system observability. Various effective improvements have been proposed to enhance the efficiency and convergence rate...... of conventional particle swarm optimization method. The proposed method of IBPSO ensures optimal PMU placement with and without consideration of zero injection measurements. The proposed method has been applied to standard test systems like 17 bus, IEEE 24-bus, IEEE 30-bus, New England 39-bus, IEEE 57-bus system...

  1. Particle swarm optimization of a neural network model in a ...

    Indian Academy of Sciences (India)

    This paper presents a particle swarm optimization (PSO) technique to train an artificial neural network (ANN) for prediction of flank wear in drilling, and compares the network performance with that of the back propagation neural network (BPNN). This analysis is carried out following a series of experiments employing high ...

  2. Composite Particle Swarm Optimizer With Historical Memory for Function Optimization.

    Science.gov (United States)

    Li, Jie; Zhang, JunQi; Jiang, ChangJun; Zhou, MengChu

    2015-10-01

    Particle swarm optimization (PSO) algorithm is a population-based stochastic optimization technique. It is characterized by the collaborative search in which each particle is attracted toward the global best position (gbest) in the swarm and its own best position (pbest). However, all of particles' historical promising pbests in PSO are lost except their current pbests. In order to solve this problem, this paper proposes a novel composite PSO algorithm, called historical memory-based PSO (HMPSO), which uses an estimation of distribution algorithm to estimate and preserve the distribution information of particles' historical promising pbests. Each particle has three candidate positions, which are generated from the historical memory, particles' current pbests, and the swarm's gbest. Then the best candidate position is adopted. Experiments on 28 CEC2013 benchmark functions demonstrate the superiority of HMPSO over other algorithms.

  3. Estimation of Valve Stiction Using Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    S. Sivagamasundari

    2011-06-01

    Full Text Available This paper presents a procedure for quantifying valve stiction in control loops based on particle swarm optimization. Measurements of the Process Variable (PV and Controller Output (OP are used to estimate the parameters of a Hammerstein system, consisting of connection of a non linear control valve stiction model and a linear process model. The parameters of the Hammerstein model are estimated using particle swarm optimization, from the input-output data by minimizing the error between the true model output and the identified model output. Using particle swarm optimization, Hammerstein models with known nonlinear structure and unknown parameters can be identified. A cost-effective optimization technique is adopted to find the best valve stiction models representing a more realistic valve behavior in the oscillating loop. Simulation and practical laboratory control system results are included, which demonstrates the effectiveness and robustness of the identification scheme.

  4. Intelligent feature selection techniques for pattern classification of Lamb wave signals

    Science.gov (United States)

    Hinders, Mark K.; Miller, Corey A.

    2014-02-01

    Lamb wave interaction with flaws is a complex, three-dimensional phenomenon, which often frustrates signal interpretation schemes based on mode arrival time shifts predicted by dispersion curves. As the flaw severity increases, scattering and mode conversion effects will often dominate the time-domain signals, obscuring available information about flaws because multiple modes may arrive on top of each other. Even for idealized flaw geometries the scattering and mode conversion behavior of Lamb waves is very complex. Here, multi-mode Lamb waves in a metal plate are propagated across a rectangular flat-bottom hole in a sequence of pitch-catch measurements corresponding to the double crosshole tomography geometry. The flaw is sequentially deepened, with the Lamb wave measurements repeated at each flaw depth. Lamb wave tomography reconstructions are used to identify which waveforms have interacted with the flaw and thereby carry information about its depth. Multiple features are extracted from each of the Lamb wave signals using wavelets, which are then fed to statistical pattern classification algorithms that identify flaw severity. In order to achieve the highest classification accuracy, an optimal feature space is required but it's never known a priori which features are going to be best. For structural health monitoring we make use of the fact that physical flaws, such as corrosion, will only increase over time. This allows us to identify feature vectors which are topologically well-behaved by requiring that sequential classes "line up" in feature vector space. An intelligent feature selection routine is illustrated that identifies favorable class distributions in multi-dimensional feature spaces using computational homology theory. Betti numbers and formal classification accuracies are calculated for each feature space subset to establish a correlation between the topology of the class distribution and the corresponding classification accuracy.

  5. A Alternative Analog Circuit Design Methodology Employing Integrated Artificial Intelligence Techniques

    Science.gov (United States)

    Tuttle, Jeffery L.

    In consideration of the computer processing power now available to the designer, an alternative analog circuit design methodology is proposed. Computer memory capacities no longer require the reduction of the transistor operational characteristics to an imprecise formulation. Therefore, it is proposed that transistor modelling be abandoned in favor of fully characterized transistor data libraries. Secondly, availability of the transistor libraries would facilitate an automated selection of the most appropriate device(s) for the circuit being designed. More specifically, a preprocessor computer program to a more sophisticated circuit simulator (e.g. SPICE) is developed to assist the designer in developing the basic circuit topology and the selection of the most appropriate transistor. Once this is achieved, the circuit topology and selected transistor data library would be downloaded to the simulator for full circuit operational characterization and subsequent design modifications. It is recognized that the design process is enhanced by the use of heuristics as applied to iterative design results. Accordingly, an artificial intelligence (AI) interface is developed to assist the designer in applying the preprocessor results. To demonstrate the retrofitability of the AI interface to established programs, the interface is specifically designed to be as non-intrusive to the host code as possible. Implementation of the proposed methodology offers the potential to speed the design process, since the preprocessor both minimizes the required number of simulator runs and provides a higher acceptance potential of the initial and subsequent simulator runs. Secondly, part count reductions may be realizable since the circuit topologies are not as strongly driven by transistor limitations. Thirdly, the predicted results should more closely match actual circuit operations since the inadequacies of the transistor models have been virtually eliminated. Finally, the AI interface

  6. DualTrust: A Trust Management Model for Swarm-Based Autonomic Computing Systems

    Energy Technology Data Exchange (ETDEWEB)

    Maiden, Wendy M. [Washington State Univ., Pullman, WA (United States)

    2010-05-01

    Trust management techniques must be adapted to the unique needs of the application architectures and problem domains to which they are applied. For autonomic computing systems that utilize mobile agents and ant colony algorithms for their sensor layer, certain characteristics of the mobile agent ant swarm -- their lightweight, ephemeral nature and indirect communication -- make this adaptation especially challenging. This thesis looks at the trust issues and opportunities in swarm-based autonomic computing systems and finds that by monitoring the trustworthiness of the autonomic managers rather than the swarming sensors, the trust management problem becomes much more scalable and still serves to protect the swarm. After analyzing the applicability of trust management research as it has been applied to architectures with similar characteristics, this thesis specifies the required characteristics for trust management mechanisms used to monitor the trustworthiness of entities in a swarm-based autonomic computing system and describes a trust model that meets these requirements.

  7. Identification of unique repeated patterns, location of mutation in DNA finger printing using artificial intelligence technique.

    Science.gov (United States)

    Mukunthan, B; Nagaveni, N

    2014-01-01

    In genetic engineering, conventional techniques and algorithms employed by forensic scientists to assist in identification of individuals on the basis of their respective DNA profiles involves more complex computational steps and mathematical formulae, also the identification of location of mutation in a genomic sequence in laboratories is still an exigent task. This novel approach provides ability to solve the problems that do not have an algorithmic solution and the available solutions are also too complex to be found. The perfect blend made of bioinformatics and neural networks technique results in efficient DNA pattern analysis algorithm with utmost prediction accuracy.

  8. Dynamic scaling in natural swarms

    Science.gov (United States)

    Cavagna, Andrea; Conti, Daniele; Creato, Chiara; Del Castello, Lorenzo; Giardina, Irene; Grigera, Tomas S.; Melillo, Stefania; Parisi, Leonardo; Viale, Massimiliano

    2017-09-01

    Collective behaviour in biological systems presents theoretical challenges beyond the borders of classical statistical physics. The lack of concepts such as scaling and renormalization is particularly problematic, as it forces us to negotiate details whose relevance is often hard to assess. In an attempt to improve this situation, we present here experimental evidence of the emergence of dynamic scaling laws in natural swarms of midges. We find that spatio-temporal correlation functions in different swarms can be rescaled by using a single characteristic time, which grows with the correlation length with a dynamical critical exponent z ~ 1, a value not found in any other standard statistical model. To check whether out-of-equilibrium effects may be responsible for this anomalous exponent, we run simulations of the simplest model of self-propelled particles and find z ~ 2, suggesting that natural swarms belong to a novel dynamic universality class. This conclusion is strengthened by experimental evidence of the presence of non-dissipative modes in the relaxation, indicating that previously overlooked inertial effects are needed to describe swarm dynamics. The absence of a purely dissipative regime suggests that natural swarms undergo a near-critical censorship of hydrodynamics.

  9. A review on economic emission dispatch problems using quantum computational intelligence

    Science.gov (United States)

    Mahdi, Fahad Parvez; Vasant, Pandian; Kallimani, Vish; Abdullah-Al-Wadud, M.

    2016-11-01

    Economic emission dispatch (EED) problems are one of the most crucial problems in power systems. Growing energy demand, limitation of natural resources and global warming make this topic into the center of discussion and research. This paper reviews the use of Quantum Computational Intelligence (QCI) in solving Economic Emission Dispatch problems. QCI techniques like Quantum Genetic Algorithm (QGA) and Quantum Particle Swarm Optimization (QPSO) algorithm are discussed here. This paper will encourage the researcher to use more QCI based algorithm to get better optimal result for solving EED problems.

  10. Application of Artificial Intelligence Techniques for the Control of the Asynchronous Machine

    Directory of Open Access Journals (Sweden)

    F. Khammar

    2016-01-01

    Full Text Available The induction machine is experiencing a growing success for two decades by gradually replacing the DC machines and synchronous in many industrial applications. This paper is devoted to the study of advanced methods applied to the command of the asynchronous machine in order to obtain a system of control of high performance. While the criteria for response time, overtaking, and static error can be assured by the techniques of conventional control, the criterion of robustness remains a challenge for researchers. This criterion can be satisfied only by applying advanced techniques of command. After mathematical modeling of the asynchronous machine, it defines the control strategies based on the orientation of the rotor flux. The results of the different simulation tests highlight the properties of robustness of algorithms proposed and suggested to compare the different control strategies.

  11. An Intelligent System for Analyzing Welding Defects using Image Retrieval Techniques

    OpenAIRE

    Pein, Raoul Pascal; Lu, Joan; Stav, John Birger; Xu, Qiang; Uran, Miro; Mráz, Luboš

    2009-01-01

    The development of new approaches in image processing and retrieval provides several opportunities in supporting in different\\ud domains. The group of welding engineers frequently needs to conduct visual inspections to assess the quality of welding products.\\ud It is investigated, if this process can be supported by different kinds of software. Techniques from a generic CBIR system have\\ud been successfully used to cluster welding photographs according to the severeness of visual faults. Simi...

  12. Large-scale multi-zone optimal power dispatch using hybrid hierarchical evolution technique

    Directory of Open Access Journals (Sweden)

    Manjaree Pandit

    2014-03-01

    Full Text Available A new hybrid technique based on hierarchical evolution is proposed for large, non-convex, multi-zone economic dispatch (MZED problems considering all practical constraints. Evolutionary/swarm intelligence-based optimisation techniques are reported to be effective only for small/medium-sized power systems. The proposed hybrid hierarchical evolution (HHE algorithm is specifically developed for solving large systems. The HHE integrates the exploration and exploitation capabilities of particle swarm optimisation and differential evolution in a novel manner such that the search efficiency is improved substantially. Most hybrid techniques export or exchange features or operations from one algorithm to the other, but in HHE their entire individual features are retained. The effectiveness of the proposed algorithm has been verified on six-test systems having different sizes and complexity levels. Non-convex MZED solution for such large and complex systems has not yet been reported.

  13. Particle Swarm Optimization with Double Learning Patterns.

    Science.gov (United States)

    Shen, Yuanxia; Wei, Linna; Zeng, Chuanhua; Chen, Jian

    2016-01-01

    Particle Swarm Optimization (PSO) is an effective tool in solving optimization problems. However, PSO usually suffers from the premature convergence due to the quick losing of the swarm diversity. In this paper, we first analyze the motion behavior of the swarm based on the probability characteristic of learning parameters. Then a PSO with double learning patterns (PSO-DLP) is developed, which employs the master swarm and the slave swarm with different learning patterns to achieve a trade-off between the convergence speed and the swarm diversity. The particles in the master swarm and the slave swarm are encouraged to explore search for keeping the swarm diversity and to learn from the global best particle for refining a promising solution, respectively. When the evolutionary states of two swarms interact, an interaction mechanism is enabled. This mechanism can help the slave swarm in jumping out of the local optima and improve the convergence precision of the master swarm. The proposed PSO-DLP is evaluated on 20 benchmark functions, including rotated multimodal and complex shifted problems. The simulation results and statistical analysis show that PSO-DLP obtains a promising performance and outperforms eight PSO variants.

  14. Particle Swarm Optimization with Double Learning Patterns

    Directory of Open Access Journals (Sweden)

    Yuanxia Shen

    2016-01-01

    Full Text Available Particle Swarm Optimization (PSO is an effective tool in solving optimization problems. However, PSO usually suffers from the premature convergence due to the quick losing of the swarm diversity. In this paper, we first analyze the motion behavior of the swarm based on the probability characteristic of learning parameters. Then a PSO with double learning patterns (PSO-DLP is developed, which employs the master swarm and the slave swarm with different learning patterns to achieve a trade-off between the convergence speed and the swarm diversity. The particles in the master swarm and the slave swarm are encouraged to explore search for keeping the swarm diversity and to learn from the global best particle for refining a promising solution, respectively. When the evolutionary states of two swarms interact, an interaction mechanism is enabled. This mechanism can help the slave swarm in jumping out of the local optima and improve the convergence precision of the master swarm. The proposed PSO-DLP is evaluated on 20 benchmark functions, including rotated multimodal and complex shifted problems. The simulation results and statistical analysis show that PSO-DLP obtains a promising performance and outperforms eight PSO variants.

  15. UAV Swarm Operational Risk Assessment System

    Science.gov (United States)

    2015-09-01

    distribution is unlimited UAV SWARM OPERATIONAL RISK ASSESSMENT SYSTEM by Team CQ Alpha Cohort 311-141A September 2015 Project Advisors: Gregory......need for a UAV Swarm Risk Assessment Tool and how it can assist the Navy’s decision makers in assessing risk of UAV swarm threats in littoral

  16. Multispacecraft current estimates at swarm

    DEFF Research Database (Denmark)

    Dunlop, M. W.; Yang, Y.-Y.; Yang, J.-Y.

    2015-01-01

    During the first several months of the three-spacecraft Swarm mission all three spacecraft camerepeatedly into close alignment, providing an ideal opportunity for validating the proposed dual-spacecraftmethod for estimating current density from the Swarm magnetic field data. Two of the Swarm...... orbit the use oftime-shifted positions allow stable estimates of current density to be made and can verify temporal effects aswell as validating the interpretation of the current components as arising predominantly from field-alignedcurrents. In the case of four-spacecraft configurations we can resolve...... the full vector current and therefore cancheck the perpendicular as well as parallel current density components directly, together with the qualityfactor for the estimates directly (for the first time in situ at low Earth orbit)....

  17. Designing with computational intelligence

    CERN Document Server

    Lopes, Heitor; Mourelle, Luiza

    2017-01-01

    This book discusses a number of real-world applications of computational intelligence approaches. Using various examples, it demonstrates that computational intelligence has become a consolidated methodology for automatically creating new competitive solutions to complex real-world problems. It also presents a concise and efficient synthesis of different systems using computationally intelligent techniques.

  18. Research on intelligent fault diagnosis of gears using EMD, spectral features and data mining techniques

    Science.gov (United States)

    Sagar, M.; Vivekkumar, G.; Reddy, Mallikarjuna; Devendiran, S.; Amarnath, M.

    2017-11-01

    In this present work aims to formulate an automated prediction model using vibration signals of various gear operating conditions by using EMD (empirical mode decomposition) and spectral features and different classification algorithms. In this present work empirical mode decomposition (EMD) is a signal processing technique used to extract more useful fault information from the vibration signals. The proposed method described in following parts gear test rig, data acquisition system, signal processing, feature extraction and classification algorithms and finally identification. Meanwhile, in order to remove the redundant and irrelevant spectral features and classification algorithms, data mining is implemented and it showed promising prediction results.

  19. Advanced Techniques in Web Intelligence-2 Web User Browsing Behaviour and Preference Analysis

    CERN Document Server

    Palade, Vasile; Jain, Lakhmi

    2013-01-01

    This research volume focuses on analyzing the web user browsing behaviour and preferences in traditional web-based environments, social  networks and web 2.0 applications,  by using advanced  techniques in data acquisition, data processing, pattern extraction and  cognitive science for modeling the human actions.  The book is directed to  graduate students, researchers/scientists and engineers  interested in updating their knowledge with the recent trends in web user analysis, for developing the next generation of web-based systems and applications.

  20. Swarm Science objectives and challenges

    DEFF Research Database (Denmark)

    Friis-Christensen, Eigil; Lühr, Hermann; Hulot, Gauthier

    Swarm is the fifth Earth Explorer mission in ESA’s Living Planet Programme to be launched in 2009. The objective of the Swarm mission is to provide the best ever survey of the geomagnetic field and its temporal evolution. The innovative constellation concept and a unique set of dedicated instrume...... instruments will provide the necessary observations that are required to separate and model the various sources of the geomagnetic field. This will provide new insights into the Earth system by improving our understanding of the Earth’s interior and Sun-Earth connection processes....

  1. Swarmie User Manual: A Rover Used for Multi-agent Swarm Research

    Science.gov (United States)

    Montague, Gilbert

    2014-01-01

    The ability to create multiple functional yet cost effective robots is crucial for conducting swarming robotics research. The Center Innovation Fund (CIF) swarming robotics project is a collaboration among the KSC Granular Mechanics and Regolith Operations (GMRO) group, the University of New Mexico Biological Computation Lab, and the NASA Ames Intelligent Robotics Group (IRG) that uses rovers, dubbed "Swarmies", as test platforms for genetic search algorithms. This fall, I assisted in the development of the software modules used on the Swarmies and created this guide to provide thorough instructions on how to configure your workspace to operate a Swarmie both in simulation and out in the field.

  2. HYBRIDIZATION OF MODIFIED ANT COLONY OPTIMIZATION AND INTELLIGENT WATER DROPS ALGORITHM FOR JOB SCHEDULING IN COMPUTATIONAL GRID

    Directory of Open Access Journals (Sweden)

    P. Mathiyalagan

    2013-10-01

    Full Text Available As grid is a heterogeneous environment, finding an optimal schedule for the job is always a complex task. In this paper, a hybridization technique using intelligent water drops and Ant colony optimization which are nature-inspired swarm intelligence approaches are used to find the best resource for the job. Intelligent water drops involves in finding out all matching resources for the job requirements and the routing information (optimal path to reach those resources. Ant Colony optimization chooses the best resource among all matching resources for the job. The objective of this approach is to converge to the optimal schedule faster, minimize the make span of the job, improve load balancing of resources and efficient utilization of available resources.

  3. Comparison of artificial intelligence techniques with UKTRISS for estimating probability of survival after trauma. UK Trauma and Injury Severity Score.

    Science.gov (United States)

    Becalick, D C; Coats, T J

    2001-07-01

    The development of TRISS was principally a search for variables that correlated with outcome. It is not known, however, if linear statistical models provide optimal results. Artificial intelligence techniques can answer this question and also determine the most important predictor variables. An artificial neural network, using 16 anatomic and physiologic predictor variables, was compared with the latest United Kingdom version of TRISS model. Both methods were 89.6% correct, but TRISS was significantly better by the area under the receiver operating characteristic curve (0.941 vs. 0.921, p artificial neural network, however, was better calibrated to the test data (Hosmer-Lemeshow statistic, 58.3 vs. 105.4). Head injury, age, and chest injury were the most important predictors by linear or nonlinear methods, whereas respiration rate, heart rate, and systolic blood pressure were underused. Prediction using linear statistics is adequate but not optimal. Only half the predictors have important predictive value, fewer still when using linear classification. The strongest predictors swamp any nonlinearity observed in other variables.

  4. Diagnostics and Control of Natural Gas-Fired furnaces via Flame Image Analysis using Machine Vision & Artificial Intelligence Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Shahla Keyvan

    2005-12-01

    A new approach for the detection of real-time properties of flames is used in this project to develop improved diagnostics and controls for natural gas fired furnaces. The system utilizes video images along with advanced image analysis and artificial intelligence techniques to provide virtual sensors in a stand-alone expert shell environment. One of the sensors is a flame sensor encompassing a flame detector and a flame analyzer to provide combustion status. The flame detector can identify any burner that has not fired in a multi-burner furnace. Another sensor is a 3-D temperature profiler. One important aspect of combustion control is product quality. The 3-D temperature profiler of this on-line system is intended to provide a tool for a better temperature control in a furnace to improve product quality. In summary, this on-line diagnostic and control system offers great potential for improving furnace thermal efficiency, lowering NOx and carbon monoxide emissions, and improving product quality. The system is applicable in natural gas-fired furnaces in the glass industry and reheating furnaces used in steel and forging industries.

  5. Artificial Intelligence Techniques to Optimize the EDC/NHS-Mediated Immobilization of Cellulase on Eudragit L-100

    Directory of Open Access Journals (Sweden)

    Min-Chao He

    2012-06-01

    Full Text Available Two artificial intelligence techniques, namely artificial neural network (ANN and genetic algorithm (GA were combined to be used as a tool for optimizing the covalent immobilization of cellulase on a smart polymer, Eudragit L-100. 1-Ethyl-3-(3-dimethyllaminopropyl carbodiimide (EDC concentration, N-hydroxysuccinimide (NHS concentration and coupling time were taken as independent variables, and immobilization efficiency was taken as the response. The data of the central composite design were used to train ANN by back-propagation algorithm, and the result showed that the trained ANN fitted the data accurately (correlation coefficient R2 = 0.99. Then a maximum immobilization efficiency of 88.76% was searched by genetic algorithm at a EDC concentration of 0.44%, NHS concentration of 0.37% and a coupling time of 2.22 h, where the experimental value was 87.97 ± 6.45%. The application of ANN based optimization by GA is quite successful.

  6. Psychovisual masks and intelligent streaming RTP techniques for the MPEG-4 standard

    Science.gov (United States)

    Mecocci, Alessandro; Falconi, Francesco

    2003-06-01

    In today multimedia audio-video communication systems, data compression plays a fundamental role by reducing the bandwidth waste and the costs of the infrastructures and equipments. Among the different compression standards, the MPEG-4 is becoming more and more accepted and widespread. Even if one of the fundamental aspects of this standard is the possibility of separately coding video objects (i.e. to separate moving objects from the background and adapt the coding strategy to the video content), currently implemented codecs work only at the full-frame level. In this way, many advantages of the flexible MPEG-4 syntax are missed. This lack is due both to the difficulties in properly segmenting moving objects in real scenes (featuring an arbitrary motion of the objects and of the acquisition sensor), and to the current use of these codecs, that are mainly oriented towards the market of DVD backups (a full-frame approach is enough for these applications). In this paper we propose a codec for MPEG-4 real-time object streaming, that codes separately the moving objects and the scene background. The proposed codec is capable of adapting its strategy during the transmission, by analysing the video currently transmitted and setting the coder parameters and modalities accordingly. For example, the background can be transmitted as a whole or by dividing it into "slightly-detailed" and "highly detailed" zones that are coded in different ways to reduce the bit-rate while preserving the perceived quality. The coder can automatically switch in real-time, from one modality to the other during the transmission, depending on the current video content. Psychovisual masks and other video-content based measurements have been used as inputs for a Self Learning Intelligent Controller (SLIC) that changes the parameters and the transmission modalities. The current implementation is based on the ISO 14496 standard code that allows Video Objects (VO) transmission (other Open Source Codes

  7. Prediction of Marshall Parameters of Modified Bituminous Mixtures Using Artificial Intelligence Techniques

    Directory of Open Access Journals (Sweden)

    Sunil Khuntia

    2014-09-01

    Full Text Available This study presents the application of artificial neural networks (ANN and least square support vector machine (LS-SVM for prediction of Marshall parameters obtained from Marshall tests for waste polyethylene (PE modified bituminous mixtures. Waste polyethylene in the form of fibres processed from utilized milk packets has been used to modify the bituminous mixes in order to improve their engineering properties. Marshall tests were carried out on mix specimens with variations in polyethylene and bitumen contents. It has been observed that the addition of waste polyethylene results in the improvement of Marshall characteristics such as stability, flow value and air voids, used to evaluate a bituminous mix. The proposed neural network (NN model uses the quantities of ingredients used for preparation of Marshall specimens such as polyethylene, bitumen and aggregate in order to predict the Marshall stability, flow value and air voids obtained from the tests. Out of two techniques used, the NN based model is found to be compact, reliable and predictable when compared with LS-SVM model. A sensitivity analysis has been performed to identify the importance of the parameters considered.

  8. Optimization of the Production of Inactivated Clostridium novyi Type B Vaccine Using Computational Intelligence Techniques.

    Science.gov (United States)

    Aquino, P L M; Fonseca, F S; Mozzer, O D; Giordano, R C; Sousa, R

    2016-07-01

    Clostridium novyi causes necrotic hepatitis in sheep and cattle, as well as gas gangrene. The microorganism is strictly anaerobic, fastidious, and difficult to cultivate in industrial scale. C. novyi type B produces alpha and beta toxins, with the alpha toxin being linked to the presence of specific bacteriophages. The main strategy to combat diseases caused by C. novyi is vaccination, employing vaccines produced with toxoids or with toxoids and bacterins. In order to identify culture medium components and concentrations that maximized cell density and alpha toxin production, a neuro-fuzzy algorithm was applied to predict the yields of the fermentation process for production of C. novyi type B, within a global search procedure using the simulated annealing technique. Maximizing cell density and toxin production is a multi-objective optimization problem and could be treated by a Pareto approach. Nevertheless, the approach chosen here was a step-by-step one. The optimum values obtained with this approach were validated in laboratory scale, and the results were used to reload the data matrix for re-parameterization of the neuro-fuzzy model, which was implemented for a final optimization step with regards to the alpha toxin productivity. With this methodology, a threefold increase of alpha toxin could be achieved.

  9. Epidemic Synchronization in Robotic Swarms

    DEFF Research Database (Denmark)

    Schiøler, Henrik; Nielsen, Jens Frederik Dalsgaard; Ngo, Trung Dung

    2009-01-01

    Clock synchronization in swarms of networked mobile robots is studied in a probabilistic, epidemic framework. In this setting communication and synchonization is considered to be a randomized process, taking place at unplanned instants of geographical rendezvous between robots. In combination wit...

  10. behaved particle swarm optimization (QPSO)

    African Journals Online (AJOL)

    Administrator

    2011-06-13

    Jun 13, 2011 ... fermentation process, and consequently, it increased the yield of fermentation. Key words: Soft-sensing model, quantum-behaved particle swarm optimization algorithm, neural network. INTRODUCTION. In industrial production through fermentation, the main effect variables include physical variables (the ...

  11. Controller Design of DFIG Based Wind Turbine by Using Evolutionary Soft Computational Techniques

    Directory of Open Access Journals (Sweden)

    O. P. Bharti

    2017-06-01

    Full Text Available This manuscript illustrates the controller design for a doubly fed induction generator based variable speed wind turbine by using a bioinspired scheme. This methodology is based on exploiting two proficient swarm intelligence based evolutionary soft computational procedures. The particle swarm optimization (PSO and bacterial foraging optimization (BFO techniques are employed to design the controller intended for small damping plant of the DFIG. Wind energy overview and DFIG operating principle along with the equivalent circuit model is adequately discussed in this paper. The controller design for DFIG based WECS using PSO and BFO are described comparatively in detail. The responses of the DFIG system regarding terminal voltage, current, active-reactive power, and DC-Link voltage have slightly improved with the evolutionary soft computational procedure. Lastly, the obtained output is equated with a standard technique for performance improvement of DFIG based wind energy conversion system.

  12. A Parameter Estimation Method for Nonlinear Systems Based on Improved Boundary Chicken Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Shaolong Chen

    2016-01-01

    Full Text Available Parameter estimation is an important problem in nonlinear system modeling and control. Through constructing an appropriate fitness function, parameter estimation of system could be converted to a multidimensional parameter optimization problem. As a novel swarm intelligence algorithm, chicken swarm optimization (CSO has attracted much attention owing to its good global convergence and robustness. In this paper, a method based on improved boundary chicken swarm optimization (IBCSO is proposed for parameter estimation of nonlinear systems, demonstrated and tested by Lorenz system and a coupling motor system. Furthermore, we have analyzed the influence of time series on the estimation accuracy. Computer simulation results show it is feasible and with desirable performance for parameter estimation of nonlinear systems.

  13. Modeling and Flocking Consensus Analysis for Large-Scale UAV Swarms

    Directory of Open Access Journals (Sweden)

    Li Bing

    2013-01-01

    Full Text Available Recently, distributed coordination control of the unmanned aerial vehicle (UAV swarms has been a particularly active topic in intelligent system field. In this paper, through understanding the emergent mechanism of the complex system, further research on the flocking and the dynamic characteristic of UAV swarms will be given. Firstly, this paper analyzes the current researches and existent problems of UAV swarms. Afterwards, by the theory of stochastic process and supplemented variables, a differential-integral model is established, converting the system model into Volterra integral equation. The existence and uniqueness of the solution of the system are discussed. Then the flocking control law is given based on artificial potential with system consensus. At last, we analyze the stability of the proposed flocking control algorithm based on the Lyapunov approach and prove that the system in a limited time can converge to the consensus direction of the velocity. Simulation results are provided to verify the conclusion.

  14. Experimental study of the stress level at the workplace using an smart testbed of wireless sensor networks and ambient intelligence techniques

    OpenAIRE

    Silva, Fábio; Olivares, Teresa; Royo, Fernando; Vergara, M. A.; Analide, César

    2013-01-01

    "Natural and artificial computation in engineering and medical applications : 5th International Work-Conference on the Interplay Between Natural and Artificial Computation, IWINAC 2013, Mallorca, Spain, June 10-14, 2013. Proceedings, Part II", ISBN 978-364238621-3 This paper combines techniques of ambient intelligence and wireless sensor networks with the objective of obtain important conclusions to increase the quality of life of people. In particular, we oriented our study to the stress ...

  15. Transport of Particle Swarms Through Fractures

    Science.gov (United States)

    Boomsma, E.; Pyrak-Nolte, L. J.

    2011-12-01

    The transport of engineered micro- and nano-scale particles through fractured rock is often assumed to occur as dispersions or emulsions. Another potential transport mechanism is the release of particle swarms from natural or industrial processes where small liquid drops, containing thousands to millions of colloidal-size particles, are released over time from seepage or leaks. Swarms have higher velocities than any individual colloid because the interactions among the particles maintain the cohesiveness of the swarm as it falls under gravity. Thus particle swarms give rise to the possibility that engineered particles may be transported farther and faster in fractures than predicted by traditional dispersion models. In this study, the effect of fractures on colloidal swarm cohesiveness and evolution was studied as a swarm falls under gravity and interacts with fracture walls. Transparent acrylic was used to fabricate synthetic fracture samples with either (1) a uniform aperture or (2) a converging aperture followed by a uniform aperture (funnel-shaped). The samples consisted of two blocks that measured 100 x 100 x 50 mm. The separation between these blocks determined the aperture (0.5 mm to 50 mm). During experiments, a fracture was fully submerged in water and swarms were released into it. The swarms consisted of dilute suspensions of either 25 micron soda-lime glass beads (2% by mass) or 3 micron polystyrene fluorescent beads (1% by mass) with an initial volume of 5μL. The swarms were illuminated with a green (525 nm) LED array and imaged optically with a CCD camera. In the uniform aperture fracture, the speed of the swarm prior to bifurcation increased with aperture up to a maximum at a fracture width of approximately 10 mm. For apertures greater than ~15 mm, the velocity was essentially constant with fracture width (but less than at 10 mm). This peak suggests that two competing mechanisms affect swarm velocity in fractures. The wall provides both drag, which

  16. Advanced intelligent systems

    CERN Document Server

    Ryoo, Young; Jang, Moon-soo; Bae, Young-Chul

    2014-01-01

    Intelligent systems have been initiated with the attempt to imitate the human brain. People wish to let machines perform intelligent works. Many techniques of intelligent systems are based on artificial intelligence. According to changing and novel requirements, the advanced intelligent systems cover a wide spectrum: big data processing, intelligent control, advanced robotics, artificial intelligence and machine learning. This book focuses on coordinating intelligent systems with highly integrated and foundationally functional components. The book consists of 19 contributions that features social network-based recommender systems, application of fuzzy enforcement, energy visualization, ultrasonic muscular thickness measurement, regional analysis and predictive modeling, analysis of 3D polygon data, blood pressure estimation system, fuzzy human model, fuzzy ultrasonic imaging method, ultrasonic mobile smart technology, pseudo-normal image synthesis, subspace classifier, mobile object tracking, standing-up moti...

  17. Robust design of broadband EUV multilayer beam splitters based on particle swarm optimization

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Hui, E-mail: jianghui@sinap.ac.cn [Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Zhangheng Road 239, Pudong District, Shanghai 201204 (China); King' s College London, Department of Physics, Strand, London WC2R 2LS (United Kingdom); Michette, Alan G. [King' s College London, Department of Physics, Strand, London WC2R 2LS (United Kingdom)

    2013-03-01

    A robust design idea for broadband EUV multilayer beam splitters is introduced that achieves the aim of decreasing the influence of layer thickness errors on optical performances. Such beam splitters can be used in interferometry to determine the quality of EUVL masks by comparing with a reference multilayer. In the optimization, particle swarm techniques were used for the first time in such designs. Compared to conventional genetic algorithms, particle swarm optimization has stronger ergodicity, simpler processing and faster convergence.

  18. Application of Meta-Heuristic Hybrid Artificial Intelligence Techniques for Modeling of Bonding Strength of Plywood Panels

    Directory of Open Access Journals (Sweden)

    Cenk Demirkır

    2014-04-01

    Full Text Available Plywood, which is one of the most important wood based panels, has many usage areas changing from traffic signs to building constructions in many countries. It is known that the high quality plywood panel manufacturing has been achieved with a good bonding under the optimum pressure conditions depending on adhesive type. This is a study of determining the using possibilities of modern meta-heuristic hybrid artificial intelligence techniques such as IKE and AANN methods for prediction of bonding strength of plywood panels. This study has composed of two main parts as experimental and analytical. Scots pine, maritime pine and European black pine logs were used as wood species. The pine veneers peeled at 32°C and 50°C were dried at 110°C, 140°C and 160°C temperatures. Phenol formaldehyde and melamine urea formaldehyde resins were used as adhesive types. EN 314-1 standard was used to determine the bonding shear strength values of plywood panels in experimental part of this study. Then the intuitive k-nearest neighbor estimator (IKE and adaptive artificial neural network (AANN were used to estimate bonding strength of plywood panels. The best estimation performance was obtained from MA metric for k-value=10. The most effective factor on bonding strength was determined as adhesive type. Error rates were determined less than 5% for both of the IKE and AANN. It may be recommended that proposed methods could be used in applying to estimation of bonding strength values of plywood panels.

  19. Virtual Enterprise Risk Management Using Artificial Intelligence

    Directory of Open Access Journals (Sweden)

    Hanning Chen

    2010-01-01

    Full Text Available Virtual enterprise (VE has to manage its risk effectively in order to guarantee the profit. However, restricting the risk in a VE to the acceptable level is considered difficult due to the agility and diversity of its distributed characteristics. First, in this paper, an optimization model for VE risk management based on distributed decision making model is introduced. This optimization model has two levels, namely, the top model and the base model, which describe the decision processes of the owner and the partners of the VE, respectively. In order to solve the proposed model effectively, this work then applies two powerful artificial intelligence optimization techniques known as evolutionary algorithms (EA and swarm intelligence (SI. Experiments present comparative studies on the VE risk management problem for one EA and three state-of-the-art SI algorithms. All of the algorithms are evaluated against a test scenario, in which the VE is constructed by one owner and different partners. The simulation results show that the PS2O algorithm, which is a recently developed SI paradigm simulating symbiotic coevolution behavior in nature, obtains the superior solution for VE risk management problem than the other algorithms in terms of optimization accuracy and computation robustness.

  20. Support Vector Machine Based on Adaptive Acceleration Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Mohammed Hasan Abdulameer

    2014-01-01

    Full Text Available Existing face recognition methods utilize particle swarm optimizer (PSO and opposition based particle swarm optimizer (OPSO to optimize the parameters of SVM. However, the utilization of random values in the velocity calculation decreases the performance of these techniques; that is, during the velocity computation, we normally use random values for the acceleration coefficients and this creates randomness in the solution. To address this problem, an adaptive acceleration particle swarm optimization (AAPSO technique is proposed. To evaluate our proposed method, we employ both face and iris recognition based on AAPSO with SVM (AAPSO-SVM. In the face and iris recognition systems, performance is evaluated using two human face databases, YALE and CASIA, and the UBiris dataset. In this method, we initially perform feature extraction and then recognition on the extracted features. In the recognition process, the extracted features are used for SVM training and testing. During the training and testing, the SVM parameters are optimized with the AAPSO technique, and in AAPSO, the acceleration coefficients are computed using the particle fitness values. The parameters in SVM, which are optimized by AAPSO, perform efficiently for both face and iris recognition. A comparative analysis between our proposed AAPSO-SVM and the PSO-SVM technique is presented.

  1. Support vector machine based on adaptive acceleration particle swarm optimization.

    Science.gov (United States)

    Abdulameer, Mohammed Hasan; Sheikh Abdullah, Siti Norul Huda; Othman, Zulaiha Ali

    2014-01-01

    Existing face recognition methods utilize particle swarm optimizer (PSO) and opposition based particle swarm optimizer (OPSO) to optimize the parameters of SVM. However, the utilization of random values in the velocity calculation decreases the performance of these techniques; that is, during the velocity computation, we normally use random values for the acceleration coefficients and this creates randomness in the solution. To address this problem, an adaptive acceleration particle swarm optimization (AAPSO) technique is proposed. To evaluate our proposed method, we employ both face and iris recognition based on AAPSO with SVM (AAPSO-SVM). In the face and iris recognition systems, performance is evaluated using two human face databases, YALE and CASIA, and the UBiris dataset. In this method, we initially perform feature extraction and then recognition on the extracted features. In the recognition process, the extracted features are used for SVM training and testing. During the training and testing, the SVM parameters are optimized with the AAPSO technique, and in AAPSO, the acceleration coefficients are computed using the particle fitness values. The parameters in SVM, which are optimized by AAPSO, perform efficiently for both face and iris recognition. A comparative analysis between our proposed AAPSO-SVM and the PSO-SVM technique is presented.

  2. Phase Coexistence in Insect Swarms

    Science.gov (United States)

    Sinhuber, Michael; Ouellette, Nicholas T.

    2017-10-01

    Animal aggregations are visually striking, and as such are popular examples of collective behavior in the natural world. Quantitatively demonstrating the collective nature of such groups, however, remains surprisingly difficult. Inspired by thermodynamics, we applied topological data analysis to laboratory insect swarms and found evidence for emergent, material-like states. We show that the swarms consist of a core "condensed" phase surrounded by a dilute "vapor" phase. These two phases coexist in equilibrium, and maintain their distinct macroscopic properties even though individual insects pass freely between them. We further define a pressure and chemical potential to describe these phases, extending theories of active matter to aggregations of macroscopic animals and laying the groundwork for a thermodynamic description of collective animal groups.

  3. 1st International Conference on Intelligent Computing and Communication

    CERN Document Server

    Satapathy, Suresh; Sanyal, Manas; Bhateja, Vikrant

    2017-01-01

    The book covers a wide range of topics in Computer Science and Information Technology including swarm intelligence, artificial intelligence, evolutionary algorithms, and bio-inspired algorithms. It is a collection of papers presented at the First International Conference on Intelligent Computing and Communication (ICIC2) 2016. The prime areas of the conference are Intelligent Computing, Intelligent Communication, Bio-informatics, Geo-informatics, Algorithm, Graphics and Image Processing, Graph Labeling, Web Security, Privacy and e-Commerce, Computational Geometry, Service Orient Architecture, and Data Engineering.

  4. Time Optimal Reachability Analysis Using Swarm Verification

    DEFF Research Database (Denmark)

    Zhang, Zhengkui; Nielsen, Brian; Larsen, Kim Guldstrand

    2016-01-01

    and planning problems, response time optimization etc. We propose swarm verification to accelerate time optimal reachability using the real-time model-checker Uppaal. In swarm verification, a large number of model checker instances execute in parallel on a computer cluster using different, typically randomized...... search strategies. We develop four swarm algorithms and evaluate them with four models in terms scalability, and time- and memory consumption. Three of these cooperate by exchanging costs of intermediate solutions to prune the search using a branch-and-bound approach. Our results show that swarm...

  5. Towards CHAOS-5 - How can Swarm contribute?

    DEFF Research Database (Denmark)

    Finlay, Chris; Olsen, Nils; Tøffner-Clausen, Lars

    2014-01-01

    The launch of ESA's satellite trio Swarm in November 2013 opens an exciting new chapter in the observation and monitoring of Earth's magnetic field from space. We report preliminary results from an extension of the CHAOS series of geomagnetic field models to include both scalar and vector field...... observations from the three Swarm satellites, along with the most recent quasi-definitive ground observatory data. The fit of this new update CHAOS field model to the Swarm observations will be presented in detail providing useful insight the initial Swarm data. Enhancements of the CHAOS modelling scheme...

  6. International Conference on Computational Intelligence 2015

    CERN Document Server

    Saha, Sujan

    2017-01-01

    This volume comprises the proceedings of the International Conference on Computational Intelligence 2015 (ICCI15). This book aims to bring together work from leading academicians, scientists, researchers and research scholars from across the globe on all aspects of computational intelligence. The work is composed mainly of original and unpublished results of conceptual, constructive, empirical, experimental, or theoretical work in all areas of computational intelligence. Specifically, the major topics covered include classical computational intelligence models and artificial intelligence, neural networks and deep learning, evolutionary swarm and particle algorithms, hybrid systems optimization, constraint programming, human-machine interaction, computational intelligence for the web analytics, robotics, computational neurosciences, neurodynamics, bioinspired and biomorphic algorithms, cross disciplinary topics and applications. The contents of this volume will be of use to researchers and professionals alike....

  7. Intelligence systems in environmental management theory and applications

    CERN Document Server

    Sari, İrem

    2017-01-01

    This book offers a comprehensive reference guide to intelligence systems in environmental management. It provides readers with all the necessary tools for solving complex environmental problems, where classical techniques cannot be applied. The respective chapters, written by prominent researchers, explain a wealth of both basic and advanced concepts including ant colony, genetic algorithms, evolutionary algorithms, fuzzy multi-criteria decision making tools, particle swarm optimization, agent-based modelling, artificial neural networks, simulated annealing, Tabu search, fuzzy multi-objective optimization, fuzzy rules, support vector machines, fuzzy cognitive maps, cumulative belief degrees, and many others. To foster a better understanding, all the chapters include relevant numerical examples or case studies. Taken together, they form an excellent reference guide for researchers, lecturers and postgraduate students pursuing research on complex environmental problems. Moreover, by extending all the main aspec...

  8. Particle swarm optimization with recombination and dynamic linkage discovery.

    Science.gov (United States)

    Chen, Ying-Ping; Peng, Wen-Chih; Jian, Ming-Chung

    2007-12-01

    In this paper, we try to improve the performance of the particle swarm optimizer by incorporating the linkage concept, which is an essential mechanism in genetic algorithms, and design a new linkage identification technique called dynamic linkage discovery to address the linkage problem in real-parameter optimization problems. Dynamic linkage discovery is a costless and effective linkage recognition technique that adapts the linkage configuration by employing only the selection operator without extra judging criteria irrelevant to the objective function. Moreover, a recombination operator that utilizes the discovered linkage configuration to promote the cooperation of particle swarm optimizer and dynamic linkage discovery is accordingly developed. By integrating the particle swarm optimizer, dynamic linkage discovery, and recombination operator, we propose a new hybridization of optimization methodologies called particle swarm optimization with recombination and dynamic linkage discovery (PSO-RDL). In order to study the capability of PSO-RDL, numerical experiments were conducted on a set of benchmark functions as well as on an important real-world application. The benchmark functions used in this paper were proposed in the 2005 Institute of Electrical and Electronics Engineers Congress on Evolutionary Computation. The experimental results on the benchmark functions indicate that PSO-RDL can provide a level of performance comparable to that given by other advanced optimization techniques. In addition to the benchmark, PSO-RDL was also used to solve the economic dispatch (ED) problem for power systems, which is a real-world problem and highly constrained. The results indicate that PSO-RDL can successfully solve the ED problem for the three-unit power system and obtain the currently known best solution for the 40-unit system.

  9. Multidimensional particle swarm optimization for machine learning and pattern recognition

    CERN Document Server

    Kiranyaz, Serkan; Gabbouj, Moncef

    2013-01-01

    For many engineering problems we require optimization processes with dynamic adaptation as we aim to establish the dimension of the search space where the optimum solution resides and develop robust techniques to avoid the local optima usually associated with multimodal problems. This book explores multidimensional particle swarm optimization, a technique developed by the authors that addresses these requirements in a well-defined algorithmic approach.  After an introduction to the key optimization techniques, the authors introduce their unified framework and demonstrate its advantages in chal

  10. Global volcanic earthquake swarm database and preliminary analysis of volcanic earthquake swarm duration

    Directory of Open Access Journals (Sweden)

    S. R. McNutt

    1996-06-01

    Full Text Available Global data from 1979 to 1989 pertaining to volcanic earthquake swarms have been compiled into a custom-designed relational database. The database is composed of three sections: 1 a section containing general information on volcanoes, 2 a section containing earthquake swarm data (such as dates of swarm occurrence and durations, and 3 a section containing eruption information. The most abundant and reliable parameter, duration of volcanic earthquake swarms, was chosen for preliminary analysis. The distribution of all swarm durations was found to have a geometric mean of 5.5 days. Precursory swarms were then separated from those not associated with eruptions. The geometric mean precursory swarm duration was 8 days whereas the geometric mean duration of swarms not associated with eruptive activity was 3.5 days. Two groups of precursory swarms are apparent when duration is compared with the eruption repose time. Swarms with durations shorter than 4 months showed no clear relationship with the eruption repose time. However, the second group, lasting longer than 4 months, showed a significant positive correlation with the log10 of the eruption repose period. The two groups suggest that different suites of physical processes are involved in the generation of volcanic earthquake swarms.

  11. Seismological mechanism analysis of 2015 Luanxian swarm, Hebei province,China

    Science.gov (United States)

    Tan, Yipei; Liao, Xu; Ma, Hongsheng; Zhou, Longquan; Wang, Xingzhou

    2017-04-01

    The seismological mechanism of an earthquake swarm, a kind of seismic burst activity, means the physical and dynamic process in earthquakes triggering in the swarm. Here we focus on the seismological mechanism of 2015 Luanxian swarm in Hebei province, China. The process of digital seismic waveform data processing is divided into four steps. (1) Choose the three components waveform of earthquakes in the catalog as templates, and detect missing earthquakes by scanning the continues waveforms with matched filter technique. (2) Recalibrate P and S-wave phase arrival time using waveform cross-correlation phase detection technique to eliminate the artificial error in phase picking in the observation report made by Hebei seismic network, and then we obtain a more complete catalog and a more precise seismic phase report. (3) Relocate the earthquakes in the swarm using hypoDD based on phase arrival time we recalibrated, and analyze the characteristics of swarm epicenter migration based on the earthquake relocation result. (4) Detect whether there are repeating earthquakes activity using both waveform cross-correlation standard and whether rupture areas can overlapped. We finally detect 106 missing earthquakes in the swarm, 66 of them have the magnitude greater than ML0.0, include 2 greater than ML1.0. Relocation result shows that the epicenters of earthquakes in the swarm have a strip distribution in NE-SW direction, which indicates the seismogenic structure may be a NE-SW trending fault. The spatial-temporal distribution variation of epicenters in the swarm shows a kind of two stages linear migration characteristics, in which the first stage has appeared with a higher migration velocity as 1.2 km per day, and the velocity of the second step is 0.0024 km per day. According to the three basic models to explain the seismological mechanism of earthquake swarms: cascade model, slow slip model and fluid diffusion model, repeating earthquakes activity is difficult to explain by

  12. Swarm Products and Space Weather Applications

    DEFF Research Database (Denmark)

    Stolle, Claudia; Olsen, Nils; Martini, Daniel

    The Swarm satellite constellation mission provides high precision magnetic field data and models and other observations that enable us to explore near Earth space for example in terms of in situ electron density and electric fields. On board GPS observables can be used for sounding ionospheric an...... in aeronomy and space weather. We will emphasize results from the Swarm mission....

  13. Swarm Data Processing and First Scientific Results

    DEFF Research Database (Denmark)

    Olsen, Nils

    2014-01-01

    , accelerometer, plasma and electric field measurements. These observations will be distributed by ESA as Level-1b data, which are the calibrated and formatted time series of e.g. the magnetic field measurements taken by each of the three Swarm satellites. The talks presents a first scientific validation of Swarm...... Level-1b data products....

  14. Recurrent neural network-based modeling of gene regulatory network using elephant swarm water search algorithm.

    Science.gov (United States)

    Mandal, Sudip; Saha, Goutam; Pal, Rajat Kumar

    2017-08-01

    Correct inference of genetic regulations inside a cell from the biological database like time series microarray data is one of the greatest challenges in post genomic era for biologists and researchers. Recurrent Neural Network (RNN) is one of the most popular and simple approach to model the dynamics as well as to infer correct dependencies among genes. Inspired by the behavior of social elephants, we propose a new metaheuristic namely Elephant Swarm Water Search Algorithm (ESWSA) to infer Gene Regulatory Network (GRN). This algorithm is mainly based on the water search strategy of intelligent and social elephants during drought, utilizing the different types of communication techniques. Initially, the algorithm is tested against benchmark small and medium scale artificial genetic networks without and with presence of different noise levels and the efficiency was observed in term of parametric error, minimum fitness value, execution time, accuracy of prediction of true regulation, etc. Next, the proposed algorithm is tested against the real time gene expression data of Escherichia Coli SOS Network and results were also compared with others state of the art optimization methods. The experimental results suggest that ESWSA is very efficient for GRN inference problem and performs better than other methods in many ways.

  15. Discrete particle swarm optimization for identifying community structures in signed social networks.

    Science.gov (United States)

    Cai, Qing; Gong, Maoguo; Shen, Bo; Ma, Lijia; Jiao, Licheng

    2014-10-01

    Modern science of networks has facilitated us with enormous convenience to the understanding of complex systems. Community structure is believed to be one of the notable features of complex networks representing real complicated systems. Very often, uncovering community structures in networks can be regarded as an optimization problem, thus, many evolutionary algorithms based approaches have been put forward. Particle swarm optimization (PSO) is an artificial intelligent algorithm originated from social behavior such as birds flocking and fish schooling. PSO has been proved to be an effective optimization technique. However, PSO was originally designed for continuous optimization which confounds its applications to discrete contexts. In this paper, a novel discrete PSO algorithm is suggested for identifying community structures in signed networks. In the suggested method, particles' status has been redesigned in discrete form so as to make PSO proper for discrete scenarios, and particles' updating rules have been reformulated by making use of the topology of the signed network. Extensive experiments compared with three state-of-the-art approaches on both synthetic and real-world signed networks demonstrate that the proposed method is effective and promising. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Genetical Swarm Optimization of Multihop Routes in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Davide Caputo

    2010-01-01

    Full Text Available In recent years, wireless sensor networks have been attracting considerable research attention for a wide range of applications, but they still present significant network communication challenges, involving essentially the use of large numbers of resource-constrained nodes operating unattended and exposed to potential local failures. In order to maximize the network lifespan, in this paper, genetical swarm optimization (GSO is applied, a class of hybrid evolutionary techniques developed in order to exploit in the most effective way the uniqueness and peculiarities of two classical optimization approaches; particle swarm optimization (PSO and genetic algorithms (GA. This procedure is here implemented to optimize the communication energy consumption in a wireless network by selecting the optimal multihop routing schemes, with a suitable hybridization of different routing criteria, confirming itself as a flexible and useful tool for engineering applications.

  17. Particle Swarm Transport in Fracture Networks

    Science.gov (United States)

    Pyrak-Nolte, L. J.; Mackin, T.; Boomsma, E.

    2012-12-01

    Colloidal particles of many types occur in fractures in the subsurface as a result of both natural and industrial processes (e.g., environmental influences, synthetic nano- & micro-particles from consumer products, chemical and mechanical erosion of geologic material, proppants used in gas and oil extraction, etc.). The degree of localization and speed of transport of such particles depends on the transport mechanisms, the chemical and physical properties of the particles and the surrounding rock, and the flow path geometry through the fracture. In this study, we investigated the transport of particle swarms through artificial fracture networks. A synthetic fracture network was created using an Objet Eden 350V 3D printer to build a network of fractures. Each fracture in the network had a rectangular cross-sectional area with a constant depth of 7 mm but with widths that ranged from 2 mm to 11 mm. The overall dimensions of the network were 132 mm by 166 mm. The fracture network had 7 ports that were used either as the inlet or outlet for fluid flow through the sample or for introducing a particle swarm. Water flow rates through the fracture were controlled with a syringe pump, and ranged from zero flow to 6 ml/min. Swarms were composed of a dilute suspension (2% by mass) of 3 μm fluorescent polystyrene beads in water. Swarms with volumes of 5, 10, 20, 30 and 60 μl were used and delivered into the network using a second syringe pump. The swarm behavior was imaged using an optical fluorescent imaging system illuminated by green (525 nm) LED arrays and captured by a CCD camera. For fracture networks with quiescent fluids, particle swarms fell under gravity and remained localized within the network. Large swarms (30-60 μl) were observed to bifurcate at shallower depths resulting in a broader dispersal of the particles than for smaller swarm volumes. For all swarm volumes studied, particle swarms tended to bifurcate at the intersection between fractures. These

  18. Design and control of swarm dynamics

    CERN Document Server

    Bouffanais, Roland

    2016-01-01

    The book is about the key elements required for designing, building and controlling effective artificial swarms comprised of multiple moving physical agents. Therefore this book presents the fundamentals of each of those key elements in the particular frame of dynamic swarming, specifically exposing the profound connections between these elements and establish some general design principles for swarming behaviors. This scientific endeavor requires an inter-disciplinary approach: biomimetic inspiration from ethology and ecology, study of social information flow, analysis of temporal and adaptive signaling network of interaction, considerations of control of networked real-time systems, and lastly, elements of complex adaptive dynamical systems. This book offers a completely new perspective on the scientific understanding of dynamic collective behaviors thanks to its multi-disciplinary approach and its focus on artificial swarm of physical agents. Two of the key problems in understanding the emergence of swarm ...

  19. Insular species swarm goes underground

    DEFF Research Database (Denmark)

    P. S. Reboleira, Ana Sofia; Enghoff, Henrik

    2014-01-01

    -group, an insular species swarm distributed in the archipelagos of Madeira and the Canary Islands. We discuss the differences between the new species and their relatives and present information on the subterranean environment of Madeira. An updated overview of the subterranean biodiversity of millipedes......Two new species of the genus Cylindroiulus Verhoeff, 1894, C. julesvernei and C. oromii, are described from the subterranean ecosystem of Madeira Island, Portugal. Species are illustrated with photographs and diagrammatic drawings. The new species belong to the Cylindroiulus madeirae...

  20. The foundations of plant intelligence.

    Science.gov (United States)

    Trewavas, Anthony

    2017-06-06

    Intelligence is defined for wild plants and its role in fitness identified. Intelligent behaviour exhibited by single cells and systems similarity between the interactome and connectome indicates neural systems are not necessary for intelligent capabilities. Plants sense and respond to many environmental signals that are assessed to competitively optimize acquisition of patchily distributed resources. Situations of choice engender motivational states in goal-directed plant behaviour; consequent intelligent decisions enable efficient gain of energy over expenditure. Comparison of swarm intelligence and plant behaviour indicates the origins of plant intelligence lie in complex communication and is exemplified by cambial control of branch function. Error correction in behaviours indicates both awareness and intention as does the ability to count to five. Volatile organic compounds are used as signals in numerous plant interactions. Being complex in composition and often species and individual specific, they may represent the plant language and account for self and alien recognition between individual plants. Game theory has been used to understand competitive and cooperative interactions between plants and microbes. Some unexpected cooperative behaviour between individuals and potential aliens has emerged. Behaviour profiting from experience, another simple definition of intelligence, requires both learning and memory and is indicated in the priming of herbivory, disease and abiotic stresses.

  1. The Application of Collaborative Business Intelligence Technology in the Hospital SPD Logistics Management Model

    Science.gov (United States)

    LIU, Tongzhu; SHEN, Aizong; HU, Xiaojian; TONG, Guixian; GU, Wei

    2017-01-01

    Background: We aimed to apply collaborative business intelligence (BI) system to hospital supply, processing and distribution (SPD) logistics management model. Methods: We searched Engineering Village database, China National Knowledge Infrastructure (CNKI) and Google for articles (Published from 2011 to 2016), books, Web pages, etc., to understand SPD and BI related theories and recent research status. For the application of collaborative BI technology in the hospital SPD logistics management model, we realized this by leveraging data mining techniques to discover knowledge from complex data and collaborative techniques to improve the theories of business process. Results: For the application of BI system, we: (i) proposed a layered structure of collaborative BI system for intelligent management in hospital logistics; (ii) built data warehouse for the collaborative BI system; (iii) improved data mining techniques such as supporting vector machines (SVM) and swarm intelligence firefly algorithm to solve key problems in hospital logistics collaborative BI system; (iv) researched the collaborative techniques oriented to data and business process optimization to improve the business processes of hospital logistics management. Conclusion: Proper combination of SPD model and BI system will improve the management of logistics in the hospitals. The successful implementation of the study requires: (i) to innovate and improve the traditional SPD model and make appropriate implement plans and schedules for the application of BI system according to the actual situations of hospitals; (ii) the collaborative participation of internal departments in hospital including the department of information, logistics, nursing, medical and financial; (iii) timely response of external suppliers. PMID:28828316

  2. The Application of Collaborative Business Intelligence Technology in the Hospital SPD Logistics Management Model.

    Science.gov (United States)

    Liu, Tongzhu; Shen, Aizong; Hu, Xiaojian; Tong, Guixian; Gu, Wei

    2017-06-01

    We aimed to apply collaborative business intelligence (BI) system to hospital supply, processing and distribution (SPD) logistics management model. We searched Engineering Village database, China National Knowledge Infrastructure (CNKI) and Google for articles (Published from 2011 to 2016), books, Web pages, etc., to understand SPD and BI related theories and recent research status. For the application of collaborative BI technology in the hospital SPD logistics management model, we realized this by leveraging data mining techniques to discover knowledge from complex data and collaborative techniques to improve the theories of business process. For the application of BI system, we: (i) proposed a layered structure of collaborative BI system for intelligent management in hospital logistics; (ii) built data warehouse for the collaborative BI system; (iii) improved data mining techniques such as supporting vector machines (SVM) and swarm intelligence firefly algorithm to solve key problems in hospital logistics collaborative BI system; (iv) researched the collaborative techniques oriented to data and business process optimization to improve the business processes of hospital logistics management. Proper combination of SPD model and BI system will improve the management of logistics in the hospitals. The successful implementation of the study requires: (i) to innovate and improve the traditional SPD model and make appropriate implement plans and schedules for the application of BI system according to the actual situations of hospitals; (ii) the collaborative participation of internal departments in hospital including the department of information, logistics, nursing, medical and financial; (iii) timely response of external suppliers.

  3. Application of the Particle Swarm Optimization (PSO) technique to the thermal-hydraulics project of a PWR reactor core in reduced scale; Aplicacao da tecnica de otimizacao por enxame de particulas no projeto termo-hidraulico em escala reduzida do nucleo de um reator PWR

    Energy Technology Data Exchange (ETDEWEB)

    Lima Junior, Carlos Alberto de Souza

    2008-09-15

    The reduced scale models design have been employed by engineers from several different industries fields such as offshore, spatial, oil extraction, nuclear industries and others. Reduced scale models are used in experiments because they are economically attractive than its own prototype (real scale) because in many cases they are cheaper than a real scale one and most of time they are also easier to build providing a way to lead the real scale design allowing indirect investigations and analysis to the real scale system (prototype). A reduced scale model (or experiment) must be able to represent all physical phenomena that occurs and further will do in the real scale one under operational conditions, e.g., in this case the reduced scale model is called similar. There are some different methods to design a reduced scale model and from those two are basic: the empiric method based on the expert's skill to determine which physical measures are relevant to the desired model; and the differential equation method that is based on a mathematical description of the prototype (real scale system) to model. Applying a mathematical technique to the differential equation that describes the prototype then highlighting the relevant physical measures so the reduced scale model design problem may be treated as an optimization problem. Many optimization techniques as Genetic Algorithm (GA), for example, have been developed to solve this class of problems and have also been applied to the reduced scale model design problem as well. In this work, Particle Swarm Optimization (PSO) technique is investigated as an alternative optimization tool for such problem. In this investigation a computational approach, based on particle swarm optimization technique (PSO), is used to perform a reduced scale two loop Pressurized Water Reactor (PWR) core, considering 100% of nominal power operation on a forced flow cooling circulation and non-accidental operating conditions. A performance

  4. Swarming dynamics in bacterial colonies

    Science.gov (United States)

    Zhang, Hepeng; Be'Er, Avraham; Smith, Rachel; Florin, E.-L.; Swinney, Harry L.

    2009-11-01

    Swarming is a widespread phenomenon observed in both biological and non-biological systems. Large mammal herds, fish schools, and bird flocks are among the most spectacular examples. Many theoretical and numerical efforts have been made to unveil the general principles of the phenomenon, but systematic experimental studies have been very limited. We determine the characteristic velocity, length, and time scales for bacterial motion in swarming colonies of Paenibacillus dendritiformis growing on semi-solid agar substrates. The bacteria swim within a thin fluid layer, and they form long-lived jets and vortices. These coherent structures lead to anisotropy in velocity spatial correlations and to a two-step relaxation in velocity temporal correlations. The mean squared displacement of passive tracers exhibits a short-time regime with nearly ballistic transport and a diffusive long-time regime. We find that various definitions of the correlation length all lead to length scales that are, surprisingly, essentially independent of the mean bacterial speed, while the correlation time is linearly proportional to the ratio of the correlation length to the mean speed.

  5. CFSO3: A New Supervised Swarm-Based Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Antonino Laudani

    2013-01-01

    Full Text Available We present CFSO3, an optimization heuristic within the class of the swarm intelligence, based on a synergy among three different features of the Continuous Flock-of-Starlings Optimization. One of the main novelties is that this optimizer is no more a classical numerical algorithm since it now can be seen as a continuous dynamic system, which can be treated by using all the mathematical instruments available for managing state equations. In addition, CFSO3 allows passing from stochastic approaches to supervised deterministic ones since the random updating of parameters, a typical feature for numerical swam-based optimization algorithms, is now fully substituted by a supervised strategy: in CFSO3 the tuning of parameters is a priori designed for obtaining both exploration and exploitation. Indeed the exploration, that is, the escaping from a local minimum, as well as the convergence and the refinement to a solution can be designed simply by managing the eigenvalues of the CFSO state equations. Virtually in CFSO3, just the initial values of positions and velocities of the swarm members have to be randomly assigned. Both standard and parallel versions of CFSO3 together with validations on classical benchmarks are presented.

  6. Intelligent computing systems emerging application areas

    CERN Document Server

    Virvou, Maria; Jain, Lakhmi

    2016-01-01

    This book at hand explores emerging scientific and technological areas in which Intelligent Computing Systems provide efficient solutions and, thus, may play a role in the years to come. It demonstrates how Intelligent Computing Systems make use of computational methodologies that mimic nature-inspired processes to address real world problems of high complexity for which exact mathematical solutions, based on physical and statistical modelling, are intractable. Common intelligent computational methodologies are presented including artificial neural networks, evolutionary computation, genetic algorithms, artificial immune systems, fuzzy logic, swarm intelligence, artificial life, virtual worlds and hybrid methodologies based on combinations of the previous. The book will be useful to researchers, practitioners and graduate students dealing with mathematically-intractable problems. It is intended for both the expert/researcher in the field of Intelligent Computing Systems, as well as for the general reader in t...

  7. Selection and Configuration of Sorption Isotherm Models in Soils Using Artificial Bees Guided by the Particle Swarm

    Directory of Open Access Journals (Sweden)

    Tadikonda Venkata Bharat

    2017-01-01

    Full Text Available A precise estimation of isotherm model parameters and selection of isotherms from the measured data are essential for the fate and transport of toxic contaminants in the environment. Nonlinear least-square techniques are widely used for fitting the isotherm model on the experimental data. However, such conventional techniques pose several limitations in the parameter estimation and the choice of appropriate isotherm model as shown in this paper. It is demonstrated in the present work that the classical deterministic techniques are sensitive to the initial guess and thus the performance is impeded by the presence of local optima. A novel solver based on modified artificial bee-colony (MABC algorithm is proposed in this work for the selection and configuration of appropriate sorption isotherms. The performance of the proposed solver is compared with the other three solvers based on swarm intelligence for model parameter estimation using measured data from 21 soils. Performance comparison of developed solvers on the measured data reveals that the proposed solver demonstrates excellent convergence capabilities due to the superior exploration-exploitation abilities. The estimated solutions by the proposed solver are almost identical to the mean fitness values obtained over 20 independent runs. The advantages of the proposed solver are presented.

  8. Particle Swarm Optimization for HW/SW Partitioning

    OpenAIRE

    Abdelhalim, M. B.; Habib, S. E. &#;D.

    2009-01-01

    In this chapter, the recent introduction of the Particle Swarm Optimization technique to solve the HW/SW partitioning problem is reviewed, along with its “re-exited PSO” modification. The re-exited PSO algorithm is a recently-introduced restarting technique for PSO. The Re-exited PSO proved to be highly effective for solving the HW/SW partitioning problem. Efficient cost function formulation is of a paramount importance for an efficient optimization algorithm. Each component in the design...

  9. Particle swarm optimization based space debris surveillance network scheduling

    Science.gov (United States)

    Jiang, Hai; Liu, Jing; Cheng, Hao-Wen; Zhang, Yao

    2017-02-01

    The increasing number of space debris has created an orbital debris environment that poses increasing impact risks to existing space systems and human space flights. For the safety of in-orbit spacecrafts, we should optimally schedule surveillance tasks for the existing facilities to allocate resources in a manner that most significantly improves the ability to predict and detect events involving affected spacecrafts. This paper analyzes two criteria that mainly affect the performance of a scheduling scheme and introduces an artificial intelligence algorithm into the scheduling of tasks of the space debris surveillance network. A new scheduling algorithm based on the particle swarm optimization algorithm is proposed, which can be implemented in two different ways: individual optimization and joint optimization. Numerical experiments with multiple facilities and objects are conducted based on the proposed algorithm, and simulation results have demonstrated the effectiveness of the proposed algorithm.

  10. The precursory earthquake swarm in Greece

    Directory of Open Access Journals (Sweden)

    D. Rhoades

    2000-06-01

    Full Text Available The Hellenic subduction region displays the same precursory swarm phenomenon as has been found in comparable regions of New Zealand and Japan. In the earthquake catalogue of the Aristotle University of Thessaloniki, 10 past sequences of precursory swarms and related major mainshock events have been identified. These correlate, in respect of location, magnitude and time, with the 9 sequences previously identified in New Zealand, and 9 in Japan, bringing the total of sequences to 28, and the totals of related events (allowing for clustering to 56 precursory swarms and 42 mainshock events. The results add strength to the hypothesis that swarms are long-range predictors of mainshock events. A close similarity between the swarm and aftershock magnitudes in a given sequence is also confirmed in Greece, supporting the proposal that swarms are an integral part of the seismogenic process in subduction regions. Further, the modelling of swarms as part of an overall increase in seismicity, the onset of which marks the onset of seismogenesis, is well illustrated from past sequences in Greece. Formal tests are being carried out in Greece, in parallel with New Zealand and Japan, to ascertain the performance of the hypothesis as a basis for long-range synoptic forecasting.

  11. Physiological processes related to the bee swarming

    Directory of Open Access Journals (Sweden)

    Jiří Svoboda

    2010-01-01

    Full Text Available One of the essential genetically subjected behaviours of a bee-colony is swarming. However, in the time of queen breeding and technical approach to colony division, swarming constitutes a problem in the effectiveness of controlled beekeeping and subsequently in decreasing of the attainable economic profits. The intensity of swarming is a polyfactorial phenomenon whose characteristic feature is seasonality (the availability of breed, course of weather so the swarming intensity is different in particular years. This study is connected with the research carried out at the Department of Zoo­lo­gy, Fisheries, Hydrobiology and Apiculture at Mendel University in Brno. The experiment focused on the relationship between the swarming and biological state of bee-colony was realized in three seasons of the period 2003–2005. Experimental bee-colonies were stimulated to the swarming fever by zoo-technical practices, at the same time the biological status of given bee-colony was observed. Within the process of marking of newly emerged workers there was observed their number continuously during the particular season. The samples of 3- and 4-week-old workers were instrumental to the analysis of the development of their hypopharyngeal glands. The study has proved that a bee-colonies building higher number of queen cells are likely expected to be in swarming fever, b 3-week-old workers have hypopharyngeal glands in higher stage of development than 4-week-old workers, c higher stage of swarming fever is closely correlated with higher stage of de­ve­lop­ment of hypopharyngeal glands. These facts can contribute to the comprehension of the reason and relationships of the swarming.

  12. Collective behaviour and swarm intelligence in slime moulds.

    Science.gov (United States)

    Reid, Chris R; Latty, Tanya

    2016-11-01

    The study of collective behaviour aims to understand how individual-level behaviours can lead to complex group-level patterns. Collective behaviour has primarily been studied in animal groups such as colonies of insects, flocks of birds and schools of fish. Although less studied, collective behaviour also occurs in microorganisms. Here, we argue that slime moulds are powerful model systems for solving several outstanding questions in collective behaviour. In particular, slime mould may hold the key to linking individual-level mechanisms to colony-level behaviours. Using well-established principles of collective animal behaviour as a framework, we discuss the extent to which slime mould collectives are comparable to animal groups, and we highlight some potentially fruitful areas for future research.

  13. An Intelligent Knowledge-Based and Customizable Home Care System Framework with Ubiquitous Patient Monitoring and Alerting Techniques

    Science.gov (United States)

    Chen, Yen-Lin; Chiang, Hsin-Han; Yu, Chao-Wei; Chiang, Chuan-Yen; Liu, Chuan-Ming; Wang, Jenq-Haur

    2012-01-01

    This study develops and integrates an efficient knowledge-based system and a component-based framework to design an intelligent and flexible home health care system. The proposed knowledge-based system integrates an efficient rule-based reasoning model and flexible knowledge rules for determining efficiently and rapidly the necessary physiological and medication treatment procedures based on software modules, video camera sensors, communication devices, and physiological sensor information. This knowledge-based system offers high flexibility for improving and extending the system further to meet the monitoring demands of new patient and caregiver health care by updating the knowledge rules in the inference mechanism. All of the proposed functional components in this study are reusable, configurable, and extensible for system developers. Based on the experimental results, the proposed intelligent homecare system demonstrates that it can accomplish the extensible, customizable, and configurable demands of the ubiquitous healthcare systems to meet the different demands of patients and caregivers under various rehabilitation and nursing conditions. PMID:23112650

  14. DEVELOPMENT OF INTELLIGENT DECISION MAKING MODEL FOR STOCK MARKETS

    OpenAIRE

    Nenortaite, Jovita; Simutis, Rimvydas

    2005-01-01

    This paper is focused on the development of intelligent decision making model which is based on the application of artificial neural networks (ANN) and swarm intelligence technologies. The proposed model is used to generate one-step forward investment decisions. The ANN are used to make the analysis of historical stock returns and to calculate one day forward possible profit, which could be get while following the model proposed decisions, concerning the purchase of the stocks. Subsequently t...

  15. KANTS: a stigmergic ant algorithm for cluster analysis and swarm art.

    Science.gov (United States)

    Fernandes, Carlos M; Mora, Antonio M; Merelo, Juan J; Rosa, Agostinho C

    2014-06-01

    KANTS is a swarm intelligence clustering algorithm inspired by the behavior of social insects. It uses stigmergy as a strategy for clustering large datasets and, as a result, displays a typical behavior of complex systems: self-organization and global patterns emerging from the local interaction of simple units. This paper introduces a simplified version of KANTS and describes recent experiments with the algorithm in the context of a contemporary artistic and scientific trend called swarm art, a type of generative art in which swarm intelligence systems are used to create artwork or ornamental objects. KANTS is used here for generating color drawings from the input data that represent real-world phenomena, such as electroencephalogram sleep data. However, the main proposal of this paper is an art project based on well-known abstract paintings, from which the chromatic values are extracted and used as input. Colors and shapes are therefore reorganized by KANTS, which generates its own interpretation of the original artworks. The project won the 2012 Evolutionary Art, Design, and Creativity Competition.

  16. A swarm optimized neural network system for classification of microcalcification in mammograms.

    Science.gov (United States)

    Dheeba, J; Selvi, S Tamil

    2012-10-01

    Early detection of microcalcification clusters in breast tissue will significantly increase the survival rate of the patients. Radiologists use mammography for breast cancer diagnosis at early stage. It is a very challenging and difficult task for radiologists to correctly classify the abnormal regions in the breast tissue, because mammograms are noisy images. To improve the accuracy rate of detection of breast cancer, a novel intelligent computer aided classifier is used, which detects the presence of microcalcification clusters. In this paper, an innovative approach for detection of microcalcification in digital mammograms using Swarm Optimization Neural Network (SONN) is used. Prior to classification Laws texture features are extracted from the image to capture descriptive texture information. These features are used to extract texture energy measures from the Region of Interest (ROI) containing microcalcification (MC). A feedforward neural network is used for detection of abnormal regions in breast tissue is optimally designed using Particle Swarm Optimization algorithm. The proposed intelligent classifier is evaluated based on the MIAS database where 51 malignant, 63 benign and 208 normal images are utilized. The approach has also been tested on 216 real time clinical images having abnormalities which showed that the results are statistically significant. With the proposed methodology, the area under the ROC curve (A ( z )) reached 0.9761 for MIAS database and 0.9138 for real clinical images. The classification results prove that the proposed swarm optimally tuned neural network highly contribute to computer-aided diagnosis of breast cancer.

  17. Tracking and mapping of spatiotemporal quantities using unicellular swarm intelligence visualisation of invisible hazardous substances using unicellular swarm intelligence

    CERN Document Server

    Oyekan, John Oluwagbemiga

    2016-01-01

    The book discusses new algorithms capable of searching for, tracking, mapping and providing a visualization of invisible substances. It reports on the realization of a bacterium-inspired robotic controller that can be used by an agent to search for any environmental spatial function such as temperature or pollution. Using the parameters of a mathematical model, the book shows that it is possible to control the exploration, exploitation and sensitivity of the agent. This feature sets the work apart from the usual method of applying the bacterium behavior to robotic agents. The book also discusses how a computationally tractable multi-agent robotic controller was developed and used to track as well as provide a visual map of a spatio-temporal distribution of a substance. On the one hand, this book provides biologists and ecologists with a basis to perform simulations related to how individual organisms respond to spatio-temporal factors in their environment as well as predict and analyze the behavior of organis...

  18. Synchronized rotation in swarms of magnetotactic bacteria

    Science.gov (United States)

    Belovs, M.; Livanovičs, R.; CÄ`bers, A.

    2017-10-01

    Self-organizing behavior has been widely reported in both natural and artificial systems, typically distinguishing between temporal organization (synchronization) and spatial organization (swarming). Swarming has been experimentally observed in systems of magnetotactic bacteria under the action of external magnetic fields. Here we present a model of ensembles of magnetotactic bacteria in which hydrodynamic interactions lead to temporal synchronization in addition to the swarming. After a period of stabilization during which the bacteria form a quasiregular hexagonal lattice structure, the entire swarm begins to rotate in a direction opposite to the direction of the rotation of the magnetic field. We thus illustrate an emergent mechanism of macroscopic motion arising from the synchronized microscopic rotations of hydrodynamically interacting bacteria, reminiscent of the recently proposed concept of swarmalators.

  19. Gene expression in Pseudomonas aeruginosa swarming motility

    Directory of Open Access Journals (Sweden)

    Déziel Eric

    2010-10-01

    Full Text Available Abstract Background The bacterium Pseudomonas aeruginosa is capable of three types of motilities: swimming, twitching and swarming. The latter is characterized by a fast and coordinated group movement over a semi-solid surface resulting from intercellular interactions and morphological differentiation. A striking feature of swarming motility is the complex fractal-like patterns displayed by migrating bacteria while they move away from their inoculation point. This type of group behaviour is still poorly understood and its characterization provides important information on bacterial structured communities such as biofilms. Using GeneChip® Affymetrix microarrays, we obtained the transcriptomic profiles of both bacterial populations located at the tip of migrating tendrils and swarm center of swarming colonies and compared these profiles to that of a bacterial control population grown on the same media but solidified to not allow swarming motility. Results Microarray raw data were corrected for background noise with the RMA algorithm and quantile normalized. Differentially expressed genes between the three conditions were selected using a threshold of 1.5 log2-fold, which gave a total of 378 selected genes (6.3% of the predicted open reading frames of strain PA14. Major shifts in gene expression patterns are observed in each growth conditions, highlighting the presence of distinct bacterial subpopulations within a swarming colony (tendril tips vs. swarm center. Unexpectedly, microarrays expression data reveal that a minority of genes are up-regulated in tendril tip populations. Among them, we found energy metabolism, ribosomal protein and transport of small molecules related genes. On the other hand, many well-known virulence factors genes were globally repressed in tendril tip cells. Swarm center cells are distinct and appear to be under oxidative and copper stress responses. Conclusions Results reported in this study show that, as opposed to

  20. Surgical robotics beyond enhanced dexterity instrumentation: a survey of machine learning techniques and their role in intelligent and autonomous surgical actions.

    Science.gov (United States)

    Kassahun, Yohannes; Yu, Bingbin; Tibebu, Abraham Temesgen; Stoyanov, Danail; Giannarou, Stamatia; Metzen, Jan Hendrik; Vander Poorten, Emmanuel

    2016-04-01

    Advances in technology and computing play an increasingly important role in the evolution of modern surgical techniques and paradigms. This article reviews the current role of machine learning (ML) techniques in the context of surgery with a focus on surgical robotics (SR). Also, we provide a perspective on the future possibilities for enhancing the effectiveness of procedures by integrating ML in the operating room. The review is focused on ML techniques directly applied to surgery, surgical robotics, surgical training and assessment. The widespread use of ML methods in diagnosis and medical image computing is beyond the scope of the review. Searches were performed on PubMed and IEEE Explore using combinations of keywords: ML, surgery, robotics, surgical and medical robotics, skill learning, skill analysis and learning to perceive. Studies making use of ML methods in the context of surgery are increasingly being reported. In particular, there is an increasing interest in using ML for developing tools to understand and model surgical skill and competence or to extract surgical workflow. Many researchers begin to integrate this understanding into the control of recent surgical robots and devices. ML is an expanding field. It is popular as it allows efficient processing of vast amounts of data for interpreting and real-time decision making. Already widely used in imaging and diagnosis, it is believed that ML will also play an important role in surgery and interventional treatments. In particular, ML could become a game changer into the conception of cognitive surgical robots. Such robots endowed with cognitive skills would assist the surgical team also on a cognitive level, such as possibly lowering the mental load of the team. For example, ML could help extracting surgical skill, learned through demonstration by human experts, and could transfer this to robotic skills. Such intelligent surgical assistance would significantly surpass the state of the art in surgical

  1. Improved Modeling of Intelligent Tutoring Systems Using Ant Colony Optimization

    Science.gov (United States)

    Rastegarmoghadam, Mahin; Ziarati, Koorush

    2017-01-01

    Swarm intelligence approaches, such as ant colony optimization (ACO), are used in adaptive e-learning systems and provide an effective method for finding optimal learning paths based on self-organization. The aim of this paper is to develop an improved modeling of adaptive tutoring systems using ACO. In this model, the learning object is…

  2. SWARM - An earth Observation Mission investigating Geospace

    DEFF Research Database (Denmark)

    Friis-Christensen, Eigil; Lühr, H.; Knudsen, D.

    2008-01-01

    The Swarm mission was selected as the 5th mission in ESA's Earth Explorer Programme in 2004. This mission aims at measuring the Earth's magnetic field with unprecedented accuracy. This will be done by a constellation of three satellites, where two will fly at lower altitude, measuring the gradient...... of the Swarm science objectives, the mission concept, the scientific instrumentation, and the expected contribution to the ILWS programme will be summarized. (C) 2007 Published by Elsevier Ltd on behalf of COSPAR....

  3. Heterogeneous architecture to process swarm optimization algorithms

    Directory of Open Access Journals (Sweden)

    Maria A. Dávila-Guzmán

    2014-01-01

    Full Text Available Since few years ago, the parallel processing has been embedded in personal computers by including co-processing units as the graphics processing units resulting in a heterogeneous platform. This paper presents the implementation of swarm algorithms on this platform to solve several functions from optimization problems, where they highlight their inherent parallel processing and distributed control features. In the swarm algorithms, each individual and dimension problem are parallelized by the granularity of the processing system which also offer low communication latency between individuals through the embedded processing. To evaluate the potential of swarm algorithms on graphics processing units we have implemented two of them: the particle swarm optimization algorithm and the bacterial foraging optimization algorithm. The algorithms’ performance is measured using the acceleration where they are contrasted between a typical sequential processing platform and the NVIDIA GeForce GTX480 heterogeneous platform; the results show that the particle swarm algorithm obtained up to 36.82x and the bacterial foraging swarm algorithm obtained up to 9.26x. Finally, the effect to increase the size of the population is evaluated where we show both the dispersion and the quality of the solutions are decreased despite of high acceleration performance since the initial distribution of the individuals can converge to local optimal solution.

  4. Intention recognition, commitment and their roles in the evolution of cooperation from artificial intelligence techniques to evolutionary game theory models

    CERN Document Server

    Han, The Anh

    2013-01-01

    This original and timely monograph describes a unique self-contained excursion that reveals to the readers the roles of two basic cognitive abilities, i.e. intention recognition and arranging commitments, in the evolution of cooperative behavior. This book analyses intention recognition, an important ability that helps agents predict others’ behavior, in its artificial intelligence and evolutionary computational modeling aspects, and proposes a novel intention recognition method. Furthermore, the book presents a new framework for intention-based decision making and illustrates several ways in which an ability to recognize intentions of others can enhance a decision making process. By employing the new intention recognition method and the tools of evolutionary game theory, this book introduces computational models demonstrating that intention recognition promotes the emergence of cooperation within populations of self-regarding agents. Finally, the book describes how commitment provides a pathway to the evol...

  5. On the spatial dynamics and oscillatory behavior of a predator-prey model based on cellular automata and local particle swarm optimization.

    Science.gov (United States)

    Molina, Mario Martínez; Moreno-Armendáriz, Marco A; Carlos Seck Tuoh Mora, Juan

    2013-11-07

    A two-dimensional lattice model based on Cellular Automata theory and swarm intelligence is used to study the spatial and population dynamics of a theoretical ecosystem. It is found that the social interactions among predators provoke the formation of clusters, and that by increasing the mobility of predators the model enters into an oscillatory behavior. © 2013 Elsevier Ltd. All rights reserved.

  6. Resolution of the stochastic strategy spatial prisoner's dilemma by means of particle swarm optimization.

    Science.gov (United States)

    Zhang, Jianlei; Zhang, Chunyan; Chu, Tianguang; Perc, Matjaž

    2011-01-01

    We study the evolution of cooperation among selfish individuals in the stochastic strategy spatial prisoner's dilemma game. We equip players with the particle swarm optimization technique, and find that it may lead to highly cooperative states even if the temptations to defect are strong. The concept of particle swarm optimization was originally introduced within a simple model of social dynamics that can describe the formation of a swarm, i.e., analogous to a swarm of bees searching for a food source. Essentially, particle swarm optimization foresees changes in the velocity profile of each player, such that the best locations are targeted and eventually occupied. In our case, each player keeps track of the highest payoff attained within a local topological neighborhood and its individual highest payoff. Thus, players make use of their own memory that keeps score of the most profitable strategy in previous actions, as well as use of the knowledge gained by the swarm as a whole, to find the best available strategy for themselves and the society. Following extensive simulations of this setup, we find a significant increase in the level of cooperation for a wide range of parameters, and also a full resolution of the prisoner's dilemma. We also demonstrate extreme efficiency of the optimization algorithm when dealing with environments that strongly favor the proliferation of defection, which in turn suggests that swarming could be an important phenomenon by means of which cooperation can be sustained even under highly unfavorable conditions. We thus present an alternative way of understanding the evolution of cooperative behavior and its ubiquitous presence in nature, and we hope that this study will be inspirational for future efforts aimed in this direction.

  7. OPTIMIZATION OF GRID RESOURCE SCHEDULING USING PARTICLE SWARM OPTIMIZATION ALGORITHM

    Directory of Open Access Journals (Sweden)

    S. Selvakrishnan

    2010-10-01

    Full Text Available Job allocation process is one of the big issues in grid environment and it is one of the research areas in Grid Computing. Hence a new area of research is developed to design optimal methods. It focuses on new heuristic techniques that provide an optimal or near optimal solution for large grids. By learning grid resource scheduling and PSO (Particle Swarm Optimization algorithm, this proposed scheduler allocates an application to a host from a pool of available hosts and applications by selecting the best match. PSO-based algorithm is more effective in grid resources scheduling with the favor of reducing the executing time and completing time.

  8. On Formal Specification of Emergent Behaviours in Swarm Robotic Systems

    Directory of Open Access Journals (Sweden)

    Alan FT Winfield

    2005-12-01

    Full Text Available It is a characteristic of swarm robotics that specifying overall emergent swarm behaviours in terms of the low-level behaviours of individual robots is very difficult. Yet if swarm robotics is to make the transition from the laboratory to real-world engineering realisation we need such specifications. This paper explores the use of temporal logic to formally specify, and possibly also prove, the emergent behaviours of a robotic swarm. The paper makes use of a simplified wireless connected swarm as a case study with which to illustrate the approach. Such a formal approach could be an important step toward a disciplined design methodology for swarm robotics.

  9. A Vision-Based Driver Nighttime Assistance and Surveillance System Based on Intelligent Image Sensing Techniques and a Heterogamous Dual-Core Embedded System Architecture

    Directory of Open Access Journals (Sweden)

    Jenq-Haur Wang

    2012-02-01

    Full Text Available This study proposes a vision-based intelligent nighttime driver assistance and surveillance system (VIDASS system implemented by a set of embedded software components and modules, and integrates these modules to accomplish a component-based system framework on an embedded heterogamous dual-core platform. Therefore, this study develops and implements computer vision and sensing techniques of nighttime vehicle detection, collision warning determination, and traffic event recording. The proposed system processes the road-scene frames in front of the host car captured from CCD sensors mounted on the host vehicle. These vision-based sensing and processing technologies are integrated and implemented on an ARM-DSP heterogamous dual-core embedded platform. Peripheral devices, including image grabbing devices, communication modules, and other in-vehicle control devices, are also integrated to form an in-vehicle-embedded vision-based nighttime driver assistance and surveillance system.

  10. The Swarm Satellite Constellation Application and Research Facility (SCARF) and Swarm data products

    DEFF Research Database (Denmark)

    Olsen, Nils; Friis-Christensen, Eigil; Floberghagen, R.

    2013-01-01

    Swarm, a three-satellite constellation to study the dynamics of the Earth's magnetic field and its interactions with the Earth system, is expected to be launched in late 2013. The objective of the Swarm mission is to provide the best ever survey of the geomagnetic field and its temporal evolution......, in order to gain new insights into the Earth system by improving our understanding of the Earth's interior and environment. In order to derive advanced models of the geomagnetic field (and other higher-level data products) it is necessary to take explicit advantage of the constellation aspect of Swarm....... The Swarm SCARF (Satellite Constellation Application and Research Facility) has been established with the goal of deriving Level-2 products by combination of data from the three satellites, and of the various instruments. The present paper describes the Swarm input data products (Level-1b and auxiliary data...

  11. Artificial intelligence

    CERN Document Server

    Hunt, Earl B

    1975-01-01

    Artificial Intelligence provides information pertinent to the fundamental aspects of artificial intelligence. This book presents the basic mathematical and computational approaches to problems in the artificial intelligence field.Organized into four parts encompassing 16 chapters, this book begins with an overview of the various fields of artificial intelligence. This text then attempts to connect artificial intelligence problems to some of the notions of computability and abstract computing devices. Other chapters consider the general notion of computability, with focus on the interaction bet

  12. The Fate of Colloidal Swarms in Fractures

    Science.gov (United States)

    Pyrak-Nolte, L. J.; Olander, M. K.

    2009-12-01

    In the next 10-20 years, nano- and micro-sensor engineering will advance to the stage where sensor swarms could be deployed in the subsurface to probe rock formations and the fluids contained in them. Sensor swarms are groups of nano- or micro- sensors that are maintained as a coherent group to enable either sensor-to-sensor communication and/or coherent transmission of information as a group. The ability to maintain a swarm of sensors depends on the complexity of the flow paths in the rock, on the size and shape of the sensors and on the chemical interaction among the sensors, fluids, and rock surfaces. In this study, we investigate the effect of fracture aperture and fluid currents on the formation, evolution and break-up of colloidal swarms under gravity. Transparent cubic samples (100 mm x 100 mm x 100 mm) containing synthetic fractures with uniform and non-uniform aperture distributions were used to quantify the effect of aperture on swarm formation, swarm velocity, and swarm geometry using optical imaging. A fracture with a uniform aperture distribution was fabricated from two polished rectangular prisms of acrylic. A fracture with a non-uniform aperture distribution was created with a polished rectangular acrylic prism and an acrylic replica of an induced fracture surface from a carbonate rock. A series of experiments were performed to determine how swarm movement and geometry are affected as the walls of the fracture are brought closer together from 50 mm to 1 mm. During the experiments, the fracture was fully saturated with water. We created the swarms using two different particle sizes in dilute suspension (~ 1.0% by mass) . The particles were 3 micron diameter fluorescent polymer beads and 25 micron diameter soda-lime glass beads. The swarm behavior was imaged using an optical fluorescent imaging system composed of a CCD camera illuminated by a 100 mW diode-pumped doubled YAG laser. A swam was created when approximately 0.01 g drop of the suspension was

  13. Recent Advances in Intelligent Engineering Systems

    CERN Document Server

    Klempous, Ryszard; Araujo, Carmen

    2012-01-01

    This volume is a collection of 19 chapters on intelligent engineering systems written by respectable experts of the fields. The book consists of three parts. The first part is devoted to the foundational aspects of computational intelligence. It consists of 8 chapters that include studies in genetic algorithms, fuzzy logic connectives, enhanced intelligence in product models, nature-inspired optimization technologies, particle swarm optimization, evolution algorithms, model complexity of neural networks, and fitness landscape analysis. The second part contains contributions to intelligent computation in networks, presented in 5 chapters. The covered subjects include the application of self-organizing maps for early detection of denial of service attacks, combating security threats via immunity and adaptability in cognitive radio networks, novel modifications in WSN network design for improved SNR and reliability, a conceptual framework for the design of audio based cognitive infocommunication channels, and a ...

  14. Advances in chaos theory and intelligent control

    CERN Document Server

    Vaidyanathan, Sundarapandian

    2016-01-01

    The book reports on the latest advances in and applications of chaos theory and intelligent control. Written by eminent scientists and active researchers and using a clear, matter-of-fact style, it covers advanced theories, methods, and applications in a variety of research areas, and explains key concepts in modeling, analysis, and control of chaotic and hyperchaotic systems. Topics include fractional chaotic systems, chaos control, chaos synchronization, memristors, jerk circuits, chaotic systems with hidden attractors, mechanical and biological chaos, and circuit realization of chaotic systems. The book further covers fuzzy logic controllers, evolutionary algorithms, swarm intelligence, and petri nets among other topics. Not only does it provide the readers with chaos fundamentals and intelligent control-based algorithms; it also discusses key applications of chaos as well as multidisciplinary solutions developed via intelligent control. The book is a timely and comprehensive reference guide for graduate s...

  15. Han's model parameters for microalgae grown under intermittent illumination: Determined using particle swarm optimization.

    Science.gov (United States)

    Pozzobon, Victor; Perre, Patrick

    2017-10-16

    This work provides a model and the associated set of parameters allowing for microalgae population growth computation under intermittent lightning. Han's model is coupled with a simple microalgae growth model to yield a relationship between illumination and population growth. The model parameters were obtained by fitting a dataset available in literature using Particle Swarm Optimization method. In their work, authors grew microalgae in excess of nutrients under flashing conditions. Light/dark cycles used for these experimentations are quite close to those found in photobioreactor, i.e. ranging from several seconds to one minute. In this work, in addition to producing the set of parameters, Particle Swarm Optimization robustness was assessed. To do so, two different swarm initialization techniques were used, i.e. uniform and random distribution throughout the search-space. Both yielded the same results. In addition, swarm distribution analysis reveals that the swarm converges to a unique minimum. Thus, the produced set of parameters can be trustfully used to link light intensity to population growth rate. Furthermore, the set is capable to describe photodamages effects on population growth. Hence, accounting for light overexposure effect on algal growth. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Parameter Identification of Anaerobic Wastewater Treatment Bioprocesses Using Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Dorin Sendrescu

    2013-01-01

    Full Text Available This paper deals with the offline parameters identification for a class of wastewater treatment bioprocesses using particle swarm optimization (PSO techniques. Particle swarm optimization is a relatively new heuristic method that has produced promising results for solving complex optimization problems. In this paper one uses some variants of the PSO algorithm for parameter estimation of an anaerobic wastewater treatment process that is a complex biotechnological system. The identification scheme is based on a multimodal numerical optimization problem with high dimension. The performances of the method are analyzed by numerical simulations.

  17. Period Doubling Bifurcation Point Detection Strategy with Nested Layer Particle Swarm Optimization

    Science.gov (United States)

    Matsushita, Haruna; Tomimura, Yusho; Kurokawa, Hiroaki; Kousaka, Takuji

    2017-06-01

    This paper proposes a bifurcation point detection strategy based on nested layer particle swarm optimization (NLPSO). The NLPSO is performed by two particle swarm optimization (PSO) algorithms with a nesting structure. The proposed method is tested in detection experiments of period doubling bifurcation points in discrete-time dynamical systems. The proposed method directly detects the parameters of period doubling bifurcation regardless of the stability of the periodic point, but require no careful initialization, exact calculation or Lyapunov exponents. Moreover, the proposed method is an effective detection technique in terms of accuracy, robustness usability, and convergence speed.

  18. Design of Wire Antennas by Using an Evolved Particle Swarm Optimization Algorithm

    NARCIS (Netherlands)

    Lepelaars, E.S.A.M.; Zwamborn, A.P.M.; Rogovic, A.; Marasini, C.; Monorchio, A.

    2007-01-01

    A Particle Swarm Optimization (PSO) algorithm has been used in conjunction with a full-wave numerical code based on the Method of Moments (MoM) to design and optimize wire antennas. The PSO is a robust stochastic evolutionary numerical technique that is very effective in optimizing multidimensional

  19. Global Particle Swarm Optimization for High Dimension Numerical Functions Analysis

    Directory of Open Access Journals (Sweden)

    J. J. Jamian

    2014-01-01

    Full Text Available The Particle Swarm Optimization (PSO Algorithm is a popular optimization method that is widely used in various applications, due to its simplicity and capability in obtaining optimal results. However, ordinary PSOs may be trapped in the local optimal point, especially in high dimensional problems. To overcome this problem, an efficient Global Particle Swarm Optimization (GPSO algorithm is proposed in this paper, based on a new updated strategy of the particle position. This is done through sharing information of particle position between the dimensions (variables at any iteration. The strategy can enhance the exploration capability of the GPSO algorithm to determine the optimum global solution and avoid traps at the local optimum. The proposed GPSO algorithm is validated on a 12-benchmark mathematical function and compared with three different types of PSO techniques. The performance of this algorithm is measured based on the solutions’ quality, convergence characteristics, and their robustness after 50 trials. The simulation results showed that the new updated strategy in GPSO assists in realizing a better optimum solution with the smallest standard deviation value compared to other techniques. It can be concluded that the proposed GPSO method is a superior technique for solving high dimensional numerical function optimization problems.

  20. Hybridization hotspots at bat swarming sites.

    Directory of Open Access Journals (Sweden)

    Wiesław Bogdanowicz

    Full Text Available During late summer and early autumn in temperate zones of the Northern Hemisphere, thousands of bats gather at caves, mainly for the purpose of mating. We demonstrated that this swarming behavior most probably leads not only to breeding among bats of the same species but also interbreeding between different species. Using 14 nuclear microsatellites and three different methods (the Bayesian assignment approaches of STRUCTURE and NEWHYBRIDS and a principal coordinate analysis of pairwise genetic distances, we analyzed 375 individuals belonging to three species of whiskered bats (genus Myotis at swarming sites across their sympatric range in southern Poland. The overall hybridization rate varied from 3.2 to 7.2%. At the species level, depending on the method used, these values ranged from 2.1-4.6% in M. mystacinus and 3.0-3.7% in M. brandtii to 6.5-30.4% in M. alcathoe. Hybrids occurred in about half of the caves we studied. In all three species, the sex ratio of hybrids was biased towards males but the observed differences did not differ statistically from those noted at the population level. In our opinion, factors leading to the formation of these admixed individuals and their relatively high frequency are: i swarming behaviour at swarming sites, where high numbers of bats belonging to several species meet; ii male-biased sex ratio during the swarming period; iii the fact that all these bats are generally polygynous. The highly different population sizes of different species at swarming sites may also play some role. Swarming sites may represent unique hybrid hotspots, which, as there are at least 2,000 caves in the Polish Carpathians alone, may occur on a massive scale not previously observed for any group of mammal species in the wild. Evidently, these sites should be treated as focal points for the conservation of biodiversity and evolutionary processes.

  1. Multi-time-step ahead daily and hourly intermittent reservoir inflow prediction by artificial intelligent techniques using lumped and distributed data

    Science.gov (United States)

    Jothiprakash, V.; Magar, R. B.

    2012-07-01

    SummaryIn this study, artificial intelligent (AI) techniques such as artificial neural network (ANN), Adaptive neuro-fuzzy inference system (ANFIS) and Linear genetic programming (LGP) are used to predict daily and hourly multi-time-step ahead intermittent reservoir inflow. To illustrate the applicability of AI techniques, intermittent Koyna river watershed in Maharashtra, India is chosen as a case study. Based on the observed daily and hourly rainfall and reservoir inflow various types of time-series, cause-effect and combined models are developed with lumped and distributed input data. Further, the model performance was evaluated using various performance criteria. From the results, it is found that the performances of LGP models are found to be superior to ANN and ANFIS models especially in predicting the peak inflows for both daily and hourly time-step. A detailed comparison of the overall performance indicated that the combined input model (combination of rainfall and inflow) performed better in both lumped and distributed input data modelling. It was observed that the lumped input data models performed slightly better because; apart from reducing the noise in the data, the better techniques and their training approach, appropriate selection of network architecture, required inputs, and also training-testing ratios of the data set. The slight poor performance of distributed data is due to large variations and lesser number of observed values.

  2. Adapting risk management and computational intelligence network optimization techniques to improve traffic throughput and tail risk analysis.

    Science.gov (United States)

    2014-04-01

    Risk management techniques are used to analyze fluctuations in uncontrollable variables and keep those fluctuations from impeding : the core function of a system or business. Examples of this are making sure that volatility in copper and aluminum pri...

  3. Structural Preconditions of West Bohemia Earthquake Swarms

    Science.gov (United States)

    Novotný, M.; Špičák, A.; Weinlich, F. H.

    2013-07-01

    The West Bohemia and adjacent Vogtland are well known for quasi-periodical earthquake swarms persisting for centuries. The seismogenic area near Nový Kostel involved about 90 % of overall earthquake activity clustered here in space and time. The latest major earthquake swarm took place in August-September 2011. In 1994 and 1997, two minor earthquake swarms appeared in another location, near Lazy. Recently, the depth-recursive tomography yielded a velocity image with an improved resolution along the CEL09 refraction profile passing between these swarm areas. The resolution, achieved in the velocity image and its agreement with the inverse gravity modeling along the collateral 9HR reflection profile, enabled us to reveal the key structural background of these West Bohemia earthquake swarms. The CEL09 velocity image detected two deeply rooted high-velocity bodies adjacent to the Nový Kostel and Lazy focal zones. They correspond to two Variscan mafic intrusions influenced by the SE inclined slab of Saxothuringian crust that subducted beneath the Teplá-Barrandian terrane in the Devonian era. In their uppermost SE inclined parts, they roof both focal zones. The high P-wave velocities of 6,100-6,200 m/s, detected in both roofing caps, indicate their relative compactness and impermeability. The focal domains themselves are located in the almost gradient-free zones with the swarm foci spread near the axial planes of profound velocity depressions. The lower velocities of 5,950-6,050 m/s, observed in the upper parts of focal zones, are indicative of less compact rock complexes corrugated and tectonically disturbed by the SE bordering magma ascents. The high-velocity/high-density caps obviously seal the swarm focal domains because almost no magmatic fluids of mantle origin occur in the Nový Kostel and Lazy seismogenic areas of the West Bohemia/Vogtland territory, otherwise rich in the mantle-derived fluids. This supports the hypothesis of the fluid triggering of earthquake

  4. P-adic valued models of swarm behaviour

    Science.gov (United States)

    Schumann, Andrew

    2017-07-01

    The swarm behaviour can be fully determined by attractants (food pieces) which change the directions of swarm propagation. If we assume that at each time step the swarm can find out not more than p - 1 attractants, then the swarm behaviour can be coded by p-adic integers. The main task of any swarm is to logistically optimize the road system connecting the reachable attractants. In the meanwhile, the transporting network of the swarm has loops (circles) and permanently changes, e.g. the swarm occupies some attractants and leaves the others. However, this complex dynamics can be effectively coded by p-adic integers. This allows us to represent the swarm behaviour as a calculation on p-adic valued strings.

  5. Visual Analysis of Swarm and Geomagnetic Model Data

    Science.gov (United States)

    Santillan Pedrosa, Daniel; Triebnig, Gerhard

    2016-08-01

    ESA Swarm data is available for anyone to use via the virtual research platform "VirES for Swarm" (http://vires.services). A highly interactive data manipulation and retrieval interface is provided for the magnetic products of the European Space Agency (ESA) Swarm constellation mission. It includes tools for studying various Earth magnetic models and for comparing them to the Swarm satellite measurements and given solar activity levels.

  6. 7th International Symposium on Intelligent Distributed Computing

    CERN Document Server

    Jung, Jason; Badica, Costin

    2014-01-01

    This book represents the combined peer-reviewed proceedings of the Seventh International Symposium on Intelligent Distributed Computing - IDC-2013, of the Second Workshop on Agents for Clouds - A4C-2013, of the Fifth International Workshop on Multi-Agent Systems Technology and Semantics - MASTS-2013, and of the International Workshop on Intelligent Robots - iR-2013. All the events were held in Prague, Czech Republic during September 4-6, 2013. The 41 contributions published in this book address many topics related to theory and applications of intelligent distributed computing and multi-agent systems, including: agent-based data processing, ambient intelligence, bio-informatics, collaborative systems, cryptography and security, distributed algorithms, grid and cloud computing, information extraction, intelligent robotics, knowledge management, linked data, mobile agents, ontologies, pervasive computing, self-organizing systems, peer-to-peer computing, social networks and trust, and swarm intelligence.  .

  7. Intelligent environmental sensing

    CERN Document Server

    Mukhopadhyay, Subhas

    2015-01-01

    Developing environmental sensing and monitoring technologies become essential especially for industries that may cause severe contamination. Intelligent environmental sensing uses novel sensor techniques, intelligent signal and data processing algorithms, and wireless sensor networks to enhance environmental sensing and monitoring. It finds applications in many environmental problems such as oil and gas, water quality, and agriculture. This book addresses issues related to three main approaches to intelligent environmental sensing and discusses their latest technological developments. Key contents of the book include:   Agricultural monitoring Classification, detection, and estimation Data fusion Geological monitoring Motor monitoring Multi-sensor systems Oil reservoirs monitoring Sensor motes Water quality monitoring Wireless sensor network protocol  

  8. Bio Inspired Swarm Algorithm for Tumor Detection in Digital Mammogram

    Science.gov (United States)

    Dheeba, J.; Selvi, Tamil

    Microcalcification clusters in mammograms is the significant early sign of breast cancer. Individual clusters are difficult to detect and hence an automatic computer aided mechanism will help the radiologist in detecting the microcalcification clusters in an easy and efficient way. This paper presents a new classification approach for detection of microcalcification in digital mammogram using particle swarm optimization algorithm (PSO) based clustering technique. Fuzzy C-means clustering technique, well defined for clustering data sets are used in combination with the PSO. We adopt the particle swarm optimization to search the cluster center in the arbitrary data set automatically. PSO can search the best solution from the probability option of the Social-only model and Cognition-only model. This method is quite simple and valid, and it can avoid the minimum local value. The proposed classification approach is applied to a database of 322 dense mammographic images, originating from the MIAS database. Results shows that the proposed PSO-FCM approach gives better detection performance compared to conventional approaches.

  9. Computational intelligence techniques for comparative genomics dedicated to Prof. Allam Appa Rao on the occasion of his 65th birthday

    CERN Document Server

    Gunjan, Vinit

    2015-01-01

    This Brief highlights Informatics and related techniques to Computer Science Professionals, Engineers, Medical Doctors, Bioinformatics researchers and other interdisciplinary researchers. Chapters include the Bioinformatics of Diabetes and several computational algorithms and statistical analysis approach to effectively study the disorders and possible causes along with medical applications.

  10. Application of artificial intelligence techniques to the acceleration of Monte Carlo transport calculations. [Application to MCN code

    Energy Technology Data Exchange (ETDEWEB)

    Maconald, J.L.; Cashwell, E.D.

    1978-09-01

    The techniques of learning theory and pattern recognition are used to learn splitting surface locations for the Monte Carlo neutron transport code MCN. A study is performed to determine default values for several pattern recognition and learning parameters. The modified MCN code is used to reduce computer cost for several nontrivial example problems.

  11. Double Flight-Modes Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Wang Yong

    2013-01-01

    Full Text Available Getting inspiration from the real birds in flight, we propose a new particle swarm optimization algorithm that we call the double flight modes particle swarm optimization (DMPSO in this paper. In the DMPSO, each bird (particle can use both rotational flight mode and nonrotational flight mode to fly, while it is searching for food in its search space. There is a King in the swarm of birds, and the King controls each bird’s flight behavior in accordance with certain rules all the time. Experiments were conducted on benchmark functions such as Schwefel, Rastrigin, Ackley, Step, Griewank, and Sphere. The experimental results show that the DMPSO not only has marked advantage of global convergence property but also can effectively avoid the premature convergence problem and has good performance in solving the complex and high-dimensional optimization problems.

  12. Performance Review of Harmony Search, Differential Evolution and Particle Swarm Optimization

    Science.gov (United States)

    Mohan Pandey, Hari

    2017-08-01

    Metaheuristic algorithms are effective in the design of an intelligent system. These algorithms are widely applied to solve complex optimization problems, including image processing, big data analytics, language processing, pattern recognition and others. This paper presents a performance comparison of three meta-heuristic algorithms, namely Harmony Search, Differential Evolution, and Particle Swarm Optimization. These algorithms are originated altogether from different fields of meta-heuristics yet share a common objective. The standard benchmark functions are used for the simulation. Statistical tests are conducted to derive a conclusion on the performance. The key motivation to conduct this research is to categorize the computational capabilities, which might be useful to the researchers.

  13. Slow light performance enhancement of Bragg slot photonic crystal waveguide with particle swarm optimization algorithm

    Science.gov (United States)

    Abedi, Kambiz; Mirjalili, Seyed Mohammad

    2015-03-01

    Recently, majority of current research in the field of designing Phonic Crystal Waveguides (PCW) focus in extracting the relations between output slow light properties of PCW and structural parameters through a huge number of tedious non-systematic simulations in order to introduce better designs. This paper proposes a novel systematic approach which can be considered as a shortcut to alleviate the difficulties and human involvements in designing PCWs. In the proposed method, the problem of PCW design is first formulated as an optimization problem. Then, an optimizer is employed in order to automatically find the optimum design for the formulated PCWs. Meanwhile, different constraints are also considered during optimization with the purpose of applying physical limitations to the final optimum structure. As a case study, the structure of a Bragg-like Corrugation Slotted PCWs (BCSPCW) is optimized by using the proposed method. One of the most computationally powerful techniques in Computational Intelligence (CI) called Particle Swarm Optimization (PSO) is employed as an optimizer to automatically find the optimum structure for BCSPCW. The optimization process is done by considering five constraints to guarantee the feasibility of the final optimized structures and avoid band mixing. Numerical results demonstrate that the proposed method is able to find an optimum structure for BCSPCW with 172% and 100% substantial improvements in the bandwidth and Normalized Delay-Bandwidth Product (NDBP) respectively compared to the best current structure in the literature. Moreover, there is a time domain analysis at the end of the paper which verifies the performance of the optimized structure and proves that this structure has low distortion and attenuation simultaneously.

  14. Slot Parameter Optimization for Multiband Antenna Performance Improvement Using Intelligent Systems

    Directory of Open Access Journals (Sweden)

    Erdem Demircioglu

    2015-01-01

    Full Text Available This paper discusses bandwidth enhancement for multiband microstrip patch antennas (MMPAs using symmetrical rectangular/square slots etched on the patch and the substrate properties. The slot parameters on MMPA are modeled using soft computing technique of artificial neural networks (ANN. To achieve the best ANN performance, Particle Swarm Optimization (PSO and Differential Evolution (DE are applied with ANN’s conventional training algorithm in optimization of the modeling performance. In this study, the slot parameters are assumed as slot distance to the radiating patch edge, slot width, and length. Bandwidth enhancement is applied to a formerly designed MMPA fed by a microstrip transmission line attached to the center pin of 50 ohm SMA connecter. The simulated antennas are fabricated and measured. Measurement results are utilized for training the artificial intelligence models. The ANN provides 98% model accuracy for rectangular slots and 97% for square slots; however, ANFIS offer 90% accuracy with lack of resonance frequency tracking.

  15. Swarms of UAVs and fighter aircraft

    Energy Technology Data Exchange (ETDEWEB)

    Trahan, M.W.; Wagner, J.S.; Stantz, K.M.; Gray, P.C.; Robinett, R.

    1998-11-01

    This paper describes a method of modeling swarms of UAVs and/or fighter aircraft using particle simulation concepts. Recent investigations into the use of genetic algorithms to design neural networks for the control of autonomous vehicles (i.e., robots) led to the examination of methods of simulating large collections of robots. This paper describes the successful implementation of a model of swarm dynamics using particle simulation concepts. Several examples of the complex behaviors achieved in a target/interceptor scenario are presented.

  16. Extracting distinct behaviors from laboratory insect swarms

    Science.gov (United States)

    Puckett, James; Ouellette, Nicholas

    2014-03-01

    Throughout nature, self-organized collective motion in animal groups produces rich and complex behaviors. Many modeling approaches have been proposed from continuum to discrete agent based models which are capable of emulating the behavior observed in flocks and swarms. Most models assume uniformity in the way individuals interact and discard differences between individuals and changes of behavior with time. While in many cases individual differences may average out in large groups of animals, this is not likely the case for small groups. By measuring trajectories and kinematics of individual Chironomids in laboratory mating swarms, we assess the dynamics of individual behavior and discuss the impact of our results on current models.

  17. Using Information-Sharing Exchange Techniques from the Private Sector to Enhance Information Sharing Between Domestic Intelligence Organizations

    Science.gov (United States)

    2013-12-01

    ABBREVIATIONS B2B Business to Business CAP Common Alerting Protocol COP Common Operational Picture CPFR Collaborative Planning, Forecasting...United States can be improved by leveraging the lessons learned and work done in the private sector with regards to business to business ( B2B ...collaborative techniques. Similar B2B collaborations exist in continuous replenishment programs (CRP) and electronic data interchange (EDI), wherein two firms

  18. Intelligent techniques applied in identifying fraudsters industrial consumers of electricity; Tecnicas inteligentes aplicadas na identificacao de consumidores industriais fraudadores de energia eletrica

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, Caio C.O.; Souza, Andre N. de; Pereira, Lucas I.; Gastaldello, Danilo S. [Universidade Estadual Paulista (UNESP), Bauru, SP (Brazil). Dept. de Engenharia Eletrica], Emails: caioramos@gmail.com, andrejau@feb.unesp.br, ra510611@feb.unesp.br, danilosg@feb.unesp.br; Zago, Maria G. [Universidade de Sao Paulo (EP/USP), SP (Brazil) Escola Politecnica], Email: mgzago@usp.br; Papa, Joao P. [Universidade Estadual Paulista (UNESP), Bauru, SP (Brazil). Dept. da Computacao], Email: papa.joaopaulo@gmail.com

    2009-07-01

    The development of a computational intelligent tools based on neural network to identify commercial losses or fraud (theft energy), considering information from a database electric utility, is presented.

  19. Thermospheric neutral densities derived from Swarm accelerometer and GPS data

    DEFF Research Database (Denmark)

    Doornbos, Eelco; Encarnacao, Joao; van den IJss, Jose

    approach, affects the possibility of determining densities from the accelerometer measurements of the Swarm A and B satellites. We also investigate the possibility of determining crosswind speeds from Swarm data.In the meantime, we have investigated the possibility of deriving thermosphere neutral density...... data from the Swarm GPS observations only, with a much lower temporal resolution. We analyse the differences in the data between the three Swarm satellites as well as between the accelerometer-derived and GPS-only-derived densities for Swarm C....

  20. Brain Emotional Learning Based Intelligent Decoupler for Nonlinear Multi-Input Multi-Output Distillation Columns

    Directory of Open Access Journals (Sweden)

    M. H. El-Saify

    2017-01-01

    Full Text Available The distillation process is vital in many fields of chemical industries, such as the two-coupled distillation columns that are usually highly nonlinear Multi-Input Multi-Output (MIMO coupled processes. The control of MIMO process is usually implemented via a decentralized approach using a set of Single-Input Single-Output (SISO loop controllers. Decoupling the MIMO process into group of single loops requires proper input-output pairing and development of decoupling compensator unit. This paper proposes a novel intelligent decoupling approach for MIMO processes based on new MIMO brain emotional learning architecture. A MIMO architecture of Brain Emotional Learning Based Intelligent Controller (BELBIC is developed and applied as a decoupler for 4 input/4 output highly nonlinear coupled distillation columns process. Moreover, the performance of the proposed Brain Emotional Learning Based Intelligent Decoupler (BELBID is enhanced using Particle Swarm Optimization (PSO technique. The performance is compared with the PSO optimized steady state decoupling compensation matrix. Mathematical models of the distillation columns and the decouplers are built and tested in simulation environment by applying the same inputs. The results prove remarkable success of the BELBID in minimizing the loops interactions without degrading the output that every input has been paired with.

  1. Segmentation of acne lesion using fuzzy C-means technique with intelligent selection of the desired cluster.

    Science.gov (United States)

    Khan, Javed; Malik, Aamir Saeed; Kamel, Nidal; Dass, Sarat Chandra; Affandi, Azura Mohd

    2015-01-01

    Segmentation is the basic and important step for digital image analysis and understanding. Segmentation of acne lesions in the visual spectrum of light is very challenging due to factors such as varying skin tones due to ethnicity, camera calibration and the lighting conditions. In this approach the color image is transformed into various color spaces. The image is decomposed into the specified number of homogeneous regions based on the similarity of color using fuzzy C-means clustering technique. Features are extracted for each cluster and average values of these features are calculated. A new objective function is defined that selects the cluster holding the lesion pixels based on the average value of cluster features. In this study segmentation results are generated in four color spaces (RGB, rgb, YIQ, I1I2I3) and two individual color components (I3, Q). The number of clusters is varied from 2 to 6. The experiment was carried out on fifty images of acne patients. The performance of the proposed technique is measured in terms of the three mostly used metrics; sensitivity, specificity, and accuracy. Best results were obtained for Q and I3 color components of YIQ and I1I2I3 color spaces with the number of clusters equal to three. These color components show robustness against non-uniform illumination and maximize the gap between the lesion and skin color.

  2. Design and Application of Variable Universe Fuzzy Controller Based on Cat Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Haipeng Pan

    2016-01-01

    Full Text Available A novel variable universe fuzzy controller based on cat swarm optimization (CSO-VUFC is proposed to regulate the temperature of the reactor system, which is characterized by nonlinearity, large time delay, and uncertainty. In CSO-VUFC, firstly, corresponding contraction-expansion factors with the function form were, respectively, introduced for the input and output fuzzy universes of the controller. Then, cat swarm optimization was used to optimize the relevant parameter values in the contraction-expansion factor function to achieve the intelligence optimization of the contraction-expansion factors, based on the system performance test function as an evaluation index; the contradiction between the universe adjustment and control accuracy of the fuzzy controller will be effectively solved to achieve the online self-adjustment of the universe. The simulation results indicate that the variable universe adaptive fuzzy control method based on the cat swarm optimization has the features of high precision adjustment, short transient time, and hard real-time.

  3. A self-learning particle swarm optimizer for global optimization problems.

    Science.gov (United States)

    Li, Changhe; Yang, Shengxiang; Nguyen, Trung Thanh

    2012-06-01

    Particle swarm optimization (PSO) has been shown as an effective tool for solving global optimization problems. So far, most PSO algorithms use a single learning pattern for all particles, which means that all particles in a swarm use the same strategy. This monotonic learning pattern may cause the lack of intelligence for a particular particle, which makes it unable to deal with different complex situations. This paper presents a novel algorithm, called self-learning particle swarm optimizer (SLPSO), for global optimization problems. In SLPSO, each particle has a set of four strategies to cope with different situations in the search space. The cooperation of the four strategies is implemented by an adaptive learning framework at the individual level, which can enable a particle to choose the optimal strategy according to its own local fitness landscape. The experimental study on a set of 45 test functions and two real-world problems show that SLPSO has a superior performance in comparison with several other peer algorithms.

  4. Automatic segmentation of lesion from breast DCE-MR image using artificial fish swarm optimization algorithm

    Science.gov (United States)

    Janaki, Sathya D.; Geetha, K.

    2017-06-01

    Interpreting Dynamic Contrast-Enhanced (DCE) MR images for signs of breast cancer is time consuming and complex, since the amount of data that needs to be examined by a radiologist in breast DCE-MRI to locate suspicious lesions is huge. Misclassifications can arise from either overlooking a suspicious region or from incorrectly interpreting a suspicious region. The segmentation of breast DCE-MRI for suspicious lesions in detection is thus attractive, because it drastically decreases the amount of data that needs to be examined. The new segmentation method for detection of suspicious lesions in DCE-MRI of the breast tissues is based on artificial fishes swarm clustering algorithm is presented in this paper. Artificial fish swarm optimization algorithm is a swarm intelligence algorithm, which performs a search based on population and neighborhood search combined with random search. The major criteria for segmentation are based on the image voxel values and the parameters of an empirical parametric model of segmentation algorithms. The experimental results show considerable impact on the performance of the segmentation algorithm, which can assist the physician with the task of locating suspicious regions at minimal time.

  5. Incorporating the Avoidance Behavior to the Standard Particle Swarm Optimization 2011

    Directory of Open Access Journals (Sweden)

    ALTINOZ, O. T.

    2015-05-01

    Full Text Available Inspired from social and cognitive behaviors of animals living as swarms; particle swarm optimization (PSO provides a simple but very powerful tool for researchers who are dealing with collective intelligence. The algorithm depends on modeling the very basic random behavior (i.e. exploration capability of individuals in addition to their tendency to revisit positions of good memories (cognitive behavior and tendency to keep an eye on and follow the majority of swarm members (social behavior. The balance among these three major behaviors is the key of success of the algorithm. On the other hand, there are other social and cognitive phenomena, which might be useful for improvement of the algorithm. In this paper, we particularly investigate avoidance from the bad behavior. We propose modifications about modeling the Standard PSO 2011 formulation, and we test performance of our proposals at each step via benchmark functions, and compare the results of the proposed algorithms with well-known algorithms. Our results show that incorporation of Social Avoidance behavior into SPSO11 improves the performance. It is also shown that in case the Social Avoidance behavior is applied in an adaptive manner at the very first iterations of the algorithm, there might be further improvements.

  6. Tumor Detection using Particle Swarm Optimization to Initialize Fuzzy C-Means

    OpenAIRE

    Patel, Paras; Patel, Manish

    2016-01-01

    International audience; Image processing techniques are extensively used in different medical fields for earlier detection and treatment stages, where time factor is more important to find abnormality issues in target images in several tumors. Now a days tumor is discovered at advanced stages with the help of Magnetic Resonance Imaging (MRI).This paper proposes an approach which combines the Particle Swarm Optimization (PSO) techniques and Fuzzy C-Means (FCM) algorithm to perform image segmen...

  7. Improving Vector Evaluated Particle Swarm Optimisation by incorporating nondominated solutions.

    Science.gov (United States)

    Lim, Kian Sheng; Ibrahim, Zuwairie; Buyamin, Salinda; Ahmad, Anita; Naim, Faradila; Ghazali, Kamarul Hawari; Mokhtar, Norrima

    2013-01-01

    The Vector Evaluated Particle Swarm Optimisation algorithm is widely used to solve multiobjective optimisation problems. This algorithm optimises one objective using a swarm of particles where their movements are guided by the best solution found by another swarm. However, the best solution of a swarm is only updated when a newly generated solution has better fitness than the best solution at the objective function optimised by that swarm, yielding poor solutions for the multiobjective optimisation problems. Thus, an improved Vector Evaluated Particle Swarm Optimisation algorithm is introduced by incorporating the nondominated solutions as the guidance for a swarm rather than using the best solution from another swarm. In this paper, the performance of improved Vector Evaluated Particle Swarm Optimisation algorithm is investigated using performance measures such as the number of nondominated solutions found, the generational distance, the spread, and the hypervolume. The results suggest that the improved Vector Evaluated Particle Swarm Optimisation algorithm has impressive performance compared with the conventional Vector Evaluated Particle Swarm Optimisation algorithm.

  8. Simplified Universal Intelligent PID Controller

    OpenAIRE

    Mohamed I. Abu El- Sebah

    2016-01-01

    Many researches give a great attention to invent different techniques for process controller application. All of them tend to simplify the controller design algorithm and make it more intelligent, but the two goals seem to be an opposite goals. Although the artificial intelligent controller is proper, they need sometimes a complicated algorithm and parameter adaptation process. This paper presents a new idea to simplify the process controller, also to make it an intellige...

  9. Symbiosis-Based Alternative Learning Multi-Swarm Particle Swarm Optimization.

    Science.gov (United States)

    Niu, Ben; Huang, Huali; Tan, Lijing; Duan, Qiqi

    2017-01-01

    Inspired by the ideas from the mutual cooperation of symbiosis in natural ecosystem, this paper proposes a new variant of PSO, named Symbiosis-based Alternative Learning Multi-swarm Particle Swarm Optimization (SALMPSO). A learning probability to select one exemplar out of the center positions, the local best position, and the historical best position including the experience of internal and external multiple swarms, is used to keep the diversity of the population. Two different levels of social interaction within and between multiple swarms are proposed. In the search process, particles not only exchange social experience with others that are from their own sub-swarms, but also are influenced by the experience of particles from other fellow sub-swarms. According to the different exemplars and learning strategy, this model is instantiated as four variants of SALMPSO and a set of 15 test functions are conducted to compare with some variants of PSO including 10, 30 and 50 dimensions, respectively. Experimental results demonstrate that the alternative learning strategy in each SALMPSO version can exhibit better performance in terms of the convergence speed and optimal values on most multimodal functions in our simulation.

  10. A Survey and Proposed Framework on the Soft Biometrics Technique for Human Identification in Intelligent Video Surveillance System

    Directory of Open Access Journals (Sweden)

    Min-Gu Kim

    2012-01-01

    Full Text Available Biometrics verification can be efficiently used for intrusion detection and intruder identification in video surveillance systems. Biometrics techniques can be largely divided into traditional and the so-called soft biometrics. Whereas traditional biometrics deals with physical characteristics such as face features, eye iris, and fingerprints, soft biometrics is concerned with such information as gender, national origin, and height. Traditional biometrics is versatile and highly accurate. But it is very difficult to get traditional biometric data from a distance and without personal cooperation. Soft biometrics, although featuring less accuracy, can be used much more freely though. Recently, many researchers have been made on human identification using soft biometrics data collected from a distance. In this paper, we use both traditional and soft biometrics for human identification and propose a framework for solving such problems as lighting, occlusion, and shadowing.

  11. Role of tumbling in bacterial swarming

    Science.gov (United States)

    Sidortsov, Marina; Morgenstern, Yakov; Be'er, Avraham

    2017-08-01

    Typical wild-type bacteria swimming in sparse suspensions exhibit a movement pattern called "run and tumble," characterized by straight trajectories (runs) interspersed by shorter, random reorientation (tumbles). This is achieved by rotating their flagella counterclockwise, or clockwise, respectively. The chemotaxis signaling network operates in controlling the frequency of tumbles, enabling navigation toward or away from desired regions in the medium. In contrast, while in dense populations, flagellated bacteria exhibit collective motion and form large dynamic clusters, whirls, and jets, with intricate dynamics that is fundamentally different than trajectories of sparsely swimming cells. Although collectively swarming cells do change direction at the level of the individual cell, often exhibiting reversals, it has been suggested that chemotaxis does not play a role in multicellular colony expansion, but the change in direction stems from clockwise flagellar rotation. In this paper, the effects of cell rotor switching (i.e., the ability to tumble) and chemotaxis on the collective statistics of swarming bacteria are studied experimentally in wild-type Bacillus subtilis and two mutants—one that does not tumble and one that tumbles independently of the chemotaxis system. We show that while several of the parameters examined are similar between the strains, other collective and individual characteristics are significantly different. The results demonstrate that tumbling and/or flagellar directional rotor switching has an important role on the dynamics of swarming, and imply that swarming models of self-propelled rods that do not take tumbling and/or rotor switching into account may be oversimplified.

  12. Swarm Level 2 Comprehensive Inversion, 2016 Production

    DEFF Research Database (Denmark)

    Tøffner-Clausen, Lars; Sabaka, Terence; Olsen, Nils

    In the framework of the ESA Earth Observation Magnetic Mapping Mission Swarm, the Expert Support Laboratories (ESL) provides high quality Level 2 Products describing a.o. the magnetic fields of the Earth. This poster provides details of the Level 2 Products from the Comprehensive Inversion chain...

  13. Novelty-driven Particle Swarm Optimization

    DEFF Research Database (Denmark)

    Galvao, Diana; Lehman, Joel Anthony; Urbano, Paulo

    2015-01-01

    Particle Swarm Optimization (PSO) is a well-known population-based optimization algorithm. Most often it is applied to optimize objective-based fitness functions that reward progress towards a desired objective or behavior. As a result, search increasingly focuses on higher-fitness areas. However...

  14. Swarm controlled emergence for ant clustering

    DEFF Research Database (Denmark)

    Scheidler, Alexander; Merkle, Daniel; Middendorf, Martin

    2013-01-01

    implications: The particular finding, that certain behaviours of control agents can lead to stronger clustering, can help to design improved clustering algorithms by using heterogeneous swarms of agents. Originality/value: In general, the control of (unwanted) emergent effects in artificial systems...

  15. Intelligence Ethics:

    DEFF Research Database (Denmark)

    Rønn, Kira Vrist

    2016-01-01

    Questions concerning what constitutes a morally justified conduct of intelligence activities have received increased attention in recent decades. However, intelligence ethics is not yet homogeneous or embedded as a solid research field. The aim of this article is to sketch the state of the art...... of intelligence ethics and point out subjects for further scrutiny in future research. The review clusters the literature on intelligence ethics into two groups: respectively, contributions on external topics (i.e., the accountability of and the public trust in intelligence agencies) and internal topics (i.......e., the search for an ideal ethical framework for intelligence actions). The article concludes that there are many holes to fill for future studies on intelligence ethics both in external and internal discussions. Thus, the article is an invitation – especially, to moral philosophers and political theorists...

  16. Particle Swarm Optimization approach to defect detection in armour ceramics.

    Science.gov (United States)

    Kesharaju, Manasa; Nagarajah, Romesh

    2017-03-01

    In this research, various extracted features were used in the development of an automated ultrasonic sensor based inspection system that enables defect classification in each ceramic component prior to despatch to the field. Classification is an important task and large number of irrelevant, redundant features commonly introduced to a dataset reduces the classifiers performance. Feature selection aims to reduce the dimensionality of the dataset while improving the performance of a classification system. In the context of a multi-criteria optimization problem (i.e. to minimize classification error rate and reduce number of features) such as one discussed in this research, the literature suggests that evolutionary algorithms offer good results. Besides, it is noted that Particle Swarm Optimization (PSO) has not been explored especially in the field of classification of high frequency ultrasonic signals. Hence, a binary coded Particle Swarm Optimization (BPSO) technique is investigated in the implementation of feature subset selection and to optimize the classification error rate. In the proposed method, the population data is used as input to an Artificial Neural Network (ANN) based classification system to obtain the error rate, as ANN serves as an evaluator of PSO fitness function. Copyright © 2016. Published by Elsevier B.V.

  17. Multivariable optimization of liquid rocket engines using particle swarm algorithms

    Science.gov (United States)

    Jones, Daniel Ray

    Liquid rocket engines are highly reliable, controllable, and efficient compared to other conventional forms of rocket propulsion. As such, they have seen wide use in the space industry and have become the standard propulsion system for launch vehicles, orbit insertion, and orbital maneuvering. Though these systems are well understood, historical optimization techniques are often inadequate due to the highly non-linear nature of the engine performance problem. In this thesis, a Particle Swarm Optimization (PSO) variant was applied to maximize the specific impulse of a finite-area combustion chamber (FAC) equilibrium flow rocket performance model by controlling the engine's oxidizer-to-fuel ratio and de Laval nozzle expansion and contraction ratios. In addition to the PSO-controlled parameters, engine performance was calculated based on propellant chemistry, combustion chamber pressure, and ambient pressure, which are provided as inputs to the program. The performance code was validated by comparison with NASA's Chemical Equilibrium with Applications (CEA) and the commercially available Rocket Propulsion Analysis (RPA) tool. Similarly, the PSO algorithm was validated by comparison with brute-force optimization, which calculates all possible solutions and subsequently determines which is the optimum. Particle Swarm Optimization was shown to be an effective optimizer capable of quick and reliable convergence for complex functions of multiple non-linear variables.

  18. Magnetic Investigations On The Okavango Giant Dyke Swarm (n Botswana)

    Science.gov (United States)

    Tshoso, G.; Dyment, J.; Aubourg, C.; Le Gall, B.; Tiercelin, J. J.; Féraud, G.; Bertrand, H.; Jourdan, F.; Kampunzu, H.

    The Okavango Giant Dyke Swarm is one of the largest mafic dyke complex world- wide. It extends as a 1500 x 100 km intrusive system across the Karoo igneous province of E. Namibia, N. Botswana and W. Zimbabwe. It is marked by prominent magnetic anomalies on the many aeromagnetic surveys acquired by mining compa- nies. Beyond the analysis of these data, ground truth evidence has been collected along a 100 km continuous section nearly perpendicular to the dyke swarm on the Shashe River, which present excellent exposures of dykes and basement host-rocks. Samples have been cored on 15 dykes for paleomagnetic and rock magnetic analy- ses. The paleomagnetic poles determined from most of the dykes is consistent with a Karoo age on the Apparent Polar Wander path for Africa and confirm the radio- metric results obtained by Ar-Ar dating technique. A very different pole is obtained for one basement dyke dated at 880 Ma. Magnetic susceptibility and natural rema- nent magnetization have been compiled and used to constrain forward modeling of the aeromagnetic anomalies. The direction of magmatic flow within individual dykes is investigated through the analysis of magnetic susceptibility anisotropy.

  19. Swarm of bees and particles algorithms in the problem of gradual failure reliability assurance

    Directory of Open Access Journals (Sweden)

    M. F. Anop

    2015-01-01

    Full Text Available Probability-statistical framework of reliability theory uses models based on the chance failures analysis. These models are not functional and do not reflect relation of reliability characteristics to the object performance. At the same time, a significant part of the technical systems failures are gradual failures caused by degradation of the internal parameters of the system under the influence of various external factors.The paper shows how to provide the required level of reliability at the design stage using a functional model of a technical object. Paper describes the method for solving this problem under incomplete initial information, when there is no information about the patterns of technological deviations and degradation parameters, and the considered system model is a \\black box" one.To this end, we formulate the problem of optimal parametric synthesis. It lies in the choice of the nominal values of the system parameters to satisfy the requirements for its operation and take into account the unavoidable deviations of the parameters from their design values during operation. As an optimization criterion in this case we propose to use a deterministic geometric criterion \\reliability reserve", which is the minimum distance measured along the coordinate directions from the nominal parameter value to the acceptability region boundary rather than statistical values.The paper presents the results of the application of heuristic swarm intelligence methods to solve the formulated optimization problem. Efficiency of particle swarm algorithms and swarm of bees one compared with undirected random search algorithm in solving a number of test optimal parametric synthesis problems in three areas: reliability, convergence rate and operating time. The study suggests that the use of a swarm of bees method for solving the problem of the technical systems gradual failure reliability ensuring is preferred because of the greater flexibility of the

  20. Particle swarm optimization based optimal bidding strategy in an ...

    African Journals Online (AJOL)

    user

    283-294. 284 in sequential energy and ancillary services markets, and uncertainty in demand and rival's bidding behaviour is estimated by ... Strategic bidding for pumped-storage hydroelectric plant using evolutionary tristate PSO ...... deregulation and artificial intelligence technique applications in power systems. Dr. D. M. ...

  1. Wi-Fi and Satellite-Based Location Techniques for Intelligent Agricultural Machinery Controlled by a Human Operator

    Directory of Open Access Journals (Sweden)

    Domagoj Drenjanac

    2014-10-01

    Full Text Available In the new agricultural scenarios, the interaction between autonomous tractors and a human operator is important when they jointly perform a task. Obtaining and exchanging accurate localization information between autonomous tractors and the human operator, working as a team, is a critical to maintaining safety, synchronization, and efficiency during the execution of a mission. An advanced localization system for both entities involved in the joint work, i.e., the autonomous tractors and the human operator, provides a basis for meeting the task requirements. In this paper, different localization techniques for a human operator and an autonomous tractor in a field environment were tested. First, we compared the localization performances of two global navigation satellite systems’ (GNSS receivers carried by the human operator: (1 an internal GNSS receiver built into a handheld device; and (2 an external DGNSS receiver with centimeter-level accuracy. To investigate autonomous tractor localization, a real-time kinematic (RTK-based localization system installed on autonomous tractor developed for agricultural applications was evaluated. Finally, a hybrid localization approach, which combines distance estimates obtained using a wireless scheme with the position of an autonomous tractor obtained using an RTK-GNSS system, is proposed. The hybrid solution is intended for user localization in unstructured environments in which the GNSS signal is obstructed. The hybrid localization approach has two components: (1 a localization algorithm based on the received signal strength indication (RSSI from the wireless environment; and (2 the acquisition of the tractor RTK coordinates when the human operator is near the tractor. In five RSSI tests, the best result achieved was an average localization error of 4 m. In tests of real-time position correction between rows, RMS error of 2.4 cm demonstrated that the passes were straight, as was desired for the

  2. Bayesian artificial intelligence

    CERN Document Server

    Korb, Kevin B

    2003-01-01

    As the power of Bayesian techniques has become more fully realized, the field of artificial intelligence has embraced Bayesian methodology and integrated it to the point where an introduction to Bayesian techniques is now a core course in many computer science programs. Unlike other books on the subject, Bayesian Artificial Intelligence keeps mathematical detail to a minimum and covers a broad range of topics. The authors integrate all of Bayesian net technology and learning Bayesian net technology and apply them both to knowledge engineering. They emphasize understanding and intuition but also provide the algorithms and technical background needed for applications. Software, exercises, and solutions are available on the authors' website.

  3. Intelligent Tutoring Systems: A Review.

    Science.gov (United States)

    Sleeman, D.

    This paper presents a critical review of computer assisted instruction (CAI); an overview of recent intelligent tutoring systems (ITSs), including current perceived shortcomings; major activities of the field, i.e., analysis of teaching/learning processes, and extending and developing artificial intelligence techniques for use in intelligent…

  4. Swarming and mating activity of Anopheles gambiae mosquitoes in semi-field enclosures.

    Science.gov (United States)

    Achinko, D; Thailayil, J; Paton, D; Mireji, P O; Talesa, V; Masiga, D; Catteruccia, F

    2016-03-01

    Anopheles gambiae Giles sensu stricto (Diptera: Culicidae) is the major Afro-tropical vector of malaria. Novel strategies proposed for the elimination and eradication of this mosquito vector are based on the use of genetic approaches, such as the sterile insect technique (SIT). These approaches rely on the ability of released males to mate with wild females, and depend on the application of effective protocols to assess the swarming and mating behaviours of laboratory-reared insects prior to their release. The present study evaluated whether large semi-field enclosures can be utilized to study the ability of males from a laboratory colony to respond to natural environmental stimuli and initiate normal mating behaviour. Laboratory-reared males exhibited spatiotemporally consistent swarming behaviour within the study enclosures. Swarm initiation, peak and termination time closely tracked sunset. Comparable insemination rates were observed in females captured in copula in the semi-field cages relative to females in small laboratory cages. Oviposition rates after blood feeding were also similar to those observed in laboratory settings. The data suggest that outdoor enclosures are suitable for studying swarming and mating in laboratory-bred males in field-like settings, providing an important reference for future studies aimed at assessing the comparative mating ability of strains for SIT and other vector control strategies. © 2015 The Royal Entomological Society.

  5. Seismic imaging of a Permian-Carboniferous dyke swarm offshore southern Norway

    Science.gov (United States)

    Phillips, Thomas; Magee, Craig; Jackson, Christopher; Bell, Rebecca

    2017-04-01

    Dyke swarms play a fundamental role in continental rifting and breakup. Numerous studies from a range of Earth Science disciplines have demonstrated that extension, in places such as East Africa, can be driven by dyke intrusion. The lack of suitable field outcrops and the typically low-resolution of geophysical imaging techniques however, mean that the 3D structure of dyke-dominated extensional zones remains poorly constrained. Over recent decades, the widespread availability of high-quality 3D seismic reflection data has revolutionized our understanding of magma plumbing systems and the role that magmatism plays in rifting. However, while seismic reflection data is able to resolve sub-horizontal magmatic structures, such as sills, it is often unable to resolve sub-vertical structures, such as dykes. In this study we use borehole-constrained, closely-spaced 2D seismic reflection data from offshore southern Norway to examine a dense swarm of dykes that have been imaged on seismic reflection data following post-emplacement rotation. The swarm has a WSW-ENE orientation and covers a c. 2000 km2 area along the northern margin of the Farsund Basin, a half-graben bound to the south by the N-dipping Fjerritslev Fault System. Within the seismic data dykes are interpreted as prominent high-angle reflections that cross-cut, but do not offset, Permian-Carboniferous strata. The density of these reflections decreases away from the centre of the swarm. Stratigraphically, these high angle reflections cross-cut Permian-Carboniferous strata and are truncated at the base Upper Permian unconformity, constraining the timing of their emplacement as to during the Permian-Carboniferous. We correlate this dyke swarm along-strike to the east to the Permian-Carboniferous Skagerrak-centred Large Igneous Province (LIP), and to the west to the Midland Valley dyke suite, onshore UK, both of which are dated to around 300 Ma. The resultant dyke swarm forms a system over 800 km long and, in our

  6. Artificial Intelligence,

    Science.gov (United States)

    PATTERN RECOGNITION, * ARTIFICIAL INTELLIGENCE, *TEXTBOOKS, COMPUTER PROGRAMMING, MATHEMATICAL LOGIC, ROBOTS, PROBLEM SOLVING, STATISTICAL ANALYSIS, GAME THEORY, NATURAL LANGUAGE, SELF ORGANIZING SYSTEMS.

  7. Lifecycle-Based Swarm Optimization Method for Numerical Optimization

    Directory of Open Access Journals (Sweden)

    Hai Shen

    2014-01-01

    Full Text Available Bioinspired optimization algorithms have been widely used to solve various scientific and engineering problems. Inspired by biological lifecycle, this paper presents a novel optimization algorithm called lifecycle-based swarm optimization (LSO. Biological lifecycle includes four stages: birth, growth, reproduction, and death. With this process, even though individual organism died, the species will not perish. Furthermore, species will have stronger ability of adaptation to the environment and achieve perfect evolution. LSO simulates Biological lifecycle process through six optimization operators: chemotactic, assimilation, transposition, crossover, selection, and mutation. In addition, the spatial distribution of initialization population meets clumped distribution. Experiments were conducted on unconstrained benchmark optimization problems and mechanical design optimization problems. Unconstrained benchmark problems include both unimodal and multimodal cases the demonstration of the optimal performance and stability, and the mechanical design problem was tested for algorithm practicability. The results demonstrate remarkable performance of the LSO algorithm on all chosen benchmark functions when compared to several successful optimization techniques.

  8. Scaling and spatial complementarity of tectonic earthquake swarms

    KAUST Repository

    Passarelli, Luigi

    2017-11-10

    Tectonic earthquake swarms (TES) often coincide with aseismic slip and sometimes precede damaging earthquakes. In spite of recent progress in understanding the significance and properties of TES at plate boundaries, their mechanics and scaling are still largely uncertain. Here we evaluate several TES that occurred during the past 20 years on a transform plate boundary in North Iceland. We show that the swarms complement each other spatially with later swarms discouraged from fault segments activated by earlier swarms, which suggests efficient strain release and aseismic slip. The fault area illuminated by earthquakes during swarms may be more representative of the total moment release than the cumulative moment of the swarm earthquakes. We use these findings and other published results from a variety of tectonic settings to discuss general scaling properties for TES. The results indicate that the importance of TES in releasing tectonic strain at plate boundaries may have been underestimated.

  9. Scaling and spatial complementarity of tectonic earthquake swarms

    Science.gov (United States)

    Passarelli, Luigi; Rivalta, Eleonora; Jónsson, Sigurjón; Hensch, Martin; Metzger, Sabrina; Jakobsdóttir, Steinunn S.; Maccaferri, Francesco; Corbi, Fabio; Dahm, Torsten

    2018-01-01

    Tectonic earthquake swarms (TES) often coincide with aseismic slip and sometimes precede damaging earthquakes. In spite of recent progress in understanding the significance and properties of TES at plate boundaries, their mechanics and scaling are still largely uncertain. Here we evaluate several TES that occurred during the past 20 years on a transform plate boundary in North Iceland. We show that the swarms complement each other spatially with later swarms discouraged from fault segments activated by earlier swarms, which suggests efficient strain release and aseismic slip. The fault area illuminated by earthquakes during swarms may be more representative of the total moment release than the cumulative moment of the swarm earthquakes. We use these findings and other published results from a variety of tectonic settings to discuss general scaling properties for TES. The results indicate that the importance of TES in releasing tectonic strain at plate boundaries may have been underestimated.

  10. A comprehensive review of swarm optimization algorithms.

    Directory of Open Access Journals (Sweden)

    Mohd Nadhir Ab Wahab

    Full Text Available Many swarm optimization algorithms have been introduced since the early 60's, Evolutionary Programming to the most recent, Grey Wolf Optimization. All of these algorithms have demonstrated their potential to solve many optimization problems. This paper provides an in-depth survey of well-known optimization algorithms. Selected algorithms are briefly explained and compared with each other comprehensively through experiments conducted using thirty well-known benchmark functions. Their advantages and disadvantages are also discussed. A number of statistical tests are then carried out to determine the significant performances. The results indicate the overall advantage of Differential Evolution (DE and is closely followed by Particle Swarm Optimization (PSO, compared with other considered approaches.

  11. A comprehensive review of swarm optimization algorithms.

    Science.gov (United States)

    Ab Wahab, Mohd Nadhir; Nefti-Meziani, Samia; Atyabi, Adham

    2015-01-01

    Many swarm optimization algorithms have been introduced since the early 60's, Evolutionary Programming to the most recent, Grey Wolf Optimization. All of these algorithms have demonstrated their potential to solve many optimization problems. This paper provides an in-depth survey of well-known optimization algorithms. Selected algorithms are briefly explained and compared with each other comprehensively through experiments conducted using thirty well-known benchmark functions. Their advantages and disadvantages are also discussed. A number of statistical tests are then carried out to determine the significant performances. The results indicate the overall advantage of Differential Evolution (DE) and is closely followed by Particle Swarm Optimization (PSO), compared with other considered approaches.

  12. Macroscopic definition of distributed swarm morphogenesis

    Science.gov (United States)

    Aznar, Fidel; Pujol, Mar; Rizo, Ramón

    2012-12-01

    In this paper, we present a system that will be able to obtain microscopic assembly behaviours for a robotic swarm to achieve an assembly target (macroscopic model). It will be designed taking into consideration the essential features of a self-assembling system needed to be implemented in a real robotic swarm. This system is composed of a typology of generative languages PD0L, and an algorithm for generating individual rules to be processed by the robots. The assembly process will be performed in a distributed manner, and will be also designed to require minimal communication capabilities between robots. Both the expressive capacities of language and the rule generation algorithm will be demonstrated by evaluating their performance with a core set of test morphologies widely used in self-assembly tasks. Furthermore, we compare the assembly time and the number of messages required between a classic controller (centralised) and our distributed approach.

  13. Thermoregulation and adaptation in honeybee swarms

    Science.gov (United States)

    Ocko, Samuel; Mahadevan, L.

    2012-11-01

    Swarming is an essential part of honeybee behavior, wherein thousands of bees cling onto each other to form a dense cluster that is exposed to the environment for up to several days. This cluster has the ability to maintain its core temperature actively without a central controller raising the question of mechanism. Inspired by experimental observations, we treat the swarm cluster as an active porous structure with a variable metabolism that needs to adjust to outside conditions to control heat loss and regulate its core temperature. Using a continuum model that takes the form of a set of advection-diffusion equations for heat transfer in a mobile porous medium, we show that effective thermoregulation can result from the collective behavior of individual bees in the cluster.

  14. Countering A2/AD with Swarming

    Science.gov (United States)

    2016-04-01

    inferior force can deny or delay a decisive engagement through time or attrition ultimately changing the political calculus.6 Using chess as an...deterrence in a non-nuclear scenario. Conventional deterrence is largely based on perceptions . Creating the wrong perception can cause conventional...necessarily defeat an enemy’s A2/AD strategy. Rather, the swarm needs to only create a perception that the U.S. is willing to fight within the A2/AD

  15. Two Invariants of Human-Swarm Interaction

    Science.gov (United States)

    2018-01-16

    often have formal attractors such as nest selection (Nevai & Passino, 2010) and many of the collective animal behaviors described by Sumpter (Sumpter...can be used to design swarm systems with desired fan-outs and workloads in mind . The key reason this is possible is that we are managing attractors...E., Giardina, I., et al. (2008). Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a

  16. Basic investigation of particle swarm optimization performance in a reduced scale PWR passive safety system design

    Energy Technology Data Exchange (ETDEWEB)

    Cunha, Joao J. da [Eletronuclear Eletrobras Termonuclear, Gerencia de Analise de Seguranca Nuclear, Rua da Candelaria, 65, 7o andar. Centro, Rio de Janeiro 20091-906 (Brazil); Lapa, Celso Marcelo F., E-mail: lapa@ien.gov.b [Instituto de Engenharia Nuclear, Divisao de Reatores/PPGIEN, P.O. Box 68550, Rua Helio de Almeida 75 Cidade Universitaria, Ilha do Fundao, Rio de Janeiro 21941-972 (Brazil); Instituto Nacional de Ciencia e Tecnologia de Reatores Nucleares Inovadores (Brazil); Alvim, Antonio Carlos M. [Universidade Federal do Rio de Janeiro, COPPE/Nuclear, P.O. Box 68509, Cidade Universitaria, Ilha do Fundao s/n, Rio de Janeiro 21945-970 (Brazil); Instituto Nacional de Ciencia e Tecnologia de Reatores Nucleares Inovadores (Brazil); Lima, Carlos A. Souza [Instituto de Engenharia Nuclear, Divisao de Reatores/PPGIEN, P.O. Box 68550, Rua Helio de Almeida 75 Cidade Universitaria, Ilha do Fundao, Rio de Janeiro 21941-972 (Brazil); Instituto Politecnico, Universidade do Estado do Rio de Janeiro, Pos-Graduacao em Modelagem Computacional, Rua Alberto Rangel, s/n, Vila Nova, Nova Friburgo 28630-050 (Brazil); Pereira, Claudio Marcio do N.A. [Instituto de Engenharia Nuclear, Divisao de Reatores/PPGIEN, P.O. Box 68550, Rua Helio de Almeida 75 Cidade Universitaria, Ilha do Fundao, Rio de Janeiro 21941-972 (Brazil); Instituto Nacional de Ciencia e Tecnologia de Reatores Nucleares Inovadores (Brazil)

    2010-03-15

    This work presents a methodology to investigate the viability of using particle swarm optimization technique to obtain the best combination of physical and operational parameters that lead to the best adjusted dimensionless groups, calculated by similarity laws, that are able to simulate the most relevant physical phenomena in single-phase flow under natural circulation and to offer an appropriate alternative reduced scale design for reactor primary loops with this flow characteristics. A PWR reactor core, under natural circulation, based on LOFT test facility, was used as the case study. The particle swarm optimization technique was applied to a problem with these thermo-hydraulics conditions and results demonstrated the viability and adequacy of the method to design similar systems with these characteristics.

  17. A method to derive maps of ionospheric conductances, currents, and convection from the Swarm multisatellite mission

    DEFF Research Database (Denmark)

    Amm, O.; Vanhamäki, H.; Kauristie, K.

    2015-01-01

    The European Space Agency (ESA) Swarm spacecraft mission is the first multisatellite ionospheric mission with two low-orbiting spacecraft that are flying in parallel at a distance of ~100–140 km, thus allowing derivation of spatial gradients of ionospheric parameters not only along the orbits...... but also in the direction perpendicular to them. A third satellite with a higher orbit regularly crosses the paths of the lower spacecraft. Using the Swarmmagnetic and electric field instruments,we present a novel technique that allows derivation of two-dimensional (2-D) maps of ionospheric conductances......, currents, and electric field in the area between the trajectories of the two lower spacecraft, and even to some extent outside of it. This technique is based on Spherical Elementary Current Systems. We present test cases of modeled situations from which we calculate virtual Swarm data and show...

  18. POLICE OFFICE MODEL IMPROVEMENT FOR SECURITY OF SWARM ROBOTIC SYSTEMS

    OpenAIRE

    I. A. Zikratov; A. V. Gurtov; T. V. Zikratova; Kozlova, E. V.

    2014-01-01

    This paper focuses on aspects of information security for group of mobile robotic systems with swarm intellect. The ways for hidden attacks realization by the opposing party on swarm algorithm are discussed. We have fulfilled numerical modeling of potentially destructive information influence on the ant shortest path algorithm. We have demonstrated the consequences of attacks on the ant algorithm with different concentration in a swarm of subversive robots. Approaches are suggested for inform...

  19. INHIBITION OF SWARMING BY UREA AND ITS DIAGNOSTIC ...

    African Journals Online (AJOL)

    The anti-swarming property of urea and effects on antibiotic susceptibility among 52 uropathogenic Proteus strains from Lagos, Nigeria were investigated. Urea caused a reduction in swarming and number of swarmed cells at 0.5% (n = 42, DOCZ = 15.5mm), 0.75% (n= 24, DOCZ = 10.7mm), 1% (n = 17, DOCZ = 3.4mm) and ...

  20. A New Hybrid BFOA-PSO Optimization Technique for Decoupling and Robust Control of Two-Coupled Distillation Column Process.

    Science.gov (United States)

    Abdelkarim, Noha; Mohamed, Amr E; El-Garhy, Ahmed M; Dorrah, Hassen T

    2016-01-01

    The two-coupled distillation column process is a physically complicated system in many aspects. Specifically, the nested interrelationship between system inputs and outputs constitutes one of the significant challenges in system control design. Mostly, such a process is to be decoupled into several input/output pairings (loops), so that a single controller can be assigned for each loop. In the frame of this research, the Brain Emotional Learning Based Intelligent Controller (BELBIC) forms the control structure for each decoupled loop. The paper's main objective is to develop a parameterization technique for decoupling and control schemes, which ensures robust control behavior. In this regard, the novel optimization technique Bacterial Swarm Optimization (BSO) is utilized for the minimization of summation of the integral time-weighted squared errors (ITSEs) for all control loops. This optimization technique constitutes a hybrid between two techniques, which are the Particle Swarm and Bacterial Foraging algorithms. According to the simulation results, this hybridized technique ensures low mathematical burdens and high decoupling and control accuracy. Moreover, the behavior analysis of the proposed BELBIC shows a remarkable improvement in the time domain behavior and robustness over the conventional PID controller.

  1. A New Hybrid BFOA-PSO Optimization Technique for Decoupling and Robust Control of Two-Coupled Distillation Column Process

    Directory of Open Access Journals (Sweden)

    Noha Abdelkarim

    2016-01-01

    Full Text Available The two-coupled distillation column process is a physically complicated system in many aspects. Specifically, the nested interrelationship between system inputs and outputs constitutes one of the significant challenges in system control design. Mostly, such a process is to be decoupled into several input/output pairings (loops, so that a single controller can be assigned for each loop. In the frame of this research, the Brain Emotional Learning Based Intelligent Controller (BELBIC forms the control structure for each decoupled loop. The paper’s main objective is to develop a parameterization technique for decoupling and control schemes, which ensures robust control behavior. In this regard, the novel optimization technique Bacterial Swarm Optimization (BSO is utilized for the minimization of summation of the integral time-weighted squared errors (ITSEs for all control loops. This optimization technique constitutes a hybrid between two techniques, which are the Particle Swarm and Bacterial Foraging algorithms. According to the simulation results, this hybridized technique ensures low mathematical burdens and high decoupling and control accuracy. Moreover, the behavior analysis of the proposed BELBIC shows a remarkable improvement in the time domain behavior and robustness over the conventional PID controller.

  2. A New Hybrid BFOA-PSO Optimization Technique for Decoupling and Robust Control of Two-Coupled Distillation Column Process

    Science.gov (United States)

    Mohamed, Amr E.; Dorrah, Hassen T.

    2016-01-01

    The two-coupled distillation column process is a physically complicated system in many aspects. Specifically, the nested interrelationship between system inputs and outputs constitutes one of the significant challenges in system control design. Mostly, such a process is to be decoupled into several input/output pairings (loops), so that a single controller can be assigned for each loop. In the frame of this research, the Brain Emotional Learning Based Intelligent Controller (BELBIC) forms the control structure for each decoupled loop. The paper's main objective is to develop a parameterization technique for decoupling and control schemes, which ensures robust control behavior. In this regard, the novel optimization technique Bacterial Swarm Optimization (BSO) is utilized for the minimization of summation of the integral time-weighted squared errors (ITSEs) for all control loops. This optimization technique constitutes a hybrid between two techniques, which are the Particle Swarm and Bacterial Foraging algorithms. According to the simulation results, this hybridized technique ensures low mathematical burdens and high decoupling and control accuracy. Moreover, the behavior analysis of the proposed BELBIC shows a remarkable improvement in the time domain behavior and robustness over the conventional PID controller. PMID:27807444

  3. Foraging behavior analysis of swarm robotics system

    Directory of Open Access Journals (Sweden)

    Sakthivelmurugan E.

    2018-01-01

    Full Text Available Swarm robotics is a number of small robots that are synchronically works together to accomplish a given task. Swarm robotics faces many problems in performing a given task. The problems are pattern formation, aggregation, Chain formation, self-assembly, coordinated movement, hole avoidance, foraging and self-deployment. Foraging is most essential part in swarm robotics. Foraging is the task to discover the item and get back into the shell. The researchers conducted foraging experiments with random-movement of robots and they have end up with unique solutions. Most of the researchers have conducted experiments using the circular arena. The shell is placed at the centre of the arena and environment boundary is well known. In this study, an attempt is made to different strategic movements like straight line approach, parallel line approach, divider approach, expanding square approach, and parallel sweep approach. All these approaches are to be simulated by using player/stage open-source simulation software based on C and C++ programming language in Linux operating system. Finally statistical comparison will be done with task completion time of all these strategies using ANOVA to identify the significant searching strategy.

  4. Hybrid intelligent engineering systems

    CERN Document Server

    Jain, L C; Adelaide, Australia University of

    1997-01-01

    This book on hybrid intelligent engineering systems is unique, in the sense that it presents the integration of expert systems, neural networks, fuzzy systems, genetic algorithms, and chaos engineering. It shows that these new techniques enhance the capabilities of one another. A number of hybrid systems for solving engineering problems are presented.

  5. A Swarm Optimization Genetic Algorithm Based on Quantum-Behaved Particle Swarm Optimization.

    Science.gov (United States)

    Sun, Tao; Xu, Ming-Hai

    2017-01-01

    Quantum-behaved particle swarm optimization (QPSO) algorithm is a variant of the traditional particle swarm optimization (PSO). The QPSO that was originally developed for continuous search spaces outperforms the traditional PSO in search ability. This paper analyzes the main factors that impact the search ability of QPSO and converts the particle movement formula to the mutation condition by introducing the rejection region, thus proposing a new binary algorithm, named swarm optimization genetic algorithm (SOGA), because it is more like genetic algorithm (GA) than PSO in form. SOGA has crossover and mutation operator as GA but does not need to set the crossover and mutation probability, so it has fewer parameters to control. The proposed algorithm was tested with several nonlinear high-dimension functions in the binary search space, and the results were compared with those from BPSO, BQPSO, and GA. The experimental results show that SOGA is distinctly superior to the other three algorithms in terms of solution accuracy and convergence.

  6. Cells, Agents, and Support Vectors in Interaction - Modeling Urban Sprawl based on Machine Learning and Artificial Intelligence Techniques in a Post-Industrial Region

    Science.gov (United States)

    Rienow, A.; Menz, G.

    2015-12-01

    Since the beginning of the millennium, artificial intelligence techniques as cellular automata (CA) and multi-agent systems (MAS) have been incorporated into land-system simulations to address the complex challenges of transitions in urban areas as open, dynamic systems. The study presents a hybrid modeling approach for modeling the two antagonistic processes of urban sprawl and urban decline at once. The simulation power of support vector machines (SVM), cellular automata (CA) and multi-agent systems (MAS) are integrated into one modeling framework and applied to the largest agglomeration of Central Europe: the Ruhr. A modified version of SLEUTH (short for Slope, Land-use, Exclusion, Urban, Transport, and Hillshade) functions as the CA component. SLEUTH makes use of historic urban land-use data sets and growth coefficients for the purpose of modeling physical urban expansion. The machine learning algorithm of SVM is applied in order to enhance SLEUTH. Thus, the stochastic variability of the CA is reduced and information about the human and ecological forces driving the local suitability of urban sprawl is incorporated. Subsequently, the supported CA is coupled with the MAS ReHoSh (Residential Mobility and the Housing Market of Shrinking City Systems). The MAS models population patterns, housing prices, and housing demand in shrinking regions based on interactions between household and city agents. Semi-explicit urban weights are introduced as a possibility of modeling from and to the pixel simultaneously. Three scenarios of changing housing preferences reveal the urban development of the region in terms of quantity and location. They reflect the dissemination of sustainable thinking among stakeholders versus the steady dream of owning a house in sub- and exurban areas. Additionally, the outcomes are transferred into a digital petri dish reflecting a synthetic environment with perfect conditions of growth. Hence, the generic growth elements affecting the future

  7. Intelligent Design

    DEFF Research Database (Denmark)

    Hjorth, Poul G.

    2005-01-01

    Forestillingen om at naturen er designet af en guddommelig 'intelligens' er et smukt filosofisk princip. Teorier om Intelligent Design som en naturvidenskabeligt baseret teori er derimod helt forfærdelig.......Forestillingen om at naturen er designet af en guddommelig 'intelligens' er et smukt filosofisk princip. Teorier om Intelligent Design som en naturvidenskabeligt baseret teori er derimod helt forfærdelig....

  8. Illusory Intelligences?

    Science.gov (United States)

    White, John

    2008-01-01

    Howard Gardner's theory of Multiple Intelligences has had a huge influence on school education. But its credentials lack justification, as the first section of this paper shows via a detailed philosophical analysis of how the intelligences are identified. If we want to make sense of the theory, we need to turn from a philosophical to a historical…

  9. Collective motion of a class of social foraging swarms

    Energy Technology Data Exchange (ETDEWEB)

    Liu Bo [Intelligent Control Laboratory, Center for Systems and Control, Department of Industrial Engineering and Management, College of Engineering, Peking University, Beijing 100871 (China)], E-mail: boliu@mech.pku.edu.cn; Chu Tianguang [Intelligent Control Laboratory, Center for Systems and Control, Department of Industrial Engineering and Management, College of Engineering, Peking University, Beijing 100871 (China)], E-mail: chutg@pku.edu.cn; Wang Long; Wang Zhanfeng [Intelligent Control Laboratory, Center for Systems and Control, Department of Industrial Engineering and Management, College of Engineering, Peking University, Beijing 100871 (China)

    2008-10-15

    This paper considers a class of social foraging swarms with a nutrient profile (or an attractant/repellent) and an attraction-repulsion coupling function, which is chosen to guarantee collision avoidance between individuals. The paper also studies non-identical interaction ability or efficiency among different swarm individuals for different profiles. The swarm behavior is a result of a balance between inter-individual interplays as well as the interplays of the swarm individuals (agents) with their environment. It is proved that the individuals of a quasi-reciprocal swarm will aggregate and eventually form a cohesive cluster of finite size for different profiles. It is also shown that the swarm system is completely stable, that is, every solution converges to the set of equilibrium points of the system. Moreover, all the swarm individuals will converge to more favorable areas of the profile under certain conditions. For general non-reciprocal swarms, numerical simulations show that more complex self-organized rotation may occur in the swarms.

  10. Can hydroseismicity explain recurring earthquake swarms in NW-Bohemia?

    Science.gov (United States)

    Heinicke, Jens; Woith, Heiko; Alexandrakis, Catherine; Buske, Stefan; Telesca, Luciano

    2018-01-01

    Fluid driven seismicity has been observed worldwide. The occurrence of intraplate seismicity triggered by pore pressure perturbations is a widely accepted process. Past analysis of earthquake swarms in the NW-Bohemia/Vogtland region provided evidence for the diffusion of pore pressure fronts during the migration of earthquakes within each swarm. Here, we test the hypothesis whether the diffusion of hydraulically induced pore pressure perturbations from the surface to the hypocentral depth could be a valid trigger mechanism. We test this hypothesis for the earthquake swarms in the Nový Kostel focal zone based on the analysis of 121 earthquake swarms and microswarms which occurred between 1992 and 2016.

  11. Swarming behaviour and mass occurrences in the world's largest ...

    African Journals Online (AJOL)

    millipede species, Zoosphaerium neptunus, on Madagascar and its implication for conservation efforts (Diplopoda: Sphaerotheriida) ... Madagascar Conservation & Development ... KEY WORDS: Swarming behaviour, millipede, island gigantism.

  12. Power Enhancement of Weightlifters during Snatch through Reducing Torque on Joints by Particle Swarm Optimization

    OpenAIRE

    Firooz Salaami; Nima Jamshidi; Mostafa Rostami; Siamak Najarian

    2008-01-01

    In this research, an athlete's body on sagittal plane in tension phase of snatch weightlifting has been modeled in two dimensions for calculating the generated torques in joints. The error back propagation multi-layer perceptrons has been used for modeling the torque through changing the angular velocity, angular acceleration and absolute angle of each segment. Finally, the torque in joints has been minimized by particle swarm optimization technique and the power of athlete has been maximized...

  13. Characterization and Modeling of Insect Swarms Using tools from Fluid Dynamics

    Science.gov (United States)

    2016-09-01

    quantitatively measuring the flight trajectories of swarming insects and to use the resulting data to evaluate currently used models of collective...for quantitatively measuring the flight trajectories of swarming insects and to use the resulting data to evaluate currently used models of...exception was the introduction of a ground-based “swarm marker” to encourage swarm nucleation and to place the swarm in a convenient location. Once swarms

  14. Multi-objective based on parallel vector evaluated particle swarm optimization for optimal steady-state performance of power systems

    DEFF Research Database (Denmark)

    Vlachogiannis, Ioannis (John); Lee, K Y

    2009-01-01

    In this paper the state-of-the-art extended particle swarm optimization (PSO) methods for solving multi-objective optimization problems are represented. We emphasize in those, the co-evolution technique of the parallel vector evaluated PSO (VEPSO), analysed and applied in a multi-objective problem...

  15. Improved particle swarm optimization with a collective local unimodal search for continuous optimization problems.

    Science.gov (United States)

    Arasomwan, Martins Akugbe; Adewumi, Aderemi Oluyinka

    2014-01-01

    A new local search technique is proposed and used to improve the performance of particle swarm optimization algorithms by addressing the problem of premature convergence. In the proposed local search technique, a potential particle position in the solution search space is collectively constructed by a number of randomly selected particles in the swarm. The number of times the selection is made varies with the dimension of the optimization problem and each selected particle donates the value in the location of its randomly selected dimension from its personal best. After constructing the potential particle position, some local search is done around its neighbourhood in comparison with the current swarm global best position. It is then used to replace the global best particle position if it is found to be better; otherwise no replacement is made. Using some well-studied benchmark problems with low and high dimensions, numerical simulations were used to validate the performance of the improved algorithms. Comparisons were made with four different PSO variants, two of the variants implement different local search technique while the other two do not. Results show that the improved algorithms could obtain better quality solution while demonstrating better convergence velocity and precision, stability, robustness, and global-local search ability than the competing variants.

  16. Improved Particle Swarm Optimization with a Collective Local Unimodal Search for Continuous Optimization Problems

    Directory of Open Access Journals (Sweden)

    Martins Akugbe Arasomwan

    2014-01-01

    Full Text Available A new local search technique is proposed and used to improve the performance of particle swarm optimization algorithms by addressing the problem of premature convergence. In the proposed local search technique, a potential particle position in the solution search space is collectively constructed by a number of randomly selected particles in the swarm. The number of times the selection is made varies with the dimension of the optimization problem and each selected particle donates the value in the location of its randomly selected dimension from its personal best. After constructing the potential particle position, some local search is done around its neighbourhood in comparison with the current swarm global best position. It is then used to replace the global best particle position if it is found to be better; otherwise no replacement is made. Using some well-studied benchmark problems with low and high dimensions, numerical simulations were used to validate the performance of the improved algorithms. Comparisons were made with four different PSO variants, two of the variants implement different local search technique while the other two do not. Results show that the improved algorithms could obtain better quality solution while demonstrating better convergence velocity and precision, stability, robustness, and global-local search ability than the competing variants.

  17. Different types of maximum power point tracking techniques for renewable energy systems: A survey

    Science.gov (United States)

    Khan, Mohammad Junaid; Shukla, Praveen; Mustafa, Rashid; Chatterji, S.; Mathew, Lini

    2016-03-01

    Global demand for electricity is increasing while production of energy from fossil fuels is declining and therefore the obvious choice of the clean energy source that is abundant and could provide security for development future is energy from the sun. In this paper, the characteristic of the supply voltage of the photovoltaic generator is nonlinear and exhibits multiple peaks, including many local peaks and a global peak in non-uniform irradiance. To keep global peak, MPPT is the important component of photovoltaic systems. Although many review articles discussed conventional techniques such as P & O, incremental conductance, the correlation ripple control and very few attempts have been made with intelligent MPPT techniques. This document also discusses different algorithms based on fuzzy logic, Ant Colony Optimization, Genetic Algorithm, artificial neural networks, Particle Swarm Optimization Algorithm Firefly, Extremum seeking control method and hybrid methods applied to the monitoring of maximum value of power at point in systems of photovoltaic under changing conditions of irradiance.

  18. Physics-based approach to chemical source localization using mobile robotic swarms

    Science.gov (United States)

    Zarzhitsky, Dimitri

    2008-07-01

    Recently, distributed computation has assumed a dominant role in the fields of artificial intelligence and robotics. To improve system performance, engineers are combining multiple cooperating robots into cohesive collectives called swarms. This thesis illustrates the application of basic principles of physicomimetics, or physics-based design, to swarm robotic systems. Such principles include decentralized control, short-range sensing and low power consumption. We show how the application of these principles to robotic swarms results in highly scalable, robust, and adaptive multi-robot systems. The emergence of these valuable properties can be predicted with the help of well-developed theoretical methods. In this research effort, we have designed and constructed a distributed physicomimetics system for locating sources of airborne chemical plumes. This task, called chemical plume tracing (CPT), is receiving a great deal of attention due to persistent homeland security threats. For this thesis, we have created a novel CPT algorithm called fluxotaxis that is based on theoretical principles of fluid dynamics. Analytically, we show that fluxotaxis combines the essence, as well as the strengths, of the two most popular biologically-inspired CPT methods-- chemotaxis and anemotaxis. The chemotaxis strategy consists of navigating in the direction of the chemical density gradient within the plume, while the anemotaxis approach is based on an upwind traversal of the chemical cloud. Rigorous and extensive experimental evaluations have been performed in simulated chemical plume environments. Using a suite of performance metrics that capture the salient aspects of swarm-specific behavior, we have been able to evaluate and compare the three CPT algorithms. We demonstrate the improved performance of our fluxotaxis approach over both chemotaxis and anemotaxis in these realistic simulation environments, which include obstacles. To test our understanding of CPT on actual hardware

  19. Business and Social Behaviour Intelligence Analysis Using PSO

    Directory of Open Access Journals (Sweden)

    Vinay S Bhaskar

    2014-06-01

    Full Text Available The goal of this paper is to elaborate swarm intelligence for business intelligence decision making and the business rules management improvement. The paper introduces the decision making model which is based on the application of Artificial Neural Networks (ANNs and Particle Swarm Optimization (PSO algorithm. Essentially the business spatial data illustrate the group behaviors. The swarm optimization, which is highly influenced by the behavior of creature, performs in group. The Spatial data is defined as data that is represented by 2D or 3D images. SQL Server supports only 2D images till now. As we know that location is an essential part of any organizational data as well as business data: enterprises maintain customer address lists, own property, ship goods from and to warehouses, manage transport flows among their workforce, and perform many other activities. By means to say a lot of spatial data is used and processed by enterprises, organizations and other bodies in order to make the things more visible and self-descriptive. From the experiments, we found that PSO is can facilitate the intelligence in social and business behaviour

  20. EI Competencies as a Related but Different Characteristic than Intelligence

    OpenAIRE

    Richard Eleftherios Boyatzis; Joan Manuel eBatista-Foguet; Xavier eFernández-i-Marín; Margarida eTruninger

    2015-01-01

    Amid the swarm of debate about emotional intelligence (EI) among academics are claims that cognitive intelligence, or general mental ability (g), is a stronger predictor of life and work outcomes as well as the counter claims that EI is the stronger predictor of life and work outcomes. Nested within the tempest in a teapot are scientific questions as to what the relationship is between g and EI. Using a behavioral approach to EI, we examined the relationship of a parametric measure of g as th...

  1. Particle Swarm Optimization for Adaptive Resource Allocation in Communication Networks

    Directory of Open Access Journals (Sweden)

    Gheitanchi Shahin

    2010-01-01

    Full Text Available A generalized model of particle swarm optimization (PSO technique is proposed as a low complexity method for adaptive centralized and distributed resource allocation in communication networks. The proposed model is applied to adaptive multicarrier cooperative communications (MCCC technique which utilizes the subcarriers in deep fade using a relay node in order to improve the bandwidth efficiency. Centralized PSO, based on virtual particles (VPs, is introduced for single layer and cross-layer subcarrier allocation to improve the bit error rate performance in multipath frequency selective fading channels. In the single layer strategy, the subcarriers are allocated based on the channel gains. In the cross-layer strategy, the subcarriers are allocated based on a joint measure of channel gains and distance provided by the physical layer and network layer to mitigate the effect of path loss. The concept of training particles in distributed PSO is proposed and then is applied for relay node selection. The computational complexity and traffic of the proposed techniques are investigated, and it is shown that using PSO for subcarrier allocation has a lower complexity than the techniques in the literature. Significant reduction in the traffic overhead of PSO is demonstrated when using trained particles in distributed optimizations.

  2. Perceptual Dominant Color Extraction by Multidimensional Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Moncef Gabbouj

    2009-01-01

    Full Text Available Color is the major source of information widely used in image analysis and content-based retrieval. Extracting dominant colors that are prominent in a visual scenery is of utmost importance since the human visual system primarily uses them for perception and similarity judgment. In this paper, we address dominant color extraction as a dynamic clustering problem and use techniques based on Particle Swarm Optimization (PSO for finding optimal (number of dominant colors in a given color space, distance metric and a proper validity index function. The first technique, so-called Multidimensional (MD PSO can seek both positional and dimensional optima. Nevertheless, MD PSO is still susceptible to premature convergence due to lack of divergence. To address this problem we then apply Fractional Global Best Formation (FGBF technique. In order to extract perceptually important colors and to further improve the discrimination factor for a better clustering performance, an efficient color distance metric, which uses a fuzzy model for computing color (dis- similarities over HSV (or HSL color space is proposed. The comparative evaluations against MPEG-7 dominant color descriptor show the superiority of the proposed technique.

  3. Artificial intelligence

    CERN Document Server

    Ennals, J R

    1987-01-01

    Artificial Intelligence: State of the Art Report is a two-part report consisting of the invited papers and the analysis. The editor first gives an introduction to the invited papers before presenting each paper and the analysis, and then concludes with the list of references related to the study. The invited papers explore the various aspects of artificial intelligence. The analysis part assesses the major advances in artificial intelligence and provides a balanced analysis of the state of the art in this field. The Bibliography compiles the most important published material on the subject of

  4. Intelligent playgrounds

    DEFF Research Database (Denmark)

    Larsen, Lasse Juel

    2009-01-01

    This paper examines play, gaming and learning in regard to intelligent playware developed for outdoor use. The key questions are how does these novel artefacts influence the concept of play, gaming and learning. Up until now play and game have been understood as different activities. This paper...... examines if the sharp differentiation between the two can be uphold in regard to intelligent playware for outdoor use. Play and game activities will be analysed and viewed in conjunction with learning contexts. This paper will stipulate that intelligent playware facilitates rapid shifts in contexts...

  5. Recent Advances on Hybrid Intelligent Systems

    CERN Document Server

    Melin, Patricia; Kacprzyk, Janusz

    2013-01-01

    This book presents recent advances on hybrid intelligent systems using soft computing techniques for intelligent control and robotics, pattern recognition, time series prediction and optimization of complex problems. Soft Computing (SC) consists of several intelligent computing paradigms, including fuzzy logic, neural networks, and bio-inspired optimization algorithms, which can be used to produce powerful hybrid intelligent systems. The book is organized in five main parts, which contain groups of papers around a similar subject. The first part consists of papers with the main theme of hybrid intelligent systems for control and robotics, which are basically state of the art papers that propose new models and concepts, which can be the basis for achieving intelligent control and mobile robotics. The second part contains papers with the main theme of hybrid intelligent systems for pattern recognition and time series prediction, which are basically papers using nature-inspired techniques, like evolutionary algo...

  6. Markerless human motion tracking using hierarchical multi-swarm cooperative particle swarm optimization.

    Science.gov (United States)

    Saini, Sanjay; Zakaria, Nordin; Rambli, Dayang Rohaya Awang; Sulaiman, Suziah

    2015-01-01

    The high-dimensional search space involved in markerless full-body articulated human motion tracking from multiple-views video sequences has led to a number of solutions based on metaheuristics, the most recent form of which is Particle Swarm Optimization (PSO). However, the classical PSO suffers from premature convergence and it is trapped easily into local optima, significantly affecting the tracking accuracy. To overcome these drawbacks, we have developed a method for the problem based on Hierarchical Multi-Swarm Cooperative Particle Swarm Optimization (H-MCPSO). The tracking problem is formulated as a non-linear 34-dimensional function optimization problem where the fitness function quantifies the difference between the observed image and a projection of the model configuration. Both the silhouette and edge likelihoods are used in the fitness function. Experiments using Brown and HumanEva-II dataset demonstrated that H-MCPSO performance is better than two leading alternative approaches-Annealed Particle Filter (APF) and Hierarchical Particle Swarm Optimization (HPSO). Further, the proposed tracking method is capable of automatic initialization and self-recovery from temporary tracking failures. Comprehensive experimental results are presented to support the claims.

  7. Markerless human motion tracking using hierarchical multi-swarm cooperative particle swarm optimization.

    Directory of Open Access Journals (Sweden)

    Sanjay Saini

    Full Text Available The high-dimensional search space involved in markerless full-body articulated human motion tracking from multiple-views video sequences has led to a number of solutions based on metaheuristics, the most recent form of which is Particle Swarm Optimization (PSO. However, the classical PSO suffers from premature convergence and it is trapped easily into local optima, significantly affecting the tracking accuracy. To overcome these drawbacks, we have developed a method for the problem based on Hierarchical Multi-Swarm Cooperative Particle Swarm Optimization (H-MCPSO. The tracking problem is formulated as a non-linear 34-dimensional function optimization problem where the fitness function quantifies the difference between the observed image and a projection of the model configuration. Both the silhouette and edge likelihoods are used in the fitness function. Experiments using Brown and HumanEva-II dataset demonstrated that H-MCPSO performance is better than two leading alternative approaches-Annealed Particle Filter (APF and Hierarchical Particle Swarm Optimization (HPSO. Further, the proposed tracking method is capable of automatic initialization and self-recovery from temporary tracking failures. Comprehensive experimental results are presented to support the claims.

  8. Agent-Based Simulation and Analysis of a Defensive UAV Swarm Against an Enemy UAV Swarm

    Science.gov (United States)

    2011-06-01

    energy options” [10]. The research of swarm robotics derives much of its inspiration from natural systems. Social insects are known to coordinate their...Monterey, California 9. CPT. Francisco J. Hederra Direccion de Investigacion , Programas y Desarrollo de la Armada Armada de Chile CHILE 10. CAPT Jeffrey Kline, USN(ret.) Naval Postgraduate School Monterey, California 91

  9. Modeling of Biological Intelligence for SCM System Optimization

    Directory of Open Access Journals (Sweden)

    Shengyong Chen

    2012-01-01

    Full Text Available This article summarizes some methods from biological intelligence for modeling and optimization of supply chain management (SCM systems, including genetic algorithms, evolutionary programming, differential evolution, swarm intelligence, artificial immune, and other biological intelligence related methods. An SCM system is adaptive, dynamic, open self-organizing, which is maintained by flows of information, materials, goods, funds, and energy. Traditional methods for modeling and optimizing complex SCM systems require huge amounts of computing resources, and biological intelligence-based solutions can often provide valuable alternatives for efficiently solving problems. The paper summarizes the recent related methods for the design and optimization of SCM systems, which covers the most widely used genetic algorithms and other evolutionary algorithms.

  10. Modeling of biological intelligence for SCM system optimization.

    Science.gov (United States)

    Chen, Shengyong; Zheng, Yujun; Cattani, Carlo; Wang, Wanliang

    2012-01-01

    This article summarizes some methods from biological intelligence for modeling and optimization of supply chain management (SCM) systems, including genetic algorithms, evolutionary programming, differential evolution, swarm intelligence, artificial immune, and other biological intelligence related methods. An SCM system is adaptive, dynamic, open self-organizing, which is maintained by flows of information, materials, goods, funds, and energy. Traditional methods for modeling and optimizing complex SCM systems require huge amounts of computing resources, and biological intelligence-based solutions can often provide valuable alternatives for efficiently solving problems. The paper summarizes the recent related methods for the design and optimization of SCM systems, which covers the most widely used genetic algorithms and other evolutionary algorithms.

  11. Intelligent Potroom Operation

    Energy Technology Data Exchange (ETDEWEB)

    Jan Berkow; Larry Banta

    2003-07-29

    The Intelligent Potroom Operation project focuses on maximizing the performance of an aluminum smelter by innovating components for an intelligent manufacturing system. The Intelligent Potroom Advisor (IPA) monitors process data to identify reduction cells exhibiting behaviors that require immediate attention. It then advises operational personnel on those heuristic-based actions to bring the cell back to an optimal operating state in order to reduce the duration and frequency of substandard reduction cell performance referred to as ''Off-Peak Modes'' (OPMs). Techniques developed to identify cells exhibiting OPMs include the use of a finite element model-based cell state estimator for defining the cell's current operating state via advanced cell noise analyses. In addition, rule induction was also employed to identify statistically significant complex behaviors that occur prior to OPMs. The intelligent manufacturing system design, concepts and formalisms developed in this project w ere used as a basis for an intelligent manufacturing system design. Future research will incorporate an adaptive component to automate continuous process improvement, a technology platform with the potential to improve process performance in many of the other Industries of the Future applications as well.

  12. Improved cuckoo search with particle swarm optimization for ...

    Indian Academy of Sciences (India)

    Content based image retrieval (CBIR); image compression; partial recurrent neural network (PRNN); particle swarm optimization (PSO); HAARwavelet; Cuckoo Search ... are NP hard, a hybrid Particle Swarm Optimization (PSO) – Cuckoo Search algorithm (CS) is proposed to optimize the learning rate of the neural network.

  13. A new hybrid teaching–learning particle swarm optimization ...

    Indian Academy of Sciences (India)

    This paper proposes a novel hybrid teaching–learning particle swarm optimization (HTLPSO) algorithm, which merges two established nature-inspired algorithms, namely, optimization based on teaching–learning (TLBO) and particle swarm optimization (PSO). The HTLPSO merges the best half of population obtained after ...

  14. Swarming modulatory effects of some amino acids on Proteus ...

    African Journals Online (AJOL)

    Swarming motility, a multicellular behaviour characterized by periodic concentric growth on solid media has severally been reported as a constraint in the clinical investigation of mixed-culture infections involving Proteus and as a requirement for virulence. While media are being formulated to restrain swarming in this ...

  15. Level-2 product generation for the Swarm satellite constellation mission

    DEFF Research Database (Denmark)

    Olsen, Poul Erik Holmdahl; Tøffner-Clausen, Lars; Olsen, Nils

    In order to take advantage of the unique constellation aspect of ESA's Swarm constellation mission, considerably advanced data analysis tools have been developed. The Swarm ESL/SCARF (Satellite Constellation Application and Research Facility), a consortium of several research institutions, derives...

  16. A novel particle swarm optimization based on population category

    Science.gov (United States)

    Wang, Jingying; Qu, Jianhua

    2017-10-01

    This paper raised a novel particle swarm optimization algorithm based on population category. Traditional particle swarm optimization algorithm is easily to trap in local optimum. In order to avoid standard algorithm appearing premature convergence, this novel algorithm use population category strategy to find new directions for particles. At last, computational results show that the new method is effective and has a high-performance.

  17. A persistent homology approach to collective behavior in insect swarms

    Science.gov (United States)

    Sinhuber, Michael; Ouellette, Nicholas T.

    Various animals from birds and fish to insects tend to form aggregates, displaying self-organized collective swarming behavior. Due to their frequent occurrence in nature and their implications for engineered, collective systems, these systems have been investigated and modeled thoroughly for decades. Common approaches range from modeling them with coupled differential equations on the individual level up to continuum approaches. We present an alternative, topology-based approach for describing swarming behavior at the macroscale rather than the microscale. We study laboratory swarms of Chironomus riparius, a flying, non-biting midge. To obtain the time-resolved three-dimensional trajectories of individual insects, we use a multi-camera stereoimaging and particle-tracking setup. To investigate the swarming behavior in a topological sense, we employ a persistent homology approach to identify persisting structures and features in the insect swarm that elude a direct, ensemble-averaging approach. We are able to identify features of sub-clusters in the swarm that show behavior distinct from that of the remaining swarm members. The coexistence of sub-swarms with different features resembles some non-biological systems such as active colloids or even thermodynamic systems.

  18. Proteus mirabilis interkingdom swarming signals attract blow flies

    Science.gov (United States)

    Ma, Qun; Fonseca, Alicia; Liu, Wenqi; Fields, Andrew T; Pimsler, Meaghan L; Spindola, Aline F; Tarone, Aaron M; Crippen, Tawni L; Tomberlin, Jeffery K; Wood, Thomas K

    2012-01-01

    Flies transport specific bacteria with their larvae that provide a wider range of nutrients for those bacteria. Our hypothesis was that this symbiotic interaction may depend on interkingdom signaling. We obtained Proteus mirabilis from the salivary glands of the blow fly Lucilia sericata; this strain swarmed significantly and produced a strong odor that attracts blow flies. To identify the putative interkingdom signals for the bacterium and flies, we reasoned that as swarming is used by this bacterium to cover the food resource and requires bacterial signaling, the same bacterial signals used for swarming may be used to communicate with blow flies. Using transposon mutagenesis, we identified six novel genes for swarming (ureR, fis, hybG, zapB, fadE and PROSTU_03490), then, confirming our hypothesis, we discovered that fly attractants, lactic acid, phenol, NaOH, KOH and ammonia, restore swarming for cells with the swarming mutations. Hence, compounds produced by the bacterium that attract flies also are utilized for swarming. In addition, bacteria with the swarming mutation rfaL attracted fewer blow flies and reduced the number of eggs laid by the flies. Therefore, we have identified several interkingdom signals between P. mirabilis and blow flies. PMID:22237540

  19. Swarming modulatory effects of some amino acids on Proteus ...

    African Journals Online (AJOL)

    Swarming motility, a multicellular behaviour characterized by periodic concentric growth on solid media has severally been reported as a constraint in the clinical ... The effects of 20 amino acids on swarming, extracellular protease activity, cellular RNA level and total protein concentration in 20 clinical Proteus strains from ...

  20. New paleomagnetic results on 2367 Ma Dharwar giant dyke swarm ...

    Indian Academy of Sciences (India)

    N Ramesh Babu

    2018-02-14

    Feb 14, 2018 ... 2012). This direction is considered as primary magnetization of 2082 Ma radiating dyke swarm of. EDC (Kumar et al. 2015). Hence, we infer here that the source for component (B) is possibly the recently reported 2080 Ma spectacular radiating dyke swarm, which radiates beneath the Cudda- pah basin with ...