WorldWideScience

Sample records for swamp watershed bladen

  1. Hydrography - HYDROGRAPHY_HIGHRES_WATERBODYDISCRETE_NHD_USGS: Lakes, Ponds, Reservoirs, Swamps, and Marshes in Watersheds of Indiana (U. S. Geological Survey, 1:24,000, Polygon Shapefile)

    Data.gov (United States)

    NSGIC State | GIS Inventory — HYDROGRAPHY_HIGHRES_WATERBODYDISCRETE_NHD_USGS.SHP is a polygon shapefile that contains features of lakes, ponds, reservoirs, swamps and marshes in watersheds in and...

  2. Final Work Plan: Phase I Investigation at Bladen, Nebraska

    Energy Technology Data Exchange (ETDEWEB)

    LaFreniere, Lorraine M. [Argonne National Lab. (ANL), Argonne, IL (United States). Environmental Science Division. Applied Geosciences and Environmental Management Section; Yan, Eugene [Argonne National Lab. (ANL), Argonne, IL (United States). Environmental Science Division

    2014-07-01

    The village of Bladen is a town of population approximately 237 in the northwest part of Webster County, Nebraska, 30 mi southwest of Hastings and 140 mi southwest of Lincoln, Nebraska. In 2000, the fumigant-related compound carbon tetrachloride was detected in public water supply well PWS 68-1, at a trace level. Low-level contamination, below the maximum contamination level (MCL) of 5.0 μg/L, has been detected intermittently in well PWS 68-1 since 2000, including in the last sample taken in July 2013. In 2006, the village installed a new well, PWS 2006-1, that remains free of contamination. Because the carbon tetrachloride found in well PWS 68-1 might be linked to historical use of fumigants containing carbon tetrachloride at grain storage facilities, including its former facility in Bladen, the CCC/USDA is proposing an investigation to (1) delineate the source and extent of the carbon tetrachloride contamination potentially associated with its former facility, (2) characterize pathways and controlling factors for contaminant migration in the subsurface, and (3) establish a basis for estimating potential health and environmental risks. The work will be performed in accordance with the Intergovernmental Agreement established between the NDEQ and the Farm Service Agency of the USDA. The site investigation at Bladen will be implemented in phases, so that data collected and interpretations developed during each phase can be evaluated to determine if a subsequent phase of investigation is warranted and, if warranted, to provide effective guidance for the subsequent investigation activities. This Work Plan identifies the specific technical objectives and defines the scope of work proposed for the Phase I investigation by compiling and evaluating historical data. The proposed investigation activities will be performed on behalf of the CCC/USDA by the Environmental Science Division of Argonne National Laboratory. Argonne is a nonprofit, multidisciplinary research

  3. Yellow perch larval survival in the Zekiah Swamp watershed (Wicomico River, Maryland) relative to the potential effects of a coal ash storage facility

    International Nuclear Information System (INIS)

    Burton, W.H.; Pinkney, A.E.

    1994-01-01

    A coordinated program of in situ and laboratory bioassays supported by water quality analyses was used to evaluate the potential effect of a coal ash storage facility on a yellow perch (Perca flavescens) spawning area. The facility is located in the Zekiah Swamp watershed, a tributary of the Wicomico River, MD. In situ bioassays were conducted in Zekiah Swamp Run and reference locations in 1989 and 1990. Larval mortality was high in non-tidal areas of Zekiah Swamp Run, both at a site upstream and beyond the influence of the facility, and at a site downstream of the facility. Mortality was significantly less at a nearby reference stream and at a station in the tidal area of Zekiah Swamp Run. Analysis of water samples for metals (including inorganic monomeric aluminum), organic contaminants, and pH, as well as measurements of stream flow, did not identify a specific cause for the mortality. The field and laboratory bioassays showed that, although leachate from the ash facility contributed to local contamination of ground water, the facility does not appear to be responsible for the poor survival of larval yellow perch. 16 refs., 4 figs., 6 tabs

  4. A new species of Cinnamomum (Lauraceae) from the Bladen Nature Reserve, southern Belize.

    Science.gov (United States)

    Brewer, Steven W; Stott, Gail L

    2017-01-01

    A new species in the Lauraceae, Cinnamomum bladenense S.W. Brewer & G.L. Stott, is described from the Bladen Nature Reserve in southern Belize. The new species is similar to Cinnamomum brenesii (Standl.) Kosterm., from which it differs by its much smaller, narrowly-campanulate flowers, its inner tepals glabrous abaxially, its shorter petioles, its minutely sericeous younger twigs, and its abaxial leaf surfaces not glaucous and with prominent secondary venation. A description, preliminary conservation assessment, and photographs of the species as well as a key to and notes on the Cinnamomum of Belize are provided.

  5. Boron accumulation and tolerance of hybrid poplars grown on a B-laden mixed paper mill waste landfill

    International Nuclear Information System (INIS)

    Rees, Rainer; Robinson, Brett H.; Rog, Christopher J.; Papritz, Andreas; Schulin, Rainer

    2013-01-01

    Paper mill wastes are a mixture of by-products from pulp production and on-site energy production, consisting of paper mill sludge, ash and cinders. Landfilling of these highly boron (B) and heavy metal laden waste products carries environmental risks. Poplars have been successfully employed in the phytomanagement and hydraulic control of B contaminated sites. Here, we assess the performance of hybrid poplars on a paper-mill waste landfill, investigate the accumulation of B by the trees and explore the relationship between local-scale root growth and substrate properties. Leaf and root tissue samples were collected on three plots and analyzed for their chemical properties and root traits. Additionally, we sampled four soil cores in the vicinity of each of the trees and determined chemical and physical properties. Using a principal component analysis followed by a cluster analysis, we identified three substrate types. This method delineated the soil effects on tree survival and growth, although correlations with individual soil element concentrations were weak. Despite signs of B toxicity in some leaves, B was not the key limiting factor for poplar growth. Instead, Ca deficiency caused by a Mg:Ca imbalance was the primary reason for the poor performance of some trees. Root growth was not limited by toxicity effects of soil contaminants. Our results show that hybrid poplars perform well under the harsh growing conditions on a multi-contaminated, B-laden substrate in a hemiboreal climate. Exploiting the differences in the performance of the four clones in relation to the soil types, could increase the success of revegetation on this and other landfills. - Highlights: ► We studied four hybrid poplar clones grown on a B-laden paper mill waste landfill. ► Poplar growth, trace element accumulation and root traits were investigated. ► Survival and growth were comparable to commercial plantations. ► Root growth was nearly unaffected by the contaminants. ► Adaption

  6. Boron accumulation and tolerance of hybrid poplars grown on a B-laden mixed paper mill waste landfill

    Energy Technology Data Exchange (ETDEWEB)

    Rees, Rainer, E-mail: rainer.rees@env.ethz.ch [Institute of Terrestrial Ecosystems, ETH Zürich, Universitätsstrasse 16, 8092 Zürich (Switzerland); Robinson, Brett H., E-mail: Brett.Robinson@lincoln.ac.nz [Soil and Physical Sciences, Burns 222, P. O. Box 84, Lincoln University, Lincoln 7647, Christchurch (New Zealand); Rog, Christopher J., E-mail: cjrog@sand-creek.com [Sand Creek Consultants, Inc., P.O. Box 1512, 16 Randall Ave., Rhinelander, WI 54501 (United States); Papritz, Andreas, E-mail: andreas.papritz@env.ethz.ch [Institute of Terrestrial Ecosystems, ETH Zürich, Universitätsstrasse 16, 8092 Zürich (Switzerland); Schulin, Rainer, E-mail: rainer.schulin@env.ethz.ch [Institute of Terrestrial Ecosystems, ETH Zürich, Universitätsstrasse 16, 8092 Zürich (Switzerland)

    2013-03-01

    Paper mill wastes are a mixture of by-products from pulp production and on-site energy production, consisting of paper mill sludge, ash and cinders. Landfilling of these highly boron (B) and heavy metal laden waste products carries environmental risks. Poplars have been successfully employed in the phytomanagement and hydraulic control of B contaminated sites. Here, we assess the performance of hybrid poplars on a paper-mill waste landfill, investigate the accumulation of B by the trees and explore the relationship between local-scale root growth and substrate properties. Leaf and root tissue samples were collected on three plots and analyzed for their chemical properties and root traits. Additionally, we sampled four soil cores in the vicinity of each of the trees and determined chemical and physical properties. Using a principal component analysis followed by a cluster analysis, we identified three substrate types. This method delineated the soil effects on tree survival and growth, although correlations with individual soil element concentrations were weak. Despite signs of B toxicity in some leaves, B was not the key limiting factor for poplar growth. Instead, Ca deficiency caused by a Mg:Ca imbalance was the primary reason for the poor performance of some trees. Root growth was not limited by toxicity effects of soil contaminants. Our results show that hybrid poplars perform well under the harsh growing conditions on a multi-contaminated, B-laden substrate in a hemiboreal climate. Exploiting the differences in the performance of the four clones in relation to the soil types, could increase the success of revegetation on this and other landfills. - Highlights: ► We studied four hybrid poplar clones grown on a B-laden paper mill waste landfill. ► Poplar growth, trace element accumulation and root traits were investigated. ► Survival and growth were comparable to commercial plantations. ► Root growth was nearly unaffected by the contaminants. ► Adaption

  7. Nitrogen Dynamics Along a Headwater Stream Draining a Fen, Swamp, and Marsh in a Fractured Dolomite Watershed

    Science.gov (United States)

    Duval, T. P.; Waddington, J. M.

    2009-05-01

    Stream-wetland interaction has been shown to have a significant effect on nutrient cycling and downstream water quality. Additionally, connection to regional groundwater systems can dilute or enrich stream water with a number of dissolved constituents. This study demonstrates the resultant downstream change in dissolved nitrogen species as a hardwater stream emerges from a calcareous aquifer and traverses a calcareous fen, a cedar swamp, and a cattail marsh over two growing seasons, a very dry 2006 and a very wet 2007. Upon emergence at a number of groundwater seeps, the water contained appreciable nitrate levels averaging 2.72±0.42 mg NO3-N L-1, minimal organic nitrogen, and ammonium below detectable levels. Through the gently sloping calcareous fen, with a stream residence time of ~ 5 hours, NO3-N concentration decreases of 0.35 mg L-1 were observed. Concomitantly, stream recharge into the dolomite bedrock depressed stream discharge values significantly, further removing nitrate from the stream system. This resulted in the fen-bedrock system acting as an estimated net sink of 432 kg of NO3-N in the early summer of 2007, for example. In contrast, the hydrological-biogeochemical systems became decoupled through the swamp during the same period, where concentrations increased from 2.58±0.34 mg L-1 entering the swamp to 2.65±0.58 mg L-1 exiting, but streamflow decreased in general by 5 L s- 1. This resulted in the swamp, with its large depression storage, acting as a small net sink of nitrate (75 kg through the early summer), which would not be detected simply from concentration changes. The concentration-discharge relation realigned through the marsh, where significant groundwater entered the wetland, increasing both concentration and discharge, yielding a small export of 93 kg over the same time period. A series of tracer injections in each wetland type will be presented to compare the streamflow- concentration patterns with the measured nutrient spiralling

  8. Characteristics of mangrove swamps managed for mosquito control in eastern Florida, USA

    Science.gov (United States)

    Middleton, B.; Devlin, D.; Proffitt, E.; McKee, K.; Cretini, K.F.

    2008-01-01

    Manipulations of the vegetation and hydrology of wetlands for mosquito control are common worldwide, but these modifications may affect vital ecosystem processes. To control mosquitoes in mangrove swamps in eastern Florida, managers have used rotational impoundment management (RIM) as an alternative to the worldwide practice of mosquito ditching. Levees surround RIM swamps, and water is pumped into the impoundment during the summer, a season when natural swamps have low water levels. In the New World, these mosquito-managed swamps resemble the mixed basin type of mangrove swamp (based on PCA analysis). An assessment was made of RIM, natural (control), and breached-RIM (restored) swamps in eastern Florida to compare their structural complexities, soil development, and resistance to invasion. Regarding structural complexity, dominant species composition differed between these swamps; the red mangrove Rhizophora mangle occurred at a higher relative density in RIM and breached-RIM swamps, and the black mangrove Avicennia germinans had a higher relative density in natural swamps. Tree density and canopy cover were higher and tree height lower in RIM swamps than in natural and breached-RIM swamps. Soil organic matter in RIM swamps was twice that in natural or breached-RIM swamps. RIM swamps had a lower resistance to invasion by the Brazilian pepper tree Schinus terebinthifolius, which is likely attributable to the lower porewater salinity in RIM swamps. These characteristics may reflect differences in important ecosystem processes (primary production, trophic structure, nutrient cycling, decomposition). Comparative assessments of managed wetlands are vital for land managers, so that they can make informed decisions compatible with conservation objectives. ?? Inter-Research 2008.

  9. Utilization of Swamp Forages from South Kalimantan on Local Goat Performances

    Directory of Open Access Journals (Sweden)

    T. Rostini

    2014-04-01

    Full Text Available Forages in swamp area consist of grass and legumes that have good productivity and nutrient quality. This research was aimed to evaluate the potency of swamp forage on digestibility and performance of goats. There were 24 local male goats aged 10-12 months with initial body weight of 13.10±1.55 kg, allocated into 6 treatments. Those were control (R0: 60% grass and 40% legumes; (R1: 60% swamp forages and 40% concentrate; (R2: 100% swamp forages; (R3: 100% swamp forage hay; (R4: 100% swamp forage silage; (R5: 100% haylage swamp forages. Results showed that silage treatment significantly increased (P<0.05 consumption and digestibility. Swamp forages could be utilized well by preservation (silage, hay, and haylage. Ensilage of swamp forages increased protein content from 13.72% to 14.02%, protein intake (74.62 g/d, dry matter intake (532.11 g/d, nitrogen free extract intake (257.39 g/d, with total body weight gain (3.5 kg in eight weeks and average daily gain (62.60 g/d. It is concluded that ensilage of swamp forages (R4 is very potential to be utilized as forage source for ruminants such as goats.

  10. Integral handling of the swamps for indigenous communities - Caribbean of Colombia

    International Nuclear Information System (INIS)

    Sanchez Paez, Heliodoro; Ulloa Delgado Giovanni, Andres; Tavera Escobar, Hector Arsenio

    2004-06-01

    The book includes topics like the ecosystems of swamps, zonification for its handling, growth of species of swamps, restoration and vegetation, integral plan of handling of swamps and its fauna among other topics

  11. Regeneration potential of Taxodium distichum swamps and climate change

    Science.gov (United States)

    Middleton, B.A.

    2009-01-01

    Seed bank densities respond to factors across local to landscape scales, and therefore, knowledge of these responses may be necessary in forecasting the effects of climate change on the regeneration of species. This study relates the seed bank densities of species of Taxodium distichum swamps to local water regime and regional climate factors at five latitudes across the Mississippi River Alluvial Valley from southern Illinois to Louisiana. In an outdoor nursery setting, the seed banks of twenty-five swamps were exposed to non-flooded (freely drained) or flooded treatments, and the number and species of seeds germinating were recorded from each swamp during one growing season. Based on ANOVA analysis, the majority of dominant species had a higher rate of germination in non-flooded versus flooded treatments. Similarly, an NMS comparison, which considered the local water regime and regional climate of the swamps, found that the species of seeds germinating, almost completely shifted under non-flooded versus flooded treatments. For example, in wetter northern swamps, seeds of Taxodium distichum germinated in non-flooded conditions, but did not germinate from the same seed banks in flooded conditions. In wetter southern swamps, seeds of Eleocharis cellulosa germinated in flooded conditions, but did not germinate in non-flooded conditions. The strong relationship of seed germination and density relationships with local water regime and regional climate variables suggests that the forecasting of climate change effects on swamps and other wetlands needs to consider a variety of interrelated variables to make adequate projections of the regeneration responses of species to climate change. Because regeneration is an important aspect of species maintenance and restoration, climate drying could influence the species distribution of these swamps in the future. ?? 2008 Springer Science+Business Media B.V.

  12. Remote-Sensing Hydraulic Characterization of Channel Habitat Units in a Tropical Montane River: Bladen River, Belize

    Directory of Open Access Journals (Sweden)

    Sarah Praskievicz

    2017-12-01

    Full Text Available The physical characteristics of river systems exert significant control on the habitat for aquatic species, including the distribution of in-stream channel habitat units. Most previous studies on channel habitat units have focused on midlatitude rivers, which differ in several substantive ways from tropical rivers. Field delineation of channel habitat units is especially challenging in tropical rivers, many of which are remote and difficult to access. Here, we developed an approach for delineating channel habitat units based on a combination of field measurements, remote sensing, and hydraulic modeling, and applied it to a 4.1-km segment of the Bladen River in southern Belize. We found that the most prevalent channel habitat unit on the study segment was runs, followed by pools and riffles. Average spacing of channel habitat units was up to twice as high on the study segment than the typical values reported for midlatitude rivers, possibly because of high erosion rates in the tropical environment. The approach developed here can be applied to other rivers to build understanding of the controls on and spatial distribution of channel habitat units on tropical rivers and to support river management and conservation goals.

  13. The scientific value and potential of New Zealand swamp kauri

    Science.gov (United States)

    Lorrey, Andrew M.; Boswijk, Gretel; Hogg, Alan; Palmer, Jonathan G.; Turney, Christian S. M.; Fowler, Anthony M.; Ogden, John; Woolley, John-Mark

    2018-03-01

    New Zealand swamp kauri (Agathis australis) are relic trees that have been buried and preserved in anoxic bog environments of northern New Zealand for centuries through to hundreds of millennia. Kauri are massive in proportion to other native New Zealand trees and they can attain ages greater than 1000 years. The export market for swamp (subfossil) kauri has recently been driven by demand for a high-value workable timber, but there are concerns about the sustainability of the remaining resource, a situation exacerbated in recent years by the rapid extraction of wood. Economic exploitation of swamp kauri presents several unique opportunities for Quaternary science, however the scientific value of this wood is not well understood by the wider research community and public. Here, we summarise the history of scientific research on swamp kauri, and explore the considerable potential of this unique resource. Swamp kauri tree-ring chronologies are temporally unique, and secondary analyses (such as radiocarbon and isotopic analyses) have value for improving our understanding of Earth's recent geologic history and pre-instrumental climate history. Swamp kauri deposits that span the last interglacial-glacial cycle show potential to yield "ultra-long" multi-millennia tree-ring chronologies, and composite records spanning large parts of MIS3 (and most of the Holocene) may be possible. High-precision radiocarbon dating of swamp kauri chronologies can improve the resolution of the global radiocarbon calibration curve, while testing age modelling and chronologic alignment of other independent long-term high-resolution proxy records. Swamp kauri also has the potential to facilitate absolute dating and verification of cosmogenic events found in long Northern Hemisphere tree-ring chronologies. Future efforts to conserve these identified values requires scientists to work closely with swamp kauri industry operators, resource consent authorities, and export regulators to mitigate

  14. Studies on mangrove swamps of Goa 1. Heterotrophic bacterial flora from mangrove swamps

    Digital Repository Service at National Institute of Oceanography (India)

    Matondkar, S.G.P; Mathani, S; Mavinkurve, S

    Heterotrophic bacterial flora from the mangrove swamps of Goa consisted of physiologically active organisms exhibiting cellulolytic, pectinolytic, amylolytic, proteolytic and H2S forming activities, throughout the year. Coryneform and Bacillus were...

  15. Fish measurement using Android smart phone: the example of swamp eel

    Science.gov (United States)

    Chen, Baisong; Fu, Zhuo; Ouyang, Haiying; Sun, Yingze; Ge, Changshui; Hu, Jing

    The body length and weight are critical physiological parameters for fishes, especially eel-like fishes like swamp eel(Monopterusalbus).Fast and accurate measuring of body length is significant for swamp eel culturing as well as its resource investigation and protection. This paper presents an Android smart phone-based photogrammetry technology for measuring and estimating the length and weight of swamp eel. This method utilizes the feature that the ratio of lengths of two objects within an image is equal to that of in reality to measure the length of swamp eels. And then, it estimates the weight via a pre-built length-weight regression model. Analysis and experimental results have indicated that this method is a fast and accurate method for length and weight measurements of swamp eel. The cross-validation results shows that the RMSE (root-mean-square error) of total length measurement of swamp eel is0.4 cm, and the RMSE of weight estimation is 11 grams.

  16. Response of tropical peat swamp forest tree species seedlings to macro nutrients

    Directory of Open Access Journals (Sweden)

    Tri Wira Yuwati

    2015-10-01

    Full Text Available Abstract Efforts of restoration of degraded tropical peat swamp forest were facing constraints due to the low available nutrient level of peat. The transplanted peat swamp forest species seedlings experienced low survival rate and poor growth performance. This study aimed to demonstrate the response of ten tropical peat swamp forest species seedlings whether climax and pioneer species to macro-nutrients addition in the nursery. The growth performance of climax and pioneer tropical peat swamp species seedlings was recorded following addition of macro nutrients of Nitrogen (N, Phosphorus(P, Potassium(K and Dolomitic limestone (CaMg. The result showed that Alstonia spatulata and Parartocarpus venenosus showed positive growth response following macro nutrients addition. This study concluded that tropical peat swamp pioneer species has lower necessity for macro-nutrients addition than tropical peat swamp climax species.

  17. Biology and control of swamp dodder (Cuscuta gronovii)

    International Nuclear Information System (INIS)

    Bewick, T.A.

    1987-01-01

    A simple model predicting swamp dodder (Cuscuta gronovii Willd.) emergence was developed. The model states that 0.1% of the cranberry seedlings will emerge after 150 to 170 GDD have accumulated after the winter ice has melted on the cranberry beds, using 0 C as the low temperature threshold. Experiments in cranberry showed that pronamide [3,5-dichloro-(N-1,1-dimethyl-2-propynyl)benzamide] was effective in controlling swamp dodder when applied preemergence. Rates below 2.4 kg ai/ha appeared to be safe for cranberry plants and fruit. Experiments with 14 C glyphosate showed that the herbicide moved out of carrot leaves to the physiological sinks in the plant. In carrots parasitized by swamp dodder the dodder acted as one of the strongest sinks for photosynthates from the host. In cranberry glyphosate moved out of the leaves, but most remained in the stem to which the treated leaves were attached. The only physiological sinks that accumulated significant amounts of label were the stem apices. The concentration of the herbicide in this sink decreased with time. Swamp dodder stems were able to absorb glyphosate directly from solution

  18. Analysis of Technical Efficiency among Swamp Rice Farmers in ...

    African Journals Online (AJOL)

    This study was conducted to evaluate the Technical efficiency among swamp rice farmers in Niger State, Nigeria. A multi-stage sampling technique was used to select 159 swamp rice farmers. The data collected were analysed using descriptive statistics, and the stochastic frontier production function. The results showed ...

  19. Results of the 2000 Creek Plantation Swamp Survey

    International Nuclear Information System (INIS)

    Fledderman, P.D.

    2000-01-01

    This report is a survey of the Creek Plantation located along the Savannah River and borders the southeast portion of the Savannah River Site. The land is primarily undeveloped and agricultural; its purpose is to engage in equestrian-related operations. A portion of Creek Plantation along the Savannah River is a low-lying swamp, known as the Savannah River Swamp, which is uninhabited and not easily accessible

  20. Swamp Buffalo in South Kalimantan : Problem, Disease and Control

    Directory of Open Access Journals (Sweden)

    Lily Natalia

    2006-12-01

    Full Text Available In recent years, several studies have been carried out to evaluate and investigate the important diseases of swamp buffaloes (Bubalus carabanensis in Kalimantan . More attention has been focused on the case of acute infectious diseases and sudden death in the buffaloes . Fasciolosis black disease, acute enteritis, especially fatal enterotoxaemia haemorrhagic septicaemia . and trypanosomiasis (Surra, are some of the important diseases found in these animals . Black disease caused by toxigenic Clostridium novyi occurs in the presence of the organism in the liver and the degree of liver fluke Fasciola gigantica infestation . In regions where black disease is enzootic, Cl. novvi can be isolated from livers of normal healthy animals . In Hulu Sungai Utara district, South Kalimantan, the prevalence of fasciolosis caused by Fasciola gigantica in swamp buffalo was 77% in 1991 . A gross sudden change in diet due to seasonal changes could induce rumen and intestinal stasis, which provide a favourable environment for the rapid proliferation of commensal toxigenic Clostridium perfringens in the small intestine . Subsequent absorption of the toxin produced through the gut wall and its generalized dissemination culminated in a fatal enterotoxaemia . Haemorrhagic septicaemia (HS is an acute, fatal disease affecting swamp buffalo, and caused by Pasteurella multocida B : 2 . The swamp buffalo is particularly susceptible for HS, and the reported greatest losses of swamp buffalo in Kalimantan due to HS is recorded in 1980s. The clinical signs of Surra in swamp buffalo were also found in certain areas in Danau Panggang area . Hulu Sungai Utara district . Vaccination is the accepted method for controlling Black disease, enterotoxaemia and HS. Multi component vaccine, alum adjuvant containing at least 5 types of clostridial toxoids and P. multocida B2 bacterin have been used and provide good protection to the animals . Control and treatment of liver fluke infestation

  1. Swamp Rice Production in Ogun Waterside Local Government Area ...

    African Journals Online (AJOL)

    This study examined the economics of swamp rice production among peasant farmers in the Waterside Local Government Area of Ogun State for 2001 cropping year. A total of 50 swamp rice farmers were randomly selected from 5 villages using multistage sampling technique. The data collected, with the aid of ...

  2. Economic analysis of swamp rice production in Ebonyi Southern ...

    African Journals Online (AJOL)

    The aim of the paper is to analyze the determinants and profitability of the output of swamp rice farmers in Ebonyi southern Agricultural zone of Ebonyi State. Primary data were obtained through the use of structured questionnaires. A total of eighty (80) swamp rice farmers were randomly selected from the different blocks ...

  3. Palynology, sedimentology and environmental significance of Holocene swamps at northern Kaitoke, Great Barrier Island, New Zealand

    International Nuclear Information System (INIS)

    Horrocks, M.; Ogden, J.; Nichol, S.L.; Alloway, B.V.; Sutton, D.G.

    2000-01-01

    Pollen and sediment analyses of two cores from coastal freshwater swamps at northern Kaitoke (Kaitoke Swamp and Police Station Swamp), Great Barrier Island, show that c. 7300 calibrated yr BP Kaitoke Swamp was an estuary with tidal flats. Avicennia, now absent from the swamp area, was present in the estuary. By c. 4500 yr BP fresh water conditions had developed at the Kaitoke Swamp site as marine influences decreased. Around the same time, fresh water swamp conditions commenced at the Police Station Swamp site on the surface of a low lying area of a Late Pleistocene dune. A sandy layer at Kaitoke may represent rapid infilling followed by a dry soil surface until c. 1000 yr BP. Conifer-hardwood forest on the hills surrounding the sites c. 7300-c. 1800 yr BP was dominated by Dacrydium and Metrosideros. During this period, environmental conditions were relatively stable, with little change in forest composition. Between 1800 yr and 800 yr BP Kaitoke Swamp was reflooded, and the Police Station Swamp extended as a shallow lake over the nearby dune flat. These new shallow swamps were invaded by swamp forest (mainly Dacrycaprus with some Laurelia). The presence of charcoal and Pteridium spores above the Kaharoa Tephra suggests that major Polynesian deforestation at northern Kaitoke began c. 600 calibrated yr BP. (author). 41 refs., 4 figs., 2 tabs

  4. Benefits of Riverine Water Discharge into the Lorian Swamp, Kenya

    Directory of Open Access Journals (Sweden)

    Zipporah Musyimi

    2012-12-01

    Full Text Available Use and retention of river water in African highlands deprive communities in arid lowlands of their benefits. This paper reviews information on water use in the Ewaso Ng’iro catchment, Kenya, to evaluate the effects of upstream abstraction on the Lorian Swamp, a wetland used by pastoralists downstream. We first assess the abstractions and demands for water upstream and the river water supplies at the upper and the lower end of the Lorian Swamp. Further analysis of 12 years of monthly SPOT-VEGETATION satellite imagery reveals higher NDVI (Normalized Differential Vegetation Index values in the swamp than nearby rainfed areas, with the difference in NDVI between the two positively related to river water discharged into the swamp. The paper next reviews the benefits derived from water entering the swamp and the vulnerability to abstractions for three categories of water: (i the surface water used for drinking and sanitation; (ii the surface water that supports forage production; and (iii the water that recharges the Merti Aquifer. Our results suggest that benefits from surface water for domestic use and forage production are vulnerable to abstractions upstream whereas the benefits from the aquifer, with significant fossil water, are likely to be affected in the long run, but not the short term.

  5. Isolation of heat-tolerant myoglobin from Asian swamp eel Monopterus albus.

    Science.gov (United States)

    Chotichayapong, Chatrachatchaya; Wiengsamut, Kittipong; Chanthai, Saksit; Sattayasai, Nison; Tamiya, Toru; Kanzawa, Nobuyuki; Tsuchiya, Takahide

    2012-10-01

    Myoglobin from Asian swamp eel Monopterus albus was purified from fish muscle using salt fractionation followed by column chromatography and molecular filtration. The purified Mb of 0.68 mg/g wet weight of muscle was determined for its molecular mass by MALDI-TOF-MS to be 15,525.18 Da. Using isoelectric focusing technique, the purified Mb showed two derivatives with pI of 6.40 and 7.12. Six peptide fragments of this protein identified by LC-MS/MS were homologous to Mbs of sea raven Hemitripterus americanus, yellowfin tuna Thunnus albacores, blue marlin Makaira nigicans, common carp Cyprinus carpio, and goldfish Carassius auratus. According to the Mb denaturation, the swamp eel Mb had thermal stability higher than walking catfish Clarias batrachus Mb and striped catfish Pangasius hypophthalmus Mb, between 30 and 60 (°)C. For the thermal stability of Mb, the swamp eel Mb showed a biphasic behavior due to the O(2) dissociation and the heme orientation disorder, with the lowest increase in both Kd(f) and Kd(s). The thermal sensitivity of swamp eel Mb was lower than those of the other Mbs for both of fast and slow reaction stages. These results suggest that the swamp eel Mb globin structure is thermally stable, which is consistent with heat-tolerant behavior of the swamp eel particularly in drought habitat.

  6. Food Swamps Predict Obesity Rates Better Than Food Deserts in the United States.

    Science.gov (United States)

    Cooksey-Stowers, Kristen; Schwartz, Marlene B; Brownell, Kelly D

    2017-11-14

    This paper investigates the effect of food environments, characterized as food swamps, on adult obesity rates. Food swamps have been described as areas with a high-density of establishments selling high-calorie fast food and junk food, relative to healthier food options. This study examines multiple ways of categorizing food environments as food swamps and food deserts, including alternate versions of the Retail Food Environment Index. We merged food outlet, sociodemographic and obesity data from the United States Department of Agriculture (USDA) Food Environment Atlas, the American Community Survey, and a commercial street reference dataset. We employed an instrumental variables (IV) strategy to correct for the endogeneity of food environments (i.e., that individuals self-select into neighborhoods and may consider food availability in their decision). Our results suggest that the presence of a food swamp is a stronger predictor of obesity rates than the absence of full-service grocery stores. We found, even after controlling for food desert effects, food swamps have a positive, statistically significant effect on adult obesity rates. All three food swamp measures indicated the same positive association, but reflected different magnitudes of the food swamp effect on rates of adult obesity ( p values ranged from 0.00 to 0.16). Our adjustment for reverse causality, using an IV approach, revealed a stronger effect of food swamps than would have been obtained by naïve ordinary least squares (OLS) estimates. The food swamp effect was stronger in counties with greater income inequality ( p food outlets and incentivizing healthy food retailers to locate in underserved neighborhoods warrant consideration as strategies to increase health equity.

  7. Biophysics environmental conditions of swamp buffalo Bubalus bubalis Pampangan in district Rambutan South Sumatera

    Directory of Open Access Journals (Sweden)

    Yuanita Windusari

    2015-06-01

    Full Text Available Swamp buffalo (Bubalus bubalis is a germ plasm specific of Pampangan and endemic in South Sumatera with low productivity and limited distribution. The aims of this study was to obtain information regarding biophysical conditions in the central areas of swamp buffalo in South Sumatera. The method used is purposive sampling method. Data collected in the form of quantitative and qualitative. Primary data were obtained through direct observation, interviews breeders selected as respondents while secondary data obtained from various related. The data obtained are presented descriptively and data tabulation. Productivity of swamp buffalo Pampangan can be increased by managing and maintaining habitat conditions although traditional maintenance. The results of observations of the biophysical condition of swamp buffalo (B. bubalis Pampangan showed that habitat of swamp buffalo Pampangan consists of dominated by lowland swamp area is overgrown with shrubs and grass. The conclution of the research are productivity and population of swamp buffalo (B. bubalis pampangan as specific plasma nutfah of South Sumatra can be improved by studying the characteristics and preferred habitat of the buffalo, although developed in a traditional farms but is good enough and so need to be developed, grass is most preferred by swamp buffalo Pampangan derived from ‘Kumpai’ grass group, and ‘Kasur’grass and ‘Kumpai’ grass is the dominant grass type found in habitat swamp buffalo Pampangan.

  8. Food Swamps Predict Obesity Rates Better Than Food Deserts in the United States

    Directory of Open Access Journals (Sweden)

    Kristen Cooksey-Stowers

    2017-11-01

    Full Text Available This paper investigates the effect of food environments, characterized as food swamps, on adult obesity rates. Food swamps have been described as areas with a high-density of establishments selling high-calorie fast food and junk food, relative to healthier food options. This study examines multiple ways of categorizing food environments as food swamps and food deserts, including alternate versions of the Retail Food Environment Index. We merged food outlet, sociodemographic and obesity data from the United States Department of Agriculture (USDA Food Environment Atlas, the American Community Survey, and a commercial street reference dataset. We employed an instrumental variables (IV strategy to correct for the endogeneity of food environments (i.e., that individuals self-select into neighborhoods and may consider food availability in their decision. Our results suggest that the presence of a food swamp is a stronger predictor of obesity rates than the absence of full-service grocery stores. We found, even after controlling for food desert effects, food swamps have a positive, statistically significant effect on adult obesity rates. All three food swamp measures indicated the same positive association, but reflected different magnitudes of the food swamp effect on rates of adult obesity (p values ranged from 0.00 to 0.16. Our adjustment for reverse causality, using an IV approach, revealed a stronger effect of food swamps than would have been obtained by naïve ordinary least squares (OLS estimates. The food swamp effect was stronger in counties with greater income inequality (p < 0.05 and where residents are less mobile (p < 0.01. Based on these findings, local government policies such as zoning laws simultaneously restricting access to unhealthy food outlets and incentivizing healthy food retailers to locate in underserved neighborhoods warrant consideration as strategies to increase health equity.

  9. Food Swamps Predict Obesity Rates Better Than Food Deserts in the United States

    Science.gov (United States)

    Cooksey-Stowers, Kristen; Schwartz, Marlene B.; Brownell, Kelly D.

    2017-01-01

    This paper investigates the effect of food environments, characterized as food swamps, on adult obesity rates. Food swamps have been described as areas with a high-density of establishments selling high-calorie fast food and junk food, relative to healthier food options. This study examines multiple ways of categorizing food environments as food swamps and food deserts, including alternate versions of the Retail Food Environment Index. We merged food outlet, sociodemographic and obesity data from the United States Department of Agriculture (USDA) Food Environment Atlas, the American Community Survey, and a commercial street reference dataset. We employed an instrumental variables (IV) strategy to correct for the endogeneity of food environments (i.e., that individuals self-select into neighborhoods and may consider food availability in their decision). Our results suggest that the presence of a food swamp is a stronger predictor of obesity rates than the absence of full-service grocery stores. We found, even after controlling for food desert effects, food swamps have a positive, statistically significant effect on adult obesity rates. All three food swamp measures indicated the same positive association, but reflected different magnitudes of the food swamp effect on rates of adult obesity (p values ranged from 0.00 to 0.16). Our adjustment for reverse causality, using an IV approach, revealed a stronger effect of food swamps than would have been obtained by naïve ordinary least squares (OLS) estimates. The food swamp effect was stronger in counties with greater income inequality (p < 0.05) and where residents are less mobile (p < 0.01). Based on these findings, local government policies such as zoning laws simultaneously restricting access to unhealthy food outlets and incentivizing healthy food retailers to locate in underserved neighborhoods warrant consideration as strategies to increase health equity. PMID:29135909

  10. Gulf-Wide Information System, Environmental Sensitivity Index Swamps, Geographic NAD83, LDWF (2001) [esi_swamp_LDWF_2001

    Data.gov (United States)

    Louisiana Geographic Information Center — This data set contains Environmental Sensitivity Index (ESI) swamps data of coastal Louisiana. The ESI is a classification and ranking system, which characterizes...

  11. Long-term disturbance dynamics and resilience of tropical peat swamp forests.

    Science.gov (United States)

    Cole, Lydia E S; Bhagwat, Shonil A; Willis, Katherine J

    2015-01-01

    1. The coastal peat swamp forests of Sarawak, Malaysian Borneo, are undergoing rapid conversion, predominantly into oil palm plantations. This wetland ecosystem is assumed to have experienced insignificant disturbance in the past, persisting under a single ecologically-stable regime. However, there is limited knowledge of the past disturbance regime, long-term functioning and fundamentally the resilience of this ecosystem to changing natural and anthropogenic perturbations through time. 2. In this study, long-term ecological data sets from three degraded peatlands in Sarawak were collected to shed light on peat swamp forest dynamics. Fossil pollen and charcoal were counted in each sedimentary sequence to reconstruct vegetation and investigate responses to past environmental disturbance, both natural and anthropogenic. 3. Results demonstrate that peat swamp forest taxa have dominated these vegetation profiles throughout the last c . 2000-year period despite the presence of various drivers of disturbance. Evidence for episodes of climatic variability, predominantly linked to ENSO events, and wildfires is present throughout. However, in the last c . 500 years, burning and indicators of human disturbance have elevated beyond past levels at these sites, concurrent with a reduction in peat swamp forest pollen. 4. Two key insights have been gained through this palaeoecological analysis: (i) peat swamp forest vegetation has demonstrated resilience to disturbance caused by burning and climatic variability in Sarawak in the late Holocene, however (ii) coincident with increased fire combined with human impact c . 500 years ago, these communities started to decline. 5. Synthesis . Sarawak's coastal peat swamps have demonstrated resilience to past natural disturbances, with forest vegetation persisting through episodes of fire and climatic variability. However, palaeoecological data presented here suggest that recent, anthropogenic disturbances are of a greater magnitude

  12. Geomorphic controls on fluvial carbon exports and emissions from upland swamps in eastern Australia.

    Science.gov (United States)

    Cowley, Kirsten; Looman, Arun; Maher, Damien T; Fryirs, Kirstie

    2018-03-15

    Temperate Highland Peat Swamps on Sandstone (THPSS) are upland wetlands, similar to fens in the Northern Hemisphere and are found at the headwaters of low-order streams on the plateaus of Eastern Australia. They are classified as endangered ecological communities under State and National legislation. Previous works have identified particular geomorphic characteristics that are important to carbon storage in these low energy sediment accumulation zones. Changes in the geomorphic structure of THPSS, such as channelisation, may have profound implications for carbon storage. To assess the effect of channelisation on carbon budgets in these ecosystems it is essential to identify and quantify differences in carbon export, emissions and stocks of carbon of intact swamps and those that have become channelised. We undertook seasonal sampling of the perched swamp aquifers and surface waters of two intact swamps and two channelised fills in the Blue Mountains of New South Wales, Australia, to investigate differences in carbon exports and emissions between the two swamp types. We found that channelised fills' mean CO 2 emissions were almost four times higher than intact swamps with mean CH 4 emissions up to five times higher. Annual fluvial carbon exports for channelised fills were up to 18 times that of intact swamps. Channelised fill exports and emissions can represent up to 2% of the total swamp carbon stocks per annum which is 40 times higher than the intact swamps. This work clearly demonstrates that changes in geomorphic structure brought about by incision and channelisation results in profound changes to the carbon storage function of THPSS. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. 137Cs Transfer Factor from Latosol Soil to Swamp Gabbages (Ipomea Reptans Poir)

    International Nuclear Information System (INIS)

    Leli-Nirwani; Yurfida; Buchori

    2001-01-01

    A study of 137 Cs transfer factor from Latosol soil to swamp cabbages plant has been conducted using pot treatment system with complete random design. The aim of the research is to determine transfer factor of 137 Cs from latosol soil to swamp cabbages plant. Cs-137 concentration administered was 7.5287 kBq/pot. The number of swamp cabbages planted in 137 Cs treated soil and in cannot soil respectively was 12 pots filled with 1 kg soil/pot. After harvest, the weight of dried plant was measured. Transfer factor was determined according to the accumulation of 137 Cs concentration in swamp cabbages and soil and counted using Spectrometer Gamma. It was found that is a significant difference between 137 Cs concentration in swamp cabbages planted inthe treated soil and that of control soil. Transfer factor ranges between 0.02 and 0.13 with the averageof 0.08. (author)

  14. Coatal salt marshes and mangrove swamps in China

    Science.gov (United States)

    Yang, Shi-Lun; Chen, Ji-Yu

    1995-12-01

    Based on plant specimen data, sediment samples, photos, and sketches from 45 coastal crosssections, and materials from two recent countrywide comprehensive investigations on Chinese coasts and islands, this paper deals with China’s vegetative tidal-flats: salt marshes and mangrove swamps. There are now 141700 acres of salt marshes and 51000 acres of mangrove swamps which together cover about 30% of the mud-coast area of the country and distribute between 18°N (Southern Hainan Island) and 41 °N (Liaodong Bay). Over the past 45 years, about 1750000 acres of salt marshes and 49400 acres of mangrove swamps have been reclaimed. The 2.0×109 tons of fine sediments input by rivers into the Chinese seas form extensive tidal flats, the soil basis of coastal helophytes. Different climates result in the diversity of vegetation. The 3˜8 m tidal range favors intertidal zone development. Of over 20 plant species in the salt marshes, native Suaeda salsa, Phragmites australis, Aeluropus littoralis, Zoysia maerostachys, Imperata cylindrica and introduced Spartina anglica are the most extensive in distribution. Of the 41 mangrove swamps species, Kandelia candel, Bruguiera gymnorrhiza, Excoecaria agallocha and Avicennia marina are much wider in latitudinal distribution than the others. Developing stages of marshes originally relevant to the evolution of tidal flats are given out. The roles of pioneer plants in decreasing flood water energy and increasing accretion rate in the Changjiang River delta are discussed.

  15. Peat swamp forest of Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Niyomdham, C.; Urapeepatanapong, C.; Pitayakajornwute, P. [Pikoolthong Royal Development Study Center, Bangkok (Thailand). Royal Forest Department

    1996-12-31

    Peat swamp forest in Thailand occurs extensively along coastal flatlands in the central and southern parts of the country and some small patches of topogenous peatland are present locally on several mountain tops of the northern region. Many have been deteriorated by recent extensive development programs. However, one large area, about 347.04 km{sup 2}, of ombrogenous peatland is still left intact in the Pru Toh Dang area where conservation activities are being strictly enforced under one of the Royal Initiative Projects. Pru Toh Dang peat consists of 5 metres of fibrous organic soil overlying pyritic marine clay. Despite an inhospitable, submerged and unstable forest floor, the floristic composition of the peat swamp forest is extremely complicated, consisting of 124 families and 470 species of which 109 families and 437 species of flowering plants, and 15 families and 33 species of ferns recorded between 1983-1989 by a team from the Forest Herbarium of the Royal Forest Department of Thailand. (orig.) (4 refs.)

  16. Food Swamps Predict Obesity Rates Better Than Food Deserts in the United States

    OpenAIRE

    Cooksey-Stowers, Kristen; Schwartz, Marlene B.; Brownell, Kelly D.

    2017-01-01

    This paper investigates the effect of food environments, characterized as food swamps, on adult obesity rates. Food swamps have been described as areas with a high-density of establishments selling high-calorie fast food and junk food, relative to healthier food options. This study examines multiple ways of categorizing food environments as food swamps and food deserts, including alternate versions of the Retail Food Environment Index. We merged food outlet, sociodemographic and obesity data ...

  17. Swamp land optimization in supporting food security and enhancing farmers welfare in South Sumatra Indonesia

    Science.gov (United States)

    Herwenita; Hutapea, Y.

    2018-02-01

    Swamp land in Indonesia spread in Sumatra, Kalimantan and West Papua. In Sumatra the largest swamp land area is located in South Sumatera Province. Unfortunately only few of the areas have been utilized due to its fragility, in which farmers could only cultivate rice on it once a year. The purpose of this paper is to develop a feasible farming pattern in swamp land to help farmers and practitioners in optimizing it by managing its water level. Shallow and mid swamp land can be cultivated using rotation model of crops (rice, corn, cassava), horticulture (cucumber, long beans, watermelon etc), fish farming (catfish, snake head fish, tilapia), and duck farming, whereas submergence tolerant rice varieties can be cultivated alternating with fish farming in deep swamp land. This study shows that such swamp land management is financially feasible showing by its positive NPV value, BCR value is above 1.00, and IRR value is greater than the interest rate. Therefore, implementation of this farming pattern is expected to increase farmers’ income and household food supply as well as village food supply.

  18. Pen Branch Delta and Savannah River Swamp Hydraulic Model

    International Nuclear Information System (INIS)

    Chen, K.F.

    1999-01-01

    The proposed Savannah River Site (SRS) Wetlands Restoration Project area is located in Barnwell County, South Carolina on the southwestern boundary of the SRS Reservation. The swamp covers about 40.5 km2 and is bounded to the west and south by the Savannah River and to the north and east by low bluffs at the edge of the Savannah River floodplain. Water levels within the swamp are determined by stage along the Savannah River, local drainage, groundwater seepage, and inflows from four tributaries, Beaver Dam Creek, Fourmile Branch, Pen Branch, and Steel Creek. Historic discharges of heated process water into these tributaries scoured the streambed, created deltas in the adjacent wetland, and killed native vegetation in the vicinity of the delta deposits. Future releases from these tributaries will be substantially smaller and closer to ambient temperatures. One component of the proposed restoration project will be to reestablish indigenous wetland vegetation on the Pen Branch delta that covers about 1.0 km2. Long-term predictions of water levels within the swamp are required to determine the characteristics of suitable plants. The objective of the study was to predict water levels at various locations within the proposed SRS Wetlands Restoration Project area for a range of Savannah River flows and regulated releases from Pen Branch. TABS-MD, a United States Army Corps of Engineer developed two-dimensional finite element open channel hydraulic computer code, was used to model the SRS swamp area for various flow conditions

  19. Mineral uptake by taro (colocasla esculenta) in swamp agroecosystem following gramoxone paraquat herbicide spraying

    International Nuclear Information System (INIS)

    Nashriyah Mat; Mazleha Maskin; Abdul Khalik Wood

    2006-01-01

    Mineral elemental uptake by Colocasia esculenta growing in swamp agroecosystem was studied following 14, 18 or 28 months of field spraying (MAT, months after treatment) with herbicide Gramoxone paraquat. In overall, Al (68226.67 ± 24066.56 μ/g dw) was the major element in riverine alluvial swamp soil, followed by micronutrient Fe (22280.00 ± 6328.87 μ/g dw). Concentration of macronutrient K (20733.33 ± 7371.82, μ/g dw) was the highest in swamp taro leaf followed by macronutrient Ca (7050.00 ± 3767.26 μ/g dw). In overall, the order of importance of the average mineral concentration in swamp taro leaf was K > Ca > Mn > Al > Na > Fe > Zn > Br > Co. However at 14 MAT, the order of importance of mineral content concentration in swamp taro leaf was K > Ca > Al > Na > Mn > Fe > Zn > Br > Co. At 18 MAT, the order of importance of mineral content concentration in swamp taro leaf was K > Ca > Mn > Al > Fe > Na > Zn > Br > Co. At 28 AMT, the order of importance of mineral content concentration in swamp taro leaf was K > Ca > Mn > Fe > Al > Zn > Na > Br > Co. In overall, the average order of importance of mineral elemental uptake or the soil plant transfer coefficient was Mn > K > Na > Zn > Co > Fe > Al; similar with the order at 28 MAT However, at 14 MAT the order of importance of the soil plant transfer coefficient was different at Mn > K > Na > Co > Zn > Al > Fe. (Author)

  20. Magruder Park Swamp

    Science.gov (United States)

    Hotchkiss, N.; Uhler, F.M.

    1967-01-01

    The last Tuesday in August, between five-thirty and seven in the evening, we zigzaged through this glorious jungle, attended by a family of Wood Pewees for whom we seemed to be stirring up a feast of flying insects. There was gentle background music by Mole Crickets. A few steps in from the playing field and we were out of sight in ten-foot-high Cattails. All through, we met -- as high as we, or higher--clumped Cinnamon Ferns, deep-rose Joe Pye Weed, and orange, pendent flowers of Jewelweed (first cousins to Balsam and Sultana). Here and there were soft, white spikes of Canadian Burnet, a rare plant hereabouts, and deep purple Ironweed. Dense-foliaged Hempweed climbed over bushes and up small trees, filling the air with its delicate fragrance. Arrowleaf Tear-thumb snatched at us with tiny prongs on its angled stems. Once in a while we tripped over huge sedge tussocks, half-hidden in the tangle. A few times we steered around a small bush of Poison Sumac. The next day We remembered seeing ninety kinds of plants on this hasty trip. Skunk Cabbage leaves recalled April, when a person, from the edge of the lawn, could see huge clumps of them all the way across the swamp. The sky had been washed by last week's downpours; scattered Gums were reddening; and Maples were getting ready for crimson beauty a month from now. There wasn't a mosquito! (Ed. Note.-The Hyattsville City Council is taking pains to preserve this interesting swamp.)

  1. The Productivity and Natural Increase of Swamp Buffalo in District Malang

    Science.gov (United States)

    Budiarto, A.; Ciptadi, G.

    2018-02-01

    The purpose of this research was to collect the basic information needed to develop a sustainable breeding program, which includes the potential for production and reproduction of buffaloes. This research was conducted on swamp buffalo in Malang Regency East Java. The research method used was survey method. Primary data was obtained from direct observation on 323 tails owned by 98 breeders. Variables observed were population growth and reproductive performance. The data obtained were analyzed descriptively. The result showed that the initial population study of swamp Buffaloes in Malang as many as 1155 with male and female ratio 1: 2. The ratios of male and female swamp Buffalo 20 percent male and 80 percent female. Overall, the buffalo reproduction performance was still low. Service per conception 2.06 ± 0.88; Anestrus Postpartum 7.46 ± 3.83 months; calving interval distance 17.82 ± 4.86 months; 20.43 % birth rate and 4.33% mortality rate of Natural Increase (NI) population was about 16,1%. In conclusion, the value of NI of swamp Buffalo in Malang Regency is still low. To increase buffalo productivity, buffalo breeding program is continuously based on reproduction control.

  2. Logged peat swamp forest supports greater macrofungal biodiversity than large-scale oil palm plantations and smallholdings.

    Science.gov (United States)

    Shuhada, Siti Noor; Salim, Sabiha; Nobilly, Frisco; Zubaid, Akbar; Azhar, Badrul

    2017-09-01

    Intensive land expansion of commercial oil palm agricultural lands results in reducing the size of peat swamp forests, particularly in Southeast Asia. The effect of this land conversion on macrofungal biodiversity is, however, understudied. We quantified macrofungal biodiversity by identifying mushroom sporocarps throughout four different habitats; logged peat swamp forest, large-scale oil palm plantation, monoculture, and polyculture smallholdings. We recorded a total of 757 clusters of macrofungi belonging to 127 morphospecies and found that substrates for growing macrofungi were abundant in peat swamp forest; hence, morphospecies richness and macrofungal clusters were significantly greater in logged peat swamp forest than converted oil palm agriculture lands. Environmental factors that influence macrofungi in logged peat swamp forests such as air temperature, humidity, wind speed, soil pH, and soil moisture were different from those in oil palm plantations and smallholdings. We conclude that peat swamp forests are irreplaceable with respect to macrofungal biodiversity. They host much greater macrofungal biodiversity than any of the oil palm agricultural lands. It is imperative that further expansion of oil palm plantation into remaining peat swamp forests should be prohibited in palm oil producing countries. These results imply that macrofungal distribution reflects changes in microclimate between habitats and reduced macrofungal biodiversity may adversely affect decomposition in human-modified landscapes.

  3. Performance measures for a Mississippi River reintroduction into the forested wetlands of Maurepas Swamp

    Science.gov (United States)

    Krauss, Ken W.; Shaffer, Gary P.; Keim, Richard F.; Chambers, Jim L.; Wood, William B.; Hartley, Stephen B.

    2017-06-09

    The use of freshwater diversions (river reintroductions) from the Mississippi River as a restoration tool to rehabilitate Louisiana coastal wetlands has been promoted widely since the first such diversion at Caernarvon became operational in the early 1990s. To date, aside from the Bonnet Carré Spillway (which is designed and operated for flood control), there are only four operational Mississippi River freshwater diversions (two gated structures and two siphons) in coastal Louisiana, and they all target salinity intrusion, shellfish management, and (or) the enhancement of the integrity of marsh habitat. River reintroductions carry small sediment loads for various design reasons, but they can be effective in delivering fresh­water to combat saltwater intrusion and increase the delivery of nutrients and suspended fine-grained sediments to receiving wetlands. River reintroductions may be an ideal restoration tool for targeting coastal swamp forest habitat; much of the area of swamp forest habitat in coastal Louisiana is undergo­ing saltwater intrusion, high rates of submergence, and lack of riverine flow leading to reduced concentrations of important nutrients and suspended sediments, which sustain growth and regeneration, help to aerate swamp soils, and remove toxic compounds from the rhizosphere.The State of Louisiana Coastal Protection and Restora­tion Authority (CPRA) has made it a priority to establish a small freshwater river diversion into a coastal swamp forest located between Baton Rouge and New Orleans, Louisiana, to reintroduce Mississippi River water to Maurepas Swamp. While a full understanding of how a coastal swamp forest will respond to new freshwater loading through a Mississippi River reintroduction is unknown, this report provides guidance based on the available literature for establishing performance measures that can be used for evaluating the effectiveness of a Mississippi River reintroduction into the forested wetlands of Maurepas Swamp

  4. Throughfall and stemflow dynamics in a riparian cedar swamp: possible ecohydrological feedbacks

    Science.gov (United States)

    Duval, T. P.

    2012-12-01

    Partitioning of rainfall through forest canopies as throughfall and stemflow have deservedly been the subject of much research in the past; however, very little is known about the fluxes of water and solutes through forested wetland communities. Temperate swamps are characterized by intermittent canopy coverage, with areas that are denser than upland forests of similar species, but also contain canopy gaps of meadow and marsh communities,. Understanding the role of vegetation on the distribution of precipitation in these ecosystems is necessary to effectively constrain water balance estimates and predict possible community responses to shifting climate regimes. This study examines throughfall, stemflow, and interception dynamics in a riparian cedar swamp in Alliston, Ontario, Canada over the 2012 growing season. Throughfall averaged 76 % of above-canopy rainfall; however, there were spatial-magnitude interaction variations within the swamp. For events less than 20 mm, between 17 and 75 % of the measured swamp floor received greater depth of rain than above the canopy, whereas for events greater than 20 mm only between 2 and 23 % of the sampled swamp floor received more water than the actual event. The observed spatial variability in throughfall was not related to leaf area index, suggesting remote sensing modelling efforts may not be an accurate method for quantification of wetland precipitation dynamics. Stemflow along the predominantly cedar trees averaged 5 %; therefore, net precipitation on a seasonal basis in this cedar swamp was 81 % of above canopy rainfall. Throughfall DOC and total nitrogen concentrations averaged 31 and 2.2 mg/L, respectively, with stemflow DOC and TN concentrations averaging 109 and 6.5 mg/L, respectively. These values are much higher than reported for upland forest species. In general, throughfall magnitudes increased and solute concentrations decreased with increasing distance from the existing forest boles. The delivery of high

  5. Wastewater treatment by a natural wetland: the Nakivubo swamp, Uganda : processes and implications

    NARCIS (Netherlands)

    Kansiime, F.; Nalubega, M.

    1999-01-01

    An investigation to assess the capacity of the Nakivubo swamp, Kampala-Uganda (which has been receiving partially treated sewage from the city for more than 30 years now), to remove nutrients and pathogens was carried out. The aim of the study was to evaluate the potential of this swamp to

  6. Changes in Species Composition in Alder Swamp Forest Following Forest Dieback

    Directory of Open Access Journals (Sweden)

    Remigiusz Pielech

    2018-06-01

    Full Text Available It is generally hypothesized that forest dieback is a characteristic of alder swamp forests (alder carrs, Alnion glutinosae alliance. Different internal and external factors may trigger this process, including human disturbance, changes in river discharge, unusually severe and prolonged flooding, terminal age of an even-aged alder forest (ca. 100–150 years and others. Although forest dieback in this type of forest may cause major changes in environmental conditions, the influence of this change on the floristic composition has not been well recognized. The study aimed to detect any possible changes in floristic variation in alder swamp forest following forest dieback. Vegetation plots in alder swamp forests affected by forest dieback were resurveyed 20 years after a previous study. PERMANOVA was used to test the significance of the compositional change and nonmetric multidimensional scaling (NMDS with passively fitted means of the Ellenberg’s Indicator Values were used to interpret its ecological meaning. In addition, different structural and diversity indices were compared, including species richness, percentage cover of vegetation layers, Shannon and Simpson diversity and evenness. Finally, we analyzed changes in the frequency of vascular plant species using Chi square tests. We recorded clear and significant compositional changes following alder swamp forest dieback. This change was most related to the gradient of moisture, followed by the gradients of light and temperature. The analysis of the individual species showed that the species of hummocks declined, while the species of hollows increased. Moreover, the current communities are dominated by some hydrophytes that were not recorded 20 years ago. Forest dieback resulted in profound changes in the hydrological regime. The observed changes are consistent with a model of cyclic succession as proposed for alder swamps. In addition, we conclude that the natural forest dynamics have to be

  7. Producer farmer’s sovereignty in dry land and swamps areas

    Science.gov (United States)

    Suhaeti, RN; Wahyuni, S.

    2018-01-01

    Farmers could perform their farming if they have sovereignty on their farming production inputs and marketing. Suboptimal land, such as dry land and swamps areas have good prospect if applying appropriate technologies. A research in 2015, on status of farmers’ sovereignty, had been conducted in Piani and North Candi Laras Subdistricts, Tapin District, South Borneo Province, representing swamp land and dry land respectively. Data and information were obtained through interviewing related agencies at provincial and district levels and 30 units of farmer’s households. The primary and secondary data were analyzed descriptively. The research results showed that farmers in swamps and dry land were categorized as large farmers and had sovereignty over the land and production. Water shortage and excessive in both land types could be overcome by giving access on appropriate technology such as programs making farmers improve their farming techniques and providing levees. In addition, land certification program, farming expansion and constructing new irrigated lowland were also some efforts to improve farmers’ sovereignty. It was crucial to identify and improve farmer’s sovereignty indicators through research in larger sites and samples.

  8. Floristic and phytosociological analysis of palm swamps in the central part of the Brazilian savanna

    Directory of Open Access Journals (Sweden)

    Isa Lucia de Morais Resende

    2013-03-01

    Full Text Available We analyzed the floristics and phytosociology of three palm swamps in the municipality of Bela Vista de Goiás, located in the state of Goiás, Brazil, in the central part of the Brazilian savanna (Cerrado. The floristic surveys were conducted monthly from May 2008 to April 2009, and 310 species were recorded (seven bryophytes, 15 ferns and 288 angiosperms. Bryophytes belonged to five genera and five families; ferns belonged to nine genera and nine families; and angiosperms belonged to 134 genera and 45 families. The angiosperm families with the highest species richness were Poaceae, Cyperaceae, Asteraceae, Eriocaulaceae, Xyridaceae, Lentibulariaceae, Melastomataceae, Rubiaceae and Fabaceae. The palm swamps were divided into three zones of increasing humidity: edge, middle and core. The number of species was higher in the middle than at the edge and the core. The families with the highest cover values were Cyperaceae, Melastomataceae, Arecaceae and Poaceae. Although the palm swamps had been disturbed to varying degrees, those disturbances did not affect the flora in the middle or the core. Floristic similarity was high between these two zones within a given palm swamp and low between the edges of different palm swamps.

  9. Boron accumulation and tolerance of hybrid poplars grown on a B-laden mixed paper mill waste landfill.

    Science.gov (United States)

    Rees, Rainer; Robinson, Brett H; Rog, Christopher J; Papritz, Andreas; Schulin, Rainer

    2013-03-01

    Paper mill wastes are a mixture of by-products from pulp production and on-site energy production, consisting of paper mill sludge, ash and cinders. Landfilling of these highly boron (B) and heavy metal laden waste products carries environmental risks. Poplars have been successfully employed in the phytomanagement and hydraulic control of B contaminated sites. Here, we assess the performance of hybrid poplars on a paper-mill waste landfill, investigate the accumulation of B by the trees and explore the relationship between local-scale root growth and substrate properties. Leaf and root tissue samples were collected on three plots and analyzed for their chemical properties and root traits. Additionally, we sampled four soil cores in the vicinity of each of the trees and determined chemical and physical properties. Using a principal component analysis followed by a cluster analysis, we identified three substrate types. This method delineated the soil effects on tree survival and growth, although correlations with individual soil element concentrations were weak. Despite signs of B toxicity in some leaves, B was not the key limiting factor for poplar growth. Instead, Ca deficiency caused by a Mg:Ca imbalance was the primary reason for the poor performance of some trees. Root growth was not limited by toxicity effects of soil contaminants. Our results show that hybrid poplars perform well under the harsh growing conditions on a multi-contaminated, B-laden substrate in a hemiboreal climate. Exploiting the differences in the performance of the four clones in relation to the soil types, could increase the success of revegetation on this and other landfills. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. The Effects of Corrosive Chemicals on Corrosion Rate of Steel Reinforcement Bars: I. Swamp Water

    Directory of Open Access Journals (Sweden)

    Sulistyoweni Widanarko

    2010-10-01

    Full Text Available Most of infrastructures using steel concrete to reinforce the strength of concrete. Steel concrete is so vulnerable to chemical compounds that can cause corrosion. It can happen due to the presence of chemical compounds in acid environment in low pH level. These chemical compounds are SO42-, Cl-, NO3-. There are many swamp area in Indonesia. The acid contents and the concentration of ion sulphate, chlorides, and nitrate are higher in the swamp water than in the ground water .The objective of this research was to find out the influence of corrosive chemicals in the swamp water to the steel concrete corrosion rate. There were two treatment used: (1 emerging ST 37 and ST 60 within 60 days in the 'polluted' swamp water, (2 moving the ST 37 up and down periodically in the ' polluted' swamp water. Three variation of 'polluted' swamp water were made by increasing the concentration of corrosive chemical up to 1X, 5X and 10X respectively. The corrosion rate was measured by using an Immersion Method. The result of Immersion test showed that chloride had the greatest influence to corrosion rate of ST 37 and ST 60 and followed by sulphate and Nitrate. Corrosion rate value for ST 37 is 24.29 mpy and for ST 60 is 22.76 mpy. By moving the sample up and down, the corrosion rate of ST 37 increase up to 37.59 mpy, and chloride still having the greatest influence, followed by sulphate and nitrate.

  11. Decline of the Maurepas Swamp, Pontchartrain Basin, Louisiana, and Approaches to Restoration

    Directory of Open Access Journals (Sweden)

    Gary P. Shaffer

    2016-03-01

    Full Text Available The Maurepas swamp is the second largest contiguous coastal forest in Louisiana but it is highly degraded due to subsidence, near permanent flooding, nutrient starvation, nutria herbivory, and saltwater intrusion. Observed tree mortality rates at study sites in the Maurepas swamp are very high (up to 100% tree mortality in 11 years and basal area decreased with average salinities of <1 ppt. Habitat classification, vegetation productivity and mortality, and surface elevation changes show a clear trajectory from stagnant, nearly permanently flooded forests with broken canopy to degraded forests with sparse baldcypress and dominated by herbaceous species and open water to open water habitat for most of the Maurepas swamp without introduction of fresh water to combat saltwater intrusion and stimulate productivity and accretion. Healthy forests in the Maurepas are receiving fresh water containing nutrients and sediments from urban areas, high quality river water, or secondarily treated municipal effluent. Currently, two proposed diversions into the swamp are via Hope Canal (57 m3·s−1 and Blind River (142 m3·s−1. These diversions would greatly benefit their immediate area but they are too small to influence the entire Maurepas sub-basin, especially in terms of accretion. A large diversion (>1422 m3·s−1 is needed to deliver the adequate sediments to achieve high accretion rates and stimulate organic soil formation.

  12. Skin disease affecting the conservation of the western swamp tortoise (Pseudemydura umbrina)

    Science.gov (United States)

    Ladyman, J M; Kuchling, G; Burford, D; Boardman, W; Raidal, S R

    1998-11-01

    To review the present position of the western swamp tortoise (Pseudemydura umbrina) as an endangered species and significant health issues affecting efforts to save it from extinction. A retrospective analysis of the husbandry, hospital and pathology records of the western swamp tortoise captive breeding program at Perth Zoo. In 1987 a captive breeding project was developed to prevent the extinction of the western swamp tortoise but an outbreak of a necrotising dermatitis in 1989 threatened the survival of the captive bred hatchlings. Less severe outbreaks occurred in 1990 and 1993, with isolated cases in between. Of 283 tortoises that were born in captivity or came into captivity from the wild, 37 (13.1%) were affected, comprising 37% of all males, 26% of all females and 13% of animals of unknown gender. Of the affected animals, 70% were less than 2 years of age and 29% were older. Males were 1.6 times more likely to be infected than females but this difference was not statistically significant (P = 0.27). Culture of the lesions consistently yielded unidentified Pseudomonas sp. Improved husbandry, such as strict maintenance of water quality and temperature conditions similar to that of the animal's natural habitat, and monitoring the health of individual tortoises have successfully controlled skin disease in the captive breeding of the western swamp tortoise.

  13. The fungal flora of the mangrove swamps of Goa

    Digital Repository Service at National Institute of Oceanography (India)

    Matondkar, S.G.P.; Mahtani, S.; Mavinkurve, S.

    Mangrove swamps of Goa (India) showed the presence of fungi belonging to 14 different genera, predominant ones being Monilia, Mucor, Syncephalastrum, Aspergillus and Trichothecium. Most of the isolates were found to be physiologically active...

  14. Food swamps and food deserts in Baltimore City, MD, USA: associations with dietary behaviours among urban adolescent girls.

    Science.gov (United States)

    Hager, Erin R; Cockerham, Alexandra; O'Reilly, Nicole; Harrington, Donna; Harding, James; Hurley, Kristen M; Black, Maureen M

    2017-10-01

    To determine whether living in a food swamp (≥4 corner stores within 0·40 km (0·25 miles) of home) or a food desert (generally, no supermarket or access to healthy foods) is associated with consumption of snacks/desserts or fruits/vegetables, and if neighbourhood-level socio-economic status (SES) confounds relationships. Cross-sectional. Assessments included diet (Youth/Adolescent FFQ, skewed dietary variables normalized) and measured height/weight (BMI-for-age percentiles/Z-scores calculated). A geographic information system geocoded home addresses and mapped food deserts/food swamps. Associations examined using multiple linear regression (MLR) models adjusting for age and BMI-for-age Z-score. Baltimore City, MD, USA. Early adolescent girls (6th/7th grade, n 634; mean age 12·1 years; 90·7 % African American; 52·4 % overweight/obese), recruited from twenty-two urban, low-income schools. Girls' consumption of fruit, vegetables and snacks/desserts: 1·2, 1·7 and 3·4 servings/d, respectively. Girls' food environment: 10·4 % food desert only, 19·1 % food swamp only, 16·1 % both food desert/swamp and 54·4 % neither food desert/swamp. Average median neighbourhood-level household income: $US 35 298. In MLR models, girls living in both food deserts/swamps consumed additional servings of snacks/desserts v. girls living in neither (β=0·13, P=0·029; 3·8 v. 3·2 servings/d). Specifically, girls living in food swamps consumed more snacks/desserts than girls who did not (β=0·16, P=0·003; 3·7 v. 3·1 servings/d), with no confounding effect of neighbourhood-level SES. No associations were identified with food deserts or consumption of fruits/vegetables. Early adolescent girls living in food swamps consumed more snacks/desserts than girls not living in food swamps. Dietary interventions should consider the built environment/food access when addressing adolescent dietary behaviours.

  15. The impact of the Suwannee River Sill on the surface hydrology of Okefenokee Swamp, USA

    Science.gov (United States)

    Yin, Zhi-Yong; Brook, George A.

    1992-08-01

    Okefenokee Swamp, located in southeastern Georgia and northeastern Florida, is one of the largest freshwater wetland complexes and a National Wildlife Refuge in the United States. A low earthen dam, the Suwannee River Sill, was built on the largest outlet stream of Okefenokee Swamp in the early 1960s. The purpose was to raise the water level and thus reduce fire frequency in this National Wildlife Refuge. In this study, hydrologic conditions in the swamp prior to (1937-1962) and after (1963-1986) sill construction were compared by statistical procedures. An average 9 cm increase in swamp water level at the Suwannee Canal Recreation Area was attributed to the sill. Increased precipitation and decreased evapotranspiration during the study period caused another 5 cm increase in water levels. Seasonal changes in climatic factors were also responsible for seasonal changes in water levels and streamflow in the pre- and post-sill periods. Although the effect of the sill on water level was more significant during dry periods, it is doubtful that the Suwannee River Sill actually prevented occurrence of severe fibres in the post-sill period, which was wetter than the period before sill construction. The sill diverted 2.6% of swamp outflow from the Suwannee River to the St. Mary's River. Diversion of flow was more marked during low flow periods. Therefore, the discharge of the St. Mary's River in the post-sill increased more than the discharge of the Suwannee River and its variability became lower that of the Suwannee River. The relationships between swamp water level, streamflow and precipitation were also changed due to construction of the sill.

  16. Imported Asian swamp eels (Synbranchidae: Monopterus) in North American live food markets: Potential vectors of non-native parasites

    Science.gov (United States)

    Nico, Leo G.; Sharp, Paul; Collins, Timothy M.

    2011-01-01

    Since the 1990s, possibly earlier, large numbers of Asian swamp eels (Synbranchidae: Monopterus spp.), some wild-caught, have been imported live from various countries in Asia and sold in ethnic food markets in cities throughout the USA and parts of Canada. Such markets are the likely introduction pathway of some, perhaps most, of the five known wild populations of Asian swamp eels present in the continental United States. This paper presents results of a pilot study intended to gather baseline data on the occurrence and abundance of internal macroparasites infecting swamp eels imported from Asia to North American retail food markets. These data are important in assessing the potential role that imported swamp eels may play as possible vectors of non-native parasites. Examination of the gastrointestinal tracts and associated tissues of 19 adult-sized swamp eels—identified as M. albus "Clade C"—imported from Vietnam and present in a U.S. retail food market revealed that 18 (95%) contained macroparasites. The 394 individual parasites recovered included a mix of nematodes, acanthocephalans, cestodes, digeneans, and pentastomes. The findings raise concern because of the likelihood that some parasites infecting market swamp eels imported from Asia are themselves Asian taxa, some possibly new to North America. The ecological risk is exacerbated because swamp eels sold in food markets are occasionally retained live by customers and a few reportedly released into the wild. For comparative purposes, M. albus "Clade C" swamp eels from a non-native population in Florida (USA) were also examined and most (84%) were found to be infected with internal macroparasites. The current level of analysis does not allow us to confirm whether these are non-native parasites.

  17. [Amphibians and reptiles in the swamps dominated by the palm Raphia taedigera (Arecaceae) in northeastern Costa Rica].

    Science.gov (United States)

    Bonilla-Murillo, Fabian; Beneyto, Davinia; Sasa, Mahmood

    2013-09-01

    The herpetofauna that inhabits Caribbean Costa Rica has received considerable attention in the last two decades. This assemblage includes a total of 141 species of reptiles and 95 amphibians mostly distributed in tropical wet and moist lowland forests. While most information available came from primary and secondary forest sites, little is known about the amphibians and reptiles that inhabit more open habitats, such as wetlands and swamps. For instances, swaps dominated by the yolillo palm Raphia taedigera extend through much of the northeastern Caribbean coast of Costa Rica and eastern Nicaragua, but information about the herpetological community that uses such environments remains practically unknown. This situation reflects the little research conducted in such inhospitable environments. Here, we report the results of an intensive survey conducted to assess the herpetological community that inhabit R. taedigera palm-swamps. A total of 14 species of amphibians and 17 of reptiles have been recorded from these swamps. Amphibians and reptiles that inhabit yolillo swamps have wide distributions along much of Middle America and are considered common species throughout their range. In general, yolillo swamps are poor environments for herpetofauna: richness of reptiles and amphibians is almost two times higher in the adjacent forest than in the palm dominated swamps. Furthermore, most species observed in this swamps can be considered habitat generalists that are well adapted to the extreme conditions imposed by the changes in hydroperiods, reduce understory cover, low tree diversity and simple forest architecture of these environments. Despite similarities in the herpetofauna, it is clear that not all forest species use yolillo habitat, a characteristic that is discussed in terms of physical stress driven by the prolonged hydroperiod and reduced leaflitter in the ground, as these features drive habitat structure and herpetofaunal complexity. Our list of species using

  18. CORRELATION ANALYSIS OF AGRONOMIC CHARACTERS AND GRAIN YIELD OF RICE FOR TIDAL SWAMP AREAS

    Directory of Open Access Journals (Sweden)

    Aris Hairmansis

    2013-05-01

    Full Text Available Development of rice varieties for tidal swamp areas is emphasized on the improvement of rice yield potential in specific environment. However, grain yield is a complex trait and highly dependent on the other agronomic characters; while information related to the relationship between agronomic characters and grain yield in the breeding program particularly for tidal swamp areas is very limited. The objective of this study was to investigate relationship between agronomic characters and grain yield of rice as a basis for selection of high yielding rice varieties for tidal swamp areas. Agronomic characters and grain yield of nine advanced rice breeding lines and two rice varieties were evaluated in a series of experiments in tidal swamp areas, Karang Agung Ulu Village, Banyuasin, South Sumatra, for four cropping seasons in dry season (DS 2005, wet season (WS 2005/2006, DS 2006, and DS 2007. Result from path analysis revealed that the following characters had positive direct effect on grain yield, i.e. number of productive tillers per hill (p = 0.356, number of filled grains per panicle (p = 0.544, and spikelet fertility (p = 0.215. Plant height had negative direct effect (p = -0.332 on grain yield, while maturity, number of spikelets per panicle, and 1000-grain weight showed negligible effect on rice grain yield. Present study suggests that indirect selection of high yielding tidal swamp rice can be done by selecting breeding lines which have many product tive tillers, dense filled grains, and high spikelet fertility.

  19. Sequence Stratigraphic Appraisal: Coastal Swamp Depobelt In The ...

    African Journals Online (AJOL)

    Mid-Lower Miocene Agbada sedimentary intercalations of “AB” Field in the coastal swamp depobelt, Western Niger-Delta, were evaluated to determine their sequence stratigraphic character. The analysis was based on a combination of data sets including logs of six wells to describe lithic variations of the Agbada Formation ...

  20. Production Efficiency of Swamp Rice Production in Cross River ...

    African Journals Online (AJOL)

    This study compares profit maximization, output optimization and resource use efficiency in ... of two varieties of swamp rice by farmers in Cross River State of Nigeria. ... The result of the finding also shows that small-scale farmers were more ...

  1. Reproductive responses to climatic heat induced by management systems in swamp buffaloes

    International Nuclear Information System (INIS)

    Dollah, M.A.; Ramakrishnan, N.; Nordin, Y.; Abdullah Sani, R.

    1990-01-01

    Climatic heat is one of the factors influencing the reproductive performance of swamp buffaloes. Any management system that imposes high climatic heat stress tends to reduce reproductive performance. Buffaloes grazing in an open hilly ranch system reached puberty later (at an age of 33 months) and at heavier body weight (365 kg) than animals raised in confinement (26 months and 289 kg). Physiological data (water metabolism and thyroid activity) indicated that grazing animals had to tolerate a higher heat load. High climatic temperatures were found to depress ovarian activity, especially during the dry season. The effect was observed only in cycling buffaloes denied wallow. Buffaloes having access to wallows were able to maintain their heat balance under various levels of heat load by adjusting their water requirements, mobilizing their body water and adjusting their metabolic rate (thyroid activity). It is concluded that stressful climatic temperatures can depress the reproductive performance of young heifers and adult swamp buffaloes, and that climatic heat stress directly depresses ovarian activity in swamp buffaloes. (author). 16 refs, 1 fig., 4 tabs

  2. Genetic characteristic of swamp buffalo (Bubalus bubalis) from Pampangan, South Sumatra based on blood protein profile

    Science.gov (United States)

    Windusari, Yuanita; Hanum, Laila; Wahyudi, Rizki

    2017-11-01

    Swamp buffalo (Bubalus bubalis) is an endemic species and one of the genetic wealth of South Sumatra with a distribution area in the district of Pampangan (OganIlir and OganOganIlir). Suspected inbreeding causes decreased phenotypic properties. Inbreeding among various swamp buffalo is certainly not only lower the qualities but also genotypes and phenotypes. It is of interest to determine kinship variants swamp buffaloes from Pampangan through the analysis of a blood protein profile. Blood protein profile of four variants swamps buffalo was studied by using five electrophoresis system i.e. pre-albumin (Palb), albumin (Alb), ceruloplasmin (Cp), transferrin (Tf) and transferrin post (Ptf). In this paper, it is obtained that there was no significant differences among the four variants of the buffaloes were used as a sample. Prealbumin has two alleles (Palb1 and Palb2), albumin has three alleles (Alba, AlbB, AlbC), ceruloplasmin has one allele (BPA), post-transferrin has one allele (PTFA) with an allele frequency 1.0000 at any time transferrin has two alleles (TFA and TFB) with the allele frequency of 0.7500 and 1.0000. Characteristics prealbumin (Palb), albumin (Alb), ceruloplasmin (Cp), and post-transferrin (P-tf) is monomorphic, while transferrin is polymorphic average heterozygosity values all loci (H) 0.1286. Based on average heterozygosity, the swamp buffalo (Bubalusbubalis) from Pampangan has low genetic variation and closest genetic relationship.

  3. The exploitation of swamp plants for dewatering liquid sewage sludge

    Directory of Open Access Journals (Sweden)

    Jiří Šálek

    2006-01-01

    Full Text Available The operators of little rural wastewater treatment plants have been interested in economic exploitation of sewage sludge in local conditions. The chance is searching simply and natural ways of processing and exploitation stabilized sewage sludge in agriculture. Manure substrate have been obtained by composting waterless sewage sludge including rest plant biomass after closing 6–8 years period of filling liquid sewage sludge to the basin. Main attention was focused on exploitation of swamp plants for dewatering liquid sewage sludge and determination of influence sewage sludge on plants, intensity and course of evapotranspiration and design and setting of drying beds. On the base of determined ability of swamp plants evapotranspiration were edited suggestion solutions of design and operation sludge bed facilities in the conditions of small rural wastewater treatment plant.

  4. The hydrological function of upland swamps in eastern Australia: The role of geomorphic condition in regulating water storage and discharge

    Science.gov (United States)

    Cowley, Kirsten L.; Fryirs, Kirstie A.; Hose, Grant C.

    2018-06-01

    Temperate Highland Peat Swamps on Sandstone (THPSS) are a type of wetland found in low-order streams on the plateaus of eastern Australia. They are sediment and organic matter accumulation zones, which combined with a climate of high rainfall and low evaporation function as water storage systems. Changes to the geomorphic structure of these systems via incision and channelisation can have profound impacts on their hydrological function. The aim of this study was to develop an understanding of how changes to the geomorphic structure of these systems alter their hydrological function, measured as changes and variability in swamp water table levels and discharge. We monitored the water table levels and discharges of three intact and three channelised THPSS in the Blue Mountains between March 2015 and June 2016. We found that water levels in intact swamps were largely stable over the monitoring period. Water levels rose only in high rainfall events, returned quickly to antecedent levels after rain, and drawdown during dry periods was not significant. In contrast, the water table levels in channelised THPSS were highly variable. Water levels rose quickly after almost all rainfall events and declined significantly during dry periods. Discharge also showed marked differences with the channelised THPSS discharging 13 times more water than intact swamps, even during dry periods. Channelised THPSS also had flashier storm hydrographs than intact swamps. These results have profound implications for the capacity of these swamps to act as water storage reservoirs in the headwaters of catchments and for their ability to maintain base flow to downstream catchments during dry times. Changes to geomorphic structure and hydrological function also have important implications for a range of other swamp functions such as carbon storage, emission and exports, contaminant sorption, downstream water quality and biodiversity, as well as the overall fate of these swamps under a changing

  5. Minnesota Watersheds

    Data.gov (United States)

    Minnesota Department of Natural Resources — Statewide minor watershed delineations with major/minor watershed identifiers and names for provinces, major watersheds, and basins. Also included are watershed...

  6. SURVEY OF ECONOMIC TREES IN FRESH WATER SWAMP OF

    African Journals Online (AJOL)

    1

    2011-05-16

    May 16, 2011 ... availability because it determines the number of surviving individuals. This is true for all species of .... 2010). CRUTECH, Calabar forest is a pseudo forest having characteristics of rain and swamp forests. ... as reflected in the random and contiguous distribution. (clumped or aggregated population) of the ...

  7. Influence of Soil Type and Drainage on Growth of Swamp Chestnut Oak (Quercus Michauxii Nutt.) Seedlings

    Science.gov (United States)

    Donald D. Hook

    1969-01-01

    Swamp chestnut oak (Quercus michauxii Nutt.) seedlings were grown for 2 years in five soil types in drained and undrained pots. First-year height growth was related to soil type and pot drainage, but second-year height growth was related only to soil type. Results suggest that swamp chestnut oak is site-sensitive. But slow growth, a maximum of 2...

  8. Influences of deforestation on radiation and heat balances in tropical peat swamp forest in Thailand

    International Nuclear Information System (INIS)

    Suzuki, S.; Ishida, T.; Nagano, T.; Matsukawa, S.

    1997-01-01

    The difference of radiation and heat balances between a natural peat swamp forest and a deforested secondary forest has been investigated in Narathiwat Province, Thailand. Micrometeorological measurements were conducted continuously on observation towers 38 m and 4 m in heights in the primary forest and the secondary forest respectively. Results show that the deforestation of peat swamp forest leads to an increase in the sensible heat flux in the secondary forest. The yearly average ratio of the sensible heat flux to the net radiation was 20.9% in the peat swamp forest, and 33.2% in the secondary forest from Aug. 1995 to Jul. 1996. A ratio more than 40% was observed only in the dry season in the secondary forest. The change in sensible heat flux seemed to be influenced by the change in ground water levels. (author)

  9. Utilization of Organic Fertilizer on Sweet Corn (Zea mays saccharata Sturt Crop at Shallow Swamp Land

    Directory of Open Access Journals (Sweden)

    Midranisiah

    2017-01-01

    Full Text Available Shallow lowland swamp area has significant potential for cultivation of sweet corn crop. This lowland swamp has rich natural resources such as organic fertilizers from chicken dunk, cow dunk, oil palm fresh bunches and legume cover crops (LCC that are not maximally utilized yet by farmers. These organic fertilizers can be utilized to increase the growth and production of sweet corn crop. The research objective was to determine organic fertilizer types that capable to increase the growth and production of sweet corn crop at shallow lowland swamp area. This research had been conducted from January to April 2015 in Pulau Semambu Village, North Indralaya Subdistrict, Ogan Ilir District, South Sumatra Province. The design used in this research was non-factorial Randomized Block Design (RBD with four treatments of organic fertilizer types with six replications for each treatment. The treatments were consisted of organic fertilizers from chicken dunk, cow dunk, oil palm fresh bunches and legume cover crops (LCC. The results showed that treatment of organic fertilizers from chicken dunk could increase the growth and production of sweet corn at shallow lowland swamp area with yield level of 4.37 kg.plot −1.

  10. Report of mortmorilloniticas clay in the Medina swamp (Cerro Largo district)

    International Nuclear Information System (INIS)

    Gomez Rifas, C.; Heinzen, W.; Theune, C.

    1980-01-01

    This report describes the prospect ion work for the montmorillonitics clay in the region of Medina swamp in Cerro Largo district. The existence of new deposits was detected by cartography and geological study.

  11. Diversity and Antagonistic Activity of Actinomycete Strains From Myristica Swamp Soils Against Human Pathogens

    Directory of Open Access Journals (Sweden)

    Varghese Rlnoy

    2014-05-01

    Full Text Available Under the present investigation Actinomycetes were isolated from the soils of Myristica swamps of southern Western Ghats and the antagonistic activity against different human bacterial pathogens was evaluated. Results of the present study revealed that Actinomycetes population in the soils of Myristica swamp was spatially and seasonally varied. Actinomycetes load was varied from 24×104 to 71×103, from 129×103 to 40×103 and from 31×104 to 84×103 in post monsoon, monsoon and pre monsoon respectively. A total of 23 Actinomycetes strains belonging to six genera were isolated from swamp soils. Identification of the isolates showed that most of the isolates belonged to the genus Streptomyces (11, followed by Nocardia (6, Micromonospora (3, Pseudonocardia (1, Streptosporangium (1, and Nocardiopsis (1. Antagonistic studies revealed that 91.3% of Actinomycete isolates were active against one or more tested pathogens, of that 56.52% exhibited activity against Gram negative and 86.95% showed activity against Gram positive bacteria. 39.13% isolates were active against all the bacterial pathogens selected and its inhibition zone diameter was also high. 69.5% of Actinomycetes were exhibited antibacterial activity against Listeria followed by Bacillus cereus (65.21%, Staphylococcus (60.86%, Vibrio cholera (52.17%, Salmonella (52.17% and E. coli (39.13%. The results indicate that the Myristica swamp soils of Southern Western Ghats might be a remarkable reserve of Actinomycetes with potential antagonistic activity.

  12. Kennedy Space Center: Swamp Works

    Science.gov (United States)

    DeFilippo, Anthony Robert

    2013-01-01

    When I began my internship with the Granular Mechanics and Regolith Operations laboratory (GMRO), also known as Swamp Works, I was given the unique opportunity to shadow many teams working on various projects, and decide what projects I wanted to take part in. Before I go into details of my experiences at Swamp Works, I would like to take a moment to explain what I discovered Swamp Works to be. Swamp Works is a family of hardworking, dedicated, and driven people from various backgrounds and skill sets. These people all work to advance technologies and make science fiction science fact through means of rapid prototyping. They support and encourage failure as an option when learning new things, as long as lesson learned from said failure. In fact, their motto states "Fail, Fast, Forward." What this means is, not if but when one fails he or she must do so quickly and spring forward from the failure so that his or her progress is not delayed. With this acceptance, it provided me the confidence to dive into a multitude of projects working in various fields and with a wide range of skill sets. The first project I joined was Badger. My motivation for taking on this project was the opportunity I would have to obtain valuable experience working with 3D modeling and 3D printing technologies. Badger was a digging apparatus to be used in a highly dusty environment in a material known as Regolith. Regolith is a scientific term for the dirt or top soil found on planetary bodies. Regolith contains a large quantity of sediments less than lOppm and as a result poses a challenge of keeping it out of any cracks and crevices. Furthermore, regolith can create high levels of electrostatic energy, which can prove damaging to sensitive electrical hardware. With these characteristics in mind, I decided to take on the task of designing and manufacturing a dust proof cover for the sensitive electrical hardware. When I began this project, I did not have the slightest idea as to how to use 3D

  13. Utilization of agro-industrial by-products by swamp buffalo

    International Nuclear Information System (INIS)

    Jelan, Z.A.; Jalaludin, S.; Vijchulata, P.

    1987-01-01

    A series of studies were conducted to determine the factors affecting the utilization of palm press fibre (PPF) by swamp buffaloes. The nutritive values, fermentation and rumen kinetics, intake and growth responses to a PPF based diet with or without protein and energy supplementation were studied. Palm press fibre was considered a poor quality feed as it is low in crude protein (about 6%) and high in lignin content (about 21%). Dry matter (DM) disappearance from nylon bags at 48 h was low (about 40%) as compared with grass (47%), oaten hay (49%) and lucerne (64%). Sodium hydroxide (8% solution) was most effective as a treating agent as the DM disappearance of PPF from the nylon bags at 48 h was increased by 14%. Dry matter loss from the bags was greater in swamp buffaloes than in cattle. Rumen fluid volume and flow rate were not significantly (P>0.05) increased with fish meal supplementation, but the total dry matter intake (DMI) increased significantly (P<0.05) when 360 g DM/d fish meal was supplemented. Total volatile fatty acid (VFA) concentrations were low in unsupplemented animals and the molar proportions of the VFAs were typical of those seen in the rumen fluid of ruminants fed a fibre based diet. Rumen ammonia-nitrogen was high (40-70 mg/L) in fish meal supplemented animals. When urea treated PPF was supplemented with fish meal and cassava, the animals showed significant increases (P<0.05) in average daily gain and in both total DMI and in the DMI of a basal diet. The study concludes that supplementation with rumen undegradable protein and an energy source are essential to a PPF based diet and that untreated PPF is not a suitable basal diet for swamp buffaloes. (author)

  14. Residu Gula Glikokonjugat pada Lambung Depan Kerbau Rawa (Bubalus bubalis Kalimantan Selatan (SUGAR RESIDU OF GLYCOCONJUGATES IN FORESTOMACH OF SOUTH KALIMANTAN SWAMP BUFFALO (BUBALUS BUBALIS

    Directory of Open Access Journals (Sweden)

    Anni Nurliani

    2014-08-01

    Full Text Available The ability of swamp buffaloes to adapt with swamp environment was suggested to be supported bytheir digestive system efficiency. The research was done to obtain scientific explanation about digestiveefficiency of swamp buffalo by identification on kinds and distribution of glycoconjugates in swamp buffaloforestomach. Six male swamp buffaloes aged more than 2.5 year old and had body weight between 300-400kg were used in this study. Samples were obtained from Regency of Banjar slaughter house, SouthKalimantan. Every parts of the forestomach included rumen, reticulum, and omasum was taken andprocessed for microscopic observation with hematoxyline eosin (HE and alcian blue-periodic acid schiff(AB-PAS stainings. Sugar residues of glycoconjugates were localized with lectin histochemistry wheatgerm agglutinin (WGA, ulex europaeus agglutinin (UEA, ricinus communis agglutinin (RCA, concanavalinagglutinin (Con A, and soybean agglutinin (SBA. Every part of swamp buffalo forestomach had kinds ofspecific glycoconjugates with special distribution pattern which were different with other ruminant, andwere suitable for their functions in that part. The existence of D mannose/D glucose glycoconjugates thatwas dominant in forestomach estimated that had important role in supporting fermentative digestionfunction in swamp buffalo, through its function as receptor bacteria attachment. This is suggested as aspecial characteristic in digestive system of swamp buffalo which causes high digestive efficiency inswamp buffalo.

  15. Rich soil carbon and nitrogen but low atmospheric greenhouse gas fluxes from North Sulawesi mangrove swamps in Indonesia.

    Science.gov (United States)

    Chen, Guang C; Ulumuddin, Yaya I; Pramudji, Sastro; Chen, Shun Y; Chen, Bin; Ye, Yong; Ou, Dan Y; Ma, Zhi Y; Huang, Hao; Wang, Jing K

    2014-07-15

    The soil to atmosphere fluxes of greenhouse gases N2O, CH4 and CO2 and their relationships with soil characteristics were investigated in three tropical oceanic mangrove swamps (Teremaal, Likupang and Kema) in North Sulawesi, Indonesia. Mangrove soils in North Sulawesi were rich in organic carbon and nitrogen, but the greenhouse gas fluxes were low in these mangroves. The fluxes ranged -6.05-13.14 μmol m(-2)h(-1), -0.35-0.61 μmol m(-2)h(-1) and -1.34-3.88 mmol m(-2)h(-1) for N2O, CH4 and CO2, respectively. The differences in both N2O and CH4 fluxes among different mangrove swamps and among tidal positions in each mangrove swamp were insignificant. CO2 flux was influenced only by mangrove swamps and the value was higher in Kema mangrove. None of the measured soil parameters could explain the variation of CH4 fluxes among the sampling plots. N2O flux was negatively related to porewater salinity, while CO2 flux was negatively correlated with water content and organic carbon. This study suggested that the low gas emissions due to slow metabolisms would lead to the accumulations of organic matters in North Sulawesi mangrove swamps. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Study, using stable isotopes, of flow distribution, surface-groundwater relations and evapotranspiration in the Okavango Swamp, Botswana

    International Nuclear Information System (INIS)

    Dincer, T.; Hutton, L.G.; Kupee, B.B.J.

    1979-01-01

    Stable isotope data collected in the Okavango Delta have confirmed that the central distributary system is more active at present than the peripheral systems. The data also show that there is no groundwater outflow at the western and southern margins of the delta. A salinity-isotope model of the deltaic swamp has been developed to study the relation between the salinity and isotopic composition of the swamp waters. An attempt has been made to separate the atmospheric losses from the swamp into its evapotranspiration components. The results indicate that in winter, when high water levels prevail, these losses are almost entirely due to evaporation whilst in summer, when the water levels are low, evaporation and transpiration contribute almost equally to the total atmospheric losses. (author)

  17. The Effects of Corrosive Chemicals on Corrosion Rate of Steel Reinforcement Bars: II. Swamp Sludges

    Directory of Open Access Journals (Sweden)

    Henki Ashadi

    2010-10-01

    Full Text Available A polluted environment will influence the building age. The objective of this research was to find out the influence of corrosive chemicals within the sludge swamp area with the corrosion rate of steel concrete. Corrosion in steel concrete usually occur in acid area which contain of SO42-, Cl- and NO3-. The research treatment used by emerging ST 37 andST 60 within 60 days in 'polluted' sludge swamp area. Three variation of 'polluted' swamp sludge were made by increasing the concentration a corrosive unsure up to 1X, 5X and 10X. The corrosion rate measured by using an Immersion Method. The result of Immersion test showed that sulphate had a greatest influence to corrosion rate of ST 37 and ST 60 and followed by chloride and nitrate. Corrosion rate value for ST 37 was 17.58 mpy and for ST 60 was 12.47 mpy.

  18. Watershed analysis

    Science.gov (United States)

    Alan Gallegos

    2002-01-01

    Watershed analyses and assessments for the Kings River Sustainable Forest Ecosystems Project were done on about 33,000 acres of the 45,500-acre Big Creek watershed and 32,000 acres of the 85,100-acre Dinkey Creek watershed. Following procedures developed for analysis of cumulative watershed effects (CWE) in the Pacific Northwest Region of the USDA Forest Service, the...

  19. Net ecosystem CO2 exchange of a primary tropical peat swamp forest in Sarawak, Malaysia

    Science.gov (United States)

    Tang Che Ing, A.; Stoy, P. C.; Melling, L.

    2014-12-01

    Tropical peat swamp forests are widely recognized as one of the world's most efficient ecosystems for the sequestration and storage of carbon through both their aboveground biomass and underlying thick deposits of peat. As the peat characteristics exhibit high spatial and temporal variability as well as the structural and functional complexity of forests, tropical peat ecosystems can act naturally as both carbon sinks and sources over their life cycles. Nonetheless, few reports of studies on the ecosystem-scale CO2 exchange of tropical peat swamp forests are available to-date and their present roles in the global carbon cycle remain uncertain. To quantify CO2 exchange and unravel the prevailing factors and potential underlying mechanism regulating net CO2 fluxes, an eddy covariance tower was erected in a tropical peat swamp forest in Sarawak, Malaysia. We observed that the diurnal and seasonal patterns of net ecosystem CO2 exchange (NEE) and its components (gross primary productivity (GPP) and ecosystem respiration (RE)) varied between seasons and years. Rates of NEE declined in the wet season relative to the dry season. Conversely, both the gross primary productivity (GPP) and ecosystem respiration (RE) were found to be higher during the wet season than the dry season, in which GPP was strongly negatively correlated with NEE. The average annual NEE was 385 ± 74 g C m-2 yr-1, indicating the primary peat swamp forest functioned as net source of CO2 to the atmosphere over the observation period.

  20. Isolation of vibrio spp. In oysters (crassostrea rhizophorea) caught in the ‘de la virgen’ swamp

    OpenAIRE

    López Gutiérrez, Lercy; Autor; Manjarrez Pava, Ganiveth; Autor; Herrera Rodríguez, Lilibeth; Autor; Montes Payares, Ana Elena; Autor; Olascuaga Ruíz, Yuranis Paola; Autor; Ortega Quiroz, Rolando José; Autor

    2015-01-01

    Objective:  To establish contamination by Vibrio in oysters (Crassostrea rhizophorae) caught in De La Virgen Swamp, in order to alert entities in charge or protecting consumer health in Cartagena city. Methods: Between February and April 2006, 67 oysters from 5 strategic sites along De La Virgen Swamp, were analyzed. Insulation and identification of Vibrio was performed through a culture and biochemical tests.Results.  Predominant species were V. alginolyticus (23%),V fluvialis  (20%),V. para...

  1. Mapping swamp timothy (Cripsis schenoides) seed productivity using spectral values and vegetation indices in managed wetlands

    Energy Technology Data Exchange (ETDEWEB)

    Rahilly, P.J.A.; Li, D.; Guo, Q.; Zhu, J.; Ortega, R.; Quinn, N.W.T.; Harmon, T.C.

    2010-01-15

    This work examines the potential to predict the seed productivity of a key wetland plant species using spectral reflectance values and spectral vegetation indices. Specifically, the seed productivity of swamp timothy (Cripsis schenoides) was investigated in two wetland ponds, managed for waterfowl habitat, in California's San Joaquin Valley. Spectral reflectance values were obtained and associated spectral vegetation indices (SVI) calculated from two sets of high resolution aerial images (May 11, 2006 and June 9, 2006) and were compared to the collected vegetation data. Vegetation data were collected and analyzed from 156 plots for total aboveground biomass, total aboveground swamp timothy biomass, and total swamp timothy seed biomass. The SVI investigated included the Simple Ratio (SR), Normalized Difference Vegetation Index (NDVI), Soil Adjusted Vegetation Index (SAVI), Transformed Soil Adjusted Vegetation Index (TSAVI), Modified Soil Adjusted Vegetation Index (MSAVI), and Global Environment Monitoring Index (GEMI). We evaluated the correlation of the various SVI with in situ vegetation measurements for linear, quadratic, exponential and power functions. In all cases, the June image provided better predictive capacity relative to May, a result that underscores the importance of timing imagery to coincide with more favorable vegetation maturity. The north pond with the June image using SR and the exponential function (R{sup 2}=0.603) proved to be the best predictor of swamp timothy seed productivity. The June image for the south pond was less predictive, with TSAVI and the exponential function providing the best correlation (R{sup 2}=0.448). This result was attributed to insufficient vegetal cover in the south pond (or a higher percentage of bare soil) due to poor drainage conditions which resulted in a delay in swamp timothy germination. The results of this work suggest that spectral reflectance can be used to estimate seed productivity in managed seasonal

  2. Aluminum and iron contents in phosphate treated swamp rice farm ...

    African Journals Online (AJOL)

    In 2006 aluminum and iron contents were determined in phosphate treated swamp rice farm of Mbiabet, Akwa Ibom State. The objectives were to determine the aluminum and iron contents, the effect of drying, phosphate and lime application in an acid sulphate soil grown to rice in Nigeria. The soil samples used were ...

  3. Influences of land use on water quality of a diverse New England watershed.

    Science.gov (United States)

    Rhodes, A L; Newton, R M; Pufall, A

    2001-09-15

    Analysis of variations in major ion chemistry in the Mill River watershed reveals the importance of anthropogenic activities in controlling streamwater chemistry. Average concentrations of NO3- and SO4(2-) show a positive correlation with percent catchment area altered by human land uses, and concentrations of Cl- increase with road density. Water removal from municipal reservoirs increases the downstream concentration of NO3- and SO4(2-) over that predicted by land use changes, showing that removal of high quality upstream water concentrates pollutants downstream. In salt-impacted streams, Cl- exceeds Na- by 10-15% due to cation exchange reactions that bind Na+ to soil. The net effect of nonpoint source pollution is to elevate ANC in the most developed areas, which impacts the natural acidity of a large swamp. The sum of base cations (C(B)) exceeds ANC for all samples. Plotting C(B) against ANC and subtracting Cl- quantifies the impact of road salt from the impact of the addition of strong acids.

  4. Species Turnover across Different Life Stages from Seedlings to Canopy Trees in Swamp Forests of Central Brazil

    Directory of Open Access Journals (Sweden)

    Clarissa G. Fontes

    2015-01-01

    Full Text Available Processes driving the assembly of swamp forest communities have been poorly explored. We analyzed natural regeneration and adult tree communities data of a swamp gallery forest in Central Brazil to discuss the role of ecological filters in shaping plant species turnover in a successional gradient. Species data of 120 plots were used to assess species turnover between natural regeneration and adult tree communities. Our analyses were based on 4995 individuals belonging to 72 species. Community patterns were discerned using ordination analyses. A clear floristic turnover among plant life stages was distinguished. Regeneration community of swamp forests was richer in species composition than the adult community. Tree species commonly found in nonflooded gallery forests were present in the regeneration plots but not in the adult community. Differences in the floristic composition of these two strata suggest that not all species in the seedling stage can stand permanent flooding conditions and only a few tolerant species survive to become adult trees. We propose that natural disturbances play an important role by altering limiting resources, allowing seeds of nonflooded forest species to germinate. This paper elucidates the turnover between plant life stages in swamp forests and suggests mechanisms that may shape these communities.

  5. Project conservation and handling for the multiple uses and the development of the swamps of Colombia

    International Nuclear Information System (INIS)

    Sanchez Paez, Heliodoro

    1998-01-01

    In Colombia the swamps are distributed in the Atlantic and Pacific coasts; they are located in areas with conditions of pluvial precipitation that varies from annual 200 mm in the Guajira department; nine species of mangroves have registered for Colombia, which are related following a zonation starting from the tide line, still when this pattern not always stays and it depends on the influence of diverse factors and local conditions. The project conservation and handling for the multiple use and the development of the swamps of Colombia, had as objectives; to watch and to control the parameters of salinity, level of water and flow to laminate and of strengthening the generation of alternative productive social and environmentally appropriate for the sustainable use, guaranteeing their conservation and preservation of the swamps. The project was developed in two phases, one of diagnostic and planning and the other of dynamics of growth, phenology and natural regeneration

  6. Swamp tours in Louisiana post Hurricane Katrina and Hurricane Rita

    Science.gov (United States)

    Dawn J. Schaffer; Craig A. Miller

    2007-01-01

    Hurricanes Katrina and Rita made landfall in southern Louisiana during August and September 2005. Prior to these storms, swamp tours were a growing sector of nature-based tourism that entertained visitors while teaching about local flora, fauna, and culture. This study determined post-hurricane operating status of tours, damage sustained, and repairs made. Differences...

  7. Biocontrol for Rhizoctonia Stem Rot Disease by Using Combination of Specific Endophyte in Paddy Tidal Swamp

    OpenAIRE

    Budi, Ismed Setya; Mariana, Mariana

    2013-01-01

    The use of combination of specific endophytic in tidal swamps to control stem root disease as biological control agents has not been done. It is expected that this combination is able to continuously protect plants from pathogen interference. The research was carried out in type C tidal swamp in Banjar regency of South Kalimantan, from March to November 2011, temperature 29-32oC, and pH 4.0-5.5. The method used was Split Plot design. Biocontrol preparation for both types of endophytic was ap...

  8. Operational restoration of the Pen Branch bottomland hardwood and swamp wetlands - the research setting

    International Nuclear Information System (INIS)

    Nelson, E.A.

    2000-01-01

    The Savannah River Swamp is a 3020 Ha forested wetland on the floodplain of the Savannah River and is located on the Department of Energy's Savannah River Site (SRS) near Aiken, SC. Historically the swamp consisted of approximately 50 percent bald cypress-water tupelo stands, 40 percent mixed bottomland hardwood stands, and 10 percent shrub, marsh, and open water. Creek corridors were typical of Southeastern bottomland hardwood forests. The hydrology was controlled by flooding of the Savannah River and by flow from four creeks that drain into the swamp prior to flow into the Savannah River. Upstream dams have caused some alteration of the water levels and timing of flooding within the floodplain. Major impacts to the swamp hydrology occurred with the completion of the production reactors and one coal-fired powerhouse at the SRS in the early 1950's. Water was pumped from the Savannah River, through secondary heat exchangers of the reactors, and discharged into three of the tributary streams that flow into the swamp. Flow in one of the tributaries, Pen Branch, was typically 0.3 m3 s-1 (10-20) cfs prior to reactor pumping and 11.0 m3 s-1 (400 cfs) during pumping. This continued from 1954 to 1988 at various levels. The sustained increases in water volume resulted in overflow of the original stream banks and the creation of additional floodplains. Accompanying this was considerable erosion of the original stream corridor and deposition of a deep silt layer on the newly formed delta. Heated water was discharged directly into Pen Branch and water temperature in the stream often exceeded 65 degrees C. The nearly continuous flooding of the swamp, the thermal load of the water, and the heavy silting resulted in complete mortality of the original vegetation in large areas of the floodplain. In the years since pumping was reduced, early succession has begun in some affected areas. Most of this has been herbs, grasses, and shrubs. Areas that have seedlings are generally willow

  9. Critical Zone Exploration in the Tropics: Clues from small experimental watersheds in South Cameroon and South India

    Science.gov (United States)

    Braun, J.-J.; Riotte, J.; Audry, S.; Boeglin, J. L.; Descloitres, M.; Deschamps, P.; Maréchal, J. C.; Viers, J.; Ndam, J.-R.; Sekhar, M.

    2009-04-01

    characterized by a deep mature lateritic mantle and mean annual rainfall of 1600 mm. The second watershed, under investigation since 2003, is located at Mule Hole, South India. It belongs to the sub-humid zone of the climatic gradient of the Kabini River basin in the rain shadow of the Western Ghâts. It is characterized by an immature thick regolith and mean annual rainfall of 1100 mm. In both watersheds, the water balance was calculated from on time-series of hydrological and climatic data and then modelled for lean/normal/high rainfall years. The contemporary chemical weathering rates were established by coupling the water balance with geochemical time-series in groundwater, stream water and rainfall. The degree of weathering and the thickness of the regolith were achieved by combining investigations of geophysics (electrical resistivity logging and tomography), mineralogy, and bulk chemical analyses. This allowed us to assess the long-term chemical weathering mass balance at the watershed scale. In the Nsimi watershed, the contemporary chemical weathering rate, even though low (2.8 mm/kyr), predominates over the mechanical weathering rate (1.9 mm/kyr). Compared to the Rio Icacos watershed, the most studied tropical site, the chemical weathering fluxes of silica and sodium in the stream are 16 and 40 times lower, respectively. This is not only related to the protective role of the regolith, thick in both cases, but also to differences in the hydrological functioning. The carbon transfer occurs primarily in an organic form and essentially as colloids produced by the slow biodegradation of the swamp organic matter. These organic colloids contribute significantly to the mobilization and transfer of Fe, Al, Zr, Ti and Th in the uppermost first meter of the swamp regolith. In the Mule Hole watershed, the contemporary mechanical weathering rate (25 mm/kyr), predominates over the chemical weathering rate estimated for both stream (0.3 mm/kyr) and groundwater (3.0 mm/kyr). This

  10. Using Eco-hydrologic modeling in the Penobscot River Watershed to explore the role of climate and land use change on DOC concentration and flux

    Science.gov (United States)

    Rouhani, S. F. B. B.; Schaaf, C.; Douglas, E. M.; Huntington, T. G.; Kim, J.

    2017-12-01

    Dissolved Organic Carbon leaches from the terrestrial watersheds to serve as one of the largest sources of marine DOC. Runoff, slope, soil organic matter and land cover characteristics are the primary spatial factors controlling the variability of fluvial Dissolved Organic Carbon fluxes through the catchment. In large, more heterogeneous catchments, streamflow dissolved organic carbon dynamics are regulated by the combined effect of hydrological mechanisms and the proportion of major landscape elements, such as wetland and forested areas. A number of studies have demonstrated that the amount of wetlands, especially peatlands, controls the watershed level transport of DOC in streams.The Penobscot River Watershed is located in north-central Maine and drains into the Gulf of Maine. It is the second largest watershed in New England. The Penobscot River Watershed is primarily forested but also contains extensive bogs, marshes, and wooded swamps.Studying the spatial and temporal changes in DOC export in the Penobscot River Watershed allows us to better understand and detect carbon sinks to carbon source shifts (or vice versa) in northern forested ecosystems.The Regional Hydro-Ecological Simulation System, is a physical process based terrestrial model that has the ability to simulate both the source and transportation of DOC by combining both hydrological and ecological processes. The study is focused on simulating the DOC concentration and flux with RHESSys in the Penobscot River Watershed. The simulated results are compared with field measurements of DOC from the watershed and the model results from the LOADEST and the temporal DOC export patterns are explored. Future changes in the amount of streamflow DOC will also be investigated by using projected land cover and climate change scenarios. Incremental increases in the loss of wetland areas have been implemented to explore the sensitivity of this watershed to wetland loss and progressive changes in forested land cover

  11. TEMPORAL VEGETATION DYNAMICS IN PEAT SWAMP AREA USING MODIS TIME-SERIES IMAGERY: A MONITORING APPROACH OF HIGH-SENSITIVE ECOSYSTEM IN REGIONAL SCALE

    Directory of Open Access Journals (Sweden)

    Yudi Setiawan

    2016-10-01

    Full Text Available Peat swamp area is an essential ecosystem due to high vulnerability of functions and services. As the change of forest cover in peat swamp area has increased considerably, many studies on peat swamp have focused on forest conversion or forest degradation. Meanwhile, in the context of changes in the forestlands are the sum of several processes such as deforestation, reforestation/afforestation, regeneration of previously deforested areas, and the changing spatial location of the forest boundary. Remote sensing technology seems to be a powerful tool to provide information required following that concerns. A comparison imagery taken at the different dates over the same locations for assessing those changes tends to be limited by the vegetation phenology and land-management practices. Consequently, the simultaneous analysis seems to be a way to deal with the issues above, as a means for better understanding of the dynamics changes in peat swamp area. In this study, we examined the feasibility of using MODIS images during the last 14 years for detecting and monitoring the changes in peat swamp area. We identified several significant patterns that have been assigned as the specific peat swamp ecosystem. The results indicate that a different type of ecosystem and its response to the environmental changes can be portrayed well by the significant patterns. In understanding the complex situations of each pattern, several vegetation dynamics patterns were characterized by physical land characteristics, such as peat depth, land use, concessions and others. Characterizing the pathways of dynamics change in peat swamp area will allow further identification for the range of proximate and underlying factors of the forest cover change that can help to develop useful policy interventions in peatland management.

  12. Approaches for the environmental evaluation of two swamp complexes of the Momposina depression

    International Nuclear Information System (INIS)

    Caballero, Humberto; Durango, Consuelo

    1998-01-01

    The swamp complexes of the Momposina depression in the lower Magdalena River have been submitted to irrational exploitation, transformation and contamination mainly since the beginning of the century, process that has be en getting worse in the last decade. The most evident manifestation of the environmental deterioration is expressed by the drastic reduction of fishing, with important socio-economic effects to the population that lives from this source. The most notorious causes of the actual state of the ecosystem were detected, and some preliminary considerations for its management are presented. However, due to the modifications that the complexes have suffered (closure of the natural sewer, construction of jarillones, modifications of the internal water flows and sediments, over exploitation, of fish and herpetofauna), the deterioration of the limnologic conditions is moderated, which allows to begin recuperation plans. The major impacts were observed in the fauna of birds and reptiles associated to the swamps; the decrease of the ictics populations seems to be related to the strong impact generated by the fishing action used and the interruption of the natural cycles of fish. The possibility of rebuilding the communication swamp-river should be studied with care because it seems the system has arrived to new conditions. The re-opening of the sewers could mean a new unbalanced condition represented mainly by the contamination coming from the Magdalena River

  13. Watershed management in Myanmar

    International Nuclear Information System (INIS)

    Choi, K.S.

    1993-01-01

    Watershed degradation, watershed management, background of watershed management in Myanmar (condition of watershed, manpower), discussion and recommendation (proposed administrative structure, the need for watershed survey and planning, bottom-up approach) are emphasized. Watershed management, after all can be seen that it is the interphase between the forest, agriculture, soil, wildlife and the local communities

  14. Watershed management in Myanmar

    Energy Technology Data Exchange (ETDEWEB)

    Choi, K S

    1993-10-01

    Watershed degradation, watershed management, background of watershed management in Myanmar (condition of watershed, manpower), discussion and recommendation (proposed administrative structure, the need for watershed survey and planning, bottom-up approach) are emphasized. Watershed management, after all can be seen that it is the interphase between the forest, agriculture, soil, wildlife and the local communities

  15. Greenhouse gas efflux from an impacted Malaysian tropical peat swamp (Invited)

    Science.gov (United States)

    Waldron, S.; Vihermaa, L. E.; Evers, S.; Garnett, M.; Newton, J.; Padfield, R.

    2013-12-01

    Tropical peatlands constitute ~11% of global peatland area and ~12% of the global peat C pool. Malaysia alone contains 10% of tropical peats. Due to rising global demands for food and biofuels, SE-Asia peat swamp forest ecosystems are threatened by increasing amounts of drainage, fire and conversion to plantation. These processes can change the GHG emissions and thus net ecosystem C balance. However, in comparison to temperate and boreal peatlands, there is a lack of data on terrestrial-aquatic-atmospheric carbon transfer from tropical peatlands, both those that are little disturbed and those facing anthropogenic pressures. Lateral transport of soil-respired carbon, and fluvial respiration or UV-oxidation of terrestrial DOC primes atmospheric carbon dioxide efflux. We now know that DOC lost from disturbed tropical peat swamp forests can be centuries to millennia old and originates deep within the peat column - this carbon may fuel efflux of old carbon dioxide and so anthropogenic land-use change renders the older, slower carbon cycles shorter and faster. Currently we have no knowledge of how significant ';older-slower' terrestrial-aquatic-atmospheric cycles are in disturbed tropical peatlands. Further, in some areas for commercial reasons, or by conservation bodies trying to minimise peat habitat loss, logged peats have been left to regenerate. Consequently, unpicking the legacy of multiple land uses on magnitude, age and source of GHG emissions is challenging but required to support land management decisions and projections of response to a changing climate. Here, we present the results of our first field campaign in July 2013 to the Raja Musa and Sungai Karang Peat Swamp Forest Reserves in North Selangor, Malaysia. This is one of Malaysia's largest oceanic peat swamps, and has been selectively logged and drained for 80 years, but is now subject to a 30 year logging ban to aid forest regeneration and build up wood stocks. From sites subject to different land use

  16. Mapping Upper Amazon Palm Swamps with Spaceborne L-band Synthetic Aperture Radar

    Science.gov (United States)

    Pinto, N.; McDonald, K. C.; Podest, E.; Schroeder, R.; Zimmermann, R.; Horna, V.

    2010-12-01

    Palm swamp ecosystems are widespread in the Amazon basin, forming where seasonal flooding is moderate and surface inundation persists. Recent studies suggest that palm swamps have a disproportional role on tropical biogeochemistry: the combination of persistently saturated soils, warm temperatures, and low oxygen soils can support significant land-atmosphere methane flux. Potential impacts of climate change on these ecosystems include changes in temperature and precipitation regimes that influence primary productivity and flood extent significantly, potentially reversing net land-atmosphere carbon exchanges regionally. Data acquired from Earth-orbiting satellites provides the opportunity to characterize vegetation structure and monitor surface inundation independently of cloud cover. Building on efforts under our NASA MEaSUREs project for assembly of a global-scale Earth System Data Record (ESDR) of inundated wetlands, we develop and evaluate a systematic approach to map the distribution and composition of palm swamps in the upper Amazon using data sets from JAXA’s Advanced Land Observing Satellite (ALOS) Phased Array L-Band SAR (PALSAR). Our input dataset consists of HH backscatter images acquired in 2007 and 2009. Ground measurements for training were obtained from a study site near Loreto, Peru (4.43S 75.34W) containing the palm species Mauritia flexuosa. The ALOS PALSAR images are first averaged temporally and spatially. We then develop ancillary data layers of flood extent, distance from open water, and SAR image texture. The PALSAR data and derived ancillary layers are combined with MODIS Vegetation Indices and SRTM elevation and input in a classification framework. Since palm swamps are found in persistently flooded areas, we evaluate the potential of identifying and mapping these ecosystems using multi-temporal SAR-based flood extent maps. We conclude by comparing the performance between a decision-tree supervised vs. unsupervised approach and by

  17. Characterizing the Status (Disturbed, Hybrid or Novel) of Swamp Forest Fragments in a Caribbean Ramsar Wetland: The Impact of Anthropogenic Degradation and Invasive Plant Species.

    Science.gov (United States)

    Prospere, Kurt; McLaren, Kurt P; Wilson, Byron

    2016-10-01

    The last remaining Amazonian-type swamp forest fragments in Black River Lower Morass, Jamaica, have been subjected to a myriad of anthropogenic disturbances, compounded by the establishment and spread of several invasive plant species. We established 44 permanent sample plots (covering 3.92 ha) across 10 of these swamp forest fragments and sampled all non-woody plants and all trees ≥2 cm DBH found in the plots. These data were used to (1) identify thresholds of hybridity and novelty, (2) derive several diversity and structural descriptors used to characterize the swamp forest fragments and (3) identify possible indicators of anthropogenic degradation. These were incorporated into a framework and used to determine the status of the swamp forest fragments so that appropriate management and conservation measures can be implemented. We recorded 43 woody plant species (9 endemic, 28 native and 4 non-native) and 21 non-tree species. The composition and structure of all the patches differed significantly due to the impact of the herbaceous invasive plant Alpinia allughas, the presence and diversity of other non-native plants, and differing intensities of anthropogenic disturbance (e.g., burning, cutting and harvesting of non-timber forest products). We ranked forest patches along a continuum representing deviations from a historical proxy (least disturbed) swamp forest to those with dramatically altered structural and floristic attributes (=novel swamp forests). Only one fragment overrun with A. allughas was classified as novel. If effective conservation and management does not come to the BRLM, the remaining swamp forest fragments appear doomed to further degradation and will soon disappear altogether.

  18. Mapping Palm Swamp Wetland Ecosystems in the Peruvian Amazon: a Multi-Sensor Remote Sensing Approach

    Science.gov (United States)

    Podest, E.; McDonald, K. C.; Schroeder, R.; Pinto, N.; Zimmerman, R.; Horna, V.

    2012-12-01

    Wetland ecosystems are prevalent in the Amazon basin, especially in northern Peru. Of specific interest are palm swamp wetlands because they are characterized by constant surface inundation and moderate seasonal water level variation. This combination of constantly saturated soils and warm temperatures year-round can lead to considerable methane release to the atmosphere. Because of the widespread occurrence and expected sensitivity of these ecosystems to climate change, it is critical to develop methods to quantify their spatial extent and inundation state in order to assess their carbon dynamics. Spatio-temporal information on palm swamps is difficult to gather because of their remoteness and difficult accessibility. Spaceborne microwave remote sensing is an effective tool for characterizing these ecosystems since it is sensitive to surface water and vegetation structure and allows monitoring large inaccessible areas on a temporal basis regardless of atmospheric conditions or solar illumination. We developed a remote sensing methodology using multi-sensor remote sensing data from the Advanced Land Observing Satellite (ALOS) Phased Array L-Band Synthetic Aperture Radar (PALSAR), Shuttle Radar Topography Mission (SRTM) DEM, and Landsat to derive maps at 100 meter resolution of palm swamp extent and inundation based on ground data collections; and combined active and passive microwave data from AMSR-E and QuikSCAT to derive inundation extent at 25 kilometer resolution on a weekly basis. We then compared information content and accuracy of the coarse resolution products relative to the high-resolution datasets. The synergistic combination of high and low resolution datasets allowed for characterization of palm swamps and assessment of their flooding status. This work has been undertaken partly within the framework of the JAXA ALOS Kyoto & Carbon Initiative. PALSAR data have been provided by JAXA. Portions of this work were carried out at the Jet Propulsion Laboratory

  19. Improved open-sun drying method for local swamp rice in Uganda ...

    African Journals Online (AJOL)

    “Kaiso” and “Supa” are the main local swamp-rice (Oryza Sativa) varieties currently grown in Uganda mainly by smallholder farmers on small gardens (0.5 – 2ha). Due to lack of mechanized drying equipment and owing to the low volumes of their harvests, these farmers use open-sun drying methods, where the paddy is ...

  20. Weathering of a petroleum spill in a tropical mangrove swamp

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, S.J.; Alexander, R.; Kagi, R.I. [Curtin Univ., Perth (Australia)

    1996-12-31

    In August 1987, an indeterminate amount of petroleum condensate was released from a buried pipe leading to contamination of a tropical mangrove swamp surrounding a tidal creek in North Western Australia. Since no bioremediation was attempted at this site, we have monitored the natural weathering of the condensate by detailed analysis of the petroleum hydrocarbons extracted from sediment samples collected on 11 occasions over a 3 year period.

  1. Comparing Avocado, Swamp Bay, and Camphortree as Hosts of Raffaelea lauricola Using a Green Fluorescent Protein (GFP)-Labeled Strain of the Pathogen.

    Science.gov (United States)

    Campbell, A S; Ploetz, R C; Rollins, J A

    2017-01-01

    Raffaelea lauricola, a fungal symbiont of the ambrosia beetle Xyleborus glabratus, causes laurel wilt in members of the Lauraceae plant family. North American species in the family, such as avocado (Persea americana) and swamp bay (P. palustris), are particularly susceptible to laurel wilt, whereas the Asian camphortree (Cinnamomum camphora) is relatively tolerant. To determine whether susceptibility is related to pathogen colonization, a green fluorescent protein-labeled strain of R. lauricola was generated and used to inoculate avocado, swamp bay, and camphortree. Trees were harvested 3, 10, and 30 days after inoculation (DAI), and disease severity was rated on a 1-to-10 scale. By 30 DAI, avocado and swamp bay developed significantly more severe disease than camphortree (mean severities of 6.8 and 5.5 versus 1.6, P < 0.003). The extent of xylem colonization was recorded as the percentage of lumena that were colonized by the pathogen. More xylem was colonized in avocado than camphortree (0.9% versus 0.1%, P < 0.03) but colonization in swamp bay (0.4%) did not differ significantly from either host. Although there were significant correlations between xylem colonization and laurel wilt severity in avocado (r = 0.74), swamp bay (r = 0.82), and camphortree (r = 0.87), even severely affected trees of all species were scarcely colonized by the pathogen.

  2. Heavy Metals Uptake by Asian Swamp Eel, Monopterus albus from Paddy Fields of Kelantan, Peninsular Malaysia: Preliminary Study

    OpenAIRE

    Yin, Sow Ai; Ismail, Ahmad; Zulkifli, Syaizwan Zahmir

    2012-01-01

    Swamp eel, Monopterus albus is one of the common fish in paddy fields, thus it is suitable to be a bio-monitor for heavy metals pollution studies in paddy fields. This study was conducted to assess heavy metals levels in swamp eels collected from paddy fields in Kelantan, Malaysia. The results showed zinc [Zn (86.40 μg/g dry weight)] was the highest accumulated metal in the kidney, liver, bone, gill, muscle and skin. Among the selected organs, gill had the highest concentrations of lead (Pb),...

  3. Evaluating Hydrologic Response of an Agricultural Watershed for Watershed Analysis

    Directory of Open Access Journals (Sweden)

    Manoj Kumar Jha

    2011-06-01

    Full Text Available This paper describes the hydrological assessment of an agricultural watershed in the Midwestern United States through the use of a watershed scale hydrologic model. The Soil and Water Assessment Tool (SWAT model was applied to the Maquoketa River watershed, located in northeast Iowa, draining an agriculture intensive area of about 5,000 km2. The inputs to the model were obtained from the Environmental Protection Agency’s geographic information/database system called Better Assessment Science Integrating Point and Nonpoint Sources (BASINS. Meteorological input, including precipitation and temperature from six weather stations located in and around the watershed, and measured streamflow data at the watershed outlet, were used in the simulation. A sensitivity analysis was performed using an influence coefficient method to evaluate surface runoff and baseflow variations in response to changes in model input hydrologic parameters. The curve number, evaporation compensation factor, and soil available water capacity were found to be the most sensitive parameters among eight selected parameters. Model calibration, facilitated by the sensitivity analysis, was performed for the period 1988 through 1993, and validation was performed for 1982 through 1987. The model was found to explain at least 86% and 69% of the variability in the measured streamflow data for calibration and validation periods, respectively. This initial hydrologic assessment will facilitate future modeling applications using SWAT to the Maquoketa River watershed for various watershed analyses, including watershed assessment for water quality management, such as total maximum daily loads, impacts of land use and climate change, and impacts of alternate management practices.

  4. Spatial differences in hydrologic characteristics and water chemistry of a temperate coastal plain peatland: The Great Dismal Swamp, USA

    Science.gov (United States)

    Speiran, Gary K.; Wurster, Frederick C.

    2016-01-01

    Spatial differences in hydrologic processes and geochemistry across forested peatlands control the response of the wetland-community species and resiliency to natural and anthropogenic disturbances. Knowing these controls is essential to effectively managing peatlands as resilient wetland habitats. The Great Dismal Swamp is a 45,325 hectare peatland in the Atlantic Coastal Plain of Virginia and North Carolina, USA, managed by the U.S. Fish and Wildlife Service. The existing forest-species distribution is a product of timber harvesting, hydrologic alteration by canal and road construction, and wildfires. Since 2009, studies of hydrologic and geochemical controls have expanded knowledge of groundwater flow paths, water chemistry, response to precipitation events, and characteristics of the peat. Dominant hydrologic and geochemical controls include (1) the gradual slope in land surface, (2) vertical differences in the hydraulic characteristics of the peat, (3) the proximity of lateral groundwater and small stream inflows from uplands, (4) the presence of an extensive canal and road network, and (5) small, adjustable-height dams on the canals. Although upland sources provide some surface water and lateral groundwater inflow to western parts of the swamp, direct groundwater recharge by precipitation is the major source of water throughout the swamp and the only source in many areas. Additionally, the proximity and type of upland water sources affect water levels and nutrient concentrations in canal water and groundwater. Where streams are a dominant upland source, variations in groundwater levels and nutrient concentrations are greater than where recharge by precipitation is the primary water source. Where upland groundwater is a dominant source, water levels are more stable. Because the species distribution of forest communities in the Swamp is strongly influenced by these controls, swamp managers are beginning to incorporate this knowledge into forest, water, and fire

  5. 75 FR 8107 - Bond Swamp National Wildlife Refuge, Bibb and Twiggs Counties, GA

    Science.gov (United States)

    2010-02-23

    ... impact. SUMMARY: We, the U.S. Fish and Wildlife Service (Service), announce the availability of our final comprehensive Conservation Plan (CCP) and finding of no significant impact (FONSI) for the environmental..., including upland mixed pine/hardwood, bottomland hardwood, and tupelo gum swamp forests. Creeks, beaver...

  6. The palynology and sedimentology of a coastal swamp at Awana, Great Barrier Island, New Zealand, from c. 7000 yr B.P. to present

    International Nuclear Information System (INIS)

    Horrocks, M.; Ogden, J.; Nichol, S.L.; Alloway, B.V.; Sutton, D.G.

    1999-01-01

    Pollen and sediment analysis of two Holocene cores from Awana, Great Barrier Island, shows that at 7000 calibrated yr B.P. the local swamp was an estuarine salt marsh dominated by Restionaceae. By c. 6000 yr B.P. the water table was lower, and a fresh water swamp (Gleichenia-Leptospermum) had replaced the salt marsh. Regional conifer-hardwood forest c. 7000 yr B.P. was initially co-dominated by Libocedrus and Dacrydium cupressinum. Libocedrus declined from c. 6000 yr B.P. During the period c. 6000-c. 2500 yr B.P., relatively stable environmental conditions ensued with little change in local or regional vegetation. Around 2500 yr B.P., the swamp surface became drier and was invaded by Dacrycarpus and Laurelia swamp forest. This forest was subsequently repeatedly disturbed (not by fire), indicating climatic change to drier and windier conditions. Ascarina lucida was periodically a major component of swamp forest. Disturbance is also recorded in the clastic (mineral) sediments, where beds of sand within finer-grained sediment and peat are interpreted as wind blown material derived from partly devegetated dunes to seaward. The presence of the Kaharoa Tephra allows the timing of major Polynesian deforestation at Awana to be reliably dated to c. 600 calibrated yr B.P. In contrast, we see no evidence in the clastic sediment record of disturbance at Awana since Kaharoa time. We attribute this to the maintenance of stable dunes by a herb/scrub cover despite nearby fires, or to the presence of scrub or forest buffering the swamp from ablating dunes. (author). 45 refs., 4 figs., 1 tab

  7. Behavioural and hormonal aspects of the oestrous cycle in swamp buffaloes reared under temperate conditions

    International Nuclear Information System (INIS)

    Kanai, Y.; Ishikawa, N.; Shimizu, H.

    1990-01-01

    A series of experiments was carried out using a small herd of swamp buffaloes raised in Japan under temperate conditions at 36 deg. N latitude, with a view to determining whether they exhibit peculiar characteristics in their oestrous cycles. The studies on the oestrous behaviour revealed that under adequate feeding and management conditions, buffaloes regularly display oestrous throughout the year, with the cycle length, duration of oestrous and time of ovulation all falling within ranges similar to those reported in cattle. External signs of oestrus were generally less evident, as previously reported. Hormonal analysis showed that there were no remarkable differences between swamp buffaloes and cattle in terms of the secretory patterns of pituitary gonadotrophins and ovarian steroids during the oestrous cycle. (author). 13 refs, 2 figs

  8. Repeated drought alters resistance of seed bank regeneration in baldcypress swamps of North America

    Science.gov (United States)

    Lei, Ting; Middleton, Beth A.

    2018-01-01

    Recurring drying and wetting events are likely to increase in frequency and intensity in predicted future droughts in the central USA and alter the regeneration potential of species. We explored the resistance of seed banks to successive droughts in 53 sites across the nine locations in baldcypress swamps in the southeastern USA. Along the Mississippi River Alluvial Valley and northern Gulf of Mexico, we investigated the capacity of seed banks to retain viable seeds after successive periods of drying and wetting in a greenhouse study. Mean differences in species richness and seed density were compared to examine the interactions of successive droughts, geographical location and water regime. The results showed that both species richness and total density of germinating seedlings decreased over repeated drought trials. These responses were more pronounced in geographical areas with higher annual mean temperature. In seed banks across the southeastern swamp region, most species were exhausted after Trial 2 or 3, except for semiaquatic species in Illinois and Tennessee, and aquatic species in Texas. Distinct geographical trends in seed bank resistance to drought demonstrate that climate-induced drying of baldcypress swamps could influence the regeneration of species differently across their ranges. Despite the health of adult individuals, lack of regeneration may push ecosystems into a relict status. Seed bank depletion by germination without replenishment may be a major conservation threat in a future with recurring droughts far less severe than megadrought. Nevertheless, the protection of moist refugia might aid conservation.

  9. Holocene mangrove swamps of West Africa sedimentology and soils

    Science.gov (United States)

    Marius, C.; Lucas, J.

    The mangrove swamps of West African Coast belong to the Atlantic type which is characterized by a small number of species. They colonize tidal environments which are dissected by numerous meandering tidal channels and are presently subject to a low rate of sediment accumulation. The mangrove vegetation exhibits a characteristic zonation pattern that basically reflects the adaptation of the various species to saline conditions. The typical zonation sequence is: Rhizophora racemosa (or Rh. mangle), Rh. mangle + Avicennia africana, Avicennia, flooded tanne, barren tanne, herbaceous tanne. The tannes are generated by aridic climatic conditions, heavy soil and water salt content, and are, in a way a peculiar feature of mangrove swamps in West Africa. The sediment colonized by the mangroves is relatively homogenous. Mineralogically, they are dominated by quartz and clay to which are associated halite, pyrite and jarosite. The clay suite is mainly composed of smectite and kaolinite. Smectite is predominant in the inlet areas and is replaced inland by kaolinite. Chemically, the sediments contain very low amounts of Ca, bases and trace elements. The mangrove swamp floodwaters have a chemical composition similar to that of seawater. It is dominated by sodium and chloride. Morphologically, the ripening of the soils appears with a chestnut mash colour horizon and buttery consistency in relation with the decomposition of fibrous roots of Rhizophora and also with pale yellow jarosite mottles in the top horizons of the tanne profiles due to the oxidation of pyrine. The two main properties of the mangrove soils of West Africa are acidity and salinity; the first is related to the high content of sulphur and the second to the sea influence. The acidity has to be connected mainly to the Rhizophora vegetation whose the root system is a real trap for catching the pyrites resulting from the reduction of the sulphates of sea water by the sulphate reducing bacteria, in a reduced

  10. Relationships between Vacant Homes and Food Swamps: A Longitudinal Study of an Urban Food Environment.

    Science.gov (United States)

    Mui, Yeeli; Jones-Smith, Jessica C; Thornton, Rachel L J; Pollack Porter, Keshia; Gittelsohn, Joel

    2017-11-21

    Research indicates that living in neighborhoods with high concentrations of boarded-up vacant homes is associated with premature mortality due to cancer and diabetes, but the mechanism for this relationship is unclear. Boarded-up housing may indirectly impact residents' health by affecting their food environment. We evaluated the association between changes in vacancy rates and changes in the density of unhealthy food outlets as a proportion of all food outlets, termed the food swamp index, in Baltimore, MD (USA) from 2001 to 2012, using neighborhood fixed-effects linear regression models. Over the study period, the average food swamp index increased from 93.5 to 95.3 percentage points across all neighborhoods. Among non-African American neighborhoods, increases in the vacancy rate were associated with statistically significant decreases in the food swamp index (b = -0.38; 90% CI, -0.64 to -0.12; p -value: 0.015), after accounting for changes in neighborhood SES, racial diversity, and population size. A positive association was found among low-SES neighborhoods (b = 0.15; 90% CI, 0.037 to 0.27; p -value: 0.031). Vacant homes may influence the composition of food outlets in urban neighborhoods. Future research should further elucidate the mechanisms by which more distal, contextual factors, such as boarded-up vacant homes, may affect food choices and diet-related health outcomes.

  11. Watershed assessment-watershed analysis: What are the limits and what must be considered

    Science.gov (United States)

    Robert R. Ziemer

    2000-01-01

    Watershed assessment or watershed analysis describes processes and interactions that influence ecosystems and resources in a watershed. Objectives and methods differ because issues and opportunities differ.

  12. Application of Watershed Scale Models to Predict Nitrogen Loading From Coastal Plain Watersheds

    Science.gov (United States)

    George M. Chescheir; Glenn P Fernandez; R. Wayne Skaggs; Devendra M. Amatya

    2004-01-01

    DRAINMOD-based watershed models have been developed and tested using data collected from an intensively instrumented research site on Kendricks Creek watershed near Plymouth. NC. These models were applied to simulate the hydrology and nitrate nitrogen (NO3-N) loading from two other watersheds in the Coastal Plain of North Carolina, the 11600 ha Chicod Creek watershed...

  13. Strong and stable geographic differentiation of swamp buffalo maternal and paternal lineages indicates domestication in the China/Indochina border region.

    Science.gov (United States)

    Zhang, Yi; Lu, Yongfang; Yindee, Marnoch; Li, Kuan-Yi; Kuo, Hsiao-Yun; Ju, Yu-Ten; Ye, Shaohui; Faruque, Md Omar; Li, Qiang; Wang, Yachun; Cuong, Vu Chi; Pham, Lan Doan; Bouahom, Bounthong; Yang, Bingzhuang; Liang, Xianwei; Cai, Zhihua; Vankan, Dianne; Manatchaiworakul, Wallaya; Kowlim, Nonglid; Duangchantrasiri, Somphot; Wajjwalku, Worawidh; Colenbrander, Ben; Zhang, Yuan; Beerli, Peter; Lenstra, Johannes A; Barker, J Stuart F

    2016-04-01

    The swamp type of the Asian water buffalo is assumed to have been domesticated by about 4000 years BP, following the introduction of rice cultivation. Previous localizations of the domestication site were based on mitochondrial DNA (mtDNA) variation within China, accounting only for the maternal lineage. We carried out a comprehensive sampling of China, Taiwan, Vietnam, Laos, Thailand, Nepal and Bangladesh and sequenced the mtDNA Cytochrome b gene and control region and the Y-chromosomal ZFY, SRY and DBY sequences. Swamp buffalo has a higher diversity of both maternal and paternal lineages than river buffalo, with also a remarkable contrast between a weak phylogeographic structure of river buffalo and a strong geographic differentiation of swamp buffalo. The highest diversity of the swamp buffalo maternal lineages was found in south China and north Indochina on both banks of the Mekong River, while the highest diversity in paternal lineages was in the China/Indochina border region. We propose that domestication in this region was later followed by introgressive capture of wild cows west of the Mekong. Migration to the north followed the Yangtze valley as well as a more eastern route, but also involved translocations of both cows and bulls over large distances with a minor influence of river buffaloes in recent decades. Bayesian analyses of various migration models also supported domestication in the China/Indochina border region. Coalescence analysis yielded consistent estimates for the expansion of the major swamp buffalo haplogroups with a credibility interval of 900 to 3900 years BP. The spatial differentiation of mtDNA and Y-chromosomal haplotype distributions indicates a lack of gene flow between established populations that is unprecedented in livestock. © 2015 John Wiley & Sons Ltd.

  14. Evaluating Hydrologic Response of an Agricultural Watershed for Watershed Analysis

    OpenAIRE

    Manoj Kumar Jha

    2011-01-01

    This paper describes the hydrological assessment of an agricultural watershed in the Midwestern United States through the use of a watershed scale hydrologic model. The Soil and Water Assessment Tool (SWAT) model was applied to the Maquoketa River watershed, located in northeast Iowa, draining an agriculture intensive area of about 5,000 km2. The inputs to the model were obtained from the Environmental Protection Agency’s geographic information/database system called Better Assessment Science...

  15. Engaging Watershed Stakeholders for Cost-Effective Environmental Management Planning with "Watershed Manager"

    Science.gov (United States)

    Williams, Jeffery R.; Smith, Craig M.; Roe, Josh D.; Leatherman, John C.; Wilson, Robert M.

    2012-01-01

    "Watershed Manager" is a spreadsheet-based model that is used in extension education programs for learning about and selecting cost-effective watershed management practices to reduce soil, nitrogen, and phosphorus losses from cropland. It can facilitate Watershed Restoration and Protection Strategy (WRAPS) stakeholder groups' development…

  16. Differential recovery of a deepwater swamp forest across a gradient of disturbance intensity

    Science.gov (United States)

    Diane De Steven; Rebecca R. Sharitz

    1997-01-01

    On the Savannah River Site, South Carolina, USA, large areas of floodplain swamp forest of baldcypress (Taxodium distichum) and water tupelo (Nyssa aquatica) were destroyed by the cumulative impacts of cooling-water discharges over a 35-year period of nuclear reactor operations. In one floodplain area, four years after thermal...

  17. Watershed-based survey designs

    Science.gov (United States)

    Detenbeck, N.E.; Cincotta, D.; Denver, J.M.; Greenlee, S.K.; Olsen, A.R.; Pitchford, A.M.

    2005-01-01

    Watershed-based sampling design and assessment tools help serve the multiple goals for water quality monitoring required under the Clean Water Act, including assessment of regional conditions to meet Section 305(b), identification of impaired water bodies or watersheds to meet Section 303(d), and development of empirical relationships between causes or sources of impairment and biological responses. Creation of GIS databases for hydrography, hydrologically corrected digital elevation models, and hydrologic derivatives such as watershed boundaries and upstream–downstream topology of subcatchments would provide a consistent seamless nationwide framework for these designs. The elements of a watershed-based sample framework can be represented either as a continuous infinite set defined by points along a linear stream network, or as a discrete set of watershed polygons. Watershed-based designs can be developed with existing probabilistic survey methods, including the use of unequal probability weighting, stratification, and two-stage frames for sampling. Case studies for monitoring of Atlantic Coastal Plain streams, West Virginia wadeable streams, and coastal Oregon streams illustrate three different approaches for selecting sites for watershed-based survey designs.

  18. Watershed Central: Harnessing a social media tool to organize local technical knowledge and find the right watershed resources for your watershed

    Science.gov (United States)

    Watershed Central was developed to be a bridge between sharing and searching for information relating to watershed issues. This is dependent upon active user support through additions and updates to the Watershed Central Wiki. Since the wiki is user driven, the content and applic...

  19. Comparative palynomorph signals of vegetation change preserved in an adjacent peat swamp and estuary in north-west Nelson, New Zealand

    International Nuclear Information System (INIS)

    Armour, R.K.; Kennedy, D.M.

    2005-01-01

    A history of vegetation for the mid-late Holocene was extracted from the southern margins of Whanganui Inlet and Mangarakau Swamp. These two sites represent very different pollen sinks with the estuary being dominated by fluvially transported material and the swamp by in situ pollen rain. They are, however, located very close to each other and therefore provide a unique study area to investigate how differing source environments affect pollen signals. A vegetation change from podocarps to beech forest is recorded in both settings at around 4000 years CalBP which is similar to that recorded at higher altitudes in the region. Robust palynomorphs were found in greater abundance in the inlet while the swamp contained a higher proportion of wetland species. Despite these differences both environments appeared to record a similar regional vegetation signal. This shows that estuarine environments, often characterised by material that has been transported, can provide accurate reconstructions of vegetation change. (author). 31 refs., 8 figs., 1 tab

  20. The experimental watersheds in Slovenia

    International Nuclear Information System (INIS)

    Sraj, M; Rusjan, S; Petan, S; Vidmar, A; Mikos, M; Globevnik, L; Brilly, M

    2008-01-01

    Experimental watersheds are critical to the advancement of hydrological science. By setting up three experimental watersheds, Slovenia also obtained its grounds for further development of the science and discipline. In the Dragonja experimental watershed the studies are focused on the afforestation of the watershed in a mediterranean climate, on the Reka river the water balance in a partly karstic area is examined, and on the case of the Glinscica stream the implications of the urban environment are studied. We have obtained valuable experience and tested new measuring equipment on all three experimental watersheds. Measurements and analysis on the experimental watersheds improved the current understanding of hydrological processes. They resulted in several PhD Theses, Master Theses and scientific articles. At the same time the experimental watersheds provide support to the teaching and studying process.

  1. BIOCONTROL FOR RHIZOCTONIA STEM ROT DISEASE BY USING COMBINATION OF SPECIFIC ENDOPHYTE IN PADDY TIDAL SWAMP

    Directory of Open Access Journals (Sweden)

    Ismed Setya Budi

    2013-10-01

    Full Text Available The use of combination of specific endophytic in tidal swamps to control stem root disease as biological control agents has not been done. It is expected that this combination is able to continuously protect plants from pathogen interference. The research was carried out in type C tidal swamp in Banjar regency of South Kalimantan, from March to November 2011, temperature 29-32oC, and pH 4.0-5.5. The method used was Split Plot design. Biocontrol preparation for both types of endophytic was applied in seeds in 7 days after planting (DAP. Observation on high intensity and plant diseases of planting stage on tidal swamps (taradak, ampak and lacak was conducted. The results showed that there was a reduction of disease ranging from 58.70 to 87.29%. The application of combination of two biocontrol agents (T. viride PS-2.1 + P. fluorescent PS-4.8, (Fusarium non-pathogenic PS-1.5 + P. fluorescent PS-4.8 and (T. viride PS-2.1+ FNP PS-1.5 isolate gave the best inhibition result, reduced disease intensity, and increased plant height. The result of soil analysis before and after application of endophytic showed that there was an increase in soil fertility with the element addition of N, P, K and pH.

  2. AGRICULTURE PHENOMENA AND PERSPECTIVES OF LEBAK SWAMP IN JAKABARING SOUTH SUMATRA, INDONESIA

    Directory of Open Access Journals (Sweden)

    Elisa Wildayana

    2017-11-01

    Full Text Available The research aimed to analyze agriculture phenomena and perspectives of lebak swamp in Jakabaring South Sumatra Indonesia. The research used mix methods of quantitative and qualitative approaches. The description of the research area was assisted with interpretation of Landsat images in 1987 and 2015. The research resulted that farmer’s groups living in Jakabaring are divided into four group, namely indigenous people (people of Ogan, Komering, Musi, Enim, and Palembang, new comers (Javanese, spontaneous migration (Buginese, Banjarnese, Bataknese and outside spontaneous migration (Chinese, Arabic. The total area of Jakabaring is approximately 5,525 ha, around 2,700 ha (48.87 % was already landfilled by the Government in 1990, while the remaining 2,825 ha (51.13 % is still not reclaimed. The landfill materials were directly sucked from mud, sand, silt and stones of the Musi River. Each lebak swamp typology shows specific soil characters, but after landfills all soils became homogenous because of uniform materials of landfills. Patterns of land degradation after landfills are classified into three groups, namely making layers of water impermeability, changing vegetation types of land cover, and decreasing type and density of vegetation.

  3. Potential roles of fish, birds, and water in swamp privet (Forestiera acuminata) seed dispersal

    Science.gov (United States)

    Susan B. Adams; Paul B. Hamel; Kristina Connor; Bryce Burke; Emile S. Gardiner; David Wise

    2007-01-01

    Forestiera acuminata (swamp privet) is a common wetland shrub/small tree native to the southeastern United States. We examined several possible dispersal avenues for the plant. We tested germination of seeds exposed to various treatments, including passage through Ictalurus punctatus (Channel Catfi sh) guts, and conducted other...

  4. Lessons From Watershed-Based Climate Smart Agricultural Practices In Jogo-Gudedo Watershed Ethiopia

    Directory of Open Access Journals (Sweden)

    Abera Assefa

    2015-08-01

    Full Text Available Abstract Land degradation is the most chronic problem in the Ethiopia. Soil erosion and denudation of vegetation covers are tending to enlarge the area of degraded and west land in semi-arid watersheds. It is therefore watershed management is believed as a holistic approach to create a climate smart landscape that integrate forestry agriculture pasture and soil water management with an objective of sustainable management of natural resources to improve livelihood. This approach pursues to promote interactions among multiple stakeholders and their interests within and between the upstream and downstream locations of a watershed. Melkassa Agricultural Research Centre MARC has been implementing integrated watershed management research project in the Jogo-gudedo watershed from 2010-2014 and lessons from Jogo-gudedo watershed are presented in this research report. Participatory action research PAR was implemented on Soil and Water Conservation SWC area enclosure Agroforestry AF Conservation Tillage CT energy saving stove drought resistance crop varieties in the Jogo-gudedo watershed. Empirical research and action research at plot level and evaluation of introduced technologies with farmers through experimental learning approach and documentation were employed. The participatory evaluation and collective action of SWC and improved practices brought high degree of acceptance of the practices and technologies. This had been ratified by the implementation of comprehensive watershed management action research which in turn enabled to taste and exploit benefits of climate-smart agricultural practices. Eventually significant reduction on soil loss and fuel wood consumption improvements on vegetation cover and crop production were quantitatively recorded as a good indicator and success. Field visit meetings trainings and frequent dialogues between practitioners and communities at watershed level have had a help in promoting the climate smart agriculture

  5. Spatial analysis of Carbon-14 dynamics in a wetland ecosystem (Duke Swamp, Chalk River Laboratories, Canada)

    International Nuclear Information System (INIS)

    Yankovich, T.L.; King-Sharp, K.J.; Carr, J.; Robertson, E.; Killey, R.W.D.; Beresford, N.A.; Wood, M.D.

    2014-01-01

    A detailed survey was conducted to quantify the spatial distribution of 14 C in Sphagnum moss and underlying soil collected in Duke Swamp. This wetland environment receives 14 C via groundwater pathways from a historic radioactive Waste Management Area (WMA) on Atomic Energy Canada Limited (AECL)'s Chalk River Laboratories (CRL) site. Trends in 14 C specific activities were evaluated with distance from the sampling location with the maximum 14 C specific activity (DSS-35), which was situated adjacent to the WMA and close to an area of groundwater discharge. Based on a spatial evaluation of the data, an east-to-west 14 C gradient was found, due to the influence of the WMA on 14 C specific activities in the swamp. In addition, it was possible to identify two groups of sites, each showing significant exponential declines with distance from the groundwater source area. One of the groups showed relatively more elevated 14 C specific activities at a given distance from source, likely due to their proximity to the WMA, the location of the sub-surface plume originating from the WMA, the presence of marsh and swamp habitat types, which facilitated 14 C transport to the atmosphere, and possibly, 14 C air dispersion patterns along the eastern edge of the swamp. The other group, which had lower 14 C specific activities at a given distance from the groundwater source area, included locations that were more distant from the WMA and the sub-surface plume, and contained fen habitat, which is known to act as barrier to groundwater flow. The findings suggest that proximity to source, groundwater flow patterns and habitat physical characteristics can play an important role in the dynamics of 14 C being carried by discharging groundwater into terrestrial and wetland environments. - Highlights: • Groundwater represents an important source of volatile radionuclides to wetlands. • Habitat type influenced 14 C transport from sub-surface to surface environments. • C-14 specific

  6. Adopt Your Watershed

    Data.gov (United States)

    U.S. Environmental Protection Agency — Adopt Your Watershed is a Website that encourages stewardship of the nation's water resources and serves as a national inventory of local watershed groups and...

  7. Composition and species diversity of pine-wiregrass savannas of the Green Swamp, North Carolina

    Science.gov (United States)

    Joan Walker; Robert K. Peet

    1983-01-01

    Fire-maintained, species-rich pines wiregrass savannas in the Green Swamp, North Carolina were sampled over their natural range of environmental conditions and fire frequencies. Species composition, species richness, diversity (Exp H', I/ C), and aboveground production were documented and fertilization experiments conducted to assess possible mechanisms for the...

  8. Recycling of phenolic compounds in Borneo's tropical peat swamp forests.

    Science.gov (United States)

    Yule, Catherine M; Lim, Yau Yan; Lim, Tse Yuen

    2018-02-07

    Tropical peat swamp forests (TPSF) are globally significant carbon stores, sequestering carbon mainly as phenolic polymers and phenolic compounds (particularly as lignin and its derivatives) in peat layers, in plants, and in the acidic blackwaters. Previous studies show that TPSF plants have particularly high levels of phenolic compounds which inhibit the decomposition of organic matter and thus promote peat accumulation. The studies of phenolic compounds are thus crucial to further understand how TPSF function with respect to carbon sequestration. Here we present a study of cycling of phenolic compounds in five forests in Borneo differing in flooding and acidity, leaching of phenolic compounds from senescent Macaranga pruinosa leaves, and absorption of phenolics by M. pruinosa seedlings. The results of the study show that total phenolic content (TPC) in soil and leaves of three species of Macaranga were highest in TPSF followed by freshwater swamp forest and flooded limestone forest, then dry land sites. Highest TPC values were associated with acidity (in TPSF) and waterlogging (in flooded forests). Moreover, phenolic compounds are rapidly leached from fallen senescent leaves, and could be reabsorbed by tree roots and converted into more complex phenolics within the leaves. Extreme conditions-waterlogging and acidity-may facilitate uptake and synthesis of protective phenolic compounds which are essential for impeded decomposition of organic matter in TPSF. Conversely, the ongoing drainage and degradation of TPSF, particularly for conversion to oil palm plantations, reverses the conditions necessary for peat accretion and carbon sequestration.

  9. Distinguishing Natural and Anthropogenic Sources of Chemical Loading on a Watershed-Scale, Mill River Watershed, Massachusetts

    Science.gov (United States)

    Rhodes, A. L.; Newton, R. M.; Pufall, A.

    2001-05-01

    exceeds Na by 10%, except in the most salt-impacted, low-gradient systems where Cl exceeds Na by 15%. Assuming that road salt composition (NaCl+/-CaCl2+/-MgCl2) is uniform across the MRW, the extra 5% imbalance suggests that cation exchange between Na+ and H+ occurs in soil organic horizons and accounts for a 100 μ eq/L ANC loss. Non-point-source pollution elevates ANC in the most developed Zone III areas. Alkaline pollution impacts the natural acidity of a large swamp (ANC ranges -90 to 600 μ eq/L); remote systems typically show episodic acidification when ANCroad salt. ANC drops by 110 μ eq/L downstream of the larger reservoir, despite the low percentage of anthropogenic land. Thus, correlating chemistry with percent anthropogenic land serves as a predictive tool to evaluate further degradation of water quality with future development in a watershed. Removal of drinking water from municipal reservoirs limits dilution of chemical loads, showing that water conservation--even in temperate climates--can help preserve water quality.

  10. Testate amoebae analysis in the peat deposits of the swamp Dolgon’koye in the south of Western Siberia and peatland paleohydrology for last 3100 years

    Science.gov (United States)

    Kurina, Irina V.; Blyakharchuk, Tatiana A.

    2018-03-01

    Our research is devoted to paleohydrological reconstruction in the swamp located in the river valley on the piedmont of the Altai Mountains in the south of Western Siberia. The reconstruction was carried out based on rhizopod analysis for the last 3100 cal yr. A large amount of different testate amoebae was found in the peat. Total 64 testate amoebae taxa were recorded in the peat core with the most abundant being: Trinema lineare, Centropyxis aculeata, C. aerophila, Euglypha rotunda, Cryptodifflugia sp. Decrease of surface wetness in the swamp are observed 2280, 2140, 1900–600 cal yr BP and increase – in 2700, 2500–1900, 230–215 cal yr BP. The results of our reconstruction of the swamp paleohydrology agrees well with the paleoclimatic data obtained earlier for the central area of the south of Western Siberia Plain. It indicates a high sensitivity of the swamp to climatic changes in the Holocene. The rhizopod analysis proved to be very effective when used for paleohydrology reconstruction in minerotrophic peat.

  11. The role of interior watershed processes in improving parameter estimation and performance of watershed models.

    Science.gov (United States)

    Yen, Haw; Bailey, Ryan T; Arabi, Mazdak; Ahmadi, Mehdi; White, Michael J; Arnold, Jeffrey G

    2014-09-01

    Watershed models typically are evaluated solely through comparison of in-stream water and nutrient fluxes with measured data using established performance criteria, whereas processes and responses within the interior of the watershed that govern these global fluxes often are neglected. Due to the large number of parameters at the disposal of these models, circumstances may arise in which excellent global results are achieved using inaccurate magnitudes of these "intra-watershed" responses. When used for scenario analysis, a given model hence may inaccurately predict the global, in-stream effect of implementing land-use practices at the interior of the watershed. In this study, data regarding internal watershed behavior are used to constrain parameter estimation to maintain realistic intra-watershed responses while also matching available in-stream monitoring data. The methodology is demonstrated for the Eagle Creek Watershed in central Indiana. Streamflow and nitrate (NO) loading are used as global in-stream comparisons, with two process responses, the annual mass of denitrification and the ratio of NO losses from subsurface and surface flow, used to constrain parameter estimation. Results show that imposing these constraints not only yields realistic internal watershed behavior but also provides good in-stream comparisons. Results further demonstrate that in the absence of incorporating intra-watershed constraints, evaluation of nutrient abatement strategies could be misleading, even though typical performance criteria are satisfied. Incorporating intra-watershed responses yields a watershed model that more accurately represents the observed behavior of the system and hence a tool that can be used with confidence in scenario evaluation. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  12. SWAMP+: multiple subsequence alignment using associative massive parallelism

    Energy Technology Data Exchange (ETDEWEB)

    Steinfadt, Shannon Irene [Los Alamos National Laboratory; Baker, Johnnie W [KENT STATE UNIV.

    2010-10-18

    A new parallel algorithm SWAMP+ incorporates the Smith-Waterman sequence alignment on an associative parallel model known as ASC. It is a highly sensitive parallel approach that expands traditional pairwise sequence alignment. This is the first parallel algorithm to provide multiple non-overlapping, non-intersecting subsequence alignments with the accuracy of Smith-Waterman. The efficient algorithm provides multiple alignments similar to BLAST while creating a better workflow for the end users. The parallel portions of the code run in O(m+n) time using m processors. When m = n, the algorithmic analysis becomes O(n) with a coefficient of two, yielding a linear speedup. Implementation of the algorithm on the SIMD ClearSpeed CSX620 confirms this theoretical linear speedup with real timings.

  13. Structure of the tree stratum of three swamp forest communities in southern Brazil under different soil conditions

    Directory of Open Access Journals (Sweden)

    Luciana Carla Mancino

    2015-03-01

    Full Text Available Restinga forests are commonly known to be plant communities rather poor in tree species. This study aimed to describe and explain the association between the floristic-structural similarities and the environmental conditions in three Swamp Restinga Forest communities in southern Brazil. In 13 plots of 100 m2 each, we sampled all individual trees (circumference at breast height >12 cm and height ≥3 m. We collected soil samples in each plot for chemical and textural analyses. Phytosociological parameters were calculated and different structural variables were compared between areas. The density of individuals did not differ between areas; however, the maximum height and abundance of species differed between the site with Histosols and the other two sites with Gleysols. Further, a canonical correspondence analysis based on a matrix of vegetation and that of environmental characteristics explained 31.5% of the total variation. The high floristic and environmental heterogeneity indicate that swamp-forests can shelter many species with low frequency. Most species were generalists that were not exclusive to this type of forest. Overall, our study showed that swamp-forests within the same region can show considerable differences in composition and structure and can include species-rich communities, mostly due to the presence of species with a broader distribution in the Atlantic Rainforest domain on sites with less stressful environmental conditions and without waterlogged conditions.

  14. Watershed Fact Sheet: Improving Utah's Water Quality, Upper Bear River Watershed

    OpenAIRE

    Extension, USU

    2012-01-01

    The Upper Watershed of the Bear River Basin extends from the river's headwaters to Pixley Dam in Wyoming. This is the largest watershed in the Bear River Basin, with an area of about 2,000 square miles.

  15. Hydrology, Water Quality, and Surface- and Ground-Water Interactions in the Upper Hillsborough River Watershed, West-Central Florida

    Science.gov (United States)

    Trommer, J.T.; Sacks, L.A.; Kuniansky, E.L.

    2007-01-01

    A study of the Hillsborough River watershed was conducted between October 1999 through September 2003 to characterize the hydrology, water quality, and interaction between the surface and ground water in the highly karstic uppermost part of the watershed. Information such as locations of ground-water recharge and discharge, depth of the flow system interacting with the stream, and water quality in the watershed can aid in prudent water-management decisions. The upper Hillsborough River watershed covers a 220-square-mile area upstream from Hillsborough River State Park where the watershed is relatively undeveloped. The watershed contains a second order magnitude spring, many karst features, poorly drained swamps, marshes, upland flatwoods, and ridge areas. The upper Hillsborough River watershed is subdivided into two major subbasins, namely, the upper Hillsborough River subbasin, and the Blackwater Creek subbasin. The Blackwater Creek subbasin includes the Itchepackesassa Creek subbasin, which in turn includes the East Canal subbasin. The upper Hillsborough River watershed is underlain by thick sequences of carbonate rock that are covered by thin surficial deposits of unconsolidated sand and sandy clay. The clay layer is breached in many places because of the karst nature of the underlying limestone, and the highly variable degree of confinement between the Upper Floridan and surficial aquifers throughout the watershed. Potentiometric-surface maps indicate good hydraulic connection between the Upper Floridan aquifer and the Hillsborough River, and a poorer connection with Blackwater and Itchepackesassa Creeks. Similar water level elevations and fluctuations in the Upper Floridan and surficial aquifers at paired wells also indicate good hydraulic connection. Calcium was the dominant ion in ground water from all wells sampled in the watershed. Nitrate concentrations were near or below the detection limit in all except two wells that may have been affected by

  16. Nariva Swamp Ramsar Site, Trinidad and Tobago (West Indies) Wetland Habitat Restoration Initiative

    Science.gov (United States)

    Montserrat Carbonell; Nadra Nathai-Gyan

    2005-01-01

    Trinidad and Tobago, a twin island nation, is the most southerly of the Caribbean islands and lies just 11 km off the coast of Venezuela, near the Orinoco delta. Trinidad, the larger of the two islands, is approximately 5,000 km² and the Nariva Swamp is located on its eastern coast (fig. 1). In 1993, this site was designated as a wetland of international...

  17. Palm Swamp Wetland Ecosystems of the Upper Amazon: Characterizing their Distribution and Inundation State Using Multiple Resolution Microwave Remote Sensing

    Science.gov (United States)

    Podest, E.; McDonald, K. C.; Schröder, R.; Pinto, N.; Zimmermann, R.; Horna, V.

    2011-12-01

    Palm swamp wetlands are prevalent in the Amazon basin, including extensive regions in northern Peru. These ecosystems are characterized by constant surface inundation and moderate seasonal water level variation. The combination of constantly saturated soils, giving rise to low oxygen conditions, and warm temperatures year-round can lead to considerable methane release to the atmosphere. Because of the widespread occurrence and expected sensitivity of these ecosystems to climate change, knowledge of their spatial extent and inundation state is crucial for assessing the associated land-atmosphere carbon exchange. Precise spatio-temporal information on palm swamps is difficult to gather because of their remoteness and difficult accessibility. Spaceborne microwave remote sensing is an effective tool for characterizing these ecosystems since it is sensitive to surface water and vegetation structure and allows monitoring large inaccessible areas on a temporal basis regardless of atmospheric conditions or solar illumination. We are developing a remote sensing methodology using multiple resolution microwave remote sensing data to determine palm swamp distribution and inundation state over focus regions in the Amazon basin in northern Peru. For this purpose, two types of multi-temporal microwave data are used: 1) high-resolution (100 m) data from the Advanced Land Observing Satellite (ALOS) Phased Array L-Band Synthetic Aperture Radar (PALSAR) to derive maps of palm swamp extent and inundation from dual-polarization fine-beam and multi-temporal HH-polarized ScanSAR, and 2) coarse resolution (25 km) combined active and passive microwave data from QuikSCAT and AMSR-E to derive inundated area fraction on a weekly basis. We compare information content and accuracy of the coarse resolution products to the PALSAR-based datasets to ensure information harmonization. The synergistic combination of high and low resolution datasets will allow for characterization of palm swamps and

  18. Yeast communities in Sphagnum phyllosphere along the temperature-moisture ecocline in the boreal forest-swamp ecosystem and description of Candida sphagnicola sp. nov.

    Science.gov (United States)

    Kachalkin, Aleksey V; Yurkov, Andrey M

    2012-06-01

    The effects of the temperature-moisture factors on the phylloplane yeast communities inhabiting Sphagnum mosses were studied along the transition from a boreal forest to a swamp biotope at the Central Forest State Biosphere Reserve (Tver region, Russia). We tested the hypothesis that microclimatic parameters affect yeast community composition and structure even on a rather small spatial scale. Using a conventional plating technique we isolated and identified by molecular methods a total of 15 species of yeasts. Total yeast counts and species richness values did not depend on environmental factors, although yeast community composition and structure did. On average, Sphagnum in the swamp biotope supported a more evenly structured yeast community. Relative abundance of ascomycetous yeasts was significantly higher on swamp moss. Rhodotorula mucilaginosa dominated in the spruce forest and Cryptococcus magnus was more abundant in the swamp. Our study confirmed the low occurrence of tremellaceous yeasts in the Sphagnum phyllosphere. Of the few isolated ascomycetous yeast and yeast-like species, some were differentiated from hitherto known species in physiological tests and phylogenetic analyses. We describe one of them as Candida sphagnicola and designate KBP Y-3887(T) (=CBS 11774(T) = VKPM Y-3566(T) = MUCL 53590(T)) as the type strain. The new species was registered in MycoBank under MB 563443.

  19. Galling arthropod diversity in adjacent swamp forests and restinga vegetation in Rio Grande do Sul, Brazil.

    Science.gov (United States)

    Mendonça, Milton De S; Piccardi, Hosana M F; Jahnke, Simone M; Dalbem, Ricardo V

    2010-01-01

    Galling arthropods create plant structures inside which they find shelter. Factors acting on galler diversity are still being discussed, with this fauna considered more diverse in xeric than mesic environments (higrothermic stress hypothesis, HSH), and also in more plant diverse sites. Here we compare galler abundance (N), equitability (E), species richness (S) and composition between adjacent restinga (xeric) and swamp forests (mesic) in Parque Estadual de Itapeva (29°21' S, 49°45' W), Rio Grande do Sul, southern Brazil. Five trails, two in swamp forest and three in restingas, were sampled four times each (January/December 2005). After an effort of 60h/person, 621 galled plant individuals belonging to 104 gall morphotypes were recorded. This suggests a high galler diversity for the Park, comparable to the richest places known. No differences were found for N, E or S between restingas and swamp forests. However, faunal composition differs significantly between the vegetation types. The dominant (most abundant) species are different in either vegetation type, and are rare or absent on the other vegetation type. Such species composition analysis is still largely ignored for gallers, and stresses the fact that the HSH cannot explain this pattern, since the latter is based on preferences by the ovipositing galler for xeric sites instead of mesic ones. The two habitats differ in microclimate, but species richness, as would be predicted by the HSH, does not differ. This small scale pattern can perhaps be attributed to biogeographic processes on larger scales, as suggested by the resource synchronisation hypothesis.

  20. Retrospective Review of Watershed Characteristics and a Framework for Future Research in the Sarasota Bay Watershed, Florida

    Science.gov (United States)

    Kish, George R.; Harrison, Arnell S.; Alderson, Mark

    2008-01-01

    The U.S. Geological Survey, in cooperation with the Sarasota Bay Estuary Program conducted a retrospective review of characteristics of the Sarasota Bay watershed in west-central Florida. This report describes watershed characteristics, surface- and ground-water processes, and the environmental setting of the Sarasota Bay watershed. Population growth during the last 50 years is transforming the Sarasota Bay watershed from rural and agriculture to urban and suburban. The transition has resulted in land-use changes that influence surface- and ground-water processes in the watershed. Increased impervious cover decreases recharge to ground water and increases overland runoff and the pollutants carried in the runoff. Soil compaction resulting from agriculture, construction, and recreation activities also decreases recharge to ground water. Conventional approaches to stormwater runoff have involved conveyances and large storage areas. Low-impact development approaches, designed to provide recharge near the precipitation point-of-contact, are being used increasingly in the watershed. Simple pollutant loading models applied to the Sarasota Bay watershed have focused on large-scale processes and pollutant loads determined from empirical values and mean event concentrations. Complex watershed models and more intensive data-collection programs can provide the level of information needed to quantify (1) the effects of lot-scale land practices on runoff, storage, and ground-water recharge, (2) dry and wet season flux of nutrients through atmospheric deposition, (3) changes in partitioning of water and contaminants as urbanization alters predevelopment rainfall-runoff relations, and (4) linkages between watershed models and lot-scale models to evaluate the effect of small-scale changes over the entire Sarasota Bay watershed. As urbanization in the Sarasota Bay watershed continues, focused research on water-resources issues can provide information needed by water

  1. THE BEAR BROOK WATERSHED MANIPULATION PROJECT: WATERSHED SCIENCE IN A POLICY PERSPECTIVE

    Science.gov (United States)

    The Bear Brook Watershed Manipulation in Maine is a paired watershed experiment. Monitoring of the paired catchments (East Bear Brook - reference; West Bear Brook - experimental) began in early 1987. Chemical manipulation of West Bear Brook catchment began in November 1989. Proce...

  2. 75 FR 11837 - Chesapeake Bay Watershed Initiative

    Science.gov (United States)

    2010-03-12

    ... DEPARTMENT OF AGRICULTURE Commodity Credit Corporation Chesapeake Bay Watershed Initiative AGENCY...: Notice of availability of program funds for the Chesapeake Bay Watershed Initiative. SUMMARY: The... through the Chesapeake Bay Watershed Initiative for agricultural producers in the Chesapeake Bay watershed...

  3. Polyancora globosa gen. sp. nov., an aeroaquatic fungus from Malaysian peat swamp forests.

    Science.gov (United States)

    Voglmayr, Hermann; Yule, Catherine M

    2006-10-01

    During an investigation of submerged leaves and twigs sampled from tropical peat swamp forests located in Peninsular Malaysia, an anamorphic fungus not attributable to a described genus was detected and isolated in pure culture. Conidial ontogeny was thoroughly studied and illustrated using both light and SEM, which revealed a unique conidial morphology. Analysis of partial nuLSU rDNA and ITS data revealed a phylogenetic position within the Xylariales (Ascomycota), but family affiliation remained unclear.

  4. Landscape-scale changes in forest canopy structure across a partially logged tropical peat swamp

    Science.gov (United States)

    Wedeux, B. M. M.; Coomes, D. A.

    2015-11-01

    Forest canopy structure is strongly influenced by environmental factors and disturbance, and in turn influences key ecosystem processes including productivity, evapotranspiration and habitat availability. In tropical forests increasingly modified by human activities, the interplay between environmental factors and disturbance legacies on forest canopy structure across landscapes is practically unexplored. We used airborne laser scanning (ALS) data to measure the canopy of old-growth and selectively logged peat swamp forest across a peat dome in Central Kalimantan, Indonesia, and quantified how canopy structure metrics varied with peat depth and under logging. Several million canopy gaps in different height cross-sections of the canopy were measured in 100 plots of 1 km2 spanning the peat dome, allowing us to describe canopy structure with seven metrics. Old-growth forest became shorter and had simpler vertical canopy profiles on deeper peat, consistent with previous work linking deep peat to stunted tree growth. Gap size frequency distributions (GSFDs) indicated fewer and smaller canopy gaps on the deeper peat (i.e. the scaling exponent of Pareto functions increased from 1.76 to 3.76 with peat depth). Areas subjected to concessionary logging until 2000, and illegal logging since then, had the same canopy top height as old-growth forest, indicating the persistence of some large trees, but mean canopy height was significantly reduced. With logging, the total area of canopy gaps increased and the GSFD scaling exponent was reduced. Logging effects were most evident on the deepest peat, where nutrient depletion and waterlogged conditions restrain tree growth and recovery. A tight relationship exists between canopy structure and peat depth gradient within the old-growth tropical peat swamp forest. This relationship breaks down after selective logging, with canopy structural recovery, as observed by ALS, modulated by environmental conditions. These findings improve our

  5. Applying soil property information for watershed assessment.

    Science.gov (United States)

    Archer, V.; Mayn, C.; Brown, S. R.

    2017-12-01

    The Forest Service uses a priority watershed scheme to guide where to direct watershed restoration work. Initial assessment was done across the nation following the watershed condition framework process. This assessment method uses soils information for a three step ranking across each 12 code hydrologic unit; however, the soil information used in the assessment may not provide adequate detail to guide work on the ground. Modern remote sensing information and terrain derivatives that model the environmental gradients hold promise of showing the influence of soil forming factors on watershed processes. These small scale data products enable the disaggregation of coarse scale soils mapping to show continuous soil property information across a watershed. When this information is coupled with the geomorphic and geologic information, watershed specialists can more aptly understand the controlling influences of drainage within watersheds and focus on where watershed restoration projects can have the most success. A case study on the application of this work shows where road restoration may be most effective.

  6. Dissolved Oxygen Dynamics in Backwaters of North America's Largest River Swamp

    Science.gov (United States)

    Bueche, S. M.; Xu, Y. J.; Reiman, J. H.

    2017-12-01

    The Atchafalaya River (AR) is the largest distributary of the Mississippi River flowing through south-central Louisiana, creating North America's largest river swamp basin - the Atchafalaya River Basin (ARB). Prior to human settlement, the AR's main channel was highly connected to this large wetland ecosystem. However, due to constructed levee systems and other human modifications, much of the ARB is now hydrologically disconnected from the AR's main channel except during high flow events. This lack of regular inputs of fresh, oxygenated water to these wetlands, paired with high levels of organic matter decomposition in wetlands, has caused low oxygen-deprived hypoxic conditions in the ARB's back waters. In addition, due to the incredibly nutrient-rich and warm nature of the ARB, microbial decomposition in backwater areas with limited flow often results in potentially stressful, if not lethal, levels of DO for organisms during and after flood pulses. This study aims to investigate dynamics of dissolved oxygen in backwaters of the Atchafalaya River Basin, intending to answer a crucial question about hydrological and water quality connectivity between the river's mainstem and its floodplain. Specifically, the study will 1) conduct field water quality measurements, 2) collect composite water samples for chemical analysis of nutrients and carbon, 3) investigate DO dynamics over different seasons for one year, and 4) determine the major factors that affect DO dynamics in this unique swamp ecosystem. The study is currently underway; therefore, in this presentation we will share the major findings gained in the past several months and discuss backwater effects on river chemistry.

  7. Adaptive Management Fitness of Watersheds

    Directory of Open Access Journals (Sweden)

    Ignacio Porzecanski

    2012-09-01

    Full Text Available Adaptive management (AM promises to improve our ability to cope with the inherent uncertainties of managing complex dynamic systems such as watersheds. However, despite the increasing adherence and attempts at implementation, the AM approach is rarely successful in practice. A one-size-fits-all AM strategy fails because some watersheds are better positioned at the outset to succeed at AM than others. We introduce a diagnostic tool called the Index of Management Condition (IMC and apply it to twelve diverse watersheds in order to determine their AM "fitness"; that is, the degree to which favorable adaptive management conditions are in place in a watershed.

  8. A Watershed Integrity Definition and Assessment Approach to Support Strategic Management of Watersheds

    Science.gov (United States)

    Although defined hydrologically as a drainage basin, watersheds are systems that physically link the individual social and ecological attributes that comprise them. Hence the structure, function, and feedback systems of watersheds are dependent on interactions between these soci...

  9. [Distribution, surface and protected area of palm-swamps in Costa Rica and Nicaragua].

    Science.gov (United States)

    Serrano-Sandí, Juan; Bonilla-Murillo, Fabian; Sasa, Mahmood

    2013-09-01

    In Central America, palm swamps are known collectively as yolillales. These wetlands are usually dominated by the raffia palm Raphia taedigera, but also by the royal palm Manicaria saccifera and -in lower extensions- by the American oil palm Elaeis oleifera. The yolillales tend to be poor in woody species and are characteristic of regions with high rainfall and extensive hydroperiods, so they remain flooded most of the year. The dominance of large raffia palm leaves in the canopy, allow these environments to be distinguishable in aerial photographs, which consequently has helped to map them along most of their distribution. However, while maps depicting yolillales are available, the extent of their surface area, perimeter and connectivity remains poorly understood. This is particularly true for yolillales in Costa Rica and Nicaragua, countries that share a good proportion of palm dominated swaps in the Rio San Juan Basin. In addition, it is not known the actual area of these environments that is under any category of protection according to the conservation systems of both countries. As a first step to catalog yolillal wetlands in Costa Rica and Nicaragua, this paper evaluates cartographic maps to delineate yolillales in the region. A subsample of yolillales mapped in this study were visited and we geo-referenced them and evaluate the extent and condition of the swamp. A total of 110 883.2ha are classified as yolillales in Nicaragua, equivalent to 22% of wetland surface area recorded for that country (excluding the Cocibolca and Xolothn Lakes). In Costa Rica, 53 931.3ha are covered by these palm dominated swamps, which represent 16.24% of the total surface area covered by wetlands. About 47% of the area covered by yolillales in Nicaragua is under some category of protection, the largest extensions protected by Cerro Silva, Laguna Tale Sulumas and Indio Maiz Nature Reserves. In Costa Rica, 55.5% of the area covered by yolillal is located within protected areas

  10. Evaluating watershed protection programs in New York City's Cannonsville Reservoir source watershed using SWAT-HS

    Science.gov (United States)

    Hoang, L.; Mukundan, R.; Moore, K. E.; Owens, E. M.; Steenhuis, T. S.

    2017-12-01

    New York City (NYC)'s reservoirs supply over one billion gallons of drinking water each day to over nine million consumers in NYC and upstate communities. The City has invested more than $1.5 billion in watershed protection programs to maintain a waiver from filtration for the Catskill and Delaware Systems. In the last 25 years, the NYC Department of Environmental Protection (NYCDEP) has implemented programs in cooperation with upstate communities that include nutrient management, crop rotations, improvement of barnyards and manure storage, implementing tertiary treatment for Phosphorus (P) in wastewater treatment plants, and replacing failed septic systems in an effort to reduce P loads to water supply reservoirs. There have been several modeling studies evaluating the effect of agricultural Best Management Practices (BMPs) on P control in the Cannonsville watershed in the Delaware System. Although these studies showed that BMPs would reduce dissolved P losses, they were limited to farm-scale or watershed-scale estimates of reduction factors without consideration of the dynamic nature of overland flow and P losses from variable source areas. Recently, we developed the process-based SWAT-Hillslope (SWAT-HS) model, a modified version of the Soil and Water Assessment Tool (SWAT) that can realistically predict variable source runoff processes. The objective of this study is to use the SWAT-HS model to evaluate watershed protection programs addressing both point and non-point sources of P. SWAT-HS predicts streamflow very well for the Cannonsville watershed with a daily Nash Sutcliffe Efficiency (NSE) of 0.85 at the watershed outlet and NSE values ranging from 0.56 - 0.82 at five other locations within the watershed. Based on good hydrological prediction, we applied the model to predict P loads using detailed P inputs that change over time due to the implementation of watershed protection programs. Results from P model predictions provide improved projections of P

  11. Seed germination studies on Gymnacranthera canarica (King Warb. - a Vulnerable tree species of a highly threatened Myristica swamp ecosystem

    Directory of Open Access Journals (Sweden)

    K. Keshavachandra

    2016-07-01

    Full Text Available Gymnacranthera canarica (King Warb. is an exclusive Myristica swamp species endemic to the Western Ghats.  The Myristica swamp is a Critically Endangered ecosystem.  Studies were carried out to assess the viability, germination and storage behaviour of Gymnacranthera canarica seeds.  In the present study, it was observed that seeds have shown an initiation of germination after two weeks.  A maximum of 90% germination was recorded when the initial moisture content was 38.04 ± 1.75 %.  A decreased percentage (3% was observed when the moisture content reached 14.26 ± 2.3 after 70 days of storage.  Seeds failed to germinate beyond this moisture level.  A desiccation study showed recalcitrant behaviour and seeds can be stored in lab conditions for up to two and half months.

  12. Fena Valley Reservoir watershed and water-balance model updates and expansion of watershed modeling to southern Guam

    Science.gov (United States)

    Rosa, Sarah N.; Hay, Lauren E.

    2017-12-01

    In 2014, the U.S. Geological Survey, in cooperation with the U.S. Department of Defense’s Strategic Environmental Research and Development Program, initiated a project to evaluate the potential impacts of projected climate-change on Department of Defense installations that rely on Guam’s water resources. A major task of that project was to develop a watershed model of southern Guam and a water-balance model for the Fena Valley Reservoir. The southern Guam watershed model provides a physically based tool to estimate surface-water availability in southern Guam. The U.S. Geological Survey’s Precipitation Runoff Modeling System, PRMS-IV, was used to construct the watershed model. The PRMS-IV code simulates different parts of the hydrologic cycle based on a set of user-defined modules. The southern Guam watershed model was constructed by updating a watershed model for the Fena Valley watersheds, and expanding the modeled area to include all of southern Guam. The Fena Valley watershed model was combined with a previously developed, but recently updated and recalibrated Fena Valley Reservoir water-balance model.Two important surface-water resources for the U.S. Navy and the citizens of Guam were modeled in this study; the extended model now includes the Ugum River watershed and improves upon the previous model of the Fena Valley watersheds. Surface water from the Ugum River watershed is diverted and treated for drinking water, and the Fena Valley watersheds feed the largest surface-water reservoir on Guam. The southern Guam watershed model performed “very good,” according to the criteria of Moriasi and others (2007), in the Ugum River watershed above Talofofo Falls with monthly Nash-Sutcliffe efficiency statistic values of 0.97 for the calibration period and 0.93 for the verification period (a value of 1.0 represents perfect model fit). In the Fena Valley watershed, monthly simulated streamflow volumes from the watershed model compared reasonably well with the

  13. Old carbon efflux from tropical peat swamp drainage waters

    Science.gov (United States)

    Vihermaa, Leena; Waldron, Susan; Evers, Stephanie; Garnett, Mark; Newton, Jason

    2014-05-01

    Tropical peatlands constitute ~12% of the global peatland carbon pool, and of this 10% is in Malaysia1. Due to rising demand for food and biofuels, large areas of peat swamp forest ecosystems have been converted to plantation in Southeast Asia and are being subjected to degradation, drainage and fire, changing their carbon fluxes eg.2,3. Dissolved organic carbon (DOC) lost from disturbed tropical peat can be derived from deep within the peat column and be aged from centuries to millennia4 contributing to aquatic release and cycling of old carbon. Here we present the results of a field campaign to the Raja Musa Peat Swamp Forest Reserve in N. Selangor Malaysia, which has been selectively logged for 80 years before being granted timber reserve status. We measured CO2 and CH4efflux rates from drainage systems with different treatment history, and radiocarbon dated the evasion CO2 and associated [DOC]. We also collected water chemistry and stable isotope data from the sites. During our sampling in the dry season CO2 efflux rates ranged from 0.8 - 13.6 μmol m-2 s-1. Sediments in the channel bottom contained CH4 that appeared to be primarily lost by ebullition, leading to sporadic CH4 efflux. However, dissolved CH4 was also observed in water samples collected from these systems. The CO2 efflux was aged up to 582±37 years BP (0 BP = AD 1950) with the associated DOC aged 495±35 years BP. Both DOC and evasion CO2 were most 14C-enriched (i.e. younger) at the least disturbed site, and implied a substantial component of recently fixed carbon. In contrast, CO2 and DOC from the other sites had older 14C ages, indicating disturbance as the trigger for the loss of old carbon. 1Page et al., 2010 2Hooijer et al., 2010 3Kimberly et al., 2012 4Moore et al., 2013

  14. Gnathostoma spinigerum in live Asian swamp eels (Monopterus spp.) from food markets and wild populations, United States

    Science.gov (United States)

    Cole, Rebecca A.; Choudhury, Anindo; Nico, Leo G.; Griffin, Kathryn M.

    2014-01-01

    In Southeast Asia, swamp eels (Synbranchidae: Monopterus spp.) are a common source of human gnathostomiasis, a foodborne zoonosis caused by advanced third-stage larvae (AL3) of Gnathostoma spp. nematodes. Live Asian swamp eels are imported to US ethnic food markets, and wild populations exist in several states. To determine whether these eels are infected, we examined 47 eels from markets and 67 wild-caught specimens. Nematodes were identified by morphologic features and ribosomal intergenic transcribed spacer–2 gene sequencing. Thirteen (27.7%) M. cuchia eels from markets were infected with 36 live G. spinigerum AL3: 21 (58.3%) in liver; 7 (19.4%) in muscle; 5 (13.8%) in gastrointestinal tract, and 3 (8.3%) in kidneys. Three (4.5%) wild-caught M. albus eels were infected with 5 G. turgidum AL3 in muscle, and 1 G. lamothei AL3 was found in a kidney (both North American spp.). Imported live eels are a potential source of human gnathostomiasis in the United States.

  15. Weeds optimally grow in peat swamp after burning

    Directory of Open Access Journals (Sweden)

    P.D. Susanti

    2014-07-01

    Full Text Available After clearing land by burning the peat, then the weeds and undergrowth will flourish. Even sometimes, the weeds are eventually burned again. Weed is known as a destroyer plant that has to be controlled. Through proper treatment, the existing weeds in peatlands can be potentiallly exploited. The purpose of this study was to determine the calorific value of briquettes as one of peatland weeds utilization. The results showed that the calorific value ranged from 2,492 cal/g to 5,230 cal/g. The lowest calorific value was on ‘teki kecil’ grass (Scirpus grossus Lf, while the highest calorific value was observed for ‘bantalaki grass’ (Hymenachne amplexicaulis Nees. The high calorific value of the peat weeds are potential for biomass briquettes raw materials. The utilization and use of peat weed briquettes as a raw materials expected can reduce land degradation due to peat swamp burning

  16. Spatiotemporal variation of watershed health propensity through reliability-resilience-vulnerability based drought index (case study: Shazand Watershed in Iran).

    Science.gov (United States)

    Sadeghi, Seyed Hamidreza; Hazbavi, Zeinab

    2017-06-01

    Quantitative response of the watershed health to climate variability is of critical importance for watershed managers. However, existing studies seldom considered the impact of climate variability on watershed health. The present study therefore aimed to analyze the temporal and spatial variability of reliability (R el ), resilience (R es ) and vulnerability (V ul ) indicators in node years of 1986, 1998, 2008 and 2014 in connection with Standardized Precipitation Index (SPI) for 24 sub-watersheds in the Shazand Watershed of Markazi Province in Iran. The analysis was based on rainfall variability as one of the main climatic drivers. To achieve the study purposes, the monthly rainfall time series of eight rain gauge stations distributed across the watershed or neighboring areas were analyzed and corresponding SPIs and R el R es V ul indicators were calculated. Ultimately, the spatial variation of SPI oriented R el R es V ul was mapped for the study watershed using Geographic Information System (GIS). The average and standard deviation of SPI-R el R es V ul index for the study years of 1986, 1998, 2008 and 2014 was obtained 0.240±0.025, 0.290±0.036, 0.077±0.0280 and 0.241±0.081, respectively. In overall, the results of the study proved the spatiotemporal variations of SPI-R el R es V ul watershed health index in the study area. Accordingly, all the sub-watersheds of the Shazand Watershed were grouped in unhealthy and very unhealthy conditions in all the study years. For 1986 and 1998 all the sub-watersheds were assessed in unhealthy status. Whilst, it declined to very unhealthy condition in 2008 and then some 75% of the watershed ultimately referred again to unhealthy and the rest still remained under very unhealthy conditions in 2014. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Climate change and watershed mercury export in a Coastal Plain watershed

    Science.gov (United States)

    Heather Golden; Christopher D. Knightes; Paul A. Conrads; Toby D. Feaster; Gary M. Davis; Stephen T. Benedict; Paul M. Bradley

    2016-01-01

    Future changes in climatic conditions may affect variations in watershed processes (e.g., hydrological, biogeochemical) and surface water quality across a wide range of physiographic provinces, ecosystems, and spatial scales. How such climatic shifts will impact watershed mercury (Hg) dynamics and hydrologically-driven Hg transport is a significant concern.

  18. Identifying food deserts and swamps based on relative healthy food access: a spatio-temporal Bayesian approach.

    Science.gov (United States)

    Luan, Hui; Law, Jane; Quick, Matthew

    2015-12-30

    Obesity and other adverse health outcomes are influenced by individual- and neighbourhood-scale risk factors, including the food environment. At the small-area scale, past research has analysed spatial patterns of food environments for one time period, overlooking how food environments change over time. Further, past research has infrequently analysed relative healthy food access (RHFA), a measure that is more representative of food purchasing and consumption behaviours than absolute outlet density. This research applies a Bayesian hierarchical model to analyse the spatio-temporal patterns of RHFA in the Region of Waterloo, Canada, from 2011 to 2014 at the small-area level. RHFA is calculated as the proportion of healthy food outlets (healthy outlets/healthy + unhealthy outlets) within 4-km from each small-area. This model measures spatial autocorrelation of RHFA, temporal trend of RHFA for the study region, and spatio-temporal trends of RHFA for small-areas. For the study region, a significant decreasing trend in RHFA is observed (-0.024), suggesting that food swamps have become more prevalent during the study period. For small-areas, significant decreasing temporal trends in RHFA were observed for all small-areas. Specific small-areas located in south Waterloo, north Kitchener, and southeast Cambridge exhibited the steepest decreasing spatio-temporal trends and are classified as spatio-temporal food swamps. This research demonstrates a Bayesian spatio-temporal modelling approach to analyse RHFA at the small-area scale. Results suggest that food swamps are more prevalent than food deserts in the Region of Waterloo. Analysing spatio-temporal trends of RHFA improves understanding of local food environment, highlighting specific small-areas where policies should be targeted to increase RHFA and reduce risk factors of adverse health outcomes such as obesity.

  19. Ornithological aspects on the swamp Herghelie – Mangalia (Romania

    Directory of Open Access Journals (Sweden)

    GACHE Carmen

    2005-09-01

    Full Text Available This ornithological notice present information on the avifauna recorded in the swamp Herghelie – Mangalia beginning with the 1998’s summer. We identified 132 species of birds. The reedbeds cover about 35% of the swamp’s surface, offering good conditions for the breeding season (Ixobrychus minutus, Botaurus stellaris, Cygnus olor, Himantopus himantopus, Recurvirostra avosetta and Sterna hirundo but also for migration period. The breeding population is low due the high level of the human pressure. Due the presence of sulphurous sources and peat bed, the water is not freezing during the winter, transforming this territory in an important wintering site in the southeastern Dobroudja. Interesting is also the presence in this area during the winter of some summer visitors’ species for Romania like: Phalacrocorax pygmeus, Botaurus stellaris and Rallus aquaticus.

  20. Modeling Flood Plain Hydrology and Forest Productivity of Congaree Swamp, South Carolina

    Science.gov (United States)

    Doyle, Thomas W.

    2009-01-01

    An ecological field and modeling study was conducted to examine the flood relations of backswamp forests and park trails of the flood plain portion of Congaree National Park, S.C. Continuous water level gages were distributed across the length and width of the flood plain portion - referred to as 'Congaree Swamp' - to facilitate understanding of the lag and peak flood coupling with stage of the Congaree River. A severe and prolonged drought at study start in 2001 extended into late 2002 before backswamp zones circulated floodwaters. Water levels were monitored at 10 gaging stations over a 4-year period from 2002 to 2006. Historical water level stage and discharge data from the Congaree River were digitized from published sources and U.S. Geological Survey (USGS) archives to obtain long-term daily averages for an upstream gage at Columbia, S.C., dating back to 1892. Elevation of ground surface was surveyed for all park trails, water level gages, and additional circuits of roads and boundaries. Rectified elevation data were interpolated into a digital elevation model of the park trail system. Regression models were applied to establish time lags and stage relations between gages at Columbia, S.C., and gages in the upper, middle, and lower reaches of the river and backswamp within the park. Flood relations among backswamp gages exhibited different retention and recession behavior between flood plain reaches with greater hydroperiod in the lower reach than those in the upper and middle reaches of the Congaree Swamp. A flood plain inundation model was developed from gage relations to predict critical river stages and potential inundation of hiking trails on a real-time basis and to forecast the 24-hour flood In addition, tree-ring analysis was used to evaluate the effects of flood events and flooding history on forest resources at Congaree National Park. Tree cores were collected from populations of loblolly pine (Pinus taeda), baldcypress (Taxodium distichum), water

  1. Watershed Adaptation Measures to Climate Change Impacts: A case of Kiha Watershed in Albertine Graben

    Science.gov (United States)

    Zizinga, A.

    2017-12-01

    Watershed Adaptation Measures to Climate Change Impacts: A case of Kiha Watershed in Albertine GrabenAlex Zizinga1, Moses Tenywa2, Majaliwa Jackson Gilbert1, 1Makerere University, Department of Environmental Sciences, O Box 7062, Kampala, Uganda 1Makerere University, Department of Agricultural Production, P.O Box 7062, Kampala, Uganda Corresponding author: azizinga@caes.mak.ac.ug AbstractThe most pressing issues local communities in Uganda are facing result from land-use and land cover changes exacerbated by climate change impacts. A key issue is the documentation of land-cover changes visible with the ongoing clearance of remaining forests, bush-lands and wetlands for expanding farmland for sugarcane production, producing charcoal and collecting firewood for local distilleries using imported molasses. Decision-makers, resource managers, farmers and practitioners must build their capacity for adaptive measures. Here we present the potential impacts of climate change on watershed hydrological processes in the River Kiha Watershed, located in Western Uganda, Lake Albert Water Management Zone, by using social learning techniques incorporating water users, local stakeholders and researchers. The research team examined different farming and economic activities within the watershed to assess their impacts on catchment water resources, namely on water quality and discharge of river Kiha. We present the impacts of locally induced climate change, which are already manifested in increasing seasonal variability of rainfall. The study aims at answering questions posed by local communities and stakeholders about climate change and its effects on livelihood and key resources, specifically water and soils within the Kiha watershed. Key words: Climate change impacts, Social Learning and Watershed Management

  2. Social Exclusion in Watershed Development: Evidence From the Indo-German Watershed Development Project in Maharashtra

    Directory of Open Access Journals (Sweden)

    Eshwer Kale

    2011-09-01

    Full Text Available The concept of social exclusion is context-specific and there is no uniform paradigm of exclusion across the world. This paper attempts to analyse exclusion of resource-poor groups in watershed development programmes in the Indian context. It aims to explore excluded community groups from the perspective of people’s equal opportunity and equal access to newly generated economic benefits in watershed development programmes. The paper also traces the determinant factors responsible for denial and exclusion of resource-poor groups and describes the detailed processes involved in their exclusion from institutional and livelihood opportunities in watershed programmes. At the same time, the paper also explores suggestions and views of resource-poor groups about their meaningful social inclusion in watershed programme. The Gadiwat Indo-German Watershed Development Project in Aurangabad district in the State of Maharashtra is studied in detail in terms of its social, economic and political realities through mix-method and multi-stakeholder approaches. The key findings of the paper are that landownership, caste, gender, membership in village institutions and/or watershed institutions or close relationship with members, as well as the limitations of the programme guidelines, are the major determinants of institutional inclusion and the extent of resulting economic benefits. The exclusion of resource-poor groups mainly takes the form of their exclusion from institutional representation. In order to promote meaningful social inclusion of resource-poor groups, there is need for a more livelihood-oriented focus and their equal representation and participation in watershed institutions.

  3. Differences in impacts of Hurricane Sandy on freshwater swamps on the Delmarva Peninsula, Mid−Atlantic Coast, USA

    Science.gov (United States)

    Middleton, Beth A.

    2016-01-01

    Hurricane wind and surge may have different influences on the subsequent composition of forests. During Hurricane Sandy, while damaging winds were highest near landfall in New Jersey, inundation occurred along the entire eastern seaboard from Georgia to Maine. In this study, a comparison of damage from salinity intrusion vs. wind/surge was recorded in swamps of the Delmarva Peninsula along the Pocomoke (MD) and Nanticoke (DE) Rivers, south of the most intense wind damage. Hickory Point Cypress Swamp (Hickory) was closest to the Chesapeake Bay and may have been subjected to a salinity surge as evidenced by elevated salinity levels at a gage upstream of this swamp (storm salinity = 13.1 ppt at Nassawango Creek, Snow Hill, Maryland). After Hurricane Sandy, 8% of the standing trees died at Hickory including Acer rubrum, Amelanchier laevis, Ilex spp., and Taxodium distichum. In Plot 2 of Hickory, 25% of the standing trees were dead, and soil salinity levels were the highest recorded in the study. The most important variables related to structural tree damage were soil salinity and proximity to the Atlantic coast as based on Stepwise Regression and NMDS procedures. Wind damage was mostly restricted to broken branches although tipped−up trees were found at Hickory, Whiton and Porter (species: Liquidamabar styraciflua, Pinus taeda, Populus deltoides, Quercus pagoda and Ilex spp.). These trees fell mostly in an east or east−southeast direction (88o−107o) in keeping with the wind direction of Hurricane Sandy on the Delmarva Peninsula. Coastal restoration and management can be informed by the specific differences in hurricane damage to vegetation by salt versus wind.

  4. Watershed Management: Lessons from Common Property Theory

    Directory of Open Access Journals (Sweden)

    John Kerr

    2007-10-01

    Full Text Available Watershed development is an important component of rural development and natural resource management strategies in many countries. A watershed is a special kind of common pool resource: an area defined by hydrological linkages where optimal management requires coordinated use of natural resources by all users. Management is difficult because natural resources comprising the watershed system have multiple, conflicting uses, so any given management approach will spread benefits and costs unevenly among users. To address these challenges, watershed approaches have evolved from more technocratic to a greater focus on social organization and participation. However, the latter cannot necessarily be widely replicated. In addition, participatory approaches have worked better at a small scale, but hydrological relationships cover a larger scale and some projects have faced tradeoffs in choosing between the two. Optimal approaches for future efforts are not clear, and theories from common property research do not support the idea that complex watershed management can succeed everywhere. Solutions may include simplifying watershed projects, pursuing watershed projects where conditions are favorable, and making other investments elsewhere, including building the organizational capacity that can facilitate watershed management.

  5. Water and Poverty in Two Colombian Watersheds

    Directory of Open Access Journals (Sweden)

    Nancy Johnson

    2009-02-01

    Full Text Available Watersheds, especially in the developing world, are increasingly being managed for both environmental conservation and poverty alleviation. How complementary are these objectives? In the context of a watershed, the actual and potential linkages between land and water management and poverty are complex and likely to be very site specific and scale dependent. This study analyses the importance of watershed resources in the livelihoods of the poor in two watersheds in the Colombian Andes. Results of the participatory poverty assessment reveal significant decreases in poverty in both watersheds over the past 25 years, which was largely achieved by the diversification of livelihoods outside of agriculture. Water is an important resource for household welfare. However, opportunities for reducing poverty by increasing the quantity or quality of water available to the poor may be limited. While improved watershed management may have limited direct benefits in terms of poverty alleviation, there are important indirect linkages between watershed management and poverty, mainly through labour and service markets. The results suggest that at the level of the watershed the interests of the rich and the poor are not always in conflict over water. Sectoral as well as socio-economic differences define stakeholder groups in watershed management. The findings have implications for policymakers, planners and practitioners in various sectors involved in the implementation of integrated water resources management (IWRM.

  6. Jordan Lake Watershed Protection District

    Data.gov (United States)

    Town of Chapel Hill, North Carolina — Polygon representing the area of the Jordan Lake Watershed Protection District. The Watershed Protection District (PDF) is a sensitive area of land that drains to...

  7. Prevalence and intensity of third stage Gnathostoma spinigerum larvae in swamp eels sold in three large markets in Bangkok, Thailand.

    Science.gov (United States)

    Saksirisampant, Wilai; Nuchprayoon, Surang; Wiwanitkit, Viroj; Kraivichian, Kanyarat; Suwansaksri, Jamsai

    2002-01-01

    Gnathostoma spinigerum is a common human tissue parasite in Thailand. The swamp eel is the major intermediate or paratenic host for this parasite. The high prevalence of the infective third stage larvae (L3) of this parasite in the rainy season has been noted in previous studies. During June 1999 (rainy season), we performed a cross-sectional survey of the prevalence and the intensity of G. spinigerum L3s in the livers of swamp eels that were obtained from three large Bangkok markets (Klong Toey, Pran Nok, and Tevej). Of a total of 785 livers, G. spinigerum L3s were found in 97: an infection rate of 12%. The prevalence rates in Klong Toey, Pran Nok, and Tevej markets were 13%, 10% and 14% respectively. There was no significant difference in the proportion of infected eels between the markets (p > 0.05). The intensity of L3 burden in the livers ranged from 1-17 larvae, with an average of 2.60 +/- 0.24 larvae (mean +/- SE). In this study a high prevalence of G. spinigerum L3s was found; there was no significant difference in the intensity of larvae in swamp eels between markets. These findings emphasize the importance of public health education: people need to be aware of the dangers of consuming raw or undercooked food.

  8. Variation in flood tolerance of container-grown seedlings of swamp white oak, bur oak, and white oak

    Science.gov (United States)

    Michael P. Walsh; J.W. Van Sambeek; Mark V. Coggeshall

    2008-01-01

    How much variation in flood tolerance exists among seedlings within oak species, given the flood frequency of sites from which acorns are collected, has been largely unexplored. Our studies examined initial growth and flood tolerance for seedlings of swamp white oak (Quercus bicolor Willd.), bur oak (Q. macrocarpa L.), and white...

  9. CONSIDERATIONS ON THE ANTHROPIC IMPACT IN THE AREA OF THE ORNITHOLOGIC RESERVATION “THE SWAMPS FROM SATCHINEZ” (TIMIŞ COUNTY

    Directory of Open Access Journals (Sweden)

    Rodica Török-Oance

    2005-01-01

    Full Text Available The estimate of the anthropic impact within the Ornithologic Reservation Swamps from Satchinez is based on the field notes in the period 2003-2005, the air photos taken in 2004 and the reconstitution of past situations (1963-1973 using the photoplans from that period. Within the reservation and the buffer area a series of anthropic activities are taking place, allowed or not, which have a negative impact on the protected area: agricultural works (including agro-chemical treatments, grazing, mowing, hydrotechnical arrangements, illegal tree felling, cutting and burning the reed, poaching, hunting and fishing, collecting biological material, transport, tourism and petrol exploitation. All these lead to the deterioration of the habitat, affect the life of the birds, the water, the clogging of the swamp and cause the disappearance of the clean water spots thus endangering the reservation itself.

  10. Nitrogen fate and Transport in Diverse Agricultural Watersheds

    Science.gov (United States)

    Essaid, H.; McCarthy, K. A.; Baker, N. T.

    2010-12-01

    Nitrogen mass budgets have been estimated for ten agricultural watersheds located in a range of hydrologic settings in order to understand the factors controlling the fate of nitrogen applied at the surface. The watersheds, study areas of the Agricultural Chemical Sources, Transport and Fate study of the U.S. Geological Survey National Water Quality Assessment Program, are located in Indiana (IN), Iowa (IA), Maryland (MD), Nebraska (NE), Mississippi (MS) and Washington (WA). They range in size from 7 to 1254 km2, with four of the watersheds nested within larger watersheds. Surface water outflow (normalized to watershed area) ranged from 4 to 83 cm/yr. Crops planted include corn, soybean, small grains, rice, cotton, orchards and vegetables. “Surplus nitrogen” was determined for each watershed by subtracting estimates of crop uptake and volatilization from estimates of nitrogen input from atmospheric deposition, plant fixation, and fertilizer and manure applications for the period from 1987 to 2004. This surplus nitrogen is transported though the watershed via surface and subsurface flow paths, while simultaneously undergoing transformations (such as denitrification and in-stream processing) that result in less export of nitrogen from the watershed. Surface-water discharge and concentration data were used to estimate the export of nitrogen from the watersheds (groundwater outflow from the watersheds was minimal). Subtracting nitrogen export from surplus nitrogen provides an estimate of the net amount of nitrogen removal occurring during internal watershed transport. Watershed average nitrogen surplus ranged from 6 to 49 kg-N/ha. The more permeable and/or greater water flux watersheds (MD, NE, and WA) tended to have larger surplus nitrogen, possibly due to less crop uptake caused by greater leaching and runoff of nitrogen. Almost all of the surplus nitrogen in the low permeability (MS) and tile drained watersheds (IA, IN) was exported from the watershed with

  11. POTENCY OF RAMIN (Gonystylus bancanus Kurtz. AND OTHER COMMERCIAL SPECIES IN PEAT SWAMP FOREST MANAGED WITH TPTI SILVICULTURAL SYSTEM IN BAGAN, RIAU

    Directory of Open Access Journals (Sweden)

    Hendromono Hendromono

    2005-07-01

    Full Text Available Ramin  (Gonystylus bancanus Kurtz.  is one  of  the  tree  species in  peat-swamp  forest  that  is endangered due to excessive exploitation. The objective of this research was to assess the potency of rarnin and other commercial tree species in primary and logged over peat-swamp forests at Bagan, Riau. The tree stands were inventoried in primary forest of the 2004 and 2006 Annual Work Plan (RKTs and in  the  1997  and  2001  RKTs  managed  with  Indonesian  Selective Cutting  and  Planting  (TPTI silvicultural system.  The  result  showed  that  rarnin in  Bagan peat-swamp  forest  was not  evenly distributed. The total number of ramin  in tree stage in primary forests was fewer than that in  logged over forests.  The total number of ramin species at tree stage in primary forest was between 4.5  and 5 trees ha·' with the important value index (IVI of 10.3  to 12.0%,  whereas the one at logged over forest were between 2.5 and 15  trees ha·' with theM    indices of 7.9 to 20.4%.  Commercial species of swamp meranti (Shorea uliginosaand S. teysmaniana and balam/ suntai or (Palaqqiumspp. were dominant at tree stage both in the primary and the logged over forests. Enrichment in logged over forests is not needed since the total number of seedlings and saplings  is enough. The total number of potential core trees in logged over forests was enough for the next cutting cycle. The effort that must be done in logged over forests is to protect them from illegal logging.

  12. Effect of different concentration of fish oil in skim milk-egg yolk extenders on post- thawed semen qualities of Kalang swamp buffalo bull

    Directory of Open Access Journals (Sweden)

    Abdul Malik

    2018-01-01

    Full Text Available Objective: To explore the effect of fish oil at different concentrations on post-thawed semen of Kalang swamp buffalo. Methods: A total of 4 Kalang swamp buffalo bulls with 3-5 years of age and weighed about 340-360 kg were slected. Semen was regularly collected from these buffalo bulls once a week by an artificial vagina. Fish oil was supplementary at the dosages of 0 mg (control, 50 mg, 100 mg, 150 mg, and 200 mg to the extender (skim milk-egg yolk. Fresh, pre-freezing and frozen semen were thawed at 37 °C and evaluated for motility, viability, morphology, and plasma integrity of membrane. Results: The study results indicated that before freezing, supplementation of fish oil at the dose of 150 mg in the extender had significantly motility. And a significant (P<0.05 increase was observed in viability and motility of post-thawed semen at the dose of 150 mg fish oil, which was in difference with other treatment groups. Conclusions: Addition of 150 mg fish oil in the extender could be positive for the enhancement of the quality of post-thawed semen of Kalang swamp buffaloes.

  13. Model My Watershed - A Robust Online App to Enable Citizen Scientists to Model Watershed Hydrology and Water Quality at Regulatory-Level Standards

    Science.gov (United States)

    Daniels, M.; Kerlin, S.; Arscott, D.

    2017-12-01

    Citizen-based watershed monitoring has historically lacked scientific rigor and geographic scope due to limitation in access to watershed-level data and the high level skills and resources required to adequately model watershed dynamics. Public access to watershed information is currently routed through a variety of governmental data portals and often requires advanced geospatial skills to collect and present in useable forms. At the same time, tremendous financial resources are being invested in watershed restoration and management efforts, and often these resources pass through local stakeholder groups such as conservation NGO, watershed interest groups, and local municipalities without extensive hydrologic knowledge or access to sophisticated modeling resources. Even governmental agencies struggle to understand how to best steer or prioritize restoration investments. A new app, Model My Watershed, was built to improve access to watershed data and modeling capabilities in a fast, accessible, free web-app format. Working across the contiguous United States, the Model My Watershed app provides land cover, soils, aerial imagery and relief, watershed delineation, and stream network delineation. Users can model watersheds or areas of interest and create management scenarios to evaluate implementation of land cover changes and best management practice implementation with both hydrologic and water quality outputs that meet TMDL regulatory standards.

  14. Integrating local research watersheds into hydrologic education: Lessons from the Dry Creek Experimental Watershed

    Science.gov (United States)

    McNamara, J. P.; Aishlin, P. S.; Flores, A. N.; Benner, S. G.; Marshall, H. P.; Pierce, J. L.

    2014-12-01

    While a proliferation of instrumented research watersheds and new data sharing technologies has transformed hydrologic research in recent decades, similar advances have not been realized in hydrologic education. Long-standing problems in hydrologic education include discontinuity of hydrologic topics from introductory to advanced courses, inconsistency of content across academic departments, and difficulties in development of laboratory and homework assignments utilizing large time series and spatial data sets. Hydrologic problems are typically not amenable to "back-of-the-chapter" examples. Local, long-term research watersheds offer solutions to these problems. Here, we describe our integration of research and monitoring programs in the Dry Creek Experimental Watershed into undergraduate and graduate hydrology programs at Boise State University. We developed a suite of watershed-based exercises into courses and curriculums using real, tangible datasets from the watershed to teach concepts not amenable to traditional textbook and lecture methods. The aggregation of exercises throughout a course or degree allows for scaffolding of concepts with progressive exposure of advanced concepts throughout a course or degree. The need for exercises of this type is growing as traditional lecture-based classes (passive learning from a local authoritative source) are being replaced with active learning courses that integrate many sources of information through situational factors.

  15. Asotin Creek Model Watershed Plan

    Energy Technology Data Exchange (ETDEWEB)

    Browne, D.; Holzmiller, J.; Koch, F.; Polumsky, S.; Schlee, D.; Thiessen, G.; Johnson, C.

    1995-04-01

    The Asotin Creek Model Watershed Plan is the first to be developed in Washington State which is specifically concerned with habitat protection and restoration for salmon and trout. The plan is consistent with the habitat element of the ``Strategy for Salmon``. Asotin Creek is similar in many ways to other salmon-bearing streams in the Snake River system. Its watershed has been significantly impacted by human activities and catastrophic natural events, such as floods and droughts. It supports only remnant salmon and trout populations compared to earlier years. It will require protection and restoration of its fish habitat and riparian corridor in order to increase its salmonid productivity. The watershed coordinator for the Asotin County Conservation District led a locally based process that combined local concerns and knowledge with technology from several agencies to produce the Asotin Creek Model Watershed Plan.

  16. TALL HERB SPRUCE FORESTS AS CLIMAX COMMUNITIES ON LOWLAND SWAMPS OF BRYANSK POLESIE

    Directory of Open Access Journals (Sweden)

    O. I. Evstigneev

    2017-09-01

    Full Text Available Nettle grey alder forests are a dominant forest type on lowland swamps in the Bryansk Polesie. They are formed as a result of repeated cuttings in the place of tall herb spruce forests. Tall herb spruce forests are very rare communities in the vegetation cover in this area due to clear cutting, melioration and peat extraction. An assessment of the succession status of tall herb spruce forests and nettle grey alder forests was carried out in this paper. The criteria of climax state and succession state of communities, developed for Eastern European forests, were used. These criteria are based on the degree of intensity of the following signs in the community: 1 the completeness of species composition of tree synusia; 2 the ontogenetic structure of tree species cenopopulation; 3 the gap-mosaic stand structure; 4 the diversity of microsites in soil cover; 5 the completeness of species composition and ecological-coenotic diversity of vascular species. We showed that tall herb spruce forest, as opposed to black alder forest, is close to communities of the climax type. This is evidenced by the following features of cenosis: firstly, all tree species in the area that covers the Bryansk Polesie and that are able to grow on lowland swamps are represented in the spruce forest (Alnus glutinosa, Betula pubescens, Fraxinus excelsior, Padus avium, Picea abies, Salix pentandra, Sorbus aucuparia, Ulmus glabra. Secondly, a steady turnover of generations is carried out in the cenopopulations of main edificators (Picea abies and Alnus glutinosa. This is evidenced by the complete and left-sided structure of their ontogenetic spectrum. Thirdly, a system of asynchronously developing gaps (parcels, which are formed on the site of old tree falls, is formed in the community. This ensures the continuous renewal of spruce and alder populations and creates conditions for the regeneration of other tree species. Fourthly, the structure of biogenic microsites has been formed

  17. Studies on algea of Da′erbin lake and its surrounding swamps in daxing anling mountain

    Directory of Open Access Journals (Sweden)

    LI Xiaofei

    2012-08-01

    Full Text Available The paper reports 234 taxa of algae (excluding diatomas and desmids in Da′erbin Lake and its surrounding swamps in the Great Xing′an Mountains.They were identified belong to 6 phylums 79 generas 197 species 31 varieties and 6 forms.Among them Characium ornithocephalum var.pringsheimii (A.Br. Kom.,Characium pluricoccum Kor.,Quadrigula korsikovii Kom.,Crucigeniella rectangularis (Ng. Kom.are newly reported in China.

  18. Alaska Index of Watershed Integrity

    Science.gov (United States)

    The US Environmental Protection Agency’s (EPA) Index of Watershed Integrity (IWI) is used to calculate and visualize the status of natural watershed infrastructure that supports ecological processes (e.g., nutrient cycling) and services provided to society (e.g., subsistenc...

  19. Watershed condition [Chapter 4

    Science.gov (United States)

    Daniel G. Neary; Jonathan W. Long; Malchus B. Baker

    2012-01-01

    Managers of the Prescott National Forest are obliged to evaluate the conditions of watersheds under their jurisdiction in order to guide informed decisions concerning grazing allotments, forest and woodland management, restoration treatments, and other management initiatives. Watershed condition has been delineated by contrasts between “good” and “poor” conditions (...

  20. Watershed Education for Broadcast Meteorologists

    Science.gov (United States)

    Lamos, J. P.; Sliter, D.; Espinoza, S.; Spangler, T. C.

    2006-12-01

    The National Environmental Education and Training Organization (NEETF) published a report in 2005 that summarized the findings of ten years of NEETF and Roper Research. The report stated, "Our years of data from Roper surveys show a persistent pattern of environmental ignorance even among the most educated and influential members of society." Market research has also shown that 80% of television viewers list the weather as the primary reason for watching the local news. Broadcast meteorologists, with a broader understanding of environmental and related sciences have an opportunity to use their weathercasts to inform the public about the environment and the factors that influence environmental health. As "station scientists," broadcast meteorologists can use the weather, and people's connection to it, to broaden their understanding of the environment they live in. Weather and watershed conditions associated with flooding and drought have major human and environmental impacts. Increasing the awareness of the general public about basic aspects of the hydrologic landscape can be an important part of mitigating the adverse effects of too much or too little precipitation, and of protecting the environment as well. The concept of a watershed as a person's natural neighborhood is a very important one for understanding hydrologic and environmental issues. Everyone lives in a watershed, and the health of a watershed is the result of the interplay between weather and human activity. This paper describes an online course to give broadcast meteorologists a basic understanding of watersheds and how watersheds are impacted by weather. It discusses how to convey watershed science to a media- savvy audience as well as how to model the communication of watershed and hydrologic concepts to the public. The course uses a narrative, story-like style to present its content. It is organized into six short units of instruction, each approximately 20 minutes in duration. Each unit is

  1. Evapotranspiration sensitivity to air temperature across a snow-influenced watershed: Space-for-time substitution versus integrated watershed modeling

    Science.gov (United States)

    Jepsen, S. M.; Harmon, T. C.; Ficklin, D. L.; Molotch, N. P.; Guan, B.

    2018-01-01

    Changes in long-term, montane actual evapotranspiration (ET) in response to climate change could impact future water supplies and forest species composition. For scenarios of atmospheric warming, predicted changes in long-term ET tend to differ between studies using space-for-time substitution (STS) models and integrated watershed models, and the influence of spatially varying factors on these differences is unclear. To examine this, we compared warming-induced (+2 to +6 °C) changes in ET simulated by an STS model and an integrated watershed model across zones of elevation, substrate available water capacity, and slope in the snow-influenced upper San Joaquin River watershed, Sierra Nevada, USA. We used the Soil Water and Assessment Tool (SWAT) for the watershed modeling and a Budyko-type relationship for the STS modeling. Spatially averaged increases in ET from the STS model increasingly surpassed those from the SWAT model in the higher elevation zones of the watershed, resulting in 2.3-2.6 times greater values from the STS model at the watershed scale. In sparse, deep colluvium or glacial soils on gentle slopes, the SWAT model produced ET increases exceeding those from the STS model. However, watershed areas associated with these conditions were too localized for SWAT to produce spatially averaged ET-gains comparable to the STS model. The SWAT model results nevertheless demonstrate that such soils on high-elevation, gentle slopes will form ET "hot spots" exhibiting disproportionately large increases in ET, and concomitant reductions in runoff yield, in response to warming. Predicted ET responses to warming from STS models and integrated watershed models may, in general, substantially differ (e.g., factor of 2-3) for snow-influenced watersheds exhibiting an elevational gradient in substrate water holding capacity and slope. Long-term water supplies in these settings may therefore be more resilient to warming than STS model predictions would suggest.

  2. Water quality trading opportunities in two sub-watersheds in the northern Lake Okeechobee watershed.

    Science.gov (United States)

    Corrales, Juliana; Naja, G Melodie; Bhat, Mahadev G; Miralles-Wilhelm, Fernando

    2017-07-01

    For decades, the increase of nutrient enrichment has threatened the ecological integrity and economic sustainability of many rivers, lakes, and coastal waters, including Lake Okeechobee, the second largest freshwater lake in the contiguous United States. Water quality trading programs have been an area of active development to both, reduce nutrient pollution and minimize abatement costs. The objective of this study was to apply a comprehensive modeling framework, integrating a hydrologic-water quality model with an economic model, to assess and compare the cost-effectiveness of a water quality trading program over a command-and-control approach in order to reduce phosphorus loadings to Lake Okeechobee. The Upper Kissimmee (UK) and Taylor Creek/Nubbin Slough (TCNS) sub-watersheds, identified as major sources of total phosphorus (TP) loadings to the lake, were selected for this analysis. The effect of different caps on the market potential was assessed while considering four factors: the least-cost abatement solutions, credit prices, potential cost savings, and credit supply and demand. Hypothetical trading scenarios were also developed, using the optimal caps selected for the two sub-watersheds. In both sub-watersheds, a phosphorus credit trading program was less expensive than the conventional command-and-control approach. While attaining cost-effectiveness, keeping optimal credit prices, and fostering market competition, phosphorus reduction targets of 46% and 32% were selected as the most appropriate caps in the UK and TCNS sub-watersheds, respectively. Wastewater treatment facilities and urban areas in the UK, and concentrated animal feeding operations in the TCNS sub-watershed were identified as potential credit buyers, whereas improved pastures were identified as the major credit sellers in both sub-watersheds. The estimated net cost savings resulting from implementing a phosphorus trading program in the UK and TCNS sub-watersheds were 76% ($ 34.9 million per

  3. Carcass Characteristics and Meat Quality of Swamp Buffaloes (Bubalus bubalis) Fattened at Different Feeding Intensities.

    Science.gov (United States)

    Lambertz, C; Panprasert, P; Holtz, W; Moors, E; Jaturasitha, S; Wicke, M; Gauly, M

    2014-04-01

    Twenty-four male 1-year old swamp buffaloes (Bubalus bubalis) were randomly allocated to 4 groups. One group grazed on guinea grass (GG) and another on guinea grass and the legume Stylosanthes guianensis (GL). The other two groups were kept in pens and fed freshly cut guinea grass and concentrate at an amount of 1.5% (GC1.5) and 2.0% (GC2.0) of body weight, respectively. The effect of the different feeding intensities on carcass characteristics and meat quality were assessed. The mean body weight at slaughter was 398 (±16) kg. Average daily gain was higher in concentrate-supplemented groups (570 and 540 g/d in GC1.5 and GC2.0, respectively) when compared to GG (316 g/d) and GL (354 g/d) (pbuffaloes. Results of the present study showed that the supplementation of pasture with concentrate enhances the growth and carcass characteristics of swamp buffaloes expressed in superior dressing percentage, better muscling, and redder meat with a higher content of protein and fat, whereas animals grazing only on pasture had a more favorable fatty acid profile and water holding capacity. In conclusion, the supplementation of concentrate at a rate of about 1.5% of body weight is recommended to improve the performance and carcass quality of buffaloes.

  4. STRUCTURE OF NATURAL REGENERATION IN RELATION TO SOIL PROPERTIES AND DISTURBANCE IN TWO SWAMP FORESTS

    Directory of Open Access Journals (Sweden)

    Marly Antonielle Ávila

    2016-03-01

    Full Text Available Veredas (palm swamps is a type of vegetation associated with watercourses, characterized by the presence of Mauritia flexuosa palm trees. These systems are not well understood and suffer from high anthropogenic pressure. The aims of this study were to describe the natural regeneration of two swamp forests in vereda systems with different anthropogenic impacts and investigate if the variation in these plant communities are associated to edaphic conditions. The study was performed in preserved and impacted sites located in the Environmental Protection Area of the Pandeiros River in northern Minas Gerais. At each site, one hundred 25 m2 plots were established for surveying regenerating shrubs and trees (≥1 cm diameter at the base of the stem and < 3 cm diameter at breast height. Vegetation structure was evaluated by phytosociological parameters, similarity index, and size distribution of individuals. Regenerating strata was correlated with chemical and physical soil analyses. The vegetation at the preserved site was characterized by a higher number of individuals and a lower diversity but contained species that were typical of flooded areas. The results also showed differences in soil nutrient availability between sites that influenced the distribution of species at the two study sites.

  5. Stable carbon isotope composition of organic material and carbonate in sediment of a swamp and lakes in Honshu island, Japan

    International Nuclear Information System (INIS)

    Ishizuka, Toshio

    1978-01-01

    Recent sediments from a swamp and lakes in Honshu were analyzed for organic carbon and carbonate contents, and stable isotope ratios of carbon in the organic materials and carbonate. delta C 13 values of the carbonate tend to be distinctly larger than those of organic carbon in reducing condition as natural gas field, whereas in oxidizing SO 4 -reducing conditions, they are slightly larger than those of organic carbon within the limited range of a few per mil. Carbon isotopic compositions of organic carbon in sediment of the swamp, Obuchi-numa, were analyzed and compared with habitat analysis of associated fossil diatoms. deltaC 13 values of organic carbon in the sediment vary in correlation with the species abundance in habitat of the associated fossil diatoms, ranging from fresh-water (-0.0282) to coastal marine (-0.0236) via brackish. (auth.)

  6. Watersheds in disordered media

    Directory of Open Access Journals (Sweden)

    José S. Andrade Jr.

    2015-02-01

    Full Text Available What is the best way to divide a rugged landscape? Since ancient times, watershedsseparating adjacent water systems that flow, for example, toward different seas, have beenused to delimit boundaries. Interestingly, serious and even tense border disputes betweencountries have relied on the subtle geometrical properties of these tortuous lines. For instance,slight and even anthropogenic modifications of landscapes can produce large changes in awatershed, and the effects can be highly nonlocal. Although the watershed concept arisesnaturally in geomorphology, where it plays a fundamental role in water management, landslide,and flood prevention, it also has important applications in seemingly unrelated fields suchas image processing and medicine. Despite the far-reaching consequences of the scalingproperties on watershed-related hydrological and political issues, it was only recently that a moreprofound and revealing connection has been disclosed between the concept of watershed andstatistical physics of disordered systems. This review initially surveys the origin and definition of awatershed line in a geomorphological framework to subsequently introduce its basic geometricaland physical properties. Results on statistical properties of watersheds obtained from artificialmodel landscapes generated with long-range correlations are presented and shown to be ingood qualitative and quantitative agreement with real landscapes.

  7. Payments for watershed services: opportunities and realities

    Energy Technology Data Exchange (ETDEWEB)

    Bond, Ivan

    2007-08-15

    Many nations have found that regulatory approaches to land and water management have limited impact. An alternative is to create incentives for sound management - under mechanisms known as payments for ecosystem services. It is a simple idea: people who look after ecosystems that benefit others should be recognised and rewarded. In the case of watersheds, downstream beneficiaries of wise upstream land and water use should compensate the stewards. To be effective these 'payments for watershed services' must cover the cost of watershed management. In developing countries, they might also aid local development and reduce poverty. But new research shows that the problems in watersheds are complex and not easily solved. Payments for watershed services do not guarantee poverty reduction and cannot replace the best aspects of regulation.

  8. Watershed Scale Impacts of Stormwater Green Infrastructure ...

    Science.gov (United States)

    Despite the increasing use of urban stormwater green infrastructure (SGI), including detention ponds and rain gardens, few studies have quantified the cumulative effects of multiple SGI projects on hydrology and water quality at the watershed scale. To assess the effects of SGI, Baltimore County, MD, Montgomery County, MD, and Washington, DC, were selected based on the availability of data on SGI, water quality, and stream flow. The watershed scale impact of SGI was evaluated by assessing how increased spatial density of SGI correlates with stream hydrology and nitrogen exports over space and time. The most common SGI types were detention ponds (58%), followed by marshes (12%), sand filters (9%), wet ponds (7%), infiltration trenches (4%), and rain gardens (2%). When controlling for watersheds size and percent impervious surface cover, watersheds with greater amounts of SGI (>10% SGI) have 44% lower peak runoff, 26% less frequent runoff events, and 26% less variable runoff than watersheds with lower SGI. Watersheds with more SGI also show 44% less NO3− and 48% less total nitrogen exports compared to watersheds with minimal SGI. There was no significant reduction in combined sewer overflows in watersheds with greater SGI. Based on specific SGI types, infiltration trenches (R2 = 0.35) showed the strongest correlation with hydrologic metrics, likely due to their ability to attenuate flow, while bioretention (R2 = 0.19) and wet ponds (R2 = 0.12) showed stronger

  9. Application of the ReNuMa model in the Sha He river watershed: tools for watershed environmental management.

    Science.gov (United States)

    Sha, Jian; Liu, Min; Wang, Dong; Swaney, Dennis P; Wang, Yuqiu

    2013-07-30

    Models and related analytical methods are critical tools for use in modern watershed management. A modeling approach for quantifying the source apportionment of dissolved nitrogen (DN) and associated tools for examining the sensitivity and uncertainty of the model estimates were assessed for the Sha He River (SHR) watershed in China. The Regional Nutrient Management model (ReNuMa) was used to infer the primary sources of DN in the SHR watershed. This model is based on the Generalized Watershed Loading Functions (GWLF) and the Net Anthropogenic Nutrient Input (NANI) framework, modified to improve the characterization of subsurface hydrology and septic system loads. Hydrochemical processes of the SHR watershed, including streamflow, DN load fluxes, and corresponding DN concentration responses, were simulated following calibrations against observations of streamflow and DN fluxes. Uncertainty analyses were conducted with a Monte Carlo analysis to vary model parameters for assessing the associated variations in model outputs. The model performed accurately at the watershed scale and provided estimates of monthly streamflows and nutrient loads as well as DN source apportionments. The simulations identified the dominant contribution of agricultural land use and significant monthly variations. These results provide valuable support for science-based watershed management decisions and indicate the utility of ReNuMa for such applications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Nitrogen Saturation in Highly Retentive Watersheds?

    Science.gov (United States)

    Daley, M. L.; McDowell, W. H.

    2009-12-01

    Watershed managers are often concerned with minimizing the amount of N delivered to N-limited estuaries and coastal zones. A major concern is that watersheds might reach N saturation, in which N delivered to coastal zones increases due to declines in the efficiency of N retention despite constant or even reduced N inputs. We have quantified long-term changes in N inputs (atmospheric deposition, imported food and agricultural fertilizers), outputs (N concentration and export) and retention in the urbanizing Lamprey River watershed in coastal NH. Overall, the Lamprey watershed is 70% forested, receives about 13.5 kg N/ha/yr and has a high rate of annual N retention (85%). Atmospheric deposition (8.7 kg/ha/yr) is the largest N input to the watershed. Of the 2.2 kg N/ha/yr exported in the Lamprey River, dissolved organic N (DON) is the dominant form (50% of total) and it varies spatially throughout the watershed with wetland cover. Nitrate accounts for 30% of the N exported, shows a statistically significant increase from 1999 to 2009, and its spatial variability in both concentration and export is related to human population density. In sub-basins throughout the Lamprey, inorganic N retention is high (85-99%), but the efficiency of N retention declines sharply with increased human population density and associated anthropogenic N inputs. N assimilation in the vegetation, denitrification to the atmosphere and storage in the groundwater pool could all be important contributors to the current high rates of N retention. The temporal and spatial patterns that we have observed in nitrate concentration and export are driven by increases in N inputs and impervious surfaces over time, but the declining efficiency of N retention suggests that the watershed may also be reaching N saturation. The downstream receiving estuary, Great Bay, already suffers from low dissolved oxygen levels and eelgrass loss in part due to N loading from the Lamprey watershed. Targeting and reducing

  11. Improvement of the productivity of the swamp buffalo of S.E. Asia

    International Nuclear Information System (INIS)

    Frisch, J.E.; Vercoe, J.E.

    1984-01-01

    The needs of an expanding human population necessitate an increase in numbers and efficiency of output if the swamp buffalo is to remain as a significant component of S.E. Asian agriculture. Biological constraints to an increase in numbers are associated mainly with high calf mortality and low reproductive rate. A combination of vaccination and deworming markedly increases calf survival and provides the simplest means for increasing buffalo numbers. However, methods for improvement of the low inherent fertility of buffaloes remain to be devised. A first step towards a genetic solution is to obtain accurate comparative data for reproductive rates of different buffalo breeds and measures of the magnitude of heterosis for reproductive rate. However, facilities to do this in the near future do not exist. Milk yield or draft power could be most rapidly increased by crossing to river breeds with the optimum proportion of river breed in the cross determined by that level of milk yield and size commensurate with the locally available feed. This is the only method currently available that allows genetic improvement to initially equal or exceed the rate of human population growth. The lack of both large, well-documented herds and efficient AI schemes at present rules against within-breed selection as a method of improvement for any productive trait. It is unrealistic to expect large amounts of high-quality feeds to ever become available for rearing swamp buffaloes and there is a need to develop the facilities and expertise to allow comparative evaluation of buffalo breeds, the exploitation of heterosis in crosses and ultimately, within-breed selection for higher productivity, on straw-based diets. (author)

  12. Elevation - LiDAR Survey Minnehaha Creek, MN Watershed

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — LiDAR Bare-Earth Grid - Minnehaha Creek Watershed District. The Minnehaha Creek watershed is located primarily in Hennepin County, Minnesota. The watershed covers...

  13. Using Four Capitals to Assess Watershed Sustainability

    Science.gov (United States)

    Pérez-Maqueo, Octavio; Martinez, M. Luisa; Vázquez, Gabriela; Equihua, Miguel

    2013-03-01

    The La Antigua watershed drains into the Gulf of Mexico and can be considered as one of the most important areas in Mexico because of its high productivity, history, and biodiversity, although poverty remains high in the area in spite of these positive attributes. In this study, we performed an integrated assessment of the watershed to recommend a better direction toward a sustainable management in which the four capitals (natural, human, social, and built) are balanced. We contrasted these four capitals in the municipalities of the upper, middle and lower watershed and found that natural capital (natural ecosystems and ecosystem services) was higher in the upper and middle watershed, while human and social capitals (literacy, health, education and income) were generally higher downstream. Overall, Human Development Index was negatively correlated with the percentage of natural ecosystems in the watershed, especially in the upper and lower watershed regions. Our results indicate that natural capital must be fully considered in projections for increasing human development, so that natural resources can be preserved and managed adequately while sustaining intergenerational well-being.

  14. Modelling of the estimated contributions of different sub-watersheds and sources to phosphorous export and loading from the Dongting Lake watershed, China.

    Science.gov (United States)

    Hou, Ying; Chen, Weiping; Liao, Yuehua; Luo, Yueping

    2017-11-03

    Considerable growth in the economy and population of the Dongting Lake watershed in Southern China has increased phosphorus loading to the lake and resulted in a growing risk of lake eutrophication. This study aimed to reveal the spatial pattern and sources of phosphorus export and loading from the watershed. We applied an export coefficient model and the Dillon-Rigler model to quantify contributions of different sub-watersheds and sources to the total phosphorus (TP) export and loading in 2010. Together, the upper and lower reaches of the Xiang River watershed and the Dongting Lake Area contributed 60.9% of the TP exported from the entire watershed. Livestock husbandry appeared to be the largest anthropogenic source of TP, contributing more than 50% of the TP exported from each secondary sub-watersheds. The actual TP loading to the lake in 2010 was 62.9% more than the permissible annual TP loading for compliance with the Class III water quality standard for lakes. Three primary sub-watersheds-the Dongting Lake Area, the Xiang River, and the Yuan River watersheds-contributed 91.2% of the total TP loading. As the largest contributor among all sources, livestock husbandry contributed nearly 50% of the TP loading from the Dongting Lake Area and more than 60% from each of the other primary sub-watersheds. This study provides a methodology to identify the key sources and locations of TP export and loading in large lake watersheds. The study can provide a reference for the decision-making for controlling P pollution in the Dongting Lake watershed.

  15. Estimation of the peak factor based on watershed characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Gauthier, Jean; Nolin, Simon; Ruest, Benoit [BPR Inc., Quebec, (Canada)

    2010-07-01

    Hydraulic modeling and dam structure design require the river flood flow as a primary input. For a given flood event, the ratio of peak flow over mean daily flow defines the peak factor. The peak factor value is dependent on the watershed and location along the river. The main goal of this study consisted in finding a relationship between watershed characteristics and this peak factor. Regression analyses were carried out on 53 natural watersheds located in the southern part of the province of Quebec using data from the Centre d'expertise hydrique du Quebec (CEHQ). The watershed characteristics included in the analyses were the watershed area, the maximum flow length, the mean slope, the lake proportion and the mean elevation. The results showed that watershed area and length are the major parameters influencing the peak factor. Nine natural watersheds were also used to test the use of a multivariable model in order to determine the peak factor for ungauged watersheds.

  16. Economic Tools for Managing Nitrogen in Coastal Watersheds ...

    Science.gov (United States)

    Watershed managers are interested in using economics to communicate the value of estuarine resources to the wider community, determine the most cost-effective means to reduce nitrogen pollution, and evaluate the benefits of taking action to improve coastal ecosystems. We spoke to coastal watershed managers who had commissioned economic studies and found that they were largely satisfied with the information and their ability to communicate the importance of coastal ecosystems. However, while managers were able to use these studies as communication tools, methods used in some studies were inconsistent with what some economists consider best practices. In addition, many watershed managers are grappling with how to implement nitrogen management activities in a way that is both cost-effective and achieves environmental goals, while maintaining public support. These and other issues led to this project. Our intent is to provide information to watershed managers and others interested in watershed management – such as National Estuary Programs, local governments, or nongovernmental organizations – on economic tools for managing nitrogen in coastal watersheds, and to economists and other analysts who are interested in assisting them in meeting their needs. Watershed management requires balancing scientific, political, and social issues to solve environmental problems. This document summarizes questions that watershed managers have about using economic analysis, and g

  17. Modeling soil erosion in a watershed

    OpenAIRE

    Lanuza, R.

    1999-01-01

    Most erosion models have been developed based on a plot scale and have limited application to a watershed due to the differences in aerial scale. In order to address this limitation, a GIS-assisted methodology for modeling soil erosion was developed using PCRaster to predict the rate of soil erosion at watershed level; identify the location of erosion prone areas; and analyze the impact of landuse changes on soil erosion. The general methodology of desktop modeling or soil erosion at watershe...

  18. Substantial improvements not seen in health behaviors following corner store conversions in two Latino food swamps

    OpenAIRE

    Ortega, Alexander N.; Albert, Stephanie L.; Chan-Golston, Alec M.; Langellier, Brent A.; Glik, Deborah C.; Belin, Thomas R.; Garcia, Rosa Elena; Brookmeyer, Ron; Sharif, Mienah Z.; Prelip, Michael L.

    2016-01-01

    Background The effectiveness of food retail interventions is largely undetermined, yet substantial investments have been made to improve access to healthy foods in food deserts and swamps via grocery and corner store interventions. This study evaluated the effects of corner store conversions in East Los Angeles and Boyle Heights, California on perceived accessibility of healthy foods, perceptions of corner stores, store patronage, food purchasing, and eating behaviors. Methods Household data ...

  19. Multispectral remote sensing of inland wetlands in South Carolina: selecting the appropriate sensor

    International Nuclear Information System (INIS)

    Jensen, J.R.; Hodgson, M.; Christensen, E.J.; Mackey, H.E.; Sharitz, R.R.

    1984-01-01

    This research summarizes the utility of remote sensing for mapping both local (SRP) and regional wetlands including: stream delta areas, using aircraft multispectral scanner (MSS) imagery and large scale aerial photography; the SRP river swamp, using aircraft MSS and LANDSAT thematic mapper imagery; the Savannah River watershed, using LANDSAT MSS Imagery

  20. Heavy Metals Uptake by Asian Swamp Eel, Monopterus albus from Paddy Fields of Kelantan, Peninsular Malaysia: Preliminary Study.

    Science.gov (United States)

    Yin, Sow Ai; Ismail, Ahmad; Zulkifli, Syaizwan Zahmir

    2012-12-01

    Swamp eel, Monopterus albus is one of the common fish in paddy fields, thus it is suitable to be a bio-monitor for heavy metals pollution studies in paddy fields. This study was conducted to assess heavy metals levels in swamp eels collected from paddy fields in Kelantan, Malaysia. The results showed zinc [Zn (86.40 μg/g dry weight)] was the highest accumulated metal in the kidney, liver, bone, gill, muscle and skin. Among the selected organs, gill had the highest concentrations of lead (Pb), cadmium (Cd) and nickel (Ni) whereas muscle showed the lowest total metal accumulation of Zn, Pb, copper (Cu), Cd and Ni. Based on the Malaysian Food Regulation, the levels of Zn and Cu in edible parts (muscle and skin) were within the safety limits. However, Cd, Pb and Ni exceeded the permissible limits. By comparing with the maximum level intake (MLI), Pb, Ni and Cd in edible parts can still be consumed. This investigation indicated that M. albus from paddy fields of Kelantan are safe for human consumption with little precaution.

  1. NYC Reservoirs Watershed Areas (HUC 12)

    Data.gov (United States)

    U.S. Environmental Protection Agency — This NYC Reservoirs Watershed Areas (HUC 12) GIS layer was derived from the 12-Digit National Watershed Boundary Database (WBD) at 1:24,000 for EPA Region 2 and...

  2. WATERSHED BASED WEB GIS: CASE STUDY OF PALOPO WATERSHED AREA SOUTH SULAWESI, INDONESIA

    Directory of Open Access Journals (Sweden)

    Jalaluddin Rumi PRASAD

    2017-09-01

    Full Text Available Data and land resource information complete, accurate, and current is an input in management planning, evaluation, and monitoring Watershed. Implementation of this research is conducted with optimum utilization of secondary data that is supported by direct field measurement data, digitalizing the maps associated, Geographic Information Systems modeling, and model calibration. This research has resulted in a Geographic Information System Management of potential Watershed GIS Web-based or abbreviated WEB GIS MPPDAS using Palopo watershed area, South Sulawesi as a case study sites for the development of a prototype that consists of three applications the main website ie Web Portal, Web GIS, and Web Tutorial. The system is built to show online (and offline maps watershed in the administrative area of Palopo along with the location of its potential accumulated in the four (4 groups of layers, including groups of main layer (2 layer, a group of base layer (14 layers, groups of thematic layers (12 layers, a group of policy layer (8 layer. In addition to display a map, use the WEB application of GIS MPPDAS can also use tools or controls in the application to perform analyzes in its monitoring and evaluation, including: Geocoding, Add layer, Digitizing, Selection, Measurements, Graph, Filtering, Geolocation, Overlay cartographic, and etc.

  3. Watershed modeling applications in south Texas

    Science.gov (United States)

    Pedraza, Diana E.; Ockerman, Darwin J.

    2012-01-01

    Watershed models can be used to simulate natural and human-altered processes including the flow of water and associated transport of sediment, chemicals, nutrients, and microbial organisms within a watershed. Simulation of these processes is useful for addressing a wide range of water-resource challenges, such as quantifying changes in water availability over time, understanding the effects of development and land-use changes on water resources, quantifying changes in constituent loads and yields over time, and quantifying aquifer recharge temporally and spatially throughout a watershed.

  4. Watershed District

    Data.gov (United States)

    Kansas Data Access and Support Center — Boundaries show on this map are derived from legal descriptions contained in petitions to the Kansas Secretary of State for the creation or extension of watershed...

  5. Application of a virtual watershed in academic education

    OpenAIRE

    Horn , A. L.; Hörmann , G.; Fohrer , N.

    2005-01-01

    International audience; Hydrologic models of watersheds often represent complex systems which are difficult to understand regarding to their structure and dynamics. Virtual watersheds, i.e. watersheds which exist only in the virtual reality of a computer system, are an approach to simplify access to this real-world complexity. In this study we present the virtual watershed KIELSHED-1, a 117 km2 v-shaped valley with grassland on a "Cambisol" soil type. Two weather scenarios are delivered with ...

  6. Sustainable management of peat swamp forest of Sarawak with special reference to ramin (Gonystylus bancanus); development of a monitoring system

    NARCIS (Netherlands)

    Wijdeven, S.M.J.; Meer, van der P.J.; Chai, F.Y.C.; Tan, S.; Mohizah, M.; Liam, D.

    2004-01-01

    Peat swamp forests in Sarawak are valuable in terms of timber and biodiversity, but heavily degraded. In order to assess the current status, potential developments and possible management interventions, an adequate monitoring system is necessary. In this study a new monitoring system is proposed,

  7. Global perspective of watershed management

    Science.gov (United States)

    Kenneth N. Brooks; Karlyn Eckman

    2000-01-01

    This paper discusses the role of watershed management in moving towards sustainable natural resource and agricultural development. Examples from 30 field projects and six training projects involving over 25 countries are presented to illustrate watershed management initiatives that have been implemented over the last half of the 20th century. The level of success has...

  8. Growth Response and Tolerance to Heavy Metals of two Swamp Species inoculated with a Plant Growth-Promoting Rhizobacteria

    International Nuclear Information System (INIS)

    Rodriguez-Dorantes, A.; Labra-Cardon, D.; Guerrero-Zuniga, A.; Montes-Villafan, S.

    2009-01-01

    Due to the sensitivity and the sequestration ability of the microbial communities to heavy metals, microbes have been used for bioremediation. Recently the application of plant growth-promoting rhizobacteria (PGPR) for the bioremediation of this kind of contaminants has been done. This study evaluated the growth response and the tolerance to heavy metals of two swamp species. (Author)

  9. Swamp plots for dynamic aperture studies of PEP-II lattices

    International Nuclear Information System (INIS)

    Yan, Y.T.; Irwin, J.; Cai, Y.; Chen, T.; Ritson, D.

    1995-01-01

    With a newly developed algorithm using resonance basis Lie generators and their evaluation with action-angle Poisson bracket maps (nPB tracking) the authors have been able to perform fast tracking for dynamic aperture studies of PEP-II lattices as well as incorporate lattice nonlinearities in beam-beam studies. They have been able to better understand the relationship between dynamic apertures and the tune shift and resonance coefficients in the generators of the one-turn maps. To obtain swamp plots (dynamic aperture vs. working point) of the PEP-II lattices, they first compute a one-turn resonance basis map for a nominal working point and then perform nPB tracking by switching the working point while holding fixed all other terms in the map. Results have been spot-checked by comparing with element-by-element tracking

  10. Assessment of landscape change and occurrence at watershed ...

    African Journals Online (AJOL)

    ... the southern watershed zones. Monitoring land cover change at the watershed scale is more indicative of impact level and where efforts for managing and conserving the urban landscape should be prioritized. Key words: Urban expansion, land cover type, remote sensing, watershed units, urban landscape conservation.

  11. Application of a virtual watershed in academic education

    Directory of Open Access Journals (Sweden)

    A. L. Horn

    2005-01-01

    Full Text Available Hydrologic models of watersheds often represent complex systems which are difficult to understand regarding to their structure and dynamics. Virtual watersheds, i.e. watersheds which exist only in the virtual reality of a computer system, are an approach to simplify access to this real-world complexity. In this study we present the virtual watershed KIELSHED-1, a 117 km2 v-shaped valley with grassland on a "Cambisol" soil type. Two weather scenarios are delivered with the watershed: a simplified artificial weather scenario based on long-term data of a German weather station as well as an unmodified data record. The input data and parameters are compiled according to the conventions of the SWAT 2000 hydrological model. KIELSHED-1 is mainly used for education, and illustrative application examples, i.e. calculation of water balance, model calibration, development of land use scenarios, give an insight to the capabilities of the virtual watershed.

  12. Understanding toxicity at the watershed scale : design of the Syncrude Sandhill Fen watershed research project

    International Nuclear Information System (INIS)

    Wytrykush, C.

    2010-01-01

    Fens are peat-accumulating wetlands with a water table consisting of mineral-rich ground or surface water. This study discussed the construction of a fen-type reclaimed wetland constructed in a post-mining oil sands landscape. Syncrude Canada's Sandhill fen watershed project represents the first attempt at constructing a fen wetland in the oil sands region. The wetland and its watershed will be constructed on a soft tailings deposit. The design basis for the fen and watershed was developed by a team of researchers and scientists. The aim of the fen design was to control the salinity caused by tailings consolidation and seepage over time. Methods of mitigating potentially toxic effects from salinity were discussed.

  13. Regionalization of SWAT Model Parameters for Use in Ungauged Watersheds

    Directory of Open Access Journals (Sweden)

    Indrajeet Chaubey

    2010-11-01

    Full Text Available There has been a steady shift towards modeling and model-based approaches as primary methods of assessing watershed response to hydrologic inputs and land management, and of quantifying watershed-wide best management practice (BMP effectiveness. Watershed models often require some degree of calibration and validation to achieve adequate watershed and therefore BMP representation. This is, however, only possible for gauged watersheds. There are many watersheds for which there are very little or no monitoring data available, thus the question as to whether it would be possible to extend and/or generalize model parameters obtained through calibration of gauged watersheds to ungauged watersheds within the same region. This study explored the possibility of developing regionalized model parameter sets for use in ungauged watersheds. The study evaluated two regionalization methods: global averaging, and regression-based parameters, on the SWAT model using data from priority watersheds in Arkansas. Resulting parameters were tested and model performance determined on three gauged watersheds. Nash-Sutcliffe efficiencies (NS for stream flow obtained using regression-based parameters (0.53–0.83 compared well with corresponding values obtained through model calibration (0.45–0.90. Model performance obtained using global averaged parameter values was also generally acceptable (0.4 ≤ NS ≤ 0.75. Results from this study indicate that regionalized parameter sets for the SWAT model can be obtained and used for making satisfactory hydrologic response predictions in ungauged watersheds.

  14. Strong and stable geographic differentiation of swamp buffalo maternal and paternal lineages indicates domestication in the China/Indochina border region

    NARCIS (Netherlands)

    Zhang, Yi; Lu, Yongfang; Yindee, Marnoch; Li, Kuan-Yi; Kuo, Hsiao-Yun; Ju, Yu-Ten; Ye, Shaohui; Faruque, Md Omar; Li, Qiang; Wang, Yachun; Cuong, Vu Chi; Pham, Lan Doan; Bouahom, Bounthong; Yang, Bingzhuang; Liang, Xianwei; Cai, Zhihua; Vankan, Dianne; Manatchaiworakul, Wallaya; Kowlim, Nonglid; Duangchantrasiri, Somphot; Wajjwalku, Worawidh; Colenbrander, Ben; Zhang, Yuan; Beerli, Peter; Lenstra, Johannes A; Barker, J Stuart F

    The swamp type of the Asian water buffalo is assumed to have been domesticated by about 4000 years BP, following the introduction of rice cultivation. Previous localizations of the domestication site were based on mitochondrial DNA (mtDNA) variation within China, accounting only for the maternal

  15. Integrated Modeling System for Analysis of Watershed Water Balance: A Case Study in the Tims Branch Watershed, South Carolina

    Science.gov (United States)

    Setegn, S. G.; Mahmoudi, M.; Lawrence, A.; Duque, N.

    2015-12-01

    The Applied Research Center at Florida International University (ARC-FIU) is supporting the soil and groundwater remediation efforts of the U.S. Department of Energy (DOE) Savannah River Site (SRS) by developing a surface water model to simulate the hydrology and the fate and transport of contaminants and sediment in the Tims Branch watershed. Hydrological models are useful tool in water and land resource development and decision-making for watershed management. Moreover, simulation of hydrological processes improves understanding of the environmental dynamics and helps to manage and protect water resources and the environment. MIKE SHE, an advanced integrated modeling system is used to simulate the hydrological processes of the Tim Branch watershed with the objective of developing an integrated modeling system to improve understanding of the physical, chemical and biological processes within the Tims Branch watershed. MIKE SHE simulates water flow in the entire land based phase of the hydrological cycle from rainfall to river flow, via various flow processes such as, overland flow, infiltration, evapotranspiration, and groundwater flow. In this study a MIKE SHE model is developed and applied to the Tim branch watershed to study the watershed response to storm events and understand the water balance of the watershed under different climatic and catchment characteristics. The preliminary result of the integrated model indicated that variation in the depth of overland flow highly depend on the amount and distribution of rainfall in the watershed. The ultimate goal of this project is to couple the MIKE SHE and MIKE 11 models to integrate the hydrological component in the land phase of hydrological cycle and stream flow process. The coupled MIKE SHE/MIKE 11 model will further be integrated with an Ecolab module to represent a range of water quality, contaminant transport, and ecological processes with respect to the stream, surface water and groundwater in the Tims

  16. AUTOMATED GEOSPATIAL WATERSHED ASSESSMENT ...

    Science.gov (United States)

    The Automated Geospatial Watershed Assessment tool (AGWA) is a GIS interface jointly developed by the USDA Agricultural Research Service, the U.S. Environmental Protection Agency, the University of Arizona, and the University of Wyoming to automate the parameterization and execution of the Soil Water Assessment Tool (SWAT) and KINEmatic Runoff and EROSion (KINEROS2) hydrologic models. The application of these two models allows AGWA to conduct hydrologic modeling and watershed assessments at multiple temporal and spatial scales. AGWA’s current outputs are runoff (volumes and peaks) and sediment yield, plus nitrogen and phosphorus with the SWAT model. AGWA uses commonly available GIS data layers to fully parameterize, execute, and visualize results from both models. Through an intuitive interface the user selects an outlet from which AGWA delineates and discretizes the watershed using a Digital Elevation Model (DEM) based on the individual model requirements. The watershed model elements are then intersected with soils and land cover data layers to derive the requisite model input parameters. The chosen model is then executed, and the results are imported back into AGWA for visualization. This allows managers to identify potential problem areas where additional monitoring can be undertaken or mitigation activities can be focused. AGWA also has tools to apply an array of best management practices. There are currently two versions of AGWA available; AGWA 1.5 for

  17. Watershed Profiles and Stream-net Structure of Vesuvio Volcano, Italy

    Science.gov (United States)

    Lin, Z.; Oguchi, T.; Komatsu, G.

    2006-12-01

    Watershed topography including stream-net structure in 32 watersheds of Vesuvio Volcano was analyzed using a DEM with a 20-m resolution, with special attention to geomorphological differences between the northern ?0-8 area and the other areas. The longitudinal and transverse profiles and stream-nets of the watersheds were extracted from the DEM. Drainage density and statistical morphometric parameters representing the shape of the profiles were investigated, and their relations with other basic morphometric parameters such as slope angle were examined. The relationships between drainage density and slope angle for each watershed can be divided into two types: Type 1 - negative correlation and Type 2 - convex-form correlation. The Type 2 watersheds have smaller bifurcation ratios and larger low-order stream lengths than the Type 1 watersheds, indicating that low-order streams in the Type 2 watersheds are more integrated. The results of longitudinal and transverse profile analyses also show that the topography of the Type 2 watersheds is simpler and more organized than that of the Type 1 watersheds, suggesting that the Type 2 watersheds are closer to equilibrium conditions. The Type 2 watersheds are located in the steepest and highest part of the somma area, where only limited eruption products have been deposited during the Holocene, due to the existence of the high and steep outer rim of the caldera at the top of the volcano. The results including the existence of the two types are similar to those from non-volcanic watersheds in Japan, indicating that stream-net studies combined with profile analysis using DEMs are effective in discussing the erosional stages of watersheds.

  18. Coastal watershed management across an international border in the Tijuana River watershed

    Science.gov (United States)

    Fernandez, Linda

    2005-05-01

    The paper develops and applies a game theoretic model of upstream and downstream countries to examine cooperative and noncooperative strategies of a common watershed. The application to the Tijuana River watershed shared by the United States and Mexico provides quantification of the strategies for internalizing water quality externalities to upstream and downstream originating from sedimentation. Results show that different transfer payments, such as the Chander/Tulkens cost sharing rule and the Shapley value, imply the size of the existing transfer from downstream to upstream could increase the amount currently allocated.

  19. McKenzie River Watershed Coordination, Annual Report 2001-2002.

    Energy Technology Data Exchange (ETDEWEB)

    Thrailkil, Jim

    2003-11-01

    BPA funding, in conjunction with contributions from numerous partners organizations and grant funds supports the McKenzie Watershed Council's (MWC) efforts to coordinate restoration and monitoring programs of federal, state, local government, and residents within the watershed. Primary goals of the MWC are to improve resource stewardship and conserve fish, wildlife, and water quality resources. Underpinning the goals is the MWC's baseline program centered on relationship building and information sharing. Objectives for FY02 included: (1) Continue to coordinate McKenzie Watershed activities among diverse groups to restore fish and wildlife habitat in the watershed, with a focus on the middle to lower McKenzie, including private lands and the McKenzie-Willamette confluence area; (2) Influence behavior of watershed residents to benefit watershed function though an outreach and education program, utilizing (BPA funded) Assessment and Conservation Strategy information to provide a context for prioritized action; (3) Continue to maintain and sustain a highly functional watershed council; (4) Maintain and improve water quality concerns through the continuation of Council-sponsored monitoring and evaluation programs; and (5) Continue to secure other funding for watershed restoration and protection projects and Council operations.

  20. [Evaluation on the eco-economic benefits of small watershed in Beijing mountainous area: a case of Yanqi River watershed].

    Science.gov (United States)

    Xiao, Hui-Jie; Wei, Zi-Gang; Wang, Qing; Zhu, Xiao-Bo

    2012-12-01

    Based on the theory of harmonious development of ecological economy, a total of 13 evaluation indices were selected from the ecological, economic, and social sub-systems of Yanqi River watershed in Huairou District of Beijing. The selected evaluation indices were normalized by using trapezoid functions, and the weights of the evaluation indices were determined by analytic hierarchy process. Then, the eco-economic benefits of the watershed were evaluated with weighted composite index method. From 2004 to 2011, the ecological, economic, and social benefits of Yanqi River watershed all had somewhat increase, among which, ecological benefit increased most, with the value changed from 0.210 in 2004 to 0.255 in 2011 and an increment of 21.5%. The eco-economic benefits of the watershed increased from 0.734 in 2004 to 0.840 in 2011, with an increment of 14.2%. At present, the watershed reached the stage of advanced ecosystem, being in beneficial circulation and harmonious development of ecology, economy, and society.

  1. Grays River Watershed Geomorphic Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Geist, David R

    2005-04-30

    This investigation, completed for the Pacific Northwest National Laboratory (PNNL), is part of the Grays River Watershed and Biological Assessment commissioned by Bonneville Power Administration under project number 2003-013-00 to assess impacts on salmon habitat in the upper Grays River watershed and present recommendations for habitat improvement. This report presents the findings of the geomorphic assessment and is intended to support the overall PNNL project by evaluating the following: The effects of historical and current land use practices on erosion and sedimentation within the channel network The ways in which these effects have influenced the sediment budget of the upper watershed The resulting responses in the main stem Grays River upstream of State Highway 4 The past and future implications for salmon habitat.

  2. Water-use dynamics of a peat swamp forest and a dune forest in Maputaland, South Africa

    Directory of Open Access Journals (Sweden)

    A. D. Clulow

    2013-05-01

    Full Text Available Peat swamp forests are the second rarest forest type found in South Africa while dune forests have been under severe threat through mining and agriculture. Both forest types exist in the conservation area, and World Heritage site, known as the iSimangaliso Wetland Park on the East coast of South Africa. The area is prone to severe droughts (Taylor et al., 2006 and recent attempts to understand the local water balance revealed that there was insufficient information on the water use of the indigenous forests of the area. The peat swamp forest and dune forest sites studied in this research were located within close proximity to each other, yet, are characterised by different landscape positions in terms of water availability. The coastal dune forest soil profile was generally dry and sandy and the tree roots did not have access to the water table. In contrast the peat swamp forest is located in an interdunal wetland where the trees have permanent access to water. The climate at both sites is subtropical with a mean annual precipitation of 1200 mm yr−1. However, over 20 months of measurement, the first summer (October 2009 to March 2010 was drier (424 versus 735 mm than the second summer (October 2010 to March 2011 emphasising the variability of the rainfall in the area and providing a wide range of conditions measured. The sap flow of an evergreen, overstory Syzygium cordatum and a semi-deciduous, understory Shirakiopsis elliptica were measured in the peat swamp forest using the heat ratio method. The Syzygium cordatum water use was not highly seasonal and the daily maximum water use ranged from approximately 30 L d−1 in winter to 45 L d−1 in summer whereas the extit{Shirakiopsis elliptica} water use was more seasonal at 2 L d−1 in winter and 12 L d−1 in summer. The water use of the Syzygium cordatum was not influenced by seasonal rainfall variations and was actually higher in the drier summer (October 2009 to March 2010. Three trees of

  3. 18 CFR 801.9 - Watershed management.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Watershed management... GENERAL POLICIES § 801.9 Watershed management. (a) The character, extent, and quality of water resources... management including soil and water conservation measures, land restoration and rehabilitation, erosion...

  4. Watershed Management Optimization Support Tool (WMOST) ...

    Science.gov (United States)

    EPA's Watershed Management Optimization Support Tool (WMOST) version 2 is a decision support tool designed to facilitate integrated water management by communities at the small watershed scale. WMOST allows users to look across management options in stormwater (including green infrastructure), wastewater, drinking water, and land conservation programs to find the least cost solutions. The pdf version of these presentations accompany the recorded webinar with closed captions to be posted on the WMOST web page. The webinar was recorded at the time a training workshop took place for EPA's Watershed Management Optimization Support Tool (WMOST, v2).

  5. DNR Watersheds - DNR Level 02 - HUC 04

    Data.gov (United States)

    Minnesota Department of Natural Resources — These data consists of watershed delineations in one seamless dataset of drainage areas called Minnesota Department of Natural Resources (DNR) Level 02 Watersheds....

  6. Linking Resilience of Aquatic Species to Watershed Condition

    Science.gov (United States)

    Flitcroft, R. L.

    2017-12-01

    Watershed condition means different things to different people. From the perspective of aquatic ecology, watershed condition may be interpreted to mean the capacity of a watershed to support life history diversity of native species. Diversity in expression of life history is thought to confer resilience allowing portions of the broader population to survive stressful conditions. Different species have different life history strategies, many of which were developed through adaptation to regional or local environmental conditions and natural disturbance regimes. By reviewing adaptation strategies for species of interest at regional scales, characteristics of watersheds that confer resilience may be determined. Such assessments must be completed at multiple levels of spatial organization (i.e. sub-watershed, watershed, region) allowing assessments to be inferred across broad spatial extents. In a project on the Wenatchee River watershed, we guided models of wildfire effects on bull trout and spring Chinook from a meta-population perspective to determine risks to survival at local and population scales over multiple extents of spatial organization. In other work in the Oregon Coast Range, we found that historic landslides continue to exert habitat-forming pressure at local scales, leading to patchiness in distribution of habitats for different life stages of coho salmon. Further, climate change work in Oregon estuaries identified different vulnerabilities in terms of juvenile rearing habitat depending on the species of interest and the intensity of future changes in climate. All of these studies point to the importance of considering physical conditions in watersheds at multiple spatial extents from the perspective of native aquatic species in order to understand risks to long-term survival. The broader implications of watershed condition, from this perspective, is the determination of physical attributes that confer resilience to native biota. This may require

  7. Understanding Human Impact: Second Graders Explore Watershed Dynamics

    Science.gov (United States)

    Magruder, Robin; Rosenauer, Julia

    2016-01-01

    This article describes a second grade science enrichment unit with a focus on human impact, both positive and negative, on the living and nonliving components of the local watershed. Investigating the local watershed gave the unit a personal and pragmatic connection to students' lives because they depend on the local watershed for what they need…

  8. Experimental Watershed Study Designs: A Tool for Advancing Process Understanding and Management of Mixed-Land-Use Watersheds

    Science.gov (United States)

    Hubbart, J. A.; Kellner, R. E.; Zeiger, S. J.

    2016-12-01

    Advancements in watershed management are both a major challenge, and urgent need of this century. The experimental watershed study (EWS) approach provides critical baseline and long-term information that can improve decision-making, and reduce misallocation of mitigation investments. Historically, the EWS approach was used in wildland watersheds to quantitatively characterize basic landscape alterations (e.g. forest harvest, road building). However, in recent years, EWS is being repurposed in contemporary multiple-land-use watersheds comprising a mosaic of land use practices such as urbanizing centers, industry, agriculture, and rural development. The EWS method provides scalable and transferrable results that address the uncertainties of development, while providing a scientific basis for total maximum daily load (TMDL) targets in increasing numbers of Clean Water Act 303(d) listed waters. Collaborative adaptive management (CAM) programs, designed to consider the needs of many stakeholders, can also benefit from EWS-generated information, which can be used for best decision making, and serve as a guidance tool throughout the CAM program duration. Of similar importance, long-term EWS monitoring programs create a model system to show stakeholders how investing in rigorous scientific research initiatives improves decision-making, thereby increasing management efficiencies through more focused investments. The evolution from classic wildland EWS designs to contemporary EWS designs in multiple-land-use watersheds will be presented while illustrating how such an approach can encourage innovation, cooperation, and trust among watershed stakeholders working to reach the common goal of improving and sustaining hydrologic regimes and water quality.

  9. Model My Watershed: A high-performance cloud application for public engagement, watershed modeling and conservation decision support

    Science.gov (United States)

    Aufdenkampe, A. K.; Tarboton, D. G.; Horsburgh, J. S.; Mayorga, E.; McFarland, M.; Robbins, A.; Haag, S.; Shokoufandeh, A.; Evans, B. M.; Arscott, D. B.

    2017-12-01

    The Model My Watershed Web app (https://app.wikiwatershed.org/) and the BiG-CZ Data Portal (http://portal.bigcz.org/) and are web applications that share a common codebase and a common goal to deliver high-performance discovery, visualization and analysis of geospatial data in an intuitive user interface in web browser. Model My Watershed (MMW) was designed as a decision support system for watershed conservation implementation. BiG CZ Data Portal was designed to provide context and background data for research sites. Users begin by creating an Area of Interest, via an automated watershed delineation tool, a free draw tool, selection of a predefined area such as a county or USGS Hydrological Unit (HUC), or uploading a custom polygon. Both Web apps visualize and provide summary statistics of land use, soil groups, streams, climate and other geospatial information. MMW then allows users to run a watershed model to simulate different scenarios of human impacts on stormwater runoff and water-quality. BiG CZ Data Portal allows users to search for scientific and monitoring data within the Area of Interest, which also serves as a prototype for the upcoming Monitor My Watershed web app. Both systems integrate with CUAHSI cyberinfrastructure, including visualizing observational data from CUAHSI Water Data Center and storing user data via CUAHSI HydroShare. Both systems also integrate with the new EnviroDIY Water Quality Data Portal (http://data.envirodiy.org/), a system for crowd-sourcing environmental monitoring data using open-source sensor stations (http://envirodiy.org/mayfly/) and based on the Observations Data Model v2.

  10. Chapter 19. Cumulative watershed effects and watershed analysis

    Science.gov (United States)

    Leslie M. Reid

    1998-01-01

    Cumulative watershed effects are environmental changes that are affected by more than.one land-use activity and that are influenced by.processes involving the generation or transport.of water. Almost all environmental changes are.cumulative effects, and almost all land-use.activities contribute to cumulative effects

  11. Isolation of peat swamp forest foliar endophyte fungi as biofertilizer

    Directory of Open Access Journals (Sweden)

    Safinah Surya Hakim

    2017-01-01

    Full Text Available Peatland restoration activity is facing many obstacles, particularly in planting techniques and poor nutrient in peat soil. Naturally, endophytic fungi are abundant and have great potential as biofertilizer. This research investigates the potential endophytic fungi isolated from leaves of peat swamp tree species for biofertilizer. Research activities include: exploration, in vitro test to examine the phosphate solubilization and identification. Result showed that there were 360 leave segments collected from 4 sampling locations. The colonization percentage of 222 isolates ranged from 52.17% - 60.17%. Fifty seven morphospecies were selected from 222 isolates. Twelve isolates demonstrated ability to produce clear zones and ten isolates were selected for identification. It is concluded that twelve isolated demonstrated potential ability to produce clear zone and Penicillum citrinum isolate P3.10 was identified as an isolate that show the highest potential ability as a biofertilizer

  12. Iskuulpa Watershed Management Plan : A Five-Year Plan for Protecting and Enhancing Fish and Wildlife Habitats in the Iskuulpa Watershed.

    Energy Technology Data Exchange (ETDEWEB)

    Confederated Tribes of the Umatilla Indian Reservation Wildlife Program

    2003-01-01

    The Confederated Tribes of the Umatilla Indian Reservation (CTUIR) propose to protect, enhance, and mitigate wildlife and wildlife habitat and watershed resources in the Iskuulpa Watershed. The Iskuulpa Watershed Project was approved as a Columbia River Basin Wildlife Fish and Mitigation Project by the Bonneville Power Administration (BPA) and Northwest Power Planning Council (NWPPC) in 1998. Iskuulpa will contribute towards meeting BPA's obligation to compensate for wildlife habitat losses resulting from the construction of the John Day and McNary Hydroelectric facilities on the Columbia River. By funding the enhancement and operation and maintenance of the Iskuulpa Watershed, BPA will receive credit towards their mitigation debt. The purpose of the Iskuulpa Watershed management plan update is to provide programmatic and site-specific standards and guidelines on how the Iskuulpa Watershed will be managed over the next three years. This plan provides overall guidance on both short and long term activities that will move the area towards the goals, objectives, and desired future conditions for the planning area. The plan will incorporate managed and protected wildlife and wildlife habitat, including operations and maintenance, enhancements, and access and travel management.

  13. Proteomic analysis of three gonad types of swamp eel reveals genes differentially expressed during sex reversal

    OpenAIRE

    Sheng, Yue; Zhao, Wei; Song, Ying; Li, Zhigang; Luo, Majing; Lei, Quan; Cheng, Hanhua; Zhou, Rongjia

    2015-01-01

    A variety of mechanisms are engaged in sex determination in vertebrates. The teleost fish swamp eel undergoes sex reversal naturally and is an ideal model for vertebrate sexual development. However, the importance of proteome-wide scanning for gonad reversal was not previously determined. We report a 2-D electrophoresis analysis of three gonad types of proteomes during sex reversal. MS/MS analysis revealed a group of differentially expressed proteins during ovary to ovotestis to testis transf...

  14. Watershed manipulation project: Field implementation plan for 1990-1992

    International Nuclear Information System (INIS)

    Erickson, H.; Narahara, A.M.; Rustad, L.E.; Mitchell, M.; Lee, J.

    1993-02-01

    The Bear Brook Watershed in Maine (BBWM) was established in 1986 at Lead Mountain, Maine as part of the Environmental Protection Agency's (EPA) Watershed Manipulation Project (WPM). The goals of the project are to: (1) assess the chemical response of a small upland forested watershed to increased loadings of SO4, (2) determine interactions among biogeochemical mechanisms controlling watershed response to acidic deposition, and (3) test the assumptions of the Direct/Delayed Response Programs (DDRP) computer models of watershed acidification. The document summarizes the field procedures used in the establishment and initial implementation of the plot- and catchment- scale activities at the BBWM, and outlines plans for 1990-02 project activities

  15. Geology of the Teakettle Creek watersheds

    Science.gov (United States)

    Robert S. LaMotte

    1937-01-01

    The Teakettle Creek Experimental Watersheds lie for the most part on quartzites of probable Triassic age. However one of the triplicate drainages has a considerable acreage developed on weathered granodiorite. Topography is relatively uniform and lends itself to triplicate watershed studies. Locations for dams are suitable if certain engineering precautions...

  16. Valuing the effects of hydropower development on watershed ecosystem services: Case studies in the Jiulong River Watershed, Fujian Province, China

    Science.gov (United States)

    Wang, Guihua; Fang, Qinhua; Zhang, Luoping; Chen, Weiqi; Chen, Zhenming; Hong, Huasheng

    2010-02-01

    Hydropower development brings many negative impacts on watershed ecosystems which are not fully integrated into current decision-making largely because in practice few accept the cost and benefit beyond market. In this paper, a framework was proposed to valuate the effects on watershed ecosystem services caused by hydropower development. Watershed ecosystem services were classified into four categories of provisioning, regulating, cultural and supporting services; then effects on watershed ecosystem services caused by hydropower development were identified to 21 indicators. Thereafter various evaluation techniques including the market value method, opportunity cost approach, project restoration method, travel cost method, and contingent valuation method were determined and the models were developed to valuate these indicators reflecting specific watershed ecosystem services. This approach was applied to three representative hydropower projects (Daguan, Xizaikou and Tiangong) of Jiulong River Watershed in southeast China. It was concluded that for hydropower development: (1) the value ratio of negative impacts to positive benefits ranges from 64.09% to 91.18%, indicating that the negative impacts of hydropower development should be critically studied during its environmental administration process; (2) the biodiversity loss and water quality degradation (together accounting for 80-94%) are the major negative impacts on watershed ecosystem services; (3) the average environmental cost per unit of electricity is up to 0.206 Yuan/kW h, which is about three quarters of its on-grid power tariff; and (4) the current water resource fee accounts for only about 4% of its negative impacts value, therefore a new compensatory method by paying for ecosystem services is necessary for sustainable hydropower development. These findings provide a clear picture of both positive and negative effects of hydropower development for decision-makers in the monetary term, and also provide a

  17. IMPROVEMENT OF RICE GROWTH AND PRODUCTIVITY THROUGH BALANCE APPLICATION OF INORGANIC FERTILIZER AND BIOFERTILIZER IN INCEPTISOL SOIL OF LOWLAND SWAMP AREA

    Directory of Open Access Journals (Sweden)

    Neni Marlina

    2014-02-01

    Full Text Available The objective of this study was to obtain a proper balance dose between biofertilizer and inorganic fertilizer in order to increase the growth and yield of rice in Inceptisol soil of lowland swamp origin. Biofertilizer was made by enriching straw compost with N2 interceptor bacteria, phosphate solvent bacteria and growth stimulator bacteria isolated from swamp lowland in South Sumatra. This study was conducted from November 2012 to March 2013 in a greenhouse. The design used was completely randomized design (CRD factorial, with two treatment factors consisting of inorganic fertilizer (0,25, 50, 75 and 100% recommended dosage and biofertilizer (0, 100, 200, 300, 400 and 500 kg.ha-1. The results showed that the best treatment in term of plant height at 8 weeks after planting (WAP, the maximum number of tillers, number of productive tillers, number of grains per panicle and weight of milled dry rice were obtained in combination of 75% inorganic fertilizer and 300 - 400 kg.ha-1biofertilizer.

  18. Immunological responses of pregnant swamp and murrah buffalo cows and calves to Toxocara (Neoascaris) vitulorum infection

    International Nuclear Information System (INIS)

    Amerasinghe, P.; Masoodi, M.A.; Samarasinghe, B.; Sivanathan, S.; Gunawardana, V.K.; Fernando, S.T.

    1984-01-01

    Swamp buffalo cows from an area where T. vitulorum infection was heavy were examined for serum antibodies. Serum from all cows showed strongly positive precipitin reactions from the 4th to 6th months of pregnancy and after parturition using homologous larval, adult worm and adult excretory and secretory antigens; these precipitins were still being detected in the sera 4-6 months after calving. The sera of calves born to these cows were negative for T. vitulorum precipitins before feeding with colostrum but a precipitin reaction was evident from 24 hours of birth. Nevertheless, patent infections developed from 19-21 days after birth and one calf died with severe diarrhoea; the remainder revealed heavy faecal Toxocara egg counts. In six calves the infection was spontaneously eliminated between 40 and 60 days after birth suggesting a 'self-cure' reaction. In a similar study involving 30 Murrah cows sera precipitins were not observed during the first 4-6 months of pregnancy. In 14 calves born to these animals serum precipitins were never observed, but the animals had T. vitulorum egg counts comparable with those in swamp buffalo calves. After an initial natural infection a strong resistance to reinfection was acquired by most calves of both breeds in that larvae did not generally develop beyond the second stage. (author)

  19. Autonomic control of the heart in the Asian swamp eel (Monopterus albus)

    DEFF Research Database (Denmark)

    Iversen, Nina Kerting; Huong, Do Thi Thanh; Bayley, Mark

    2011-01-01

    The Asian swamp eel (Monopterus albus) is an air-breathing teleost with very reduced gills that uses the buccal cavity for air-breathing. Here we characterise the cardiovascular changes associated with the intermittent breathing pattern in M. albus and we study the autonomic control of the heart.......3 cm H2O). The autonomic control of the heart during water- and air-breathing was revealed by infusion of the β-adrenergic antagonist propranolol and muscarinic antagonist atropine (3 mg kg− 1) in eels instrumented with an arterial catheter. Inhibition of the sympathetic and parasympathetic...... innervations of the heart revealed a strong vagal tone on the heart of water-breathing eels and that the tachycardia during air-breathing is primarily mediated by withdrawal of cholinergic tone....

  20. Sunken wood habitat for thiotrophic symbiosis in mangrove swamps.

    Science.gov (United States)

    Laurent, Mélina C Z; Gros, Olivier; Brulport, Jean-Pierre; Gaill, Françoise; Bris, Nadine Le

    2009-03-01

    Large organic falls to the benthic environment, such as dead wood or whale bones, harbour organisms relying on sulfide-oxidizing symbionts. Nothing is known however, concerning sulfide enrichment at the wood surface and its relation to wood colonization by sulfide-oxidizing symbiotic organisms. In this study we combined in situ hydrogen sulfide and pH measurements on sunken wood, with associated fauna microscopy analyses in a tropical mangrove swamp. This shallow environment is known to harbour thiotrophic symbioses and is also abundantly supplied with sunken wood. A significant sulfide enrichment at the wood surface was revealed. A 72h sequence of measurements emphasized the wide fluctuation of sulfide levels (0.1->100muM) over time with both a tidal influence and rapid fluctuations. Protozoans observed on the wood surface were similar to Zoothamnium niveum and to vorticellids. Our SEM observations revealed their association with ectosymbiotic bacteria, which are likely to be sulfide-oxidizers. These results support the idea that sunken wood surfaces constitute an environment suitable for sulfide-oxidizing symbioses.

  1. 5. Basin assessment and watershed analysis

    Science.gov (United States)

    Leslie M. Reid; Robert R. Ziemer

    1994-01-01

    Abstract - Basin assessment is an important component of the President's Forest Plan, yet it has received little attention. Basin assessments are intended both to guide watershed analyses by specifying types of issues and interactions that need to be understood, and, eventually, to integrate the results of watershed analyses occurring within a river basin....

  2. Turbidity Threshold sampling in watershed research

    Science.gov (United States)

    Rand Eads; Jack Lewis

    2003-01-01

    Abstract - When monitoring suspended sediment for watershed research, reliable and accurate results may be a higher priority than in other settings. Timing and frequency of data collection are the most important factors influencing the accuracy of suspended sediment load estimates, and, in most watersheds, suspended sediment transport is dominated by a few, large...

  3. Watershed Planning Basins

    Data.gov (United States)

    Vermont Center for Geographic Information — The Watershed Planning Basin layer is part of a larger dataset contains administrative boundaries for Vermont's Agency of Natural Resources. The dataset includes...

  4. Water quality study at the Congaree Swamp National monument of Myers Creek, Reeves Creek and Toms Creek. Technical report

    International Nuclear Information System (INIS)

    Rikard, M.

    1991-11-01

    The Congaree Swamp National Monument is one of the last significant near virgin tracts of bottom land hardwood forests in the Southeast United States. The study documents a water quality monitoring program on Myers Creek, Reeves Creek and Toms Creek. Basic water quality parameters were analyzed. High levels of aluminum and iron were found, and recommendations were made for further monitoring

  5. [Watershed water environment pollution models and their applications: a review].

    Science.gov (United States)

    Zhu, Yao; Liang, Zhi-Wei; Li, Wei; Yang, Yi; Yang, Mu-Yi; Mao, Wei; Xu, Han-Li; Wu, Wei-Xiang

    2013-10-01

    Watershed water environment pollution model is the important tool for studying watershed environmental problems. Through the quantitative description of the complicated pollution processes of whole watershed system and its parts, the model can identify the main sources and migration pathways of pollutants, estimate the pollutant loadings, and evaluate their impacts on water environment, providing a basis for watershed planning and management. This paper reviewed the watershed water environment models widely applied at home and abroad, with the focuses on the models of pollutants loading (GWLF and PLOAD), water quality of received water bodies (QUAL2E and WASP), and the watershed models integrated pollutant loadings and water quality (HSPF, SWAT, AGNPS, AnnAGNPS, and SWMM), and introduced the structures, principles, and main characteristics as well as the limitations in practical applications of these models. The other models of water quality (CE-QUAL-W2, EFDC, and AQUATOX) and watershed models (GLEAMS and MIKE SHE) were also briefly introduced. Through the case analysis on the applications of single model and integrated models, the development trend and application prospect of the watershed water environment pollution models were discussed.

  6. Cumulative watershed effects: a research perspective

    Science.gov (United States)

    Leslie M. Reid; Robert R. Ziemer

    1989-01-01

    A cumulative watershed effect (CWE) is any response to multiple land-use activities that is caused by, or results in, altered watershed function. The CWE issue is politically defined, as is the significance of particular impacts. But the processes generating CWEs are the traditional focus of geomorphology and ecology, and have thus been studied for decades. The CWE...

  7. Watershed and Economic Data InterOperability (WEDO): Facilitating Discovery, Evaluation and Integration through the Sharing of Watershed Modeling Data

    Science.gov (United States)

    Watershed and Economic Data InterOperability (WEDO) is a system of information technologies designed to publish watershed modeling studies for reuse. WEDO facilitates three aspects of interoperability: discovery, evaluation and integration of data. This increased level of interop...

  8. Subdivision of Texas watersheds for hydrologic modeling.

    Science.gov (United States)

    2009-06-01

    The purpose of this report is to present a set of findings and examples for subdivision of watersheds for hydrologic modeling. Three approaches were used to examine the impact of watershed subdivision on modeled hydrologic response: (1) An equal-area...

  9. Stormwater Impaired Watersheds

    Data.gov (United States)

    Vermont Center for Geographic Information — Stormwater impaired watersheds occuring on both the Priority Waters (Part D - Completed TMDL) and 303(d) list of waters (Part A - need TMDL) The Vermont State...

  10. Three approaches to the classification of inland wetlands. [Dismal Swamp, Tennessee, and Florida

    Science.gov (United States)

    Gammon, P. T.; Malone, D.; Brooks, P. D.; Carter, V.

    1977-01-01

    In the Dismal Swamp project, seasonal, color-infrared aerial photographs and LANDSAT digital data were interpreted for a detailed analysis of the vegetative communities in a large, highly altered wetland. In Western Tennessee, seasonal high altitude color-infrared aerial photographs provided the hydrologic and vegetative information needed to map inland wetlands, using a classification system developed for the Tennessee Valley Region. In Florida, color-infrared aerial photographs were analyzed to produce wetland maps using three existing classification systems to evaluate the information content and mappability of each system. The methods used in each of the three projects can be extended or modified for use in the mapping of inland wetlands in other parts of the United States.

  11. Impacts of forest changes on hydrology: a case study of large watersheds in the upper reaches of Minjiang River watershed in China

    Science.gov (United States)

    Cui, X.; Liu, S.; Wei, X.

    2012-11-01

    Quantifying the effects of forest changes on hydrology in large watersheds is important for designing forest or land management and adaptation strategies for watershed ecosystem sustainability. Minjiang River watershed, located in the upper reach of the Yangtze River basin, plays a strategic role in the environmental protection and economic and social well-being for both the watershed and the entire Yangtze River basin. The watershed lies in the transition zone from Sichuan Basin to Qinghai-Tibet Plateau with a size of 24 000 km2. Due to its strategic significance, severe historic deforestation and high sensitivity to climate change, the watershed has long been recognized as one of the highest priority watersheds in China for scientific research and resource management. The purpose of this review paper is to provide a state-of-the-art summary on what we have learned from several recently completed research programs (one of them known as "973 of the China National Major Fundamental Science" from 2002 to 2008). This summary paper focused on how land cover or forest change affected hydrology at both forest stand and watershed scales in this large watershed. Inclusion of two different spatial scales is useful, because the results from a small spatial scale (e.g. forest stand level) can help interpret the findings on a large spatial scale. Our review suggests that historic forest harvesting or land cover change has caused significant water yield increase due to reduction of forest canopy interception and evapotranspiration caused by removal of forest vegetation on both spatial scales. The impact magnitude caused by forest harvesting indicates that the hydrological effects of forest or land cover changes can be as important as those caused by climate change, while the opposite impact directions suggest their offsetting effects on water yield in the Minjiang River watershed. In addition, different types of forests have different magnitudes of evapotranspiration (ET), with

  12. Impacts of forest changes on hydrology: a case study of large watersheds in the upper reaches of Minjiang River watershed in China

    Directory of Open Access Journals (Sweden)

    X. Cui

    2012-11-01

    Full Text Available Quantifying the effects of forest changes on hydrology in large watersheds is important for designing forest or land management and adaptation strategies for watershed ecosystem sustainability. Minjiang River watershed, located in the upper reach of the Yangtze River basin, plays a strategic role in the environmental protection and economic and social well-being for both the watershed and the entire Yangtze River basin. The watershed lies in the transition zone from Sichuan Basin to Qinghai-Tibet Plateau with a size of 24 000 km2. Due to its strategic significance, severe historic deforestation and high sensitivity to climate change, the watershed has long been recognized as one of the highest priority watersheds in China for scientific research and resource management. The purpose of this review paper is to provide a state-of-the-art summary on what we have learned from several recently completed research programs (one of them known as "973 of the China National Major Fundamental Science" from 2002 to 2008. This summary paper focused on how land cover or forest change affected hydrology at both forest stand and watershed scales in this large watershed. Inclusion of two different spatial scales is useful, because the results from a small spatial scale (e.g. forest stand level can help interpret the findings on a large spatial scale. Our review suggests that historic forest harvesting or land cover change has caused significant water yield increase due to reduction of forest canopy interception and evapotranspiration caused by removal of forest vegetation on both spatial scales. The impact magnitude caused by forest harvesting indicates that the hydrological effects of forest or land cover changes can be as important as those caused by climate change, while the opposite impact directions suggest their offsetting effects on water yield in the Minjiang River watershed. In addition, different types of forests have different magnitudes of

  13. Watershed Modeling Applications with the Open-Access Modular Distributed Watershed Educational Toolbox (MOD-WET) and Introductory Hydrology Textbook

    Science.gov (United States)

    Huning, L. S.; Margulis, S. A.

    2014-12-01

    Traditionally, introductory hydrology courses focus on hydrologic processes as independent or semi-independent concepts that are ultimately integrated into a watershed model near the end of the term. When an "off-the-shelf" watershed model is introduced in the curriculum, this approach can result in a potential disconnect between process-based hydrology and the inherent interconnectivity of processes within the water cycle. In order to curb this and reduce the learning curve associated with applying hydrologic concepts to complex real-world problems, we developed the open-access Modular Distributed Watershed Educational Toolbox (MOD-WET). The user-friendly, MATLAB-based toolbox contains the same physical equations for hydrological processes (i.e. precipitation, snow, radiation, evaporation, unsaturated flow, infiltration, groundwater, and runoff) that are presented in the companion e-textbook (http://aqua.seas.ucla.edu/margulis_intro_to_hydro_textbook.html) and taught in the classroom. The modular toolbox functions can be used by students to study individual hydrologic processes. These functions are integrated together to form a simple spatially-distributed watershed model, which reinforces a holistic understanding of how hydrologic processes are interconnected and modeled. Therefore when watershed modeling is introduced, students are already familiar with the fundamental building blocks that have been unified in the MOD-WET model. Extensive effort has been placed on the development of a highly modular and well-documented code that can be run on a personal computer within the commonly-used MATLAB environment. MOD-WET was designed to: 1) increase the qualitative and quantitative understanding of hydrological processes at the basin-scale and demonstrate how they vary with watershed properties, 2) emphasize applications of hydrologic concepts rather than computer programming, 3) elucidate the underlying physical processes that can often be obscured with a complicated

  14. Landslides and sediment budgets in four watersheds in eastern Puerto Rico: Chapter F in Water quality and landscape processes of four watersheds in eastern Puerto Rico

    Science.gov (United States)

    Larsen, Matthew C.; Murphy, Sheila F.; Stallard, Robert F.

    2012-01-01

    The low-latitude regions of the Earth are undergoing profound, rapid landscape change as forests are converted to agriculture to support growing population. Understanding the effects of these land-use changes requires analysis of watershed-scale geomorphic processes to better inform and manage this usually disorganized process. The investigation of hillslope erosion and the development of sediment budgets provides essential information for resource managers. Four small, montane, humid-tropical watersheds in the Luquillo Experimental Forest and nearby Río Grande de Loíza watershed, Puerto Rico (18° 20' N., 65° 45' W.), were selected to compare and contrast the geomorphic effects of land use and bedrock geology. Two of the watersheds are underlain largely by resistant Cretaceous volcaniclastic rocks but differ in land use and mean annual runoff: the Mameyes watershed, with predominantly primary forest cover and runoff of 2,750 millimeters per year, and the Canóvanas watershed, with mixed secondary forest and pasture and runoff of 970 millimeters per year. The additional two watersheds are underlain by relatively erodible granitic bedrock: the forested Icacos watershed, with runoff of 3,760 millimeters per year and the agriculturally developed Cayaguás watershed, with a mean annual runoff of 1,620 millimeters per year. Annual sediment budgets were estimated for each watershed using landslide, slopewash, soil creep, treethrow, suspended sediment, and streamflow data. The budgets also included estimates of sediment storage in channel beds, bars, floodplains, and in colluvial deposits. In the two watersheds underlain by volcaniclastic rocks, the forested Mameyes and the developed Canóvanas watersheds, landslide frequency (0.21 and 0.04 landslides per square kilometer per year, respectively), slopewash (5 and 30 metric tons per square kilometer per year), and suspended sediment yield (325 and 424 metric tons per square kilometer per year), were lower than in the

  15. A Stochastic Water Balance Framework for Lowland Watersheds

    Science.gov (United States)

    Thompson, Sally; MacVean, Lissa; Sivapalan, Murugesu

    2017-11-01

    The water balance dynamics in lowland watersheds are influenced not only by local hydroclimatic controls on energy and water availability, but also by imports of water from the upstream watershed. These imports result in a stochastic extent of inundation in lowland watersheds that is determined by the local flood regime, watershed topography, and the rate of loss processes such as drainage and evaporation. Thus, lowland watershed water balances depend on two stochastic processes—rainfall and local inundation dynamics. Lowlands are high productivity environments that are disproportionately associated with urbanization, high productivity agriculture, biodiversity, and flood risk. Consequently, they are being rapidly altered by human development—generally with clear economic and social motivation—but also with significant trade-offs in ecosystem services provision, directly related to changes in the components and variability of the lowland water balance. We present a stochastic framework to assess the lowland water balance and its sensitivity to two common human interventions—replacement of native vegetation with alternative land uses, and construction of local flood protection levees. By providing analytical solutions for the mean and PDF of the water balance components, the proposed framework provides a mechanism to connect human interventions to hydrologic outcomes, and, in conjunction with ecosystem service production estimates, to evaluate trade-offs associated with lowland watershed development.

  16. Watershed analysis on federal lands of the Pacific northwest

    Science.gov (United States)

    Leslie M. Reid; Robert R. Ziemer; Michael J. Furniss

    1994-01-01

    Abstract - Watershed analysis-the evaluation of processes that affect ecosystems and resources in a watershed-is now being carried out by Federal land-management and regulatory agencies on Federal lands of the Pacific Northwest. Methods used differ from those of other implementations of watershed analysis because objectives and opportunities differ. In particular,...

  17. Effect of Carbohydrate Source and Cottonseed Meal Level in the Concentrate on Feed Intake, Nutrient Digestibility, Rumen Fermentation and Microbial Protein Synthesis in Swamp Buffaloes

    Directory of Open Access Journals (Sweden)

    M. Wanapat

    2013-07-01

    Full Text Available The objective of this study was to investigate the effect of carbohydrate source and cottonseed meal level in the concentrate on feed intake, nutrient digestibility, rumen fermentation and microbial protein synthesis in swamp buffaloes. Four, 4-yr old rumen fistulated swamp buffaloes were randomly assigned to receive four dietary treatments according to a 2×2 factorial arrangement in a 4×4 Latin square design. Factor A was carbohydrate source; cassava chip (CC and CC+rice bran at a ratio 3:1 (CR3:1, and factor B was level of cottonseed meal (CM; 109 g CP/kg (LCM and 328 g CP/kg (HCM in isonitrogenous diets (490 g CP/kg. Buffaloes received urea-treated rice straw ad libitum and supplemented with 5 g concentrate/kg BW. It was found that carbohydrate source did not affect feed intake, nutrient intake, digested nutrients, nutrient digestibility, ammonia nitrogen concentration, fungi and bacterial populations, or microbial protein synthesis (p>0.05. Ruminal pH at 6 h after feeding and the population of protozoa at 4 h after feeding were higher when buffalo were fed with CC than in the CR3:1 treatment (p0.05. Based on this experiment, concentrate with a low level of cottonseed meal could be fed with cassava chips as an energy source in swamp buffalo receiving rice straw.

  18. Ecosystem services of human-dominated watersheds and land use influences: a case study from the Dianchi Lake watershed in China.

    Science.gov (United States)

    Hou, Ying; Li, Bo; Müller, Felix; Chen, Weiping

    2016-11-01

    Watersheds provide multiple ecosystem services. Ecosystem service assessment is a promising approach to investigate human-environment interaction at the watershed scale. The spatial characteristics of ecosystem services are closely related to land use statuses in human-dominated watersheds. This study aims to investigate the effects of land use on the spatial variations of ecosystem services at the Dianchi Lake watershed in Southwest China. We investigated the spatial variations of six ecosystem services-food supply, net primary productivity (NPP), habitat quality, evapotranspiration, water yield, and nitrogen retention. These services were selected based on their significance at the Dianchi Lake watershed and the availability of their data. The quantification of these services was based on modeling, value transference, and spatial analysis in combination with biophysical and socioeconomic data. Furthermore, we calculated the values of ecosystem services provided by different land use types and quantified the correlations between ecosystem service values and land use area proportions. The results show considerable spatial variations in the six ecosystem services associated with land use influences in the Dianchi Lake watershed. The cropland and forest land use types had predominantly positive influences on food productivity and NPP, respectively. The rural residential area and forest land use types reduced and enhanced habitat quality, respectively; these influences were identical to those of evapotranspiration. Urban area and rural residential area exerted significantly positive influences on water yield. In contrast, water yield was negatively correlated with forest area proportion. Finally, cropland and forest had significantly positive and negative influences, respectively, on nitrogen retention. Our study emphasizes the importance of consideration of the influences from land use composition and distribution on ecosystem services for managing the ecosystems of

  19. Ground survey of red lechwe in the Linyanti swamps and Chobe floodplains, northern Botswana

    Directory of Open Access Journals (Sweden)

    Phemelo Gadimang

    2017-05-01

    Full Text Available A ground survey of red lechwe was carried out in the Linyanti swamps and the Chobe floodplains of northern Botswana in the dry and wet seasons of 2012 and 2013, respectively. We documented numbers, sex ratio and age structure of red lechwe within the linear strips of 25 km × 300 m along the Linyanti swamps and the Chobe floodplains. Results indicated a significant difference in the numbers of red lechwe between sites and seasons. About 66 and 755 red lechwe were estimated for Chobe in the dry and wet season, respectively, with 343 and 261 of them estimated for Linyanti in the dry and wet season, respectively. In Chobe, the red lechwe densities varied widely between seasons (9 red lechwe/km2 – 101 red lechwe/km2 compared with Linyanti, where the densities did not vary much between seasons (35 red lechwe/km2 – 46 red lechwe/km2 . The lower densities of red lechwe in Chobe in the dry season when compared with the wet season suggest a possible seasonal shift in the distribution of red lechwe to the nearby Zambezi floodplains in Namibia. Conservation implications: The higher number of red lechwe in the Chobe floodplains in the wet season indicates the potential of the floodplains as a habitat for this species in that season. The dry season shift in the distribution of red lechwe in Chobe presents an opportunity for local communities in Namibia to engage in tourism, whereas the return of the red lechwe to the floodplains in the wet season ensures protection of the animals as well as boosts the tourism potential of the Chobe National Park.

  20. Epiphytic ferns in swamp forest remnants of the coastal plain of southern Brazil: latitudinal effects on the plant community

    Directory of Open Access Journals (Sweden)

    Letícia S. Machado

    Full Text Available ABSTRACT Community structure and spatial distribution of epiphytic ferns in swamp forest remnants along the coastal plain of the state of Rio Grande do Sul were analyzed. A total of 440 trees were sampled in fifty-seven 10 x 10 m plots. Each phorophyte was divided into five ecological zones (strata, where all species of epiphytic ferns were recorded. A total of 34 species representing 18 genera in six families were recorded. Polypodiaceae was the most represented family with 17 species, and Microgramma vacciniifolia had the highest epiphytic importance value. Characteristic holoepiphyte was the predominant ecological category, representing 70 % of the species. Ordination analysis showed a gradual change in floristic composition between ecological zones with richness differing significantly between strata. We observed that with increasing latitude there was a decrease in mean temperature and total rainfall, but an increase in frosts. These climatic and phytogeography changes result in a reduction in species richness and a change in the structure of epiphytic fern communities in a north-to-south direction. The importance of swamp forest remnants of the coastal plain to the diversity of epiphytic ferns is discussed.

  1. Identifying the best season for mapping evergreen swamp and mangrove species using leaf-level spectra in an estuarine system in KwaZulu-Natal, South Africa

    CSIR Research Space (South Africa)

    Van Deventer, Heidi

    2014-10-01

    Full Text Available would provide the best discrimination of six evergreen tree species, associated with swamp (Ficus Trichopoda), mangrove (Avicennia marina, Bruguiera gymnorrhiza, Hibiscus tiliaceus), wetlands in adjacent woodlands (Syzygium cordatum) and coastal...

  2. Nitrate in watersheds: straight from soils to streams?

    Science.gov (United States)

    Sudduth, Elizabeth B.; Perakis, Steven S.; Bernhardt, Emily S.

    2013-01-01

    Human activities are rapidly increasing the global supply of reactive N and substantially altering the structure and hydrologic connectivity of managed ecosystems. There is long-standing recognition that N must be removed along hydrologic flowpaths from uplands to streams, yet it has proven difficult to assess the generality of this removal across ecosystem types, and whether these patterns are influenced by land-use change. To assess how well upland nitrate (NO3-) loss is reflected in stream export, we gathered information from >50 watershed biogeochemical studies that reported nitrate concentrations ([NO3-]) for stream water and for either upslope soil solution or groundwater NO3- to examine whether stream export of NO3- accurately reflects upland NO3- losses. In this dataset, soil solution and streamwater [NO3-] were correlated across 40 undisturbed forest watersheds, with streamwater [NO3-] typically half (median = 50%) soil solution [NO3-]. A similar relationship was seen in 10 disturbed forest watersheds. However, for 12 watersheds with significant agricultural or urban development, the intercept and slope were both significantly higher than the relationship seen in forest watersheds. Differences in concentration between soil solution or groundwater and stream water may be attributed to biological uptake, microbial processes including denitrification, and/or preferential flow routing. The results of this synthesis are consistent with the hypotheses that undisturbed watersheds have a significant capacity to remove nitrate after it passes below the rooting zone and that land use changes tend to alter the efficiency or the length of watershed flowpaths, leading to reductions in nitrate removal and increased stream nitrate concentrations.

  3. Daily Streamflow Predictions in an Ungauged Watershed in Northern California Using the Precipitation-Runoff Modeling System (PRMS): Calibration Challenges when nearby Gauged Watersheds are Hydrologically Dissimilar

    Science.gov (United States)

    Dhakal, A. S.; Adera, S.

    2017-12-01

    Accurate daily streamflow prediction in ungauged watersheds with sparse information is challenging. The ability of a hydrologic model calibrated using nearby gauged watersheds to predict streamflow accurately depends on hydrologic similarities between the gauged and ungauged watersheds. This study examines daily streamflow predictions using the Precipitation-Runoff Modeling System (PRMS) for the largely ungauged San Antonio Creek watershed, a 96 km2 sub-watershed of the Alameda Creek watershed in Northern California. The process-based PRMS model is being used to improve the accuracy of recent San Antonio Creek streamflow predictions generated by two empirical methods. Although San Antonio Creek watershed is largely ungauged, daily streamflow data exists for hydrologic years (HY) 1913 - 1930. PRMS was calibrated for HY 1913 - 1930 using streamflow data, modern-day land use and PRISM precipitation distribution, and gauged precipitation and temperature data from a nearby watershed. The PRMS model was then used to generate daily streamflows for HY 1996-2013, during which the watershed was ungauged, and hydrologic responses were compared to two nearby gauged sub-watersheds of Alameda Creek. Finally, the PRMS-predicted daily flows between HY 1996-2013 were compared to the two empirically-predicted streamflow time series: (1) the reservoir mass balance method and (2) correlation of historical streamflows from 80 - 100 years ago between San Antonio Creek and a nearby sub-watershed located in Alameda Creek. While the mass balance approach using reservoir storage and transfers is helpful for estimating inflows to the reservoir, large discrepancies in daily streamflow estimation can arise. Similarly, correlation-based predicted daily flows which rely on a relationship from flows collected 80-100 years ago may not represent current watershed hydrologic conditions. This study aims to develop a method of streamflow prediction in the San Antonio Creek watershed by examining PRMS

  4. Effect of day or night grazing on behaviour of swamp buffalo heifers

    Directory of Open Access Journals (Sweden)

    Somparn, P.

    2007-03-01

    Full Text Available An experiment was conducted to examine the effect of day or night grazing on behaviour by swamp buffaloes. A grazing trial was conducted over 42 days in the late rainy season, during September to November2005 at Surin Livestock Research and Breeding Center, Surin province. The experimental period was divided into two 21-day periods. Twelve 2-year-old swamp buffalo heifers were allocated to four groups, eachcontaining three heifers, with the mean group weights being as similar as possible. Each group was allowed to graze either from 06:20 to 18:00 h (daytime treatment or from 18:20 to 06:00 h (nighttime treatment infour separate paddocks, each of 5 rai, using a cross-over design. When not at pasture the animals in each group were kept in the common corral with free access to fresh drinking water and mineral blocks. Individualanimal activity was recorded by visual observation at 1-min intervals during the period at pasture. Individual groups within each period were treated as replicates. Differences between group means weretested using MIXED procedure of SAS.The buffaloes on daytime treatment spent longer (P<0.05 grazing than those on nighttime treatment (423 vs 332 min. The number of meals differed (P<0.05 between treatments, but overall mean meal durationswere similar (73 min. Buffaloes allowed to graze during daylight had a tendency (P<0.10 toward a higher bite and step rates than those grazing during the night. With the reduction in grazing activity duringthe night on nighttime treatment, the animals ruminated for longer during the period at pasture (327 and 191 min, P<0.001. Live-weight change over periods of 20 days did not differ significantly. The difference intemporal behaviour patterns between treatments indicated that animals have to adapt foraging strategies appropriate for different situations in order to maintain feed intake and subsequently production.

  5. DNR Watersheds - DNR Level 04 - HUC 08 - Majors

    Data.gov (United States)

    Minnesota Department of Natural Resources — These data consists of 81 watershed delineations in one seamless dataset of drainage areas called Minnesota Department of Natural Resources (DNR) Major Watersheds....

  6. Sediment sources in an urbanizing, mixed land-use watershed

    Science.gov (United States)

    Nelson, Erin J.; Booth, Derek B.

    2002-07-01

    The Issaquah Creek watershed is a rapidly urbanizing watershed of 144 km 2 in western Washington, where sediment aggradation of the main channel and delivery of fine sediment into a large downstream lake have raised increasingly frequent concerns over flooding, loss of fish habitat, and degraded water quality. A watershed-scale sediment budget was evaluated to determine the relative effects of land-use practices, including urbanization, on sediment supply and delivery, and to guide management responses towards the most effective source-reduction strategies. Human activity in the watershed, particularly urban development, has caused an increase of nearly 50% in the annual sediment yield, now estimated to be 44 tonnes km -2 yr -1. The main sources of sediment in the watershed are landslides (50%), channel-bank erosion (20%), and road-surface erosion (15%). This assessment characterizes the role of human activity in mixed-use watersheds such as this, and it demonstrates some of the key processes, particularly enhanced stream-channel erosion, by which urban development alters sediment loads.

  7. Watershed restoration through remining in the Tangascootack Creek Watershed, Clinton County, Pennsylvania

    International Nuclear Information System (INIS)

    Skema, V.W.; Smith, M.W.; Bisko, D.C.; Dimatteo, M.

    1998-01-01

    The Pennsylvania Department of Environmental Protection and the Pennsylvania Geologic Survey are working together to remediate the effects of acid mine drainage. Remining of previously mined areas is a key component of a comprehensive strategy of improving water quality in polluted watersheds. In this new approach sites will be carefully selected on the basis of remaining coal reserves and overburden characteristics. One of the first watersheds targeted was the Tangascootack Creek watershed located in Clinton County near Lock Haven. The Geologic Survey agreed to provide geologic and coal resource maps for this previously unmapped area. This involved conducting field work examining rock exposures. Five cored holes were drilled, and core was examined to develop a geologic framework. Coals from these holes and from highwalls were chemically tested. Strata overlying the coal seams were analyzed using acid base accounting to determine their potential for generating acidity as well as alkalinity. Additional drill hole data and chemical analyses were collected from cooperating mining companies. This information was used to produce a geologic map showing coal crop lines and structure, coal thickness maps, mined-out area maps, overburden thickness maps, overburden geochemistry maps, strip ratio maps, and to estimate the extent of remaining coal reserves. Several significant geologic features were found in the course of mapping the watershed. One is the extreme variability in coal thickness and character of overburden rock. Another is the degree of relief found to be present on the Mississippian-Pennsylvanian unconformity. It is believed that this feature plays an important role in coal and high aluminum flint clay distribution regionally. And finally is the thick occurrence of Loyalhanna Formation calcareous sandstone which is providing a natural source of carbonate for the neutralization of acid mine drainage

  8. Protect and Restore Red River Watershed, 2007-2008 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Bransford, Stephanie [Nez Perce Tribe Fisheries/Watershed Program

    2009-05-04

    The Nez Perce Tribe Department of Fisheries Resource Management, Watershed Division approaches watershed restoration with a ridge-top to ridge-top approach. The Nez Perce Tribe (NPT) and the Nez Perce National Forest (NPNF) have formed a partnership in completing watershed restoration activities, and through this partnership more work is accomplished by sharing funding and resources in our effort. The Nez Perce Tribe began watershed restoration projects within the Red River Watershed of the South Fork Clearwater River in 2001. Progress has been made in restoring the watershed through road decommissioning and culvert replacement. From completing a watershed assessment to two NEPA efforts and a final stream restoration design, we will begin the effort of restoring the mainstem channel of Red River to provide spawning and rearing habitat for anadromous and resident fish species. Roads have been surveyed and prioritized for removal or improvement as well as culverts being prioritized for replacement to accommodate fish passage throughout the watershed. Another major, and extremely, important component of this project is the Red River Meadow Conservation Easement. We have begun the process of pursuing a conservation easement on approximately 270 acres of prime meadow habitat (Red River runs through this meadow and is prime spawning and rearing habitat).

  9. New efficient methods for calculating watersheds

    International Nuclear Information System (INIS)

    Fehr, E; Andrade, J S Jr; Herrmann, H J; Kadau, D; Moukarzel, C F; Da Cunha, S D; Da Silva, L R; Oliveira, E A

    2009-01-01

    We present an advanced algorithm for the determination of watershed lines on digital elevation models (DEMs) which is based on the iterative application of invasion percolation (IP). The main advantage of our method over previously proposed ones is that it has a sub-linear time-complexity. This enables us to process systems comprising up to 10 8 sites in a few CPU seconds. Using our algorithm we are able to demonstrate, convincingly and with high accuracy, the fractal character of watershed lines. We find the fractal dimension of watersheds to be D f = 1.211 ± 0.001 for artificial landscapes, D f = 1.10 ± 0.01 for the Alps and D f = 1.11 ± 0.01 for the Himalayas

  10. Spatial Distribution of 137Cs in Suface Soil under Different Land Uses in Chao Phraya Watershed: Potential Used as Sediment source Tracing

    International Nuclear Information System (INIS)

    Srisuksawad, K.; Porntepkasemsan, B.; Noipow, N.; Omanee, A.; Wiriyakitnateekul, W.; Choybudha, R.; Srimawong, P.

    2014-01-01

    Sediment fingerprinting techniques involves the discrimination of sediment sources based on differences in source material properties and quantification of the relative contributions from these sources to sediment delivered downstream to the river catchments. Results of the previous study indicated that fallout radionuclides (FRNs); 137 Cs and excess 210 Pb ( 210 Pbex) are the most suitable radionuclides to be used as sediments sources tracers. This study investigated the spatial distribution of 137 Cs in soil under different land uses in Chao Phraya watershed, the most significant watershed in Thailand. Emphasis was placed on discriminating among potential sediment sources include the cultivated (upland crops), pasture field, uncultivated (swamp, forest, and grass field), and channel erosion (stream and river bank). One hundred and twenty four soil samples were collected from all sources and determining for 137 Cs. The 137 Cs mass activities in pasture areas varied from the limit of detection (LLD) to 1.22±0.05 with the average of 0.64±0.14 Bq kg -1 . In cultivated areas the 137 Cs mass activities varied from LLD to 1.41±0.04 with the average of 0.38±0.04 Bq kg -1 .The 137 Cs mass activities were higher in uncultivated areas varied from 0.12± 0.03 to 1.73 ±0.05 with the average of 0.76±0.15 Bq kg -1 . The 137 Cs mass activities in channel bank varied from LLD to 1.16±0.04 with the average of 0.39±0.05 Bq kg -1 .GIS and geospatial interpolations revealed pattern in the spatial concentrations of 137 Cs and indicated important differences in its distributions showing the differences behavior of 137 Cs in different land uses.

  11. Grays River Watershed and Biological Assessment Final Report 2006.

    Energy Technology Data Exchange (ETDEWEB)

    May, Christopher W.; McGrath, Kathleen E.; Geist, David R. [Pacific Northwest National Laboratory; Abbe, Timothy; Barton, Chase [Herrera Environmental Consultants, Inc.

    2008-02-04

    The Grays River Watershed and Biological Assessment was funded to address degradation and loss of spawning habitat for chum salmon (Onchorhynchus keta) and fall Chinook salmon (Onchoryhnchus tshawytscha). In 1999, the National Marine Fisheries Service listed lower Columbia River chum salmon as a threatened Evolutionarily Significant Unit (ESU) under the Endangered Species Act of 1973 (ESA). The Grays River watershed is one of two remaining significant chum salmon spawning locations in this ESU. Runs of Grays River chum and Chinook salmon have declined significantly during the past century, largely because of damage to spawning habitat associated with timber harvest and agriculture in the watershed. In addition, approximately 20-25% of the then-remaining chum salmon spawning habitat was lost during a 1999 channel avulsion that destroyed an important artificial spawning channel operated by the Washington Department of Fish and Wildlife (WDFW). Although the lack of stable, high-quality spawning habitat is considered the primary physical limitation on Grays River chum salmon production today, few data are available to guide watershed management and channel restoration activities. The objectives of the Grays River Watershed and Biological Assessment project were to (1) perform a comprehensive watershed and biological analysis, including hydrologic, geomorphic, and ecological assessments; (2) develop a prioritized list of actions that protect and restore critical chum and Chinook salmon spawning habitat in the Grays River based on comprehensive geomorphic, hydrologic, and stream channel assessments; and (3) gain a better understanding of chum and Chinook salmon habitat requirements and survival within the lower Columbia River and the Grays River. The watershed-based approach to river ecosystem restoration relies on a conceptual framework that describes general relationships between natural landscape characteristics, watershed-scale habitat-forming processes, aquatic

  12. Grays River Watershed and Biological Assessment, 2006 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    May, Christopher; Geist, David [Pacific Northwest National Laboratory

    2007-04-01

    The Grays River Watershed and Biological Assessment was funded to address degradation and loss of spawning habitat for chum salmon (Onchorhynchus keta) and fall Chinook salmon (Onchoryhnchus tshawytscha). In 1999, the National Marine Fisheries Service listed lower Columbia River chum salmon as a threatened Evolutionarily Significant Unit (ESU) under the Endangered Species Act of 1973 (ESA). The Grays River watershed is one of two remaining significant chum salmon spawning locations in this ESU. Runs of Grays River chum and Chinook salmon have declined significantly during the past century, largely because of damage to spawning habitat associated with timber harvest and agriculture in the watershed. In addition, approximately 20-25% of the then-remaining chum salmon spawning habitat was lost during a 1999 channel avulsion that destroyed an important artificial spawning channel operated by the Washington Department of Fish and Wildlife (WDFW). Although the lack of stable, high-quality spawning habitat is considered the primary physical limitation on Grays River chum salmon production today, few data are available to guide watershed management and channel restoration activities. The objectives of the Grays River Watershed and Biological Assessment project were to (1) perform a comprehensive watershed and biological analysis, including hydrologic, geomorphic, and ecological assessments; (2) develop a prioritized list of actions that protect and restore critical chum and Chinook salmon spawning habitat in the Grays River based on comprehensive geomorphic, hydrologic, and stream channel assessments; and (3) gain a better understanding of chum and Chinook salmon habitat requirements and survival within the lower Columbia River and the Grays River. The watershed-based approach to river ecosystem restoration relies on a conceptual framework that describes general relationships between natural landscape characteristics, watershed-scale habitat-forming processes, aquatic

  13. [Impact on nitrogen and phosphorous export of wetlands in Tianmu Lake watershed].

    Science.gov (United States)

    Li, Zhao-Fu; Liu, Hong-Yu; Li, Heng-Peng

    2012-11-01

    Focused on understanding the function of wetland in improving water quality, Pingqiao watershed and Zhongtian watershed in Tianmu Lake drinking water sources area were selected as the research region. We integrated remote sensing, GIS techniques with field investigation and chemical analysis to analyze the relationship between wetland and water quality in watershed scale. Results show: (1) There are many wetland patches in Pingqiao and Zhongtian watershed, wetlands patch densities were respectively 7.5 km(-2) and 7.1 km(-2). Wetlands widely distributed in the Pingqiao watershed with mostly located away from the river of 500 m, whereas wetlands relatively concentrated in the lower reach within 500 meters of riverside in Zhongtian watershed. (2) Nitrogen and phosphorus nutrient retention of wetland in watershed scale was significant. The annual mean TN and DTN concentration had a strong relationship with percent area of wetlands in Zhongtian watershed while the weakest relationship was found with TP and DTP concentrations, especially, the mean TN and DTN concentrations in spring and winter had the significantly negative relationship with wetland areas of watershed. The negative relationship was existed for nitrogen in autumn of Pingqiao watershed, which suggested that watersheds varying in area of wetlands have the different nutrient reducing efficiency in seasonal periods. (3) A certain number and area of wetland will improve river water quality in watershed scale, which can instruct water environment treatment. However, considering the complexity of nutrient transport processes in watershed, wetland-related factors such as area, location, density, ecosystem structure and watershed-related factors such as temporal interval, spatial scales, slope and land use will impact on the transport processes, and related theoretical and practical problems need further research.

  14. Watershed Management Optimization Support Tool (WMOST) v3: Theoretical Documentation

    Science.gov (United States)

    The Watershed Management Optimization Support Tool (WMOST) is a decision support tool that facilitates integrated water management at the local or small watershed scale. WMOST models the environmental effects and costs of management decisions in a watershed context, accounting fo...

  15. How does conversion from peat swamp forest to oil palm plantation affect emissions of nitrous oxide from the soil? A case study in Jambi, Indonesia

    Science.gov (United States)

    Hartill, Jodie; Hergoualc'h, Kristell; Comeau, Louis-Pierre; Jo, Smith; Lou, Verchot

    2017-04-01

    Half of the peatlands across Peninsular Malaysia, Borneo and Sumatra are 'managed'. Conversion of peat swamp forest to workable oil palm plantation requires a drastic, potentially irreversible, change to the landscape, to which fertilizers are then routinely applied. A combination of these factors is now widely thought to increase soil nitrous oxide (N2O) emissions, although there is high uncertainty due to gaps in the knowledge, both regionally and nationally. Despite the widespread use of fertilizers in plantations on peats, studies observing their effects remain very limited. Therefore, there is a need for in situ studies to evaluate how environmental parameters (edaphic properties, climate, soil moisture and N availability indicators) influence soil emissions. This 18 month study was located in plots local to each other, representing the start, intermediate and end of the land conversion process; namely mixed peat swamp forest, drained and logged forest and industrial oil palm plantation. Spatial variability was taken into account by differentiating the hollows and hummocks in the mixed peat swamp forest, and the fertilized zone and the zone without fertilizer addition in the oil palm plantation. Gas samples were collected each month from static chambers at the same time as key environmental parameters were measured. Intensive sampling was performed during a 35 day period following two fertilizer applications, in which urea was applied to palms at rates of 0.5 and 1 kg urea palm-1. Soil N2O emissions (kg N ha-1 y-1 ± SE) were low overall, but they were greater in the oil palm plantation (0.8 ± 0.1) than in the mixed peat swamp forest (0.3 ± 0.0) and the drained/logged forest (0.2 ± 0.0). In the mixed peat swamp forest, monthly average fluxes of N2O (g N ha-1 d-1 ± SE) were similar in the hollows (0.6 ± 0.2) and the hummocks (0.3 ± 0.1), whereas in the oil palm plantation they were consistently higher in the zone without fertilizer (2.5 ± 0.4) than in

  16. Cloud GIS Based Watershed Management

    Science.gov (United States)

    Bediroğlu, G.; Colak, H. E.

    2017-11-01

    In this study, we generated a Cloud GIS based watershed management system with using Cloud Computing architecture. Cloud GIS is used as SAAS (Software as a Service) and DAAS (Data as a Service). We applied GIS analysis on cloud in terms of testing SAAS and deployed GIS datasets on cloud in terms of DAAS. We used Hybrid cloud computing model in manner of using ready web based mapping services hosted on cloud (World Topology, Satellite Imageries). We uploaded to system after creating geodatabases including Hydrology (Rivers, Lakes), Soil Maps, Climate Maps, Rain Maps, Geology and Land Use. Watershed of study area has been determined on cloud using ready-hosted topology maps. After uploading all the datasets to systems, we have applied various GIS analysis and queries. Results shown that Cloud GIS technology brings velocity and efficiency for watershed management studies. Besides this, system can be easily implemented for similar land analysis and management studies.

  17. Segmentation by watersheds : definition and parallel implementation

    NARCIS (Netherlands)

    Roerdink, Jos B.T.M.; Meijster, Arnold

    1997-01-01

    The watershed algorithm is a method for image segmentation widely used in the area of mathematical morphology. In this paper we first address the problem of how to define watersheds. It is pointed out that various existing definitions are not equivalent. In particular we explain the differences

  18. Applying Spatially Distributed Rainfall to a Hydrological Model in a Tropical Watershed, Manoa Watershed, in Hawaii

    Science.gov (United States)

    Huang, Y. F.; Tsang, Y. P.

    2017-12-01

    Rainfall in Hawaii is characterized with high spatial and temporal variability. In the south side of Oahu, the Manoa watershed, with an area of 11 km2, has the annual maximum rainfall of 3900mm and the minimum rainfall of 1000 mm. Despite this high spatial heterogeneity, the rain gage network seems insufficiently capture this pattern. When simulating stream flow and predicting floods with hydrological models in Hawaii, the model performance is often unsatisfactory because of inadequate representation of rainfall data. Longman et al. (in prep.) have developed the spatially distributed daily rainfall across the Hawaiian Islands by applying ordinary kriging, yet these data have not been applied to hydrological models. In this study, we used the Soil and Water Assessment Tool (SWAT) model to assess the streamflow simulation by applying spatially-distributed rainfall in the Manoa watershed. We first used point daily-rainfall at Lyon Arboretum from National Center of Environmental Information (NCEI) as the uniform rainfall input. Secondly, we summarized sub-watershed mean rainfall from the daily spatial-statistical rainfall. Both rainfall data are available from 1999 to 2014. The SWAT was set up for five-year warm-up, nine-year calibration, and two-year validation. The model parameters were calibrated and validated with four U.S. Geological Survey stream gages. We compared the calibrated watershed parameters, characteristics, and assess the streamflow hydrographs from these two rainfall inputs. The differences and improvement of using spatially distributed rainfall input in SWAT were discussed. In addition to improving the model by the representation of rainfall, this study helped us having a better understanding of the watershed hydrological response in Hawaii.

  19. Fish Passage Assessment: Big Canyon Creek Watershed, Technical Report 2004.

    Energy Technology Data Exchange (ETDEWEB)

    Christian, Richard

    2004-02-01

    This report presents the results of the fish passage assessment as outlined as part of the Protect and Restore the Big Canyon Creek Watershed project as detailed in the CY2003 Statement of Work (SOW). As part of the Northwest Power Planning Council's Columbia Basin Fish and Wildlife Program (FWP), this project is one of Bonneville Power Administration's (BPA) many efforts at off-site mitigation for damage to salmon and steelhead runs, their migration, and wildlife habitat caused by the construction and operation of federal hydroelectric dams on the Columbia River and its tributaries. The proposed restoration activities within the Big Canyon Creek watershed follow the watershed restoration approach mandated by the Fisheries and Watershed Program. Nez Perce Tribal Fisheries/Watershed Program vision focuses on protecting, restoring, and enhancing watersheds and treaty resources within the ceded territory of the Nez Perce Tribe under the Treaty of 1855 with the United States Federal Government. The program uses a holistic approach, which encompasses entire watersheds, ridge top to ridge top, emphasizing all cultural aspects. We strive toward maximizing historic ecosystem productive health, for the restoration of anadromous and resident fish populations. The Nez Perce Tribal Fisheries/Watershed Program (NPTFWP) sponsors the Protect and Restore the Big Canyon Creek Watershed project. The NPTFWP has the authority to allocate funds under the provisions set forth in their contract with BPA. In the state of Idaho vast numbers of relatively small obstructions, such as road culverts, block thousands of miles of habitat suitable for a variety of fish species. To date, most agencies and land managers have not had sufficient, quantifiable data to adequately address these barrier sites. The ultimate objective of this comprehensive inventory and assessment was to identify all barrier crossings within the watershed. The barriers were then prioritized according to the

  20. Urban Stream Burial Increases Watershed-Scale Nitrate Export.

    Directory of Open Access Journals (Sweden)

    Jake J Beaulieu

    Full Text Available Nitrogen (N uptake in streams is an important ecosystem service that reduces nutrient loading to downstream ecosystems. Here we synthesize studies that investigated the effects of urban stream burial on N-uptake in two metropolitan areas and use simulation modeling to scale our measurements to the broader watershed scale. We report that nitrate travels on average 18 times farther downstream in buried than in open streams before being removed from the water column, indicating that burial substantially reduces N uptake in streams. Simulation modeling suggests that as burial expands throughout a river network, N uptake rates increase in the remaining open reaches which somewhat offsets reduced N uptake in buried reaches. This is particularly true at low levels of stream burial. At higher levels of stream burial, however, open reaches become rare and cumulative N uptake across all open reaches in the watershed rapidly declines. As a result, watershed-scale N export increases slowly at low levels of stream burial, after which increases in export become more pronounced. Stream burial in the lower, more urbanized portions of the watershed had a greater effect on N export than an equivalent amount of stream burial in the upper watershed. We suggest that stream daylighting (i.e., uncovering buried streams can increase watershed-scale N retention.

  1. Watershed Planning within a Quantitative Scenario Analysis Framework.

    Science.gov (United States)

    Merriam, Eric R; Petty, J Todd; Strager, Michael P

    2016-07-24

    There is a critical need for tools and methodologies capable of managing aquatic systems within heavily impacted watersheds. Current efforts often fall short as a result of an inability to quantify and predict complex cumulative effects of current and future land use scenarios at relevant spatial scales. The goal of this manuscript is to provide methods for conducting a targeted watershed assessment that enables resource managers to produce landscape-based cumulative effects models for use within a scenario analysis management framework. Sites are first selected for inclusion within the watershed assessment by identifying sites that fall along independent gradients and combinations of known stressors. Field and laboratory techniques are then used to obtain data on the physical, chemical, and biological effects of multiple land use activities. Multiple linear regression analysis is then used to produce landscape-based cumulative effects models for predicting aquatic conditions. Lastly, methods for incorporating cumulative effects models within a scenario analysis framework for guiding management and regulatory decisions (e.g., permitting and mitigation) within actively developing watersheds are discussed and demonstrated for 2 sub-watersheds within the mountaintop mining region of central Appalachia. The watershed assessment and management approach provided herein enables resource managers to facilitate economic and development activity while protecting aquatic resources and producing opportunity for net ecological benefits through targeted remediation.

  2. A systematic assessment of watershed-scale nonpoint source pollution during rainfall-runoff events in the Miyun Reservoir watershed.

    Science.gov (United States)

    Qiu, Jiali; Shen, Zhenyao; Wei, Guoyuan; Wang, Guobo; Xie, Hui; Lv, Guanping

    2018-03-01

    The assessment of peak flow rate, total runoff volume, and pollutant loads during rainfall process are very important for the watershed management and the ecological restoration of aquatic environment. Real-time measurements of rainfall-runoff and pollutant loads are always the most reliable approach but are difficult to carry out at all desired location in the watersheds considering the large consumption of material and financial resources. An integrated environmental modeling approach for the estimation of flash streamflow that combines the various hydrological and quality processes during rainstorms within the agricultural watersheds is essential to develop targeted management strategies for the endangered drinking water. This study applied the Hydrological Simulation Program-Fortran (HSPF) to simulate the spatial and temporal variation in hydrological processes and pollutant transport processes during rainstorm events in the Miyun Reservoir watershed, a drinking water resource area in Beijing. The model performance indicators ensured the acceptable applicability of the HSPF model to simulate flow and pollutant loads in the studied watershed and to establish a relationship between land use and the parameter values. The proportion of soil and land use was then identified as the influencing factors of the pollution intensities. The results indicated that the flush concentrations were much higher than those observed during normal flow periods and considerably exceeded the limits of Class III Environmental Quality Standards for Surface Water (GB3838-2002) for the secondary protection zones of the drinking water resource in China. Agricultural land and leached cinnamon soils were identified as the key sources of sediment, nutrients, and fecal coliforms. Precipitation volume was identified as a driving factor that determined the amount of runoff and pollutant loads during rainfall processes. These results are useful to improve the streamflow predictions, provide

  3. Tracking the invasion of the red swamp crayfish Procambarus clarkii (Girard, 1852 (Decapoda Cambaridae in Sicily: a “citizen science” approach

    Directory of Open Access Journals (Sweden)

    Francesco Paolo Faraone

    2017-11-01

    Full Text Available The first record of the red swamp crayfish in Sicily dates back to 2003 and, since then, the species seemed to be confined to a few localities in western Sicily. A small “citizen science” project carried out from November 2016 onwards led to the creation of the “Sicilian Procambarus working group” (SPwg, which aims at monitoring the distribution and impact of the species in Sicily. To date, the SPwg found the red swamp crayfish in five new sites on the island, thus doubling the number of local sites of occurrence. The new Procambarus clarkii sites lie in different river basins, some of them located several hundred kilometres from the invaded areas known to date, suggesting the existence of multiple independent releases of the species in the wild. The need of better informing the local population on the risks exerted by invasive species on biological diversity, and of carefully monitoring the impact of P. clarkii on the Sicilian inland water biota is briefly stressed.

  4. Watershed Conservation in the Long Run

    DEFF Research Database (Denmark)

    Kaiser, Brooks

    2014-01-01

    We studied unanticipated long-run outcomes of conservation activities that occurred in forested watersheds on O`ahu, Hawaii, in the early twentieth century. The initial general impetus for the conservation activities was to improve irrigation surface water flow for the sugar industry. Industry...... concentration facilitated conservation of entire ecosystems. We investigate the benefits that accrued through dynamic linkages of the hydrological cycle and groundwater aquifer system. This provides a clear example of the need to consider integrated watershed effects, industrial structure, and linkages...... in determining conservation policy. We incorporated remote-sensing data, expert opinion on current watershed quality, and a spatial economic and hydrological model of O`ahu’s freshwater use with reports of conservation activities from 1910–1960 to assess these benefits. We find a 2.3% annual increase...

  5. Watershed responses to Amazon soya bean cropland expansion and intensification.

    Science.gov (United States)

    Neill, Christopher; Coe, Michael T; Riskin, Shelby H; Krusche, Alex V; Elsenbeer, Helmut; Macedo, Marcia N; McHorney, Richard; Lefebvre, Paul; Davidson, Eric A; Scheffler, Raphael; Figueira, Adelaine Michela e Silva; Porder, Stephen; Deegan, Linda A

    2013-06-05

    The expansion and intensification of soya bean agriculture in southeastern Amazonia can alter watershed hydrology and biogeochemistry by changing the land cover, water balance and nutrient inputs. Several new insights on the responses of watershed hydrology and biogeochemistry to deforestation in Mato Grosso have emerged from recent intensive field campaigns in this region. Because of reduced evapotranspiration, total water export increases threefold to fourfold in soya bean watersheds compared with forest. However, the deep and highly permeable soils on the broad plateaus on which much of the soya bean cultivation has expanded buffer small soya bean watersheds against increased stormflows. Concentrations of nitrate and phosphate do not differ between forest or soya bean watersheds because fixation of phosphorus fertilizer by iron and aluminium oxides and anion exchange of nitrate in deep soils restrict nutrient movement. Despite resistance to biogeochemical change, streams in soya bean watersheds have higher temperatures caused by impoundments and reduction of bordering riparian forest. In larger rivers, increased water flow, current velocities and sediment flux following deforestation can reshape stream morphology, suggesting that cumulative impacts of deforestation in small watersheds will occur at larger scales.

  6. Watershed Landscape Ecology: Interdisciplinary and Field-based Learning in the Northeast Creek Watershed, Mount Desert Island, Maine

    Science.gov (United States)

    Hall, S. R.; Anderson, J.; Rajakaruna, N.; Cass, D.

    2014-12-01

    At the College of the Atlantic, Bar Harbor, Maine, undergraduate students have the opportunity to design their own curriculum within a major of "Human Ecology." To enable students to have early research experiences, we developed a field-based interdisciplinary program for students to learn and practice field methods in a variety of disciplines, Earth Science, Botany, Chemistry, and Wildlife Biology at three specific field sites within a single watershed on Mt. Desert Island. As the Northeast Creek watershed was the site of previous water quality studies, this program of courses enabled continued monitoring of portions of the watershed. The program includes 4 new courses: Critical Zone 1, Critical Zone 2, Wildlife Biology, and Botany. In Critical Zone 1 students are introduced to general topics in Earth Science and learn to use ArcGIS to make basic maps. In Critical Zone 2, Wildlife Biology, and Botany, students are in the field every week using classic field tools and methods. All three of these courses use the same three general field areas: two with working farms at the middle and lower portion of the watershed and one uninhabited forested property in the higher relief headwaters of the watershed. Students collect daily surface water chemistry data at five stream sites within the watershed, complete basic geologic bedrock and geomorphic mapping, conduct wildlife surveys, botanical surveys, and monitor weather patterns at each of the main sites. Beyond the class data collected and synthesized, students also complete group independent study projects at focused field sites, some of which have turned into much larger research projects. This program is an opportunity for students and faculty with varied interests and expertise to work together to study a specific field locality over multiple years. We see this model as enhancing a number of positive education components: field-based learning, teamwork, problem solving, interdisciplinary discussion, multiple faculty

  7. Kootenai River Focus Watershed Coordination, 2002-2003 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Munson, Bob; Munson, Vicki (Kootenai River Network, Libby, MT); Rogers, Rox (US Fish and Wildlife Service, Libby, MT)

    2003-10-01

    The Kootenai River Network Inc. (KRN) was incorporated in Montana in early 1995 with a mission ''to involve stakeholders in the protection and restoration of the chemical, physical and biological integrity of the Kootenai River Basin waters''. The KRN operates with funding from donations, membership dues, private, state and federal grants, and with funding through the Bonneville Power Administration (BPA) for a Focus Watershed Coordinator Program. The Focus Watershed Program is administered to KRN as of October 2001, through a Memorandum of Understanding. Katie Randall resigned her position as Watershed Coordinator in late January 2003 and Munson Consulting was contracted to fill that position through the BPA contract period ending May 30, 2003. To improve communications with in the Kootenai River watershed, the board and staff engaged watershed stakeholders in a full day KRN watershed conference on May 15 and 16 in Bonners Ferry, Idaho. This Annual General Meeting was a tremendous success with over 75 participants representing over 40 citizen groups, tribes and state/provincial/federal agencies from throughout northern Montana and Idaho as well as British Columbia and Alberta. Membership in the KRN increased during the course of the BPA 02/03 grant period. The board of directors grew in numbers during this same time frame and an Advisory Council was formed to assist in transboundary efforts while developing two reorganized KRN committees (Habitat/Restoration/Monitoring (HRM) and Communication/Education/Outreach (CEO)). These committees will serve pivotal roles in communications, outreach, and education about watershed issues, as well as habitat restoration work being accomplished throughout the entire watershed. During this BPA grant period, the KRN has capitalized on the transboundary interest in the Kootenai River watershed. Jim and Laura Duncan of Kimberley, British Columbia, have been instrumental volunteers who have acted as Canadian

  8. When Everything Changes: Mountaintop Mining Effects on Watershed Hydrology

    Science.gov (United States)

    Nippgen, F.; Ross, M. R.; McGlynn, B. L.; Bernhardt, E. S.

    2015-12-01

    Mountaintop removal coal mining (MTM) in the Central Appalachians has expanded over the last 40 years to cover ~7% of this mountainous landscape. MTM operations remove mountaintops and ridges with explosives and machinery to access underlying coal seams. Much of this crushed rock overburden is subsequently deposited into nearby valleys, creating valley fills that often bury headwater streams. In contrast to other disturbances such as forest clear-cutting, perturbations from MTM can extend hundreds of meters deep into the critical zone and completely reshape landscapes. Despite the expansiveness and intensity of the disturbance, MTM has only recently begun to receive focused attention from the hydrologic community and the effect of MTM on the hydrology of impacted watersheds is still not well understood. We are using a two-pronged approach consisting of GIS analysis to quantify spoil volumes and landscape change, together with empirical analysis and modeling of rainfall and runoff data collected in two sets of paired watersheds. We seek to investigate how MTM affects basic hydrologic metrics, including storm peakflows, runoff response times, baseflow, statistics of flow duration curves, and longer-term water balances. Each pair consists of a mined and an unmined watershed; the first set contains headwater streams (size ~100ha), the second set consists of 3rd order streams, draining ~3500ha. Mining covers ~ 95% of the headwater watershed, and 40% of the 3rd-order watershed. Initial GIS analysis indicates that the overburden moved during the mining process could be up to three times greater than previously estimated. Storm runoff peaks in the mined watersheds were muted as compared to the unmined watersheds and runoff ratios were reduced by up to 75% during both wet and dry antecedent conditions. The natural reference watersheds were highly responsive while the additional storage in the mined watersheds led to decreased peak flows during storms and enhanced baseflow

  9. McKenzie River focus watershed coordination: year-end report, 2001; ANNUAL

    International Nuclear Information System (INIS)

    Thrailkil, Jim

    2001-01-01

    BPA funding, in conjunction with contributions from numerous partners organizations, supports the McKenzie Watershed Council's efforts to coordinate restoration and monitoring programs of federal, state, local government, and residents within the watershed. The goal of the MWC is to improve resource stewardship and conserve fish, wildlife, and water quality resources. The MWC will always have a baseline program centered on relationship building and information sharing. Objectives for FY01 included: (1) Continue to coordinate McKenzie Watershed activities among diverse groups that restore fish and wildlife habitat in the watershed, with a focus on the lower McKenzie, including private lands and the McKenzie-Willamette confluence area; (2) Influence behavior of watershed residents to benefit watershed function though a strategic and comprehensive outreach and education program, utilizing Assessment and Conservation Strategy information to provide a context for prioritized action; (3) Continue to maintain and sustain a highly functional watershed council; (4) Maintain and improve water quality concerns through the continuation of Council-sponsored monitoring and evaluation programs; and (5) Continue to secure other funding for watershed restoration and protection projects and Council operations

  10. Vesicular-arbuscular mycorrhizal status of plant species in the peat swamp forest of Setia Alam Jaya, Sebangau, Central Kalimantan

    OpenAIRE

    Suciatmih Suciatmih

    2003-01-01

    In order to describe the vesicular-arbuscular mycorrhizal (VAM) status of plants growing on peat soil, a study was carried out inthe peat swamp forest of Setia Alam Jaya in Sebangau, Central Kalimantan. Out of 146 plant root samples belonging to 48 plantspecies from 25 families examined, all plants colonized by VAM fungi namely 14 (29.2%) high level, 32 (66.7%) medium level, and 2(4.1%) low level respectively.

  11. A GIS-based disaggregate spatial watershed analysis using RADAR data

    International Nuclear Information System (INIS)

    Al-Hamdan, M.

    2002-01-01

    Hydrology is the study of water in all its forms, origins, and destinations on the earth.This paper develops a novel modeling technique using a geographic information system (GIS) to facilitate watershed hydrological routing using RADAR data. The RADAR rainfall data, segmented to 4 km by 4 km blocks, divides the watershed into several sub basins which are modeled independently. A case study for the GIS-based disaggregate spatial watershed analysis using RADAR data is provided for South Fork Cowikee Creek near Batesville, Alabama. All the data necessary to complete the analysis is maintained in the ArcView GIS software. This paper concludes that the GIS-Based disaggregate spatial watershed analysis using RADAR data is a viable method to calculate hydrological routing for large watersheds. (author)

  12. Phosphorus losses from an irrigated watershed in the Northwestern U.S.: Case study of the Upper Snake Rock Watershed

    Science.gov (United States)

    Watersheds utilizing surface water for irrigation often return a portion of the water to a water body. This irrigation return flow often includes sediment and nutrients that reduce the quality of the receiving water body. Research in the 82,000 ha Upper Snake Rock (USR) watershed from 2005 to 2008 s...

  13. Managing Watersheds as Couple Human-Natural Systems: A Review of Research Opportunities

    Science.gov (United States)

    Cai, X.

    2011-12-01

    Many watersheds around the world are impaired with severe social and environmental problems due to heavy anthropogenic stresses. Humans have transformed hydrological and biochemical processes in watersheds from a stationary to non-stationary status through direct (e.g., water withdrawals) and indirect (e.g., altering vegetation and land cover) interferences. It has been found that in many watersheds that socio-economic drivers, which have caused increasingly intensive alteration of natural processes, have even overcome natural variability to become the dominant factor affecting the behavior of watershed systems. Reversing this trend requires an understanding of the drivers of this intensification trajectory, and needs tremendous policy reform and investment. As stressed by several recent National Research Council (NRC) reports, watershed management will pose an enormous challenge in the coming decades. Correspondingly, the focus of research has started an evolution from the management of reservoir, stormwater and aquifer systems to the management of integrated watershed systems, to which policy instruments designed to make more rational economic use of water resources are likely to be applied. To provide a few examples: reservoir operation studies have moved from a local to a watershed scale in order to consider upstream best management practices in soil conservation and erosion control and downstream ecological flow requirements and water rights; watersheds have been modeled as integrated hydrologic-economic systems with multidisciplinary modeling efforts, instead of traditional isolated physical systems. Today's watershed management calls for a re-definition of watersheds from isolated natural systems to coupled human-natural systems (CHNS), which are characterized by the interactions between human activities and natural processes, crossing various spatial and temporal scales within the context of a watershed. The importance of the conceptual innovation has been

  14. URBAN WATERSHED STUDIES IN SOUTHERN BRAZIL

    Directory of Open Access Journals (Sweden)

    Cristiano Poleto

    2007-01-01

    Full Text Available One of the greatest problems observed in Brazilian urban watersheds are concerned to the amount of solid residues, domestic sewerage and sediments that are disposed in the rivers and streams that drain those areas. This project aims to present these problems through a study of case taken in an urban watershed in Porto Alegre city, Southern Brazil. For this study, different procedures were used, such as field surveys, interviews with the inhabitants, satellite images, sediment samples, flow measures and morphology assessment of part of the local fluvial system to check the degree of instability of the channel. In 2005, it was verified that 42.57% of the watershed was impermeable, considering the paved streets, the residential and commercial buildings and stone pavements. As there was no sewer treatment, most of this sewerage was directly disposed into the stream and the TOC has reached 20% (m/m. Moreover, the occupation of riparian areas, a great amount of soil exposed in the watershed, the nonpaved streets and a great volume of solid residues were causing the instability in the channel, silting the stream bed. The metals (Zn, Pb and Cr selected for this study are most frequently found in high concentrations in urban areas. The results suggest the occurrence of a high enrichment of the fluvial sediment by these metals. The concentrations of these elements vary temporally during storms due to the input of impervious area runoff containing high concentration of elements associated to vehicular traffic and other anthropogenic activities. Then, it is possible to conclude that the contamination of the urban watershed is reflected in the results obtained in the fluvial suspended sediments.

  15. URBAN WATERSHED STUDIES IN SOUTHERN BRAZIL

    Directory of Open Access Journals (Sweden)

    Cristiano Poleto

    2007-12-01

    Full Text Available One of the greatest problems observed in Brazilian urban watersheds are concerned to the amount of solid residues, domestic sewerage and sediments that are disposed in the rivers and streams that drain those areas. This project aims to present these problems through a study of case taken in an urban watershed in Porto Alegre city, Southern Brazil. For this study, different procedures were used, such as field surveys, interviews with the inhabitants, satellite images, sediment samples, flow measures and morphology assessment of part of the local fluvial system to check the degree of instability of the channel. In 2005, it was verified that 42.57% of the watershed was impermeable, considering the paved streets, the residential and commercial buildings and stone pavements. As there was no sewer treatment, most of this sewerage was directly disposed into the stream and the TOC has reached 20% (m/m. Moreover, the occupation of riparian areas, a great amount of soil exposed in the watershed, the nonpaved streets and a great volume of solid residues were causing the instability in the channel, silting the stream bed. The metals (Zn, Pb and Cr selected for this study are most frequently found in high concentrations in urban areas. The results suggest the occurrence of a high enrichment of the fluvial sediment by these metals. The concentrations of these elements vary temporally during storms due to the input of impervious area runoff containing high concentration of elements associated to vehicular traffic and other anthropogenic activities. Then, it is possible to conclude that the contamination of the urban watershed is reflected in the results obtained in the fluvial suspended sediments.

  16. Guiding principles for management of forested, agricultural, and urban watersheds

    Science.gov (United States)

    Pamela J. Edwards; Jon E. Schoonover; Karl W.J. Williard

    2015-01-01

    Human actions must be well planned and include consideration of their potential influences on water and aquatic ecosystems - such consideration is the foundation of watershed management. Watersheds are the ideal land unit for managing and protecting water resources and aquatic health because watersheds integrate the physical, biological and chemical processes within...

  17. Watershed-based Morphometric Analysis: A Review

    Science.gov (United States)

    Sukristiyanti, S.; Maria, R.; Lestiana, H.

    2018-02-01

    Drainage basin/watershed analysis based on morphometric parameters is very important for watershed planning. Morphometric analysis of watershed is the best method to identify the relationship of various aspects in the area. Despite many technical papers were dealt with in this area of study, there is no particular standard classification and implication of each parameter. It is very confusing to evaluate a value of every morphometric parameter. This paper deals with the meaning of values of the various morphometric parameters, with adequate contextual information. A critical review is presented on each classification, the range of values, and their implications. Besides classification and its impact, the authors also concern about the quality of input data, either in data preparation or scale/the detail level of mapping. This review paper hopefully can give a comprehensive explanation to assist the upcoming research dealing with morphometric analysis.

  18. Climate change and watershed mercury export: a multiple projection and model analysis.

    Science.gov (United States)

    Golden, Heather E; Knightes, Christopher D; Conrads, Paul A; Feaster, Toby D; Davis, Gary M; Benedict, Stephen T; Bradley, Paul M

    2013-09-01

    Future shifts in climatic conditions may impact watershed mercury (Hg) dynamics and transport. An ensemble of watershed models was applied in the present study to simulate and evaluate the responses of hydrological and total Hg (THg) fluxes from the landscape to the watershed outlet and in-stream THg concentrations to contrasting climate change projections for a watershed in the southeastern coastal plain of the United States. Simulations were conducted under stationary atmospheric deposition and land cover conditions to explicitly evaluate the effect of projected precipitation and temperature on watershed Hg export (i.e., the flux of Hg at the watershed outlet). Based on downscaled inputs from 2 global circulation models that capture extremes of projected wet (Community Climate System Model, Ver 3 [CCSM3]) and dry (ECHAM4/HOPE-G [ECHO]) conditions for this region, watershed model simulation results suggest a decrease of approximately 19% in ensemble-averaged mean annual watershed THg fluxes using the ECHO climate-change model and an increase of approximately 5% in THg fluxes with the CCSM3 model. Ensemble-averaged mean annual ECHO in-stream THg concentrations increased 20%, while those of CCSM3 decreased by 9% between the baseline and projected simulation periods. Watershed model simulation results using both climate change models suggest that monthly watershed THg fluxes increase during the summer, when projected flow is higher than baseline conditions. The present study's multiple watershed model approach underscores the uncertainty associated with climate change response projections and their use in climate change management decisions. Thus, single-model predictions can be misleading, particularly in developmental stages of watershed Hg modeling. Copyright © 2013 SETAC.

  19. Climate change and watershed mercury export: a multiple projection and model analysis

    Science.gov (United States)

    Golden, Heather E.; Knightes, Christopher D.; Conrads, Paul; Feaster, Toby D.; Davis, Gary M.; Benedict, Stephen T.; Bradley, Paul M.

    2013-01-01

    Future shifts in climatic conditions may impact watershed mercury (Hg) dynamics and transport. An ensemble of watershed models was applied in the present study to simulate and evaluate the responses of hydrological and total Hg (THg) fluxes from the landscape to the watershed outlet and in-stream THg concentrations to contrasting climate change projections for a watershed in the southeastern coastal plain of the United States. Simulations were conducted under stationary atmospheric deposition and land cover conditions to explicitly evaluate the effect of projected precipitation and temperature on watershed Hg export (i.e., the flux of Hg at the watershed outlet). Based on downscaled inputs from 2 global circulation models that capture extremes of projected wet (Community Climate System Model, Ver 3 [CCSM3]) and dry (ECHAM4/HOPE-G [ECHO]) conditions for this region, watershed model simulation results suggest a decrease of approximately 19% in ensemble-averaged mean annual watershed THg fluxes using the ECHO climate-change model and an increase of approximately 5% in THg fluxes with the CCSM3 model. Ensemble-averaged mean annual ECHO in-stream THg concentrations increased 20%, while those of CCSM3 decreased by 9% between the baseline and projected simulation periods. Watershed model simulation results using both climate change models suggest that monthly watershed THg fluxes increase during the summer, when projected flow is higher than baseline conditions. The present study's multiple watershed model approach underscores the uncertainty associated with climate change response projections and their use in climate change management decisions. Thus, single-model predictions can be misleading, particularly in developmental stages of watershed Hg modeling.

  20. Runoff Potentiality of a Watershed through SCS and Functional Data Analysis Technique

    Directory of Open Access Journals (Sweden)

    M. I. Adham

    2014-01-01

    Full Text Available Runoff potentiality of a watershed was assessed based on identifying curve number (CN, soil conservation service (SCS, and functional data analysis (FDA techniques. Daily discrete rainfall data were collected from weather stations in the study area and analyzed through lowess method for smoothing curve. As runoff data represents a periodic pattern in each watershed, Fourier series was introduced to fit the smooth curve of eight watersheds. Seven terms of Fourier series were introduced for the watersheds 5 and 8, while 8 terms of Fourier series were used for the rest of the watersheds for the best fit of data. Bootstrapping smooth curve analysis reveals that watersheds 1, 2, 3, 6, 7, and 8 are with monthly mean runoffs of 29, 24, 22, 23, 26, and 27 mm, respectively, and these watersheds would likely contribute to surface runoff in the study area. The purpose of this study was to transform runoff data into a smooth curve for representing the surface runoff pattern and mean runoff of each watershed through statistical method. This study provides information of runoff potentiality of each watershed and also provides input data for hydrological modeling.

  1. Runoff Potentiality of a Watershed through SCS and Functional Data Analysis Technique

    Science.gov (United States)

    Adham, M. I.; Shirazi, S. M.; Othman, F.; Rahman, S.; Yusop, Z.; Ismail, Z.

    2014-01-01

    Runoff potentiality of a watershed was assessed based on identifying curve number (CN), soil conservation service (SCS), and functional data analysis (FDA) techniques. Daily discrete rainfall data were collected from weather stations in the study area and analyzed through lowess method for smoothing curve. As runoff data represents a periodic pattern in each watershed, Fourier series was introduced to fit the smooth curve of eight watersheds. Seven terms of Fourier series were introduced for the watersheds 5 and 8, while 8 terms of Fourier series were used for the rest of the watersheds for the best fit of data. Bootstrapping smooth curve analysis reveals that watersheds 1, 2, 3, 6, 7, and 8 are with monthly mean runoffs of 29, 24, 22, 23, 26, and 27 mm, respectively, and these watersheds would likely contribute to surface runoff in the study area. The purpose of this study was to transform runoff data into a smooth curve for representing the surface runoff pattern and mean runoff of each watershed through statistical method. This study provides information of runoff potentiality of each watershed and also provides input data for hydrological modeling. PMID:25152911

  2. INTEGRATED WATERSHED MANAGEMENT: PRINCIPLES AND PRACTICE. Book Review

    Science.gov (United States)

    Through a wide range of information and topics, Integrated Watershed Management Principles and Practice shows how involved the watershed management planning process can be. The book is informative, and the author obviously has researched the subject thoroughly. The book's case...

  3. Chronological Reorganization of Microtubules, Actin Microfilaments, and Chromatin during the First Cell Cycle in Swamp Buffalo (Bubalus bubalis Embryos

    Directory of Open Access Journals (Sweden)

    Vibuntita Chankitisakul

    2010-01-01

    Full Text Available This paper aimed to study the dynamics of early embryonic development, in terms of redistribution of cytoskeleton (microtubules, actin microfilaments and chromatin configurations during the first cell cycle in swamp buffalo embryos. Oocytes were matured and fertilized in vitro, and they were fixed at various time points after IVF. At 6 h after IVF, 44.4% matured oocytes were penetrated by spermatozoa. Partial ZP digestion, however, did not improve fertilization rate compared to control (P>.05. At 12 h after IVF, the fertilized oocytes progressed to the second meiotic division and formed the female pronucleus simultaneously with the paternal chromatin continued to decondense. A sperm aster was observed radiating from the base of the decondensing sperm head. At 18 h after IVF, most presumptive zygotes had reached the pronuclear stage. The sperm aster was concurrently enlarged to assist the migration and apposition of pronuclei. Cell cleavage was facilitated by microfilaments and firstly observed by 30 h after IVF. In conclusion, the cytoskeleton actively involves with the process of fertilization and cleavage in swamp buffalo oocytes. The centrosomal material is paternally inherited. Fertilization failure is predominantly caused by poor sperm penetration. However, partial digestion of ZP did not improve fertilization rate.

  4. Development of Land Segmentation, Stream-Reach Network, and Watersheds in Support of Hydrological Simulation Program-Fortran (HSPF) Modeling, Chesapeake Bay Watershed, and Adjacent Parts of Maryland, Delaware, and Virginia

    Science.gov (United States)

    Martucci, Sarah K.; Krstolic, Jennifer L.; Raffensperger, Jeff P.; Hopkins, Katherine J.

    2006-01-01

    The U.S. Geological Survey, U.S. Environmental Protection Agency Chesapeake Bay Program Office, Interstate Commission on the Potomac River Basin, Maryland Department of the Environment, Virginia Department of Conservation and Recreation, Virginia Department of Environmental Quality, and the University of Maryland Center for Environmental Science are collaborating on the Chesapeake Bay Regional Watershed Model, using Hydrological Simulation Program - FORTRAN to simulate streamflow and concentrations and loads of nutrients and sediment to Chesapeake Bay. The model will be used to provide information for resource managers. In order to establish a framework for model simulation, digital spatial datasets were created defining the discretization of the model region (including the Chesapeake Bay watershed, as well as the adjacent parts of Maryland, Delaware, and Virginia outside the watershed) into land segments, a stream-reach network, and associated watersheds. Land segmentation was based on county boundaries represented by a 1:100,000-scale digital dataset. Fifty of the 254 counties and incorporated cities in the model region were divided on the basis of physiography and topography, producing a total of 309 land segments. The stream-reach network for the Chesapeake Bay watershed part of the model region was based on the U.S. Geological Survey Chesapeake Bay SPARROW (SPAtially Referenced Regressions On Watershed attributes) model stream-reach network. Because that network was created only for the Chesapeake Bay watershed, the rest of the model region uses a 1:500,000-scale stream-reach network. Streams with mean annual streamflow of less than 100 cubic feet per second were excluded based on attributes from the dataset. Additional changes were made to enhance the data and to allow for inclusion of stream reaches with monitoring data that were not part of the original network. Thirty-meter-resolution Digital Elevation Model data were used to delineate watersheds for each

  5. Accountability to Public Stakeholders in Watershed-Based Restoration

    Science.gov (United States)

    There is an increasing push at the federal, state, and local levels for watershed-based conservation projects. These projects work to address water quality issues in degraded waterways through the implementation of a suite of best management practices on land throughout a watersh...

  6. AN ARCGIS TOOL FOR CREATING POPULATIONS OF WATERSHEDS

    Science.gov (United States)

    For the Landscape Investigations for Pesticides Study in the Midwest, the goal is to sample a representative subset of watersheds selected statistically from a target population of watersheds within the glaciated corn belt. This area stretches from Ohio to Iowa and includes parts...

  7. Laser altimeter measurements at Walnut Gulch Watershed, Arizona

    International Nuclear Information System (INIS)

    Ritchie, J.C.; Humes, K.S.; Weltz, M.A.

    1995-01-01

    Measurements of landscape surface roughness properties are necessary for understanding many watershed processes. This paper reviews the use of an airborne laser altimeter to measure topography and surface roughness properties of the landscape at Walnut Gulch Watershed in Arizona. Airborne laser data were used to measure macro and micro topography as well as canopy topography, height, cover, and distribution. Macro topography of landscape profiles for segments up to 5 km (3 mi) were measured and were in agreement with available topographic maps but provided more detail. Gullies and stream channel cross-sections and their associated floodplains were measured. Laser measurements of vegetation properties (height and cover) were highly correlated with ground measurements. Landscape segments for any length can be used to measure these landscape roughness properties. Airborne laser altimeter measurements of landscape profiles can provide detailed information on watershed surface properties for improving the management of watersheds. (author)

  8. Vesicular-arbuscular mycorrhizal status of plant species in the peat swamp forest of Setia Alam Jaya, Sebangau, Central Kalimantan

    Directory of Open Access Journals (Sweden)

    Suciatmih Suciatmih

    2003-06-01

    Full Text Available In order to describe the vesicular-arbuscular mycorrhizal (VAM status of plants growing on peat soil, a study was carried out inthe peat swamp forest of Setia Alam Jaya in Sebangau, Central Kalimantan. Out of 146 plant root samples belonging to 48 plantspecies from 25 families examined, all plants colonized by VAM fungi namely 14 (29.2% high level, 32 (66.7% medium level, and 2(4.1% low level respectively.

  9. The US Forest Service Watershed Condition Classification: Status and Path Forward

    Science.gov (United States)

    Levinson, D. H.; Carlson, C. P.; Eberle, M. B.

    2017-12-01

    The US Forest Service Watershed Condition Classification (WCC) was developed as a tool to characterize the condition or health of watersheds on National Forests and Grasslands and assist the Agency in prioritizing actions to restore or maintain the condition of specified watersheds. After a number of years of exploring alternative approaches to assessing the health or condition of watersheds, the WCC and the associated Watershed Condition Framework were developed in response to concerns raised by the US Office of Management and Budget that the Forest Service was not able to demonstrate success in restoring watersheds on a national scale. The WCC was initially applied in 2011 to the roughly 15,000 HUC12 watersheds with an area of Forest Service management of 5% or greater. This initial watershed classification found that 52% (or 7,882) were Functioning Properly (Class 1), 45% (or 6,751) were Functioning at Risk (Class 2), and 3% (or 431) had Impaired Function (Class 3). The basic model used in the WCC was intended to provide a reconnaissance-level evaluation of watershed condition through the use of a systematic, flexible means of classifying and comparing watersheds based on a core set of national watershed condition indicators. The WCC consists of 12 indicators in four major process categories: (1) aquatic physical, (2) aquatic biological, (3) terrestrial physical, and (4) terrestrial biological. Each of the indicators is informed by one or more attributes. The attributes fall into three primary categories: numeric, descriptive, and map-derived, each of which is to be interpreted by an interdisciplinary team at the unit level. The descriptive and map-derived attributes are considered to be semi-quantitative or based on professional judgement of the team. The original description of the attributes anticipated that many of them would be improved as better data and information become available. With the advances in geographic information systems and remote sensing

  10. The Watershed Transform : Definitions, Algorithms and Parallelization Strategies

    NARCIS (Netherlands)

    Roerdink, Jos B.T.M.; Meijster, Arnold

    2000-01-01

    The watershed transform is the method of choice for image segmentation in the field of mathematical morphology. We present a critical review of several definitions of the watershed transform and the associated sequential algorithms, and discuss various issues which often cause confusion in the

  11. 78 FR 21590 - Coconino National Forest; Arizona; Flagstaff Watershed Protection Project

    Science.gov (United States)

    2013-04-11

    ... watersheds around Flagstaff. Specifically, two key areas have been identified for analysis and treatment... Mary Watershed. The FWPP analysis area includes portions of the Coconino National Forest that have... Watershed Protection Project, and is participating in the planning and analysis process. Responsible...

  12. Pseudocapillaria (Ichthyocapillaria) ophisterni sp. n. (Nematoda : Capillariidae) from the swamp-eel Ophisternon aenigmaticum (Pisces) in Mexico.

    Science.gov (United States)

    Moravec, F; Salgado-Maldonado, G; Jiménez-García, I

    2000-04-01

    A new nematode species, Pseudocapillaria ophisterni sp. n., is described from the intestine and rarely from the stomach of the swamp-eel, Ophisternon aenigmaticum Rosen et Greenwood, from Catemaco Lake, Veracruz, Mexico. In having both caudal lobes in the male interconnected by a distinct dorsal membrane, it belongs to the subgenus Ichthyocapillaria. It differs from the three species in this subgenus mainly in possessing either a distinctly longer spicule or a smaller length of oesophagus relative to body length. It also differs in host type and geographical distribution. P. ophisterni is the first capillariid species reported from synbranchiform fishes.

  13. Water quality and mass transport in four watersheds in eastern Puerto Rico: Chapter E in Water quality and landscape processes of four watersheds in eastern Puerto Rico

    Science.gov (United States)

    Stallard, Robert F.; Murphy, Sheila F.; Murphy, Sheila F.; Stallard, Robert F.

    2012-01-01

    Water quality of four small watersheds in eastern Puerto Rico has been monitored since 1991 as part of the U.S. Geological Survey's Water, Energy, and Biogeochemical Budgets program. These watersheds represent a montane, humid-tropical environment and differ in geology and land cover. Two watersheds are located on granitic rocks, and two are located on volcaniclastic rock. For each bedrock type, one watershed is covered with mature rainforest in the Luquillo Mountains, and the other watershed is undergoing reforestation after being affected by agricultural practices typical of eastern Puerto Rico. A subwatershed of the Icacos watershed, the Guabá, was also monitored to examine scaling effects. The water quality of the rivers draining forest, in the Icacos and Guabá (granitic watersheds) and Mameyes (a volcaniclastic watershed), show little contamination by human activities. The water is well oxygenated and has a nearly neutral pH, and nutrient concentrations are low. Concentrations of nutrients in the disturbed watersheds, the Cayaguás (granitic rock) and Canóvanas (volcaniclastic rock), are greater than in the forested watersheds, indicating some inputs from human activities. High in-stream productivity in the Canóvanas watershed leads to occasional oxygen and calcite supersaturation and carbon dioxide undersaturation. Suspended sediment concentrations in all watersheds are low, except during major storms. Most dissolved constituents derived from bedrock weathering or atmospheric deposition (including sodium, magnesium, calcium, silica, alkalinity, and chloride) decrease in concentration with increasing runoff, reflecting dilution from increased proportions of overland or near-surface flow. Strongly bioactive constituents (dissolved organic carbon, potassium, nitrate, ammonium ion, and phosphate) commonly display increasing concentration with increasing runoff, regardless of their ultimate origin (bedrock or atmosphere). The concentrations of many of the

  14. Beyond formal groups: neighboring acts and watershed protection in Appalachia

    Directory of Open Access Journals (Sweden)

    Heather Lukacs

    2016-09-01

    Full Text Available This paper explores how watershed organizations in Appalachia have persisted in addressing water quality issues in areas with a history of coal mining. We identified two watershed groups that have taken responsibility for restoring local creeks that were previously highly degraded and sporadically managed. These watershed groups represent cases of self-organized commons governance in resource-rich, economically poor Appalachian communities. We describe the extent and characteristics of links between watershed group volunteers and watershed residents who are not group members. Through surveys, participant observation, and key-informant consultation, we found that neighbors – group members as well as non-group-members – supported the group's function through informal neighboring acts. Past research has shown that local commons governance institutions benefit from being nested in supportive external structures. We found that the persistence and success of community watershed organizations depends on the informal participation of local residents, affirming the necessity of looking beyond formal, organized groups to understand the resources, expertise, and information needed to address complex water pollution at the watershed level. Our findings augment the concept of nestedness in commons governance to include that of a formal organization acting as a neighbor that exchanges informal neighboring acts with local residents. In this way, we extend the concept of neighboring to include interactions between individuals and a group operating in the same geographic area.

  15. An Alternative Algorithm for Computing Watersheds on Shared Memory Parallel Computers

    NARCIS (Netherlands)

    Meijster, A.; Roerdink, J.B.T.M.

    1995-01-01

    In this paper a parallel implementation of a watershed algorithm is proposed. The algorithm can easily be implemented on shared memory parallel computers. The watershed transform is generally considered to be inherently sequential since the discrete watershed of an image is defined using recursion.

  16. Computation of watersheds based on parallel graph algorithms

    NARCIS (Netherlands)

    Meijster, A.; Roerdink, J.B.T.M.; Maragos, P; Schafer, RW; Butt, MA

    1996-01-01

    In this paper the implementation of a parallel watershed algorithm is described. The algorithm has been implemented on a Cray J932, which is a shared memory architecture with 32 processors. The watershed transform has generally been considered to be inherently sequential, but recently a few research

  17. American black bears and bee yard depredation at Okefenokee Swamp, Georgia

    Science.gov (United States)

    Clark, J.D.; Dobey, S.; Masters, D.V.; Scheick, B.K.; Pelton, M.R.; Sunquist, M.E.

    2005-01-01

    We studied American black bears (Ursus americanus), on the northwest periphery of Okefenokee Swamp in southeast Georgia, to assess landowner attitudes toward bears, estimate the extent of damage to commercial honey bee operations by bears, and evaluate methods to reduce bear depredations to apiaries. We collected 8,351 black bear radiolocations and identified 51 bee yards on our study area. Twenty-seven of 43 home ranges contained ≥1 bee yard, averaging 11.3 and 5.1 bee yards/home range of males (n = 7) and females (n = 20), respectively. From 1996 to 1998, we documented 7 instances of bears raiding bee yards within our study area and 6 instances in adjacent areas. All but 1 of the 13 raided yards were enclosed by electric fencing. In the 12 cases of damage to electrically fenced yards, however, the fences were not active because of depleted batteries. Based on compositional analysis, bear use of areas 800–1,400 m from bee yards was disproportionately greater than use 0–800 m from bee yards. Bears disproportionately used bay (red bay: Persea borbonia, loblolly bay: Gordonia lasianthus, and southern magnolia: Magnolia virginia), gum (water tupelo: Nyssa aquatic and black gum: N. sylvatica), and cypress (Taxodium spp.) and loblolly bay habitats, however, compared with slash pine (Pinus elliottii) or pine–oak (Quercus spp.), where bee yards usually were placed. The distribution of bear radiolocations likely reflected the use of those swamp and riparian areas, rather than avoidance of bee yards. Distances to streams from damaged bee yards (x̄ = 1,750 m) were less than from undamaged yards (x̄ = 4,442 m), and damaged bee yards were closer to unimproved roads (x̄ = 134 m) than were undamaged bee yards (x̄ = 802 m). Our analysis suggests that bee yard placement away from bear travel routes (such as streams and unimproved roads) can reduce bear depredation problems. Our results strongly indicate that working electric fences are effective deterrents to bear

  18. Metal cycling within mountain pine beetle impacted watersheds of Keystone Gulch, Colorado

    Science.gov (United States)

    Heil, E. M.; Navarre-Sitchler, A.; Wanty, R. B.

    2016-12-01

    Metal cycling in mountain watersheds may be altered due to rapid landscape changes. Previous studies have examined the impact of deforestation and wildfires, on the fate and transport of metals in watersheds. However, we have only begun to understand changes in metal cycling in watersheds impacted by the mountain pine beetle. Warming climates and extended droughts have enabled pine beetles to impact larger areas. In these areas tree death occurs an average of three years after the initial infestation. In this short period of time the trees stop transpiring, defoliate, and die. The rapid deposition of pine needles to the forest floor, and subsequent decomposition of the needles, increases organic carbon (OC) availability and release metals that are stored in the impacted watersheds. Consequently, both OC and metal fluxes into and through the beetle-infested watersheds may be larger than those in non-infested watersheds. Four watersheds along Keystone Gulch Rd., located in Keystone, CO, were chosen for soil, water, and needle sampling because of their similar bedrock, drainage area, tree density and type, aspect, and their varying degree of pine beetle infestation. Sequential extractions using simulated rainwater, MgCl2, and pyrophosphate (representing soil pore water, exchangeable fraction, and organically bound metals) were performed on the Keystone Gulch soil samples to develop a better understanding of the distribution of metals in soils. Samples were classified by degree of beetle impact within and between the watersheds. The most obvious differences in the soil extractions between the four watersheds were observed for aluminum and iron and to a slightly lesser extent copper and zinc. In general, aluminum, iron, and zinc concentrations were higher while copper concentrations were lower in soils from less beetle-impacted watersheds. Metal concentrations in stream waters will be evaluated in the context of metal mobility through and out of the watershed.

  19. Workshop to transfer VELMA watershed model results to Washington state tribes and state agencies engaged in watershed restoration and salmon recovery planning

    Science.gov (United States)

    An EPA Western Ecology Division (WED) watershed modeling team has been working with the Snoqualmie Tribe Environmental and Natural Resources Department to develop VELMA watershed model simulations of the effects of historical and future restoration and land use practices on strea...

  20. Wind River Watershed Restoration: 1999 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Connolly, Patrick J.

    2001-09-01

    This document represents work conducted as part of the Wind River Watershed Restoration Project during its first year of funding through the Bonneville Power Administration (BPA). The project is a comprehensive effort involving public and private entities seeking to restore water quality and fishery resources in the basin through cooperative actions. Project elements include coordination, watershed assessment, restoration, monitoring, and education. Entities involved with implementing project components are the Underwood Conservation District (UCD), USDA Forest Service (USFS), U.S. Geological Survey--Columbia River Research Lab (USGS-CRRL), and WA Department of Fish & Wildlife (WDFW). Following categories given in the FY1999 Statement of Work, the broad categories, the related objectives, and the entities associated with each objective (lead entity in boldface) were as follows: Coordination--Objective 1: Coordinate the Wind River watershed Action Committee (AC) and Technical Advisory Committee (TAC) to develop a prioritized list of watershed enhancement projects. Monitoring--Objective 2: Monitor natural production of juvenile, smolt, and adult steelhead in the Wind River subbasin. Objective 3: Evaluate physical habitat conditions in the Wind River subbasin. Assessment--Objective 4: Assess watershed health using an ecosystem-based diagnostic model that will provide the technical basis to prioritize out-year restoration projects. Restoration--Objective 5: Reduce road related sediment sources by reducing road densities to less than 2 miles per square mile. Objective 6: Rehabilitate riparian corridors, flood plains, and channel morphology to reduce maximum water temperatures to less than 61 F, to increase bank stability to greater than 90%, to reduce bankfull width to depth ratios to less than 30, and to provide natural levels of pools and cover for fish. Objective 7: Maintain and evaluate passage for adult and juvenile steelhead at artificial barriers. Education

  1. The Walnut Gulch - Santa Rita Wildland Watershed-Scale LTAR Sites

    Science.gov (United States)

    Goodrich, D. C.; Heilman, P.; Scott, R. L.; Nearing, M. A.; Moran, M. S.; Nichols, M.; Vivoni, E. R.; Archer, S. R.; Biederman, J.; Naito, A. T.

    2015-12-01

    The 150 km2 Walnut Gulch Experimental Watershed (WGEW), a Long-Term Agroecosystem Research (LTAR) site, near Tombstone, Arizona was established in 1953 by the USDA-ARS Southwest Watershed Research Center in Tucson. It is one of the most intensively instrumented semiarid experimental watersheds in the world with elevation ranging from 1220 to 1950 m with mean annual temperature and precipitation equal to 17.7°C and 312 mm. Desert shrubs dominate the lower two thirds of the watershed and grasses the upper third. Spatial variation in precipitation is measured with a network of 88 weighing-type recording rain gauges. Surface runoff is quantified over a range of scales (0.002 to 0.06 km2) to characterize interactions between rainfall intensity, soils and vegetation at nine sub-watersheds. Channel network processes and rainfall spatial variability are studied using 11 nested watersheds (2 to 150 km2). Sediment from the small sub-watersheds is sampled. Meteorological, soil moisture and temperature, and energy/water/CO2 flux measurements are made within two vegetation/soil complexes. Parallel investigations dating back to 1974 have also been conducted on eight small experimental watersheds at the Santa Rita Experimental Range (SRER) 80 km west of Walnut Gulch. In contrast to the creosote bush-grass WGEW, the mesquite-grass SRER is publicly owned, which ensures control and consistent reporting of management for research purposes. A key LTAR objective is to contrast a "business as usual" to an alternate management strategy presumed to have the potential of significantly improving forage and livestock production and diversification of ecosystem services. Consequently, a new ARS-U. of Arizona-Arizona State U. partnership will assess the watershed-scale impacts of brush management, a common land use practice typically applied in conjunction with livestock grazing, on a suite of ecosystem services at the SRER including provisioning (forage production, water yield), supporting

  2. Contributions of systematic tile drainage to watershed-scale phosphorus transport.

    Science.gov (United States)

    King, Kevin W; Williams, Mark R; Fausey, Norman R

    2015-03-01

    Phosphorus (P) transport from agricultural fields continues to be a focal point for addressing harmful algal blooms and nuisance algae in freshwater systems throughout the world. In humid, poorly drained regions, attention has turned to P delivery through subsurface tile drainage. However, research on the contributions of tile drainage to watershed-scale P losses is limited. The objective of this study was to evaluate long-term P movement through tile drainage and its manifestation at the watershed outlet. Discharge data and associated P concentrations were collected for 8 yr (2005-2012) from six tile drains and from the watershed outlet of a headwater watershed within the Upper Big Walnut Creek watershed in central Ohio. Results showed that tile drainage accounted for 47% of the discharge, 48% of the dissolved P, and 40% of the total P exported from the watershed. Average annual total P loss from the watershed was 0.98 kg ha, and annual total P loss from the six tile drains was 0.48 kg ha. Phosphorus loads in tile and watershed discharge tended to be greater in the winter, spring, and fall, whereas P concentrations were greatest in the summer. Over the 8-yr study, P transported in tile drains represented 90% of all measured concentrations exceeded recommended levels (0.03 mg L) for minimizing harmful algal blooms and nuisance algae. Thus, the results of this study show that in systematically tile-drained headwater watersheds, the amount of P delivered to surface waters via tile drains cannot be dismissed. Given the amount of P loss relative to typical application rates, development and implementation of best management practices (BMPs) must jointly consider economic and environmental benefits. Specifically, implementation of BMPs should focus on late fall, winter, and early spring seasons when most P loading occurs. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  3. Effects of mountain agriculture on nutrient cycling at upstream watersheds

    Science.gov (United States)

    Lin, T.-C.; Shaner, P. L.; Wang, L.-J.; Shih, Y.-T.; Wang, C.-P.; Huang, G.-H.; Huang, J.-C.

    2015-05-01

    The expansion of agriculture to rugged mountains can exacerbate negative impacts of agriculture activities on ecosystem function. In this study, we monitored streamwater chemistry of four watersheds with varying proportions of agricultural lands (0.4, 3, 17, 22%) and rainfall chemistry of two of the four watersheds at Feitsui Reservoir Watershed in northern Taiwan to examine the effects of agriculture on watershed nutrient cycling. We found that the greater the proportions of agricultural lands, the higher the ion concentrations, which is evident for fertilizer-associated ions (NO3-, K+) but not for ions that are rich in soils (SO42-, Ca2+, Mg2+), suggesting that agriculture enriched fertilizer-associated nutrients in streamwater. The watershed with the highest proportion of agricultural lands had higher concentrations of ions in rainfall and lower nutrient retention capacity (i.e. higher output-input ratio of ions) compared to the relatively pristine watershed, suggesting that agriculture can influence atmospheric deposition of nutrients and a system's ability to retain nutrients. Furthermore, we found that a forested watershed downstream of agricultural activities can dilute the concentrations of fertilizer-associated ions (NO3-, K+) in streamwater by more than 70%, indicating that specific landscape configurations help mitigate nutrient enrichment to aquatic systems. We estimated that agricultural lands at our study site contributed approximately 400 kg ha-1 yr-1 of NO3-N and 260 kg ha-1 yr-1 of PO4-P output via streamwater, an order of magnitude greater than previously reported around the globe and can only be matched by areas under intense fertilizer use. Furthermore, we re-constructed watershed nutrient fluxes to show that excessive leaching of N and P, and additional loss of N to the atmosphere via volatilization and denitrification, can occur under intense fertilizer use. In summary, this study demonstrated the pervasive impacts of agriculture activities

  4. Primary production in a shallow water lake with special reference to a reed swamp

    International Nuclear Information System (INIS)

    Andersen, F.Oe.

    1976-01-01

    Phytoplankton gross primary production ( 14 C method) in the shallow, eutrophic Danish Lake Arresoe in 1973 was 980 g C m -2 . Calculated net primary production was near zero. Macrophyte net primary production was measured by harvesting the maximum biomass, and above ground values were between 420 and 1325 g ash free dry wt m -2 , while below ground values were between 2480 and 8570 g ash free dry wt m -2 . The reed swamps were mapped on aerial photographs, and the composition of the macrophyte vegetation was determined. A comparison of macrophyte vegetation in 1944 and 1972 showed a reduction in species diversity, especially of submerged species. The seasonal variations in physical and chemical data indicated strong eutrophication in Arresoe. (author)

  5. EFFECT OF ARBUSCULAR MYCORRHIZAL COLONIZATION ON EARLY GROWTH AND NUTRIENT CONTENT OF TWO PEAT­ SWAMP FOREST TREE SPECIES SEEDLINGS, Calophyllum hosei AND Ploiarium alternifolium

    Directory of Open Access Journals (Sweden)

    Maman Turjaman

    2006-03-01

    Full Text Available Tropical peat-swamp forests are one of  the largest near-surface reserves of terrestrial organic carbon,  but rnany peat-swamp forest tree species decreased due over-exploitation, forest fire and conversion of natural forests into agricultural lands. Among those species are slow-growing Calophyllum  hoseiand Ploiarium  alternifolium, two species are good for construction of boats, furniture, house building and considerable attention from pharmacological viewpoint for human healthly. This study was aimed at understanding the effects of arbuscular mycorrhizal (AM fungi on early growth of  C. hosei and P.alternifoliumunder greenhouse condition. Seedlings of C. hosei and P.alternifoliumwere inoculated with AM fungi: Glomus clarum and Glomus aggregatum ,or uninoculated under greenhouse condition during 6 months. AM colonization,   plant growth,  survival rate and  nutrient  content  (P, Zn  and B were measured. The percentage of C. hoseiand P.alternifolium ranged from 27-32% and 18-19%,  respectively. Both inoculated seedling species had greater plant  height, diameter, leaf number, shoot and root dry weight than control  seedlings.   Nutrient  content  of  inoculated  plants  were increased with AM colonization- Survival rates of  inoculated plants were higher (100%  than those of  control plants (67%. The results suggested that inoculation of AM fungi could improve the early growth of C. hoseiand P.alternifolium grown in tropical peat-swamp forest therefore  this finding has greater potential impact if this innovative technology applied in field scales which are socially acceptable, commercially profitable and environmentally friendly.

  6. Contrasting nitrogen fate in watersheds using agricultural and water quality information

    Science.gov (United States)

    Essaid, Hedeff I.; Baker, Nancy T.; McCarthy, Kathleen A.

    2016-01-01

    Surplus nitrogen (N) estimates, principal component analysis (PCA), and end-member mixing analysis (EMMA) were used in a multisite comparison contrasting the fate of N in diverse agricultural watersheds. We applied PCA-EMMA in 10 watersheds located in Indiana, Iowa, Maryland, Nebraska, Mississippi, and Washington ranging in size from 5 to 1254 km2 with four nested watersheds. Watershed Surplus N was determined by subtracting estimates of crop uptake and volatilization from estimates of N input from atmospheric deposition, plant fixation, fertilizer, and manure for the period from 1987 to 2004. Watershed average Surplus N ranged from 11 to 52 kg N ha−1 and from 9 to 32% of N input. Solute concentrations in streams, overland runoff, tile drainage, groundwater (GW), streambeds, and the unsaturated zone were used in the PCA-EMMA procedure to identify independent components contributing to observed stream concentration variability and the end-members contributing to streamflow and NO3 load. End-members included dilute runoff, agricultural runoff, benthic-processing, tile drainage, and oxic and anoxic GW. Surplus N was larger in watersheds with more permeable soils (Washington, Nebraska, and Maryland) that allowed greater infiltration, and oxic GW was the primary source of NO3 load. Subsurface transport of NO3 in these watersheds resulted in some removal of Surplus N by denitrification. In less permeable watersheds (Iowa, Indiana, and Mississippi), NO3 was rapidly transported to the stream by tile drainage and runoff with little removal. Evidence of streambed removal of NO3 by benthic diatoms was observed in the larger watersheds.

  7. Watershed Modeling System Hydrological Simulation Program; Watershed Model User Documentation and Tutorial

    National Research Council Canada - National Science Library

    Dellman, Patrick

    2002-01-01

    .... This analysis helps predict possible environmental problems in the watershed. With the growing need to care for and monitor the effects of man on the environment, it became apparent that a method for rapid analysis of those effects was needed...

  8. Export of Dissolved Organic Carbon following Prescribed Fire on Forested Watersheds: Implications for Watershed Management for Drinking Water Supply

    Science.gov (United States)

    Zhang, W.; Olivares, C. I.; Uzun, H.; Erdem, C. U.; Trettin, C.; Liu, Y.; Robinson, E. R.; Karanfil, T.; Chow, A. T.

    2016-12-01

    Detrital material in forest watersheds is the major terrestrial source of dissolved organic matter (DOM) and disinfection byproduct (DBP) precursors in surface source waters, but it is also the fuel for forest fires. Prescribed fire, as a fuel reduction technique is intended to reduce the amount of forest detritus, and therefore the risk of wildfire. Accordingly, periodic prescribed fire can reduce the accumulation of detritus on forest floor and the amount of DOM export after forest treatments. To evaluate the effects of prescribed fire on water quality, we conducted a controlled study on a paired first-order watershed system that includes a 160 ha treatment watershed (WS77) and 200 ha control watershed (WS80) on the Santee Experimental Forest, near Charleston South Carolina. WS77 has been used for prescribed fire research since the 1960's, the current experimental burn occurred on April, 2016. WS80 has not been managed or burned for at least 55 years. Gauging stations were equipped with in-situ TOC sensors and flow-proportional water samplers for monitoring temporal trends on water quality. Water samples taken from the first runoff event from both watersheds including rising limb, peak discharge, and falling limb were used for detailed chemical characterizations including DOC and nutrient concentrations, coagulation efficiency, and DBP formation such as trihalomethanes (THMs) and halocacetic acids (HAAs) from chlorination as well as N-nitrosodimethylamine (NDMA) from chlorination, and chemical formula assignment on DOM using Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR-MS) before and after chlorination and chloramination. Preliminary FT-ICR-MS data shows that DOM chemical compositions are different between raw samples collected from WS77 and WS80. Chlorination resulted in a shift toward lower molecular mass compared to the raw materials. While chloramination did not cause a drastic mass shift, such a treatment also produced DOM moieties

  9. Linking the watershed to the schoolshed: teaching sustainable development in K-12 with the Chester RIver Watershed Observatory

    Science.gov (United States)

    Trembanis, A. C.; Levin, D.; Seidel, J.

    2012-12-01

    The Chester River has been the subject of ongoing scientific studies in response to both the Clean Water Act and the EPA's Chesapeake Bay Program initiatives. The Upper, Middle, and Lower Chester are on the Maryland Department of Environment's list of "impaired waters". The Chester River Watershed (CRW) Observatory is lead by the Center for Environment & Society at Washington College. Eight clusters representing 22 public and private K-12 schools in the CRW provide the sampling sites distributed throughout the watershed. Weather stations will be installed at these sites allowing monitoring of the watershed's microclimate. Each cluster will be assigned a Basic Observation Buoy (BOB), an easy to assemble inexpensive buoy platform for real-time water column and atmospheric condition measurements. The BOBs are fitted with a data sonde to collect similar data parameters (e.g. salinity, temperature) as the main stem Chesapeake Bay buoys do. These assets will be deployed and the data transmitted to the Chester River Geographic Information System site for archival and visual display. Curriculum already developed for the Chesapeake Bay Interpretive Buoy System by the NOAA Chesapeake Bay Office will be adapted to the Chester River Watershed. Social issues of water sustainability will be introduced using the Watershed Game (Northland NEMO ®). During 2011 NOAA's Chesapeake Bay Office completed curriculum projects including Chesapeake Exploration, Build-a-Buoy (BaBs) and Basic Observation Buoys (BOBs). These engaging projects utilize authentic data and hands-on activities to demonstrate the tools scientists use to understand system interactions in the Bay. Chesapeake Exploration is a collection of online activities that provides teachers and students with unprecedented access to Bay data. Students are guided through a series of tasks that explore topics related to the interrelation between watersheds, land-use, weather, water quality, and living resources. The BaBs and BOBs

  10. Exploring an innovative watershed management approach: From feasibility to sustainability

    International Nuclear Information System (INIS)

    Said, A.; Sehlke, G.; Stevens, D.K.; Sorensen, D.; Walker, W.; Hardy, T.; Glover, T.

    2006-01-01

    Watershed management is dedicated to solving watershed problems on a sustainable basis. Managing watershed development on a sustainable basis usually entails a balance between the needs of humans and nature, both in the present and in the future. From a watershed or water resources development basis, these problems can be classified into five general categories: lack of water quantity, deterioration in water quality, ecological impacts, weak public participation, and weak economic value. The first three categories can be combined to make up physical sustainability while the last two categories can be defined as social and economic sustainability. Therefore, integrated watershed management should be designed to achieve physical sustainability utilizing, to the greatest extent possible, public participation in an economically viable manner. This study demonstrates an innovative approach using scientific, social, and motivational feasibilities that can be used to improve watershed management. Scientific feasibility is tied to the nature of environmental problems and the scientific means to solve them. Social feasibility is associated with public participation. Motivational feasibility is related to economic stimulation for the stakeholders to take actions. The ecological impacts, lack of water quantity and deterioration in water quality are problems that need scientific means in order to improve watershed health. However, the implementation of these means is typically not achievable without the right public participation. In addition, public participation is typically accelerated by economic motivation for the stakeholders to use the resources in a manner that improves watershed health. The Big Lost River in south-central Idaho has been used as an illustration for implementing scientific, social and motivational feasibilities and in a manner that can achieve sustainability relative to water resources management. However, the same approach can be used elsewhere after

  11. Exploring an innovative watershed management approach: From feasibility to sustainability

    Energy Technology Data Exchange (ETDEWEB)

    Said, A. [Department of Civil and Environmental Engineering, University of South Florida, Tampa, FL 33620 (United States); Sehlke, G. [Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Stevens, D.K.; Sorensen, D.; Walker, W.; Hardy, T. [Civil and Environmental Department, Utah State University, Logan, UT 84321 (United States); Glover, T. [Economics Department, Utah State University, Logan, UT 84321 (United States)

    2006-10-15

    Watershed management is dedicated to solving watershed problems on a sustainable basis. Managing watershed development on a sustainable basis usually entails a balance between the needs of humans and nature, both in the present and in the future. From a watershed or water resources development basis, these problems can be classified into five general categories: lack of water quantity, deterioration in water quality, ecological impacts, weak public participation, and weak economic value. The first three categories can be combined to make up physical sustainability while the last two categories can be defined as social and economic sustainability. Therefore, integrated watershed management should be designed to achieve physical sustainability utilizing, to the greatest extent possible, public participation in an economically viable manner. This study demonstrates an innovative approach using scientific, social, and motivational feasibilities that can be used to improve watershed management. Scientific feasibility is tied to the nature of environmental problems and the scientific means to solve them. Social feasibility is associated with public participation. Motivational feasibility is related to economic stimulation for the stakeholders to take actions. The ecological impacts, lack of water quantity and deterioration in water quality are problems that need scientific means in order to improve watershed health. However, the implementation of these means is typically not achievable without the right public participation. In addition, public participation is typically accelerated by economic motivation for the stakeholders to use the resources in a manner that improves watershed health. The Big Lost River in south-central Idaho has been used as an illustration for implementing scientific, social and motivational feasibilities and in a manner that can achieve sustainability relative to water resources management. However, the same approach can be used elsewhere after

  12. Topography significantly influencing low flows in snow-dominated watersheds

    Science.gov (United States)

    Li, Qiang; Wei, Xiaohua; Yang, Xin; Giles-Hansen, Krysta; Zhang, Mingfang; Liu, Wenfei

    2018-03-01

    Watershed topography plays an important role in determining the spatial heterogeneity of ecological, geomorphological, and hydrological processes. Few studies have quantified the role of topography in various flow variables. In this study, 28 watersheds with snow-dominated hydrological regimes were selected with daily flow records from 1989 to 1996. These watersheds are located in the Southern Interior of British Columbia, Canada, and range in size from 2.6 to 1780 km2. For each watershed, 22 topographic indices (TIs) were derived, including those commonly used in hydrology and other environmental fields. Flow variables include annual mean flow (Qmean), Q10 %, Q25 %, Q50 %, Q75 %, Q90 %, and annual minimum flow (Qmin), where Qx % is defined as the daily flow that occurred each year at a given percentage (x). Factor analysis (FA) was first adopted to exclude some redundant or repetitive TIs. Then, multiple linear regression models were employed to quantify the relative contributions of TIs to each flow variable in each year. Our results show that topography plays a more important role in low flows (flow magnitudes ≤ Q75 %) than high flows. However, the effects of TIs on different flow magnitudes are not consistent. Our analysis also determined five significant TIs: perimeter, slope length factor, surface area, openness, and terrain characterization index. These can be used to compare watersheds when low flow assessments are conducted, specifically in snow-dominated regions with the watershed size less than several thousand square kilometres.

  13. Effects of mountain tea plantations on nutrient cycling at upstream watersheds

    Science.gov (United States)

    Lin, T.-C.; Shaner, P.-J. L.; Wang, L.-J.; Shih, Y.-T.; Wang, C.-P.; Huang, G.-H.; Huang, J.-C.

    2015-11-01

    The expansion of agriculture to rugged mountains can exacerbate negative impacts of agricultural activities on ecosystem function. In this study, we monitored streamwater and rainfall chemistry of mountain watersheds at the Feitsui Reservoir Watershed in northern Taiwan to examine the effects of agriculture on watershed nutrient cycling. We found that the greater the proportion of tea plantation cover, the higher the concentrations of fertilizer-associated ions (NO3-, K+) in streamwater of the four mountain watersheds examined; on the other hand, the concentrations of the ions that are rich in soils (SO42-, Ca2+, Mg2+) did not increase with the proportion of tea plantation cover, suggesting that agriculture enriched fertilizer-associated nutrients in streamwater. Of the two watersheds for which rainfall chemistry was available, the one with higher proportion of tea plantation cover had higher concentrations of ions in rainfall and retained less nitrogen in proportion to input compared to the more pristine watershed, suggesting that agriculture can influence atmospheric deposition of nutrients and a system's ability to retain nutrients. As expected, we found that a forested watershed downstream of agricultural activities can dilute the concentrations of NO3- in streamwater by more than 70 %, indicating that such a landscape configuration helps mitigate nutrient enrichment in aquatic systems even for watersheds with steep topography. We estimated that tea plantation at our study site contributed approximately 450 kg ha-1 yr-1 of NO3-N via streamwater, an order of magnitude greater than previously reported for agricultural lands around the globe, which can only be matched by areas under intense fertilizer use. Furthermore, we constructed watershed N fluxes to show that excessive leaching of N, and additional loss to the atmosphere via volatilization and denitrification can occur under intense fertilizer use. In summary, this study demonstrated the pervasive impacts of

  14. The hydrological calibration and validation of a complexly-linked watershed reservoir model for the Occoquan watershed, Virginia

    Science.gov (United States)

    Xu, Zhongyan; Godrej, Adil N.; Grizzard, Thomas J.

    2007-10-01

    SummaryRunoff models such as HSPF and reservoir models such as CE-QUAL-W2 are used to model water quality in watersheds. Most often, the models are independently calibrated to observed data. While this approach can achieve good calibration, it does not replicate the physically-linked nature of the system. When models are linked by using the model output from an upstream model as input to a downstream model, the physical reality of a continuous watershed, where the overland and waterbody portions are parts of the whole, is better represented. There are some additional challenges in the calibration of such linked models, because the aim is to simulate the entire system as a whole, rather than piecemeal. When public entities are charged with model development, one of the driving forces is to use public-domain models. This paper describes the use of two such models, HSPF and CE-QUAL-W2, in the linked modeling of the Occoquan watershed located in northern Virginia, USA. The description of the process is provided, and results from the hydrological calibration and validation are shown. The Occoquan model consists of six HSPF and two CE-QUAL-W2 models, linked in a complex way, to simulate two major reservoirs and the associated drainage areas. The overall linked model was calibrated for a three-year period and validated for a two-year period. The results show that a successful calibration can be achieved using the linked approach, with moderate additional effort. Overall flow balances based on the three-year calibration period at four stream stations showed agreement ranging from -3.95% to +3.21%. Flow balances for the two reservoirs, compared via the daily water surface elevations, also showed good agreement ( R2 values of 0.937 for Lake Manassas and 0.926 for Occoquan Reservoir), when missing (un-monitored) flows were included. Validation of the models ranged from poor to fair for the watershed models and excellent for the waterbody models, thus indicating that the

  15. Geospatial techniques for developing a sampling frame of watersheds across a region

    Science.gov (United States)

    Gresswell, Robert E.; Bateman, Douglas S.; Lienkaemper, George; Guy, T.J.

    2004-01-01

    Current land-management decisions that affect the persistence of native salmonids are often influenced by studies of individual sites that are selected based on judgment and convenience. Although this approach is useful for some purposes, extrapolating results to areas that were not sampled is statistically inappropriate because the sampling design is usually biased. Therefore, in recent investigations of coastal cutthroat trout (Oncorhynchus clarki clarki) located above natural barriers to anadromous salmonids, we used a methodology for extending the statistical scope of inference. The purpose of this paper is to apply geospatial tools to identify a population of watersheds and develop a probability-based sampling design for coastal cutthroat trout in western Oregon, USA. The population of mid-size watersheds (500-5800 ha) west of the Cascade Range divide was derived from watershed delineations based on digital elevation models. Because a database with locations of isolated populations of coastal cutthroat trout did not exist, a sampling frame of isolated watersheds containing cutthroat trout had to be developed. After the sampling frame of watersheds was established, isolated watersheds with coastal cutthroat trout were stratified by ecoregion and erosion potential based on dominant bedrock lithology (i.e., sedimentary and igneous). A stratified random sample of 60 watersheds was selected with proportional allocation in each stratum. By comparing watershed drainage areas of streams in the general population to those in the sampling frame and the resulting sample (n = 60), we were able to evaluate the how representative the subset of watersheds was in relation to the population of watersheds. Geospatial tools provided a relatively inexpensive means to generate the information necessary to develop a statistically robust, probability-based sampling design.

  16. Extended-Maxima Transform Watershed Segmentation Algorithm for Touching Corn Kernels

    Directory of Open Access Journals (Sweden)

    Yibo Qin

    2013-01-01

    Full Text Available Touching corn kernels are usually oversegmented by the traditional watershed algorithm. This paper proposes a modified watershed segmentation algorithm based on the extended-maxima transform. Firstly, a distance-transformed image is processed by the extended-maxima transform in the range of the optimized threshold value. Secondly, the binary image obtained by the preceding process is run through the watershed segmentation algorithm, and watershed ridge lines are superimposed on the original image, so that touching corn kernels are separated into segments. Fifty images which all contain 400 corn kernels were tested. Experimental results showed that the effect of segmentation is satisfactory by the improved algorithm, and the accuracy of segmentation is as high as 99.87%.

  17. Fort Cobb Reservoir Watershed, Oklahoma and Thika River Watershed, Kenya Twinning Pilot Project

    Science.gov (United States)

    Moriasi, D.; Steiner, J.; Arnold, J.; Allen, P.; Dunbar, J.; Shisanya, C.; Gathenya, J.; Nyaoro, J.; Sang, J.

    2007-12-01

    The Fort Cobb Reservoir Watershed (FCRW) (830 km2) is a watershed within the HELP Washita Basin, located in Caddo and Washita Counties, OK. It is also a benchmark watershed under USDA's Conservation Effects Assessment Project, a national project to quantify environmental effects of USDA and other conservation programs. Population in south-western Oklahoma, in which FCRW is located, is sparse and decreasing. Agricultural focuses on commodity production (beef, wheat, and row crops) with high costs and low margins. Surface and groundwater resources supply public, domestic, and irrigation water. Fort Cobb Reservoir and contributing stream segments are listed on the Oklahoma 303(d) list as not meeting water quality standards based on sedimentation, trophic level of the lake associated with phosphorus loads, and nitrogen in some stream segments in some seasons. Preliminary results from a rapid geomorphic assessment results indicated that unstable stream channels dominate the stream networks and make a significant but unknown contribution to suspended-sediment loadings. Impairment of the lake for municipal water supply, recreation, and fish and wildlife are important factors in local economies. The Thika River Watershed (TRW) (867 km2) is located in central Kenya. Population in TRW is high and increasing, which has led to a poor land-population ratio with population densities ranging from 250 people/km2 to over 500 people/km2. The poor land-population ratio has resulted in land sub-division, fragmentation, over- cultivation, overgrazing, and deforestation which have serious implications on soil erosion, which poses a threat to both agricultural production and downstream reservoirs. Agricultural focuses mainly on subsistence and some cash crops (dairy cattle, corn, beans, coffee, floriculture and pineapple) farming. Surface and groundwater resources supply domestic, public, and hydroelectric power generation water. Thika River supplies 80% of the water for the city of

  18. Analysis of streamflow distribution of non-point source nitrogen export from long-term urban-rural catchments to guide watershed management in the Chesapeake Bay watershed

    Science.gov (United States)

    Duncan, J. M.; Band, L. E.; Groffman, P.

    2017-12-01

    Discharge, land use, and watershed management practices (stream restoration and stormwater control measures) have been found to be important determinants of nitrogen (N) export to receiving waters. We used long-term water quality stations from the Baltimore Ecosystem Study Long-Term Ecological Research (BES LTER) Site to quantify nitrogen export across streamflow conditions at the small watershed scale. We calculated nitrate and total nitrogen fluxes using methodology that allows for changes over time; weighted regressions on time, discharge, and seasonality. Here we tested the hypotheses that a) while the largest N stream fluxes occur during storm events, there is not a clear relationship between N flux and discharge and b) N export patterns are aseasonal in developed watersheds where sources are larger and retention capacity is lower. The goal is to scale understanding from small watersheds to larger ones. Developing a better understanding of hydrologic controls on nitrogen export is essential for successful adaptive watershed management at societally meaningful spatial scales.

  19. Characterization and evaluation of controls on post-fire streamflow response across western US watersheds

    Science.gov (United States)

    Saxe, Samuel; Hogue, Terri S.; Hay, Lauren

    2018-02-01

    This research investigates the impact of wildfires on watershed flow regimes, specifically focusing on evaluation of fire events within specified hydroclimatic regions in the western United States, and evaluating the impact of climate and geophysical variables on response. Eighty-two watersheds were identified with at least 10 years of continuous pre-fire daily streamflow records and 5 years of continuous post-fire daily flow records. Percent change in annual runoff ratio, low flows, high flows, peak flows, number of zero flow days, baseflow index, and Richards-Baker flashiness index were calculated for each watershed using pre- and post-fire periods. Independent variables were identified for each watershed and fire event, including topographic, vegetation, climate, burn severity, percent area burned, and soils data. Results show that low flows, high flows, and peak flows increase in the first 2 years following a wildfire and decrease over time. Relative response was used to scale response variables with the respective percent area of watershed burned in order to compare regional differences in watershed response. To account for variability in precipitation events, runoff ratio was used to compare runoff directly to PRISM precipitation estimates. To account for regional differences in climate patterns, watersheds were divided into nine regions, or clusters, through k-means clustering using climate data, and regression models were produced for watersheds grouped by total area burned. Watersheds in Cluster 9 (eastern California, western Nevada, Oregon) demonstrate a small negative response to observed flow regimes after fire. Cluster 8 watersheds (coastal California) display the greatest flow responses, typically within the first year following wildfire. Most other watersheds show a positive mean relative response. In addition, simple regression models show low correlation between percent watershed burned and streamflow response, implying that other watershed factors

  20. Watershed management in South Asia: A synoptic review

    Science.gov (United States)

    Ratna Reddy, V.; Saharawat, Yashpal Singh; George, Biju

    2017-08-01

    Watershed management (WSM) is the most widely adopted technology in developed as well as developing countries due to its suitability across climatic conditions. Watershed technology is suitable to protect and enhance soil fertility, which is deteriorating at an alarming rate with agricultural intensification in high as well as low rainfall regions. Of late, WSM is considered as an effective poverty alleviation intervention in the rain fed regions in countries like India. This paper aims at providing a basic watershed policy and implementation framework based on a critical review of experiences of WSM initiatives across South Asia. The purpose is to provide cross learnings within South Asia and other developing countries (especially Africa) that are embarking on WSM in recent years. Countries in the region accord differential policy priority and are at different levels of institutional arrangements for implementing WSM programmes. The implementation of watershed interventions is neither scientific nor comprehensive in all the countries limiting the effectiveness (impacts). Implementation of the programmes for enhancing the livelihoods of the communities need to strengthen both technical and institutional aspects. While countries like India and Nepal are yet to strengthen the technical aspects in terms of integrating hydrogeology and biophysical aspects into watershed design, others need to look at these aspects as they move towards strengthening the watershed institutions. Another important challenge in all the countries is regarding the distribution of benefits. Due to the existing property rights in land and water resources coupled with the agrarian structure and uneven distribution and geometry of aquifers access to sub-surface water resources is unevenly distributed across households. Though most of the countries are moving towards incorporating livelihoods components in order to ensure benefits to all sections of the community, not much is done in terms of

  1. McKenzie River Focus Watershed Coordination: Fiscal Year 1998.

    Energy Technology Data Exchange (ETDEWEB)

    Runyon, John; Davis-Born, Renee

    1998-01-01

    This report summarizes accomplishments made by the McKenzie River Focus Watershed Council in the areas of coordination and administration during Fiscal Year 1998. Coordination and administration consists of tasks associated with Focus Watershed Council staffing, project management, and public outreach.

  2. A review of theoretical frameworks applicable for designing agricultural watershed restoration projects

    Science.gov (United States)

    Agricultural watershed restoration is the process of assisting the recovery of ecosystem structure and/or function within watersheds that have been degraded and damaged by agriculture. Unfortunately, agricultural watershed restoration is the rare exception within the Midwestern United States despit...

  3. Postpartum anoestrus in the suckled swamp buffalo

    International Nuclear Information System (INIS)

    Jainudeen, M.R.; Sharifuddin, W.; Yap, K.C.; Bakar Dahari, A.

    1984-01-01

    Postpartum anoestrus is a serious cause of infertility in the swamp buffalo. Our studies have revealed that it is due to a failure in the resumption of ovarian cyclicity. Parity was inversely related to the calving interval being longer in primiparous than multiparous suckled buffaloes. This effect may be partly due to the higher nutrient demands for growth as well as for lactation in the primiparous animal. The effects of suckling on ovarian and pituitary function of postpartum buffaloes were investigated with the aid of radioimmunoassays for progesterone and luteinizing hormone (LH) as well as rectal palpation and laparoscopic inspection of the ovaries. The incidence of postpartum anoestrus was higher in suckled than non-suckled buffaloes. Weaning buffalo calves at 30 d postpartum resulted in the resumption of normal ovarian cycles within 60 d postpartum. LH release in response to a single injection of a synthetic gonadotropin-releasing hormone (GnRH) indicated that pituitary responsiveness to GnRH was restored by Day 30 postpartum in suckled buffaloes whereas anoestrous buffaloes were able to release levels of LH comparable to that of the preovulatory surge. A progesterone-releasing intra-vaginal device (PRID) induced an anovulatory oestrus in the anoestrous suckled buffalo which was partially overcome by human chorionic gonadotropin (HCG) administered at the induced oestrus. However, a 72 h separation of the calf from its dam combined with PRID was the most effective substitute to weaning in initiating ovarian cycles in the suckled buffalo. Our data suggest that suckling inhibits ovarian function not by an effect on the pituitary gland but rather on GnRH release by the hypothalamus. (author)

  4. Redistribution of cesium-137 in southeastern watersheds

    International Nuclear Information System (INIS)

    McHenry, J.R.; Ritchie, J.C.

    1975-01-01

    Sediment samples from 14 southeastern agricultural reservoirs and surface samples from representative soils from the contributing water shed areas were analyzed for 137 Cs. The concentrations of 137 Cs measured reflect the nature of the watershed, its cover, its use, and man's activities. Since the redistribution of 137 Cs was assumed to result from soil erosion, recent erosion rates can be calculated from the measured 137 Cs accumulations in sediments and from the decreases in the 137 Cs calculated to have been deposited on upland soils. Measured concentrations of 137 Cs ranged from 14 to 158 nCi/m 2 in surface soils. As much as 525 nCi/m 2 of 137 Cs was measured in the deposited sediment profile. Watershed budgets for 137 Cs were calculated for three representative watersheds using available sediment survey information and the measured 137 Cs concentrations

  5. Morphometric analysis of sub-watershed in parts of Western Ghats, South India using ASTER DEM

    Directory of Open Access Journals (Sweden)

    Evangelin Ramani Sujatha

    2015-05-01

    Full Text Available Morphometric analysis is a key to understand the hydrological process and hence is a prerequisite for the assessment of hydrological characteristics of surface water basin. Morphometric analysis to determine the drainage characteristics of Palar sub-watershed, a part of Shanmukha watershed in the Amaravati sub-catchment is done using Advanced Space-borne Thermal Emission and Reflection Global Digital Elevation Model (ASTER GDEM data, and is supplemented with topographical maps in geographical information systems platform. This study uses ASTER GDEM data to extract morphometric features of a mountain stream at micro-watershed level. The sub-watershed is divided into six micro-watersheds. The sub-watershed includes a sixth-order stream. Lower stream orders, in particular first-order streams, dominate the sub-watershed. Development of stream segments is controlled by slope and local relief. Drainage pattern of the sub-watershed and micro-watersheds is dendritic in general. The mean bifurcation ratio of the sub-watershed is 3.69 but its variation between the various stream orders suggests structural control in the development of stream network. The shape factors reveal the elongation of the sub-watershed and micro-watersheds.The relief ratio reveals the high discharge capability of the sub-watershed and meagre groundwater potential. This study is a useful tool for planning strategies in control of soil erosion and soil conservation.

  6. Soil erosion and sediment production on watershed landscapes: Processes and control

    Science.gov (United States)

    Peter F. Ffolliott; Kenneth N. Brooks; Daniel G. Neary; Roberto Pizarro Tapia; Pablo Garcia-Chevesich

    2013-01-01

    Losses of the soil resources from otherwise productive and well functioning watersheds is often a recurring problem confronting hydrologists and watershed managers. These losses of soil have both on-site and off-site effects on the watershed impacted. In addition to the loss of inherent soil resources through erosion processes, on-site effects can include the breakdown...

  7. What have we learned, and what is new in watershed science?

    Science.gov (United States)

    Robert R. Ziemer; Leslie M. Reid

    1997-01-01

    Abstract - Important new lessons are not in technical details, but in how to scale up the details to apply to large watersheds and landscapes. Nearly three years of experience with the Northwest Forest Plan have revealed some major new challenges in the fields of watershed science. In particular, managers and resource specialists engaged in watershed analysis...

  8. Simulation of rain in the watershed Ghezala by KINEROS 2 model

    International Nuclear Information System (INIS)

    Marghmi, Afef

    2010-01-01

    The objective of this study is modeling runoff by hydrological, distributed physically based Model, KINEROS2. This model has allowed after calibration to analyze and simulate the hydrological behavior of the watershed Ghezala .The Watershed Ghezala is located in north of Tunisia, in the governorate of Bizerte. It belongs to the bioclimatic mild winter. It covers an area of 4723h, at this watershed; the dominating slop is between 8and 15 pour cent which covers the almost area of the watershed. Dominant type of soil is Calcareous brown guy covering almost 54 pour cent of its total area; Land cover is characterized by the dominance of grain covering 73 pour cent of watershed area. KINEROS2 requires the division of the watershed into plain and channels cascading from upstream to downstream taking into consideration of flow, the geology and land cover of the watershed. During the calibration observed and simulated hydrographs, it must be based on the more sensitive parameters of the model: K (saturated hydraulic conductivity) G (net effective capillary conductivity) and n (parameter Mannig). The calibration's result shows that the error does not exceed, 1pour cent for liquid peak flows of flood hydrographs observed and simulated, 17pour cent for the volume of raw observed and simulated. Thus, the analysis of the hydrological behavior of the watershed studied through the hydrological response to a solicitation (intensity of rain: rain), simulates flood by applying the KINEROS2 model and observing the quantity of water flowing at the outflow of the system (flood hydrograph or rainfall).

  9. Firing Room Remote Application Software Development & Swamp Works Laboratory Robot Software Development

    Science.gov (United States)

    Garcia, Janette

    2016-01-01

    The National Aeronautics and Space Administration (NASA) is creating a way to send humans beyond low Earth orbit, and later to Mars. Kennedy Space Center (KSC) is working to make this possible by developing a Spaceport Command and Control System (SCCS) which will allow the launch of Space Launch System (SLS). This paper's focus is on the work performed by the author in her first and second part of the internship as a remote application software developer. During the first part of her internship, the author worked on the SCCS's software application layer by assisting multiple ground subsystems teams including Launch Accessories (LACC) and Environmental Control System (ECS) on the design, development, integration, and testing of remote control software applications. Then, on the second part of the internship, the author worked on the development of robot software at the Swamp Works Laboratory which is a research and technology development group which focuses on inventing new technology to help future In-Situ Resource Utilization (ISRU) missions.

  10. Storytelling to support watershed research on emerging issues

    Science.gov (United States)

    Phillip Hellman

    2016-01-01

    Projections of budget deficits by the Congressional Budget Office imply ever-increasing pressure on federal spending for all purposes, including long-term watershed research. This presentation will argue that, since federal funding is ultimately a political decision, those responsible for maintaining long-term watershed research programs should not try to provide ...

  11. Food habitats of the Antillean manatees (Trichechus manatus manatus) in the Coswine Swamps (French Guiana, South America)

    OpenAIRE

    Spiegelberger, Thomas; Ganslosser, Udo

    2005-01-01

    A study was conducted to analyse the habitat of the Antillean manatee (Trichechus manatus manatus L. 1758) in the Coswine Swamps of northwest French Guiana, South America. Water parameters were similar to those described in other studies: water depth varied from 2.5 m to more than 20 m; water temperature was between 24.5 °C and 30.3 °C and pH varied between 5.5 and 6.9. Salinity was low (0.0‰ to 1.3‰) with 86.9% of all samples taken in fresh water. No submerged aquatic vegetation was found in...

  12. Trout Creek, Oregon Watershed Assessment; Findings, Condition Evaluation and Action Opportunities, 2002 Technical Report.

    Energy Technology Data Exchange (ETDEWEB)

    Runyon, John

    2002-08-01

    The purpose of the assessment is to characterize historical and current watershed conditions in the Trout Creek Watershed. Information from the assessment is used to evaluate opportunities for improvements in watershed conditions, with particular reference to improvements in the aquatic environment. Existing information was used, to the extent practicable, to complete this work. The assessment will aid the Trout Creek Watershed Council in identifying opportunities and priorities for watershed restoration projects.

  13. Hydrologic response and watershed sensitivity to climate warming in California's Sierra Nevada.

    Directory of Open Access Journals (Sweden)

    Sarah E Null

    Full Text Available This study focuses on the differential hydrologic response of individual watersheds to climate warming within the Sierra Nevada mountain region of California. We describe climate warming models for 15 west-slope Sierra Nevada watersheds in California under unimpaired conditions using WEAP21, a weekly one-dimensional rainfall-runoff model. Incremental climate warming alternatives increase air temperature uniformly by 2 degrees, 4 degrees, and 6 degrees C, but leave other climatic variables unchanged from observed values. Results are analyzed for changes in mean annual flow, peak runoff timing, and duration of low flow conditions to highlight which watersheds are most resilient to climate warming within a region, and how individual watersheds may be affected by changes to runoff quantity and timing. Results are compared with current water resources development and ecosystem services in each watershed to gain insight into how regional climate warming may affect water supply, hydropower generation, and montane ecosystems. Overall, watersheds in the northern Sierra Nevada are most vulnerable to decreased mean annual flow, southern-central watersheds are most susceptible to runoff timing changes, and the central portion of the range is most affected by longer periods with low flow conditions. Modeling results suggest the American and Mokelumne Rivers are most vulnerable to all three metrics, and the Kern River is the most resilient, in part from the high elevations of the watershed. Our research seeks to bridge information gaps between climate change modeling and regional management planning, helping to incorporate climate change into the development of regional adaptation strategies for Sierra Nevada watersheds.

  14. Characterization and evaluation of controls on post-fire streamflow response across western US watersheds

    Directory of Open Access Journals (Sweden)

    S. Saxe

    2018-02-01

    Full Text Available This research investigates the impact of wildfires on watershed flow regimes, specifically focusing on evaluation of fire events within specified hydroclimatic regions in the western United States, and evaluating the impact of climate and geophysical variables on response. Eighty-two watersheds were identified with at least 10 years of continuous pre-fire daily streamflow records and 5 years of continuous post-fire daily flow records. Percent change in annual runoff ratio, low flows, high flows, peak flows, number of zero flow days, baseflow index, and Richards–Baker flashiness index were calculated for each watershed using pre- and post-fire periods. Independent variables were identified for each watershed and fire event, including topographic, vegetation, climate, burn severity, percent area burned, and soils data. Results show that low flows, high flows, and peak flows increase in the first 2 years following a wildfire and decrease over time. Relative response was used to scale response variables with the respective percent area of watershed burned in order to compare regional differences in watershed response. To account for variability in precipitation events, runoff ratio was used to compare runoff directly to PRISM precipitation estimates. To account for regional differences in climate patterns, watersheds were divided into nine regions, or clusters, through k-means clustering using climate data, and regression models were produced for watersheds grouped by total area burned. Watersheds in Cluster 9 (eastern California, western Nevada, Oregon demonstrate a small negative response to observed flow regimes after fire. Cluster 8 watersheds (coastal California display the greatest flow responses, typically within the first year following wildfire. Most other watersheds show a positive mean relative response. In addition, simple regression models show low correlation between percent watershed burned and streamflow response, implying that

  15. Allegheny County Watershed Boundaries

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset demarcates the 52 isolated sub-Watersheds of Allegheny County that drain to single point on the main stem rivers. Created by 3 Rivers 2nd Nature based...

  16. Assessing critical source areas in watersheds for conservation buffer planning and riparian restoration.

    Science.gov (United States)

    Qiu, Zeyuan

    2009-11-01

    A science-based geographic information system (GIS) approach is presented to target critical source areas in watersheds for conservation buffer placement. Critical source areas are the intersection of hydrologically sensitive areas and pollutant source areas in watersheds. Hydrologically sensitive areas are areas that actively generate runoff in the watershed and are derived using a modified topographic index approach based on variable source area hydrology. Pollutant source areas are the areas in watersheds that are actively and intensively used for such activities as agricultural production. The method is applied to the Neshanic River watershed in Hunterdon County, New Jersey. The capacity of the topographic index in predicting the spatial pattern of runoff generation and the runoff contribution to stream flow in the watershed is evaluated. A simple cost-effectiveness assessment is conducted to compare the conservation buffer placement scenario based on this GIS method to conventional riparian buffer scenarios for placing conservation buffers in agricultural lands in the watershed. The results show that the topographic index reasonably predicts the runoff generation in the watershed. The GIS-based conservation buffer scenario appears to be more cost-effective than the conventional riparian buffer scenarios.

  17. Zoneamento ambiental em Pantanais (Banhados Environmental zoning in swamp regions

    Directory of Open Access Journals (Sweden)

    Fabio C. Kurtz

    2001-05-01

    Full Text Available O zoneamento ambiental em pantanais (Banhados permitiu avaliar a deterioração ambiental dos ecossistemas existentes na Estação Ecológica do Taim (ESEC/TAIM municípios de Rio Grande, RS, e Santa Vitória do Palmar, RS. Considerou-se dois tipos distintos de ecossistemas: o do Banhado (ECO1 = Ecossistema Límnico e o da Planície Marítima (ECO2 = Ecossistema Planície Marítima. A ECO TOTAL (ECO1 + ECO2 apresentou 64% da classe APP (Área de Preservação Permanente, 27,6% de ACP (Área de Conservação Permanente, e 5,6% de AUO (Área de Uso e Ocupação, enquanto em menor porcentagem se encontra a classe AR (Área de Restauração com 2,8%. A deterioração ambiental da ESEC/TAIM (ECO TOTAL ficou em 13,65%. Com relação à análise fatorial, conclui-se que esta técnica permitiu conhecer a estrutura dos dados, mostrando as correlações entre cada variável (classes de exuberância e seu respectivo fator; entretanto, não foi possível separar grupos ou quantificar a influência de uma ou mais variáveis sobre outra de interesse (variável resposta. Recomenda-se que o zoneamento ambiental seja elaborado pelos órgãos públicos ambientais, nas demais estações ecológicas e nas unidades de conservação.The environmental zoning in swamp regions allowed the evaluation of the environmental deterioration of the ecosystems in the Ecological Station of Taim (ESEC/TAIM, in Rio Grande and Santa Vitória of Palmar (in the State of Rio Grande do Sul - Brazil. Two different types of ecosystems were considered: swamp regions (ECO1 = Límnico Ecosystem and the Marine Plain (ECO2 = Ecosystem Marine Plain. The ECO TOTAL (ECO1 + ECO2 presented 64% of the class APP (Permanent Preservation Area, 27.6% of ACP (Permanent Conservation Area, 5.6% of AUO (Occupation and Use Area, and in a smaller percentage the class AR (Restoration Area with 2.8%. The environmental deterioration of ESEC/TAIM (ECO TOTAL was 13.65%. The factorial analysis technique permitted

  18. Lawrence Livermore National Laboratory Surface Water Protection: A Watershed Approach

    Energy Technology Data Exchange (ETDEWEB)

    Coty, J

    2009-03-16

    This surface water protection plan (plan) provides an overview of the management efforts implemented at Lawrence Livermore National Laboratory (LLNL) that support a watershed approach to protect surface water. This plan fulfills a requirement in the Department of Energy (DOE) Order 450.1A to demonstrate a watershed approach for surface water protection that protects the environment and public health. This plan describes the use of a watershed approach within which the Laboratory's current surface water management and protections efforts have been structured and coordinated. With more than 800 million acres of land in the U.S. under federal management and stewardship, a unified approach across agencies provides enhanced resource protection and cost-effectiveness. The DOE adopted, along with other federal agencies, the Unified Federal Policy for a Watershed Approach to Federal Land and Resource Management (UFP) with a goal to protect water quality and aquatic ecosystems on federal lands. This policy intends to prevent and/or reduce water pollution from federal activities while fostering a cost-effective watershed approach to federal land and resource management. The UFP also intends to enhance the implementation of existing laws (e.g., the Clean Water Act [CWA] and National Environmental Policy Act [NEPA]) and regulations. In addition, this provides an opportunity for the federal government to serve as a model for water quality stewardship using a watershed approach for federal land and resource activities that potentially impact surface water and its uses. As a federal land manager, the Laboratory is responsible for a small but important part of those 800 million acres of land. Diverse land uses are required to support the Laboratory's mission and provide an appropriate work environment for its staff. The Laboratory comprises two sites: its main site in Livermore, California, and the Experimental Test Site (Site 300), near Tracy, California. The main site

  19. Valued ecosystem components for watershed cumulative effects: an analysis of environmental impact assessments in the South Saskatchewan River watershed, Canada.

    Science.gov (United States)

    Ball, Murray A; Noble, Bram F; Dubé, Monique G

    2013-07-01

    The accumulating effects of human development are threatening water quality and availability. In recognition of the constraints to cumulative effects assessment (CEA) under traditional environmental impact assessment (EIA), there is an emerging body of research dedicated to watershed-based cumulative effects assessment (WCEA). To advance the science of WCEA, however, a standard set of ecosystem components and indicators is required that can be used at the watershed scale, to inform effects-based understanding of cumulative change, and at the project scale, to inform regulatory-based project based impact assessment and mitigation. A major challenge, however, is that it is not clear how such ecosystem components and indicators for WCEA can or should be developed. This study examined the use of aquatic ecosystem components and indicators in EIA practice in the South Saskatchewan River watershed, Canada, to determine whether current practice at the project scale could be "scaled up" to support ecosystem component and indicator development for WCEA. The hierarchy of assessment components and indicators used in a sample of 35 environmental impact assessments was examined and the factors affecting aquatic ecosystem component selection and indicator use were identified. Results showed that public environmental impact statements are not necessarily publically accessible, thus limiting opportunities for data and information sharing from the project to the watershed scale. We also found no consistent terminology across the sample of impact statements, thus making comparison of assessment processes and results difficult. Regulatory compliance was found to be the dominant factor influencing the selection of ecosystem components and indicators for use in project assessment, rather than scientific reasoning, followed by the mandate of the responsible government agency for the assessment, public input to the assessment process, and preexisting water licensing arrangements external

  20. Can terraced pond wetland systems improve urban watershed water quality?

    Science.gov (United States)

    Li, S.; Ho, M.; Flanagan, N. E.; Richardson, C. J.

    2017-12-01

    Properly built constructed wetlands are a more economic and efficient way of wastewater treatment compared with traditional methods, although their mechanisms are far from completely understood. As part of the Stream and Wetland Assessment Management Park (SWAMP), which is aimed to improve the water quality of downstream and thereby enhance watershed ecosystem services, a terraced three-pond wetland system was created near Duke University in 2014. This project is expected to promote the retention and settling of pollutants and sediment before runoffs enter downstream flow. The goal of this study is to examine: (1) whether a terraced pond wetland system improves water quality, during both baseline (low flow) and storm events (high flow), which increases pollutant inputs; and (2) how this system functions to remove pollutants, namely what components of this system (plant, soil or water) increase or decrease the level of pollutants. By analyzing a dataset consisting of more than four-year monthly samplings from Pond 1 (first pond in the system) and Pond 3 (last pond in the system), we found that the pond system has reduced total suspended solids (TSS) but only when elevated inputs occur. Dissolved oxygen (DO) is closely related to temperature and macrophytes growth; whereas acidity (pH), total nitrogen (TN), and total phosphorus (TP) did not show retention in the early stages of the system development. This system reaches its optimum for reducing TSS at the second pond, but the third pond has important effects on DO, pH, TN and TP. A monitoring in 2017 shows this pond system significantly reduces TSS while increasing dissolved oxygen and neutralizing pH after a storm event; although greater variations incurred within the system as time progresses after storm, overall retention function remained valid. Retention of the pollutants is primarily accomplished by the settling process, which occurs in stilled waterbody of the ponds and by the filtration of macrophytes. We

  1. Gender sensitive education in watershed management to support environmental friendly city

    Science.gov (United States)

    Asteria, D.; Budidarmono; Herdiansyah, H.; Ni’mah, N. L.

    2018-03-01

    This study is about gender-sensitive perspective in watershed management education program as one of capacity building for citizens in watershed management with community-based strategy to support environmental friendly cities and security for women from flood disasters. Involving women and increasing women’s active participation in sustainable watershed management is essential in urban area. In global warming and climate change situations, city management should be integrated between social aspect and environmental planning. This study used mix method (concurrent embedded type, with quantitative as primary method) with research type is descriptive-explanatory. The result of this study is education strategies with gender approaches and affirmative action through emancipation approach and local knowledge from women’s experiences can increase women’s participation. Women’s empowerment efforts need integrated intervention and collaboration from government, NGO, and other stakeholders to optimize women’s role in watershed management for support environmental friendly city. The implication of this study is an educational strategy on watershed conservation with gender perspective to offer social engineering alternatives for decision makers to policy of sustainable watershed management in urban area related to flood mitigation efforts.

  2. Chloride Sources and Losses in Two Tile-Drained Agricultural Watersheds.

    Science.gov (United States)

    David, Mark B; Mitchell, Corey A; Gentry, Lowell E; Salemme, Ronald K

    2016-01-01

    Chloride is a relatively unreactive plant nutrient that has long been used as a biogeochemical tracer but also can be a pollutant causing aquatic biology impacts when concentrations are high, typically from rock salt applications used for deicing roads. Chloride inputs to watersheds are most often from atmospheric deposition, road salt, or agricultural fertilizer, although studies on agricultural watersheds with large fertilizer inputs are few. We used long-term (21 and 17 yr) chloride water quality data in two rivers of east-central Illinois to better understand chloride biogeochemistry in two agricultural watersheds (Embarras and Kaskaskia), the former with a larger urban land use and both with extensive tile drainage. During our sampling period, the average chloride concentration was 23.7 and 20.9 mg L in the Embarras and Kaskaskia Rivers, respectively. Annual fluxes of chloride were 72.5 and 61.2 kg ha yr in the Embarras and Kaskaskia watersheds, respectively. In both watersheds, fertilizer chloride was the dominant input (∼49 kg ha yr), with road salt likely the other major source (23.2 and 7.2 kg ha yr for the Embarras and Kaskaskia watersheds, respectively). Combining our monitoring data with earlier published data on the Embarras River showed an increase in chloride concentrations as potash use increased in Illinois during the 1960s and 1970s with a lag of about 2 to 6 yr to changes in potash inputs based on a multiple-regression model. In these agricultural watersheds, riverine chloride responds relatively quickly to potash fertilization as a result of tile-drainage. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  3. Uncertainty in BMP evaluation and optimization for watershed management

    Science.gov (United States)

    Chaubey, I.; Cibin, R.; Sudheer, K.; Her, Y.

    2012-12-01

    Use of computer simulation models have increased substantially to make watershed management decisions and to develop strategies for water quality improvements. These models are often used to evaluate potential benefits of various best management practices (BMPs) for reducing losses of pollutants from sources areas into receiving waterbodies. Similarly, use of simulation models in optimizing selection and placement of best management practices under single (maximization of crop production or minimization of pollutant transport) and multiple objective functions has increased recently. One of the limitations of the currently available assessment and optimization approaches is that the BMP strategies are considered deterministic. Uncertainties in input data (e.g. precipitation, streamflow, sediment, nutrient and pesticide losses measured, land use) and model parameters may result in considerable uncertainty in watershed response under various BMP options. We have developed and evaluated options to include uncertainty in BMP evaluation and optimization for watershed management. We have also applied these methods to evaluate uncertainty in ecosystem services from mixed land use watersheds. In this presentation, we will discuss methods to to quantify uncertainties in BMP assessment and optimization solutions due to uncertainties in model inputs and parameters. We have used a watershed model (Soil and Water Assessment Tool or SWAT) to simulate the hydrology and water quality in mixed land use watershed located in Midwest USA. The SWAT model was also used to represent various BMPs in the watershed needed to improve water quality. SWAT model parameters, land use change parameters, and climate change parameters were considered uncertain. It was observed that model parameters, land use and climate changes resulted in considerable uncertainties in BMP performance in reducing P, N, and sediment loads. In addition, climate change scenarios also affected uncertainties in SWAT

  4. Rainfall prediction of Cimanuk watershed regions with canonical correlation analysis (CCA)

    Science.gov (United States)

    Rustiana, Shailla; Nurani Ruchjana, Budi; Setiawan Abdullah, Atje; Hermawan, Eddy; Berliana Sipayung, Sinta; Gede Nyoman Mindra Jaya, I.; Krismianto

    2017-10-01

    Rainfall prediction in Indonesia is very influential on various development sectors, such as agriculture, fisheries, water resources, industry, and other sectors. The inaccurate predictions can lead to negative effects. Cimanuk watershed is one of the main pillar of water resources in West Java. This watersheds divided into three parts, which is a headwater of Cimanuk sub-watershed, Middle of Cimanuk sub-watershed and downstream of Cimanuk sub- watershed. The flow of this watershed will flow through the Jatigede reservoir and will supply water to the north-coast area in the next few years. So, the reliable model of rainfall prediction is very needed in this watershed. Rainfall prediction conducted with Canonical Correlation Analysis (CCA) method using Climate Predictability Tool (CPT) software. The prediction is every 3months on 2016 (after January) based on Climate Hazards group Infrared Precipitation with Stations (CHIRPS) data over West Java. Predictors used in CPT were the monthly data index of Nino3.4, Dipole Mode (DMI), and Monsoon Index (AUSMI-ISMI-WNPMI-WYMI) with initial condition January. The initial condition is chosen by the last data update. While, the predictant were monthly rainfall data CHIRPS region of West Java. The results of prediction rainfall showed by skill map from Pearson Correlation. High correlation of skill map are on MAM (Mar-Apr-May), AMJ (Apr-May-Jun), and JJA (Jun-Jul-Aug) which means the model is reliable to forecast rainfall distribution over Cimanuk watersheds region (over West Java) on those seasons. CCA score over those season prediction mostly over 0.7. The accuracy of the model CPT also indicated by the Relative Operating Characteristic (ROC) curve of the results of Pearson correlation 3 representative point of sub-watershed (Sumedang, Majalengka, and Cirebon), were mostly located in the top line of non-skill, and evidenced by the same of rainfall patterns between observation and forecast. So, the model of CPT with CCA method

  5. Watershed characterization and analysis using the VELMA ...

    Science.gov (United States)

    We developed a broadly applicable watershed simulator – VELMA (Visualizing Ecosystem and Land Management Assessments) – to characterize hydrological and ecological processes essential to the healthy functioning of watersheds, and to identify best management practices (BMPs) for restoring ecosystem services such as provisioning of clean water, food and fiber, and habitat for fish and wildlife. VELMA has been applied to agricultural, forest, rangeland and arctic watersheds across North America. Urban applications are under development. This seminar will discuss how VELMA is being used to help inform (1) salmon recovery planning in Puget Sound, and (2) water quality protection in Chesapeake Bay agricultural landscapes. These examples highlight the importance of model validation; how VELMA is being linked with additional models to aid BMP identification; and how the model is being transferred to community groups, tribes, and state and federal agencies engaged in environmental decision making. This invited seminar for the Washington State Department of Ecology will provide an overview of EPA’s VELMA watershed simulator and its applications for identifying best management practices for protecting and restoring vital ecosystem services, such as provisioning of clean water, food and fiber, and habitat for fish and wildlife. After the seminar, the presenter will meet with Department of Ecology staff to discuss the feasibility of including VELMA in their Puget Sound

  6. Evaluating the influence of spatial resolutions of DEM on watershed ...

    Indian Academy of Sciences (India)

    watersheds under different management practices. (Arnold et al. 1998). ... Smith 1978). These methods of runoff and sed- ... sediments and nutrient production in an agricul- tural watershed of ...... Agriculture Handbook No. 537. Xu H, Taylor ...

  7. Information Management for the Watershed Approach in the Pacific Northwest

    Science.gov (United States)

    A collection of interviews with leaders and key participants in the statewide watershed approach activities in the State of Washington. Additionally, there are reviews of Washington’s statewide watershed activities in a case study fashion.

  8. Looking for a relevant potential evapotranspiration model at the watershed scale

    Science.gov (United States)

    Oudin, L.; Hervieu, F.; Michel, C.; Perrin, C.; Anctil, F.; Andréassian, V.

    2003-04-01

    In this paper, we try to identify the most relevant approach to calculate Potential Evapotranspiration (PET) for use in a daily watershed model, to try to bring an answer to the following question: "how can we use commonly available atmospheric parameters to represent the evaporative demand at the catchment scale?". Hydrologists generally see the Penman model as the ideal model regarding to its good adequacy with lysimeter measurements and its physically-based formulation. However, in real-world engineering situations, where meteorological stations are scarce, hydrologists are often constrained to use other PET formulae with less data requirements or/and long-term average of PET values (the rationale being that PET is an inherently conservative variable). We chose to test 28 commonly used PET models coupled with 4 different daily watershed models. For each test, we compare both PET input options: actual data and long-term average data. The comparison is made in terms of streamflow simulation efficiency, over a large sample of 308 watersheds. The watersheds are located in France, Australia and the United States of America and represent varied climates. Strikingly, we find no systematic improvements of the watershed model efficiencies when using actual PET series instead of long-term averages. This suggests either that watershed models may not conveniently use the climatic information contained in PET values or that formulae are only awkward indicators of the real PET which watershed models need.

  9. Predicting the Impacts of Climate Change on Runoff and Sediment Processes in Agricultural Watersheds: A Case Study from the Sunflower Watershed in the Lower Mississippi Basin

    Science.gov (United States)

    Elkadiri, R.; Momm, H.; Yasarer, L.; Armour, G. L.

    2017-12-01

    Climatic conditions play a major role in physical processes impacting soil and agrochemicals detachment and transportation from/in agricultural watersheds. In addition, these climatic conditions are projected to significantly vary spatially and temporally in the 21st century, leading to vast uncertainties about the future of sediment and non-point source pollution transport in agricultural watersheds. In this study, we selected the sunflower basin in the lower Mississippi River basin, USA to contribute in the understanding of how climate change affects watershed processes and the transport of pollutant loads. The climate projections used in this study were retrieved from the archive of World Climate Research Programme's (WCRP) Coupled Model Intercomparison Phase 5 (CMIP5) project. The CMIP5 dataset was selected because it contains the most up-to-date spatially downscaled and bias corrected climate projections. A subset of ten GCMs representing a range in projected climate were spatially downscaled for the sunflower watershed. Statistics derived from downscaled GCM output representing the 2011-2040, 2041-2070 and 2071-2100 time periods were used to generate maximum/minimum temperature and precipitation on a daily time step using the USDA Synthetic Weather Generator, SYNTOR. These downscaled climate data were then utilized as inputs to run in the Annualized Agricultural Non-Point Source (AnnAGNPS) pollution watershed model to estimate time series of runoff, sediment, and nutrient loads produced from the watershed. For baseline conditions a validated simulation of the watershed was created and validated using historical data from 2000 until 2015.

  10. Clonal growth strategy, diversity and structure: A spatiotemporal response to sedimentation in tropical Cyperus papyrus swamps.

    Science.gov (United States)

    Geremew, Addisie; Stiers, Iris; Sierens, Tim; Kefalew, Alemayehu; Triest, Ludwig

    2018-01-01

    Land degradation and soil erosion in the upper catchments of tropical lakes fringed by papyrus vegetation can result in a sediment load gradient from land to lakeward. Understanding the dynamics of clonal modules (ramets and genets) and growth strategies of plants on such a gradient in both space and time is critical for exploring a species adaptation and processes regulating population structure and differentiation. We assessed the spatial and temporal dynamics in clonal growth, diversity, and structure of an emergent macrophyte, Cyperus papyrus (papyrus), in response to two contrasting sedimentation regimes by combining morphological traits and genotype data using 20 microsatellite markers. A total of 636 ramets from six permanent plots (18 x 30 m) in three Ethiopian papyrus swamps, each with discrete sedimentation regimes (high vs. low) were sampled for two years. We found that ramets under the high sedimentation regime (HSR) were significantly clumped and denser than the sparse and spreading ramets under the low sedimentation regime (LSR). The HSR resulted in significantly different ramets with short culm height and girth diameter as compared to the LSR. These results indicated that C. papyrus ameliorates the effect of sedimentation by shifting clonal growth strategy from guerrilla (in LSR) to phalanx (in HSR). Clonal richness, size, dominance, and clonal subrange differed significantly between sediment regimes and studied time periods. Each swamp under HSR revealed a significantly high clonal richness (R = 0.80) as compared to the LSR (R = 0.48). Such discrepancy in clonal richness reflected the occurrence of initial and repeated seedling recruitment strategies as a response to different sedimentation regimes. Overall, our spatial and short-term temporal observations highlighted that HSR enhances clonal richness and decreases clonal subrange owing to repeated seedling recruitment and genets turnover.

  11. Compilation of watershed models for tributaries to the Great Lakes, United States, as of 2010, and identification of watersheds for future modeling for the Great Lakes Restoration Initiative

    Science.gov (United States)

    Coon, William F.; Murphy, Elizabeth A.; Soong, David T.; Sharpe, Jennifer B.

    2011-01-01

    As part of the Great Lakes Restoration Initiative (GLRI) during 2009–10, the U.S. Geological Survey (USGS) compiled a list of existing watershed models that had been created for tributaries within the United States that drain to the Great Lakes. Established Federal programs that are overseen by the National Oceanic and Atmospheric Administration (NOAA) and the U.S. Army Corps of Engineers (USACE) are responsible for most of the existing watershed models for specific tributaries. The NOAA Great Lakes Environmental Research Laboratory (GLERL) uses the Large Basin Runoff Model to provide data for the management of water levels in the Great Lakes by estimating United States and Canadian inflows to the Great Lakes from 121 large watersheds. GLERL also simulates streamflows in 34 U.S. watersheds by a grid-based model, the Distributed Large Basin Runoff Model. The NOAA National Weather Service uses the Sacramento Soil Moisture Accounting model to predict flows at river forecast sites. The USACE created or funded the creation of models for at least 30 tributaries to the Great Lakes to better understand sediment erosion, transport, and aggradation processes that affect Federal navigation channels and harbors. Many of the USACE hydrologic models have been coupled with hydrodynamic and sediment-transport models that simulate the processes in the stream and harbor near the mouth of the modeled tributary. Some models either have been applied or have the capability of being applied across the entire Great Lakes Basin; they are (1) the SPAtially Referenced Regressions On Watershed attributes (SPARROW) model, which was developed by the USGS; (2) the High Impact Targeting (HIT) and Digital Watershed models, which were developed by the Institute of Water Research at Michigan State University; (3) the Long-Term Hydrologic Impact Assessment (L–THIA) model, which was developed by researchers at Purdue University; and (4) the Water Erosion Prediction Project (WEPP) model, which was

  12. Application Of GIS Software For Erosion Control In The Watershed Scale

    Directory of Open Access Journals (Sweden)

    C. Setyawan

    2017-01-01

    Full Text Available Land degradation in form of soil erosion due to uncontrolled farming is occurred in many watersheds of Indonesia particularly in Java Island. Soil erosion is decreasing watershed function as a rainwater harvesting area. Good conservation practices need to be applied to prevent more degradation. This study aims to investigate the effectiveness of land conservation practice for erosion control through land use modeling in the watershed scale. The modeling was applied in the Sempor watershed Indonesia. Three scenarios of land use were used for modeling. Soil erosion measurement and land use modeling were performed by using Universal Soil Loss Equation USLE method and Geographic Information System GIS software ArcGIS 10.1. Land use modeling was conducted by increasing permanent vegetation coverage from existing condition 4 to 10 20 and 30. The result showed that the modeling can reduce heavy class erosion about 15-37 of total area. GIS provides a good tool for erosion control modeling in the watershed scale.

  13. A CN-Based Ensembled Hydrological Model for Enhanced Watershed Runoff Prediction

    Directory of Open Access Journals (Sweden)

    Muhammad Ajmal

    2016-01-01

    Full Text Available A major structural inconsistency of the traditional curve number (CN model is its dependence on an unstable fixed initial abstraction, which normally results in sudden jumps in runoff estimation. Likewise, the lack of pre-storm soil moisture accounting (PSMA procedure is another inherent limitation of the model. To circumvent those problems, we used a variable initial abstraction after ensembling the traditional CN model and a French four-parameter (GR4J model to better quantify direct runoff from ungauged watersheds. To mimic the natural rainfall-runoff transformation at the watershed scale, our new parameterization designates intrinsic parameters and uses a simple structure. It exhibited more accurate and consistent results than earlier methods in evaluating data from 39 forest-dominated watersheds, both for small and large watersheds. In addition, based on different performance evaluation indicators, the runoff reproduction results show that the proposed model produced more consistent results for dry, normal, and wet watershed conditions than the other models used in this study.

  14. The Analysis of Management and Timber Trade System of Gelam (Melaleuca cajuputi From Peat Swamp Forest in South Kalimantan

    Directory of Open Access Journals (Sweden)

    Yudi Firmanul Ariffin

    2015-05-01

    Full Text Available Until now the raw material of wood especially Gelam (Melaleuca cajuputi available for supporting the construction of housing and other infrastructures is increasingly large in Indonesia. On the Island of Borneo that partly consists of swamps needs Gelam very large and continuous, particularly for residential development. However, areas of peat swamp forest habitat of this plant from year to year are degradation and shrinkage. This situation is a very big influence on the population of Gelam, while the management and timber trade systems are not well regulated. This study aims to analyze the management and timber trade systems of Gelam particularly in South Kalimantan to provide input to the policy holder in the preservation of Gelam. The method was used a field survey and interviews with traders and policy holders related regulations. The results showed in South Kalimantan the potency of Gelam is only 2,9-7,1 m3/ha and decreasing yearly. Normally Gelam with a diameter <4 cm have been cut down, as well as > 30 cm. These dimensions should not be cut because of <4 cm too young and > 30 cm can be used as seed sources. Gelam derived from peat swamp forest, which mostly comes from the Batola District and some came from Kapuas District of Central Kalimantan. Distributions of Gelam were starting gatherers logging in the forest then sold to small gatherers, next to the large gatherers and distributed to all districts/cities in South Kalimantan, wood processing industries, and some of them were sent to Java. The silviculture system of Gelam was using selective cutting. Classification of wood sizes traded by the diameter divided into 3-4cm, 5-6cm, 7-8cm, 9-10cm, 11-12cm, 13-14cm, 15-19cm and > 20cm to 4m long. Its use consists of a small diameter (3-10cm for foundry building and firewood, while the large diameter (10-20cm for the construction of houses in swampy areas, and waste as well as the stems are bent and deformed used for firewood. Until now Gelam

  15. An environmental assessment of United States drinking water watersheds

    Science.gov (United States)

    James Wickham; Timothy Wade; Kurt Riitters

    2011-01-01

    Abstract There is an emerging recognition that natural lands and their conservation are important elements of a sustainable drinking water infrastructure. We conducted a national, watershed-level environmental assessment of 5,265 drinking water watersheds using data on land cover, hydrography and conservation status. Approximately 78% of the conterminous United States...

  16. Wind River Watershed restoration: 1999 annual report; ANNUAL

    International Nuclear Information System (INIS)

    Connolly, Patrick J.

    2001-01-01

    This document represents work conducted as part of the Wind River Watershed Restoration Project during its first year of funding through the Bonneville Power Administration (BPA). The project is a comprehensive effort involving public and private entities seeking to restore water quality and fishery resources in the basin through cooperative actions. Project elements include coordination, watershed assessment, restoration, monitoring, and education. Entities involved with implementing project components are the Underwood Conservation District (UCD), USDA Forest Service (USFS), U.S. Geological Survey-Columbia River Research Lab (USGS-CRRL), and WA Department of Fish and Wildlife (WDFW). Following categories given in the FY1999 Statement of Work, the broad categories, the related objectives, and the entities associated with each objective (lead entity in boldface) were as follows: Coordination-Objective 1: Coordinate the Wind River watershed Action Committee (AC) and Technical Advisory Committee (TAC) to develop a prioritized list of watershed enhancement projects. Monitoring-Objective 2: Monitor natural production of juvenile, smolt, and adult steelhead in the Wind River subbasin. Objective 3: Evaluate physical habitat conditions in the Wind River subbasin. Assessment-Objective 4: Assess watershed health using an ecosystem-based diagnostic model that will provide the technical basis to prioritize out-year restoration projects. Restoration-Objective 5: Reduce road related sediment sources by reducing road densities to less than 2 miles per square mile. Objective 6: Rehabilitate riparian corridors, flood plains, and channel morphology to reduce maximum water temperatures to less than 61 F, to increase bank stability to greater than 90%, to reduce bankfull width to depth ratios to less than 30, and to provide natural levels of pools and cover for fish. Objective 7: Maintain and evaluate passage for adult and juvenile steelhead at artificial barriers. Education

  17. Watershed Management Optimization Support Tool (WMOST) v2: User Manual and Case Studies

    Science.gov (United States)

    The Watershed Management Optimization Support Tool (WMOST) is a decision support tool that evaluates the relative cost-effectiveness of management practices at the local or watershed scale. WMOST models the environmental effects and costs of management decisions in a watershed c...

  18. Mathematical modeling of synthetic unit hydrograph case study: Citarum watershed

    Science.gov (United States)

    Islahuddin, Muhammad; Sukrainingtyas, Adiska L. A.; Kusuma, M. Syahril B.; Soewono, Edy

    2015-09-01

    Deriving unit hydrograph is very important in analyzing watershed's hydrologic response of a rainfall event. In most cases, hourly measures of stream flow data needed in deriving unit hydrograph are not always available. Hence, one needs to develop methods for deriving unit hydrograph for ungagged watershed. Methods that have evolved are based on theoretical or empirical formulas relating hydrograph peak discharge and timing to watershed characteristics. These are usually referred to Synthetic Unit Hydrograph. In this paper, a gamma probability density function and its variant are used as mathematical approximations of a unit hydrograph for Citarum Watershed. The model is adjusted with real field condition by translation and scaling. Optimal parameters are determined by using Particle Swarm Optimization method with weighted objective function. With these models, a synthetic unit hydrograph can be developed and hydrologic parameters can be well predicted.

  19. Watershed Evaluation and Habitat Response to Recent Storms : Annual Report for 1999.

    Energy Technology Data Exchange (ETDEWEB)

    Rhodes, Jonathan J.; Huntington, Charles W.

    2000-02-01

    Large and powerful storm systems moved through the Pacific Northwest during the wet season of 1995--96, triggering flooding, mass erosion, and, alteration of salmon habitats in affected watersheds. This project study was initiated to assess whether watershed conditions are causing damage, triggered by storm events, to salmon habitat on public lands in the Snake River basin. The storms and flooding in 1995--96 provide a prime opportunity to examine whether habitat conditions are improving, because the effects of land management activities on streams and salmon habitat are often not fully expressed until triggered by storms and floods. To address these issues, they are studying the recent storm responses of watersheds and salmon habitat in systematically selected subbasins and watersheds within the Snake River system. The study watersheds include several in the Wenaha and Tucannon subbasins in Washington and Oregon, and the watersheds of Squaw Creek (roaded) and Weir Creek (unroaded) in the Lochsa River subbasin, Idaho. The study was designed to examine possible differences in the effects of the storms in broadly comparable watersheds with differing magnitudes or types of disturbance. Watershed response is examined by comparing storm response mechanisms, such as rates of mass failure, among watersheds with similar attributes, but different levels of land management. The response of salmon habitat conditions is being examined by comparing habitat conditions before and after the storms in a stream and among streams in watersheds with similar attributes but different levels of land management. If appropriate to the results, the study will identify priority measures for reducing the severity of storm responses in watersheds within the Snake River Basin with habitat for at-risk salmon. This annual report describes the attributes of the study watersheds and the criteria and methods used to select them. The report also describes the watershed and fish habitat attributes

  20. Watershed evaluation and habitat response to recent storms; annual report for 1999

    International Nuclear Information System (INIS)

    Rhodes, Jonathan J.; Huntington, Charles W.

    2000-01-01

    Large and powerful storm systems moved through the Pacific Northwest during the wet season of 1995--96, triggering flooding, mass erosion, and, alteration of salmon habitats in affected watersheds. This project study was initiated to assess whether watershed conditions are causing damage, triggered by storm events, to salmon habitat on public lands in the Snake River basin. The storms and flooding in 1995--96 provide a prime opportunity to examine whether habitat conditions are improving, because the effects of land management activities on streams and salmon habitat are often not fully expressed until triggered by storms and floods. To address these issues, they are studying the recent storm responses of watersheds and salmon habitat in systematically selected subbasins and watersheds within the Snake River system. The study watersheds include several in the Wenaha and Tucannon subbasins in Washington and Oregon, and the watersheds of Squaw Creek (roaded) and Weir Creek (unroaded) in the Lochsa River subbasin, Idaho. The study was designed to examine possible differences in the effects of the storms in broadly comparable watersheds with differing magnitudes or types of disturbance. Watershed response is examined by comparing storm response mechanisms, such as rates of mass failure, among watersheds with similar attributes, but different levels of land management. The response of salmon habitat conditions is being examined by comparing habitat conditions before and after the storms in a stream and among streams in watersheds with similar attributes but different levels of land management. If appropriate to the results, the study will identify priority measures for reducing the severity of storm responses in watersheds within the Snake River Basin with habitat for at-risk salmon. This annual report describes the attributes of the study watersheds and the criteria and methods used to select them. The report also describes the watershed and fish habitat attributes

  1. Controls on mercury and methylmercury deposition for two watersheds in Acadia National Park, Maine.

    Science.gov (United States)

    Johnson, K B; Haines, T A; Kahl, J S; Norton, S A; Amirbahman, Aria; Sheehan, K D

    2007-03-01

    Throughfall and bulk precipitation samples were collected for two watersheds at Acadia National Park, Maine, from 3 May to 16 November 2000, to determine which landscape factors affected mercury (Hg) deposition. One of these watersheds, Cadillac Brook, burned in 1947, providing a natural experimental design to study the effects of forest type on deposition to forested watersheds. Sites that face southwest received the highest Hg deposition, which may be due to the interception of cross-continental movement of contaminated air masses. Sites covered with softwood vegetation also received higher Hg deposition than other vegetation types because of the higher scavenging efficiency of the canopy structure. Methyl mercury (MeHg) deposition was not affected by these factors. Hg deposition, as bulk precipitation and throughfall was lower in Cadillac Brook watershed (burned) than in Hadlock Brook watershed (unburned) because of vegetation type and watershed aspect. Hg and MeHg inputs were weighted by season and vegetation type because these two factors had the most influence on deposition. Hg volatilization was not determined. The total Hg deposition via throughfall and bulk precipitation was 9.4 microg/m(2)/year in Cadillac Brook watershed and 10.2 microg/m(2)/year in Hadlock Brook watershed. The total MeHg deposition via throughfall and bulk precipitation was 0.05 microg/m(2)/year in Cadillac Brook watershed and 0.10 microg/m(2)/year in Hadlock Brook watershed.

  2. Probabilistic assessment of wildfire hazard and municipal watershed exposure

    Science.gov (United States)

    Joe Scott; Don Helmbrecht; Matthew P. Thompson; David E. Calkin; Kate Marcille

    2012-01-01

    The occurrence of wildfires within municipal watersheds can result in significant impacts to water quality and ultimately human health and safety. In this paper, we illustrate the application of geospatial analysis and burn probability modeling to assess the exposure of municipal watersheds to wildfire. Our assessment of wildfire exposure consists of two primary...

  3. Mercury and Organic Carbon Relationships in Streams Draining Forested Upland/Peatland Watersheds

    Science.gov (United States)

    R. K. Kolka; D. F. Grigal; E. S. Verry; E. A. Nater

    1999-01-01

    We determined the fluxes of total mecury (HgT), total organic carbon (TOC), and dissolved organic carbon (DOC) from five upland/peatland watersheds at the watershed outlet. The difference between TOC and DOC was defined as particulate OC (POC). Concentrations of HgT showed moderate to strong relationships with POC (R2 = 0.77) when all watersheds...

  4. Productivity of Indonesian swamp buffaloes in relation to nutrition, reproduction and draught use in the wet tropics

    International Nuclear Information System (INIS)

    Bamualim, A.; Liem, C.; Ffoulkes, D.

    1990-01-01

    Buffaloes in Indonesian villages fulfil a valuable function in providing the major source of draught power for cultivation. However, in wet irrigated areas, the continuous work of buffaloes and the low to medium quality of the available feed result in low growth rates and low reproductive performance. Results from buffalo feeding trials using similar feeds to those given in the villages indicated that high usage for draught would ultimately reduce body weight gains and might reduce the ovarian activity of buffalo cows. Use of supplements is recommended to improve the growth rates and fertility of swamp buffalo cows subjected to high work loads. (author). 14 refs, 7 tabs

  5. ESTIMATION OF RUNOFF IN AN UNGAUGED RURAL WATERSHED, TAMILNADU STATE, INDIA

    OpenAIRE

    MANOHARAN, A; MURUGAPPAN, A

    2012-01-01

    Runoff estimation in ungauged catchment is a challenge for the hydrological engineers and planners. For any hydrological study on an ungauged watershed, a methodology has to be appropriately selected for the determination of runoff at its outlet. Several methods have been used to estimate the runoff from a watershed. GIS and Remote Sensing techniques seem to be accurate and sensitive that includes several important properties of watershed namely, soil permeability, landuse and antecedent soil...

  6. GRACE storage-runoff hystereses reveal the dynamics of regional watersheds

    Science.gov (United States)

    Watersheds function as integrated systems where climate and geology govern the movement of water. In situ instrumentation can provide local-scale insights into the non-linear relationship between streamflow and water stored in a watershed as snow, soil moisture, and groundwater. ...

  7. Assessment of the Impact of Climate Change on the Water Balances and Flooding Conditions of Peninsular Malaysia watersheds by a Coupled Numerical Climate Model - Watershed Hydrology Model

    Science.gov (United States)

    Ercan, A.; Kavvas, M. L.; Ishida, K.; Chen, Z. Q.; Amin, M. Z. M.; Shaaban, A. J.

    2017-12-01

    Impacts of climate change on the hydrologic processes under future climate change conditions were assessed over various watersheds of Peninsular Malaysia by means of a coupled regional climate and physically-based hydrology model that utilized an ensemble of future climate change projections. An ensemble of 15 different future climate realizations from coarse resolution global climate models' (GCMs) projections for the 21st century were dynamically downscaled to 6 km resolution over Peninsular Malaysia by a regional numerical climate model, which was then coupled with the watershed hydrology model WEHY through the atmospheric boundary layer over the selected watersheds of Peninsular Malaysia. Hydrologic simulations were carried out at hourly increments and at hillslope-scale in order to assess the impacts of climate change on the water balances and flooding conditions at the selected watersheds during the 21st century. The coupled regional climate and hydrology model was simulated for a duration of 90 years for each of the 15 realizations. It is demonstrated that the increase in mean monthly flows due to the impact of expected climate change during 2040-2100 is statistically significant at the selected watersheds. Furthermore, the flood frequency analyses for the selected watersheds indicate an overall increasing trend in the second half of the 21st century.

  8. Assessing the Impact of Forest Change and Climate Variability on Dry Season Runoff by an Improved Single Watershed Approach: A Comparative Study in Two Large Watersheds, China

    Directory of Open Access Journals (Sweden)

    Yiping Hou

    2018-01-01

    Full Text Available Extensive studies on hydrological responses to forest change have been published for centuries, yet partitioning the hydrological effects of forest change, climate variability and other factors in a large watershed remains a challenge. In this study, we developed a single watershed approach combining the modified double mass curve (MDMC and the time series multivariate autoregressive integrated moving average model (ARIMAX to separate the impact of forest change, climate variability and other factors on dry season runoff variation in two large watersheds in China. The Zagunao watershed was examined for the deforestation effect, while the Meijiang watershed was examined to study the hydrological impact of reforestation. The key findings are: (1 both deforestation and reforestation led to significant reductions in dry season runoff, while climate variability yielded positive effects in the studied watersheds; (2 the hydrological response to forest change varied over time due to changes in soil infiltration and evapotranspiration after vegetation regeneration; (3 changes of subalpine natural forests produced greater impact on dry season runoff than alteration of planted forests. These findings are beneficial to water resource and forest management under climate change and highlight a better planning of forest operations and management incorporated trade-off between carbon and water in different forests.

  9. Consistency of Hydrologic Relationships of a Paired Watershed Approach

    Science.gov (United States)

    Herbert Ssegane; Devendra M. Amatya; George M. Chescheir; Wayne R. Skaggs; Ernest W. Tollner; Jami E.. Nettles

    2013-01-01

    Paired watershed studies are used around the world to evaluate and quantify effects of forest and water management practices on hydrology and water quality. The basic concept uses two neighboring watersheds (one as a control and another as a treatment), which are concurrently monitored during calibration (pre-treatment) and post-treatment periods. A statistically...

  10. Impact of India's watershed development programs on biomass productivity

    Science.gov (United States)

    Bhalla, R. S.; Devi Prasad, K. V.; Pelkey, Neil W.

    2013-03-01

    Watershed development (WSD) is an important and expensive rural development initiative in India. Proponents of the approach contend that treating watersheds will increase agricultural and overall biomass productivity, which in turn will reduce rural poverty. We used satellite-measured normalized differenced vegetation index as a proxy for land productivity to test this crucial contention. We compared microwatersheds that had received funding and completed watershed restoration with adjacent untreated microwatersheds in the same region. As the criteria used can influence results, we analyzed microwatersheds grouped by catchment, state, ecological region, and biogeographical zones for analysis. We also analyzed pre treatment and posttreatment changes for the same watersheds in those schemes. Our findings show that WSD has not resulted in a significant increase in productivity in treated microwatersheds at any grouping, when compared to adjacent untreated microwatershed or the same microwatershed prior to treatment. We conclude that the well-intentioned people-centric WSD efforts may be inhibited by failing to adequately address the basic geomorphology and hydraulic condition of the catchment areas at all scales.

  11. Geomorphometry through remote sensing and GIS for watershed management

    International Nuclear Information System (INIS)

    Venkateswarlu, P.; Reddy, M.A.; Gokhale, K.V.G.K.

    2005-01-01

    Application of remote sensing and GIS for effective determination of the quantitative description of drainage basin geometry for watershed management prioritization forms the theme of this paper. In the present study, each of the eight sub watersheds of Racherla watershed of Prakasam (District) Andhra Pradesh, have been studied in terms of the morphometric parameters -stream length, bifurcation ratio, length ratio, drainage density, stream frequency, texture ratio, form factor area, perimeter, circularity ratio, elongation ratio and sediment yield index. The prioritization of the eight sub watersheds is carried out considering morphometry and sediment yield index. Using IRS IC satellite imagery, a computerized database is created availing ARC / INFO software. The initial drainage map prepared from the survey of India toposheets was later unified with satellite imagery. The prioritization of sub sheds based on morphometry compared with sediment yield prioritization and found nearly same for the study area. The information obtained from all the thematic map is integrated and action plan is suggested for land and water resources development on a sustainable basis. (author)

  12. Watershed reliability, resilience and vulnerability analysis under uncertainty using water quality data.

    Science.gov (United States)

    Hoque, Yamen M; Tripathi, Shivam; Hantush, Mohamed M; Govindaraju, Rao S

    2012-10-30

    A method for assessment of watershed health is developed by employing measures of reliability, resilience and vulnerability (R-R-V) using stream water quality data. Observed water quality data are usually sparse, so that a water quality time-series is often reconstructed using surrogate variables (streamflow). A Bayesian algorithm based on relevance vector machine (RVM) was employed to quantify the error in the reconstructed series, and a probabilistic assessment of watershed status was conducted based on established thresholds for various constituents. As an application example, observed water quality data for several constituents at different monitoring points within the Cedar Creek watershed in north-east Indiana (USA) were utilized. Considering uncertainty in the data for the period 2002-2007, the R-R-V analysis revealed that the Cedar Creek watershed tends to be in compliance with respect to selected pesticides, ammonia and total phosphorus. However, the watershed was found to be prone to violations of sediment standards. Ignoring uncertainty in the water quality time-series led to misleading results especially in the case of sediments. Results indicate that the methods presented in this study may be used for assessing the effects of different stressors over a watershed. The method shows promise as a management tool for assessing watershed health. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. [Influence of land use change on dissolved organic carbon export in Naoli River watershed. Northeast China].

    Science.gov (United States)

    Yin, Xiao-min; Lyu, Xian-guo; Liu, Xing-tu; Xue, Zhen-shan

    2015-12-01

    The present study was conducted to evaluate the influence of land use change on dissolved organic carbon (DOC) export in Naoli River watershed, Northeast China. Seasonal variation of DOC concentrations of the river water and its relationship with land use in the whole watershed and 100 m riparian zone at the annual average scale were analyzed using the method of field sampling, laboratory analysis, GIS and statistics analysis. The results showed that the concentrations of DOC under base flow conditions in spring and summer were significantly higher than that in fall in the study watershed. The seasonal trend of DOC concentrations in wetland-watersheds was similar to that in all the sub-watersheds, while significantly different from that in non-wetland watersheds. On the annual average scale, percentage of wetland in the whole watershed and paddy field in the 100 m riparian zone had positive relationship with the DOC concentration in the river water, while percentage of forest in the whole watershed had negative relationship with it (P watershed played a significant role in the seasonal variation of DOC in river water of Naoli River watershed. Wetland in the watershed and paddy field in the 100 m riparian zone significantly promoted DOC export, while forest alleviated it. Land use change in the watershed in the past few decades dramatically changed the DOC balance of river water.

  14. Habitat use and population structure of the invasive red swamp crayfish Procambarus clarkii (Girard, 1852 in a protected area in northern Italy

    Directory of Open Access Journals (Sweden)

    Donato Roberta

    2018-01-01

    Full Text Available The red swamp crayfish Procambarus clarkii is one of the most invasive alien species in Europe and included in the list of invasive species of Union concern. We describe for the first time some life-history traits of a red swamp crayfish population in the Nature Reserve of the Lago di Candia (Italy. We investigated (1 preferences of this species for specific environmental features on the banks of the lake, and (2 differences in size, sex ratio, and condition index between individuals caught in lake and marsh. Moreover, we compared sampling effort and the features of individuals caught in the lake, for two sampling seasons in 2014 and 2015. Findings indicated that the population was well established, and the marsh seemed to have better conditions for growth of individuals than the lake. Accordingly, continuity of riparian vegetation, opportunity to dig burrows, and trophic resource availability seems to facilitate the proliferation of the crayfish in the lake. Our study demonstrated that massive removal efforts over the whole active period of the species and more than one year of trapping are necessary to increase the controlling activities' success. This study could have important implications for further population management projects directed at biodiversity conservation in the area.

  15. Watershed-based Image Segmentation with Region Merging and Edge Detection

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The clustering technique is used to examine each pixel in the image which assigned to one of the clusters depending on the minimum distance to obtain primary classified image into different intensity regions. A watershed transformation technique is then employes. This includes: gradient of the classified image, dividing the image into markers, checking the Marker Image to see if it has zero points (watershed lines). The watershed lines are then deleted in the Marker Image created by watershed algorithm. A Region Adjacency Graph (RAG) and Region Adjacency Boundary (RAB) are created between two regions from Marker Image. Finally region merging is done according to region average intensity and two edge strengths (T1, T2). The approach of the authors is tested on remote sensing and brain MR medical images. The final segmentation result is one closed boundary per actual region in the image.

  16. Physiography, geology, and land cover of four watersheds in Eastern Puerto Rico

    Science.gov (United States)

    S.F. Murphy; R.F. Stallard; M.C. Larsen; W.A. Gould

    2012-01-01

    Four watersheds with differing geology and land cover in eastern Puerto Rico have been studied on a long-term basis by the U.S. Geological Survey to evaluate water, energy, and biogeochemical budgets. These watersheds are typical of tropical, island-arc settings found in many parts of the world. Two watersheds are located on coarse-grained granitic rocks that weather...

  17. Hydrological processes of reference watersheds in Experimental Forests, USA

    Science.gov (United States)

    Devendra Amatya; John Campbell; Pete Wohlgemuth; Kelly Elder; Stephen Sebestyen; Sherri Johnson; Elizabeth Keppeler; Mary Beth Adams; Peter Caldwell; D. Misra

    2016-01-01

    Long-term research at small, gauged, forested watersheds within the USDA Forest Service, Experimental Forest and Range network (USDA-EFR) has contributed substantially to our current understanding of relationships between forests and streamflow (Vose et al., 2014). Many of these watershed studies were established in the early to mid-20th century and have been used to...

  18. Land degradation and integrated watershed management in India

    Directory of Open Access Journals (Sweden)

    Suraj Bhan

    2013-06-01

    Government of India has launched various centre-sector, state-sector and foreign aided schemes for prevention of land degradation, reclamation of special problem areas for ensuring productivity of the land, preservation of land resources and improvement of ecology and environment. These schemes are being implemented on watershed basis in rainfed areas. Soil conservation measures and reclamation of degraded lands are decided considering the land capability and land uses. The efforts made so far resulted in enhancement of agricultural production and productivity of lands, increase in employment generation, improving the environment of the areas and socio-economic upgradation of the people. Integrated watershed management approach has been adopted as a key national strategy for sustainable development of rural areas. This has been proved by conducting monitoring and impact evaluation studies of the integrated watershed projects by external agencies.

  19. Reproductive biology of the swamp racer Mastigodryas bifossatus (Serpentes: Colubridae in subtropical Brazil

    Directory of Open Access Journals (Sweden)

    Pedro T. Leite

    2009-03-01

    Full Text Available The swamp racer Mastigodryas bifossatus (Raddi, 1820 is a large snake of Colubrinae. It is widely distributed in open areas throughout South America. Dissection of 224 specimens of this species housed in herpetological collections of the southern Brazilian states of Rio Grande do Sul, Santa Catarina and Paraná provided information on its sexual dimorphism, reproductive cycle and fecundity in subtropical Brazil. Adult specimens of M. bifossatus average approximately 1190 mm in snout-vent length and females are larger than males. The reproductive cycle of females is seasonal, with secondary vitellogenesis occurring from July to December. However, examination of male gonads did not reveal signs of reproductive seasonality in this sex. Egg laying was recorded from November to January. The estimated recruitment period extends from February to April. The mean number of individuals per clutch is 15, and there is a positive correlation between female length and clutch size.

  20. Participatory policy development for integrated watershed management in Uganda's highlands

    NARCIS (Netherlands)

    Mutekanga, F.P.

    2012-01-01

    Soil erosion is a serious problem in the densely populated Uganda highlands and previous interventions were ineffective. This study, on the Ngenge watershed, Mount Elgon, was aimed at developing policy for the implementation of a new strategy for solving the problem, Integrated Watershed

  1. Virtual Sensors in a Web 2.0 Digital Watershed

    Science.gov (United States)

    Liu, Y.; Hill, D. J.; Marini, L.; Kooper, R.; Rodriguez, A.; Myers, J. D.

    2008-12-01

    The lack of rainfall data in many watersheds is one of the major barriers for modeling and studying many environmental and hydrological processes and supporting decision making. There are just not enough rain gages on the ground. To overcome this data scarcity issue, a Web 2.0 digital watershed is developed at NCSA(National Center for Supercomputing Applications), where users can point-and-click on a web-based google map interface and create new precipitation virtual sensors at any location within the same coverage region as a NEXRAD station. A set of scientific workflows are implemented to perform spatial, temporal and thematic transformations to the near-real-time NEXRAD Level II data. Such workflows can be triggered by the users' actions and generate either rainfall rate or rainfall accumulation streaming data at a user-specified time interval. We will discuss some underlying components of this digital watershed, which consists of a semantic content management middleware, a semantically enhanced streaming data toolkit, virtual sensor management functionality, and RESTful (REpresentational State Transfer) web service that can trigger the workflow execution. Such loosely coupled architecture presents a generic framework for constructing a Web 2.0 style digital watershed. An implementation of this architecture at the Upper Illinois Rive Basin will be presented. We will also discuss the implications of the virtual sensor concept for the broad environmental observatory community and how such concept will help us move towards a participatory digital watershed.

  2. Waste drilling-fluid-utilising microorganisms in a tropical mangrove swamp oilfield location

    Energy Technology Data Exchange (ETDEWEB)

    Benka-Coker, M.O.; Olumagin, A. [Benin Univ. (Nigeria). Dept. of Microbiology

    1995-12-31

    Waste drilling-fluid-utilising microorganisms were isolated from drilling-mud cuttings, soil and creek water from a mangrove swamp oilfield location in the Delta area of Nigeria using waste drilling-fluid as the substrate. Eighteen bacterial isolates obtained were identified as species of Staphylococcus, Acinetobacter, Alcaligenes, Serratia, Clostridium, Enterobacter, Klebsiella, Nocardia, Bacillus, Actinomyces, Micrococcus and Pseudomonas, while the genera of fungi isolated were Penicillium, Cladosporium and Fusarium. Even though drilling-fluid-utilising genera were in higher numbers in the soil than in the two other sources examined, the percentages of the total heterotrophic bacteria that utilised waste drilling-fluid were 6.02 in the drilling-mud cuttings, 0.83 in creek water and 0.42 in soil. The screen tests for biodegradation potential of the bacterial isolates showed that, even though all the isolates were able to degrade and utilise the waste fluid for growth, species of Alcaligenes and Micrococcus were more active degraders of the waste. The significance of the results in environmental management in oil-producing areas of Nigeria is discussed. (Author)

  3. Waste drilling-fluid-utilising microorganisms in a tropical mangrove swamp oilfield location

    International Nuclear Information System (INIS)

    Benka-Coker, M.O.; Olumagin, A.

    1995-01-01

    Waste drilling-fluid-utilising microorganisms were isolated from drilling-mud cuttings, soil and creek water from a mangrove swamp oilfield location in the Delta area of Nigeria using waste drilling-fluid as the substrate. Eighteen bacterial isolates obtained were identified as species of Staphylococcus, Acinetobacter, Alcaligenes, Serratia, Clostridium, Enterobacter, Klebsiella, Nocardia, Bacillus, Actinomyces, Micrococcus and Pseudomonas, while the genera of fungi isolated were Penicillium, Cladosporium and Fusarium. Even though drilling-fluid-utilising genera were in higher numbers in the soil than in the two other sources examined, the percentages of the total heterotrophic bacteria that utilised waste drilling-fluid were 6.02 in the drilling-mud cuttings, 0.83 in creek water and 0.42 in soil. The screen tests for biodegradation potential of the bacterial isolates showed that, even though all the isolates were able to degrade and utilise the waste fluid for growth, species of Alcaligenes and Micrococcus were more active degraders of the waste. The significance of the results in environmental management in oil-producing areas of Nigeria is discussed. (Author)

  4. Variations in tropical cyclone-related discharge in four watersheds near Houston, Texas

    Directory of Open Access Journals (Sweden)

    Laiyin Zhu

    2015-01-01

    Full Text Available We examined a 60-year record of daily precipitation and river discharge related to tropical cyclones (TCs in four watersheds undergoing land use and land cover change near Houston, Texas. Results show that TCs are responsible for ∼20% of the annual maximum discharge events in the four selected watersheds. Although there are no trends in TC precipitation, increasing trends were observed in daily extreme discharge and TC-related discharge. The more developed watersheds (Whiteoak Bayou and Brays Bayou, tend to have higher extreme discharge and steeper trends in extreme discharge than the less developed watersheds (Cypress Creek. Increases in TC-related extreme discharges correspond with increases in developed land and decreases in vegetated land between 1980 and 2006. Therefore, changes in land cover/use in watersheds near Houston are a major cause of the increased flooding risk in recent years.

  5. Hydrological Modeling of the Jiaoyi Watershed (China) Using HSPF Model

    Science.gov (United States)

    Yan, Chang-An; Zhang, Wanchang; Zhang, Zhijie

    2014-01-01

    A watershed hydrological model, hydrological simulation program-Fortran (HSPF), was applied to simulate the spatial and temporal variation of hydrological processes in the Jiaoyi watershed of Huaihe River Basin, the heaviest shortage of water resources and polluted area in China. The model was calibrated using the years 2001–2004 and validated with data from 2005 to 2006. Calibration and validation results showed that the model generally simulated mean monthly and daily runoff precisely due to the close matching hydrographs between simulated and observed runoff, as well as the excellent evaluation indicators such as Nash-Sutcliffe efficiency (NSE), coefficient of correlation (R 2), and the relative error (RE). The similar simulation results between calibration and validation period showed that all the calibrated parameters had a certain representation in Jiaoyi watershed. Additionally, the simulation in rainy months was more accurate than the drought months. Another result in this paper was that HSPF was also capable of estimating the water balance components reasonably and realistically in space through the whole watershed. The calibrated model can be used to explore the effects of climate change scenarios and various watershed management practices on the water resources and water environment in the basin. PMID:25013863

  6. Composite measures of watershed health from a water quality perspective.

    Science.gov (United States)

    Mallya, Ganeshchandra; Hantush, Mohamed; Govindaraju, Rao S

    2018-05-15

    Water quality data at gaging stations are typically compared with established federal, state, or local water quality standards to determine if violations (concentrations of specific constituents falling outside acceptable limits) have occurred. Based on the frequency and severity of water quality violations, risk metrics such as reliability, resilience, and vulnerability (R-R-V) are computed for assessing water quality-based watershed health. In this study, a modified methodology for computing R-R-V measures is presented, and a new composite watershed health index is proposed. Risk-based assessments for different water quality parameters are carried out using identified national sampling stations within the Upper Mississippi River Basin, the Maumee River Basin, and the Ohio River Basin. The distributional properties of risk measures with respect to water quality parameters are reported. Scaling behaviors of risk measures using stream order, specifically for the watershed health (WH) index, suggest that WH values increased with stream order for suspended sediment concentration, nitrogen, and orthophosphate in the Upper Mississippi River Basin. Spatial distribution of risk measures enable identification of locations exhibiting poor watershed health with respect to the chosen numerical standard, and the role of land use characteristics within the watershed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Fundamentals of watershed hydrology

    Science.gov (United States)

    Pamela J. Edwards; Karl W.J. Williard; Jon E. Schoonover

    2015-01-01

    This is a primer about hydrology, the science of water. Watersheds are the basic land unit for water resource management and their delineation, importance, and variation are explained and illustrated. The hydrologic cycle and its components (precipitation, evaporation, transpiration, soil water, groundwater, and streamflow) which collectively provide a foundation for...

  8. Predicting Near-Term Water Quality from Satellite Observations of Watershed Conditions

    Science.gov (United States)

    Weiss, W. J.; Wang, L.; Hoffman, K.; West, D.; Mehta, A. V.; Lee, C.

    2017-12-01

    Despite the strong influence of watershed conditions on source water quality, most water utilities and water resource agencies do not currently have the capability to monitor watershed sources of contamination with great temporal or spatial detail. Typically, knowledge of source water quality is limited to periodic grab sampling; automated monitoring of a limited number of parameters at a few select locations; and/or monitoring relevant constituents at a treatment plant intake. While important, such observations are not sufficient to inform proactive watershed or source water management at a monthly or seasonal scale. Satellite remote sensing data on the other hand can provide a snapshot of an entire watershed at regular, sub-monthly intervals, helping analysts characterize watershed conditions and identify trends that could signal changes in source water quality. Accordingly, the authors are investigating correlations between satellite remote sensing observations of watersheds and source water quality, at a variety of spatial and temporal scales and lags. While correlations between remote sensing observations and direct in situ measurements of water quality have been well described in the literature, there are few studies that link remote sensing observations across a watershed with near-term predictions of water quality. In this presentation, the authors will describe results of statistical analyses and discuss how these results are being used to inform development of a desktop decision support tool to support predictive application of remote sensing data. Predictor variables under evaluation include parameters that describe vegetative conditions; parameters that describe climate/weather conditions; and non-remote sensing, in situ measurements. Water quality parameters under investigation include nitrogen, phosphorus, organic carbon, chlorophyll-a, and turbidity.

  9. Tracking geomorphic signatures of watershed suburbanization with multi-temporal LiDAR

    Science.gov (United States)

    Jones, Daniel K.; Baker, Matthew E.; Miller, Andrew J.; Jarnagin, S. Taylor; Hogan, Dianna M.

    2014-01-01

    Urban development practices redistribute surface materials through filling, grading, and terracing, causing drastic changes to the geomorphic organization of the landscape. Many studies document the hydrologic, biologic, or geomorphic consequences of urbanization using space-for-time comparisons of disparate urban and rural landscapes. However, no previous studies have documented geomorphic changes from development using multiple dates of high-resolution topographic data at the watershed scale. This study utilized a time series of five sequential light detection and ranging (LiDAR) derived digital elevation models (DEMs) to track watershed geomorphic changes within two watersheds throughout development (2002–2008) and across multiple spatial scales (0.01–1 km2). Development-induced changes were compared against an undeveloped forested watershed during the same time period. Changes in elevations, slopes, hypsometry, and surface flow pathways were tracked throughout the development process to assess watershed geomorphic alterations. Results suggest that development produced an increase in sharp topographic breaks between relatively flat surfaces and steep slopes, replacing smoothly varying hillslopes and leading to greater variation in slopes. Examinations of flowpath distributions highlight systematic modifications that favor rapid convergence in unchanneled upland areas. Evidence of channel additions in the form of engineered surface conduits is apparent in comparisons of pre- and post-development stream maps. These results suggest that topographic modification, in addition to impervious surfaces, contributes to altered hydrologic dynamics observed in urban systems. This work highlights important considerations for the use of repeat LiDAR flights in analyzing watershed change through time. Novel methods introduced here may allow improved understanding and targeted mitigation of the processes driving geomorphic changes during development and help guide future

  10. Model of Conservation on Sagara Anakan Environment

    Directory of Open Access Journals (Sweden)

    Dede Sugandi

    2013-12-01

    Full Text Available Widespread decline in agricultural land and the impact on production decline caused extensive forest activities to meet the needs of the population. Activities that cause less environmental quality offset environmental balance changes. These changes due to deforestation, erosion, degraded land and natural resource degradation are exploited so that the function of ecological, economic and social life. Damaged ecosystems resulting in erosion, landslides in the watershed affect the sedimentation in Sagara Anakan sea. Silting, resulting in narrowing of fishing activities, tourism, sports, and services decreased crossings. Because of the problem and the purpose of this study proposed and analyzed a few questions: 1 How does the socio-economic impact of farmers in conserving the environment of Sagara Anakan ?, 2 How do people form of conservation and coastal of Sagara Anakan ?, 3 How model of integrated conservation in the watershed and coastal of Sagara Anakan ? and 4 What role do the people in the watershed and coastal on Sagara Anakan conservation ?. Study site covers an area of flow and Ci Ci Tanduy Beureum and Sagara Tillers waters. Activities of the population in the process of land affected when in Sagara tillers. The method used was a survey with a sample divided by the watershed upstream, downstream and coastal tengahm. Using statistical analysis techniques and geography, so that part of the watershed characteristics can be imaged. Shallowing Sagara Anakan, physically was affected by the physical condition of the easily eroded and accelerated by human activities. The activities of farmer on the watershed have done conservation unless doing reforestation, whereas the farmer on the swamp and coastal areas are not doing conservation. Different physical circumstances, the conservation of watersheds and coastal forms differ. Socio-economic condition of farmer affect the conservation. The farmer could not reforestation conservation form, as the

  11. Watershed Simulation of Nutrient Processes

    Science.gov (United States)

    In this presentation, nitrogen processes simulated in watershed models were reviewed and compared. Furthermore, current researches on nitrogen losses from agricultural fields were also reviewed. Finally, applications with those models were reviewed and selected successful and u...

  12. Green Infrastructure and Watershed-Scale Hydrology in a Mixed Land Cover System

    Science.gov (United States)

    Hoghooghi, N.; Golden, H. E.; Bledsoe, B. P.

    2017-12-01

    Urbanization results in replacement of pervious areas (e.g., vegetation, topsoil) with impervious surfaces such as roads, roofs, and parking lots, which cause reductions in interception, evapotranspiration, and infiltration, and increases in surface runoff (overland flow) and pollutant loads and concentrations. Research on the effectiveness of different Green Infrastructure (GI), or Low Impact Development (LID), practices to reduce these negative impacts on stream flow and water quality has been mostly focused at the local scale (e.g., plots, small catchments). However, limited research has considered the broader-scale effects of LID, such as how LID practices influence water quantity, nutrient removal, and aquatic ecosystems at watershed scales, particularly in mixed land cover and land use systems. We use the Visualizing Ecosystem Land Management Assessments (VELMA) model to evaluate the effects of different LID practices on daily and long-term watershed-scale hydrology, including infiltration surface runoff. We focus on Shayler Crossing (SHC) watershed, a mixed land cover (61% urban, 24% agriculture, 15% forest) subwatershed of the East Fork Little Miami River watershed, Ohio, United States, with a drainage area of 0.94 km2. The model was calibrated to daily stream flow at the outlet of SHC watershed from 2009 to 2010 and was applied to evaluate diverse distributions (at 25% to 100% implementation levels) and types (e.g., pervious pavement and rain gardens) of LID across the watershed. Results show reduced surface water runoff and higher rates of infiltration concomitant with increasing LID implementation levels; however, this response varies between different LID practices. The highest magnitude response in streamflow at the watershed outlet is evident when a combination of LID practices is applied. The combined scenarios elucidate that the diverse watershed-scale hydrological responses of LID practices depend primarily on the type and extent of the implemented

  13. Land Use and Climate Alter Carbon Dynamics in Watersheds of Chesapeake Bay

    Science.gov (United States)

    Kaushal, S.; Duan, S.; Grese, M.; Pennino, M. J.; Belt, K. T.; Findlay, S.; Groffman, P. M.; Mayer, P. M.; Murthy, S.; Blomquist, J.

    2011-12-01

    There have been long-term changes in the quantity of organic carbon in streams and rivers globally. Shifts in the quality of organic carbon due to environmental changes may also impact downstream ecosystem metabolism and fate and transport of contaminants. We investigated long-term impacts of land use and hydrologic variability on organic carbon transport in watersheds of the Baltimore Long-Term Ecological Research (LTER) site and large rivers of the Chesapeake Bay. In small and medium-sized watersheds of the Baltimore LTER site, urban land use increased organic carbon concentrations in streams several-fold compared to forest and agricultural watersheds. Enzymatic activities of stream microbes were significantly altered across watershed land use during a record wet year. During the wet year, short-term bioassays showed that bioavailable dissolved organic carbon varied seasonally, but comprised a substantial proportion of the dissolved organic carbon pool. Similarly, measurements of biochemical oxygen demand across hydrologic variability suggest that reactive organic carbon export from small and medium-sized urban watersheds during storms can be substantial. At a larger regional scale, major tributaries such as the Potomac, Susquehanna, Patuxent, and Choptank rivers also showed similar variability as smaller watersheds in quantity and quality of organic carbon based on land use and climate. There were distinct isotopic values of d13C of particulate organic matter and fluorescence excitation emission matrices for rivers influenced by different land uses. Stable isotopic values of d13C of particulate organic matter and fluorescence excitation emission matrices showed marked seasonal changes in organic matter quality during spring floods in the Potomac River at Washington D.C. Across watershed size, there appeared to be differences in seasonal cycles of organic carbon quality and this may have been based on the degree of hydrologic connectivity between watersheds and

  14. A palynological study of Polynesian and European effects on vegetation in Coromandel, New Zealand, showing the variability between four records from a single swamp

    International Nuclear Information System (INIS)

    Byrami, M.; Ogden, J.; Horrocks, M.; Deng, Y.; Shane, P.; Palmer, J.

    2002-01-01

    Seven cores were extracted from a river terrace swamp in the forested Kauaeranga valley, Coromandel Peninsula, New Zealand. High-resolution (c. 36-73 yr interval) pollen records were obtained from four of the cores and aged by radiocarbon dating and with stratigraphic reference to the 665 ± 15 14 C yr BP Kaharoa Tephra. The records span the last c. 1800 yr and show that the vegetation consisted of lowland podocarp-hardwood forest before deforestation by burning occurred. The pattern of deforestation at Kauaeranga, indicated by the abrupt dominance of Pteridium with concurrent increased charcoal, is typical of pollen records associated with early Polynesian settlement in New Zealand. Peaks of Pteridium and charcoal were also found in sediments deposited after European settlement. Different cores show marked palynological and stratigraphic differences relative to the Kaharoa Tephra, most importantly with regard to the timing of deforestation. Deforestation occurred close to the Kaharoa, at a calculated age of c. 750 BP in one core but well above the Kaharoa (c. 480 BP) in another. The stratigraphic unconformities between cores are attributed to variable fluvial processes causing an uneven deposition of sediments within the swamp. (author). 32 refs., 8 figs., 4 tabs

  15. Automatic fuzzy inference system development for marker-based watershed segmentation

    International Nuclear Information System (INIS)

    Gonzalez, M A; Meschino, G J; Ballarin, V L

    2007-01-01

    Texture image segmentation is a constant challenge in digital image processing. The partition of an image into regions that allow the experienced observer to obtain the necessary information can be done using a Mathematical Morphology tool called the Watershed Transform. This transform is able to distinguish extremely complex objects and is easily adaptable to various kinds of images. The success of the Watershed Transform depends essentially on the existence of unequivocal markers for each of the objects of interest. The standard methods for marker detection are highly specific and complex when objects presenting great variability of shape, size and texture are processed. This paper proposes the automatic generation of a fuzzy inference system for marker detection using object selection done by the expert. This method allows applying the Watershed Transform to biomedical images with diferent kinds of texture. The results allow concluding that the method proposed is an effective tool for the application of the Watershed Transform

  16. ROLE OF WATERSHED SUBDIVISION ON MODELING THE EFFECTIVENESS OF BEST MANAGEMENT PRACTICES WITH SWAT

    Science.gov (United States)

    Distributed parameter watershed models are often used for evaluating the effectiveness of various best management practices (BMPs). Streamflow, sediment, and nutrient yield predictions of a watershed model can be affected by spatial resolution as dictated by watershed subdivisio...

  17. DEVELOP Chesapeake Bay Watershed Hydrology - UAV Sensor Web

    Science.gov (United States)

    Holley, S. D.; Baruah, A.

    2008-12-01

    The Chesapeake Bay is the largest estuary in the United States, with a watershed extending through six states and the nation's capital. Urbanization and agriculture practices have led to an excess runoff of nutrients and sediment into the bay. Nutrients and sediment loading stimulate the growth of algal blooms associated with various problems including localized dissolved oxygen deficiencies, toxic algal blooms and death of marine life. The Chesapeake Bay Program, among other stakeholder organizations, contributes greatly to the restoration efforts of the Chesapeake Bay. These stakeholders contribute in many ways such as monitoring the water quality, leading clean-up projects, and actively restoring native habitats. The first stage of the DEVELOP Chesapeake Bay Coastal Management project, relating to water quality, contributed to the restoration efforts by introducing NASA satellite-based water quality data products to the stakeholders as a complement to their current monitoring methods. The second stage, to be initiated in the fall 2008 internship term, will focus on the impacts of land cover variability within the Chesapeake Bay Watershed. Multiple student led discussions with members of the Land Cover team at the Chesapeake Bay Program Office in the DEVELOP GSFC 2008 summer term uncovered the need for remote sensing data for hydrological mapping in the watershed. The Chesapeake Bay Program expressed in repeated discussions on Land Cover mapping that significant portions of upper river areas, streams, and the land directly interfacing those waters are not accurately depicted in the watershed model. Without such hydrological mapping correlated with land cover data the model will not be useful in depicting source areas of nutrient loading which has an ecological and economic impact in and around the Chesapeake Bay. The fall 2008 DEVELOP team will examine the use of UAV flown sensors in connection with in-situ and Earth Observation satellite data. To maximize the

  18. McKenzie River Focus Watershed Coordination: Year-End Report 2000.

    Energy Technology Data Exchange (ETDEWEB)

    Thrailkil, Jim

    2000-01-01

    This report summarizes accomplishments of the McKenzie River Focus Watershed Council (MWC) in the areas of coordination and administration during Fiscal Year 2000. Coordination and administration consist of prioritization and planning for projects; project management and implementation; procurement of funding for long-term support of the Council; and watershed education/outreach program for residents and local schools. Key accomplishments in the area of project planning include coordinating: monthly Council and executive committee meetings; staffing the Upper Willamette Spring Chinook Working Group; staffing the water quality technical committee; and guiding education and stewardship projects. Key accomplishments in the area of project management include the completion of the McKenzie-Willamette Confluence Assessment; securing funds for project planning in the confluence area; near completion of the BPA funded McKenzie sub-basin assessment; development of a framework for a McKenzie Watershed Conservation Strategy; an evaluation of Council's monitoring programs - ambient water quality, storm-event water quality, Tier III water quality, and macroinvertebrate monitoring. The Council, in cooperation with the McKenzie River Cooperative, completed habitat enhancements in the Gate Creek and Deer Creek sub-watersheds. This partnership recently submitted Bring Back the Natives grant for initiation of projects in other McKenzie tributaries. The Council will also be working with a local business to develop a river-side riparian enhancement and native landscaping project on the lodge grounds. This will serve as a demonstration project for blending fish and wildlife habitat concerns with maintaining grounds for business opportunities. Accomplishments in the area of procurement of funding included developing the FY2000 Scope of Work and budget for approval by the Council and BPA; providing quarterly budget and work program progress reports to the Council; and securing

  19. Phosphorus export across an urban to rural gradient in the Chesapeake Bay watershed

    Science.gov (United States)

    Shuiwang Duan; Sujay S. Kaushal; Peter Groffman; Lawrence E. Band; Kenneth Belt

    2012-01-01

    Watershed export of phosphorus (P) from anthropogenic sources has contributed to eutrophication in freshwater and coastal ecosystems. We explore impacts of watershed urbanization on the magnitude and export flow distribution of P along an urban-rural gradient in eight watersheds monitored as part of the Baltimore Ecosystem Study Long-Term Ecological Research site....

  20. Construction of a Distributed-network Digital Watershed Management System with B/S Techniques

    Science.gov (United States)

    Zhang, W. C.; Liu, Y. M.; Fang, J.

    2017-07-01

    Integrated watershed assessment tools for supporting land management and hydrologic research are becoming established tools in both basic and applied research. The core of these tools are mainly spatially distributed hydrologic models as they can provide a mechanism for investigating interactions among climate, topography, vegetation, and soil. However, the extensive data requirements and the difficult task of building input parameter files for driving these distributed models, have long been an obstacle to the timely and cost-effective use of such complex models by watershed managers and policy-makers. Recently, a web based geographic information system (GIS) tool to facilitate this process has been developed for a large watersheds of Jinghe and Weihe catchments located in the loess plateau of the Huanghe River basin in north-western China. A web-based GIS provides the framework within which spatially distributed data are collected and used to prepare model input files of these two watersheds and evaluate model results as well as to provide the various clients for watershed information inquiring, visualizing and assessment analysis. This Web-based Automated Geospatial Watershed Assessment GIS (WAGWA-GIS) tool uses widely available standardized spatial datasets that can be obtained via the internet oracle databank designed with association of Map Guide platform to develop input parameter files for online simulation at different spatial and temporal scales with Xing’anjiang and TOPMODEL that integrated with web-based digital watershed. WAGWA-GIS automates the process of transforming both digital data including remote sensing data, DEM, Land use/cover, soil digital maps and meteorological and hydrological station geo-location digital maps and text files containing meteorological and hydrological data obtained from stations of the watershed into hydrological models for online simulation and geo-spatial analysis and provides a visualization tool to help the user

  1. GROUND WATER MANAGEMENT AND SOIL CONSERVATION OF KORAYAR WATERSHED THROUGH REMOTE SENSING AND GIS

    OpenAIRE

    M. Balakrishnan; Dr. Ilanthirayan

    2017-01-01

    Watershed management is often seen as a potential engine for agricultural growth and development in fragile and marginal rain-fed areas India. Enhanced livelihood opportunities for watershed community through investment in their assets and improvements in income and productivity are the leading objective of the programme, as mentioned in the guidelines for watershed management programme (WMP) in India. Watershed management may be defined as an integrated approach of greenery for a better env...

  2. Late-Holocene Environmental Reconstruction and Depositional History from a Taxodium Swamp near Lake Pontchartrain in Southern Louisiana

    Science.gov (United States)

    Ryu, J.; Bianchette, T. A.; Liu, K. B.; Yao, Q.; Maiti, K.

    2017-12-01

    The hydrological and environmental history of estuarine wetlands in Louisiana is not well-documented. To better understand the depositional processes in coastal wetlands, this study aims to reconstruct the environmental changes and document the occurrence of event deposits found in a bald cypress (Taxodium distichum) swamp approximately 800 m west of Lake Pontchartrain, a site susceptible to wind-generated storm surges as well as inundation from other fluvial and lacustrine processes. 210Pb analysis of a 59 cm sediment core (WMA-1) suggests that it has a sedimentation rate of 0.39 cm/year, consistent with the detection of a 137Cs peak at 17 cm from the core top. Results of sedimentological, geochemical, and palynological analyses reveal that the core contains two distinct sediment facies: an organic-rich dark brown peat unit from 0 to 29 cm containing low concentrations of terrestrial elements (e.g., Ti, Fe, and K), and a clay unit from 30 to 59 cm with elevated concentrations of most elements. Two thin clay layers, at 3-5 cm and 14-19 cm, embedded in the upper peat section are probably attributed to two recent storm events, Hurricane Isaac (2012) and Hurricane Gustav (2008), because both hurricanes caused heavy rain and significant storm-surge flooding at the study site. The pollen assemblage in the clay section is dominated by TCT (mainly Taxodium), but it is replaced by Salix and wetland herbaceous taxa in the overlying peat section. The multi-proxy data suggest that a cypress swamp has been present at the site for at least several hundred years but Taxodium was being replaced by willow (Salix) and other bottomland hardwood trees and wetland herbs as the water level dropped. Human activities may have been an important factor causing the hydrological and ecological changes at the site during the past century.

  3. Laboratory Scale Bioremediation of Petroleum Hydrocarbon – Polluted Mangrove Swamps in the Niger Delta Using Cow Dung

    Directory of Open Access Journals (Sweden)

    Dike, E. N.

    2012-01-01

    Full Text Available Aims: The aim of the study was to carry-out laboratory–scale bioremediation of petroleum hydrocarbon polluted mangrove swamps using cow dung as source of limiting of nutrients.Methodology and Results: In a 70 days study, the cow dung treated polluted soil had its total culturable hydrocarbon utilising bacterial/fungi, heterotrophic bacterial and fungal counts increased progressively from the 28th day to the 70th day. The control set- up showed very slight increment in its microbial growth. Alkaline pH was observed in all the treatments and control during the study period. The conductivity values of cow dung decreased progressively. In the cow dung treatment option, the nitrate concentration decreased from 35.44 mg/kg to 14.28 mg/kg. Phosphate concentration of cow dung option decreased from 25.41 mg/kg to 9.31mg/kg. The control had the nitrate decreased from 8.42 mg/kg to 6.98 mg/kg. Percentage total organic carbon (% TOC in the cow dung option decreased from 4.06% to 0.96%. Control experiment had the % TOC decreased from 3.32% to 2.99%. Studies using Gas chromatographic analyses showed that 0%, 49.88%, and 69.85% of Total petroleum hydrocarbon (TPH were lost at zero hour, 28th day and 70th day respectively in the cow dung option. In addition, in the control experimental set-up, 0%, 7.14% and 13.42% of TPH were lost at zero hour, 28th day and 70th day respectively.Conclusion, significance and impact of study: The use of organic nutrient sources such as cow dung has shown good promises in bioremediation of crude oil impacted Mangrove Swamps in the Niger Delta. The next line of action is to transfer the technology to pilot scale study.

  4. Water cycle observations in forest watersheds of Cambodia

    Science.gov (United States)

    Shimizu, A.; Tamai, K.; Kabeya, N.; Shimizu, T.; Iida, S. I.

    2015-12-01

    The Lower Mekong River flows through Cambodia, where forests cover ~60% of the country and are believed to have a marked effect on the water cycle. These tropical seasonal forests in the Cambodian flat lands are very precious in the Indochinese Peninsula as few forests of this type remain. However, few hydrological observations have been conducted in these areas. In Cambodia, deciduous and evergreen forests make up 42% and 33% of the total forest area, respectively. We established experimental watersheds both in deciduous and evergreen forests containing meteorological observation towers in Cambodia and collected various observational data since 2003 (O'Krieng, deciduous forest watershed including a 30-m-high observation tower, 2,245 km2; Stung Chinit, evergreen forest watershed including a 60-m-high observation tower, 3,700 km2 including three small watersheds). The basic data from these sites included various kinds of information related to the composition of vegetation, soil characteristics, etc. Hydrologic data was collected and linked to the above data; the main hydrologic research results follow. The water budget for each watershed was determined using an observational rainfall and runoff dataset. The evapotranspiration rate in an evergreen forest was obtained using various observational methods including the Bowen energy-balance ratio and the bandpass eddy covariance method. The annual evapotranspiration of evergreen forests, estimated using the Bowen energy-balance ratio method and water balance, was about 1100-1200 mm, corresponding to 70-80% of annual rainfall. While considering the importance of the presence of evergreen forest, we conducted sap flow measurements to analyze the transpiration process that maintains water uptake through root systems that reach to depths exceeding 8 m. Characteristics of the evaporation from the forest floor that form an important element of the evaporation system were estimated in both evergreen and deciduous forests.

  5. Predictive Understanding of Mountainous Watershed Hydro-Biogeochemical Function and Response to Perturbations

    Science.gov (United States)

    Hubbard, S. S.; Williams, K. H.; Agarwal, D.; Banfield, J. F.; Beller, H. R.; Bouskill, N.; Brodie, E.; Maxwell, R. M.; Nico, P. S.; Steefel, C. I.; Steltzer, H.; Tokunaga, T. K.; Wainwright, H. M.; Dwivedi, D.; Newcomer, M. E.

    2017-12-01

    Recognizing the societal importance, vulnerability and complexity of mountainous watersheds, the `Watershed Function' project is developing a predictive understanding of how mountainous watersheds retain and release downgradient water, nutrients, carbon, and metals. In particular, the project is exploring how early snowmelt, drought, floods and other disturbances will influence mountainous watershed dynamics at seasonal to decadal timescales. Located in the 300km2 East River headwater catchment of the Upper Colorado River Basin, the project is guided by several constructs. First, the project considers the integrated role of surface and subsurface flow and biogeochemical reactions - from bedrock to the top of the vegetative canopy, from terrestrial through aquatic compartments, and from summit to receiving waters. The project takes a system-of-systems perspective, focused on developing new methods to quantify the cumulative watershed hydrobiogeochemical response to perturbations based on information from select subsystems within the watershed, each having distinct vegetation-subsurface biogeochemical-hydrological characteristics. A `scale-adaptive' modeling capability, in development using adaptive mesh refinement methods, serves as the organizing framework for the SFA. The scale-adaptive approach is intended to permit simulation of system-within-systems behavior - and aggregation of that behavior - from genome through watershed scales. This presentation will describe several early project discoveries and advances made using experimental, observational and numerical approaches. Among others, examples may include:quantiying how seasonal hydrological perturbations drive biogeochemical responses across critical zone compartments, with a focus on N and C transformations; metagenomic documentation of the spatial variability in floodplain meander microbial ecology; 3D reactive transport simulations of couped hydrological-biogeochemical behavior in the hyporheic zone; and

  6. Is a clean river fun for all? Recognizing social vulnerability in watershed planning.

    Science.gov (United States)

    Cutts, Bethany B; Greenlee, Andrew J; Prochaska, Natalie K; Chantrill, Carolina V; Contractor, Annie B; Wilhoit, Juliana M; Abts, Nancy; Hornik, Kaitlyn

    2018-01-01

    Watershed planning can lead to policy innovation and action toward environmental protection. However, groups often suffer from low engagement with communities that experience disparate impacts from flooding and water pollution. This can limit the capacity of watershed efforts to dismantle pernicious forms of social inequality. As a result, the benefits of environmental changes often flow to more empowered residents, short-changing the power of watershed-based planning as a tool to transform ecological, economic, and social relationships. The objectives of this paper are to assess whether the worldview of watershed planning actors are sufficiently attuned to local patterns of social vulnerability and whether locally significant patterns of social vulnerability can be adequately differentiated using conventional data sources. Drawing from 35 in-depth interviews with watershed planners and community stakeholders in the Milwaukee River Basin (WI, USA), we identify five unique definitions of social vulnerability. Watershed planners in our sample articulate a narrower range of social vulnerability definitions than other participants. All five definitions emphasize spatial and demographic characteristics consistent with existing ways of measuring social vulnerability. However, existing measures do not adequately differentiate among the spatio-temporal dynamics used to distinguish definitions. In response, we develop two new social vulnerability measures. The combination of interviews and demographic analyses in this study provides an assessment technique that can help watershed planners (a) understand the limits of their own conceptualization of social vulnerability and (b) acknowledge the importance of place-based vulnerabilities that may otherwise be obscured. We conclude by discussing how our methods can be a useful tool for identifying opportunities to disrupt social vulnerability in a watershed by evaluating how issue frames, outreach messages, and engagement tactics

  7. Is a clean river fun for all? Recognizing social vulnerability in watershed planning

    Science.gov (United States)

    Greenlee, Andrew J.; Prochaska, Natalie K.; Chantrill, Carolina V.; Contractor, Annie B.; Wilhoit, Juliana M.; Abts, Nancy; Hornik, Kaitlyn

    2018-01-01

    Watershed planning can lead to policy innovation and action toward environmental protection. However, groups often suffer from low engagement with communities that experience disparate impacts from flooding and water pollution. This can limit the capacity of watershed efforts to dismantle pernicious forms of social inequality. As a result, the benefits of environmental changes often flow to more empowered residents, short-changing the power of watershed-based planning as a tool to transform ecological, economic, and social relationships. The objectives of this paper are to assess whether the worldview of watershed planning actors are sufficiently attuned to local patterns of social vulnerability and whether locally significant patterns of social vulnerability can be adequately differentiated using conventional data sources. Drawing from 35 in-depth interviews with watershed planners and community stakeholders in the Milwaukee River Basin (WI, USA), we identify five unique definitions of social vulnerability. Watershed planners in our sample articulate a narrower range of social vulnerability definitions than other participants. All five definitions emphasize spatial and demographic characteristics consistent with existing ways of measuring social vulnerability. However, existing measures do not adequately differentiate among the spatio-temporal dynamics used to distinguish definitions. In response, we develop two new social vulnerability measures. The combination of interviews and demographic analyses in this study provides an assessment technique that can help watershed planners (a) understand the limits of their own conceptualization of social vulnerability and (b) acknowledge the importance of place-based vulnerabilities that may otherwise be obscured. We conclude by discussing how our methods can be a useful tool for identifying opportunities to disrupt social vulnerability in a watershed by evaluating how issue frames, outreach messages, and engagement tactics

  8. Insect emergence in relation to floods in wet meadows and swamps in the River Dalälven floodplain.

    Science.gov (United States)

    Vinnersten, T Z Persson; Östman, Ö; Schäfer, M L; Lundström, J O

    2014-08-01

    Annual variation in flood frequency and hydroperiod during the vegetation season has ecological impacts on the floodplain biota. Although many insect groups may have a lower emergence during a flood event, it is poorly known how annual emergence of insects in temporary wetlands is related to the variation in hydrology. Between May and September, we studied the weekly emergence of 18 insect taxa over six consecutive years, 2002-2007, in six temporary flooded wetlands (four wet meadows and two forest swamps) in the River Dalälven floodplains, Central Sweden. We used emergence traps to collect emerging insects from terrestrial and aquatic parts of wet meadows and swamp forests. In all wetlands, the insect fauna was numerically dominated by the orders Diptera, Hymenoptera, Coleoptera and Homoptera. On a weekly basis, 9 out of the 18 insect taxa had lower emergence in weeks with flood than in weeks with no flood, whereas no taxon had a higher emergence in weeks with flood. Over the seasons, we related insect emergence to seasonal flood frequency and length of hydroperiod. The emergence of most studied taxa decreased with increasing hydroperiod, which suggests that emergence after floods do not compensate for the reduced emergence during floods. Only Culicidae and the aquatic Chironomidae sub-families Tanypodinae and Chironominae showed an increase in emergence with increasing hydroperiod, whereas Staphylinidae peaked at intermediate hydroperiod. We conclude that a hydroperiod covering up to 40% of the vegetation season has a significant negative effect on the emergence of most taxa and that only a few taxa occurring in the temporary wetlands are actually favoured by a flood regime with recurrent and unpredictable floods.

  9. Ecosystem Management Decision Support (EMDS) Applied to Watershed Assessment on California's North Coast

    Science.gov (United States)

    Rich Walker; Chris Keithley; Russ Henly; Scott Downie; Steve Cannata

    2007-01-01

    In 2001, the state of California initiated the North Coast Watershed Assessment Program (2003a) to assemble information on the status of coastal watersheds that have historically supported anadromous fish. The five-agency consortium explored the use of Ecosystem Management Decision Support (EMDS) (Reynolds and others 1996) as a means to help assess overall watershed...

  10. Timber markets and marketing in the Monocacy River watershed of Maryland and Pennsylvania

    Science.gov (United States)

    George E. Doverspike; James C. Rettie; Harry W., Jr. Camp

    1951-01-01

    The Maryland Department of State Forests and Parks, cooperating with the locally organized Monocacy River Watershed Council, has requested the Northeastern Forest Experiment Station to undertake a study of the forest resource of that watershed. The objective is to provide information that will be helpful in conserving watershed values and in promoting better management...

  11. Upscaling from research watersheds: an essential stage of trustworthy general-purpose hydrologic model building

    Science.gov (United States)

    McNamara, J. P.; Semenova, O.; Restrepo, P. J.

    2011-12-01

    Highly instrumented research watersheds provide excellent opportunities for investigating hydrologic processes. A danger, however, is that the processes observed at a particular research watershed are too specific to the watershed and not representative even of the larger scale watershed that contains that particular research watershed. Thus, models developed based on those partial observations may not be suitable for general hydrologic use. Therefore demonstrating the upscaling of hydrologic process from research watersheds to larger watersheds is essential to validate concepts and test model structure. The Hydrograph model has been developed as a general-purpose process-based hydrologic distributed system. In its applications and further development we evaluate the scaling of model concepts and parameters in a wide range of hydrologic landscapes. All models, either lumped or distributed, are based on a discretization concept. It is common practice that watersheds are discretized into so called hydrologic units or hydrologic landscapes possessing assumed homogeneous hydrologic functioning. If a model structure is fixed, the difference in hydrologic functioning (difference in hydrologic landscapes) should be reflected by a specific set of model parameters. Research watersheds provide the possibility for reasonable detailed combining of processes into some typical hydrologic concept such as hydrologic units, hydrologic forms, and runoff formation complexes in the Hydrograph model. And here by upscaling we imply not the upscaling of a single process but upscaling of such unified hydrologic functioning. The simulation of runoff processes for the Dry Creek research watershed, Idaho, USA (27 km2) was undertaken using the Hydrograph model. The information on the watershed was provided by Boise State University and included a GIS database of watershed characteristics and a detailed hydrometeorological observational dataset. The model provided good simulation results in

  12. Identification and characterization of wetlands in the Bear Creek watershed

    International Nuclear Information System (INIS)

    Rosensteel, B.A.; Trettin, C.C.

    1993-10-01

    The primary objective of this study was to identify, characterize, and map the wetlands in the Bear Creek watershed. A preliminary wetland categorization system based on the Cowardin classification system (Cowardin et al. 1979) with additional site-specific topographic, vegetation, and disturbance characteristic modifiers was developed to characterize the type of wetlands that exist in the Bear Creek watershed. An additional objective was to detect possible relationships among site soils, hydrology, and the occurrence of wetlands in the watershed through a comparison of existing data with the field survey. Research needs are discussed in the context of wetland functions and values and regulatory requirements for wetland impact assessment and compensatory mitigation

  13. EXPERIMENTAL ACIDIFICATION CAUSES SOIL BASE-CATION DEPLETION AT THE BEAR BROOK WATERSHED IN MAINE

    Science.gov (United States)

    There is concern that changes in atmospheric deposition, climate, or land use have altered the biogeochemistry of forests causing soil base-cation depletion, particularly Ca. The Bear Brook Watershed in Maine (BBWM) is a paired watershed experiment with one watershed subjected to...

  14. NILAI EKONOMI KARBON HUTAN RAWA GAMBUT MERANG KEPAYANG, PROVINSI SUMATERA SELATAN (Economic Value of Carbon of Merang Kepayang Peat Swamp Forest, South Sumatera Province

    Directory of Open Access Journals (Sweden)

    Nur Arifatul Ulya

    2015-03-01

    Full Text Available ABSTRAK Hutan rawa gambut menyimpan cadangan karbon baik di tanah maupun di atas tanah. Hutan Rawa Gambut Merang Kepayang (HRGMK merupakan kawasan hutan yang berada di kubah gambut terbesar di Sumatera Selatan, yaitu Kubah Gambut Merang (KGM, yang didalamnya terdapat gambut dengan ketebalan lebih dari 3 meter. Meskipun menurut aturan KGM seharusnya dikonservasi, pada kenyataannya kawasan HRGMK dihadapkan pada konversi. Konversi HRGMK diduga akan mengakibatkan terganggunya fungsi hutan rawa gambut sebagai cadangan karbon dunia sehingga akan menyebabkan terjadinya emisi karbon ke atmosfer dalam jumlah besar. Penelitian ini bertujuan untuk mengetahui nilai ekonomi kawasan HRGMK sebagai penyimpan cadangan karbon. Hasil penelitian diharapkan menjadi acuan pelestarian HRGMK sebagai stabilisator iklim dunia. Nilai ekonomi karbon HRGMK ditaksir dengan menggunakan harga bayangan. Harga karbon yang digunakan untuk menaksir nilai ekonomi karbon diperoleh dengan metode benefit transfer. Hasil penelitian menunjukkan bahwa nilai total karbon HRGMK adalah US$ 1.591.878.378,00 atau Rp. 14.002.162.211.645,00. Nilai tersebut sebagian besar berasal dari cadangan karbon di bawah tanah. ABSTRACT Peat swamp forests store aboveground and belowground carbon. Merang Kepayang Peat Swamp Forest (MKPSF is a forest area which is located in Merang Peat Dome (MPD, the largest peat dome in South Sumatra, with peat thickness more than 3 meters. Although the order should be conserved MPD, in fact MKPSF area exposed to the conversion. MKPSF conversion would presumably result in impaired function of peat swamp forest as world's carbon storage that will be caused carbon emissions into the atmosphere in large quantities. This study aimed to determine the economic value of the HRGMK as carbon storage. The results are expected to be justifications for conservation of MKPSF as climate stabilizers. The economic value of carbon HRGMK assessed using shadow pricing method. The carbon price

  15. Habitat Projects Completed within the Asotin Creek Watershed, 1999 Completion Report.

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Bradley J.

    2000-01-01

    The Asotin Creek Model Watershed Program (ACMWP) is the primary entity coordinating habitat projects on both private and public lands within the Asotin Creek watershed. The Asotin Creek watershed covers approximately 325 square miles in the Blue Mountains of southeastern Washington in WRIA 35. According to WDFW's Priority WRIA's by At-Risk Stock Significance Map, it is the highest priority in southeastern WA. Snake River spring chinook salmon, summer steelhead and bull trout, which are listed under the Endangered Species Act (ESA), are present in the watershed. The ACMWP began coordinating habitat projects in 1995. Approximately two hundred seventy-six projects have been implemented through the ACMWP as of 1999. Twenty of these projects were funded in part through Bonneville Power Administration's 1999 Columbia Basin Fish and Wildlife Program. These projects used a variety of methods to enhance and protect watershed conditions. In-stream work for fish habitat included construction of hard structures (e.g. vortex rock weirs), meander reconstruction, placement of large woody debris (LWD) and whole trees and improvements to off-channel rearing habitat; thirty-eight were created with these structures. Three miles of stream benefited from riparian improvements such as vegetative plantings (17,000 trees and shrubs) and noxious weed control. Two sediment basin constructions, 67 acres of grass seeding, and seven hundred forty-five acres of minimum till were implemented to reduce sediment production and delivery to streams in the watershed.

  16. ENHANCING THE ROLE OF STAKEHOLDERS IN THE MANAGEMENT OF UPSTREAM CILIWUNG WATERSHED

    Directory of Open Access Journals (Sweden)

    Iis Alviya

    2016-08-01

    Full Text Available Stakeholders have a ver y important role interm of the management of upstream watershed. Thus, the common understanding on the existence and role of stakeholders is an important factor in order to achieve good governance of watershed management, leading to the attainment of environmental, social and economic benefits. This paper aims to analyse the role, interests, and cooperation among stakeholders and its relationship with the condition of upper Ciliwung watershed. Stakeholder analysis was used in this study to identify stakeholders, to categorize them, and to investigate the relationship between stakeholders. The analysis showed the lack of cooperation among stakeholders both between key stakeholders with primar y stakeholders. This resulted in lack of communities' understanding on the benefits and the importance of conservation activities in the upstream Ciliwung watershed. Meanwhile, the cooperation between key stakeholders and supporting stakeholders, especially the providers of funds, was relatively better/stronger. This can be seen from a better management of inter-agency cooperation in the upstream Ciliwung watershed, although the effort was tend to be project-oriented. Therefore, communication forum need to be established, to taking role for synchronizing , collaborating and coordinating stakeholders' efforts, so that the management programs of upstream Ciliwung watershed can be integrated.

  17. Water quality analysis of a highly acidic watershed in southeast Ohio

    International Nuclear Information System (INIS)

    Eberhart, R.J.; Edwards, K.B.; Stuart, B.J.

    1998-01-01

    Due to acid mine drainage from abandoned coal mines, the 301 square mile Moxahala Creek watershed in southeast Ohio is one of the most acidic watersheds in the state. A watershed evaluation plan is being developed so that the most influential tributaries can be identified for restoration. Moxahala Creek has an upstream pH of 6.0 and a downstream of pH of 4.0. Forty monthly sampling and flowrate measurements for 12 months are being taken. The samples are taken where each major tributary enters Moxahala Creek, and the creek itself is sampled in selected locations. The goal of this watershed study is to determine which tributaries have the most adverse effect on Moxahala Creek's water quality. By analyzing the chemical loads and other characteristics of the tributaries, those of poorest quality and most influence on Moxahala Creek will be determined. Eventually, a geographic information system for the watershed will be developed to provide the capability to visually examine the impact of each tributary on Moxahala Creek. Three tributaries that have the greatest adverse impact on Moxahala Creek have been identified using the collected data. These three tributaries may be the targets of future reclamation strategies

  18. Baseline for Climate Change: Modeling Watershed Aquatic Biodiversity Relative to Environmental and Anthropogenic Factors

    Energy Technology Data Exchange (ETDEWEB)

    Maurakis, Eugene G

    2010-10-01

    Objectives of the two-year study were to (1) establish baselines for fish and macroinvertebrate community structures in two mid-Atlantic lower Piedmont watersheds (Quantico Creek, a pristine forest watershed; and Cameron Run, an urban watershed, Virginia) that can be used to monitor changes relative to the impacts related to climate change in the future; (2) create mathematical expressions to model fish species richness and diversity, and macroinvertebrate taxa and macroinvertebrate functional feeding group taxa richness and diversity that can serve as a baseline for future comparisons in these and other watersheds in the mid-Atlantic region; and (3) heighten people’s awareness, knowledge and understanding of climate change and impacts on watersheds in a laboratory experience and interactive exhibits, through internship opportunities for undergraduate and graduate students, a week-long teacher workshop, and a website about climate change and watersheds. Mathematical expressions modeled fish and macroinvertebrate richness and diversity accurately well during most of the six thermal seasons where sample sizes were robust. Additionally, hydrologic models provide the basis for estimating flows under varying meteorological conditions and landscape changes. Continuations of long-term studies are requisite for accurately teasing local human influences (e.g. urbanization and watershed alteration) from global anthropogenic impacts (e.g. climate change) on watersheds. Effective and skillful translations (e.g. annual potential exposure of 750,000 people to our inquiry-based laboratory activities and interactive exhibits in Virginia) of results of scientific investigations are valuable ways of communicating information to the general public to enhance their understanding of climate change and its effects in watersheds.

  19. Land Use-Land Cover dynamics of Huluka watershed, Central Rift Valley, Ethiopia

    Directory of Open Access Journals (Sweden)

    Hagos Gebreslassie

    2014-12-01

    Full Text Available Land Use-Land Cover (LULC dynamic has of human kind age and is one of the phenomenons which interweave the socio economic and environmental issues in Ethiopia. Huluka watershed is one of the watersheds in Central Rift Valley of Ethiopia which drains to Lake Langano. Few decades ago the stated watershed was covered with dense acacia forest. But, nowadays like other part of Ethiopia, it is experiencing complex dynamics of LULC. The aim of this research was thus to evaluate the LULC dynamics seen in between 1973–2009. This was achieved through collecting qualitative and quantitative data using Geographic Information System (GIS and Remote Sensing (RS technique. Field observations, discussion with elders were also employed to validate results from remotely sensed data. Based on the result, eight major dynamic LULC classes were identified from the watershed. Of these LULC classes, only cultivated and open lands had shown continuous and progressive expansion mainly at the expense of grass, shrub and forest lands. The 25% and 0% of cultivated and open land of the watershed in 1973 expanded to 84% and 4% in 2009 respectively while the 29%, 18% and 22% of grass, shrub and forest land of the watershed in 1973 degraded to 3.5%, 4% and 1.5% in 2009 respectively. As a result, land units which had been used for pastoralist before 1973 were identified under mixed agricultural system after 2000. In the end, this study came with a recommendation of an intervention of concerned body to stop the rapid degradation of vegetation on the watershed.

  20. Spatio-temporal variation in stream water chemistry in a tropical urban watershed

    Directory of Open Access Journals (Sweden)

    Alonso Ramírez

    2014-06-01

    Full Text Available Urban activities and related infrastructure alter the natural patterns of stream physical and chemical conditions. According to the Urban Stream Syndrome, streams draining urban landscapes are characterized by high concentrations of nutrients and ions, and might have elevated water temperatures and variable oxygen concentrations. Here, we report temporal and spatial variability in stream physicochemistry in a highly urbanized watershed in Puerto Rico. The main objective of the study was to describe stream physicochemical characteristics and relate them to urban intensity, e.g., percent impervious surface cover, and watershed infrastructure, e.g., road and pipe densities. The Río Piedras Watershed in the San Juan Metropolitan Area, Puerto Rico, is one of the most urbanized regions on the island. The Río Piedras presented high solute concentrations that were related to watershed factors, such as percent impervious cover. Temporal variability in ion concentrations lacked seasonality, as did all other parameters measured except water temperature, which was lower during winter and highest during summer, as expected based on latitude. Spatially, stream physicochemistry was strongly related to watershed percent impervious cover and also to the density of urban infrastructure, e.g., roads, pipe, and building densities. Although the watershed is serviced by a sewage collection system, illegal discharges and leaky infrastructure are probably responsible for the elevated ion concentration found. Overall, the Río Piedras is an example of the response of a tropical urban watershed after major sewage inputs are removed, thus highlighting the importance of proper infrastructure maintenance and management of runoff to control ion concentrations in tropical streams.

  1. South Fork Salmon River Watershed Restoration, 2008-2009 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Reaney, Mark D. [Nez Perce Tribe Department of Fisheries Resource Management

    2009-04-15

    The watershed restoration work elements within the project area, the South Fork Salmon River Watershed, follow the watershed restoration approach adopted by the Nez Perce Tribe Department of Fisheries Resource Management (DFRM) - Watershed Division. The vision of the Nez Perce Tribe DFRM-Watershed Division focuses on protecting, restoring, and enhancing watersheds and treaty resources within the ceded territory of the Nez Perce Tribe under the Treaty of 1855 with the United States Federal Government. The program uses a holistic approach, which encompasses entire watersheds, ridge top to ridge top, emphasizing all cultural aspects and strategies that rely on natural fish production and healthy river ecosystems. The Nez Perce Tribe DFRM-Watershed Division strives towards maximizing historic ecosystem productivity and health for the restoration of anadromous and resident fish populations and the habitat on which all depend on for future generations Originally, this project was funded to create a step/pool stream channel that was appropriate to restore fish passage where the 'Glory Hole Cascade' is currently located at the Stibnite Mine. Due to unforeseen circumstances at the time, the project is unable to move forward as planned and a request for a change in scope of the project and an expansion of the geographic area in which to complete project work was submitted. No additional funds were being requested. The ultimate goal of this project is to work with the holistic, ridge top to ridge top approach to protect and restore the ecological and biological functions of the South Fork Salmon River Watershed to assist in the recovery of threatened and endangered anadromous and resident fish species. FY 2008 Work Elements included two aquatic organism passage (AOP) projects to restore habitat connectivity to two fish-bearing tributaries to the East Fork South Fork Salmon River, Salt and Profile Creeks. The Work Elements also included road survey and assessment

  2. Long-term flow dynamics of three coastal experimental forested watersheds

    Science.gov (United States)

    Devendra M. Amatya; Artur Radecki-Pawlik

    2005-01-01

    Three 1st2nd, and 3rd order experimental forested watersheds located within Francis Marion National Forest in Coastal South Carolina were monitored for rainfall and stream outflows. These watersheds were WS80, a pine-hardwood forest (206 ha); WS79 a predominantly pine forest (500 ha); and WS78, a...

  3. Assessing Wetland Anthropogenic Stress using GIS; a Multi-scale Watershed Approach

    Science.gov (United States)

    Watersheds are widely recognized as essential summary units for ecosystem research and management, particularly in aquatic systems. As the drainage basin in which surface water drains toward a lake, stream, river, or wetland at a lower elevation, watersheds represent spatially e...

  4. Stochastic Watershed Models for Risk Based Decision Making

    Science.gov (United States)

    Vogel, R. M.

    2017-12-01

    Over half a century ago, the Harvard Water Program introduced the field of operational or synthetic hydrology providing stochastic streamflow models (SSMs), which could generate ensembles of synthetic streamflow traces useful for hydrologic risk management. The application of SSMs, based on streamflow observations alone, revolutionized water resources planning activities, yet has fallen out of favor due, in part, to their inability to account for the now nearly ubiquitous anthropogenic influences on streamflow. This commentary advances the modern equivalent of SSMs, termed `stochastic watershed models' (SWMs) useful as input to nearly all modern risk based water resource decision making approaches. SWMs are deterministic watershed models implemented using stochastic meteorological series, model parameters and model errors, to generate ensembles of streamflow traces that represent the variability in possible future streamflows. SWMs combine deterministic watershed models, which are ideally suited to accounting for anthropogenic influences, with recent developments in uncertainty analysis and principles of stochastic simulation

  5. Watershed hydrology. Chapter 7.

    Science.gov (United States)

    Elons S. Verry; Kenneth N. Brooks; Dale S. Nichols; Dawn R. Ferris; Stephen D. Sebestyen

    2011-01-01

    Watershed hydrology is determined by the local climate, land use, and pathways of water flow. At the Marcell Experimental Forest (MEF), streamflow is dominated by spring runoff events driven by snowmelt and spring rains common to the strongly continental climate of northern Minnesota. Snowmelt and rainfall in early spring saturate both mineral and organic soils and...

  6. Stream Tables and Watershed Geomorphology Education.

    Science.gov (United States)

    Lillquist, Karl D.; Kinner, Patricia W.

    2002-01-01

    Reviews copious stream tables and provides a watershed approach to stream table exercises. Results suggest that this approach to learning the concepts of fluvial geomorphology is effective. (Contains 39 references.) (DDR)

  7. [New paradigm for soil and water conservation: a method based on watershed process modeling and scenario analysis].

    Science.gov (United States)

    Zhu, A-Xing; Chen, La-Jiao; Qin, Cheng-Zhi; Wang, Ping; Liu, Jun-Zhi; Li, Run-Kui; Cai, Qiang-Guo

    2012-07-01

    With the increase of severe soil erosion problem, soil and water conservation has become an urgent concern for sustainable development. Small watershed experimental observation is the traditional paradigm for soil and water control. However, the establishment of experimental watershed usually takes long time, and has the limitations of poor repeatability and high cost. Moreover, the popularization of the results from the experimental watershed is limited for other areas due to the differences in watershed conditions. Therefore, it is not sufficient to completely rely on this old paradigm for soil and water loss control. Recently, scenario analysis based on watershed modeling has been introduced into watershed management, which can provide information about the effectiveness of different management practices based on the quantitative simulation of watershed processes. Because of its merits such as low cost, short period, and high repeatability, scenario analysis shows great potential in aiding the development of watershed management strategy. This paper elaborated a new paradigm using watershed modeling and scenario analysis for soil and water conservation, illustrated this new paradigm through two cases for practical watershed management, and explored the future development of this new soil and water conservation paradigm.

  8. Elk River Watershed - Flood Study

    Science.gov (United States)

    Barnes, C. C.; Byrne, J. M.; MacDonald, R. J.; Lewis, D.

    2014-12-01

    Flooding has the potential to cause significant impacts to economic activities as well as to disrupt or displace populations. Changing climate regimes such as extreme precipitation events increase flood vulnerability and put additional stresses on infrastructure. Potential flooding from just under 100 (2009 NPRI Reviewed Facility Data Release, Environment Canada) toxic tailings ponds located in Canada increase risk to human safety and the environment. One such geotechnical failure spilt billions of litres of toxic tailings into the Fraser River watershed, British Columbia, when a tailings pond dam breach occurred in August 2014. Damaged and washed out roadways cut access to essential services as seen by the extensive floods that occurred in Saskatchewan and Manitoba in July 2014, and in Southern Alberta in 2013. Recovery efforts from events such as these can be lengthy, and have substantial social and economic impacts both in loss of revenue and cost of repair. The objective of this study is to investigate existing conditions in the Elk River watershed and model potential future hydrological changes that can increase flood risk hazards. By analyzing existing hydrology, meteorology, land cover, land use, economic, and settlement patterns a baseline is established for existing conditions in the Elk River watershed. Coupling the Generate Earth Systems Science (GENESYS) high-resolution spatial hydrometeorological model with flood hazard analysis methodology, high-resolution flood vulnerability base line maps are created using historical climate conditions. Further work in 2015 will examine possible impacts for a range of climate change and land use change scenarios to define changes to future flood risk and vulnerability.

  9. Watershed Management Optimization Support Tool (WMOST) v1: User Manual and Case Study Examples

    Science.gov (United States)

    The Watershed Management Optimization Support Tool (WMOST) is intended to be used as a screening tool as part of an integrated watershed management process such as that described in EPA’s watershed planning handbook (EPA 2008).1 The objective of WMOST is to serve as a public-doma...

  10. Appalachian Rivers II Conference: Technology for Monitoring, Assessing, and Restoring Streams, Rivers, and Watersheds

    Energy Technology Data Exchange (ETDEWEB)

    None available

    1999-07-29

    On July 28-29, 1999, the Federal Energy Technology Center (FETC) and the WMAC Foundation co-sponsored the Appalachian Rivers II Conference in Morgantown, West Virginia. This meeting brought together over 100 manufacturers, researchers, academicians, government agency representatives, watershed stewards, and administrators to examine technologies related to watershed assessment, monitoring, and restoration. Sessions included presentations and panel discussions concerning watershed analysis and modeling, decision-making considerations, and emerging technologies. The final session examined remediation and mitigation technologies to expedite the preservation of watershed ecosystems.

  11. Application of snowmelt runoff model (SRM in mountainous watersheds: A review

    Directory of Open Access Journals (Sweden)

    Shalamu Abudu

    2012-06-01

    Full Text Available The snowmelt runoff model (SRM has been widely used in simulation and forecast of streamflow in snow-dominated mountainous basins around the world. This paper presents an overall review of worldwide applications of SRM in mountainous watersheds, particularly in data-sparse watersheds of northwestern China. Issues related to proper selection of input climate variables and parameters, and determination of the snow cover area (SCA using remote sensing data in snowmelt runoff modeling are discussed through extensive review of literature. Preliminary applications of SRM in northwestern China have shown that the model accuracies are relatively acceptable although most of the watersheds lack measured hydro-meteorological data. Future research could explore the feasibility of modeling snowmelt runoff in data-sparse mountainous watersheds in northwestern China by utilizing snow and glacier cover remote sensing data, geographic information system (GIS tools, field measurements, and innovative ways of model parameterization.

  12. Soil Erodibility for Water Pollution Management of Melaka Watershed in Peninsular Malaysia

    Directory of Open Access Journals (Sweden)

    Md. Ibrahim Adham

    2015-07-01

    Full Text Available The relationships between surface runoffand soil erodibility are significant in water pollution and watershed management practices. Land use pattern, soil series and slope percentage are also major factors to develop the relationships. Daily rainfall data were collected and analyzed for variations in precipitation for calculating the surface runoff of these watersheds and surface runoff map was produced by GIS tools. Tew equation was utilized to predict soil erodibility of watershed soils.Results indicated that the weighted curve number varies from 82 to 85 and monthly runoff 23% to 30% among the five watersheds. Soil erodibility varies from 0.038 to 0.06 ton/ha (MJ.mm/ha/h. Linau-Telok-Local Alluvium, Malacca-Munchong, Munchong-Malacca-Serdang and Malacca-Munchong-Tavy are the dominant soil series of this region having the average soil erodibility of about 0.042 ton/ha (MJ.mm/ha/h. The main focus of this study is to provide the information of soil erodibility to reduce the water pollution of a watershed.

  13. Delineation of potential deep seated landslides in a watershed using environmental index

    Science.gov (United States)

    Lai, Siao Ying; Lin, Chao Yuan; Lin, Cheng Yu

    2016-04-01

    The extreme rainfall induced deep seated landslides cause more attentions recently. Extreme rainfall can accelerate soil moisture content and surface runoff in slopeland which usually results in severe headward erosion and slope failures in an upstream watershed. It's a crucial issue for disaster prevention to extract the sites of potential deep seated landslide dynamically. Landslide risk and scale in a watershed were well discussed in this study. Risk of landslide occurrence in a watershed can be calculated from the multiplication of hazard and vulnerability for a certain event. A synthesis indicator derived from the indices of inverted extreme rainfall, road development and inverted normalized difference vegetation index can be effectively used as vulnerability for a watershed before the event. Landslide scale estimated from the indices of soil depth, headward erosion, river concave and dip slope could be applied to locate the hotspots of deep seated landslide in a watershed. The events of Typhoon Morakot in 2009 and Soudelor in 2015 were also selected in this study to verify the delineation accuracy of the model for the references of related authorities.

  14. Determination of Water Quality Status at Sampean Watershed Bondowoso Residence Using Storet Method

    Science.gov (United States)

    Sugiyarto; Hariono, B.; Destarianto, P.; Nuruddin, M.

    2018-01-01

    Sampean watershed has an important social and economic function for the people surroundings. Sampean watershed wich cover Bondowoso and Situbondo residence is an urban watershed that has strategic value for national context needs special traetment. Construction activity at upper and lower course of Sampean watershed is highly intensive and growth of inhabitant also increase. The change of land utilization and increase of settlement area at upper, midlle, and lower course caused polutant infiltration to Sampean river watershed so it has impact on water quality. The source of pollution at Sampean river comes from domestic waste, industrial waste, agricultural waste and animal husbandry waste. The purpose of this research is to determine load of pollution and analize the pollution load carrying capacity at Sampean watershed. The data used in this research are rainfall, river flow rate and water quality at 6 certain points within 3 years during 2014 until 2016. The method to determine overall pollution rate is STORET (Storage and Retrieval of Water Quality Data System) method. The analysis results for the first, second, third and forth grade are -24 (moderate quality), -12 (moderate quality), -2 (good quality), and 0 (good quality) respectively.

  15. Assessment of integrated watershed health based on the natural environment, hydrology, water quality, and aquatic ecology

    Directory of Open Access Journals (Sweden)

    S. R. Ahn

    2017-11-01

    Full Text Available Watershed health, including the natural environment, hydrology, water quality, and aquatic ecology, is assessed for the Han River basin (34 148 km2 in South Korea by using the Soil and Water Assessment Tool (SWAT. The evaluation procedures follow those of the Healthy Watersheds Assessment by the U.S. Environmental Protection Agency (EPA. Six components of the watershed landscape are examined to evaluate the watershed health (basin natural capacity: stream geomorphology, hydrology, water quality, aquatic habitat condition, and biological condition. In particular, the SWAT is applied to the study basin for the hydrology and water-quality components, including 237 sub-watersheds (within a standard watershed on the Korea Hydrologic Unit Map along with three multipurpose dams, one hydroelectric dam, and three multifunction weirs. The SWAT is calibrated (2005–2009 and validated (2010–2014 by using each dam and weir operation, the flux-tower evapotranspiration, the time-domain reflectometry (TDR soil moisture, and groundwater-level data for the hydrology assessment, and by using sediment, total phosphorus, and total nitrogen data for the water-quality assessment. The water balance, which considers the surface–groundwater interactions and variations in the stream-water quality, is quantified according to the sub-watershed-scale relationship between the watershed hydrologic cycle and stream-water quality. We assess the integrated watershed health according to the U.S. EPA evaluation process based on the vulnerability levels of the natural environment, water resources, water quality, and ecosystem components. The results indicate that the watershed's health declined during the most recent 10-year period of 2005–2014, as indicated by the worse results for the surface process metric and soil water dynamics compared to those of the 1995–2004 period. The integrated watershed health tended to decrease farther downstream within the watershed.

  16. Watershed System Model: The Essentials to Model Complex Human-Nature System at the River Basin Scale

    Science.gov (United States)

    Li, Xin; Cheng, Guodong; Lin, Hui; Cai, Ximing; Fang, Miao; Ge, Yingchun; Hu, Xiaoli; Chen, Min; Li, Weiyue

    2018-03-01

    Watershed system models are urgently needed to understand complex watershed systems and to support integrated river basin management. Early watershed modeling efforts focused on the representation of hydrologic processes, while the next-generation watershed models should represent the coevolution of the water-land-air-plant-human nexus in a watershed and provide capability of decision-making support. We propose a new modeling framework and discuss the know-how approach to incorporate emerging knowledge into integrated models through data exchange interfaces. We argue that the modeling environment is a useful tool to enable effective model integration, as well as create domain-specific models of river basin systems. The grand challenges in developing next-generation watershed system models include but are not limited to providing an overarching framework for linking natural and social sciences, building a scientifically based decision support system, quantifying and controlling uncertainties, and taking advantage of new technologies and new findings in the various disciplines of watershed science. The eventual goal is to build transdisciplinary, scientifically sound, and scale-explicit watershed system models that are to be codesigned by multidisciplinary communities.

  17. Methodology and application of combined watershed and ground-water models in Kansas

    Science.gov (United States)

    Sophocleous, M.; Perkins, S.P.

    2000-01-01

    Increased irrigation in Kansas and other regions during the last several decades has caused serious water depletion, making the development of comprehensive strategies and tools to resolve such problems increasingly important. This paper makes the case for an intermediate complexity, quasi-distributed, comprehensive, large-watershed model, which falls between the fully distributed, physically based hydrological modeling system of the type of the SHE model and the lumped, conceptual rainfall-runoff modeling system of the type of the Stanford watershed model. This is achieved by integrating the quasi-distributed watershed model SWAT with the fully-distributed ground-water model MODFLOW. The advantage of this approach is the appreciably smaller input data requirements and the use of readily available data (compared to the fully distributed, physically based models), the statistical handling of watershed heterogeneities by employing the hydrologic-response-unit concept, and the significantly increased flexibility in handling stream-aquifer interactions, distributed well withdrawals, and multiple land uses. The mechanics of integrating the component watershed and ground-water models are outlined, and three real-world management applications of the integrated model from Kansas are briefly presented. Three different aspects of the integrated model are emphasized: (1) management applications of a Decision Support System for the integrated model (Rattlesnake Creek subbasin); (2) alternative conceptual models of spatial heterogeneity related to the presence or absence of an underlying aquifer with shallow or deep water table (Lower Republican River basin); and (3) the general nature of the integrated model linkage by employing a watershed simulator other than SWAT (Wet Walnut Creek basin). These applications demonstrate the practicality and versatility of this relatively simple and conceptually clear approach, making public acceptance of the integrated watershed modeling

  18. Large woody debris budgets in the Caspar Creek Experimental Watersheds

    Science.gov (United States)

    Sue Hilton

    2012-01-01

    Monitoring of large woody debris (LWD) in the two mainstem channels of the Caspar Creek Experimental Watersheds since 1998, combined with older data from other work in the watersheds, gives estimates of channel wood input rates, survival, and outputs in intermediate-sized channels in coastal redwood forests. Input rates from standing trees for the two reaches over a 15...

  19. Watershed Scale Optimization to Meet Sustainable Cellulosic Energy Crop Demand

    Energy Technology Data Exchange (ETDEWEB)

    Chaubey, Indrajeet [Purdue Univ., West Lafayette, IN (United States); Cibin, Raj [Purdue Univ., West Lafayette, IN (United States); Bowling, Laura [Purdue Univ., West Lafayette, IN (United States); Brouder, Sylvie [Purdue Univ., West Lafayette, IN (United States); Cherkauer, Keith [Purdue Univ., West Lafayette, IN (United States); Engel, Bernard [Purdue Univ., West Lafayette, IN (United States); Frankenberger, Jane [Purdue Univ., West Lafayette, IN (United States); Goforth, Reuben [Purdue Univ., West Lafayette, IN (United States); Gramig, Benjamin [Purdue Univ., West Lafayette, IN (United States); Volenec, Jeffrey [Purdue Univ., West Lafayette, IN (United States)

    2017-03-24

    The overall goal of this project was to conduct a watershed-scale sustainability assessment of multiple species of energy crops and removal of crop residues within two watersheds (Wildcat Creek, and St. Joseph River) representative of conditions in the Upper Midwest. The sustainability assessment included bioenergy feedstock production impacts on environmental quality, economic costs of production, and ecosystem services.

  20. Risk of impaired condition of watersheds containing National Forest lands

    Science.gov (United States)

    Thomas C Brown; Pamela Froemke

    2010-01-01

    We assessed the risk of impaired condition of the nearly 3700 5th-level watersheds in the contiguous 48 states containing the national forests and grasslands that make up the U.S. Forest Service's National Forest System (NFS). The assessment was based on readily available, relatively consistent nationwide data sets for a series of indicators representing watershed...

  1. Is the herb-shrub composition of veredas (Brazilian palm swamps distinguishable?

    Directory of Open Access Journals (Sweden)

    Diogo Pereira da Silva

    2017-11-01

    Full Text Available ABSTRACT Vereda (Brazilian palm swamp is a poorly known savannic phytophysiognomy that occurs on moist soils with high herb-shrub floristic richness. This study aimed to document the herb-shrub species of veredas of the Estação Ecológica Serra Geral do Tocantins - EESGTO, and compare this flora with other veredas in Brazil. Furthermore, we assessed the similarity of the herb-shrub flora of the studied veredas with that of inventories of other savannas and grasslands in order to evaluate whether veredas possess an exclusive flora. Ordination analysis was performed to understand the floristic relationship among these areas. We recorded 213 species, 105 genera and 49 families at EESGTO, including five new floral records for the Cerrado and 78 for the state of Tocantins. The floristic similarity among veredas at EESGTO and the other sites was low. For all sites, a total of 1,324 species were recorded, of which 342 were unique to veredas and 187 unique to moist grasslands (campos limpos úmidos. After reviewing databases, 14.3 % of these species remained exclusive to veredas and moist grasslands. The ordination analysis indicated a gradient in floristic composition from wet to dry phytophysiognomies. In conclusion, we recognize a flora that distinguishes veredas from other Cerrado phytophysiognomies.

  2. Flood Simulation Using WMS Model in Small Watershed after Strong Earthquake -A Case Study of Longxihe Watershed, Sichuan province, China

    Science.gov (United States)

    Guo, B.

    2017-12-01

    Mountain watershed in Western China is prone to flash floods. The Wenchuan earthquake on May 12, 2008 led to the destruction of surface, and frequent landslides and debris flow, which further exacerbated the flash flood hazards. Two giant torrent and debris flows occurred due to heavy rainfall after the earthquake, one was on August 13 2010, and the other on August 18 2010. Flash floods reduction and risk assessment are the key issues in post-disaster reconstruction. Hydrological prediction models are important and cost-efficient mitigation tools being widely applied. In this paper, hydrological observations and simulation using remote sensing data and the WMS model are carried out in the typical flood-hit area, Longxihe watershed, Dujiangyan City, Sichuan Province, China. The hydrological response of rainfall runoff is discussed. The results show that: the WMS HEC-1 model can well simulate the runoff process of small watershed in mountainous area. This methodology can be used in other earthquake-affected areas for risk assessment and to predict the magnitude of flash floods. Key Words: Rainfall-runoff modeling. Remote Sensing. Earthquake. WMS.

  3. Modeling conservation practices in APEX: From the field to the watershed

    Science.gov (United States)

    The evaluation of USDA conservation programs is required as part of the Conservation Effects Assessment Project (CEAP). The Agricultural Policy/Environmental eXtender (APEX) model was applied to the St. Joseph River Watershed, one of CEAP’s benchmark watersheds. Using a previously calibrated and val...

  4. Integrating socio-economic and biophysical data to enhance watershed management and planning

    Science.gov (United States)

    Pirani, Farshad Jalili; Mousavi, Seyed Alireza

    2016-09-01

    Sustainability has always been considered as one of the main aspects of watershed management plans. In many developing countries, watershed management practices and planning are usually performed by integrating biophysical layers, and other existing layers which cannot be identified as geographic layers are ignored. We introduce an approach to consider some socioeconomic parameters which are important for watershed management decisions. Ganj basin in Chaharmahal-Bakhtiari Province was selected as the case study area, which includes three traditional sanctums: Ganj, Shiremard and Gerdabe Olya. Socioeconomic data including net agricultural income, net ranching income, population and household number, literacy rate, unemployment rate, population growth rate and active population were mapped within traditional sanctums and then were integrated into other biophysical layers. After overlaying and processing these data to determine management units, different quantitative and qualitative approaches were adopted to achieve a practical framework for watershed management planning and relevant plans for homogeneous units were afterwards proposed. Comparing the results with current plans, the area of allocated lands to different proposed operations considering both qualitative and quantitative approaches were the same in many cases and there was a meaningful difference with current plans; e.g., 3820 ha of lands are currently managed under an enclosure plan, while qualitative and quantitative approaches in this study suggest 1388 and 1428 ha to be allocated to this operation type, respectively. Findings show that despite the ambiguities and complexities, different techniques could be adopted to incorporate socioeconomic conditions in watershed management plans. This introductory approach will help to enhance watershed management decisions with more attention to societal background and economic conditions, which will presumably motivate local communities to participate in

  5. Watersheds of the Oak Ridge Reservation in a geographic information system

    International Nuclear Information System (INIS)

    Tauxe, J.

    1998-05-01

    This work develops a comprehensive set of watershed definitions for the entire Oak Ridge Reservation and surrounding area. A stream-ordering system is defined based upon the method proposed by Strahler (1952) and using 1:24,000 scale US Geological Survey (USGS) topographic maps and the locally standard S-16A Map (USGS 1987) as sources for topographic contours and locations of streams as recommended by the Natural Resources Conservation Service (NRCS 1995). For each ordered stream, a contributing watershed or catchment area is delineated and digitized into a geographic information system (GIS), generating over 900 watershed polygons of various orders. This new dataset complements a growing database of georeferenced environmental and cultural data which exist for the Oak Ridge area and are routinely used for socioeconomic and environmental analyses. Because these watersheds are now available in a GIS format, they may be used in a variety of hydrologic analyses, including rainfall/runoff modeling, development of geomorphological parameters, and the modeling of contaminant transport in surface waters. An understanding of the relationships of watersheds to sources of contamination and to administrative and political boundaries is also essential in land use planning and the organization of environmental restoration and waste management activities

  6. Proteomic analysis of three gonad types of swamp eel reveals genes differentially expressed during sex reversal.

    Science.gov (United States)

    Sheng, Yue; Zhao, Wei; Song, Ying; Li, Zhigang; Luo, Majing; Lei, Quan; Cheng, Hanhua; Zhou, Rongjia

    2015-05-18

    A variety of mechanisms are engaged in sex determination in vertebrates. The teleost fish swamp eel undergoes sex reversal naturally and is an ideal model for vertebrate sexual development. However, the importance of proteome-wide scanning for gonad reversal was not previously determined. We report a 2-D electrophoresis analysis of three gonad types of proteomes during sex reversal. MS/MS analysis revealed a group of differentially expressed proteins during ovary to ovotestis to testis transformation. Cbx3 is up-regulated during gonad reversal and is likely to have a role in spermatogenesis. Rab37 is down-regulated during the reversal and is mainly associated with oogenesis. Both Cbx3 and Rab37 are linked up in a protein network. These datasets in gonadal proteomes provide a new resource for further studies in gonadal development.

  7. A System Method for the Assessment of Integrated Water Resources Management (IWRM) in Mountain Watershed Areas: The Case of the "Giffre" Watershed (France)

    Science.gov (United States)

    Charnay, Bérengère

    2011-07-01

    In the last fifty years, many mountain watersheds in temperate countries have known a progressive change from self-standing agro-silvo-pastoral systems to leisure dominated areas characterized by a concentration of tourist accommodations, leading to a drinking water peak during the winter tourist season, when the water level is lowest in rivers and sources. The concentration of water uses increases the pressure on "aquatic habitats" and competition between uses themselves. Consequently, a new concept was developed following the international conferences in Dublin (International Conference on Water and the Environment - ICWE) and Rio de Janeiro (UN Conference on Environment and Development), both in 1992, and was broadly acknowledged through international and European policies. It is the concept of Integrated Water Resource Management ( IWRM). It meets the requirements of different uses of water and aquatic zones whilst preserving the natural functions of such areas and ensuring a satisfactory economic and social development. This paper seeks to evaluate a local water resources management system in order to implement it using IWRM in mountain watersheds. The assessment method is based on the systemic approach to take into account all components influencing a water resources management system at the watershed scale. A geographic information system was built to look into interactions between water resources, land uses, and water uses. This paper deals specifically with a spatial comparison between hydrologically sensitive areas and land uses. The method is applied to a French Alps watershed: the Giffre watershed (a tributary of the Arve in Haute-Savoie). The results emphasize both the needs and the gaps in implementing IWRM in vulnerable mountain regions.

  8. Watershed erosion modeling using the probability of sediment connectivity in a gently rolling system

    Science.gov (United States)

    Mahoney, David Tyler; Fox, James Forrest; Al Aamery, Nabil

    2018-06-01

    Sediment connectivity has been shown in recent years to explain how the watershed configuration controls sediment transport. However, we find no studies develop a watershed erosion modeling framework based on sediment connectivity, and few, if any, studies have quantified sediment connectivity for gently rolling systems. We develop a new predictive sediment connectivity model that relies on the intersecting probabilities for sediment supply, detachment, transport, and buffers to sediment transport, which is integrated in a watershed erosion model framework. The model predicts sediment flux temporally and spatially across a watershed using field reconnaissance results, a high-resolution digital elevation models, a hydrologic model, and shear-based erosion formulae. Model results validate the capability of the model to predict erosion pathways causing sediment connectivity. More notably, disconnectivity dominates the gently rolling watershed across all morphologic levels of the uplands, including, microtopography from low energy undulating surfaces across the landscape, swales and gullies only active in the highest events, karst sinkholes that disconnect drainage areas, and floodplains that de-couple the hillslopes from the stream corridor. Results show that sediment connectivity is predicted for about 2% or more the watershed's area 37 days of the year, with the remaining days showing very little or no connectivity. Only 12.8 ± 0.7% of the gently rolling watershed shows sediment connectivity on the wettest day of the study year. Results also highlight the importance of urban/suburban sediment pathways in gently rolling watersheds, and dynamic and longitudinal distributions of sediment connectivity might be further investigated in future work. We suggest the method herein provides the modeler with an added tool to account for sediment transport criteria and has the potential to reduce computational costs in watershed erosion modeling.

  9. Storms do not alter long-term watershed development influences on coastal water quality.

    Science.gov (United States)

    Chen, Yushun; Cebrian, Just; Lehrter, John; Christiaen, Bart; Stutes, Jason; Goff, Josh

    2017-09-15

    A twelve year (2000-2011) study of three coastal lagoons in the Gulf of Mexico was conducted to assess the impacts of local watershed development and tropical storms on water quality. The lagoons have similar physical and hydrological characteristics, but differ substantially in the degree of watershed urban development and nutrient loading rates. In total the lagoons experienced 22 storm events during the period studied. Specifically, we examine (1) whether there are influences on water quality in the lagoons from watershed development, (2) whether there are influences on water quality in the lagoons from storm activity, and (3) whether water quality is affected to a greater degree by watershed development versus storm activity. The two urbanized lagoons typically showed higher water-column nitrate, dissolved organic nitrogen, and phosphate compared with the non-urbanized lagoon. One of the urbanized lagoons had higher water-column chlorophyll a concentrations than the other two lagoons on most sampling dates, and higher light extinction coefficients on some sampling dates. The non-urbanized lagoon had higher water-column dissolved oxygen concentrations than other lagoons on many sampling dates. Our results suggest long-term influences of watershed development on coastal water quality. We also found some evidence of significant storm effects on water quality, such as increased nitrate, phosphate, and dissolved oxygen, and decreased salinity and water temperature. However, the influences of watershed development on water quality were greater. These results suggest that changes in water quality induced by human watershed development pervade despite the storm effects. These findings may be useful for environmental management since they suggest that storms do not profoundly alter long-term changes in water quality that resulted from human development of watersheds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Soil erosion planning using sediment yield index method in the Nun Nadi watershed, India

    Directory of Open Access Journals (Sweden)

    Hasan Raja Naqvi

    2015-06-01

    Full Text Available The study identifies the extent of soil loss and proposes a method for prioritization of micro-watershed in the Nun Nadi watershed. The study used the Sediment Yield Index (SYI method, based on weighted overlays of soil, topography, rainfall erosivity and land use parameters in 24 micro watersheds. Accordingly the values and thematic layers were integrated as per the SYI model, and minimum and maximum sediment yield values were calculated. The priority ranks as per the sediment yield values were assigned to all micro-watersheds. Then the values were classified into four priority zones according to their composite scores. Almost 14 percent area of three micro-watersheds (SW5b, SW6a and SW7b showed very high priority; approximately 30.57 percent of the study area fell under the high priority zones. These areas require immediate attention. Conservation methods are suggested, and the locations of check dams are proposed after considering drainage, slope and soil loss. Keywords: Check dam, Prioritization, Nun Nadi watershed, Soil loss, SYI

  11. On the relative roles of hydrology, salinity, temperature, and root productivity in controlling soil respiration from coastal swamps (freshwater)

    Science.gov (United States)

    Krauss, Ken W.; Whitbeck, Julie L.; Howard, Rebecca J.

    2012-01-01

    Background and aims Soil CO2 emissions can dominate gaseous carbon losses from forested wetlands (swamps), especially those positioned in coastal environments. Understanding the varied roles of hydroperiod, salinity, temperature, and root productivity on soil respiration is important in discerning how carbon balances may shift as freshwater swamps retreat inland with sea-level rise and salinity incursion, and convert to mixed communities with marsh plants. Methods We exposed soil mesocosms to combinations of permanent flooding, tide, and salinity, and tracked soil respiration over 2 1/2 growing seasons. We also related these measurements to rates from field sites along the lower Savannah River, Georgia, USA. Soil temperature and root productivity were assessed simultaneously for both experiments. Results Soil respiration from mesocosms (22.7-1678.2 mg CO2 m-2 h-1) differed significantly among treatments during four of the seven sampling intervals, where permanently flooded treatments contributed to low rates of soil respiration and tidally flooded treatments sometimes contributed to higher rates. Permanent flooding reduced the overall capacity for soil respiration as soils warmed. Salinity did reduce soil respiration at times in tidal treatments, indicating that salinity may affect the amount of CO2 respired with tide more strongly than under permanent flooding. However, soil respiration related greatest to root biomass (mesocosm) and standing root length (field); any stress reducing root productivity (incl. salinity and permanent flooding) therefore reduces soil respiration. Conclusions Overall, we hypothesized a stronger, direct role for salinity on soil respiration, and found that salinity effects were being masked by varied capacities for increases in respiration with soil warming as dictated by hydrology, and the indirect influence that salinity can have on plant productivity.

  12. Environmental and deteriorating state analyses of the watershed Riacho do Tronco, Boa Vista, PB, Brazil

    Directory of Open Access Journals (Sweden)

    Ronildo Alcântara Pereira

    2010-04-01

    Full Text Available This study proposes, from the subdivision of the watershed of Riacho do Tronco in eight sub-watersheds, to diagnose their potential for land use and occupation, determine the areas of conflicts in land use and the level of environmental deterioration of the watershed as a whole, to support planning and the consequent reduction of the expansion of desertification. Based on GIS analysis and field work, the environmental parameters that allowed the establishment of the roughness coefficient of each sub-watershed were calculated, following the methodology proposed by Rocha (1997 for the classification of the natural potential use of each watershed. The results showed that four sub-watersheds are suitable for agriculture, three for livestock and reforestation and one for reforestation only. It was also possible to diagnose land use and occupation of each one and to determine land use conflicts. This represented by inappropriate use of soil considering the natural vocation of some sub-watershed, as well as the occurrence of bare soil and mining activities that occur in some sub-watersheds. Thus, from the analysis of conflict in land use, areas to be afforested, availability for or intense use of agricultural lands and the estimate of areas where correct management practices have to be implemented, it was observed that the watershed of Riacho do Tronco has 42.7% of its area in deteriorated stage. Therefore, the high level of environmental deterioration is evident, with consequent risk of desertification. In addition, considering that this area is located in the Brazilian semi-arid region with economic activities practiced without conservation concerns, it is necessary that the government and organized society foster sustainable principles in the economic activities in this watershed.

  13. A sensitivity analysis of regional and small watershed hydrologic models

    Science.gov (United States)

    Ambaruch, R.; Salomonson, V. V.; Simmons, J. W.

    1975-01-01

    Continuous simulation models of the hydrologic behavior of watersheds are important tools in several practical applications such as hydroelectric power planning, navigation, and flood control. Several recent studies have addressed the feasibility of using remote earth observations as sources of input data for hydrologic models. The objective of the study reported here was to determine how accurately remotely sensed measurements must be to provide inputs to hydrologic models of watersheds, within the tolerances needed for acceptably accurate synthesis of streamflow by the models. The study objective was achieved by performing a series of sensitivity analyses using continuous simulation models of three watersheds. The sensitivity analysis showed quantitatively how variations in each of 46 model inputs and parameters affect simulation accuracy with respect to five different performance indices.

  14. Quantitative analysis and implications of drainage morphometry of the Agula watershed in the semi-arid northern Ethiopia

    Science.gov (United States)

    Fenta, Ayele Almaw; Yasuda, Hiroshi; Shimizu, Katsuyuki; Haregeweyn, Nigussie; Woldearegay, Kifle

    2017-11-01

    This study aimed at quantitative analysis of morphometric parameters of Agula watershed and its sub-watersheds using remote sensing data, geographic information system, and statistical methods. Morphometric parameters were evaluated from four perspectives: drainage network, watershed geometry, drainage texture, and relief characteristics. A sixth-order river drains Agula watershed and the drainage network is mainly dendritic type. The mean bifurcation ratio ( R b) was 4.46 and at sub-watershed scale, high R b values ( R b > 5) were observed which might be expected in regions of steeply sloping terrain. The longest flow path of Agula watershed is 48.5 km, with knickpoints along the main river which could be attributed to change of lithology and major faults which are common along the rift escarpments. The watershed has elongated shape suggesting low peak flows for longer duration and hence easier flood management. The drainage texture analysis revealed fine drainage which implies the dominance of impermeable soft rock with low resistance against erosion. High relief and steep slopes dominates, by which rough landforms (hills, breaks, and low mountains) make up 76% of the watershed. The S-shaped hypsometric curve with hypsometric integral of 0.4 suggests that Agula watershed is in equilibrium or mature stage of geomorphic evolution. At sub-watershed scale, the derived morphometric parameters were grouped into three clusters (low, moderate, and high) and considerable spatial variability was observed. The results of this study provide information on drainage morphometry that can help better understand the watershed characteristics and serve as a basis for improved planning, management, and decision making to ensure sustainable use of watershed resources.

  15. Experimental Acidification Causes Soil Base-Cation Depletion at the Bear Brook Watershed in Maine

    Science.gov (United States)

    Ivan J. Fernandez; Lindsey E. Rustad; Stephen A. Norton; Jeffrey S. Kahl; Bernard J. Cosby

    2003-01-01

    There is concern that changes in atmospheric deposition, climate, or land use have altered the biogeochemistry of forests causing soil base-cation depletion, particularly Ca. The Bear Brook Watershed in Maine (BBWM) is a paired watershed experiment with one watershed subjected to elevated N and S deposition through bimonthly additions of (NH4)2SO4. Quantitative soil...

  16. Long-term forest watershed studies in the Southwest: recycled for wildfire and prescribed fire

    Science.gov (United States)

    Daniel G. Neary; Gerald J. Gottfried; Peter F. Ffolliott; Boris Poff

    2012-01-01

    A hydrologic research network was established in Arizona in the 1950s and 1960s called the Arizona Watershed Program (Baker et al. 1999). It consisted of a number of public agencies and private groups interested in obtaining more water for future economic growth while maintaining the State's watersheds in good condition. As part of the Program. paired watershed...

  17. How are streamflow responses to the El Nino Southern Oscillation affected by watershed characteristics?

    Science.gov (United States)

    Rice, Joshua S.; Emanuel, Ryan E.

    2017-05-01

    Understanding the factors that influence how global climate phenomena, such as the El-Nino Southern Oscillation (ENSO), affect streamflow behavior is an important area of research in the hydrologic sciences. While large-scale patterns in ENSO-streamflow relationships have been thoroughly studied, and are relatively well-understood, information is scarce concerning factors that affect variation in ENSO responses from one watershed to another. To this end, we examined relationships between variability in ENSO activity and streamflow for 2731 watersheds across the conterminous U.S. from 1970 to 2014 using a novel approach to account for the intermediary role of precipitation. We applied an ensemble of regression techniques to describe relationships between variability in ENSO activity and streamflow as a function of watershed characteristics including: hydroclimate, topography, geomorphology, geographic location, land cover, soil characteristics, bedrock geology, and anthropogenic influences. We found that variability in watershed scale ENSO-streamflow relationships was strongly related to factors including: precipitation timing and phase, forest cover, and interactions between watershed topography and geomorphology. These, and other influential factors, share in common the ability to affect the partitioning and movement of water within watersheds. Our results demonstrate that the conceptualization of watersheds as signal filters for hydroclimate inputs, commonly applied to short-term rainfall-runoff responses, also applies to long-term hydrologic responses to sources of recurrent climate variability. These results also show that watershed processes, which are typically studied at relatively fine spatial scales, are also critical for understanding continental scale hydrologic responses to global climate.

  18. Nitrogen Assessment in the Nooksack-Abbotsford-Sumas Transboundary Watershed

    Science.gov (United States)

    Lin, J.; Compton, J.; Baron, J.; Schwede, D. B.; Bittman, S.; Hooper, D. U.; Kiffney, P.; Embertson, N.; Carey, B.; MacKay, H.; Black, R.; Bahr, G.; Harrison, J.; Davidson, E. A.

    2017-12-01

    The Nooksack-Abbotsford-Sumas (NAS) Transboundary Watershed, which spans a portion of the western interface of British Columbia, Washington State, as well as the Lummi Nation and the Nooksack Tribal lands, supports agriculture, estuarine fisheries, diverse wildlife, and urban areas. Excess N has contributed to surface and ground water pollution, shellfish closure, and impaired air quality (such as haze or smog) in some areas in the watershed. The goal of this project is to determine the distribution and quantities of N fluxes of the watershed using site-specific and high-resolution data on N that originates from energy use, transportation, fertilization, wastewater treatment plants (WWTP), animal feeding and manure production, crops and more. This project is one of seven international demonstration projects contributing knowledge of regional N budgets and collaborative approaches toward N management as part of the International Nitrogen Management System (INMS). Successful N reduction relies on the partnership of all stakeholders with appropriate institutions to integrate science, outreach and management efforts. This project will bring together stakeholders on both sides of the international border for a first comprehensive, quantitative characterization of all N inventories and fluxes across this international watershed. Using crop-specific fertilizer application rates and wind-shield-survey land use data, we estimated that the annual fertilizer N input to the U.S. portion of the watershed was about 3779 metric tons (MT), which is very close to the USGS estimate of 3955 MT. Based on county level animal census data, we estimated total excretion N from major livestock (cattle) to be 7895 MT on the U.S. side. Using existing model results from other studies, we estimated that the annual N loading on the U.S. side was about 351 MT from point sources, 527 MT from atmospheric deposition, and about 7 MT from alder fixation. The preliminary results demonstrate an

  19. A watershed-scale goals approach to assessing and funding wastewater infrastructure.

    Science.gov (United States)

    Rahm, Brian G; Vedachalam, Sridhar; Shen, Jerry; Woodbury, Peter B; Riha, Susan J

    2013-11-15

    Capital needs during the next twenty years for public wastewater treatment, piping, combined sewer overflow correction, and storm-water management are estimated to be approximately $300 billion for the USA. Financing these needs is a significant challenge, as Federal funding for the Clean Water Act has been reduced by 70% during the last twenty years. There is an urgent need for new approaches to assist states and other decision makers to prioritize wastewater maintenance and improvements. We present a methodology for performing an integrated quantitative watershed-scale goals assessment for sustaining wastewater infrastructure. We applied this methodology to ten watersheds of the Hudson-Mohawk basin in New York State, USA that together are home to more than 2.7 million people, cover 3.5 million hectares, and contain more than 36,000 km of streams. We assembled data on 183 POTWs treating approximately 1.5 million m(3) of wastewater per day. For each watershed, we analyzed eight metrics: Growth Capacity, Capacity Density, Soil Suitability, Violations, Tributary Length Impacted, Tributary Capital Cost, Volume Capital Cost, and Population Capital Cost. These metrics were integrated into three goals for watershed-scale management: Tributary Protection, Urban Development, and Urban-Rural Integration. Our results demonstrate that the methodology can be implemented using widely available data, although some verification of data is required. Furthermore, we demonstrate substantial differences in character, need, and the appropriateness of different management strategies among the ten watersheds. These results suggest that it is feasible to perform watershed-scale goals assessment to augment existing approaches to wastewater infrastructure analysis and planning. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Spatial modeling on the upperstream of the Citarum watershed: An application of geoinformatics

    Science.gov (United States)

    Ningrum, Windy Setia; Widyaningsih, Yekti; Indra, Tito Latif

    2017-03-01

    The Citarum watershed is the longest and the largest watershed in West Java, Indonesia, located at 106°51'36''-107°51' E and 7°19'-6°24'S across 10 districts, and serves as the water supply for over 15 million people. In this area, the water criticality index is concerned to reach the balance between water supply and water demand, so that in the dry season, the watershed is still able to meet the water needs of the society along the Citarum river. The objective of this research is to evaluate the water criticality index of Citarum watershed area using spatial model to overcome the spatial dependencies in the data. The result of Lagrange multiplier diagnostics for spatial dependence results are LM-err = 34.6 (p-value = 4.1e-09) and LM-lag = 8.05 (p-value = 0.005), then modeling using Spatial Lag Model (SLM) and Spatial Error Model (SEM) were conducted. The likelihood ratio test show that both of SLM dan SEM model is better than OLS model in modeling water criticality index in Citarum watershed. The AIC value of SLM and SEM model are 78.9 and 51.4, then the SEM model is better than SLM model in predicting water criticality index in Citarum watershed.

  1. [Emergy analysis on different planting patterns of typical watersheds in Loess Plateau.

    Science.gov (United States)

    Deng, Jian; Zhao, Fa Zhu; Han, Xin Hui; Feng, Yong Zhong; Yang, Gai He

    2016-05-01

    To objectively evaluate and compare the stability and sustainability of different planting patterns of typical watersheds in Loess Plateau of China after the Grain for Green Project, this paper used the emergy analysis method to quantify the emergy inputs and outputs of three watersheds with different planting patterns, i.e., both grains and fruit trees (Gaoxigou watershed), mainly grains (Wuliwan watershed) and mainly fruit trees (Miaozuigou watershed). In addition, an emergy analysis system was established to evaluate the suitability of the three patterns from the perspectives of natural resources pressure as well as social and economic development levels. More than 75% of the total emergy inputs of all the three watersheds were purchased, and nonrenewable emergy inputs had a much larger contribution than renewable emergy inputs, indicating the characteristic of low emergy self-sufficient ratio and considerable high environmental loading ratio. The pattern of planting grains had high emergy inputs but low emergy outputs, while the patterns of planting fruit trees and planting both had high emergy inputs and outputs. The energy densities of all three patterns reached two times of the average of agricultural systems in China. Especially, the net emergy of planting grains pattern was the lowest while that of planting both grains and fruit trees was the highest. The environmental sustainability index (ESI) of planting grains pattern was less than 1 and both emergy and ESI were much lower than national averages. The ESI of planting both grains and fruit trees pattern was the highest. In summary, comparison of the three patterns showed that planting both grains and fruit trees had better sustainability and high stability and the emergy production efficiency was high. Thus, it was suggested to change the agricultural development from watershed based units to multi-industry integrated mode.

  2. Land cover change of watersheds in Southern Guam from 1973 to 2001.

    Science.gov (United States)

    Wen, Yuming; Khosrowpanah, Shahram; Heitz, Leroy

    2011-08-01

    Land cover change can be caused by human-induced activities and natural forces. Land cover change in watershed level has been a main concern for a long time in the world since watersheds play an important role in our life and environment. This paper is focused on how to apply Landsat Multi-Spectral Scanner (MSS) satellite image of 1973 and Landsat Thematic Mapper (TM) satellite image of 2001 to determine the land cover changes of coastal watersheds from 1973 to 2001. GIS and remote sensing are integrated to derive land cover information from Landsat satellite images of 1973 and 2001. The land cover classification is based on supervised classification method in remote sensing software ERDAS IMAGINE. Historical GIS data is used to replace the areas covered by clouds or shadows in the image of 1973 to improve classification accuracy. Then, temporal land cover is utilized to determine land cover change of coastal watersheds in southern Guam. The overall classification accuracies for Landsat MSS image of 1973 and Landsat TM image of 2001 are 82.74% and 90.42%, respectively. The overall classification of Landsat MSS image is particularly satisfactory considering its coarse spatial resolution and relatively bad data quality because of lots of clouds and shadows in the image. Watershed land cover change in southern Guam is affected greatly by anthropogenic activities. However, natural forces also affect land cover in space and time. Land cover information and change in watersheds can be applied for watershed management and planning, and environmental modeling and assessment. Based on spatio-temporal land cover information, the interaction behavior between human and environment may be evaluated. The findings in this research will be useful to similar research in other tropical islands.

  3. A watershed-scale approach to tracing metal contamination in the environment

    Science.gov (United States)

    Church, Stanley E

    1996-01-01

    IntroductionPublic policy during the 1800's encouraged mining in the western United States. Mining on Federal lands played an important role in the growing economy creating national wealth from our abundant and diverse mineral resource base. The common industrial practice from the early days of mining through about 1970 in the U.S. was for mine operators to dispose of the mine wastes and mill tailings in the nearest stream reach or lake. As a result of this contamination, many stream reaches below old mines, mills, and mining districts and some major rivers and lakes no longer support aquatic life. Riparian habitats within these affected watersheds have also been impacted. Often, the water from these affected stream reaches is generally not suitable for drinking, creating a public health hazard. The recent Department of Interior Abandoned Mine Lands (AML) Initiative is an effort on the part of the Federal Government to address the adverse environmental impact of these past mining practices on Federal lands. The AML Initiative has adopted a watershed approach to determine those sites that contribute the majority of the contaminants in the watershed. By remediating the largest sources of contamination within the watershed, the impact of metal contamination in the environment within the watershed as a whole is reduced rather than focusing largely on those sites for which principal responsible parties can be found.The scope of the problem of metal contamination in the environment from past mining practices in the coterminous U.S. is addressed in a recent report by Ferderer (1996). Using the USGS1:2,000,000-scale hydrologic drainage basin boundaries and the USGS Minerals Availability System (MAS) data base, he plotted the distribution of 48,000 past-producing metal mines on maps showing the boundaries of lands administered by the various Federal Land Management Agencies (FLMA). Census analysis of these data provided an initial screening tool for prioritization of

  4. Socioeconomic issues for the Bear River Watershed Conservation Land Area Protection Plan

    Science.gov (United States)

    Thomas, Catherine Cullinane; Huber, Christopher; Gascoigne, William; Koontz, Lynne

    2012-01-01

    The Bear River Watershed Conservation Area is located in the Bear River Watershed, a vast basin covering fourteen counties across three states. Located in Wyoming, Utah, and Idaho, the watershed spans roughly 7,500 squares miles: 1,500 squares miles in Wyoming; 2,700 squares miles in Idaho; and 3,300 squares miles in Utah (Utah Division of Water Resources, 2004). Three National Wildlife Refuges are currently contained within the boundary of the BRWCA: the Bear River Migratory Bird Refuge in Utah, the Bear Lake National Wildlife Refuge in Idaho, and the Cokeville Meadows National Wildlife Refuge in Wyoming. In 2010, the U.S. Fish and Wildlife Service conducted a Preliminary Project Proposal and identified the Bear River Watershed Conservation Area as having high-value wildlife habitat. This finding initiated the Land Protection Planning process, which is used by the U.S. Fish and Wildlife Service to study land conservation opportunities including adding lands to the National Wildlife Refuge System. The U.S. Fish and Wildlife Service proposes to include part of the Bear River Watershed Conservation Area in the Refuge System by acquiring up to 920,000 acres of conservation easements from willing landowners to maintain landscape integrity and habitat connectivity in the region. The analysis described in this report provides a profile of the social and economic conditions in the Bear River Watershed Conservation Area and addresses social and economic questions and concerns raised during public involvement in the Land Protection Planning process.

  5. Distributed modeling of radiocesium washoff from the experimental watershed plots of the Fukushima fallout zone

    Science.gov (United States)

    Kivva, Sergei; Zheleznyak, Mark; Konoplev, Alexei; Nanba, Kenji; Onda, Yuichi; Wakiyama Yoshifumi Wakiyama, Yoshifumi

    2015-04-01

    The distributed hydrological "rainfall- runoff" models provide possibilities of the physically based simulation of surface and subsurface flow on watersheds based on the GIS processed data. The success of such modeling approaches for the predictions of the runoff and soil erosion provides a basis for the implementation of the distributed models of the radionuclide washoff from the watersheds. The field studies provided on the Chernobyl and Fukushima catchments provides a unique data sets for the comparative testing and improvements of the modeling tools for the watersheds located in the areas of the very different geographical and hydro-meteorological condition The set of USLE experimental plots has been established by CRIED, University of Tsukuba after the Fukushima accident to study soil erosion and 137Cs wash off from the watersheds (Onda et al, 2014). The distributed watershed models of surface and subsurface flow, sediment and radionuclide transport has been used to simulate the radionuclide transport in the basin Dnieper River, Ukraine and the watersheds of Prefecture Fuksuhima. DHSVM-R is extension of the distributed hydrological model DHSVM (Lettenmayer, Wigmosta et al, 1996-2014) by the including into it the module of the watershed radionuclide transport. DHSVM is a physically based, distributed hydrology-vegetation model for complex terrain based on the numerical solution of the network of one-dimensional equations. The surface flow submodel of DHSMV has been modified: four-directions schematization for the model's cells has been replaced by the eight-directions scheme, more numerically efficient finite -differences scheme was implemented. The new module of radionuclide wash-off from catchment and transport via stream network in soluble phase and on suspended sediments including bottom-water exchange processes was developed for DHSMV-R. DHSVM-R was implemented recently within Swedish- Ukrainian ENSURE project for the modeling of 234U wash-off from the

  6. Asotin Creek model watershed plan: Asotin County, Washington

    International Nuclear Information System (INIS)

    1995-01-01

    The Northwest Power Planning Council completed its ''Strategy for Salmon'' in 1992. This is a plan, composed of four specific elements,designed to double the present production of 2.5 million salmon in the Columbia River watershed. These elements have been called the ''four H's'': (1) improve harvest management; (2) improve hatcheries and their production practices; (3) improve survival at hydroelectric dams; and (4) improve and protect fish habitat. The Asotin Creek Model Watershed Plan is the first to be developed in Washington State which is specifically concerned with habitat protection and restoration for salmon and trout. The plan is consistent with the habitat element of the ''Strategy for Salmon''. Asotin Creek is similar in many ways to other salmon-bearing streams in the Snake River system. Its watershed has been significantly impacted by human activities and catastrophic natural events, such as floods and droughts. It supports only remnant salmon and trout populations compared to earlier years. It will require protection and restoration of its fish habitat and riparian corridor in order to increase its salmonid productivity

  7. Small Reservoir Impact on Simulated Watershed-Scale Nutrient Yield

    Directory of Open Access Journals (Sweden)

    Shane J. Prochnow

    2007-01-01

    Full Text Available The soil and water assessment tool (SWAT is used to assess the influence of small upland reservoirs (PL566 on watershed nutrient yield. SWAT simulates the impact of collectively increasing and decreasing PL566 magnitudes (size parameters on the watershed. Totally removing PL566 reservoirs results in a 100% increase in total phosphorus and an 82% increase in total nitrogen, while a total maximum daily load (TMDL calling for a 50% reduction in total phosphorus can be achieved with a 500% increase in the magnitude of PL566s in the watershed. PL566 reservoirs capture agriculture pollution in surface flow, providing long-term storage of these constituents when they settle to the reservoir beds. A potential strategy to reduce future downstream nutrient loading is to enhance or construct new PL566 reservoirs in the upper basin to better capture agricultural runoff.

  8. Testing a two-scale focused conservation strategy for reducing phosphorus and sediment loads from agricultural watersheds

    Science.gov (United States)

    Carvin, Rebecca; Good, Laura W.; Fitzpatrick, Faith A.; Diehl, Curt; Songer, Katherine; Meyer, Kimberly J.; Panuska, John C.; Richter, Steve; Whalley, Kyle

    2018-01-01

    This study tested a focused strategy for reducing phosphorus (P) and sediment loads in agricultural streams. The strategy involved selecting small watersheds identified as likely to respond relatively quickly, and then focusing conservation practices on high-contributing fields within those watersheds. Two 5,000 ha (12,360 ac) watersheds in the Driftless Area of south central Wisconsin, previously ranked in the top 6% of similarly sized Wisconsin watersheds for expected responsiveness to conservation efforts to reduce high P and sediment loads, were chosen for the study. The stream outlets from both watersheds were monitored from October of 2006 through September of 2016 for streamflow and concentrations of sediment, total P, and, beginning in October of 2009, total dissolved P. Fields and pastures having the highest potential P delivery to the streams in each watershed were identified using the Wisconsin P Index (Good et al. 2012). After three years of baseline monitoring (2006 to 2009), farmers implemented both field- and farm-based conservation practices in one watershed (treatment) as a means to reduce sediment and P inputs to the stream from the highest contributing areas, whereas there were no out-of-the-ordinary conservation efforts in the second watershed (control). Implementation occurred primarily in 2011 and 2012. In the four years following implementation of conservation practices (2013 through 2016), there was a statistically significant reduction in storm-event suspended sediment loads in the treatment watershed compared to the control watershed when the ground was not frozen (p = 0.047). While there was an apparent reduction in year-round suspended sediment event loads, it was not statistically significant at the 95% confidence level (p = 0.15). Total P loads were significantly reduced for runoff events (p < 0.01) with a median reduction of 50%. Total P and total dissolved P concentrations for low-flow conditions were also significantly reduced (p

  9. Small watershed-scale research and the challenges ahead

    Science.gov (United States)

    Larsen, M. C.; Glynn, P. D.

    2008-12-01

    For the past century, Federal mission science agencies (eg. USFS, NRCS, ARS, USGS) have had the long- term agency goals, infrastructure, and research staff to conduct research and data collection in small watersheds as well as support these activities for non-Federal partners. The National Science Foundation has been a strong partner with the Federal mission science agencies, through the LTER network, which is dependent on Federally supported research sites, and more recently with the emerging CUAHSI, WATERS, CZEN, and NEON initiatives. Much of the NSF-supported research builds on the foundations provided by their Federally supported partners, who sustain the long-term, extensive monitoring activity and research sites, including making long-term data available to all users via public interfaces. The future of these programs, and their enhancement/expansion to face the intensifying concurrent challenges of population growth, land-use change, and climate change, is dependent on a well-funded national commitment to basic science. Such a commitment will allow the scientific community to advance our understanding of these scientific challenges and to synthesize our understanding among research sites and at the national scale. Small watersheds serve as essential platforms where hypotheses can be tested, as sentinels for climate change, and as a basis for comparing and scaling up local information and syntheses to regional and continental scales. The science guides resource management and mitigation decisions and is fundamental to the development of predictive models. Furthermore, small-watershed research and monitoring programs are generally undervalued because many research questions that can be addressed now or in the future were not anticipated when the sites were initiated. Some examples include: 1) the quantification, characterization, and understanding of how emerging contaminants, personal care products, and endocrine disruptors affect organisms - substances that

  10. EnviroAtlas - Number of Water Markets per HUC8 Watershed, U.S., 2015, Forest Trends' Ecosystem Marketplace

    Science.gov (United States)

    This EnviroAtlas dataset contains polygons depicting the number of watershed-level market-based programs, referred to herein as markets, in operation per 8-digit HUC watershed throughout the United States. The data were collected via surveys and desk research conducted by Forest Trends' Ecosystem Marketplace during 2014 regarding markets operating to protect watershed ecosystem services. Utilizing these data, the number of water market coverage areas overlaying each HUC8 watershed were calculated to produce this dataset. Only water markets identified as operating at the watershed level (i.e., single or multiple watersheds define the market boundaries) were included in the count of water markets per HUC8 watershed. Excluded were water markets operating at the national, state, county, or federal lands level and all water projects. Attribute data include the watershed's 8-digit hydrologic unit code and name, in addition to the watershed-level water market count associated with the watershed. This dataset was produced by Forest Trends' Ecosystem Marketplace to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Addi

  11. Valuation of Forest Resources in Watershed Areas: Selected Applications in Makiling Forest Reserve

    OpenAIRE

    Francisco, Herminia A.; Espiritu, Nena O.

    1999-01-01

    The valuation of resources found in the watershed area is important in assessing the impacts of changes in the watershed. While the change will have positive impacts which are short-term in nature, there are long-term environmental damages associated with economic benefits. This paper gives a rational judgment on the soundness of such changes through cost and benefit analysis. The watershed approach is utilized to capture the effects that are relevant in the analysis.

  12. Multi-scale trends analysis of landscape stressors in an urbanizing coastal watershed

    Science.gov (United States)

    Anthropogenic land based stressors within a watershed can deliver major impacts to downstream and adjacent coastal waterways affecting water quality and estuarine habitats. Our research focused on a subset of non-point sources of watershed stressors specifically, human population...

  13. Agroforestry systems in the Sonora River Watershed, Mexico: An example of effective land stewardship

    Science.gov (United States)

    Diego Valdez-Zamudio; Peter F. Ffolliot

    2000-01-01

    The Sonora River watershed is located in the central part of the state of Sonora,Mexico, and is one of the most important watersheds in the region. Much of the state's economy depends on the natural resources, products, and productive activities developed in this watershed. Many natural areas along the river and its tributaries have been converted to a large...

  14. Travel time analysis for a subsurface drained sub-watershed in Upper Big Walnut Creek Watershed, Ohio

    Science.gov (United States)

    Runoff travel time, which is a function of watershed and storm characteristics, is an important parameter affecting the prediction accuracy of hydrologic models. Although, time of concentration (tc) is a most widely used time parameter, it has multiple conceptual and computational definitions. Most ...

  15. LBA-ECO ND-01 Watershed Deforestation from Landsat TM Series, Rondonia, Brazil: 1999

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set provides estimates of watershed deforestation, as a proportion of the total area of watersheds, in Rondonia, Brazil for 1999. Deforestation...

  16. 76 FR 68499 - Draft WaterSMART Cooperative Watershed Management Program Funding Opportunity Announcement

    Science.gov (United States)

    2011-11-04

    ... watershed needs. Through this program, we provide Federal leadership and assistance on; Efficient use of... availability and quality issues within the relevant watershed; and Otherwise meet the definition of a...

  17. Land Capability Evaluation of Upper Sekampung Watersheds

    Directory of Open Access Journals (Sweden)

    Irwan Sukri Banuwa

    2008-05-01

    Full Text Available Land degradation is a serious problem in the Upper Sekampung Watersheds. This is because the farmers cultivated in steep land to coffee crops without in adequate soil and water conservation practices. The land degradation is mostly caused by erosion. The erosion problem not only stripping the most fertile top soil and decreasing crop production, but also resulting problems in lowland. Therefore, the reorientation land management should be improved to produce agriculture sustainability. The first step is to evaluated land capability this area. The objectives of the research were evaluate land capability of Upper Sekampung Watersheds. The results showed that the Upper Sekampung Watersheds were dominated with class and subclass land capability of III-l2 about 17.630,51 ha (41,58%. All of the constrain for each land capability in this area is erosion hazard, especially land slope. From this research, cultivated land to coffee base crops were allowed in land capability II-l1.e1, III-l2, IV-l3, and VI-l4, with in adequate soil and water conservation practices. In contrary, the land capability of VII-l5 unsuitable for agriculture, they should be a nature or for conservation forest.

  18. The role of social science in sucessfully implementing watershed management strategies

    Science.gov (United States)

    Kristin Floress; Kofi Akamani; Kathleen E. Halvorsen; Andrew T. Kozich; Mae. Davenport

    2015-01-01

    Successful watershed management and changes in water quality conditions are dependent upon changes in human behaviors. Those tasked with managing watersheds and other natural resources often assume that people are not acting to protect or restore their resources because they lack the necessary knowledge and understanding. However, individual behaviors are impacted by a...

  19. Local-scale and watershed-scale determinants of summertime urban stream temperatures

    Science.gov (United States)

    Derek B. Booth; Kristin A. Kraseski; C. Rhett. Jackson

    2014-01-01

    The influence of urbanization on the temperature of small streams is widely recognized, but these effects are confounded by the great natural variety of their contributing watersheds. To evaluate the relative importance of local-scale and watershed-scale factors on summer temperatures in urban streams, hundreds of near-instantaneous temperature measurements throughout...

  20. LBA-ECO ND-01 Watershed Deforestation from Landsat TM Series, Rondonia, Brazil: 1999

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides estimates of watershed deforestation, as a proportion of the total area of watersheds, in Rondonia, Brazil for 1999. Deforestation maps were...