WorldWideScience

Sample records for svzsc induced functional

  1. Novel in vivo imaging techniques for trafficking the behavior of subventricular zone neural stem cells (SVZSC) and SVZSC induced functional repair

    International Nuclear Information System (INIS)

    Anna-Liisa Brownell

    2003-01-01

    Adult progenitor cells hold promise for therapeutic treatment where there has been a disabling loss of function due to death of cells from trauma, disease or aging. However, it will be essential in clinical application to be able to follow the fate of the transplanted cells over time using in vivo tracking methods. We have developed protocol for labeling of progenitor cells to monitor cell trafficking by high resolution magnetic resonance imaging (MRI) and super high resolution positron emission tomography (PET). We have transfected rat subventricular zone stem cells (SVZ, progenitor cell line) and another control cell line (PC12, pheochromocytoma cells) utilizing super paramagnetic iron oxide and poly-L-lysine complex for MR imaging or radiolabeling with 18F-fluor deoxy-D- glucose for PET imaging. The labeled cells were transplanted into the rostral migratory stream (RMS) or striatum of normal or 6-hydroxydopamine lesioned Spraque-Dawley rats. Longitudinal MRI studies (up to 40 days) showed that transplantation site has significant impact to the fate of the cells; when SVZ cells were transplanted into the RMS, cells migrated several centimeter into the olfactory bulb; after transplantation into the striatum, the migration was minimal, only 2 mm. PC 12 cells grew a massive tumor after the striatal implantation and significantly smaller tumor after the RMS implantation. PET studies conducted immediately after transplantation verified the transplantation site. MRI studies were able to show the whole path of migration in one image, since part of the cells die during migration and will get detected because of iron content. Endpoint histological studies verified the cell survival and immunohistochemical studies revealed the differentiation of the transplanted cells into astrocytes and neurons

  2. Novel in vivo imaging techniques for trafficking the behavior of subventricular zone neural stem cells (SVZSC) and SVZSC induced functional repair

    Energy Technology Data Exchange (ETDEWEB)

    Anna-Liisa Brownell

    2003-11-28

    Adult progenitor cells hold promise for therapeutic treatment where there has been a disabling loss of function due to death of cells from trauma, disease or aging. However, it will be essential in clinical application to be able to follow the fate of the transplanted cells over time using in vivo tracking methods. We have developed protocol for labeling of progenitor cells to monitor cell trafficking by high resolution magnetic resonance imaging (MRI) and super high resolution positron emission tomography (PET). We have transfected rat subventricular zone stem cells (SVZ, progenitor cell line) and another control cell line (PC12, pheochromocytoma cells) utilizing super paramagnetic iron oxide and poly-L-lysine complex for MR imaging or radiolabeling with 18F-fluor deoxy-D- glucose for PET imaging. The labeled cells were transplanted into the rostral migratory stream (RMS) or striatum of normal or 6-hydroxydopamine lesioned Spraque-Dawley rats. Longitudinal MRI studies (up to 40 days) showed that transplantation site has significant impact to the fate of the cells; when SVZ cells were transplanted into the RMS, cells migrated several centimeter into the olfactory bulb; after transplantation into the striatum, the migration was minimal, only 2 mm. PC 12 cells grew a massive tumor after the striatal implantation and significantly smaller tumor after the RMS implantation. PET studies conducted immediately after transplantation verified the transplantation site. MRI studies were able to show the whole path of migration in one image, since part of the cells die during migration and will get detected because of iron content. Endpoint histological studies verified the cell survival and immunohistochemical studies revealed the differentiation of the transplanted cells into astrocytes and neurons.

  3. Gravity induced wave function collapse

    Science.gov (United States)

    Gasbarri, G.; Toroš, M.; Donadi, S.; Bassi, A.

    2017-11-01

    Starting from an idea of S. L. Adler [in Quantum Nonlocality and Reality: 50 Years of Bell's Theorem, edited by M. Bell and S. Gao (Cambridge University Press, Cambridge, England 2016)], we develop a novel model of gravity induced spontaneous wave function collapse. The collapse is driven by complex stochastic fluctuations of the spacetime metric. After deriving the fundamental equations, we prove the collapse and amplification mechanism, the two most important features of a consistent collapse model. Under reasonable simplifying assumptions, we constrain the strength ξ of the complex metric fluctuations with available experimental data. We show that ξ ≥10-26 in order for the model to guarantee classicality of macro-objects, and at the same time ξ ≤10-20 in order not to contradict experimental evidence. As a comparison, in the recent discovery of gravitational waves in the frequency range 35 to 250 Hz, the (real) metric fluctuations reach a peak of ξ ˜10-21.

  4. Mitochondrial respiratory function induces endogenous hypoxia.

    Science.gov (United States)

    Prior, Sara; Kim, Ara; Yoshihara, Toshitada; Tobita, Seiji; Takeuchi, Toshiyuki; Higuchi, Masahiro

    2014-01-01

    Hypoxia influences many key biological functions. In cancer, it is generally believed that hypoxic condition is generated deep inside the tumor because of the lack of oxygen supply. However, consumption of oxygen by cancer should be one of the key means of regulating oxygen concentration to induce hypoxia but has not been well studied. Here, we provide direct evidence of the mitochondrial role in the induction of intracellular hypoxia. We used Acetylacetonatobis [2-(2'-benzothienyl) pyridinato-kN, kC3'] iridium (III) (BTP), a novel oxygen sensor, to detect intracellular hypoxia in living cells via microscopy. The well-differentiated cancer cell lines, LNCaP and MCF-7, showed intracellular hypoxia without exogenous hypoxia in an open environment. This may be caused by high oxygen consumption, low oxygen diffusion in water, and low oxygen incorporation to the cells. In contrast, the poorly-differentiated cancer cell lines: PC-3 and MDAMB231 exhibited intracellular normoxia by low oxygen consumption. The specific complex I inhibitor, rotenone, and the reduction of mitochondrial DNA (mtDNA) content reduced intracellular hypoxia, indicating that intracellular oxygen concentration is regulated by the consumption of oxygen by mitochondria. HIF-1α was activated in endogenously hypoxic LNCaP and the activation was dependent on mitochondrial respiratory function. Intracellular hypoxic status is regulated by glucose by parabolic dose response. The low concentration of glucose (0.045 mg/ml) induced strongest intracellular hypoxia possibly because of the Crabtree effect. Addition of FCS to the media induced intracellular hypoxia in LNCaP, and this effect was partially mimicked by an androgen analog, R1881, and inhibited by the anti-androgen, flutamide. These results indicate that mitochondrial respiratory function determines intracellular hypoxic status and may regulate oxygen-dependent biological functions.

  5. Mitochondrial respiratory function induces endogenous hypoxia.

    Directory of Open Access Journals (Sweden)

    Sara Prior

    Full Text Available Hypoxia influences many key biological functions. In cancer, it is generally believed that hypoxic condition is generated deep inside the tumor because of the lack of oxygen supply. However, consumption of oxygen by cancer should be one of the key means of regulating oxygen concentration to induce hypoxia but has not been well studied. Here, we provide direct evidence of the mitochondrial role in the induction of intracellular hypoxia. We used Acetylacetonatobis [2-(2'-benzothienyl pyridinato-kN, kC3'] iridium (III (BTP, a novel oxygen sensor, to detect intracellular hypoxia in living cells via microscopy. The well-differentiated cancer cell lines, LNCaP and MCF-7, showed intracellular hypoxia without exogenous hypoxia in an open environment. This may be caused by high oxygen consumption, low oxygen diffusion in water, and low oxygen incorporation to the cells. In contrast, the poorly-differentiated cancer cell lines: PC-3 and MDAMB231 exhibited intracellular normoxia by low oxygen consumption. The specific complex I inhibitor, rotenone, and the reduction of mitochondrial DNA (mtDNA content reduced intracellular hypoxia, indicating that intracellular oxygen concentration is regulated by the consumption of oxygen by mitochondria. HIF-1α was activated in endogenously hypoxic LNCaP and the activation was dependent on mitochondrial respiratory function. Intracellular hypoxic status is regulated by glucose by parabolic dose response. The low concentration of glucose (0.045 mg/ml induced strongest intracellular hypoxia possibly because of the Crabtree effect. Addition of FCS to the media induced intracellular hypoxia in LNCaP, and this effect was partially mimicked by an androgen analog, R1881, and inhibited by the anti-androgen, flutamide. These results indicate that mitochondrial respiratory function determines intracellular hypoxic status and may regulate oxygen-dependent biological functions.

  6. Electron Beam Induced Functionalization of Fluoropolymers

    International Nuclear Information System (INIS)

    Lappan, U.

    2006-01-01

    Ionizing radiation affects the properties of polymers by chain scission and cross-linking reactions. One process will usually predominate, depending on the chemical structure of the polymer and the irradiation conditions such as temperature and atmosphere. Poly(tetrafluoroethylene) (PTFE) and the perfluorinated copolymers poly(tetrafluoroethylene-co-hexafluoropropylene) (FEP) and poly(tetrafluoroethylene-co-perfluoropropylvinyl ether) (PFA) undergo predominantly chain scission, if the irradiation is performed at room temperature. This shortcoming is exploited by converting PTFE into low molecular weight micropowders. The irradiation of PTFE in the presence of air results in micropowders functionalized with oxygen-containing groups. The concentration of end groups was investigated by FTIR and 19F solid-state NMR. The data were used to calculate number-average molecular weights. It was demonstrated that PTFE can be cross-linked by irradiation above its crystalline melting temperature in an oxygen-free atmosphere. Evidence for cross-links in PTFE was derived directly from structural information using 19 F solid-state NMR. FEP is understood to undergo cross-linking by irradiation above the glass transition temperature. It was found that also PFA can be branched and cross-linked by irradiation under special conditions. Radiation-induced grafting of styrene into fluoropolymer films and subsequent sulfonation offers an attractive way to prepare proton exchange membranes. Recently, radiation-induced grafting into cross-linked PTFE was reported. Modified FEP, PFA and ETFE films have been used as base material in this study. The modified films have been prepared by irradiation in nitrogen atmosphere at different temperatures up to temperatures above the melting temperature of the fluoropolymer

  7. Impact of Controlled Induced Hypotension on Cognitive Functions of Patients Undergoing Functional Endoscopic Sinus Surgery

    OpenAIRE

    Nowak, Stanis?aw; O?dak, Anna; Kluzik, Anna; Drobnik, Leon

    2016-01-01

    Background Controlled induced hypotension guarantees less blood loss and better visibility of the surgical site. The impact of hypotension on post-operative cognitive functions is still being discussed. The objective of this study was to evaluate the effects of controlled induced hypotension on the cognitive functions of patients undergoing functional endoscopic sinus surgery (FESS). Material/Methods We allocated 47 patients with a good grade of preoperative cognitive functions evaluated with...

  8. Mechanochemistry Induced Using Force Exerted by a Functionalized Microscope Tip

    DEFF Research Database (Denmark)

    Zhang, Yajie; Wang, Yongfeng; Lü, Jing-Tao

    2017-01-01

    Atomic-scale mechanochemistry is realized from force exerted by a C60 -functionalized scanning tunneling microscope tip. Two conformers of tin phthalocyanine can be prepared on coinage-metal surfaces. A transition between these conformers is induced on Cu(111) and Ag(100). Density-functional calc......Atomic-scale mechanochemistry is realized from force exerted by a C60 -functionalized scanning tunneling microscope tip. Two conformers of tin phthalocyanine can be prepared on coinage-metal surfaces. A transition between these conformers is induced on Cu(111) and Ag(100). Density...

  9. Fasting-induced hormonal regulation of lysosomal function

    OpenAIRE

    Chen, Liqun; Wang, Ke; Long, Aijun; Jia, Liangjie; Zhang, Yuanyuan; Deng, Haiteng; Li, Yu; Han, Jinbo; Wang, Yiguo

    2017-01-01

    Lysosomes are centers for nutrient sensing and recycling that allow mammals to adapt to starvation. Regulation of lysosome dynamics by internal nutrient signaling is well described, but the mechanisms by which external cues modulate lysosomal function are unclear. Here, we describe an essential role of the fasting-induced hormone fibroblast growth factor 21 (FGF21) in lysosome homeostasis in mice. Fgf21 deficiency impairs hepatic lysosomal function by blocking transcription factor EB (TFEB), ...

  10. Intermittent hypoxia induces functional recovery following cervical spinal injury.

    Science.gov (United States)

    Vinit, Stéphane; Lovett-Barr, Mary Rachael; Mitchell, Gordon S

    2009-11-30

    Respiratory-related complications are the leading cause of death in spinal cord injury (SCI) patients. Few effective SCI treatments are available after therapeutic interventions are performed in the period shortly after injury (e.g. spine stabilization and prevention of further spinal damage). In this review we explore the capacity to harness endogenous spinal plasticity induced by intermittent hypoxia to optimize function of surviving (spared) neural pathways associated with breathing. Two primary questions are addressed: (1) does intermittent hypoxia induce plasticity in spinal synaptic pathways to respiratory motor neurons following experimental SCI? and (2) can this plasticity improve respiratory function? In normal rats, intermittent hypoxia induces serotonin-dependent plasticity in spinal pathways to respiratory motor neurons. Early experiments suggest that intermittent hypoxia also enhances respiratory motor output in experimental models of cervical SCI (cervical hemisection) and that the capacity to induce functional recovery is greater with longer durations post-injury. Available evidence suggests that intermittent hypoxia-induced spinal plasticity has considerable therapeutic potential to treat respiratory insufficiency following chronic cervical spinal injury.

  11. Kidney and Liver Function Parameters in Alloxan-Induced Diabetic ...

    African Journals Online (AJOL)

    Aloe barbadensis juice extract has been reported to possess hypoglycaemic property but the effects of its use on kidney and liver functions in diabetic animals have not been well investigated. This study investigated some biochemical parameters in the liver and kidney of alloxan-induced diabetic rats treated with Aloe ...

  12. Comments on dyadic Green's functions and induced currents

    DEFF Research Database (Denmark)

    Appel-Hansen, Jørgen

    1996-01-01

    The article formulates the wave equation in regions with induced currents in the case of scattering by a perfect conductor. By using this formulation the ordinary solution using the dyadic Green's function for the problem is discussed. The region of validity of this solution is pointed out...

  13. Functional thermogenic beige adipogenesis is inducible in human neck fat.

    Science.gov (United States)

    Lee, P; Werner, C D; Kebebew, E; Celi, F S

    2014-02-01

    Recent studies suggest human neck brown adipose tissue (BAT) to consist of 'brown adipocyte (BA)-like' or beige adipocytes. However, little is known about their thermogenic function. Within the beige adipocyte transcriptome, fibroblast growth factor-21 (FGF21) is a gene whose protein product acts as an adipokine, regulating cold-induced thermogenesis in animals. Here, we explored (i) the adipogenic potential, thermogenic function and FGF21 secretory capacity of beige adipocytes derived from human neck fat and (ii) the role of FGF21 in modulating adipose bioenergetics. Progenitors isolated from human cervical fat were differentiated into adipocytes with either a BA-like or white adipocyte (WA) phenotype. FGF21 secretion was measured by enzyme-linked immuosorbent assay. Real-time PCR/western blotting was used to determine cellular mRNA/protein levels. Extracellular flux bioanalyzer was used to quantify adipocyte oxygen consumption and fatty acid oxidation. Adipocyte heat production was measured by infrared thermography. Under hormonal manipulation, primary human neck pre-adipocytes differentiated into adipocytes with either BA-like or WA phenotypes, on gene/protein and functional levels. BA-like cells expressed beige but not classic BA markers. During BA differentiation, FGF21 gene expression and secretion were increased, and were augmented following norepinephrine exposure (a cold mimic in vitro). Differentiated WA expressed β-klotho, a critical co-factor mediating FGF21 action. Treatment of WA with FGF21-induced UCP1 expression and increased oxygen consumption, respiratory uncoupling, norepinephrine-mediated thermogenesis, fatty acid oxidation and heat production, thus recapitulating the association between cold-induced FGF21 secretion and cold-induced thermogenesis in vivo. Beige adipocytes are thermogenic in humans. FGF21 is a beige adipokine capable of promoting a brown fat-like thermogenic program in WAs. This study provides first evidence of inducible

  14. Oxidative stress induced inflammation initiates functional decline of tear production.

    Directory of Open Access Journals (Sweden)

    Yuichi Uchino

    Full Text Available Oxidative damage and inflammation are proposed to be involved in an age-related functional decline of exocrine glands. However, the molecular mechanism of how oxidative stress affects the secretory function of exocrine glands is unclear. We developed a novel mev-1 conditional transgenic mouse model (Tet-mev-1 using a modified tetracycline system (Tet-On/Off system. This mouse model demonstrated decreased tear production with morphological changes including leukocytic infiltration and fibrosis. We found that the mev-1 gene encodes Cyt-1, which is the cytochrome b(560 large subunit of succinate-ubiquinone oxidoreductase in complex II of mitochondria (homologous to succinate dehydrogenase C subunit (SDHC in humans. The mev-1 gene induced excessive oxidative stress associated with ocular surface epithelial damage and a decrease in protein and aqueous secretory function. This new model provides evidence that mitochondrial oxidative damage in the lacrimal gland induces lacrimal dysfunction resulting in dry eye disease. Tear volume in Tet-mev-1 mice was lower than in wild type mice and histopathological analyses showed the hallmarks of lacrimal gland inflammation by intense mononuclear leukocytic infiltration and fibrosis in the lacrimal gland of Tet-mev-1 mice. These findings strongly suggest that oxidative stress can be a causative factor for the development of dry eye disease.

  15. Functional Sites Induce Long-Range Evolutionary Constraints in Enzymes.

    Directory of Open Access Journals (Sweden)

    Benjamin R Jack

    2016-05-01

    Full Text Available Functional residues in proteins tend to be highly conserved over evolutionary time. However, to what extent functional sites impose evolutionary constraints on nearby or even more distant residues is not known. Here, we report pervasive conservation gradients toward catalytic residues in a dataset of 524 distinct enzymes: evolutionary conservation decreases approximately linearly with increasing distance to the nearest catalytic residue in the protein structure. This trend encompasses, on average, 80% of the residues in any enzyme, and it is independent of known structural constraints on protein evolution such as residue packing or solvent accessibility. Further, the trend exists in both monomeric and multimeric enzymes and irrespective of enzyme size and/or location of the active site in the enzyme structure. By contrast, sites in protein-protein interfaces, unlike catalytic residues, are only weakly conserved and induce only minor rate gradients. In aggregate, these observations show that functional sites, and in particular catalytic residues, induce long-range evolutionary constraints in enzymes.

  16. Separation functional fibers by radiation induced graft polymerization and application

    International Nuclear Information System (INIS)

    Fujiwara, K.

    2007-01-01

    Commercially available non-woven fabric made of polyolefines was used as trunk polymer for radiation induced graft polymerization (RIGP). Ion exchange, antimicrobial and catalytic function was introduced on the fabric by RIGP. All of these materials are commercialized. Ion exchange fabric prepared by RIGP are applied for chemical filter to remove ionic impurities in semiconductor factory and are also applied for continuous de-ionization apparatus to make pure water in combination with ion conductive spacer. Polyvinylpyrrolidone-iodide grafted fabric was produced as antimicrobial fabric and applied for mask. Metal oxide nanoparticle was immobilized onto the ion exchange fabric. This material has catalytic function and was applied for the removal of ozone from air. In all of these applications, long sheets of non-woven fabrics are applied as a trunk polymer. Manufacturing process of RIGP for long sheet is also reported here

  17. Separation functional fibers by radiation induced graft polymerization and application

    Science.gov (United States)

    Fujiwara, K.

    2007-12-01

    Commercially available non-woven fabric made of polyolefines was used as trunk polymer for radiation induced graft polymerization (RIGP). Ion exchange, antimicrobial and catalytic function was introduced on the fabric by RIGP. All of these materials are commercialized. Ion exchange fabric prepared by RIGP are applied for chemical filter to remove ionic impurities in semiconductor factory and are also applied for continuous de-ionization apparatus to make pure water in combination with ion conductive spacer. Polyvinylpyrrolidone-iodide grafted fabric was produced as antimicrobial fabric and applied for mask. Metal oxide nanoparticle was immobilized onto the ion exchange fabric. This material has catalytic function and was applied for the removal of ozone from air. In all of these applications, long sheets of non-woven fabrics are applied as a trunk polymer. Manufacturing process of RIGP for long sheet is also reported here.

  18. Impact of Controlled Induced Hypotension on Cognitive Functions of Patients Undergoing Functional Endoscopic Sinus Surgery.

    Science.gov (United States)

    Nowak, Stanislaw; Ołdak, Anna; Kluzik, Anna; Drobnik, Leon

    2016-03-18

    Controlled induced hypotension guarantees less blood loss and better visibility of the surgical site. The impact of hypotension on post-operative cognitive functions is still being discussed. The objective of this study was to evaluate the effects of controlled induced hypotension on the cognitive functions of patients undergoing functional endoscopic sinus surgery (FESS). We allocated 47 patients with a good grade of preoperative cognitive functions evaluated with the Mini-Mental State Examination to 3 groups (1 - mild hypotension, 2 - intermediate hypotension, 3 - severe hypotension) according to the degree of mean intraoperative arterial pressure compared with preoperative blood pressure. Cognitive functions were evaluated preoperatively, 6 h, and 30 h postoperatively with standardized tests: the Stroop Test, Trail Making Test (TMT), and Verbal Fluency Test (VFT). A decrease in the test results and increase in the number of mistakes made were considered an impairment of cognitive functions. A total of 47 patients (group 1 - mild hypotension - 15, group 2 - intermediate hypotension - 19, group 3 - severe hypotension - 13) were included in the study. A significant decrease was observed in all the 3 groups after Stroop A test 6h postoperatively but it improved 30h postoperatively, without differences between the groups. Neither a significant decrease in the test results nor an increase in the number of mistakes was noted for Stroop B tests, TMT A&B tests and VFT. The degree of controlled intraoperative hypotension during FESS did not influence the results of psychometric tests.

  19. Dexamethasone impairs hypoxia-inducible factor-1 function

    International Nuclear Information System (INIS)

    Wagner, A.E.; Huck, G.; Stiehl, D.P.; Jelkmann, W.; Hellwig-Buergel, T.

    2008-01-01

    Hypoxia-inducible factor-1 (HIF-1) is a heterodimeric transcription-factor composed of α- and β-subunits. HIF-1 is not only necessary for the cellular adaptation to hypoxia, but it is also involved in inflammatory processes and wound healing. Glucocorticoids (GC) are therapeutically used to suppress inflammatory responses. Herein, we investigated whether GC modulate HIF-1 function using GC receptor (GR) possessing (HepG2) and GR deficient (Hep3B) human hepatoma cell cultures as model systems. Dexamethasone (DEX) treatment increased HIF-1α levels in the cytosol of HepG2 cells, while nuclear HIF-1α levels and HIF-1 DNA-binding was reduced. In addition, DEX dose-dependently lowered the hypoxia-induced luciferase activity in a reporter gene system. DEX suppressed the hypoxic stimulation of the expression of the HIF-1 target gene VEGF (vascular endothelial growth factor) in HepG2 cultures. DEX did not reduce hypoxically induced luciferase activity in HRB5 cells, a Hep3B derivative lacking GR. Transient expression of the GR in HRB5 cells restored the susceptibility to DEX. Our study discloses the inhibitory action of GC on HIF-1 dependent gene expression, which may be important with respect to the impaired wound healing in DEX-treated patients

  20. Investigation of cadmium-induced alterations in renal glomerular function

    International Nuclear Information System (INIS)

    Long, T.J.

    1982-01-01

    This research was designed to test the hypothesis that certain aspects of cadmium-induced renal dysfunction are the result of glomerular, rather than classic tubular, injury. To determine whether cadmium-induced proteinuria was due to altered glomerular function, cadmium was administered chronically at a concentration of 185 ppm in the drinking water. This protocol resulted in the production of proteinuria which when analyzed by high pressure liquid chromatography and radioimmunoassay was indistinguishable from that occurring in control rats. Glomerular filtration rate, renal blood flow, and filtration fraction were all significantly depressed after 20-30 weeks of exposure. In order to further investigate these alterations in glomerular function, an acute exposure model was developed. It was found that a single i.p. injection of cadmium in mercaptoethanol resulted in the onset of acute renal failure. The clinical picture was characterized by a reduction in glomerular filtrate rate of 50-90% within 24 hours, with partial to total recovery occurring by day 7 post-exposure. Histological evidence indicated that to a large extent the reduction in GFR was due to tubular blockade and/or backleak of filtrate across damaged tubules

  1. Generation of functional podocytes from human induced pluripotent stem cells

    Directory of Open Access Journals (Sweden)

    Osele Ciampi

    2016-07-01

    Full Text Available Generating human podocytes in vitro could offer a unique opportunity to study human diseases. Here, we describe a simple and efficient protocol for obtaining functional podocytes in vitro from human induced pluripotent stem cells. Cells were exposed to a three-step protocol, which induced their differentiation into intermediate mesoderm, then into nephron progenitors and, finally, into mature podocytes. After differentiation, cells expressed the main podocyte markers, such as synaptopodin, WT1, α-Actinin-4, P-cadherin and nephrin at the protein and mRNA level, and showed the low proliferation rate typical of mature podocytes. Exposure to Angiotensin II significantly decreased the expression of podocyte genes and cells underwent cytoskeleton rearrangement. Cells were able to internalize albumin and self-assembled into chimeric 3D structures in combination with dissociated embryonic mouse kidney cells. Overall, these findings demonstrate the establishment of a robust protocol that, mimicking developmental stages, makes it possible to derive functional podocytes in vitro.

  2. Generation of functional podocytes from human induced pluripotent stem cells.

    Science.gov (United States)

    Ciampi, Osele; Iacone, Roberto; Longaretti, Lorena; Benedetti, Valentina; Graf, Martin; Magnone, Maria Chiara; Patsch, Christoph; Xinaris, Christodoulos; Remuzzi, Giuseppe; Benigni, Ariela; Tomasoni, Susanna

    2016-07-01

    Generating human podocytes in vitro could offer a unique opportunity to study human diseases. Here, we describe a simple and efficient protocol for obtaining functional podocytes in vitro from human induced pluripotent stem cells. Cells were exposed to a three-step protocol, which induced their differentiation into intermediate mesoderm, then into nephron progenitors and, finally, into mature podocytes. After differentiation, cells expressed the main podocyte markers, such as synaptopodin, WT1, α-Actinin-4, P-cadherin and nephrin at the protein and mRNA level, and showed the low proliferation rate typical of mature podocytes. Exposure to Angiotensin II significantly decreased the expression of podocyte genes and cells underwent cytoskeleton rearrangement. Cells were able to internalize albumin and self-assembled into chimeric 3D structures in combination with dissociated embryonic mouse kidney cells. Overall, these findings demonstrate the establishment of a robust protocol that, mimicking developmental stages, makes it possible to derive functional podocytes in vitro. Copyright © 2016. Published by Elsevier B.V.

  3. Study of induced functions by UV in Staphylococcus

    International Nuclear Information System (INIS)

    Silva, B.S. da.

    1982-01-01

    SOS functions induced by ultraviolet (UV) radiation were studied using S. aureus and S. epidermidis. Comparing the results obtained from these two organisms with those described in the literature for E. coli allows us to conclude: the difference in UV sensibility between the lysogenic and non-lysogenic strains of Staphylococcus is extremely large; the dose of UV radiation which results in the maximum induction of the lysogenic strains lead to 99% inactivation of the lysogenic strains; the kinetics of prophage liberation in lysogenic cultures of Staphylococcus is more rapid than those described for E. coli; the dose of UV radiation is much lower than the dose described for E. coli; the maximum W-reactivatio and W-mutagenesis are obtained immediately after the irradiation or within the 15 minutes allowed for the phage adsorption. (author)

  4. Levetiracetam ameliorates ovarian function in streptozotocin-induced diabetic rats.

    Science.gov (United States)

    Akman, Levent; Erbas, Oytun; Akdemir, Ali; Yavasoglu, Altug; Taskiran, Dilek; Kazandi, Mert

    2015-01-01

    Diabetes mellitus can adversely affect gonadal function. In the present study, we aimed to investigate the protective effects and mechanism of action of levetiracetam (LEV) on the ovaries in a streptozotocin (STZ)-induced diabetes model in rats. Twenty-one adult female rats were assigned to three groups as control, diabetes group treated with 1 mL/kg/d saline (STZ + SP) and diabetes group treated with 600 mg/kg/d LEV (STZ + LEV). Following 4 weeks treatment, blood samples were collected for biochemical analysis and ovariectomy was performed for histopathological examination. Plasma anti-Mullerian hormone (AMH), glutathione and total anti-oxidant capacity values were significantly lower whereas lipid peroxides and transforming growth factor-β (TGF-β) values were significantly higher in STZ + SP group compared to control. LEV treatment successfully decreased lipid peroxidation and TGF-β levels, and also increased anti-oxidant parameters and AMH levels in diabetic rats. Saline-treated rats significantly displayed ovarian degeneration and decreased counts of follicles. However, treatment of diabetic rats with LEV effectively prevented the degenerative changes and follicle loss. Also, LEV suppressed ovarian nuclear factor-kappa B (NF-kB) immunoexpression in diabetic rats. Taken together, we propose that LEV can ameliorate the adverse effects of diabetes on ovarian function via decreasing NF-kB expression and oxidative stress and increasing anti-oxidant status in rats.

  5. Ginger extract inhibits LPS induced macrophage activation and function

    Directory of Open Access Journals (Sweden)

    Bruch David

    2008-01-01

    Full Text Available Abstract Background Macrophages play a dual role in host defence. They act as the first line of defence by mounting an inflammatory response to antigen exposure and also act as antigen presenting cells and initiate the adaptive immune response. They are also the primary infiltrating cells at the site of inflammation. Inhibition of macrophage activation is one of the possible approaches towards modulating inflammation. Both conventional and alternative approaches are being studied in this regard. Ginger, an herbal product with broad anti inflammatory actions, is used as an alternative medicine in a number of inflammatory conditions like rheumatic disorders. In the present study we examined the effect of ginger extract on macrophage activation in the presence of LPS stimulation. Methods Murine peritoneal macrophages were stimulated by LPS in presence or absence of ginger extract and production of proinflammatory cytokines and chemokines were observed. We also studied the effect of ginger extract on the LPS induced expression of MHC II, B7.1, B7.2 and CD40 molecules. We also studied the antigen presenting function of ginger extract treated macrophages by primary mixed lymphocyte reaction. Results We observed that ginger extract inhibited IL-12, TNF-α, IL-1β (pro inflammatory cytokines and RANTES, MCP-1 (pro inflammatory chemokines production in LPS stimulated macrophages. Ginger extract also down regulated the expression of B7.1, B7.2 and MHC class II molecules. In addition ginger extract negatively affected the antigen presenting function of macrophages and we observed a significant reduction in T cell proliferation in response to allostimulation, when ginger extract treated macrophages were used as APCs. A significant decrease in IFN-γ and IL-2 production by T cells in response to allostimulation was also observed. Conclusion In conclusion ginger extract inhibits macrophage activation and APC function and indirectly inhibits T cell activation.

  6. [TCD functional test for vertigo induced by ischemic cerebrovascular disorders].

    Science.gov (United States)

    Li, Q; Zhong, N; Xue, X

    1999-04-01

    To diagnose differentially the vetigo induced by some ischemic cerebrovascular disorder. Patients with vertebrobasilar artery transient ischemic vertigo (group A), migraine (group B), hyperventilation syndrome (group C), hypertension (group D) are measured by using TCD functional examination which included blood peak velocity of systolic (Vs) and diastolic (Vd) end-period of vertibrobasilar artery of routine TCD (TCD-R), one minute hyperventilation TCD (TCD-HV) and one minute voluntary apnea TCD (TCD-B) respectively. It showed that the Vs, Vd are decreased under the three conditions in A, B and D groups. The most apparent decrease are obversed in D group. The values of the decrease are similar between group A and B. No changes are found in C group. The abnormal Vs incidences of TCD-B measurement in group A are higher than those in group B and C, but significant lower than those in group D; and in TCD-HV test lower than group D and C, higher than group B; in TCD-R test, lower than group D, and no difference with group B and C. The abnormal incidences of Vd in group A are lower than group D and higher than group B in TCD-B test. In TCD-HV test, the group A abnormol incidences are lower than group D but higher than group B and C. In TCD-R test, the abnormal incidences are lower than group D and no difference between group B and C. The TCD measuremen is useful for differential diagnosis of vertigo induced by ischemic cerebrovascular disorders.

  7. Music-induced changes in functional cerebral asymmetries.

    Science.gov (United States)

    Hausmann, Markus; Hodgetts, Sophie; Eerola, Tuomas

    2016-04-01

    After decades of research, it remains unclear whether emotion lateralization occurs because one hemisphere is dominant for processing the emotional content of the stimuli, or whether emotional stimuli activate lateralised networks associated with the subjective emotional experience. By using emotion-induction procedures, we investigated the effect of listening to happy and sad music on three well-established lateralization tasks. In a prestudy, Mozart's piano sonata (K. 448) and Beethoven's Moonlight Sonata were rated as the most happy and sad excerpts, respectively. Participants listened to either one emotional excerpt, or sat in silence before completing an emotional chimeric faces task (Experiment 1), visual line bisection task (Experiment 2) and a dichotic listening task (Experiment 3 and 4). Listening to happy music resulted in a reduced right hemispheric bias in facial emotion recognition (Experiment 1) and visuospatial attention (Experiment 2) and increased left hemispheric bias in language lateralization (Experiments 3 and 4). Although Experiments 1-3 revealed an increased positive emotional state after listening to happy music, mediation analyses revealed that the effect on hemispheric asymmetries was not mediated by music-induced emotional changes. The direct effect of music listening on lateralization was investigated in Experiment 4 in which tempo of the happy excerpt was manipulated by controlling for other acoustic features. However, the results of Experiment 4 made it rather unlikely that tempo is the critical cue accounting for the effects. We conclude that listening to music can affect functional cerebral asymmetries in well-established emotional and cognitive laterality tasks, independent of music-induced changes in the emotion state. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Functionalized Surface Geometries Induce: “Bone: Formation by Autoinduction”

    Directory of Open Access Journals (Sweden)

    Ugo Ripamonti

    2018-02-01

    Full Text Available The induction of tissue formation, and the allied disciplines of tissue engineering and regenerative medicine, have flooded the twenty-first century tissue biology scenario and morphed into high expectations of a fulfilling regenerative dream of molecularly generated tissues and organs in assembling human tissue factories. The grand conceptualization of deploying soluble molecular signals, first defined by Turing as forms generating substances, or morphogens, stemmed from classic last century studies that hypothesized the presence of morphogens in several mineralized and non-mineralized mammalian matrices. The realization of morphogens within mammalian matrices devised dissociative extractions and chromatographic procedures to isolate, purify, and finally reconstitute the cloned morphogens, found to be members of the transforming growth factor-β (TGF-β supergene family, with insoluble signals or substrata to induce de novo tissue induction and morphogenesis. Can we however construct macroporous bioreactors per se capable of inducing bone formation even without the exogenous applications of the osteogenic soluble molecular signals of the TGF-β supergene family? This review describes original research on coral-derived calcium phosphate-based macroporous constructs showing that the formation of bone is independent of the exogenous application of the osteogenic soluble signals of the TGF-β supergene family. Such signals are the molecular bases of the induction of bone formation. The aim of this review is to primarily describe today's hottest topic of biomaterials' science, i.e., to construct and define osteogenetic biomaterials' surfaces that per se, in its own right, do initiate the induction of bone formation. Biomaterials are often used to reconstruct osseous defects particularly in the craniofacial skeleton. Edentulism did spring titanium implants as tooth replacement strategies. No were else that titanium surfaces require functionalized

  9. Inducible indirect defence of plants : from mechanisms to ecological functions

    NARCIS (Netherlands)

    Dicke, M.; Poecke, van R.M.P.; Boer, de J.G.

    2003-01-01

    Inducible defences allow plants to be phenotypically plastic. Inducible indirect defence of plants by attracting carnivorous enemies of herbivorous arthropods can vary with plant species and genotype, with herbivore species or instar and potentially with other environmental conditions. So far,

  10. Virus Innexins induce alterations in insect cell and tissue function.

    Science.gov (United States)

    Hasegawa, Daniel K; Erickson, Stephanie L; Hersh, Bradley M; Turnbull, Matthew W

    2017-04-01

    Polydnaviruses are dsDNA viruses that induce immune and developmental alterations in their caterpillar hosts. Characterization of polydnavirus gene families and family members is necessary to understand mechanisms of pathology and evolution of these viruses, and may aid to elucidate the role of host homologues if present. For example, the polydnavirus vinnexin gene family encodes homologues of insect gap junction genes (innexins) that are expressed in host immune cells (hemocytes). While the roles of Innexin proteins and gap junctions in insect immunity are largely unclear, we previously demonstrated that Vinnexins form functional gap junctions and alter the junctional characteristics of a host Innexin when co-expressed in paired Xenopus oocytes. Here, we test the effect of ectopic vinnexin expression on host cell physiology using both a lepidopteran cell culture model and a dipteran whole organism model. Vinnexin expression in the cell culture system resulted in gene-specific alterations in cell morphology and a slight, but non-statistically significant, reduction in gap junction activity as measured by dye transfer, while ectopic expression of a lepidopteran innexin2 gene led to morphological alterations and increase in gap junction activity. Global ectopic expression in the model dipteran, Drosophila melanogaster, of one vinnexin (vinnexinG) or D. melanogaster innexin2 (Dm-inx2) resulted in embryonic lethality, while expression of the other vinnexin genes had no effect. Furthermore, ectopic expression of vinnexinG, but not other vinnexin genes or Dm-inx2, in D. melanogaster larval gut resulted in developmental arrest in the pupal stage. These data indicate the vinnexins likely have gene-specific roles in host manipulation. They also support the use of Drosophila in further analysis of the role of Vinnexins and other polydnavirus genes in modifying host physiological processes. Finally, our findings suggest the vinnexin genes may be useful to perturb and

  11. Inducible phenotypic plasticity in plants regulates aquatic ecosystem functioning.

    Science.gov (United States)

    Jackrel, Sara L; Morton, Timothy C

    2018-04-01

    Differences among individuals within species affect community and ecosystem processes in many systems, and may rival the importance of differences between species. Intraspecific variation consists of both plastic and genetic components that are regulated by different processes and operate on different time scales. Therefore, probing which mechanisms can affect traits sufficiently strongly to affect ecosystem processes is fundamental to understanding the consequences of individual variation. We find that a dominant deciduous tree of Pacific Northwest riparian ecosystems, red alder, exhibits strong and synergistic responses to nutrient resources and herbivory stress. These induced responses, which include shifting nutrient and plant secondary metabolite composition, have cascading effects on aquatic ecosystem function. Defense responses suppress leaf litter decomposition in small streams, thus altering the rate of energy capture for one of the most abundant terrestrial carbon sources entering aquatic systems. We find that alder responses to herbivory stress largely depend on availability of soil nutrients, with modification of the highly cytotoxic diarylheptanoid group of secondary metabolites being favored in nutrient-poor environments and modification of the typically dose-dependent ellagitannins being favored in nutrient-rich environments. Importantly, these findings identify traits for herbivore resistance in alder trees and demonstrate that plastic responses occurring within a species and over short time scales substantially alter a key function of an adjacent ecosystem. Furthermore, demonstrating plasticity among alder secondary metabolites lends insight into this system, in which decomposer communities are known to adjust to the secondary chemistry of local alder trees to facilitate rapid decomposition of locally derived leaf litter.

  12. Biological function of activation-induced cytidine deaminase (AID

    Directory of Open Access Journals (Sweden)

    Ritu Kumar

    2014-10-01

    Full Text Available Activation-induced Cytidine Deaminase (AID is an essential regulator of B cell diversification, but its full range of action has until recently been an enigma. Based on homology, it was originally proposed to be an RNA-editing enzyme, but so far, no RNA substrates are known. Rather, it functions by deaminating cytidine, and in this manner, coupled with base-excision repair or mismatch repair machinery, it is a natural mutator. This allows it to play a central role in adaptive immunity, whereby it initiates the processes of class switch recombination and somatic hypermutation to help generate a diverse and high-affinity repertoire of immunoglobulin isotypes. More recently, it has been appreciated that methylated cytidine, already known as a key epigenetic mark on DNA controlling gene expression, can also be a target for AID modification. Coupled with repair machinery, this can facilitate the active removal of methylated DNA. This activity can impact the process of cellular reprogramming, including transition of a somatic cell to pluripotency, which requires major reshuffling of epigenetic memory. Thus, seemingly disparate roles for AID in controlling immune diversity and epigenetic memory have a common mechanistic basis. However, the very activity that is so useful for B cell diversity and cellular reprogramming is dangerous for the integrity of the genome. Thus, AID expression and activity is tightly regulated, and deregulation is associated with diseases including cancer. Here, we review the range of AID functions with a focus on its mechanisms of action and regulation. Major questions remain to be answered concerning how and when AID is targeted to specific loci and how this impacts development and disease.

  13. Functionalized nanoparticles for AMF-induced gene and drug delivery

    Science.gov (United States)

    Biswas, Souvik

    The properties and broad applications of nano-magnetic colloids have generated much interest in recent years. Specially, Fe3O4 nanoparticles have attracted a great deal of attention since their magnetic properties can be used for hyperthermia treatment or drug targeting. For example, enhanced levels of intracellular gene delivery can be achieved using Fe3O4 nano-vectors in the presence of an external magnetic field, a process known as 'magnetofection'. The low cytotoxicity, tunable particle size, ease of surface functionalization, and ability to generate thermal energy using an external alternating magnetic field (AMF) are properties have propelled Fe3O4 research to the forefront of nanoparticle research. The strategy of nanoparticle-mediated, AMF-induced heat generation has been used to effect intracellular hyperthermia. One application of this 'magnetic hyperthermia' is heat activated local delivery of a therapeutic effector (e.g.; drug or polynucleotide). This thesis describes the development of a magnetic nano-vector for AMF-induced, heat-activated pDNA and small molecule delivery. The use of heat-inducible vectors, such as heat shock protein ( hsp) genes, is a promising mode of gene therapy that would restrict gene expression to a local region by focusing a heat stimulus only at a target region. We thus aimed to design an Fe3O4 nanoparticle-mediated gene transfer vehicle for AMF-induced localized gene expression. We opted to use 'click' oximation techniques to assemble the magnetic gene transfer vector. Chapter 2 describes the synthesis, characterization, and transfection studies of the oxime ether lipid-based nano-magnetic vectors MLP and dMLP. The synthesis and characterization of a novel series of quaternary ammonium aminooxy reagents (2.1--2.4) is described. These cationic aminooxy compounds were loaded onto nanoparticles for ligation with carbonyl groups and also to impart a net positive charge on the nanoparticle surface. Our studies indicated that the

  14. Tobacco Induced Renal Function Alterations in Wistar Rats: An 8 ...

    African Journals Online (AJOL)

    ... pattern was observed for urea and uric acid levels. Over all, the significant increase (P<0.05) in renal function parameters of the test rats (as compared to the control values), suggests that the ingestion of tobacco snuff has harmful effects on kidney functions. Keywords: Tobacco, Snuff, Kidney function, Nicotine substitute.

  15. Constraint-induced movement therapy promotes brain functional reorganization in stroke patients with hemiplegia.

    Science.gov (United States)

    Wang, Wenqing; Wang, Aihui; Yu, Limin; Han, Xuesong; Jiang, Guiyun; Weng, Changshui; Zhang, Hongwei; Zhou, Zhiqiang

    2012-11-15

    Stroke patients with hemiplegia exhibit flexor spasms in the upper limb and extensor spasms in the lower limb, and their movement patterns vary greatly. Constraint-induced movement therapy is an upper limb rehabilitation technique used in stroke patients with hemiplegia; however, studies of lower extremity rehabilitation are scarce. In this study, stroke patients with lower limb hemiplegia underwent conventional Bobath therapy for 4 weeks as baseline treatment, followed by constraint-induced movement therapy for an additional 4 weeks. The 10-m maximum walking speed and Berg balance scale scores significantly improved following treatment, and lower extremity motor function also improved. The results of functional MRI showed that constraint-induced movement therapy alleviates the reduction in cerebral functional activation in patients, which indicates activation of functional brain regions and a significant increase in cerebral blood perfusion. These results demonstrate that constraint-induced movement therapy promotes brain functional reorganization in stroke patients with lower limb hemiplegia.

  16. Constraint-induced movement therapy promotes brain functional reorganization in stroke patients with hemiplegia

    Science.gov (United States)

    Wang, Wenqing; Wang, Aihui; Yu, Limin; Han, Xuesong; Jiang, Guiyun; Weng, Changshui; Zhang, Hongwei; Zhou, Zhiqiang

    2012-01-01

    Stroke patients with hemiplegia exhibit flexor spasms in the upper limb and extensor spasms in the lower limb, and their movement patterns vary greatly. Constraint-induced movement therapy is an upper limb rehabilitation technique used in stroke patients with hemiplegia; however, studies of lower extremity rehabilitation are scarce. In this study, stroke patients with lower limb hemiplegia underwent conventional Bobath therapy for 4 weeks as baseline treatment, followed by constraint-induced movement therapy for an additional 4 weeks. The 10-m maximum walking speed and Berg balance scale scores significantly improved following treatment, and lower extremity motor function also improved. The results of functional MRI showed that constraint-induced movement therapy alleviates the reduction in cerebral functional activation in patients, which indicates activation of functional brain regions and a significant increase in cerebral blood perfusion. These results demonstrate that constraint-induced movement therapy promotes brain functional reorganization in stroke patients with lower limb hemiplegia. PMID:25337108

  17. Opposite variations in maternal and neonatal thyroid function induced by iodine supplementation during pregnancy

    DEFF Research Database (Denmark)

    Nøhr, S B; Laurberg, P

    2000-01-01

    pregnancy, and 95 took no artificial iodine supplementation. Iodine supplementation (+I) induced opposite variations in thyroid function in the mother and the fetus. In +I mothers, TSH was 7.6% lower than in mothers with no supplementation (P

  18. Impact of Low-Level Thyroid Hormone Disruption Induced by Propylthiouracil on Brain Development and Function.*

    Science.gov (United States)

    The critical role of thyroid hormone (TH) in brain development is well established, severe deficiencies leading to significant neurological dysfunction. Much less information is available on more modest perturbations of TH on brain function. The present study induced varying degr...

  19. Functionality and versatility of aggregation-induced emission luminogens

    Science.gov (United States)

    Feng, Guangxue; Kwok, Ryan T. K.; Tang, Ben Zhong; Liu, Bin

    2017-06-01

    Breakthrough innovations in light-emitting materials have opened new exciting avenues for science and technology over the last few decades. Aggregation-induced emission (AIE) represents one of such innovations. It refers to a unique light-emitting phenomenon, in which luminescent materials that are non-emissive in molecular state can be induced to emit efficiently in aggregated state. The design and development of AIE luminogens (AIEgens) have overcome technical and fundamental limitations that exist in conventional light-emitting materials, and thus generate great opportunities for various applications. In this review, we aim to introduce the wonderful world of AIE to scientists from different disciplines by summarizing the recent progress made in this exciting research field. The mechanistic analyses and the working principles of the AIE processes are first elaborated, which reveal the restriction of intramolecular motions as the main cause for the AIE effect. The different molecular engineering strategies for the design of new AIEgens are subsequently discussed with examples of various AIEgen systems. The recent high-tech applications of AIEgens as optoelectronic materials, chemical sensors, and biomedical probes are presented and discussed. We hope that this review will stimulate more research interest from physics, chemistry, life science, and biomedical fields to this wonderland of AIE.

  20. Functional MRI of food-induced brain responses

    NARCIS (Netherlands)

    Smeets, P.A.M.

    2006-01-01

    The ultimate goal of this research was to find central biomarkers of satiety, i.e., physiological measures in the brain that relate to subjectively rated appetite, actual food intake, or both. This thesis describes the changes in brain activity in response to food stimuli as measured by functional

  1. Gravity induced corrections to quantum mechanical wave functions

    International Nuclear Information System (INIS)

    Singh, T.P.

    1990-03-01

    We perform a semiclassical expansion in the Wheeler-DeWitt equation, in powers of the gravitational constant. We then show that quantum gravitational fluctuations can provide a correction to the wave-functions which are solutions of the Schroedinger equation for matter. This also implies a correction to the expectation values of quantum mechanical observables. (author). 6 refs

  2. Altered Neutrophil Function in Localized Juvenile Periodontitis: Intrinsic or Induced?

    Science.gov (United States)

    Agarwal, Sudha; Huang, Jian Ping; Piesco, Nicholas P; Suzuki, Jon B; Riccelli, Angelina E; Johns, Lee P

    1996-03-01

    Localized juvenile periodontitis (LJP) is an aggressive periodontal disease of familial nature. Neutrophils from a majority of patients with this disease exhibit decreased Chemotaxis with increased adherence, oxidative burst, and degranulation in response to opsonized bacteria. It is proposed that the biological basis for these altered neutrophil functions in LJP may be due either to intrinsic cell abnormalities or to the effect of factors present in the sera of LJP patients, which can modulate neutrophil functions. LJP neutrophils exhibit a lower number of receptors for chemoattractants and GP-110 molecules which are known to facilitate Chemotaxis. Furthermore, these cells exhibit lower signal transduction in response to a biological stimulus. These observations suggest that intrinsic cellular defects may be responsible for altered neutrophil functions in LJP. However, healthy neutrophils, when treated with very low concentrations of proinflammatory cytokines, also exhibit the characteristics of altered or "defective" LJP neutrophils. Additionally, healthy neutrophils, when treated with LJP serum, also exhibit many of the characteristics associated with LJP neutrophils. Attempts to identify these factors have shown that cytokines like TNF-α and/or IL1 β in LJP sera may be at least partially responsible for modulating neutrophil functions in LJP. These cytokines are primarily produced by activated macrophages, indicating a role for these cells in the etiology of LJP. The hyper-responsiveness of these cells to an immunologic challenge can result in local increases in cytokines leading to excessive bone loss and tissue damage at the site of infection, while systemic elevations in cytokines would lead to decreased neutrophil Chemotaxis, both of which are observed in LJP. Present evidence indicates that neutrophil functions are indeed altered in the majority of LJP patients. However, the biological basis for the alteration may not be due to the neutrophils themselves

  3. Separation Functional Fibers by Radiation Induced Graft Polymerization and Application

    International Nuclear Information System (INIS)

    Fujiwara, K.

    2006-01-01

    1. Method for manufacturing process of separation functional fiber.Radiation graft machine(Photo 1) was developed by EBARA and Japan atomic energy research institute (JAERI) in 1999. Long Sheet of 1.5 m width is continuously grafted using Electron Beam EB (300 keV).The control of oxygen concentration in the monomer impregnation zone and reactor is very important. Usually 100% or more grafting ratio is obtained under irradiation dose of 150 kGy,.2. Application; Chemical filter (for clean room), Electric de-ionization(for pure water), Mask(for influenza) shows application of functional fiber. In clean room of semiconductor factory, ionic contaminants, such as ammonia gas(NH 3 ) should be removed to extremely low concentration level. Chemical filter (Photo 2) with ion-exchange fabric is widely used

  4. Electrochemically induced bioactivity of porous silicon functionalized by acetylene

    Energy Technology Data Exchange (ETDEWEB)

    Salonen, Jarno; Lehto, Vesa-Pekka [University of Turku, Department of Physics, 20014 Turku (Finland); Matveeva, Eugenia [Nanophotonics Technology Center, Technical University of Valencia, C/Camino de Vera s/n, 46022 Valencia (Spain); Pastor, Ester

    2009-06-15

    In order to improve the bioactivity of porous silicon chemically functionalized by acetylene (PSi-C) and stimulate the calcium-phosphorous (hydroxyapatite) deposition on this material from a simulated body fluid, electrochemical oxidation of the PSi-C templates has been employed. The initial functionalization by acetylene was done at 500 C in a N{sub 2}+C{sub 2}H{sub 2} gas stream of 1:1 ratio for 15 minutes; further electrochemical oxidation was performed in 80% phosphoric acid. The morphology and chemical composition of initial and oxidized porous structures were studied by the high resolution SEM technique and FTIR spectroscopy. Initial chemical functionalization leads to a very stable (practically bio-inert) material that after electrochemical oxidation becomes bioactive. We observed that the hydroxyapatite phase has been homogeneously deposited on the electrochemically oxidized PSi-C material immersed in the SBF of Kokubo formulae at 36.5 C just after two weeks. The layer of hydroxyapatite grown on the surface after 30 days of immersion was compact, crystalline and as thick as 5 {mu}m. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Evaluation of isomeric excitation functions in neutron induced reactions

    International Nuclear Information System (INIS)

    Grudzevich, O.; Ignatyuk, A.; Zolotarev, K.

    1992-01-01

    The possibilities of isomer levels experimental excitation functions description with theoretical models are discussed. It is shown that the experimental data in many cases can be described by theoretical models quite well without parameter fitting. However, large discrepancies are observed for some reactions. In our opinion, these discrepancies are due to uncertainties of discrete level schemes, schemes of gamma-transitions between levels and spin dependence of level density. Small values of isomeric ratios (< 0.1) have been described with the largest errors. The simple formulae for energy dependence of isomeric ratio for (n,g) reaction has been proposed. (author). 53 refs, 10 figs, 8 tabs

  6. Disorder and strain-induced complexity in functional materials

    CERN Document Server

    Saxena, Avadh; Planes, Antoni; Kakeshita, Tomoyuki

    2012-01-01

    This book brings together an emerging consensus on our understanding of the complex functional materials including ferroics, perovskites, multiferroics, CMR and high-temperature superconductors. The common theme is the existence of many competing ground states and frustration as a collusion of spin, charge, orbital and lattice degrees of freedom in the presence of disorder and (both dipolar and elastic) long-range forces. An important consequence of the complex unit cell and the competing interactions is that the emergent materials properties are very sensitive to external fields thus rendering these materials with highly desirable, technologically important applications enabled by cross-response.

  7. Structural and functional analysis of coral Hypoxia Inducible Factor.

    Science.gov (United States)

    Zoccola, Didier; Morain, Jonas; Pagès, Gilles; Caminiti-Segonds, Natacha; Giuliano, Sandy; Tambutté, Sylvie; Allemand, Denis

    2017-01-01

    Tissues of symbiotic Cnidarians are exposed to wide, rapid and daily variations of oxygen concentration. Indeed, during daytime, intracellular O2 concentration increases due to symbiont photosynthesis, while during night, respiration of both host cells and symbionts leads to intra-tissue hypoxia. The Hypoxia Inducible Factor 1 (HIF-1) is a heterodimeric transcription factor used for maintenance of oxygen homeostasis and adaptation to hypoxia. Here, we carried out a mechanistic study of the response to variations of O2 concentrations of the coral model Stylophora pistillata. In silico analysis showed that homologs of HIF-1 α (SpiHIF-1α) and HIF-1β (SpiHIF-1β) exist in coral. A specific SpiHIF-1 DNA binding on mammalian Hypoxia Response Element (HRE) sequences was shown in extracts from coral exposed to dark conditions. Then, we cloned the coral HIF-1α and β genes and determined their expression and transcriptional activity. Although HIF-1α has an incomplete Oxygen-dependent Degradation Domain (ODD) relative to its human homolog, its protein level is increased under hypoxia when tested in mammalian cells. Moreover, co-transfection of SpiHIF-1α and β in mammalian cells stimulated an artificial promoter containing HRE only in hypoxic conditions. This study shows the strong conservation of molecular mechanisms involved in adaptation to O2 concentration between Cnidarians and Mammals whose ancestors diverged about 1,200-1,500 million years ago.

  8. Break induced replication in eukaryotes: mechanisms, functions, and consequences.

    Science.gov (United States)

    Sakofsky, Cynthia J; Malkova, Anna

    2017-08-01

    Break-induced replication (BIR) is an important pathway specializing in repair of one-ended double-strand DNA breaks (DSBs). This type of DSB break typically arises at collapsed replication forks or at eroded telomeres. BIR initiates by invasion of a broken DNA end into a homologous template followed by initiation of DNA synthesis that can proceed for hundreds of kilobases. This synthesis is drastically different from S-phase replication in that instead of a replication fork, BIR proceeds via a migrating bubble and is associated with conservative inheritance of newly synthesized DNA. This unusual mode of DNA replication is responsible for frequent genetic instabilities associated with BIR, including hyper-mutagenesis, which can lead to the formation of mutation clusters, extensive loss of heterozygosity, chromosomal translocations, copy-number variations and complex genomic rearrangements. In addition to budding yeast experimental systems that were initially employed to investigate eukaryotic BIR, recent studies in different organisms including humans, have provided multiple examples of BIR initiated within different cellular contexts, including collapsed replication fork and telomere maintenance in the absence of telomerase. In addition, significant progress has been made towards understanding microhomology-mediated BIR (MMBIR) that can promote complex chromosomal rearrangements, including those associated with cancer and those leading to a number of neurological disorders in humans.

  9. Radiation induced cell loss in rat submandibular gland and its relation to gland function

    NARCIS (Netherlands)

    Zeilstra, LJW; Vissink, A; Konings, AWT; Coppes, RP

    Purpose: To understand early and late radiation-induced loss of function of the submandibular gland, changes in cell number were documented and correlated with data on gland function. Modulation of the radiation effect by sialogogues was used to investigate possible mechanisms of action. Materials

  10. Radiation effects on regeneration and T-cell-inducing function of the thymus

    International Nuclear Information System (INIS)

    Hirokawa, K.; Sado, T.

    1984-01-01

    Radiation effects on regeneration and T-cell-inducing function of the thymus were studied in three sets of experiments. When TXB mice were grafted with 1-week-old thymus which had been previously irradiated at various doses, an exponential decrease was observed in the morphological regeneration of the thymus grafts and in their T-cell-inducing function at doses of 600 R and over, showing about 10% that of the control at 1500 R. When in situ thymus of adult mice was locally irradiated, the radiation effect on T-cell-inducing function was less pronounced as compared with the first experiment; i.e., about 40% of the control at 1797 R. When in situ thymus of 1-day-old newborn mice was locally irradiated, regeneration potential of 1-day-old newborn thymus was highly resistant to radiation exposure and no effect on immunological functions was observed even by local irradiation of 2000 R

  11. Functional significance and immune regulation of Natural Killer cells at acute and chronic enterovirus induced myocarditis

    OpenAIRE

    Göldner, Katrin

    2016-01-01

    Myocarditis is a collective term for all kinds of acute and chronic inflammations of the heart and is in most cases induced by cardiotropic viruses. Group B Coxsackieviruses (CVB3) are well known to trigger a virally caused myocarditis. The functional involvement of NK cells in this disease has been already described more than a decade ago. However, limited information about the functional involvement of NK cells is available. We hypothesized that the individual NK cell function as well as th...

  12. 131I-induced changes in rat thyroid gland function

    Directory of Open Access Journals (Sweden)

    V. Torlak

    2007-08-01

    Full Text Available Therapeutic doses of 131I administered to thyrotoxic patients may cause thyroid failure. The present study used a rat model to determine thyroid function after the administration of different doses of 131I (64-277 µCi. Thirty male Fisher rats in the experimental group and 30 in the control group (untreated were followed for 6 months. The animals were 4 months old at the beginning of the experiment and were sacrificed at an age of 9 months. Hormone concentration was determined before 131I administration (4-month-old animals and three times following 131I administration, when the animals were 7, 8, and 9 months old. The thyroid glands were removed and weighed, their volume was determined and histopathological examination was performed at the end of the experiment. Significant differences in serum triiodothyronine and thyroid-stimulating hormone concentration, measured at the age of 7, 8, and 9 months, were found in the experimental group. During aging of the animals, the concentration of thyroxin fell from 64.8 ± 8.16 to 55.0 ± 6.1 nM in the control group and from 69.4 ± 6.9 to 25.4 ± 3.2 nM in the experimental group. Thyroid gland volume and weight were significantly lower in the experimental than in the control group. Thyroid glands from the experimental group showed hyaline thickness of the blood vessel wall, necrotic follicles, a strong inflammatory reaction, and peeling of necrotic cells in the follicles. In conclusion, significant differences in hormone levels and histopathological findings indicated prolonged hypothyroidism after 131I administration to rats, which was not 131I dose dependent.

  13. Gateway-compatible inducible vector set for the functional analysis of transcription factors in plants.

    Science.gov (United States)

    Guo, Zhaolai; Sun, Xudong; Xu, Huini

    2018-05-01

    The inducible vectors pER8-Gateway-3Flag and pER8-Gateway-3Flag-SRDX have been subjected to considerable research in terms of the function of transcription factors (TFs) via transcription activity and repression, respectively. Approximately 1500 TFs have been identified in Arabidopsis thaliana genome. To identify their functions, loss-of-function and gain-of-function mutants were generated to analyze the phenotype. However, many loss-of-function mutants did not show any evident phenotype because of the functional redundancy within the TF family. The constitutive misexpression of some TFs may result in lethality or sterility. To overcome these problems, we produced a Gateway-compatible inducible binary vector system that facilitates fast and reliable DNA cloning and biological function identification. The vector can be used for the inducible expression of protein fusions to a polypeptide protein tag named 3xFLAG tag. This vector system can also be used to generate an inducible transcription inhibition of protein fusion to an Ethylene-Responsive Factor-associated amphiphilic repression (EAR) motif. The EAR motif makes it possible to get rid of redundancy within a TF family, thereby facilitating studies on loss of function. With these Gateway vectors, conventional subcloning technology that depends on restriction digestion and ligation is avoided. Thus, these Gateway vectors should be useful not only for the rapid analysis of the functions of redundant plant TFs, but also for the manipulation of TF overexpression, resulting in plant lethality or sterility, via an inducible promoter.

  14. Relationship between functional properties and aggregation changes of whey protein induced by high pressure microfluidization.

    Science.gov (United States)

    Liu, Cheng-Mei; Zhong, Jun-Zhen; Liu, Wei; Tu, Zong-Cai; Wan, Jie; Cai, Xiao-Fei; Song, Xin-Yun

    2011-05-01

    Aggregation changes of whey protein induced by high-pressure microfluidization (HPM) treatment have been investigated in relation with their functional properties. Whey protein was treated with HPM under pressure from 40 to 160 MPa. Functional properties (solubility, foaming, and emulsifying properties) of whey protein concentrate (WPC) ultrafiltered from fluid whey were evaluated. The results showed significant modifications in the solubility (30% to 59%) and foaming properties (20% to 65%) of WPC with increasing pressure. However, emulsifying property of WPC treated at different pressures was significantly worse than untreated sample. To better understand the mechanism of the modification by HPM, the HPM-induced aggregation changes were examined using particle size distribution, scanning electron microscopy, and hydrophobicity. It was indicated that HPM induced 2 kinds of aggregation changes on WPC: deaggregation and reaggregation of WPC, which resulted in the changes of functional properties of WPC modified by HPM. © 2011 Institute of Food Technologists®

  15. An improved chemically inducible gene switch that functions in the monocotyledonous plant sugar cane.

    Science.gov (United States)

    Kinkema, Mark; Geijskes, R Jason; Shand, Kylie; Coleman, Heather D; De Lucca, Paulo C; Palupe, Anthony; Harrison, Mark D; Jepson, Ian; Dale, James L; Sainz, Manuel B

    2014-03-01

    Chemically inducible gene switches can provide precise control over gene expression, enabling more specific analyses of gene function and expanding the plant biotechnology toolkit beyond traditional constitutive expression systems. The alc gene expression system is one of the most promising chemically inducible gene switches in plants because of its potential in both fundamental research and commercial biotechnology applications. However, there are no published reports demonstrating that this versatile gene switch is functional in transgenic monocotyledonous plants, which include some of the most important agricultural crops. We found that the original alc gene switch was ineffective in the monocotyledonous plant sugar cane, and describe a modified alc system that is functional in this globally significant crop. A promoter consisting of tandem copies of the ethanol receptor inverted repeat binding site, in combination with a minimal promoter sequence, was sufficient to give enhanced sensitivity and significantly higher levels of ethanol inducible gene expression. A longer CaMV 35S minimal promoter than was used in the original alc gene switch also substantially improved ethanol inducibility. Treating the roots with ethanol effectively induced the modified alc system in sugar cane leaves and stem, while an aerial spray was relatively ineffective. The extension of this chemically inducible gene expression system to sugar cane opens the door to new opportunities for basic research and crop biotechnology.

  16. C-Kit controls IL-1β-induced effector functions in HMC-cells.

    Science.gov (United States)

    Drube, Sebastian; Schmitz, Frederike; Göpfert, Christiane; Weber, Franziska; Kamradt, Thomas

    2012-01-30

    The receptor tyrosine kinase c-Kit is important for mast cell differentiation, proliferation, and cytokine release. Recently, we reported that c-Kit acts as an intermediate signalling molecule regulating IL-33-induced signalling and effector functions in mast cells. Here, we investigated the influence of c-Kit on the IL-1β-induced signalling and effector functions in HMC mast cell lines. HMC-cells were stimulated with IL-1β and the resulting signalling and cytokine responses were analysed. Furthermore, we used pharmacological inhibitors to investigate the relevance of several signalling molecules for the IL-1β-induced signalling and cytokine responses. Treatment of HMC-cells with the c-Kit inhibitor STI571 blocked the IL-1β-induced activation of Erk1/2 and JNK1/2 but not p38 and NFκB. Furthermore, inhibition of these signalling pathways blocked the IL-6 production in HMC-cells. These findings indicate that IL-1β-induced signalling in mast cells branches into c-Kit- dependent and -independent pathways, both relevant for IL-6 release. Therefore, c-Kit is an important regulator of IL-1 receptor 1-induced signalling and effector functions in HMC-cells. © 2011 Elsevier B.V. All rights reserved.

  17. Semipermeable membrane devices concentrate mixed function oxygenase inducers from oil sands and refinery wastewaters

    International Nuclear Information System (INIS)

    Parrott, J.L.; Hewitt, L.M.

    2002-01-01

    The health of fish in the Athabasca River was examined to determine the effects of both natural and anthropogenic oil sands exposure on liver mixed function oxygenase (MFO) enzymes. Semipermeable membrane devices (SPMD) were used to concentrate bioavailable compounds that may result in MFO induction. The SPMDs were used for a period of 2 weeks in the Steepbank River as well as in oil refinery wastewater and intake ponds. They were then tested to see if they induced ethoxyresorufin-O-deethylase (EROD) activity in hepatoma cells, a cell line derived from a liver cancer of a small fish. SPMDs from the wastewater pond contained potent EROD inducers in fish liver cells. SPMDs from the Athabasca River exhibited some EROD inducers, but they were 1/100 as potent as those of the refinery wastewater. The characteristics of MFO inducers from refinery wastewater were different from natural inducers from the oil sands in the Athabasca and Steepbank Rivers. For instance, log Kow was less than 5 for refinery wastewater, but it was greater than 5 for Athabasca River wastewater and from natural oil sands exposure. In the case of the Steepbank River, the pattern of MFO induction was similar to the MFO induction seen in wild fish.The highest MFO inducers were found to be in the area of the mine, suggesting and anthropogenic pollution source. The less potent inducers were in the area of the natural and undisturbed oil sands. Very few inducers were found outside of the oil sands formation

  18. Application of radiation-induced graft polymerization to preparation of functional materials

    International Nuclear Information System (INIS)

    Sugo, Takanobu

    2010-01-01

    Radiation-induced graft polymerization is a powerful method for appending various functionalities onto existing fabrics, nonwoven fabrics, fibers, membranes, and beads while maintaining the shape and mechanical strength. By using this method, the author has developed and commercialized functional polymeric materials over 45 years. The materials produced by the fruits of radiation chemistry contributed to the improvement of our lives and environments and the collection of rare metal resources. (author)

  19. Zearalenone impairs the male reproductive system functions via inducing structural and functional alterations of sertoli cells.

    Science.gov (United States)

    Zheng, WangLong; Pan, ShunYe; Wang, Guangguang; Wang, Ya Jun; Liu, Qing; Gu, JianHong; Yuan, Yan; Liu, Xue Zhong; Liu, Zong Ping; Bian, Jian Chun

    2016-03-01

    The aim of this study was to investigate the effects of ZEA on the cytoskeletal structure, and factors specifically expressed by Sertoli cells. Primary Sertoli cells from rats aged 18-21 days were exposed to increasing ZEA concentrations (0, 5, 10, 20 μg mL(-1)) for 24 h. The results of immunofluorescence showed disruption of α-tubulin filaments and F-actin bundles, and damage to the nucleus of Sertoli cells on exposure to ZEA. In the control group, the protein level expression of androgen-binding protein (ABP), transferrin, vimentin, N-cadherin, and follicle-stimulating hormone receptor (FSHR) were decreased significantly (pfunctions of Sertoli cells, which may be an underlying cause of ZEA-induced reproductive toxicity. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Effects of climate-change induced vegetation die-off on soil biodiversity and functioning

    Science.gov (United States)

    Curiel Yuste, Jorge; Garcia Angulo, Daniel; Barba, Josep; Poyatos, Rafael

    2017-04-01

    Climate change-induced vegetation die-off is nowadays a widespread phenomenon responsible for limiting the capacity of terrestrial ecosystems to provide essential services worldwide. Less is known, however, about how vegetation die-off relates with changes in the biodiversity and ecology of the soil compartment, which accounts for many of the vital ecosystem functions such as providing essential nutrients for plant growth (nitrogen, N; or phosphorous, P), or long-term carbon (C) sequestration. The death of the vegetation alters soil abiotic (microclimate) conditions and limits the supply of the energy (carbohydrates specially) demanded by the soil biological communities. These abiotic and biotic changes triggers a cascade of causal-effect processes that may result in irreversible losses in soil biodiversity and in the stability of the trophic webs that sustain soil functions such as N fixation, mineralization of essential nutrients or C stabilization. However, to date, information on the potential impacts of climate-change induced vegetation die-off over soil biodiversity and functioning is fragmented (e.g. case-studies) and not very conclusive. We here want to summarize the state of the knowledge on all potential effects of climate-change induced vegetation die-off over soil biodiversity and soil functioning. Additionally, we also discuss the functional resilience of soils to climate-change vegetation die-off and how management practices could improve the resilience and the sustainability of the soil functioning.

  1. Functional Thyroid Follicular Cells Differentiation from Human-Induced Pluripotent Stem Cells in Suspension Culture

    Directory of Open Access Journals (Sweden)

    Ayumi Arauchi

    2017-05-01

    Full Text Available The replacement of regenerated thyroid follicular cells (TFCs is a promising therapeutic strategy for patients with hypothyroidism. Here, we have succeeded in inducing functional TFCs from human-induced pluripotent stem cells (iPSCs in scalable suspension culture. Differentiation of iPSCs with Activin A treatment produced Sox17- and FoxA2-expressing definitive endodermal cells that also expressed thyroid transcription factors Pax8 and Nkx2-1. Further treatment with thyroid-stimulating hormone (TSH induced TFCs expressing various types of thyroid proteins including TSH receptor, sodium–iodide symporter, thyroglobulin, and thyroid peroxidase. Interestingly, differentiated cells secreted free thyroxine in vitro. These results indicate successful differentiation of human iPSCs to functional TFCs that may enable us to fabricate thyroid tissues for regenerative medicine and disease models.

  2. Sexual functionality of Leptopilina clavipes (Hymenoptera: Figitidae) after reversing Wolbachia-induced parthenogenesis

    NARCIS (Netherlands)

    Pannebakker, BA; Schidlo, NS; Boskamp, GJF; Dekker, L; Van Dooren, TJM; Beukeboom, LW; Zwaan, BJ; Brakefield, PM; Van Alphen, JJM

    Females infected with parthenogenesis-inducing Wolbachia bacteria can be cured from their infection by antibiotic treatment, resulting in male production. In most cases, however, these males are either sexually not fully functional, or infected females have lost the ability to reproduce sexually. We

  3. Response function for the characterization of photo-induced anisotropy in azobenzene containing polymers

    DEFF Research Database (Denmark)

    Sajti, S.; Kerekes, Á.; Ramanujam, P.S.

    2002-01-01

    A response function is derived for the description of photo-induced birefringence and dichroism in case of materials where the underlying process is photo-isomerization. Our result explains the usefulness of the theoretical formulae derived earlier by Kakichashvili for photo-anisotropic materials...

  4. Endogenous versus exogenous lithium clearance for evaluation of dopamine-induced changes in renal tubular function

    DEFF Research Database (Denmark)

    Olsen, Niels Vidiendal; Fogh-Andersen, N; Strandgaard, S

    1996-01-01

    1. The present randomized, double-blind cross-over study compared endogenous and exogenous lithium clearance (CLi) for estimation of the effect of dopamine on tubular sodium reabsorption. Twelve normal, salt-repleted male subjects were investigated on three different occasions with either placebo...... that the two methods are interchangeable for estimation of dopamine-induced changes in tubular function....

  5. EFFECT OF MODIFIED CONSTRAINT INDUCED THERAPY ON UPPERLIMB FUNCTIONAL RECOVERY IN YOUNG STROKE SUBJECTS

    Directory of Open Access Journals (Sweden)

    Kiran Prakash Pappala

    2014-10-01

    Full Text Available Background: The aim of this study is to evaluate the effect of modified constraint induced therapy on upper limb functional recovery in young stroke subjects. Most of the stroke rehabilitation units following conventional rehabilitation methods for treatment of the stroke patients where these methods have been proved to be less useful especially in the young stroke subjects. Hence the purpose of this study is to see the effect of modified constraint induced therapy which is a task specific training method for upperlimb in young stroke subjects. Methods: Total of 40 young stroke subjects who is having minimal motor criterion and met other inclusion criteria were recruited from department of physiotherapy, g.s.l.general hospital. Pre and post intervention measures were taken using Wolf motor function test and Jebsen Taylor hand function test. Results: In this study had shown significant improvements in the modified constraint induced therapy group when compared to the conventional rehabilitation alone. P value between groups was < 0.05. Conclusion: In this study concludes that addition of 15 minutes modified constraint induced movement therapy to conventional physiotherapy is a useful adjunct in functional recovery of upper limb among young stroke subjects

  6. Radiation-induced apoptosis in relation to acute impairment of rat salivary gland function

    NARCIS (Netherlands)

    Paardekooper, GMRM; Cammelli, S; Zeilstra, LJW; Coppes, RP; Konings, AWT

    Purpose: To find an answer to the question: Are the acute radiation effects on salivary gland function, as seen in earlier studies, causally related to radiation-induced apoptosis? Materials and methods: Rat parotid and submandibular glands were X-irradiated with doses up to 25 Gy and morphological

  7. Assessing and inducing neuroplasticity with transcranial magnetic stimulation and robotics for motor function.

    Science.gov (United States)

    O'Malley, Marcia K; Ro, Tony; Levin, Harvey S

    2006-12-01

    To describe 2 new ways of assessing and inducing neuroplasticity in the human brain--transcranial magnetic stimulation (TMS) and robotics--and to investigate and promote the recovery of motor function after brain damage. We identified recent articles and books directly bearing on TMS and robotics. Articles using these tools for purposes other than rehabilitation were excluded. From these studies, we emphasize the methodologic and technical details of these tools as applicable for assessing and inducing plasticity. Because both tools have only recently been used for rehabilitation, the majority of the articles selected for this review have been published only within the last 10 years. We used the PubMed and Compendex databases to find relevant peer-reviewed studies for this review. The studies were required to be relevant to rehabilitation and to use TMS or robotics methodologies. Guidelines were applied via independent extraction by multiple observers. Despite the limited amount of research using these procedures for assessing and inducing neuroplasticity, there is growing evidence that both TMS and robotics can be very effective, inexpensive, and convenient ways for assessing and inducing rehabilitation. Although TMS has primarily been used as an assessment tool for motor function, an increasing number of studies are using TMS as a tool to directly induce plasticity and improve motor function. Similarly, robotic devices have been used for rehabilitation because of their suitability for delivery of highly repeatable training. New directions in robotics-assisted rehabilitation are taking advantage of novel measurements that can be acquired via the devices, enabling unique methods of assessment of motor recovery. As refinements in technology and advances in our knowledge continue, TMS and robotics should play an increasing role in assessing and promoting the recovery of function. Ongoing and future studies combining TMS and robotics within the same populations may

  8. Ethylbenzene-induced hearing loss, neurobehavioral function, and neurotransmitter alterations in petrochemical workers.

    Science.gov (United States)

    Zhang, Ming; Wang, Yanrang; Wang, Qian; Yang, Deyi; Zhang, Jingshu; Wang, Fengshan; Gu, Qing

    2013-09-01

    To estimate hearing loss, neurobehavioral function, and neurotransmitter alteration induced by ethylbenzene in petrochemical workers. From two petrochemical plants, 246 and 307 workers exposed to both ethylbenzene and noise were recruited-290 workers exposed to noise only from a power station plant and 327 office personnel as control group, respectively. Hearing and neurobehavioral functions were evaluated. Serum neurotransmitters were also determined. The prevalence of hearing loss was much higher in petrochemical groups than that in power station and control groups (P workers (P hearing loss, neurobehavioral function impairment, and imbalance of neurotransmitters.

  9. Inhomogeneity induced and appropriately parameterized semilocal exchange and correlation energy functionals in two-dimensions

    Science.gov (United States)

    Patra, Abhilash; Jana, Subrata; Samal, Prasanjit

    2018-04-01

    The construction of meta generalized gradient approximations based on the density matrix expansion (DME) is considered as one of the most accurate techniques to design semilocal exchange energy functionals in two-dimensional density functional formalism. The exchange holes modeled using DME possess unique features that make it a superior entity. Parameterized semilocal exchange energy functionals based on the DME are proposed. The use of different forms of the momentum and flexible parameters is to subsume the non-uniform effects of the density in the newly constructed semilocal functionals. In addition to the exchange functionals, a suitable correlation functional is also constructed by working upon the local correlation functional developed for 2D homogeneous electron gas. The non-local effects are induced into the correlation functional by a parametric form of one of the newly constructed exchange energy functionals. The proposed functionals are applied to the parabolic quantum dots with a varying number of confined electrons and the confinement strength. The results obtained with the aforementioned functionals are quite satisfactory, which indicates why these are suitable for two-dimensional quantum systems.

  10. Ultra-endurance exercise induces stress and inflammation and affects circulating hematopoietic progenitor cell function.

    Science.gov (United States)

    Stelzer, I; Kröpfl, J M; Fuchs, R; Pekovits, K; Mangge, H; Raggam, R B; Gruber, H-J; Prüller, F; Hofmann, P; Truschnig-Wilders, M; Obermayer-Pietsch, B; Haushofer, A C; Kessler, H H; Mächler, P

    2015-10-01

    Although amateur sports have become increasingly competitive within recent decades, there are as yet few studies on the possible health risks for athletes. This study aims to determine the impact of ultra-endurance exercise-induced stress on the number and function of circulating hematopoietic progenitor cells (CPCs) and hematological, inflammatory, clinical, metabolic, and stress parameters in moderately trained amateur athletes. Following ultra-endurance exercise, there were significant increases in leukocytes, platelets, interleukin-6, fibrinogen, tissue enzymes, blood lactate, serum cortisol, and matrix metalloproteinase-9. Ultra-endurance exercise did not influence the number of CPCs but resulted in a highly significant decline of CPC functionality after the competition. Furthermore, Epstein-Barr virus was seen to be reactivated in one of seven athletes. The link between exercise-induced stress and decline of CPC functionality is supported by a negative correlation between cortisol and CPC function. We conclude that ultra-endurance exercise induces metabolic stress and an inflammatory response that affects not only mature hematopoietic cells but also the function of the immature hematopoietic stem and progenitor cell fraction, which make up the immune system and provide for regeneration. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Modafinil treatment prevents REM sleep deprivation-induced brain function impairment by increasing MMP-9 expression.

    Science.gov (United States)

    He, Bin; Peng, Hua; Zhao, Ying; Zhou, Hui; Zhao, Zhongxin

    2011-12-02

    Previous work showed that sleep deprivation (SD) impairs hippocampal-dependent cognitive function and synaptic plasticity, and a novel wake-promoting agent modafinil prevents SD-induced memory impairment in rat. However, the mechanisms by which modafinil prevented REM-SD-induced impairment of brain function remain poorly understood. In the present study, rats were sleep-deprived by using the modified multiple platform method and brain function was detected. The results showed that modafinil treatment prevented REM-SD-induced impairment of cognitive function. Modafinil significantly reduced the number of errors compared to placebo and upregulated synapsin I expression in the dorsal hippocampal CA3 region. A synaptic plasticity-related gene, MMP-9 expression was also upregulated in modafinil-treated rats. Importantly, downregulation of MMP-9 expression by special siRNA decreased synapsin I protein levels and synapse numbers. Therefore, we demonstrated that modafinil increased cognition function and synaptic plasticity, at least in part by increasing MMP-9 expression in REM-SD rats. 2011. Published by Elsevier B.V.

  12. Intact urothelial barrier function in a mouse model of ketamine-induced voiding dysfunction

    Science.gov (United States)

    Rajandram, Retnagowri; Ong, Teng Aik; Razack, Azad H. A.; MacIver, Bryce; Zeidel, Mark

    2016-01-01

    Ketamine is a popular choice for young drug abusers. Ketamine abuse causes lower urinary tract symptoms, with the underlying pathophysiology poorly understood. Disruption of urothelial barrier function has been hypothesized to be a major mechanism for ketamine cystitis, yet the direct evidence of impaired urothelial barrier function is still lacking. To address this question, 8-wk-old female C57BL/6J mice were injected intraperitoneally with 30 mg·kg−1·day−1 ketamine for 12 wk to induce ketamine cystitis. A spontaneous voiding spot assay showed that ketamine-treated mice had increased primary voiding spot numbers and smaller primary voiding spot sizes than control mice (P ketamine-treated mice on cystometrograms. These functional experiments indicate that ketamine induces voiding dysfunction in mice. Surprisingly, urothelial permeability in ketamine-treated mice was not changed when measured using an Ussing chamber system with isotopic urea and water. Mouse urothelial structure was also not altered, and intact umbrella cell structure was observed by both transmission and scanning electron microscopy. Furthermore, immunostaining and confocal microscopy confirmed the presence of a well-defined distribution of zonula occuldens-1 in tight junctions and uroplakin in umbrella cells. In conclusion, these data indicate that ketamine injection induces voiding dysfunction in mice but does not necessarily disrupt mouse bladder barrier function. Disruption of urothelial barrier function may not be the major mechanism in ketamine cystitis. PMID:26911853

  13. Non-verbal emotion communication training induces specific changes in brain function and structure.

    Science.gov (United States)

    Kreifelts, Benjamin; Jacob, Heike; Brück, Carolin; Erb, Michael; Ethofer, Thomas; Wildgruber, Dirk

    2013-01-01

    The perception of emotional cues from voice and face is essential for social interaction. However, this process is altered in various psychiatric conditions along with impaired social functioning. Emotion communication trainings have been demonstrated to improve social interaction in healthy individuals and to reduce emotional communication deficits in psychiatric patients. Here, we investigated the impact of a non-verbal emotion communication training (NECT) on cerebral activation and brain structure in a controlled and combined functional magnetic resonance imaging (fMRI) and voxel-based morphometry study. NECT-specific reductions in brain activity occurred in a distributed set of brain regions including face and voice processing regions as well as emotion processing- and motor-related regions presumably reflecting training-induced familiarization with the evaluation of face/voice stimuli. Training-induced changes in non-verbal emotion sensitivity at the behavioral level and the respective cerebral activation patterns were correlated in the face-selective cortical areas in the posterior superior temporal sulcus and fusiform gyrus for valence ratings and in the temporal pole, lateral prefrontal cortex and midbrain/thalamus for the response times. A NECT-induced increase in gray matter (GM) volume was observed in the fusiform face area. Thus, NECT induces both functional and structural plasticity in the face processing system as well as functional plasticity in the emotion perception and evaluation system. We propose that functional alterations are presumably related to changes in sensory tuning in the decoding of emotional expressions. Taken together, these findings highlight that the present experimental design may serve as a valuable tool to investigate the altered behavioral and neuronal processing of emotional cues in psychiatric disorders as well as the impact of therapeutic interventions on brain function and structure.

  14. Non-verbal emotion communication training induces specific changes in brain function and structure

    Science.gov (United States)

    Kreifelts, Benjamin; Jacob, Heike; Brück, Carolin; Erb, Michael; Ethofer, Thomas; Wildgruber, Dirk

    2013-01-01

    The perception of emotional cues from voice and face is essential for social interaction. However, this process is altered in various psychiatric conditions along with impaired social functioning. Emotion communication trainings have been demonstrated to improve social interaction in healthy individuals and to reduce emotional communication deficits in psychiatric patients. Here, we investigated the impact of a non-verbal emotion communication training (NECT) on cerebral activation and brain structure in a controlled and combined functional magnetic resonance imaging (fMRI) and voxel-based morphometry study. NECT-specific reductions in brain activity occurred in a distributed set of brain regions including face and voice processing regions as well as emotion processing- and motor-related regions presumably reflecting training-induced familiarization with the evaluation of face/voice stimuli. Training-induced changes in non-verbal emotion sensitivity at the behavioral level and the respective cerebral activation patterns were correlated in the face-selective cortical areas in the posterior superior temporal sulcus and fusiform gyrus for valence ratings and in the temporal pole, lateral prefrontal cortex and midbrain/thalamus for the response times. A NECT-induced increase in gray matter (GM) volume was observed in the fusiform face area. Thus, NECT induces both functional and structural plasticity in the face processing system as well as functional plasticity in the emotion perception and evaluation system. We propose that functional alterations are presumably related to changes in sensory tuning in the decoding of emotional expressions. Taken together, these findings highlight that the present experimental design may serve as a valuable tool to investigate the altered behavioral and neuronal processing of emotional cues in psychiatric disorders as well as the impact of therapeutic interventions on brain function and structure. PMID:24146641

  15. Pharmacologically Induced Hypogonadism and Sexual Function in Healthy Young Women and Men

    Science.gov (United States)

    Schmidt, Peter J; Steinberg, Emma M; Negro, Paula Palladino; Haq, Nazli; Gibson, Carolyn; Rubinow, David R

    2008-01-01

    Studies fail to find uniform effects of age-related or induced hypogonadism on human sexual function. We examined the effects of induced hypogonadism on sexual function in healthy men and women and attempted to identify predictors of the sexual response to induced hypogonadism or hormone addback. The study design used was a double-blind, controlled, crossover (self-as-own control). The study setting was an ambulatory care clinic in a research hospital, and the participants were 20 men (average ± SD age = 28.5 ± 6.2 years) and 20 women (average ± SD age = 33.5 ± 8.7 years), all healthy and with no history of psychiatric illness. A multidimensional scale assessing several domains of sexual function was the main outcome measure. Participants of the study received depot leuprolide acetate (Lupron) every 4 weeks for 3 months (men) or 5 months (women). After the first month of Lupron alone, men received (in addition to Lupron) testosterone enanthate (200 mg intramuscularly) or placebo every 2 weeks for 1 month each. Women received Lupron alone for 2 months, and then, in addition to Lupron, they received estradiol and progesterone for 5 weeks each. The results of the study: in women, hypogonadism resulted in a significant decrease in global measures of sexual functioning, principally reflecting a significant decrease in the reported quality of orgasm. In men, hypogonadism resulted in significant reductions in all measured domains of sexual function. Testosterone restored sexual functioning scores in men to those seen at baseline, whereas neither estradiol nor progesterone significantly improved the reduced sexual functioning associated with hypogonadism in women. Induced hypogonadism decreased sexual function in a similar number of men and women. No predictors of response were identified except for levels of sexual function at baseline. In conclusion, our data do not support a simple deficiency model for the role of gonadal steroids in human sexual function; moreover

  16. Illness-induced anorexia and its possible function in the caterpillar, Manduca sexta.

    Science.gov (United States)

    Adamo, Shelley A; Fidler, Tara L; Forestell, Catherine A

    2007-03-01

    Although many animals exhibit illness-induced anorexia when immune-challenged, the adaptive significance of this behavior remains unclear. Injecting Manduca sexta larvae (caterpillars) with live bacteria (Serratia marcescens), heat-killed bacteria or bacterial lipopolysaccharides resulted in a decline in feeding, demonstrating illness-induced anorexia in this species. We used M. sexta to test four commonly suggested adaptive functions for illness-induced anorexia. (1) Food deprivation did not reduce the iron content of the hemolymph. (2) Immune-challenged M. sexta were not more likely to move to a different part of the plant. Therefore, the decline in feeding is unlikely to be an adaptive response allowing the animal to move away from a patch of contaminated food. (3) M. sexta force-fed S. marcescens bacteria were not more susceptible to a S. marcescens systemic infection than were M. sexta force-fed nutrient broth. (4) Force-feeding infected M. sexta during illness-induced anorexia did not increase mortality and short-term food deprivation did not enhance survival. However, force-feeding M. sexta with a high lipid diet (linseed oil and water) resulted in an increase in mortality when challenged with S. marcescens. Force-feeding sucrose or water did not reduce resistance. Force-feeding a high lipid diet into healthy animals did not reduce weight gain, suggesting that it was not toxic. We hypothesize that there is a conflict between lipid metabolism and immune function, although whether this conflict has played a role in the evolution of illness-induced anorexia remains unknown. The adaptive function of illness-induced anorexia requires further study in both vertebrates and invertebrates.

  17. Excitation functions for some Ne induced reactions with Holmium: incomplete fusion vs complete fusion

    International Nuclear Information System (INIS)

    Agarwal, Avinash; Kumar, Munish; Sharma, Anjali; Rizvi, I.A.; Ahamad, Tauseef; Ghugre, S.S.; Sinha, A.K.; Chaubey, A.K.

    2010-01-01

    Reactions induced by 20 Ne are expected to be considerably more complex than those of 12 C, and 16 O. As a part of the ongoing program to understand CF and ICF reaction mechanisms, it is of great interest to see whether the same experimental technique yield similarly valuable information for 20 Ne induced reactions. In this present work an attempt has been made to measure the excitation functions for fifteen evaporation residues (ERs) identified in the interaction of 20 Ne + 165 Ho system in the energy range 4 -7 MeV/A

  18. Naringin Improves Neuronal Insulin Signaling, Brain Mitochondrial Function, and Cognitive Function in High-Fat Diet-Induced Obese Mice.

    Science.gov (United States)

    Wang, Dongmei; Yan, Junqiang; Chen, Jing; Wu, Wenlan; Zhu, Xiaoying; Wang, Yong

    2015-10-01

    The epidemic and experimental studies have confirmed that the obesity induced by high-fat diet not only caused neuronal insulin resistance, but also induced brain mitochondrial dysfunction as well as learning impairment in mice. Naringin has been reported to posses biological functions which are beneficial to human cognitions, but its protective effects on HFD-induced cognitive deficits and underlying mechanisms have not been well characterized. In the present study Male C57BL/6 J mice were fed either a control or high-fat diet for 20 weeks and then randomized into four groups treated with their respective diets including control diet, control diet + naringin, high-fat diet (HFD), and high-fat diet + naringin (HFDN). The behavioral performance was assessed by using novel object recognition test and Morris water maze test. Hippocampal mitochondrial parameters were analyzed. Then the protein levels of insulin signaling pathway and the AMP-activated protein kinase (AMPK) in the hippocampus were detected by Western blot method. Our results showed that oral administration of naringin significantly improved the learning and memory abilities as evidenced by increasing recognition index by 52.5% in the novel object recognition test and inducing a 1.05-fold increase in the crossing-target number in the probe test, and ameliorated mitochondrial dysfunction in mice caused by HFD consumption. Moreover, naringin significantly enhanced insulin signaling pathway as indicated by a 34.5% increase in the expression levels of IRS-1, a 47.8% decrease in the p-IRS-1, a 1.43-fold increase in the p-Akt, and a 1.89-fold increase in the p-GSK-3β in the hippocampus of the HFDN mice versus HFD mice. Furthermore, the AMPK activity significantly increased in the naringin-treated (100 mg kg(-1) d(-1)) group. These findings suggest that an enhancement in insulin signaling and a decrease in mitochondrial dysfunction through the activation of AMPK may be one of the mechanisms that naringin

  19. Functional MRI neurofeedback training on connectivity between two regions induces long-lasting changes in intrinsic functional network

    Directory of Open Access Journals (Sweden)

    Fukuda eMegumi

    2015-03-01

    Full Text Available Motor or perceptual learning is known to influence functional connectivity between brain regions and induce short-term changes in the intrinsic functional networks revealed as correlations in slow blood-oxygen-level dependent (BOLD signal fluctuations. However, no cause-and-effect relationship has been elucidated between a specific change in connectivity and a long-term change in global networks. Here, we examine the hypothesis that functional connectivity (i.e. temporal correlation between two regions is increased and preserved for a long time when two regions are simultaneously activated or deactivated. Using the connectivity-neurofeedback training paradigm, subjects successfully learned to increase the correlation of activity between the lateral parietal and primary motor areas, regions that belong to different intrinsic networks and negatively correlated before training under the resting conditions. Furthermore, whole-brain hypothesis-free analysis as well as functional network analyses demonstrated that the correlation in the resting state between these areas as well as the correlation between the intrinsic networks that include the areas increased for at least two months. These findings indicate that the connectivity-neurofeedback training can cause long-term changes in intrinsic connectivity and that intrinsic networks can be shaped by experience-driven modulation of regional correlation.

  20. Investigating Gene Function in Cereal Rust Fungi by Plant-Mediated Virus-Induced Gene Silencing.

    Science.gov (United States)

    Panwar, Vinay; Bakkeren, Guus

    2017-01-01

    Cereal rust fungi are destructive pathogens, threatening grain production worldwide. Targeted breeding for resistance utilizing host resistance genes has been effective. However, breakdown of resistance occurs frequently and continued efforts are needed to understand how these fungi overcome resistance and to expand the range of available resistance genes. Whole genome sequencing, transcriptomic and proteomic studies followed by genome-wide computational and comparative analyses have identified large repertoire of genes in rust fungi among which are candidates predicted to code for pathogenicity and virulence factors. Some of these genes represent defence triggering avirulence effectors. However, functions of most genes still needs to be assessed to understand the biology of these obligate biotrophic pathogens. Since genetic manipulations such as gene deletion and genetic transformation are not yet feasible in rust fungi, performing functional gene studies is challenging. Recently, Host-induced gene silencing (HIGS) has emerged as a useful tool to characterize gene function in rust fungi while infecting and growing in host plants. We utilized Barley stripe mosaic virus-mediated virus induced gene silencing (BSMV-VIGS) to induce HIGS of candidate rust fungal genes in the wheat host to determine their role in plant-fungal interactions. Here, we describe the methods for using BSMV-VIGS in wheat for functional genomics study in cereal rust fungi.

  1. Functional and structural remodeling of glutamate synapses in prefrontal and frontal cortex induced by behavioral stress

    Directory of Open Access Journals (Sweden)

    Laura eMusazzi

    2015-04-01

    Full Text Available Increasing evidence has shown that the pathophysiology of neuropsychiatric disorders, including mood disorders, is associated with abnormal function and regulation of the glutamatergic system. Consistently, preclinical studies on stress-based animal models of pathology showed that glucocorticoids and stress exert crucial effects on neuronal excitability and function, especially in cortical and limbic areas. In prefrontal and frontal cortex, acute stress was shown to induce enhancement of glutamate release/transmission dependent on activation of corticosterone receptors. Although the mechanisms whereby stress affects glutamate transmission have not yet been fully understood, it was shown that synaptic, non-genomic action of corticosterone is required to increase the readily releasable pool of glutamate vesicles but is not sufficient to enhance transmission in prefrontal and frontal cortex. Slower, partly genomic mechanisms are probably necessary for the enhancement of glutamate transmission induced by stress.Combined evidence has suggested that the changes in glutamate release and transmission are responsible for the dendritic remodeling and morphological changes induced by stress and it has been argued that sustained alterations of glutamate transmission may play a key role in the long-term structural/functional changes associated with mood disorders in patients. Intriguingly, modifications of the glutamatergic system induced by stress in the prefrontal cortex seem to be biphasic. Indeed, while the fast response to stress suggests an enhancement in the number of excitatory synapses, synaptic transmission and working memory, long-term adaptive changes -including those consequent to chronic stress- induce opposite effects. Better knowledge of the cellular effectors involved in this biphasic effect of stress may be useful to understand the pathophysiology of stress-related disorders, and open new paths for the development of therapeutic approaches.

  2. Measurement-induced decoherence and Gaussian smoothing of the Wigner distribution function

    International Nuclear Information System (INIS)

    Chun, Yong-Jin; Lee, Hai-Woong

    2003-01-01

    We study the problem of measurement-induced decoherence using the phase-space approach employing the Gaussian-smoothed Wigner distribution function. Our investigation is based on the notion that measurement-induced decoherence is represented by the transition from the Wigner distribution to the Gaussian-smoothed Wigner distribution with the widths of the smoothing function identified as measurement errors. We also compare the smoothed Wigner distribution with the corresponding distribution resulting from the classical analysis. The distributions we computed are the phase-space distributions for simple one-dimensional dynamical systems such as a particle in a square-well potential and a particle moving under the influence of a step potential, and the time-frequency distributions for high-harmonic radiation emitted from an atom irradiated by short, intense laser pulses

  3. Contact lens-induced corneal endothelial polymegathism: functional significance and possible mechanisms.

    Science.gov (United States)

    Connor, C G; Zagrod, M E

    1986-07-01

    The corneal endothelium is principally responsible for maintenance of corneal deturgescence. Therefore, compromise of corneal endothelial functional integrity can result in corneal swelling and opacification. Contact lenses constitute a potential insult to the cornea because their wear reduces the oxygen available to that tissue. It has been reported that contact lens wear induces transient as well as permanent morphologic changes in the corneal endothelium. One of the permanent changes reported is referred to as polymegathism, which is a variation in cell size within the endothelial monolayer. Several investigators have suggested that polymegathism reflects a compromised endothelial functional status. Mechanisms proposed to explain contact lens-induced polymegathism include lactate accumulation, changes in pH, and elevation in CO2 content. We discuss these possibilities as well as speculate that these polymegathous shape changes may be a result of decreased endothelial ATP (adenosine triphosphate) levels and disturbed calcium homeostasis due to corneal endothelial hypoxia.

  4. Molecular, Cellular and Functional Effects of Radiation-Induced Brain Injury: A Review.

    Science.gov (United States)

    Balentova, Sona; Adamkov, Marian

    2015-11-24

    Radiation therapy is the most effective non-surgical treatment of primary brain tumors and metastases. Preclinical studies have provided valuable insights into pathogenesis of radiation-induced injury to the central nervous system. Radiation-induced brain injury can damage neuronal, glial and vascular compartments of the brain and may lead to molecular, cellular and functional changes. Given its central role in memory and adult neurogenesis, the majority of studies have focused on the hippocampus. These findings suggested that hippocampal avoidance in cranial radiotherapy prevents radiation-induced cognitive impairment of patients. However, multiple rodent studies have shown that this problem is more complex. As the radiation-induced cognitive impairment reflects hippocampal and non-hippocampal compartments, it is of critical importance to investigate molecular, cellular and functional modifications in various brain regions as well as their integration at clinically relevant doses and schedules. We here provide a literature overview, including our previously published results, in order to support the translation of preclinical findings to clinical practice, and improve the physical and mental status of patients with brain tumors.

  5. Molecular, Cellular and Functional Effects of Radiation-Induced Brain Injury: A Review

    Directory of Open Access Journals (Sweden)

    Sona Balentova

    2015-11-01

    Full Text Available Radiation therapy is the most effective non-surgical treatment of primary brain tumors and metastases. Preclinical studies have provided valuable insights into pathogenesis of radiation-induced injury to the central nervous system. Radiation-induced brain injury can damage neuronal, glial and vascular compartments of the brain and may lead to molecular, cellular and functional changes. Given its central role in memory and adult neurogenesis, the majority of studies have focused on the hippocampus. These findings suggested that hippocampal avoidance in cranial radiotherapy prevents radiation-induced cognitive impairment of patients. However, multiple rodent studies have shown that this problem is more complex. As the radiation-induced cognitive impairment reflects hippocampal and non-hippocampal compartments, it is of critical importance to investigate molecular, cellular and functional modifications in various brain regions as well as their integration at clinically relevant doses and schedules. We here provide a literature overview, including our previously published results, in order to support the translation of preclinical findings to clinical practice, and improve the physical and mental status of patients with brain tumors.

  6. Remeasurement and compilation of excitation function of proton induced reactions on iron for activation techniques

    International Nuclear Information System (INIS)

    Takacs, S.; Vasvary, L.; Tarkanyi, F.

    1994-01-01

    Excitation functions of proton induced reactions on nat Fe(p, xn) 56 Co have been remeasured in the energy region up to 18 MeV using stacked foil technique and standard high resolution gamma-ray spectrometry at the Debrecen MGC-20E cyclotron. Compilation of the available data measured between 1959 and 1993 has been made. The corresponding excitation functions have been reviewed, critical comparison of all the available data was done to obtain the most accurate data set. The feasibility of the evaluated data set was checked by reproducing experimental calibration curves for TLA by calculation. (orig.)

  7. Trimethoprim-Sulfamethoxazole-Induced Hyperkalemia in a Patient with Normal Renal Function

    Directory of Open Access Journals (Sweden)

    L. Connor Nickels

    2012-01-01

    Full Text Available The authors present a case of Trimethoprim-sulfamethoxazole-induced hyperkalemia in a patient with normal renal function. While toxicity of this drug has been reported in patients with renal insufficiency, this case highlights the toxicity associated with normal kidney function. Due to its popularity in the medical field and to the largely unrecognized effect of hyperkalemia, it is important to consider such adverse effects when prescribing TMX-SMX. One must be reminded of the possibility of the development of life-threatening hyperkalemia in relatively healthy patients.

  8. Neuropathic Pain-like Alterations in Muscle Nociceptor Function Associated with Vibration-induced Muscle Pain

    OpenAIRE

    Chen, Xiaojie; Green, Paul G.; Levine, Jon D.

    2010-01-01

    We recently developed a rodent model of the painful muscle disorders induced by occupational exposure to vibration. In the present study we used this model to evaluate the function of sensory neurons innervating the vibration-exposed gastrocnemius muscle. Activity of 74 vibration-exposed and 40 control nociceptors, with mechanical receptive fields in the gastrocnemius muscle, were recorded. In vibration-exposed rats ~15% of nociceptors demonstrated an intense and long-lasting barrage of actio...

  9. TiO{sub 2} nanoparticle-induced ROS correlates with modulated immune cell function

    Energy Technology Data Exchange (ETDEWEB)

    Maurer-Jones, Melissa A.; Christenson, Jenna R.; Haynes, Christy L., E-mail: chaynes@umn.edu [University of Minnesota, Department of Chemistry (United States)

    2012-12-15

    Design of non-toxic nanoparticles will be greatly facilitated by understanding the nanoparticle-cell interaction mechanism on a cell function level. Mast cells are important cells for the immune system's first line of defense, and we can utilize their exocytotic behavior as a model cellular function as it is a conserved process across cell types and species. Perturbations in exocytosis can also have implications for whole organism health. One proposed mode of toxicity is nanoparticle-induced reactive oxygen species (ROS), particularly for titanium dioxide (TiO{sub 2}) nanoparticles. Herein, we have correlated changes in ROS with the perturbation of the critical cell function of exocytosis, using UV light to induce greater levels of ROS in TiO{sub 2} exposed cells. The primary culture mouse peritoneal mast cells (MPMCs) were exposed to varying concentrations of TiO{sub 2} nanoparticles for 24 h. ROS content was determined using 2,7-dihydrodichlorofluorescein diacetate (DCFDA). Cellular viability was determined with the MTT and Trypan blue assays, and exocytosis was measured by the analytical electrochemistry technique of carbon-fiber microelectrode amperometry. MPMCs exposed to TiO{sub 2} nanoparticles experienced a dose-dependent increase in total ROS content. While there was minimal impact of ROS on cellular viability, there is a correlation between ROS amount and exocytosis perturbation. As nanoparticle-induced ROS increases, there is a significant decrease (45 %) in the number of serotonin molecules being released during exocytosis, increase (26 %) in the amount of time for each exocytotic granule to release, and decrease (28 %) in the efficiency of granule trafficking and docking. This is the first evidence that nanoparticle-induced ROS correlates with chemical messenger molecule secretion, possibly making a critical connection between functional impairment and mechanisms contributing to that impairment.

  10. Inducing the Formation of Functional Macroscopic Assemblies Through Programmed Orthogonal Supramolecular Interactions

    Science.gov (United States)

    2014-05-27

    new materials for artificial photosynthesis and organic electronics. (a) Papers published in peer-reviewed journals (N/A for none) Enter List of...closely coupled, could lead to new materials for artificial photosynthesis and organic electronics. The views, opinions and/or findings contained in...published in peer-reviewed journals : Number of Papers published in non peer-reviewed journals : Inducing the Formation of Functional Macroscopic

  11. Artificial stone dust-induced functional and inflammatory abnormalities in exposed workers monitored quantitatively by biometrics

    Science.gov (United States)

    Ophir, Noa; Shai, Amir Bar; Alkalay, Yifat; Israeli, Shani; Korenstein, Rafi; Kramer, Mordechai R.

    2016-01-01

    The manufacture of kitchen and bath countertops in Israel is based mainly on artificial stone that contains 93% silica as natural quartz, and ∼3500 workers are involved in cutting and processing it. Artificial stone produces high concentrations of silica dust. Exposure to crystalline silica may cause silicosis, an irreversible lung disease. Our aim was to screen exposed workers by quantitative biometric monitoring of functional and inflammatory parameters. 68 exposed artificial stone workers were compared to 48 nonexposed individuals (controls). Exposed workers filled in questionnaires, and all participants underwent pulmonary function tests and induced sputum analyses. Silica was quantitated by a Niton XL3 X-ray fluorescence spectrometer. Pulmonary function test results of exposed workers were significantly lower and induced sputa showed significantly higher neutrophilic inflammation compared to controls; both processes were slowed down by the use of protective measures in the workplace. Particle size distribution in induced sputum samples of exposed workers was similar to that of artificial stone dust, which contained aluminium, zirconium and titanium in addition to silica. In conclusion, the quantitation of biometric parameters is useful for monitoring workers exposed to artificial stone in order to avoid deterioration over time. PMID:27730180

  12. Functional and structural changes in internal pudendal arteries underlie erectile dysfunction induced by androgen deprivation

    Directory of Open Access Journals (Sweden)

    Rhéure Alves-Lopes

    2017-01-01

    Full Text Available Androgen deficiency is strongly associated with erectile dysfunction (ED. Inadequate penile arterial blood flow is one of the major causes of ED. The blood flow to the corpus cavernosum is mainly derived from the internal pudendal arteries (IPAs; however, no study has evaluated the effects of androgen deprivation on IPA′s function. We hypothesized that castration impairs IPAs reactivity and structure, contributing to ED. In our study, Wistar male rats, 8-week-old, were castrated and studied 30 days after orchiectomy. Functional and structural properties of rat IPAs were determined using wire and pressure myograph systems, respectively. Protein expression was determined by Western blot and immunohistochemistry. Plasma testosterone levels were determined using the IMMULITE 1000 Immunoassay System. Castrated rats exhibited impaired erectile function, represented by decreased intracavernosal pressure/mean arterial pressure ratio. IPAs from castrated rats exhibited decreased phenylephrine- and electrical field stimulation (EFS-induced contraction and decreased acetylcholine- and EFS-induced vasodilatation. IPAs from castrated rats exhibited decreased internal diameter, external diameter, thickness of the arterial wall, and cross-sectional area. Castration decreased nNOS and α-actin expression and increased collagen expression, p38 (Thr180/Tyr182 phosphorylation, as well as caspase 3 cleavage. In conclusion, androgen deficiency is associated with impairment of IPA reactivity and structure and increased apoptosis signaling markers. Our findings suggest that androgen deficiency-induced vascular dysfunction is an event involving hypotrophic vascular remodeling of IPAs.

  13. Evidence of changes in alpha-1/AT1 receptor function generated by diet-induced obesity.

    Science.gov (United States)

    Juarez, Esther; Tufiño, Cecilia; Querejeta, Enrique; Bracho-Valdes, Ismael; Bobadilla-Lugo, Rosa A

    2017-11-01

    To study whether hypercaloric diet-induced obesity deteriorates vascular contractility of rat aorta through functional changes in α 1 adrenergic and/or AT1 Angiotensin II receptors. Angiotensin II- or phenylephrine-induced contraction was tested on isolated aorta rings with and without endothelium from female Wistar rats fed for 7 weeks with hypercaloric diet or standard diet. Vascular expression of Angiotensin II Receptor type 1 (AT1R), Angiotensin II Receptor type 2 (AT2R), Cyclooxygenase-1 (COX-1), Cyclooxygenase-2 (COX-2), inducible Nitric Oxide Synthase (iNOS) and endothelial Nitric Oxide Synthase (eNOS), as well as blood pressure, glucose, insulin and angiotensin II blood levels were measured. Diet-induced obesity did not significantly change agonist-induced contractions (Emax and pD 2 hypercaloric diet vs standard diet n.s.d.) of both intact (e+) or endothelium free (e-) vessels but significantly decrease both phenylephrine and angiotensin II contraction (Emax p obesity did not change angiotensin II AT1, AT2 receptor proteins expression but reduced COX-1 and NOS2 ( p obesity produces alterations in vascular adrenergic and angiotensin II receptor dynamics that suggest an endothelium-dependent adrenergic/angiotensin II crosstalk. These changes reflect early-stage vascular responses to obesity.

  14. Neural Correlates of Sevoflurane-induced Unconsciousness Identified by Simultaneous Functional Magnetic Resonance Imaging and Electroencephalography.

    Science.gov (United States)

    Ranft, Andreas; Golkowski, Daniel; Kiel, Tobias; Riedl, Valentin; Kohl, Philipp; Rohrer, Guido; Pientka, Joachim; Berger, Sebastian; Thul, Alexander; Maurer, Max; Preibisch, Christine; Zimmer, Claus; Mashour, George A; Kochs, Eberhard F; Jordan, Denis; Ilg, Rüdiger

    2016-11-01

    The neural correlates of anesthetic-induced unconsciousness have yet to be fully elucidated. Sedative and anesthetic states induced by propofol have been studied extensively, consistently revealing a decrease of frontoparietal and thalamocortical connectivity. There is, however, less understanding of the effects of halogenated ethers on functional brain networks. The authors recorded simultaneous resting-state functional magnetic resonance imaging and electroencephalography in 16 artificially ventilated volunteers during sevoflurane anesthesia at burst suppression and 3 and 2 vol% steady-state concentrations for 700 s each to assess functional connectivity changes compared to wakefulness. Electroencephalographic data were analyzed using symbolic transfer entropy (surrogate of information transfer) and permutation entropy (surrogate of cortical information processing). Functional magnetic resonance imaging data were analyzed by an independent component analysis and a region-of-interest-based analysis. Electroencephalographic analysis showed a significant reduction of anterior-to-posterior symbolic transfer entropy and global permutation entropy. At 2 vol% sevoflurane concentrations, frontal and thalamic networks identified by independent component analysis showed significantly reduced within-network connectivity. Primary sensory networks did not show a significant change. At burst suppression, all cortical networks showed significantly reduced functional connectivity. Region-of-interest-based thalamic connectivity at 2 vol% was significantly reduced to frontoparietal and posterior cingulate cortices but not to sensory areas. Sevoflurane decreased frontal and thalamocortical connectivity. The changes in blood oxygenation level dependent connectivity were consistent with reduced anterior-to-posterior directed connectivity and reduced cortical information processing. These data advance the understanding of sevoflurane-induced unconsciousness and contribute to a

  15. Effect of Danshen injection on the vascular endothelial function and renal function in patients with pregnancy induced hypertension syndrome

    Directory of Open Access Journals (Sweden)

    Jun-Qing Zhang

    2016-12-01

    Full Text Available Objective: To explore the effect of Danshen injection on the vascular endothelial function and renal function in patients with pregnancy induced hypertension syndrome (PIH. Methods: A total of 100 patients with PIH who were admitted in our hospital from May, 2015 to May, 2016 were included in the study and randomized into the observation group and the control group. The patients in the control group were given blood pressure reduction, diuresis, spasmolysis, sedation, magnesium sulfate, and comprehensive nursing intervention. On this basis, the patients in the observation group were given additional Danshen injection (20 mL + 5% glucose (250 mL, ivdrip, 1 time/d. After 10 d treatment, the efficacy was evaluated. The peripheral venous blood before and after treatment in the two groups was collected. The radioimmunoassay was used to detect ET-1. ELISA was used to detect Hcy. The immunoturbidimetry was used to detect vWF. The radioimmunoassay was used to detect BUN, Scr, UA, and β2-MG. The standard sphygmomanometer was used to monitor the blood pressure and MAP was calculated. The biuret colorimetry was used to determine 24 h Upro. Results: The reduced degree of ET-1, Hcy, and vWF after treatment in the observation group was significantly superior to that in the control group. The reduced degree of BUN, Scr, UA, and β2-MG after treatment in the observation group was significantly superior to that in the control group. The reduced degree of MPA and 24 h Upro after treatment in the observation group was significantly superior to that in the control group. Conclusions: Routine treatments, comprehensive nursing intervention, and Danshen injection in the treatment of PIH can effectively improve the vascular endothelial function and renal function in order to reduce the blood pressure and alleviate the urine protein.

  16. DPP4-inhibitor improves neuronal insulin receptor function, brain mitochondrial function and cognitive function in rats with insulin resistance induced by high-fat diet consumption.

    Science.gov (United States)

    Pipatpiboon, Noppamas; Pintana, Hiranya; Pratchayasakul, Wasana; Chattipakorn, Nipon; Chattipakorn, Siriporn C

    2013-03-01

    High-fat diet (HFD) consumption has been demonstrated to cause peripheral and neuronal insulin resistance, and brain mitochondrial dysfunction in rats. Although the dipeptidyl peptidase-4 inhibitor, vildagliptin, is known to improve peripheral insulin sensitivity, its effects on neuronal insulin resistance and brain mitochondrial dysfunction caused by a HFD are unknown. We tested the hypothesis that vildagliptin prevents neuronal insulin resistance, brain mitochondrial dysfunction, learning and memory deficit caused by HFD. Male rats were divided into two groups to receive either a HFD or normal diet (ND) for 12 weeks, after which rats in each group were fed with either vildagliptin (3 mg/kg/day) or vehicle for 21 days. The cognitive function was tested by the Morris Water Maze prior to brain removal for studying neuronal insulin receptor (IR) and brain mitochondrial function. In HFD rats, neuronal insulin resistance and brain mitochondrial dysfunction were demonstrated, with impaired learning and memory. Vildagliptin prevented neuronal insulin resistance by restoring insulin-induced long-term depression and neuronal IR phosphorylation, IRS-1 phosphorylation and Akt/PKB-ser phosphorylation. It also improved brain mitochondrial dysfunction and cognitive function. Vildagliptin effectively restored neuronal IR function, increased glucagon-like-peptide 1 levels and prevented brain mitochondrial dysfunction, thus attenuating the impaired cognitive function caused by HFD. © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  17. AMPKγ3 is dispensable for skeletal muscle hypertrophy induced by functional overload.

    Science.gov (United States)

    Riedl, Isabelle; Osler, Megan E; Björnholm, Marie; Egan, Brendan; Nader, Gustavo A; Chibalin, Alexander V; Zierath, Juleen R

    2016-03-15

    Mechanisms regulating skeletal muscle growth involve a balance between the activity of serine/threonine protein kinases, including the mammalian target of rapamycin (mTOR) and 5'-AMP-activated protein kinase (AMPK). The contribution of different AMPK subunits to the regulation of cell growth size remains inadequately characterized. Using AMPKγ3 mutant-overexpressing transgenic Tg-Prkag3(225Q) and AMPKγ3-knockout (Prkag3(-/-)) mice, we investigated the requirement for the AMPKγ3 isoform in functional overload-induced muscle hypertrophy. Although the genetic disruption of the γ3 isoform did not impair muscle growth, control sham-operated AMPKγ3-transgenic mice displayed heavier plantaris muscles in response to overload hypertrophy and underwent smaller mass gain and lower Igf1 expression compared with wild-type littermates. The mTOR signaling pathway was upregulated with functional overload but unchanged between genetically modified animals and wild-type littermates. Differences in AMPK-related signaling pathways between transgenic, knockout, and wild-type mice did not impact muscle hypertrophy. Glycogen content was increased following overload in wild-type mice. In conclusion, our functional, transcriptional, and signaling data provide evidence against the involvement of the AMPKγ3 isoform in the regulation of skeletal muscle hypertrophy. Thus, the AMPKγ3 isoform is dispensable for functional overload-induced muscle growth. Mechanical loading can override signaling pathways that act as negative effectors of mTOR signaling and consequently promote skeletal muscle hypertrophy. Copyright © 2016 the American Physiological Society.

  18. Function of Platelet-Induced Epithelial Attachment at Titanium Surfaces Inhibits Microbial Colonization.

    Science.gov (United States)

    Maeno, M; Lee, C; Kim, D M; Da Silva, J; Nagai, S; Sugawara, S; Nara, Y; Kihara, H; Nagai, M

    2017-06-01

    The aim of this study was to evaluate the barrier function of platelet-induced epithelial sheets on titanium surfaces. The lack of functional peri-implant epithelial sealing with basal lamina (BL) attachment at the interface of the implant and the adjacent epithelium allows for bacterial invasion, which may lead to peri-implantitis. Although various approaches have been reported to combat bacterial infection by surface modifications to titanium, none of these have been successful in a clinical application. In our previous study, surface modification with protease-activated receptor 4-activating peptide (PAR4-AP), which induced platelet activation and aggregation, was successful in demonstrating epithelial attachment via BL and epithelial sheet formation on the titanium surface. We hypothesized that the platelet-induced epithelial sheet on PAR4-AP-modified titanium surfaces would reduce bacterial attachment, penetration, and invasion. Titanium surface was modified with PAR4-AP and incubated with platelet-rich plasma (PRP). The aggregated platelets released collagen IV, a critical BL component, onto the PAR4-AP-modified titanium surface. Then, human gingival epithelial cells were seeded on the modified titanium surface and formed epithelial sheets. Green fluorescent protein (GFP)-expressing Escherichia coli was cultured onto PAR4-AP-modified titanium with and without epithelial sheet formation. While Escherichia coli accumulated densely onto the PAR4-AP titanium lacking epithelial sheet, few Escherichia coli were observed on the epithelial sheet on the PAR4-AP surface. No bacterial invasion into the interface of the epithelial sheet and the titanium surface was observed. These in vitro results indicate the efficacy of a platelet-induced epithelial barrier that functions to prevent bacterial attachment, penetration, and invasion on PAR4-AP-modified titanium.

  19. Glucose-induced effects and joker function of glucose: endocrine or genotoxic prevalence?

    Science.gov (United States)

    Berstein, L M; Vasilyev, D A; Poroshina, T E; Kovalenko, I G

    2006-10-01

    The steady increase in chronic "glycemic load" is characteristic for modern times. Among myriad of glucose functions, two principals can be emphasized: first, endocrine (in particular, ability to induce insulin secretion) and second, DNA-damaging related to formation of reactive oxygen species (ROS). It was suggested by us earlier that a shift in the ratio of mentioned functions reflects a possible "joker" role of glucose as an important modifier of human pathology. Therefore, we embarked on a study to investigate an individual effect of peroral glucose challenge on serum insulin level and ROS generation by mononuclears (luminol-dependent/latex-induced chemiluminescence) in 20 healthy people aged between 28-75. Concentrations of glucose, blood lipids, carbonylated proteins, malondialdehyde, leptin and TNF-alpha were determined as well. On the basis of received data two separate groups could be distinguished: one (n=8), in which glucose stimulation of ROS generation by mononuclears was increased and relatively prevailed over induction of insulin secretion (state of the so called glucose-induced genotoxicity, GIGT), and another (n=12), in which signs of GIGT were not revealed. People who belonged to the first group were characterized with a tendency to lower body mass index, blood leptin and cholesterol and to higher TNF-alpha concentration. Thus, if joker function of glucose is realized in "genotoxic mode", the phenotype (and probably genotype) of subjects may be rather distinctive to the one discovered in glucose-induced "endocrine prevalence". Whether such changes may serve as a pro-mutagenic or pro-endocrine basis for the rise of different chronic diseases or, rather, different features/aggressiveness of the same disease warrants further study.

  20. Functional response of cerebral blood flow induced by somatosensory stimulation in rats with subarachnoid hemorrhage

    Science.gov (United States)

    Li, Zhiguo; Huang, Qin; Liu, Peng; Li, Pengcheng; Ma, Lianting; Lu, Jinling

    2015-09-01

    Subarachnoid hemorrhage (SAH) is often accompanied by cerebral vasospasm (CVS), which is the phenomenon of narrowing of large cerebral arteries, and then can produce delayed ischemic neurological deficit (DIND) such as lateralized sensory dysfunction. CVS was regarded as a major contributor to DIND in patients with SAH. However, therapy for preventing vasospasm after SAH to improve the outcomes may not work all the time. It is important to find answers to the relationship between CVS and DIND after SAH. How local cerebral blood flow (CBF) is regulated during functional activation after SAH still remains poorly understood, whereas, the regulation of CBF may play an important role in weakening the impact of CVS on cortex function. Therefore, it is worthwhile to evaluate the functional response of CBF in the activated cortex in an SAH animal model. Most evaluation of the effect of SAH is presently carried out by neurological behavioral scales. The functional imaging of cortical activation during sensory stimulation may help to reflect the function of the somatosensory cortex more locally than the behavioral scales do. We investigated the functional response of CBF in the somatosensory cortex induced by an electrical stimulation to contralateral forepaw via laser speckle imaging in a rat SAH model. Nineteen Sprague-Dawley rats from two groups (control group, n=10 and SAH group, n=9) were studied. SAH was induced in rats by double injection of autologous blood into the cisterna magna after CSF aspiration. The same surgical procedure was applied in the control group without CSF aspiration or blood injection. Significant CVS was found in the SAH group. Meanwhile, we observed a delayed peak of CBF response in rats with SAH compared with those in the control group, whereas no significant difference was found in magnitude, duration, and areas under curve of relative CBF changes between the two groups. The results suggest that the regulation function of local CBF during

  1. Impaired Functional Connectivity in the Prefrontal Cortex: A Mechanism for Chronic Stress-Induced Neuropsychiatric Disorders

    Directory of Open Access Journals (Sweden)

    Ignacio Negrón-Oyarzo

    2016-01-01

    Full Text Available Chronic stress-related psychiatric diseases, such as major depression, posttraumatic stress disorder, and schizophrenia, are characterized by a maladaptive organization of behavioral responses that strongly affect the well-being of patients. Current evidence suggests that a functional impairment of the prefrontal cortex (PFC is implicated in the pathophysiology of these diseases. Therefore, chronic stress may impair PFC functions required for the adaptive orchestration of behavioral responses. In the present review, we integrate evidence obtained from cognitive neuroscience with neurophysiological research with animal models, to put forward a hypothesis that addresses stress-induced behavioral dysfunctions observed in stress-related neuropsychiatric disorders. We propose that chronic stress impairs mechanisms involved in neuronal functional connectivity in the PFC that are required for the formation of adaptive representations for the execution of adaptive behavioral responses. These considerations could be particularly relevant for understanding the pathophysiology of chronic stress-related neuropsychiatric disorders.

  2. Excitation functions of radionuclides produced by proton induced reactions on gadolinium targets

    International Nuclear Information System (INIS)

    Challana, M.B.; Comsana, M.N.H.; Moawadb, G.S.; Abou-Zeid, M.A.

    2008-01-01

    Cross section study for proton induced reaction on natural Gadolinium targets were performed. Excitation functions for the reactions n atGd(p,x) 152m+g , 154m,154g Tb from threshold up to E p = 18 MeV have been measured employing the stacked foil activation technique, and using high resolution HPGe gamma spectrometry. Utilizing the simultaneous measurement of the excitation function of n atCu(p,x) 62 Zn, n atCu(p,x) 63 Zn, and n atCu(p,x) 65 Zn as monitor reactions. The theoretical analysis of the excitation functions has been done employing both ALICE-91 and EMPIRE-II codes. In general, theoretical calculations agree well with the experimental data. A significant contribution of pre-equilibrium component has been observed at these energies

  3. Repair of radiation-induced DNA damage in rat epidermis as a function of age

    International Nuclear Information System (INIS)

    Sargent, E.V.; Burns, F.J.

    1985-01-01

    The rate of repair of radiation-induced DNA damage in proliferating rat epidermal cells diminished progressively with increasing age of the animal. The dorsal skin was irradiated with 1200 rad of 0.8 MeV electrons at various ages, and the amount of DNA damage was determined as a function of time after irradiation by the method of alkaline unwinding followed by S 1 nuclease digestion. The amount of DNA damage immediately after irradiation was not age dependent, while the rate of damage removal from the DNA decreased with increasing age. By fitting an exponential function to the relative amount of undamaged DNA as a function of time after irradiation, DNA repair halftimes of 20, 27, 69, and 107 min were obtained for 28, 100-, 200-, and 400-day-old animals, respectively

  4. Endothelial function in hypertensive obese patients: 1 year after surgically induced weight loss.

    Science.gov (United States)

    Flores, L; Núñez, I; Vidal, J; Rueda, S; Viaplana, J; Rodríguez, L; Esmatjes, E

    2014-09-01

    The aim of this study was to describe the effect of surgically induced weight loss on vascular function measured by flow-mediated dilatation (FMD) in hypertensive obese patients. This prospective study included 33 patients (78 % females, mean age 53 (9) years) undergoing bariatric surgery (BS). Before and 12 months postoperatively, the BMI, 24-h ambulatory BP, high-sensitivity C-reactive protein (hs-CRP), leptin, homeostasis model assessment (HOMA IR), and abdominal fat were measured. Endothelial function was assessed by FMD. After BS, the excess body weight loss was 71 %; the 24-h [systolic 18(11)//diastolic 7(7) mmHg] BP values, hs-CRP, leptin, HOMA, and abdominal fat significantly decreased, with no changes in endothelial function. Weight loss achieved by BS was associated with a significant improvement in BP and metabolic and inflammation parameters, but FMD did not improve.

  5. Fusobacterium nucleatum-associated beta-defensin inducer (FAD-I): identification, isolation, and functional evaluation.

    Science.gov (United States)

    Gupta, Sanhita; Ghosh, Santosh K; Scott, Mary E; Bainbridge, Brian; Jiang, Bin; Lamont, Richard J; McCormick, Thomas S; Weinberg, Aaron

    2010-11-19

    Human β-defensins (hBDs) are small, cationic antimicrobial peptides, secreted by mucosal epithelial cells that regulate adaptive immune functions. We previously reported that Fusobacterium nucleatum, a ubiquitous gram-negative bacterium of the human oral cavity, induces human β-defensin 2 (hBD2) upon contact with primary oral epithelial cells. We now report the isolation and characterization of an F. nucleatum (ATCC 25586)-associated defensin inducer (FAD-I). Biochemical approaches revealed a cell wall fraction containing four proteins that stimulated the production of hBD2 in human oral epithelial cells (HOECs). Cross-referencing of the N-terminal sequences of these proteins with the F. nucleatum genome revealed that the genes encoding the proteins were FadA, FN1527, FN1529, and FN1792. Quantitative PCR of HOEC monolayers challenged with Escherichia coli clones expressing the respective cell wall proteins revealed that FN1527 was most active in the induction of hBD2 and hence was termed FAD-I. We tagged FN1527 with a c-myc epitope on the C-terminal end to identify and purify it from the E. coli clone. Purified FN1527 (FAD-I) induced hBD2 mRNA and protein expression in HOEC monolayers. F. nucleatum cell wall and FAD-I induced hBD2 via TLR2. Porphorymonas gingivalis, an oral pathogen that does not induce hBD2 in HOECs, was able to significantly induce expression of hBD2 in HOECs only when transformed to express FAD-I. FAD-I or its derivates offer a potentially new paradigm in immunoregulatory therapeutics because they may one day be used to bolster the innate defenses of vulnerable mucosae.

  6. Differentiation-inducing factor-1 and -2 function also as modulators for Dictyostelium chemotaxis.

    Directory of Open Access Journals (Sweden)

    Hidekazu Kuwayama

    Full Text Available BACKGROUND: In the early stages of development of the cellular slime mold Dictyostelium discoideum, chemotaxis toward cAMP plays a pivotal role in organizing discrete cells into a multicellular structure. In this process, a series of signaling molecules, such as G-protein-coupled cell surface receptors for cAMP, phosphatidylinositol metabolites, and cyclic nucleotides, function as the signal transducers for controlling dynamics of cytoskeleton. Differentiation-inducing factor-1 and -2 (DIF-1 and DIF-2 were originally identified as the factors (chlorinated alkylphenones that induce Dictyostelium stalk cell differentiation, but it remained unknown whether the DIFs had any other physiologic functions. METHODOLOGY/PRINCIPAL FINDINGS: To further elucidate the functions of DIFs, in the present study we investigated their effects on chemotaxis under various conditions. Quite interestingly, in shallow cAMP gradients, DIF-1 suppressed chemotaxis whereas DIF-2 promoted it greatly. Analyses with various mutants revealed that DIF-1 may inhibit chemotaxis, at least in part, via GbpB (a phosphodiesterase and a decrease in the intracellular cGMP concentration ([cGMP](i. DIF-2, by contrast, may enhance chemotaxis, at least in part, via RegA (another phosphodiesterase and an increase in [cGMP](i. Using null mutants for DimA and DimB, the transcription factors that are required for DIF-dependent prestalk differentiation, we also showed that the mechanisms for the modulation of chemotaxis by DIFs differ from those for the induction of cell differentiation by DIFs, at least in part. CONCLUSIONS/SIGNIFICANCE: Our findings indicate that DIF-1 and DIF-2 function as negative and positive modulators for Dictyostelium chemotaxis, respectively. To our knowledge, this is the first report in any organism of physiologic modulators (small molecules for chemotaxis having differentiation-inducing activity.

  7. IL-33 Independently Induces Eosinophilic Pericarditis and Cardiac Dilation: ST2 Improves Cardiac Function

    Science.gov (United States)

    Abston, Eric D.; Barin, Jobert G.; Cihakova, Daniela; Bucek, Adriana; Coronado, Michael J.; Brandt, Jessica E.; Bedja, Djahida; Kim, Joseph B.; Georgakopoulos, Dimitrios; Gabrielson, Kathleen L.; Mitzner, Wayne; Fairweather, DeLisa

    2013-01-01

    Background Interleukin (IL)-33 via its receptor ST2 protects the heart from myocardial infarct and hypertrophy in animal models, but paradoxically increases autoimmune disease. In this study we examined the effect of IL-33 or ST2 administration on autoimmune heart disease. Methods and Results We used pressure volume relationships and isoproterenol challenge to assess the effect of recombinant (r)IL-33 or rST2 (e.g. soluble ST2) administration on the development of autoimmune coxsackievirus (CVB3) myocarditis and dilated cardiomyopathy (DCM) in male BALB/c mice. rIL-33 treatment significantly increased acute perimyocarditis (p=0.006) and eosinophilia (p=1.3×10−5), impaired cardiac function (maximum ventricular power p=0.0002), and increased ventricular dilation (end diastolic volume p=0.01). rST2 treatment prevented eosinophilia and improved heart function compared to rIL-33 treatment (ejection fraction, p=0.009). Neither treatment altered viral replication. rIL-33 increased IL-4, IL-33, IL-1β and IL-6 levels in the heart during acute myocarditis. To determine whether IL-33 altered cardiac function on its own, we administered rIL-33 to undiseased mice and found that rIL-33 induced eosinophilic pericarditis and adversely affected heart function. We used cytokine knockout mice to determine that this effect was due to IL-33-mediated signaling but not IL-1β or IL-6. Conclusions We show for the first time that IL-33 induces eosinophilic pericarditis while sST2 prevents eosinophilia and improves systolic function, and that IL-33 independently adversely affects heart function via the IL-33 receptor. PMID:22454393

  8. Neuropathic pain-like alterations in muscle nociceptor function associated with vibration-induced muscle pain.

    Science.gov (United States)

    Chen, Xiaojie; Green, Paul G; Levine, Jon D

    2010-11-01

    We recently developed a rodent model of the painful muscle disorders induced by occupational exposure to vibration. In the present study we used this model to evaluate the function of sensory neurons innervating the vibration-exposed gastrocnemius muscle. Activity of 74 vibration-exposed and 40 control nociceptors, with mechanical receptive fields in the gastrocnemius muscle, were recorded. In vibration-exposed rats ∼15% of nociceptors demonstrated an intense and long-lasting barrage of action potentials in response to sustained suprathreshold mechanical stimulation (average of 2635 action potentials with frequency of ∼44Hz during a 1min suprathreshold stimulus) much greater than that has been reported to be produced even by potent inflammatory mediators. While these high-firing nociceptors had lower mechanical thresholds than the remaining nociceptors, exposure to vibration had no effect on conduction velocity and did not induce spontaneous activity. Hyperactivity was not observed in any of 19 neurons from vibration-exposed rats pretreated with intrathecal antisense for the IL-6 receptor subunit gp130. Since vibration can injure peripheral nerves and IL-6 has been implicated in painful peripheral neuropathies, we suggest that the dramatic change in sensory neuron function and development of muscles pain, induced by exposure to vibration, reflects a neuropathic muscle pain syndrome. Copyright © 2010 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  9. Monosodium glutamate neonatal treatment induces cardiovascular autonomic function changes in rodents

    Directory of Open Access Journals (Sweden)

    Signorá Peres Konrad

    2012-10-01

    Full Text Available OBJECTIVES: The aim of this study was to evaluate cardiovascular autonomic function in a rodent obesity model induced by monosodium glutamate injections during the first seven days of life. METHOD: The animals were assigned to control (control, n = 10 and monosodium glutamate (monosodium glutamate, n = 13 groups. Thirty-three weeks after birth, arterial and venous catheters were implanted for arterial pressure measurements, drug administration, and blood sampling. Baroreflex sensitivity was evaluated according to the tachycardic and bradycardic responses induced by sodium nitroprusside and phenylephrine infusion, respectively. Sympathetic and vagal effects were determined by administering methylatropine and propranolol. RESULTS: Body weight, Lee index, and epididymal white adipose tissue values were higher in the monosodium glutamate group in comparison to the control group. The monosodium glutamate-treated rats displayed insulin resistance, as shown by a reduced glucose/insulin index (-62.5%, an increased area under the curve of total insulin secretion during glucose overload (39.3%, and basal hyperinsulinemia. The mean arterial pressure values were higher in the monosodium glutamate rats, whereas heart rate variability (>7 times, bradycardic responses (>4 times, and vagal (~38% and sympathetic effects (~36% were reduced as compared to the control group. CONCLUSION: Our results suggest that obesity induced by neonatal monosodium glutamate treatment impairs cardiac autonomic function and most likely contributes to increased arterial pressure and insulin resistance.

  10. Usefulness of zebrafish larvae to evaluate drug-induced functional and morphological renal tubular alterations.

    Science.gov (United States)

    Gorgulho, Rita; Jacinto, Raquel; Lopes, Susana S; Pereira, Sofia A; Tranfield, Erin M; Martins, Gabriel G; Gualda, Emilio J; Derks, Rico J E; Correia, Ana C; Steenvoorden, Evelyne; Pintado, Petra; Mayboroda, Oleg A; Monteiro, Emilia C; Morello, Judit

    2018-01-01

    Prediction and management of drug-induced renal injury (DIRI) rely on the knowledge of the mechanisms of drug insult and on the availability of appropriate animal models to explore it. Zebrafish (Danio rerio) offers unique advantages for assessing DIRI because the larval pronephric kidney has a high homology with its human counterpart and it is fully mature at 3.5 days post-fertilization. Herein, we aimed to evaluate the usefulness of zebrafish larvae as a model of renal tubular toxicity through a comprehensive analysis of the renal alterations induced by the lethal concentrations for 10% of the larvae for gentamicin, paracetamol and tenofovir. We evaluated drug metabolic profile by mass spectrometry, renal function with the inulin clearance assay, the 3D morphology of the proximal convoluted tubule by two-photon microscopy and the ultrastructure of proximal convoluted tubule mitochondria by transmission electron microscopy. Paracetamol was metabolized by conjugation and oxidation with further detoxification with glutathione. Renal clearance was reduced with gentamicin and paracetamol. Proximal tubules were enlarged with paracetamol and tenofovir. All drugs induced mitochondrial alterations including dysmorphic shapes ("donuts", "pancakes" and "rods"), mitochondrial swelling, cristae disruption and/or loss of matrix granules. These results are in agreement with the tubular effects of gentamicin, paracetamol and tenofovir in man and demonstrate that zebrafish larvae might be a good model to assess functional and structural damage associated with DIRI.

  11. Monosodium glutamate neonatal treatment induces cardiovascular autonomic function changes in rodents.

    Science.gov (United States)

    Konrad, Signorá Peres; Farah, Vera; Rodrigues, Bruno; Wichi, Rogério Brandão; Machado, Ubiratan Fabres; Lopes, Heno Ferreira; D'Agord Schaan, Beatriz; De Angelis, Kátia; Irigoyen, Maria Cláudia

    2012-10-01

    The aim of this study was to evaluate cardiovascular autonomic function in a rodent obesity model induced by monosodium glutamate injections during the first seven days of life. The animals were assigned to control (control, n = 10) and monosodium glutamate (monosodium glutamate, n = 13) groups. Thirty-three weeks after birth, arterial and venous catheters were implanted for arterial pressure measurements, drug administration, and blood sampling. Baroreflex sensitivity was evaluated according to the tachycardic and bradycardic responses induced by sodium nitroprusside and phenylephrine infusion, respectively. Sympathetic and vagal effects were determined by administering methylatropine and propranolol. Body weight, Lee index, and epididymal white adipose tissue values were higher in the monosodium glutamate group in comparison to the control group. The monosodium glutamate-treated rats displayed insulin resistance, as shown by a reduced glucose/insulin index (-62.5%), an increased area under the curve of total insulin secretion during glucose overload (39.3%), and basal hyperinsulinemia. The mean arterial pressure values were higher in the monosodium glutamate rats, whereas heart rate variability (>7 times), bradycardic responses (>4 times), and vagal (~38%) and sympathetic effects (~36%) were reduced as compared to the control group. Our results suggest that obesity induced by neonatal monosodium glutamate treatment impairs cardiac autonomic function and most likely contributes to increased arterial pressure and insulin resistance.

  12. Effect of Child Friendly Constraint Induced Movement Therapy on Unimanual and Bimanual Function in Hemiplegia

    Directory of Open Access Journals (Sweden)

    Seyed Mohammad Sadegh Hosseini

    2010-10-01

    Full Text Available Objectives: Hemiplegia is a non-progressive damage in premature growing brain which causes movement disorders in one side of the body. The objective of present research is to study the method of modified constraints induced movement therapy (CIMT which can be appropriate on unimanual and bimanual functions of children with Hemiplegia. Methods: This single-blinded, randomized, control trial study performed on twenty-eight participants who were selected based on specific inclusion criteria and divided into two groups of CIMT and conventional therapy. Intervention at CIMT was done six hours every day, for 10 days, whereas another group received conventional occupational therapy. Results: To analyze the data, independent-sample t-test and paired-sample t-test were used. Results showed that significant differences in variables of unimanual function, Jebson Taylor test and dexterity of involved hand in CIMT group, but, these variables did not show any difference in conventional group. Also bimanual functions in CIMT demonstrated significant difference in variables of bimanual function, bilateral coordination, and caregivers’ perception (how much and (how well, whereas this variables did not show any difference in pre-test and post-test of conventional therapy. Discussion: Child friendly CIMT has fairly good effects on unimanual function and some variables of bimanual function of children with hemiplegia.

  13. Renal Oxidative Stress Induced by Long-Term Hyperuricemia Alters Mitochondrial Function and Maintains Systemic Hypertension

    Directory of Open Access Journals (Sweden)

    Magdalena Cristóbal-García

    2015-01-01

    Full Text Available We addressed if oxidative stress in the renal cortex plays a role in the induction of hypertension and mitochondrial alterations in hyperuricemia. A second objective was to evaluate whether the long-term treatment with the antioxidant Tempol prevents renal oxidative stress, mitochondrial alterations, and systemic hypertension in this model. Long-term (11-12 weeks and short-term (3 weeks effects of oxonic acid induced hyperuricemia were studied in rats (OA, 750 mg/kg BW, OA+Allopurinol (AP, 150 mg/L drinking water, OA+Tempol (T, 15 mg/kg BW, or vehicle. Systolic blood pressure, renal blood flow, and vascular resistance were measured. Tubular damage (urine N-acetyl-β-D-glucosaminidase and oxidative stress markers (lipid and protein oxidation along with ATP levels were determined in kidney tissue. Oxygen consumption, aconitase activity, and uric acid were evaluated in isolated mitochondria from renal cortex. Short-term hyperuricemia resulted in hypertension without demonstrable renal oxidative stress or mitochondrial dysfunction. Long-term hyperuricemia induced hypertension, renal vasoconstriction, tubular damage, renal cortex oxidative stress, and mitochondrial dysfunction and decreased ATP levels. Treatments with Tempol and allopurinol prevented these alterations. Renal oxidative stress induced by hyperuricemia promoted mitochondrial functional disturbances and decreased ATP content, which represent an additional pathogenic mechanism induced by chronic hyperuricemia. Hyperuricemia-related hypertension occurs before these changes are evident.

  14. Dimethylthiourea protects against chlorine induced changes in airway function in a murine model of irritant induced asthma

    Directory of Open Access Journals (Sweden)

    Lavoie Normand

    2010-10-01

    Full Text Available Abstract Background Exposure to chlorine (Cl2 causes airway injury, characterized by oxidative damage, an influx of inflammatory cells and airway hyperresponsiveness. We hypothesized that Cl2-induced airway injury may be attenuated by antioxidant treatment, even after the initial injury. Methods Balb/C mice were exposed to Cl2 gas (100 ppm for 5 mins, an exposure that was established to alter airway function with minimal histological disruption of the epithelium. Twenty-four hours after exposure to Cl2, airway responsiveness to aerosolized methacholine (MCh was measured. Bronchoalveolar lavage (BAL was performed to determine inflammatory cell profiles, total protein, and glutathione levels. Dimethylthiourea (DMTU;100 mg/kg was administered one hour before or one hour following Cl2 exposure. Results Mice exposed to Cl2 had airway hyperresponsiveness to MCh compared to control animals pre-treated and post-treated with DMTU. Total cell counts in BAL fluid were elevated by Cl2 exposure and were not affected by DMTU treatment. However, DMTU-treated mice had lower protein levels in the BAL than the Cl2-only treated animals. 4-Hydroxynonenal analysis showed that DMTU given pre- or post-Cl2 prevented lipid peroxidation in the lung. Following Cl2 exposure glutathione (GSH was elevated immediately following exposure both in BAL cells and in fluid and this change was prevented by DMTU. GSSG was depleted in Cl2 exposed mice at later time points. However, the GSH/GSSG ratio remained high in chlorine exposed mice, an effect attenuated by DMTU. Conclusion Our data show that the anti-oxidant DMTU is effective in attenuating Cl2 induced increase in airway responsiveness, inflammation and biomarkers of oxidative stress.

  15. Extracellular Enzyme Composition and Functional Characteristics of Aspergillus niger An-76 Induced by Food Processing Byproducts and Based on Integrated Functional Omics.

    Science.gov (United States)

    Liu, Lin; Gong, Weili; Sun, Xiaomeng; Chen, Guanjun; Wang, Lushan

    2018-02-07

    Byproducts of food processing can be utilized for the production of high-value-added enzyme cocktails. In this study, we utilized integrated functional omics technology to analyze composition and functional characteristics of extracellular enzymes produced by Aspergillus niger grown on food processing byproducts. The results showed that oligosaccharides constituted by arabinose, xylose, and glucose in wheat bran were able to efficiently induce the production of extracellular enzymes of A. niger. Compared with other substrates, wheat bran was more effective at inducing the secretion of β-glucosidases from GH1 and GH3 families, as well as >50% of proteases from A1-family aspartic proteases. Compared with proteins induced by single wheat bran or soybean dregs, the protein yield induced by their mixture was doubled, and the time required to reach peak enzyme activity was shortened by 25%. This study provided a technical platform for the complex formulation of various substrates and functional analysis of extracellular enzymes.

  16. Alpha induced reactions on 114Cd and 116Cd: An experimental study of excitation functions

    International Nuclear Information System (INIS)

    Adam Rebeles, R.; Hermanne, A.; Winkel, P. van den; Tarkanyi, F.; Takacs, S.; Daraban, L.

    2008-01-01

    Excitation functions of alpha induced reactions on enriched 114 Cd and 116 Cd targets, leading to the formation of the 117m,119m Sn, 114m 1 ,115m,116m,117m,g In, 115g Cd isotopes, were studied by the stacked foil activation technique. Reaction cross-sections were measured from their respective thresholds up to E α = 38.9 MeV. Quantification of induced isotopes has been made by gamma and X-ray spectrometry. The experimental cross-sections are compared, where available, with values reported previously in literature. Thick target yield for the medically important radionuclide 117m Sn is calculated based on discrete values of measured cross-sections.

  17. DNA-Damage-Induced Type I Interferon Promotes Senescence and Inhibits Stem Cell Function

    Directory of Open Access Journals (Sweden)

    Qiujing Yu

    2015-05-01

    Full Text Available Expression of type I interferons (IFNs can be induced by DNA-damaging agents, but the mechanisms and significance of this regulation are not completely understood. We found that the transcription factor IRF3, activated in an ATM-IKKα/β-dependent manner, stimulates cell-autonomous IFN-β expression in response to double-stranded DNA breaks. Cells and tissues with accumulating DNA damage produce endogenous IFN-β and stimulate IFN signaling in vitro and in vivo. In turn, IFN acts to amplify DNA-damage responses, activate the p53 pathway, promote senescence, and inhibit stem cell function in response to telomere shortening. Inactivation of the IFN pathway abrogates the development of diverse progeric phenotypes and extends the lifespan of Terc knockout mice. These data identify DNA-damage-response-induced IFN signaling as a critical mechanism that links accumulating DNA damage with senescence and premature aging.

  18. Adjoint method provides phase response functions for delay-induced oscillations.

    Science.gov (United States)

    Kotani, Kiyoshi; Yamaguchi, Ikuhiro; Ogawa, Yutaro; Jimbo, Yasuhiko; Nakao, Hiroya; Ermentrout, G Bard

    2012-07-27

    Limit-cycle oscillations induced by time delay are widely observed in various systems, but a systematic phase-reduction theory for them has yet to be developed. Here we present a practical theoretical framework to calculate the phase response function Z(θ), a fundamental quantity for the theory, of delay-induced limit cycles with infinite-dimensional phase space. We show that Z(θ) can be obtained as a zero eigenfunction of the adjoint equation associated with an appropriate bilinear form for the delay differential equations. We confirm the validity of the proposed framework for two biological oscillators and demonstrate that the derived phase equation predicts intriguing multimodal locking behavior.

  19. Hypoxia Inducible Factor (HIF Hydroxylases as Regulators of Intestinal Epithelial Barrier FunctionSummary

    Directory of Open Access Journals (Sweden)

    Mario C. Manresa

    2017-05-01

    Full Text Available Human health is dependent on the ability of the body to extract nutrients, fluids, and oxygen from the external environment while at the same time maintaining a state of internal sterility. Therefore, the cell layers that cover the surface areas of the body such as the lung, skin, and gastrointestinal mucosa provide vital semipermeable barriers that allow the transport of essential nutrients, fluid, and waste products, while at the same time keeping the internal compartments free of microbial organisms. These epithelial surfaces are highly specialized and differ in their anatomic structure depending on their location to provide appropriate and effective site-specific barrier function. Given this important role, it is not surprising that significant disease often is associated with alterations in epithelial barrier function. Examples of such diseases include inflammatory bowel disease, chronic obstructive pulmonary disease, and atopic dermatitis. These chronic inflammatory disorders often are characterized by diminished tissue oxygen levels (hypoxia. Hypoxia triggers an adaptive transcriptional response governed by hypoxia-inducible factors (HIFs, which are repressed by a family of oxygen-sensing HIF hydroxylases. Here, we review recent evidence suggesting that pharmacologic hydroxylase inhibition may be of therapeutic benefit in inflammatory bowel disease through the promotion of intestinal epithelial barrier function through both HIF-dependent and HIF-independent mechanisms. Keywords: Epithelial Barrier, Inflammatory Bowel Disease, Hypoxia, Hypoxia-Inducible Factor (HIF Hydroxylases

  20. Functional and morphological effects of resistance exercise on disuse-induced skeletal muscle atrophy

    Directory of Open Access Journals (Sweden)

    H. Nicastro

    2011-11-01

    Full Text Available Abstract The reduction of skeletal muscle loss in pathological states, such as muscle disuse, has considerable effects in terms of rehabilitation and quality of life. Since there is no currently effective and safe treatment available for skeletal muscle atrophy, the search for new alternatives is necessary. Resistance exercise (RE seems to be an important tool in the treatment of disuse-induced skeletal muscle atrophy by promoting positive functional (strength and power and structural (hypertrophy and phenotypic changes adaptive responses. Human and animal studies using different types of resistance exercise (flywheel, vascular occlusion, dynamic, isometric, and eccentric have obtained results of great importance. However, since RE is a complex phenomenon, lack of strict control of its variables (volume, frequency, intensity, muscle action, rest intervals limits the interpretation of the impact of the manipulation on skeletal muscle remodeling and function under disuse. The aim of this review is to critically describe the functional and morphological role of resistance exercise in disuse-induced skeletal muscle atrophy with emphasis on the principles of training.

  1. Development of radiation-induced mutation techniques and functional genomics studies

    International Nuclear Information System (INIS)

    Kim, Dong Sub; Kang, Si Yong; Kim, Jin Baek

    2012-01-01

    This project has been performed to develop plant genetic resources using radiation (gamma-rays, ion-beam, space environments), to conduct functional genomics studies with mutant resources, and to develop new radiation plant breeding techniques using various radiation sources during 3 years. In the first section, we developed flower genetic resources, functional crop resources, and bio-industrial plant resources. In the second section, we cloned several mutated genes and studied mechanisms of gene expression and genetic diversity of mutations induced by gamma-rays. In the third section, we developed new plant breeding techniques using gamma-phytotron, heavy ion-beam, and space environments. Based on these results, a total of 8 cultivars containing Chrysanthemum, Hibiscus, kenaf, rice, and soybean were applied for plant variety protection (PVP) and a total of 4 cultivars were registered for PVP. Also, license agreement for the dwarf type Hibiscus mutant 'Ggoma' was conducted with Supro co. and the manufacturing technology for natural antioxidant pear-grape vinegar was transferred into Enzenic co. Also, 8 gene sequences, such as F3'H and LDOX genes associated with flower color in Chrysanthemum and EPSPS gene from Korean lawn grass, were registered in the database of National Center for Biotechnology Information (NCBI). In the future study, we will develop new radiation mutation breeding techniques through the mutation spectrum induced by various radiation sources, the studies for mechanism of the cellular response to radiation, and the comparative·structural·functional genomics studies for useful traits

  2. Kindling-induced overexpression of Homer 1A and its functional implications for epileptogenesis.

    Science.gov (United States)

    Potschka, H; Krupp, E; Ebert, U; Gümbel, C; Leichtlein, C; Lorch, B; Pickert, A; Kramps, S; Young, K; Grüne, U; Keller, A; Welschof, M; Vogt, G; Xiao, B; Worley, P F; Löscher, W; Hiemisch, H

    2002-12-01

    Despite an extensive research on the molecular basis of epilepsy, the essential players in the epileptogenic process leading to epilepsy are not known. Gene expression analysis is one strategy to enhance our understanding of the genes contributing to the functional neuronal changes underlying epileptogenesis. In the present study, we used the novel MPSS (massively parallel signature sequencing) method for analysis of gene expression in the rat kindling model of temporal lobe epilepsy. Kindling by repeated electrical stimulation of the amygdala resulted in the differential expression of 264 genes in the hippocampus compared to sham controls. The most strongly induced gene was Homer 1A, an immediate early gene involved in the modulation of glutamate receptor function. The overexpression of Homer 1A in the hippocampus of kindled rats was confirmed by RT-PCR. In order to evaluate the functional implications of Homer 1A overexpression for kindling, we used transgenic mice that permanently overexpress Homer 1A. Immunohistochemical characterization of these mice showed a marked Homer 1A overexpression in glutamatergic neurons of the hippocampus. Kindling of Homer 1A overexpressing mice resulted in a retardation of seizure generalization compared to wild-type controls. The data demonstrate that kindling-induced epileptogenesis leads to a striking overexpression of Homer 1A in the hippocampus, which may represent an intrinsic antiepileptogenic and anticonvulsant mechanism in the course of epileptogenesis that counteracts progression of the disease.

  3. Functional brown adipose tissue limits cardiomyocyte injury and adverse remodeling in catecholamine-induced cardiomyopathy.

    Science.gov (United States)

    Thoonen, Robrecht; Ernande, Laura; Cheng, Juan; Nagasaka, Yasuko; Yao, Vincent; Miranda-Bezerra, Alexandre; Chen, Chan; Chao, Wei; Panagia, Marcello; Sosnovik, David E; Puppala, Dheeraj; Armoundas, Antonis A; Hindle, Allyson; Bloch, Kenneth D; Buys, Emmanuel S; Scherrer-Crosbie, Marielle

    2015-07-01

    Brown adipose tissue (BAT) has well recognized thermogenic properties mediated by uncoupling protein 1 (UCP1); more recently, BAT has been demonstrated to modulate cardiovascular risk factors. To investigate whether BAT also affects myocardial injury and remodeling, UCP1-deficient (UCP1(-/-)) mice, which have dysfunctional BAT, were subjected to catecholamine-induced cardiomyopathy. At baseline, there were no differences in echocardiographic parameters, plasma cardiac troponin I (cTnI) or myocardial fibrosis between wild-type (WT) and UCP1(-/-) mice. Isoproterenol infusion increased cTnI and myocardial fibrosis and induced left ventricular (LV) hypertrophy in both WT and UCP1(-/-) mice. UCP1(-/-) mice also demonstrated exaggerated myocardial injury, fibrosis, and adverse remodeling, as well as decreased survival. Transplantation of WT BAT to UCP1(-/-) mice prevented the isoproterenol-induced cTnI increase and improved survival, whereas UCP1(-/-) BAT transplanted to either UCP1(-/-) or WT mice had no effect on cTnI release. After 3 days of isoproterenol treatment, phosphorylated AKT and ERK were lower in the LV's of UCP1(-/-) mice than in those of WT mice. Activation of BAT was also noted in a model of chronic ischemic cardiomyopathy, and was correlated to LV dysfunction. Deficiency in UCP1, and accompanying BAT dysfunction, increases cardiomyocyte injury and adverse LV remodeling, and decreases survival in a mouse model of catecholamine-induced cardiomyopathy. Myocardial injury and decreased survival are rescued by transplantation of functional BAT to UCP1(-/-) mice, suggesting a systemic cardioprotective role of functional BAT. BAT is also activated in chronic ischemic cardiomyopathy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Bitter taste receptor agonists alter mitochondrial function and induce autophagy in airway smooth muscle cells.

    Science.gov (United States)

    Pan, Shi; Sharma, Pawan; Shah, Sushrut D; Deshpande, Deepak A

    2017-07-01

    Airway remodeling, including increased airway smooth muscle (ASM) mass, is a hallmark feature of asthma and COPD. We previously identified the expression of bitter taste receptors (TAS2Rs) on human ASM cells and demonstrated that known TAS2R agonists could promote ASM relaxation and bronchodilation and inhibit mitogen-induced ASM growth. In this study, we explored cellular mechanisms mediating the antimitogenic effect of TAS2R agonists on human ASM cells. Pretreatment of ASM cells with TAS2R agonists chloroquine and quinine resulted in inhibition of cell survival, which was largely reversed by bafilomycin A1, an autophagy inhibitor. Transmission electron microscope studies demonstrated the presence of double-membrane autophagosomes and deformed mitochondria. In ASM cells, TAS2R agonists decreased mitochondrial membrane potential and increased mitochondrial ROS and mitochondrial fragmentation. Inhibiting dynamin-like protein 1 (DLP1) reversed TAS2R agonist-induced mitochondrial membrane potential change and attenuated mitochondrial fragmentation and cell death. Furthermore, the expression of mitochondrial protein BCL2/adenovirus E1B 19-kDa protein-interacting protein 3 (Bnip3) and mitochondrial localization of DLP1 were significantly upregulated by TAS2R agonists. More importantly, inhibiting Bnip3 mitochondrial localization by dominant-negative Bnip3 significantly attenuated cell death induced by TAS2R agonist. Collectively the TAS2R agonists chloroquine and quinine modulate mitochondrial structure and function, resulting in ASM cell death. Furthermore, Bnip3 plays a central role in TAS2R agonist-induced ASM functional changes via a mitochondrial pathway. These findings further establish the cellular mechanisms of antimitogenic effects of TAS2R agonists and identify a novel class of receptors and pathways that can be targeted to mitigate airway remodeling as well as bronchoconstriction in obstructive airway diseases. Copyright © 2017 the American Physiological

  5. Interleukin-21 induces proliferation and modulates receptor expression and effector function in canine natural killer cells.

    Science.gov (United States)

    Shin, Dong-Jun; Lee, Soo-Hyeon; Park, Ji-Yun; Kim, Ju-Sun; Lee, Je-Jung; Suh, Guk-Hyun; Lee, Youn-Kyung; Cho, Duck; Kim, Sang-Ki

    2015-05-15

    Interleukin (IL)-21 is an important modulator of natural killer (NK) cell function. However, little is known about IL-21 function in canine NK cells because the phenotype of these cells remains undefined. In this study, we selectively expanded non-B and non-T large granular NK lymphocytes (CD3(-)CD21(-)CD5(-)CD4(-)TCRαβ(-)TCRγδ(-)) ex vivo from the peripheral blood mononuclear cells (PBMCs) of healthy dogs using a combination of IL-2, IL-15, and IL-21 in the presence of 100 Gy-irradiated K562 cells. We investigated the effects of varying the duration and timing of IL-21 treatment on stimulation of proliferation, expression of NK-related receptors, anti-tumor activity and production of interferon (IFN)-γ. The expanded NK cells in each treatment group became enlarged and highly granular after 21 days in culture. NK cells proliferated rapidly in response to activation by IL-21 for 3 weeks, and IL-21 was able to induce changes in the mRNA expression of NK cell-related receptors and enhance the effector function of NK cells in perforin- and granzyme-B-dependent manners. The duration, frequency and timing of IL-21 stimulation during culture affected the rate of proliferation, patterns of receptor expression, cytokine production, and anti-tumor activity. The optimal conditions for maximizing the IL-21-induced proliferation and effector function of NK cells in the presence of IL-2 and IL-15 were seen in cells treated with IL-21 for the first 7 days of culture but without any further IL-21 stimulation other than an additional 2-day treatment prior to harvesting on day 21. The results of this study suggest that synergistic interactions of IL-21 with IL-2 and IL-15 play an important role in the proliferation, receptor expression, and effector function of canine NK cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. An efficient virus-induced gene silencing vector for maize functional genomics research.

    Science.gov (United States)

    Wang, Rong; Yang, Xinxin; Wang, Nian; Liu, Xuedong; Nelson, Richard S; Li, Weimin; Fan, Zaifeng; Zhou, Tao

    2016-04-01

    Maize is a major crop whose rich genetic diversity provides an advanced resource for genetic research. However, a tool for rapid transient gene function analysis in maize that may be utilized in most maize cultivars has been lacking, resulting in reliance on time-consuming stable transformation and mutation studies to obtain answers. We developed an efficient virus-induced gene silencing (VIGS) vector for maize based on a naturally maize-infecting cucumber mosaic virus (CMV) strain, ZMBJ-CMV. An infectious clone of ZMBJ-CMV was constructed, and a vascular puncture inoculation method utilizing Agrobacterium was optimized to improve its utility for CMV infection of maize. ZMBJ-CMV was then modified to function as a VIGS vector. The ZMBJ-CMV vector induced mild to moderate symptoms in many maize lines, making it useful for gene function studies in critically important maize cultivars, such as the sequenced reference inbred line B73. Using this CMV VIGS system, expression of two endogenous genes, ZmPDS and ZmIspH, was found to be decreased by 75% and 78%, respectively, compared with non-silenced tissue. Inserts with lengths of 100-300 bp produced the most complete transcriptional and visual silencing phenotypes. Moreover, genes related to autophagy, ZmATG3 and ZmATG8a, were also silenced, and it was found that they function in leaf starch degradation. These results indicate that our ZMBJ-CMV VIGS vector provides a tool for rapid and efficient gene function studies in maize. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  7. The Impaired Function of Macrophages Induced by Strenuous Exercise Could Not Be Ameliorated by BCAA Supplementation

    Directory of Open Access Journals (Sweden)

    Weihua Xiao

    2015-10-01

    Full Text Available The aim of this study was to evaluate the effect of strenuous exercise on the functions of peritoneal macrophages in rats and to test the hypothesis that branched-chain amino acid (BCAA supplementation will be beneficial to the macrophages of rats from strenuous exercise. Forty male Wistar rats were randomly divided into five groups: (C Control, E Exercise, (E1 Exercise with one week to recover, (ES Exercise + Supplementation and (ES1 Exercise + Supplementation with 1 week to recover. All rats except those of the sedentary control were subjected to four weeks of strenuous exercise. Blood hemoglobin, serum testosterone and BCAA levels were tested. Peritoneal macrophages functions were also determined at the same time. The data showed that hemoglobin, testosterone, BCAA levels, and body weight in group E decreased significantly as compared with that of group C. Meanwhile, phagocytosis capacity (decreased by 17.07%, p = 0.031, reactive oxygen species (ROS production (decreased by 26%, p = 0.003 and MHC II mRNA (decreased by 22%, p = 0.041 of macrophages decreased in the strenuous exercise group as compared with group C. However, the chemotaxis of macrophages did not change significantly. In addition, BCAA supplementation could slightly increase the serum BCAA levels of rats from strenuous exercise (increased by 6.70%, p > 0.05. Moreover, the body weight, the blood hemoglobin, the serum testosterone and the function of peritoneal macrophages in group ES did not change significantly as compared with group E. These results suggest that long-term intensive exercise impairs the function of macrophages, which is essential for microbicidal capability. This may represent a novel mechanism of immunosuppression induced by strenuous exercise. Moreover, the impaired function of macrophage induced by strenuous exercise could not be ameliorated by BCAA supplementation in the dosing and timing used for this study.

  8. Neuropeptide S Receptor Induces Neuropeptide Expression and Associates with Intermediate Phenotypes of Functional Gastrointestinal Disorders

    Science.gov (United States)

    Camilleri, Michael; Carlson, Paula; Zinsmeister, Alan R.; McKinzie, Sanna; Busciglio, Irene; Burton, Duane; Zucchelli, Marco; D’Amato, Mauro

    2009-01-01

    Background & Aims NPSR1, the receptor for neuropeptide S (NPS), is expressed by gastrointestinal (GI) enteroendocrine (EE) cells, and is involved in inflammation, anxiety and nociception. NPSR1 polymorphisms are associated with asthma and inflammatory bowel disease. We aimed to determine whether NPS induces expression of GI neuropeptides; and to associate NPSR1 single nucleotide polymorphisms (SNPs) with symptom phenotype and GI functions in health and functional GI disorders (FGID). Methods The effect of NPS on mRNA expression of neuropeptides was assessed using real-time PCR in NPSR1-tranfected HEK293 cells. Seventeen NPSR1 SNPs were successfully genotyped in 699 subjects from a regional cohort of 466 FGID patients and 233 healthy controls. Associations were sought using sex-adjusted regression analysis and false discovery rate (FDR) correction. Results NPS-NPSR1 signaling induced increased expression of CCK, VIP, PYY, and somatostatin. There were no significant associations with phenotypes of FGID symptoms. There were several NPSR1 SNPs associated with individual motor or sensory functions; the associations of SNPs rs2609234, rs6972158 and rs1379928 with colonic transit rate remained significant after FDR correction. The rs1379928 polymorphism was also associated with pain, gas and urgency sensory ratings at 36 mm Hg distension, the level pre-specified for formal testing. Associations with rectal sensory ratings were not significant after FDR correction. Conclusions Expression of several neuropeptides is induced upon NPS-NPSR1 signaling; NPSR1 variants are associated with colonic transit in FGID. The role of the NPS system in FGID deserves further study. PMID:19732772

  9. Combined Cognitive-Psychological-Physical Intervention Induces Reorganization of Intrinsic Functional Brain Architecture in Older Adults

    Directory of Open Access Journals (Sweden)

    Zhiwei Zheng

    2015-01-01

    Full Text Available Mounting evidence suggests that enriched mental, physical, and socially stimulating activities are beneficial for counteracting age-related decreases in brain function and cognition in older adults. Here, we used functional magnetic resonance imaging (fMRI to demonstrate the functional plasticity of brain activity in response to a combined cognitive-psychological-physical intervention and investigated the contribution of the intervention-related brain changes to individual performance in healthy older adults. The intervention was composed of a 6-week program of combined activities including cognitive training, Tai Chi exercise, and group counseling. The results showed improved cognitive performance and reorganized regional homogeneity of spontaneous fluctuations in the blood oxygen level-dependent (BOLD signals in the superior and middle temporal gyri, and the posterior lobe of the cerebellum, in the participants who attended the intervention. Intriguingly, the intervention-induced changes in the coherence of local spontaneous activity correlated with the improvements in individual cognitive performance. Taken together with our previous findings of enhanced resting-state functional connectivity between the medial prefrontal cortex and medial temporal lobe regions following a combined intervention program in older adults, we conclude that the functional plasticity of the aging brain is a rather complex process, and an effective cognitive-psychological-physical intervention is helpful for maintaining a healthy brain and comprehensive cognition during old age.

  10. 3D ion velocity distribution function measurement in an electric thruster using laser induced fluorescence tomography

    Science.gov (United States)

    Elias, P. Q.; Jarrige, J.; Cucchetti, E.; Cannat, F.; Packan, D.

    2017-09-01

    Measuring the full ion velocity distribution function (IVDF) by non-intrusive techniques can improve our understanding of the ionization processes and beam dynamics at work in electric thrusters. In this paper, a Laser-Induced Fluorescence (LIF) tomographic reconstruction technique is applied to the measurement of the IVDF in the plume of a miniature Hall effect thruster. A setup is developed to move the laser axis along two rotation axes around the measurement volume. The fluorescence spectra taken from different viewing angles are combined using a tomographic reconstruction algorithm to build the complete 3D (in phase space) time-averaged distribution function. For the first time, this technique is used in the plume of a miniature Hall effect thruster to measure the full distribution function of the xenon ions. Two examples of reconstructions are provided, in front of the thruster nose-cone and in front of the anode channel. The reconstruction reveals the features of the ion beam, in particular on the thruster axis where a toroidal distribution function is observed. These findings are consistent with the thruster shape and operation. This technique, which can be used with other LIF schemes, could be helpful in revealing the details of the ion production regions and the beam dynamics. Using a more powerful laser source, the current implementation of the technique could be improved to reduce the measurement time and also to reconstruct the temporal evolution of the distribution function.

  11. A temperature induced ferrocene–ferrocenium interconversion in a ferrocene functionalized μ3-O chromium carboxylate

    International Nuclear Information System (INIS)

    Mereacre, Valeriu; Schlageter, Martin; Powell, Annie K.

    2015-01-01

    The infrared spectra and 57 Fe Mössbauer measurements of a ferrocenecarboxylate functionalized {Cr 3 O} complex in solid state are reported. It was established that conjugation of ferrocene Cp orbitals with the π orbitals of the adjacent carboxylic group stabilizes the trapped mixed-valence state leading to an intriguing coexistence of ferrocene and ferrocenium species giving rise to a new type of compound showing valence tautomerism in the solid state. - Highlights: • A stabilized ferrocene trapped mixed-valence state is reported. • New type of compound showing valence tautomerism in solid state. • A thermally induced electron transfer and a mixed-valence state near room temperature

  12. Postural Effect on Renal Function In Cases of Pregnancy-Induced Hypertension

    OpenAIRE

    丸山, 晋司; Maruyama, Shinji

    1989-01-01

    Postual effect on renal function was analysed on the cases of pregnancy-induced hypertension (PIH) (n=11) compared with cases of normotensive pregnancies (n=12) and non-pregnant women (n=9). In non-pregnant women, GFR, RBF and RPF showed no changes in relation to the changing posture (supine and left lateral). In normal pregnant women and cases of PIH, GFR, RBF and RPF significantly increased on changing their posture from supine to left lateral at third trimester. Especially, patients with P...

  13. Excitation functions for quasi-elastic transfer reactions induced with heavy ions in bismuth

    International Nuclear Information System (INIS)

    Gardes, D.; Bimbot, R.; Maison, J.; Reilhac, L. de; Rivet, M.F.; Fleury, A.; Hubert, F.; Llabador, Y.

    1977-01-01

    The excitation functions for the production of 210 Bi, 210 Po, sup(207-211)At and 211 Rn through quasi-elastic transfer reactions induced with heavy ions in 209 Bi have been measured. The corresponding reactions involved the transfer of one neutron, one proton, two and three charges from projectile to target. The projectiles used were 12 C, 14 N, 16 O, 19 F, 20 Ne, 40 Ca, 56 Fe and 63 Cu. The experimental techniques involved target irradiations and off-line α and γ activity measurements. Chemical separations were used to solve specific problems. Careful measurements of incident energies and cross sections were performed close to the reaction thresholds

  14. A Model for Microcontroller Functionality Upset Induced by External Pulsed Electromagnetic Irradiation

    Science.gov (United States)

    2016-11-21

    AFRL-RD-PS- AFRL-RD-PS- TN-2016-0003 TN-2016-0003 A Model for Microcontroller Functionality Upset Induced by External Pulsed Electromagnetic ...External Pulsed Electromagnetic Irradiation 5a. CONTRACT NUMBER FA9451-15-C-0004 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6 . AUTHOR(S) David...microcontroller (µC) subjected to external irradiation by a narrowband electromagnetic (EM) pulse . In our model, the state of a µC is completely specified by

  15. Immobilisation-induced hypercalcemia following spinal cord injury affecting the kidney function in two young native Greenlanders

    DEFF Research Database (Denmark)

    Linstow, Michael V; Biering-Sørensen, Fin

    2017-01-01

    INTRODUCTION: Immobilisation-induced hypercalcemia following SCI affecting the kidney function, is a rare but potentially serious condition. We report immobilisation-induced hypercalcemia affecting the kidney function in two young native Greenlanders with spinal cord injury (SCI). CASE...... PRESENTATIONS: Two 15- and 24-year-old male native Greenlanders, both with traumatic C5 SCI were admitted to our spinal cord unit. They were non-smokers without history of daily alcohol intake pre- or immediately post-injury. No physical demanding activities pre-injury. Due to complaints of nausea/vomiting 10...... the last 20 years our spinal cord unit has only experienced immobilisation-induced hypercalcemia following SCI affecting the kidney function in two young male native Greenlanders. This finding of immobilisation-induced hypercalcemia following SCI affecting the kidney function in two young native...

  16. Microbial functional diversity covaries with permafrost thaw-induced environmental heterogeneity in tundra soil.

    Science.gov (United States)

    Yuan, Mengting M; Zhang, Jin; Xue, Kai; Wu, Liyou; Deng, Ye; Deng, Jie; Hale, Lauren; Zhou, Xishu; He, Zhili; Yang, Yunfeng; Van Nostrand, Joy D; Schuur, Edward A G; Konstantinidis, Konstantinos T; Penton, Christopher R; Cole, James R; Tiedje, James M; Luo, Yiqi; Zhou, Jizhong

    2018-01-01

    Permafrost soil in high latitude tundra is one of the largest terrestrial carbon (C) stocks and is highly sensitive to climate warming. Understanding microbial responses to warming-induced environmental changes is critical to evaluating their influences on soil biogeochemical cycles. In this study, a functional gene array (i.e., geochip 4.2) was used to analyze the functional capacities of soil microbial communities collected from a naturally degrading permafrost region in Central Alaska. Varied thaw history was reported to be the main driver of soil and plant differences across a gradient of minimally, moderately, and extensively thawed sites. Compared with the minimally thawed site, the number of detected functional gene probes across the 15-65 cm depth profile at the moderately and extensively thawed sites decreased by 25% and 5%, while the community functional gene β-diversity increased by 34% and 45%, respectively, revealing decreased functional gene richness but increased community heterogeneity along the thaw progression. Particularly, the moderately thawed site contained microbial communities with the highest abundances of many genes involved in prokaryotic C degradation, ammonification, and nitrification processes, but lower abundances of fungal C decomposition and anaerobic-related genes. Significant correlations were observed between functional gene abundance and vascular plant primary productivity, suggesting that plant growth and species composition could be co-evolving traits together with microbial community composition. Altogether, this study reveals the complex responses of microbial functional potentials to thaw-related soil and plant changes and provides information on potential microbially mediated biogeochemical cycles in tundra ecosystems. © 2017 John Wiley & Sons Ltd.

  17. Cognitive tutoring induces widespread neuroplasticity and remediates brain function in children with mathematical learning disabilities.

    Science.gov (United States)

    Iuculano, Teresa; Rosenberg-Lee, Miriam; Richardson, Jennifer; Tenison, Caitlin; Fuchs, Lynn; Supekar, Kaustubh; Menon, Vinod

    2015-09-30

    Competency with numbers is essential in today's society; yet, up to 20% of children exhibit moderate to severe mathematical learning disabilities (MLD). Behavioural intervention can be effective, but the neurobiological mechanisms underlying successful intervention are unknown. Here we demonstrate that eight weeks of 1:1 cognitive tutoring not only remediates poor performance in children with MLD, but also induces widespread changes in brain activity. Neuroplasticity manifests as normalization of aberrant functional responses in a distributed network of parietal, prefrontal and ventral temporal-occipital areas that support successful numerical problem solving, and is correlated with performance gains. Remarkably, machine learning algorithms show that brain activity patterns in children with MLD are significantly discriminable from neurotypical peers before, but not after, tutoring, suggesting that behavioural gains are not due to compensatory mechanisms. Our study identifies functional brain mechanisms underlying effective intervention in children with MLD and provides novel metrics for assessing response to intervention.

  18. Desalination membranes from functional block copolymer via non-solvent induced phase inversion

    Science.gov (United States)

    Sung, Hyemin; Poelma, Justin; Leibfarth, Frank; Hawker, Craig; Bang, Joona

    2012-02-01

    Commercially available reverse osmosis (RO) and forward osmosis (FO) membranes are most commonly derived from materials such as polysulfone, polyimide, and cellulose acetate. While these membranes have improved the efficiency of the desalination process, they suffer from mechanical and chemical stability, fouling issues, and low fluxes. In this study, we combine a well-established membrane formation method, non-solvent-induced phase separation, with the self-assembly of a functional amphiphilic block copolymersAn amine and acid functional polystyrene-block-poly(ethylene oxide-co-allyl glycidyl ether) were chosen for the membranes. Membranes were formed by casting a concentrated polymer solution (12 to 25 wt% polymer) on PET fabric followed by immersion in a non-solvent bath. Scanning electron microscopy revealed an asymmetric porous structure consisting of a dense skin layer on top of a highly porous layer. Membrane performance was investigating using an FO test cell under the seawater condition.

  19. Magnetically induced behaviour of ferritin corpuscles in avian ears: can cuticulosomes function as magnetosomes?

    Science.gov (United States)

    Jandacka, Petr; Burda, Hynek; Pistora, Jaromir

    2015-01-01

    Magnetoreception is an enigmatic, poorly understood sensory ability, described mainly on the basis of behavioural studies in animals of diverse taxa. Recently, corpuscles containing superparamagnetic iron-storage protein ferritin were found in the inner ear hair cells of birds, a predominantly single ferritin corpuscle per cell. It was suggested that these corpuscles might represent magnetosomes and function as magnetosensors. Here we determine ferritin low-field paramagnetic susceptibility to estimate its magnetically induced intracellular behaviour. Physical simulations show that ferritin corpuscles cannot be deformed or rotate in weak geomagnetic fields, and thus cannot provide magnetoreception via deformation of the cuticular plate. Furthermore, we reached an alternative hypothesis that ferritin corpuscle in avian ears may function as an intracellular electromagnetic oscillator. Such an oscillator would generate additional cellular electric potential related to normal cell conditions. Though the phenomenon seems to be weak, this effect deserves further analyses. PMID:25551148

  20. Glomerular and tubular function during AT1 receptor blockade in pigs with neonatal induced partial ureteropelvic obstruction

    DEFF Research Database (Denmark)

    Eskild-Jensen, Anni; Thomsen, Karsten; Rungø, Christine

    2007-01-01

    Previously, we showed that neonatal induced chronic partial unilateral ureteral obstruction (PUUO) of the multipapillary pig kidney decreased glomerular filtration rate (GFR) of the obstructed kidney. We hypothesized that ANG II and nitric oxide (NO) are important for the changes in renal functio...... is changed by neonatal induced chronic PUUO. This may have diagnostic potential in children with suspected congenital obstruction. Our results also demonstrate compromised tubular functions in response to chronic PUUO despite preservation of glomerular function....

  1. Chronic exposure to Tributyltin induces brain functional damage in juvenile common carp (Cyprinus carpio.

    Directory of Open Access Journals (Sweden)

    Zhi-Hua Li

    Full Text Available The aim of the present study was to investigate the effect of Tributyltin (TBT on brain function and neurotoxicity of freshwater teleost. The effects of long-term exposure to TBT on antioxidant related indices (MDA, malondialdehyde; SOD, superoxide dismutase; CAT, catalase; GR, glutathione reductase; GPx, glutathione peroxidase, Na+-K+-ATPase and neurological parameters (AChE, acetylcholinesterase; MAO, monoamine oxidase; NO, nitric oxide in the brain of common carp were evaluated. Fish were exposed to sublethal concentrations of TBT (75 ng/L, 0.75 μg/L and 7.5 μg/L for 15, 30, and 60 days. Based on the results, a low level and short-term TBT-induced stress could not induce the notable responses of the fish brain, but long-term exposure (more than 15 days to TBT could lead to obvious physiological-biochemical responses (based on the measured parameters. The results also strongly indicated that neurotoxicity of TBT to fish. Thus, the measured physiological responses in fish brain could provide useful information to better understand the mechanisms of TBT-induced bio-toxicity.

  2. Regulation of endothelial barrier function during flow-induced conversion to an arterial phenotype.

    Science.gov (United States)

    Seebach, Jochen; Donnert, Gerald; Kronstein, Romy; Werth, Sebastian; Wojciak-Stothard, Beata; Falzarano, Darryl; Mrowietz, Christof; Hell, Stefan W; Schnittler, Hans-J

    2007-08-01

    Flow-induced conversion of endothelial cells into an elongated arterial phenotype requires a coordinated regulation of cell junctions. Here we investigated the effect of acute and chronic flow on junction regulation. Using an extended experimental setup that allows analyses of endothelial barrier function under flow conditions, we found a flow-induced upregulation of the transendothelial electrical resistance within minutes. This was accompanied by an increase in actin filaments along the junctions and vascular endothelial (VE)-cadherin clustering, which was identified at nanoscale resolution by stimulated emission depletion microscopy. In addition, a transient tyrosine phosphorylation of VE-cadherin and catenins occurred within minutes following the onset of flow. VE-cadherin and actin distribution were maintained under chronic flow over 24 h and associated with the upregulation of VE-cadherin and alpha-catenin expression, thus compensating for the cell elongation-mediated increase in cell border length. Importantly, all observed effects were rac1 dependent as verified by the inhibitory effect of dominant negative N17rac1. These results show that flow-induced conversion of endothelial cells into an arterial phenotype occurs while intercellular junctions remain intact. The data place rac1 in a central multimodal regulatory position that might be important in the development of vascular diseases, such as arteriosclerosis.

  3. Lactose Induces Phenotypic and Functional Changes of Neutrophils and Macrophages to Alleviate Acute Pancreatitis in Mice

    Directory of Open Access Journals (Sweden)

    Li-Long Pan

    2018-04-01

    Full Text Available Acute pancreatitis (AP is one common clinical acute abdominal disease, for which specific pharmacological or nutritional therapies remain elusive. Lactose, a macronutrient and an inducer of host innate immune responses, possesses immune modulatory functions. The current study aimed to investigate potential modulatory effects of lactose and the interplay between the nutrient and pancreatic immunity during experimentally induced AP in mice. We found that either prophylactic or therapeutic treatment of lactose time-dependently reduced the severity of AP, as evidenced by reduced pancreatic edema, serum amylase levels, and pancreatic myeloperoxidase activities, as well as by histological examination of pancreatic damage. Overall, lactose promoted a regulatory cytokine milieu in the pancreas and reduced infiltration of inflammatory neutrophils and macrophages. On acinar cells, lactose was able to suppress caerulein-induced inflammatory signaling pathways and to suppress chemoattractant tumor necrosis factor (TNF-α and monocyte chemotactic protein-1 production. Additionally, lactose acted on pancreas-infiltrated macrophages, increasing interleukin-10 and decreasing tumor necrosis factor alpha production. Notably, lactose treatment reversed AP-associated infiltration of activated neutrophils. Last, the effect of lactose on neutrophil infiltration was mimicked by a galectin-3 antagonist, suggesting a potential endogenous target of lactose. Together, the current study demonstrates an immune regulatory effect of lactose to alleviate AP and suggests its potential as a convenient, value-added therapeutic macronutrient to control AP, and lower the risk of its systemic complications.

  4. Cannabidiol improves lung function and inflammation in mice submitted to LPS-induced acute lung injury.

    Science.gov (United States)

    Ribeiro, A; Almeida, V I; Costola-de-Souza, C; Ferraz-de-Paula, V; Pinheiro, M L; Vitoretti, L B; Gimenes-Junior, J A; Akamine, A T; Crippa, J A; Tavares-de-Lima, W; Palermo-Neto, J

    2015-02-01

    We have previously shown that the prophylactic treatment with cannabidiol (CBD) reduces inflammation in a model of acute lung injury (ALI). In this work we analyzed the effects of the therapeutic treatment with CBD in mice subjected to the model of lipopolysaccharide (LPS)-induced ALI on pulmonary mechanics and inflammation. CBD (20 and 80 mg/kg) was administered (i.p.) to mice 6 h after LPS-induced lung inflammation. One day (24 h) after the induction of inflammation the assessment of pulmonary mechanics and inflammation were analyzed. The results show that CBD decreased total lung resistance and elastance, leukocyte migration into the lungs, myeloperoxidase activity in the lung tissue, protein concentration and production of pro-inflammatory cytokines (TNF and IL-6) and chemokines (MCP-1 and MIP-2) in the bronchoalveolar lavage supernatant. Thus, we conclude that CBD administered therapeutically, i.e. during an ongoing inflammatory process, has a potent anti-inflammatory effect and also improves the lung function in mice submitted to LPS-induced ALI. Therefore the present and previous data suggest that in the future cannabidiol might become a useful therapeutic tool for the attenuation and treatment of inflammatory lung diseases.

  5. Lipidomic profiling reveals protective function of fatty acid oxidation in cocaine-induced hepatotoxicity[S

    Science.gov (United States)

    Shi, Xiaolei; Yao, Dan; Gosnell, Blake A.; Chen, Chi

    2012-01-01

    During cocaine-induced hepatotoxicity, lipid accumulation occurs prior to necrotic cell death in the liver. However, the exact influences of cocaine on the homeostasis of lipid metabolism remain largely unknown. In this study, the progression of subacute hepatotoxicity, including centrilobular necrosis in the liver and elevation of transaminase activity in serum, was observed in a three-day cocaine treatment, accompanying the disruption of triacylglycerol (TAG) turnover. Serum TAG level increased on day 1 of cocaine treatment but remained unchanged afterwards. In contrast, hepatic TAG level was elevated continuously during three days of cocaine treatment and was better correlated with the development of hepatotoxicity. Lipidomic analyses of serum and liver samples revealed time-dependent separation of the control and cocaine-treated mice in multivariate models, which was due to the accumulation of long-chain acylcarnitines together with the disturbances of many bioactive phospholipid species in the cocaine-treated mice. An in vitro function assay confirmed the progressive inhibition of mitochondrial fatty acid oxidation after the cocaine treatment. Cotreatment of fenofibrate significantly increased the expression of peroxisome proliferator-activated receptor α (PPARα)-targeted genes and the mitochondrial fatty acid oxidation activity in the cocaine-treated mice, resulting in the inhibition of cocaine-induced acylcarnitine accumulation and other hepatotoxic effects. Overall, the results from this lipidomics-guided study revealed that the inhibition of fatty acid oxidation plays an important role in cocaine-induced liver injury. PMID:22904346

  6. Alloxan-induced diabetes reduces sarcolemmal Na+-K+ pump function in rabbit ventricular myocytes.

    Science.gov (United States)

    Hansen, Peter S; Clarke, Ronald J; Buhagiar, Kerrie A; Hamilton, Elisha; Garcia, Alvaro; White, Caroline; Rasmussen, Helge H

    2007-03-01

    The effect of diabetes on sarcolemmal Na(+)-K(+) pump function is important for our understanding of heart disease associated with diabetes and design of its treatment. We induced diabetes characterized by hyperglycemia but no other major metabolic disturbances in rabbits. Ventricular myocytes isolated from diabetic rabbits and controls were voltage clamped and internally perfused with the whole cell patch-clamp technique. Electrogenic Na(+)-K(+) pump current (I(p), arising from the 3:2 Na(+)-to-K(+) exchange ratio) was identified as the shift in holding current induced by Na(+)-K(+) pump blockade with 100 micromol/l ouabain in most experiments. There was no effect of diabetes on I(p) recorded when myocytes were perfused with pipette solutions containing 80 mmol/l Na(+) to nearly saturate intracellular Na(+)-K(+) pump sites. However, diabetes was associated with a significant decrease in I(p) measured when pipette solutions contained 10 mmol/l Na(+). The decrease was independent of membrane voltage but dependent on the intracellular concentration of K(+). There was no effect of diabetes on the sensitivity of I(p) to extracellular K(+). Pump inhibition was abolished by restoration of euglycemia or by in vivo angiotensin II receptor blockade with losartan. We conclude that diabetes induces sarcolemmal Na(+)-K(+) pump inhibition that can be reversed with pharmacological intervention.

  7. Hydraulic Function in Australian Tree Species during Drought-Induced Mortality

    Science.gov (United States)

    Tissue, D.; Maier, C.; Creek, D.; Choat, B.

    2016-12-01

    Drought induced tree mortality and decline are key issues facing forest ecology and management. Here, we primarily investigated the hydraulic limitations underpinning drought-induced mortality in three Australian tree species. Using field-based large rainout shelters, three angiosperm species (Casuarina cunninghamiana, Eucalyptus sideroxylon, Eucalyptus tereticornis) were subjected to two successive drought and recovery cycles, prior to a subsequent long and extreme drought to mortality; total duration of experiment was 2.5 years. Leaf gas exchange, leaf and stem hydraulics, and carbon reserves were monitored during the experiment. Trees died as a result of failure in the hydraulic transport system, primarily related to water stress induced embolism. Stomatal closure occurred prior to the induction of significant embolism in the stem xylem of all species. Nonetheless, trees suffered a rapid decline in xylem water potential and increase in embolism during the severe drought treatment. Trees died at water potentials causing greater than 90% loss of hydraulic conductivity in the stem, providing support for the theory that lethal water potential is correlated with complete loss of hydraulic function in the stem xylem of angiosperms.

  8. Cannabidiol (CBD) induces functional Tregs in response to low-level T cell activation.

    Science.gov (United States)

    Dhital, Saphala; Stokes, John V; Park, Nogi; Seo, Keun Seok; Kaplan, Barbara L F

    2017-02-01

    Many effects of the non-psychoactive cannabinoid, cannabidiol (CBD), have been described in immune responses induced by strong immunological stimuli. It has also been shown that CBD enhances IL-2 production in response to low-level T cell stimulation. Since IL-2, in combination with TGF-β1, are critical for Treg induction, we hypothesized that CBD would induce CD4 + CD25 + FOXP3 + Tregs in response to low-level stimulation. Low-level T cell stimulation conditions were established based on minimal CD25 expression in CD4 + cells using suboptimal PMA/Io (4nM/0.05μM, S/o), ultrasuboptimal PMA/Io (1nM/0.0125μM, Us/o) or soluble anti-CD3/28 (400-800ng each, s3/28). CBD increased CD25 + FOXP3 + cells from CD4 + , CD4 + CD25 + , and CD4 + CD25 - T cells, as well as in CD4 + T cells derived from FOXP3-GFP mice. Most importantly, the Us/o+CBD-induced CD4 + CD25 + Tregs robustly suppressed responder T cell proliferation, demonstrating that the mechanism by which CBD is immunosuppressive under low-level T cell stimulation involves induction of functional Tregs. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Saccharin induced liver inflammation in mice by altering the gut microbiota and its metabolic functions.

    Science.gov (United States)

    Bian, Xiaoming; Tu, Pengcheng; Chi, Liang; Gao, Bei; Ru, Hongyu; Lu, Kun

    2017-09-01

    Maintaining the balance of the gut microbiota and its metabolic functions is vital for human health, however, this balance can be disrupted by various external factors including food additives. A range of food and beverages are sweetened by saccharin, which is generally considered to be safe despite controversial debates. However, recent studies indicated that saccharin perturbed the gut microbiota. Inflammation is frequently associated with disruptions of the gut microbiota. The aim of this study is to investigate the relationship between host inflammation and perturbed gut microbiome by saccharin. C57BL/6J male mice were treated with saccharin in drinking water for six months. Q-PCR was used to detect inflammatory markers in mouse liver, while 16S rRNA gene sequencing and metabolomics were used to reveal changes of the gut microbiota and its metabolomic profiles. Elevated expression of pro-inflammatory iNOS and TNF-α in liver indicated that saccharin induced inflammation in mice. The altered gut bacterial genera, enriched orthologs of pathogen-associated molecular patterns, such as LPS and bacterial toxins, in concert with increased pro-inflammatory metabolites suggested that the saccharin-induced liver inflammation could be associated with the perturbation of the gut microbiota and its metabolic functions. Copyright © 2017. Published by Elsevier Ltd.

  10. Bladder function in 17β-estradiol-induced nonbacterial prostatitis model in Wistar rat.

    Science.gov (United States)

    Matsumoto, Seiji; Kawai, Yuko; Oka, Michiko; Oyama, Tatsuya; Hashizume, Kazumi; Wada, Naoki; Hori, Jun-ichi; Tamaki, Gaku; Kita, Masafumi; Iwata, Tatsuya; Kakizaki, Hidehiro

    2013-06-01

    To investigate bladder function in a model of nonbacterial prostatitis (NBP) induced in castrated rats by 17β-estradiol injection. Ten-month-old male Wistar rats were divided into two groups, sham and NBP (both N = 8). NBP was induced by castration followed by daily subcutaneous injection of 17β-estradiol for 30 days. On the 31st day after surgery, we investigated (1) voiding behavior, (2) bladder blood flow (BBF), (3) prostate and bladder weight, and proinflammatory cytokines (TNF-α and CXCL1) levels and (4) bladder contractile responses to electrical field stimulation (EFS), carbachol and KCl. (1) Voiding behavior (average micturition volume, total urine volume and number of micturitions) and (2) BBF were not significantly different between the sham and NBP groups. (3) NBP led to a significant decrease in prostatic weight and increase in proinflammatory cytokine levels in the prostate, but NBP did not cause a significant change in bladder weight or proinflammatory cytokine levels in the bladder. (4) Bladder contractile forces in response to EFS, carbachol and KCl were not significantly affected by NBP. In this rat model, NBP did not cause a significant change in the level of proinflammatory cytokines in the bladder and affect bladder function.

  11. Structure-Function Analysis of Inositol Hexakisphosphate-induced Autoprocessing in Clostridium difficile Toxin A

    Energy Technology Data Exchange (ETDEWEB)

    Pruitt, Rory N.; Chagot, Benjamin; Cover, Michael; Chazin, Walter J.; Spiller, Ben; Lacy, D. Borden; (Vanderbilt)

    2009-09-25

    The action of Clostridium difficile toxins A and B depends on inactivation of host small G-proteins by glucosylation. Cellular inositol hexakisphosphate (InsP6) induces an autocatalytic cleavage of the toxins, releasing an N-terminal glucosyltransferase domain into the host cell cytosol. We have defined the cysteine protease domain (CPD) responsible for autoprocessing within toxin A (TcdA) and report the 1.6 {angstrom} x-ray crystal structure of the domain bound to InsP6. InsP6 is bound in a highly basic pocket that is separated from an unusual active site by a {beta}-flap structure. Functional studies confirm an intramolecular mechanism of cleavage and highlight specific residues required for InsP6-induced TcdA processing. Analysis of the structural and functional data in the context of sequences from similar and diverse origins highlights a C-terminal extension and a {pi}-cation interaction within the {beta}-flap that appear to be unique among the large clostridial cytotoxins.

  12. Clinical and Functional Assays of Radiosensitivity and Radiation-Induced Second Cancer

    Directory of Open Access Journals (Sweden)

    Mohammad Habash

    2017-10-01

    Full Text Available Whilst the near instantaneous physical interaction of radiation energy with living cells leaves little opportunity for inter-individual variation in the initial yield of DNA damage, all the downstream processes in how damage is recognized, repaired or resolved and therefore the ultimate fate of cells can vary across the population. In the clinic, this variability is observed most readily as rare extreme sensitivity to radiotherapy with acute and late tissue toxic reactions. Though some radiosensitivity can be anticipated in individuals with known genetic predispositions manifest through recognizable phenotypes and clinical presentations, others exhibit unexpected radiosensitivity which nevertheless has an underlying genetic cause. Currently, functional assays for cellular radiosensitivity represent a strategy to identify patients with potential radiosensitivity before radiotherapy begins, without needing to discover or evaluate the impact of the precise genetic determinants. Yet, some of the genes responsible for extreme radiosensitivity would also be expected to confer susceptibility to radiation-induced cancer, which can be considered another late adverse event associated with radiotherapy. Here, the utility of functional assays of radiosensitivity for identifying individuals susceptible to radiotherapy-induced second cancer is discussed, considering both the common mechanisms and important differences between stochastic radiation carcinogenesis and the range of deterministic acute and late toxic effects of radiotherapy.

  13. Structural and functional alterations of catalase induced by acriflavine, a compound causing apoptosis and necrosis.

    Science.gov (United States)

    Attar, Farnoosh; Khavari-Nejad, Sarah; Keyhani, Jacqueline; Keyhani, Ezzatollah

    2009-08-01

    Acriflavine is an antiseptic agent causing both apoptosis and necrosis in yeast. In this work, its effect on the structure and function of catalase, a vital enzyme actively involved in protection against oxidative stress, was investigated. In vitro kinetic studies showed that acriflavine inhibited the enzymatic activity in a competitive manner. The residual activity detectable after preincubation of catalase (1.5 nmol/L) with various concentrations of acriflavine went from 50% to 20% of the control value as the acriflavine concentration increased from 30 to 90 micromol/L. Correlatively with the decrease in activity, alterations in the enzyme's conformation were observed as indicated by fluorescence spectroscopy, circular dichroism spectroscopy, and electronic absorption spectroscopy. The enzyme's intrinsic fluorescence obtained upon excitation at either 297 nm (tryptophan residues) or 280 nm (tyrosine and tryptophan residues) decreased as a function of acriflavine concentration. Circular dichroism studies showed alterations of the protein structure by acriflavine with up to 13% decrease in alpha helix, 16% increase in beta-sheet content, 17% increase in random coil, and 4% increase in beta turns. Spectrophotometric studies showed a blueshift and modifications in the chromicity of catalase at 405 nm, corresponding to an absorbance band due to the enzyme's prosthetic group. Thus, acriflavine induced in vitro a profound change in the structure of catalase so that the enzyme could no longer function. Our results showed that acriflavine, a compound producing apoptosis and necrosis, can have a direct effect on vital functions in cells by disabling key enzymes.

  14. Diet-Induced Weight Loss Alters Functional Brain Responses during an Episodic Memory Task.

    Science.gov (United States)

    Boraxbekk, Carl-Johan; Stomby, Andreas; Ryberg, Mats; Lindahl, Bernt; Larsson, Christel; Nyberg, Lars; Olsson, Tommy

    2015-01-01

    It has been suggested that overweight is negatively associated with cognitive functions. The aim of this study was to investigate whether a reduction in body weight by dietary interventions could improve episodic memory performance and alter associated functional brain responses in overweight and obese women. 20 overweight postmenopausal women were randomized to either a modified paleolithic diet or a standard diet adhering to the Nordic Nutrition Recommendations for 6 months. We used functional magnetic resonance imaging to examine brain function during an episodic memory task as well as anthropometric and biochemical data before and after the interventions. Episodic memory performance improved significantly (p = 0.010) after the dietary interventions. Concomitantly, brain activity increased in the anterior part of the right hippocampus during memory encoding, without differences between diets. This was associated with decreased levels of plasma free fatty acids (FFA). Brain activity increased in pre-frontal cortex and superior/middle temporal gyri. The magnitude of increase correlated with waist circumference reduction. During episodic retrieval, brain activity decreased in inferior and middle frontal gyri, and increased in middle/superior temporal gyri. Diet-induced weight loss, associated with decreased levels of plasma FFA, improves episodic memory linked to increased hippocampal activity. © 2015 S. Karger GmbH, Freiburg.

  15. Diet-Induced Weight Loss Alters Functional Brain Responses during an Episodic Memory Task

    Directory of Open Access Journals (Sweden)

    Carl-Johan Boraxbekk

    2015-07-01

    Full Text Available Objective: It has been suggested that overweight is negatively associated with cognitive functions. The aim of this study was to investigate whether a reduction in body weight by dietary interventions could improve episodic memory performance and alter associated functional brain responses in overweight and obese women. Methods: 20 overweight postmenopausal women were randomized to either a modified paleolithic diet or a standard diet adhering to the Nordic Nutrition Recommendations for 6 months. We used functional magnetic resonance imaging to examine brain function during an episodic memory task as well as anthropometric and biochemical data before and after the interventions. Results: Episodic memory performance improved significantly (p = 0.010 after the dietary interventions. Concomitantly, brain activity increased in the anterior part of the right hippocampus during memory encoding, without differences between diets. This was associated with decreased levels of plasma free fatty acids (FFA. Brain activity increased in pre-frontal cortex and superior/middle temporal gyri. The magnitude of increase correlated with waist circumference reduction. During episodic retrieval, brain activity decreased in inferior and middle frontal gyri, and increased in middle/superior temporal gyri. Conclusions: Diet-induced weight loss, associated with decreased levels of plasma FFA, improves episodic memory linked to increased hippocampal activity.

  16. High efficient differentiation of functional hepatocytes from porcine induced pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Ying Ao

    Full Text Available Hepatocyte transplantation is considered to be a promising therapy for patients with liver diseases. Induced pluripotent stem cells (iPSCs provide an unlimited source for the generation of functional hepatocytes. In this study, we generated iPSCs from porcine ear fibroblasts (PEFs by overexpressing Sox2, Klf4, Oct4, and c-Myc (SKOM, and developed a novel strategy for the efficient differentiation of hepatocyte-like cells from porcine iPSCs by following the processes of early liver development. The differentiated cells displayed the phenotypes of hepatocytes, exhibited classic hepatocyte-associated bio-functions, such as LDL uptake, glycogen storage and urea secretion, as well as possessed the metabolic activities of cytochrome P-450 (CYP 3A and 2C. Furthermore, we compared the hepatocyte differentiation efficacy of our protocol with another published method, and the results demonstrated that our differentiation strategy could significantly improve the generation of morphological and functional hepatocyte-like cells from porcine iPSCs. In conclusion, this study establishes an efficient method for in vitro generation of functional hepatocytes from porcine iPSCs, which could represent a promising cell source for preclinical testing of cell-based therapeutics for liver failure and for pharmacological applications.

  17. Induction of Functional 3D Ciliary Epithelium-Like Structure From Mouse Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Kinoshita, Hirofumi; Suzuma, Kiyoshi; Kaneko, Jun; Mandai, Michiko; Kitaoka, Takashi; Takahashi, Masayo

    2016-01-01

    To generate ciliary epithelium (CE) from mouse induced pluripotent stem (iPS) cells. Recently, a protocol for self-organizing optic cup morphogenesis in three-dimensional culture was reported, and it was suggested that ocular tissue derived from neural ectoderm could be differentiated. We demonstrated that a CE-like double-layered structure could be induced in simple culture by using a modified Eiraku differentiation protocol. Differentiation of a CE-like double-layered structure could be promoted by glycogen synthase kinase 3β (GSK-3β) inhibitor. Connexin43 and aquaporin1 were expressed in both thin layers, and induced CE-like cells expressed ciliary marker genes, such as cyclinD2, zic1, tgfb2, aldh1a3, wfdc1, otx1, BMP4, and BMP7. Increases in cytoplasmic and nuclear β-catenin in aggregates of the CE-like double-layered structure were confirmed by Western blot analysis. In addition, tankyrase inhibitor prevented the induction of the CE-like double-layered structure by GSK-3β inhibitor. Dye movement from pigmented cells to nonpigmented cells in the mouse iPS cell-derived CE-like structure was observed in a fluid movement experiment, consistent with the physiological function of CE in vivo. We could differentiate CE from mouse iPS cells in the present study. In the future, we hope that this CE-like complex will become useful as a graft for transplantation therapy in pathologic ocular hypotension due to CE dysfunction, and as a screening tool for the development of drugs for diseases associated with CE function.

  18. Central pain processing in chronic chemotherapy-induced peripheral neuropathy: a functional magnetic resonance imaging study.

    Directory of Open Access Journals (Sweden)

    Elaine G Boland

    Full Text Available Life expectancy in multiple myeloma has significantly increased. However, a high incidence of chemotherapy induced peripheral neuropathy (CIPN can negatively influence quality of life during this period. This study applied functional magnetic resonance imaging (fMRI to compare areas associated with central pain processing in patients with multiple myeloma who had chemotherapy induced peripheral neuropathy (MM-CIPN with those from healthy volunteers (HV. Twenty-four participants (n = 12 MM-CIPN, n = 12 HV underwent Blood Oxygen Level-Dependent (BOLD fMRI at 3T whilst noxious heat-pain stimuli were applied to the foot and then thigh. Patients with MM-CIPN demonstrated greater activation during painful stimulation in the precuneus compared to HV (p = 0.014, FWE-corrected. Patients with MM-CIPN exhibited hypo-activation of the right superior frontal gyrus compared to HV (p = 0.031, FWE-corrected. Significant positive correlation existed between the total neuropathy score (reduced version and activation in the frontal operculum (close to insular cortex during foot stimulation in patients with MM-CIPN (p = 0.03, FWE-corrected; adjusted R2 = 0.87. Painful stimuli delivered to MM-CIPN patients evoke differential activation of distinct cortical regions, reflecting a unique pattern of central pain processing compared with healthy volunteers. This characteristic activation pattern associated with pain furthers the understanding of the pathophysiology of painful chemotherapy induced peripheral neuropathy. Functional MRI provides a tool for monitoring cerebral changes during anti-cancer and analgesic treatment.

  19. Voluntarily induced vomiting - A yoga technique to enhance pulmonary functions in healthy humans.

    Science.gov (United States)

    Balakrishnan, Ragavendrasamy; Nanjundaiah, Ramesh Mavathur; Manjunath, Nandi Krishnamurthy

    2017-12-11

    Vomiting is a complex autonomic reflex orchestrated by several neurological centres in the brain. Vagus, the cranial nerve plays a key role in regulation of vomiting. Kunjal Kriya (Voluntarily Induced Vomiting), is a yogic cleansing technique which involves voluntarily inducing vomiting after drinking saline water (5%) on empty stomach. This study was designed with an objective to understand the effect of voluntary induced vomiting (ViV) on pulmonary functions in experienced practitioners and novices and derive its possible therapeutic applications. Eighteen healthy individuals volunteered for the study of which nine had prior experience of ViV while nine did not. Pulmonary function tests were performed before and after 10 min of rest following ViV. Analysis of Covariance was performed adjusted for gender and baseline values. No significant changes were observed across genders. The results of the present study suggest a significant increase in Slow Vital Capacity [F (1,13)  = 5.699; p = 0.03] and Forced Inspiratory Volume in 1st Second [p = 0.02] and reduction in Expiratory Reserve Volume [F (1,13)  = 5.029; p = 0.04] and Respiratory Rate [F (1,13)  = 3.244, p = 0.09]. These changes suggest the possible role of ViV in enhancing the endurance of the respiratory muscles, decreased airway resistance, better emptying of lungs and vagal predominance respectively. We conclude that ViV when practiced regularly enhances the endurance of the respiratory muscles and decreases airway resistance. These findings also indicate need for scientific understanding of ViV in the management of motion sickness and restrictive pulmonary disorders like bronchitis and bronchial asthma. Copyright © 2017 Transdisciplinary University, Bangalore and World Ayurveda Foundation. Published by Elsevier B.V. All rights reserved.

  20. Decreased proteasomal function accelerates cigarette smoke-induced pulmonary emphysema in mice.

    Science.gov (United States)

    Yamada, Yosuke; Tomaru, Utano; Ishizu, Akihiro; Ito, Tomoki; Kiuchi, Takayuki; Ono, Ayako; Miyajima, Syota; Nagai, Katsura; Higashi, Tsunehito; Matsuno, Yoshihiro; Dosaka-Akita, Hirotoshi; Nishimura, Masaharu; Miwa, Soichi; Kasahara, Masanori

    2015-06-01

    Chronic obstructive pulmonary disease (COPD) is a disease common in elderly people, characterized by progressive destruction of lung parenchyma and chronic inflammation of the airways. The pathogenesis of COPD remains unclear, but recent studies suggest that oxidative stress-induced apoptosis in alveolar cells contributes to emphysematous lung destruction. The proteasome is a multicatalytic enzyme complex that plays a critical role in proteostasis by rapidly destroying misfolded and modified proteins generated by oxidative and other stresses. Proteasome activity decreases with aging in many organs including lungs, and an age-related decline in proteasomal function has been implicated in various age-related pathologies. However, the role of the proteasome system in the pathogenesis of COPD has not been investigated. Recently, we have established a transgenic (Tg) mouse model with decreased proteasomal chymotrypsin-like activity, showing age-related phenotypes. Using this model, we demonstrate here that decreased proteasomal function accelerates cigarette smoke (CS)-induced pulmonary emphysema. CS-exposed Tg mice showed remarkable airspace enlargement and increased foci of inflammation compared with wild-type controls. Importantly, apoptotic cells were found in the alveolar walls of the affected lungs. Impaired proteasomal activity also enhanced apoptosis in cigarette smoke extract (CSE)-exposed fibroblastic cells derived from mice and humans in vitro. Notably, aggresome formation and prominent nuclear translocation of apoptosis-inducing factor were observed in CSE-exposed fibroblastic cells isolated from Tg mice. Collective evidence suggests that CS exposure and impaired proteasomal activity coordinately enhance apoptotic cell death in the alveolar walls that may be involved in the development and progression of emphysema in susceptible individuals such as the elderly.

  1. Stress-induced breakdown of intestinal barrier function in the rat: reversal by wood creosote.

    Science.gov (United States)

    Kuge, Tomoo; Greenwood-Van Meerveld, Beverley; Sokabe, Masahiro

    2006-07-24

    Our previous studies demonstrated that wood creosote (Seirogan) inhibits intestinal secretion and normalizes the transport of electrolytes and water in rats subjected to restraint stress. The goal of the present study was to examine whether wood creosote has a protective effect against stress-induced breakdown of intestinal barrier function. F-344 rats were subjected to 90-min water avoidance stress (WAS) with wood creosote (30 mg/kg) or vehicle administered intragastrically 30 min prior to WAS. Sham stressed rats received wood creosote or vehicle treatment but did not experience the WAS. All rats were euthanized at the end of the WAS or sham-stress and the jejunum and colon were isolated. Epithelial transport was studied in modified Ussing chambers. Spontaneous secretion was assessed by electrophysiological measurement of the short circuit current (I(sc)) while electrical conductance (G) was calculated from the potential difference (PD) and I(sc) using Ohm's law. Intestinal permeability was defined by the mucosal-to-serosal flux of horseradish peroxidase (HRP). WAS significantly elevated basal I(sc) and G and increased epithelial permeability to HRP in the jejunum but not in the colon. Wood creosote resulted in a significant reduction of the stress-induced increase in I(sc), G and the mucosal-to-serosal flux of HRP compared to the vehicle-treated group. Wood creosote caused no significant effects in sham-stressed rats. The results suggest that oral administration of wood creosote may prevent stress-induced diarrhea by preventing aversive effects on small intestinal secretion and barrier function.

  2. Hyperthermia-induced disruption of functional connectivity in the human brain network.

    Directory of Open Access Journals (Sweden)

    Gang Sun

    executive control reaction time. CONCLUSIONS/SIGNIFICANCE: We first identified the hyperthermia-induced altered functional connectivity patterns. The changes in the functional connectivity network might be a possible explanation for the cognitive performance and work behavior alteration.

  3. Stress-induced changes in skin barrier function in healthy women.

    Science.gov (United States)

    Altemus, M; Rao, B; Dhabhar, F S; Ding, W; Granstein, R D

    2001-08-01

    Despite clear exacerbation of several skin disorders by stress, the effect of psychologic or exertional stress on human skin has not been well studied. We investigated the effect of three different stressors, psychologic interview stress, sleep deprivation, and exercise, on several dermatologic measures: transepidermal water loss, recovery of skin barrier function after tape stripping, and stratum corneum water content (skin conductance). We simultaneously measured the effects of stress on plasma levels of several stress-response hormones and cytokines, natural killer cell activity, and absolute numbers of peripheral blood leukocytes. Twenty-five women participated in a laboratory psychologic interview stress, 11 women participated in one night of sleep deprivation, and 10 women participated in a 3 d exercise protocol. The interview stress caused a delay in the recovery of skin barrier function, as well as increases in plasma cortisol, norepinephrine, interleukin-1beta and interleukin-10, tumor necrosis factor-alpha, and an increase in circulating natural killer cell activity and natural killer cell number. Sleep deprivation also decreased skin barrier function recovery and increased plasma interleukin-1beta, tumor necrosis factor-alpha, and natural killer cell activity. The exercise stress did not affect skin barrier function recovery, but caused an increase in natural killer cell activity and circulating numbers of both cytolytic T lymphocytes and helper T cells. In addition, cytokine responses to the interview stress were inversely correlated with changes in barrier function recovery. These results suggest that acute psychosocial and sleep deprivation stress disrupts skin barrier function homeostasis in women, and that this disruption may be related to stress-induced changes in cytokine secretion.

  4. [Cyclooxygenase inhibitors in some dietary vegetables inhibit platelet aggregation function induced by arachidonic acid].

    Science.gov (United States)

    Wang, Xin-Hua; Shao, Dong-Hua; Liang, Guo-Wei; Zhang, Ru; Xin, Qin; Zhang, Tao; Cao, Qing-Yun

    2011-10-01

    The study was purposed to investigate whether the cyclooxygenase inhibitors from some dietary vegetables can inhibit platelet aggregation function by the arachidonic acid (AA). The vegetable juice was mixed with platelet rich plasma (PRP), and asprin was used as positive control. The maximum ratio of platelet aggregation induced by AA was measured on the aggregometer; heme and cyclooxygenase-1 (COX(1)) or cyclooxygenase-2 (COX(2)) were added to test tubes containing COX reaction buffer, the mixture was vortex-mixed and exposed to aspirin or vegetable juice, followed by addition of AA and then hydrochloric acid (1 mol/L) was added to stop the COX reaction, followed by chemical reduction with stannous chloride solution. The concentration of COX inhibitors was detected by the enzyme immunoassay kit; vegetable juice (aspirin as positive control) was mixed with whole blood, which was followed by the addition of AA, and then the reaction was stopped by adding indomethacin, centrifuged, then the supernatant was collected, and the plasma thromboxane B(2) (TXB(2)) was measured by radioimmunoassay. The results showed that spinach juice, garlic bolt juice, blanched garlic leave juice and Chinese leek juice could inhibit by 80% human platelet aggregation induced by AA. 4 kinds of vegetables were all found a certain amount of cyclooxygenase inhibitors, which COX(1) and COX(2) inhibitor concentrations of spinach were higher than that of aspirin; 4 vegetable juice could significantly reduce the human plasma concentrations of TXB(2) induced by AA (p < 0.05). It is concluded that 4 kinds of raw vegetables containing cyclooxygenase inhibitors inhibit the production of TXA(2) and thus hinder platelet aggregation. Raw spinach, garlic bolt, blanched garlic and chinese leek inhibit significantly AA-induced human platelet aggregation in vitro. 4 kinds of vegetables may have a good potential perspective of anti-platelet aggregation therapy or prevention of thrombosis.

  5. Functional differentiation of midbrain neurons from human cord blood-derived induced pluripotent stem cells.

    Science.gov (United States)

    Stanslowsky, Nancy; Haase, Alexandra; Martin, Ulrich; Naujock, Maximilian; Leffler, Andreas; Dengler, Reinhard; Wegner, Florian

    2014-03-17

    Human induced pluripotent stem cells (hiPSCs) offer great promise for regenerative therapies or in vitro modelling of neurodegenerative disorders like Parkinson's disease. Currently, widely used cell sources for the generation of hiPSCs are somatic cells obtained from aged individuals. However, a critical issue concerning the potential clinical use of these iPSCs is mutations that accumulate over lifetime and are transferred onto iPSCs during reprogramming which may influence the functionality of cells differentiated from them. The aim of our study was to establish a differentiation strategy to efficiently generate neurons including dopaminergic cells from human cord blood-derived iPSCs (hCBiPSCs) as a juvenescent cell source and prove their functional maturation in vitro. The differentiation of hCBiPSCs was initiated by inhibition of transforming growth factor-β and bone morphogenetic protein signaling using the small molecules dorsomorphin and SB 431542 before final maturation was carried out. hCBiPSCs and differentiated neurons were characterized by immunocytochemistry and quantitative real time-polymerase chain reaction. Since functional investigations of hCBiPSC-derived neurons are indispensable prior to clinical applications, we performed detailed analysis of essential ion channel properties using whole-cell patch-clamp recordings and calcium imaging. A Sox1 and Pax6 positive neuronal progenitor cell population was efficiently induced from hCBiPSCs using a newly established differentiation protocol. Neuronal progenitor cells could be further maturated into dopaminergic neurons expressing tyrosine hydroxylase, the dopamine transporter and engrailed 1. Differentiated hCBiPSCs exhibited voltage-gated ion currents, were able to fire action potentials and displayed synaptic activity indicating synapse formation. Application of the neurotransmitters GABA, glutamate and acetylcholine induced depolarizing calcium signal changes in neuronal cells providing evidence

  6. Limonene inhibits methamphetamine-induced locomotor activity via regulation of 5-HT neuronal function and dopamine release.

    Science.gov (United States)

    Yun, Jaesuk

    2014-05-15

    Methamphetamine is a psychomotor stimulant that produces hyperlocomotion in rodents. Limonene (a cyclic terpene from citrus essential oils) has been reported to induce sedative effects. In this study, we demonstrated that limonene administration significantly inhibited serotonin (5-hydroxytryptamine, 5-HT)-induced head twitch response in mice. In rats, pretreatment with limonene decreased hyperlocomotion induced by methamphetamine injection. In addition, limonene reversed the increase in dopamine levels in the nucleus accumbens of rats given methamphetamine. These results suggest that limonene may inhibit stimulant-induced behavioral changes via regulating dopamine levels and 5-HT receptor function. Copyright © 2013 Elsevier GmbH. All rights reserved.

  7. Development of radiation-induced mutation techniques and functional genomics studies

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Sub; Kang, Si Yong; Kim, Jin Baek [KAERI, Daejeon (Korea, Republic of); and others

    2012-01-15

    This project has been performed to develop plant genetic resources using radiation (gamma-rays, ion-beam, space environments), to conduct functional genomics studies with mutant resources, and to develop new radiation plant breeding techniques using various radiation sources during 3 years. In the first section, we developed flower genetic resources, functional crop resources, and bio-industrial plant resources. In the second section, we cloned several mutated genes and studied mechanisms of gene expression and genetic diversity of mutations induced by gamma-rays. In the third section, we developed new plant breeding techniques using gamma-phytotron, heavy ion-beam, and space environments. Based on these results, a total of 8 cultivars containing Chrysanthemum, Hibiscus, kenaf, rice, and soybean were applied for plant variety protection (PVP) and a total of 4 cultivars were registered for PVP. Also, license agreement for the dwarf type Hibiscus mutant 'Ggoma' was conducted with Supro co. and the manufacturing technology for natural antioxidant pear-grape vinegar was transferred into Enzenic co. Also, 8 gene sequences, such as F3'H and LDOX genes associated with flower color in Chrysanthemum and EPSPS gene from Korean lawn grass, were registered in the database of National Center for Biotechnology Information (NCBI). In the future study, we will develop new radiation mutation breeding techniques through the mutation spectrum induced by various radiation sources, the studies for mechanism of the cellular response to radiation, and the comparative{center_dot}structural{center_dot}functional genomics studies for useful traits.

  8. Neural regulation of the kidney function in rats with cisplatin induced renal failure

    Science.gov (United States)

    Goulding, Niamh E.; Johns, Edward J.

    2015-01-01

    Aim: Chronic kidney disease (CKD) is often associated with a disturbed cardiovascular homeostasis. This investigation explored the role of the renal innervation in mediating deranged baroreflex control of renal sympathetic nerve activity (RSNA) and renal excretory function in cisplatin-induced renal failure. Methods: Rats were either intact or bilaterally renally denervated 4 days prior to receiving cisplatin (5 mg/kg i.p.) and entered a chronic metabolic study for 8 days. At day 8, other groups of rats were prepared for acute measurement of RSNA or renal function with either intact or denervated kidneys. Results: Following the cisplatin challenge, creatinine clearance was 50% lower while fractional sodium excretion and renal cortical and medullary TGF-β1 concentrations were 3–4 fold higher in both intact and renally denervated rats compared to control rats. In cisplatin-treated rats, the maximal gain of the high-pressure baroreflex curve was only 20% that of control rats, but following renal denervation not different from that of renally denervated control rats. Volume expansion reduced RSNA by 50% in control and in cisplatin-treated rats but only following bilateral renal denervation. The volume expansion mediated natriuresis/diuresis was absent in the cisplatin-treated rats but was normalized following renal denervation. Conclusions: Cisplatin-induced renal injury impaired renal function and caused a sympatho-excitation with blunting of high and low pressure baroreflex regulation of RSNA, which was dependent on the renal innervation. It is suggested that in man with CKD there is a dysregulation of the neural control of the kidney mediated by its sensory innervation. PMID:26175693

  9. Dibutyltin disrupts glucocorticoid receptor function and impairs glucocorticoid-induced suppression of cytokine production.

    Directory of Open Access Journals (Sweden)

    Christel Gumy

    Full Text Available BACKGROUND: Organotins are highly toxic and widely distributed environmental chemicals. Dibutyltin (DBT is used as stabilizer in the production of polyvinyl chloride plastics, and it is also the major metabolite formed from tributyltin (TBT in vivo. DBT is immunotoxic, however, the responsible targets remain to be defined. Due to the importance of glucocorticoids in immune-modulation, we investigated whether DBT could interfere with glucocorticoid receptor (GR function. METHODOLOGY: We used HEK-293 cells transiently transfected with human GR as well as rat H4IIE hepatoma cells and native human macrophages and human THP-1 macrophages expressing endogenous receptor to study organotin effects on GR function. Docking of organotins was used to investigate the binding mechanism. PRINCIPAL FINDINGS: We found that nanomolar concentrations of DBT, but not other organotins tested, inhibit ligand binding to GR and its transcriptional activity. Docking analysis indicated that DBT inhibits GR activation allosterically by inserting into a site close to the steroid-binding pocket, which disrupts a key interaction between the A-ring of the glucocorticoid and the GR. DBT inhibited glucocorticoid-induced expression of phosphoenolpyruvate carboxykinase (PEPCK and tyrosine-aminotransferase (TAT and abolished the glucocorticoid-mediated transrepression of TNF-alpha-induced NF-kappaB activity. Moreover, DBT abrogated the glucocorticoid-mediated suppression of interleukin-6 (IL-6 and TNF-alpha production in lipopolysaccharide (LPS-stimulated native human macrophages and human THP-1 macrophages. CONCLUSIONS: DBT inhibits ligand binding to GR and subsequent activation of the receptor. By blocking GR activation, DBT may disturb metabolic functions and modulation of the immune system, providing an explanation for some of the toxic effects of this organotin.

  10. Autophagy relieves the function inhibition and apoptosis-promoting effects on osteoblast induced by glucocorticoid

    Science.gov (United States)

    Han, Yudi; Zhang, Lihai; Xing, Yaling; Zhang, Licheng; Chen, Xiaojuan; Tang, Peifu; Chen, Zhongbin

    2018-01-01

    Autophagy may be a major mechanism by which osteoblasts (OBs) protect against the negative effects of chronic glucocorticoid (GC) usage. OBs are closely associated with the remodeling that occurs in GC-induced osteoporosis (GIO). In osteocytes, in response to stress induced by GCs, several pathways are activated, including cell necrosis, apoptosis and autophagy. However, the role of autophagy in OBs following treatment with excess GCs has not been addressed. In the current study, confocal microscopy observation of green fluorescent protein-microtubule-associated protein 1 light chain 3β (LC3) punctuate, and western blotting for LC3II and Beclin 1 were performed for detection of autophagy in the MC3T3-E1 osteoblastic cell line. Flow cytometry and western blotting were used for the examination of apoptosis and expression of BAX apoptosis regulator (Bax)/apoptosis regulator Bcl-2 (Bcl-2). The expression of genes associated with osteoblastic function, runt-related transcription factor 2, α-1 type 1 collagen and osteocalcin, were measured by reverse transcription-quantitative polymerase chain reaction. The results indicated that autophagy was induced in OBs during dexamethasone (Dex) treatment in a dose-dependent manner. The level of autophagy did not continue to increase over time, but peaked at 48 h and then decreased gradually. Subsequently, flow cytometry was used to demonstrate that inhibition of autophagy induced apoptosis in OBs under Dex treatment, and was associated with the upregulation of Bax and the downregulation of Bcl-2 protein expression. Furthermore, the data suggested that the inhibition of autophagy also suppressed the expression of osteoblastic genes. By contrast, the stimulation of autophagy maintained the gene expression level under Dex treatment. The data revealed that autophagy is an important regulator of osteoblastic apoptosis through its interaction with Bax/Bcl-2, and maintains the osteoblastic function of MC3T3-E1 cells following GC

  11. Distinct cytoplasmic and nuclear functions of the stress induced protein DDIT3/CHOP/GADD153.

    Directory of Open Access Journals (Sweden)

    Alexandra Jauhiainen

    Full Text Available DDIT3, also known as GADD153 or CHOP, encodes a basic leucine zipper transcription factor of the dimer forming C/EBP family. DDIT3 is known as a key regulator of cellular stress response, but its target genes and functions are not well characterized. Here, we applied a genome wide microarray based expression analysis to identify DDIT3 target genes and functions. By analyzing cells carrying tamoxifen inducible DDIT3 expression constructs we show distinct gene expression profiles for cells with cytoplasmic and nuclear localized DDIT3. Of 175 target genes identified only 3 were regulated by DDIT3 in both cellular localizations. More than two thirds of the genes were downregulated, supporting a role for DDIT3 as a dominant negative factor that could act by either cytoplasmic or nuclear sequestration of dimer forming transcription factor partners. Functional annotation of target genes showed cell migration, proliferation and apoptosis/survival as the most affected categories. Cytoplasmic DDIT3 affected more migration associated genes, while nuclear DDIT3 regulated more cell cycle controlling genes. Cell culture experiments confirmed that cytoplasmic DDIT3 inhibited migration, while nuclear DDIT3 caused a G1 cell cycle arrest. Promoters of target genes showed no common sequence motifs, reflecting that DDIT3 forms heterodimers with several alternative transcription factors that bind to different motifs. We conclude that expression of cytoplasmic DDIT3 regulated 94 genes. Nuclear translocation of DDIT3 regulated 81 additional genes linked to functions already affected by cytoplasmic DDIT3. Characterization of DDIT3 regulated functions helps understanding its role in stress response and involvement in cancer and degenerative disorders.

  12. Bobath Concept versus constraint-induced movement therapy to improve arm functional recovery in stroke patients: a randomized controlled trial.

    Science.gov (United States)

    Huseyinsinoglu, Burcu Ersoz; Ozdincler, Arzu Razak; Krespi, Yakup

    2012-08-01

    To compare the effects of the Bobath Concept and constraint-induced movement therapy on arm functional recovery among stroke patients with a high level of function on the affected side. A single-blinded, randomized controlled trial. Outpatient physiotherapy department of a stroke unit. A total of 24 patients were randomized to constraint-induced movement therapy or Bobath Concept group. The Bobath Concept group was treated for 1 hour whereas the constraint-induced movement therapy group received training for 3 hours per day during 10 consecutive weekdays. Main measures were the Motor Activity Log-28, the Wolf Motor Function Test, the Motor Evaluation Scale for Arm in Stroke Patients and the Functional Independence Measure. The two groups were found to be homogeneous based on demographic variables and baseline measurements. Significant improvements were seen after treatment only in the 'Amount of use' and 'Quality of movement' subscales of the Motor Activity Log-28 in the constraint-induced movement therapy group over the the Bobath Concept group (P = 0.003; P = 0.01 respectively). There were no significant differences in Wolf Motor Function Test 'Functional ability' (P = 0.137) and 'Performance time' (P = 0.922), Motor Evaluation Scale for Arm in Stroke Patients (P = 0.947) and Functional Independence Measure scores (P = 0.259) between the two intervention groups. Constraint-induced movement therapy and the Bobath Concept have similar efficiencies in improving functional ability, speed and quality of movement in the paretic arm among stroke patients with a high level of function. Constraint-induced movement therapy seems to be slightly more efficient than the Bobath Concept in improving the amount and quality of affected arm use.

  13. The dietary fiber profile of fruit peels and functionality modifications induced by high hydrostatic pressure treatments.

    Science.gov (United States)

    Tejada-Ortigoza, Viridiana; García-Amezquita, Luis Eduardo; Serna-Saldívar, Sergio O; Welti-Chanes, Jorge

    2017-07-01

    The effect of high hydrostatic pressure (HHP) and temperature on composition of non-conventional dietary fiber (DF) sources and functional properties were evaluated. Mango, orange, or prickly pear peels were processed at 600 MPa during 10 min at 22 ℃ and 55 ℃. Total (TDF), soluble (SDF), and insoluble (IDF) dietary fiber, water/oil holding, and retention capacity, solubility, swelling capacity, and bulk density were assayed. An increment in the SDF content was observed due to the effect of pressure with the greatest changes noticed in mango peel, increasing from 37.4% (control) to 45.7% (SDF/TDF) in the HHP-treated (55 ℃) sample. Constant values of TDF after the treatments suggest a conversion of IDF to SDF in mango (38.9%-40.5% dw) and orange (49.0%-50.8% dw) peels. The highest fiber solubility values were observed for mango peel ranging between 80.3% and 83.9%, but the highest increase, from 55.1% to 62.3%, due to treatment was displayed in orange peel processed at 22 ℃. A relationship between DF modifications induced by HHP treatment and changes in the functional properties of the materials was established. Application of HHP opens up the opportunity to modify non-conventional sources of DF and to obtain novel functional properties for different food applications.

  14. Hypoxia and hypoxia-inducible factors as regulators of T cell development, differentiation, and function

    Science.gov (United States)

    McNamee, Eóin N.; Johnson, Darlynn Korns; Homann, Dirk

    2014-01-01

    Oxygen is a molecule that is central to cellular respiration and viability, yet there are multiple physiologic and pathological contexts in which cells experience conditions of insufficient oxygen availability, a state known as hypoxia. Given the metabolic challenges of a low oxygen environment, hypoxia elicits a range of adaptive responses at the cellular, tissue, and systemic level to promote continued survival and function. Within this context, T lymphocytes are a highly migratory cell type of the adaptive immune system that frequently encounters a wide range of oxygen tensions in both health and disease. It is now clear that oxygen availability regulates T cell differentiation and function, a response orchestrated in large part by the hypoxia-inducible factor transcription factors. Here, we discuss the physiologic scope of hypoxia and hypoxic signaling, the contribution of these pathways in regulating T cell biology, and current gaps in our understanding. Finally, we discuss how emerging therapies that modulate the hypoxic response may offer new modalities to alter T cell function and the outcome of acute and chronic pathologies. PMID:22961658

  15. Protocatechuic acid ameliorates neurocognitive functions impairment induced by chronic intermittent hypoxia.

    Science.gov (United States)

    Yin, Xue; Zhang, Xiuli; Lv, Changjun; Li, Chunli; Yu, Yan; Wang, Xiaozhi; Han, Fang

    2015-09-30

    Chronic intermittent hypoxia (CIH) is a serious consequence of obstructive sleep apnoea (OSA) and has deleterious effects on central neurons and neurocognitive functions. This study examined if protocatechuic acid (PCA) could improve learning and memory functions of rats exposed to CIH conditions and explore potential mechanisms. Neurocognitive functions were evaluated in male SD rats by step-through passive avoidance test and Morris water maze assay following exposure to CIH or room air conditions. Ultrastructure changes were investigated with transmission electron microscopy, and neuron apoptosis was confirmed by TUNEL assays. Ultrastructure changes were investigated with transmission electron microscope and neuron apoptosis was confirmed by TUNEL assays. The effects of PCA on oxidative stress, apoptosis, and brain IL-1β levels were investigated. Expression of Bcl-2, Bax, Cleaved Caspase-3, c-fos, SYN, BDNF and pro-BDNF were also studied along with JNK, P38 and ERK phosphorylation to elucidate the molecular mechanisms of PCA action. PCA was seen to enhance learning and memory ability, and alleviate oxidative stress, apoptosis and glial proliferation following CIH exposure in rats. In addition, PCA administration also decreased the level of IL-1β in brain and increased the expression of BDNF and SYN. We conclude that PCA administration will ameliorate CIH-induced cognitive dysfunctions.

  16. Radiation induced functionalism of polyethylene and ground tire rubber for their reactive compatibility in thermoplastic elastomers

    International Nuclear Information System (INIS)

    Fainleib, A.; Grigoryeva, O.; Martinez B, G.

    2009-01-01

    Reactive compatibility of recycled low-or high-density polyethylenes (LDPE and HDPE, respectively) and ground tire rubber (GTR) via chemical interactions of pre-functionalized components in their blend interface has been carried out. Polyethylene component was functionalized with maleic anhydride (MAH) as well as the rubber component was modified via functionalism with MAH or acrylamide using chemically or irradiation (γ rays) induced grafting techniques. Additional coupling agents such as-p-phenylene diamine (PDA) and polyamide fiber (PAF, from fiber wastes) were used for some thermoplastic elastomer (TPE) producing. The grafting degree and molecular mass distribution of the chromatography analyses, respectively. TPE materials based on synthesized reactive polyethylenes and GTR as well as ethylene-propylene-diene monomer rubber were prepared by dynamic vulcanization of the rubber phase inside thermoplastic (polyethylene) matrix and their phase structure, and main properties have been studied using DSC, TGA, DMTA and mechanical testing. As a final result, the high performance TPE with improved mechanical properties has been developed. (Author)

  17. Graft-accelerated virus-induced gene silencing facilitates functional genomics in rose flowers.

    Science.gov (United States)

    Yan, Huijun; Shi, Shaochuan; Ma, Nan; Cao, Xiaoqian; Zhang, Hao; Qiu, Xianqin; Wang, Qigang; Jian, Hongying; Zhou, Ningning; Zhang, Zhao; Tang, Kaixue

    2018-01-01

    Rose has emerged as a model ornamental plant for studies of flower development, senescence, and morphology, as well as the metabolism of floral fragrances and colors. Virus-induced gene silencing (VIGS) has long been used in functional genomics studies of rose by vacuum infiltration of cuttings or seedlings with an Agrobacterium suspension carrying TRV-derived vectors. However, VIGS in rose flowers remains a challenge because of its low efficiency and long time to establish silencing. Here we present a novel and rapid VIGS method that can be used to analyze gene function in rose, called 'graft-accelerated VIGS', where axillary sprouts are cut from the rose plant and vacuum infiltrated with Agrobacterium. The inoculated scions are then grafted back onto the plants to flower and silencing phenotypes can be observed within 5 weeks, post-infiltration. Using this new method, we successfully silenced expression of the RhDFR1, RhAG, and RhNUDX1 in rose flowers, and affected their color, petal number, as well as fragrance, respectively. This grafting method will facilitate high-throughput functional analysis of genes in rose flowers. Importantly, it may also be applied to other woody species that are not currently amenable to VIGS by conventional leaf or plantlet/seedling infiltration methods. © 2017 Institute of Botany, Chinese Academy of Sciences.

  18. Musical training induces functional and structural auditory-motor network plasticity in young adults.

    Science.gov (United States)

    Li, Qiongling; Wang, Xuetong; Wang, Shaoyi; Xie, Yongqi; Li, Xinwei; Xie, Yachao; Li, Shuyu

    2018-02-05

    Playing music requires a strong coupling of perception and action mediated by multimodal integration of brain regions, which can be described as network connections measured by anatomical and functional correlations between regions. However, the structural and functional connectivities within and between the auditory and sensorimotor networks after long-term musical training remain largely uninvestigated. Here, we compared the structural connectivity (SC) and resting-state functional connectivity (rs-FC) within and between the two networks in 29 novice healthy young adults before and after musical training (piano) with those of another 27 novice participants who were evaluated longitudinally but with no intervention. In addition, a correlation analysis was performed between the changes in FC or SC with practice time in the training group. As expected, participants in the training group showed increased FC within the sensorimotor network and increased FC and SC of the auditory-motor network after musical training. Interestingly, we further found that the changes in FC within the sensorimotor network and SC of the auditory-motor network were positively correlated with practice time. Our results indicate that musical training could induce enhanced local interaction and global integration between musical performance-related regions, which provides insights into the mechanism of brain plasticity in young adults. © 2018 Wiley Periodicals, Inc.

  19. Respiratory symptoms and functional impairments induced by occupational exposure to formaldehyde

    Directory of Open Access Journals (Sweden)

    AR Choobineh

    2010-07-01

    Full Text Available Background and aimsThe main purpose of this study was to assess the acute and chronic effects of occupational exposure to low levels of formaldehyde on respiratory health.MethodsThis historical cohort study was conducted at a local melamine-formaldehyde resin producing plant. The study population consisted of seventy exposed and 24 non-exposed (referent employees. In this study, a questionnaire was used to evaluate and determined the prevalence of respiratory symptoms. Atmospheric concentrations of formaldehyde were measured at different areas of the plant. Similarly, using a spirometer, the parameters of pulmonary function were measured during exposure and a few days after exposure ceased.ResultsAtmospheric concentrations of formaldehyde marginally exceeded current permissible levels. Additionally, significant decrements in some parameters of pulmonary function, both during and after exposure were noted. However, a relative recovery in lungfunctional capacity observed following temporary cessation of exposure. Furthermore, exposed workers had higher prevalencerates of regular cough, wheezing, phlegm, shortness of breath, chest tightness and episodes of chest illness associated with cold.ConclusionThe findings of this study indicate that exposure to formaldehyde may induce respiratory symptoms, acute partially reversible and chronic irreversible functional impairments of the lungs.

  20. WRNIP1 functions upstream of DNA polymerase η in the UV-induced DNA damage response

    Energy Technology Data Exchange (ETDEWEB)

    Yoshimura, Akari, E-mail: akari_yo@stu.musashino-u.ac.jp [Molecular Cell Biology Laboratory, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585 (Japan); Kobayashi, Yume [Molecular Cell Biology Laboratory, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585 (Japan); Tada, Shusuke [Department of Medical Biochemistry, Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi-shi, Chiba 274-8510 (Japan); Seki, Masayuki [Department of Biochemistry, Tohoku Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai-shi, Miyagi 981-8558 (Japan); Enomoto, Takemi [Molecular Cell Biology Laboratory, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585 (Japan)

    2014-09-12

    Highlights: • The UV sensitivity of POLH{sup −/−} cells was suppressed by disruption of WRNIP1. • In WRNIP1{sup −/−/−}/POLH{sup −/−} cells, mutation frequencies and SCE after irradiation reduced. • WRNIP1 defect recovered rate of fork progression after irradiation in POLH{sup −/−} cells. • WRNIP1 functions upstream of Polη in the translesion DNA synthesis pathway. - Abstract: WRNIP1 (WRN-interacting protein 1) was first identified as a factor that interacts with WRN, the protein that is defective in Werner syndrome (WS). WRNIP1 associates with DNA polymerase η (Polη), but the biological significance of this interaction remains unknown. In this study, we analyzed the functional interaction between WRNIP1 and Polη by generating knockouts of both genes in DT40 chicken cells. Disruption of WRNIP1 in Polη-disrupted (POLH{sup −/−}) cells suppressed the phenotypes associated with the loss of Polη: sensitivity to ultraviolet light (UV), delayed repair of cyclobutane pyrimidine dimers (CPD), elevated frequency of mutation, elevated levels of UV-induced sister chromatid exchange (SCE), and reduced rate of fork progression after UV irradiation. These results suggest that WRNIP1 functions upstream of Polη in the response to UV irradiation.

  1. Radiation induced functionalism of polyethylene and ground tire rubber for their reactive compatibility in thermoplastic elastomers

    Energy Technology Data Exchange (ETDEWEB)

    Fainleib, A.; Grigoryeva, O. [Institute of Macromolecular Chemistry, National Academy of Sciences of Ukraine, Kiev 02160 (Ukraine); Martinez B, G. [Laboratorio de Investigacion y Desarrollo de Materiales Avanzados, Facultad de Quimica, Universidad Autonoma del Estado de Mexico, Km. 12 Carretera Toluca-Atlacomulco, San Cayetano 50200, Estado de Mexico (Mexico)], e-mail: fainleib@i.kiev.ua

    2009-07-01

    Reactive compatibility of recycled low-or high-density polyethylenes (LDPE and HDPE, respectively) and ground tire rubber (GTR) via chemical interactions of pre-functionalized components in their blend interface has been carried out. Polyethylene component was functionalized with maleic anhydride (MAH) as well as the rubber component was modified via functionalism with MAH or acrylamide using chemically or irradiation ({gamma} rays) induced grafting techniques. Additional coupling agents such as-p-phenylene diamine (PDA) and polyamide fiber (PAF, from fiber wastes) were used for some thermoplastic elastomer (TPE) producing. The grafting degree and molecular mass distribution of the chromatography analyses, respectively. TPE materials based on synthesized reactive polyethylenes and GTR as well as ethylene-propylene-diene monomer rubber were prepared by dynamic vulcanization of the rubber phase inside thermoplastic (polyethylene) matrix and their phase structure, and main properties have been studied using DSC, TGA, DMTA and mechanical testing. As a final result, the high performance TPE with improved mechanical properties has been developed. (Author)

  2. Obesity-induced oxidative stress, accelerated functional decline with age and increased mortality in mice.

    Science.gov (United States)

    Zhang, Yiqiang; Fischer, Kathleen E; Soto, Vanessa; Liu, Yuhong; Sosnowska, Danuta; Richardson, Arlan; Salmon, Adam B

    2015-06-15

    Obesity is a serious chronic disease that increases the risk of numerous co-morbidities including metabolic syndrome, cardiovascular disease and cancer as well as increases risk of mortality, leading some to suggest this condition represents accelerated aging. Obesity is associated with significant increases in oxidative stress in vivo and, despite the well-explored relationship between oxidative stress and aging, the role this plays in the increased mortality of obese subjects remains an unanswered question. Here, we addressed this by undertaking a comprehensive, longitudinal study of a group of high fat-fed obese mice and assessed both their changes in oxidative stress and in their performance in physiological assays known to decline with aging. In female C57BL/6J mice fed a high-fat diet starting in adulthood, mortality was significantly increased as was oxidative damage in vivo. High fat-feeding significantly accelerated the decline in performance in several assays, including activity, gait, and rotarod. However, we also found that obesity had little effect on other markers of function and actually improved performance in grip strength, a marker of muscular function. Together, this first comprehensive assessment of longitudinal, functional changes in high fat-fed mice suggests that obesity may induce segmental acceleration of some of the aging process. Published by Elsevier Inc.

  3. Structural and functional correlations in a large animal model of bleomycin-induced pulmonary fibrosis.

    Science.gov (United States)

    Organ, Louise; Bacci, Barbara; Koumoundouros, Emmanuel; Barcham, Garry; Milne, Marjorie; Kimpton, Wayne; Samuel, Chrishan; Snibson, Ken

    2015-07-31

    Idiopathic pulmonary fibrosis (IPF) is a severe and progressive respiratory disease with poor prognosis. Despite the positive outcomes from recent clinical trials, there is still no cure for this disease. Pre-clinical animal models are currently largely limited to small animals which have a number of shortcomings. We have previously shown that fibrosis is induced in isolated sheep lung segments 14 days after bleomycin treatment. This study aimed to determine whether bleomycin-induced fibrosis and associated functional changes persisted over a seven-week period. Two separate lung segments in nine sheep received two challenges two weeks apart of either, 3U bleomycin (BLM), or saline (control). Lung function in these segments was assessed by a wedged-bronchoscope procedure after bleomycin treatment. Lung tissue, and an ex vivo CT analysis were used to assess for the persistence of inflammation, fibrosis and collagen content in this model. Fibrotic changes persisted up to seven weeks in bleomycin-treated isolated lung segments (Pathology scores: bleomycin12.27 ± 0.07 vs. saline 4.90 ± 1.18, n = 9, p = 0.0003). Localization of bleomycin-induced injury and increased tissue density was confirmed by CT analysis (mean densitometric CT value: bleomycin -698 ± 2.95 Hounsfield units vs. saline -898 ± 2.5 Hounsfield units, p = 0.02). Masson's trichrome staining revealed increased connective tissue in bleomycin segments, compared to controls (% blue staining/total field area: 8.5 ± 0.8 vs. 2.1 ± 0.2 %, n = 9, p bleomycin-treated segments were significantly less compliant from baseline at 7 weeks post treatment compared to control-treated segments (2.05 ± 0.88 vs. 4.97 ± 0.79 mL/cmH20, n = 9, p = 0.002). There was also a direct negative correlation between pathology scores and segmental compliance. We show that there is a correlation between fibrosis and correspondingly poor lung function which persist for up to

  4. Ischemic acute kidney injury induces a distant organ functional and genomic response distinguishable from bilateral nephrectomy.

    Science.gov (United States)

    Hassoun, Heitham T; Grigoryev, Dmitry N; Lie, Mihaela L; Liu, Manchang; Cheadle, Chris; Tuder, Rubin M; Rabb, Hamid

    2007-07-01

    Acute kidney injury (AKI) is associated with significant mortality, which increases further when combined with acute lung injury. Experiments in rodents have shown that kidney ischemia-reperfusion injury (IRI) facilitates lung injury and inflammation. To identify potential ischemia-specific lung molecular pathways involved, we conducted global gene expression profiling of lung 6 or 36 h following 1) bilateral kidney IRI, 2) bilateral nephrectomy (BNx), and 3) sham laparotomy in C57BL/6J mice. Bronchoalveolar lavage fluid analysis revealed increased total protein, and lung histology revealed increased cellular inflammation following IRI, but not BNx, compared with sham controls. Total RNA from whole lung was isolated and hybridized to 430MOEA (22,626 genes) GeneChips (n = 3/group), which were analyzed by robust multichip average and significance analysis of microarrays and linked to gene ontology (GO) terms using MAPPFinder. The microarray power analysis predicted that the false discovery rate (q or =50%-fold change compared with sham would represent significant changes in gene expression. Analysis identified 266 and 455 ischemia-specific, AKI-associated lung genes with increased expression and 615 and 204 with decreased expression at 6 and 36 h, respectively, compared with sham controls. Real-time PCR analysis validated select array changes in lung serum amyloid A3 and endothelin-1. GO analysis revealed significant activation (Z > 1.95) of several proinflammatory and proapoptotic biological processes. Ischemic AKI induces functional and transcriptional changes in the lung distinct from those induced by uremia alone. Further investigation using this lung molecular signature induced by kidney IRI will provide mechanistic insights and new therapies for critically ill patients with AKI.

  5. Endoplasmic reticulum chaperone GRP78 regulates macrophage function and insulin resistance in diet-induced obesity.

    Science.gov (United States)

    Kim, Jong Hun; Lee, Eunjung; Friedline, Randall H; Suk, Sujin; Jung, Dae Young; Dagdeviren, Sezin; Hu, Xiaodi; Inashima, Kunikazu; Noh, Hye Lim; Kwon, Jung Yeon; Nambu, Aya; Huh, Jun R; Han, Myoung Sook; Davis, Roger J; Lee, Amy S; Lee, Ki Won; Kim, Jason K

    2018-04-01

    Obesity-mediated inflammation is a major cause of insulin resistance, and macrophages play an important role in this process. The 78-kDa glucose-regulated protein (GRP78) is a major endoplasmic reticulum chaperone that modulates unfolded protein response (UPR), and mice with GRP78 heterozygosity were resistant to diet-induced obesity. Here, we show that mice with macrophage-selective ablation of GRP78 (Lyz- GRP78 -/- ) are protected from skeletal muscle insulin resistance without changes in obesity compared with wild-type mice after 9 wk of high-fat diet. GRP78-deficient macrophages demonstrated adapted UPR with up-regulation of activating transcription factor (ATF)-4 and M2-polarization markers. Diet-induced adipose tissue inflammation was reduced, and bone marrow-derived macrophages from Lyz- GRP78 -/- mice demonstrated a selective increase in IL-6 expression. Serum IL-13 levels were elevated by >4-fold in Lyz- GRP78 -/- mice, and IL-6 stimulated the myocyte expression of IL-13 and IL-13 receptor. Lastly, recombinant IL-13 acutely increased glucose metabolism in Lyz- GRP78 -/- mice. Taken together, our data indicate that GRP78 deficiency activates UPR by increasing ATF-4, and promotes M2-polarization of macrophages with a selective increase in IL-6 secretion. Macrophage-derived IL-6 stimulates the myocyte expression of IL-13 and regulates muscle glucose metabolism in a paracrine manner. Thus, our findings identify a novel crosstalk between macrophages and skeletal muscle in the modulation of obesity-mediated insulin resistance.-Kim, J. H., Lee, E., Friedline, R. H., Suk, S., Jung, D. Y., Dagdeviren, S., Hu, X., Inashima, K., Noh, H. L., Kwon, J. Y., Nambu, A., Huh, J. R., Han, M. S., Davis, R. J., Lee, A. S., Lee, K. W., Kim, J. K. Endoplasmic reticulum chaperone GRP78 regulates macrophage function and insulin resistance in diet-induced obesity.

  6. Enhancing the smoothness of joint motion induced by functional electrical stimulation using co-activation strategies

    Directory of Open Access Journals (Sweden)

    Ruppel Mirjana

    2017-09-01

    Full Text Available The motor precision of today’s neuroprosthetic devices that use artificial generation of limb motion using Functional Electrical Stimulation (FES is generally low. We investigate the adoption of natural co-activation strategies as present in antagonistic muscle pairs aiming to improve motor precision produced by FES. In a test in which artificial knee-joint movements were generated, we could improve the smoothness of FES-induced motion by 513% when applying co-activation during the phases in which torque production is switched between muscles – compared to no co-activation. We further demonstrated how the co-activation level influences the joint stiffness in a pendulum test.

  7. Functional photoacoustic imaging to observe regional brain activation induced by cocaine hydrochloride

    Science.gov (United States)

    Jo, Janggun; Yang, Xinmai

    2011-09-01

    Photoacoustic microscopy (PAM) was used to detect small animal brain activation in response to drug abuse. Cocaine hydrochloride in saline solution was injected into the blood stream of Sprague Dawley rats through tail veins. The rat brain functional change in response to the injection of drug was then monitored by the PAM technique. Images in the coronal view of the rat brain at the locations of 1.2 and 3.4 mm posterior to bregma were obtained. The resulted photoacoustic (PA) images showed the regional changes in the blood volume. Additionally, the regional changes in blood oxygenation were also presented. The results demonstrated that PA imaging is capable of monitoring regional hemodynamic changes induced by drug abuse.

  8. Epigenetic function of Activation-Induced Cytidine Deaminase (AID and its link to lymphomagenesis

    Directory of Open Access Journals (Sweden)

    Pilar M Dominguez

    2014-12-01

    Full Text Available Activation-induced cytidine deaminase (AID is essential for somatic hypermutation (SHM and class switch recombination (CSR of immunoglobulin (Ig genes during B cell maturation and immune response. Expression of AID is tightly regulated due to its mutagenic and recombinogenic potential, which is known to target not only Ig genes, but also non-Ig genes, contributing to lymphomagenesis. In recent years a new epigenetic function of AID and its link to DNA demethylation came to light in several developmental systems. In this review, we summarize existing evidence linking deamination of unmodified and modified cytidine by AID to base-excision repair (BER and mismatch repair (MMR machinery resulting in passive or active removal of DNA methylation mark, with the focus on B cell biology. We also discuss potential contribution of AID-dependent DNA hypomethylation to lymphomagenesis.

  9. Separation of photo-induced radical pair in cryptochrome to a functionally critical distance

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Domratcheva, Tatiana; Schulten, Klaus

    2014-01-01

    Cryptochrome is a blue light receptor that acts as a sensor for the geomagnetic field and assists many animals in long-range navigation. The magnetoreceptor function arises from light-induced formation of a radical pair through electron transfer between a flavin cofactor (FAD) and a triad...... of tryptophan residues. Here, this electron transfer is investigated by quantum chemical and classical molecular dynamics calculations. The results reveal how sequential electron transfer, assisted by rearrangement of polar side groups in the cryptochrome interior, can yield a FAD-Trp radical pair state...... step can overcome in speed both recombination (electron back-transfer) and proton transfer involving the radical pair reached after primary electron transfer....

  10. Functional properties of nisin-carbohydrate conjugates formed by radiation induced Maillard reaction

    Science.gov (United States)

    Muppalla, Shobita R.; Sonavale, Rahul; Chawla, Surinder P.; Sharma, Arun

    2012-12-01

    Nisin-carbohydrate conjugates were prepared by irradiating nisin either with glucose or dextran. Increase in browning and formation of intermediate products was observed with a concomitant decrease in free amino and reducing sugar groups indicating occurrence of the Maillard reaction catalyzed by irradiation. Nisin-carbohydrate conjugates showed a broad spectrum antibacterial activity against Gram negative bacteria (Escherichia coli, Pseudomonas fluorescence) as well as Gram positive bacteria (Staphylococcus aureus, Bacillus cereus). Results of antioxidant assays, including that of DPPH radical-scavenging activity and reducing power, showed that the nisin-dextran conjugates possessed better antioxidant potential than nisin-glucose conjugate. These results suggested that it was possible to enhance the functional properties of nisin by preparing radiation induced conjugates suitable for application in food industry.

  11. Anion induced conformational preference of Cα NN motif residues in functional proteins.

    Science.gov (United States)

    Patra, Piya; Ghosh, Mahua; Banerjee, Raja; Chakrabarti, Jaydeb

    2017-12-01

    Among different ligand binding motifs, anion binding C α NN motif consisting of peptide backbone atoms of three consecutive residues are observed to be important for recognition of free anions, like sulphate or biphosphate and participate in different key functions. Here we study the interaction of sulphate and biphosphate with C α NN motif present in different proteins. Instead of total protein, a peptide fragment has been studied keeping C α NN motif flanked in between other residues. We use classical force field based molecular dynamics simulations to understand the stability of this motif. Our data indicate fluctuations in conformational preferences of the motif residues in absence of the anion. The anion gives stability to one of these conformations. However, the anion induced conformational preferences are highly sequence dependent and specific to the type of anion. In particular, the polar residues are more favourable compared to the other residues for recognising the anion. © 2017 Wiley Periodicals, Inc.

  12. Prevention of UV irradiation induced suppression of monocyte functions by retinoids and carotenoids in vitro

    International Nuclear Information System (INIS)

    Schoen, D.J.; Watson, R.R.

    1988-01-01

    The effects of stimulation of human peripheral blood monocytes in vitro with retinoids and carotenoids, and subsequent exposure to ultraviolet light of the B wavelength were measured. The compounds were applied to the monocytes in culture for 24 h, and the washed cells were then exposed to UVB light up to 220 J/m 2 . The compounds tested protected the monocyte from UVB induced damage to phagocytic activity. This protection may be due to the antioxidant or UVB energy-quenching properties of these compounds. Monocyte cytotoxicity against a melanoma cell line was stimulated by exposure to the retinoids or carotenoids, but a protective effect in vitro against UVB damage was not seen for this cell function. (author)

  13. Plasticity-Inducing TMS Protocols to Investigate Somatosensory Control of Hand Function

    Directory of Open Access Journals (Sweden)

    M. Jacobs

    2012-01-01

    Full Text Available Hand function depends on sensory feedback to direct an appropriate motor response. There is clear evidence that somatosensory cortices modulate motor behaviour and physiology within primary motor cortex. However, this information is mainly from research in animals and the bridge to human hand control is needed. Emerging evidence in humans supports the notion that somatosensory cortices modulate motor behaviour, physiology and sensory perception. Transcranial magnetic stimulation (TMS allows for the investigation of primary and higher-order somatosensory cortices and their role in control of hand movement in humans. This review provides a summary of several TMS protocols in the investigation of hand control via the somatosensory cortices. TMS plasticity inducing protocols reviewed include paired associative stimulation, repetitive TMS, theta-burst stimulation as well as other techniques that aim to modulate cortical excitability in sensorimotor cortices. Although the discussed techniques may modulate cortical excitability, careful consideration of experimental design is needed to isolate factors that may interfere with desired results of the plasticity-inducing protocol, specifically events that may lead to metaplasticity within the targeted cortex.

  14. Ethanol exposure induces a delay in the reacquisition of function during head regeneration in Schmidtea mediterranea.

    Science.gov (United States)

    Lowe, Jesse R; Mahool, Tyler D; Staehle, Mary M

    2015-01-01

    Prenatal exposure to ethanol affects neurodevelopmental processes, leading to a variety of physical and cognitive impairments collectively termed Fetal Alcohol Spectrum Disorders (FASD). The molecular level ethanol-induced alterations that underlie FASD are poorly understood and are difficult to study in mammals. Ethanol exposure has been shown to affect regulation and differentiation of embryonic stem cells in vitro, suggesting that in vivo effects such as FASD could arise from similar alterations of stem cells. In this study, we hypothesize that ethanol exposure affects head regeneration and neuroregeneration in the Schmidtea mediterranea planarian. S. mediterranea freshwater flatworms have remarkable regenerative abilities arising from an abundant population of pluripotent adult somatic stem cells known as neoblasts. Here, we evaluated the mobility-normalized photophobic behavior of ethanol-exposed planaria as an indicator of cognitive function in intact and head-regenerating worms. Our studies show that exposure to 1% ethanol induces a delay in the reacquisition of behavior during head regeneration that cannot be attributed to the effect of ethanol on intact worms. This suggests that the S. mediterranea planarian could provide insight into conserved neurodevelopmental processes that are affected by ethanol and that lead to FASD in humans. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Vulnerability of Prepubertal Mice Testis to Iron Induced Oxidative Dysfunctions In Vivo and Functional Implications

    Directory of Open Access Journals (Sweden)

    Thyagaraju BM

    2008-01-01

    Full Text Available Background: The present study describes the susceptibility of prepubertal testis of mice toprooxidant induced oxidative impairments both under in vitro and in vivo exposure conditions.Materials and Methods: Following in vitro exposure to iron (5,10 and 25 M, oxidative responsemeasured in terms of lipid peroxidation and hydroperoxide levels in testis of pre pubertal mice (4wk was more robust compared to that of pubertal mice (6 wk.Results: Further, in an in vivo study, pre pubertal mice administered (i.p sub lethal doses (12.5,25 and 50mg/100g bw/d, 5d of Iron dextran, showed significant induction of oxidative stressresponse in testis cytosol and mitochondria manifested as lipid peroxidation, generation of reactiveoxygen species, hydroperoxide levels and enhanced protein carbonyl levels (a measure of proteinoxidation. Diminished levels of GSH and total thiols in both cytosol and mitochondria of testissuggested an altered redox state. Significant perturbations in the activities of antioxidant enzymessuch as glutathione transferase, glutathione peroxidase and SOD were discernible suggesting theongoing oxidative stress in vivo. These oxidative impairments were accompanied by functionalimplications in testis as reflected in the altered activities of dehydrogenases and reduced activitiesof both 3 - and 17 -hydroxysteriod dehydrogenase.Conclusion: Collectively, these data provide an account of the susceptibility of prepubertal testisto iron-induced oxidative stress, associated functional consequences and this model is being furtherexploited for understanding the implications on the physiology of testis and consequent effect onfertility.

  16. Transcriptomic and functional analysis of NaCl-induced stress in Enterococcus faecalis.

    Directory of Open Access Journals (Sweden)

    Margrete Solheim

    Full Text Available The robust physiology of Enterococcus faecalis facilitates tolerance to various stresses. We here report the transcriptional response of E. faecalis V583 to growth in the presence of 6.5% NaCl. Among the early responses observed was an immediate down-regulation of mscL, accompanied by an up-regulation of genes predicted to be involved in uptake of extracellular potassium and glycine betaine. The high NaCl concentration also induced expression of chaperons and cell envelope related traits, such as the enterococcal polysaccharide antigen (epa locus. Functional genetic analysis revealed reduced salt stress resistance in both epaB and epaE mutants. The reduced salt resistance phenotype associated with the epaB mutant was restored by complementation, hence demonstrating a role of Epa in the physiological robustness of E. faecalis. Furthermore, we demonstrate that Epa confers increased resistance towards multiple cell envelope stress-inducing factors. Accordingly, these findings delineate a potential link between the robust nature of E. faecalis and its ability to perform as a human pathogen, and provide a new perspective on the mechanisms by which Epa contributes to virulence. Notably, the high NaCl concentration also resulted in strict repression of the gelE-sprE operon and impaired gelatinase activity. We demonstrate that NaCl antagonize the GBAP-pheromone dependent induction in a concentration dependent manner.

  17. Extracellular matrix induces doxorubicin-resistance in human osteosarcoma cells by suppression of p53 function.

    Science.gov (United States)

    Harisi, Revekka; Dudas, Jozsef; Nagy-Olah, Julia; Timar, Ferenc; Szendroi, Miklos; Jeney, Andras

    2007-08-01

    Osteosarcoma is the most common primary malignant bone tumor in childhood and adolescence. The several chemotherapy-resistant cases of osteosarcoma are at a higher risk of relapse and adverse outcome. The aim of the current study was to determine the role of extracellular matrix in the resistance developed against chemotherapeutic treatments of human osteosarcoma cells. A cell line, named OSCORT was established from the biopsy of a 17-year-old male patient with primary osteosarcoma. Cell proliferation, apoptosis and quantification of DNA damage after treatments with doxorubicin were investigated in classical and three-dimensional cell culture systems using an extracellular matrix gel. The experimental results were related to the clinical observations of the case. The cells cultured in extracellular matrix gel have shown resistance to doxorubicin similar to that seen in the clinical case, as demonstrated by their proliferation, apoptosis and doxorubicin-induced DNA damage characteristics. Among the extracellular matrix components, the heparan sulfate proteoglycan and-to a lesser extent-fibronectin were involved in the doxorubicin resistance. Laminin and nidogen did not decrease the cytoreductive effect of doxorubicin, while collagen IV even increased it. The extracellular matrix gel decreased the protein levels of p53 and abrogated its cell nuclear translocalization. The most frequent known mutations in the p53 gene were not found in OSCORT cells. The current study provides experimental evidence for an epigenetical, extracellular matrix-induced loss of p53 function, which lead to a potent chemotherapy resistance showing accordance with the clinical experience.

  18. Climate-induced die-off affects plant-soil-microbe ecological relationship and functioning.

    Science.gov (United States)

    Lloret, Francisco; Mattana, Stefania; Curiel Yuste, Jorge

    2015-02-01

    This study reports the relationship between the diversity and functioning of fungal and bacterial soil communities with vegetation in Mediterranean woodland that experienced severe die-off after a drought episode. Terminal restriction fragment length polymorfism (TRFLP) was used to describe microbial community structure and diversity five years after the episode in different habitats (Juniperus woodland, shrubland, grassland), when the vegetation had not yet recovered. Vegetation diversity was positively related to TRF bacterial richness under unaffected canopies and was higher in diverse grassland. Fungal TRF richness correlated with vegetation type, being greater in Juniperus woodland. Microbial respiration increased in grassland, whereas microbial biomass, estimated from soil substrate-induced respiration (SIR), decreased with bacterial diversity. Die-off increased bacterial richness and changed bacterial composition, particularly in Juniperus woodland, where herbaceous species increased, while fungal diversity was reduced in Juniperus woodland. Die-off increased microbial respiration rates. The impact on vegetation from extreme weather episodes spread to microbial communities by modifying vegetation composition and litter quantity and quality, particularly as a result of the increase in herbaceous species. Our results suggest that climate-induced die-off triggers significant cascade effects on soil microbial communities, which may in turn further influence ecosystem C dynamics. © FEMS 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Drug induced increases in CNS dopamine alter monocyte, macrophage and T cell functions: implications for HAND

    Science.gov (United States)

    Gaskill, Peter J.; Calderon, Tina M.; Coley, Jacqueline S.; Berman, Joan W.

    2013-01-01

    Central nervous system (CNS) complications resulting from HIV infection remain a major public health problem as individuals live longer due to the success of combined antiretroviral therapy (cART). As many as 70% of HIV infected people have HIV associated neurocognitive disorders (HAND). Many HIV infected individuals abuse drugs, such as cocaine, heroin or methamphetamine, that may be important cofactors in the development of HIV CNS disease. Despite different mechanisms of action, all drugs of abuse increase extracellular dopamine in the CNS. The effects of dopamine on HIV neuropathogenesis are not well understood, and drug induced increases in CNS dopamine may be a common mechanism by which different types of drugs of abuse impact the development of HAND. Monocytes and macrophages are central to HIV infection of the CNS and to HAND. While T cells have not been shown to be a major factor in HIV-associated neuropathogenesis, studies indicate that T cells may play a larger role in the development of HAND in HIV infected drug abusers. Drug induced increases in CNS dopamine may dysregulate functions of, or increase HIV infection in, monocytes, macrophages and T cells in the brain. Thus, characterizing the effects of dopamine on these cells is important for understanding the mechanisms that mediate the development of HAND in drug abusers. PMID:23456305

  20. Structural and functional alterations of two multidomain oxidoreductases induced by guanidine hydrochloride.

    Science.gov (United States)

    Jiao, Ming; Zhou, Yu-Ling; Li, Hong-Tao; Zhang, De-Ling; Chen, Jie; Liang, Yi

    2010-01-01

    The unfolding and refolding of two multidomain oxidoreductases, bovine liver catalase and flavoprotein bovine milk xanthine oxidase (XO), have been analyzed by fluorescence spectroscopy, circular dichroism, and activity measurements. Two intermediates, a partially folded active dimer disassembled from the native tetramer and a partially folded inactivated monomer, are found to exist in the conformational changes of catalase induced by guanidine hydrochloride (GdnHCl). Similarly, two intermediates, an active, compacted intermediate bound by flavin adenine dinucleotide (FAD) partially and an inactive flexible intermediate with FAD completely dissociated, exist in the conformational changes of XO induced by GdnHCl. The activity regains completely and an enhancement in activity compared with the native catalase or native XO is observed by dilution of catalase or XO incubated with GdnHCl at concentrations not >0.5 or 1.8 M into the refolding buffer, but the yield of reactivation for catalase or XO is zero when the concentration of GdnHCl is >1.5 or 3.0 M. The addition of FAD provides a remarkable protection against the inactivation of XO by GdnHCl under mild denaturing conditions, and the conformational change of XO is irreversible after FAD has been removed in the presence of a strong denaturing agent. These findings provide impetus for exploring the influences of cofactors such as FAD on the structure-function relationship of xanthine oxidoreductases.

  1. Functional properties of nisin–carbohydrate conjugates formed by radiation induced Maillard reaction

    International Nuclear Information System (INIS)

    Muppalla, Shobita R.; Sonavale, Rahul; Chawla, Surinder P.; Sharma, Arun

    2012-01-01

    Nisin–carbohydrate conjugates were prepared by irradiating nisin either with glucose or dextran. Increase in browning and formation of intermediate products was observed with a concomitant decrease in free amino and reducing sugar groups indicating occurrence of the Maillard reaction catalyzed by irradiation. Nisin–carbohydrate conjugates showed a broad spectrum antibacterial activity against Gram negative bacteria (Escherichia coli, Pseudomonas fluorescence) as well as Gram positive bacteria (Staphylococcus aureus, Bacillus cereus). Results of antioxidant assays, including that of DPPH radical-scavenging activity and reducing power, showed that the nisin–dextran conjugates possessed better antioxidant potential than nisin–glucose conjugate. These results suggested that it was possible to enhance the functional properties of nisin by preparing radiation induced conjugates suitable for application in food industry. - Highlights: ► Nisin–carbohydrate conjugates were prepared using radiation induced Maillard reaction. ► Conjugation of nisin with dextran/glucose resulted in improvement of antibacterial spectrum. ► Conjugates of nisin with dextran/glucose had significant radical scavenging activity.

  2. Chronic caffeine treatment prevents sleep deprivation-induced impairment of cognitive function and synaptic plasticity.

    Science.gov (United States)

    Alhaider, Ibrahim A; Aleisa, Abdulaziz M; Tran, Trinh T; Alzoubi, Karem H; Alkadhi, Karim A

    2010-04-01

    This study was undertaken to provide a detailed account of the effect of chronic treatment with a small dose of caffeine on the deleterious effects of sleep loss on brain function in rats. We investigated the effects of chronic (4 weeks) caffeine treatment (0.3 g/L in drinking water) on memory impairment in acutely (24 h) sleep-deprived adult male Wistar rats. Sleep deprivation was induced using the modified multiple platform model. The effects of caffeine on sleep deprivation-induced hippocampus-dependent learning and memory deficits were studied by 3 approaches: learning and memory performance in the radial arm water maze task, electrophysiological recording of early long-term potentiation (E-LTP) in area CA1 of the hippocampus, and levels of memory- and synaptic plasticity-related signaling molecules after E-LTP induction. The results showed that chronic caffeine treatment prevented impairment of hippocampus-dependent learning, shortterm memory and E-LTP of area CA1 in the sleep-deprived rats. In correlation, chronic caffeine treatment prevented sleep deprivation-associated decrease in the levels of phosphorylated calcium/calmodulin-dependent protein kinase II (P-CaMKII) during expression of E-LTP. The results suggest that long-term use of a low dose of caffeine prevents impairment of short-term memory and E-LTP in acutely sleep-deprived rats.

  3. Functional Characterization of Resting and Adenovirus-Induced Reactive Astrocytes in Three-Dimensional Culture.

    Science.gov (United States)

    Woo, Junsung; Im, Sun-Kyoung; Chun, Heejung; Jung, Soon-Young; Oh, Soo-Jin; Choi, Nakwon; Lee, C Justin; Hur, Eun-Mi

    2017-06-01

    Brain is a rich environment where neurons and glia interact with neighboring cells as well as extracellular matrix in three-dimensional (3D) space. Astrocytes, which are the most abundant cells in the mammalian brain, reside in 3D space and extend highly branched processes that form microdomains and contact synapses. It has been suggested that astrocytes cultured in 3D might be maintained in a less reactive state as compared to those growing in a traditional, two-dimensional (2D) monolayer culture. However, the functional characterization of the astrocytes in 3D culture has been lacking. Here we cocultured neurons and astrocytes in 3D and examined the morphological, molecular biological, and electrophysiological properties of the 3D-cultured hippocampal astrocytes. In our 3D neuron-astrocyte coculture, astrocytes showed a typical morphology of a small soma with many branches and exhibited a unique membrane property of passive conductance, more closely resembling their native in vivo counterparts. Moreover, we also induced reactive astrocytosis in culture by infecting with high-titer adenovirus to mimic pathophysiological conditions in vivo . Adenoviral infection induced morphological changes in astrocytes, increased passive conductance, and increased GABA content as well as tonic GABA release, which are characteristics of reactive gliosis. Together, our study presents a powerful in vitro model resembling both physiological and pathophysiological conditions in vivo , and thereby provides a versatile experimental tool for studying various neurological diseases that accompany reactive astrocytes.

  4. SIRT1 Functions as an Important Regulator of Estrogen-Mediated Cardiomyocyte Protection in Angiotensin II-Induced Heart Hypertrophy

    Directory of Open Access Journals (Sweden)

    Tao Shen

    2014-01-01

    Full Text Available Background. Sirtuin 1 (SIRT1 is a member of the sirtuin family, which could activate cell survival machinery and has been shown to be protective in regulation of heart function. Here, we determined the mechanism by which SIRT1 regulates Angiotensin II- (AngII- induced cardiac hypertrophy and injury in vivo and in vitro. Methods. We analyzed SIRT1 expression in the hearts of control and AngII-induced mouse hypertrophy. Female C57BL/6 mice were ovariectomized and pretreated with 17β-estradiol to measure SIRT1 expression. Protein synthesis, cardiomyocyte surface area analysis, qRT-PCR, TUNEL staining, and Western blot were performed on AngII-induced mouse heart hypertrophy samples and cultured neonatal rat ventricular myocytes (NRVMs to investigate the function of SIRT1. Results. SIRT1 expression was slightly upregulated in AngII-induced mouse heart hypertrophy in vivo and in vitro, accompanied by elevated cardiomyocyte apoptosis. SIRT1 overexpression relieves AngII-induced cardiomyocyte hypertrophy and apoptosis. 17β-Estradiol was able to protect cardiomyocytes from AngII-induced injury with a profound upregulation of SIRT1 and activation of AMPK. Moreover, estrogen receptor inhibitor ICI 182,780 and SIRT1 inhibitor niacinamide could block SIRT1’s protective effect. Conclusions. These results indicate that SIRT1 functions as an important regulator of estrogen-mediated cardiomyocyte protection during AngII-induced heart hypertrophy and injury.

  5. Measurement and analysis of the excitation function for alpha induced reaction on Ga and Sb isotopes

    International Nuclear Information System (INIS)

    Excitation functions for the reactions 69 Ga(αxn)sup(73-x)As, 69 Ga(α,p3n) 69 Ge, 69 Ga(α,2p4n) 67 Ga, 71 Ga(α,xn)sup(75-x)As, 121 Sb(α,xn)sup(125-x)I, 121 Sb(α,p3n) 121 Te and 123 Sb(α,xn)sup(127-x)I were obtained from the measurements of the residual activity of stacked foils of gallium nitrate evaporated on aluminium backings from threshold to 65 MeV. The excitation functions for the production of 74 As, 72 As, 71 As, 69 Ge and 67 Ga from α - induced reactions on Ga and 126 I, 124 I, 123 I, 121 I and 121 Te from α - induced reactions on Sb are presented. The experimental data are compared with calculations considering equilibrium as well as pre-equilibrium reaction mechanism according to the hybrid model of Blann (1971). The high energy part of the excitation functions are dominated by the pre-equilibrium reaction mechanism. Calculations were done using the a priori calculational method of Overlaid Alice Code of Blann. From the reactions 71 Ga(α,3n) 72 As and 123 Sb(α,3n) 124 I an initial exciton number nsub(o)=4(nsub(n)=2, nsub(p)=2, nsub(h)=0) with the mean free path multiplier parameter k set to 2 has been deduced for both the targets. However, there are a few exceptions (i) the theory overestimates the cross-section for the 69 Ga(α,2p4n) 67 Ga reaction whereas it underestimate the cross-section for the 121 Sb(α,p3n) 121 Te reaction and the high energy tail of 121 Sb(α,2n) 123 I excitation function. Factors to which these discrepancies between theory and experiment in case of these reactions may be attributed are indicated. Barring these reactions the overall agreement between theory and experiment is good taking into account the limitations of the theory. (author). 43 refs., 7 tabs., 19 figs

  6. Impact of short term forced oral breathing induced by nasal occlusion on respiratory function in mice.

    Science.gov (United States)

    Xie, Jiaxing; Xi, Yin; Zhang, Qingling; Lai, Kefang; Zhong, Nanshan

    2015-01-01

    Inconsistent findings regarding the experimental nasal obstruction on respiratory functions in small animals have been reported. The purpose of this study was to investigate the impact of short term forced oral breathing on respiratory functions as well as the therapeutic implication of esophageal intubation in BALB/c mice. Thirty BALB/c mice were randomized equally to two groups: an experimental group and control group. Oral breathing was induced by applying petrolatum ointment in nostrils for occlusion both nasal cavities. Esophageal tube was inserted to enlarge the oropharyngeal airway in the experimental mice. Respiratory parameters were measured by barometric whole-body plethysmography (WBP) in the following condition: normal nasal breathing; nasal breathing loading in a soft bag; forced oral breathing loading in a soft bag; forced oral breathing loading in a soft bag after undergoing esophageal intubation. After applying petrolatum ointment of nostrils, all the mice switch to oral breathing with apparent discomfort (bradypnea). Nasal occlusion was associated with a decrease in the average respiratory rate (268±36 vs. 90±10 breaths/min; Poral breathing with less discomfort. Compared with the control mice, respiratory rate (175±25 vs. 90±10) was higher; the Penh (8.84±1.05 vs. 18.09±2.03; Poral breathing induced by nasal occlusion caused respiratory insufficiency in mice. Stenotic oropharyngeal airway was supposed to be one of the most important factors. Enlarging oropharyngeal airway by esophagus intubation could improve the respiratory insufficiency under nasal occlusion. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. A functional MRI study of happy and sad affective states induced by classical music.

    Science.gov (United States)

    Mitterschiffthaler, Martina T; Fu, Cynthia H Y; Dalton, Jeffrey A; Andrew, Christopher M; Williams, Steven C R

    2007-11-01

    The present study investigated the functional neuroanatomy of transient mood changes in response to Western classical music. In a pilot experiment, 53 healthy volunteers (mean age: 32.0; SD = 9.6) evaluated their emotional responses to 60 classical musical pieces using a visual analogue scale (VAS) ranging from 0 (sad) through 50 (neutral) to 100 (happy). Twenty pieces were found to accurately induce the intended emotional states with good reliability, consisting of 5 happy, 5 sad, and 10 emotionally unevocative, neutral musical pieces. In a subsequent functional magnetic resonance imaging (fMRI) study, the blood oxygenation level dependent (BOLD) signal contrast was measured in response to the mood state induced by each musical stimulus in a separate group of 16 healthy participants (mean age: 29.5; SD = 5.5). Mood state ratings during scanning were made by a VAS, which confirmed the emotional valence of the selected stimuli. Increased BOLD signal contrast during presentation of happy music was found in the ventral and dorsal striatum, anterior cingulate, parahippocampal gyrus, and auditory association areas. With sad music, increased BOLD signal responses were noted in the hippocampus/amygdala and auditory association areas. Presentation of neutral music was associated with increased BOLD signal responses in the insula and auditory association areas. Our findings suggest that an emotion processing network in response to music integrates the ventral and dorsal striatum, areas involved in reward experience and movement; the anterior cingulate, which is important for targeting attention; and medial temporal areas, traditionally found in the appraisal and processing of emotions. Copyright 2006 Wiley-Liss, Inc.

  8. Heat stress-induced effects of photosystem I: an overview of structural and functional responses.

    Science.gov (United States)

    Ivanov, Alexander G; Velitchkova, Maya Y; Allakhverdiev, Suleyman I; Huner, Norman P A

    2017-09-01

    Temperature is one of the main factors controlling the formation, development, and functional performance of the photosynthetic apparatus in all photoautotrophs (green plants, algae, and cyanobacteria) on Earth. The projected climate change scenarios predict increases in air temperature across Earth's biomes ranging from moderate (3-4 °C) to extreme (6-8 °C) by the year 2100 (IPCC in Climate change 2007: The physical science basis: summery for policymakers, IPCC WG1 Fourth Assessment Report 2007; Climate change 2014: Mitigation of Climate Change, IPCC WG3 Fifth Assessment Report 2014). In some areas, especially of the Northern hemisphere, even more extreme warm seasonal temperatures may occur, which possibly will cause significant negative effects on the development, growth, and yield of important agricultural crops. It is well documented that high temperatures can cause direct damages of the photosynthetic apparatus and photosystem II (PSII) is generally considered to be the primary target of heat-induced inactivation of photosynthesis. However, since photosystem I (PSI) is considered to determine the global amount of enthalpy in living systems (Nelson in Biochim Biophys Acta 1807:856-863, 2011; Photosynth Res 116:145-151, 2013), the effects of elevated temperatures on PSI might be of vital importance for regulating the photosynthetic response of all photoautotrophs in the changing environment. In this review, we summarize the experimental data that demonstrate the critical impact of heat-induced alterations on the structure, composition, and functional performance of PSI and their significant implications on photosynthesis under future climate change scenarios.

  9. Acute Malaria Induces PD1+CTLA4+ Effector T Cells with Cell-Extrinsic Suppressor Function.

    Directory of Open Access Journals (Sweden)

    Maria Sophia Mackroth

    2016-11-01

    Full Text Available In acute Plasmodium falciparum (P. falciparum malaria, the pro- and anti-inflammatory immune pathways must be delicately balanced so that the parasitemia is controlled without inducing immunopathology. An important mechanism to fine-tune T cell responses in the periphery is the induction of coinhibitory receptors such as CTLA4 and PD1. However, their role in acute infections such as P. falciparum malaria remains poorly understood. To test whether coinhibitory receptors modulate CD4+ T cell functions in malaria, blood samples were obtained from patients with acute P. falciparum malaria treated in Germany. Flow cytometric analysis showed a more frequent expression of CTLA4 and PD1 on CD4+ T cells of malaria patients than of healthy control subjects. In vitro stimulation with P. falciparum-infected red blood cells revealed a distinct population of PD1+CTLA4+CD4+ T cells that simultaneously produced IFNγ and IL10. This antigen-specific cytokine production was enhanced by blocking PD1/PDL1 and CTLA4. PD1+CTLA4+CD4+ T cells were further isolated based on surface expression of PD1 and their inhibitory function investigated in-vitro. Isolated PD1+CTLA4+CD4+ T cells suppressed the proliferation of the total CD4+ population in response to anti-CD3/28 and plasmodial antigens in a cell-extrinsic manner. The response to other specific antigens was not suppressed. Thus, acute P. falciparum malaria induces P. falciparum-specific PD1+CTLA4+CD4+ Teffector cells that coproduce IFNγ and IL10, and inhibit other CD4+ T cells. Transient induction of regulatory Teffector cells may be an important mechanism that controls T cell responses and might prevent severe inflammation in patients with malaria and potentially other acute infections.

  10. Anti-thymocyte globulin induces neoangiogenesis and preserves cardiac function after experimental myocardial infarction.

    Directory of Open Access Journals (Sweden)

    Michael Lichtenauer

    Full Text Available RATIONALE: Acute myocardial infarction (AMI followed by ventricular remodeling is the major cause of congestive heart failure and death in western world countries. OBJECTIVE: Of relevance are reports showing that infusion of apoptotic leucocytes or anti-lymphocyte serum after AMI reduces myocardial necrosis and preserves cardiac function. In order to corroborate this therapeutic mechanism, the utilization of an immunosuppressive agent with a comparable mechanism, such as anti-thymocyte globulin (ATG was evaluated in this study. METHODS AND RESULTS: AMI was induced in rats by ligation of the left anterior descending artery. Initially after the onset of ischemia, rabbit ATG (10 mg/rat was injected intravenously. In vitro and in vivo experiments showed that ATG induced a pronounced release of pro-angiogenic and chemotactic factors. Moreover, paracrine factors released from ATG co-incubated cell cultures conferred a down-regulation of p53 in cardiac myocytes. Rats that were injected with ATG evidenced higher numbers of CD68+ macrophages in the ischemic myocardium. Animals injected with ATG evidenced less myocardial necrosis, showed a significant reduction of infarct dimension and an improvement of post-AMI remodeling after six weeks (infarct dimension 24.9% vs. 11.4%, p<0.01. Moreover, a higher vessel density in the peri-infarct region indicated a better collateralization in rats that were injected with ATG. CONCLUSIONS: These data indicate that ATG, a therapeutic agent successfully applied in clinical transplant immunology, triggered cardioprotective effects after AMI that salvaged ischemic myocardium by down-regulation of p53. This might have raised the resistance against apoptotic cell death during ischemia. The combination of these mechanisms seems to be causative for improved cardiac function and less ventricular remodeling after experimental AMI.

  11. Changes in plant species richness induce functional shifts in soil nematode communities in experimental grassland.

    Directory of Open Access Journals (Sweden)

    Nico Eisenhauer

    Full Text Available Changes in plant diversity may induce distinct changes in soil food web structure and accompanying soil feedbacks to plants. However, knowledge of the long-term consequences of plant community simplification for soil animal food webs and functioning is scarce. Nematodes, the most abundant and diverse soil Metazoa, represent the complexity of soil food webs as they comprise all major trophic groups and allow calculation of a number of functional indices.We studied the functional composition of nematode communities three and five years after establishment of a grassland plant diversity experiment (Jena Experiment. In response to plant community simplification common nematode species disappeared and pronounced functional shifts in community structure occurred. The relevance of the fungal energy channel was higher in spring 2007 than in autumn 2005, particularly in species-rich plant assemblages. This resulted in a significant positive relationship between plant species richness and the ratio of fungal-to-bacterial feeders. Moreover, the density of predators increased significantly with plant diversity after five years, pointing to increased soil food web complexity in species-rich plant assemblages. Remarkably, in complex plant communities the nematode community shifted in favour of microbivores and predators, thereby reducing the relative abundance of plant feeders after five years.The results suggest that species-poor plant assemblages may suffer from nematode communities detrimental to plants, whereas species-rich plant assemblages support a higher proportion of microbivorous nematodes stimulating nutrient cycling and hence plant performance; i.e. effects of nematodes on plants may switch from negative to positive. Overall, food web complexity is likely to decrease in response to plant community simplification and results of this study suggest that this results mainly from the loss of common species which likely alter plant-nematode interactions.

  12. Changes in plant species richness induce functional shifts in soil nematode communities in experimental grassland.

    Science.gov (United States)

    Eisenhauer, Nico; Migunova, Varvara D; Ackermann, Michael; Ruess, Liliane; Scheu, Stefan

    2011-01-01

    Changes in plant diversity may induce distinct changes in soil food web structure and accompanying soil feedbacks to plants. However, knowledge of the long-term consequences of plant community simplification for soil animal food webs and functioning is scarce. Nematodes, the most abundant and diverse soil Metazoa, represent the complexity of soil food webs as they comprise all major trophic groups and allow calculation of a number of functional indices. We studied the functional composition of nematode communities three and five years after establishment of a grassland plant diversity experiment (Jena Experiment). In response to plant community simplification common nematode species disappeared and pronounced functional shifts in community structure occurred. The relevance of the fungal energy channel was higher in spring 2007 than in autumn 2005, particularly in species-rich plant assemblages. This resulted in a significant positive relationship between plant species richness and the ratio of fungal-to-bacterial feeders. Moreover, the density of predators increased significantly with plant diversity after five years, pointing to increased soil food web complexity in species-rich plant assemblages. Remarkably, in complex plant communities the nematode community shifted in favour of microbivores and predators, thereby reducing the relative abundance of plant feeders after five years. The results suggest that species-poor plant assemblages may suffer from nematode communities detrimental to plants, whereas species-rich plant assemblages support a higher proportion of microbivorous nematodes stimulating nutrient cycling and hence plant performance; i.e. effects of nematodes on plants may switch from negative to positive. Overall, food web complexity is likely to decrease in response to plant community simplification and results of this study suggest that this results mainly from the loss of common species which likely alter plant-nematode interactions.

  13. Controlled expression of functional miR-122 with a ligand inducible expression system.

    Science.gov (United States)

    Shea, Cathy M; Tzertzinis, George

    2010-10-20

    To study the biological function of miRNAs, and to achieve sustained or conditional gene silencing with siRNAs, systems that allow controlled expression of these small RNAs are desirable. Methods for cell delivery of siRNAs include transient transfection of synthetic siRNAs and expression of siRNAs in the form of short hairpins using constitutive RNA polymerase III promoters. Systems employing constitutive RNA polymerase II promoters have been used to express miRNAs. However, for many experimental systems these methods do not offer sufficient control over expression. We present an inducible mammalian expression system that allows for the conditional expression of short hairpin RNAs that are processed in vivo to generate miRNAs or siRNAs. Using modified nuclear receptors in a two hybrid format and a synthetic ligand, the Rheoswitch system allows rapid and reversible induction of mRNA expression. We evaluated the system's properties using miR-122 as a model miRNA. A short hairpin encoding miR-122 cloned into the expression vector was correctly processed to yield mature miRNA upon induction with ligand and the amount of miRNA produced was commensurate with the concentration of ligand. miR-122 produced in this way was capable of silencing both endogenous target genes and appropriately designed reporter genes. Stable cell lines were obtained, resulting in heritable, consistent and reversible expression of miR-122, a significant advantage over transient transfection. Based on these results, obtained with a microRNA we adapted the method to produce a desired siRNA by designing short hairpins that can be accurately and efficiently processed. We established an Inducible expression system with a miR-122 backbone that can be used for functional studies of miRNAs and their targets, in heterologous cells that do not normally express the miRNA. Additionally we demonstrate the feasibility of using the miR-122 backbone to express shRNA with a desired siRNA guide strand for

  14. Controlled expression of functional miR-122 with a ligand inducible expression system

    Directory of Open Access Journals (Sweden)

    Tzertzinis George

    2010-10-01

    Full Text Available Abstract Background To study the biological function of miRNAs, and to achieve sustained or conditional gene silencing with siRNAs, systems that allow controlled expression of these small RNAs are desirable. Methods for cell delivery of siRNAs include transient transfection of synthetic siRNAs and expression of siRNAs in the form of short hairpins using constitutive RNA polymerase III promoters. Systems employing constitutive RNA polymerase II promoters have been used to express miRNAs. However, for many experimental systems these methods do not offer sufficient control over expression. Results We present an inducible mammalian expression system that allows for the conditional expression of short hairpin RNAs that are processed in vivo to generate miRNAs or siRNAs. Using modified nuclear receptors in a two hybrid format and a synthetic ligand, the Rheoswitch system allows rapid and reversible induction of mRNA expression. We evaluated the system's properties using miR-122 as a model miRNA. A short hairpin encoding miR-122 cloned into the expression vector was correctly processed to yield mature miRNA upon induction with ligand and the amount of miRNA produced was commensurate with the concentration of ligand. miR-122 produced in this way was capable of silencing both endogenous target genes and appropriately designed reporter genes. Stable cell lines were obtained, resulting in heritable, consistent and reversible expression of miR-122, a significant advantage over transient transfection. Based on these results, obtained with a microRNA we adapted the method to produce a desired siRNA by designing short hairpins that can be accurately and efficiently processed. Conclusion We established an Inducible expression system with a miR-122 backbone that can be used for functional studies of miRNAs and their targets, in heterologous cells that do not normally express the miRNA. Additionally we demonstrate the feasibility of using the miR-122 backbone to

  15. Zoledronate inhibits ischemia-induced neovascularization by impairing the mobilization and function of endothelial progenitor cells.

    Directory of Open Access Journals (Sweden)

    Shih-Hung Tsai

    Full Text Available BACKGROUND: Bisphosphonates are a class of pharmacologic compounds that are commonly used to treat postmenopausal osteoporosis and malignant osteolytic processes. Studies have shown that bone marrow-derived endothelial progenitor cells (EPCs play a significant role in postnatal neovascularization. Whether the nitrogen-containing bisphosphonate zoledronate inhibits ischemia-induced neovascularization by modulating EPC functions remains unclear. METHODOLOGY/PRINCIPAL FINDINGS: Unilateral hindlimb ischemia was surgically induced in wild-type mice after 2 weeks of treatment with vehicle or zoledronate (low-dose: 30 μg/kg; high-dose: 100 μg/kg. Doppler perfusion imaging demonstrated that the ischemic limb/normal side blood perfusion ratio was significantly lower in wild-type mice treated with low-dose zoledronate and in mice treated with high-dose zoledronate than in controls 4 weeks after ischemic surgery (control vs. low-dose vs. high-dose: 87±7% vs. *61±18% vs. **49±17%, *p<0.01, **p<0.005 compared to control. Capillary densities were also significantly lower in mice treated with low-dose zoledronate and in mice treated with high-dose zoledronate than in control mice. Flow cytometry analysis showed impaired mobilization of EPC-like cells (Sca-1(+/Flk-1(+ after surgical induction of ischemia in mice treated with zoledronate but normal levels of mobilization in mice treated with vehicle. In addition, ischemic tissue from mice that received zoledronate treatment exhibited significantly lower levels of the active form of MMP-9, lower levels of VEGF, and lower levels of phosphorylated eNOS and phosphorylated Akt than ischemic tissue from mice that received vehicle. Results of the in vitro studies showed that incubation with zoledronate inhibited the viability, migration, and tube-forming capacities of EPC. CONCLUSIONS/SIGNIFICANCE: Zoledronate inhibited ischemia-induced neovascularization by impairing EPC mobilization and angiogenic functions

  16. Diabetes-induced hyperglycemia impairs male reproductive function: a systematic review.

    Science.gov (United States)

    Maresch, Constanze C; Stute, Dina C; Alves, Marco G; Oliveira, Pedro F; de Kretser, David M; Linn, Thomas

    2018-01-01

    Hyperglycemia can result from a loss of pancreatic beta-cells or a decline in their function leading to decreased insulin secretion or may arise from insulin resistance and variable degrees of inadequate insulin secretion resulting in diabetes and related comorbidities. To date several reviews have addressed the issue of diabetes-related male infertility but most have focused on how metabolic syndrome causes the decline in male fertility. However, a comprehensive overview as to how diabetes-induced hyperglycemia impairs male fertility is missing. Impaired regulation of glucose and the resultant hyperglycemia are major threats to the health of individuals in modern societies especially given the rapidly rising prevalence affecting an increasing number of men in their reproductive years. Consequently, diabetes-induced hyperglycemia is likely to contribute to a decline in global birth rates especially in those societies with a high diabetic prevalence. This systematic review addresses and summarizes the impact of hyperglycemia on male reproductive health with a particular emphasis on the molecular mechanisms that influence the testis and other parts of the male reproductive tract. A systematic search of the literature published in the MEDLINE-Pubmed database (http://www.ncbi.nlm.nih.gov/pubmed) and Cochrane Library (http://www.cochranelibrary.com) was performed, as well as hand searching reference lists, from the earliest available online indexing year until May 2017, using diabetes- and male fertility-related keywords in combination with other search phrases relevant to the topic of hyperglycemia. Inclusion criteria were: clinical studies on type 1 diabetic (T1D) men and studies on T1D animal models with a focus on reproductive parameters. Case reports/series, observational studies and clinical trials were included. Studies on patients with type 2 diabetes (T2D) or animal models of T2D were excluded to distinguish hyperglycemia from other metabolic effects. A total

  17. Measurement of excitation functions in alpha-induced reactions on yttrium

    Energy Technology Data Exchange (ETDEWEB)

    Shahid, Muhammad; Kim, Kwangsoo [Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Naik, Haladhara [Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Zaman, Muhammad [Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Kim, Guinyun, E-mail: gnkim@knu.ac.kr [Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Yang, Sung-Chul [Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Nuclear Data Center, Korea Atomic Energy Research Institute, Daejeon 305-353 (Korea, Republic of); Song, Tae-Young [Nuclear Data Center, Korea Atomic Energy Research Institute, Daejeon 305-353 (Korea, Republic of)

    2015-01-01

    The excitation functions of {sup 89g,m,90,91m,92m}Nb,{sup 88,89}Zr, and {sup 87g,m,88,90m,91m}Y from alpha-induced reactions on {sup 89}Y were measured from their respective threshold to 45 MeV by using a stacked-foil activation technique at the MC-50 cyclotron of the Korean Institute of Radiological and Medical Sciences. The results were compared with the earlier reported data as well as with the theoretical values obtained from the TENDL-2013 library based on the TALYS1.6 code. Our measurements in the energy region from the threshold energy to 45 MeV are in general good agreement with the other experimental data and calculated results. The integral yields for thick target of the produced radionuclides were also deduced from their measured cross sections and the stopping power of {sup 89}Y. The measured excitation functions find importance in various practical applications including nuclear medicine and improvement of nuclear model calculations.

  18. Cocaine and MDMA Induce Cellular and Molecular Changes in Adult Neurogenic Systems: Functional Implications

    Directory of Open Access Journals (Sweden)

    Vivian Capilla-Gonzalez

    2011-06-01

    Full Text Available The capacity of the brain to generate new adult neurons is a recent discovery that challenges the old theory of an immutable adult brain. A new and fascinating field of research now focuses on this regenerative process. The two brain systems that constantly produce new adult neurons, known as the adult neurogenic systems, are the dentate gyrus (DG of the hippocampus and the lateral ventricules/olfactory bulb system. Both systems are involved in memory and learning processes. Different drugs of abuse, such as cocaine and MDMA, have been shown to produce cellular and molecular changes that affect adult neurogenesis. This review summarizes the effects that these drugs have on the adult neurogenic systems. The functional relevance of adult neurogenesis is obscured by the functions of the systems that integrate adult neurons. Therefore, we explore the effects that cocaine and MDMA produce not only on adult neurogenesis, but also on the DG and olfactory bulbs. Finally, we discuss the possible role of new adult neurons in cocaine- and MDMA-induced impairments. We conclude that, although harmful drug effects are produced at multiple physiological and anatomical levels, the specific consequences of reduced hippocampus neurogenesis are unclear and require further exploration.

  19. Analogy of transistor function with modulating photonic band gap in electromagnetically induced grating.

    Science.gov (United States)

    Wang, Zhiguo; Ullah, Zakir; Gao, Mengqin; Zhang, Dan; Zhang, Yiqi; Gao, Hong; Zhang, Yanpeng

    2015-09-09

    Optical transistor is a device used to amplify and switch optical signals. Many researchers focus on replacing current computer components with optical equivalents, resulting in an optical digital computer system processing binary data. Electronic transistor is the fundamental building block of modern electronic devices. To replace electronic components with optical ones, an equivalent optical transistor is required. Here we compare the behavior of an optical transistor with the reflection from a photonic band gap structure in an electromagnetically induced transparency medium. A control signal is used to modulate the photonic band gap structure. Power variation of the control signal is used to provide an analogy between the reflection behavior caused by modulating the photonic band gap structure and the shifting of Q-point (Operation point) as well as amplification function of optical transistor. By means of the control signal, the switching function of optical transistor has also been realized. Such experimental schemes could have potential applications in making optical diode and optical transistor used in quantum information processing.

  20. Aluminum Trichloride Induces Hypertension and Disturbs the Function of Erythrocyte Membrane in Male Rats.

    Science.gov (United States)

    Zhang, Qiuyue; Cao, Zheng; Sun, Xudong; Zuang, Cuicui; Huang, Wanyue; Li, Yanfei

    2016-05-01

    Aluminum (Al) is the most abundant metal in the earth's crust. Al accumulates in erythrocyte and causes toxicity on erythrocyte membrane. The dysfunction of erythrocyte membrane is a potential risk to hypertension. The high Al content in plasma was associated with hypertension. To investigate the effect of AlCl3 on blood pressure and the function of erythrocyte membrane, the rats were intragastrically exposed to 0, 64(1/20 LD50), 128(1/10 LD50), and 256(1/5 LD50) mg/kg body weight AlCl3 in double distilled water for 120 days, respectively. Then, we determined the systolic and mean arterial blood pressures of rats, the osmotic fragility, the percentage of membrane proteins, the activities of Na(+)/K(+)-ATPase, Mg(2+)-ATPase, Ca(2+)-ATPase, catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GSH-pX), and malondialdehyde (MDA) content of the erythrocyte membrane in this experiment. The results showed that AlCl3 elevated the systolic and mean arterial blood pressure of rats, increased the osmotic fragility, decreased the percentage of membrane protein, inhibited the activities of Na(+)/K(+)-ATPase, Mg(2+)-ATPase, Ca(2+)-ATPase, CAT, SOD and GSH-pX, and increased the MDA content of erythrocyte membrane. These results indicate that AlCl3 may induce hypertension by disturbing the function of erythrocyte membrane.

  1. Causal Correlation Functions and Fourier Transforms: Application in Calculating Pressure Induced Shifts

    Science.gov (United States)

    Ma, Q.; Tipping, R. H.; Lavrentieva, N. N.

    2012-01-01

    By adopting a concept from signal processing, instead of starting from the correlation functions which are even, one considers the causal correlation functions whose Fourier transforms become complex. Their real and imaginary parts multiplied by 2 are the Fourier transforms of the original correlations and the subsequent Hilbert transforms, respectively. Thus, by taking this step one can complete the two previously needed transforms. However, to obviate performing the Cauchy principal integrations required in the Hilbert transforms is the greatest advantage. Meanwhile, because the causal correlations are well-bounded within the time domain and band limited in the frequency domain, one can replace their Fourier transforms by the discrete Fourier transforms and the latter can be carried out with the FFT algorithm. This replacement is justified by sampling theory because the Fourier transforms can be derived from the discrete Fourier transforms with the Nyquis rate without any distortions. We apply this method in calculating pressure induced shifts of H2O lines and obtain more reliable values. By comparing the calculated shifts with those in HITRAN 2008 and by screening both of them with the pair identity and the smooth variation rules, one can conclude many of shift values in HITRAN are not correct.

  2. Suggestion-Induced Modulation of Semantic Priming during Functional Magnetic Resonance Imaging.

    Directory of Open Access Journals (Sweden)

    Martin Ulrich

    Full Text Available Using functional magnetic resonance imaging during a primed visual lexical decision task, we investigated the neural and functional mechanisms underlying modulations of semantic word processing through hypnotic suggestions aimed at altering lexical processing of primes. The priming task was to discriminate between target words and pseudowords presented 200 ms after the prime word which was semantically related or unrelated to the target. In a counterbalanced study design, each participant performed the task once at normal wakefulness and once after the administration of hypnotic suggestions to perceive the prime as a meaningless symbol of a foreign language. Neural correlates of priming were defined as significantly lower activations upon semantically related compared to unrelated trials. We found significant suggestive treatment-induced reductions in neural priming, albeit irrespective of the degree of suggestibility. Neural priming was attenuated upon suggestive treatment compared with normal wakefulness in brain regions supporting automatic (fusiform gyrus and controlled semantic processing (superior and middle temporal gyri, pre- and postcentral gyri, and supplementary motor area. Hence, suggestions reduced semantic word processing by conjointly dampening both automatic and strategic semantic processes.

  3. Blood-Feeding Induces Reversible Functional Changes in Flight Muscle Mitochondria of Aedes aegypti Mosquito

    Science.gov (United States)

    Gonçalves, Renata L. S.; Machado, Ana Carolina L.; Paiva-Silva, Gabriela O.; Sorgine, Marcos H. F.; Momoli, Marisa M.; Oliveira, Jose Henrique M.; Vannier-Santos, Marcos A.; Galina, Antonio; Oliveira, Pedro L.; Oliveira, Marcus F.

    2009-01-01

    Background Hematophagy poses a challenge to blood-feeding organisms since products of blood digestion can exert cellular deleterious effects. Mitochondria perform multiple roles in cell biology acting as the site of aerobic energy-transducing pathways, and also an important source of reactive oxygen species (ROS), modulating redox metabolism. Therefore, regulation of mitochondrial function should be relevant for hematophagous arthropods. Here, we investigated the effects of blood-feeding on flight muscle (FM) mitochondria from the mosquito Aedes aegypti, a vector of dengue and yellow fever. Methodology/Principal Findings Blood-feeding caused a reversible reduction in mitochondrial oxygen consumption, an event that was parallel to blood digestion. These changes were most intense at 24 h after blood meal (ABM), the peak of blood digestion, when oxygen consumption was inhibited by 68%. Cytochromes c and a+a 3 levels and cytochrome c oxidase activity of the electron transport chain were all reduced at 24 h ABM. Ultrastructural and molecular analyses of FM revealed that mitochondria fuse upon blood meal, a condition related to reduced ROS generation. Consistently, BF induced a reversible decrease in mitochondrial H2O2 formation during blood digestion, reaching their lowest values at 24 h ABM where a reduction of 51% was observed. Conclusion Blood-feeding triggers functional and structural changes in hematophagous insect mitochondria, which may represent an important adaptation to blood feeding. PMID:19924237

  4. Microbial products induce claudin-2 to compromise gut epithelial barrier function.

    Directory of Open Access Journals (Sweden)

    Xiaoyu Liu

    Full Text Available The epithelial barrier dysfunction is an important pathogenic feature in a number of diseases. The underlying mechanism is to be further investigated. The present study aims to investigate the role of tight junction protein claudin-2 (Cldn2 in the compromising epithelial barrier function. In this study, the expression of Cldn2 in the epithelial layer of mice and patients with food allergy was observed by immunohistochemistry. The induction of Cldn2 was carried out with a cell culture model. The Cldn2-facilitated antigen internalization was observed by confocal microscopy. The epithelial barrier function in the gut epithelial monolayer was assessed by recording the transepithelial resistance and assessing the permeability to a macromolecular tracer. The results showed that the positive immune staining of Cldn2 was observed in the epithelial layer of the small intestine that was weakly stained in naïve control mice, and strongly stained in sensitized mice as well as patients with food allergy. Exposure to cholera toxin or Staphylococcal enterotoxin B induced the expression of Cldn2 in HT-29 or T84 cells. Cldn2 could bind protein antigen to form complexes to facilitate the antigen transport across the epithelial barrier. Blocking Cldn2 prevented the allergen-related hypersensitivity the intestine. We conclude that the tight junction protein Cldn2 is involved in the epithelial barrier dysfunction.

  5. Enhanced response to radiotherapy in tumours deficient in the function of hypoxia-inducible factor-1

    International Nuclear Information System (INIS)

    Williams, Kaye J.; Telfer, Brian A.; Xenaki, Dia; Sheridan, Mary R.; Desbaillets, Isabelle; Peters, Hans J.W.; Honess, Davina; Harris, Adrian L.; Dachs, Gabi U.; Kogel, Albert van der; Stratford, Ian J.

    2005-01-01

    Background and purpose: To test the hypothesis that deficiency in expression of the transcription factor, HIF-1, renders tumours more radioresponsive than HIF-1 proficient tumours. Patients and methods: Tumours comprising mouse hepatoma cells lacking HIF-1β (and thereby HIF-1 function) were grown in nude mice and radiation-induced growth delay compared with that seen for wild-type tumours and tumours derived from HIF-1β negative cells where HIF-1 function had been restored. Results: The xenografts that lack HIF-1 activity take longer to establish their growth and are more radioresponsive than both parental xenografts and those with restored HIF-1 function. Pre-treatment of the HIF-1 deficient xenografts with the hypoxic radiosensitizer misonidazole, had little effect on radioresponse. In contrast this treatment radiosensitized the parental xenografts. In spite of this, no difference in oxygenation status was found between the tumour types as measured by Eppendorf O 2 -electrodes and by binding of the hypoxic cell marker NITP. Admixing wild type and HIF-1 deficient cells in the same tumour at ratios of 1 in 10 and 1 in 100 restores the growth of the mixed tumours to that of a 100% HIF-1 proficient cell population. However, when comparing the effects of radiation on the mixed tumours, radioresponsiveness is maintained in those tumours containing the high proportion of HIF-1 deficient cells. Conclusions: The differences in radioresponse do not correlate with tumour oxygenation, suggesting that the hypoxic cells within the HIF-1 deficient tumours do not contribute to the outcome of radiotherapy. Thus, hypoxia impacts on tumour radioresponsiveness not simply because of the physio-chemical mechanism of oxygen with radiation-induced radicals causing damage 'fixation', but also because hypoxia/HIF-1 promotes expression of genes that allow tumour cells to survive under these adverse conditions. Further, the results from the cell mixing experiments uncouple the growth

  6. Chronic administration of atorvastatin could partially ameliorate erectile function in streptozotocin-induced diabetic rats.

    Science.gov (United States)

    Park, Juhyun; Kwon, Oh Seong; Cho, Sung Yong; Paick, Jae-Seung; Kim, Soo Woong

    2017-01-01

    The efficacy of statins is related to the 'common soil' hypothesis, which proposes oxidative stress and inflammation as main pathophysiologic processes in the disease group of diabetes and endothelial dysfunction. This study evaluated the recovery of erectile function after administration of chronic statin alone in streptozotocin (STZ)-induced diabetes mellitus (DM) rats, focusing on the anti-oxidative effects and consequentially recuperated endothelial function. A total of 45 male Sprague-Dawley rats (8 weeks old) were divided into three groups (n = 15 each): an age-matched normal control group (Control group), an uncontrolled DM group (DM group), and a statin-treated group (Statin group). The rats in the DM and Statin group received an injection of STZ (60 mg/kg). Beginning 10 weeks after the establishment of DM, the Statin group received daily treatment with atorvastatin (10 mg/kg) via oral gavage for four weeks. After 14 weeks, the results of the experiment were evaluated. The ratios of intracavernosal pressure (ICP) to mean arterial pressure (MAP) were recorded with cavernosometry (20 Hz, 3 V, 0.2 msec for 30 seconds) before and after the intravenous administration of udenafil (1 mg/kg). Expression of alpha-smooth muscle actin (α-SMA) was evaluated using cavernosal tissue. In addition, changes in RhoA translocation ratio and myosin phosphatase target subunit 1 (MYPT1) phosphorylation were evaluated with western blot. Superoxide dismutase (SOD) and malondialdehyde (MDA) levels were also analyzed as measurements of oxidative stress levels. The ICP/MAP and area under the curve (AUC)/MAP ratios of the Statin group were obviously superior to the DM group, but were not comparable to the Control group (P217). The RhoA translocation ratio was not significantly different among the groups (P = 0.668), whereas MYPT1 phosphorylation in the Statin group was significantly lower than in the DM group (P = 0.030), and similar to the Control group. Expression of α-SMA in the

  7. Evaluation of ubiquinone concentration and mitochondrial function relative to cerivastatin-induced skeletal myopathy in rats

    International Nuclear Information System (INIS)

    Schaefer, William H.; Lawrence, Jeffery W.; Loughlin, Amy F.; Stoffregen, Dana A.; Mixson, Lori A.; Dean, Dennis C.; Raab, Conrad E.; Yu, Nathan X.; Lankas, George R.; Frederick, Clay B.

    2004-01-01

    As a class, hydroxymethylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors can potentially cause skeletal myopathy. One statin, cerivastatin, has recently been withdrawn from the market due to an unacceptably high incidence of rhabdomyolysis. The mechanism underlying statin-induced myopathy is unknown. This paper sought to investigate the relationship among statin-induced myopathy, mitochondrial function, and muscle ubiquinone levels. Rats were administered cerivastatin at 0.1, 0.5, and 1.0 (mg/kg)/day or dose vehicle (controls) by oral gavage for 15 days. Samples of type I-predominant skeletal muscle (soleus) and type II-predominant skeletal muscle [quadriceps and extensor digitorum longus (EDL)], and blood were collected on study days 5, 10, and 15 for morphological evaluation, clinical chemistry, mitochondrial function tests, and analysis of ubiquinone levels. No histological changes were observed in any of the animals on study days 5 or 10, but on study day 15, mid- and high-dose animals had necrosis and inflammation in type II skeletal muscle. Elevated creatine kinase (CK) levels in blood (a clinical marker of myopathy) correlated with the histopathological diagnosis of myopathy. Ultrastructural characterization of skeletal muscle revealed disruption of the sarcomere and altered mitochondria only in myofibers with degeneration, while adjacent myofibers were unaffected and had normal mitochondria. Thus, mitochondrial effects appeared not to precede myofiber degeneration. Mean coenzyme Q9 (CoQ9) levels in all dose groups were slightly decreased relative to controls in type II skeletal muscle, although the difference was not significantly different in most cases. Mitochondrial function in skeletal muscle was not affected by the changes in ubiquinone levels. The ubiquinone levels in high-dose-treated animals exhibiting myopathy were not significantly different from low-dose animals with no observable toxic effects. Furthermore, ubiquinone levels did not correlate

  8. Epileptic seizures induce structural and functional alterations on brain tissue membranes.

    Science.gov (United States)

    Turker, Sevgi; Severcan, Mete; Ilbay, Gul; Severcan, Feride

    2014-12-01

    Epilepsy is characterized by disruption of balance between cerebral excitation and inhibition, leading to recurrent and unprovoked convulsions. Studies are still underway to understand mechanisms lying epileptic seizures with the aim of improving treatment strategies. In this context, the research on brain tissue membranes gains importance for generation of epileptic activities. In order to provide additional information for this field, we have investigated the effects of pentylenetetrazol-induced and audiogenetically susceptible epileptic seizures on structure, content and function of rat brain membrane components using Fourier transform infrared (FT-IR) spectroscopy. The findings have shown that both two types of epileptic seizures stimulate the variations in the molecular organization of membrane lipids, which have potential to influence the structures in connection with functions of membrane proteins. Moreover, less fluid lipid structure and a decline in content of lipids obtained from the ratio of CH3 asym/lipid, CH2 asym/lipid, CO/lipid, and olefinicCH/lipid and the areas of the PO2 symmetric and asymmetric modes were observed. Moreover, based on IR data the changes in the conformation of proteins were predicted by neural network (NN) analysis, and displayed as an increase in random coil despite a decrease in beta sheet. Depending on spectral parameters, we have successfully differentiated treated samples from the control by principal component analysis (PCA) and cluster analysis. In summary, FT-IR spectroscopy may offer promising attempt to identify compositional, structural and functional alterations in brain tissue membranes resulting from epileptic activities. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Nogo receptor inhibition enhances functional recovery following lysolecithin-induced demyelination in mouse optic chiasm.

    Directory of Open Access Journals (Sweden)

    Fereshteh Pourabdolhossein

    Full Text Available Inhibitory factors have been implicated in the failure of remyelination in demyelinating diseases. Myelin associated inhibitors act through a common receptor called Nogo receptor (NgR that plays critical inhibitory roles in CNS plasticity. Here we investigated the effects of abrogating NgR inhibition in a non-immune model of focal demyelination in adult mouse optic chiasm.A focal area of demyelination was induced in adult mouse optic chiasm by microinjection of lysolecithin. To knock down NgR levels, siRNAs against NgR were intracerebroventricularly administered via a permanent cannula over 14 days, Functional changes were monitored by electrophysiological recording of latency of visual evoked potentials (VEPs. Histological analysis was carried out 3, 7 and 14 days post demyelination lesion. To assess the effect of NgR inhibition on precursor cell repopulation, BrdU was administered to the animals prior to the demyelination induction. Inhibition of NgR significantly restored VEPs responses following optic chiasm demyelination. These findings were confirmed histologically by myelin specific staining. siNgR application resulted in a smaller lesion size compared to control. NgR inhibition significantly increased the numbers of BrdU+/Olig2+ progenitor cells in the lesioned area and in the neurogenic zone of the third ventricle. These progenitor cells (Olig2+ or GFAP+ migrated away from this area as a function of time.Our results show that inhibition of NgR facilitate myelin repair in the demyelinated chiasm, with enhanced recruitment of proliferating cells to the lesion site. Thus, antagonizing NgR function could have therapeutic potential for demyelinating disorders such as Multiple Sclerosis.

  10. Bisphenol S impairs blood functions and induces cardiovascular risks in rats

    Directory of Open Access Journals (Sweden)

    Sanghamitra Pal

    Full Text Available Bisphenol S (BPS is an industrial chemical which is recently used to replace the potentially toxic Bisphenol A (BPA in making polycarbonate plastics, epoxy resins and thermal receipt papers. The probable toxic effects of BPS on the functions of haemopoietic and cardiovascular systems have not been reported till to date. We report here that BPS depresses haematological functions and induces cardiovascular risks in rat. Adult male albino rats of Sprague-Dawley strain were given BPS at a dose level of 30, 60 and 120 mg/kg BW/day respectively for 30 days. Red blood cell (RBC count, white blood cell (WBC count, Hb concentration, and clotting time have been shown to be significantly (*P < 0.05 reduced in a dose dependent manner in all exposed groups of rats comparing to the control. It has also been shown that BPS increases total serum glucose and protein concentration in the exposed groups of rats. We have observed that BPS increases serum total cholesterol, triglyceride, glycerol free triglyceride, low density lipoprotein (LDL and very low density lipoprotein (VLDL concentration, whereas high density lipoprotein (HDL concentration has been found to be reduced in the exposed groups. BPS significantly increases serum aspartate aminotransferase (AST, alanine aminotransferase (ALT and alkaline phosphatase (ALP activities dose dependently. Moreover, serum calcium, bilirubin and urea concentration have been observed to be increased in all exposed groups. In conclusion, BPS probably impairs the functions of blood and promotes cardiovascular risks in rats. Keywords: Bisphenol S, Red blood cell count, White blood cell count, Clotting time, LDL cholesterol, HDL cholesterol, Cardiovascular risks

  11. A Surfactant-Induced Functional Modulation of a Global Virulence Regulator from Staphylococcus aureus.

    Directory of Open Access Journals (Sweden)

    Sukhendu Mandal

    Full Text Available Triton X-100 (TX-100, a useful non-ionic surfactant, reduced the methicillin resistance in Staphylococcus aureus significantly. Many S. aureus proteins were expressed in the presence of TX-100. SarA, one of the TX-100-induced proteins, acts as a global virulence regulator in S. aureus. To understand the effects of TX-100 on the structure, and function of SarA, a recombinant S. aureus SarA (rSarA and its derivative (C9W have been investigated in the presence of varying concentrations of this surfactant using various probes. Our data have revealed that both rSarA and C9W bind to the cognate DNA with nearly similar affinity in the absence of TX-100. Interestingly, their DNA binding activities have been significantly increased in the presence of pre-micellar concentration of TX-100. The increase of TX-100 concentrations to micellar or post-micellar concentration did not greatly enhance their activities further. TX-100 molecules have altered the secondary and tertiary structures of both proteins to some extents. Size of the rSarA-TX-100 complex appears to be intermediate to those of rSarA and TX-100. Additional analyses show a relatively moderate interaction between C9W and TX-100. Binding of TX-100 to C9W has, however, occurred by a cooperative pathway particularly at micellar and higher concentrations of this surfactant. Taken together, TX-100-induced structural alteration of rSarA and C9W might be responsible for their increased DNA binding activity. As TX-100 has stabilized the somewhat weaker SarA-DNA complex effectively, it could be used to study its structure in the future.

  12. Dopaminergic function in cannabis users and its relationship to cannabis-induced psychotic symptoms.

    Science.gov (United States)

    Bloomfield, Michael A P; Morgan, Celia J A; Egerton, Alice; Kapur, Shitij; Curran, H Valerie; Howes, Oliver D

    2014-03-15

    Cannabis is the most widely used illicit drug globally, and users are at increased risk of mental illnesses including psychotic disorders such as schizophrenia. Substance dependence and schizophrenia are both associated with dopaminergic dysfunction. It has been proposed, although never directly tested, that the link between cannabis use and schizophrenia is mediated by altered dopaminergic function. We compared dopamine synthesis capacity in 19 regular cannabis users who experienced psychotic-like symptoms when they consumed cannabis with 19 nonuser sex- and age-matched control subjects. Dopamine synthesis capacity (indexed as the influx rate constant [Formula: see text] ) was measured with positron emission tomography and 3,4-dihydroxy-6-[(18)F]-fluoro-l-phenylalanine ([(18)F]-DOPA). Cannabis users had reduced dopamine synthesis capacity in the striatum (effect size: .85; t36 = 2.54, p = .016) and its associative (effect size: .85; t36 = 2.54, p = .015) and limbic subdivisions (effect size: .74; t36 = 2.23, p = .032) compared with control subjects. The group difference in dopamine synthesis capacity in cannabis users compared with control subjects was driven by those users meeting cannabis abuse or dependence criteria. Dopamine synthesis capacity was negatively associated with higher levels of cannabis use (r = -.77, p cannabis use (r = .51, p = .027) but was not associated with cannabis-induced psychotic-like symptoms (r = .32, p = .19). These findings indicate that chronic cannabis use is associated with reduced dopamine synthesis capacity and question the hypothesis that cannabis increases the risk of psychotic disorders by inducing the same dopaminergic alterations seen in schizophrenia. Copyright © 2014 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  13. Improved functional assessment of osteoarthritic knee joint after chondrogenically induced cell treatment.

    Science.gov (United States)

    Ude, C C; Ng, M H; Chen, C H; Htwe, O; Amaramalar, N S; Hassan, S; Djordjevic, I; Rani, R A; Ahmad, J; Yahya, N M; Saim, A B; Idrus, R B Hj

    2015-08-01

    Our previous studies on osteoarthritis (OA) revealed positive outcome after chondrogenically induced cells treatment. Presently, the functional improvements of these treated OA knee joints were quantified followed by evaluation of the mechanical properties of the engineered cartilages. Baseline electromyogram (EMGs) were conducted at week 0 (pre-OA), on the locomotory muscles of nine un-castrated male sheep (Siamese long tail cross) divided into controls, adipose-derived stem cells (ADSCs) and bone marrow stem cells (BMSCs), before OA inductions. Subsequent recordings were performed at week 7 and week 31 which were post-OA and post-treatments. Afterwards, the compression tests of the regenerated cartilage were performed. Post-treatment EMG analysis revealed that the control sheep retained significant reductions in amplitudes at the right medial gluteus, vastus lateralis and bicep femoris, whereas BMSCs and ADSCs samples had no further significant reductions (P < 0.05). Grossly and histologically, the treated knee joints demonstrated the presence of regenerated neo cartilages evidenced by the fluorescence of PKH26 tracker. Based on the International Cartilage Repair Society scores (ICRS), they had significantly lower grades than the controls (P < 0.05). The compression moduli of the native cartilages and the engineered cartilages differed significantly at the tibia plateau, patella femoral groove and the patella; whereas at the medial femoral condyle, they had similar moduli of 0.69 MPa and 0.40-0.64 MPa respectively. Their compression strengths at all four regions were within ±10 MPa. The tissue engineered cartilages provided evidence of functional recoveries associated to the structural regenerations, and their mechanical properties were comparable with the native cartilage. Copyright © 2015 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  14. Oxidative stress induces caveolin 1 degradation and impairs caveolae functions in skeletal muscle cells.

    Directory of Open Access Journals (Sweden)

    Alexis Mougeolle

    Full Text Available Increased level of oxidative stress, a major actor of cellular aging, impairs the regenerative capacity of skeletal muscle and leads to the reduction in the number and size of muscle fibers causing sarcopenia. Caveolin 1 is the major component of caveolae, small membrane invaginations involved in signaling and endocytic trafficking. Their role has recently expanded to mechanosensing and to the regulation of oxidative stress-induced pathways. Here, we increased the amount of reactive oxidative species in myoblasts by addition of hydrogen peroxide (H2O2 at non-toxic concentrations. The expression level of caveolin 1 was significantly decreased as early as 10 min after 500 μM H2O2 treatment. This reduction was not observed in the presence of a proteasome inhibitor, suggesting that caveolin 1 was rapidly degraded by the proteasome. In spite of caveolin 1 decrease, caveolae were still able to assemble at the plasma membrane. Their functions however were significantly perturbed by oxidative stress. Endocytosis of a ceramide analog monitored by flow cytometry was significantly diminished after H2O2 treatment, indicating that oxidative stress impaired its selective internalization via caveolae. The contribution of caveolae to the plasma membrane reservoir has been monitored after osmotic cell swelling. H2O2 treatment increased membrane fragility revealing that treated cells were more sensitive to an acute mechanical stress. Altogether, our results indicate that H2O2 decreased caveolin 1 expression and impaired caveolae functions. These data give new insights on age-related deficiencies in skeletal muscle.

  15. Boldenone-induced apoptotic, structural, and functional alterations in the liver of rabbits

    Directory of Open Access Journals (Sweden)

    R.F. Mayada

    2015-03-01

    Full Text Available Boldenone undecylenate (BOL is an anabolic androgenic steroid used in livestock to improve growth and food conversion. This study investigated the actions of BOL on structure and functions of rabbit liver as well as the effects of its withdrawal. Eighteen mature male New Zealand rabbits were divided into 2 groups: Control group (n=6 were injected with 0.25 mL corn oil/kg body weight (BW, while BOL group (n=12 received 3 intramuscular injections, 2 wk apart, of BOL (4.5 mg/kg BW. Animals were scarified 1 d after last injection except for 6 rabbits from BOL group that served as the BOL-withdrawal group (4 wk after the 3rd injection. Intramuscular injection of BOL increased (P<0.05 malondialdehyde (MDA level, but markedly lowered activities of superoxide dismutase (SOD and catalase (CAT and reduced glutathione (GSH concentration compared to both control and BOL-withdrawal groups. Treatment with BOL significantly (P<0.05 increased serum levels of alanine aminotransferase (ALT and aspartate aminotransferase (AST compared to the control group. BOL injection caused different histopathological alterations and apoptosis in liver, but these changes were less evident in the BOL-withdrawal group. Expression of p53 and tumour necrosis factor-α (TNF-α genes was up regulated in BOL compared to control group, while the expressions of p53 and TNF-α were down regulated in BOL-withdrawal group in comparison with BOL group. In conclusion, BOL injection induced structural and functional changes in the liver of rabbits, increasing oxidative stress and mediators of apoptosis such as ROS, p53 and TNF-α. All these parameters returned to near the control values after withdrawal.

  16. Nonredundant functions of alphabeta and gammadelta T cells in acrolein-induced pulmonary pathology.

    Science.gov (United States)

    Borchers, Michael T; Wesselkamper, Scott C; Eppert, Bryan L; Motz, Gregory T; Sartor, Maureen A; Tomlinson, Craig R; Medvedovic, Mario; Tichelaar, Jay W

    2008-09-01

    Acrolein exposure represents a significant human health hazard. Repeated acrolein exposure causes the accumulation of monocytes/macrophages and lymphocytes, mucous cell metaplasia, and epithelial injury. Currently, the mechanisms that control these events are unclear, and the relative contribution of T-cell subsets to pulmonary pathologies following repeated exposures to irritants is unknown. To examine whether lymphocyte subpopulations regulate inflammation and epithelial cell pathology, we utilized a mouse model of pulmonary pathology induced by repeated acrolein exposures. The role of lymphocyte subsets was examined by utilizing transgenic mice genetically deficient in either alphabeta T cells or gammadelta T cells, and changes in cellular, molecular, and pathologic outcomes associated with repeated inhalation exposure to 2.0 and 0.5 ppm acrolein were measured. To examine the potential functions of lymphocyte subsets, we purified these cells from the lungs of mice repeatedly exposed to 2.0 ppm acrolein, isolated and amplified messenger RNA, and performed microarray analysis. Our data demonstrate that alphabeta T cells are required for macrophage accumulation, whereas gammadelta T cells are critical regulators of epithelial cell homeostasis, as identified by epithelial cell injury and apoptosis, following repeated acrolein exposure. This is supported by microarray analyses that indicated the T-cell subsets are unique in their gene expression profiles following acrolein exposures. Microarray analyses identified several genes that may contribute to phenotypes mediated by T-cell subpopulations including those involved in cytokine receptor signaling, chemotaxis, growth factor production, lymphocyte activation, and apoptosis. These data provide strong evidence that T-cell subpopulations in the lung are major determinants of pulmonary pathology and highlight the advantages of dissecting their effector functions in response to toxicant exposures.

  17. The functional antagonist Met-RANTES: a modified agonist that induces differential CCR5 trafficking.

    Science.gov (United States)

    Kiss, Debra L; Longden, James; Fechner, Gregory A; Avery, Vicky M

    2009-01-01

    CC chemokine receptor 5 (CCR5) is a pro-inflammatory chemokine receptor that is expressed on cells of the immune system, and specializes in cell migration in response to inflammation and tissue damage. Due to its key role in cell communication and migration, this receptor is involved in various inflammatory and autoimmune diseases, in addition to HIV infection. Met-RANTES is a modified CCR5 ligand that has previously been shown to antagonize CCR5 activation and function in response to its natural ligands in vitro. In vivo, Met-RANTES is able to reduce inflammation in models of induced inflammatory and autoimmune diseases. However, due to the fact that Met-RANTES is also capable of partial agonist activity regarding receptor signaling and internalization, it is clear that Met-RANTES does not function as a conventional receptor antagonist. To further elucidate the effect of Met-RANTES on CCR5, receptor trafficking was investigated in a CHO-CCR5-GFP cell line using the Opera confocal plate reader. The internalization response of CCR5 was quantified, and showed that Met-RANTES internalized CCR5 in a slower, less potent manner than the agonists CCL3 and CCL5. Fluorescent organelle labeling and live cell imaging showed CCL3 and CCL5 caused CCR5 to traffic through sorting endosomes, recycling endosomes and the Golgi apparatus. In contrast, Met-RANTES caused CCR5 to traffic through sorting endosomes and the Golgi apparatus in a manner that was independent of recycling endosomes. As receptor trafficking impacts on cell surface expression and the ability of the receptor to respond to more ligand, this information may indicate an alternative regulation of CCR5 by Met-RANTES that allows the modified ligand to reduce inflammation through stimulation of a pro-inflammatory receptor.

  18. Aconitase regulation of erythropoiesis correlates with a novel licensing function in erythropoietin-induced ERK signaling.

    Directory of Open Access Journals (Sweden)

    Anne-Laure Talbot

    Full Text Available Erythroid development requires the action of erythropoietin (EPO on committed progenitors to match red cell output to demand. In this process, iron acts as a critical cofactor, with iron deficiency blunting EPO-responsiveness of erythroid progenitors. Aconitase enzymes have recently been identified as possible signal integration elements that couple erythropoiesis with iron availability. In the current study, a regulatory role for aconitase during erythropoiesis was ascertained using a direct inhibitory strategy.In C57BL/6 mice, infusion of an aconitase active-site inhibitor caused a hypoplastic anemia and suppressed responsiveness to hemolytic challenge. In a murine model of polycythemia vera, aconitase inhibition rapidly normalized red cell counts, but did not perturb other lineages. In primary erythroid progenitor cultures, aconitase inhibition impaired proliferation and maturation but had no effect on viability or ATP levels. This inhibition correlated with a blockade in EPO signal transmission specifically via ERK, with preservation of JAK2-STAT5 and Akt activation. Correspondingly, a physical interaction between ERK and mitochondrial aconitase was identified and found to be sensitive to aconitase inhibition.Direct aconitase inhibition interferes with erythropoiesis in vivo and in vitro, confirming a lineage-selective regulatory role involving its enzymatic activity. This inhibition spares metabolic function but impedes EPO-induced ERK signaling and disturbs a newly identified ERK-aconitase physical interaction. We propose a model in which aconitase functions as a licensing factor in ERK-dependent proliferation and differentiation, thereby providing a regulatory input for iron in EPO-dependent erythropoiesis. Directly targeting aconitase may provide an alternative to phlebotomy in the treatment of polycythemia vera.

  19. Administration of melatonin protects against acetylsalicylic acid-induced impairment of male reproductive function in mice.

    Science.gov (United States)

    Emami, Niloufar Hedayati; Lafout, Farzaneh Mahmoudi; Mohammadghasemi, Fahimeh

    2018-02-01

    Melatonin, an important hormone secreted by the epiphysis, is a powerful anti-oxidant with a high potential to neutralize medical toxins. The goal of this study was to demonstrate the beneficial effect of melatonin on epididymal sperm and reproductive parameters in mice treated with acetylsalicylic acid (ASA). Male adult mice were divided into four treatment groups: control, ASA, melatonin, and ASA+melatonin. Mice were administered ASA (50 mg/kg, orally) and/or melatonin (10 mg/kg, intraperitoneally), or vehicle control, for 14 days. Sperm count, sperm motility, and sperm morphology were evaluated to assess fertility. A colorimetric assay was used to measure serum total antioxidant capacity (TAC). A sperm chromatin dispersion (SCD) test was used to assess sperm chromatin integrity. Sex hormone levels were measured by ELISA. Compared to the control group, ASA treatment resulted in a significant decrease in sperm parameters ( P <0.05), as well as a decrease in the integrity of sperm chromatin ( P <0.01). ASA treatment also reduced serum testosterone and TAC levels ( P <0.05). Co-administration of melatonin with ASA significantly improved epididymal sperm parameters and increased serum testosterone and TAC levels compared to the ASA-treated group. LH level was not different in the combined treatment group compared to control or ASA treatment. Short-term administration of ASA (50 mg/kg) has adverse effects on male reproductive function in mice. Co-administration of melatonin protects against ASA-induced impairment of male reproductive function by preventing the reduction in serum TAC and testosterone levels seen with ASA treatment alone.

  20. Corticotropin-releasing factor-1 receptor activation mediates nicotine withdrawal-induced deficit in brain reward function and stress-induced relapse.

    Science.gov (United States)

    Bruijnzeel, Adrie W; Prado, Melissa; Isaac, Shani

    2009-07-15

    Tobacco addiction is a chronic brain disorder that is characterized by a negative affective state upon smoking cessation and relapse after periods of abstinence. Previous research has shown that blockade of corticotropin-releasing factor (CRF) receptors with a nonspecific CRF1/CRF2 receptor antagonist prevents the deficit in brain reward function associated with nicotine withdrawal and stress-induced reinstatement of extinguished nicotine-seeking in rats. The aim of these studies was to investigate the role of CRF1 and CRF2 receptors in the deficit in brain reward function associated with precipitated nicotine withdrawal and stress-induced reinstatement of nicotine-seeking. The intracranial self-stimulation (ICSS) procedure was used to assess the negative affective state of nicotine withdrawal. Elevations in brain reward thresholds are indicative of a deficit in brain reward function. Stress-induced reinstatement of nicotine-seeking was investigated in animals in which responding for intravenously infused nicotine was extinguished by substituting saline for nicotine. In the ICSS experiments, the nicotinic receptor antagonist mecamylamine elevated the brain reward thresholds of the nicotine-dependent rats but not those of the control rats. The CRF1 receptor antagonist R278995/CRA0450 but not the CRF2 receptor antagonist astressin-2B prevented the elevations in brain reward thresholds associated with precipitated nicotine withdrawal. Furthermore, R278995/CRA0450 but not astressin-2B prevented stress-induced reinstatement of extinguished nicotine-seeking. Neither R278995/CRA0450 nor astressin-2B affected operant responding for chocolate-flavored food pellets. These studies indicate that CRF(1) receptors but not CRF(2) receptors play an important role in the anhedonic-state associated with acute nicotine withdrawal and stress-induced reinstatement of nicotine-seeking.

  1. Normal Platelet Integrin Function in Mice Lacking Hydrogen Peroxide-Induced Clone-5 (Hic-5.

    Directory of Open Access Journals (Sweden)

    Michael Popp

    Full Text Available Integrin αIIbβ3 plays a central role in the adhesion and aggregation of platelets and thus is essential for hemostasis and thrombosis. Integrin activation requires the transmission of a signal from the small cytoplasmic tails of the α or β subunit to the large extracellular domains resulting in conformational changes of the extracellular domains to enable ligand binding. Hydrogen peroxide-inducible clone-5 (Hic-5, a member of the paxillin family, serves as a focal adhesion adaptor protein associated with αIIbβ3 at its cytoplasmic tails. Previous studies suggested Hic-5 as a novel regulator of integrin αIIbβ3 activation and platelet aggregation in mice. To assess this in more detail, we generated Hic-5-null mice and analyzed activation and aggregation of their platelets in vitro and in vivo. Surprisingly, lack of Hic-5 had no detectable effect on platelet integrin activation and function in vitro and in vivo under all tested conditions. These results indicate that Hic-5 is dispensable for integrin αIIbβ3 activation and consequently for arterial thrombosis and hemostasis in mice.

  2. Protective function of complement against alcohol-induced rat liver damage.

    Science.gov (United States)

    Bykov, Igor L; Väkevä, Antti; Järveläinen, Harri A; Meri, Seppo; Lindros, Kai O

    2004-11-01

    The complement system can promote tissue damage or play a homeostatic role in the clearance and disposal of damaged tissue. We assessed the role of the terminal complement pathway in alcohol-induced liver damage in complement C6 (C6-/-) genetically deficient rats. C6-/- and corresponding C6+/+ rats were continuously exposed to ethanol by feeding ethanol-supplemented liquid diet for six weeks. Liver samples were analyzed for histopathology and complement component deposition by immunofluorescence microscopy. Prostaglandin E receptors and cytokine mRNA levels were analyzed by RT-PCR and plasma cytokines by ELISA. Deposition of complement components C1, C3, C8 and C9 was observed in C6+/+ rats, but not in C6-/- animals. The histopathological changes, the liver weight increase and the elevation of the plasma pro-/anti-inflammatory TNF-alpha/IL-10 ratio were, on the other hand, more marked in C6-/- rats. Furthermore, ethanol enhanced the hepatic mRNA expression of the prostaglandin E receptors EP2R and EP4R exclusively in the C6-/- rats. Our results indicate that a deficient terminal complement pathway predisposes to tissue injury and promotes a pro-inflammatory cytokine response. This suggests that an intact complement system has a protective function in the development of alcoholic liver damage.

  3. Acute Acrolein Exposure Induces Impairment of Vocal Fold Epithelial Barrier Function.

    Science.gov (United States)

    Liu, Xinxin; Zheng, Wei; Sivasankar, M Preeti

    2016-01-01

    Acrolein is a ubiquitous pollutant abundant in cigarette smoke, mobile exhaust, and industrial waste. There is limited literature on the effects of acrolein on vocal fold tissue, although there are clinical reports of voice changes after pollutant exposures. Vocal folds are responsible for voice production. The overall objective of this study was to investigate the effects of acrolein exposure on viable, excised vocal fold epithelial tissue and to characterize the mechanism underlying acrolein toxicity. Vocal fold epithelia were studied because they form the outermost layer of the vocal folds and are a primary recipient of inhaled pollutants. Porcine vocal fold epithelia were exposed to 0, 50, 100, 500, 900 or 1300 μM of acrolein for 3 hours; the metabolic activity, epithelial resistance, epithelial permeability, tight junction protein (occludin and claudin 3) expression, cell membrane integrity and lipid peroxidation were investigated. The data demonstrated that acrolein exposure at 500 μM significantly reduced vocal fold epithelial metabolic activity by 27.2% (p≤0.001). Incubation with 100 μM acrolein caused a marked increase in epithelial permeability by 130.5% (pacrolein-treated samples, the cell membrane integrity was significantly damaged with a 45.6% increase of lipid peroxidation as compared to controls (pacrolein exposure impairs vocal fold epithelial barrier integrity. Lipid peroxidation-induced cell membrane damage may play an important role in reducing the barrier function of the epithelium.

  4. Snake and Spider Toxins Induce a Rapid Recovery of Function of Botulinum Neurotoxin Paralysed Neuromuscular Junction

    Directory of Open Access Journals (Sweden)

    Elisa Duregotti

    2015-12-01

    Full Text Available Botulinum neurotoxins (BoNTs and some animal neurotoxins (β-Bungarotoxin, β-Btx, from elapid snakes and α-Latrotoxin, α-Ltx, from black widow spiders are pre-synaptic neurotoxins that paralyse motor axon terminals with similar clinical outcomes in patients. However, their mechanism of action is different, leading to a largely-different duration of neuromuscular junction (NMJ blockade. BoNTs induce a long-lasting paralysis without nerve terminal degeneration acting via proteolytic cleavage of SNARE proteins, whereas animal neurotoxins cause an acute and complete degeneration of motor axon terminals, followed by a rapid recovery. In this study, the injection of animal neurotoxins in mice muscles previously paralyzed by BoNT/A or /B accelerates the recovery of neurotransmission, as assessed by electrophysiology and morphological analysis. This result provides a proof of principle that, by causing the complete degeneration, reabsorption, and regeneration of a paralysed nerve terminal, one could favour the recovery of function of a biochemically- or genetically-altered motor axon terminal. These observations might be relevant to dying-back neuropathies, where pathological changes first occur at the neuromuscular junction and then progress proximally toward the cell body.

  5. Laser Induced Fluorescence Measurements in a Hall Thruster Plume as a Function of Background Pressure

    Science.gov (United States)

    Spektor, R.; Tighe, W. G.; Kamhawi, H.

    2016-01-01

    A set of Laser Induced Fluorescence (LIF) measurements in the near-field region of the NASA- 173M Hall thruster plume is presented at four background pressure conditions varying from 9.4 x 10(exp -6) torr to 3.3 x 10(exp -5) torr. The xenon ion velocity distribution function was measured simultaneously along the axial and radial directions. An ultimate exhaust velocity of 19.6+/-0.25 km/s achieved at a distance of 20 mm was measured, and that value was not sensitive to pressure. On the other hand, the ion axial velocity at the thruster exit was strongly influenced by pressure, indicating that the accelerating electric field moved inward with increased pressure. The shift in electric field corresponded to an increase in measured thrust. Pressure had a minor effect on the radial component of ion velocity, mainly affecting ions exiting close to the channel inner wall. At that radial location the radial component of ion velocity was approximately 1000 m/s greater at the lowest pressure than at the highest pressure. A reduction of the inner magnet coil current by 0.6 A resulted in a lower axial ion velocity at the channel exit while the radial component of ion velocity at the channel inner wall location increased by 1300 m/s, and at the channel outer wall location the radial ion velocity remained unaffected. The ultimate exhaust velocity was not significantly affected by the inner magnet current.

  6. Snake and Spider Toxins Induce a Rapid Recovery of Function of Botulinum Neurotoxin Paralysed Neuromuscular Junction.

    Science.gov (United States)

    Duregotti, Elisa; Zanetti, Giulia; Scorzeto, Michele; Megighian, Aram; Montecucco, Cesare; Pirazzini, Marco; Rigoni, Michela

    2015-12-08

    Botulinum neurotoxins (BoNTs) and some animal neurotoxins (β-Bungarotoxin, β-Btx, from elapid snakes and α-Latrotoxin, α-Ltx, from black widow spiders) are pre-synaptic neurotoxins that paralyse motor axon terminals with similar clinical outcomes in patients. However, their mechanism of action is different, leading to a largely-different duration of neuromuscular junction (NMJ) blockade. BoNTs induce a long-lasting paralysis without nerve terminal degeneration acting via proteolytic cleavage of SNARE proteins, whereas animal neurotoxins cause an acute and complete degeneration of motor axon terminals, followed by a rapid recovery. In this study, the injection of animal neurotoxins in mice muscles previously paralyzed by BoNT/A or /B accelerates the recovery of neurotransmission, as assessed by electrophysiology and morphological analysis. This result provides a proof of principle that, by causing the complete degeneration, reabsorption, and regeneration of a paralysed nerve terminal, one could favour the recovery of function of a biochemically- or genetically-altered motor axon terminal. These observations might be relevant to dying-back neuropathies, where pathological changes first occur at the neuromuscular junction and then progress proximally toward the cell body.

  7. Experimentally induced hyperthyroidism influences oxidant and antioxidant status and impairs male gonadal functions in adult rats.

    Science.gov (United States)

    Asker, M E; Hassan, W A; El-Kashlan, A M

    2015-08-01

    The objective of the present experiment was to study the effect of hyperthyroidism on male gonadal functions and oxidant/antioxidant biomarkers in testis of adult rats. Induction of hyperthyroidism by L-thyroxine (L-T4, 300 μg kg(-1) body weight) treatment once daily for 3 or 8 weeks caused a decrease in body weight gain as well as in absolute genital sex organs weight. The epididymal sperm counts and their motility were significantly decreased in a time-dependent manner following L-T4 treatment. Significant decline in serum levels of luteinising hormone, follicle stimulating hormone and testosterone along with significant increase in serum estradiol level was observed in hyperthyroid rats compared with euthyroid ones. Significant increase in malondialdehyde and nitric oxide concentration associated with significant decrease in superoxide dismutase and catalase activity was also noticed following hyperthyroidism induction. Both reduced glutathione content and glutathione peroxidase activity were increased in hyperthyroid rats compared with control rats. Marked histopathological alterations were observed in testicular section of hyperthyroid rats. These results provide evidence that hypermetabolic state induced by excess level of thyroid hormones may be a causative factor for the impairment of testicular physiology as a consequence of oxidative stress. © 2014 Blackwell Verlag GmbH.

  8. Gestational protein restriction induces alterations in placental morphology and mitochondrial function in rats during late pregnancy.

    Science.gov (United States)

    Rebelato, Hércules Jonas; Esquisatto, Marcelo Augusto Marreto; Moraes, Camila; Amaral, Maria Esmeria Corezola; Catisti, Rosana

    2013-12-01

    The placenta acts a regulator of nutrient composition and supply from mother to fetus and is the source of hormonal signals that affect maternal and fetal metabolism. Thus, appropriate development of the placenta is crucial for normal fetal development. We investigated the effect of gestational protein restriction (GPR) on placental morphology and mitochondrial function on day 19 of gestation. Pregnant dams were divided into two groups: normal (NP 17 % casein) or low-protein diet (LP 6 % casein). The placentas were processed for biochemical, histomorphometric and ultrastructural analysis. The integrity of rat placental mitochondria (RPM) isolated by conventional differential centrifugation was measured by oxygen uptake (Clark-type electrode). LP animals presented an increase in adipose tissue and triacylglycerol and a decrease in serum insulin levels. No alterations were observed in body, liver, fetus, or placenta weight. There was also no change in serum glucose, total protein, or lipid content. Gestational protein restriction had tissue-specific respiratory effects, with the observation of a small change in liver respiration (~13 %) and considerable respiratory inhibition in placenta samples (~37 %). The higher oxygen uptake by RPM in the LP groups suggests uncoupling between respiration and oxidative phosphorylation. In addition, ultrastructural analysis of junctional zone giant cells from LP placenta showed a disorganized cytoplasm, with loss of integrity of most organelles and intense vacuolization. The present results led us to hypothesize that GPR alters placental structure and morphology, induces sensitivity to insulin, mitochondrial abnormalities and suggests premature aging of the placenta. Further studies are needed to test this hypothesis.

  9. Oxytocin Reduces Cocaine Seeking and Reverses Chronic Cocaine-Induced Changes in Glutamate Receptor Function

    Science.gov (United States)

    Zhou, Luyi; Sun, Wei-Lun; Young, Amy B.; Lee, Kunhee; McGinty, Jacqueline F.

    2015-01-01

    Background: Oxytocin, a neurohypophyseal neuropeptide, is a potential mediator and regulator of drug addiction. However, the cellular mechanisms of oxytocin in drug seeking remain unknown. Methods: In the present study, we used a self-administration/reinstatement model to study the effects of oxytocin on cocaine seeking and its potential interaction with glutamate function at the receptor level. Results: Systemic oxytocin dose-dependently reduced cocaine self-administration during various schedules of reinforcement, including fixed ratio 1, fixed ratio 5, and progressive ratio. Oxytocin also attenuated reinstatement to cocaine seeking induced by cocaine prime or conditioned cues. Western-blot analysis indicated that oxytocin increased phosphorylation of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptor GluA1 subunit at the Ser 845 site with or without accompanying increases in phosphorylation of extracellular signal-regulated kinase, in several brain regions, including the prefrontal cortex, bed nucleus of the stria terminalis, amygdala, and dorsal hippocampus. Immunoprecipitation of oxytocin receptor and GluA1 subunit receptors further demonstrated a physical interaction between these 2 receptors, although the interaction was not influenced by chronic cocaine or oxytocin treatment. Oxytocin also attenuated sucrose seeking in a GluA1- or extracellular-signal-regulated kinase-independent manner. Conclusions: These findings suggest that oxytocin mediates cocaine seeking through interacting with glutamate receptor systems via second messenger cascades in mesocorticolimbic regions. PMID:25539504

  10. CO2-Induced Changes in Wheat Grain Composition: Meta-Analysis and Response Functions

    Directory of Open Access Journals (Sweden)

    Malin C. Broberg

    2017-04-01

    Full Text Available Elevated carbon dioxide (eCO2 stimulates wheat grain yield, but simultaneously reduces protein/nitrogen (N concentration. Also, other essential nutrients are subject to change. This study is a synthesis of wheat experiments with eCO2, estimating the effects on N, minerals (B, Ca, Cd, Fe, K, Mg, Mn, Na, P, S, Zn, and starch. The analysis was performed by (i deriving response functions to assess the gradual change in element concentration with increasing CO2 concentration, (ii meta-analysis to test the average magnitude and significance of observed effects, and (iii relating CO2 effects on minerals to effects on N and grain yield. Responses ranged from zero to strong negative effects of eCO2 on mineral concentration, with the largest reductions for the nutritionally important elements of N, Fe, S, Zn, and Mg. Together with the positive but small and non-significant effect on starch concentration, the large variation in effects suggests that CO2-induced responses cannot be explained only by a simple dilution model. To explain the observed pattern, uptake and transport mechanisms may have to be considered, along with the link of different elements to N uptake. Our study shows that eCO2 has a significant effect on wheat grain stoichiometry, with implications for human nutrition in a world of rising CO2.

  11. Striking volume intolerance is induced by mimicking arterial baroreflex failure in normal left ventricular function.

    Science.gov (United States)

    Funakoshi, Kouta; Hosokawa, Kazuya; Kishi, Takuya; Ide, Tomomi; Sunagawa, Kenji

    2014-01-01

    Patients with heart failure and preserved ejection fraction (HFpEF) are supersensitive to volume overload, and a striking increase in left atrial pressure (LAP) often occurs transiently and is rapidly resolved by intravascular volume reduction. The arterial baroreflex is a powerful regulator of intravascular stressed blood volume. We examined whether arterial baroreflex failure (FAIL) mimicked by constant carotid sinus pressure (CSP) causes a striking increase in LAP and systemic arterial pressure (AP) by volume loading in rats with normal left ventricular (LV) function. In anesthetized Sprague-Dawley rats, we isolated bilateral carotid sinuses and controlled CSP by a servo-controlled piston pump. We mimicked the normal arterial baroreflex by matching CSP to instantaneous AP and FAIL by maintaining CSP at a constant value regardless of AP. We infused dextran stepwise (infused volume [Vi]) until LAP reached 15 mm Hg and obtained the LAP-Vi relationship. We estimated the critical Vi as the Vi at which LAP reached 20 mm Hg. In FAIL, critical Vi decreased markedly from 19.4 ± 1.6 mL/kg to 15.6 ± 1.6 mL/kg (P baroreflex system we recently developed could fully restore the physiologic volume intolerance in the absence of native arterial baroreflex. Arterial baroreflex failure induces striking volume intolerance in the absence of LV dysfunction and may play an important role in the pathogenesis of acute heart failure, especially in states of HFpEF. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Perivascular Mast Cells Govern Shear Stress-Induced Arteriogenesis by Orchestrating Leukocyte Function

    Directory of Open Access Journals (Sweden)

    Omary Chillo

    2016-08-01

    Full Text Available The body has the capacity to compensate for an occluded artery by creating a natural bypass upon increased fluid shear stress. How this mechanical force is translated into collateral artery growth (arteriogenesis is unresolved. We show that extravasation of neutrophils mediated by the platelet receptor GPIbα and uPA results in Nox2-derived reactive oxygen radicals, which activate perivascular mast cells. These c-kit+/CXCR-4+ cells stimulate arteriogenesis by recruiting additional neutrophils as well as growth-promoting monocytes and T cells. Additionally, mast cells may directly contribute to vascular remodeling and vascular cell proliferation through increased MMP activity and by supplying growth-promoting factors. Boosting mast cell recruitment and activation effectively promotes arteriogenesis, thereby protecting tissue from severe ischemic damage. We thus find that perivascular mast cells are central regulators of shear stress-induced arteriogenesis by orchestrating leukocyte function and growth factor/cytokine release, thus providing a therapeutic target for treatment of vascular occlusive diseases.

  13. Tartrazine induces structural and functional aberrations and genotoxic effects in vivo

    Directory of Open Access Journals (Sweden)

    Latifa Khayyat

    2017-02-01

    Full Text Available Tartrazine is a synthetic organic azo dye widely used in food and pharmaceutical products. The current study aimed to evaluate the possible adverse effect of this coloring food additive on renal and hepatic structures and functions. Also, the genotoxic potential of tartrazine on white blood cells was investigated using comet assay. Twenty adult male Wistar rats were grouped into two groups of 10 each, control- and tartrazine-treated groups. The control group was administered orally with water alone. The experimental group was administered orally with tartrazine (7.5 mg/kg, b.wt.. Our results showed a marked increase in the levels of ALT, AST, ALP, urea, uric acid, creatinine, MDA and NO, and a decreased level of total antioxidants in the serum of rats dosed with tartrazine compared to controls. On the other hand, administration of tartrazine was associated with severe histopathological and cellular alterations of rat liver and kidney tissues and induced DNA damage in leucocytes as detected by comet assay. Taken together, the results showed that tartrazine intake may lead to adverse health effects.

  14. Tartrazine induces structural and functional aberrations and genotoxic effects in vivo.

    Science.gov (United States)

    Khayyat, Latifa; Essawy, Amina; Sorour, Jehan; Soffar, Ahmed

    2017-01-01

    Tartrazine is a synthetic organic azo dye widely used in food and pharmaceutical products. The current study aimed to evaluate the possible adverse effect of this coloring food additive on renal and hepatic structures and functions. Also, the genotoxic potential of tartrazine on white blood cells was investigated using comet assay. Twenty adult male Wistar rats were grouped into two groups of 10 each, control- and tartrazine-treated groups. The control group was administered orally with water alone. The experimental group was administered orally with tartrazine (7.5 mg/kg, b.wt.). Our results showed a marked increase in the levels of ALT, AST, ALP, urea, uric acid, creatinine, MDA and NO, and a decreased level of total antioxidants in the serum of rats dosed with tartrazine compared to controls. On the other hand, administration of tartrazine was associated with severe histopathological and cellular alterations of rat liver and kidney tissues and induced DNA damage in leucocytes as detected by comet assay. Taken together, the results showed that tartrazine intake may lead to adverse health effects.

  15. High-sucrose-induced maternal obesity disrupts ovarian function and decreases fertility in Drosophila melanogaster.

    Science.gov (United States)

    Brookheart, Rita T; Swearingen, Alison R; Collins, Christina A; Cline, Laura M; Duncan, Jennifer G

    2017-06-01

    As the obesity epidemic worsens, the prevalence of maternal obesity is expected to rise. Both high-fat and high-sucrose diets are known to promote maternal obesity and several studies have elucidated the molecular influence of high-fat feeding on female reproduction. However, to date, the molecular impact of a high-sucrose diet on maternal obesity remains to be investigated. Using our previously reported Drosophila high-sucrose maternal obesity model, we sought to determine how excess dietary sucrose impacted the ovary. High-sucrose diet (HSD) fed adult females developed systemic insulin resistance and exhibited an ovarian phenotype characterized by excess accumulation of lipids and cholesterol in the ovary, decreased ovary size, and impaired egg maturation. We also observed decreased expression of antioxidant genes and increased protein carbonylation in the ovaries of HSD females. HSD females laid fewer eggs; however, the overall survival of offspring was unchanged relative to lean control females. Ovaries of HSD females had increased mitochondrial DNA copy number and decreased expression of key mitochondrial regulators, suggestive of an ineffective compensatory response to mitochondrial dysfunction. Mitochondrial alterations were also observed in male offspring of obese females. This study demonstrates that high-sucrose-induced maternal obesity promotes insulin resistance, while disrupting ovarian metabolism and function. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Cthrc1 lowers pulmonary collagen associated with bleomycin-induced fibrosis and protects lung function.

    Science.gov (United States)

    Binks, Andrew P; Beyer, Megyn; Miller, Ryan; LeClair, Renee J

    2017-03-01

    Idiopathic pulmonary fibrosis (IPF) involves collagen deposition that results in a progressive decline in lung function. This process involves activation of Smad2/3 by transforming growth factor (TGF)- β and Wnt signaling pathways. Collagen Triple Helix Repeat-Containing-1 (Cthrc1) protein inhibits Smad2/3 activation. To test the hypothesis that Cthrc1 limits collagen deposition and the decline of lung function, Cthrc1 knockout (Cthrc1 -/- ) and wild-type mice (WT) received intratracheal injections of 2.5 U/kg bleomycin or saline. Lungs were harvested after 14 days and Bronchoalveolar lavage (BAL) TGF- β , IL1- β , hydroxyproline and lung compliance were assessed. TGF- β was significantly higher in Cthrc1 -/- compared to WT (53.45 ± 6.15 ng/mL vs. 34.48 ± 11.05) after saline injection. Bleomycin injection increased TGF- β in both Cthrc1 -/- (66.37 ± 8.54 ng/mL) and WT (63.64 ± 8.09 ng/mL). Hydroxyproline was significantly higher in Cthrc1 -/- compared to WT after bleomycin-injection (2.676 ± 0.527  μ g/mg vs. 1.889 ± 0.520, P  = 0.028). Immunohistochemistry of Cthrc1 -/- lung sections showed intracellular localization and activation of β -catenin Y654 in areas of tissue remodeling that was not evident in WT Lung compliance was significantly reduced by bleomycin in Cthrc1 -/- but there was no effect in WT animals. These data suggest Cthrc1 reduces fibrotic tissue formation in bleomycin-induced lung fibrosis and the effect is potent enough to limit the decline in lung function. We conclude that Cthrc1 plays a protective role, limiting collagen deposition and could form the basis of a novel therapy for pulmonary fibrosis. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  17. Accelerated Testing and Modeling of Potential-Induced Degradation as a Function of Temperature and Relative Humidity

    DEFF Research Database (Denmark)

    Hacke, Peter; Spataru, Sergiu; Terwilliger, Kent

    2015-01-01

    An acceleration model based on the Peck equation was applied to power performance of crystalline silicon cell modules as a function of time and of temperature and humidity, the two main environmental stress factors that promote potential-induced degradation. This model was derived from module pow...

  18. Blood transfusion improves renal oxygenation and renal function in sepsis-induced acute kidney injury in rats

    NARCIS (Netherlands)

    L. Zafrani (Lara); B. Ergin (Bulent); Kapucu, A. (Aysegul); C. Ince (Can)

    2016-01-01

    textabstractBackground: The effects of blood transfusion on renal microcirculation during sepsis are unknown. This study aimed to investigate the effect of blood transfusion on renal microvascular oxygenation and renal function during sepsis-induced acute kidney injury. Methods: Twenty-seven Wistar

  19. Scintigraphic assessment of salivary function and excretion response in radiation-induced injury of the major salivary glands

    NARCIS (Netherlands)

    Valdés Olmos, R. A.; Keus, R. B.; Takes, R. P.; van Tinteren, H.; Baris, G.; Hilgers, F. J.; Hoefnagel, C. A.; Balm, A. J.

    1994-01-01

    Both loss of the secretory function and impairment of the excretion may play a role in radiation-induced injury of the major salivary glands after radiotherapy for head and neck malignancies. Therefore, quantitative 99mTc-pertechnetate (99mTc) salivary scintigraphy to assess trapping, secretion, and

  20. Butyrate restores HFD-induced adaptations in brain function and metabolism in mid-adult obese mice

    NARCIS (Netherlands)

    Arnoldussen, I.A.C.; Wiesmann, M.; Pelgrim, C.E.; Wielemaker, E.M.; Duyvenvoorde, W. van; Amaral-Santos, P.L.; Verschuren, L.; Keijser, B.J.F.; Heerschap, A.; Kleemann, R.; Wielinga, P.Y.; Kiliaan, A.J.

    2017-01-01

    OBJECTIVE: Midlife obesity affects cognition and increases risk of developing dementia. Recent data suggest that intake of the short chain fatty acid butyrate could improve memory function, and may protect against diet-induced obesity by reducing body weight and adiposity. SUBJECTS: We examined the

  1. Accelerated Testing and Modeling of Potential-Induced Degradation as a Function of Temperature and Relative Humidity

    DEFF Research Database (Denmark)

    Hacke, Peter; Spataru, Sergiu; Terwilliger, Kent

    2015-01-01

    An acceleration model based on the Peck equation was applied to power performance of crystalline silicon cell modules as a function of time and of temperature and humidity, which are the two main environmental stress factors that promote potential-induced degradation (PID). This model was derived...

  2. The metabolic enhancer piracetam ameliorates the impairment of mitochondrial function and neurite outgrowth induced by beta-amyloid peptide.

    Science.gov (United States)

    Kurz, C; Ungerer, I; Lipka, U; Kirr, S; Schütt, T; Eckert, A; Leuner, K; Müller, W E

    2010-05-01

    beta-Amyloid peptide (Abeta) is implicated in the pathogenesis of Alzheimer's disease by initiating a cascade of events from mitochondrial dysfunction to neuronal death. The metabolic enhancer piracetam has been shown to improve mitochondrial dysfunction following brain aging and experimentally induced oxidative stress. We used cell lines (PC12 and HEK cells) and murine dissociated brain cells. The protective effects of piracetam in vitro and ex vivo on Abeta-induced impairment of mitochondrial function (as mitochondrial membrane potential and ATP production), on secretion of soluble Abeta and on neurite outgrowth in PC12 cells were investigated. Piracetam improves mitochondrial function of PC12 cells and acutely dissociated brain cells from young NMRI mice following exposure to extracellular Abeta(1-42). Similar protective effects against Abeta(1-42) were observed in dissociated brain cells from aged NMRI mice, or mice transgenic for mutant human amyloid precursor protein (APP) treated with piracetam for 14 days. Soluble Abeta load was markedly diminished in the brain of those animals after treatment with piracetam. Abeta production by HEK cells stably transfected with mutant human APP was elevated by oxidative stress and this was reduced by piracetam. Impairment of neuritogenesis is an important consequence of Abeta-induced mitochondrial dysfunction and Abeta-induced reduction of neurite growth in PC12 cells was substantially improved by piracetam. Our findings strongly support the concept of improving mitochondrial function as an approach to ameliorate the detrimental effects of Abeta on brain function.

  3. Blood transfusion improves renal oxygenation and renal function in sepsis-induced acute kidney injury in rats

    NARCIS (Netherlands)

    Zafrani, Lara; Ergin, Bulent; Kapucu, Aysegul; Ince, Can

    2016-01-01

    The effects of blood transfusion on renal microcirculation during sepsis are unknown. This study aimed to investigate the effect of blood transfusion on renal microvascular oxygenation and renal function during sepsis-induced acute kidney injury. Twenty-seven Wistar albino rats were randomized into

  4. Induction of Plac8 promotes pro-survival function of autophagy in cadmium-induced prostate carcinogenesis.

    Science.gov (United States)

    Kolluru, Venkatesh; Pal, Deeksha; Papu John, A M Sashi; Ankem, Murali K; Freedman, Jonathan H; Damodaran, Chendil

    2017-11-01

    Chronic exposure to cadmium is known to be a risk factor for human prostate cancer. Despite over-whelming evidence of cadmium causing carcinogenicity in humans, the specific underlying molecular mechanisms that govern metal-induced cellular transformation remain unclear. Acute exposure (up to 72 h) to cadmium induces apoptosis in normal prostate epithelial cells (RWPE-1), while chronic exposure (>1 year) transforms these cells to a malignant phenotype (cadmium-transformed prostate epithelial cells; CTPE). Increased expression of autophagy-regulated genes; Plac8, LC3B and Lamp-1; in CTPE cells was associated with cadmium-induced transformation. Increased expression of Plac8, a regulator of autophagosome/autolysosome fusion, facilitates the pro-survival function of autophagy and upregulation of pAKT (ser473) and NF-κβ, to allow CTPE to proliferate. Likewise, inhibition of Plac8 suppresses CTPE cell growth. Additionally, overexpression of Plac8 in RWPE-1 cells induces resistance to cadmium toxicity. Pharmacological inhibitors and an inducer of autophagy failed to affect Plac8 expression and CTPE cell viability, suggesting a unique role for Plac8 in cadmium-induced prostate epithelial cell transformation. These results support a role for Plac8 as an essential component in the cadmium-induced transformation of normal prostate epithelial cells to a cancerous state. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. The effects of tempol on renal function and hemodynamics in cyclosporine-induced renal insufficiency rats.

    Science.gov (United States)

    Chia, Tan Y; Sattar, Munavvar A; Abdulla, Mohammed H; Rathore, Hassaan A; Ahmad, Fiaz ud Din; Kaur, Gurjeet; Abdullah, Nor A; Johns, Edward J

    2013-08-01

    This study investigated the effects of tempol, a superoxide dismutase (SOD) mimetic and L-NAME, a nitric oxide (NO) synthase inhibitor on the renal function and hemodynamics in cyclosporine A (CsA) induced renal insufficiency rats. Male Sprague-Dawley rats were treated with either vehicle (C), tempol (T, 1 mmol/L in drinking fluid), L-NAME (L, 1 mmol/L in drinking fluid), CsA (Cs, 25 mg/kg/day via gavage), CsA plus tempol (TCs), CsA plus L-NAME (LCs) or CsA plus a combination of tempol and L-NAME (TLCs) for 21 consecutive days. At the end of treatment regimen, the renal responses to noradrenaline (NA), phenylephrine (PE), methoxamine and angiotensin II (Ang II) were determined. Cs and LCs rats had lower creatinine clearance (0.7 ± 0.1 and 0.6 ± 0.5 vs. 1.3 ± 0.2 mL/min/kg) and fractional excretion of sodium (0.12 ± 0.02 and 0.17 ± 0.01 vs. 0.67 ± 0.04%) but higher systolic blood pressure (145 ± 2 and 178 ± 4 vs. 116 ± 2) compared to the control (all p Tempol treatment in TCs or TLCs prevented the increase in blood pressure and improved creatinine clearance and sodium excretion compared to untreated Cs. The renal vasoconstriction in Cs or LCs to NA, PE and Ang II were lower than control by ∼35-48% (all p < 0.05). In TCs or TLCs, there was enhanced renal vasoconstriction to all agonist by ∼39-114% compared to Cs. SOD is important to counterbalance the hypertensive effect of a defective NO system and to allow the normal vasoconstrictor response of the renal vasculature to adrenergic agonists and Ang II in a model of CsA-induced renal insufficiency.

  6. Effect of Child Friendly Constraint Induced Movement Therapy on Unimanual and Bimanual Functions in Children with Cerebral Palsy

    Directory of Open Access Journals (Sweden)

    Seyyed Mohammad Sadegh Hosseini

    2013-07-01

    Full Text Available Objective: Effectiveness of Constraint Induced Movement Therapy (CIMT has been approved in adult persons, while it seems that we need many researches with higher levels of evidences in children. This research aimed to identify the efficacy of CIMT on unimanual and bimanual functions in children with Cerebral Palsy. Materials & Methods: In this interventional study, twenty eight participants were selected that had the inclusion and exclusion criteria and then divided into two groups ofCIMT and control. The intervention was provided on 10 out of 12 consecutive days in CIMT group and another group was received occupational therapy services. Assessment tools which were utilized in the survey were Bruininks-Oseretsky Motor Proficiency Test, Caregiver Functional Use Survey (CFUS, Jebsen-Taylor Test in Hand Function. In order to compare two groups Independent t-test was used and to compare each group from pre-test to post-test paired t-test was utilized. Results: Data showed significant differences between two groups in dexterity, bilateral coordination, bimanual coordination, bimanual function, unimanual function and Caregiver Functional Use Survey (how well & how frequently (P<0.05. Also comparison between pre-test and post-test in each group showed improvement in most of variables in research. Conclusion: protocol of child friendly Constraint Induced Movement Therapywas lead to improvement in either unimanual or bimanual hand functions in children with cerebral palsy.

  7. Prestin regulation and function in residual outer hair cells after noise-induced hearing loss.

    Directory of Open Access Journals (Sweden)

    Anping Xia

    Full Text Available The outer hair cell (OHC motor protein prestin is necessary for electromotility, which drives cochlear amplification and produces exquisitely sharp frequency tuning. Tecta(C1509G transgenic mice have hearing loss, and surprisingly have increased OHC prestin levels. We hypothesized, therefore, that prestin up-regulation may represent a generalized response to compensate for a state of hearing loss. In the present study, we sought to determine the effects of noise-induced hearing loss on prestin expression. After noise exposure, we performed cytocochleograms and observed OHC loss only in the basal region of the cochlea. Next, we patch clamped OHCs from the apical turn (9-12 kHz region, where no OHCs were lost, in noise-exposed and age-matched control mice. The non-linear capacitance was significantly higher in noise-exposed mice, consistent with higher functional prestin levels. We then measured prestin protein and mRNA levels in whole-cochlea specimens. Both Western blot and qPCR studies demonstrated increased prestin expression after noise exposure. Finally, we examined the effect of the prestin increase in vivo following noise damage. Immediately after noise exposure, ABR and DPOAE thresholds were elevated by 30-40 dB. While most of the temporary threshold shifts recovered within 3 days, there were additional improvements over the next month. However, DPOAE magnitudes, basilar membrane vibration, and CAP tuning curve measurements from the 9-12 kHz cochlear region demonstrated no differences between noise-exposed mice and control mice. Taken together, these data indicate that prestin is up-regulated by 32-58% in residual OHCs after noise exposure and that the prestin is functional. These findings are consistent with the notion that prestin increases in an attempt to partially compensate for reduced force production because of missing OHCs. However, in regions where there is no OHC loss, the cochlea is able to compensate for the excess prestin in

  8. Cholesteryl hemiesters alter lysosome structure and function and induce proinflammatory cytokine production in macrophages.

    Science.gov (United States)

    Domingues, Neuza; Estronca, Luís M B B; Silva, João; Encarnação, Marisa R; Mateus, Rita; Silva, Diogo; Santarino, Inês B; Saraiva, Margarida; Soares, Maria I L; Pinho E Melo, Teresa M V D; Jacinto, António; Vaz, Winchil L C; Vieira, Otília V

    2017-02-01

    Cholesteryl hemiesters are oxidation products of polyunsaturated fatty acid esters of cholesterol. Their oxo-ester precursors have been identified as important components of the "core aldehydes" of human atheromata and in oxidized lipoproteins (Ox-LDL). We had previously shown, for the first time, that a single compound of this family, cholesteryl hemisuccinate (ChS), is sufficient to cause irreversible lysosomal lipid accumulation (lipidosis), and is toxic to macrophages. These features, coupled to others such as inflammation, are typically seen in atherosclerosis. To obtain insights into the mechanism of cholesteryl hemiester-induced pathological changes in lysosome function and induction of inflammation in vitro and assess their impact in vivo. We have examined the effects of ChS on macrophages (murine cell lines and primary cultures) in detail. Specifically, lysosomal morphology, pH, and proteolytic capacity were examined. Exposure of macrophages to sub-toxic ChS concentrations caused enlargement of the lysosomes, changes in their luminal pH, and accumulation of cargo in them. In primary mouse bone marrow-derived macrophages (BMDM), ChS-exposure increased the secretion of IL-1β, TNF-α and IL-6. In zebrafish larvae (wild-type AB and PU.1:EGFP), fed with a ChS-enriched diet, we observed lipid accumulation, myeloid cell-infiltration in their vasculature and decrease in larval survival. Under the same conditions the effects of ChS were more profound than the effects of free cholesterol (FC). Our data strongly suggest that cholesteryl hemiesters are pro-atherogenic lipids able to mimic features of Ox-LDL both in vitro and in vivo. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Generation of electrophysiologically functional cardiomyocytes from mouse induced pluripotent stem cells

    Directory of Open Access Journals (Sweden)

    Hongran Wang

    2016-03-01

    Full Text Available Induced pluripotent stem (iPS cells can efficiently differentiate into the three germ layers similar to those formed by differentiated embryonic stem (ES cells. This provides a new source of cells in which to establish preclinical allogeneic transplantation models. Our iPS cells were generated from mouse embryonic fibroblasts (MEFs transfected with the Yamanaka factors, the four transcription factors (Oct4, Sox2, Klf4 and c-Myc, without antibiotic selection or MEF feeders. After the formation of embryoid bodies (EBs, iPS cells spontaneously differentiated into Flk1-positive cardiac progenitors and cardiomyocytes expressing cardiac-specific markers such as alpha sarcomeric actinin (α-actinin, cardiac alpha myosin heavy chain (α-MHC, cardiac troponin T (cTnT, and connexin 43 (CX43, as well as cardiac transcription factors Nk2 homebox 5 (Nkx2.5 and gata binding protein 4 (gata4. The electrophysiological activity of iPS cell-derived cardiomyocytes (iPS-CMs was detected in beating cell clusters with optical mapping and RH237 a voltage-sensitive dye, and in single contracting cells with patch-clamp technology. Incompletely differentiated iPS cells formed teratomas when transplanted into a severe combined immunodeficiency (SCID mouse model of myocardial infarction. Our results show that somatic cells can be reprogrammed into pluripotent stem cells, which in turn spontaneously differentiate into electrophysiologically functional mature cardiomyocytes expressing cardiac-specific makers, and that these cells can potentially be used to repair myocardial infarction (MI in the future.

  10. Functionally and morphologically damaged mitochondria observed in auditory cells under senescence-inducing stress.

    Science.gov (United States)

    Kamogashira, Teru; Hayashi, Ken; Fujimoto, Chisato; Iwasaki, Shinichi; Yamasoba, Tatsuya

    2017-01-01

    We aimed at determining the mitochondrial function in premature senescence model of auditory cells. Short exposure to H 2 O 2 (1 h, 0.1 mM) induced premature cellular senescence in House Ear Institute-Organ of Corti 1 auditory cells. The transmission electron microscopy analysis revealed that damaged mitochondria and autophagosomes containing dense organelles appeared in the auditory cells after short exposure to H 2 O 2 . The branch and junction parameters of the skeletonized image of the mitochondria were found to decrease significantly in H 2 O 2 -treated cells. A branched reticulum of tubules was poorly formed, featuring coexistence of numerous tiny clusters along with few relatively large entities in the H 2 O 2 -treated cells. In terms of bioenergetics, H 2 O 2 -treatment led to the dose-dependent decrease in mitochondrial membrane potential in the auditory cells. The fragmented mitochondria (fusion  fission) was slightly lower than the control cells. The short-time exposure of live auditory cells to H 2 O 2 damaged the mitochondrial respiratory capacity without any effect on the baseline ATP production rates. The vulnerability of the mitochondrial membrane potential to the uncoupling reagent was increased after H 2 O 2 treatment. Our findings indicated that the mitochondrial dysfunction due to the decline in the O 2 consumption rate should be the first event of premature senescence process in the auditory cells, resulting in the imbalance of mitochondrial fusion/fission and the collapse of the mitochondrial network.

  11. Maternal exposure to diluted diesel engine exhaust alters placental function and induces intergenerational effects in rabbits.

    Science.gov (United States)

    Valentino, Sarah A; Tarrade, Anne; Aioun, Josiane; Mourier, Eve; Richard, Christophe; Dahirel, Michèle; Rousseau-Ralliard, Delphine; Fournier, Natalie; Aubrière, Marie-Christine; Lallemand, Marie-Sylvie; Camous, Sylvaine; Guinot, Marine; Charlier, Madia; Aujean, Etienne; Al Adhami, Hala; Fokkens, Paul H; Agier, Lydiane; Boere, John A; Cassee, Flemming R; Slama, Rémy; Chavatte-Palmer, Pascale

    2016-07-26

    Airborne pollution is a rising concern in urban areas. Epidemiological studies in humans and animal experiments using rodent models indicate that gestational exposure to airborne pollution, in particular diesel engine exhaust (DE), reduces birth weight, but effects depend on exposure duration, gestational window and nanoparticle (NP) concentration. Our aim was to evaluate the effects of gestational exposure to diluted DE on feto-placental development in a rabbit model. Pregnant females were exposed to diluted (1 mg/m(3)), filtered DE (NP diameter ≈ 69 nm) or clean air (controls) for 2 h/day, 5 days/week by nose-only exposure (total exposure: 20 days in a 31-day gestation). DE exposure induced early signs of growth retardation at mid gestation with decreased head length (p = 0.04) and umbilical pulse (p = 0.018). Near term, fetal head length (p = 0.029) and plasma insulin and IGF1 concentrations (p = 0.05 and p = 0.019) were reduced. Placental function was also affected, with reduced placental efficiency (fetal/placental weight) (p = 0.049), decreased placental blood flow (p = 0.009) and fetal vessel volume (p = 0.002). Non-aggregated and "fingerprint" NP were observed at various locations, in maternal blood space, in trophoblastic cells and in the fetal blood, demonstrating transplacental transfer. Adult female offspring were bred with control males. Although fetoplacental biometry was not affected near term, second generation fetal metabolism was modified by grand-dam exposure with decreased plasma cholesterol (p = 0.008) and increased triglyceride concentrations (p = 0.015). Repeated daily gestational exposure to DE at levels close to urban pollution can affect feto-placental development in the first and second generation.

  12. Acute Acrolein Exposure Induces Impairment of Vocal Fold Epithelial Barrier Function.

    Directory of Open Access Journals (Sweden)

    Xinxin Liu

    Full Text Available Acrolein is a ubiquitous pollutant abundant in cigarette smoke, mobile exhaust, and industrial waste. There is limited literature on the effects of acrolein on vocal fold tissue, although there are clinical reports of voice changes after pollutant exposures. Vocal folds are responsible for voice production. The overall objective of this study was to investigate the effects of acrolein exposure on viable, excised vocal fold epithelial tissue and to characterize the mechanism underlying acrolein toxicity. Vocal fold epithelia were studied because they form the outermost layer of the vocal folds and are a primary recipient of inhaled pollutants. Porcine vocal fold epithelia were exposed to 0, 50, 100, 500, 900 or 1300 μM of acrolein for 3 hours; the metabolic activity, epithelial resistance, epithelial permeability, tight junction protein (occludin and claudin 3 expression, cell membrane integrity and lipid peroxidation were investigated. The data demonstrated that acrolein exposure at 500 μM significantly reduced vocal fold epithelial metabolic activity by 27.2% (p≤0.001. Incubation with 100 μM acrolein caused a marked increase in epithelial permeability by 130.5% (p<0.05 and a reduction in transepithelial electrical resistance (TEER by 180.0% (p<0.001. While the expression of tight junctional protein did not change in acrolein-treated samples, the cell membrane integrity was significantly damaged with a 45.6% increase of lipid peroxidation as compared to controls (p<0.05. Taken together, these data provide evidence that acute acrolein exposure impairs vocal fold epithelial barrier integrity. Lipid peroxidation-induced cell membrane damage may play an important role in reducing the barrier function of the epithelium.

  13. MDP-NOD2 stimulation induces HNP-1 secretion, which contributes to NOD2 antibacterial function.

    Science.gov (United States)

    Yamamoto-Furusho, Jesus K; Barnich, Nicolas; Hisamatsu, Tadakazu; Podolsky, Daniel K

    2010-05-01

    Human neutrophil peptide 1 (HNP-1) is a defensin with antibacterial activity secreted by various cells as a component of the innate immune host defense. NOD2 is a cytoplasmic protein that recognizes bacterial derived muramyl dipeptide, and is involved in bacterial clearance. The aim of the present study was to investigate the relationship between antibacterial activity of NOD2 and HNP-1 expression in epithelial cell lines. Gentamicin protection assay using Salmonella typhimurium was performed in Caco-2 cells. The mRNA level was determined by quantitative reverse-transcription polymerase chain reaction (RT-PCR) and defensin expression was assessed by Western blot and enzyme-linked immunosorbent assay (ELISA). Nuclear factor-kappaB activation was assessed using pIV luciferase and Renilla plasmids. A NOD2 mutant was generated by site-directed mutagenesis. Among the defensins tested, only HNP-1 expression is induced in colonic epithelial model HCT116 cells after MDP-LD stimulation. HNP-1 secretion is significantly increased after MDP-LD stimulation in the cell supernatant of intestinal epithelial cells expressing endogenous NOD2, but not in cells that lack endogenous NOD2 expression. HNP-1 is required for NOD2-dependent NF-kappaB activation after MDP-LD stimulation since hnp-1 siRNA transfection abrogated the response to MDP-LD stimulation. The antibacterial function of NOD2 against S. typhimurium was impaired when expression of HNP-1 was blocked by siRNA. HNP-1 secretion depends on NOD2 stimulation by MDP-LD and contributes to antibacterial activity in intestinal epithelial cells expressing endogenous NOD2, but not NOD2 3020insC mutant associated with increased susceptibility to Crohn's disease.

  14. Mandibular reconstruction with a recombinant bone-inducing factor. Functional, histologic, and biomechanical evaluation.

    Science.gov (United States)

    Toriumi, D M; Kotler, H S; Luxenberg, D P; Holtrop, M E; Wang, E A

    1991-10-01

    Bone morphogenetic protein-2 (BMP-2) is a human recombinant bone-inducing factor that stimulates bone formation within 14 days. Twenty-six dogs underwent reconstruction of 3-cm full-thickness mandibular defects. After stabilizing the defects with stainless steel reconstruction plates, test implants composed of inactive dog bone matrix carrier and human recombinant BMP-2 were placed in defects of 12 animals (group 1). Control implants (carrier without BMP-2) were used in 10 animals (group 2), and no implants were placed in mandibular defects of four animals (group 3). Animals were killed at 3 and 6 months. The reconstructed segments were evaluated by roentgenography, analysis of functional stability, histology, histomorphometry, and analysis of biomechanical strength using three-point bend testing. In group 1, reconstruction plates were removed at 10 weeks because stiff, noncompressible mineralized bone formed across the defects, allowing the animals to chew a solid diet. The defects from groups 2 and 3 showed minimal, if any, bone formation and remained grossly unstable, prohibiting plate removal or advancement to a solid diet. Histomorphometric analysis at 6 months revealed that 68% of the group 1 implants were replaced by mineralized bone, whereas mineralized bone occupied less than 4% of the implants in groups 2 and 3. Biomechanical testing at 6 months revealed that the average bending strength of the reconstructed hemimandibles (expressed as a percentage of the contralateral hemimandible) was 27% for group 1 and 0% for group 2. The biomechanical strength of the defects reconstructed with BMP-2 increased significantly from 3 to 6 months and was related to degree of mineralization and thickness of bone bridging the defect.

  15. Anchoring ethinylestradiol induced gene expression changes with testicular morphology and reproductive function in the medaka.

    Directory of Open Access Journals (Sweden)

    Hilary D Miller

    Full Text Available Environmental estrogens are ubiquitous in the environment and can cause detrimental effects on male reproduction. In fish, a multitude of effects from environmental estrogens have been observed including altered courting behavior and fertility, sex reversal, and gonadal histopathology. However, few studies in fish assess the impacts of estrogenic exposure on a physiological endpoint, such as reproduction, as well as the associated morphologic response and underlying global gene expression changes. This study assessed the implications of a 14 day sub-chronic exposure of ethinylestradiol (EE2; 1.0 or 10.0 µg/L EE2 on male medaka fertility, testicular histology and testicular gene expression. The findings demonstrate that a 14 day exposure to EE2 induced impaired male reproductive capacity and time- and dose-dependent alterations in testicular morphology and gene expression. The average fertilization rate/day following the exposure for control, 1.0 and 10.0 µg/L EE2 was 91.3% (±4.4, 62.8% (±8.3 and 28.8% (±5.8, respectively. The testicular morphologic alterations included increased germ cell apoptosis, decreased germinal epithelium and thickening of the interstitium. These changes were highly associated with testicular gene expression changes using a medaka-specific microarray. A pathway analysis of the differentially expressed genes emphasized genes and pathways associated with apoptosis, cell cycle and proliferation, collagen production/extracellular matrix organization, hormone signaling, male reproduction and protein ubiquitination among others. These findings highlight the importance of anchoring global gonadal gene expression changes with morphology and ultimately with tissue/organ function.

  16. Virus-induced gene silencing as a tool for comparative functional studies in Thalictrum.

    Directory of Open Access Journals (Sweden)

    Verónica S Di Stilio

    Full Text Available Perennial woodland herbs in the genus Thalictrum exhibit high diversity of floral morphology, including four breeding and two pollination systems. Their phylogenetic position, in the early-diverging eudicots, makes them especially suitable for exploring the evolution of floral traits and the fate of gene paralogs that may have shaped the radiation of the eudicots. A current limitation in evolution of plant development studies is the lack of genetic tools for conducting functional assays in key taxa spanning the angiosperm phylogeny. We first show that virus-induced gene silencing (VIGS of a PHYTOENE DESATURASE ortholog (TdPDS can be achieved in Thalictrum dioicum with an efficiency of 42% and a survival rate of 97%, using tobacco rattle virus (TRV vectors. The photobleached leaf phenotype of silenced plants significantly correlates with the down-regulation of endogenous TdPDS (P<0.05, as compared to controls. Floral silencing of PDS was achieved in the faster flowering spring ephemeral T. thalictroides. In its close relative, T. clavatum, silencing of the floral MADS box gene AGAMOUS (AG resulted in strong homeotic conversions of floral organs. In conclusion, we set forth our optimized protocol for VIGS by vacuum-infiltration of Thalictrum seedlings or dormant tubers as a reference for the research community. The three species reported here span the range of floral morphologies and pollination syndromes present in Thalictrum. The evidence presented on floral silencing of orthologs of the marker gene PDS and the floral homeotic gene AG will enable a comparative approach to the study of the evolution of flower development in this group.

  17. Poor Baseline Pulmonary Function May Not Increase the Risk of Radiation-Induced Lung Toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jingbo [Department of Radiation Oncology, University of Michigan/Ann Arbor Veterans Health System, Ann Arbor, Michigan (United States); Department of Radiation Oncology, Cancer Hospital, Chinese Academic Medical Sciences and Peking Union Medical College, Beijing (China); Cao, Jianzhong [Department of Radiation Oncology, Cancer Hospital, Chinese Academic Medical Sciences and Peking Union Medical College, Beijing (China); Yuan, Shuanghu [Department of Radiation Oncology, University of Michigan/Ann Arbor Veterans Health System, Ann Arbor, Michigan (United States); Ji, Wei [Department of Radiation Oncology, Cancer Hospital, Chinese Academic Medical Sciences and Peking Union Medical College, Beijing (China); Arenberg, Douglas [Department of Internal Medicine, University of Michigan/Ann Arbor Veterans Health System, Ann Arbor, Michigan (United States); Dai, Jianrong [Department of Radiation Oncology, Cancer Hospital, Chinese Academic Medical Sciences and Peking Union Medical College, Beijing (China); Stanton, Paul; Tatro, Daniel; Ten Haken, Randall K. [Department of Radiation Oncology, University of Michigan/Ann Arbor Veterans Health System, Ann Arbor, Michigan (United States); Wang, Luhua, E-mail: wlhwq@yahoo.com [Department of Radiation Oncology, Cancer Hospital, Chinese Academic Medical Sciences and Peking Union Medical College, Beijing (China); Kong, Feng-Ming, E-mail: fengkong@med.umich.edu [Department of Radiation Oncology, University of Michigan/Ann Arbor Veterans Health System, Ann Arbor, Michigan (United States)

    2013-03-01

    Purpose: Poor pulmonary function (PF) is often considered a contraindication to definitive radiation therapy for lung cancer. This study investigated whether baseline PF was associated with radiation-induced lung toxicity (RILT) in patients with non-small cell lung cancer (NSCLC) receiving conformal radiation therapy (CRT). Methods and Materials: NSCLC patients treated with CRT and tested for PF at baseline were eligible. Baseline predicted values of forced expiratory volume in 1 sec (FEV1), forced vital capacity (FVC), and diffusion capacity of lung for carbon monoxide (DLCO) were analyzed. Additional factors included age, gender, smoking status, Karnofsky performance status, coexisting chronic obstructive pulmonary disease (COPD), tumor location, histology, concurrent chemotherapy, radiation dose, and mean lung dose (MLD) were evaluated for RILT. The primary endpoint was symptomatic RILT (SRILT), including grade ≥2 radiation pneumonitis and fibrosis. Results: There was a total of 260 patients, and SRILT occurred in 58 (22.3%) of them. Mean FEV1 values for SRILT and non-SRILT patients were 71.7% and 65.9% (P=.077). Under univariate analysis, risk of SRILT increased with MLD (P=.008), the absence of COPD (P=.047), and FEV1 (P=.077). Age (65 split) and MLD were significantly associated with SRILT in multivariate analysis. The addition of FEV1 and age with the MLD-based model slightly improved the predictability of SRILT (area under curve from 0.63-0.70, P=.088). Conclusions: Poor baseline PF does not increase the risk of SRILT, and combining FEV1, age, and MLD may improve the predictive ability.

  18. MPTP-induced executive dysfunction is associated with altered prefrontal serotonergic function.

    Science.gov (United States)

    Maiti, Panchanan; Gregg, Laura C; McDonald, Michael P

    2016-02-01

    In Parkinson's disease, cognitive deficits manifest as fronto-striatally-mediated executive dysfunction, with impaired attention, planning, judgment, and impulse control. We examined changes in executive function in mice lesioned with subchronic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) using a 3-choice serial reaction-time (SRT) task, which included measures of sustained attention and impulse control. Each trial of the baseline SRT task comprised a pseudo-random pre-cue period ranging from 3 to 8 s, followed by a 1-s cue duration. MPTP impaired all measures of impulsive behavior acutely, but with additional training their performance normalized to saline control levels. When challenged with shorter cue durations, MPTP-lesioned mice had significantly slower reaction times than wild-type mice. When challenged with longer pre-cue times, the MPTP-lesioned mice exhibited a loss of impulse control at the longer durations. In lesioned mice, striatal dopamine was depleted by 54% and the number of tyrosine-hydroxylase-positive neurons in the substantia nigra pars compacta was reduced by 75%. Serotonin (5-HT) was unchanged in the striatum and prefrontal cortex (PFC), but the ratio of 5-hydroxyindolacetic acid (5-HIAA) to 5-HT was significantly reduced in the MPTP group in the PFC. In lesioned mice, prefrontal 5-HIAA/5-HT was significantly correlated with the executive impairments and striatal norepinephrine was associated with slower reaction times. None of the neurochemical measures was significantly associated with behavior in saline-treated controls. Taken together, these results show that prefrontal 5-HT turnover may play a pivotal role in MPTP-induced executive dysfunction. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Acupuncture induces divergent alterations of functional connectivity within conventional frequency bands: evidence from MEG recordings.

    Directory of Open Access Journals (Sweden)

    Youbo You

    Full Text Available As an ancient Chinese healing modality which has gained increasing popularity in modern society, acupuncture involves stimulation with fine needles inserted into acupoints. Both traditional literature and clinical data indicated that modulation effects largely depend on specific designated acupoints. However, scientific representations of acupoint specificity remain controversial. In the present study, considering the new findings on the sustained effects of acupuncture and its time-varied temporal characteristics, we employed an electrophysiological imaging modality namely magnetoencephalography with a temporal resolution on the order of milliseconds. Taken into account the differential band-limited signal modulations induced by acupuncture, we sought to explore whether or not stimulation at Stomach Meridian 36 (ST36 and a nearby non-meridian point (NAP would evoke divergent functional connectivity alterations within delta, theta, alpha, beta and gamma bands. Whole-head scanning was performed on 28 healthy participants during an eyes-closed no-task condition both preceding and following acupuncture. Data analysis involved calculation of band-limited power (BLP followed by pair-wise BLP correlations. Further averaging was conducted to obtain local and remote connectivity. Statistical analyses revealed the increased connection degree of the left temporal cortex within delta (0.5-4 Hz, beta (13-30 Hz and gamma (30-48 Hz bands following verum acupuncture. Moreover, we not only validated the closer linkage of the left temporal cortex with the prefrontal and frontal cortices, but further pinpointed that such patterns were more extensively distributed in the ST36 group in the delta and beta bands compared to the restriction only to the delta band for NAP. Psychophysical results for significant pain threshold elevation further confirmed the analgesic effect of acupuncture at ST36. In conclusion, our findings may provide a new perspective to lend

  20. Poor Baseline Pulmonary Function May Not Increase the Risk of Radiation-Induced Lung Toxicity

    International Nuclear Information System (INIS)

    Wang, Jingbo; Cao, Jianzhong; Yuan, Shuanghu; Ji, Wei; Arenberg, Douglas; Dai, Jianrong; Stanton, Paul; Tatro, Daniel; Ten Haken, Randall K.; Wang, Luhua; Kong, Feng-Ming

    2013-01-01

    Purpose: Poor pulmonary function (PF) is often considered a contraindication to definitive radiation therapy for lung cancer. This study investigated whether baseline PF was associated with radiation-induced lung toxicity (RILT) in patients with non-small cell lung cancer (NSCLC) receiving conformal radiation therapy (CRT). Methods and Materials: NSCLC patients treated with CRT and tested for PF at baseline were eligible. Baseline predicted values of forced expiratory volume in 1 sec (FEV1), forced vital capacity (FVC), and diffusion capacity of lung for carbon monoxide (DLCO) were analyzed. Additional factors included age, gender, smoking status, Karnofsky performance status, coexisting chronic obstructive pulmonary disease (COPD), tumor location, histology, concurrent chemotherapy, radiation dose, and mean lung dose (MLD) were evaluated for RILT. The primary endpoint was symptomatic RILT (SRILT), including grade ≥2 radiation pneumonitis and fibrosis. Results: There was a total of 260 patients, and SRILT occurred in 58 (22.3%) of them. Mean FEV1 values for SRILT and non-SRILT patients were 71.7% and 65.9% (P=.077). Under univariate analysis, risk of SRILT increased with MLD (P=.008), the absence of COPD (P=.047), and FEV1 (P=.077). Age (65 split) and MLD were significantly associated with SRILT in multivariate analysis. The addition of FEV1 and age with the MLD-based model slightly improved the predictability of SRILT (area under curve from 0.63-0.70, P=.088). Conclusions: Poor baseline PF does not increase the risk of SRILT, and combining FEV1, age, and MLD may improve the predictive ability

  1. Gum Acacia Improves Renal Function and Ameliorates Systemic Inflammation, Oxidative and Nitrosative Stress in Streptozotocin-Induced Diabetes in Rats with Adenine-Induced Chronic Kidney Disease

    Directory of Open Access Journals (Sweden)

    Mohammed Al Za’abi

    2018-03-01

    Full Text Available Background/Aims: The effect of treatment with gum acacia (GA, a prebiotic shown previously to ameliorate chronic kidney disease (CKD, in diabetic and non – diabetic rats with adenine – induced CKD has been investigated using several conventional and novel physiological, biochemical, and histopathological parameters. Methods: Diabetes mellitus was induced in rats by a single injection of streptozotocin (STZ. Diabetic and non – diabetic rats were randomly divided into several groups, and given either normal food or food mixed with adenine (0.25% w/w, for five weeks to induce CKD. Some of these groups were also concomitantly treated orally with GA in the drinking water (15% w/w. Results: Rats fed adenine alone exhibited physiological (decreased body weight, increased food and water intake and urine output, biochemical (increase in urinary albumin/creatinine ratio, plasma urea and, creatinine, indoxyl sulfate and phosphorus, inflammatory biomarkers (increased in neutrophil gelatinase-associated lipocalin, transforming growth factor beta -1, tumor necrosis factor alpha, adiponectin, cystatin C and interleukin-1β, oxidative biomarkers (8-isoprostane, 8 -hydroxy -2-deoxy guanosine, nitrosative stress biomarkers (nitrite and nitrate and histopathological (increase in tubular necrosis and fibrosis signs of CKD. STZ - induced diabetes alone worsened most of the renal function tests measured. Administration of adenine in STZ – diabetic rats further worsened the renal damage induced by adenine alone. GA significantly ameliorated the renal actions of adenine and STZ, given either singly or in combination, especially with regards to the histopathological damage. Conclusion: GA is a useful dietary agent in attenuating the progression of CKD in rats with streptozotocin-induced diabetes.

  2. Functional Divergence among Silkworm Antimicrobial Peptide Paralogs by the Activities of Recombinant Proteins and the Induced Expression Profiles

    Science.gov (United States)

    Ye, Mingqiang; Deng, Xiaojuan; Yi, Huiyu; Huang, Yadong; Tan, Xiang; Han, Dong; Wang, Bo; Xiang, Zhonghuai; Cao, Yang; Xia, Qingyou

    2011-01-01

    Antimicrobial peptides are small-molecule proteins that are usually encoded by multiple-gene families. They play crucial roles in the innate immune response, but reports on the functional divergence of antimicrobial peptide gene families are rare. In this study, 14 paralogs of antimicrobial peptides belonging to cecropin, moricin and gloverin families were recombinantly expressed in pET expression systems. By antimicrobial activity tests, peptides representing paralogs in the same family of cecropin and moricin families, displayed remarkable differences against 10 tested bacteria. The evolutionary rates were relatively fast in the two families, which presented obvious functional divergence among paralogs of each family. Four peptides of gloverin family had similar antimicrobial spectrum and activity against tested bacteria. The gloverin family showed similar antimicrobial function and slow evolutionary rates. By induced transcriptional activity, genes encoding active antimicrobial peptides were upregulated at obviously different levels when silkworm pupae were infected by three types of microbes. Association analysis of antimicrobial activities and induced transcriptional activities indicated that the antimicrobial activities might be positively correlated with induced transcriptional activities in the cecropin and moricin families. These results suggest that representative BmcecB6, BmcecD and Bmmor as the major effector genes have broad antimicrobial spectrum, strong antimicrobial activity and high microbe-induced expression among each family and maybe play crucial roles in eliminating microbial infection. PMID:21479226

  3. SIRT1 Functions as an Important Regulator of Estrogen-Mediated Cardiomyocyte Protection in Angiotensin II-Induced Heart Hypertrophy

    OpenAIRE

    Shen, Tao; Ding, Ling; Ruan, Yang; Qin, Weiwei; Lin, Yajun; Xi, Chao; Lu, Yonggang; Dou, Lin; Zhu, Yuping; Cao, Yuan; Man, Yong; Bian, Yunfei; Wang, Shu; Xiao, Chuanshi; Li, Jian

    2014-01-01

    Background. Sirtuin 1 (SIRT1) is a member of the sirtuin family, which could activate cell survival machinery and has been shown to be protective in regulation of heart function. Here, we determined the mechanism by which SIRT1 regulates Angiotensin II- (AngII-) induced cardiac hypertrophy and injury in vivo and in vitro. Methods. We analyzed SIRT1 expression in the hearts of control and AngII-induced mouse hypertrophy. Female C57BL/6 mice were ovariectomized and pretreated with 17β-estradiol...

  4. Water-soluble ginseng oligosaccharides protect against scopolamine-induced cognitive impairment by functioning as an antineuroinflammatory agent.

    Science.gov (United States)

    Xu, Ting; Shen, Xiangfeng; Yu, Huali; Sun, Lili; Lin, Weihong; Zhang, Chunxiao

    2016-07-01

    Panax ginseng root is used in traditional oriental medicine for human health. Its main active components such as saponins and polysaccharides have been widely evaluated for treating diseases, but secondary active components such as oligosaccharides have been rarely studied. This study aimed to assess the impact of water-soluble ginseng oligosaccharides (WGOS), which were isolated from the warm-water extract of Panax ginseng root, on scopolamine-induced cognitive impairment in mice and its antineuroinflammatory mechanisms. We investigated the impact of WGOS on scopolamine-induced cognitive impairment in mice by using Morris water maze and novel object recognition task. We also analyzed the impact of WGOS on scopolamine-induced inflammatory response (e.g., the hyperexpression of proinflammatory cytokines IL-1β and IL-6 and astrocyte activation) by quantitative real-time polymerase chain reaction and glial fibrillary acid protein (GFAP) immunohistochemical staining. WGOS pretreatment protected against scopolamine-induced learning and memory deficits in the Morris water maze and in the novel object recognition task. Furthermore, WGOS pretreatment downregulated scopolamine-induced hyperexpression of proinflammatory cytokines interleukin (IL)-1β and IL-6 mRNA and astrocyte activation in the hippocampus. These results indicate that WGOS can protect against scopolamine-induced alterations in learning and memory and inflammatory response. Our data suggest that WGOS may be beneficial as a medicine or functional food supplement to treat disorders with cognitive deficits and increased inflammation.

  5. Novel Functional Aspect of Antihistamines: The Impact of Bepotastine Besilate on Substance P-Induced Events

    Directory of Open Access Journals (Sweden)

    Shun Kitaba

    2009-01-01

    Full Text Available Besides histamine, substance P (SP has been demonstrated to play a crucial role in pruritic skin diseases. Although antihistamines are frequently used for pruritic skin diseases, little is known concerning the effect on an SP-induced event such as mast cell degranulation and the upregulation of adhesion molecules or the nitric oxide (NO synthesis in endothelial cells. Our aim was to study the effect of bepotastine besilate on SP-induced degranulation of rat basophillic leukemia (RBL-2H3 cells and expression of adhesion molecules and NO synthesis in human dermal microvascular endothelial cells (HMVECs. Bepotastine besilate significantly inhibited SP-induced degranulation of RBL-2H3 cells and NO synthesis in HMVECs. Bepotastine besilate significantly inhibited expression of adhesion molecules in HMVESs, while it failed to suppress SP-induced upregulation of the adhesion molecules in HMVECs. Therefore, bepotastine besilate is assumed to act favorably on SP-induced basophil degranulation and NO synthesis in HMVECs.

  6. The Role of Endogenous Neurogenesis in Functional Recovery and Motor Map Reorganization Induced by Rehabilitative Therapy after Stroke in Rats.

    Science.gov (United States)

    Shiromoto, Takashi; Okabe, Naohiko; Lu, Feng; Maruyama-Nakamura, Emi; Himi, Naoyuki; Narita, Kazuhiko; Yagita, Yoshiki; Kimura, Kazumi; Miyamoto, Osamu

    2017-02-01

    Endogenous neurogenesis is associated with functional recovery after stroke, but the roles it plays in such recovery processes are unknown. This study aims to clarify the roles of endogenous neurogenesis in functional recovery and motor map reorganization induced by rehabilitative therapy after stroke by using a rat model of cerebral ischemia (CI). Ischemia was induced via photothrombosis in the caudal forelimb area of the rat cortex. First, we examined the effect of rehabilitative therapy on functional recovery and motor map reorganization, using the skilled forelimb reaching test and intracortical microstimulation. Next, using the same approaches, we examined how motor map reorganization changed when endogenous neurogenesis after stroke was inhibited by cytosine-β-d-arabinofuranoside (Ara-C). Rehabilitative therapy for 4 weeks after the induction of stroke significantly improved functional recovery and expanded the rostral forelimb area (RFA). Intraventricular Ara-C administration for 4-10 days after stroke significantly suppressed endogenous neurogenesis compared to vehicle, but did not appear to influence non-neural cells (e.g., microglia, astrocytes, and vascular endothelial cells). Suppressing endogenous neurogenesis via Ara-C administration significantly inhibited (~50% less than vehicle) functional recovery and RFA expansion (~33% of vehicle) induced by rehabilitative therapy after CI. After CI, inhibition of endogenous neurogenesis suppressed both the functional and anatomical markers of rehabilitative therapy. These results suggest that endogenous neurogenesis contributes to functional recovery after CI related to rehabilitative therapy, possibly through its promotion of motor map reorganization, although other additional roles cannot be ruled out. Copyright © 2017 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  7. Hippocampal serotonin-1A receptor function in a mouse model of anxiety induced by long-term voluntary wheel running.

    Science.gov (United States)

    Fuss, Johannes; Vogt, Miriam A; Weber, Klaus-Josef; Burke, Teresa F; Gass, Peter; Hensler, Julie G

    2013-10-01

    We have recently demonstrated that, in C57/Bl6 mice, long-term voluntary wheel running is anxiogenic, and focal hippocampal irradiation prevents the increase in anxiety-like behaviors and neurobiological changes in the hippocampus induced by wheel running. Evidence supports a role of hippocampal 5-HT1A receptors in anxiety. Therefore, we investigated hippocampal binding and function of 5-HT1A receptors in this mouse model of anxiety. Four weeks of voluntary wheel running resulted in hippocampal subregion-specific changes in 5-HT1A receptor binding sites and function, as measured by autoradiography of [(3) H] 8-hydroxy-2-(di-n-propylamino)tetralin binding and agonist-stimulated binding of [(35) S]GTPγS to G proteins, respectively. In the dorsal CA1 region, 5-HT1A receptor binding and function were not altered by wheel running or irradiation. In the dorsal dentate gyrus and CA2/3 region, 5-HT1A receptor function was decreased by not only running but also irradiation. In the ventral pyramidal layer, wheel running resulted in a decrease of 5-HT1A receptor function, which was prevented by irradiation. Neither irradiation nor wheel running affected 5-HT1A receptors in medial prefrontal cortex or in the dorsal or median raphe nuclei. Our data indicate that downregulation of 5-HT1A receptor function in ventral pyramidal layer may play a role in anxiety-like behavior induced by wheel running. Copyright © 2013 Wiley Periodicals, Inc.

  8. High fat diet-induced glucose intolerance impairs myocardial function, but not myocardial perfusion during hyperaemia: a pilot study

    Directory of Open Access Journals (Sweden)

    van den Brom Charissa E

    2012-06-01

    Full Text Available Abstract Background Glucose intolerance is a major health problem and is associated with increased risk of progression to type 2 diabetes mellitus and cardiovascular disease. However, whether glucose intolerance is related to impaired myocardial perfusion is not known. The purpose of the present study was to study the effect of diet-induced glucose intolerance on myocardial function and perfusion during baseline and pharmacological induced hyperaemia. Methods Male Wistar rats were randomly exposed to a high fat diet (HFD or control diet (CD (n = 8 per group. After 4 weeks, rats underwent an oral glucose tolerance test. Subsequently, rats underwent (contrast echocardiography to determine myocardial function and perfusion during baseline and dipyridamole-induced hyperaemia (20 mg/kg for 10 min. Results Four weeks of HFD feeding resulted in glucose intolerance compared to CD-feeding. Contractile function as represented by fractional shortening was not altered in HFD-fed rats compared to CD-fed rats under baseline conditions. However, dipyridamole increased fractional shortening in CD-fed rats, but not in HFD-fed rats. Basal myocardial perfusion, as measured by estimate of perfusion, was similar in CD- and HFD-fed rats, whereas dipyridamole increased estimate of perfusion in CD-fed rats, but not in HFD-fed rats. However, flow reserve was not different between CD- and HFD-fed rats. Conclusions Diet-induced glucose intolerance is associated with impaired myocardial function during conditions of hyperaemia, but myocardial perfusion is maintained. These findings may result in new insights into the effect of glucose intolerance on myocardial function and perfusion during hyperaemia.

  9. Role of reactive nitrogen species generated via inducible nitric oxide synthase in vesicant-induced lung injury, inflammation and altered lung functioning

    Energy Technology Data Exchange (ETDEWEB)

    Sunil, Vasanthi R., E-mail: sunilvr@eohsi.rutgers.edu [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy Piscataway, NJ (United States); Shen, Jianliang; Patel-Vayas, Kinal; Gow, Andrew J. [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy Piscataway, NJ (United States); Laskin, Jeffrey D. [Department of Environmental and Occupational Medicine, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, NJ (United States); Laskin, Debra L. [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy Piscataway, NJ (United States)

    2012-05-15

    Pulmonary toxicity induced by sulfur mustard and related vesicants is associated with oxidative stress. In the present studies we analyzed the role of reactive nitrogen species (RNS) generated via inducible nitric oxide synthase (iNOS) in lung injury and inflammation induced by vesicants using 2-chloroethyl ethyl sulfide (CEES) as a model. C57Bl/6 (WT) and iNOS −/− mice were sacrificed 3 days or 14 days following intratracheal administration of CEES (6 mg/kg) or control. CEES intoxication resulted in transient (3 days) increases in bronchoalveolar lavage (BAL) cell and protein content in WT, but not iNOS −/− mice. This correlated with expression of Ym1, a marker of oxidative stress in alveolar macrophages and epithelial cells. In contrast, in iNOS −/− mice, Ym1 was only observed 14 days post-exposure in enlarged alveolar macrophages, suggesting that they are alternatively activated. This is supported by findings that lung tumor necrosis factor and lipocalin Lcn2 expression, mediators involved in tissue repair were also upregulated at this time in iNOS −/− mice. Conversely, CEES-induced increases in the proinflammatory genes, monocyte chemotactic protein-1 and cyclooxygenase-2, were abrogated in iNOS −/− mice. In WT mice, CEES treatment also resulted in increases in total lung resistance and decreases in compliance in response to methacholine, effects blunted by loss of iNOS. These data demonstrate that RNS, generated via iNOS play a role in the pathogenic responses to CEES, augmenting oxidative stress and inflammation and suppressing tissue repair. Elucidating inflammatory mechanisms mediating vesicant-induced lung injury is key to the development of therapeutics to treat mustard poisoning. -- Highlights: ► Lung injury, inflammation and oxidative stress are induced by the model vesicant CEES ► RNS generated via iNOS are important in the CEES-induced pulmonary toxicity ► iNOS −/− mice are protected from CEES-induced lung toxicity and

  10. Role of reactive nitrogen species generated via inducible nitric oxide synthase in vesicant-induced lung injury, inflammation and altered lung functioning

    International Nuclear Information System (INIS)

    Sunil, Vasanthi R.; Shen, Jianliang; Patel-Vayas, Kinal; Gow, Andrew J.; Laskin, Jeffrey D.; Laskin, Debra L.

    2012-01-01

    Pulmonary toxicity induced by sulfur mustard and related vesicants is associated with oxidative stress. In the present studies we analyzed the role of reactive nitrogen species (RNS) generated via inducible nitric oxide synthase (iNOS) in lung injury and inflammation induced by vesicants using 2-chloroethyl ethyl sulfide (CEES) as a model. C57Bl/6 (WT) and iNOS −/− mice were sacrificed 3 days or 14 days following intratracheal administration of CEES (6 mg/kg) or control. CEES intoxication resulted in transient (3 days) increases in bronchoalveolar lavage (BAL) cell and protein content in WT, but not iNOS −/− mice. This correlated with expression of Ym1, a marker of oxidative stress in alveolar macrophages and epithelial cells. In contrast, in iNOS −/− mice, Ym1 was only observed 14 days post-exposure in enlarged alveolar macrophages, suggesting that they are alternatively activated. This is supported by findings that lung tumor necrosis factor and lipocalin Lcn2 expression, mediators involved in tissue repair were also upregulated at this time in iNOS −/− mice. Conversely, CEES-induced increases in the proinflammatory genes, monocyte chemotactic protein-1 and cyclooxygenase-2, were abrogated in iNOS −/− mice. In WT mice, CEES treatment also resulted in increases in total lung resistance and decreases in compliance in response to methacholine, effects blunted by loss of iNOS. These data demonstrate that RNS, generated via iNOS play a role in the pathogenic responses to CEES, augmenting oxidative stress and inflammation and suppressing tissue repair. Elucidating inflammatory mechanisms mediating vesicant-induced lung injury is key to the development of therapeutics to treat mustard poisoning. -- Highlights: ► Lung injury, inflammation and oxidative stress are induced by the model vesicant CEES ► RNS generated via iNOS are important in the CEES-induced pulmonary toxicity ► iNOS −/− mice are protected from CEES-induced lung toxicity and

  11. Mechanisms of Low Dose Radiation-induced T helper Cell Function

    Energy Technology Data Exchange (ETDEWEB)

    Gridley, Daila S.

    2008-10-31

    Exposure to radiation above levels normally encountered on Earth can occur during wartime, accidents such as those at Three Mile Island and Chernobyl, and detonation of “dirty bombs” by terrorists. Relatively high levels of radiation exposure can also occur in certain occupations (low-level waste sites, nuclear power plants, nuclear medicine facilities, airline industry, and space agencies). Depression or dysfunction of the highly radiosensitive cells of the immune system can lead to serious consequences, including increased risk for infections, cancer, hypersensitivity reactions, poor wound healing, and other pathologies. The focus of this research was on the T helper (Th) subset of lymphocytes that secrete cytokines (proteins), and thus control many actions and interactions of other cell types that make up what is collectively known as the immune system. The Department of Energy (DOE) Low Dose Radiation Program is concerned with mechanisms altered by exposure to high energy photons (x- and gamma-rays), protons and electrons. This study compared, for the first time, the low-dose effects of two of these radiation forms, photons and protons, on the response of Th cells, as well as other cell types with which they communicate. The research provided insights regarding gene expression patterns and capacity to secrete potent immunostimulatory and immunosuppressive cytokines, some of which are implicated in pathophysiological processes. Furthermore, the photon versus proton comparison was important not only to healthy individuals who may be exposed, but also to patients undergoing radiotherapy, since many medical centers in the United States, as well as worldwide, are now building proton accelerators. The overall hypothesis of this study was that whole-body exposure to low-dose photons (gamma-rays) will alter CD4+ Th cell function. We further proposed that exposure to low-dose proton radiation will induce a different pattern of gene and functional changes compared to

  12. The Relation between Fructose-Induced Metabolic Syndrome and Altered Renal Haemodynamic and Excretory Function in the Rat

    Directory of Open Access Journals (Sweden)

    Mohammed H. Abdulla

    2011-01-01

    Full Text Available This paper explores the possible relationships between dietary fructose and altered neurohumoral regulation of renal haemodynamic and excretory function in this model of metabolic syndrome. Fructose consumption induces hyperinsulinemia, hypertriglyceridaemia, insulin resistance, and hypertension. The pathogenesis of fructose-induced hypertension is dubious and involves numerous pathways acting both singly and together. In addition, hyperinsulinemia and hypertension contribute significantly to progressive renal disease in fructose-fed rats. Moreover, increased activity of the renin-angiotensin and sympathetic nervous systems leading to downregulation of receptors may be responsible for the blunted vascular sensitivity to angiotensin II and catecholamines, respectively. Various approaches have been suggested to prevent the development of fructose-induced hypertension and/or metabolic alteration. In this paper, we address the role played by the renin-angiotensin and sympathetic nervous systems in the haemodynamic alterations that occur due to prolonged consumption of fructose.

  13. Optimal isolation of functional Foxp3+ induced regulatory T cells using DEREG mice.

    Directory of Open Access Journals (Sweden)

    Abdul Mannan Baru

    Full Text Available Foxp3 reporter mice including DEREG (DEpletion of REGulatory T cells mice have greatly helped in exploring the biology of Foxp3(+ Tregs. DEREG mice express a DTR-eGFP fusion protein under the control of a bacterial artificial chromosome (BAC-encoded Foxp3 promoter, allowing the viable isolation and inducible depletion of Foxp3(+ Tregs. Adaptive Tregs differentiated in vitro to express Foxp3 (iTregs are gaining high interest as potential therapeutics for inflammatory conditions such as autoimmunity, allergy and transplant rejection. However, selective isolation of Foxp3(+ iTregs with a stable phenotype still remains to be a problem, especially in the human setting. While screening for culture conditions to generate stable CD4(+Foxp3(+ iTregs from DEREG mice, with maximum suppressive activity, we observed an unexpected dichotomy of eGFP and Foxp3 expression which is not seen in ex vivo isolated cells from DEREG mice. Further characterization of eGFP(+Foxp3(- cells revealed relatively lower CD25 expression and a lack of suppressive activity in vitro. Similarly, eGFP(- cells isolated from the same cultures were not suppressive despite of a broad CD25 expression reflecting mere T cell activation. In contrast, eGFP(+Foxp3(+ iTregs exhibited potent suppressive activity comparable to that of natural eGFP(+Foxp3(+ Tregs, emphasizing the importance of isolating Foxp3 expressing iTregs. Interestingly, the use of plate-bound anti-CD3 and anti-CD28 or Flt3L-driven BMDC resulted in considerable resolution of the observed dichotomy. In summary, we defined culture conditions for efficient generation of eGFP(+Foxp3(+ iTregs by use of DEREG mice. Isolation of functional Foxp3(+ iTregs using DEREG mice can also be achieved under sub-optimal conditions based on the magnitude of surface CD25 expression, in synergy with transgene encoded eGFP. Besides, the reported phenomenon may be of general interest for exploring Foxp3 gene regulation, given that Foxp3 and e

  14. Optimal isolation of functional Foxp3+ induced regulatory T cells using DEREG mice.

    Science.gov (United States)

    Baru, Abdul Mannan; Untucht, Christopher; Ganesh, Venkateswaran; Hesse, Christina; Mayer, Christian T; Sparwasser, Tim

    2012-01-01

    Foxp3 reporter mice including DEREG (DEpletion of REGulatory T cells) mice have greatly helped in exploring the biology of Foxp3(+) Tregs. DEREG mice express a DTR-eGFP fusion protein under the control of a bacterial artificial chromosome (BAC)-encoded Foxp3 promoter, allowing the viable isolation and inducible depletion of Foxp3(+) Tregs. Adaptive Tregs differentiated in vitro to express Foxp3 (iTregs) are gaining high interest as potential therapeutics for inflammatory conditions such as autoimmunity, allergy and transplant rejection. However, selective isolation of Foxp3(+) iTregs with a stable phenotype still remains to be a problem, especially in the human setting. While screening for culture conditions to generate stable CD4(+)Foxp3(+) iTregs from DEREG mice, with maximum suppressive activity, we observed an unexpected dichotomy of eGFP and Foxp3 expression which is not seen in ex vivo isolated cells from DEREG mice. Further characterization of eGFP(+)Foxp3(-) cells revealed relatively lower CD25 expression and a lack of suppressive activity in vitro. Similarly, eGFP(-) cells isolated from the same cultures were not suppressive despite of a broad CD25 expression reflecting mere T cell activation. In contrast, eGFP(+)Foxp3(+) iTregs exhibited potent suppressive activity comparable to that of natural eGFP(+)Foxp3(+) Tregs, emphasizing the importance of isolating Foxp3 expressing iTregs. Interestingly, the use of plate-bound anti-CD3 and anti-CD28 or Flt3L-driven BMDC resulted in considerable resolution of the observed dichotomy. In summary, we defined culture conditions for efficient generation of eGFP(+)Foxp3(+) iTregs by use of DEREG mice. Isolation of functional Foxp3(+) iTregs using DEREG mice can also be achieved under sub-optimal conditions based on the magnitude of surface CD25 expression, in synergy with transgene encoded eGFP. Besides, the reported phenomenon may be of general interest for exploring Foxp3 gene regulation, given that Foxp3 and e

  15. Inhibition of human antigen-induced lymphoblastoid B-cell function by an in vivo-induced suppressor T cell.

    Science.gov (United States)

    Brieva, J A; Stevens, R H

    1983-04-01

    Lymphoblastoid (LB) B cells which spontaneously produce antitetanus toxoid IgG antibodies (Tet-IgG) in short-term cultures (3 days) appear in the circulation 5-7 days after immunization with tetanus toxoid. Addition of pokeweed mitogen (PWM), normally a stimulator of antibody production, caused instead a reduction in the in vitro synthesis of Tet-IgG by the LB cells. In order for this inhibition of antibody production to occur, T cells had to be present, and the inhibition was proportional to the number of T cells added to the culture, demonstrating the existence of PWM-inducible suppressor cells. The cells mediating the suppression had the OKT8 phenotype and also exhibited the following characteristics: (1) a PWM pretreatment period as little as 14 hr was enough to complete activation; (2) conventional inhibitors of suppressor T cells as hydrocortisone and cyclosporin A only partially reversed its effect; and (3) DNA synthesis was not required. The T-suppressor activity was detectable in the circulation before immunization, increased two- to fourfold by 5-12 days after boosting, and waned after 3 weeks. The mechanism of action of this suppression does not appear to involve conventional cytotoxic T cells as (1) the suppression was mediated across allogeneic barriers and (2) the suppression could not be reversed by inclusion of anti-Leu-2a antibodies in the culture. These results suggest that this suppressor T-cell subset may be important in the normal regulation of activated stages of human B lymphocytes.

  16. Nitric oxide synthase inhibition ameliorates nicotine-induced sperm function decline in male rats

    Directory of Open Access Journals (Sweden)

    Ibukun P. Oyeyipo

    2015-09-01

    Conclusion: Taken together, the present data indicate the abilities of l-NAME to ameliorate nicotine-induced spermatotoxic effects in male rats via a mechanism dependent on the circulating testosterone level.

  17. Acupuncture-induced changes in functional connectivity of the primary somatosensory cortex varied with pathological stages of Bell's palsy.

    Science.gov (United States)

    He, Xiaoxuan; Zhu, Yifang; Li, Chuanfu; Park, Kyungmo; Mohamed, Abdalla Z; Wu, Hongli; Xu, Chunsheng; Zhang, Wei; Wang, Linying; Yang, Jun; Qiu, Bensheng

    2014-10-01

    Bell's palsy is the most common cause of acute facial nerve paralysis. In China, Bell's palsy is frequently treated with acupuncture. However, its efficacy and underlying mechanism are still controversial. In this study, we used functional MRI to investigate the effect of acupuncture on the functional connectivity of the brain in Bell's palsy patients and healthy individuals. The patients were further grouped according to disease duration and facial motor performance. The results of resting-state functional MRI connectivity show that acupuncture induces significant connectivity changes in the primary somatosensory region of both early and late recovery groups, but no significant changes in either the healthy control group or the recovered group. In the recovery group, the changes also varied with regions and disease duration. Therefore, we propose that the effect of acupuncture stimulation may depend on the functional connectivity status of patients with Bell's palsy.

  18. cDNA cloning and transcriptional controlling of a novel low dose radiation-induced gene and its function analysis

    International Nuclear Information System (INIS)

    Zhou Pingkun; Sui Jianli

    2002-01-01

    Objective: To clone a novel low dose radiation-induced gene (LRIGx) and study its function as well as its transcriptional changes after irradiation. Methods: Its cDNA was obtained by DDRT-PCR and RACE techniques. Northern blot hybridization was used to investigate the gene transcription. Bioinformatics was employed to analysis structure and function of this gene. Results: LRIGx cDNA was cloned. The sequence of LRIGx was identical to a DNA clone located in human chromosome 20 q 11.2-12 Bioinformatics analysis predicted an encoded protein with a conserved helicase domain. Northern analysis revealed a ∼8.5 kb transcript which was induced after 0.2 Gy as well as 0.02 Gy irradiation, and the transcript level was increased 5 times at 4 h after 0.2 Gy irradiation. The induced level of LRIGx transcript by 2.0 Gy high dose was lower than by 0.2 Gy. Conclusion: A novel low dose radiation-induced gene has been cloned. It encodes a protein with a conserved helicase domain that could involve in DNA metabolism in the cellular process of radiation response

  19. Dietary krill oil enhances neurocognitive functions and modulates proteomic changes in brain tissues of d-galactose induced aging mice.

    Science.gov (United States)

    Cheong, Ling-Zhi; Sun, Tingting; Li, Yanyan; Zhou, Jun; Lu, Chenyang; Li, Ye; Huang, Zhongbai; Su, Xiurong

    2017-05-24

    The effects of dietary krill oil on neurocognitive functions and proteomic changes in brain tissues of d-galactose-induced aging mice were evaluated. Dietary krill oil enhanced the neurocognitive functions of aging mice with a significant (P aging mice administered with krill oil showed significant (P changes in the serum malondialdehyde (MDA) level. In terms of proteomic changes, krill oil resulted in upregulation of the Celsr3 and Ppp1r1b gene expression, which contribute to brain development, learning and memory behavior processes. In particular, the Ppp1r1b gene is associated with the inhibition of dopamine releases, which decreases the motivation for learning.

  20. Phototransformation-Induced Aggregation of Functionalized Single-Walled Carbon Nanotubes: The Importance of Amorphous Carbon

    Science.gov (United States)

    Single-walled carbon nanotubes (SWCNTs) with proper functionalization are desirable for applications that require dispersion in aqueous and biological environments, and functionalized SWCNTs also serve as building blocks for conjugation with specific molecules in these applicatio...

  1. Child and parent perceived food-induced gastrointestinal symptoms and quality of life in children with functional gastrointestinal disorders.

    Science.gov (United States)

    Carlson, Michelle J; Moore, Carolyn E; Tsai, Cynthia M; Shulman, Robert J; Chumpitazi, Bruno P

    2014-03-01

    It is unknown whether children with functional gastrointestinal (GI) disorders identify specific foods that exacerbate their GI symptoms. The objectives of this study were to determine the perceived role of food on GI symptoms and to determine the impact of food-induced symptoms on quality of life (QOL) in children with functional GI disorders. Between August and November 2010, 25 children ages 11 to 17 years old with functional GI disorders and a parent completed a food symptom association questionnaire and validated questionnaires assessing FGID symptoms and QOL. In addition, children completed a 24-hour food recall, participated in focus groups to identify problematic foods and any coping strategies, and discussed how their QOL was affected. Statistical analyses were conducted using χ2, t test, Mann-Whitney U test, Wilcoxon signed rank, and Spearman's ρ. Children identified a median of 11 (range=2 to 25) foods as exacerbating a GI symptom, with the most commonly identified foods being spicy foods, cow's milk, and pizza. Several coping strategies were identified, including consuming smaller portions, modifying foods, and avoiding a median of 8 (range=1 to 20) foods. Children reported that food-induced symptoms interfered with school performance, sports, and social activities. Although the parent's assessment of their child's QOL negatively correlated with the number of perceived symptom-inducing foods in their child, this relationship was not found in the children. Findings suggest that specific foods are perceived to exacerbate GI symptoms in children with functional GI disorders. In addition, despite use of several coping strategies, food-induced symptoms can adversely impact children's QOL in several important areas. Copyright © 2014 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.

  2. Effect of phenolic acids on functions of rat aorta, vas deferens and on metabolic changes in streptozotocin-induced diabetes

    OpenAIRE

    Nurcan Bektas; Yusuf Ozturk

    2012-01-01

    Objectives: This study aimed to investigate the effects of antioxidant treatment on streptozotocin (STZ)-induced diabetic metabolic and smooth muscle (SM) complications in rats. Materials and Methods: Threeweeks after STZ injection (i.v.), vehicle, p-OH benzoic (p-OHBA), protocatechic (PA) and gallic acids (GA) were separately administered (10 mg/kg each, i.p.) to the rats everyday for 3 weeks. Metabolic functions were observedregularly. The rats in all groups were sacrificed andaorta and ...

  3. Lipopolysaccharide IP-PA1 from Pantoea agglomerans prevents suppression of macrophage function in stress-induced diseases.

    Science.gov (United States)

    Nakata, Kazue; Inagawa, Hiroyuki; Soma, Gen-Ichiro

    2011-07-01

    Chronic psychological stress impairs health and induces various diseases by causing an imbalance in the immune, neuropsychiatric and endocrine systems. The primary reason for the development of stress-induced disease is suppression of macrophage function, which plays a pivotal role in innate immunity. In fact, surgical stress has been shown to exacerbate opportunistic infections by significantly suppressing macrophage function. Conversely, administration of macrophage activating substances before surgery, such as tumor necrosis factor (TNF)-α or Picibanil (OK-432), has been shown to protect against macrophage suppression and the resulting exacerbation of infectious diseases, and against tumor metastasis in the lungs. Thus, if suppression of macrophage function by stress could be safely prevented by use of a macrophage activating substance, the detrimental side effects of stress could be reduced. Recently, we identified a lipopolysaccharide, IP-PA1, derived from Pantoea agglomerans, a symbiotic Gram-negative bacteria found in wheat and other food plants. Oral administration of IP-PA1 demonstrated macrophage activation (priming) and protective effects against infection, allergy and cancer, without any side-effects. In this review, the possibility of using IP-PA1 as a safe, macrophage activating substance for prevention of stress-induced impairments is discussed.

  4. Altered lymphatic function and architecture in salt-induced hypertension assessed by near-infrared fluorescence imaging

    Science.gov (United States)

    Kwon, Sunkuk; Agollah, Germaine D.; Chan, Wenyaw; Sevick-Muraca, Eva M.

    2012-08-01

    The lymphatic system plays an important role in maintaining the fluid homeostasis between the blood vascular and interstitial tissue compartment and there is recent evidence that its transport capabilities may regulate blood pressure in salt-induced hypertension. Yet, there is little known how the lymphatic contractile function and architecture responds to dietary salt-intake. Thus, we longitudinally characterized lymphatic contractile function and vessel remodeling noninvasively using dynamic near-infrared fluorescence imaging in animal models of salt-induced hypertension. The lymphatics of mice and rats were imaged following intradermal injection of indocyanine green to the ear tip or the base of the tail before and during two weeks of either a high salt diet (HSD) or normal chow. Our noninvasive imaging data demonstrated dilated lymphatic vessels in the skin of mice and rats on a HSD as compared to their baseline levels. In addition, our dynamic imaging results showed increased lymphatic contraction frequency in HSD-fed mice and rats. Lymphatic contractile function and vessel remodeling occurs in response to salt-induced hypertension suggesting a possible role for the lymphatics in the regulation of vascular blood pressure.

  5. Mir-203-mediated tricellulin mediates lead-induced in vitro loss of blood-cerebrospinal fluid barrier (BCB) function.

    Science.gov (United States)

    Su, Peng; Zhao, Fang; Cao, Zipeng; Zhang, Jianbin; Aschner, Michael; Luo, Wenjing

    2015-08-01

    The blood-cerebrospinal fluid barrier (BCB) plays a critical role in the maintenance of optimal brain function. Tricellulin (TRIC), a protein localized at the tricellular contact sites of epithelial cells is involved in the formation of tight junctions in various epithelial barriers. However, little is known about its expression in the choroidal epithelial cells. It is well established that lead (Pb) exposure increases the leakage of the BCB. The purpose of this study is to investigate the expression and localization of TRIC in choroidal epithelial cells in vitro and whether altered TRIC expression mediates Pb-induced loss of barrier function. We found that TRIC protein and mRNA were expressed in choroidal epithelial cells in vitro and TRIC was localized at the tricellular contacts, colocalizing with occludin. Downregulation of TRIC by siRNA increased the BCB permeability corroborated by altered transendothelial electrical resistance (TEER) and FITC-dextran flux. Treatment with 10μM Pb reduced TRIC protein expression, but overexpression of TRIC alleviated the Pb-induced increase in BCB permeability. Bioinformatics analysis showed that mir-203 was a potential microRNA (miRNA) binding motif on TRIC 3'UTR, and that Pb exposure increased the expression of mir-203. Treatment with a mir-203 inhibitor increased TRIC protein expression and attenuated the Pb-induced BCB leakage. Our results establish that TRIC plays an important role in regulating BCB function. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Quercetin ameliorates hypobaric hypoxia-induced memory impairment through mitochondrial and neuron function adaptation via the PGC-1α pathway.

    Science.gov (United States)

    Liu, Peng; Zou, Dan; Yi, Long; Chen, Mingliang; Gao, Yanxiang; Zhou, Rui; Zhang, Qianyong; Zhou, Yong; Zhu, Jundong; Chen, Ka; Mi, Mantian

    2015-01-01

    Acute hypobaric hypoxia (HH) causes persistent cognitive impairment, affecting memory function specifically. Mitochondrial dysfunction and synaptic morphological change were the prominent pathological features of HH exposure on brain. Quercetin, a flavonoid found in fruits, vegetables, leaves and grains, is reported to prevent ischemia induced by neuronal injury. This study investigated the efficacy of quercetin to ameliorate HH-induced memory deficit. Rats were exposed to HH equivalent to 5000 m for 7 days in a decompression chamber and received quercetin daily (50, 75 or 100 mg/kg·bw) via gavage during the period of exposure. Cognitive performance was assessed by the Morris water maze test. In vitro, the effect of quercetin was tested in hippocampus tissue. Quercetin, especially at 100 mg/kg·bw, significantly reduced HH-induced memory decline. Meanwhile, HH-induced hippocampus mitochondrial and synaptic lesions were ameliorated by quercetin. Furthermore, quercetin regulated the expression of sirtuin 1(Sirt1), PGC-1α, and the proteins related with mitochondrial biogenesis and dynamics. Moreover, quercetin increased expression of fibronectin type III domain-containing protein 5 (FNDC5) and brain-derived neurotrophic factor (BDNF), showing the PGC-1α/FNDC5/BNDF pathways might be involved in neuronal adaptation. The results suggest quercetin has prophylactic potential for amelioration of HH-induced memory impairment, which is associated with the mitochondrial and neuronal adaptation in hippocampus.

  7. Cisplatin Induces a Mitochondrial-ROS Response That Contributes to Cytotoxicity Depending on Mitochondrial Redox Status and Bioenergetic Functions

    Science.gov (United States)

    Marullo, Rossella; Werner, Erica; Degtyareva, Natalya; Moore, Bryn; Altavilla, Giuseppe; Ramalingam, Suresh S.; Doetsch, Paul W.

    2013-01-01

    Cisplatin is one of the most effective and widely used anticancer agents for the treatment of several types of tumors. The cytotoxic effect of cisplatin is thought to be mediated primarily by the generation of nuclear DNA adducts, which, if not repaired, cause cell death as a consequence of DNA replication and transcription blockage. However, the ability of cisplatin to induce nuclear DNA (nDNA) damage per se is not sufficient to explain its high degree of effectiveness nor the toxic effects exerted on normal, post-mitotic tissues. Oxidative damage has been observed in vivo following exposure to cisplatin in several tissues, suggesting a role for oxidative stress in the pathogenesis of cisplatin-induced dose-limiting toxicities. However, the mechanism of cisplatin-induced generation of ROS and their contribution to cisplatin cytotoxicity in normal and cancer cells is still poorly understood. By employing a panel of normal and cancer cell lines and the budding yeast Saccharomyces cerevisiae as model system, we show that exposure to cisplatin induces a mitochondrial-dependent ROS response that significantly enhances the cytotoxic effect caused by nDNA damage. ROS generation is independent of the amount of cisplatin-induced nDNA damage and occurs in mitochondria as a consequence of protein synthesis impairment. The contribution of cisplatin-induced mitochondrial dysfunction in determining its cytotoxic effect varies among cells and depends on mitochondrial redox status, mitochondrial DNA integrity and bioenergetic function. Thus, by manipulating these cellular parameters, we were able to enhance cisplatin cytotoxicity in cancer cells. This study provides a new mechanistic insight into cisplatin-induced cell killing and may lead to the design of novel therapeutic strategies to improve anticancer drug efficacy. PMID:24260552

  8. Chaos game representation of functional protein sequences, and simulation and multifractal analysis of induced measures

    International Nuclear Information System (INIS)

    Zu-Guo, Yu; Qian-Jun, Xiao; Long, Shi; Jun-Wu, Yu; Anh, Vo

    2010-01-01

    Investigating the biological function of proteins is a key aspect of protein studies. Bioinformatic methods become important for studying the biological function of proteins. In this paper, we first give the chaos game representation (CGR) of randomly-linked functional protein sequences, then propose the use of the recurrent iterated function systems (RIFS) in fractal theory to simulate the measure based on their chaos game representations. This method helps to extract some features of functional protein sequences, and furthermore the biological functions of these proteins. Then multifractal analysis of the measures based on the CGRs of randomly-linked functional protein sequences are performed. We find that the CGRs have clear fractal patterns. The numerical results show that the RIFS can simulate the measure based on the CGR very well. The relative standard error and the estimated probability matrix in the RIFS do not depend on the order to link the functional protein sequences. The estimated probability matrices in the RIFS with different biological functions are evidently different. Hence the estimated probability matrices in the RIFS can be used to characterise the difference among linked functional protein sequences with different biological functions. From the values of the D q curves, one sees that these functional protein sequences are not completely random. The D q of all linked functional proteins studied are multifractal-like and sufficiently smooth for the C q (analogous to specific heat) curves to be meaningful. Furthermore, the D q curves of the measure μ based on their CGRs for different orders to link the functional protein sequences are almost identical if q ≥ 0. Finally, the C q curves of all linked functional proteins resemble a classical phase transition at a critical point. (cross-disciplinary physics and related areas of science and technology)

  9. Cisplatin impairs rat liver mitochondrial functions by inducing changes on membrane ion permeability: Prevention by thiol group protecting agents

    International Nuclear Information System (INIS)

    Custodio, Jose B.A.; Cardoso, Carla M.P.; Santos, Maria S.; Almeida, Leonor M.; Vicente, Joaquim A.F.; Fernandes, Maria A.S.

    2009-01-01

    Cisplatin (CisPt) is the most important platinum anticancer drug widely used in the treatment of head, neck, ovarian and testicular cancers. However, the mechanisms by which CisPt induces cytotoxicity, namely hepatotoxicity, are not completely understood. The goal of this study was to investigate the influence of CisPt on rat liver mitochondrial functions (Ca 2+ -induced mitochondrial permeability transition (MPT), mitochondrial bioenergetics, and mitochondrial oxidative stress) to better understand the mechanism underlying its hepatotoxicity. The effect of thiol group protecting agents and some antioxidants against CisPt-induced mitochondrial damage was also investigated. Treatment of rat liver mitochondria with CisPt (20 nmol/mg protein) induced Ca 2+ -dependent mitochondrial swelling, depolarization of membrane potential (ΔΨ), Ca 2+ release, and NAD(P)H fluorescence intensity decay. These effects were prevented by cyclosporine A (CyA), a potent and specific inhibitor of the MPT. In the concentration range of up to 40 nmol/mg protein, CisPt slightly inhibited state 3 and stimulated state 2 and state 4 respiration rates using succinate as respiratory substrate. The respiratory indexes, respiratory control ratio (RCR) and ADP/O ratios, the ΔΨ, and the ADP phosphorylation rate were also depressed. CisPt induced mitochondrial inner membrane permeabilization to protons (proton leak) but did not induce significant changes on mitochondrial H 2 O 2 generation. All the effects induced by CisPt on rat liver mitochondria were prevented by thiol group protecting agents namely, glutathione (GSH), dithiothreitol (DTT), N-acetyl-L-cysteine (NAC) and cysteine (CYS), whereas superoxide-dismutase (SOD), catalase (CAT) and ascorbate (ASC) were without effect. In conclusion, the anticancer drug CisPt: (1) increases the sensitivity of mitochondria to Ca 2+ -induced MPT; (2) interferes with mitochondrial bioenergetics by increasing mitochondrial inner membrane permeabilization to

  10. A STUDY ON THE EFFECTIVENESS OF BOBATH APPROACH VERSUS CONSTRAINT INDUCED MOVEMENT THERAPY (CIMT) TO IMPROVE THE ARM MOTOR FUNCTION AND THE HAND DEXTERITY FUNCTION IN POST STROKE PATIENTS

    OpenAIRE

    Bushra Rehman; Praveen Rawat; Vaibhav Agarwal; Shiv Kumar Verma

    2015-01-01

    Objective: To compare the effects of the Bobath Therapy and Constraint-Induced Movement Therapy on arm motor function and hand dexterity function among stroke patients with a high level of function on the affected side. Materials and Methods: Study has conducted at the Outpatient physiotherapy department of a stroke unit. With a total of 30 patients were conveniently recruited and then randomized to Bobath Concept group and constraint-induced movement therapy group. Intervention included ...

  11. Montelukast prevents microparticle-induced inflammatory and functional alterations in human bronchial smooth muscle cells.

    Science.gov (United States)

    Fogli, Stefano; Stefanelli, Fabio; Neri, Tommaso; Bardelli, Claudio; Amoruso, Angela; Brunelleschi, Sandra; Celi, Alessandro; Breschi, Maria Cristina

    2013-10-01

    Microparticles (MPs) are membrane fragments that may play a role in the pathogenesis of chronic respiratory diseases. We aimed to investigate whether human monocytes/macrophage-derived MPs could induce a pro-inflammatory phenotype in human bronchial smooth muscle cells (BSMC) and the effect of montelukast in this setting. Experimental methods included isolation of human monocytes/macrophages and generation of monocyte-derived MPs, RT-PCR analysis of gene expression, immunoenzymatic determination of pro-inflammatory factor release, bioluminescent assay of intracellular cAMP levels and electromobility shift assay analysis of NF-κB nuclear translocation. Stimulation of human BSMC with monocyte-derived MPs induced a pro-inflammatory switch in human BSMC by inducing gene expression (COX-2 and IL-8), protein release in the supernatant (PGE2 and IL-8), and heterologous β2-adrenoceptor desensitization. The latter effect was most likely related to autocrine PGE2 since pre-treatment with COX inhibitors restored the ability of salbutamol to induce cAMP synthesis in desensitized cells. Challenge with MPs induced nuclear translocation of NF-κB and selective NF-κB inhibition decreased MP-induced cytokine release in the supernatant. Montelukast treatment prevented IL-8 release and heterologous β2-adrenoceptor desensitization in human BSMC exposed to monocyte-derived MPs by blocking NF-κB nuclear translocation. These findings provide evidence on the role of human monocyte-derived MPs in the airway smooth muscle phenotype switch as a novel potential mechanism in the progression of chronic respiratory diseases and on the protective effects by montelukast in this setting. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Purinergic receptor X7 mediates leptin induced GLUT4 function in stellate cells in nonalcoholic steatohepatitis

    OpenAIRE

    Chandrashekaran, Varun; Das, Suvarthi; Seth, Ratanesh Kumar; Dattaroy, Diptadip; Alhasson, Firas; Michelotti, Gregory; Nagarkatti, Mitzi; Nagarkatti, Prakash; Diehl, Anna Mae; Chatterjee, Saurabh

    2016-01-01

    Metabolic oxidative stress via CYP2E1 can act as a second hit in NASH progression. Our previous studies have shown that oxidative stress in NASH causes higher leptin levels and induces purinergic receptor X7 (P2X7r). We tested the hypothesis that higher circulating leptin due to CYP2E1-mediated oxidative stress induces P2X7r. P2X7r in turn activates stellate cells and causes increased proliferation via modulating Glut4, the glucose transporter, and increased intracellular glucose. Using a hig...

  13. Hypercholesterolemia Induced by a PCSK9 Gain-of-Function Mutation Augments Angiotensin II-Induced Abdominal Aortic Aneurysms in C57BL/6 Mice-Brief Report.

    Science.gov (United States)

    Lu, Hong; Howatt, Deborah A; Balakrishnan, Anju; Graham, Mark J; Mullick, Adam E; Daugherty, Alan

    2016-09-01

    Gain-of-function mutations of PCSK9 (proprotein convertase subtilisin/kexin type 9) lead to hypercholesterolemia. This study was to determine whether infection of normocholesterolemic mice with an adeno-associated viral (AAV) vector expressing a gain-of-function mutation of mouse PCSK9 increased angiotensin II (AngII)-induced abdominal aortic aneurysms. In an initial study, male C57BL/6 mice were injected intraperitoneally with either an empty vector or PCSK9 gain-of-function mutation (D377Y). AAV at 3 doses and fed a saturated fat-enriched diet for 6 weeks. Two weeks after AAV injection, mice were infused with AngII for 4 weeks. Plasma PCSK9 concentrations were increased dose dependently in mice injected with AAV containing PCSK9D377Y mutation and positively associated with elevations of plasma cholesterol concentrations. Infection with intermediate and high doses of PCSK9D377Y.AAV led to equivalent increases of maximal width of abdominal aortas in C57BL/6 mice infused with AngII. Therefore, the intermediate dose was used in subsequent experiments. We then determined effects of PCSK9D377Y.AAV infection on 5 normolipidemic mouse strains, demonstrating that C57BL/6 mice were the most susceptible to this AAV infection. PCSK9D377Y.AAV infected male C57BL/6 mice were also compared with age-matched male low-density lipoprotein receptor(-/-) mice. Although plasma cholesterol concentrations were lower in mice infected with PCSK9D377Y.AAV, these mice had equivalent abdominal aortic aneurysmal formation, compared to low-density lipoprotein receptor(-/-) mice. In a separate study, reduced plasma PCSK9 concentrations by PCSK9 antisense oligonucleotides in male low-density lipoprotein receptor(-/-) mice did not influence AngII-induced abdominal aortic aneurysms. AAV-mediated infection with a mouse PCSK9 gain-of-function mutation is a rapid, easy, and efficient approach for inducing hypercholesterolemia and promoting abdominal aortic aneurysms in C57BL/6 mice infused with Ang

  14. Lysosomal Exoglycosidase Profile and Secretory Function in the Salivary Glands of Rats with Streptozotocin-Induced Diabetes

    Directory of Open Access Journals (Sweden)

    Mateusz Maciejczyk

    2017-01-01

    Full Text Available Before this study, there had been no research evaluating the relationship between a lysosomal exoglycosidase profile and secretory function in the salivary glands of rats with streptozotocin- (STZ- induced type 1 diabetes. In our work, rats were divided into 4 groups of 8 animals each: control groups (C2, C4 and diabetic groups (STZ2, STZ4. The secretory function of salivary glands—nonstimulated and stimulated salivary flow, α-amylase, total protein—and salivary exoglycosidase activities—N-acetyl-β-hexosaminidase (HEX, HEX A, and HEX B, β-glucuronidase, α-fucosidase, β-galactosidase, and α-mannosidase—was estimated both in the parotid and submandibular glands of STZ-diabetic and control rats. The study has demonstrated that the activity of most salivary exoglycosidases is significantly higher in the parotid and submandibular glands of STZ-diabetic rats as compared to the healthy controls and that it increases as the disease progresses. Reduced secretory function of diabetic salivary glands was also observed. A significant inverse correlation between HEX B, α-amylase activity, and stimulated salivary flow in diabetic parotid gland has also been shown. Summarizing, STZ-induced diabetes leads to a change in the lysosomal exoglycosidase profile and reduced function of the salivary glands.

  15. Surface modification of TiO2 nanoparticles via photocataliticaly induced reaction: Influence of functionality of silane coupling agent

    International Nuclear Information System (INIS)

    Tomovska, Radmila; Daniloska, Vesna; Asua, Jose M.

    2013-01-01

    Highlights: ► TiO 2 nanoparticles were modified by photocatalytic induced surface reaction. ► TiO 2 nanoparticles were subjects of modification and catalysts for the reaction. ► No cleavage of Si-C bond in silane coupling agent 3-triethoxysilyl propyl isocianate. ► High influence of functional group in silane on the Si-C cleavage was determined. ► Different electronegativity of the functionalities in the silane determines reaction way. - Abstract: In the present work the surface modification of TiO 2 nanoparticles by photocatalyticaly induced reaction with silane coupling agent 3-triethoxysilyl propyl isocianate (PIC) has been presented. It was demonstrated establishing of covalent Ti-O-Si bond between the nanoparticles and the PIC molecule. In comparison with previous results, it was demonstrated the high influence of the functional group from the silane coupling agent on the reaction course during surface functionalziation of TiO 2 nanoparticles. Depending on the amount and type (electronegativity of the end-functionalities) of the silane compound, high control of the surface characteristics of TiO 2 nanoparticles could be achieved.

  16. Baroreflex deficiency induces additional impairment of vagal tone, diastolic function and calcium handling proteins after myocardial infarction

    Science.gov (United States)

    Mostarda, Cristiano; Rodrigues, Bruno; Medeiros, Alessandra; Moreira, Edson D; Moraes-Silva, Ivana C; Brum, Patricia C; Angelis, Katia De; Irigoyen, Maria-Cláudia

    2014-01-01

    Baroreflex dysfunction has been considered an important mortality predictor after myocardial infarction (MI). However, the impact of baroreflex deficiency prior to MI on tonic autonomic control and cardiac function, and on the profile of proteins associated with intracellular calcium handling has not yet been studied. The aim of the present study was to analyze how the impairment of baroreflex induced by sinoaortic denervation (SAD) prior to MI in rats affects the tonic autonomic control, ventricular function and cardiomyocyte calcium handling proteins. After 15 days of following or SAD surgery, rats underwent MI. Echocardiographic, hemodynamic, autonomic and molecular evaluations were performed 90 days after MI. Baroreflex impairment led to additional damage on: left ventricular remodeling, diastolic function, vagal tonus and intrinsic heart rate after MI. The loss of vagal component of the arterial baroreflex and vagal tonus were correlated with changes in the cardiac proteins involved in intracellular calcium homeostasis. Furthermore, additional increase in sodium calcium exchanger expression levels was associated with impaired diastolic function in experimental animals. Our findings strongly suggest that previous arterial baroreflex deficiency may induce additional impairment of vagal tonus, which was associated with calcium handling proteins abnormalities, probably triggering ventricular diastolic dysfunction after MI in rats. PMID:24936224

  17. On the spurious correlations among the ratio data induced by "the Law of Power Function"

    OpenAIRE

    Kusakabe, Shinichi

    2011-01-01

    Most of the statistical data have power functional relationships with the size of the population, and therefore these statistical data fall in the powerfunctional relationships each other. These relations were analyzed through the derivations based on the simple model, and the law underlying these relations was called as "the Law of Power Function". These power functional relationships necessarily cause the spurious correlations in the regression analyses. These analyses cast doubt the basic ...

  18. Relationship of Neurocognitive Function to Breast Cancer Treatment and Induced Menopause

    National Research Council Canada - National Science Library

    Kenefick, Amy L

    2007-01-01

    .... A nine month longitudinal research study describing changes in neurocognitive function in women receiving chemotherapy for breast cancer and in a comparison group of women having had surgically...

  19. Olfactory training induces changes in regional functional connectivity in patients with long-term smell loss

    Directory of Open Access Journals (Sweden)

    K. Kollndorfer

    2015-01-01

    The results of this study indicate that an olfactory training program can reorganize functional networks, although, initially, no differences in the spatial distribution of neural activation were observed.

  20. Velocity Induced by a Plane Uniform Vortex Having the Schwarz Function of Its Boundary with Two Simple Poles

    Directory of Open Access Journals (Sweden)

    G. Riccardi

    2008-01-01

    Full Text Available The velocity induced by a plane, uniform vortex is investigated through the use of an integral relation between Schwarz function of the vortex boundary and conjugate of the velocity. The analysis is restricted to a certain class of vortices, the boundaries of which are described through conformal maps onto the unit circle and the corresponding Schwarz functions possess two poles in the plane of the circle. The dependence of the velocity field on the vortex shape is investigated by comparing velocity and streamfunction with the ones of the equivalent Rankine vortex (which has the same vorticity, area, and center of vorticity. By changing the parameters of the Schwarz function (poles and corresponding residues, rather complicated vortex shapes can be easily analyzed, some of them mimicing an incipient filamentation of the vortex boundary.

  1. Abnormal vibration induced illusion of movement in essential tremor: evidence for abnormal muscle spindle afferent function

    OpenAIRE

    Frima, N; Grunewald, R

    2005-01-01

    Objectives: Vibration induced illusion of movement (VIIM) is abnormal in patients with idiopathic focal dystonia, an abnormality which corrects with fatigue of the vibrated muscle. Since dystonia and essential tremor sometimes coexist in families, we investigated the perception of VIIM and the effect of fatigue on VIIM in patients with essential tremor.

  2. Alcohol-induced bone loss is blocked in p47phox -/- mice lacking functional nadph oxidases

    Science.gov (United States)

    Chronic ethanol (EtOH) consumption produces bone loss. Previous data suggest a role for NADPH oxidase enzymes (Nox) since the pan-Nox inhibitor diphenylene iodonium (DPI) blocks EtOH-induced bone loss in rats. The current study utilized mice in which Nox enzymes 1,2,3 and 5 are inactivated as a resu...

  3. The potential of virus-induced gene silencing for speeding up functional characterization of plant genes

    NARCIS (Netherlands)

    Benedito, V.A.; Visser, P.B.; Angenent, G.C.; Krens, F.A.

    2004-01-01

    Virus-induced gene silencing (VIGS) has been shown to be of great potential in plant reverse genetics. Advantages of VIGS over other approaches, such as T-DNA or transposon tagging, include the circumvention of plant transformation, methodological simplicity and robustness, and speedy results. These

  4. Functional and Genomic Architecture of Borrelia burgdorferi-Induced Cytokine Responses in Humans

    NARCIS (Netherlands)

    Oosting, Marije; Kerstholt, Mariska; ter Horst, Rob; Li, Yang; Deelen, Patrick; Smeekens, Sanne; Jaeger, Martin; Lachmandas, Ekta; Vrijmoeth, Hedwig; Lupse, Mihaela; Flonta, Mirela; Cramer, Robert A.; Kullberg, Bart Jan; Kumar, Vinod; Xavier, Ramnik; Wijmenga, Cisca; Netea, Mihai G.; Joosten, Leo A. B.

    2016-01-01

    Despite the importance of immune variation for the symptoms and outcome of Lyme disease, the factors influencing cytokine production during infection with the causal pathogen Borrelia burgdorferi remain poorly understood. Borrelia infection-induced monocyte- and T cell-derived cytokines were

  5. Ligation of MHC class I molecules on peripheral blood T lymphocytes induces new phenotypes and functions

    DEFF Research Database (Denmark)

    Bregenholt, S; Röpke, M; Skov, S

    1996-01-01

    of T cell-mediated cytotoxicity. Immediately following MHC-I ligation, the T cells responded with increased protein tyrosine phosphorylation, with new bands appearing in the SDS-PAGE. Exposure of T cells to immobilized anti-MHC-I Ab for 24 h induced an increased surface expression of the TCR/CD3 and CD......28 molecules. MHC-I-induced proliferation of purified T cells was dependent on cellular interactions with non-T cells. Under certain conditions, in which MHC-I was ligated by picogram concentrations of immobilized anti-MHC-I Ab, anti-TCR/CD3 Ab-induced proliferation of T cells was strongly inhibited....... These data clearly demonstrate that ligation of the MHC-I complex on T cells may induce both positive and negative signals. Since the physiologic ligands for MHC-I molecules are TCR and the CD8 molecules, our data may suggest that MHC-I molecules are instrumental in cellular interactions between T cells....

  6. Terbutaline-induced desensitization of beta 2-adrenoceptor in vivo function in humans: attenuation by ketotifen

    NARCIS (Netherlands)

    Brodde, O. E.; Petrasch, S.; Bauch, H. J.; Daul, A.; Gnadt, M.; Oefler, D.; Michel, M. C.

    1992-01-01

    Use of beta-adrenoceptor agonists in long-term treatment of patients with chronic asthma bronchiale or heart failure is of limited value because beta-adrenoceptor desensitization develops. The antiallergic drug ketotifen prevents beta-adrenoceptor agonist-induced desensitization of rat and human

  7. Radiation-induced cell mutations as a function of dose rate

    International Nuclear Information System (INIS)

    Kiefer, J.

    1987-01-01

    A brief review of the data in the literature is presented and forms the background of the experimental data given by the author obtained with exponential long-term cultures of V79 hamster cells exposed over a period of up to 35 days to different dose rates of gamma radiation. The experimental results show that at a dose rate of 40 mGy/hour the number of induced mutations is reduced, - which is in agreement with literature data - , but a dose rate of less than 30 mGy/hour makes the induced mutations leap to a value clearly higher than those induced by acute irradiation. As in addition to the mutations recombination is a significant factor of the radiation risk, experiments with a heterozygotic yeast strain have been made, as there is to date no reliable mammalian cell system available for this kind of research. Long-term radiation exposure of the yeast cells over a period of six weeks drastically increased the rate of recombinations, to a value higher by a factor of about 4 than that induced by acute irradiation. (orig.) [de

  8. Functional and regulatory conservation of the soybean ER stress-induced DCD/NRP-mediated cell death signaling in plants.

    Science.gov (United States)

    Reis, Pedro A B; Carpinetti, Paola A; Freitas, Paula P J; Santos, Eulálio G D; Camargos, Luiz F; Oliveira, Igor H T; Silva, José Cleydson F; Carvalho, Humberto H; Dal-Bianco, Maximiller; Soares-Ramos, Juliana R L; Fontes, Elizabeth P B

    2016-07-12

    The developmental and cell death domain (DCD)-containing asparagine-rich proteins (NRPs) were first identified in soybean (Glycine max) as transducers of a cell death signal derived from prolonged endoplasmic reticulum (ER) stress, osmotic stress, drought or developmentally-programmed leaf senescence via the GmNAC81/GmNAC30/GmVPE signaling module. In spite of the relevance of the DCD/NRP-mediated signaling as a versatile adaptive response to multiple stresses, mechanistic knowledge of the pathway is lacking and the extent to which this pathway may operate in the plant kingdom has not been investigated. Here, we demonstrated that the DCD/NRP-mediated signaling also propagates a stress-induced cell death signal in other plant species with features of a programmed cell death (PCD) response. In silico analysis revealed that several plant genomes harbor conserved sequences of the pathway components, which share functional analogy with their soybean counterparts. We showed that GmNRPs, GmNAC81and VPE orthologs from Arabidopsis, designated as AtNRP-1, AtNRP-2, ANAC036 and gVPE, respectively, induced cell death when transiently expressed in N. benthamiana leaves. In addition, loss of AtNRP1 and AtNRP2 function attenuated ER stress-induced cell death in Arabidopsis, which was in marked contrast with the enhanced cell death phenotype displayed by overexpressing lines as compared to Col-0. Furthermore, atnrp-1 knockout mutants displayed enhanced sensitivity to PEG-induced osmotic stress, a phenotype that could be complemented with ectopic expression of either GmNRP-A or GmNRP-B. In addition, AtNRPs, ANAC036 and gVPE were induced by osmotic and ER stress to an extent that was modulated by the ER-resident molecular chaperone binding protein (BiP) similarly as in soybean. Finally, as putative downstream components of the NRP-mediated cell death signaling, the stress induction of AtNRP2, ANAC036 and gVPE was dependent on the AtNRP1 function. BiP overexpression also conferred

  9. Streptomycin decreases the functional shift to a slow phenotype induced by electrical stimulation in engineered muscle.

    Science.gov (United States)

    Khodabukus, Alastair; Baar, Keith

    2015-03-01

    Chronic low-frequency stimulation (CLFS) has long been used to induce a fast-to-slow phenotype shift in skeletal muscle. In this study, we explore the role of frequency (10 and 20 Hz), active time (15-60%), and streptomycin in inducing a fast-to-slow shift in engineered muscle. We found that C2C12 engineered muscle could respond to CLFS with an adult-like active time of 60% and found that a constant 10 Hz train of 0.6 s, followed by 0.4 s rest, induced a partial fast-to-slow phenotype shift. Following 2 weeks of CLFS, time-to-peak tension (TPT) (control [CTL]=40.9±0.2 ms; 10 Hz=58.5±3.5 ms; 20 Hz=48.2±2.7 ms) and half-relaxation time (1/2RT) (CTL=50.4±0.6 ms; 10 Hz=76.1±3.3 ms; 20 Hz=66.6±2.3 ms) slowed significantly in frequency, but not in an active time-dependent manner. Streptomycin significantly blunted the slowing of TPT and 1/2RT induced by CLFS by minimizing the fast-to-slow shift in SERCA isoform. Streptomycin (Nonstim=-42.8%±2.5%; Stim=-38.1%±3.6%) significantly prevented the improvement in fatigue resistance seen in CTL constructs (Nonstim=-58.4%±3.6%; Stim=-27.8%±1.7%). Streptomycin reduced the increase seen in GLUT4 protein following CLFS (CTL=89.4%±6.7%; STREP=41.0%±4.3%) and prevented increases in the mitochondrial proteins succinate dehydrogenase (SDH) and ATP synthase. These data demonstrate that streptomycin significantly blunts the fast-to-slow shift induced by CLFS. In the absence of streptomycin, CLFS induced slowing of contractile dynamics and improved fatigue resistance and suggests that this model can be used to study the mechanisms underlying CLFS-induced adaptations in muscle phenotype.

  10. COX2 inhibition during nephrogenic period induces ANG II hypertension and sex-dependent changes in renal function during aging.

    Science.gov (United States)

    Reverte, Virginia; Tapia, Antonio; Loria, Analia; Salazar, Francisco; Llinas, M Teresa; Salazar, F Javier

    2014-03-01

    This study was performed to test the hypothesis that ANG II contributes to the hypertension and renal functional alterations induced by a decrease of COX2 activity during the nephrogenic period. It was also examined whether renal functional reserve and renal response to volume overload and high sodium intake are reduced in 3-4- and 9-11-mo-old male and female rats treated with vehicle or a COX2 inhibitor during nephrogenic period (COX2np). Our data show that this COX2 inhibition induces an ANG II-dependent hypertension that is similar in male and female rats. Renal functional reserve is reduced in COX2np-treated rats since their renal response to an increase in plasma amino acids levels is abolished, and their renal ability to eliminate a sodium load is impaired (P renal excretory ability is similar in both sexes during aging but does not induce the development of a sodium-sensitive hypertension. However, the prolonged high-sodium intake at 9-11 mo of age leads to a greater proteinuria in male than in female (114 ± 12 μg/min vs. 72 ± 8 μg/min; P Renal hemodynamic sensitivity to acute increments in ANG II is unaltered in both sexes and at both ages in COX2np-treated rats. In summary, these results indicate that the reduction of COX2 activity during nephrogenic period programs for the development of an ANG II-dependent hypertension, reduces renal functional reserve to a similar extent in both sexes, and increases proteinuria in males but not in females when there is a prolonged increment in sodium intake.

  11. Agrobacterium rhizogenes-induced cotton hairy root culture as an alternative tool for cotton functional genomics

    Science.gov (United States)

    Although well-accepted as the ultimate method for cotton functional genomics, Agrobacterium tumefaciens-mediated cotton transformation is not widely used for functional analyses of cotton genes and their promoters since regeneration of cotton in tissue culture is lengthy and labor intensive. In cer...

  12. Tool-use practice induces changes in intrinsic functional connectivity of parietal areas

    Directory of Open Access Journals (Sweden)

    Kwangsun eYoo

    2013-02-01

    Full Text Available Intrinsic functional connectivity from resting state functional magnetic resonance imaging (rsfMRI has increasingly received attention as a possible predictor of cognitive function and performance. In this study, we investigated the influence of practicing skillful tool manipulation on intrinsic functional connectivity in the resting brain. Acquisition of tool-use skill has two aspects such as formation of motor representation for skillful manipulation and acquisition of the tool concept. To dissociate these two processes, we chose chopsticks-handling with the non-dominant hand. Because participants were already adept at chopsticks-handling with their dominant hand, practice with the non-dominant hand involved only acquiring the skill for tool manipulation with existing knowledge. Eight young participants practiced chopsticks-handling with their non-dominant hand for 8 weeks. They underwent fMRI sessions before and after the practice. As a result, functional connectivity among tool-use-related regions of the brain decreased after practice. We found decreased functional connectivity centered on parietal areas, mainly the supramarginal gyrus and superior parietal lobule and additionally between the primary sensorimotor area and cerebellum. These results suggest that the parietal lobe and cerebellum purely mediate motor learning for skillful tool-use. This decreased functional connectivity may represent increased efficiency of functional network.

  13. Prevention of radiographic-contrast-agent-induced reductions in renal function by acetylcysteine

    DEFF Research Database (Denmark)

    Tepel, Martin; van der Giet, M; Schwarzfeld, C

    2000-01-01

    Radiographic contrast agents can cause a reduction in renal function that may be due to reactive oxygen species. Whether the reduction can be prevented by the administration of antioxidants is unknown.......Radiographic contrast agents can cause a reduction in renal function that may be due to reactive oxygen species. Whether the reduction can be prevented by the administration of antioxidants is unknown....

  14. Default-Mode Network Functional Connectivity in Aphasia: Therapy-Induced Neuroplasticity

    Science.gov (United States)

    Marcotte, Karine; Perlbarg, Vincent; Marrelec, Guillaume; Benali, Habib; Ansaldo, Ana Ines

    2013-01-01

    Previous research on participants with aphasia has mainly been based on standard functional neuroimaging analysis. Recent studies have shown that functional connectivity analysis can detect compensatory activity, not revealed by standard analysis. Little is known, however, about the default-mode network in aphasia. In the current study, we studied…

  15. Changes in the functional trait composition and diversity of meadow communities induced by Rhinanthus minor L.

    Czech Academy of Sciences Publication Activity Database

    Mudrák, Ondřej; de Bello, Francesco; Doležal, Jiří; Lepš, Jan

    2016-01-01

    Roč. 51, č. 1 (2016), s. 1-11 ISSN 1211-9520 R&D Projects: GA MŠk(CZ) EE2.3.30.0048 Institutional support: RVO:67985939 ; RVO:60077344 Keywords : functional traits * functional diversity * root hemiparasite Subject RIV: EF - Botanics; EH - Ecology, Behaviour (BC-A) Impact factor: 1.017, year: 2016

  16. Synthesis and functionalization of chitosan built hydrogel with induced hydrophilicity for extended release of sparingly soluble drugs.

    Science.gov (United States)

    Ullah, Faheem; Javed, Fatima; Othman, M B H; Khan, Abbas; Gul, Rukhsana; Ahmad, Zulkifli; Md Akil, Hazizan

    2018-03-01

    Addressing the functional biomaterials as next-generation therapeutics, chitosan and alginic acid were copolymerized in the form of chemically crosslinked interpenetrating networks (IPNs). The native hydrogel was functionalized via carbodiimide (EDC), catalyzed coupling of soft ligand (1,2-Ethylenediamine) and hard ligand (4-aminophenol) to replace -OH groups in alginic acid units for extended hydrogel- interfaces with the aqueous and sparingly soluble drug solutions. The chemical structure, Lower solution critical temperature (LCST ≈ 37.88 °C), particle size (Z h,app  ≈ 150-200 nm), grain size (160-360 nm), surface roughness (85-250 nm), conductivity (37-74 mv) and zeta potential (16-32 mv) of native and functionalized hydrogel were investigated by using FT-IR, solid state- 13 C-NMR, TGA, DSC, FESEM, AFM and dynamic light scattering (DLS) measurements. The effective swelling, drug loading (47-78%) and drug release (53-86%) profiles were adjusted based on selective functionalization of hydrophobic IPNs due to electrostatic complexation and extended interactions of hydrophilic ligands with the aqueous and drug solutions. Drug release from the hydrogel matrices with diffusion coefficient n ≈ 0.7 was established by Non- Fickian diffusion mechanism. In vitro degradation trials of the hydrogel with a 20% loss of wet mass in simulated gastric fluid (SGF) and 38% loss of wet mass in simulated intestinal fluid (SIF), were investigated for 400 h through bulk erosion. Consequently, a slower rate of drug loading and release was observed for native hydrogel, due to stronger H-bonding, interlocking and entanglement within the IPNs, which was finely tuned and extended by the induced hydrophilic and functional ligands. In the light of induced hydrophilicity, such functional hydrogel could be highly attractive for extended release of sparingly soluble drugs.

  17. Reverse effects of DPI administration combined with glutamine supplementation on function of rat neutrophils induced by overtraining.

    Science.gov (United States)

    Dong, Jingmei; Chen, Peijie; Liu, Qing; Wang, Ru; Xiao, Weihua; Zhang, Yajun

    2013-04-01

    To examine the excessive reactive oxygen species (ROS) mediated by nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and the combined effect of glutamine supplementation and diphenyleneiodonium (DPI) on the function of neutrophils induced by overtraining. Fifty male Wistar rats were randomly divided into 5 groups: control group (C), overtraining group (E), DPI-administration group (D), glutamine-supplementation group (G), and combined DPI and glutamine group (DG). Blood was sampled from the orbital vein after rats were trained on treadmill for 11 wk. Cytokine and lipid peroxidation in blood plasma were measured by enzyme-linked immunosorbent assay. The colocalization between gp91phox and p47phox of the NADPH oxidase was detected using immunocytochemistry and confocal microscopy. The activity of NADPH oxidase was assessed by chemiluminescence. Neutrophils' respiratory burst and phagocytosis function were measured by flow cytometry. NADPH oxidase was activated by overtraining. Cytokine and lipid peroxidation in blood plasma and the activity of NADPH oxidase were markedly increased in Group E compared with group C. Neutrophil function was lower in group E than group C. Both lower neutrophils function and higher ROS production were reversed in Group DG. The glutamine and DPI interference alone in group D and group G was less effective than DPI and glutamine combined in group DG. Activation of NADPH oxidase is responsible for the production of superoxide anions, which leads to excessive ROS and is related to the decrease in neutrophil function induced by overtraining. The combined DPI administration and glutamine supplementation reversed the decreased neutrophil function after overtraining.

  18. Functional Toll-like receptor 4 expressed in lactotrophs mediates LPS-induced proliferation in experimental pituitary hyperplasia

    Energy Technology Data Exchange (ETDEWEB)

    Sabatino, María Eugenia; Sosa, Liliana del Valle; Petiti, Juan Pablo; Mukdsi, Jorge Humberto [Centro de Microscopía Electrónica, Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Av. Enrique Barros y Enfermera Gordillo, Ciudad Universitaria, CP 5000, Córdoba (Argentina); Mascanfroni, Iván Darío; Pellizas, Claudia Gabriela [Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Av. Haya de la Torre y Medina Allende, Ciudad Universitaria, CP 5000, Córdoba (Argentina); Gutiérrez, Silvina; Torres, Alicia Inés [Centro de Microscopía Electrónica, Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Av. Enrique Barros y Enfermera Gordillo, Ciudad Universitaria, CP 5000, Córdoba (Argentina); De Paul, Ana Lucía, E-mail: adepaul@cmefcm.uncor.edu [Centro de Microscopía Electrónica, Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Av. Enrique Barros y Enfermera Gordillo, Ciudad Universitaria, CP 5000, Córdoba (Argentina)

    2013-11-15

    Toll like receptor 4 (TLR4) has been characterized for its ability to recognize bacterial endotoxin lipopolysaccharide (LPS). Considering that infections or inflammatory processes might contribute to the progression of pituitary tumors, we analyzed the TLR4 functional role by evaluating the LPS effect on lactotroph proliferation in primary cultures from experimental pituitary tumors, and examined the involvement of PI3K-Akt and NF-κB activation in this effect. In addition, the role of 17β-estradiol as a possible modulator of LPS-induced PRL cell proliferation was further investigated. In estrogen-induced hyperplasic pituitaries, LPS triggered lactotroph cell proliferation. However, endotoxin failed to increase the number of lactotrophs taking up BrdU in normal pituitaries. Moreover, incubation with anti-TLR4 antibody significantly reduced LPS-induced lactotroph proliferation, suggesting a functional role of this receptor. As a sign of TLR4 activation, an LPS challenge increased IL-6 release in normal and tumoral cells. By flow cytometry, TLR4 baseline expression was revealed at the plasma membrane of tumoral lactotrophs, without changes noted in the percentage of double PRL/TLR4 positive cells after LPS stimulus. Increases in TLR4 intracellular expression were detected as well as rises in CD14, p-Akt and NF-κB after an LPS challenge, as assessed by western blotting. The TLR4/PRL and PRL/NF-κB co-localization was also corroborated by immunofluorescence and the involvement of PI3K/Akt signaling in lactotroph proliferation and IL-6 release was revealed through the PI3K inhibitor Ly-294002. In addition, 17β-estradiol attenuated the LPS-evoked increase in tumoral lactotroph proliferation and IL-6 release. Collectively these results demonstrate the presence of functional TLR4 in lactotrophs from estrogen-induced hyperplasic pituitaries, which responded to the proliferative stimulation and IL-6 release induced by LPS through TLR4/CD14, with a contribution of the PI3K

  19. Functional Toll-like receptor 4 expressed in lactotrophs mediates LPS-induced proliferation in experimental pituitary hyperplasia

    International Nuclear Information System (INIS)

    Sabatino, María Eugenia; Sosa, Liliana del Valle; Petiti, Juan Pablo; Mukdsi, Jorge Humberto; Mascanfroni, Iván Darío; Pellizas, Claudia Gabriela; Gutiérrez, Silvina; Torres, Alicia Inés; De Paul, Ana Lucía

    2013-01-01

    Toll like receptor 4 (TLR4) has been characterized for its ability to recognize bacterial endotoxin lipopolysaccharide (LPS). Considering that infections or inflammatory processes might contribute to the progression of pituitary tumors, we analyzed the TLR4 functional role by evaluating the LPS effect on lactotroph proliferation in primary cultures from experimental pituitary tumors, and examined the involvement of PI3K-Akt and NF-κB activation in this effect. In addition, the role of 17β-estradiol as a possible modulator of LPS-induced PRL cell proliferation was further investigated. In estrogen-induced hyperplasic pituitaries, LPS triggered lactotroph cell proliferation. However, endotoxin failed to increase the number of lactotrophs taking up BrdU in normal pituitaries. Moreover, incubation with anti-TLR4 antibody significantly reduced LPS-induced lactotroph proliferation, suggesting a functional role of this receptor. As a sign of TLR4 activation, an LPS challenge increased IL-6 release in normal and tumoral cells. By flow cytometry, TLR4 baseline expression was revealed at the plasma membrane of tumoral lactotrophs, without changes noted in the percentage of double PRL/TLR4 positive cells after LPS stimulus. Increases in TLR4 intracellular expression were detected as well as rises in CD14, p-Akt and NF-κB after an LPS challenge, as assessed by western blotting. The TLR4/PRL and PRL/NF-κB co-localization was also corroborated by immunofluorescence and the involvement of PI3K/Akt signaling in lactotroph proliferation and IL-6 release was revealed through the PI3K inhibitor Ly-294002. In addition, 17β-estradiol attenuated the LPS-evoked increase in tumoral lactotroph proliferation and IL-6 release. Collectively these results demonstrate the presence of functional TLR4 in lactotrophs from estrogen-induced hyperplasic pituitaries, which responded to the proliferative stimulation and IL-6 release induced by LPS through TLR4/CD14, with a contribution of the PI3K

  20. Sulfated polysaccharides identified as inducers of neuropilin-1 internalization and functional inhibition of VEGF165 and semaphorin3A.

    Science.gov (United States)

    Narazaki, Masashi; Segarra, Marta; Tosato, Giovanna

    2008-04-15

    Neuropilin-1 (NRP1) and NRP2 are cell surface receptors shared by class 3 semaphorins and vascular endothelial growth factor (VEGF). Ligand interaction with NRPs selects the specific signal transducer, plexins for semaphorins or VEGF receptors for VEGF, and promotes NRP internalization, which effectively shuts down receptor-mediated signaling by a second ligand. Here, we show that the sulfated polysaccharides dextran sulfate and fucoidan, but not others, reduce endothelial cell-surface levels of NRP1, NRP2, and to a lesser extent VEGFR-1 and VEGFR-2, and block the binding and in vitro function of semaphorin3A and VEGF(165). Administration of fucoidan to mice reduces VEGF(165)-induced angiogenesis and tumor neovascularization in vivo. We find that dextran sulfate and fucoidan can bridge the extracellular domain of NRP1 to that of the scavenger receptor expressed by endothelial cells I (SREC-I), and induce NRP1 and SREC-I coordinate internalization and trafficking to the lysosomes. Overexpression of SREC-I in SREC-I-negative cells specifically reduces cell-surface levels of NRP1, indicating that SREC-I mediates NRP1 internalization. These results demonstrate that engineered receptor internalization is an effective strategy for reducing levels and function of cell-surface receptors, and identify certain sulfated polysaccharides as "internalization inducers."

  1. Roles of Sensory Nerves in the Regulation of Radiation-Induced Structural and Functional Changes in the Heart

    Energy Technology Data Exchange (ETDEWEB)

    Sridharan, Vijayalakshmi; Tripathi, Preeti [Department of Pharmaceutical Sciences, Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas (United States); Sharma, Sunil [Department of Radiation Oncology, Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas (United States); Moros, Eduardo G. [Department of Radiation Oncology, Moffitt Cancer Center and Research Institute, Tampa, Florida (United States); Zheng, Junying [Department of Pharmaceutical Sciences, Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas (United States); Hauer-Jensen, Martin [Department of Pharmaceutical Sciences, Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas (United States); Surgical Service, Central Arkansas Veterans Healthcare System, Little Rock, Arkansas (United States); Boerma, Marjan, E-mail: mboerma@uams.edu [Department of Pharmaceutical Sciences, Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas (United States)

    2014-01-01

    Purpose: Radiation-induced heart disease (RIHD) is a chronic severe side effect of radiation therapy of intrathoracic and chest wall tumors. The heart contains a dense network of sensory neurons that not only are involved in monitoring of cardiac events such as ischemia and reperfusion but also play a role in cardiac tissue homeostasis, preconditioning, and repair. The purpose of this study was to examine the role of sensory nerves in RIHD. Methods and Materials: Male Sprague-Dawley rats were administered capsaicin to permanently ablate sensory nerves, 2 weeks before local image-guided heart x-ray irradiation with a single dose of 21 Gy. During the 6 months of follow-up, heart function was assessed with high-resolution echocardiography. At 6 months after irradiation, cardiac structural and molecular changes were examined with histology, immunohistochemistry, and Western blot analysis. Results: Capsaicin pretreatment blunted the effects of radiation on myocardial fibrosis and mast cell infiltration and activity. By contrast, capsaicin pretreatment caused a small but significant reduction in cardiac output 6 months after irradiation. Capsaicin did not alter the effects of radiation on cardiac macrophage number or indicators of autophagy and apoptosis. Conclusions: These results suggest that sensory nerves, although they play a predominantly protective role in radiation-induced cardiac function changes, may eventually enhance radiation-induced myocardial fibrosis and mast cell activity.

  2. Tartary buckwheat improves cognition and memory function in an in vivo amyloid-β-induced Alzheimer model.

    Science.gov (United States)

    Choi, Ji Yeon; Cho, Eun Ju; Lee, Hae Song; Lee, Jeong Min; Yoon, Young-Ho; Lee, Sanghyun

    2013-03-01

    Protective effects of Tartary buckwheat (TB) and common buckwheat (CB) on amyloid beta (Aβ)-induced impairment of cognition and memory function were investigated in vivo in order to identify potential therapeutic agents against Alzheimer's disease (AD) and its associated progressive memory deficits, cognitive impairment, and personality changes. An in vivo mouse model of AD was created by injecting the brains of ICR mice with Aβ(25-35), a fragment of the full-length Aβ protein. Damage of mice recognition ability through following Aβ(25-35) brain injections was confirmed using the T-maze test, the object recognition test, and the Morris water maze test. Results of behavior tests in AD model showed that oral administration of the methanol (MeOH) extracts of TB and CB improved cognition and memory function following Aβ(25-35) injections. Furthermore, in groups receiving the MeOH extracts of TB and CB, lipid peroxidation was significantly inhibited, and nitric oxide levels in tissue, which are elevated by injection of Aβ(25-35), were also decrease. In particular, the MeOH extract of TB exerted a stronger protective activity than CB against Aβ(25-35)-induced memory and cognition impairment. The results indicate that TB may play a promising role in preventing or reversing memory and cognition loss associated with Aβ(25-35)-induced AD. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Mechanism of H2O-Induced Conductance Changes in AuCl4-Functionalized CNTs

    KAUST Repository

    Murat, Altynbek

    2015-04-30

    We employ ab initio self-interaction corrected density functional theory combined with the nonequilibrium Green\\'s function method to study the electronic and quantum transport properties of carbon nanotubes (CNTs) functionalized with AuCl4 molecules. In particular, we investigate the electronic structure and characterize the conductance for different concentrations and configurations of randomly distributed AuCl4 molecules with and without the adsorption of H2O. We thus propose a mechanism that explains the origin of the recently observed resistivity changes of AuCl4-functionalized CNTs upon H2O adsorption. We find that water adsorption shifts the highest occupied Cl and Au states down in energy and thereby reduces the scattering of the electrons around the Fermi energy, hence enhancing the conductivity. Our results help in the development of highly sensitive nanoscale H2O vapor sensors based on AuCl4-functionalized CNTs. © 2015 American Chemical Society.

  4. Functional effects of cannabinoids during dopaminergic specification of human neural precursors derived from induced pluripotent stem cells.

    Science.gov (United States)

    Stanslowsky, Nancy; Jahn, Kirsten; Venneri, Anna; Naujock, Maximilian; Haase, Alexandra; Martin, Ulrich; Frieling, Helge; Wegner, Florian

    2017-09-01

    Among adolescents cannabis is one of the most widely used illicit drugs. In adolescence brain development continues, characterized by neuronal maturation and synaptic plasticity. The endocannabinoid system plays an important role during brain development by modulating neuronal function and neurogenesis. Changes in endocannabinoid signaling by Δ 9 -tetrahydrocannabinol (THC), the psychoactive component of cannabis, might therefore lead to neurobiological changes influencing brain function and behavior. We investigated the functional maturation and dopaminergic specification of human cord blood-derived induced pluripotent stem cell (hCBiPSC)-derived small molecule neural precursor cells (smNPCs) after cultivation with the endogenous cannabinoid anandamide (AEA) and the exogenous THC, both potent agonists at the cannabinoid 1 receptor (CB 1 R). Higher dosages of 10-μM AEA or THC significantly decreased functionality of neurons, indicated by reduced ion currents and synaptic activity. A lower concentration of 1-μM THC had no marked effect on neuronal and dopaminergic maturation, while 1-μM AEA significantly enhanced the frequency of synaptic activity. As there were no significant effects on DNA methylation in promotor regions of genes important for neuronal function, these cannabinoid actions seem to be mediated by another than this epigenetic mechanism. Our data suggest that there are concentration-dependent actions of cannabinoids on neuronal function in vitro indicating neurotoxic, dysfunctional effects of 10-μM AEA and THC during human neurogenesis. © 2016 Society for the Study of Addiction.

  5. Neurospheres from rat adipose-derived stem cells could be induced into functional Schwann cell-like cells in vitro

    Directory of Open Access Journals (Sweden)

    Shan Yanchang

    2008-02-01

    Full Text Available Abstract Background Schwann cells (SC which are myelin-forming cells in peripheral nervous system are very useful for the treatment of diseases of peripheral nervous system and central nervous system. However, it is difficult to obtain sufficient large number of SC for clinical use, so alternative cell systems are desired. Results Using a procedure similar to the one used for propagation of neural stem cells, we could induce rat adipose-derived stem cells (ADSC into floating neurospheres. In addition to being able to differentiate into neuronal- and glial-like cells, neurospheres could be induced to differentiate into SC-like cells. SC-like cells were bi- or tri-polar in shape and immunopositive for nestin and SC markers p75, GFAP and S-100, identical to genuine SC. We also found that SC-like cells could induce the differentiation of SH-SY5Y neuroblastoma cells efficiently, perhaps through secretion of soluble substances. We showed further that SC-like cells could form myelin structures with PC12 cell neurites in vitro. Conclusion These findings indicated that ADSC could differentiate into SC-like cells in terms of morphology, phenotype and functional capacities. SC-like cells induced from ADSC may be useful for the treatment of neurological diseases.

  6. QiShenYiQi Pills, a Compound Chinese Medicine, Prevented Cisplatin Induced Acute Kidney Injury via Regulating Mitochondrial Function

    Directory of Open Access Journals (Sweden)

    Li Zhou

    2017-12-01

    Full Text Available Nephrotoxicity is a serious adverse effect of cisplatin chemotherapy that limits its clinical application, to deal with which no effective management is available so far. The present study was to investigate the potential protective effect of QiShenYiQi Pills (QSYQ, a compound Chinese medicine, against cisplatin induced nephrotoxicity in mice. Pretreatment with QSYQ significantly attenuated the cisplatin induced increase in plasma urea and creatinine, along with the histological damage, such as tubular necrosis, protein cast, and desquamation of epithelial cells, improved the renal microcirculation disturbance as indicated by renal blood flow, microvascular flow velocity, and the number of adherent leukocytes. Additionally, QSYQ prevented mitochondrial dysfunction by preventing the cisplatin induced downregulation of mitochondrial complex activity and the expression of NDUFA10, ATP5D, and Sirt3. Meanwhile, the cisplatin-increased renal thiobarbituric acid-reactive substances, caspase9, cleaved-caspase9, and cleaved-caspase3 were all diminished by QSYQ pretreatment. In summary, the pretreatment with QSYQ remarkably ameliorated the cisplatin induced nephrotoxicity in mice, possibly via the regulation of mitochondrial function, oxidative stress, and apoptosis.

  7. Altered hippocampal arteriole structure and function in a rat model of preeclampsia: Potential role in impaired seizure-induced hyperemia.

    Science.gov (United States)

    Johnson, Abbie C; Cipolla, Marilyn J

    2017-08-01

    We investigated the effect of experimental preeclampsia on hyperemia during seizure in the hippocampus and vascular function and structure of hippocampal arterioles using Sprague Dawley rats (n = 14/group) that were nonpregnant, pregnant (d20), or had experimental preeclampsia (induced by a high cholesterol diet d7-20). Hyperemia was measured via hydrogen clearance basally and during pentylenetetrazol-induced seizure (40-130 mg/kg i.v.). Reactivity of isolated and pressurized hippocampal arterioles to KCl, nitric oxide synthase inhibition with NG-nitro-L-arginine methyl ester and the nitric oxide donor sodium nitroprusside were investigated. Capillary density was quantified via immunohistochemistry. Cerebral blood flow increased during seizure vs. baseline in pregnant (118 ± 14 vs. 87 ± 9 mL/100 g/min; p  0.05), suggesting impaired seizure-induced hyperemia in preeclampsia. Hippocampal arterioles from preeclamptic rats had less basal tone, and dilated less to 15 mM KCl (9 ± 8%) vs. pregnant (61 ± 27%) and nonpregnant rats (20 ± 11%). L-NAME had no effect on hippocampal arterioles in any group, but dilation to sodium nitroprusside was similar. Structurally, hippocampal arterioles from preeclamptic rats underwent inward hypotrophic remodeling and capillary rarefaction. Impaired seizure-induced hyperemia, vascular dysfunction, and limited vasodilatory reserve of hippocampal arterioles could potentiate hippocampal injury in preeclampsia especially during eclampsia.

  8. Nox2 contributes to hyperinsulinemia-induced redox imbalance and impaired vascular function

    Directory of Open Access Journals (Sweden)

    Abeer M. Mahmoud

    2017-10-01

    Full Text Available Insulin resistance promotes vascular endothelial dysfunction and subsequent development of cardiovascular disease. Previously we found that skeletal muscle arteriolar flow-induced dilation (FID was reduced following a hyperinsulinemic clamp in healthy adults. Therefore, we hypothesized that hyperinsulinemia, a hallmark of insulin resistance, contributes to microvascular endothelial cell dysfunction via inducing oxidative stress that is mediated by NADPH oxidase (Nox system. We examined the effect of insulin, at levels that are comparable with human hyperinsulinemia on 1 FID of isolated arterioles from human skeletal muscle tissue in the presence and absence of Nox inhibitors and 2 human adipose microvascular endothelial cell (HAMECs expression of nitric oxide (NO, endothelial NO synthase (eNOS, and Nox-mediated oxidative stress. In six lean healthy participants (mean age 25.5±1.6 y, BMI 21.8±0.9, reactive oxygen species (ROS were increased while NO and arteriolar FID were reduced following 60 min of ex vivo insulin incubation. These changes were reversed after co-incubation with the Nox isoform 2 (Nox2 inhibitor, VAS2870. In HAMECs, insulin-induced time-dependent increases in Nox2 expression and P47phox phosphorylation were echoed by elevations of superoxide production. In contrast, phosphorylation of eNOS and expression of superoxide dismutase (SOD2 and SOD3 isoforms showed a biphasic response with an increased expression at earlier time points followed by a steep reduction phase. Insulin induced eNOS uncoupling that was synchronized with a drop of NO and a surge of ROS production. These effects were reversed by Tempol (SOD mimetic, Tetrahydrobiopterin (BH4; eNOS cofactor, and VAS2870. Finally, insulin induced nitrotyrosine formation which was reversed by inhibiting NO or superoxide generation. In conclusions, hyperinsulinemia may reduce FID via inducing Nox2-mediated superoxide production in microvascular endothelial cells which reduce the

  9. Global biodiversity, stoichiometry and ecosystem function responses to human-induced C-N-P imbalances.

    Science.gov (United States)

    Carnicer, Jofre; Sardans, Jordi; Stefanescu, Constantí; Ubach, Andreu; Bartrons, Mireia; Asensio, Dolores; Peñuelas, Josep

    2015-01-01

    Global change analyses usually consider biodiversity as a global asset that needs to be preserved. Biodiversity is frequently analysed mainly as a response variable affected by diverse environmental drivers. However, recent studies highlight that gradients of biodiversity are associated with gradual changes in the distribution of key dominant functional groups characterized by distinctive traits and stoichiometry, which in turn often define the rates of ecosystem processes and nutrient cycling. Moreover, pervasive links have been reported between biodiversity, food web structure, ecosystem function and species stoichiometry. Here we review current global stoichiometric gradients and how future distributional shifts in key functional groups may in turn influence basic ecosystem functions (production, nutrient cycling, decomposition) and therefore could exert a feedback effect on stoichiometric gradients. The C-N-P stoichiometry of most primary producers (phytoplankton, algae, plants) has been linked to functional trait continua (i.e. to major axes of phenotypic variation observed in inter-specific analyses of multiple traits). In contrast, the C-N-P stoichiometry of higher-level consumers remains less precisely quantified in many taxonomic groups. We show that significant links are observed between trait continua across trophic levels. In spite of recent advances, the future reciprocal feedbacks between key functional groups, biodiversity and ecosystem functions remain largely uncertain. The reported evidence, however, highlights the key role of stoichiometric traits and suggests the need of a progressive shift towards an ecosystemic and stoichiometric perspective in global biodiversity analyses. Copyright © 2014 Elsevier GmbH. All rights reserved.

  10. Olfactory training induces changes in regional functional connectivity in patients with long-term smell loss.

    Science.gov (United States)

    Kollndorfer, K; Fischmeister, F Ph S; Kowalczyk, K; Hoche, E; Mueller, C A; Trattnig, S; Schöpf, V

    2015-01-01

    Recently, olfactory training has been introduced as a promising treatment for patients with olfactory dysfunction. However, less is known about the neuronal basis and the influence on functional networks of this training. Thus, we aimed to investigate the neuroplasticity of chemosensory perception through an olfactory training program in patients with smell loss. The experimental setup included functional MRI (fMRI) experiments with three different types of chemosensory stimuli. Ten anosmic patients (7f, 3m) and 14 healthy controls (7f, 7m) underwent the same testing sessions. After a 12-week olfactory training period, seven patients (4f, 3m) were invited for follow-up testing using the same fMRI protocol. Functional networks were identified using independent component analysis and were further examined in detail using functional connectivity analysis. We found that anosmic patients and healthy controls initially use the same three networks to process chemosensory input: the olfactory; the somatosensory; and the integrative network. Those networks did not differ between the two groups in their spatial extent, but in their functional connectivity. After the olfactory training, the sensitivity to detect odors significantly increased in the anosmic group, which was also manifested in modifications of functional connections in all three investigated networks. The results of this study indicate that an olfactory training program can reorganize functional networks, although, initially, no differences in the spatial distribution of neural activation were observed.

  11. IFNB1/interferon-ß-induced autophagy in MCF-7 breast cancer cells counteracts its proapoptotic function

    DEFF Research Database (Denmark)

    Ambjørn, Malene; Ejlerskov, Patrick; Liu, Yawei

    2013-01-01

    differs significantly from type I IFNs, can induce autophagy, no such function for any type I IFN has been reported. We show here that IFNB1 induces autophagy in MCF-7, MDAMB231 and SKBR3 breast cancer cells by measuring the turnover of two autophagic markers, MAP1LC3B/LC3 and SQSTM1/p62. The induction...... of autophagy in MCF-7 cells occurred upstream of the negative regulator of autophagy MTORC1, and autophagosome formation was dependent on the known core autophagy molecule ATG7 and the IFNB1 signaling molecule STAT1. Using siRNA-mediated silencing of several core autophagy molecules and STAT1, we provide...

  12. Vacancy-induced magnetism in BaTiO3(001) thin films based on density functional theory.

    Science.gov (United States)

    Cao, Dan; Cai, Meng-Qiu; Hu, Wang-Yu; Yu, Ping; Huang, Hai-Tao

    2011-03-14

    The origin of magnetism induced by vacancies on BaTiO(3)(001) surfaces is investigated systematically by first-principles calculations within density-functional theory. The calculated results show that O vacancy is responsible for the magnetism of the BaO-terminated surface and the magnetism of the TiO(2)-terminated surface is induced by Ti vacancy. For the BaO-terminated surface, the magnetism mainly arises from the unpaired electrons that are localized in the O vacancy basin. In contrast, for the TiO(2)-terminated surface, the magnetism mainly originates from the partially occupied O-2p states of the first nearest neighbor O atoms surrounding the Ti vacancy. These results suggest the possibility of implementing magneto-electric coupling in conventional ferroelectric materials.

  13. Structural and functional changes in catalase induced by near-UV radiation

    International Nuclear Information System (INIS)

    Zigman, S.; Schultz, J.B.; McDaniel, T.

    1996-01-01

    Part one of this study shows that exposure of purified beef liver catalase in buffered solutions to BL lamps that provide a mixture of 99% UVA and 1% UVB (to be labeled UV A ) alters its chemistry and enzymatic activity. Thus, its spectral absorbance lose detail, it aggregated and exhibited a lower isoelectric point and its enzymatic activity was substantially reduced. These photochemically induced changes were increased by irradiation in phosphate buffer or in physiological medium (minimal essential medium) containing riboflavin and tryptophan. Neither α-tocopherol nor deferoxamine were protective against these UV A -induced changes in pure catalase. We further investigated the effect of UV A radiation on the activity of catalase in cultured lens epithelial cells and the protective effects of antioxidants. (Author)

  14. Repair of endogenous and ionizing radiation-induced DNA damages: mechanisms and biological functions

    International Nuclear Information System (INIS)

    Boiteux, S.

    2002-01-01

    The cellular DNA is continuously exposed to endogenous and exogenous stress. Oxidative stress due to cellular metabolism is the major cause of endogenous DNA damage. On the other hand, ionizing radiation (IR) is an important exogenous stress. Both induce similar DNA damages: damaged bases, abasic sites and strand breakage. Most of these lesions are lethal and/or mutagenic. The survival of the cell is managed by efficient and accurate DNA repair mechanisms that remove lesions before their replication or transcription. DNA repair pathways involved in the removal of IR-induced lesions are briefly described. Base excision repair (BER) is mostly involved in the removal of base damage, abasic sites and single strand breaks. In contrast, DNA double strand breaks are mostly repaired by non-homologous end joining (NHEJ) or homologous recombination (HR). How DNA repair pathways prevent cancer process is also discussed. (author)

  15. Mechanisms underlying skeletal muscle insulin resistance induced by fatty acids: importance of the mitochondrial function

    Directory of Open Access Journals (Sweden)

    Martins Amanda R

    2012-02-01

    Full Text Available Abstract Insulin resistance condition is associated to the development of several syndromes, such as obesity, type 2 diabetes mellitus and metabolic syndrome. Although the factors linking insulin resistance to these syndromes are not precisely defined yet, evidence suggests that the elevated plasma free fatty acid (FFA level plays an important role in the development of skeletal muscle insulin resistance. Accordantly, in vivo and in vitro exposure of skeletal muscle and myocytes to physiological concentrations of saturated fatty acids is associated with insulin resistance condition. Several mechanisms have been postulated to account for fatty acids-induced muscle insulin resistance, including Randle cycle, oxidative stress, inflammation and mitochondrial dysfunction. Here we reviewed experimental evidence supporting the involvement of each of these propositions in the development of skeletal muscle insulin resistance induced by saturated fatty acids and propose an integrative model placing mitochondrial dysfunction as an important and common factor to the other mechanisms.

  16. Diet-induced obesity and low testosterone increase neuroinflammation and impair neural function.

    Science.gov (United States)

    Jayaraman, Anusha; Lent-Schochet, Daniella; Pike, Christian J

    2014-09-16

    Low testosterone and obesity are independent risk factors for dysfunction of the nervous system including neurodegenerative disorders such as Alzheimer's disease (AD). In this study, we investigate the independent and cooperative interactions of testosterone and diet-induced obesity on metabolic, inflammatory, and neural health indices in the central and peripheral nervous systems. Male C57B6/J mice were maintained on normal or high-fat diet under varying testosterone conditions for a four-month treatment period, after which metabolic indices were measured and RNA isolated from cerebral cortex and sciatic nerve. Cortices were used to generate mixed glial cultures, upon which embryonic cerebrocortical neurons were co-cultured for assessment of neuron survival and neurite outgrowth. Peripheral nerve damage was determined using paw-withdrawal assay, myelin sheath protein expression levels, and Na+,K+-ATPase activity levels. Our results demonstrate that detrimental effects on both metabolic (blood glucose, insulin sensitivity) and proinflammatory (cytokine expression) responses caused by diet-induced obesity are exacerbated by testosterone depletion. Mixed glial cultures generated from obese mice retain elevated cytokine expression, although low testosterone effects do not persist ex vivo. Primary neurons co-cultured with glial cultures generated from high-fat fed animals exhibit reduced survival and poorer neurite outgrowth. In addition, low testosterone and diet-induced obesity combine to increase inflammation and evidence of nerve damage in the peripheral nervous system. Testosterone and diet-induced obesity independently and cooperatively regulate neuroinflammation in central and peripheral nervous systems, which may contribute to observed impairments in neural health. Together, our findings suggest that low testosterone and obesity are interactive regulators of neuroinflammation that, in combination with adipose-derived inflammatory pathways and other factors

  17. Human DNA-Damage-Inducible 2 Protein Is Structurally and Functionally Distinct from Its Yeast Ortholog

    Czech Academy of Sciences Publication Activity Database

    Sivá, Monika; Svoboda, Michal; Veverka, Václav; Trempe, J. F.; Hofmann, K.; Kožíšek, Milan; Hexnerová, Rozálie; Sedlák, František; Belza, Jan; Brynda, Jiří; Šácha, Pavel; Hubálek, Martin; Starková, Jana; Flaisigová, Iva; Konvalinka, Jan; Grantz Šašková, Klára

    2016-01-01

    Roč. 6, Jul 27 (2016), č. článku 30443. ISSN 2045-2322 R&D Projects: GA ČR(CZ) GBP208/12/G016 Institutional support: RVO:61388963 Keywords : human DNA-damage-inducible 2 protein * proteasome * ubiquitin * retroviral protease-like domain Subject RIV: CE - Biochemistry Impact factor: 4.259, year: 2016 http://www.nature.com/articles/srep30443

  18. RhoA/rock signaling mediates peroxynitrite-induced functional impairment of Rat coronary vessels.

    Science.gov (United States)

    Sun, Zhijun; Wu, Xing; Li, Weiping; Peng, Hui; Shen, Xuhua; Ma, Lu; Liu, Huirong; Li, Hongwei

    2016-10-11

    Diabetes-induced vascular dysfunction may arise from reduced nitric oxide (NO) availability, following interaction with superoxide to form peroxynitrite. Peroxynitrite can induce formation of 3-nitrotyrosine-modified proteins. RhoA/ROCK signaling is also involved in diabetes-induced vascular dysfunction. The study aimed to investigate possible links between Rho/ROCK signaling, hyperglycemia, and peroxynitrite in small coronary arteries. Rat small coronary arteries were exposed to normal (NG; 5.5 mM) or high (HG; 23 mM) D-glucose. Vascular ring constriction to 3 mM 4-aminopyridine and dilation to 1 μM forskolin were measured. Protein expression (immunohistochemistry and western blot), mRNA expression (real-time PCR), and protein activity (luminescence-based G-LISA and kinase activity spectroscopy assays) of RhoA, ROCK1, and ROCK2 were determined. Vascular ring constriction and dilation were smaller in the HG group than in the NG group (P Peroxynitrite impaired vascular ring constriction/dilation; this was partially reversed by inhibition of RhoA or ROCK. Protein and mRNA expressions of RhoA, ROCK1, and ROCK2 were higher under HG than NG (P Peroxynitrite also enhanced RhoA, ROCK1, and ROCK2 activity; these actions were partially inhibited by 100 μM urate (peroxynitrite scavenger). Exogenous peroxynitrite had no effect on the expression of the voltage-dependent K + channels 1.2 and 1.5. Peroxynitrite-induced coronary vascular dysfunction may be mediated, at least in part, through increased expressions and activities of RhoA, ROCK1, and ROCK2.

  19. Iptakalim attenuates hypoxia-induced pulmonary arterial hypertension in rats by endothelial function protection.

    Science.gov (United States)

    Zhu, Rong; Bi, Li-Qing; Wu, Su-Ling; Li, Lan; Kong, Hui; Xie, Wei-Ping; Wang, Hong; Meng, Zi-Li

    2015-08-01

    The present study aimed to investigate the protective effects of iptakalim, an adenosine triphosphate (ATP)-sensitive potassium channel opener, on the inflammation of the pulmonary artery and endothelial cell injury in a hypoxia-induced pulmonary arterial hypertension (PAH) rat model. Ninety-six Sprague-Dawley rats were placed into normobaric hypoxia chambers for four weeks and were treated with iptakalim (1.5 mg/kg/day) or saline for 28 days. The right ventricle systolic pressures (RVSP) were measured and small pulmonary arterial morphological alterations were analyzed with hematoxylin and eosin staining. Enzyme-linked immunosorbent assay (ELISA) was performed to analyze the content of interleukin (IL)-1β and IL-10. Immunohistochemical analysis for ED1(+) monocytes was performed to detect the inflammatory cells surrounding the pulmonary arterioles. Western blot analysis was performed to analyze the expression levels of platelet endothelial cell adhesion molecule-1 (PECAM-1) and endothelial nitric oxide synthase (eNOS) in the lung tissue. Alterations in small pulmonary arteriole morphology and the ultrastructure of pulmonary arterial endothelial cells were observed via light and transmission electron microscopy, respectively. Iptakalim significantly attenuated the increase in mean pulmonary artery pressure, RVSP, right ventricle to left ventricle plus septum ratio and small pulmonary artery wall remodeling in hypoxia-induced PAH rats. Iptakalim also prevented an increase in IL-1β and a decrease in IL-10 in the peripheral blood and lung tissue, and alleviated inflammatory cell infiltration in hypoxia-induced PAH rats. Furthermore, iptakalim enhanced PECAM-1 and eNOS expression and prevented the endothelial cell injury induced by hypoxic stimuli. Iptakalim suppressed the pulmonary arteriole and systemic inflammatory responses and protected against the endothelial damage associated with the upregulation of PECAM-1 and eNOS, suggesting that iptakalim may represent a

  20. Optimal functional levels of activation-induced deaminase specifically require the Hsp40 DnaJa1

    Science.gov (United States)

    Orthwein, Alexandre; Zahn, Astrid; Methot, Stephen P; Godin, David; Conticello, Silvestro G; Terada, Kazutoyo; Di Noia, Javier M

    2012-01-01

    The enzyme activation-induced deaminase (AID) deaminates deoxycytidine at the immunoglobulin genes, thereby initiating antibody affinity maturation and isotype class switching during immune responses. In contrast, off-target DNA damage caused by AID is oncogenic. Central to balancing immunity and cancer is AID regulation, including the mechanisms determining AID protein levels. We describe a specific functional interaction between AID and the Hsp40 DnaJa1, which provides insight into the function of both proteins. Although both major cytoplasmic type I Hsp40s, DnaJa1 and DnaJa2, are induced upon B-cell activation and interact with AID in vitro, only DnaJa1 overexpression increases AID levels and biological activity in cell lines. Conversely, DnaJa1, but not DnaJa2, depletion reduces AID levels, stability and isotype switching. In vivo, DnaJa1-deficient mice display compromised response to immunization, AID protein and isotype switching levels being reduced by half. Moreover, DnaJa1 farnesylation is required to maintain, and farnesyltransferase inhibition reduces, AID protein levels in B cells. Thus, DnaJa1 is a limiting factor that plays a non-redundant role in the functional stabilization of AID. PMID:22085931

  1. Inducible Activation of ERK5 MAP Kinase Enhances Adult Neurogenesis in the Olfactory Bulb and Improves Olfactory Function

    Science.gov (United States)

    Wang, Wenbin; Lu, Song; Li, Tan; Pan, Yung-Wei; Zou, Junhui; Abel, Glen M.; Xu, Lihong; Storm, Daniel R.

    2015-01-01

    Recent discoveries have suggested that adult neurogenesis in the subventricular zone (SVZ) and olfactory bulb (OB) may be required for at least some forms of olfactory behavior in mice. However, it is unclear whether conditional and selective enhancement of adult neurogenesis by genetic approaches is sufficient to improve olfactory function under physiological conditions or after injury. Furthermore, specific signaling mechanisms regulating adult neurogenesis in the SVZ/OB are not fully defined. We previously reported that ERK5, a MAP kinase selectively expressed in the neurogenic regions of the adult brain, plays a critical role in adult neurogenesis in the SVZ/OB. Using a site-specific knock-in mouse model, we report here that inducible and targeted activation of the endogenous ERK5 in adult neural stem/progenitor cells enhances adult neurogenesis in the OB by increasing cell survival and neuronal differentiation. This conditional ERK5 activation also improves short-term olfactory memory and odor-cued associative olfactory learning under normal physiological conditions. Furthermore, these mice show enhanced recovery of olfactory function and have more adult-born neurons after a zinc sulfate-induced lesion of the main olfactory epithelium. We conclude that ERK5 MAP kinase is an important endogenous signaling pathway regulating adult neurogenesis in the SVZ/OB, and that conditional activation of endogenous ERK5 is sufficient to enhance adult neurogenesis in the OB thereby improving olfactory function both under normal conditions and after injury. PMID:25995470

  2. Effect of Time Constraind Induced Therapy on Function, Coordination and Movements of Upper Limb on Hemiplegic Adults

    Directory of Open Access Journals (Sweden)

    Masoud Gharib

    2011-10-01

    Full Text Available Objectives: Stroke, is one of the major causes of disability in adults. So, the patient may prefer to use the non-involved limb to perfom selfcare & named this phenomen learned non used. Constraint induced therapy is one of the rehabilitative interventions that can be effective in restoration of the function of the involved limb in some hemiparetic post stroke patients. purpose of this study was to investigate effect of time constraind induced therapy on function, coordination and movements of upper limb on hemiplegic adults. Methods: In an interventional design, 15 hemiplegic patients attended in stracture exrcises for 2 hours a day, 5 days a week for 12 weeks in during while for 5 hours a day, 5 days a week for 12 weeks, the sound limb was restricted within an arm sling for movement & dextrity assessment were used Fugl-Meyer & Minnesota Manual Dexterity Test. Results: the results of Fugl-Meyer & Minnesota Manual Dexterity Test were significantly improved in patients, after the intervention (P<0.05. Discussion: Our study shows that using CIT in involved limb encouraged the patients to use their involved limb and improved function by conquering learned non-use of the limb. more research is necessary to define baselines or golden times for rehabilitation of the patients using CIT method.

  3. Quercetin reverses hypobaric hypoxia-induced hippocampal neurodegeneration and improves memory function in the rat.

    Science.gov (United States)

    Prasad, Jyotsna; Baitharu, Iswar; Sharma, Alpesh Kumar; Dutta, Ruma; Prasad, Dipti; Singh, Shashi Bala

    2013-12-01

    Inadequate oxygen availability at high altitude causes elevated oxidative stress, resulting in hippocampal neurodegeneration and memory impairment. Though oxidative stress is known to be a major cause of neurodegeneration in hypobaric hypoxia, neuroprotective and ameliorative potential of quercetin, a flavonoid with strong antioxidant properties in reversing hypobaric hypoxia-induced memory impairment has not been studied. Four groups of male adult Sprague Dawley rats were exposed to hypobaric hypoxia for 7 days in an animal decompression chamber at an altitude of 7600 meters. Rats were supplemented with quercetin orally by gavage during 7 days of hypoxic exposure. Spatial working memory was assessed by a Morris Water Maze before and after exposure to hypobaric hypoxia. Changes in oxidative stress markers and apoptotic marker caspase 3 expression in hippocampus were assessed. Histological assessment of neurodegeneration was performed by cresyl violet and fluoro Jade B staining. Our results showed that quercetin supplementation during exposure to hypobaric hypoxia decreased reactive oxygen species levels and consequent lipid peroxidation in the hippocampus by elevating antioxidant status and free radical scavenging enzyme system. There was reduction in caspase 3 expression, and decrease in the number of pyknotic and fluoro Jade B-positive neurons in hippocampus after quercetin supplementation during hypoxic exposure. Behavioral studies showed that quercetin reversed the hypobaric hypoxia-induced memory impairment. These findings suggest that quercetin provides neuroprotection to hippocampal neurons during exposure to hypobaric hypoxia through antioxidative and anti-apoptotic mechanisms, and possesses promising therapeutic potential to ameliorate hypoxia-induced memory dysfunction.

  4. Glioma-Associated Antigen HEATR1 Induces Functional Cytotoxic T Lymphocytes in Patients with Glioma

    Directory of Open Access Journals (Sweden)

    Zhe Bao Wu

    2014-01-01

    Full Text Available A2B5+ glioblastoma (GBM cells have glioma stem-like cell (GSC properties that are crucial to chemotherapy resistance and GBM relapse. T-cell-based antigens derived from A2B5+ GBM cells provide important information for immunotherapy. Here, we show that HEAT repeat containing 1 (HEATR1 expression in GBM tissues was significantly higher than that in control brain tissues. Furthermore, HEATR1 expression in A2B5+ U87 cells was higher than that in A2B5−U87 cells (P=0.016. Six peptides of HEATR1 presented by HLA-A*02 were selected for testing of their ability to induce T-cell responses in patients with GBM. When peripheral blood mononuclear cells from healthy donors (n=6 and patients with glioma (n=33 were stimulated with the peptide mixture, eight patients with malignant gliomas had positive reactivity with a significantly increased number of responding T-cells. The peptides HEATR1682–690, HEATR11126–1134, and HEATR1757–765 had high affinity for binding to HLA-A*02:01 and a strong capacity to induce CTL response. CTLs against HEATR1 peptides were capable of recognizing and lysing GBM cells and GSCs. These data are the first to demonstrate that HEATR1 could induce specific CTL responses targeting both GBM cells and GSCs, implicating that HEATR1 peptide-based immunotherapy could be a novel promising strategy for treating patients with GBM.

  5. Experimental Gestational Diabetes Mellitus Induces Blunted Vasoconstriction and Functional Changes in the Rat Aorta

    Directory of Open Access Journals (Sweden)

    Cecilia Tufiño

    2014-01-01

    Full Text Available Diabetic conditions increase vascular reactivity to angiotensin II in several studies but there are scarce reports on cardiovascular effects of hypercaloric diet (HD induced gestational diabetes mellitus (GDM, so the objective of this work was to determine the effects of HD induced GDM on vascular responses. Angiotensin II as well as phenylephrine induced vascular contraction was tested in isolated aorta rings with and without endothelium from rats fed for 7 weeks (4 before and 3 weeks during pregnancy with standard (SD or hypercaloric (HD diet. Also, protein expression of AT1R, AT2R, COX-1, COX-2, NOS-1, and NOS-3 and plasma glucose, insulin, and angiotensin II levels were measured. GDM impaired vasoconstrictor response (P<0.05 versus SD in intact (e+ but not in endothelium-free (e− vessels. Losartan reduced GDM but not SD e− vasoconstriction (P<0.01 versus SD. AT1R, AT2R, and COX-1 and COX-2 protein expression were significantly increased in GDM vessels (P<0.05 versus SD. Results suggest an increased participation of endothelium vasodilator mediators, probably prostaglandins, as well as of AT2 vasodilator receptors as a compensatory mechanism for vasoconstrictor changes generated by experimental GDM. Considering the short term of rat pregnancy findings can reflect early stage GDM adaptations.

  6. PGE2 induced in and released by dying cells functions as an inhibitory DAMP.

    Science.gov (United States)

    Hangai, Sho; Ao, Tomoka; Kimura, Yoshitaka; Matsuki, Kosuke; Kawamura, Takeshi; Negishi, Hideo; Nishio, Junko; Kodama, Tatsuhiko; Taniguchi, Tadatsugu; Yanai, Hideyuki

    2016-04-05

    Cellular components released into the external milieu as a result of cell death and sensed by the body are generally termed damage-associated molecular patterns (DAMPs). Although DAMPs are conventionally thought to be protective to the host by evoking inflammatory responses important for immunity and wound repair, there is the prevailing notion that dysregulated release of DAMPs can also underlie or exacerbate disease development. However, the critical issue for how resultant DAMP-mediated responses are regulated has heretofore not been fully addressed. In the present study, we identify prostaglandin E2 (PGE2) as a DAMP that negatively regulates immune responses. We show that the production of PGE2 is augmented under cell death-inducing conditions via the transcriptional induction of the cyclooxygenase 2 (COX2) gene and that cell-released PGE2 suppresses the expression of genes associated with inflammation, thereby limiting the cell's immunostimulatory activities. Consistent with this, inhibition of the PGE2 synthesis pathway potentiates the inflammation induced by dying cells. We also provide in vivo evidence for a protective role of PGE2 released upon acetaminophen-induced liver injury as well as a pathogenic role for PGE2 during tumor cell growth. Our study places this classically known lipid mediator in an unprecedented context-that is, an inhibitory DAMP vis-à-vis activating DAMPs, which may have translational implications for designing more effective therapeutic regimens for inflammation-associated diseases.

  7. Monocyte-lymphocyte fusion induced by the HIV-1 envelope generates functional heterokaryons with an activated monocyte-like phenotype

    International Nuclear Information System (INIS)

    Martínez-Méndez, David; Rivera-Toledo, Evelyn; Ortega, Enrique; Licona-Limón, Ileana; Huerta, Leonor

    2017-01-01

    Enveloped viruses induce cell-cell fusion when infected cells expressing viral envelope proteins interact with target cells, or through the contact of cell-free viral particles with adjoining target cells. CD4 + T lymphocytes and cells from the monocyte-macrophage lineage express receptors for HIV envelope protein. We have previously reported that lymphoid Jurkat T cells expressing the HIV-1 envelope protein (Env) can fuse with THP-1 monocytic cells, forming heterokaryons with a predominantly myeloid phenotype. This study shows that the expression of monocytic markers in heterokaryons is stable, whereas the expression of lymphoid markers is mostly lost. Like THP-1 cells, heterokaryons exhibited FcγR-dependent phagocytic activity and showed an enhanced expression of the activation marker ICAM-1 upon stimulation with PMA. In addition, heterokaryons showed morphological changes compatible with maturation, and high expression of the differentiation marker CD11b in the absence of differentiation-inducing agents. No morphological change nor increase in CD11b expression were observed when an HIV-fusion inhibitor blocked fusion, or when THP-1 cells were cocultured with Jurkat cells expressing a non-fusogenic Env protein, showing that differentiation was not induced merely by cell-cell interaction but required cell-cell fusion. Inhibition of TLR2/TLR4 signaling by a TIRAP inhibitor greatly reduced the expression of CD11b in heterokaryons. Thus, lymphocyte-monocyte heterokaryons induced by HIV-1 Env are stable and functional, and fusion prompts a phenotype characteristic of activated monocytes via intracellular TLR2/TLR4 signaling. - Highlights: • Jurkat T cells expressing the HIV-1 envelope fuse with THP-1 monocytes. • Heterokaryons display a dominant myeloid phenotype and monocyte function. • Heterokaryons exhibit activation features in the absence of activation agents. • Activation is not due to cell-cell interaction but requires cell-cell fusion. • The

  8. Monocyte-lymphocyte fusion induced by the HIV-1 envelope generates functional heterokaryons with an activated monocyte-like phenotype

    Energy Technology Data Exchange (ETDEWEB)

    Martínez-Méndez, David; Rivera-Toledo, Evelyn; Ortega, Enrique; Licona-Limón, Ileana; Huerta, Leonor, E-mail: leonorhh@biomedicas.unam.mx

    2017-03-01

    Enveloped viruses induce cell-cell fusion when infected cells expressing viral envelope proteins interact with target cells, or through the contact of cell-free viral particles with adjoining target cells. CD4{sup +} T lymphocytes and cells from the monocyte-macrophage lineage express receptors for HIV envelope protein. We have previously reported that lymphoid Jurkat T cells expressing the HIV-1 envelope protein (Env) can fuse with THP-1 monocytic cells, forming heterokaryons with a predominantly myeloid phenotype. This study shows that the expression of monocytic markers in heterokaryons is stable, whereas the expression of lymphoid markers is mostly lost. Like THP-1 cells, heterokaryons exhibited FcγR-dependent phagocytic activity and showed an enhanced expression of the activation marker ICAM-1 upon stimulation with PMA. In addition, heterokaryons showed morphological changes compatible with maturation, and high expression of the differentiation marker CD11b in the absence of differentiation-inducing agents. No morphological change nor increase in CD11b expression were observed when an HIV-fusion inhibitor blocked fusion, or when THP-1 cells were cocultured with Jurkat cells expressing a non-fusogenic Env protein, showing that differentiation was not induced merely by cell-cell interaction but required cell-cell fusion. Inhibition of TLR2/TLR4 signaling by a TIRAP inhibitor greatly reduced the expression of CD11b in heterokaryons. Thus, lymphocyte-monocyte heterokaryons induced by HIV-1 Env are stable and functional, and fusion prompts a phenotype characteristic of activated monocytes via intracellular TLR2/TLR4 signaling. - Highlights: • Jurkat T cells expressing the HIV-1 envelope fuse with THP-1 monocytes. • Heterokaryons display a dominant myeloid phenotype and monocyte function. • Heterokaryons exhibit activation features in the absence of activation agents. • Activation is not due to cell-cell interaction but requires cell-cell fusion. • The

  9. Organophosphate-Induced Changes in the PKA Regulatory Function of Swiss Cheese/NTE Lead to Behavioral Deficits and Neurodegeneration

    Science.gov (United States)

    Kretzschmar, Doris

    2014-01-01

    Organophosphate-induced delayed neuropathy (OPIDN) is a Wallerian-type axonopathy that occurs weeks after exposure to certain organophosphates (OPs). OPs have been shown to bind to Neuropathy Target Esterase (NTE), thereby inhibiting its enzymatic activity. However, only OPs that also induce the so-called aging reaction cause OPIDN. This reaction results in the release and possible transfer of a side group from the bound OP to NTE and it has been suggested that this induces an unknown toxic function of NTE. To further investigate the mechanisms of aging OPs, we used Drosophila, which expresses a functionally conserved orthologue of NTE named Swiss Cheese (SWS). Treating flies with the organophosporous compound tri-ortho-cresyl phosphate (TOCP) resulted in behavioral deficits and neurodegeneration two weeks after exposure, symptoms similar to the delayed effects observed in other models. In addition, we found that primary neurons showed signs of axonal degeneration within an hour after treatment. Surprisingly, increasing the levels of SWS, and thereby its enzymatic activity after exposure, did not ameliorate these phenotypes. In contrast, reducing SWS levels protected from TOCP-induced degeneration and behavioral deficits but did not affect the axonopathy observed in cell culture. Besides its enzymatic activity as a phospholipase, SWS also acts as regulatory PKA subunit, binding and inhibiting the C3 catalytic subunit. Measuring PKA activity in TOCP treated flies revealed a significant decrease that was also confirmed in treated rat hippocampal neurons. Flies expressing additional PKA-C3 were protected from the behavioral and degenerative phenotypes caused by TOCP exposure whereas primary neurons were not. In addition, knocking-down PKA-C3 caused similar behavioral and degenerative phenotypes as TOCP treatment. We therefore propose a model in which OP-modified SWS cannot release PKA-C3 and that the resulting loss of PKA-C3 activity plays a crucial role in developing

  10. Affinity Induced Surface Functionalization of Liposomes Using Cu-Free Click Chemistry

    DEFF Research Database (Denmark)

    Bak, Martin; Jølck, Rasmus Irming; Eliasen, Rasmus

    2016-01-01

    be used for functionalization of other nanoparticles or solid surfaces. The method exploits a synergistic effect of having both affinity and covalent anchoring tags on the surface of the liposome. This was achieved by synthesizing a peptide linker system that uses Cu-free strain-promoted click chemistry.......2%. The reaction kinetics and overall yield were quantified by HPLC. The results presented here open new possibilities for constructing complex nanostructures and functionalized surfaces....

  11. Diet-Induced Weight Loss Alters Functional Brain Responses during an Episodic Memory Task

    OpenAIRE

    Boraxbekk, Carl-Johan; Stomby, Andreas; Ryberg, Mats; Lindahl, Bernt; Larsson, Christel; Nyberg, Lars; Olsson, Tommy

    2015-01-01

    Objective: It has been suggested that overweight is negatively associated with cognitive functions. The aim of this study was to investigate whether a reduction in body weight by dietary interventions could improve episodic memory performance and alter associated functional brain responses in overweight and obese women. Methods: 20 overweight postmenopausal women were randomized to either a modified paleolithic diet or a standard diet adhering to the Nordic Nutrition Recommendations for 6 mon...

  12. Biphasic functional regulation in hippocampus of rat with chronic cerebral hypoperfusion induced by permanent occlusion of bilateral common carotid artery.

    Directory of Open Access Journals (Sweden)

    Jihye Bang

    Full Text Available BACKGROUND: Chronic cerebral hypoperfusion induced by permanent occlusion of the bilateral common carotid artery (BCCAO in rats has been commonly used for the study of Alzheimer's disease and vascular dementia. Despite the apparent cognitive dysfunction in rats with BCCAO, the molecular markers or pathways involved in the pathological alternation have not been clearly identified. METHODS: Temporal changes (sham, 21, 35, 45, 55 and 70 days in gene expression in the hippocampus of rats after BCCAO were measured using time-course microarray analysis. Gene Ontology (GO and pathway analyses were performed to identify the functional involvement of temporally regulated genes in BCCAO. RESULTS: Two major gene expression patterns were observed in the hippocampus of rats after BCCAO. One pattern, which was composed of 341 early up-regulated genes after the surgical procedure, was dominantly involved in immune-related biological functions (false discovery rate [FDR]<0.01. Another pattern composed of 182 temporally delayed down-regulated genes was involved in sensory perception such as olfactory and cognition functions (FDR<0.01. In addition to the two gene expression patterns, the temporal change of GO and the pathway activities using all differentially expressed genes also confirmed that an immune response was the main early change, whereas sensory functions were delayed responses. Moreover, we identified FADD and SOCS3 as possible core genes in the sensory function loss process using text-based mining and interaction network analysis. CONCLUSIONS: The biphasic regulatory mechanism first reported here could provide molecular evidence of BCCAO-induced impaired memory in rats as well as mechanism of the development of vascular dementia.

  13. Functional aspects of the EGF-induced MAP kinase cascade: a complex self-organizing system approach.

    Directory of Open Access Journals (Sweden)

    Efstratios K Kosmidis

    Full Text Available The EGF-induced MAP kinase cascade is one of the most important and best characterized networks in intracellular signalling. It has a vital role in the development and maturation of living organisms. However, when deregulated, it is involved in the onset of a number of diseases. Based on a computational model describing a "surface" and an "internalized" parallel route, we use systems biology techniques to characterize aspects of the network's functional organization. We examine the re-organization of protein groups from low to high external stimulation, define functional groups of proteins within the network, determine the parameter best encoding for input intensity and predict the effect of protein removal to the system's output response. Extensive functional re-organization of proteins is observed in the lower end of stimulus concentrations. As we move to higher concentrations the variability is less pronounced. 6 functional groups have emerged from a consensus clustering approach, reflecting different dynamical aspects of the network. Mutual information investigation revealed that the maximum activation rate of the two output proteins best encodes for stimulus intensity. Removal of each protein of the network resulted in a range of graded effects, from complete silencing to intense activation. Our results provide a new "vista" of the EGF-induced MAP kinase cascade, from the perspective of complex self-organizing systems. Functional grouping of the proteins reveals an organizational scheme contrasting the current understanding of modular topology. The six identified groups may provide the means to experimentally follow the dynamics of this complex network. Also, the vulnerability analysis approach may be used for the development of novel therapeutic targets in the context of personalized medicine.

  14. Hypoxia inducible factor-1 improves the negative functional effects of natriuretic peptide and nitric oxide signaling in hypertrophic cardiac myocytes.

    Science.gov (United States)

    Tan, Tao; Scholz, Peter M; Weiss, Harvey R

    2010-07-03

    Both natriuretic peptides and nitric oxide may be protective in cardiac hypertrophy, although their functional effects are diminished in hypertrophy. Hypoxia inducible factor-1 (HIF-1) may also protect in cardiac hypertrophy. We hypothesized that upregulation of HIF-1 would protect the functional effects of cyclic GMP (cGMP) signaling in hypertrophied ventricular myocytes. A cardiac hypertrophy model was created in mice by transverse aorta constriction. HIF-1 was increased by deferoxamine (150 mg/kg for 2 days). HIF-1alpha protein levels were examined. Functional parameters were measured (edge detector) on freshly isolated myocytes at baseline and after BNP (brain natriuretic peptide, 10(-8)-10(-7)M) or CNP (C-type natriuretic peptide, 10(-8)-10(-7)M) or SNAP (S-nitroso-N-acetyl-penicillamine, a nitric oxide donor, 10(-6)-10(-5)M) followed by KT5823 (a cyclic GMP-dependent protein kinase (PKG) inhibitor, 10(-6)M). We also determined PKG expression levels and kinase activity. We found that under control conditions, BNP (-24%), CNP (-22%) and SNAP (-23%) reduced myocyte shortening, while KT5823 partially restored function. Deferoxamine treated control myocytes responded similarly. Baseline function was reduced in the myocytes from hypertrophied heart. BNP, CNP, SNAP and KT5823 also had no significant effects on function in these myocytes. Deferoxamine restored the negative functional effects of BNP (-22%), CNP (-18%) and SNAP (-19%) in hypertrophic cardiac myocytes and KT5823 partially reversed this effect. Additionally, deferoxamine maintained PKG expression levels and activity in hypertrophied heart. Our results indicated that the HIF-1 protected the functional effects of cGMP signaling in cardiac hypertrophy through preservation of PKG. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  15. The zebrafish miR-462/miR-731 cluster is induced under hypoxic stress via hypoxia-inducible factor 1α and functions in cellular adaptations.

    Science.gov (United States)

    Huang, Chun-Xiao; Chen, Nan; Wu, Xin-Jie; Huang, Cui-Hong; He, Yan; Tang, Rong; Wang, Wei-Min; Wang, Huan-Ling

    2015-12-01

    Hypoxia, a unique and essential environmental stress, evokes highly coordinated cellular responses, and hypoxia-inducible factor (HIF) 1 in the hypoxia signaling pathway, an evolutionarily conserved cellular signaling pathway, acts as a master regulator of the transcriptional response to hypoxic stress. MicroRNAs (miRNAs), a major class of posttranscriptional gene expression regulators, also play pivotal roles in orchestrating hypoxia-mediated cellular adaptations. Here, global miRNA expression profiling and quantitative real-time PCR indicated that the up-regulation of the miR-462/miR-731 cluster in zebrafish larvae is induced by hypoxia. It was further validated that miR-462 and miR-731 are up-regulated in a Hif-1α-mediated manner under hypoxia and specifically target ddx5 and ppm1da, respectively. Overexpression of miR-462 and miR-731 represses cell proliferation through blocking cell cycle progress of DNA replication, and induces apoptosis. In situ detection revealed that the miR-462/miR-731 cluster is highly expressed in a consistent and ubiquitous manner throughout the early developmental stages. Additionally, the transcripts become restricted to the notochord, pharyngeal arch, liver, and gut regions from postfertilization d 3 to 5. These data highlight a previously unidentified role of the miR-462/miR-731 cluster as a crucial signaling mediator for hypoxia-mediated cellular adaptations and provide some insights into the potential function of the cluster during embryonic development. © FASEB.

  16. Blood transfusion improves renal oxygenation and renal function in sepsis-induced acute kidney injury in rats.

    Science.gov (United States)

    Zafrani, Lara; Ergin, Bulent; Kapucu, Aysegul; Ince, Can

    2016-12-20

    The effects of blood transfusion on renal microcirculation during sepsis are unknown. This study aimed to investigate the effect of blood transfusion on renal microvascular oxygenation and renal function during sepsis-induced acute kidney injury. Twenty-seven Wistar albino rats were randomized into four groups: a sham group (n = 6), a lipopolysaccharide (LPS) group (n = 7), a LPS group that received fluid resuscitation (n = 7), and a LPS group that received blood transfusion (n = 7). The mean arterial blood pressure, renal blood flow, and renal microvascular oxygenation within the kidney cortex were recorded. Acute kidney injury was assessed using the serum creatinine levels, metabolic cost, and histopathological lesions. Nitrosative stress (expression of endothelial (eNOS) and inducible nitric oxide synthase (iNOS)) within the kidney was assessed by immunohistochemistry. Hemoglobin levels, pH, serum lactate levels, and liver enzymes were measured. Fluid resuscitation and blood transfusion both significantly improved the mean arterial pressure and renal blood flow after LPS infusion. Renal microvascular oxygenation, serum creatinine levels, and tubular damage significantly improved in the LPS group that received blood transfusion compared to the group that received fluids. Moreover, the renal expression of eNOS was markedly suppressed under endotoxin challenge. Blood transfusion, but not fluid resuscitation, was able to restore the renal expression of eNOS. However, there were no significant differences in lactic acidosis or liver function between the two groups. Blood transfusion significantly improved renal function in endotoxemic rats. The specific beneficial effect of blood transfusion on the kidney could have been mediated in part by the improvements in renal microvascular oxygenation and sepsis-induced endothelial dysfunction via the restoration of eNOS expression within the kidney.

  17. The atypical antipsychotic blonanserin reverses (+)-PD-128907- and ketamine-induced deficit in executive function in common marmosets.

    Science.gov (United States)

    Kotani, Manato; Enomoto, Takeshi; Murai, Takeshi; Nakako, Tomokazu; Iwamura, Yoshihiro; Kiyoshi, Akihiko; Matsumoto, Kenji; Matsumoto, Atsushi; Ikejiri, Masaru; Nakayama, Tatsuo; Ogi, Yuji; Ikeda, Kazuhito

    2016-05-15

    Antagonism of the dopamine D3 receptor is considered a promising strategy for the treatment of cognitive impairment associated with schizophrenia. We have previously reported that the atypical antipsychotic blonanserin, a dopamine D2/D3 and serotonin 5-HT2A receptor antagonist, highly occupies dopamine D3 receptors at its antipsychotic dose range in rats. In the present study, we evaluated the effects of blonanserin on executive function in common marmosets using the object retrieval with detour (ORD) task. The dopamine D3 receptor-preferring agonist (+)-PD-128907 at 1mg/kg decreased success rate in the difficult trial, but not in the easy trial. Since the difference between the two trials is only cognitive demand, our findings indicate that excess activation of dopamine D3 receptors impairs executive function in common marmosets. Blonanserin at 0.1mg/kg reversed the decrease in success rate induced by (+)-PD-128907 in the difficult trial. This finding indicates that blonanserin has beneficial effect on executive function deficit induced by activation of the dopamine D3 receptor in common marmosets. Next, and based on the glutamatergic hypothesis of schizophrenia, the common marmosets were treated with the N-methyl-d-aspartate (NMDA) receptor antagonist ketamine. Ketamine at sub-anesthetic doses decreased success rate in the difficult trial, but not in the easy trial. Blonanserin at 0.1mg/kg reversed the decrease in success rate induced by ketamine in the difficult trial. The findings of this study suggest that blonanserin might have beneficial effect on executive dysfunction in patients with schizophrenia. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Postprandial hyperglycemia impairs vascular endothelial function in healthy men by inducing lipid peroxidation and increasing asymmetric dimethylarginine:arginine.

    Science.gov (United States)

    Mah, Eunice; Noh, Sang K; Ballard, Kevin D; Matos, Manuel E; Volek, Jeff S; Bruno, Richard S

    2011-11-01

    Postprandial hyperglycemia induces vascular endothelial dysfunction (VED) and increases future cardiovascular disease risk. We hypothesized that postprandial hyperglycemia would decrease vascular function in healthy men by inducing oxidative stress and proinflammatory responses and increasing asymmetric dimethylarginine:arginine (ADMA:arginine), a biomarker that is predictive of reduced NO biosynthesis. In a randomized, cross-over design, healthy men (n = 16; 21.6 ± 0.8 y) ingested glucose or fructose (75 g) after an overnight fast. Brachial artery flow-mediated dilation (FMD), plasma glucose and insulin, antioxidants, malondialdehyde (MDA), inflammatory proteins, arginine, and ADMA were measured at regular intervals during the 3-h postprandial period. Baseline FMD did not differ between trials (P > 0.05). Postprandial FMD was reduced following the ingestion of glucose only. Postprandial MDA concentrations increased to a greater extent following the ingestion of glucose compared to fructose. Plasma arginine decreased and the ratio of ADMA:arginine increased to a greater extent following the ingestion of glucose. Inflammatory cytokines and cellular adhesion molecules were unaffected by the ingestion of either sugar. Postprandial AUC(0-3 h) for FMD and MDA were inversely related (r = -0.80; P lipid peroxidation suppresses postprandial vascular function. Collectively, these findings suggest that postprandial hyperglycemia in healthy men reduces endothelium-dependent vasodilation by increasing lipid peroxidation independent of inflammation. Postprandial alterations in arginine and ADMA:arginine also suggest that acute hyperglycemia may induce VED by decreasing NO bioavailability through an oxidative stress-dependent mechanism. Additional work is warranted to define whether inhibiting lipid peroxidation and restoring arginine metabolism would mitigate hyperglycemia-mediated decreases in vascular function.

  19. Long-term activation of TLR3 by Poly(I:C induces inflammation and impairs lung function in mice

    Directory of Open Access Journals (Sweden)

    Alexopoulou Lena

    2009-06-01

    Full Text Available Abstract Background The immune mechanisms associated with infection-induced disease exacerbations in asthma and COPD are not fully understood. Toll-like receptor (TLR 3 has an important role in recognition of double-stranded viral RNA, which leads to the production of various inflammatory mediators. Thus, an understanding of TLR3 activation should provide insight into the mechanisms underlying virus-induced exacerbations of pulmonary diseases. Methods TLR3 knock-out (KO mice and C57B6 (WT mice were intranasally administered repeated doses of the synthetic double stranded RNA analog poly(I:C. Results There was a significant increase in total cells, especially neutrophils, in BALF samples from poly(I:C-treated mice. In addition, IL-6, CXCL10, JE, KC, mGCSF, CCL3, CCL5, and TNFα were up regulated. Histological analyses of the lungs revealed a cellular infiltrate in the interstitium and epithelial cell hypertrophy in small bronchioles. Associated with the pro-inflammatory effects of poly(I:C, the mice exhibited significant impairment of lung function both at baseline and in response to methacholine challenge as measured by whole body plethysmography and an invasive measure of airway resistance. Importantly, TLR3 KO mice were protected from poly(I:C-induced changes in lung function at baseline, which correlated with milder inflammation in the lung, and significantly reduced epithelial cell hypertrophy. Conclusion These findings demonstrate that TLR3 activation by poly(I:C modulates the local inflammatory response in the lung and suggest a critical role of TLR3 activation in driving lung function impairment. Thus, TLR3 activation may be one mechanism through which viral infections contribute toward exacerbation of respiratory disease.

  20. Blockade of cannabinoid CB receptor function protects against in vivo disseminating brain damage following NMDA-induced excitotoxicity

    DEFF Research Database (Denmark)

    Hansen, H.H.; Ramos, J.A.; Fernández-Ruiz, J.

    2002-01-01

    The ability of cannabinoid CB, receptors to influence glutamatergic excitatory neurotransmission has fueled interest in how these receptors and their endogenous ligands may interact in conditions of excitotoxic insults. The present study characterized the impact of stimulated and inhibited CB...... receptor function on NMDA-induced excitotoxicity. Neonatal (6-day-old) rat pups received a systemic injection of a mixed CB/CB receptor agonist (WIN55,212-2) or their respective antagonists (SR141716A for CB and SR144528 for CB) prior to an unilateral intrastriatal microinjection of NMDA. The NMDA...

  1. A temperature induced ferrocene–ferrocenium interconversion in a ferrocene functionalized μ{sub 3}-O chromium carboxylate

    Energy Technology Data Exchange (ETDEWEB)

    Mereacre, Valeriu, E-mail: valeriu.mereacre@kit.edu [Institut für Anorganische Chemie, Karlsruher Institut für Technologie, D-76131 Karlsruhe (Germany); Schlageter, Martin [Institut für Nanotechnologie, Karlsruher Institut für Technologie, D-76344 Eggenstein-Leopoldshafen (Germany); Powell, Annie K., E-mail: annie.powell@kit.edu [Institut für Anorganische Chemie, Karlsruher Institut für Technologie, D-76131 Karlsruhe (Germany); Institut für Nanotechnologie, Karlsruher Institut für Technologie, D-76344 Eggenstein-Leopoldshafen (Germany)

    2015-05-01

    The infrared spectra and {sup 57}Fe Mössbauer measurements of a ferrocenecarboxylate functionalized {Cr_3O} complex in solid state are reported. It was established that conjugation of ferrocene Cp orbitals with the π orbitals of the adjacent carboxylic group stabilizes the trapped mixed-valence state leading to an intriguing coexistence of ferrocene and ferrocenium species giving rise to a new type of compound showing valence tautomerism in the solid state. - Highlights: • A stabilized ferrocene trapped mixed-valence state is reported. • New type of compound showing valence tautomerism in solid state. • A thermally induced electron transfer and a mixed-valence state near room temperature.

  2. The metabolic enhancer piracetam ameliorates the impairment of mitochondrial function and neurite outgrowth induced by ß-amyloid peptide

    Science.gov (United States)

    Kurz, C; Ungerer, I; Lipka, U; Kirr, S; Schütt, T; Eckert, A; Leuner, K; Müller, WE

    2010-01-01

    Background and purpose: β-Amyloid peptide (Aβ) is implicated in the pathogenesis of Alzheimer's disease by initiating a cascade of events from mitochondrial dysfunction to neuronal death. The metabolic enhancer piracetam has been shown to improve mitochondrial dysfunction following brain aging and experimentally induced oxidative stress. Experimental approach: We used cell lines (PC12 and HEK cells) and murine dissociated brain cells. The protective effects of piracetam in vitro and ex vivo on Aβ-induced impairment of mitochondrial function (as mitochondrial membrane potential and ATP production), on secretion of soluble Aβ and on neurite outgrowth in PC12 cells were investigated. Key results: Piracetam improves mitochondrial function of PC12 cells and acutely dissociated brain cells from young NMRI mice following exposure to extracellular Aβ1-42. Similar protective effects against Aβ1-42 were observed in dissociated brain cells from aged NMRI mice, or mice transgenic for mutant human amyloid precursor protein (APP) treated with piracetam for 14 days. Soluble Aβ load was markedly diminished in the brain of those animals after treatment with piracetam. Aβ production by HEK cells stably transfected with mutant human APP was elevated by oxidative stress and this was reduced by piracetam. Impairment of neuritogenesis is an important consequence of Aβ-induced mitochondrial dysfunction and Aβ-induced reduction of neurite growth in PC12 cells was substantially improved by piracetam. Conclusion and implications: Our findings strongly support the concept of improving mitochondrial function as an approach to ameliorate the detrimental effects of Aβ on brain function. This article is commented on by Moncada, pp. 217–219 of this issue. To view this commentary visit http://dx.doi.org/10.1111/j.1476-5381.2010.00706.x and to view related papers by Pravdic et al. and Puerta et al. visit http://dx.doi.org/10.1111/j.1476-5381.2010.00698.x and http://dx.doi.org/10.1111/j

  3. Radiation-induced brain structural and functional abnormalities in presymptomatic phase and outcome prediction.

    Science.gov (United States)

    Ding, Zhongxiang; Zhang, Han; Lv, Xiao-Fei; Xie, Fei; Liu, Lizhi; Qiu, Shijun; Li, Li; Shen, Dinggang

    2018-01-01

    Radiation therapy, a major method of treatment for brain cancer, may cause severe brain injuries after many years. We used a rare and unique cohort of nasopharyngeal carcinoma patients with normal-appearing brains to study possible early irradiation injury in its presymptomatic phase before severe, irreversible necrosis happens. The aim is to detect any structural or functional imaging biomarker that is sensitive to early irradiation injury, and to understand the recovery and progression of irradiation injury that can shed light on outcome prediction for early clinical intervention. We found an acute increase in local brain activity that is followed by extensive reductions in such activity in the temporal lobe and significant loss of functional connectivity in a distributed, large-scale, high-level cognitive function-related brain network. Intriguingly, these radiosensitive functional alterations were found to be fully or partially recoverable. In contrast, progressive late disruptions to the integrity of the related far-end white matter structure began to be significant after one year. Importantly, early increased local brain functional activity was predictive of severe later temporal lobe necrosis. Based on these findings, we proposed a dynamic, multifactorial model for radiation injury and another preventive model for timely clinical intervention. Hum Brain Mapp 39:407-427, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  4. Loss of TRPV4 Function Suppresses Inflammatory Fibrosis Induced by Alkali-Burning Mouse Corneas.

    Science.gov (United States)

    Okada, Yuka; Shirai, Kumi; Miyajima, Masayasu; Reinach, Peter S; Yamanaka, Osamu; Sumioka, Takayoshi; Kokado, Masahide; Tomoyose, Katsuo; Saika, Shizuya

    2016-01-01

    In humans suffering from pulmonary disease and a mouse model, transient receptor potential vanilloid 4 (TRPV4) channel activation contributes to fibrosis. As a corneal alkali burn induces the same response, we determined if such an effect is also attributable to TRPV4 activation in mice. Accordingly, we determined if the alkali burn wound healing responses in wild-type (WT) mice are different than those in their TRPV4-null (KO) counterpart. Stromal opacification due to fibrosis in KO (n = 128) mice was markedly reduced after 20 days relative to that in WT (n = 157) mice. Immunohistochemistry revealed that increases in polymorphonuclear leukocytes and macrophage infiltration declined in KO mice. Semi-quantitative real time RT-PCR of ocular KO fibroblast cultures identified increases in proinflammatory and monocyte chemoattractant protein-1 chemoattractant gene expression after injury. Biomarker gene expression of fibrosis, collagen1a1 and α-smooth muscle actin were attenuated along with macrophage release of interleukin-6 whereas transforming growth factor β, release was unchanged. Tail vein reciprocal bone marrow transplantation between WT and KO chimera mouse models mice showed that reduced scarring and inflammation in KO mice are due to loss of TRPV4 expression on both corneal resident immune cells, fibroblasts and infiltrating polymorphonuclear leukocytes and macrophages. Intraperitoneal TRPV4 receptor antagonist injection of HC-067047 (10 mg/kg, daily) into WT mice reproduced the KO-phenotype. Taken together, alkali-induced TRPV4 activation contributes to inducing fibrosis and inflammation since corneal transparency recovery was markedly improved in KO mice.

  5. Explosive type of moderate-resistance training induces functional, cardiovascular, and molecular adaptations in the elderly

    DEFF Research Database (Denmark)

    Beltran Valls, Maria Reyes; Dimauro, Ivan; Brunelli, Andrea

    2014-01-01

    of 12 weeks of low-frequency, moderate-intensity, explosive-type resistance training (EMRT) on muscle strength and power in old community-dwelling people (70-75 years), monitoring functional performance linked to daily living activities (ADL) and cardiovascular response, as well as biomarkers of muscle......Current recommendations aimed at reducing neuromuscular and functional loss in aged muscle have identified muscle power as a key target for intervention trials, although little is known about the biological and cardiovascular systemic response in the elderly. This study investigated the effects...... damage, cardiovascular risk, and cellular stress response. The present study provides the first evidence that EMRT was highly effective in achieving a significant enhancement in muscular strength and power as well as in functional performance without causing any detrimental modification in cardiovascular...

  6. Chronic Resistance Training Does Not Ameliorate Unloading-Induced Decrements in Neuromuscular Function.

    Science.gov (United States)

    Deschenes, Michael R; McCoy, Raymond W; Mangis, Katherine A

    2017-08-01

    The aim of this study was to assess the efficacy of long-term resistance training in preventing the detrimental effects of muscle unloading on neuromuscular function. Eleven untrained men and 11 men with extensive backgrounds in resistance training were tested for several parameters of neuromuscular function at various isokinetic contractile velocities before and after 7 days of muscle unloading. Measurements included muscle mass, strength, power, total work, electromyography, and neuromuscular transmission efficiency using superimposed electrical stimulation of maximally contracting muscles. Muscle performance was superior in resistance-trained subjects before and after unloading. In both groups of participants, unloading resulted in significantly (P neuromuscular transmission efficiency was significantly altered by unloading in trained or untrained participants. Chronic resistance training was found to be ineffective in neutralizing the deleterious effects of unloading on neuromuscular function. It appears that positive adaptations associated with long-term resistance training provide no prophylactic effect when neuromuscular systems are subjected to unloading.

  7. Study of excitation function for alpha induced reactions in natural iridium

    International Nuclear Information System (INIS)

    Chaubey, A.K.; Bhardwaj, M.K.; Rizvi, I.A.; Singh, H.

    1990-07-01

    Excitation function of (α, χn) reactions on 191 Ir (37.3%) and on 191 Ir (62.7%) have been measured for 17-55 MeV alpha particle bombarding energy range. Stacked foil activation technique and gamma spectroscopy were used to determine the cross-sections. The experimental data were compared with calculated values obtained by means of geometry dependent hybrid model. The initial exciton number n o = 4 with n = 2, p = 2 and h = 0 gives the best agreements with the presently measured values. To calculate the excitation function theoretically the ALICE/LIVERMORE-82 computer code was used. This set of excitation functions provides a data basis for probing the validity of combined equilibrium and pre-equilibrium reaction models in a considerable energy range. (author). 34 refs, 9 figs

  8. Graphical prediction of quantum interference-induced transmission nodes in functionalized organic molecules

    DEFF Research Database (Denmark)

    Markussen, Troels; Stadler, Robert; Thygesen, Kristian Sommer

    2011-01-01

    with tight-binding and density functional theory calculations to investigate QI in linear molecular chains and aromatic molecules with different side groups. For the molecular chains we find a linear relation between the position of the transmission nodes and the side group π orbital energy. In contrast......Quantum interference (QI) in molecular transport junctions can lead to dramatic reductions of the electron transmission at certain energies. In a recent work [Markussen et al., Nano Lett., 2010, 10, 4260] we showed how the presence of such transmission nodes near the Fermi energy can be predicted......, the transmission functions of functionalized aromatic molecules generally display a rather complex nodal structure due to the interplay between molecular topology and the energy of the side group orbital....

  9. Conflict-induced behavioural adjustment: a clue to the executive functions of the prefrontal cortex.

    Science.gov (United States)

    Mansouri, Farshad A; Tanaka, Keiji; Buckley, Mark J

    2009-02-01

    The behavioural adjustment that follows the experience of conflict has been extensively studied in humans, leading to influential models of executive-control adjustment. Recent studies have revealed striking similarities in conflict-induced behavioural adjustment between humans and monkeys, indicating that monkeys can provide a model to study the underlying neural substrates and mechanisms of such behaviour. These studies have advanced our knowledge about the role of different prefrontal brain regions, including the anterior cingulate cortex (ACC) and the dorsolateral prefrontal cortex (DLPFC), in executive-control adjustment and suggest a pivotal role for the DLPFC in the dynamic tuning of executive control and, consequently, in behavioural adaptation to changing environments.

  10. Functional Nanomaterials with Aggregation-Induced Emission Characteristics: Synthesis, Properties and Biological Applications

    Science.gov (United States)

    Kwok, Tsz Kin

    Fluorescent nanomaterials have great promise in bioanalysis and biotechnological applications because of their unique optical properties, high surface-to-volume ratio, and surface-modifiable quality. The development of fluorescent biosensors with high sensitivity, selectivity, and biocompatibility is of critical importance because it offers a direct visualization tool for the detection of biological macromolecules and the monitoring of biological events in living systems. Most of the conventional organic fluorophores, however, suffer from the self-quenching problem at high concentration or in the aggregated state. Such aggregation-cause quenching (ACQ) effect has greatly limited the scope of their bio-applications. Recently, our group discovered such a system, in which luminogen aggregation plays a constructive, instead of destructive, role in the light-emitting process. We have termed this abnormal phenomenon as "aggregation-induced emission" (AIE) and identified the restriction of intramolecular rotation as the main cause of the AIE effect. Attracted by the intriguing phenomenon and its fascinating perspectives, we have launched a new program directed towards the development of new AIE materials and exploration of their biological applications. In this work, a series of water-soluble AIE luminogens are designed and synthesized. Hydrophilic groups such as amino and sulfonate groups are incorporated into the AIE structures to impart them with good water solubility. Being practically non-emissive in water, these AIE luminogens are induced to emit intensely when bound to biomacromolecules, such as heparin, protamine and albumins, through hydrophobic and electrostatic interactions. Such light-up property enables the quantitation and visualization of biomacromolecules in aqueous solution and in electrophoretic gels. Incorporation of cleavable hydrophilic bioconjugates into AIE luminogens can enhance the specificity of the bioprobes. The bioprobes are nonluminscent in

  11. Modafinil-Induced Changes in Functional Connectivity in the Cortex and Cerebellum of Healthy Elderly Subjects.

    Science.gov (United States)

    Punzi, Miriam; Gili, Tommaso; Petrosini, Laura; Caltagirone, Carlo; Spalletta, Gianfranco; Sensi, Stefano L

    2017-01-01

    In the past few years, cognitive enhancing drugs (CEDs) have gained growing interest and the focus of investigations aimed at exploring their use to potentiate the cognitive performances of healthy individuals. Most of this exploratory CED-related research has been performed on young adults. However, CEDs may also help to maintain optimal brain functioning or compensate for subtle and or subclinical deficits associated with brain aging or early-stage dementia. In this study, we assessed effects on resting state brain activity in a group of healthy elderly subjects undergoing acute administration of modafinil, a wakefulness-promoting agent. To that aim, participants ( n = 24) were investigated with resting state functional Magnetic Resonance Imaging (rs-fMRI) before and after the administration of a single dose (100 mg) of modafinil. Effects were compared to age and size-matched placebo group. Rs-fMRI effects were assessed, employing a graph-based approach and Eigenvector Centrality (EC) analysis, by taking in account topological changes occurring in functional brain networks. The main finding of the study is that modafinil promotes enhanced centrality, a measure of the importance of nodes within functional networks, of the bilateral primary visual (V1) cortex. EC analysis also revealed that modafinil-treated subjects show increased functional connectivity between the V1 and specific cerebellar (Crus I, Crus II, VIIIa lobule) and frontal (right inferior frontal sulcus and left middle frontal gyrus) regions. Present findings provide functional data supporting the hypothesis that modafinil can modulate the cortico-cerebellar connectivity of the aging brain.

  12. Lysosomal function is involved in 17β-estradiol-induced estrogen receptor α degradation and cell proliferation.

    Science.gov (United States)

    Totta, Pierangela; Pesiri, Valeria; Marino, Maria; Acconcia, Filippo

    2014-01-01

    The homeostatic control of the cellular proteome steady-state is dependent either on the 26S proteasome activity or on the lysosome function. The sex hormone 17β-estradiol (E2) controls a plethora of biological functions by binding to the estrogen receptor α (ERα), which is both a nuclear ligand-activated transcription factor and also an extrinsic plasma membrane receptor. Regulation of E2-induced physiological functions (e.g., cell proliferation) requires the synergistic activation of both transcription of estrogen responsive element (ERE)-containing genes and rapid extra-nuclear phosphorylation of many different signalling kinases (e.g., ERK/MAPK; PI3K/AKT). Although E2 controls ERα intracellular content and activity via the 26S proteasome-mediated degradation, biochemical and microscopy-based evidence suggests a possible cross-talk among lysosomes and ERα activities. Here, we studied the putative localization of endogenous ERα to lysosomes and the role played by lysosomal function in ERα signalling. By using confocal microscopy and biochemical assays, we report that ERα localizes to lysosomes and to endosomes in an E2-dependent manner. Moreover, the inhibition of lysosomal function obtained by chloroquine demonstrates that, in addition to 26S proteasome-mediated receptor elimination, lysosome-based degradation also contributes to the E2-dependent ERα breakdown. Remarkably, the lysosome function is further involved in those ERα activities required for E2-dependent cell proliferation while it is dispensable for ERα-mediated ERE-containing gene transcription. Our discoveries reveal a novel lysosome-dependent degradation pathway for ERα and show a novel biological mechanism by which E2 regulates ERα cellular content and, as a consequence, cellular functions.

  13. X-radiation-induced inhibition of endocrine function of rat thymus

    International Nuclear Information System (INIS)

    Grinevich, Yu.A.; Martynenko, S.V.; Baraboj, V.A.; Gress, V.Eh.; Nikol'skij, I.S.

    1986-01-01

    Whole-body X-irradiation of rats caused inhibition of endocrine function of thymus. The effect was a function of radiation dose and time after irradiation. 72 h following irradiation with doses of 6 and 8 Gy the thymus hormone content of blood serum fell down the level registered in the thymectomized animals. Cellularity of the thymus and spleen concurently decreased. The kinetics of spontaneous chemiluminescence of blood serum, thymus and spleen cells characterized the hypersecretion of glucocorticoids in response to radiation activation of lipid peroxidation in radiosensitive rat organs

  14. Local and Systemic Inflammation May Mediate Diesel Engine Exhaust-Induced Lung Function Impairment in a Chinese Occupational Cohort.

    Science.gov (United States)

    Wang, Haitao; Duan, Huawei; Meng, Tao; Yang, Mo; Cui, Lianhua; Bin, Ping; Dai, Yufei; Niu, Yong; Shen, Meili; Zhang, Liping; Zheng, Yuxin; Leng, Shuguang

    2018-04-01

    Diesel exhaust (DE) as the major source of vehicle-emitted particle matter in ambient air impairs lung function. The objectives were to assess the contribution of local (eg, the fraction of exhaled nitric oxide [FeNO] and serum Club cell secretory protein [CC16]) and systemic (eg, serum C-reaction protein [CRP] and interleukin-6 [IL-6]) inflammation to DE-induced lung function impairment using a unique cohort of diesel engine testers (DETs, n = 137) and non-DETs (n = 127), made up of current and noncurrent smokers. Urinary metabolites, FeNO, serum markers, and spirometry were assessed. A 19% reduction in CC16 and a 94% increase in CRP were identified in DETs compared with non-DETs (all p values regulatory risk assessment. Local and systemic inflammation may be key processes that contribute to the subsequent development of obstructive lung disease in DE-exposed populations.

  15. Estimation of adsorption-induced pore pressure and confinement in a nanoscopic slit pore by a density functional theory

    Science.gov (United States)

    Grégoire, David; Malheiro, Carine; Miqueu, Christelle

    2018-03-01

    This study aims at characterising the adsorption-induced pore pressure and confinement in nanoscopic pores by molecular non-local density functional theory (DFT). Considering its important potential industrial applications, the adsorption of methane in graphitic slit pores has been selected as the test case. While retaining the accuracy of molecular simulations at pore scale, DFT has a very low computational cost that allows obtaining highly resolved pore pressure maps as a function of both pore width and thermodynamic conditions. The dependency of pore pressure on these parameters (pore width, pressure and temperature) is carefully analysed in order to highlight the effect of each parameter on the confined fluid properties that impact the solid matrix.

  16. Dual AAV therapy ameliorates exercise-induced muscle injury and functional ischemia in murine models of Duchenne muscular dystrophy.

    Science.gov (United States)

    Zhang, Yadong; Yue, Yongping; Li, Liang; Hakim, Chady H; Zhang, Keqing; Thomas, Gail D; Duan, Dongsheng

    2013-09-15

    Neuronal nitric oxide synthase (nNOS) membrane delocalization contributes to the pathogenesis of Duchenne muscular dystrophy (DMD) by promoting functional muscle ischemia and exacerbating muscle injury during exercise. We have previously shown that supra-physiological expression of nNOS-binding mini-dystrophin restores normal blood flow regulation and prevents functional ischemia in transgenic mdx mice, a DMD model. A critical next issue is whether systemic dual adeno-associated virus (AAV) gene therapy can restore nNOS-binding mini-dystrophin expression and mitigate muscle activity-related functional ischemia and injury. Here, we performed systemic gene transfer in mdx and mdx4cv mice using a pair of dual AAV vectors that expressed a 6 kb nNOS-binding mini-dystrophin gene. Vectors were packaged in tyrosine mutant AAV-9 and co-injected (5 × 10(12) viral genome particles/vector/mouse) via the tail vein to 1-month-old dystrophin-null mice. Four months later, we observed 30-50% mini-dystrophin positive myofibers in limb muscles. Treatment ameliorated histopathology, increased muscle force and protected against eccentric contraction-induced injury. Importantly, dual AAV therapy successfully prevented chronic exercise-induced muscle force drop. Doppler hemodynamic assay further showed that therapy attenuated adrenergic vasoconstriction in contracting muscle. Our results suggest that partial transduction can still ameliorate nNOS delocalization-associated functional deficiency. Further evaluation of nNOS binding mini-dystrophin dual AAV vectors is warranted in dystrophic dogs and eventually in human patients.

  17. Sequential process in brain-derived neurotrophic factor-induced functional periodontal tissue regeneration.

    Science.gov (United States)

    Konishi, Akihiro; Takeda, Katsuhiro; Fujita, Tsuyoshi; Kajiya, Mikihito; Matsuda, Shinji; Kittaka, Mizuho; Shiba, Hideki; Kurihara, Hidemi

    2016-04-01

    We recently demonstrated that brain-derived neurotrophic factor (BDNF) promotes periodontal tissue regeneration. The purpose of this study was to establish an essential component of a rational approach for the clinical application of BDNF in periodontal regenerative therapy. Here, we assessed the sequence of early events in BDNF-induced periodontal tissue regeneration, especially from the aspect of cementum regeneration. Brain-derived neurotrophic factor was applied into experimental periodontal defects in Beagle dogs. The localization of cells positive for neurotrophic tyrosine kinase, receptor, type 2, proliferating cell nuclear antigen, osteopontin, integrin αVβ3, and integrin α2β1 was evaluated by immunohistochemistry. The effects of BDNF on adhesion of cultured human periodontal ligament cells was examined by an in vitro study. The results suggest that BDNF could induce rapid cementum regeneration by stimulating adhesion, proliferation, and differentiation of periodontal ligament cells in the early regenerative phase, resulting in enhancement of periodontal tissue regeneration. © 2016 Eur J Oral Sci.

  18. Effect of astaxanthin on kidney function impairment and oxidative stress induced by mercuric chloride in rats.

    Science.gov (United States)

    Augusti, P R; Conterato, G M M; Somacal, S; Sobieski, R; Spohr, P R; Torres, J V; Charão, M F; Moro, A M; Rocha, M P; Garcia, S C; Emanuelli, T

    2008-01-01

    Reactive oxygen species are implicated as mediators of tissue damage in the acute renal failure induced by inorganic mercury. Astaxanthin (ASX), a carotenoid with potent antioxidant properties, exists naturally in various plants, algae, and seafoods. This paper evaluated the ability of ASX to prevent HgCl(2) nephrotoxicity. Rats were injected with HgCl(2) (0 or 5 mg/kg b.w., sc) 6h after ASX had been administered (0, 10, 25, or 50mg/kg, by gavage) and were killed 12h after HgCl(2) exposure. Although ASX prevented the increase of lipid and protein oxidation and attenuated histopathological changes caused by HgCl(2) in kidney, it did not prevent creatinine increase in plasma and delta-aminolevulinic acid dehydratase inhibition induced by HgCl(2). Glutathione peroxidase and catalase activities were enhanced, while superoxide dismutase activity was depressed in HgCl(2)-treated rats when compared to control and these effects were prevented by ASX. Our results indicate that ASX could have a beneficial role against HgCl(2) toxicity by preventing lipid and protein oxidation, changes in the activity of antioxidant enzymes and histopathological changes.

  19. Functional Deficits Precede Structural Lesions in Mice With High-Fat Diet-Induced Diabetic Retinopathy.

    Science.gov (United States)

    Rajagopal, Rithwick; Bligard, Gregory W; Zhang, Sheng; Yin, Li; Lukasiewicz, Peter; Semenkovich, Clay F

    2016-04-01

    Obesity predisposes to human type 2 diabetes, the most common cause of diabetic retinopathy. To determine if high-fat diet-induced diabetes in mice can model retinal disease, we weaned mice to chow or a high-fat diet and tested the hypothesis that diet-induced metabolic disease promotes retinopathy. Compared with controls, mice fed a diet providing 42% of energy as fat developed obesity-related glucose intolerance by 6 months. There was no evidence of microvascular disease until 12 months, when trypsin digests and dye leakage assays showed high fat-fed mice had greater atrophic capillaries, pericyte ghosts, and permeability than controls. However, electroretinographic dysfunction began at 6 months in high fat-fed mice, manifested by increased latencies and reduced amplitudes of oscillatory potentials compared with controls. These electroretinographic abnormalities were correlated with glucose intolerance. Unexpectedly, retinas from high fat-fed mice manifested striking induction of stress kinase and neural inflammasome activation at 3 months, before the development of systemic glucose intolerance, electroretinographic defects, or microvascular disease. These results suggest that retinal disease in the diabetic milieu may progress through inflammatory and neuroretinal stages long before the development of vascular lesions representing the classic hallmark of diabetic retinopathy, establishing a model for assessing novel interventions to treat eye disease. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  20. Functional Food Targeting the Regulation of Obesity-Induced Inflammatory Responses and Pathologies

    Directory of Open Access Journals (Sweden)

    Shizuka Hirai

    2010-01-01

    Full Text Available Obesity is associated with a low-grade systemic chronic inflammatory state, characterized by the abnormal production of pro- and anti-inflammatory adipocytokines. It has been found that immune cells such as macrophages can infiltrate adipose tissue and are responsible for the majority of inflammatory cytokine production. Obesity-induced inflammation is considered a potential mechanism linking obesity to its related pathologies, such as insulin resistance, cardiovascular diseases, type-2 diabetes, and some immune disorders. Therefore, targeting obesity-related inflammatory components may be a useful strategy to prevent or ameliorate the development of such obesity-related diseases. It has been shown that several food components can modulate inflammatory responses in adipose tissue via various mechanisms, some of which are dependent on peroxisome proliferator-activated receptor γ (PPARγ, whereas others are independent on PPARγ, by attenuating signals of nuclear factor-κB (NF-κB and/or c-Jun amino-terminal kinase (JNK. In this review, we introduce the beneficial effects of anti-inflammatory phytochemicals that can help prevent obesity-induced inflammatory responses and pathologies.

  1. Blood-ocular and blood-brain barrier function in streptozocin-induced diabetes in rats

    International Nuclear Information System (INIS)

    Maeepea, O.; Karlsson, C.; Alm, A.

    1984-01-01

    Edetic acid labeled with chromium 51 was injected intravenously in normal rats and in rats with streptozocin-induced diabetes. One hour after the injection the animals were killed and the concentrations of edetic acid 51Cr in vitreous body, retina, and brain were determined. No significant difference was observed between the two groups for either tissue. In a second series, a mixture of tritiated 1-glucose and aminohippuric acid tagged with carbon 14 was injected instead of edetic acid. A substantial accumulation of aminohippuric acid 14C compared with tritiated 1-glucose was observed in the vitreous body and the brain of diabetic rats in comparison with the control group. It is concluded that untreated streptozocin-induced diabetes in rats for one to two weeks will not cause a generalized increase in the permeability of the blood-ocular or the blood-brain barriers, but organic acids may accumulate in the vitreous body as well as in the brain as a consequence of reduced outward transport through these barriers

  2. Impaired Mitochondrial Respiratory Functions and Oxidative Stress in Streptozotocin-Induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Subbuswamy K. Prabu

    2011-05-01

    Full Text Available We have previously shown a tissue-specific increase in oxidative stress in the early stages of streptozotocin (STZ-induced diabetic rats. In this study, we investigated oxidative stress-related long-term complications and mitochondrial dysfunctions in the different tissues of STZ-induced diabetic rats (>15 mM blood glucose for 8 weeks. These animals showed a persistent increase in reactive oxygen and nitrogen species (ROS and RNS, respectively production. Oxidative protein carbonylation was also increased with the maximum effect observed in the pancreas of diabetic rats. The activities of mitochondrial respiratory enzymes ubiquinol: cytochrome c oxidoreductase (Complex III and cytochrome c oxidase (Complex IV were significantly decreased while that of NADH:ubiquinone oxidoreductase (Complex I and succinate:ubiquinone oxidoreductase (Complex II were moderately increased in diabetic rats, which was confirmed by the increased expression of the 70 kDa Complex II sub-unit. Mitochondrial matrix aconitase, a ROS sensitive enzyme, was markedly inhibited in the diabetic rat tissues. Increased expression of oxidative stress marker proteins Hsp-70 and HO-1 was also observed along with increased expression of nitric oxide synthase. These results suggest that mitochondrial respiratory complexes may play a critical role in ROS/RNS homeostasis and oxidative stress related changes in type 1 diabetes and may have implications in the etiology of diabetes and its complications.

  3. Enhanced response to radiotherapy in tumours deficient in the function of hypoxia-inducible factor-1.

    NARCIS (Netherlands)

    Williams, K.J.; Telfer, B.A.; Xenaki, D.; Sheridan, M.R.; Desbaillets, I.; Peters, H.J.; Honess, D.; Harris, A.L.; Dachs, G.U.; Kogel, A.J. van der; Stratford, I.J.

    2005-01-01

    BACKGROUND AND PURPOSE: To test the hypothesis that deficiency in expression of the transcription factor, HIF-1, renders tumours more radioresponsive than HIF-1 proficient tumours. PATIENTS AND METHODS: Tumours comprising mouse hepatoma cells lacking HIF-1beta (and thereby HIF-1 function) were grown

  4. A functional polymorphism of the MAOA gene is associated with neural responses to induced anger control.

    NARCIS (Netherlands)

    Denson, T.F.; Dobson-Stone, C.; Ronay, R.D.; von Hippel, W.; Schira, M.M.

    2014-01-01

    Aggressiveness is highly heritable. Recent experimental work has linked individual differences in a functional polymorphism of the monoamine oxidase-A gene (MAOA) to anger-driven aggression. Other work has implicated the dorsal ACC (dACC) in cognitive-emotional control and the amygdala in emotional

  5. Exercise induced effects on muscle function and range of motion in patients with hip osteoarthritis

    DEFF Research Database (Denmark)

    Bieler, Theresa; Siersma, Volkert; Magnusson, S Peter

    2018-01-01

    BACKGROUND AND PURPOSE: Patients with hip osteoarthritis have impairments in muscle function (muscle strength and power) and hip range of motion (ROM), and it is commonly believed that effective clinical management of osteoarthritis should address these impairments to reduce pain and disability. ...

  6. Loss of Geminin induces rereplication in the presence of functional p53

    DEFF Research Database (Denmark)

    Melixetian, Marina; Ballabeni, Andrea; Masiero, Laura

    2004-01-01

    nuclear foci. Abrogation of the checkpoint leads to abortive mitosis and death of rereplicated cells. In addition, we demonstrate that the induction of rereplication is dependent on the replication initiation factors CDT1 and CDC6, and independent of the functional status of p53. These data show...

  7. Mechanisms of formation and function of eosinophil lipid bodies: inducible intracellular sites involved in arachidonic acid metabolism

    Directory of Open Access Journals (Sweden)

    Bozza Patricia T

    1997-01-01

    Full Text Available Lipid bodies, inducible lipid-rich cytoplasmic inclusions, are characteristically abundant in cells associated with inflammation, including eosinophils. Here we reviewed the formation and function of lipid bodies in human eosinophils. We now have evidence that the formation of lipid bodies is not attributable to adverse mechanisms, but is centrally mediated by specific signal transduction pathways. Arachidonic acid and other cis fatty acids by an NSAID-inhibitable process, diglycerides, and PAF by a 5-lipoxygenase dependent pathway are potent stimulators of lipid body induction. Lipid body formation develops rapidly by processes that involve PKC, PLC, and de novo mRNA and protein synthesis. These structures clearly serve as repositoires of arachidonyl-phospholipids and are more than inert depots. Specific enzymes, including cytosolic phospholipase A2, MAP kinases, lipoxygenases and cyclooxygenases, associate with lipid bodies. Lipid bodies appear to be dynamic, organelle-like structures involved in intracellular pathways of lipid mobilization and metabolism. Indeed, increases in lipid body numbers correlated with enhanced production of both lipoxygenase- and cyclooxygenase-derived eicosanoids. We hypothesize that lipid bodies are distinct inducible sites for generating eicosanoids as paracrine mediators with varied activities in inflammation. The capacity of lipid body formation to be specifically and rapidly induced in leukocytes enhances eicosanoid mediator formation, and conversely pharmacologic inhibition of lipid body induction represents a potential novel and specific target for anti-inflammatory therapy.

  8. Free chelatable zinc modulates the cholinergic function during hypobaric hypoxia-induced neuronal damage: an in vivo study.

    Science.gov (United States)

    Udayabanu, M; Kumaran, D; Katyal, A

    2012-01-27

    The deregulation of cholinergic system and associated neuronal damage is thought to be a major contributor to the pathophysiologic sequelae of hypobaric hypoxia-induced memory impairment. Uniquely, the muscarinic receptors also play a role in zinc uptake. Despite the potential role of muscarinic receptors in the development of post hypoxia cognitive deficits, no studies to date have evaluated the mechanistic relationship between memory dysfunction and zinc homeostasis in brain. In the present study, we evaluated the effect of Ca(2)EDTA, a specific zinc chelator in the spatial working and associative memory deficits following hypobaric hypoxia. Our results demonstrate that accumulation of intracellular free chelatable zinc in the hippocampal CA3 pyramidal neurons is accompanied with neuronal loss and memory impairment in hypobaric hypoxic condition. Chelation of this free zinc with Ca(2)EDTA (1.25 mM/kg) ameliorated the hippocampus-dependent spatial as well as associative memory dysfunction and neuronal damage observed on exposure to hypobaric hypoxia. The zinc chelator significantly alleviated the downregulation in expression of choline acetyltransferase, muscarinic receptor 1 and 4, and acetylcholinesterase activity due to hypobaric hypoxia. Our data suggest that the free chelatable zinc released during hypobaric hypoxia might play a critical role in the neuronal damage and the alteration in cholinergic function associated with hypobaric hypoxia-induced memory impairment. We speculate that zinc chelation might be a potential therapy for hypobaric hypoxia-induced cognitive impairment. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  9. Obesity Induces Artery-Specific Alterations: Evaluation of Vascular Function and Inflammatory and Smooth Muscle Phenotypic Markers

    Directory of Open Access Journals (Sweden)

    Antonio Garcia Soares

    2017-01-01

    Full Text Available Vascular alterations are expected to occur in obese individuals but the impact of obesity could be different depending on the artery type. We aimed to evaluate the obesity effects on the relaxing and contractile responses and inflammatory and smooth muscle (SM phenotypic markers in two vascular beds. Obesity was induced in C57Bl/6 mice by 16-week high-fat diet and vascular reactivity, mRNA expression of inflammatory and SM phenotypic markers, and collagen deposition were evaluated in small mesenteric arteries (SMA and thoracic aorta (TA. Endothelium-dependent relaxation in SMA and TA was not modified by obesity. In contrast, contraction induced by depolarization and contractile agonists was reduced in SMA, whereas only contraction induced by adrenergic agonist was reduced in TA of obese mice. Obesity increased the mRNA expression of pro- and anti-inflammatory cytokines in SMA and TA. The expression of genes necessary for maintaining contractile ability was increased by obesity, but the increase was more pronounced in TA. Collagen deposition was increased in SMA, but not in TA, of obese mice. Although the endothelial function was still preserved, the SM of the two artery types was impaired by obesity, but the impairment was higher in SMA, which could be associated with SM phenotypic changes.

  10. Schedule of NMDA receptor subunit expression and functional channel formation in the course of in vitro-induced neurogenesis.

    Science.gov (United States)

    Varju, P; Schlett, K; Eisel, U; Madarász, E

    2001-06-01

    NE-7C2 neuroectodermal cells derived from forebrain vesicles of p53-deficient mouse embryos (E9) produce neurons and astrocytes in vitro if induced by all-trans retinoic acid. The reproducible morphological stages of neurogenesis were correlated with the expression of various NMDA receptor subunits. RT-PCR studies revealed that GluRepsilon1 and GluRepsilon4 subunit mRNAs were transcribed by both non-induced and neuronally differentiated cells. GluRepsilon3 subunit mRNAs were not synthesized by NE-7C2 cells and increased numbers of messages from the GluRepsilon2 gene were detected only after neural network formation. The presence of the GluRzeta1 protein was detected throughout neural induction, whereas retinoic acid-induced neuron formation elevated the amount of exon 21 (C1)- and exon 22 (C2)-containing GluRzeta1 mRNAs and resulted in the appearance of exon 5 (N1)-containing transcripts. NMDA-elicited Ca(2+)-signals were detected only in cells displaying neuronal morphology, but preceding the appearance of synapsin-I immunoreactivity. Our findings demonstrated that, in spite of the presence of subunits necessary for channel formation, functional channels were formed by NE-7C2 cells no sooner than the time of neurite maturation. The data show that the cell line provides a suitable model to analyse the mechanisms involved in NMDA receptor gene expression before the appearance of synaptic communication.

  11. Isolation and functional characterization of salt-stress induced RCI2-like genes from Medicago sativa and Medicago truncatula.

    Science.gov (United States)

    Long, Ruicai; Zhang, Fan; Li, Zhenyi; Li, Mingna; Cong, Lili; Kang, Junmei; Zhang, Tiejun; Zhao, Zhongxiang; Sun, Yan; Yang, Qingchuan

    2015-07-01

    Salt stress is one of the most significant adverse abiotic factors, causing crop failure worldwide. So far, a number of salt stress-induced genes, and genes improving salt tolerance have been characterized in a range of plants. Here, we report the isolation and characterization of a salt stress-induced Medicago sativa (alfalfa) gene (MsRCI2A), which showed a high similarity to the yeast plasma membrane protein 3 gene (PMP3) and Arabidopsis RCI2A. The sequence comparisons revealed that five genes of MtRCI2(A-E) showed a high similarity to MsRCI2A in the Medicago truncatula genome. MsRCI2A and MtRCI2(A-E) encode small, highly hydrophobic proteins containing two putative transmembrane domains, predominantly localized in the plasma membrane. The transcript analysis results suggest that MsRCI2A and MtRCI2(A-D) genes are highly induced by salt stress. The expression of MsRCI2A and MtRCI2(A-C) in yeast mutants lacking the PMP3 gene can functionally complement the salt sensitivity phenotype resulting from PMP3 deletion. Overexpression of MsRCI2A in Arabidopsis plants showed improved salt tolerance suggesting the important role of MsRCI2A in salt stress tolerance in alfalfa.

  12. Functional electrical stimulation to the abdominal wall muscles synchronized with the expiratory flow does not induce muscle fatigue.

    Science.gov (United States)

    Okuno, Yukako; Takahashi, Ryoichi; Sewa, Yoko; Ohse, Hirotaka; Imura, Shigeyuki; Tomita, Kazuhide

    2017-03-01

    [Purpose] Continuous electrical stimulation of abdominal wall muscles is known to induce mild muscle fatigue. However, it is not clear whether this is also true for functional electrical stimulation delivered only during the expiratory phase of breathing. This study aimed to examine whether or not intermittent electrical stimulation delivered to abdominal wall muscles induces muscle fatigue. [Subjects and Methods] The subjects were nine healthy adults. Abdominal electrical stimulation was applied for 1.5 seconds from the start of expiration and then turned off during inspiration. The electrodes were attached to both sides of the abdomen at the lower margin of the 12th rib. Abdominal electrical stimulation was delivered for 15 minutes with the subject in a seated position. Expiratory flow was measured during stimulus. Trunk flexor torque and electromyography activity were measured to evaluate abdominal muscle fatigue. [Results] The mean stimulation on/off ratio was 1:2.3. The declining rate of abdominal muscle torque was 61.1 ± 19.1% before stimulus and 56.5 ± 20.9% after stimulus, not significantly different. The declining rate of mean power frequency was 47.8 ± 11.7% before stimulus and 47.9 ± 10.2% after stimulus, not significantly different. [Conclusion] It was found that intermittent electrical stimulation to abdominal muscles synchronized with the expiratory would not induce muscle fatigue.

  13. Requirement of FADD, NEMO, and BAX/BAK for Aberrant Mitochondrial Function in Tumor Necrosis Factor Alpha-Induced Necrosis▿

    Science.gov (United States)

    Irrinki, Krishna M.; Mallilankaraman, Karthik; Thapa, Roshan J.; Chandramoorthy, Harish C.; Smith, Frank J.; Jog, Neelakshi R.; Gandhirajan, Rajesh Kumar; Kelsen, Steven G.; Houser, Steven R.; May, Michael J.; Balachandran, Siddharth; Madesh, Muniswamy

    2011-01-01

    Necroptosis represents a form of alternative programmed cell death that is dependent on the kinase RIP1. RIP1-dependent necroptotic death manifests as increased reactive oxygen species (ROS) production in mitochondria and is accompanied by loss of ATP biogenesis and eventual dissipation of mitochondrial membrane potential. Here, we show that tumor necrosis factor alpha (TNF-α)-induced necroptosis requires the adaptor proteins FADD and NEMO. FADD was found to mediate formation of the TNF-α-induced pronecrotic RIP1-RIP3 kinase complex, whereas the IκB Kinase (IKK) subunit NEMO appears to function downstream of RIP1-RIP3. Interestingly, loss of RelA potentiated TNF-α-dependent necroptosis, indicating that NEMO regulates necroptosis independently of NF-κB. Using both pharmacologic and genetic approaches, we demonstrate that the overexpression of antioxidants alleviates ROS elevation and necroptosis. Finally, elimination of BAX and BAK or overexpression of Bcl-xL protects cells from necroptosis at a later step. These findings provide evidence that mitochondria play an amplifying role in inflammation-induced necroptosis. PMID:21746883

  14. Antenatal hypoxia induces programming of reduced arterial blood pressure response in female rat offspring: role of ovarian function.

    Directory of Open Access Journals (Sweden)

    DaLiao Xiao

    Full Text Available In utero exposure to adverse environmental factors increases the risk of cardiovascular disease in adulthood. The present study tested the hypothesis that antenatal hypoxia causes a gender-dependent programming of altered arterial blood pressure response (BP in adult offspring. Time-dated pregnant rats were divided into normoxic and hypoxic (10.5% O2 from days 15 to 21 of gestation groups. The experiments were conducted in adult offspring. Antenatal hypoxia caused intrauterine growth restriction, and resulted in a gender-dependent increase Angiotensin II (Ang II-induced BP response in male offspring, but significant decrease in BP response in female offspring. The baroreflex sensitivity was not significantly altered. Consistent with the reduced blood pressure response, antenatal hypoxia significantly decreased Ang II-induced arterial vasoconstriction in female offspring. Ovariectomy had no significant effect in control animals, but significantly increased Ang II-induced maximal BP response in prenatally hypoxic animals and eliminated the difference of BP response between the two groups. Estrogen replacement in ovariectomized animals significantly decreased the BP response to angiotensin II I only in control, but not in hypoxic animals. The result suggests complex programming mechanisms of antenatal hypoxia in regulation of ovary function. Hypoxia-mediated ovary dysfunction results in the phenotype of reduced vascular contractility and BP response in female adult offspring.

  15. Role of macrophages in the altered epithelial function during a type 2 immune response induced by enteric nematode infection.

    Directory of Open Access Journals (Sweden)

    Luigi Notari

    Full Text Available Parasitic enteric nematodes induce a type 2 immune response characterized by increased production of Th2 cytokines, IL-4 and IL-13, and recruitment of alternatively activated macrophages (M2 to the site of infection. Nematode infection is associated with changes in epithelial permeability and inhibition of sodium-linked glucose absorption, but the role of M2 in these effects is unknown. Clodronate-containing liposomes were administered prior to and during nematode infection to deplete macrophages and prevent the development of M2 in response to infection with Nippostrongylus brasiliensis. The inhibition of epithelial glucose absorption that is associated with nematode infection involved a macrophage-dependent reduction in SGLT1 activity, with no change in receptor expression, and a macrophage-independent down-regulation of GLUT2 expression. The reduced transport of glucose into the enterocyte is compensated partially by an up-regulation of the constitutive GLUT1 transporter consistent with stress-induced activation of HIF-1α. Thus, nematode infection results in a "lean" epithelial phenotype that features decreased SGLT1 activity, decreased expression of GLUT2 and an emergent dependence on GLUT1 for glucose uptake into the enterocyte. Macrophages do not play a role in enteric nematode infection-induced changes in epithelial barrier function. There is a greater contribution, however, of paracellular absorption of glucose to supply the energy demands of host resistance. These data provide further evidence of the ability of macrophages to alter glucose metabolism of neighboring cells.

  16. Contribution of High-Pressure-Induced Protein Modifications to the Microenvironment and Functional Properties of Rabbit Meat Sausages.

    Science.gov (United States)

    Xue, Siwen; Yu, Xiaobo; Yang, Huijuan; Xu, Xinglian; Ma, Hanjun; Zhou, Guanghong

    2017-06-01

    Rabbit meat batters were subjected to high pressure (HP, 100 to 300 MPa for 3, 9, or 15 min) to elucidate their effects on proteins structures, the microenvironment, and the resulting functionalities of the subsequently heated products. To determine these effects, we investigated structural and microenvironmental changes using Raman spectroscopy and also expressible moisture content, textural characteristics, and dynamic rheological properties of batters during heating (20 to 80 °C). Untreated samples served as controls. Analysis of specific Raman spectral regions demonstrated that applications of HP to rabbit meat batters tended to induce the transformation of the all-gauche S-S conformation to gauche-gauche-trans in the batter system. HP treatment higher than 100 MPa for 9 min promoted secondary structural rearrangements, and molecular polarity enhancement in the proteins prior to cooking. Also, increases of O-H stretching intensities of rabbit meat sausages were obtained by HP treatment, denoting the strengthening of water-holding capacity. These HP-induced alterations resulted in improved texture and, perhaps, improved juiciness of rabbit meat sausages (P < 0.05), however they had relatively poorer rheological properties than the controls. Nevertheless, HP treatment, especially 200 MPa for 9 or 15 min, was an effective technique for improving the functionalities of gel-type products through modification of meat proteins. © 2017 Institute of Food Technologists®.

  17. A synthetic three-dimensional niche system facilitates generation of functional hematopoietic cells from human-induced pluripotent stem cells

    Directory of Open Access Journals (Sweden)

    Yulin Xu

    2016-09-01

    Full Text Available Abstract Background The efficient generation of hematopoietic stem cells (HSCs from human-induced pluripotent stem cells (iPSCs holds great promise in personalized transplantation therapies. However, the derivation of functional and transplantable HSCs from iPSCs has had very limited success thus far. Methods We developed a synthetic 3D hematopoietic niche system comprising nanofibers seeded with bone marrow (BM-derived stromal cells and growth factors to induce functional hematopoietic cells from human iPSCs in vitro. Results Approximately 70 % of human CD34+ hematopoietic cells accompanied with CD43+ progenitor cells could be derived from this 3D induction system. Colony-forming-unit (CFU assay showed that iPSC-derived CD34+ cells formed all types of hematopoietic colonies including CFU-GEMM. TAL-1 and MIXL1, critical transcription factors associated with hematopoietic development, were expressed during the differentiation process. Furthermore, iPSC-derived hematopoietic cells gave rise to both lymphoid and myeloid lineages in the recipient NOD/SCID mice after transplantation. Conclusions Our study underscores the importance of a synthetic 3D niche system for the derivation of transplantable hematopoietic cells from human iPSCs in vitro thereby establishing a foundation towards utilization of human iPSC-derived HSCs for transplantation therapies in the clinic.

  18. Age-related functional changes and susceptibility to eccentric contraction-induced damage in skeletal muscle cell

    Directory of Open Access Journals (Sweden)

    Seung-Jun Choi

    2016-09-01

    Full Text Available Depending upon external loading conditions, skeletal muscles can either shorten, lengthen, or remain at a fixed length as they produce force. Fixed-end or isometric contractions stabilize joints and allow muscles to act as active struts during locomotion. Active muscles dissipate energy when they are lengthened by an external force that exceeds their current force producing capacity. These unaccustomed eccentric activities often lead to muscle weakness, soreness, and inflammation. During aging, the ability to produce force under these conditions is reduced and appears to be due to not only reductions in muscle mass but also to alterations in the basic mechanisms of contraction. These alterations include impairments in the excitation–contraction process, and the action of the cross-bridges. Also, it is well known that age-related skeletal muscle atrophy is characterized by a preferential atrophy of fast fibers, and increased susceptibility to fast muscle fiber when aged muscles are exposed to eccentric contraction followed by the impaired recovery process has been reported. Taken together, the selective loss of fast muscle fiber in aged muscle could be affected by eccentric-induced muscle damage, which has significant implication to identify the etiology of the age-related functional changes. Therefore, in this review the alteration of age-related muscle function and its impact to/of eccentric induced muscle damage and recovery will be addressed in detail.

  19. Age-related functional changes and susceptibility to eccentric contraction-induced damage in skeletal muscle cell.

    Science.gov (United States)

    Choi, Seung-Jun

    2016-09-01

    Depending upon external loading conditions, skeletal muscles can either shorten, lengthen, or remain at a fixed length as they produce force. Fixed-end or isometric contractions stabilize joints and allow muscles to act as active struts during locomotion. Active muscles dissipate energy when they are lengthened by an external force that exceeds their current force producing capacity. These unaccustomed eccentric activities often lead to muscle weakness, soreness, and inflammation. During aging, the ability to produce force under these conditions is reduced and appears to be due to not only reductions in muscle mass but also to alterations in the basic mechanisms of contraction. These alterations include impairments in the excitation-contraction process, and the action of the cross-bridges. Also, it is well known that age-related skeletal muscle atrophy is characterized by a preferential atrophy of fast fibers, and increased susceptibility to fast muscle fiber when aged muscles are exposed to eccentric contraction followed by the impaired recovery process has been reported. Taken together, the selective loss of fast muscle fiber in aged muscle could be affected by eccentric-induced muscle damage, which has significant implication to identify the etiology of the age-related functional changes. Therefore, in this review the alteration of age-related muscle function and its impact to/of eccentric induced muscle damage and recovery will be addressed in detail.

  20. Training your brain to be more creative: brain functional and structural changes induced by divergent thinking training.

    Science.gov (United States)

    Sun, Jiangzhou; Chen, Qunlin; Zhang, Qinglin; Li, Yadan; Li, Haijiang; Wei, Dongtao; Yang, Wenjing; Qiu, Jiang

    2016-10-01

    Creativity is commonly defined as the ability to produce something both novel and useful. Stimulating creativity has great significance for both individual success and social improvement. Although increasing creative capacity has been confirmed to be possible and effective at the behavioral level, few longitudinal studies have examined the extent to which the brain function and structure underlying creativity are plastic. A cognitive stimulation (20 sessions) method was used in the present study to train subjects and to explore the neuroplasticity induced by training. The behavioral results revealed that both the originality and the fluency of divergent thinking were significantly improved by training. Furthermore, functional changes induced by training were observed in the dorsal anterior cingulate cortex (dACC), dorsal lateral prefrontal cortex (DLPFC), and posterior brain regions. Moreover, the gray matter volume (GMV) was significantly increased in the dACC after divergent thinking training. These results suggest that the enhancement of creativity may rely not only on the posterior brain regions that are related to the fundamental cognitive processes of creativity (e.g., semantic processing, generating novel associations), but also on areas that are involved in top-down cognitive control, such as the dACC and DLPFC. Hum Brain Mapp 37:3375-3387, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  1. The potential role of melatonin on sleep deprivation-induced cognitive impairments: implication of FMRP on cognitive function.

    Science.gov (United States)

    Kwon, K J; Lee, E J; Kim, M K; Jeon, S J; Choi, Y Y; Shin, C Y; Han, S-H

    2015-08-20

    While prolonged sleep deprivation (SD) could lead to profound negative health consequences, such as impairments in vital biological functions of immunity and cognition, melatonin possesses powerful ameliorating effects against those harmful insults. Melatonin has strong antioxidant and anti-inflammatory effects that help to restore body's immune and cognitive functions. In this study, we investigated the possible role of melatonin in reversing cognitive dysfunction induced by SD in rats. Our experimental results revealed that sleep-deprived animals exhibited spatial memory impairment in the Morris water maze tasks compared with the control groups. Furthermore, there was an increased glial activation most prominent in the hippocampal region of the SD group compared to the normal control (NC) group. Additionally, markers of oxidative stress such as 4-hydroxynonenal (4-HNE) and 7,8-dihydro-8-oxo-deoxyguanine (8-oxo-dG) were significantly increased, while fragile X-mental retardation protein (FMRP) expression was decreased in the SD group. Interestingly, melatonin treatment normalized these events to control levels following SD. Our data demonstrate that SD induces oxidative stress through glial activation and decreases FMRP expression in the neurons. Furthermore, our results suggest the efficacy of melatonin for the treatment of sleep-related neuronal dysfunction, which occurs in neurological disorders such as Alzheimer's disease and autism. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  2. Irradiation induced modest changes in murine cardiac function despite progressive structural damage to the myocardium and microvasculature

    International Nuclear Information System (INIS)

    Seemann, Ingar; Gabriels, Karen; Visser, Nils L.; Hoving, Saske; Poele, Johannes A. te; Pol, Jeffrey F.; Gijbels, Marion J.; Janssen, Ben J.; Leeuwen, Fijs W. van; Daemen, Mat J.; Heeneman, Sylvia; Stewart, Fiona A.

    2012-01-01

    Background: Radiotherapy of thoracic and chest wall tumors increases the long-term risk of cardiotoxicity, but the underlying mechanisms are unclear. Methods: Single doses of 2, 8, or 16 Gy were delivered to the hearts of mice and damage was evaluated at 20, 40, and 60 weeks, relative to age matched controls. Single photon emission computed tomography (SPECT/CT) and ultrasound were used to measure cardiac geometry and function, which was related to histo-morphology and microvascular damage. Results: Gated SPECT/CT and ultrasound demonstrated decreases in end diastolic and systolic volumes, while the ejection fraction was increased at 20 and 40 weeks after 2, 8, and 16 Gy. Cardiac blood volume was decreased at 20 and 60 weeks after irradiation. Histological examination revealed inflammatory changes at 20 and 40 weeks after 8 and 16 Gy. Microvascular density in the left ventricle was decreased at 40 and 60 weeks after 8 and 16 Gy, with functional damage to remaining microvasculature manifest as decreased alkaline phosphatase (2, 8, and 16 Gy), increased von Willebrand Factor and albumin leakage from vessels (8 and 16 Gy), and amyloidosis (16 Gy). 16 Gy lead to sudden death between 30 and 40 weeks in 38% of mice. Conclusions: Irradiation with 2 and 8 Gy induced modest changes in murine cardiac function within 20 weeks but this did not deteriorate further, despite progressive structural and microvascular damage. This indicates that heart function can compensate for significant structural damage, although higher doses, eventually lead to sudden death.

  3. Suppression of adaptive immunity to heterologous antigens during Plasmodium infection through hemozoin-induced failure of dendritic cell function

    Directory of Open Access Journals (Sweden)

    Phillips R

    2006-04-01

    Full Text Available Abstract Background Dendritic cells (DCs are central to the initiation and regulation of the adaptive immune response during infection. Modulation of DC function may therefore allow evasion of the immune system by pathogens. Significant depression of the host's systemic immune response to both concurrent infections and heterologous vaccines has been observed during malaria infection, but the mechanisms underlying this immune hyporesponsiveness are controversial. Results Here, we demonstrate that the blood stages of malaria infection induce a failure of DC function in vitro and in vivo, causing suboptimal activation of T cells involved in heterologous immune responses. This effect on T-cell activation can be transferred to uninfected recipients by DCs isolated from infected mice. Significantly, T cells activated by these DCs subsequently lack effector function, as demonstrated by a failure to migrate to lymphoid-organ follicles, resulting in an absence of B-cell responses to heterologous antigens. Fractionation studies show that hemozoin, rather than infected erythrocyte (red blood cell membranes, reproduces the effect of intact infected red blood cells on DCs. Furthermore, hemozoin-containing DCs could be identified in T-cell areas of the spleen in vivo. Conclusion Plasmodium infection inhibits the induction of adaptive immunity to heterologous antigens by modulating DC function, providing a potential explanation for epidemiological studies linking endemic malaria with secondary infections and reduced vaccine efficacy.

  4. Exercise and dietary program-induced weight reduction is associated with cognitive function among obese adolescents: a longitudinal study

    Directory of Open Access Journals (Sweden)

    Chun Xie

    2017-05-01

    Full Text Available Objective The present study was to determine the effect of a combined exercise and dietary program on cognitive function as well as the relationship between the program-induced weight change and cognitive function alterations. Design The study applies a quasi-experimental design. Methods Fifty-eight adolescents with obese status (body mass index, BMI >28 kg/m2 were assigned to either an experiment (n = 30 or control group (n = 28. Participants in the experiment group received a scheduled program with a specific exercise protocol (two sessions per day, six days per week and diet plan for four consecutive weeks; the control group was instructed to maintain their normal school activities. The primary outcome measures were anthropometric data and flanker task performance. Results The combined program led to reduced BMI with maintenance of the incongruent accuracy in the experiment group, but the incongruent accuracy decreased in the control group after the four-week period. Additionally, the change in weight status between post- and pre-test measurements was inversely correlated with the change in incongruent accuracy. Conclusion The combined exercise and dietary program resulted in decreased weight and enhanced executive function in the obese adolescents, and the weight alteration may be considered the mediator between the intervention and executive function.

  5. THE EFFECTS OF PROLONGED PHYSICAL INACTIVITY INDUCED BY BED REST ON COGNITIVE FUNCTIONING IN HEALTHY MALE PARTICIPANTS

    Directory of Open Access Journals (Sweden)

    Petra Dolenc

    2013-06-01

    Full Text Available A growing body of scientific evidence indicates that physical activity beneficially influences cognitive functioning. Less thoroughly investigated are the cognitive outcomes of reduced physical activity levels. The purpose of the study was to determine the effects of prolonged physical inactivity induced by bed rest on the participant’s cognitive functioning. Bed rest is a well-accepted method by which an acute stage of human adaptation to weightlessness in space flights is simulated, as well as an important model to study the consequences of extreme physical inactivity in humans. The subjects participating in the study consisted of fifteen healthy males aged between 19 and 65 years who were exposed to 14-day horizontal bed rest in a strict hospital environment. To assess the cognitive functions of the participants, a neuropsychological test battery was administered before and after the bed rest experiment. There was no significant impairment in cognitive performance after the 14-day bed rest on all tests, except in the measurements of delayed recall in the group of older adults. The results suggest that cognitive functions remained relatively stable during the period of physical immobilization. The obtained results have been discussed taking the possible contributing factors into account such as the practice effect, the relatively short duration of bed rest, and the choice of the cognitive measures administered. The study also provides evidence that favourable living and psychosocial conditions can protect one against cognitive decline in the case of extreme physical inactivity.

  6. Human monocytes undergo functional re-programming during sepsis mediated by hypoxia-inducible factor-1α.

    Science.gov (United States)

    Shalova, Irina N; Lim, Jyue Yuan; Chittezhath, Manesh; Zinkernagel, Annelies S; Beasley, Federico; Hernández-Jiménez, Enrique; Toledano, Victor; Cubillos-Zapata, Carolina; Rapisarda, Annamaria; Chen, Jinmiao; Duan, Kaibo; Yang, Henry; Poidinger, Michael; Melillo, Giovanni; Nizet, Victor; Arnalich, Francisco; López-Collazo, Eduardo; Biswas, Subhra K

    2015-03-17

    Sepsis is characterized by a dysregulated inflammatory response to infection. Despite studies in mice, the cellular and molecular basis of human sepsis remains unclear and effective therapies are lacking. Blood monocytes serve as the first line of host defense and are equipped to recognize and respond to infection by triggering an immune-inflammatory response. However, the response of these cells in human sepsis and their contribution to sepsis pathogenesis is poorly understood. To investigate this, we performed a transcriptomic, functional, and mechanistic analysis of blood monocytes from patients during sepsis and after recovery. Our results revealed the functional plasticity of monocytes during human sepsis, wherein they transited from a pro-inflammatory to an immunosuppressive phenotype, while enhancing protective functions like phagocytosis, anti-microbial activity, and tissue remodeling. Mechanistically, hypoxia inducible factor-1α (HIF1α) mediated this functional re-programming of monocytes, revealing a potential mechanism for their therapeutic targeting to regulate human sepsis. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Surfactant functionalization induces robust, differential adhesion of tumor cells and blood cells to charged nanotube-coated biomaterials under flow.

    Science.gov (United States)

    Mitchell, Michael J; Castellanos, Carlos A; King, Michael R

    2015-07-01

    The metastatic spread of cancer cells from the primary tumor to distant sites leads to a poor prognosis in cancers originating from multiple organs. Increasing evidence has linked selectin-based adhesion between circulating tumor cells (CTCs) and endothelial cells of the microvasculature to metastatic dissemination, in a manner similar to leukocyte adhesion during inflammation. Functionalized biomaterial surfaces hold promise as a diagnostic tool to separate CTCs and potentially treat metastasis, utilizing antibody and selectin-mediated interactions for cell capture under flow. However, capture at high purity levels is challenged by the fact that CTCs and leukocytes both possess selectin ligands. Here, a straightforward technique to functionalize and alter the charge of naturally occurring halloysite nanotubes using surfactants is reported to induce robust, differential adhesion of tumor cells and blood cells to nanotube-coated surfaces under flow. Negatively charged sodium dodecanoate-functionalized nanotubes simultaneously enhanced tumor cell capture while negating leukocyte adhesion, both in the presence and absence of adhesion proteins, and can be utilized to isolate circulating tumor cells regardless of biomarker expression. Conversely, diminishing nanotube charge via functionalization with decyltrimethylammonium bromide both abolished tumor cell capture while promoting leukocyte adhesion. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Hypoxia-inducible factor-1α activation improves renal oxygenation and mitochondrial function in early chronic kidney disease.

    Science.gov (United States)

    Thomas, Joanna L; Pham, Hai; Li, Ying; Hall, Elanore; Perkins, Guy A; Ali, Sameh S; Patel, Hemal H; Singh, Prabhleen

    2017-08-01

    The pathophysiology of chronic kidney disease (CKD) is driven by alterations in surviving nephrons to sustain renal function with ongoing nephron loss. Oxygen supply-demand mismatch, due to hemodynamic adaptations, with resultant hypoxia, plays an important role in the pathophysiology in early CKD. We sought to investigate the underlying mechanisms of this mismatch. We utilized the subtotal nephrectomy (STN) model of CKD to investigate the alterations in renal oxygenation linked to sodium (Na) transport and mitochondrial function in the surviving nephrons. Oxygen delivery was significantly reduced in STN kidneys because of lower renal blood flow. Fractional oxygen extraction was significantly higher in STN. Tubular Na reabsorption was significantly lower per mole of oxygen consumed in STN. We hypothesized that decreased mitochondrial bioenergetic capacity may account for this and uncovered significant mitochondrial dysfunction in the early STN kidney: higher oxidative metabolism without an attendant increase in ATP levels, elevated superoxide levels, and alterations in mitochondrial morphology. We further investigated the effect of activation of hypoxia-inducible factor-1α (HIF-1α), a master regulator of cellular hypoxia response. We observed significant improvement in renal blood flow, glomerular filtration rate, and tubular Na reabsorption per mole of oxygen consumed with HIF-1α activation. Importantly, HIF-1α activation significantly lowered mitochondrial oxygen consumption and superoxide production and increased mitochondrial volume density. In conclusion, we report significant impairment of renal oxygenation and mitochondrial function at the early stages of CKD and demonstrate the beneficial role of HIF-1α activation on renal function and metabolism.

  9. Pamidronate Attenuates Oxidative Stress and Energetic Metabolism Changes but Worsens Functional Outcomes in Acute Doxorubicin-Induced Cardiotoxicity in Rats

    Directory of Open Access Journals (Sweden)

    Paula Bernardo de Carvalho

    2016-11-01

    Full Text Available Background: Cardiotoxicity is the major side effect of doxorubicin. As mechanisms that are involved in cardiotoxicity are ambiguous, new methods for attenuating cardiotoxicity are needed. Recent studies have shown that bisphosphonates can decrease oxidative stress. Therefore, the objective of this study was to evaluate the effect of pamidronate on preventing acute doxorubicin-induced cardiotoxicity. Methods: Sixty-four male Wistar rats were allocated into four groups: the control group (C, the pamidronate group (P, the doxorubicin group (D and the doxorubicin/pamidronate group (DP. The rats in the P and DP groups received pamidronate injections (3 mg/kg, IP. After 24 hours, the rats in the D and DP groups received doxorubicin injections (20 mg/kg, IP. Forty-eight hours after doxorubicin injection, the rats were killed. Echocardiography, isolated heart study and biochemical analysis were performed. Results: Doxorubicin-induced acute cardiotoxicity showed increased matrix metalloproteinases (MMP-2 activation, oxidative damage and induced alterations in myocardial energetic metabolism. Pamidronate did not inhibit MMP-2 activation but attenuated oxidative stress and improved myocardial energetic metabolism. Regarding cardiac function, the DP group exhibited a decrease in the left ventricular ejection fraction in the echocardiography and a decrease in +dP/dt in the isolated heart study compared with other groups. The same DP group presented serum hypocalcaemia. Conclusions: Despite its ability to reduce oxidative stress and improve energy metabolism in the heart, pamidronate worsened systolic function in rats treated with doxorubicin, and therefore we cannot recommend its use in conjunction with anthracycline chemotherapy.

  10. Efficacy of glutamate receptor antagonists in the management of functional disorders in cytotoxic brain oedema induced by hexachlorophene.

    Science.gov (United States)

    Häntzschel, A; Andreas, K

    1998-02-01

    The hexachlorophene-induced cytotoxic brain oedema is an experimental model of brain damage, suitable for testing cerebroprotective substances (Andreas 1993). In order to examine whether glutamate receptors are involved in mediating functional disorders due to neurotoxic brain damage, we have studied the protective effects of several competitive and non-competitive antagonists using adult male Wistar rats in a simple "ladder-test" for assessing coordinative motor behaviour. Hexachlorophene-induced brain damage was verified by histological examination of the cerebellum with vacuolation of white matter, astrocyte hypertrophy and astrocyte proliferation taken as signs of neurotoxic injury. The non-competitive N-methyl-D-aspartate (NMDA) antagonist dizocilpine maleate (MK-801) decreased the motor disturbance on the first and second day of the "ladder-test" when applied in the doses 0.1 mg/kg and 0.2 mg/kg intraperitoneally for 3 weeks during the hexachlorophene treatment. Acute MK-801 administration (0.1 mg/kg intraperitoneally) after 3 weeks hexachlorophene exposure improved the coordinative motor response only on the first day. When testing the competitive NMDA receptor antagonist 2-amino-5-phosphonopentanoic acid (AP-5) in the dose 1.0 mg/kg intraperitoneally the motor disturbance was lowered significantly earlier than in spontaneous remission. Similar effects were observed with 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) in the dose of 0.8 mg/kg intraperitoneally, an antagonist interacting both with the strychnine-insensitive binding site for glycine within the NMDA receptor complex and with the kainate(+/-)-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor complex. Concurrent MK-801 administration decreased the vacuolation of white matter. The results suggest that NMDA receptors and non-NMDA receptors are involved in development of functional disorders induced by hexachlorophene.

  11. Functional analysis of Arabidopsis immune-related MAPKs uncovers a role for MPK3 as negative regulator of inducible defences

    KAUST Repository

    Frei dit Frey, Nicolas

    2014-06-30

    Background Mitogen-activated protein kinases (MAPKs) are key regulators of immune responses in animals and plants. In Arabidopsis, perception of microbe-associated molecular patterns (MAMPs) activates the MAPKs MPK3, MPK4 and MPK6. Increasing information depicts the molecular events activated by MAMPs in plants, but the specific and cooperative contributions of the MAPKs in these signalling events are largely unclear. Results In this work, we analyse the behaviour of MPK3, MPK4 and MPK6 mutants in early and late immune responses triggered by the MAMP flg22 from bacterial flagellin. A genome-wide transcriptome analysis reveals that 36% of the flg22-upregulated genes and 68% of the flg22-downregulated genes are affected in at least one MAPK mutant. So far MPK4 was considered as a negative regulator of immunity, whereas MPK3 and MPK6 were believed to play partially redundant positive functions in defence. Our work reveals that MPK4 is required for the regulation of approximately 50% of flg22-induced genes and we identify a negative role for MPK3 in regulating defence gene expression, flg22-induced salicylic acid accumulation and disease resistance to Pseudomonas syringae. Among the MAPK-dependent genes, 27% of flg22-upregulated genes and 76% of flg22-downregulated genes require two or three MAPKs for their regulation. The flg22-induced MAPK activities are differentially regulated in MPK3 and MPK6 mutants, both in amplitude and duration, revealing a highly interdependent network. Conclusions These data reveal a new set of distinct functions for MPK3, MPK4 and MPK6 and indicate that the plant immune signalling network is choreographed through the interplay of these three interwoven MAPK pathways.

  12. Glomerular number and function are influenced by spontaneous and induced low birth weight in rats

    DEFF Research Database (Denmark)

    Schreuder, Michiel F; Nyengaard, Jens Randel; Fodor, M

    2005-01-01

    and experimental IUGR, induced by bilateral uterine artery ligation. Design-based stereologic methods were used. Urinary protein excretion was determined as a measure of renal damage. Results showed a decrease of approximately 20% in glomerular number in both groups of IUGR (control 35,400, naturally occurring...... IUGR 30,900, and experimental IUGR 28,000 glomeruli per kidney). Mean glomerular volume was increased in both IUGR groups, which was associated with an increased proteinuria. It is concluded that IUGR leads to a nephron endowment with a compensatory glomerular enlargement. This compensation...... is associated with more proteinuria in the long run. Uterine artery ligation in the pregnant rat is a suitable model to study the effects of IUGR on the kidney....

  13. Exercise-induced bronchospasm diagnosis in children. Utility of combined lung function tests.

    Science.gov (United States)

    Sánchez-García, Silvia; Rodríguez del Río, Pablo; Escudero, Carmelo; García-Fernández, Cristina; Ibáñez, Maria Dolores

    2015-02-01

    The diagnosis of exercise-induced asthma or bronchospasm (EIB) is a complex dare in daily clinical practice. The consensus is that if bronchial hyper-responsiveness (BHR) is demonstrated in a patient with symptoms consistent with EIB, then that patient can be diagnosed with exercise-induced bronchospasm. The aim of this study was to determine which BHR test is the most efficient to diagnose EIB. Children under 16, without previous asthma diagnosis, or with stable asthma, complaining of asthma-like symptoms triggered by exercise were included. Bronchodilator, methacholine, mannitol, and exercise tests were performed on all patients, following established protocols. The performance of single and combined tests was determined. Of 46 patients (median age: 12 yr, ranged 8-16 y.o.) were recruited, 30 (70%) previously diagnosed of asthma. BHR was detected in 93.47% of the children. The exercise challenge test detected BHR in 11 of 46 (23.90%) patients, bronchodilator test in 10 of 46 (21.70%), mannitol in 36 of 45 (80%) and methacholine in 41 of 45 (91.11%). The total number of patients with BHR was detected using a combination of the methacholine and mannitol tests. A combination of the methacholine test performed first, followed by the mannitol test, was able to diagnose BHR in 100% of children with lower number of tests (n = 45) than if the order was reversed (n = 50). Methacholine and mannitol tests detect BHR in most children with suspected EIB. Bronchodilator and exercise tests show a low positivity rate. A combination of the methacholine test, followed by the mannitol test, gives the highest return to identify BHR in children for the diagnosis of EIB. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Nanosized titanium dioxide influences copper-induced toxicity during aging as a function of environmental conditions.

    Science.gov (United States)

    Rosenfeldt, Ricki R; Seitz, Frank; Haigis, Ann-Cathrin; Höger, Johanna; Zubrod, Jochen P; Schulz, Ralf; Bundschuh, Mirco

    2016-07-01

    Titanium dioxide nanoparticles (TiO2 -NPs) adsorb co-occurring heavy metals in surface waters, modulating their toxicity for freshwater invertebrates. The processes triggering this interaction may be influenced by several environmental parameters; however, their relative importance remains unclear. The present study assessed the implications of aging on the joint acute toxicity of copper (Cu) and TiO2 -NPs for Daphnia magna over a duration of up to 72 h. The influences of aging duration as well as ionic strength, pH, and presence of different qualities of organic matter during aging were assessed. The results indicated that the presence of TiO2 -NPs often reduced the Cu-induced toxicity for daphnids after aging (albeit with varying extent), which was displayed by up to 3-fold higher EC50 (50% effective concentration) values compared to the absence of TiO2 -NPs. Moreover, the Cu speciation, influenced by the ionic composition and the pH as well as the presence of organic additives in the medium, strongly modulated the processes during aging, with partly limited implications of the aging duration on the ecotoxicological response of D. magna. Nonetheless, the present study underpins the potential of TiO2 -NPs to modify toxicity induced by heavy metals in freshwater ecosystems under various environmental conditions. This pattern, however, needs further verification using heavy metal ions with differing properties in combination with further environmental factors, such as ultraviolet irradiation. Environ Toxicol Chem 2016;35:1766-1774. © 2015 SETAC. © 2015 SETAC.

  15. Empagliflozin Prevents Worsening of Cardiac Function in an Experimental Model of Pressure Overload-Induced Heart Failure

    Directory of Open Access Journals (Sweden)

    Nikole J. Byrne, BSc

    2017-08-01

    Full Text Available This study sought to determine whether the sodium/glucose cotransporter 2 (SGLT2 inhibitor empagliflozin improved heart failure (HF outcomes in nondiabetic mice. The EMPA-REG OUTCOME (Empagliflozin, Cardiovascular Outcome Event Trial in Type 2 Diabetes Mellitus Patients trial demonstrated that empagliflozin markedly prevented HF and cardiovascular death in subjects with diabetes. However, despite ongoing clinical trials in HF patients without type 2 diabetes, there are no objective and translational data to support an effect of SGLT2 inhibitors on cardiac structure and function, particularly in the absence of diabetes and in the setting of established HF. Male C57Bl/6 mice were subjected to either sham or transverse aortic constriction surgery to induce HF. Following surgery, mice that progressed to HF received either vehicle or empagliflozin for 2 weeks. Cardiac function was then assessed in vivo using echocardiography and ex vivo using isolated working hearts. Although vehicle-treated HF mice experienced a progressive worsening of cardiac function over the 2-week treatment period, this decline was blunted in empagliflozin-treated HF mice. Treatment allocation to empagliflozin resulted in an improvement in cardiac systolic function, with no significant changes in cardiac remodeling or diastolic dysfunction. Moreover, isolated hearts from HF mice treated with empagliflozin displayed significantly improved ex vivo cardiac function compared to those in vehicle-treated controls. Empagliflozin treatment of nondiabetic mice with established HF blunts the decline in cardiac function both in vivo and ex vivo, independent of diabetes. These data provide important basic and translational clues to support the evaluation of SGLT2 inhibitors as a treatment strategy in a broad range of patients with established HF.

  16. Cannabidiol improves brain and liver function in a fulminant hepatic failure-induced model of hepatic encephalopathy in mice

    Science.gov (United States)

    Avraham, Y; Grigoriadis, NC; Poutahidis, T; Vorobiev, L; Magen, I; Ilan, Y; Mechoulam, R; Berry, EM

    2011-01-01

    BACKGROUND AND PURPOSE Hepatic encephalopathy is a neuropsychiatric disorder of complex pathogenesis caused by acute or chronic liver failure. We investigated the effects of cannabidiol, a non-psychoactive constituent of Cannabis sativa with anti-inflammatory properties that activates the 5-hydroxytryptamine receptor 5-HT1A, on brain and liver functions in a model of hepatic encephalopathy associated with fulminant hepatic failure induced in mice by thioacetamide. EXPERIMENTAL APPROACH Female Sabra mice were injected with either saline or thioacetamide and were treated with either vehicle or cannabidiol. Neurological and motor functions were evaluated 2 and 3 days, respectively, after induction of hepatic failure, after which brains and livers were removed for histopathological analysis and blood was drawn for analysis of plasma liver enzymes. In a separate group of animals, cognitive function was tested after 8 days and brain 5-HT levels were measured 12 days after induction of hepatic failure. KEY RESULTS Neurological and cognitive functions were severely impaired in thioacetamide-treated mice and were restored by cannabidiol. Similarly, decreased motor activity in thioacetamide-treated mice was partially restored by cannabidiol. Increased plasma levels of ammonia, bilirubin and liver enzymes, as well as enhanced 5-HT levels in thioacetamide-treated mice were normalized following cannabidiol administration. Likewise, astrogliosis in the brains of thioacetamide-treated mice was moderated after cannabidiol treatment. CONCLUSIONS AND IMPLICATIONS Cannabidiol restores liver function, normalizes 5-HT levels and improves brain pathology in accordance with normalization of brain function. Therefore, the effects of cannabidiol may result from a combination of its actions in the liver and brain. PMID:21182490

  17. Abdominal γ-Radiation Induces an Accumulation of Function-Impaired Regulatory T Cells in the Small Intestine

    International Nuclear Information System (INIS)

    Billiard, Fabienne; Buard, Valerie; Benderitter, Marc; Linard, Christine

    2011-01-01

    Purpose: To assess the frequency and the functional characteristics of one major component of immune tolerance, the CD4 + FoxP3 + regulatory T cells (Tregs) in a mouse model of abdominal irradiation. Methods and Materials: Mice were exposed to a single abdominal dose of γ-radiation (10 Gy). We evaluated small intestine Treg infiltration by Foxp3 immunostaining and the functional suppressive activity of Tregs isolated from mesenteric lymph nodes. Results: Foxp3 immunostaining showed that radiation induced a long-term infiltration of the intestine by Tregs (levels 5.5 times greater than in controls). Co-culture of Tregs from mesenteric lymph nodes with CD4 + effector cells showed that the Tregs had lost their suppressive function. This loss was associated with a significant decrease in the levels of Foxp3, TGF-β, and CTLA-4 mRNA, all required for optimal Treg function. At Day 90 after irradiation, Tregs regained their suppressive activity as forkhead box P3 (Foxp3), transforming growth factor beta (TGF-β), and cytotoxic T-lymphocyte antigen 4 (CTLA-4) expression returned to normal. Analysis of the secretory function of mesenteric lymph node Tregs, activated in vitro with anti-CD3/anti-CD28 Abs, showed that this dysfunction was independent of a defect in interleukin-10 secretion. Conclusion: Radiation caused a long-term accumulation of function-impaired Foxp3 + CD4 + Tregs in the intestine. Our study provides new insights into how radiation affects the immune tolerance in peripheral tissues.

  18. Role of central angiotensin receptors in scopolamine-induced impairment in memory, cerebral blood flow, and cholinergic function.

    Science.gov (United States)

    Tota, Santoshkumar; Hanif, Kashif; Kamat, Pradeep Kumar; Najmi, Abul Kalam; Nath, Chandishwar

    2012-07-01

    Inhibition of renin-angiotensin system (RAS) improves cognitive functions in hypertensive patients. However, role of AT1 and AT2 receptors in memory impairment due to cholinergic hypofunction is unexplored. This study investigated the role of AT1 and AT2 receptors in cerebral blood flow (CBF), cholinergic neurotransmission, and cerebral energy metabolism in scopolamine-induced amnesic mice. Scopolamine was given to male Swiss albino mice to induce memory impairment tested in passive avoidance and Morris water maze tests after a week long administration of blocker of AT1 receptor, candesartan, and AT2 receptor, PD123, 319. CBF was measured by laser Doppler flowmetry. Biochemical and molecular studies were done in cortex and hippocampus of mice brain. Scopolamine caused memory impairment, reduced CBF, acetylcholine (ACh) level, elevated acetylcholinesterase (AChE) activity, and malondialdehyde (MDA). Administration of vehicle had no significant effect on any parameter in comparison to control. Candesartan prevented scopolamine-induced amnesia, restored CBF and ACh level, and decreased AChE activity and MDA level. In contrast, PD123, 319 was not effective. However, the effect of AT1 receptor blocker on memory, CBF, ACh level, and oxidative stress was blunted by concomitant blockade of AT2 receptor. Angiotensin-converting enzyme (ACE) activity, ATP level, and mRNA expression of AT1, AT2, and ACE remained unaltered. The study suggests that activation of AT1 receptors appears to be involved in the scopolamine-induced amnesia and that AT2 receptors contribute to the beneficial effects of candesartan. Theses finding corroborated the number of clinical studies that RAS inhibition in hypertensive patients could be neuroprotective.

  19. The Complex Cell Wall Composition of Syncytia Induced by Plant Parasitic Cyst Nematodes Reflects Both Function and Host Plant

    Directory of Open Access Journals (Sweden)

    Li Zhang

    2017-06-01

    Full Text Available Plant–parasitic cyst nematodes induce the formation of specialized feeding structures, syncytia, within their host roots. These unique plant organs serve as the sole nutrient resource for development and reproduction throughout the biotrophic interaction. The multinucleate syncytium, which arises through local dissolution of cell walls and protoplast fusion of multiple adjacent cells, has dense cytoplasm containing numerous organelles, surrounded by thickened outer cell walls that must withstand high turgor pressure. However, little is known about how the constituents of the syncytial cell wall and their conformation support its role during nematode parasitism. We used a set of monoclonal antibodies, targeted to a range of plant cell wall components, to reveal the microstructures of syncytial cell walls induced by four of the most economically important cyst nematode species, Globodera pallida, Heterodera glycines, Heterodera avenae and Heterodera filipjevi, in their respective potato, soybean, and spring wheat host roots. In situ fluorescence analysis revealed highly similar cell wall composition of syncytia induced by G. pallida and H. glycines. Both consisted of abundant xyloglucan, methyl-esterified homogalacturonan and pectic arabinan. In contrast, the walls of syncytia induced in wheat roots by H. avenae and H. filipjevi contain little xyloglucan but are rich in feruloylated xylan and arabinan residues, with variable levels of mixed-linkage glucan. The overall chemical composition of syncytial cell walls reflected the general features of root cell walls of the different host plants. We relate specific components of syncytial cell walls, such as abundant arabinan, methyl-esterification status of pectic homogalacturonan and feruloylation of xylan, to their potential roles in forming a network to support both the strength and flexibility required for syncytium function.

  20. Bisphenol S disrupts estradiol-induced nongenomic signaling in a rat pituitary cell line: effects on cell functions.

    Science.gov (United States)

    Viñas, René; Watson, Cheryl S

    2013-03-01

    Bisphenol A (BPA) is a well-known endocrine disruptor that imperfectly mimics the effects of physiologic estrogens via membrane-bound estrogen receptors (mERα, mERβ, and GPER/GPR30), thereby initiating nongenomic signaling. Bisphenol S (BPS) is an alternative to BPA in plastic consumer products and thermal paper. To characterize the nongenomic activities of BPS, we examined signaling pathways it evoked in GH3/B6/F10 rat pituitary cells alone and together with the physiologic estrogen estradiol (E2). Extracellular signal-regulated kinase (ERK)- and c-Jun-N-terminal kinase (JNK)-specific phosphorylations were examined for their correlation to three functional responses: proliferation, caspase activation, and prolactin (PRL) release. We detected ERK and JNK phosphorylations by fixed-cell immunoassays, identified the predominant mER initiating the signaling with selective inhibitors, estimated cell numbers by crystal violet assays, measured caspase activity by cleavage of fluorescent caspase substrates, and measured PRL release by radioimmunoassay. BPS phosphoactivated ERK within 2.5 min in a nonmonotonic dose-dependent manner (10-15 to 10-7 M). When combined with 10-9 M E2, the physiologic estrogen's ERK response was attenuated. BPS could not activate JNK, but it greatly enhanced E2-induced JNK activity. BPS induced cell proliferation at low concentrations (femtomolar to nanomolar), similar to E2. Combinations of both estrogens reduced cell numbers below those of the vehicle control and also activated caspases. Earlier activation of caspase 8 versus caspase 9 demonstrated that BPS initiates apoptosis via the extrinsic pathway, consistent with activation via a membrane receptor. BPS also inhibited rapid (≤ 1 min) E2-induced PRL release. BPS, once considered a safe substitute for BPA, disrupts membrane-initiated E2-induced cell signaling, leading to altered cell proliferation, cell death, and PRL release.

  1. Oligomeric proanthocyanidins (OPCs) modulating radiation-induced oxidative stress on functional and structural performance of eye in male rats

    International Nuclear Information System (INIS)

    Said, U.Z.; Soliman, S.M.; Azab, Kh.Sh.; El-Tahawy, N.A.

    2005-01-01

    Eye oxidative stress may play a major role in the etiology and pathogenesis of eye disorders such as macular degeneration and photic injury of retinal degeneration that lead to vision loss. Proanthocyanidins derived from pine bark and from grape seeds have various anti pathophysiological functions. This study was performed to evaluate the role of oligomeric proanthocyanidins (OPCs) on the radiation-induced changes in rat eye tissues. OPCs were supplemented to rats (100 mg /kg body weight/ day) for 14 successive days before and 7 successive days after exposure to 7 Gy (single dose) of whole body gamma irradiation. The results revealed radiation-induced depletion in the activities of eye endogenous antioxidant enzymes and rise in pro-oxidant levels. Supplementation of OPCs pre- and post-irradiation has significantly reduced the levels of thiobarbituric acid reactive substances, xanthine oxidase, and significantly ameliorated the activities of xanthine dehydrogenase and reactive oxygen scavenging enzymes such as superoxide dismutase, glutathione peroxidase and catalase activities in eye tissues. OPCs significantly ameliorated the radiation-induced changes in levels of insulin and glucose in the serum. The oxidative stress induced cellular damage as indicated by retardation in the responses of eye to photo stimulation as well as histopathological changes in the eye tissues. Severe intra-retinal hemorrhages, cornea swelling, disruption of photoreceptor layer of the retina and epithelial necrosis were seen. The eye tissues of rats that received OPCs supplement showed significant less severe histological damage and remarkable improvement in photo stimulation responses when compared to irradiated rats on the 7 T h and 21 s t days after exposure to gamma irradiation. According to the results obtained, it could be concluded that OPCs might protect the eye tissues from the oxidative stress possibly by virtue of its anti oxidative activity through augmentation of antioxidant

  2. (p-ClPhSe)2Reduces Hepatotoxicity Induced by Monosodium Glutamate by Improving Mitochondrial Function in Rats.

    Science.gov (United States)

    Quines, Caroline B; Chagas, Pietro M; Hartmann, Diane; Carvalho, Nélson R; Soares, Félix A; Nogueira, Cristina W

    2017-09-01

    It is has been demonstrated that mitochondrial dysfunction, oxidative stress, and chronic inflammatory process are associated with progress of morbid obesity in human patients. For this reason, the searching for safe and effective antiobesity drugs has been the subject of intense research. In this context, the organic selenium compounds have attracted much attention due to their pharmacological properties, such as antihyperglycemic, antioxidant, and anti-inflammatory. The aim of this study was to evaluate the hepatoprotective action of p-chloro-diphenyl diselenide (p-ClPhSe) 2 , an organic selenium compound, in a model of obesity induced by monosodium glutamate (MSG) administration in rats. Wistar rats were treated during the first ten postnatal days with MSG (4 g/kg by subcutaneous injections) and received (p-ClPhSe) 2 (10 mg/kg, intragastrically) from 90th to 97th postnatal day. Mitochondrial function, purine content and the levels of proteins involved in apoptotic (poly [ADP-ribose] polymerase [PARP]) and inflammatory processes (inducible nitric oxide synthases [iNOS] and p38) were determined in the liver of rats. The present study, demonstrated that postnatal administration of MSG to male rats induced a mitochondrial dysfunction, accompanied by oxidative stress and an increase in the ADP levels, without altering the efficiency of phosphorylation in the liver of adult rats. Furthermore, the MSG administration also induces hepatotoxicity, through an increase in PARP, iNOS, and p38 levels. (p-ClPhSe) 2 treatment had beneficial effects against mitochondrial dysfunction, oxidative stress, and modulated protein markers of apoptosis and inflammation in the liver of MSG-treated rats. J. Cell. Biochem. 118: 2877-2886, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  3. Measurement of excitation functions in alpha induced reactions on {sup nat}Cu

    Energy Technology Data Exchange (ETDEWEB)

    Shahid, Muhammad; Kim, Kwangsoo; Kim, Guinyun, E-mail: gnkim@knu.ac.kr; Zaman, Muhammad; Nadeem, Muhammad

    2015-09-01

    The excitation functions of {sup 66,67,68}Ga, {sup 62,63,65}Zn, {sup 61,64}Cu, and {sup 58,60}Co radionuclides in the {sup nat}Cu(α, x) reaction were measured in the energy range from 15 to 42 MeV by using a stacked-foil activation method at the MC-50 cyclotron of the Korean Institute of Radiological and Medical Sciences. The measured results were compared with the literature data as well as the theoretical values obtained from the TENDL-2013 and TENDL-2014 libraries based on the TALYS-1.6 code. The integral yields for thick targets of the produced radionuclides were also determined from the measured excitation functions and the stopping power of natural copper.

  4. Photo-induced refractive index and topographical surface gratings in functionalized nanocarbon solid film

    Energy Technology Data Exchange (ETDEWEB)

    McGee, David J.; Ferrie, John; Plachy, Aljoscha [Department of Physics, The College of New Jersey, Ewing, New Jersey 08628 (United States); Joo, Yongho; Choi, Jonathan; Kanimozhi, Catherine; Gopalan, Padma, E-mail: pgopalan@cae.wisc.edu [Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States)

    2015-11-02

    We demonstrate that a single-walled carbon nanotube network noncovalently coupled with a pyrene-modified azo-benzene chromophore functions as a host matrix for a broad range of photo-orientation and photomechanical effects. The chromophore could be efficiently reoriented through repeated trans-cis-trans isomerization under linearly polarized 480 nm light, with Δn of 0.012 at 650 nm and fast characteristic rise-times of 0.12 s. Erasable phase diffraction gratings could also be written, with permanent surface relief gratings forming at sufficiently long irradiation times. In addition to demonstrating a mechanism for photo-manipulation of single-walled carbon nanotubes, these results show photo-orientation of chromophores in azo-functionalized single-walled carbon nanotube networks as a path towards the photosensitive tuning of the electrostatic environment of the nanotube.

  5. Photo-induced refractive index and topographical surface gratings in functionalized nanocarbon solid film

    International Nuclear Information System (INIS)

    McGee, David J.; Ferrie, John; Plachy, Aljoscha; Joo, Yongho; Choi, Jonathan; Kanimozhi, Catherine; Gopalan, Padma

    2015-01-01

    We demonstrate that a single-walled carbon nanotube network noncovalently coupled with a pyrene-modified azo-benzene chromophore functions as a host matrix for a broad range of photo-orientation and photomechanical effects. The chromophore could be efficiently reoriented through repeated trans-cis-trans isomerization under linearly polarized 480 nm light, with Δn of 0.012 at 650 nm and fast characteristic rise-times of 0.12 s. Erasable phase diffraction gratings could also be written, with permanent surface relief gratings forming at sufficiently long irradiation times. In addition to demonstrating a mechanism for photo-manipulation of single-walled carbon nanotubes, these results show photo-orientation of chromophores in azo-functionalized single-walled carbon nanotube networks as a path towards the photosensitive tuning of the electrostatic environment of the nanotube

  6. Photo-induced refractive index and topographical surface gratings in functionalized nanocarbon solid film

    Science.gov (United States)

    McGee, David J.; Ferrie, John; Plachy, Aljoscha; Joo, Yongho; Choi, Jonathan; Kanimozhi, Catherine; Gopalan, Padma

    2015-11-01

    We demonstrate that a single-walled carbon nanotube network noncovalently coupled with a pyrene-modified azo-benzene chromophore functions as a host matrix for a broad range of photo-orientation and photomechanical effects. The chromophore could be efficiently reoriented through repeated trans-cis-trans isomerization under linearly polarized 480 nm light, with Δn of 0.012 at 650 nm and fast characteristic rise-times of 0.12 s. Erasable phase diffraction gratings could also be written, with permanent surface relief gratings forming at sufficiently long irradiation times. In addition to demonstrating a mechanism for photo-manipulation of single-walled carbon nanotubes, these results show photo-orientation of chromophores in azo-functionalized single-walled carbon nanotube networks as a path towards the photosensitive tuning of the electrostatic environment of the nanotube.

  7. The hypoxia inducible factor HIF-1 functions as both a positive and negative modulator of aging

    OpenAIRE

    Leiser, Scott F.; Kaeberlein, Matt

    2010-01-01

    In the past year and a half, five studies have independently established a direct connection between the hypoxic response transcription factor, HIF-1, and aging in Caenorhabditis elegans. These studies demonstrated that HIF-1 can both promote and limit longevity via pathways that are mechanistically distinct. Here we review the current state of knowledge regarding modulation of aging by HIF-1 and speculate on potential aspects of HIF-1 function that may be relevant for mammalian longevity and...

  8. Leukocytosis and natural killer cell function parallel neurobehavioral fatigue induced by 64 hours of sleep deprivation.

    OpenAIRE

    Dinges, D F; Douglas, S D; Zaugg, L; Campbell, D E; McMann, J M; Whitehouse, W G; Orne, E C; Kapoor, S C; Icaza, E; Orne, M T

    1994-01-01

    The hypothesis that sleep deprivation depresses immune function was tested in 20 adults, selected on the basis of their normal blood chemistry, monitored in a laboratory for 7 d, and kept awake for 64 h. At 2200 h each day measurements were taken of total leukocytes (WBC), monocytes, granulocytes, lymphocytes, eosinophils, erythrocytes (RBC), B and T lymphocyte subsets, activated T cells, and natural killer (NK) subpopulations (CD56/CD8 dual-positive cells, CD16-positive cells, CD57-positive ...

  9. Tartrazine induces structural and functional aberrations and genotoxic effects in vivo

    OpenAIRE

    Khayyat, Latifa; Essawy, Amina; Sorour, Jehan; Soffar, Ahmed

    2017-01-01

    Tartrazine is a synthetic organic azo dye widely used in food and pharmaceutical products. The current study aimed to evaluate the possible adverse effect of this coloring food additive on renal and hepatic structures and functions. Also, the genotoxic potential of tartrazine on white blood cells was investigated using comet assay. Twenty adult male Wistar rats were grouped into two groups of 10 each, control- and tartrazine-treated groups. The control group was administered orally with water...

  10. Excitation functions for alpha-particle-induced reactions with natural antimony

    Energy Technology Data Exchange (ETDEWEB)

    Singh, N. L.; Shah, D. J.; Mukherjee, S.; Chintalapudi, S. N. [Vadodara, M. S. Univ. of Baroda (India). Fac. of Science. Dept. of Physics

    1997-07-01

    Stacked-foil activation technique and {gamma} - rays spectroscopy were used for the determination of the excitation functions of the {sup 121}Sb [({alpha}, n); ({alpha}, 2n); ({alpha},4 n); ({alpha}, p3n); ({alpha}, {alpha}n)]; and Sb [({alpha}, 3n); ({alpha}, 4n); ({alpha}, {alpha}3n)] reactions. The excitation functions for the production of {sup 124}I, {sup 123}I, {sup 121}I, {sup 121}Te and {sup 120}Sb were reported up to 50 MeV. The reactions {sup 121} Sb ({alpha}, {alpha}n) + {sup 123} Sb ({alpha}, {alpha}3n) are measured for the first time. Since natural antimony used as the target has two odd mass stable isotopes of abundances 57.3 % ({sup 121}Sb), their activation in some cases gives the same product nucleus through different reaction channels but with very different Q-values. In such cases, the individual reaction cross-sections are separated with the help of theoretical cross-sections. The experimental cross-sections were compared with the predictions based on hybrid model of Blann. The high-energy part of the excitation functions are dominated by the pre-equilibrium reaction mechanism and the initial exciton number n{sub 0} = 4 (4 p 0 h) gives fairly good agreement with presently measured results.

  11. Arterial prehabilitation: can exercise induce changes in artery size and function that decrease complications of catheterization?

    Science.gov (United States)

    Alkarmi, Amr; Thijssen, Dick H J; Albouaini, Khalled; Cable, N Timothy; Wright, D Jay; Green, Daniel J; Dawson, Ellen A

    2010-06-01

    Coronary angiography and angioplasty are common invasive procedures in cardiovascular medicine, which involve placement of a sheath inside peripheral conduit arteries. Sheath placement and catheterization can be associated with arterial thrombosis, spasm and occlusion. In this paper we review the literature pertaining to the possible benefits of arterial 'prehabilitation'--the concept that interventions aimed at enhancing arterial function and size (i.e. remodelling) should be undertaken prior to cardiac catheterization or artery harvest during bypass graft surgery. The incidence of artery spasm, occlusion and damage is lower in larger arteries with preserved endothelial function. We conclude that the beneficial effects of exercise training on both artery size and function, which are particularly evident in individuals who possess cardiovascular diseases or risk factors, infer that exercise training may reduce complication rates following catheterization and enhance the success of arteries harvested as bypass grafts. Future research efforts should focus directly on examination of the 'prehabilitation' hypothesis and the efficacy of different interventions aimed at reducing clinical complications of common interventional procedures.

  12. Endoglin haploinsufficiency attenuates radiation-induced deterioration of kidney function in mice

    International Nuclear Information System (INIS)

    Scharpfenecker, Marion; Floot, Ben; Russell, Nicola S.; Coppes, Rob P.; Stewart, Fiona A.

    2013-01-01

    Background and Purpose: Endoglin is a transforming growth receptor beta (TGF-β) co-receptor, which plays a crucial role in the development of late normal tissue damage. Mice with halved endoglin levels (Eng +/- mice) develop less inflammation, vascular damage and fibrosis after kidney irradiation compared to their wild type littermates (Eng +/+ mice). This study was aimed at investigating whether reduced tissue damage in Eng +/- mice also results in superior kidney function. Material and Methods: Kidneys of Eng +/+ and Eng +/- mice were irradiated with a single dose of 14 Gy. Functional kidney parameters and kidney histology were analysed at 20, 30 and 40 weeks after irradiation. Results: Eng +/- mice displayed improved kidney parameters (haematocrit, BUN) compared to Eng +/+ mice at 40 weeks after irradiation. Irradiation of Eng +/+ kidneys damaged the vascular network and led to an increase in PDGFR-β positive cells, indicative of fibrosis-promoting myofibroblasts. Compared to Eng +/+ kidneys, vascular perfusion and number of PDGFR-β positive cells were reduced in Eng +/- control mice; however, this did not further deteriorate after irradiation. Conclusions: Taken together, we show that not only kidney morphology, but also kidney function is improved after irradiation in Eng +/- compared to Eng +/+ mice

  13. Morphological brain plasticity induced by musical expertise is accompanied by modulation of functional connectivity at rest.

    Science.gov (United States)

    Fauvel, Baptiste; Groussard, Mathilde; Chételat, Gaël; Fouquet, Marine; Landeau, Brigitte; Eustache, Francis; Desgranges, Béatrice; Platel, Hervé

    2014-04-15

    The aim of this study was to explore whether musical practice-related gray matter increases in brain regions are accompanied by modifications in their resting-state functional connectivity. 16 young musically experienced adults and 17 matched nonmusicians underwent an anatomical magnetic resonance imaging (MRI) and a resting-state functional MRI (rsfMRI). A whole-brain two-sample t test run on the T1-weighted structural images revealed four clusters exhibiting significant increases in gray matter (GM) volume in the musician group, located within the right posterior and middle cingulate gyrus, left superior temporal gyrus and right inferior orbitofrontal gyrus. Each cluster was used as a seed region to generate and compare whole-brain resting-state functional connectivity maps. The two clusters within the cingulate gyrus exhibited greater connectivity for musicians with the right prefrontal cortex and left temporal pole, which play a role in autobiographical and semantic memory, respectively. The cluster in the left superior temporal gyrus displayed enhanced connectivity with several language-related areas (e.g., left premotor cortex, bilateral supramarginal gyri). Finally, the cluster in the right inferior frontal gyrus displayed more synchronous activity at rest with claustrum, areas thought to play a role in binding sensory and motor information. We interpreted these findings as the consequence of repeated collaborative use in general networks supporting some of the memory, perceptual-motor and emotional features of musical practice. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Changes in enzyme activity and functional diversity in soil induced by Cd and glucose addition

    Science.gov (United States)

    Gilmullina, A. R.; Galitskaya, P. Yu; Selivanovskaya, S. Yu

    2018-01-01

    Toxic heavy metal (HM) contamination is a major global issue as it may have an indirect effect on the health of soil, plants, animals and, consequently, on human health. Agricultural soils’ fertilization is one of the reported sources of HM pollution in the world. In this case simultaneous input of stimulating and inhibiting agents into soil takes place, and effects of the combined influence of these agents is hardly predictable. In this study, a simultaneous inhibiting and stimulating effect of Cd and glucose on soil microbes was studied in a model experiment. Enzyme activities (phosphatase, β-glucosidase and cellobiohydrolase) and functional diversity (BIOLOG®EcoPlates ™) were assessed as a test functions. Cd (300 μg Cd g-1 ) amendment had a negative effect only on phosphatase activity. Glucose (3 mg C g-1) addition inhibited β-glucosidase activity and stimulated functional diversity. In joint addition of Cd and Glucose the leading effect belonged to that agent which had the greatest effect in case when it was added separately.

  15. Detrusor myocyte autophagy protects the bladder function via inhibiting the inflammation in cyclophosphamide-induced cystitis in rats.

    Directory of Open Access Journals (Sweden)

    Jiang Zhao

    Full Text Available Autophagy, a highly conserved homeostatic cellular process that removes and recycles damaged proteins and organelles in response to cellular stress, is believed to play a crucial role in the immune response and inflammation. The role of autophagy in bladder cystitis, however, has not well been clarified. Here we investigate the role of detrusor myocytes autophagy (DMA in cyclophosphamide-induced cystitis animal model. 164 female Sprague-Dawley rats were randomized into three experimental groups and compared to three control groups, respectively. The expressions of microtubule-associated protein 1 light chain 3 (LC3, p-p70s6k (the phosphorylated form of ribosomal protein S6, SOD2 (superoxide dismutase 2 in the bladder muscular layer were measured using western blot. The co-location of LC3, alpha-smooth muscle actin (α-SMA, and autophagic vacuoles were investigated with double-labeled immunofluorescence and transmission electron microscopy (TEM. The expression of lL-1β, IL-6, IL-8, malondialdehyde (MDA, and glutathione (GSH in the detrusor layer were analyzed using ELISA. The bladder inflammation and the number of mast cells in the muscular layer were analyzed by histology. The bladder function was evaluated using cystometry. In cyclophosphamide-induced cystitis, autophagy was detected in detrusor myocytes by increased LC3, p-p70s6k expression, and autophagosomes. However, the presence of enhanced inflammation and oxidative stress in the cyclophosphamide-treated group suggest autophagy of detrusor myocytes may not be sufficiently activated. Inflammation and oxidative stress were significantly decreased and the bladder histology and micturition function were significantly improved with rapamycin (RAPA, autophagy agonist pre-treatment. In contrast, inflammation and oxidative stress were dramatically increased and the bladder histology and function were negatively affected with chloroquine