WorldWideScience

Sample records for svocs pesticides herbicides

  1. Herbicide and pesticide occurrence in the soils of children's playgrounds in Sarajevo, Bosnia and Herzegovina.

    Science.gov (United States)

    Sapcanin, Aida; Cakal, Mirsada; Imamovic, Belma; Salihovic, Mirsada; Pehlic, Ekrem; Jacimovic, Zeljko; Jancan, Gordan

    2016-08-01

    Pesticide pollution in Sarajevo public playgrounds is an important health and environmental issue, and the lack of information about it is causing concerns amongst the general population as well as researchers. Since children are in direct contact with surface soils on children's playgrounds, such soils should be much more carefully examined. Furthermore, herbicides and pesticides get transmitted from soil surfaces brought from outside the urban areas, or they get dispersed following their direct applications in urban areas. Infants' and children's health can be directly affected by polluted soils because of the inherent toxicity and widespread use of the different pesticides in urban environments such as playgrounds. In addition to that, the presence of chromated copper arsenate (CCA) wood preservative pesticide found as soil pollutant in playing equipment was also documented. Soil samples from playgrounds were collected and analyzed for triazines, carbamates, dithiocarbamates, phenolic herbicides and organochlorine pesticides. Samples for the determination of heavy metals Cu, Cr and As were prepared by microwave-assisted acid digestion, and the findings were determined by using an inductively coupled plasma optical emission spectrometer. Triazines, carbamates, dithiocarbamates, chlorphenoxy compounds, phenolic herbicides, organochlorine pesticides and organotin compounds were detected in playground soils and their determined concentrations (mg/kg) were respectively found as follows: herbicides and pesticides on human health, which strengthens the case for a more preventative and protective approach to the uncontrolled presence of herbicides and pesticides in Sarajevo's playground soils.

  2. Multi photon ionization mass spectrometry of carbamate pesticides, herbicides and fungicides

    International Nuclear Information System (INIS)

    Grun, Carsten; Koenig, Marcelle; Grotemeyer, Juergen

    2001-01-01

    Pesticides and herbicides are useful for a wide range of applications today. The determination of these substances either in the pure form or in complex matrices is of high analytical interest. Especially since these substances can by found in every day products. The combination of multi photon ionization (MUPI) and time of flight laser mass spectrometry may be a powerful tool for achieving fast well interpretable mass spectra for analytical purposes. In this paper we will discuss the mass spectra of several pesticides and herbicides accessed by MUPI-time-of-flight mass spectrometry. The influence of the laser pulse duration on the mass spectra are discussed

  3. Assessment of herbicides and organochlorine pesticides contamination in agricultural soils using gas chromatography-mass spectrometry.

    Science.gov (United States)

    Wang, Wan-Hong; Wang, Shi-Cheng; Wang, Yan-Hong

    2008-01-01

    A rapid multi-residue method for the simultaneous analysis of 3 herbicides and 8 organochlorine pesticides (OCPs) in agricultural soils has been developed, using ultrasonic solvent extraction coupled with gas chromatography-mass spectrometry (GC-MS). The recoveries ranged from 81% to 117% with a relative standard deviation (R.S.D) lower than 15%. The limits of quantification (LOQs) ranged from 0.03 to 1.06 microg x kg(-1) dry weight for different pesticides studied. The proposed method has been applied to investigate the 11 pesticide residues in agricultural soils collected from Liaoning Province, northeast of China. 3 OCPs and 3 herbicides were identified. Acetochlor, atrazine, butachtor were measured in the relatively high level with values ranging from 0.53 to 203.18 microg x kg(-1), 0.14 to 21.20 microg x kg(-1), pesticides in this study was compared with the date of other countries reported and the corresponding limiting values used in Netherland, USA, Canada, Vietnam and Thailand. Among the herbicide residues, there was a significant relativity between soil utilizing types and their residue concentration. It seems that the monitoring action for soil contamination caused by commonly-used herbicides should be enhanced according to soil utilizing types, especially acetochlor in maize field.

  4. DETERMINATION OF CARBAMATE, UREA, AND THIOUREA PESTICIDES AND HERBICIDES IN WATER

    Science.gov (United States)

    Microbe liquid chromatography and positive ion electrospray mass spectrometry are applied to the determination of 16 carbamate, urea, and thiourea pesticides and herbicides in water. The electrospray mass spectra of the analytes were measured and are discussed and mobile phase m...

  5. Oral bioaccessibility of semi-volatile organic compounds (SVOCs) in settled dust: A review of measurement methods, data and influencing factors.

    Science.gov (United States)

    Raffy, Gaëlle; Mercier, Fabien; Glorennec, Philippe; Mandin, Corinne; Le Bot, Barbara

    2018-06-15

    Many semi-volatile organic compounds (SVOCs), suspected of reprotoxic, neurotoxic or carcinogenic effects, were measured in indoor settled dust. Dust ingestion is a non-negligible pathway of exposure to some of these SVOCs, and an accurate knowledge of the real exposure is necessary for a better evaluation of health risks. To this end, the bioaccessibility of SVOCs in dust needs to be considered. In the present work, bioaccessibility measurement methods, SVOCs' oral bioaccessibility data and influencing factors were reviewed. SVOC bioaccessibilities (%) ranged from 11 to 94, 8 to 100, 3 to 92, 1 to 81, 6 to 52, and 2 to 17, for brominated flame retardants, organophosphorus flame retardants, polychlorobiphenyls, phthalates, pesticides and polycyclic aromatic hydrocarbons, respectively. Measurements method produced varying results depending on the inclusion of food and/or sink in the model. Characteristics of dust, e.g., organic matter content and particle size, also influenced bioaccessibility data. Last, results were influenced by SVOC properties, such as octanol/water partition coefficient and migration pathway into dust. Factors related to dust and SVOCs could be used in prediction models. To this end, more bioaccessibility studies covering more substances should be performed, using methods that are harmonized and validated by comparison to in-vivo studies. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Single and Combined Effects of Pesticide Seed Dressings and Herbicides on Earthworms, Soil Microorganisms, and Litter Decomposition.

    Science.gov (United States)

    Van Hoesel, Willem; Tiefenbacher, Alexandra; König, Nina; Dorn, Verena M; Hagenguth, Julia F; Prah, Urša; Widhalm, Theresia; Wiklicky, Viktoria; Koller, Robert; Bonkowski, Michael; Lagerlöf, Jan; Ratzenböck, Andreas; Zaller, Johann G

    2017-01-01

    Seed dressing, i.e., the treatment of crop seeds with insecticides and/or fungicides, aiming to protect seeds from pests and diseases, is widely used in conventional agriculture. During the growing season, those crop fields often receive additional broadband herbicide applications. However, despite this broad utilization, very little is known on potential side effects or interactions between these different pesticide classes on soil organisms. In a greenhouse pot experiment, we studied single and interactive effects of seed dressing of winter wheat ( Triticum aestivum L. var. Capo ) with neonicotinoid insecticides and/or strobilurin and triazolinthione fungicides and an additional one-time application of a glyphosate-based herbicide on the activity of earthworms, soil microorganisms, litter decomposition, and crop growth. To further address food-web interactions, earthworms were introduced to half of the experimental units as an additional experimental factor. Seed dressings significantly reduced the surface activity of earthworms with no difference whether insecticides or fungicides were used. Moreover, seed dressing effects on earthworm activity were intensified by herbicides (significant herbicide × seed dressing interaction). Neither seed dressings nor herbicide application affected litter decomposition, soil basal respiration, microbial biomass, or specific respiration. Seed dressing did also not affect wheat growth. We conclude that interactive effects on soil biota and processes of different pesticide classes should receive more attention in ecotoxicological research.

  7. SVOC exposure indoors: fresh look at dermal pathways.

    Science.gov (United States)

    Weschler, C J; Nazaroff, W W

    2012-10-01

    This paper critically examines indoor exposure to semivolatile organic compounds (SVOCs) via dermal pathways. First, it demonstrates that--in central tendency--an SVOC's abundance on indoor surfaces and in handwipes can be predicted reasonably well from gas-phase concentrations, assuming that thermodynamic equilibrium prevails. Then, equations are developed, based upon idealized mass-transport considerations, to estimate transdermal penetration of an SVOC either from its concentration in skin-surface lipids or its concentration in air. Kinetic constraints limit air-to-skin transport in the case of SVOCs that strongly sorb to skin-surface lipids. Air-to-skin transdermal uptake is estimated to be comparable to or larger than inhalation intake for many SVOCs of current or potential interest indoors, including butylated hydroxytoluene, chlordane, chlorpyrifos, diethyl phthalate, Galaxolide, geranyl acetone, nicotine (in free-base form), PCB28, PCB52, Phantolide, Texanol and Tonalide. Although air-to-skin transdermal uptake is anticipated to be slow for bisphenol A, we find that transdermal permeation may nevertheless be substantial following its transfer to skin via contact with contaminated surfaces. The paper concludes with explorations of the influence of particles and dust on dermal exposure, the role of clothing and bedding as transport vectors, and the potential significance of hair follicles as transport shunts through the epidermis. Human exposure to indoor pollutants can occur through dietary and nondietary ingestion, inhalation, and dermal absorption. Many factors influence the relative importance of these pathways, including physical and chemical properties of the pollutants. This paper argues that exposure to indoor semivolatile organic compounds (SVOCs) through the dermal pathway has often been underestimated. Transdermal permeation of SVOCs can be substantially greater than is commonly assumed. Transport of SVOCs from the air to and through the skin is

  8. The occurrence of pesticides in groundwater under consideration of diffuse inputs ot total herbicides

    International Nuclear Information System (INIS)

    Skark, C.; Zullei-Seibert, N.

    1994-01-01

    In a research project supported by the Environmental protection Agency (Umweltbundesamt) of the FRG we studied the connection between pesticide utilization and pesticide occurrence in groundwater in 58 examples of waterworks. Two thirds of all water sampling points considered were dominated by groundwater and most of these wells were built in porous aquifers. In other sampling points surface water or water which was dominated by artificial recharge of surfacewater of bankfiltration was analysed for pesticides. Independent of the sampling point character 5% of all single substance tests showed the occurrence of pesticides. Atrazine, desethylatrazine and simazine were detected with a frequency exceeding the average occurrence. The herbicides diuron and bromacil could be measured at least with an average frequency, indicating that the application of both substances in water protection areas may cause water quality problems. (orig.) [de

  9. SVOC partitioning between the gas phase and settled dust indoors

    Science.gov (United States)

    Weschler, Charles J.; Nazaroff, William W.

    2010-09-01

    Semivolatile organic compounds (SVOCs) are a major class of indoor pollutants. Understanding SVOC partitioning between the gas phase and settled dust is important for characterizing the fate of these species indoors and the pathways by which humans are exposed to them. Such knowledge also helps in crafting measurement programs for epidemiological studies designed to probe potential associations between exposure to these compounds and adverse health effects. In this paper, we analyze published data from nineteen studies that cumulatively report measurements of dustborne and airborne SVOCs in more than a thousand buildings, mostly residences, in seven countries. In aggregate, measured median data are reported in these studies for 66 different SVOCs whose octanol-air partition coefficients ( Koa) span more than five orders of magnitude. We use these data to test a simple equilibrium model for estimating the partitioning of an SVOC between the gas phase and settled dust indoors. The results demonstrate, in central tendency, that a compound's octanol-air partition coefficient is a strong predictor of its abundance in settled dust relative to its gas phase concentration. Using median measured results for each SVOC in each study, dustborne mass fractions predicted using Koa and gas-phase concentrations correlate reasonably well with measured dustborne mass fractions ( R2 = 0.76). Combined with theoretical understanding of SVOC partitioning kinetics, the empirical evidence also suggests that for SVOCs with high Koa values, the mass fraction in settled dust may not have sufficient time to equilibrate with the gas phase concentration.

  10. Rationale for Selection of Pesticides, Herbicides, and Related Compounds from the Hanford SST/DST Waste Considered for Analysis in Support of the Regulatory DQO (Privatization)

    International Nuclear Information System (INIS)

    Wiemers, K.D.; Daling, P.; Meier, K.

    1999-01-01

    Regulated pesticides, herbicides, miticides, and fungicides were evaluated for their potential past and current use at the Hanford Site. The starting list of these compounds is based on regulatory analyte input lists discussed in the Regulatory DQO. Twelve pesticide, herbicide, miticide, and fungicide compounds are identified for analysis in the Hanford SST and DST waste in support of the Regulatory DQO. The compounds considered for additional analyses are non-detected, considered stable in the tank waste matrix, and of higher toxicity/carcinogenicity

  11. Rationale for Selection of Pesticides, Herbicides, and Related Compounds from the Hanford SST/DST Waste Considered for Analysis in Support of the Regulatory DQO (Privatization)

    Energy Technology Data Exchange (ETDEWEB)

    Wiemers, K.D.; Daling, P.; Meier, K.

    1999-01-04

    Regulated pesticides, herbicides, miticides, and fungicides were evaluated for their potential past and current use at the Hanford Site. The starting list of these compounds is based on regulatory analyte input lists discussed in the Regulatory DQO. Twelve pesticide, herbicide, miticide, and fungicide compounds are identified for analysis in the Hanford SST and DST waste in support of the Regulatory DQO. The compounds considered for additional analyses are non-detected, considered stable in the tank waste matrix, and of higher toxicity/carcinogenicity.

  12. SVOC exposure indoors: fresh look at dermal pathways

    DEFF Research Database (Denmark)

    Weschler, Charles J.; Nazaroff, W. W.

    2012-01-01

    of SVOCs that strongly sorb to skin-surface lipids. Air-to-skin transdermal uptake is estimated to be comparable to or larger than inhalation intake for many SVOCs of current or potential interest indoors, including butylated hydroxytoluene, chlordane, chlorpyrifos, diethyl phthalate, Galaxolide, geranyl...

  13. Evaluation of six pesticides leaching indexes using field data of herbicide application in Casablanca Valley, Chile.

    Science.gov (United States)

    Kogan, M; Rojas, S; Gómez, P; Suárez, F; Muñoz, J F; Alister, C

    2007-01-01

    A field study was performed to evaluate the accuracy of six pesticide screening leaching indexes for herbicide movement. Adsorption, dissipation and soil movement were studied in a vineyard in a sandy loam soil during 2005 season. Simazine, diuron, pendimethalin, oxyfluorfen and flumioxazin were applied to bare soil at rates commonly used, and their soil concentrations throughout soil profile were determined at 0, 10, 20, 40 and 90 days after application (DAA). Herbicides were subjected to two pluviometric regimens, natural field condition and modified conditions (plus natural rainfall 180 mm). Leaching indexes utilized were: Briggs's Rf, Hamaker's Rf, LEACH, LPI, GUS and LIX. Simazine reached 120 cm, diuron 90 cm, flumioxazin 30 cm soil depth respectively. Pendimethalin and oxyfluorfen were retained up to 5 cm. None of the herbicides leaching was affected by rainfall regimen. Only flumioxazin field dissipation was clearly affected by pluviometric condition. The best representation of the herbicide soil depth movement and leaching below 15 cm soil depth were: Hamaker's Rf < Briggs's Rf < GUS < LPI, < LEACH < LIX. Field results showed a good correlation between herbicides K(d) and their soil depth movement and mass leached below 15 cm soil depth.

  14. Herbicide resistance and biodiversity: agronomic and environmental aspects of genetically modified herbicide-resistant plants.

    Science.gov (United States)

    Schütte, Gesine; Eckerstorfer, Michael; Rastelli, Valentina; Reichenbecher, Wolfram; Restrepo-Vassalli, Sara; Ruohonen-Lehto, Marja; Saucy, Anne-Gabrielle Wuest; Mertens, Martha

    2017-01-01

    Farmland biodiversity is an important characteristic when assessing sustainability of agricultural practices and is of major international concern. Scientific data indicate that agricultural intensification and pesticide use are among the main drivers of biodiversity loss. The analysed data and experiences do not support statements that herbicide-resistant crops provide consistently better yields than conventional crops or reduce herbicide amounts. They rather show that the adoption of herbicide-resistant crops impacts agronomy, agricultural practice, and weed management and contributes to biodiversity loss in several ways: (i) many studies show that glyphosate-based herbicides, which were commonly regarded as less harmful, are toxic to a range of aquatic organisms and adversely affect the soil and intestinal microflora and plant disease resistance; the increased use of 2,4-D or dicamba, linked to new herbicide-resistant crops, causes special concerns. (ii) The adoption of herbicide-resistant crops has reduced crop rotation and favoured weed management that is solely based on the use of herbicides. (iii) Continuous herbicide resistance cropping and the intensive use of glyphosate over the last 20 years have led to the appearance of at least 34 glyphosate-resistant weed species worldwide. Although recommended for many years, farmers did not counter resistance development in weeds by integrated weed management, but continued to rely on herbicides as sole measure. Despite occurrence of widespread resistance in weeds to other herbicides, industry rather develops transgenic crops with additional herbicide resistance genes. (iv) Agricultural management based on broad-spectrum herbicides as in herbicide-resistant crops further decreases diversity and abundance of wild plants and impacts arthropod fauna and other farmland animals. Taken together, adverse impacts of herbicide-resistant crops on biodiversity, when widely adopted, should be expected and are indeed very hard

  15. Predicting SVOC Emissions into Air and Foods in Support of ...

    Science.gov (United States)

    The release of semi-volatile organic compounds (SVOCs) from consumer articles may be a critical human exposure pathway. In addition, the migration of SVOCs from food packaging materials into foods may also be a dominant source of exposure for some chemicals. Here we describe recent efforts to characterize emission-related parameters for these exposure pathways to support prediction of aggregate exposures for thousands of chemicals For chemicals in consumer articles, Little et al. (2012) developed a screening-level indoor exposure prediction model which, for a given SVOC, principally depends on steady-state gas-phase concentrations (y0). We have developed a model that predicts y0 for SVOCs in consumer articles, allowing exposure predictions for 274 ToxCast chemicals. Published emissions data for 31 SVOCs found in flooring materials, provided a training set where both chemical-specific physicochemical properties, article specific formulation properties, and experimental design aspects were available as modeling descriptors. A linear regression yielded R2- and p- values of approximately 0.62 and 3.9E-05, respectively. A similar model was developed based upon physicochemical properties alone, since article information is often not available for a given SVOC or product. This latter model yielded R2 - and p- values of approximately 0.47 and 1.2E-10, respectively. Many SVOCs are also used as additives (e.g. plasticizers, antioxidants, lubricants) in plastic food pac

  16. Paternal occupational exposure to pesticides or herbicides as risk factors for cancer in children and young adults: a case-control study from the North of England.

    Science.gov (United States)

    Pearce, Mark S; Hammal, Donna M; Dorak, M Tevfik; McNally, Richard J Q; Parker, Louise

    2006-01-01

    Researchers in numerous studies have suggested that preconception paternal occupational exposures to various substances, including pesticides and herbicides, may be involved in the etiology of childhood cancers. Using data from the Northern Region Young Persons' Malignant Disease Registry, the authors investigated whether paternal occupations likely to involve such exposures, as recorded at the time of a child's birth, were associated with children's cancer risk. The authors matched cases (n = 4,723), on sex and year of birth, to controls from 2 independent sources: (1) all other patients from the registry with a different cancer and (2) 100 cancer-free individuals per case from the Cumbrian Births Database. An inverse association existed, particularly in males, between lymphoid leukemia and paternal occupations with likely exposures to pesticides and/or herbicides. However, this was not significant after stratifying by residential status (urban versus rural). Results do not support a role for preconception paternal occupational exposures to pesticides or herbicides in the etiology of childhood cancer.

  17. Uncertainties in monitoring of SVOCs in air caused by within-sampler degradation during active and passive air sampling

    Science.gov (United States)

    Melymuk, Lisa; Bohlin-Nizzetto, Pernilla; Prokeš, Roman; Kukučka, Petr; Přibylová, Petra; Vojta, Šimon; Kohoutek, Jiří; Lammel, Gerhard; Klánová, Jana

    2017-10-01

    Degradation of semivolatile organic compounds (SVOCs) occurs naturally in ambient air due to reactions with reactive trace gases (e.g., ozone, NOx). During air sampling there is also the possibility for degradation of SVOCs within the air sampler, leading to underestimates of ambient air concentrations. We investigated the possibility of this sampling artifact in commonly used active and passive air samplers for seven classes of SVOCs, including persistent organic pollutants (POPs) typically covered by air monitoring programs, as well as SVOCs of emerging concern. Two active air samplers were used, one equipped with an ozone denuder and one without, to compare relative differences in mass of collected compounds. Two sets of passive samplers were also deployed to determine the influence of degradation during longer deployment times in passive sampling. In active air samplers, comparison of the two sampling configurations suggested degradation of particle-bound polycyclic aromatic hydrocarbons (PAHs), with concentrations up to 2× higher in the denuder-equipped sampler, while halogenated POPs did not have clear evidence of degradation. In contrast, more polar, reactive compounds (e.g., organophosphate esters and current use pesticides) had evidence of losses in the sampler with denuder. This may be caused by the denuder itself, suggesting sampling bias for these compounds can be created when typical air sampling apparatuses are adapted to limit degradation. Passive air samplers recorded up to 4× higher concentrations when deployed for shorter consecutive sampling periods, suggesting that within-sampler degradation may also be relevant in passive air monitoring programs.

  18. Further advances in modeling transdermal uptake of SVOCs

    DEFF Research Database (Denmark)

    Morrison, Glenn; Weschler, Charles J.; Bekö, Gabriel

    2016-01-01

    the overall resistance to uptake of SVOCs from air but also allows for more rapid release of SVOCs to sinks like clothing or clean air. We compare the model results to reported experimental uptake of di-ethyl phthalate (DEP) and di-n-butyl phthalate (DnBP), normalized by exposed skin area and the phthalate...

  19. Delayed degradation in soil of foliar herbicides glyphosate and sulcotrione previously absorbed by plants: Consequences on herbicide fate and risk assessment

    OpenAIRE

    Doublet, Jeremy; Mamy, Laure; Barriuso Benito, Enrique

    2009-01-01

    Following application, pesticides can be intercepted and absorbed by weeds and/or crops. Plants containing pesticides residues may then reach the soil during the crop cycle or after harvest. However, the fate in soil of pesticides residues in plants is unknown. Two commonly used foliar herbicides, glyphosate and sulcotrione, 14C-labeled, were applied on leaves of oilseed rape and/or maize, translocation was studied, and then soil incubations of aerial parts of plants containing herbicides res...

  20. Herbicides: A new threat to the Great Barrier Reef

    International Nuclear Information System (INIS)

    Lewis, Stephen E.; Brodie, Jon E.; Bainbridge, Zoe T.; Rohde, Ken W.; Davis, Aaron M.; Masters, Bronwyn L.; Maughan, Mirjam; Devlin, Michelle J.; Mueller, Jochen F.; Schaffelke, Britta

    2009-01-01

    The runoff of pesticides (insecticides, herbicides and fungicides) from agricultural lands is a key concern for the health of the iconic Great Barrier Reef, Australia. Relatively low levels of herbicide residues can reduce the productivity of marine plants and corals. However, the risk of these residues to Great Barrier Reef ecosystems has been poorly quantified due to a lack of large-scale datasets. Here we present results of a study tracing pesticide residues from rivers and creeks in three catchment regions to the adjacent marine environment. Several pesticides (mainly herbicides) were detected in both freshwater and coastal marine waters and were attributed to specific land uses in the catchment. Elevated herbicide concentrations were particularly associated with sugar cane cultivation in the adjacent catchment. We demonstrate that herbicides reach the Great Barrier Reef lagoon and may disturb sensitive marine ecosystems already affected by other pressures such as climate change. - Herbicide residues have been detected in Great Barrier Reef catchment waterways and river water plumes which may affect marine ecosystems.

  1. SPME-Based Ca-History Method for Measuring SVOC Diffusion Coefficients in Clothing Material.

    Science.gov (United States)

    Cao, Jianping; Liu, Ningrui; Zhang, Yinping

    2017-08-15

    Clothes play an important role in dermal exposure to indoor semivolatile organic compounds (SVOCs). The diffusion coefficient of SVOCs in clothing material (D m ) is essential for estimating SVOC sorption by clothing material and subsequent dermal exposure to SVOCs. However, few studies have reported the measured D m for clothing materials. In this paper, we present the solid-phase microextraction (SPME) based C a -history method. To the best of our knowledge, this is the first try to measure D m with known relative standard deviation (RSD). A thin sealed chamber is formed by a circular ring and two pieces of flat SVOC source materials that are tightly covered by the targeted clothing materials. D m is obtained by applying an SVOC mass transfer model in the chamber to the history of gas-phase SVOC concentrations (C a ) in the chamber measured by SPME. D m 's of three SVOCs, di-iso-butyl phthalate (DiBP), di-n-butyl phthalate (DnBP), and tris(1-chloro-2-propyl) phosphate (TCPP), in a cotton T-shirt can be obtained within 16 days, with RSD less than 3%. This study should prove useful for measuring SVOC D m in various sink materials. Further studies are expected to facilitate application of this method and investigate the effects of temperature, relative humidity, and clothing material on D m .

  2. A review of methods for the analysis of orphan and difficult pesticides: glyphosate, glufosinate, quaternary ammonium and phenoxy acid herbicides, and dithiocarbamate and phthalimide fungicides.

    Science.gov (United States)

    Raina-Fulton, Renata

    2014-01-01

    This article reviews the chromatography/MS methodologies for analysis of pesticide residues of orphan and difficult chemical classes in a variety of sample matrixes including water, urine, blood, and food. The review focuses on pesticide classes that are not commonly included in multiresidue analysis methods such as highly polar or ionic herbicides including glyphosate, glufosinate, quaternary ammonium, and phenoxy acid herbicides, and some of their major degradation or metabolite products. In addition, dithiocarbamate and phthalimide fungicides, which are thermally unstable and have stability issues in some solvents or sample matrixes, are also examined due to their special needs in residue analysis.

  3. Simulating Effects of Forest Management Practices on Pesticide.

    Science.gov (United States)

    M.C. Smith; W.G. Knisel; J.L. Michael; D.G. Neary

    1993-01-01

    The GLEAMS model pesticide component was modified to simulate up to 245 pesticides simultaneously, and the revised model was used to pesticide pesticide application windows for forest site preparation and pine release. Five herbicides were made for soils representing four hydrologic soil groups in four climatic regions of the southeastern United States. Five herbicides...

  4. Annual Herbicide Loadings

    Data.gov (United States)

    U.S. Environmental Protection Agency — Pesticides, Herbicides, Fungicides...etc, are used for a variety of purposes, including control of household, lawn, and garden pests; for control of mosquitoes and...

  5. Hydrophilic-lipophilic balanced magnetic nanoparticles: preparation and application in magnetic solid-phase extraction of organochlorine pesticides and triazine herbicides in environmental water samples.

    Science.gov (United States)

    He, Zeying; Wang, Peng; Liu, Donghui; Zhou, Zhiqiang

    2014-09-01

    In this study, a novel hydrophilic-lipophilic balanced magnetic nanoparticle, magnetic poly(divinylbenzene-co-N-vinylpyrrolidone) (HLB-MPNP) was successfully synthesized and applied for the extraction and determination of triazine and organochlorine pesticides in environmental water samples. The specific ratio of two monomers, hydrophilic N-vinylpyrrolidone and lipophilic divinylbenzene, endowed the magnetic nanoparticles with hydrophilic-lipophilic balanced character, which made it capable of extracting both polar and nonpolar analytes. The experimental parameters affecting extraction efficiency, including desorption conditions, sample pH, sample volume and extraction time were investigated and optimized. Under the optimum conditions, good linearity was obtained in the range of 0.20-10 μg L(-1) for triazine herbicides and 5.0-100 ng L(-1) for organochlorine pesticides, with correlation coefficients ranging from 0.994 to 0.999. The limits of determination were between 0.048 and 0.081 μg L(-1) for triazine herbicides and 0.39 and 3.26 ng L(-1) for organochlorine pesticides. The proposed method was successfully applied in the analysis of triazine and organochlorine pesticides in environmental water samples (ground, river and reservoir). Copyright © 2014 Elsevier B.V. All rights reserved.

  6. SVOC partitioning between the gas phase and settled dust indoors

    DEFF Research Database (Denmark)

    Weschler, Charles J.; Nazaroff, W. W.

    2010-01-01

    Semivolatile organic compounds (SVOCs) are a major class of indoor pollutants. Understanding SVOC partitioning between the gas phase and settled dust is important for characterizing the fate of these species indoors and the pathways by which humans are exposed to them. Such knowledge also helps...

  7. Effects of herbicides on fish

    DEFF Research Database (Denmark)

    Solomon, Keith R.; Dalhoff, Kristoffer; Volz, David

    2013-01-01

    Herbicides are used to control weeds and are usually targeted to processes and target sites that are specific to plants. As a result, most herbicides are not acutely toxic to fish. Exceptions to this general rule are uncouplers of oxidative phosphorylation and some herbicides that interfere...... with cell division. Chronic and sublethal effects have been studied for some herbicides, but fewer data are available for these effects than for acute effects. The sublethal effects of herbicides that have been studied include reproduction, stress, olfaction, and behavior. Although some of these responses......, and reproduction. As with all pesticides, herbicides may have indirect effects in fish. These effects are mediated by herbicide-induced changes in food webs or in the physical environment. Indirect effects can only occur if direct effects occur first and would be mediated by the killing of plants by herbicides...

  8. Lawn Care Pesticides. Risks Remain Uncertain While Prohibited Safety Claims Continue

    Science.gov (United States)

    1990-03-23

    health effects, such as cancer and birth defects, and adverse ecological effects. Currently these pesticides are being applied in large amounts without...Reregi stration such as cancer and birth defects, and that reassessing the health risks of using these pesticides as part of the reregistration process may...Endothall Herbicide NO Glyphosate Herbicide YES Isoxaben Herbicide a MCPA (2-methyl-4-chlorophenoxyacetic acid) Herbicide YES MCPP (potassium salt

  9. Prediction of climate impacts on pesticide leaching to the aquatic environments

    Energy Technology Data Exchange (ETDEWEB)

    Henriksen, Hans Joergen; Rosenbom, A.; van der Keur, P.; Kjaer, J.; Sonnenborg, T. [GEUS Danmark, Copenhagen (Denmark); Olesen, J.E. [Aarhus Univ., Tjele (Denmark); Nistrup Joergensen, L. [Aarhus Unv., Slagelse (Denmark); Boessing Christensen, O. [Danmarks Meteorologiske Institut (DMI), Copenhagen (Denmark)

    2013-10-01

    The report evaluates direct (precipitation, actual evapotranspiration and temperature) and indirect (crop rotations, crop management, and pesticide use) climatic change effects on pesticide-leaching to groundwater and the aquatic environment by use of MACRO and MIKE SHE model. The analysis is based on five model pesticides: low-dose herbicides, ordinary herbicides, strongly sorbing herbicides, fungicides and insecticides, and selected farm types (arable and dairy) for the variable saturated sandy soil (Jyndevad) and loamy soil (Faardrup). The evaluation has the aim at describing the implications of future climatic factors on pesticide leaching to groundwater as realistic as possible, based on realistic doses and parameters from MACRO setups from the Danish Pesticide Leaching Assessment Programme. (Author)

  10. The impact of mass transfer limitations on size distributions of particle associated SVOCs in outdoor and indoor environments

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Cong; Zhang, Yinping [Department of Building Science, Tsinghua University, Beijing (China); Weschler, Charles J., E-mail: weschlch@rwjms.rutgers.edu [Department of Building Science, Tsinghua University, Beijing (China); Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ (United States); International Center for Indoor Environment and Energy, Technical University of Denmark, Lyngby (Denmark)

    2014-11-01

    Semi-volatile organic compounds (SVOCs) partition between the gas phase and airborne particles. The size distribution of particle-associated SVOCs impacts their fate in outdoor and indoor environments, as well as human exposure to these compounds and subsequent health risks. Allen et al. (1996) previously proposed that the rate of mass transfer can impact polycyclic aromatic hydrocarbon (PAH) partitioning among different sized particles, especially for time scales relevant to urban aerosols. The present study quantitatively builds on this idea, presenting a model that incorporates dynamic SVOC/particle interaction and applying this model to typical outdoor and indoor scenarios. The model indicates that the impact of mass transfer limitations on the size distribution of a particle-associated SVOC can be evaluated by the ratio of the time to achieve gas–particle equilibrium relative to the residence time of particles. The higher this ratio, the greater the influence of mass transfer limitations on the size distribution of particle-associated SVOCs. The influence of such constraints is largest on the fraction of particle-associated SVOCs in the coarse mode (> 2 μm). Predictions from the model have been found to be in reasonable agreement with size distributions measured for PAHs at roadside and suburban locations in Japan. The model also quantitatively explains shifts in the size distributions of particle associated SVOCs compared to those for particle mass, and the manner in which these shifts vary with temperature and an SVOC's molecular weight. - Highlights: • Rate of mass transfer can impact SVOC partitioning among different sized particles. • Model was developed that incorporates dynamic SVOC/particle sorption. • Key parameters: mass-transfer coefficients, partition coefficient, residence time • Model explains observed SVOC size distribution shifts with temperature and MW. • Largest impact of mass transfer constraints: SVOC sorption to coarse

  11. Regional patterns of pesticide concentrations in surface waters of New York in 1997

    Science.gov (United States)

    Phillips, P.J.; Eckhardt, D.A.; Freehafer, D.A.; Wall, G.R.; Ingleston, H.H.

    2002-01-01

    The predominant mixtures of pesticides found in New York surface waters consist of five principal components. First, herbicides commonly used on corn (atrazine, metolachlor, alachlor, cyanazine) and a herbicide degradate (deethylatrazine) were positively correlated to a corn-herbicide component, and watersheds with the highest corn-herbicide component scores were those in which large amounts of row crops are grown. Second, two insecticides (diazinon and carbaryl) and one herbicide (prometon) widely used in urban and residential settings were positively correlated to an urban/residential component. Watersheds with the highest urban/residential component scores were those with large amounts of urban and residential land use. A third component was related to two herbicides (EPTC and cyanazine) used on dry beans and corn, the fourth to an herbicide (simazine) and an insecticide (carbaryl) commonly used in orchards and vineyards, and the fifth to an herbicide (DCPA). Results of this study indicate that this approach can be used to: (1) identify common mixtures of pesticides in surface waters, (2) relate these mixtures to land use and pesticide applications, and (3) indicate regions where these mixtures of pesticides are commonly found.

  12. The status of soil contamination by semivolatile organic chemicals (SVOCs) in China: A review

    Energy Technology Data Exchange (ETDEWEB)

    Cai Quanying [College of Resources and Environment, South China Agricultural University, Guangzhou 510642 (China)], E-mail: cai_quanying@yahoo.com; Mo Cehui [Department of Environmental Engineering, Jinan University, Guangzhou 510632 (China)], E-mail: tchmo@jnu.edu.cn; Wu Qitang [College of Resources and Environment, South China Agricultural University, Guangzhou 510642 (China); Katsoyiannis, Athanasios [European Commission, Joint Research Centre, Institute for Health and Consumer Protection (IHCP), Physical and Chemical Exposure Unit, Ispra (Vatican City State, Holy See,), TP-281, Via E. Fermi 1, I-21020 (Italy)], E-mail: athanasios.katsogiannis@jrc.it; Zeng Qiaoyun [College of Resources and Environment, South China Agricultural University, Guangzhou 510642 (China)

    2008-01-25

    This paper summarizes the published scientific data on the soil contamination by semivolatile organic chemicals (SVOCs) in China. Data has been found for more than 150 organic compounds which were grouped into six classes, namely, polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), polycyclic aromatic hydrocarbons (PAHs), polybrominated diphenyl ethers (PBDEs) and phthalic acid esters (PAEs). An overview of data collected from the literature is presented in this paper. The Chinese regulation and/or other maximum acceptable values for SVOCs were used for the characterization of soils. In general, the compounds that are mostly studied in Chinese soils are OCPs, PAHs and PCBs. According to the studies reviewed here, the most abundant compounds were PAEs and PAHs (up to 46 and 28 mg kg{sup -1} dry weight, respectively); PCBs and OCPs occurred generally at concentrations lower than 100 {mu}g kg{sup -1} dry weight. Nevertheless, quite high concentrations of PCDD/Fs, PCBs and PBDEs were observed in contaminated sites (e.g., the sites affected by electronic waste activities). The average concentrations of PAHs and OCPs in soils of North China were higher than those in South China. The principal component analysis demonstrated different distribution patterns for PAH, PCB and PCDD/F congeners and for the various sites/regions examined. The isomer ratios of DDTs and hexachlorocyclohexanes (HCHs) indicated different sources and residue levels in soils. Finally, this review has highlighted several areas where further research is considered necessary.

  13. Effects of three pesticides that differ in mode of action on the ecology of small indoor aquatic microcosms; an evaluation of the effects of the insecticide chlorpyrifos, the herbicide atrazine and the fungicide carbendazim

    NARCIS (Netherlands)

    Daam, M.A.; Brink, van den P.J.

    2003-01-01

    In the current study, the usefulness of an eight litre microcosm for the ecological risk assessment of pesticides is examined. Risk assessment studies were performed for three pesticides with different modes of action, viz. an insecticide (chlorpyrifos), fungicide (carbendazim) and herbicide

  14. Genetically Modified Herbicide-Tolerant Crops, Weeds, and Herbicides: Overview and Impact

    Science.gov (United States)

    Bonny, Sylvie

    2016-01-01

    Genetically modified (GM) crops have been and continue to be a subject of controversy despite their rapid adoption by farmers where approved. For the last two decades, an important matter of debate has been their impact on pesticide use, particularly for herbicide-tolerant (HT) crops. Some claim that these crops bring about a decrease in herbicide use, while others claim the opposite. In fact, since 1996, most cultivated GMOs have been GMHT crops, which involve the use of an associated herbicide, generally glyphosate. In their very first years of adoption, HT crops often led to some decrease in herbicide use. However, the repetition of glyphosate-tolerant crops and of glyphosate only applications in the same fields without sufficient alternation and herbicide diversity has contributed to the appearance of glyphosate-resistant weeds. These weeds have resulted in a rise in the use of glyphosate and other herbicides. This article explores this situation and the impacts of herbicide-resistant weeds, using an interdisciplinary approach and drawing on recent data. The paper analyzes the spread of GMHT crops worldwide and their consequences on herbicide use in the USA in particular. It then addresses the global development of glyphosate-resistant weeds and their impact, particularly focusing on the USA. Finally, the last section explores how industry, farmers, and weed scientists are coping with the spread of resistant weeds. The concluding comments deal more widely with trends in GM crops.

  15. Phytotoxicity of Four Photosystem II Herbicides to Tropical Seagrasses

    OpenAIRE

    Flores, Florita; Collier, Catherine J.; Mercurio, Philip; Negri, Andrew P.

    2013-01-01

    Coastal waters of the Great Barrier Reef (GBR) are contaminated with agricultural pesticides, including the photosystem II (PSII) herbicides which are the most frequently detected at the highest concentrations. Designed to control weeds, these herbicides are equally potent towards non-target marine species, and the close proximity of seagrass meadows to flood plumes has raised concerns that seagrasses may be the species most threatened by herbicides from runoff. While previous work has identi...

  16. Etude du transfert de pesticides dans les sols Exemple de divers herbicides organiques de synthèse et d'un produit minéral : le cuivre

    OpenAIRE

    DOUSSET , Sylvie

    2005-01-01

    Ce mémoire présente une synthèse de mes activités scientifiques depuis 1994 en matière de transferts de pesticides, et plus spécifiquement d’herbicides dans les sols. En guise d’introduction, je présenterai la problématique, la réglementation en matière de pesticides et des généralités sur leurs transferts. La première partie de ce travail, la plus volumineuse, correspond aux diverses échelles auxquelles il est possible d’étudier le lessivage des pesticides dans les sols ; les exemples sont c...

  17. Hypospadias and residential proximity to pesticide applications.

    Science.gov (United States)

    Carmichael, Suzan L; Yang, Wei; Roberts, Eric M; Kegley, Susan E; Wolff, Craig; Guo, Liang; Lammer, Edward J; English, Paul; Shaw, Gary M

    2013-11-01

    Experimental evidence suggests pesticides may be associated with hypospadias. Examine the association of hypospadias with residential proximity to commercial agricultural pesticide applications. The study population included male infants born from 1991 to 2004 to mothers residing in 8 California counties. Cases (n = 690) were ascertained by the California Birth Defects Monitoring Program; controls were selected randomly from the birth population (n = 2195). We determined early pregnancy exposure to pesticide applications within a 500-m radius of mother's residential address, using detailed data on applications and land use. Associations with exposures to physicochemical groups of pesticides and specific chemicals were assessed using logistic regression adjusted for maternal race or ethnicity and age and infant birth year. Forty-one percent of cases and controls were classified as exposed to 57 chemical groups and 292 chemicals. Despite >500 statistical comparisons, there were few elevated odds ratios with confidence intervals that excluded 1 for chemical groups or specific chemicals. Those that did were for monochlorophenoxy acid or ester herbicides; the insecticides aldicarb, dimethoate, phorate, and petroleum oils; and adjuvant polyoxyethylene sorbitol among all cases; 2,6-dinitroaniline herbicides, the herbicide oxyfluorfen, and the fungicide copper sulfate among mild cases; and chloroacetanilide herbicides, polyalkyloxy compounds used as adjuvants, the insecticides aldicarb and acephate, and the adjuvant nonyl-phenoxy-poly(ethylene oxy)ethanol among moderate and severe cases. Odds ratios ranged from 1.9 to 2.9. Most pesticides were not associated with elevated hypospadias risk. For the few that were associated, results should be interpreted with caution until replicated in other study populations.

  18. Removal of triazine herbicides from freshwater systems using photosynthetic microorganisms

    International Nuclear Information System (INIS)

    Gonzalez-Barreiro, O.; Rioboo, C.; Herrero, C.; Cid, A.

    2006-01-01

    The uptake of the triazine herbicides, atrazine and terbutryn, was determined for two freshwater photosynthetic microorganisms, the green microalga Chlorella vulgaris and the cyanobacterium Synechococcus elongatus. An extremely rapid uptake of both pesticides was recorded, although uptake rate was lower for the cyanobacterium, mainly for atrazine. Other parameters related to the herbicide bioconcentration capacity of these microorganisms were also studied. Growth rate, biomass, and cell viability in cultures containing herbicide were clearly affected by herbicide uptake. Herbicide toxicity and microalgae sensitivity were used to determine the effectiveness of the bioconcentration process and the stability of herbicide removal. C. vulgaris showed higher bioconcentration capability for these two triazine herbicides than S. elongatus, especially with regard to terbutryn. This study supports the usefulness of such microorganisms, as a bioremediation technique in freshwater systems polluted with triazine herbicides

  19. Removal of triazine herbicides from freshwater systems using photosynthetic microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Barreiro, O. [Laboratorio de Microbiologia, Facultad de Ciencias, Universidad de A Coruna, Campus da Zapateira s/n. 15071 A Coruna (Spain); Rioboo, C. [Laboratorio de Microbiologia, Facultad de Ciencias, Universidad de A Coruna, Campus da Zapateira s/n. 15071 A Coruna (Spain); Herrero, C. [Laboratorio de Microbiologia, Facultad de Ciencias, Universidad de A Coruna, Campus da Zapateira s/n. 15071 A Coruna (Spain); Cid, A. [Laboratorio de Microbiologia, Facultad de Ciencias, Universidad de A Coruna, Campus da Zapateira s/n. 15071 A Coruna (Spain)]. E-mail: cid@udc.es

    2006-11-15

    The uptake of the triazine herbicides, atrazine and terbutryn, was determined for two freshwater photosynthetic microorganisms, the green microalga Chlorella vulgaris and the cyanobacterium Synechococcus elongatus. An extremely rapid uptake of both pesticides was recorded, although uptake rate was lower for the cyanobacterium, mainly for atrazine. Other parameters related to the herbicide bioconcentration capacity of these microorganisms were also studied. Growth rate, biomass, and cell viability in cultures containing herbicide were clearly affected by herbicide uptake. Herbicide toxicity and microalgae sensitivity were used to determine the effectiveness of the bioconcentration process and the stability of herbicide removal. C. vulgaris showed higher bioconcentration capability for these two triazine herbicides than S. elongatus, especially with regard to terbutryn. This study supports the usefulness of such microorganisms, as a bioremediation technique in freshwater systems polluted with triazine herbicides.

  20. Role of aerosols in enhancing SVOC flux between air and indoor surfaces and its influence on exposure

    Science.gov (United States)

    Liu, Cong; Morrison, Glenn C.; Zhang, Yinping

    2012-08-01

    Indoor surfaces play an important role in the transport of, and exposure to, semi-volatile organic compounds (SVOCs) in buildings. In this study, we develop a model that accounts for SVOC transport mediated by particles and find that, due to large gas-particle partition coefficients along with large differences in Brownian and gas diffusivities, SVOC transport across concentration boundary layers is significantly enhanced in the presence of particles. Two important dimensionless parameters, Bim,g and Bim,g/Bim,p, were identified: Bim,g is the ratio of 1) the characteristic time for the SVOC to transport across the concentration boundary layer to 2) the characteristic time for boundary layer to either be "swept" of SVOCs by particles or "saturated" by release of SVOCs from particles. This parameter can be regarded as a dimensionless mass transfer coefficient. Bim,g/Bim,p characterizes the SVOC mass associated with particles, relative to SVOCs in the gas-phase. Analysis on monodisperse particles shows that flux can be enhanced by as much as a factor of 5 over transport in the absence of particles, for a large particle/gas partition coefficient (log Kpart = 13), small particles (dp ˜ 0.1 μm) and a small free stream velocity (U∞ = 0.01 m s-1). As particle diameter decreases, flux enhancement tends to increase. However, as particles become very small (e.g., dp cooking and smoking. Two illustrative examples are used to show that, 1) the timescale for di(2-ethylhexyl) phthalate (DEHP) to approach equilibrium between the gas and a surface is shortened from 3.0 years to 0.45 years; and 2) in the presence of particles, the gas-phase DEHP concentration and emission rate are predicted to be as much as 4 times higher by our model than that by prior model estimates. Particle mediated gas-phase transport of SVOCs can result an increase in occupant exposure by a factor of 4-10.

  1. Application of electrokinetic soil flushing to four herbicides: A comparison.

    Science.gov (United States)

    dos Santos, E Vieira; Souza, F; Saez, C; Cañizares, P; Lanza, M R V; Martinez-Huitle, C A; Rodrigo, M A

    2016-06-01

    In this work, four bench-scale plants containing soil spiked with four herbicides (2,4-Dichlorophenoxyacetic acid (2,4-D), oxyfluorfen, chlorsulfuron and atrazine) undergo treatment consisting of an electrokinetic soil flushing (EKSF). Results clearly demonstrate that efficiency of EKSF depends on the chemical characteristic of the pesticide used. The amount of pesticide collected in the anode well is more significant than that collected in the cathode wells, indicating that the electromigration is much more important than drainage by electro-osmotic flux for this application. After 15 d of treatment, the 2,4-D is the pesticide most efficiently removed (95% of removal), while chlorsulfuron is the pesticide more resilient to the treatment. Additionally, volatilization was found to be a process of the major significance in the application of electrokinetic techniques to soil polluted with herbicides and because of that it should always be taken into account in the future design of full-scale processes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Surface plasmon resonance application for herbicide detection

    Science.gov (United States)

    Chegel, Vladimir I.; Shirshov, Yuri M.; Piletskaya, Elena V.; Piletsky, Sergey A.

    1998-01-01

    The optoelectronic biosensor, based on Surface Plasmon Resonance (SPR) for detection of photosynthesis-inhibiting herbicides in aqueous solutions is presented. The pesticide capability to replace plastoquinone from its complex with D1 protein is used for the detection. This replacement reaction results in the changes of the optical characteristics of protein layer, immobilized on the gold surface. Monitoring of these changes with SPR-technique permit to determine 0.1 - 5.0 mkg/ml herbicide in solution within one hour.

  3. Pesticides in streams of the United States : initial results from the National Water-Quality Assessment Program

    Science.gov (United States)

    Larson, Steven J.; Gilliom, Robert J.; Capel, Paul D.

    1999-01-01

    Water samples from 58 rivers and streams across the United States were analyzed for pesticides as part of the National Water-Quality Assessment Program of the U.S. Geological Survey. The sampling sites represent 37 diverse agricultural basins, 11 urban basins, and 10 basins with mixed land use. Forty-six pesticides and pesticide degradation products were analyzed in approximately 2,200 samples collected from 1992 to 1995. The target compounds account for approximately 70 percent of national agricultural use in terms of the mass of pesticides applied annually. All the target compounds were detected in one or more samples. Herbicides generally were detected more frequently and at higher concentrations than insecticides. Nationally, 11 herbicides, 1 herbicide degradation product, and 3 insecticides were detected in more than 10 percent of samples. The number of target compounds detected at each site ranged from 7 to 37. The herbicides atrazine, metolachlor, prometon, and simazine were detected most frequently; among the insecticides, carbaryl, chlorpyrifos, and diazinon were detected the most frequently. Distinct differences in pesticide occurrence were observed in streams draining the various agricultural settings. Relatively high levels of several herbicides occurred as seasonal pulses in corn-growing areas. Several insecticides were frequently detected in areas where the dominant crops consist of orchards and vegetables. The number of pesticides detected and their concentrations were lower in wheat-growing areas than in most other agricultural areas. In most urban areas, the herbicides prometon and simazine and the insecticides carbaryl, chlorpyrifos, diazinon, and malathion were commonly detected. Concentrations of pesticides rarely exceeded standards and criteria established for drinking water, but some pesticides commonly exceeded criteria established for the protection of aquatic life.

  4. Aquatic Macrophyte Risk Assessment for Pesticides

    NARCIS (Netherlands)

    Maltby, L.; Arnold, D.; Arts, G.H.P.; Davies, J.; Heimbach, F.; Pickl, C.; Poulsen, V.

    2009-01-01

    Given the essential role that primary producers play in aquatic ecosystems, it is imperative that the potential risk of pesticides to the structure and functioning of aquatic plants is adequately assessed. This book discusses the assessment of the risk of pesticides with herbicidal activity to

  5. Using GLEAMS to Select Environmental Windows for Herbicide Application in Forests

    Science.gov (United States)

    M.C. Smith; J.L. Michael; W.G. Koisel; D.G. Nealy

    1994-01-01

    Observed herbicide runoff and groundwater data from a pine-release herbicide application study near Gainesville, Florida were used to validate the GLEAMS model hydrology and pesticide component for forest application. The study revealed that model simulations agreed relatively well with the field data for the one-year study. Following validation, a modified version of...

  6. A Rapid and Simple Bioassay Method for Herbicide Detection

    Directory of Open Access Journals (Sweden)

    Xiu-Qing Li

    2008-01-01

    Full Text Available Chlamydomonas reinhardtii, a unicellular green alga, has been used in bioassay detection of a variety of toxic compounds such as pesticides and toxic metals, but mainly using liquid culture systems. In this study, an algal lawn--agar system for semi-quantitative bioassay of herbicidal activities has been developed. Sixteen different herbicides belonging to 11 different categories were applied to paper disks and placed on green alga lawns in Petri dishes. Presence of herbicide activities was indicated by clearing zones around the paper disks on the lawn 2-3 days after application. The different groups of herbicides induced clearing zones of variable size that depended on the amount, mode of action, and chemical properties of the herbicides applied to the paper disks. This simple, paper-disk-algal system may be used to detect the presence of herbicides in water samples and act as a quick and inexpensive semi-quantitative screening for assessing herbicide contamination.

  7. Conséquences de l’utilisation des OGM sur l’usage des pesticides

    Directory of Open Access Journals (Sweden)

    Darmency Henri

    2010-01-01

    Full Text Available Herbicide-resistant and insect-resistant GM crops have been grown in order to save pesticide uses. Although the first years in the USA showed some benefit, further observations could be interpreted as a slow down in pesticide reduction together with the appearance of threats to the sustainability of the GM technology. On the one hand, alternate techniques were improved so as to use less pesticide. On the other hand, the appearance of herbicide-resistant weeds lead to the come-back of heavy herbicide weed control programs. However, the reduction in insecticides was sustained thanks to the setting up of the refuge strategy. The USA experience must be taken into account to design and evaluate the impact of the GM crops on the “green” policies to reduce the amount of pesticides used in Agriculture.

  8. Occupational pesticide use and Parkinson's disease in the Parkinson Environment Gene (PEG) study.

    Science.gov (United States)

    Narayan, Shilpa; Liew, Zeyan; Bronstein, Jeff M; Ritz, Beate

    2017-10-01

    To study the influence of occupational pesticide use on Parkinson's disease (PD) in a population with information on various occupational, residential, and household sources of pesticide exposure. In a population-based case control study in Central California, we used structured interviews to collect occupational history details including pesticide use in jobs, duration of use, product names, and personal protective equipment use from 360 PD cases and 827 controls. We linked reported products to California's pesticide product label database and identified pesticide active ingredients and occupational use by chemical class including fungicides, insecticides, and herbicides. Employing unconditional logistic regression, we estimated odds ratios and 95% confidence intervals for PD and occupational pesticide use. Ever occupational use of carbamates increased risk of PD by 455%, while organophosphorus (OP) and organochlorine (OC) pesticide use doubled risk. PD risk increased 110-211% with ever occupational use of fungicides, herbicides, and insecticides. Using any pesticide occupationally for >10years doubled the risk of PD compared with no occupational pesticide use. Surprisingly, we estimated higher risks among those reporting use of personal protective equipment (PPE). Our findings provide additional evidence that occupational pesticide exposures increase PD risk. This was the case even after controlling for other sources of pesticide exposure. Specifically, risk increased with occupational use of carbamates, OPs, and OCs, as well as of fungicides, herbicides, or insecticides. Interestingly, some types of PPE use may not provide adequate protection during pesticide applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Identification and discrimination of herbicide residues using a conducting polymer electronic nose

    Science.gov (United States)

    Alphus Dan Wilson

    2016-01-01

    The identification of herbicide residues on crop foliage is necessary to make crop-management decisions for weed pest control and to monitor pesticide residue levels on food crops. Electronic-nose (e-nose) methods were tested as a cheaper, alternative means of discriminating between herbicide residue types (compared with conventional chromatography methods), by...

  10. Effects of selected herbicides and fungicides on growth, sporulation and conidial germination of entomopathogenic fungus Beauveria bassiana.

    Science.gov (United States)

    Celar, Franci A; Kos, Katarina

    2016-11-01

    The in vitro fungicidal effects of six commonly used fungicides, namely fluazinam, propineb, copper(II) hydroxide, metiram, chlorothalonil and mancozeb, and herbicides, namely isoxaflutole, fluazifop-P-butyl, flurochloridone, foramsulfuron, pendimethalin and prosulfocarb, on mycelial growth, sporulation and conidial germination of entomopathogenic fungus Beauveria bassiana (ATCC 74040) were investigated. Mycelial growth rates and sporulation at 15 and 25 °C were evaluated on PDA plates containing 100, 75, 50, 25, 12.5, 6.25 and 0% of the recommended application rate of each pesticide. The tested pesticides were classified in four scoring categories based on reduction in mycelial growth and sporulation. All pesticides, herbicides and fungicides tested had fungistatic effects of varying intensity, depending on their rate in the medium, on B. bassiana. The most inhibitory herbicides were flurochloridone and prosulfocarb, and fluazinam and copper(II) hydroxide were most inhibitory among the fungicides, while the least inhibitory were isoxaflutole and chlorothalonil. Sporulation and conidial germination of B. bassiana were significantly inhibited by all tested pesticides compared with the control treatment. Flurochloridone, foramsulfuron, prosulfocarb and copper(II) hydroxide inhibited sporulation entirely at 100% rate (99-100% inhibition), and the lowest inhibition was shown by fluazifop-P-butyl (22%) and metiram (33%). At 100% dosage, all herbicides in the test showed a high inhibitory effect on conidial germination. Conidial germination inhibition ranged from 82% with isoxaflutole to 100% with fluorochloridone, pendimethalin and prosulfocarb. At 200% dosage, inhibition rates even increased (96-100%). All 12 pesticides tested had a fungistatic effect on B. bassiana of varying intensity, depending on the pesticide and its concentration. B. bassiana is highly affected by some herbicides and fungicides even at very low rates. Flurochloridone, foramsulfuron

  11. Using fluorescent dyes as proxies to study herbicide removal by sorption in buffer zones.

    Science.gov (United States)

    Dollinger, Jeanne; Dagès, Cécile; Voltz, Marc

    2017-04-01

    The performance of buffer zones for removing pesticides from runoff water varies greatly according to landscape settings, hydraulic regime, and system design. Evaluating the performance of buffers for a range of pesticides and environmental conditions can be very expensive. Recent studies suggested that the fluorescent dyes uranine and sulforhodamine B could be used as cost-effective surrogates of herbicides to evaluate buffer performance. However, while transformation mechanisms in buffers have been extensively documented, sorption processes of both dyes have rarely been investigated. In this study, we measured the adsorption, desorption, and kinetic sorption coefficients of uranine and sulforhodamine B for a diverse range of buffer zone materials (soils, litters, plants) and compared the adsorption coefficients (Kd) to those of selected herbicides. We also compared the global sorption capacity of 6 ditches, characterized by varying proportions of the aforementioned materials, between both dyes and a set of four herbicides using the sorption-induced pesticide retention indicator (SPRI). We found that both the individual Kd of uranine for the diverse buffer materials and the global sorption capacity of the ditches are equivalent to those of the herbicides diuron, isoproturon, and metolachlor. The Kd of sulforhodamine B on plants and soils are equivalent to those of glyphosate, and the global sorption capacities of the ditches are equivalent for both molecules. Hence, we demonstrate for the first time that uranine can be used as a proxy of moderately hydrophobic herbicides to evaluate the performance of buffer systems, whereas sulforhodamine B can serve as a proxy for more strongly sorbing herbicides.

  12. Modeled exposure assessment via inhalation and dermal pathways to airborne semivolatile organic compounds (SVOCs) in residences.

    Science.gov (United States)

    Shi, Shanshan; Zhao, Bin

    2014-05-20

    Exposure to airborne semivolatile organic compounds (SVOCs) in indoor and outdoor environments of humans may lead to adverse health risks. Thus, we established a model to evaluate exposure to airborne SVOCs. In this model, SVOCs phase-specific concentrations were estimated by a kinetic partition model accounting for particle dynamics. The exposure pathways to airborne SVOCs included inhalation exposure to gas- and particle-phases, dermal exposure by direct gas-to-skin pathway and dermal exposure by direct particle deposition. Exposures of defined "reference people" to two typical classifications of SVOCs, one generated from both indoor and outdoor sources, represented by polycyclic aromatic hydrocarbons (PAHs), and the other generated mainly from only indoor sources, represented by di 2-ethylhexyl phthalate (DEHP), were analyzed as an example application of the model. For PAHs with higher volatility, inhalation exposure to gas-phase, ranging from 6.03 to 16.4 ng/kg/d, accounted for the most of the exposure to the airborne phases. For PAHs with lower volatility, inhalation exposure to particle-phase, ranging from 1.48 to 1.53 ng/kg/d, was the most important exposure pathway. As for DEHP, dermal exposure via direct gas-to-skin pathway was 460 ng/kg/d, which was the most striking exposure pathway when the barrier effect of clothing was neglected.

  13. SVOC emissions from diesel trucks operating on biodiesel fuels

    Science.gov (United States)

    This study measured semivolatile organic compounds (SVOCs) in particle matter (PM) emitted from three heavy-duty trucks equipped with modern after-treatment technologies. Emissions testing was conducted as described by the George et al. VOC study also presented as part of this se...

  14. Pesticides in Wyoming Groundwater, 2008-10

    Science.gov (United States)

    Eddy-Miller, Cheryl A.; Bartos, Timothy T.; Taylor, Michelle L.

    2013-01-01

    were detected at concentrations greater than the CAL in water from 16 of 52 wells sampled (about 31 percent) during the resampling study. Detected pesticides were classified into one of six types: herbicides, herbicide degradates, insecticides, insecticide degradates, fungicides, or fungicide degradates. At least 95 percent of detected pesticides were classified as herbicides or herbicide degradates. The number of different pesticides detected in samples from the 52 wells was similar between the 1995-2006 baseline study (30 different pesticides) and 2008-2010 resampling study (28 different pesticides). Thirteen pesticides were detected during both studies. The change in the number of pesticides detected (without regard to which pesticide was detected) in groundwater samples from each of the 52 wells was evaluated and the number of pesticides detected in groundwater did not change for most of the wells (32). Of those that did have a difference between the two studies, 17 wells had more pesticide detections in groundwater during the 1995-2006 baseline study, whereas only 3 wells had more detections during the 2008-2010 resampling study. The difference in pesticide concentrations in groundwater samples from each of the 52 wells was determined. Few changes in concentration between the 1995-2006 baseline study and the 2008-2010 resampling study were seen for most detected pesticides. Seven pesticides had a greater concentration detected in the groundwater from the same well during the baseline sampling compared to the resampling study. Concentrations of prometon, which was detected in 17 wells, were greater in the baseline study sample compared to the resampling study sample from the same well 100 percent of the time. The change in the number of pesticides detected (without regard to which pesticide was detected) in groundwater samples from each of the 52 wells with respect to land use and geographic area was calculated. All wells with land use classified as agricultural

  15. Control of Pesticides 2004

    DEFF Research Database (Denmark)

    Krongaard, T.; Petersen, K. K.; Christoffersen, C.

    Four different groups of products covered by the pesticide regulation were included in the 2004 analytical chemical authority control: 1) Herbicides containing bentazone, dicamba, dichlorprop-P, mecoprop-P, MCPA, foramsulfuron, iodosulfuron-methylsodium, rimsulfuron and triasulfuron. 2) Fungicides...

  16. Household pesticide usage in the United States.

    Science.gov (United States)

    Savage, E P; Keefe, T J; Wheeler, H W; Mounce, L; Helwic, L; Applehans, F; Goes, E; Goes, T; Mihlan, G; Rench, J; Taylor, D K

    1981-01-01

    A total of 10,000 U.S. households in 25 standard metropolitan statistical areas and 25 counties were included in the United States. More than 8,200 households granted an interview. Nine of every ten households in the United States used some types of pesticide in their house, garden, or yard. Households in the southeastern United States used the most pesticides. Although more than 500 different pesticide formulations were used by the sampled households, 15 pesticides accounted for 65.5% of all pesticides reported in this study. Thirteen of these 15 pesticides were insecticides, one was a herbicide, and one was a rodenticide.

  17. Toxicity of Pesticides. Agrichemical Fact Sheet 2.

    Science.gov (United States)

    Hock, Winand K.

    This fact sheet gives the acute oral and dermal toxicity (LD 50) of over 250 pesticides in lab animals. The chemicals are categorized as fungicides, herbicides, insecticides, or miscellaneous compounds. One or more trade names are given for each pesticide. In addition, a brief explanation of toxicity determination is given. (BB)

  18. Economics of site-specific and variable-dose herbicide application

    DEFF Research Database (Denmark)

    Ørum, Jens Erik; Kudsk, Per; Jensen, Peter Kryger

    2017-01-01

    Site-specific application of pesticides has so far focused mainly on herbicides. The purpose of precision farming technologies in relation to herbicide use is to reduce herbicide cost and environmental impact from spraying, but at the same time to achieve acceptable weed control. Another purpose...... is to increase the spraying capacity, to reduce the number of sprayer refills, and finally to minimize time spent on weed monitoring. In this chapter the relevance and profitability of four precision herbicide application technologies, two weed detection technologies and a low dose decision support system (DSS......) is analysed. With a low dose herbicide, cost can be reduced by 20–50%. It requires, however, proper monitoring of weeds, which can be a time-consuming task that again requires that the farmer is able to identify the dominant weed species. The current development of high-speed camera and software systems can...

  19. Analysis of the dynamic interaction between SVOCs and airborne particles

    DEFF Research Database (Denmark)

    Liu, Cong; Shi, Shanshan; Weschler, Charles J.

    2013-01-01

    A proper quantitative understanding of the dynamic interaction between gas-phase semivolatile organic compounds (SVOCs) and airborne particles is important for human exposure assessment and risk evaluation. Questions regarding how to properly address gas/particle interactions have introduced...

  20. Metabolism of nitrodiphenyl ether herbicides by dioxin-degrading bacterium Sphingomonas wittichii RW1.

    Science.gov (United States)

    Keum, Young Soo; Lee, Young Ju; Kim, Jeong-Han

    2008-10-08

    Nitrodiphenyl ether herbicides, including chlomethoxyfen, nitrofen, and oxyfluorfen are potent herbicides. Some metabolites and parent compounds are considered as possible mutagens and endocrine disruptors. Both properties pose serious hygienic and environmental risks. Sphingomonas wittichii RW1 is a well-known degrader of polychlorinated dibenzo- p-dioxins, dibenzofurans, and diphenyl ethers. However, no detailed research of its metabolic activity has been performed against pesticides with a diphenyl ether scaffold. In this study, we report S. wittichii RW1 as a very potent diphenyl ether herbicide-metabolizing bacterium with broad substrate specificity. The structures of metabolites were determined by instrumental analysis and synthetic standards. Most pesticides were rapidly removed from the culture medium in the order of nitrofen > oxyfluorfen > chlomethoxyfen. In general, herbicides were degraded through the initial reduction and N-acetylation of nitro groups, followed by ether bond cleavage. Relatively low concentrations of phenolic and catecholic metabolites throughout the study suggested that these metabolites were rapidly metabolized and incorporated into primary metabolism. These results indicate that strain RW1 has very versatile metabolic activities over a wide range of environmental contaminants.

  1. Equilibrium Relationship between SVOCs in PVC Products and the Air in Contact with the Product.

    Science.gov (United States)

    Eichler, Clara M A; Wu, Yaoxing; Cao, Jianping; Shi, Shanshan; Little, John C

    2018-03-06

    Phthalates and phthalate alternatives are semivolatile organic compounds (SVOCs) present in many PVC products as plasticizers to enhance product performance. Knowledge of the mass-transfer parameters, including the equilibrium concentration in the air in contact with the product surface ( y 0 ), will greatly improve the ability to estimate the emission rate of SVOCs from these products and to assess human exposure. The objective of this study was to measure y 0 for different PVC products and to evaluate its relationship with the material-phase concentrations ( C 0 ). Also, C 0 and y 0 data from other sources were included, resulting in a substantially larger data set ( N total = 34, T = 25 °C) than found in previous studies. The results show that the material/gas equilibrium relationship does not follow Raoult's law and that therefore the assumption of an ideal solution is invalid. Instead, Henry's law applies, and the Henry's law constant for all target SVOCs consists of the respective pure liquid vapor pressure and an activity coefficient γ, which accounts for the nonideal nature of the solution. For individual SVOCs, a simple partitioning relationship exists, but Henry's law is more generally applicable and will be of greater value in rapid exposure assessment procedures.

  2. Control of Pesticides 2000

    DEFF Research Database (Denmark)

    Krongaard, T.; Petersen, K. K.; Christoffersen, C.

    , fluazinam, and kresoximmethyl. 3) Insecticides containing buprofezin and fenazaquin. All products were examined for content of active ingredient. Satisfactory results were found among herbicides containing aclonifen, dicamba, quinoclamine, bromoxynil, and simazine, among fungicides containing fenpropidin......, fluazinam, and kresoxim-methyl, and among insecticides containing fenazaquin. Thus, all the eighteen analysed samples of these pesticides complied with the accepted tolerances with respect to content of active ingredients set by the Danish regulation of pesticides. The only product containing buprofezin...

  3. Cost effectiveness analysis of the SEAMIST trademark membrane system technology

    International Nuclear Information System (INIS)

    Henriksen, A.D.; Booth, S.R.

    1993-01-01

    This report describes the cost and performance characteristics of SEAMIST trademark, an innovative technology that facilitates measurements of contaminants in both vertical and horizontal vadose zone boreholes. This new technology consists of an airtight membrane linear that is pneumatically emplaced inside the borehole structure. Sampling ports with attached tubing, absorbent collectors, or various in situ measuring devices can be fabricated into the linear and used for monitoring volatile organic compounds (VOCs), semivolatile organic compounds (SVOCs), pesticides, herbicides, polynuclear aromatic hydrocarbons, polychlorinated biphenyls, or radioactive substances. In addition, small instruments can be guided through the lined borehole and measurements taken inside at specified intervals

  4. A glyphosate-based pesticide impinges on transcription

    International Nuclear Information System (INIS)

    Marc, Julie; Le Breton, Magali; Cormier, Patrick; Morales, Julia; Belle, Robert; Mulner-Lorillon, Odile

    2005-01-01

    Widely spread chemicals used for human benefits may exert adverse effects on health or the environment, the identification of which are a major challenge. The early development of the sea urchin constitutes an appropriate model for the identification of undesirable cellular and molecular targets of pollutants. The widespread glyphosate-based pesticide affected sea urchin development by impeding the hatching process at millimolar range concentration of glyphosate. Glyphosate, the active herbicide ingredient of Roundup, by itself delayed hatching as judged from the comparable effect of different commercial glyphosate-based pesticides and from the effect of pure glyphosate addition to a threshold concentration of Roundup. The surfactant polyoxyethylene amine (POEA), the major component of commercial Roundup, was found to be highly toxic to the embryos when tested alone and therefore could contribute to the inhibition of hatching. Hatching, a landmark of early development, is a transcription-dependent process. Correlatively, the herbicide inhibited the global transcription, which follows fertilization at the 16-cell stage. Transcription inhibition was dose-dependent in the millimolar glyphosate range concentration. A 1257-bp fragment of the hatching enzyme transcript from Sphaerechinus granularis was cloned and sequenced; its transcription was delayed by 2 h in the pesticide-treated embryos. Because transcription is a fundamental basic biological process, the pesticide may be of health concern by inhalation near herbicide spraying at a concentration 25 times the adverse transcription concentration in the sprayed microdroplets

  5. STORAGE STABILITY OF PESTICIDES IN EXTRACT SOLVENTS AND SAMPLING MEDIA

    Science.gov (United States)

    Demonstrating that pesticides are stable in field media and their extracts over extended storage periods allows operational flexibility and cost efficiency. Stability of the 31 neutral pesticides and 2 acid herbicides of the Agricultural Health Study exposure pilot was evaluate...

  6. Investigation of 10 herbicides in surface waters of a horticultural production catchment in southeastern Australia.

    Science.gov (United States)

    Allinson, Graeme; Bui, AnhDuyen; Zhang, Pei; Rose, Gavin; Wightwick, Adam M; Allinson, Mayumi; Pettigrove, Vincent

    2014-10-01

    Herbicides are regularly applied in horticultural production systems and may migrate off-site, potentially posing an ecological risk to surface waterways. However, few studies have investigated the levels and potential ecotoxicological impact of herbicides in horticultural catchments in southern Australia. This study investigated the presence of 10 herbicides at 18 sites during a 5-month period in horticulturally important areas of the Yarra Valley in southeastern Australia. Seven of the 10 herbicides were detected in the streams, in 39 % of spot water samples, in 25 % of surface sediment samples, and in >70 % of the passive sampler systems deployed. Few samples contained residues of ≥2 herbicides. Simazine was the herbicide most frequently detected in water, sediment, and passive sampler samples and had the highest concentrations in water (0.67 μg/L) and sediment (260 μg/kg dry weight). Generally the concentrations of the herbicides detected were several orders of magnitude lower than reported ecotoxicological effect values, including those for aquatic plants and algae, suggesting that concentrations of individual chemicals in the catchment were unlikely to pose an ecological risk. However, little is known about the combined effects of simultaneous, low-level exposure of multiple herbicides of the same mode of action on Australian aquatic organisms nor their contribution when found in mixtures with other pesticides. Further research is required to adequately assess the risk of pesticides in Victorian aquatic environments.

  7. Pesticides in rain in four agricultural watersheds in the United States

    Science.gov (United States)

    Vogel, J.R.; Majewski, M.S.; Capel, P.D.

    2008-01-01

    Rainfall samples were collected during the 2003 and 2004 growing seasons at four agricultural locales across the USA in Maryland, Indiana, Nebraska, and California. The samples were analyzed for 21 insecticides, 18 herbicides, three fungicides, and 40 pesticide degradates. Data from all sites combined show that 7 of the 10 most frequently detected pesticides were herbicides, with atrazine (70%) and metolachlor (83%) detected at every site. Dacthal, acetochlor, simazine, alachlor, and pendimethalin were detected in more than 50% of the samples. Chlorpyrifos, carbaryl, and diazinon were the only insecticides among the 10 most frequently detected compounds. Of the remaining pesticide parent compounds, 18 were detected in fewer than 30% of the samples, and 13 were not detected. The most frequently detected degradates were deethylatrazine; the oxygen analogs (OAs) of the organophosphorus insecticides chlorpyrifos, diazinon, and malathion; and 1-napthol (degradate of carbaryl). Deethylatrazine was detected in nearly 70% of the samples collected in Maryland, Indiana, and Nebraska but was detected only once in California. The OAs of chlorpyrifos and diazinon were detected primarily in California. Degradates of the acetanilide herbicides were rarely detected in rain, indicating that they are not formed in the atmosphere or readily volatilized from soils. Herbicides accounted for 91 to 98% of the total pesticide mass deposited by rain except in California, where insecticides accounted for 61% in 2004. The mass of pesticides deposited by rainfall was estimated to be less than 2% of the total applied in these agricultural areas. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  8. Computational study concerning the effect of some pesticides on the Proteus Mirabilis catalase activity

    Science.gov (United States)

    Isvoran, Adriana

    2016-03-01

    Assessment of the effects of the herbicides nicosulfuron and chlorsulfuron and the fungicides difenoconazole and drazoxlone upon catalase produced by soil microorganism Proteus mirabilis is performed using the molecular docking technique. The interactions of pesticides with the enzymes are predicted using SwissDock and PatchDock docking tools. There are correlations for predicted binding energy values for enzyme-pesticide complexes obtained using the two docking tools, all the considered pesticides revealing favorable binding to the enzyme, but only the herbicides bind to the catalytic site. These results suggest the inhibitory potential of chlorsulfuron and nicosulfuron on the catalase activity in soil.

  9. Multi-residues analysis of pre-emergence herbicides in fluvial sediments: application to the mid-Garonne River.

    Science.gov (United States)

    Devault, Damien A; Merlina, Georges; Lim, Puy; Probst, Jean-Luc; Pinelli, Eric

    2007-09-01

    Contamination of man and ecosystems by pesticides has become a major environmental concern. Whereas many studies exist on contamination from agriculture, the effects of urban sources are usually omitted. Fluvial sediment is a complex matrix of pollutants but little is known of its recent herbicide content. This study proposes a method for a fast and reliable analysis of herbicides by employing the accelerated solvent extractor (ASE). The aim of the study is to show the impact of a major town (Toulouse) on the herbicide content in the river. In this study, three herbicide families (i.e.s-triazine, substituted ureas and anilides) were analysed in fluvial sediment fractions at 11 sampling sites along the mid-Garonne River and its tributaries. River water contamination by herbicides is minor, except for at three sites located in urban areas. Among the herbicidal families studied, urban and suburban areas are distinguished from rural areas and were found to be the most contaminated sites during the study period, a winter low-water event. The herbicide content of the coarse sediment fractions is about one third of that found in the fine fractions and usually ignored. The distribution of pesticide concentrations across the whole range of particle sizes was investigated to clarify the role of plant remains on the significant accumulation in the coarse fractions.

  10. Toxicity of three selected pesticides (Alachlor, Atrazine and Diuron ...

    African Journals Online (AJOL)

    The present study aimed to evaluate acute toxicity tests for three selected herbicides: Alachlor, Atrazine and Diuron using turbot flatfish. Larvae were more sensitive than turbot embryos to all pesticides. Median lethal concentrations of the selected pesticides during a 48 h and 96 h exposure for turbot embryos and larvae ...

  11. Bringing Work Home: Take-Home Pesticide Exposure Among Farm Families

    NARCIS (Netherlands)

    Curwin, B.D.

    2006-01-01

    In this thesis take-home pesticide exposure among farm families, with an emphasis on herbicides, was investigated. Take-home exposure occurs when a worker unwittingly brings home a substance on his or her clothing or shoes, thereby potentially exposing his or her family. The pesticides investigated

  12. Questions concerning the potential impact of glyphosate-based herbicides on amphibians.

    Science.gov (United States)

    Wagner, Norman; Reichenbecher, Wolfram; Teichmann, Hanka; Tappeser, Beatrix; Lötters, Stefan

    2013-08-01

    Use of glyphosate-based herbicides is increasing worldwide. The authors review the available data related to potential impacts of these herbicides on amphibians and conduct a qualitative meta-analysis. Because little is known about environmental concentrations of glyphosate in amphibian habitats and virtually nothing is known about environmental concentrations of the substances added to the herbicide formulations that mainly contribute to adverse effects, glyphosate levels can only be seen as approximations for contamination with glyphosate-based herbicides. The impact on amphibians depends on the herbicide formulation, with different sensitivity of taxa and life stages. Effects on development of larvae apparently are the most sensitive endpoints to study. As with other contaminants, costressors mainly increase adverse effects. If and how glyphosate-based herbicides and other pesticides contribute to amphibian decline is not answerable yet due to missing data on how natural populations are affected. Amphibian risk assessment can only be conducted case-specifically, with consideration of the particular herbicide formulation. The authors recommend better monitoring of both amphibian populations and contamination of habitats with glyphosate-based herbicides, not just glyphosate, and suggest including amphibians in standardized test batteries to study at least dermal administration. Copyright © 2013 SETAC.

  13. Atmospheric transport of pesticides in the Sacramento, California, metropolitan area, 1996-1997

    Science.gov (United States)

    Majewski, Michael S.; Baston, David S.

    2002-01-01

    Weekly composite, bulk air was sampled with respect to wind speed and direction from January 1996 through December 1997 in one urban and two agricultural locations in Sacramento County, California. The sampling sites were located along a north-south transect, the dominant directions of the prevailing winds. The samples were analyzed for a variety of current-use pesticides, including dormant orchard spray insecticides and rice herbicides. A variety of pesticides were detected throughout the year, predominantly chlorpyrifos, diazinon, and trifluralin. The data obtained during the winter and spring suggest that some pesticides used in agricultural areas become airborne and may be transported into the urban area. Confirmation of this drift is difficult, however, because these three predominant pesticides, as well as other detected pesticides, also are heavily used in the urban environment. The spring data clearly show that molinate and thiobencarb, two herbicides used only in rice production, do drift into the urban environment.

  14. Best management practices to reduce and prevent water pollution with herbicides from run-off and erosion

    Directory of Open Access Journals (Sweden)

    Gehring, Klaus

    2014-02-01

    Full Text Available The natural phenomenon of run-off and erosion lead to unpreventable pesticide water pollution in case of extreme weather conditions. In this relationship the use of herbicides involves a higher risk than other pesticides because of the specific terms of application. Directive 2009/128/EC for the sustainable use of pesticides aspires to enhanced water protection. German national action plan contains quantitative objectives which require strong reduction of water pollution by run-off and erosion of pesticides and accordingly herbicides. The European TOPPS prowadis project developed a consolidated and basic diagnosis concept for the first time to determine the field specific run-off risk. Compatible mitigation measures were linked to specific risk scenarios. Risk diagnosis and suitable mitigation measures determine best management practices for the prevention of run-off and erosion. Different new diagnosis methods and the implementation are presented. Further documents and information are available on the web [http://www.topps-life.org/].

  15. Trends in pesticide use on soybean, corn and cotton since the introduction of major genetically modified crops in the United States

    Science.gov (United States)

    Coupe, Richard H.; Capel, Paul D.

    2016-01-01

    BACKGROUNDGenetically modified (GM) varieties of soybean, corn and cotton have largely replaced conventional varieties in the United States. The most widely used applications of GM technology have been the development of crops that are resistant to a specific broad-spectrum herbicide (primarily glyphosate) or that produce insecticidal compounds within the plant itself. With the widespread adoption of GM crops, a decline in the use of conventional pesticides was expected.RESULTSThere has been a reduction in the annual herbicide application rate to corn since the advent of GM crops, but the herbicide application rate is mostly unchanged for cotton. Herbicide use on soybean has increased. There has been a substantial reduction in the amount of insecticides used on both corn and cotton since the introduction of GM crops.CONCLUSIONSThe observed changes in pesticide use are likely to be the result of many factors, including the introduction of GM crops, regulatory restrictions on some conventional pesticides, introduction of new pesticide technologies and changes in farming practices. In order to help protect human and environmental health and to help agriculture plan for the future, more detailed and complete documentation on pesticide use is needed on a frequent and ongoing basis.

  16. Several Pesticides Influence the Nutritional Content of Sweet Corn.

    Science.gov (United States)

    Cutulle, Matthew A; Armel, Gregory R; Kopsell, Dean A; Wilson, Henry P; Brosnan, James T; Vargas, Jose J; Hines, Thomas E; Koepke-Hill, Rebecca M

    2018-03-28

    Herbicides are pesticides used to eradicate unwanted plants in both crop and non-crop environments. These chemistries are toxic to weeds due to inhibition of key enzymes or disruption of essential biochemical processes required for weedy plants to survive. Crops can survive systemic herbicidal applications through various forms of detoxification, including metabolism that can be enhanced by safeners. Field studies were conducted near Louisville, Tennessee and Painter, Virginia to determine how the herbicides mesotrione, topramezone, nicosulfuron, and atrazine applied with or without the safener isoxadifen-ethyl would impact the nutritional quality of "Incredible" sweet corn ( Zea mays L. var. rugosa). Several herbicide treatments increased the uptake of the mineral elements phosphorus, magnesium, and manganese by 8-75%. All herbicide treatments increased protein content by 4-12%. Applied alone, nicosulfuron produced similar levels of saturated, monounsaturated, and polyunsaturated fatty acids when compared to the nontreated check, but when applied with isoxadifen-ethyl, fatty acids increased 8 to 44% relative to the check or control. Nicosulfuron plus isoxadifen-ethyl or topramezone or the combination of all three actives increased the concentrations of fructose and glucose (40-68%), whereas reducing levels of maltose or sucrose when compared to the nontreated check (-15 to -21%). Disruptions in biochemical pathways in plants due to the application of herbicides, safeners, or other pesticides have the potential to alter the nutrient quality, taste, and overall plant health associated with edible crops.

  17. The behaviour of 39 pesticides in surface waters as a function of scale

    Science.gov (United States)

    Capel, P.D.; Larson, S.J.; Winterstein, T.A.

    2001-01-01

    A portion of applied pesticides runs off agricultural fields and is transported through surface waters. In this study, the behaviour of 39 pesticides is examined as a function of scale across 14 orders of magnitude from the field to the ocean. Data on pesticide loads in streams from two US Geological Survey programs were combined with literature data from field and watershed studies. The annual load as percent of use (LAPU) was quantified for each of the fields and watersheds and was used as the normalization factor across watersheds and compounds. The in-stream losses of each pesticide were estimated for a model stream with a 15 day travel time (similar in characteristics to the upper Mississippi River). These estimated in-stream losses agreed well with the observed changes in apparent LAPU values as a function of watershed area. In general, herbicides applied to the soil surface had the greatest LAPU values and minimal in-stream losses. Soil-incorporated herbicides had smaller LAPU values and substantial in-stream losses. Insecticides generally had LAPU values similar to the incorporated herbicides, but had more variation in their in-stream losses. On the basis of the LAPU values of the 39 pesticides as a function of watershed area, a generalized conceptual model of the movement of pesticides from the field to the ocean is suggested. The importance of considering both field runoff and in-stream losses is discussed in relation to interpreting monitoring data and making regulatory decisions.

  18. Occurrence and spatial-temporal distribution of herbicide residues in the Ipojuca River sub-basin, Pernambuco, Brazil

    Directory of Open Access Journals (Sweden)

    Adson da S. G. Ferreira

    Full Text Available ABSTRACT The intensive use of pesticides to control pests in agriculture has exposed the environment and humans to a variety of risks. Among the crops with higher consumption of these compounds there is the sugarcane, developed in regions bordered by large watersheds. In this work, the occurrence of pesticides in the water of Ipojuca River was investigated in a 50 km range of its eastern portion, in a region noted for intense agroindustrial activity, especially by sugarcane cultivation, in the state of Pernambuco. Among fungicides, herbicides, insecticides and carbamates, 238 pesticides were investigated in the Ipojuca River using the technique of liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS. The study, conducted in the months of May, June, October and November 2012, detected the presence of Diuron and Ametryn herbicide residues in 100% of the water samples at concentrations from 0.01 to 1.4 μg L-1. The detection of these herbicides, even at residual concentrations, can lead to perceptible ecological changes in the long term, such as the reduction of the biological potential of animal and plant species.

  19. Comparison of three pesticide fate models for two herbicides leaching under field conditions in a maize cropping system

    Science.gov (United States)

    Marin-Benito, Jesus Maria; Pot, Valérie; Alletto, Lionel; Mamy, Laure; Bedos, Carole; van den Berg, Erik; Barriuso, Enrique; Benoit, Pierre

    2014-05-01

    Losses of pesticides from agricultural soils may influence the quality of groundwater. Therefore, numerous models were developed to assess the transfer of pesticides from the soil surface to groundwater after their application to an agricultural field. Our objective was thus to compare the ability of three pesticide fate models to describe the behavior of water, and S-metolachlor (SMOC) and mesotrione (MES) herbicides as observed under field conditions in a maize monoculture system. Simulations were based on field experimentations set up in Toulouse area (France). The tested scenario focused on a conventional maize monoculture and included two irrigated cropping periods with a fallow period managed with bare soil. SMOC was sprayed annually at 1.25 and 1.52 kg a.i./ha in 2011 and 2012, respectively, while MES was only applied in 2012 but twice, at 0.150 kg a.i./ha. Simulations were performed with the PRZM, PEARL and MACRO models parameterized with field, laboratory, and literature data, and pedotransfer functions. The results of simulations were compared with soil tension, water content and percolation data monitored at different depths in 2011-2012. The comparison of the results obtained by the three models indicated that PRZM was not able to simulate properly the water dynamic in the soil profile and for example, it predicted that microporosity was always saturated at 1 m-depth. On the contrary, PEARL and MACRO simulated quite well the observed water behavior (water pressure head and volumetric water content) at 20 and 50 cm-depth during the irrigated cropping period of 2012. However, simulated soil moisture and water pressure were overestimated before the rainfall event of 20 May 2012. MACRO and PEARL simulations generally showed similar water flow dynamics for the whole period at the three depths. Neither the dynamic nor the total amount of percolated water was correctly simulated by any model. The three models overestimated the total water volume leached at 1 m

  20. Phytotoxicity of Four Photosystem II Herbicides to Tropical Seagrasses

    Science.gov (United States)

    Flores, Florita; Collier, Catherine J.; Mercurio, Philip; Negri, Andrew P.

    2013-01-01

    Coastal waters of the Great Barrier Reef (GBR) are contaminated with agricultural pesticides, including the photosystem II (PSII) herbicides which are the most frequently detected at the highest concentrations. Designed to control weeds, these herbicides are equally potent towards non-target marine species, and the close proximity of seagrass meadows to flood plumes has raised concerns that seagrasses may be the species most threatened by herbicides from runoff. While previous work has identified effects of PSII herbicides on the photophysiology, growth and mortality in seagrass, there is little comparative quantitative toxicity data for seagrass. Here we applied standard ecotoxicology protocols to quantify the concentrations of four priority PSII herbicides that inhibit photochemistry by 10, 20 and 50% (IC10, IC20 and IC50) over 72 h in two common seagrass species from the GBR lagoon. The photosystems of seagrasses Zostera muelleri and Halodule uninervis were shown to be generally more sensitive to the PSII herbicides Diuron, Atrazine, Hexazinone and Tebuthiuron than corals and tropical microalgae. The herbicides caused rapid inhibition of effective quantum yield (∆F/F m ′), indicating reduced photosynthesis and maximum effective yields (Fv/Fm) corresponding to chronic damage to PSII. The PSII herbicide concentrations which affected photosynthesis have been exceeded in the GBR lagoon and all of the herbicides inhibited photosynthesis at concentrations lower than current marine park guidelines. There is a strong likelihood that the impacts of light limitation from flood plumes and reduced photosynthesis from PSII herbicides exported in the same waters would combine to affect seagrass productivity. Given that PSII herbicides have been demonstrated to affect seagrass at environmental concentrations, we suggest that revision of environmental guidelines and further efforts to reduce PSII herbicide concentrations in floodwaters may both help protect seagrass meadows

  1. Phytotoxicity of four photosystem II herbicides to tropical seagrasses.

    Science.gov (United States)

    Flores, Florita; Collier, Catherine J; Mercurio, Philip; Negri, Andrew P

    2013-01-01

    Coastal waters of the Great Barrier Reef (GBR) are contaminated with agricultural pesticides, including the photosystem II (PSII) herbicides which are the most frequently detected at the highest concentrations. Designed to control weeds, these herbicides are equally potent towards non-target marine species, and the close proximity of seagrass meadows to flood plumes has raised concerns that seagrasses may be the species most threatened by herbicides from runoff. While previous work has identified effects of PSII herbicides on the photophysiology, growth and mortality in seagrass, there is little comparative quantitative toxicity data for seagrass. Here we applied standard ecotoxicology protocols to quantify the concentrations of four priority PSII herbicides that inhibit photochemistry by 10, 20 and 50% (IC10, IC20 and IC50) over 72 h in two common seagrass species from the GBR lagoon. The photosystems of seagrasses Zosteramuelleri and Haloduleuninervis were shown to be generally more sensitive to the PSII herbicides Diuron, Atrazine, Hexazinone and Tebuthiuron than corals and tropical microalgae. The herbicides caused rapid inhibition of effective quantum yield (∆F/F m '), indicating reduced photosynthesis and maximum effective yields (Fv/Fm ) corresponding to chronic damage to PSII. The PSII herbicide concentrations which affected photosynthesis have been exceeded in the GBR lagoon and all of the herbicides inhibited photosynthesis at concentrations lower than current marine park guidelines. There is a strong likelihood that the impacts of light limitation from flood plumes and reduced photosynthesis from PSII herbicides exported in the same waters would combine to affect seagrass productivity. Given that PSII herbicides have been demonstrated to affect seagrass at environmental concentrations, we suggest that revision of environmental guidelines and further efforts to reduce PSII herbicide concentrations in floodwaters may both help protect seagrass meadows of

  2. Phytotoxicity of four photosystem II herbicides to tropical seagrasses.

    Directory of Open Access Journals (Sweden)

    Florita Flores

    Full Text Available Coastal waters of the Great Barrier Reef (GBR are contaminated with agricultural pesticides, including the photosystem II (PSII herbicides which are the most frequently detected at the highest concentrations. Designed to control weeds, these herbicides are equally potent towards non-target marine species, and the close proximity of seagrass meadows to flood plumes has raised concerns that seagrasses may be the species most threatened by herbicides from runoff. While previous work has identified effects of PSII herbicides on the photophysiology, growth and mortality in seagrass, there is little comparative quantitative toxicity data for seagrass. Here we applied standard ecotoxicology protocols to quantify the concentrations of four priority PSII herbicides that inhibit photochemistry by 10, 20 and 50% (IC10, IC20 and IC50 over 72 h in two common seagrass species from the GBR lagoon. The photosystems of seagrasses Zosteramuelleri and Haloduleuninervis were shown to be generally more sensitive to the PSII herbicides Diuron, Atrazine, Hexazinone and Tebuthiuron than corals and tropical microalgae. The herbicides caused rapid inhibition of effective quantum yield (∆F/F m ', indicating reduced photosynthesis and maximum effective yields (Fv/Fm corresponding to chronic damage to PSII. The PSII herbicide concentrations which affected photosynthesis have been exceeded in the GBR lagoon and all of the herbicides inhibited photosynthesis at concentrations lower than current marine park guidelines. There is a strong likelihood that the impacts of light limitation from flood plumes and reduced photosynthesis from PSII herbicides exported in the same waters would combine to affect seagrass productivity. Given that PSII herbicides have been demonstrated to affect seagrass at environmental concentrations, we suggest that revision of environmental guidelines and further efforts to reduce PSII herbicide concentrations in floodwaters may both help protect

  3. Assessing the extent and effects of herbicide drift into Danish hedgerows

    DEFF Research Database (Denmark)

    Pedersen, Marianne Bruus; Andersen, H. V.; Strandberg, M. T.

    Very low dosages of herbicides are known to cause effects on bird cherry (Prunus avium) and hawthorn (Crataegus monogyna). It is not yet known whether other hedgerow trees and shrubs are equally sensitive to herbicide drift, to which extent spray drift into hedges and other habitats close to fiel...... were assessed. Metsulfuron methyl effects on Sambucus nigra (elder) and Sorbus intermedia were studied in separate experiments and will include second year effects. Methods and preliminary results are presented and discussed in relation to pesticide regulation....

  4. Sources, occurrence and predicted aquatic impact of legacy and contemporary pesticides in streams

    DEFF Research Database (Denmark)

    McKnight, Ursula S.; Rasmussen, Jes J.; Kronvang, Brian

    2015-01-01

    , in addition to precipitation and surface runoff, is an important source of pesticides (particularly legacy herbicides) entering surface water. In addition to current-use active ingredients, legacy pesticides, metabolites and impurities are important for explaining the estimated total toxicity attributable...

  5. Changes in the persistence of two phenylurea herbicides in two Mediterranean soils under irrigation with low- and high-quality water: A laboratory approach.

    Science.gov (United States)

    ElGouzi, Siham; Draoui, Khalid; Chtoun, E H; Dolores Mingorance, M; Peña, Aránzazu

    2015-12-15

    The disappearance of two phenylurea herbicides, chlorotoluron (CHL) and isoproturon (IPU), in two Mediterranean soils, an agricultural calcareous soil (S5) and an organic forest soil (S2), was assessed under irrigation with high- and low-quality water. Irrigation with wastewater, as opposed to irrigation with high-quality water, increased the degradation rate of both herbicides in both soils. For each soil, the decay rate of IPU was always higher than that of CHL, and both pesticides disappeared more rapidly from S5 with lower clay and organic carbon content than from S2. The degradation rate was inversely related with pesticide sorption on soil, because increased sorption would reduce pesticide bioavailability for decomposition. In most cases the residual concentration in soil of both phenylurea herbicides was better fitted to a bi-exponential decay model than to first-order or first-order with plateau models. Dehydrogenase activity, used as an indication of microbial activity, was very high in S2 in comparison with S5, but was not related to pesticide disappearance. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Dissolved pesticide concentrations entering the Sacramento-San Joaquin Delta from the Sacramento and San Joaquin Rivers, California, 2012-13

    Science.gov (United States)

    Orlando, James L.; McWayne, Megan; Sanders, Corey; Hladik, Michelle

    2014-01-01

    Surface-water samples were collected from the Sacramento and San Joaquin Rivers where they enter the Sacramento–San Joaquin Delta, and analyzed by the U.S. Geological Survey for a suite of 99 current-use pesticides and pesticide degradates. Samples were collected twice per month from May 2012 through July 2013 and from May 2012 through April 2013 at the Sacramento River at Freeport, and the San Joaquin River near Vernalis, respectively. Samples were analyzed by two separate laboratory methods by using gas chromatography with mass spectrometry or liquid chromatography with tandem mass spectrometry. Method detection limits ranged from 0.9 to 10.5 nanograms per liter (ng/L). A total of 37 pesticides and degradates were detected in water samples collected during the study (18 herbicides, 11 fungicides, 7 insecticides, and 1 synergist). The most frequently detected pesticides overall were the herbicide hexazinone (detected in 100 percent of the samples); 3,4-dichloroaniline (97 percent), which is a degradate of the herbicides diuron and propanil; the fungicide azoxystrobin (83 percent); and the herbicides diuron (72 percent), simazine (66 percent), and metolachlor (64 percent). Insecticides were rarely detected during the study. Pesticide concentrations varied from below the method detection limits to 984 ng/L (hexazinone). Twenty seven pesticides and (or) degradates were detected in Sacramento River samples, and the average number of pesticides per sample was six. The most frequently detected compounds in these samples were hexazinone (detected in 100 percent of samples), 3,4-dichloroaniline (97 percent), azoxystrobin (88 percent), diuron (56 percent), and simazine (50 percent). Pesticides with the highest detected maximum concentrations in Sacramento River samples included the herbicide clomazone (670 ng/L), azoxystrobin (368 ng/L), 3,4-dichloroaniline (364 ng/L), hexazinone (130 ng/L), and propanil (110 ng/L), and all but hexazinone are primarily associated with

  7. Sources, occurrence and predicted aquatic impact of legacy and contemporary pesticides in streams

    International Nuclear Information System (INIS)

    McKnight, Ursula S.; Rasmussen, Jes J.; Kronvang, Brian; Binning, Philip J.; Bjerg, Poul L.

    2015-01-01

    We couple current findings of pesticides in surface and groundwater to the history of pesticide usage, focusing on the potential contribution of legacy pesticides to the predicted ecotoxicological impact on benthic macroinvertebrates in headwater streams. Results suggest that groundwater, in addition to precipitation and surface runoff, is an important source of pesticides (particularly legacy herbicides) entering surface water. In addition to current-use active ingredients, legacy pesticides, metabolites and impurities are important for explaining the estimated total toxicity attributable to pesticides. Sediment-bound insecticides were identified as the primary source for predicted ecotoxicity. Our results support recent studies indicating that highly sorbing chemicals contribute and even drive impacts on aquatic ecosystems. They further indicate that groundwater contaminated by legacy and contemporary pesticides may impact adjoining streams. Stream observations of soluble and sediment-bound pesticides are valuable for understanding the long-term fate of pesticides in aquifers, and should be included in stream monitoring programs. - Highlights: • Findings comprised a range of contemporary and banned legacy pesticides in streams. • Groundwater is a significant pathway for some herbicides entering streams. • Legacy pesticides increased predicted aquatic toxicity by four orders of magnitude. • Sediment-bound insecticides were identified as the primary source for ecotoxicity. • Stream monitoring programs should include legacy pesticides to assess impacts. - Legacy pesticides, particularly sediment-bound insecticides were identified as the primary source for predicted ecotoxicity impacting benthic macroinvertebrates in headwater streams

  8. Major Pesticides Are More Toxic to Human Cells Than Their Declared Active Principles

    Directory of Open Access Journals (Sweden)

    Robin Mesnage

    2014-01-01

    Full Text Available Pesticides are used throughout the world as mixtures called formulations. They contain adjuvants, which are often kept confidential and are called inerts by the manufacturing companies, plus a declared active principle, which is usually tested alone. We tested the toxicity of 9 pesticides, comparing active principles and their formulations, on three human cell lines (HepG2, HEK293, and JEG3. Glyphosate, isoproturon, fluroxypyr, pirimicarb, imidacloprid, acetamiprid, tebuconazole, epoxiconazole, and prochloraz constitute, respectively, the active principles of 3 major herbicides, 3 insecticides, and 3 fungicides. We measured mitochondrial activities, membrane degradations, and caspases 3/7 activities. Fungicides were the most toxic from concentrations 300–600 times lower than agricultural dilutions, followed by herbicides and then insecticides, with very similar profiles in all cell types. Despite its relatively benign reputation, Roundup was among the most toxic herbicides and insecticides tested. Most importantly, 8 formulations out of 9 were up to one thousand times more toxic than their active principles. Our results challenge the relevance of the acceptable daily intake for pesticides because this norm is calculated from the toxicity of the active principle alone. Chronic tests on pesticides may not reflect relevant environmental exposures if only one ingredient of these mixtures is tested alone.

  9. Major Pesticides Are More Toxic to Human Cells Than Their Declared Active Principles

    Science.gov (United States)

    Spiroux de Vendômois, Joël; Séralini, Gilles-Eric

    2014-01-01

    Pesticides are used throughout the world as mixtures called formulations. They contain adjuvants, which are often kept confidential and are called inerts by the manufacturing companies, plus a declared active principle, which is usually tested alone. We tested the toxicity of 9 pesticides, comparing active principles and their formulations, on three human cell lines (HepG2, HEK293, and JEG3). Glyphosate, isoproturon, fluroxypyr, pirimicarb, imidacloprid, acetamiprid, tebuconazole, epoxiconazole, and prochloraz constitute, respectively, the active principles of 3 major herbicides, 3 insecticides, and 3 fungicides. We measured mitochondrial activities, membrane degradations, and caspases 3/7 activities. Fungicides were the most toxic from concentrations 300–600 times lower than agricultural dilutions, followed by herbicides and then insecticides, with very similar profiles in all cell types. Despite its relatively benign reputation, Roundup was among the most toxic herbicides and insecticides tested. Most importantly, 8 formulations out of 9 were up to one thousand times more toxic than their active principles. Our results challenge the relevance of the acceptable daily intake for pesticides because this norm is calculated from the toxicity of the active principle alone. Chronic tests on pesticides may not reflect relevant environmental exposures if only one ingredient of these mixtures is tested alone. PMID:24719846

  10. Non-Hodgkin Lymphoma and Occupational Exposure to Agricultural Pesticide Chemical Groups and Active Ingredients: A Systematic Review and Meta-Analysis

    Directory of Open Access Journals (Sweden)

    Leah Schinasi

    2014-04-01

    Full Text Available This paper describes results from a systematic review and a series of meta-analyses of nearly three decades worth of epidemiologic research on the relationship between non-Hodgkin lymphoma (NHL and occupational exposure to agricultural pesticide active ingredients and chemical groups. Estimates of associations of NHL with 21 pesticide chemical groups and 80 active ingredients were extracted from 44 papers, all of which reported results from analyses of studies conducted in high-income countries. Random effects meta-analyses showed that phenoxy herbicides, carbamate insecticides, organophosphorus insecticides and the active ingredient lindane, an organochlorine insecticide, were positively associated with NHL. In a handful of papers, associations between pesticides and NHL subtypes were reported; B cell lymphoma was positively associated with phenoxy herbicides and the organophosphorus herbicide glyphosate. Diffuse large B-cell lymphoma was positively associated with phenoxy herbicide exposure. Despite compelling evidence that NHL is associated with certain chemicals, this review indicates the need for investigations of a larger variety of pesticides in more geographic areas, especially in low- and middle-income countries, which, despite producing a large portion of the world’s agriculture, were missing in the literature that were reviewed.

  11. Formulants of glyphosate-based herbicides have more deleterious impact than glyphosate on TM4 Sertoli cells.

    Science.gov (United States)

    Vanlaeys, Alison; Dubuisson, Florine; Seralini, Gilles-Eric; Travert, Carine

    2018-05-15

    Roundup and Glyphogan are glyphosate-based herbicides containing the same concentration of glyphosate and confidential formulants. Formulants are declared as inert diluents but some are more toxic than glyphosate, such as the family of polyethoxylated alkylamines (POEA). We tested glyphosate alone, glyphosate-based herbicide formulations and POEA on the immature mouse Sertoli cell line (TM4), at concentrations ranging from environmental to agricultural-use levels. Our results show that formulations of glyphosate-based herbicides induce TM4 mitochondrial dysfunction (like glyphosate, but to a lesser extent), disruption of cell detoxification systems, lipid droplet accumulation and mortality at sub-agricultural doses. Formulants, especially those present in Glyphogan, are more deleterious than glyphosate and thus should be considered as active principles of these pesticides. Lipid droplet accumulation after acute exposure to POEA suggests the rapid penetration and accumulation of formulants, leading to mortality after 24 h. As Sertoli cells are essential for testicular development and normal onset of spermatogenesis, disturbance of their function by glyphosate-based herbicides could contribute to disruption of reproductive function demonstrated in mammals exposed to these pesticides at a prepubertal stage of development. Copyright © 2017. Published by Elsevier Ltd.

  12. Effect of Butachlor Herbicide on Earthworm Eisenia fetidaIts Histological Perspicuity

    International Nuclear Information System (INIS)

    Gobi, M.; Gunasekaran, P.

    2010-01-01

    With the advent of the Green Revolution, there has been a quantum leap in the use of synthetic herbicides and pesticides throughout the world to sustain high yielding crop varieties. Continuous use of these synthetic chemicals leads to loss of soil fertility and soil organisms. To explore the effect of exposure to commercial herbicide (Butachlor) on the life history parameters (biomass, clitellum development, and cocoon production) and the histological changes in the earthworm Eisenia fetida over 60 days, the dried cow dung was contaminated with 0.2575 mg/ kg -1 , 0.5150 mg/ kg -1 , and 2.5750 mg/ kg -1 of butachlor based on the LC 50 value, and a control was maintained. The mean earthworm biomass was found to be decreased with increasing herbicide concentration. Similarly, cocoon production was also reduced by the increasing herbicide concentration. A possible explanation is an increased demand for energy, needed for the regulation and detoxification of herbicide. All earthworms in the exposed group were found to have glandular cell enlargement and to be vacuolated

  13. Effect of Butachlor Herbicide on Earthworm Eisenia fetida—Its Histological Perspicuity

    Directory of Open Access Journals (Sweden)

    Muthukaruppan Gobi

    2010-01-01

    Full Text Available With the advent of the Green Revolution, there has been a quantum leap in the use of synthetic herbicides and pesticides throughout the world to sustain high yielding crop varieties. Continuous use of these synthetic chemicals leads to loss of soil fertility and soil organisms. To explore the effect of exposure to commercial herbicide (Butachlor on the life history parameters (biomass, clitellum development, and cocoon production and the histological changes in the earthworm Eisenia fetida over 60 days, the dried cow dung was contaminated with 0.2575 mg kg−1, 0.5150 mg kg−1, and 2.5750 mg kg−1 of butachlor based on the LC50 value, and a control was maintained. The mean earthworm biomass was found to be decreased with increasing herbicide concentration. Similarly, cocoon production was also reduced by the increasing herbicide concentration. A possible explanation is an increased demand for energy, needed for the regulation and detoxification of herbicide. All earthworms in the exposed group were found to have glandular cell enlargement and to be vacuolated.

  14. Herbicide-resistant weed management: focus on glyphosate.

    Science.gov (United States)

    Beckie, Hugh J

    2011-09-01

    This review focuses on proactive and reactive management of glyphosate-resistant (GR) weeds. Glyphosate resistance in weeds has evolved under recurrent glyphosate usage, with little or no diversity in weed management practices. The main herbicide strategy for proactively or reactively managing GR weeds is to supplement glyphosate with herbicides of alternative modes of action and with soil-residual activity. These herbicides can be applied in sequences or mixtures. Proactive or reactive GR weed management can be aided by crop cultivars with alternative single or stacked herbicide-resistance traits, which will become increasingly available to growers in the future. Many growers with GR weeds continue to use glyphosate because of its economical broad-spectrum weed control. Government farm policies, pesticide regulatory policies and industry actions should encourage growers to adopt a more proactive approach to GR weed management by providing the best information and training on management practices, information on the benefits of proactive management and voluntary incentives, as appropriate. Results from recent surveys in the United States indicate that such a change in grower attitudes may be occurring because of enhanced awareness of the benefits of proactive management and the relative cost of the reactive management of GR weeds. Copyright © 2011 Society of Chemical Industry.

  15. Pesticides in Brazilian freshwaters: a critical review.

    Science.gov (United States)

    Albuquerque, A F; Ribeiro, J S; Kummrow, F; Nogueira, A J A; Montagner, C C; Umbuzeiro, G A

    2016-07-13

    The widespread use of pesticides in agriculture can lead to water contamination and cause adverse effects on non-target organisms. Brazil has been the world's top pesticide market consumer since 2008, with 381 approved pesticides for crop use. This study provides a comprehensive literature review on the occurrence of pesticide residues in Brazilian freshwaters. We searched for information in official agency records and peer-reviewed scientific literature. Risk quotients were calculated to assess the potential risk posed to aquatic life by the individual pesticides based on their levels of water contamination. Studies about the occurrence of pesticides in freshwaters in Brazil are scarce and concentrated in few sampling sites in 5 of the 27 states. Herbicides (21) accounted for the majority of the substances investigated, followed by fungicides (11), insecticides (10) and plant growth regulators (1). Insecticides are the class of major concern. Brazil would benefit from the implementation of a nationwide pesticide freshwater monitoring program to support preventive, remediation and enforcement actions.

  16. Pesticides in groundwater in the Anacostia River and Rock Creek watersheds in Washington, D.C., 2005 and 2008

    Science.gov (United States)

    Koterba, Michael T.; Dieter, Cheryl A.; Miller, Cherie V.

    2010-01-01

    The U.S. Geological Survey (USGS), in cooperation with the District Department of the Environment, conducted a groundwater-quality investigation to (a) determine the presence, concentrations, and distribution of selected pesticides in groundwater, and (b) assess the presence of pesticides in groundwater in relation to selected landscape, hydrogeologic, and groundwater-quality characteristics in the shallow groundwater underlying the Anacostia River and Rock Creek watersheds in Washington, D.C. With one exception, well depths were 100 feet or less below land surface. The USGS obtained or compiled ancillary data and information on land use (2001), subsurface sediments, and groundwater samples from 17 wells in the lower Anacostia River watershed from September through December 2005, and from 14 wells in the lower Anacostia River and lower Rock Creek watersheds from August through September 2008. Twenty-seven pesticide compounds, reflecting at least 19 different types of pesticides, were detected in the groundwater samples obtained in 2005 and 2008. No fungicides were detected. In relation to the pesticides detected, degradate compounds were as or more likely to be detected than applied (parent) compounds. The detected pesticides chiefly reflected herbicides commonly used in urban settings for non-specific weed control or insecticides used for nonspecific haustellate insects (insects with specialized mouthparts for sucking liquid) or termite-specific control. Detected pesticides included a combination of pesticides currently (2008) in use, banned or under highly restricted use, and some that had replaced the banned or restricted-use pesticides. The presence of banned and restricted-use pesticides illustrates their continued persistence and resistance to complete degradation in the environment. The presence of the replacement pesticides indicates the susceptibility of the surficial aquifer to contamination irrespective of the changes in the pesticides used. A

  17. Concentrations and loads of suspended sediment-associated pesticides in the San Joaquin River, California and tributaries during storm events

    Science.gov (United States)

    Hladik, M.L.; Domagalski, Joseph L.; Kuivila, K.M.

    2009-01-01

    Current-use pesticides associated with suspended sediments were measured in the San Joaquin River, California and its tributaries during two storm events in 2008. Nineteen pesticides were detected: eight herbicides, nine insecticides, one fungicide and one insecticide synergist. Concentrations for the herbicides (0.1 to 3000 ng/g; median of 6.1 ng/g) were generally greater than those for the insecticides (0.2 to 51 ng/g; median of 1.5 ng/g). Concentrations in the tributaries were usually greater than in the mainstem San Joaquin River and the west side tributaries were higher than the east side tributaries. Estimated instantaneous loads ranged from 1.3 to 320 g/day for herbicides and 0.03 to 53 g/day for insecticides. The greatest instantaneous loads came from the Merced River on the east side. Instantaneous loads were greater for the first storm of 2008 than the second storm in the tributaries while the instantaneous loads within the San Joaquin River were greater during the second storm. Pesticide detections generally reflected pesticide application, but other factors such as physical-chemical properties and timing of application were also important to pesticide loads.

  18. The legacy of pesticide pollution: An overlooked factor in current risk assessments of freshwater systems

    DEFF Research Database (Denmark)

    Rasmussen, Jes Jessen; Wiberg-Larsen, Peter; Baattrup-Pedersen, Annette

    2015-01-01

    We revealed a history of legacy pesticides in water and sediment samples from 19 small streams across an agricultural landscape. Dominant legacy compounds included organochlorine pesticides, such as DDT and lindane, the organophosphate chlorpyrifos and triazine herbicides such as terbutylazine...

  19. Comparison of questionnaire-based estimation of pesticide residue intake from fruits and vegetables with urinary concentrations of pesticide biomarkers.

    Science.gov (United States)

    Chiu, Yu-Han; Williams, Paige L; Mínguez-Alarcón, Lidia; Gillman, Matthew; Sun, Qi; Ospina, Maria; Calafat, Antonia M; Hauser, Russ; Chavarro, Jorge E

    2018-01-01

    We developed a pesticide residue burden score (PRBS) based on a food frequency questionnaire and surveillance data on food pesticide residues to characterize dietary exposure over the past year. In the present study, we evaluated the association of the PRBS with urinary concentrations of pesticide biomarkers. Fruit and vegetable (FV) intake was classified as having high (PRBS≥4) or low (PRBSEARTH study. Two urine samples per man were analyzed for seven biomarkers of organophosphate and pyrethroid insecticides, and the herbicide 2,4-dichlorophenoxyacetic acid. We used generalized estimating equations to analyze the association of the PRBS with urinary concentrations of pesticide biomarkers. Urinary concentrations of pesticide biomarkers were positively related to high pesticide FV intake but inversely related to low pesticide FV intake. The molar sum of urinary concentrations of pesticide biomarkers was 21% (95% confidence interval (CI): 2%, 44%) higher for each one serving/day increase in high pesticide FV intake, and 10% (95% CI: 1%, 18%) lower for each one serving/day increase in low pesticide FV intake. Furthermore, intake of high pesticide FVs positively related to most individual urinary biomarkers. Our findings support the usefulness of the PRBS approach to characterize dietary exposure to select pesticides.

  20. SOIL WASHING TREATABILITY TESTS FOR PESTICIDE- CONTAMINATED SOIL

    Science.gov (United States)

    The 1987 Sand Creek Operable Unit 5 record of decision (ROD) identified soil washing as the selected technology to remediate soils contaminated with high levels of organochlorine pesticides, herbicides, and metals. Initial treatability tests conducted to assess the applicability...

  1. Herbicide contamination in carrot grown in punjab, pakistan

    International Nuclear Information System (INIS)

    Amjad, M.; Ahmad, T.; Jahangir, M.M.

    2013-01-01

    Food safety and security is a burning issue of the time whereas vegetable production is an important aspect of agriculture. Use of herbicides for vegetable production is very common in Pakistan but no proper procedure has been planned to keep optimal level of doses of herbicide under permissible limit. To estimate the pesticide residues, samples from the leading carrot producing sites were collected along with the samples from the market. The samples were processed using standard procedures and qualitative and quantitative analysis was performed by Gas Chromatography-Mass Spectrometry (GC-MS). It was concluded that all the samples were contaminated with S-metolachlor in the range of 0.45 to 0.73 mg kg-1 which was above the permissible limit (0.40 mg kg-1). (author)

  2. Degradation of triketone herbicides, mesotrione and sulcotrione, using advanced oxidation processes

    International Nuclear Information System (INIS)

    Jović, Milica; Manojlović, Dragan; Stanković, Dalibor; Dojčinović, Biljana; Obradović, Bratislav; Gašić, Uroš; Roglić, Goran

    2013-01-01

    Highlights: • Thirteen products are identified during all degradations for both pesticides. • In all degradations same products and mechanism was observed for both pesticides. • Dominant mechanism for all degradations starts with attack on the carbonyl group. • Only in ozone and DBD degradation one product is formed in radical reaction. • Only in Fenton degradation opening of benzene ring occurs. -- Abstract: Degradation of two triketone herbicides, mesotrione and sulcotrione, was studied using four different advanced oxidation processes (AOPs): ozonization, dielectric barrier discharge (DBD reactor), photocatalysis and Fenton reagent, in order to find differences in mechanism of degradation. Degradation products were identified by high performance liquid chromatography (HPLC–DAD) and UHPLC–Orbitrap–MS analyses. A simple mechanism of degradation for different AOP was proposed. Thirteen products were identified during all degradations for both pesticides. It was assumed that the oxidation mechanisms in the all four technologies were not based only on the production and use of the hydroxyl radical, but they also included other kinds of oxidation mechanisms specific for each technology. Similarity was observed between degradation mechanism of ozonation and DBD. The greatest difference in the products was found in Fenton degradation which included the opening of benzene ring. When degraded with same AOP pesticides gave at the end of treatment the same products. Global toxicity and COD value of samples was determined after all degradations. Real water sample was used to study influence of organic matter on pesticide degradation. These results could lead to accurate estimates of the overall effects of triketone herbicides on environmental ecosystems and also contributed to the development of improved removal processes

  3. Desorption of SVOCs from Heated Surfaces in the Form of Ultrafine Particles

    DEFF Research Database (Denmark)

    Wallace, Lance A.; Ott, Wayne R.; Weschler, Charles J.

    2017-01-01

    of the accumulation rate of SVOCs on surfaces were similar to those in studies of organic film buildup on indoor windows. Transfer of skin oils by touching the glass or foil surfaces, or after washing the glass surface with detergent and bare hands, was also observed, with measured particle production comparable...

  4. Biochar soil additions impacts herbicide fate: Importance of application timing and feedstock species

    Science.gov (United States)

    BACKGROUND: Biochar (BC), solid biomass subjected to pyrolysis, can alter the fate of pesticides in soil. We investigated the effect of soil amendment with several biochars on the sorption, persistence, leaching and bioefficacy of the herbicides clomazone (CMZ) and bispyribac sodium (BYP). RESULTS:...

  5. Micro-flow-injection analysis (μFIA) immunoassay of herbicide residue 2,6-dichlorobenzamide

    DEFF Research Database (Denmark)

    Uthuppu, Basil; Heiskanen, Arto; Kofoed, Dan

    2015-01-01

    As a part of developing new systems for continuously monitoring the presence of pesticides in groundwater, a microfluidic amperometric immunosensor was developed for detecting the herbicide residue 2,6-dichlorobenzamide (BAM) in water. A competitive immunosorbent assay served as the sensing mecha...

  6. An identification of potential new herbicides for short rotation coppice (Task 4). Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This report summarises the findings of a project to identify potential new herbicides and their suitability for weed control in commercial short rotation coppice (SRC) crops, and to establish the safety of the crops. The arrangements for the use of 'off-label' pesticides, which are permitted for use on other crops, on SRC are discussed along with the importance of the use of laboratory pot trials and field trials. Several herbicides are proposed for larger scale field trials.

  7. Identification and ecotoxicity of degradation products of chloroacetamide herbicides from UV-treatment of water

    DEFF Research Database (Denmark)

    Souissi, Yasmine; Bouchonnet, Stéphane; Bourcier, Sophie

    2013-01-01

    The widespread occurrence of chlorinated herbicides and their degradation products in the aquatic environment raises health and environmental concerns. As a consequence pesticides, and to a lesser degree their degradation products, are monitored by authorities both in surface waters and drinking...... waters. In this study the formation of degradation products from ultraviolet (UV) treatment of the three chloroacetamide herbicides acetochlor, alachlor and metolachlor and their biological effects were investigated. UV treatment is mainly used for disinfection in water and wastewater treatments. First...

  8. Ecological risks of pesticides in freshwater ecosystems; Part 1: herbicides

    NARCIS (Netherlands)

    Brock, T.C.M.; Lahr, J.; Brink, van den P.J.

    2000-01-01

    A literature review of freshwater model ecosystem studies with herbicides was performed to assess the NOEC[sub]ecosystem for individual compounds, to compare these threshold levels with water quality standards, and to evaluate the ecological consequences of exceeding these standards. Studies were

  9. Occurrence, distribution, and transport of pesticides in agricultural irrigation-return flow from four drainage basins in the Columbia Basin Project, Washington, 2002-04, and comparison with historical data

    Science.gov (United States)

    Wagner, Richard J.; Frans, Lonna M.; Huffman, Raegan L.

    2006-01-01

    Water-quality samples were collected from sites in four irrigation return-flow drainage basins in the Columbia Basin Project from July 2002 through October 2004. Ten samples were collected throughout the irrigation season (generally April through October) and two samples were collected during the non-irrigation season. Samples were analyzed for temperature, pH, specific conductance, dissolved oxygen, major ions, trace elements, nutrients, and a suite of 107 pesticides and pesticide metabolites (pesticide transformation products) and to document the occurrence, distribution, and pesticides transport and pesticide metabolites. The four drainage basins vary in size from 19 to 710 square miles. Percentage of agricultural cropland ranges from about 35 percent in Crab Creek drainage basin to a maximum of 75 percent in Lind Coulee drainage basin. More than 95 percent of cropland in Red Rock Coulee, Crab Creek, and Sand Hollow drainage basins is irrigated, whereas only 30 percent of cropland in Lind Coulee is irrigated. Forty-two pesticides and five metabolites were detected in samples from the four irrigation return-flow drainage basins. The most compounds detected were in samples from Sand Hollow with 37, followed by Lind Coulee with 33, Red Rock Coulee with 30, and Crab Creek with 28. Herbicides were the most frequently detected pesticides, followed by insecticides, metabolites, and fungicides. Atrazine, bentazon, diuron, and 2,4-D were the most frequently detected herbicides and chlorpyrifos and azinphos-methyl were the most frequently detected insecticides. A statistical comparison of pesticide concentrations in surface-water samples collected in the mid-1990s at Crab Creek and Sand Hollow with those collected in this study showed a statistically significant increase in concentrations for diuron and a statistically significant decrease for ethoprophos and atrazine in Crab Creek. Statistically significant increases were in concentrations of bromacil, diuron, and

  10. Semivolatile organic compounds in indoor environments

    DEFF Research Database (Denmark)

    Weschler, Charles J.; Nazaroff, W.W.

    2008-01-01

    Semivolatile organic compounds (SVOCs) are ubiquitous in indoor environments, redistributing from their original sources to all indoor surfaces. Exposures resulting from their indoor presence contribute to detectable body burdens of diverse SVOCs, including pesticides, plasticizers, and flame ret...... remarkably well with levels measured in dermal hand wipes for SVOCs possessing a wide range of octanol-air partition coefficients....

  11. Metabolism of pesticides in experimental animals

    International Nuclear Information System (INIS)

    El-Mahdi, A.A.

    1993-01-01

    The chemistry of organo phosphate compounds was developed extensively by Michaelis, (1903) in Germany. During the second world war, when german authorities were searching for substances suitable for chemical warfare as nerve gases, the interest in organophosphorus compounds as pesticides had been initiated. organophosphorus pesticides including insecticides fungicides and herbicides have great medical and economic importance through their control of diseases and increase of production by the control of agricultural pests. - The organo chlorine pesticides involve the chlorinated ethane derivatives of which ddt is the best Known example. Such compounds have the disadvantage of being very persistent in the environment and tend to accumulate in the biological as well as non biological media (Goodman et al., 1980). They have a greater potential for chronic toxicity

  12. Agricultural Pesticides. An Instructional Unit for Teachers of Adult Vocational Education in Agriculture.

    Science.gov (United States)

    Harrison, Kenneth M.; Iverson, Maynard J.

    The proper use of agricultural pesticides is the major emphasis on the unit of instruction developed as a guide for use by teachers in planning and conducting young farmer and adult farmer classes. Seven lessons are included in the unit covering topical areas related to the utilization of pesticides, herbicides, insecticides, fungicides, and the…

  13. Effects of biotechnology on biodiversity: herbicide-tolerant and insect-resistant GM crops.

    Science.gov (United States)

    Ammann, Klaus

    2005-08-01

    Biodiversity is threatened by agriculture as a whole, and particularly also by traditional methods of agriculture. Knowledge-based agriculture, including GM crops, can reduce this threat in the future. The introduction of no-tillage practices, which are beneficial for soil fertility, has been encouraged by the rapid spread of herbicide-tolerant soybeans in the USA. The replacement of pesticides through Bt crops is advantageous for the non-target insect fauna in test-fields. The results of the British Farm Scale experiment are discussed. Biodiversity differences can mainly be referred to as differences in herbicide application management.

  14. New Technologies for Insect-Resistant and Herbicide-Tolerant Plants.

    Science.gov (United States)

    Lombardo, Luca; Coppola, Gerardo; Zelasco, Samanta

    2016-01-01

    The advent of modern molecular biology and recombinant DNA technology has resulted in a dramatic increase in the number of insect-resistant (IR) and herbicide-tolerant (HT) plant varieties, with great economic benefits for farmers. Nevertheless, the high selection pressure generated by control strategies for weed and insect populations has led to the evolution of herbicide and pesticide resistance. In the short term, the development of new techniques or the improvement of existing ones will provide further instruments to counter the appearance of resistant weeds and insects and to reduce the use of agrochemicals. In this review, we examine some of the most promising new technologies for developing IR and HT plants, such as genome editing and antisense technologies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Semi-automated solid phase extraction method for the mass spectrometric quantification of 12 specific metabolites of organophosphorus pesticides, synthetic pyrethroids, and select herbicides in human urine.

    Science.gov (United States)

    Davis, Mark D; Wade, Erin L; Restrepo, Paula R; Roman-Esteva, William; Bravo, Roberto; Kuklenyik, Peter; Calafat, Antonia M

    2013-06-15

    Organophosphate and pyrethroid insecticides and phenoxyacetic acid herbicides represent important classes of pesticides applied in commercial and residential settings. Interest in assessing the extent of human exposure to these pesticides exists because of their widespread use and their potential adverse health effects. An analytical method for measuring 12 biomarkers of several of these pesticides in urine has been developed. The target analytes were extracted from one milliliter of urine by a semi-automated solid phase extraction technique, separated from each other and from other urinary biomolecules by reversed-phase high performance liquid chromatography, and detected using tandem mass spectrometry with isotope dilution quantitation. This method can be used to measure all the target analytes in one injection with similar repeatability and detection limits of previous methods which required more than one injection. Each step of the procedure was optimized to produce a robust, reproducible, accurate, precise and efficient method. The required selectivity and sensitivity for trace-level analysis (e.g., limits of detection below 0.5ng/mL) was achieved using a narrow diameter analytical column, higher than unit mass resolution for certain analytes, and stable isotope labeled internal standards. The method was applied to the analysis of 55 samples collected from adult anonymous donors with no known exposure to the target pesticides. This efficient and cost-effective method is adequate to handle the large number of samples required for national biomonitoring surveys. Published by Elsevier B.V.

  16. Effects of the herbicides linuron and S-metolachlor on Perez's frog embryos.

    Science.gov (United States)

    Quintaneiro, Carla; Soares, Amadeu M V M; Monteiro, Marta S

    2018-03-01

    Presence of pesticides in the environment and their possible effects on aquatic organisms are of great concern worldwide. The extensive use of herbicides in agricultural areas are one of the factors contributing to the known decline of amphibian populations. Thus, as non-target species, amphibians can be exposed in early life stages to herbicides in aquatic systems. In this context, this study aims to evaluate effects of increasing concentrations of two maize herbicides, linuron and S-metolachlor on embryos of the Perez' frog (Pelophylax perezi) during 192 h. Apical endpoints were determined for each herbicide: mortality, hatching rate, malformations and length. Frog embryos presented a LC 50 of 21 mg/l linuron and 37.5 mg/l S-metolachlor. Furthermore, sub-lethal concentrations of both herbicides affected normal embryonic development, delaying hatching, decreasing larvae length and causing several malformations. Length of larvae decreased with increasing concentrations of each herbicide, even at the lower concentrations tested. Malformations observed in larvae exposed to both herbicides were oedemas, spinal curvature and deformation, blistering and microphtalmia. Overall, these results highlight the need to assess adverse effects of xenobiotics to early life stages of amphibians regarding beside mortality the embryonic development, which could result in impairments at later stages. However, to unravel mechanisms involved in toxicity of these herbicides further studies regarding lower levels of biological organisation such as biochemical and genomic level should be performed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Effects of fertilizers, fungicides and herbicides on the fate of 14C-parathion and 14C-fonofos in soils and crops

    International Nuclear Information System (INIS)

    Lichtenstein, E.P.; Ferris, I.; Liang, T.T.; Koeppe, M.

    1983-01-01

    The fate of 14 C-parathion and 14 C-fonofos in soil is significantly affected by the presence of organic and inorganic fertilizers, fungicides and herbicides, possibly via the effect of soil microflora. Soil microorganisms are responsible for the oxidative as well as the reductive degradation of the insecticide. Using 14 carbon, the authors studied the effects of selected fungicides (benlate, captafol and manzate) herbicides (2,4-D parathion) and fertilizers ((NH 4 ) 6 SO 4 , KNO 3 , urea) on pesticides in Cromberry soils. Results of the study stress the importance of investigating the environmental fate of a particular pesticide in relation to the presence of the agricultural chemicals

  18. Implementation of pesticide applicator certification schools and continuing education workshops : final report.

    Science.gov (United States)

    2014-12-11

    The Oklahoma Department of Transportations (ODOT) herbicide applicator training program consists of initial pesticide applicator training schools followed by independent Certification testing and then on-going yearly continuing education workshops...

  19. Chromosomal aberrations, micronuclei and nuclear buds induced in human lymphocytes by 2,4-dichlorophenoxyacetic acid pesticide formulation

    International Nuclear Information System (INIS)

    Zeljezic, Davor; Garaj-Vrhovac, Vera

    2004-01-01

    Pesticides of worldwide application are used in agriculture in vast amounts each year, of which herbicides are the most prominent class. Phenoxyacetic herbicides constitute one of the largest groups of herbicides sold in the world. Among them, for many years 2,4-dichlorophenoxyacetic acid (2,4-D) has been the one most used. In this study we used Deherban A[reg], a commercial formulation of 2,4-D to determine its possible genotoxic effect on human lymphocytes in vitro by chromosomal aberration analysis and micronucleus assay including the scoring of nuclear buds. Two different concentrations of pesticide formulation were used so that final concentrations of 2,4-D were 0.4 and 4 μg/ml, both in the presence and in the absence of the liver microsomal fraction as metabolic activator. Both concentrations of pesticide caused an increase in chromatid and chromosome breaks, number of micronuclei and number of nuclear buds. Presence of the S9 mix additionally elevated the number of chromatid breaks and micronuclei in treated lymphocytes

  20. Cytogenetic analysis of the combined action of pesticides and radiation on human lymphocytes

    International Nuclear Information System (INIS)

    Ryabchenko, N.I.; Fesenko, Eh.V.; Antoshchina, M.M.

    1995-01-01

    The efficiency of the combined action of pesticides and irradiation at the G 0 stage was studied in cultured human lymphocytes. Carbophos (malathion) increased the yield of chromosome and chromatid fragments in irradiated lymphocytes. Herbicide 2,4-D (dichlorophenoxyacetic acid) raised lymphocyte radiosensitivity by increasing the yield of chromosome type aberrations, the radiosensitizing effect of the herbicide decreased as its concentration increased. 4 refs

  1. Suitability of hardwood treated with phenoxy and pyridine herbicides for firewood use

    Science.gov (United States)

    P.B. Bush; D.G. Neary; Charles K. McMahon; J.W. Taylor

    1987-01-01

    Abstract. Potential exposure to pesticide residues resulting from burning wood treated with phenoxyand pyridine herbicides was assessed. Wood samples from trees treated with 2,4-D [2,4-dichlo-rophenoxy acetic acid], dicamba [3,6-dichloro-o-anisic acid], dichlorprop [2-(2,4-dichlorphenoxy) propionic acid], picloram [4-amino-3,5,dtrichloropico-linic...

  2. Long-term relationships among pesticide applications, mobility, and soil erosion in a vineyard watershed.

    Science.gov (United States)

    Sabatier, Pierre; Poulenard, Jérôme; Fanget, Bernard; Reyss, Jean-Louis; Develle, Anne-Lise; Wilhelm, Bruno; Ployon, Estelle; Pignol, Cécile; Naffrechoux, Emmanuel; Dorioz, Jean-Marcel; Montuelle, Bernard; Arnaud, Fabien

    2014-11-04

    Agricultural pesticide use has increased worldwide during the last several decades, but the long-term fate, storage, and transfer dynamics of pesticides in a changing environment are poorly understood. Many pesticides have been progressively banned, but in numerous cases, these molecules are stable and may persist in soils, sediments, and ice. Many studies have addressed the question of their possible remobilization as a result of global change. In this article, we present a retro-observation approach based on lake sediment records to monitor micropollutants and to evaluate the long-term succession and diffuse transfer of herbicides, fungicides, and insecticide treatments in a vineyard catchment in France. The sediment allows for a reliable reconstruction of past pesticide use through time, validated by the historical introduction, use, and banning of these organic and inorganic pesticides in local vineyards. Our results also revealed how changes in these practices affect storage conditions and, consequently, the pesticides' transfer dynamics. For example, the use of postemergence herbicides (glyphosate), which induce an increase in soil erosion, led to a release of a banned remnant pesticide (dichlorodiphenyltrichloroethane, DDT), which had been previously stored in vineyard soil, back into the environment. Management strategies of ecotoxicological risk would be well served by recognition of the diversity of compounds stored in various environmental sinks, such as agriculture soil, and their capability to become sources when environmental conditions change.

  3. Occurrence of currently used pesticides in ambient air of Centre Region (France)

    Science.gov (United States)

    Coscollà, Clara; Colin, Patrice; Yahyaoui, Abderrazak; Petrique, Olivier; Yusà, Vicent; Mellouki, Abdelwahid; Pastor, Agustin

    2010-10-01

    Ambient air samples were collected, from 2006 to 2008 at three rural and two urban sites in Centre Region (France) and analyzed for 56 currently used pesticides (CUPs), of which 41 were detected. The four CUPs most frequently detected were the herbicides trifluralin, acetochlor and pendimethalin and the fungicide chlorothalonil, which were found with frequencies ranging between 52 and 78%, and with average concentrations of 1.93, 1.32, 1.84 and 12.15 ng m -3, respectively. Among the detected pesticides, concentrations of eight fungicides (spiroxamine, fenpropimorph, cyprodinil, tolyfluanid, epoxiconazole, vinchlozolin, fluazinam, fludioxinil), two insecticides (propargite, ethoprophos), and one herbicide (oxyfluorfen) are, to our knowledge, reported for the first time in the literature. The majority of the CUPs showed a seasonal trend, with most of the detections and the highest concentrations occurring during the spring and early summer. The most important pesticides detected were related to arable crops and fruit orchards, the main cultures in this region, highlighting the fact that the main sources come from local applications. Minor differences were found in the profiles of pesticides within rural areas and between rural and urban areas.

  4. Characterization of cholinesterases in Chironomus riparius and the effects of three herbicides on chlorpyrifos toxicity.

    Science.gov (United States)

    Pérez, Joanne; Monteiro, Marta S; Quintaneiro, Carla; Soares, Amadeu M V M; Loureiro, Susana

    2013-11-15

    In this study, the toxicities of four pesticides (the herbicides atrazine, terbuthylazine, metolachlor and the insecticide chlorpyrifos) previously detected in the Alqueva reservoir/dam (south of Portugal) were evaluated individually and in binary combinations of the herbicides and the insecticide using fourth-instar larvae of the aquatic midge Chironomus riparius. Chlorpyrifos induced toxicity to midges in all the 48 h toxicity bioassays performed. The swimming behaviour of the larvae was impaired, with EC50 values ranging from 0.15 to 0.17 μg/L. However, neither s-triazine (atrazine and terbuthylazine) herbicides nor metolachlor alone at concentrations up to 200 μg/L caused significant toxicity to C. riparius. When combined with both s-triazine herbicides, chlorpyrifos toxicity was enhanced by approximately 2-fold when tested in a binary mixture experimental setup, at the 50% effective concentration levels. To evaluate how chlorpyrifos toxicity was being increased, the cholinesterases (ChE) were characterized biochemically using different substrates and selective inhibitors. The results obtained suggested that the main enzyme present in this species is acetylcholinesterase (AChE) and therefore it was assayed upon C. riparius exposures to all pesticides individually and as binary mixtures. Although atrazine and terbuthylazine are not effective inhibitors of AChE, the potentiation of chlorpyrifos toxicity by the two s-triazine herbicides was associated with a potentiation in the inhibition of AChE in midges; both s-triazine herbicides at 200 μg/L increased the inhibition of the AChE activity by 7 and 8-fold, respectively. A strong correlation was observed between swimming behaviour disturbances of larvae and the inhibition of the AChE activity. In contrast, metolachlor did not affect chlorpyrifos toxicity at any of the concentrations tested. Therefore, the herbicides atrazine and terbuthylazine can act as synergists in the presence of chlorpyrifos, increasing

  5. Dig1 protects against cell death provoked by glyphosate-based herbicides in human liver cell lines

    OpenAIRE

    Gasnier, C?line; Benachour, Nora; Clair, Emilie; Travert, Carine; Langlois, Fr?d?ric; Laurant, Claire; Decroix-Laporte, C?cile; S?ralini, Gilles-Eric

    2010-01-01

    Abstract Background Worldwide used pesticides containing different adjuvants like Roundup formulations, which are glyphosate-based herbicides, can provoke some in vivo toxicity and in human cells. These pesticides are commonly found in the environment, surface waters and as food residues of Roundup tolerant genetically modified plants. In order to know their effects on cells from liver, a major detoxification organ, we have studied their mechanism of action and possible protection by precise ...

  6. A Complete Analytical Screening Identifies the Real Pesticide Contamination of Surface Waters

    Science.gov (United States)

    Moschet, Christoph; Wittmer, Irene; Simovic, Jelena; Junghans, Marion; Singer, Heinz; Stamm, Christian; Leu, Christian; Hollender, Juliane

    2014-05-01

    A comprehensive assessment of pesticides in surface waters is challenging due to the large number of potential contaminants. In Switzerland for example, roughly 500 active ingredients are registered as either plant protection agent (PPA) or as biocide. In addition, an unlimited number of transformations products (TPs) can enter or be formed in surfaced waters. Most scientific publications or regulatory monitoring authorities have implemented 15-40 pesticides in their analytics. Only a few TPs are normally included. Interpretations of the surface water quality based on these subsets remains error prone. In the presented study, we carried out a nearly complete analytical screening covering 86% of all polar organic pesticides (from agricultural and urban sources) in Switzerland (300 substances) and 134 TPs with limits of quantification in the low ng/L range. The comprehensive pesticide screening was conducted by liquid-chromatography coupled to high-resolution tandem mass spectrometry. Five medium-sized rivers (Strahler stream order 3-4, catchment size 35-105 km2), containing high percentiles of diverse crops, orchards and urban settlements in their catchments, were sampled from March till July 2012. Nine subsequent time-proportional bi-weekly composite samples were taken in order to quantify average concentrations. In total, 104 different active ingredients could be detected in at least one of the five rivers. Thereby, 82 substances were only registered as PPA, 20 were registered as PPA and as biocide and 2 were only registered as biocide. Within the PPAs, herbicides had the most frequent detections and the highest concentrations, followed by fungicides and insecticides. Most concentrations were found between 1 and 50 ng/L; however 31 substances (mainly herbicides) had concentrations above 100 ng/L and 3 herbicides above 1000 ng/L. It has to be noted that the measured concentrations are average concentrations over two weeks in medium sized streams and that maximum

  7. Degradation of Herbicides in the Tropical Marine Environment: Influence of Light and Sediment.

    Science.gov (United States)

    Mercurio, Philip; Mueller, Jochen F; Eaglesham, Geoff; O'Brien, Jake; Flores, Florita; Negri, Andrew P

    2016-01-01

    Widespread contamination of nearshore marine systems, including the Great Barrier Reef (GBR) lagoon, with agricultural herbicides has long been recognised. The fate of these contaminants in the marine environment is poorly understood but the detection of photosystem II (PSII) herbicides in the GBR year-round suggests very slow degradation rates. Here, we evaluated the persistence of a range of commonly detected herbicides in marine water under field-relevant concentrations and conditions. Twelve-month degradation experiments were conducted in large open tanks, under different light scenarios and in the presence and absence of natural sediments. All PSII herbicides were persistent under control conditions (dark, no sediments) with half-lives of 300 d for atrazine, 499 d diuron, 1994 d hexazinone, 1766 d tebuthiuron, while the non-PSII herbicides were less persistent at 147 d for metolachlor and 59 d for 2,4-D. The degradation of herbicides was 2-10 fold more rapid in the presence of a diurnal light cycle and coastal sediments; apart from 2,4-D which degraded more slowly in the presence of light. Despite the more rapid degradation observed for most herbicides in the presence of light and sediments, the half-lives remained > 100 d for the PS II herbicides. The effects of light and sediments on herbicide persistence were likely due to their influence on microbial community composition and its ability to utilise the herbicides as a carbon source. These results help explain the year-round presence of PSII herbicides in marine systems, including the GBR, but more research on the transport, degradation and toxicity on a wider range of pesticides and their transformation products is needed to improve their regulation in sensitive environments.

  8. A Synthesis of the Effects of Pesticides on Microbial Persistence in Aquatic Ecosystems

    Science.gov (United States)

    Staley, Zachery R.; Harwood, Valerie J.; Rohr, Jason R.

    2016-01-01

    Pesticides are a pervasive presence in aquatic ecosystems throughout the world. While pesticides are intended to control fungi, insects, and other pests, their mechanisms of action are often not specific enough to prevent unintended effects, such as on non-target microbial populations. Microorganisms, including algae and cyanobacteria, protozoa, aquatic fungi, and bacteria, form the basis of many food webs and are responsible for crucial aspects of biogeochemical cycling; therefore, the potential for pesticides to alter microbial community structures must be understood to preserve ecosystem services. This review examines studies that focused on direct population-level effects and indirect community-level effects of pesticides on microorganisms. Generally, insecticides, herbicides, and fungicides were found to have adverse direct effects on algal and fungal species. Insecticides and fungicides also had deleterious direct effects in the majority of studies examining protozoa species, although herbicides were found to have inconsistent direct effects on protozoans. Our synthesis revealed mixed or no direct effects on bacterial species among all pesticide categories, with results highly dependent on the target species, chemical, and concentration used in the study. Examination of community-level, indirect effects revealed that all pesticide categories had a tendency to reduce higher trophic levels, thereby diminishing top-down pressures and favoring lower trophic levels. Often, indirect effects exerted greater influence than direct effects. However, few studies have been conducted to specifically address community-level effects of pesticides on microorganisms and further research is necessary to better understand and predict the net effects of pesticides on ecosystem health. PMID:26565685

  9. Pesticide Occurrence and Distribution in the Lower Clackamas River Basin, Oregon, 2000-2005

    Science.gov (United States)

    Carpenter, Kurt D.; Sobieszczyk, Steven; Arnsberg, Andrew J.; Rinella, Frank A.

    2008-01-01

    Pesticide occurrence and distribution in the lower Clackamas River basin was evaluated in 2000?2005, when 119 water samples were analyzed for a suite of 86?198 dissolved pesticides. Sampling included the lower-basin tributaries and the Clackamas River mainstem, along with paired samples of pre- and post-treatment drinking water (source and finished water) from one of four drinking water-treatment plants that draw water from the lower river. Most of the sampling in the tributaries occurred during storms, whereas most of the source and finished water samples from the study drinking-water treatment plant were obtained at regular intervals, and targeted one storm event in 2005. In all, 63 pesticide compounds were detected, including 33 herbicides, 15 insecticides, 6 fungicides, and 9 pesticide degradation products. Atrazine and simazine were detected in about half of samples, and atrazine and one of its degradates (deethylatrazine) were detected together in 30 percent of samples. Other high-use herbicides such as glyphosate, triclopyr, 2,4-D, and metolachlor also were frequently detected, particularly in the lower-basin tributaries. Pesticides were detected in all eight of the lower-basin tributaries sampled, and were also frequently detected in the lower Clackamas River. Although pesticides were detected in all of the lower basin tributaries, the highest pesticide loads (amounts) were found in Deep and Rock Creeks. These medium-sized streams drain a mix of agricultural land (row crops and nurseries), pastureland, and rural residential areas. The highest pesticide loads were found in Rock Creek at 172nd Avenue and in two Deep Creek tributaries, North Fork Deep and Noyer Creeks, where 15?18 pesticides were detected. Pesticide yields (loads per unit area) were highest in Cow and Carli Creeks, two small streams that drain the highly urban and industrial northwestern part of the lower basin. Other sites having relatively high pesticide yields included middle Rock Creek and

  10. Occurrence and distribution of pesticides in surface waters of the Hood River basin, Oregon, 1999-2009

    Science.gov (United States)

    Temple, Whitney B.; Johnson, Henry M.

    2011-01-01

    The U.S. Geological Survey analyzed pesticide and trace-element concentration data from the Hood River basin collected by the Oregon Department of Environmental Quality (ODEQ) from 1999 through 2009 to determine the distribution and concentrations of pesticides in the basin's surface waters. Instream concentrations were compared to (1) national and State water-quality standards established to protect aquatic organisms and (2) concentrations that cause sublethal or lethal effects in order to assess their potential to adversely affect the health of salmonids and their prey organisms. Three salmonid species native to the basin are listed as "threatened" under the U.S. Endangered Species Act: bull trout, steelhead, and Chinook salmon. A subset of 16 sites was sampled every year by the ODEQ for pesticides, with sample collection targeted to months of peak pesticide use in orchards (March-June and September). Ten pesticides and four pesticide degradation products were analyzed from 1999 through 2008; 100 were analyzed in 2009. Nineteen pesticides were detected: 11 insecticides, 6 herbicides, and 2 fungicides. Two of four insecticide degradation products were detected. All five detected organophosphate insecticides and the one detected organochlorine insecticide were present at concentrations exceeding water-quality standards, sublethal effects thresholds, or acute toxicity values in one or more samples. The frequency of organophosphate detection in the basin decreased during the period of record; however, changes in sampling schedule and laboratory reporting limits hindered clear analysis of detection frequency trends. Detected herbicide and fungicide concentrations were less than water-quality standards, sublethal effects thresholds, or acute toxicity values. Simazine, the most frequently detected pesticide, was the only herbicide detected at concentrations within an order of magnitude (factor of 10) of concentrations that impact salmonid olfaction. Some detected

  11. Cost-effectiveness analysis of the SEAMIST trademark membrane system technology

    International Nuclear Information System (INIS)

    Henriksen, A.D.; Booth, S.R.

    1995-01-01

    SEAMIST trademark is a new technology that consists of an airtight membrane liner that is pneumatically emplaced inside the borehole. The positive air pressure inside the liner maintains the integrity of the borehole structure. Sampling ports with attached tubing, absorbent collectors, or various in situ measuring devices can be fabricated into the liner and used for monitoring volatile organic compounds (VOCs), semivolatile organic compounds (SVOCs), pesticides, herbicides, polynuclear aromatic hydrocarbons, polychlorinated biphenyls, or radioactive substances. In addition, small instruments can be guided through the lined borehole and measurements taken inside at specified intervals. The purpose of this study is to analyze the cost and performance effectiveness of this new technology. To do so, the authors constructed five hypothetical scenarios in which utilization of the SEAMIST trademark system can address various needs of the Department of Energy's environmental remediation program. Two of the scenarios involve vertical boreholes (or vertical instrument configurations) and two involve horizontal boreholes (or horizontal instrument configurations). The four scenarios jointly address contamination by VOCS, SVOCS, various water-soluble toxic substances, and low-level radioactive waste. One of the scenarios involves towing an instrument through a borehole and taking measurements of moisture levels in the surrounding soil

  12. Pesticides in the propolis at São Saulo State, Brazil - doi: 10.4025/actascianimsci.v34i4.15859 Pesticides in the propolis at São Saulo State, Brazil - doi: 10.4025/actascianimsci.v34i4.15859

    Directory of Open Access Journals (Sweden)

    Samir Moura Kadri

    2012-10-01

    Full Text Available The increasing demand for propolis has caused a raise in its production. However, an increasingly pesticide-dependent agriculture is a great concern with regard to bees, their produce and environmental contamination. Current analysis evaluates the presence of pesticides (organochlorines, organophosphates, pyrethroids, carbamates, herbicides, fungicides and acaricides in samples of propolis from the state of São Paulo, Brazil. Beekeepers from several localities in the state provided samples of propolis (50, which were collected, stored in non-toxic plastic bags and maintained in a freezer for analyses. Possible pesticide residues were examined by gas chromatography method but no pesticide residues were detected in the examined propolis samples. Propolis analyzed in the state of São Paulo did not show any pesticide contamination. The increasing demand for propolis has caused a raise in its production. However, an increasingly pesticide-dependent agriculture is a great concern with regard to bees, their produce and environmental contamination. Current analysis evaluates the presence of pesticides (organochlorines, organophosphates, pyrethroids, carbamates, herbicides, fungicides and acaricides in samples of propolis from the state of São Paulo, Brazil. Beekeepers from several localities in the state provided samples of propolis (50, which were collected, stored in non-toxic plastic bags and maintained in a freezer for analyses. Possible pesticide residues were examined by gas chromatography method but no pesticide residues were detected in the examined propolis samples. Propolis analyzed in the state of São Paulo did not show any pesticide contamination.

  13. Understanding the Occurrence and Transport of Current-use Pesticides in the San Francisco Estuary Watershed

    Directory of Open Access Journals (Sweden)

    Kathryn Kuivila

    2008-10-01

    Full Text Available The occurrence and potential effects of current-use pesticides are of concern in the San Francisco Estuary watershed but our understanding of the spatial and temporal distribution of contamination is limited. This paper summarizes almost two decades of historical data and uses it to describe our current knowledge of the processes controlling the occurrence of current-use pesticides in the watershed. Monitoring studies analyze fewer than half of the pesticides applied in the watershed and most of our knowledge is about inputs of dissolved pesticides in the upper watershed. The four major seasonal patterns of riverine inputs of pesticides to the estuary can be identified by usage and transport mechanism. Dormant spray insecticides applied to orchards and herbicides applied to a variety of crops are transported by rainfall during the winter. Alfalfa pesticides are detected following rainfall and irrigation return flow in the spring, and rice pesticides are detected following release of rice field water in the summer. Irrigation return flows transport a variety of herbicides during the summer. In addition, pesticides applied on Delta islands can cause elevated pesticide concentrations in localized areas. Although not as well characterized, urban creeks appear to have their own patterns of insecticide concentrations causing toxicity throughout most of the year. Current-use pesticides have also been detected on suspended and bed sediments throughout the watershed but limited data make it difficult to determine occurrence patterns. Data gaps include the lack of analysis of many pesticides (or degradates, changing pesticide use, limited information on pesticide transport within the Delta, and an incomplete understanding of the transport and persistence of sediment-associated pesticides. Future monitoring programs should be designed to address these data gaps.

  14. In vitro dopaminergic neurotoxicity of pesticides; a link with neurodegeneration?

    NARCIS (Netherlands)

    Heusinkveld, H.J.

    2014-01-01

    Ever since people culture crops for food- and feed production, they use chemical compounds to destroy and repel plagues threatening production. Based on their primary target these compounds are classified as e.g. insecticides, herbicides or fungicides. In epidemiological studies, pesticide exposure

  15. TRANSLOCATION AND REDISTRIBUTION OF PESTICIDES APPLIED IN THE RESIDENTIAL ENVIRONMENT

    Science.gov (United States)

    Pesticides are introduced into the indoor environment for pest control by direct application (e.g., insect sprays and bombs). They are also applied outdoors on lawns, in gardens, or around house foundations to control weed and insect populations. Insecticides and herbicides a...

  16. Degradation of terbuthylazine, difenoconazole and pendimethalin pesticides by selected fungi cultures.

    Science.gov (United States)

    Pinto, A P; Serrano, C; Pires, T; Mestrinho, E; Dias, L; Teixeira, D Martins; Caldeira, A T

    2012-10-01

    Contamination of waters by xenobiotic compounds such as pesticides presents a serious environmental problem with substantial levels of pesticides now contaminating European water resources. The aim of this work was to evaluate the ability of the fungi Fusarium oxysporum, Aspergillus oryzae, Lentinula edodes, Penicillium brevicompactum and Lecanicillium saksenae, for the biodegradation of the pesticides terbuthylazine, difenoconazole and pendimethalin in batch liquid cultures. These pesticides are common soil and water contaminants and terbuthylazine is considered the most persistent triazine herbicide in surface environments. P. brevicompactum and L. saksenae were achieved by enrichment, isolation and screening of fungi capable to metabolize the pesticides studied. The isolates were obtained from two pesticide-primed materials (soil and biomixture). Despite the relatively high persistence of terbuthylazine, the results obtained in this work showed that the fungi species studied have a high capability of biotransformation of this xenobiotic, comparatively the results obtained in other similar studies. The highest removal percentage of terbuthylazine from liquid medium was achieved with A. oryzae (~80%), although the major biodegradation has been reached with P. brevicompactum. The higher ability of P. brevicompactum to metabolize terbuthylazine was presumably acquired through chronic exposure to contamination with the herbicide. L. saksenae could remove 99.5% of the available pendimethalin in batch liquid cultures. L. edodes proved to be a fungus with a high potential for biodegradation of pesticides, especially difenoconazole and pendimethalin. Furthermore, the metabolite desethyl-terbuthylazine was detected in L. edodes liquid culture medium, indicating terbuthylazine biodegradation by this fungus. The fungi strains investigated could prove to be valuable as active pesticide-degrading microorganisms, increasing the efficiency of biopurification systems containing

  17. Pesticides in the atmosphere; distribution, trends, and governing factors

    Science.gov (United States)

    Majewski, Michael S.; Capel, Paul D.

    1995-01-01

    A comprehensive review of existing literature on the occurrence and distribution of pesticides in the atmosphere of the United States and adjoining Canadian provinces showed that the atmosphere is an important part of the hydrologic cycle that acts to distribute and deposit pesticides in areas far removed from their application sites. A compilation of existing data shows that pesticides have been detected in the atmosphere throughout the nation. Most of the available information on pesticides in the atmosphere is from small-scale, short-term studies that seldom lasted more than one year. Only two national-scale, multi-year studies were done since the late 1960's that analyzed for a wide variety of pesticides in air that were in current use at the time. Another large-scale study was done during 1990-91, but was limited to the midwestern and northeastern United States and only analyzed for two classes of herbicides in wet deposition. Most of the pesticides analyzed for were detected in either air or rain, and represent about 25 percent of the total number of insecticides, herbicides, and fungicides in current use. The geographical distribution of studies, and the type of sampling and analysis were highly variable with most of the historical study efforts concentrated in the Great Lakes area and California. Air and rain were the main atmospheric matrices sampled, but pesticides were also detected in fog and snow. Reported pesticide concentrations in air and rain were frequently positively correlated to their regional agricultural use. Deviations from this relation could usually be explained by non-agricultural use of pesticides, sampling and analytical difficulties, and environmental persistence. High concentrations of locally used pesticides were found to occur seasonally, usually in conjunction with spring planting of row crops and warm temperatures, but high concentrations also occurred during winter months in those areas where dormant orchards were sprayed. The

  18. Chemoproteomic Profiling of Acetanilide Herbicides Reveals Their Role in Inhibiting Fatty Acid Oxidation.

    Science.gov (United States)

    Counihan, Jessica L; Duckering, Megan; Dalvie, Esha; Ku, Wan-Min; Bateman, Leslie A; Fisher, Karl J; Nomura, Daniel K

    2017-03-17

    Acetanilide herbicides are among the most widely used pesticides in the United States, but their toxicological potential and mechanisms remain poorly understood. Here, we have used chemoproteomic platforms to map proteome-wide cysteine reactivity of acetochlor (AC), the most widely used acetanilide herbicide, in vivo in mice. We show that AC directly reacts with >20 protein targets in vivo in mouse liver, including the catalytic cysteines of several thiolase enzymes involved in mitochondrial and peroxisomal fatty acid oxidation. We show that the fatty acids that are not oxidized, due to impaired fatty acid oxidation, are instead diverted into other lipid pathways, resulting in heightened free fatty acids, triglycerides, cholesteryl esters, and other lipid species in the liver. Our findings show the utility of chemoproteomic approaches for identifying novel mechanisms of toxicity associated with environmental chemicals like acetanilide herbicides.

  19. Continuous exposure of pesticides in an aquifer changes microbial biomass, diversity and degradation potential

    DEFF Research Database (Denmark)

    de Lipthay, J. R.; Johnsen, K.; Aamand, J.

    2000-01-01

    We studied in situ effects of pesticide exposure on microbial degradation potential and community structure of aquifer sediments. Sediment samples pre-exposed to pesticides were significantly different to non-exposed control samples. Pre-exposed sediment showed an increased degradation potential ...... towards phenoxyalcanoic acid herbicides as well as impact on microbial diversity was observed. Furthermore, bacterial biomass was changed, e.g. increased numbers of phenoxyalcanoic acid degraders in pesticide exposed sediment.......We studied in situ effects of pesticide exposure on microbial degradation potential and community structure of aquifer sediments. Sediment samples pre-exposed to pesticides were significantly different to non-exposed control samples. Pre-exposed sediment showed an increased degradation potential...

  20. Climate change impacts on risks of groundwater pollution by herbicides: a regional scale assessment

    Science.gov (United States)

    Steffens, Karin; Moeys, Julien; Lindström, Bodil; Kreuger, Jenny; Lewan, Elisabet; Jarvis, Nick

    2014-05-01

    Groundwater contributes nearly half of the Swedish drinking water supply, which therefore needs to be protected both under present and future climate conditions. Pesticides are sometimes found in Swedish groundwater in concentrations exceeding the EU-drinking water limit and thus constitute a threat. The aim of this study was to assess the present and future risks of groundwater pollution at the regional scale by currently approved herbicides. We identified representative combinations of major crop types and their specific herbicide usage (product, dose and application timing) based on long-term monitoring data from two agricultural catchments in the South-West of Sweden. All these combinations were simulated with the regional version of the pesticide fate model MACRO (called MACRO-SE) for the periods 1970-1999 and 2070-2099 for a major crop production region in South West Sweden. To represent the uncertainty in future climate data, we applied a five-member ensemble based on different climate model projections downscaled with the RCA3-model (Swedish Meteorological and Hydrological Institute). In addition to the direct impacts of changes in the climate, the risks of herbicide leaching in the future will also be affected by likely changes in weed pressure and land use and management practices (e.g. changes in crop rotations and application timings). To assess the relative importance of such factors we performed a preliminary sensitivity analysis which provided us with a hierarchical structure for constructing future herbicide use scenarios for the regional scale model runs. The regional scale analysis gave average concentrations of herbicides leaching to groundwater for a large number of combinations of soils, crops and compounds. The results showed that future scenarios for herbicide use (more autumn-sown crops, more frequent multiple applications on one crop, and a shift from grassland to arable crops such as maize) imply significantly greater risks of herbicide

  1. Pesticide Exposure in Children

    Science.gov (United States)

    Roberts, James R.; Karr, Catherine J.

    2018-01-01

    Pesticides are a collective term for a wide array of chemicals intended to kill unwanted insects, plants, molds, and rodents. Food, water, and treatment in the home, yard, and school are all potential sources of children’s exposure. Exposures to pesticides may be overt or subacute, and effects range from acute to chronic toxicity. In 2008, pesticides were the ninth most common substance reported to poison control centers, and approximately 45% of all reports of pesticide poisoning were for children. Organophosphate and carbamate poisoning are perhaps the most widely known acute poisoning syndromes, can be diagnosed by depressed red blood cell cholinesterase levels, and have available antidotal therapy. However, numerous other pesticides that may cause acute toxicity, such as pyrethroid and neonicotinoid insecticides, herbicides, fungicides, and rodenticides, also have specific toxic effects; recognition of these effects may help identify acute exposures. Evidence is increasingly emerging about chronic health implications from both acute and chronic exposure. A growing body of epidemiological evidence demonstrates associations between parental use of pesticides, particularly insecticides, with acute lymphocytic leukemia and brain tumors. Prenatal, household, and occupational exposures (maternal and paternal) appear to be the largest risks. Prospective cohort studies link early-life exposure to organophosphates and organochlorine pesticides (primarily DDT) with adverse effects on neurodevelopment and behavior. Among the findings associated with increased pesticide levels are poorer mental development by using the Bayley index and increased scores on measures assessing pervasive developmental disorder, inattention, and attention-deficit/hyperactivity disorder. Related animal toxicology studies provide supportive biological plausibility for these findings. Additional data suggest that there may also be an association between parental pesticide use and adverse birth

  2. Closure Report for Corrective Action Unit 340: NTS Pesticide Release Sites Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    C. M. Obi

    2000-05-01

    The purpose of this report is to provide documentation of the completed corrective action and to provide data confirming the corrective action. The corrective action was performed in accordance with the approved Corrective Action Plan (CAP) (U.S. Department of Energy [DOE], 1999) and consisted of clean closure by excavation and disposal. The Area 15 Quonset Hut 15-11 was formerly used for storage of farm supplies including pesticides, herbicides, and fertilizers. The Area 23 Quonset Hut 800 was formerly used to clean pesticide and herbicide equipment. Steam-cleaning rinsate and sink drainage occasionally overflowed a sump into adjoining drainage ditches. One ditch flows south and is referred to as the quonset hut ditch. The other ditch flows southeast and is referred to as the inner drainage ditch. The Area 23 Skid Huts were formerly used for storing and mixing pesticide and herbicide solutions. Excess solutions were released directly to the ground near the skid huts. The skid huts were moved to a nearby location prior to the site characterization performed in 1998 and reported in the Corrective Action Decision Document (CADD) (DOE, 1998). The vicinity and site plans of the Area 23 sites are shown in Figures 2 and 3, respectively.

  3. Occurrence of pesticides in groundwater and sediments and mineralogy of sediments and grain coatings underlying the Rutgers Agricultural Research and Extension Center, Upper Deerfield, New Jersey, 2007

    Science.gov (United States)

    Reilly, Timothy J.; Smalling, Kelly L.; Meyer, Michael T.; Sandstrom, Mark W.; Hladik, Michelle; Boehlke, Adam R.; Fishman, Neil S.; Battaglin, William A.; Kuivila, Kathryn

    2014-01-01

    Water and sediment samples were collected from June through October 2007 from seven plots at the Rutgers Agricultural Research and Extension Center in Upper Deerfield, New Jersey, and analyzed for a suite of pesticides (including fungicides) and other physical and chemical parameters (including sediment mineralogy) by the U.S. Geological Survey. Plots were selected for inclusion in this study on the basis of the crops grown and the pesticides used. Forty-one pesticides were detected in 14 water samples; these include 5 fungicides, 13 herbicides, 1 insecticide, and 22 pesticide degradates. The following pesticides and pesticide degradates were detected in 50 percent or more of the groundwater samples: 1-amide-4-hydroxy-chorothalonil, alachlor sulfonic acid, metolachlor oxanilic acid, metolachlor sulfonic acid, metalaxyl, and simazine. Dissolved-pesticide concentrations ranged from below their instrumental limit of detection to 36 micrograms per liter (for metolachlor sulfonic acid, a degradate of the herbicide metolachlor). The total number of pesticides found in groundwater samples ranged from 0 to 29. Fourteen pesticides were detected in sediment samples from continuous cores collected within each of the seven sampled plots; these include 4 fungicides, 2 herbicides, and 7 pesticide degradates. Pesticide concentrations in sediment samples ranged from below their instrumental limit of detection to 34.2 nanograms per gram (for azoxystrobin). The total number of pesticides found in sediment samples ranged from 0 to 8. Quantitative whole-rock and grain-coating mineralogy of sediment samples were determined by x-ray diffraction. Whole-rock analysis indicated that sediments were predominantly composed of quartz. The materials coating the quartz grains were removed to allow quantification of the trace mineral phases present.

  4. The status of pesticide pollution in surface waters (rivers and lakes) of Greece. Part I. Review on occurrence and levels

    International Nuclear Information System (INIS)

    Konstantinou, Ioannis K.; Hela, Dimitra G.; Albanis, Triantafyllos A.

    2006-01-01

    This review evaluates and summarizes the results of long-term research projects, monitoring programs and published papers concerning the pollution of surface waters (rivers and lakes) of Greece by pesticides. Pesticide classes mostly detected involve herbicides used extensively in corn, cotton and rice production, organophosphorus insecticides as well as the banned organochlorines insecticides due to their persistence in the aquatic environment. The compounds most frequently detected were atrazine, simazine, alachlor, metolachlor and trifluralin of the herbicides, diazinon, parathion methyl of the insecticides and lindane, endosulfan and aldrin of the organochlorine pesticides. Rivers were found to be more polluted than lakes. The detected concentrations of most pesticides follow a seasonal variation, with maximum values occurring during the late spring and summer period followed by a decrease during winter. Nationwide, in many cases the reported concentrations ranged in low ppb levels. However, elevated concentrations were recorded in areas of high pesticide use and intense agricultural practices. Generally, similar trends and levels of pesticides were found in Greek rivers compared to pesticide contamination in other European rivers. Monitoring of the Greek water resources for pesticide residues must continue, especially in agricultural regions, because the nationwide patterns of pesticide use are constantly changing. Moreover, emphasis should be placed on degradation products not sufficiently studied so far. - Information on pesticide pollution of surface waters in Greece is reviewed

  5. Pesticide load dynamics during stormwater flow events in Mediterranean coastal streams: Alexander stream case study.

    Science.gov (United States)

    Topaz, Tom; Egozi, Roey; Eshel, Gil; Chefetz, Benny

    2018-06-01

    Cultivated land is a major source of pesticides, which are transported with the runoff water and eroded soil during rainfall events and pollute riverine and estuarine environments. Common ecotoxicological assessments of riverine systems are mainly based on water sampling and analysis of only the dissolved phase, and address a single pesticide's toxicological impact under laboratory conditions. A clear overview of mixtures of pesticides in the adsorbed and dissolved phases is missing, and therefore the full ecotoxicological impact is not fully addressed. The aim of this study was to characterize and quantify pesticide concentrations in both suspended sediment and dissolved phases, to provide a better understanding of pesticide-load dynamics during storm events in coastal streams in a Mediterranean climate. High-resolution sampling campaigns of seven flood events were conducted during two rainy seasons in Alexander stream, Israel. Samples of suspended sediments were separated from the solution and both media were analyzed separately for 250 pesticides. A total of 63 pesticides were detected; 18 and 16 pesticides were found solely in the suspended sediments and solution, respectively. Significant differences were observed among the pesticide groups: only 7% of herbicide, 20% of fungicide and 42% of insecticide load was transported with the suspended sediments. However, in both dissolved and adsorbed phases, a mix of pesticides was found which were graded from "mobile" to "non-mobile" with varied distribution coefficients. Diuron, and tebuconazole were frequently found in large quantities in both phases. Whereas insecticide and fungicide transport is likely governed by application time and method, the governing factor for herbicide load was the magnitude of the stream discharge. The results show a complex dynamic of pesticide load affected by excessive use of pesticides, which should be taken into consideration when designing projects to monitor riverine and estuarine

  6. Effect of pesticides on soil microbial community.

    Science.gov (United States)

    Lo, Chi-Chu

    2010-07-01

    According to guidelines for the approval of pesticides, information about effects of pesticides on soil microorganisms and soil fertility are required, but the relationships of different structures of pesticides on the growth of various groups of soil microorganisms are not easily predicted. Some pesticides stimulate the growth of microorganisms, but other pesticides have depressive effects or no effects on microorganisms. For examples, carbofuran stimulated the population of Azospirillum and other anaerobic nitrogen fixers in flooded and non-flooded soil, but butachlor reduced the population of Azospirillum and aerobic nitrogen fixers in non-flooded soil. Diuron and chlorotoluron showed no difference between treated and nontreated soil, and linuron showed a strong difference. Phosphorus(P)-contains herbicides glyphosate and insecticide methamidophos stimulated soil microbial growth, but other P-containing insecticide fenamiphos was detrimental to nitrification bacteria. Therefore, the following review presents some data of research carried out during the last 20 years. The effects of twenty-one pesticides on the soil microorganisms associated with nutrient and cycling processes are presented in section 1, and the applications of denaturing gradient gel electrophoresis (DGGE) for studying microbial diversity are discussed in section 2.

  7. Occupational exposure to pesticides and endotoxin and Parkinson disease in the Netherlands.

    Science.gov (United States)

    van der Mark, Marianne; Vermeulen, Roel; Nijssen, Peter C G; Mulleners, Wim M; Sas, Antonetta M G; van Laar, Teus; Brouwer, Maartje; Huss, Anke; Kromhout, Hans

    2014-11-01

    Previous research has indicated that occupational exposure to pesticides and possibly airborne endotoxin may increase the risk of developing Parkinson disease (PD). We studied the associations of PD with occupational exposure to pesticides, specifically to the functional subclasses insecticides, herbicides and fungicides, and to airborne endotoxin. In addition we evaluated specific pesticides (active ingredients) previously associated with PD. We used data from a hospital-based case-control study, including 444 patients with PD and 876 age and sex matched controls. Exposures to pesticides from application and re-entry work were estimated with the ALOHA+job-exposure matrix and with an exposure algorithm based on self-reported information on pesticide use. To assess exposure to specific active ingredients a crop-exposure matrix was developed. Endotoxin exposure was estimated with the DOM job-exposure matrix. The results showed almost no significant associations. However, ORs were elevated in the higher exposure categories for pesticides in general, insecticides, herbicides and fungicides, and below unity for endotoxin exposure. The analyses on specific active ingredients showed a significant association of PD risk with the fungicide benomyl. This study did not provide evidence for a relation between pesticide exposure and PD. However, the consistently elevated ORs in the higher exposure categories suggest that a positive association may exist. The possible association with the active ingredient benomyl requires follow-up in other studies. This study did not provide support for a possible association between endotoxin exposure and PD. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  8. Comparing Metabolic Functionalities, Community Structures, and Dynamics of Herbicide-Degrading Communities Cultivated with Different Substrate Concentrations

    DEFF Research Database (Denmark)

    Gözdereliler, Erkin; Boon, Nico; Aamand, Jens

    2013-01-01

    Two 4-chloro-2-methylphenoxyacetic acid (MCPA)-degrading enrichment cultures selected from an aquifer on low (0.1 mg liter−1) or high (25 mg liter−1) MCPA concentrations were compared in terms of metabolic activity, community composition, population growth, and single cell physiology. Different...... community compositions and major shifts in community structure following exposure to different MCPA concentrations were observed using both 16S rRNA gene denaturing gradient gel electrophoresis fingerprinting and pyrosequencing. The communities also differed in their MCPA-mineralizing activities...... activity in cultures selected on low herbicide concentrations. This suggests that LNA bacteria may play a role in degradation of low herbicide concentrations in aquifers impacted by agriculture. This study shows that subpopulations of herbicide-degrading bacteria that are adapted to different pesticide...

  9. Cancer Incidence among Glyphosate-Exposed Pesticide Applicators in the Agricultural Health Study

    OpenAIRE

    De Roos, Anneclaire J.; Blair, Aaron; Rusiecki, Jennifer A.; Hoppin, Jane A.; Svec, Megan; Dosemeci, Mustafa; Sandler, Dale P.; Alavanja, Michael C.

    2004-01-01

    Glyphosate is a broad-spectrum herbicide that is one of the most frequently applied pesticides in the world. Although there has been little consistent evidence of genotoxicity or carcinogenicity from in vitro and animal studies, a few epidemiologic reports have indicated potential health effects of glyphosate. We evaluated associations between glyphosate exposure and cancer incidence in the Agricultural Health Study (AHS), a prospective cohort study of 57,311 licensed pesticide applicators in...

  10. 78 FR 76612 - Notice of Receipt of Pesticide Products; Registration Applications To Register New Uses

    Science.gov (United States)

    2013-12-18

    ... January 17, 2014. ADDRESSES: Submit your comments, identified by docket identification (ID) number and the...: Herbicide. Proposed use: Tree nuts. List of Subjects Environmental protection, Pesticides and pest. Dated...

  11. Pesticide Mixtures, Endocrine Disruption, and Amphibian Declines: Are We Underestimating the Impact?

    Science.gov (United States)

    Hayes, Tyrone B.; Case, Paola; Chui, Sarah; Chung, Duc; Haeffele, Cathryn; Haston, Kelly; Lee, Melissa; Mai, Vien Phoung; Marjuoa, Youssra; Parker, John; Tsui, Mable

    2006-01-01

    Amphibian populations are declining globally at an alarming rate. Pesticides are among a number of proposed causes for these declines. Although a sizable database examining effects of pesticides on amphibians exists, the vast majority of these studies focus on toxicological effects (lethality, external malformations, etc.) at relatively high doses (parts per million). Very few studies focus on effects such as endocrine disruption at low concentrations. Further, most studies examine exposures to single chemicals only. The present study examined nine pesticides (four herbicides, two fungicides, and three insecticides) used on cornfields in the midwestern United States. Effects of each pesticide alone (0.1 ppb) or in combination were examined. In addition, we also examined atrazine and S-metolachlor combined (0.1 or 10 ppb each) and the commercial formulation Bicep II Magnum, which contains both of these herbicides. These two pesticides were examined in combination because they are persistent throughout the year in the wild. We examined larval growth and development, sex differentiation, and immune function in leopard frogs (Rana pipiens). In a follow-up study, we also examined the effects of the nine-compound mixture on plasma corticosterone levels in male African clawed frogs (Xenopus laevis). Although some of the pesticides individually inhibited larval growth and development, the pesticide mixtures had much greater effects. Larval growth and development were retarded, but most significantly, pesticide mixtures negated or reversed the typically positive correlation between time to metamorphosis and size at metamorphosis observed in controls: exposed larvae that took longer to metamorphose were smaller than their counterparts that metamorphosed earlier. The nine-pesticide mixture also induced damage to the thymus, resulting in immunosuppression and contraction of flavobacterial meningitis. The study in X. laevis revealed that these adverse effects may be due to an

  12. A note on the effective evaluation height for flux-gradient relationships and its application to herbicide fluxes

    Science.gov (United States)

    Volatilization represents a significant loss pathway for many pesticides, herbicides and other agrochemicals. One common method for measuring the volatilization of agrochemicals is the flux-gradient method. Using this method, the chemical flux is estimated as the product of the vertical concentratio...

  13. Effects of fuels, engine load and exhaust after-treatment on diesel engine SVOC emissions and development of SVOC profiles for receptor modeling

    Science.gov (United States)

    Huang, Lei; Bohac, Stanislav V.; Chernyak, Sergei M.; Batterman, Stuart A.

    2015-01-01

    Diesel exhaust emissions contain numerous semivolatile organic compounds (SVOCs) for which emission information is limited, especially for idling conditions, new fuels and the new after-treatment systems. This study investigates exhaust emissions of particulate matter (PM), polycyclic aromatic hydrocarbons (PAHs), nitro-PAHs (NPAHs), and sterane and hopane petroleum biomarkers from a heavy-duty (6.4 L) diesel engine at various loads (idle, 600 and 900 kPa BMEP), with three types of fuel (ultra-low sulfur diesel or ULSD, Swedish low aromatic diesel, and neat soybean biodiesel), and with and without a diesel oxidation catalyst (DOC) and diesel particulate filter (DPF). Swedish diesel and biodiesel reduced emissions of PM2.5, Σ15PAHs, Σ11NPAHs, Σ5Hopanes and Σ6Steranes, and biodiesel resulted in the larger reductions. However, idling emissions increased for benzo[k]fluoranthene (Swedish diesel), 5-nitroacenaphthene (biodiesel) and PM2.5 (biodiesel), a significant result given the attention to exposures from idling vehicles and the toxicity of high-molecular-weight PAHs and NPAHs. The DOC + DPF combination reduced PM2.5 and SVOC emissions during DPF loading (>99% reduction) and DPF regeneration (83–99%). The toxicity of diesel exhaust, in terms of the estimated carcinogenic risk, was greatly reduced using Swedish diesel, biodiesel fuels and the DOC + DPF. PAH profiles showed high abundances of three and four ring compounds as well as naphthalene; NPAH profiles were dominated by nitro-naphthalenes, 1-nitropyrene and 9-nitroanthracene. Both the emission rate and the composition of diesel exhaust depended strongly on fuel type, engine load and after-treatment system. The emissions data and chemical profiles presented are relevant to the development of emission inventories and exposure and risk assessments. PMID:25709535

  14. Effects of fuels, engine load and exhaust after-treatment on diesel engine SVOC emissions and development of SVOC profiles for receptor modeling.

    Science.gov (United States)

    Huang, Lei; Bohac, Stanislav V; Chernyak, Sergei M; Batterman, Stuart A

    2015-02-01

    Diesel exhaust emissions contain numerous semivolatile organic compounds (SVOCs) for which emission information is limited, especially for idling conditions, new fuels and the new after-treatment systems. This study investigates exhaust emissions of particulate matter (PM), polycyclic aromatic hydrocarbons (PAHs), nitro-PAHs (NPAHs), and sterane and hopane petroleum biomarkers from a heavy-duty (6.4 L) diesel engine at various loads (idle, 600 and 900 kPa BMEP), with three types of fuel (ultra-low sulfur diesel or ULSD, Swedish low aromatic diesel, and neat soybean biodiesel), and with and without a diesel oxidation catalyst (DOC) and diesel particulate filter (DPF). Swedish diesel and biodiesel reduced emissions of PM 2.5 , Σ 15 PAHs, Σ 11 NPAHs, Σ 5 Hopanes and Σ 6 Steranes, and biodiesel resulted in the larger reductions. However, idling emissions increased for benzo[k]fluoranthene (Swedish diesel), 5-nitroacenaphthene (biodiesel) and PM 2.5 (biodiesel), a significant result given the attention to exposures from idling vehicles and the toxicity of high-molecular-weight PAHs and NPAHs. The DOC + DPF combination reduced PM 2.5 and SVOC emissions during DPF loading (>99% reduction) and DPF regeneration (83-99%). The toxicity of diesel exhaust, in terms of the estimated carcinogenic risk, was greatly reduced using Swedish diesel, biodiesel fuels and the DOC + DPF. PAH profiles showed high abundances of three and four ring compounds as well as naphthalene; NPAH profiles were dominated by nitro-naphthalenes, 1-nitropyrene and 9-nitroanthracene. Both the emission rate and the composition of diesel exhaust depended strongly on fuel type, engine load and after-treatment system. The emissions data and chemical profiles presented are relevant to the development of emission inventories and exposure and risk assessments.

  15. Lethal effects of selected novel pesticides on immature stages of Trichogramma pretiosum (Hymenoptera: Trichogrammatidae).

    Science.gov (United States)

    Khan, Muhammad Ashraf; Ruberson, John R

    2017-12-01

    Trichogramma pretiosum Riley is an important egg parasitoid and biological control agent of caterpillar pests. We studied the acute toxicity of 20 pesticides (14 insecticides/miticides, three fungicides and three herbicides) exposed to recommended field rates. Egg, larval, and pupal stages of the parasitoid in their hosts were dipped in formulated solutions of the pesticides and evaluated 10 days later for percentage of host eggs with holes, number of parasitoids emerged per egg with holes, and stage-specific mortality of immature as well as adult wasps within the host eggs. Seven insecticides (buprofezin, chlorantraniliprole, spirotetramat, flonicamid, flubendiamide) and miticides (spiromesifen, cyflumetofen), one herbicide (nicosulfuron), and three fungicides (myclobutanil, pyraclostrobin, trifloxystrobin + tebuconazole) caused no significant mortality to immature stages or pre-emergent adult parasitoids relative to controls. By contrast, seven insecticides/miticides (abamectin, acetamiprid, dinotefuran, fipronil, novaluron, spinetoram, tolfenpyrad) adversely affected immature and pre-emergent adult T. pretiosum, with tolfenpyrad being particularly lethal. Two herbicides had moderate (glufosinate ammonium) to severe (s-metolachlor) acute lethal effects on the immature parasitoids. This study corroborates earlier findings with adult T. pretiosum. Over half of the pesticides - and all the fungicides - tested in the current study would appear to be compatible with the use of T. pretiosum in integrated pest management programs, with respect to acute parasitoid mortality. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  16. Water-quality assessment of the Trinity River Basin, Texas - Review and analysis of available pesticide information, 1968-91

    Science.gov (United States)

    Ulery, R.L.; Brown, M.F.

    1995-01-01

    In 1991 the Trinity River Basin study unit was among the first 20 study units in which work began under full-scale program implementation of the National Water-Quality Assessment Program. A retrospective assessment was undertaken to review and analyze existing pesticide data and related environmental factors. Population and land-use data indicate human modifications to the landscape and hydrologic system of the study area during the period 1968–91. A variety of crops treated with pesticides were identified, with wheat and cotton accounting for the largest number of acres treated annually (541,250 and 519,870 acres, respectively). Agricultural-use estimates for the later period covered by this report (1988–90) indicate that 105 different pesticides were used and that 24 pesticides accounted for 75 percent of average agricultural use in the study area. Sorghum was treated by the largest number of the 24 mostused pesticides, and cotton was treated by the second largest number of those pesticides. Dimethoate and methyl parathion were the most heavily used of the organophosphate class pesticides. The herbicide 2,4–D was the most heavily used chlorophenoxy pesticide. Carbamate pesticides are used extensively in the study area, with carbaryl, carbofuran, methomyl, and thiodicarb accounting for the majority of the use of this class of pesticide. Miscellaneous pesticides included alachlor, arsenic acid, picloram, and glyphosate, among others. The data indicate that herbicide use generally is proportionally higher in the study area than in the Nation, and that insecticide use in the study area generally is proportionally lower than in the Nation.

  17. Contribution of waste water treatment plants to pesticide toxicity in agriculture catchments.

    Science.gov (United States)

    Le, Trong Dieu Hien; Scharmüller, Andreas; Kattwinkel, Mira; Kühne, Ralph; Schüürmann, Gerrit; Schäfer, Ralf B

    2017-11-01

    Pesticide residues are frequently found in water bodies and may threaten freshwater ecosystems and biodiversity. In addition to runoff or leaching from treated agricultural fields, pesticides may enter streams via effluents from wastewater treatment plants (WWTPs). We compared the pesticide toxicity in terms of log maximum Toxic Unit (log mTU) of sampling sites in small agricultural streams of Germany with and without WWTPs in the upstream catchments. We found an approximately half log unit higher pesticide toxicity for sampling sites with WWTPs (p pesticide toxicity in streams with WWTPs. A few compounds (diuron, terbuthylazin, isoproturon, terbutryn and Metazachlor) dominated the herbicide toxicity. Pesticide toxicity was not correlated with upstream distance to WWTP (Spearman's rank correlation, rho = - 0.11, p > 0.05) suggesting that other context variables are more important to explain WWTP-driven pesticide toxicity. Our results suggest that WWTPs contribute to pesticide toxicity in German streams. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Removal of Herbicide Mecoprop from Surface Water Using Advanced Oxidation Processes (AOPS)

    International Nuclear Information System (INIS)

    Martinez, S.; Delgado, M.; Jarvis, P.

    2016-01-01

    In the last twenty years, due to a number of natural and anthropogenic reasons, many water sources have become poorer in quality with respect to micropollutants. An example of a micropollutant that needs to be removed is the chloro phenoxypropionic herbicide mecoprop (MCPP). MCPP is one of the nine pesticides used as an indicator to monitor pesticide concentrations in rivers because it is frequently found to exceed the 0.1 μg L-1 limit in England and Wales. The aim of this study was to investigate the effectiveness of different AOPs for the degradation of the herbicide Mecoprop (MCPP) in both deionised water (DW) and in surface water using different UV 2 54 intensities and concentrations of reagents. For an initial MCPP concentration of 10 mg/L, Photo-Fenton at neutral p H using 20 mg/L of H 2 O 2 and 20 mg/L Fe 2+ proved to be the most effective process in terms of degradation rate in both DW and surface water. When using an environmentally relevant concentration (1 μg/L) and neutral p H, if optimized, Photo-Fenton and UV/H 2 O 2 processes achieved the best degradation results.

  19. Degradation and enantiomeric fractionation of mecoprop in soil previously exposed to phenoxy acid herbicides - New insights for bioremediation

    Czech Academy of Sciences Publication Activity Database

    Frková, Zuzana; Johansen, A.; de Jonge, L.W.; Olsen, P.; Gosewinkel, U.; Bester, K.

    2016-01-01

    Roč. 569, November (2016), s. 1457-1465 ISSN 0048-9697 Institutional support: RVO:60077344 Keywords : phenoxy acids * nitrate-reducing conditions * herbicide biodegradation * enantioselectivity * biostimulation Subject RIV: DK - Soil Contamination ; De-contamination incl. Pesticides Impact factor: 4.900, year: 2016

  20. Non-target effects of a glyphosate-based herbicide on Common toad larvae (Bufo bufo, Amphibia) and associated algae are altered by temperature.

    Science.gov (United States)

    Baier, Fabian; Gruber, Edith; Hein, Thomas; Bondar-Kunze, Elisabeth; Ivanković, Marina; Mentler, Axel; Brühl, Carsten A; Spangl, Bernhard; Zaller, Johann G

    2016-01-01

    Glyphosate-based herbicides are the most widely used pesticides in agriculture, horticulture, municipalities and private gardens that can potentially contaminate nearby water bodies inhabited by amphibians and algae. Moreover, the development and diversity of these aquatic organisms could also be affected by human-induced climate change that might lead to more periods with extreme temperatures. However, to what extent non-target effects of these herbicides on amphibians or algae are altered by varying temperature is not well known. We studied effects of five concentrations of the glyphosate-based herbicide formulation Roundup PowerFlex (0, 1.5, 3, 4 mg acid equivalent glyphosate L -1 as a one time addition and a pulse treatment of totally 4 mg a.e. glyphosate L -1 ) on larval development of Common toads ( Bufo bufo , L.; Amphibia: Anura) and associated algae communities under two temperature regimes (15 vs. 20 °C). Herbicide contamination reduced tail growth (-8%), induced the occurrence of tail deformations (i.e. lacerated or crooked tails) and reduced algae diversity (-6%). Higher water temperature increased tadpole growth (tail and body length (tl/bl) +66%, length-to-width ratio +4%) and decreased algae diversity (-21%). No clear relation between herbicide concentrations and tadpole growth or algae density or diversity was observed. Interactive effects of herbicides and temperature affected growth parameters, tail deformation and tadpole mortality indicating that the herbicide effects are temperature-dependent. Remarkably, herbicide-temperature interactions resulted in deformed tails in 34% of all herbicide treated tadpoles at 15 °C whereas no tail deformations were observed for the herbicide-free control at 15 °C or any tadpole at 20 °C; herbicide-induced mortality was higher at 15 °C but lower at 20 °C. These herbicide- and temperature-induced changes may have decided effects on ecological interactions in freshwater ecosystems. Although no clear dose

  1. Non-target effects of a glyphosate-based herbicide on Common toad larvae (Bufo bufo, Amphibia and associated algae are altered by temperature

    Directory of Open Access Journals (Sweden)

    Fabian Baier

    2016-11-01

    Full Text Available Background Glyphosate-based herbicides are the most widely used pesticides in agriculture, horticulture, municipalities and private gardens that can potentially contaminate nearby water bodies inhabited by amphibians and algae. Moreover, the development and diversity of these aquatic organisms could also be affected by human-induced climate change that might lead to more periods with extreme temperatures. However, to what extent non-target effects of these herbicides on amphibians or algae are altered by varying temperature is not well known. Methods We studied effects of five concentrations of the glyphosate-based herbicide formulation Roundup PowerFlex (0, 1.5, 3, 4 mg acid equivalent glyphosate L−1 as a one time addition and a pulse treatment of totally 4 mg a.e. glyphosate L−1 on larval development of Common toads (Bufo bufo, L.; Amphibia: Anura and associated algae communities under two temperature regimes (15 vs. 20 °C. Results Herbicide contamination reduced tail growth (−8%, induced the occurrence of tail deformations (i.e. lacerated or crooked tails and reduced algae diversity (−6%. Higher water temperature increased tadpole growth (tail and body length (tl/bl +66%, length-to-width ratio +4% and decreased algae diversity (−21%. No clear relation between herbicide concentrations and tadpole growth or algae density or diversity was observed. Interactive effects of herbicides and temperature affected growth parameters, tail deformation and tadpole mortality indicating that the herbicide effects are temperature-dependent. Remarkably, herbicide-temperature interactions resulted in deformed tails in 34% of all herbicide treated tadpoles at 15 °C whereas no tail deformations were observed for the herbicide-free control at 15 °C or any tadpole at 20 °C; herbicide-induced mortality was higher at 15 °C but lower at 20 °C. Discussion These herbicide- and temperature-induced changes may have decided effects on ecological

  2. Reproductive disorders associated with pesticide exposure.

    Science.gov (United States)

    Frazier, Linda M

    2007-01-01

    Exposure of men or women to certain pesticides at sufficient doses may increase the risk for sperm abnormalities, decreased fertility, a deficit of male children, spontaneous abortion, birth defects or fetal growth retardation. Pesticides from workplace or environmental exposures enter breast milk. Certain pesticides have been linked to developmental neurobehavioral problems, altered function of immune cells and possibly childhood leukemia. In well-designed epidemiologic studies, adverse reproductive or developmental effects have been associated with mixed pesticide exposure in occupational settings, particularly when personal protective equipment is not used. Every class of pesticides has at least one agent capable of affecting a reproductive or developmental endpoint in laboratory animals or people, including organophosphates, carbamates, pyrethroids, herbicides, fungicides, fumigants and especially organochlorines. Many of the most toxic pesticides have been banned or restricted in developed nations, but high exposures to these agents are still occurring in the most impoverished countries around the globe. Protective clothing, masks and gloves are more difficult to tolerate in hot, humid weather, or may be unavailable or unaffordable. Counseling patients who are concerned about reproductive and developmental effects of pesticides often involves helping them assess their exposure levels, weigh risks and benefits, and adopt practices to reduce or eliminate their absorbed dose. Patients may not realize that by the first prenatal care visit, most disruptions of organogenesis have already occurred. Planning ahead provides the best chance of lowering risk from pesticides and remediating other risk factors before conception.

  3. Sources, occurrence and predicted aquatic impact of legacy and contemporary pesticides in streams.

    Science.gov (United States)

    McKnight, Ursula S; Rasmussen, Jes J; Kronvang, Brian; Binning, Philip J; Bjerg, Poul L

    2015-05-01

    We couple current findings of pesticides in surface and groundwater to the history of pesticide usage, focusing on the potential contribution of legacy pesticides to the predicted ecotoxicological impact on benthic macroinvertebrates in headwater streams. Results suggest that groundwater, in addition to precipitation and surface runoff, is an important source of pesticides (particularly legacy herbicides) entering surface water. In addition to current-use active ingredients, legacy pesticides, metabolites and impurities are important for explaining the estimated total toxicity attributable to pesticides. Sediment-bound insecticides were identified as the primary source for predicted ecotoxicity. Our results support recent studies indicating that highly sorbing chemicals contribute and even drive impacts on aquatic ecosystems. They further indicate that groundwater contaminated by legacy and contemporary pesticides may impact adjoining streams. Stream observations of soluble and sediment-bound pesticides are valuable for understanding the long-term fate of pesticides in aquifers, and should be included in stream monitoring programs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Residential exposures to pesticides and childhood leukaemia

    International Nuclear Information System (INIS)

    Metayer, C.; Buffler, P. A.

    2008-01-01

    Like many chemicals, carcinogenicity of pesticides is poorly characterised in humans, especially in children, so that the present knowledge about childhood leukaemia risk derives primarily from epidemiological studies. Overall, case-control studies published in the last decade have reported positive associations with home use of insecticides, mostly before the child's birth, while findings for herbicides are mixed. Previous studies relied solely on self-reports, therefore lacking information on active ingredients and effects of potential recall bias. Few series to date have examined the influence of children's genetic susceptibility related to transport and metabolism of pesticides. To overcome these limitations, investigators of the Northern California Childhood Leukaemia Study (NCCLS) have undertaken, in collaboration with a multidisciplinary team, a comprehensive assessment of residential pesticide exposure, including: (1) quality control of self-reports; (2) home pesticide inventory and linkage to the Environmental Protection Agency to obtain data on active ingredients; (3) collection and laboratory analyses of ∼600 home dust samples for over 60 pesticides and (4) geographic information studies using California environmental databases to assess exposure to agricultural pesticides. The NCCLS is also conducting large-scale geno-typing to evaluate the role of genes in xenobiotic pathways relevant to the transport and metabolism of pesticides. A better quantification of children's exposures to pesticides at home is critical to the evaluation of childhood leukaemia risk, especially for future gene-environment interaction studies. (authors)

  5. Vegetated Ditches for the Mitigation of Pesticides Runoff in the Po Valley.

    Directory of Open Access Journals (Sweden)

    Stefan Otto

    Full Text Available In intensive agricultural systems runoff is one of the major potential diffuse pollution pathways for pesticides and poses a risk to surface water. Ditches are common in the Po Valley and can potentially provide runoff mitigation for the protection of watercourses. The effectiveness depends on ditch characteristics, so there is an urgent need for site-specific field trials. The use of a fugacity model (multimedia model can allows recognition of the mitigation main processes. A field experiment was conducted in order to evaluate the mitigation capacity of a typical vegetated ditch, and results were compared with predictions by a fugacity model. To evaluate herbicide mitigation after an extreme runoff, the ditch was flooded with water containing mesotrione, S-metolachlor and terbuthylazine. Two other subsequent floods with uncontaminated water were applied 27 and 82 days later to evaluate herbicides release. Results show that the ditch can immediately reduce runoff concentration of herbicides by at least 50% even in extreme flooding conditions. The half-distances were about 250 m. As a general rule, a runoff of 1 mm from 5 ha is mitigated by 99% in 100 m of vegetated ditch. Herbicides retention in the vegetated ditch was reversible, and the second flood mobilized 0.03-0.2% of the previous one, with a concentration below the drinking water limit of 0.1 μg L(-1. No herbicide was detected in the third flood, because the residual amount in the ditch was too low. Fugacity model results show that specific physical-chemical parameters may be used and a specific soil-sediment-plant compartment included for modelling herbicides behaviour in a vegetated ditch, and confirm that accumulation is low or negligible for herbicides with a half-life of 40 days or less. Shallow vegetated ditches can thus be included in a general agri-environment scheme for the mitigation of pesticides runoff together with wetlands and linear buffer strips. These structures are

  6. Vegetated Ditches for the Mitigation of Pesticides Runoff in the Po Valley.

    Science.gov (United States)

    Otto, Stefan; Pappalardo, Salvatore E; Cardinali, Alessandra; Masin, Roberta; Zanin, Giuseppe; Borin, Maurizio

    2016-01-01

    In intensive agricultural systems runoff is one of the major potential diffuse pollution pathways for pesticides and poses a risk to surface water. Ditches are common in the Po Valley and can potentially provide runoff mitigation for the protection of watercourses. The effectiveness depends on ditch characteristics, so there is an urgent need for site-specific field trials. The use of a fugacity model (multimedia model) can allows recognition of the mitigation main processes. A field experiment was conducted in order to evaluate the mitigation capacity of a typical vegetated ditch, and results were compared with predictions by a fugacity model. To evaluate herbicide mitigation after an extreme runoff, the ditch was flooded with water containing mesotrione, S-metolachlor and terbuthylazine. Two other subsequent floods with uncontaminated water were applied 27 and 82 days later to evaluate herbicides release. Results show that the ditch can immediately reduce runoff concentration of herbicides by at least 50% even in extreme flooding conditions. The half-distances were about 250 m. As a general rule, a runoff of 1 mm from 5 ha is mitigated by 99% in 100 m of vegetated ditch. Herbicides retention in the vegetated ditch was reversible, and the second flood mobilized 0.03-0.2% of the previous one, with a concentration below the drinking water limit of 0.1 μg L(-1). No herbicide was detected in the third flood, because the residual amount in the ditch was too low. Fugacity model results show that specific physical-chemical parameters may be used and a specific soil-sediment-plant compartment included for modelling herbicides behaviour in a vegetated ditch, and confirm that accumulation is low or negligible for herbicides with a half-life of 40 days or less. Shallow vegetated ditches can thus be included in a general agri-environment scheme for the mitigation of pesticides runoff together with wetlands and linear buffer strips. These structures are present in the

  7. Pesticide sorption and leaching potential on three Hawaiian soils.

    Science.gov (United States)

    Hall, Kathleen E; Ray, Chittaranjan; Ki, Seo Jin; Spokas, Kurt A; Koskinen, William C

    2015-08-15

    On the Hawaiian Islands, groundwater is the principal source of potable water and contamination of this key resource by pesticides is of great concern. To evaluate the leaching potential of four weak acid herbicides [aminocyclopyrachlor, picloram, metsulfuron-methyl, biologically active diketonitrile degradate of isoxaflutole (DKN)] and two neutral non-ionizable herbicides [oxyfluorfen, alachlor], their sorption coefficients were determined on three prevalent soils from the island of Oahu. Metsulfuron-methyl, aminocylcopyrachlor, picloram, and DKN were relatively low sorbing herbicides (K(oc) = 3-53 mL g(-1)), alachlor was intermediate (K(oc) = 120-150 mL g(-1)), and oxyfluorfen sorbed very strongly to the three soils (K(oc) > 12,000 mL g(-1)). Following determination of K(oc) values, the groundwater ubiquity score (GUS) indices for these compounds were calculated to predicted their behavior with the Comprehensive Leaching Risk Assessment System (CLEARS; Tier-1 methodology for Hawaii). Metsulfuron-methyl, aminocyclopyrachlor, picloram, and DKN would be categorized as likely leachers in all three Hawaiian soils, indicating a high risk of groundwater contamination across the island of Oahu. In contrast, oxyfluorfen, regardless of the degradation rate, would possess a low and acceptable leaching risk due to its high sorption on all three soils. The leaching potential of alachlor was more difficult to classify, with a GUS value between 1.8 and 2.8. In addition, four different biochar amendments to these soils did not significantly alter their sorption capacities for aminocyclopyrachlor, indicating a relatively low impact of black carbon additions from geologic volcanic inputs of black carbon. Due to the fact that pesticide environmental risks are chiefly dependent on local soil characteristics, this work has demonstrated that once soil specific sorption parameters are known one can assess the potential pesticide leaching risks. Published by Elsevier Ltd.

  8. Aquatic risk assessment of the new rice herbicide profoxydim

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, Paloma [Laboratory for Ecotoxicology, Department of the Environment, INIA, Crta De La Coruna Km 7, 28040 Madrid (Spain)]. E-mail: arguello@inia.es; Kubitza, Johanna [BASF-AG, Agricultural Center Limburgerhof, P.O. Box 120, D-67114 Limburgerhof (Germany); Peter Dohmen, G. [BASF-AG, Agricultural Center Limburgerhof, P.O. Box 120, D-67114 Limburgerhof (Germany); Tarazona, Jose V. [Laboratory for Ecotoxicology, Department of the Environment, INIA, Crta De La Coruna Km 7, 28040 Madrid (Spain)

    2006-07-15

    A tiered protocol for assessing ecological risks has been applied to the rice pesticide profoxydim. The initial assessment (Tier I) was based on toxicity exposure ratio (TER) calculations based on laboratory data using a worst-case rice scenario. The first refinement (Tier II) was based on direct toxicity assessment (DTA) of water samples collected during a field-mesocosm study. Finally, a higher-tier assessment on the in situ assessment of paddy community responses (field-mesocosm-Tier III) was performed. A successive application of three pesticides, the herbicides azimsulfuron, propanil and the insecticide malathion, was used as reference controls. The refined assessments indicated a lower risk than that predicted from TER estimations. DTA-based Tier II showed toxicity effects only for concentrations above the recommended dose of profoxydim. Effects for reference controls were observed in DTA which were not expected from Tier I. The field-mesocosm study confirmed these effects but also showed that they were transient and of low relevance. - Risk refinement assessment of rice pesticides starting with DTA and moving to community studies is a cost-effective approach, only if required.

  9. Aquatic risk assessment of the new rice herbicide profoxydim

    International Nuclear Information System (INIS)

    Sanchez, Paloma; Kubitza, Johanna; Peter Dohmen, G.; Tarazona, Jose V.

    2006-01-01

    A tiered protocol for assessing ecological risks has been applied to the rice pesticide profoxydim. The initial assessment (Tier I) was based on toxicity exposure ratio (TER) calculations based on laboratory data using a worst-case rice scenario. The first refinement (Tier II) was based on direct toxicity assessment (DTA) of water samples collected during a field-mesocosm study. Finally, a higher-tier assessment on the in situ assessment of paddy community responses (field-mesocosm-Tier III) was performed. A successive application of three pesticides, the herbicides azimsulfuron, propanil and the insecticide malathion, was used as reference controls. The refined assessments indicated a lower risk than that predicted from TER estimations. DTA-based Tier II showed toxicity effects only for concentrations above the recommended dose of profoxydim. Effects for reference controls were observed in DTA which were not expected from Tier I. The field-mesocosm study confirmed these effects but also showed that they were transient and of low relevance. - Risk refinement assessment of rice pesticides starting with DTA and moving to community studies is a cost-effective approach, only if required

  10. Toxic effects of pesticide mixtures at a molecular level: Their relevance to human health

    International Nuclear Information System (INIS)

    Hernández, Antonio F.; Parrón, Tesifón; Tsatsakis, Aristidis M.; Requena, Mar; Alarcón, Raquel; López-Guarnido, Olga

    2013-01-01

    Highlights: ► Toxic effects of pesticide mixtures can be independent, dose addition or interaction. ► Metabolic interactions involve inhibition or induction of detoxifying enzymes. ► Organophosphates can potentiate pyrethroid, carbaryl and triazine toxicity. ► Synergism occurs when two active pesticides elicit greater than additive toxicity. ► Endocrine disruptors have the potential for additivity rather than synergism. - Abstract: Pesticides almost always occur in mixtures with other ones. The toxicological effects of low-dose pesticide mixtures on the human health are largely unknown, although there are growing concerns about their safety. The combined toxicological effects of two or more components of a pesticide mixture can take one of three forms: independent, dose addition or interaction. Not all mixtures of pesticides with similar chemical structures produce additive effects; thus, if they act on multiple sites their mixtures may produce different toxic effects. The additive approach also fails when evaluating mixtures that involve a secondary chemical that changes the toxicokinetics of the pesticide as a result of its increased activation or decreased detoxification, which is followed by an enhanced or reduced toxicity, respectively. This review addresses a number of toxicological interactions of pesticide mixtures at a molecular level. Examples of such interactions include the postulated mechanisms for the potentiation of pyrethroid, carbaryl and triazine herbicides toxicity by organophosphates; how the toxicity of some organophosphates can be potentiated by other organophosphates or by previous exposure to organochlorines; the synergism between pyrethroid and carbamate compounds and the antagonism between triazine herbicides and prochloraz. Particular interactions are also addressed, such as those of pesticides acting as endocrine disruptors, the cumulative toxicity of organophosphates and organochlorines resulting in estrogenic effects and the

  11. Assessment of the Environmental Fate of the Herbicides Flufenacet and Metazachlor with the SWAT Model.

    Science.gov (United States)

    Fohrer, Nicola; Dietrich, Antje; Kolychalow, Olga; Ulrich, Uta

    2014-01-01

    This study aims to assess the environmental fate of the commonly used herbicides flufenacet and metazachlor in the Northern German Lowlands with the ecohydrological Soil and Water Assessment Tool (SWAT model) and to test the sensitivity of pesticide-related input parameters on the modeled transport dynamics. The river discharge of the Kielstau watershed was calibrated (Nash-Sutcliffe efficiency [NSE], 0.83; = 0.84) and validated (NSE, 0.76; = 0.77) for a daily time step. The environmental fate of metazachlor (NSE, 0.68; = 0.62) and flufenacet (NSE, 0.13; = 0.51) was simulated adequately. In comparison to metazachlor, the simulated flufenacet concentration and loads show a lower model efficiency due to the weaker simulation of the stream flow. The in-stream herbicide loads were less than 0.01% of the applied amount in the observed time period and thus not in conflict with European Environmental Legislation. The sensitivity analysis showed that, besides the accurate simulation of stream flow, the parameterization of the temporal and spatial distribution of the herbicide application throughout the watershed is the key factor for appropriate modeling results, whereas the physicochemical properties of the pesticides play a minor role in the modeling process. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  12. Pesticide use and risk of end-stage renal disease among licensed pesticide applicators in the Agricultural Health Study.

    Science.gov (United States)

    Lebov, Jill F; Engel, Lawrence S; Richardson, David; Hogan, Susan L; Hoppin, Jane A; Sandler, Dale P

    2016-01-01

    Experimental studies suggest a relationship between pesticide exposure and renal impairment, but epidemiological evidence is limited. We evaluated the association between exposure to 39 specific pesticides and end-stage renal disease (ESRD) incidence in the Agricultural Health Study, a prospective cohort study of licensed pesticide applicators in Iowa and North Carolina. Via linkage to the US Renal Data System, we identified 320 ESRD cases diagnosed between enrolment (1993-1997) and December 2011 among 55 580 male licensed pesticide applicators. Participants provided information on use of pesticides via self-administered questionnaires. Lifetime pesticide use was defined as the product of duration and frequency of use and then modified by an intensity factor to account for differences in pesticide application practices. Cox proportional hazards models, adjusted for age and state, were used to estimate associations between ESRD and: (1) ordinal categories of intensity-weighted lifetime use of 39 pesticides, (2) poisoning and high-level pesticide exposures and (3) pesticide exposure resulting in a medical visit or hospitalisation. Positive exposure-response trends were observed for the herbicides alachlor, atrazine, metolachlor, paraquat, and pendimethalin, and the insecticide permethrin. More than one medical visit due to pesticide use (HR=2.13; 95% CI 1.17 to 3.89) and hospitalisation due to pesticide use (HR=3.05; 95% CI 1.67 to 5.58) were significantly associated with ESRD. Our findings support an association between ESRD and chronic exposure to specific pesticides, and suggest pesticide exposures resulting in medical visits may increase the risk of ESRD. Clinicaltrials.gov NCT00352924. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  13. Presence of the β-triketone herbicide tefuryltrione in drinking water sources and its degradation product in drinking waters.

    Science.gov (United States)

    Kamata, Motoyuki; Asami, Mari; Matsui, Yoshihiko

    2017-07-01

    Triketone herbicides are becoming popular because of their herbicidal activity against sulfonylurea-resistant weeds. Among these herbicides, tefuryltrione (TFT) is the first registered herbicide for rice farming, and recently its distribution has grown dramatically. In this study, we developed analytical methods for TFT and its degradation product 2-chloro-4-methylsulfonyl-3-[(tetrahydrofuran-2-yl-methoxy) methyl] benzoic acid (CMTBA). TFT was found frequently in surface waters in rice production areas at concentrations as high as 1.9 μg/L. The maximum observed concentration was lower than but close to 2 μg/L, which is the Japanese reference concentration of ambient water quality for pesticides. However, TFT was not found in any drinking waters even though the source waters were purified by conventional coagulation and filtration processes; this was due to chlorination, which transforms TFT to CMTBA. The conversion rate of TFT to CMBA on chlorination was almost 100%, and CMTBA was stable in the presence of chlorine. Moreover, CMTBA was found in drinking waters sampled from household water taps at a similar concentration to that of TFT in the source water of the water purification plant. Although the acceptable daily intake and the reference concentration of CMTBA are unknown, the highest concentration in drinking water exceeded 0.1 μg/L, which is the maximum allowable concentration for any individual pesticide and its relevant metabolites in the European Union Drinking Directive. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Examining impacts of current-use pesticides in Southern Ontario using in situ exposures of the amphipod Hyalella azteca.

    Science.gov (United States)

    Bartlett, Adrienne J; Struger, John; Grapentine, Lee C; Palace, Vince P

    2016-05-01

    In situ exposures with Hyalella azteca were used to assess impacts of current-use pesticides in Southern Ontario, Canada. Exposures were conducted over 2 growing seasons within areas of high pesticide use: 1 site on Prudhomme Creek and 3 sites on Twenty Mile Creek. Three sites on Spencer Creek, an area of low pesticide use, were added in the second season. Surface water samples were collected every 2 wk to 3 wk and analyzed for a suite of pesticides. Hyalella were exposed in situ for 1 wk every 4 wk to 6 wk, and survival and acetylcholinesterase (AChE) activity were measured. Pesticides in surface waters reflected seasonal use patterns: lower concentrations in spring and fall and higher concentrations during summer months. Organophosphate insecticides (chlorpyrifos, azinphos methyl, diazinon) and acid herbicides (2,4-dichlorophenoxyacetic acid [2,4-D], mecoprop) were routinely detected in Prudhomme Creek, whereas neutral herbicides (atrazine, metolachlor) dominated the pesticide signature of Twenty Mile Creek. Spencer Creek contained fewer pesticides, which were measured at lower concentrations. In situ effects also followed seasonal patterns: higher survival and AChE activity in spring and fall, and lower survival and AChE activity during summer months. The highest toxicity was observed at Prudhomme Creek and was primarily associated with organophosphates. The present study demonstrated that current-use pesticides in Southern Ontario were linked to in situ effects and identified sites of concern requiring further investigation. © 2015 Crown in the Right of Canada.

  15. Effects of herbicides on coral and seasonal distribution in water and sediments collected from rivers and coral reefs of the Ryukyu Archipelago, Japan

    Science.gov (United States)

    Kaneshiro, A.; Fujimura, H.; Oomori, T.; Gima, S.; Suzuki, Y.; Casareto, B. E.; Higuchi, T.; Sagawa, T.

    2011-12-01

    Introduction Coral reefs are subjected to artificial chemicals such as herbicide and pesticides. Diuron [N'-(3, 4-dichlorophenyl)-N, N-dimethylurea] is one of the active constituent contained in a herbicide. Although acute effects of diuron on coral are reported by several researchers, longer-period toxicity with lower level concentration and synergistic effect between the herbicide and soil sedimentation from river water have not been studied. We investigated the concentration level, distribution, seasonal variation and accumulation of several herbicides and pesticides in coral reef and river in Ishigaki Island and Okinawa Island, and estimated the rates of carbon production of calcification and photosynthesis to access the effects of herbicides on coral. Materials and Methods Water and sediment samples were collected from Todoroki river and Shiraho coral reef in Ishigaki Island and several rivers from Okinawa Island in August 2010 to August 2011. Diuron and other active constituents were extracted using a solid-phase column and measured with a liquid chromatography-tandem mass spectrometry (LC-MS/MS). Corals for the experiment were collected from Okinawa Island and incubated in glass bottles. Seawater adjusted several concentrations of herbicide was continuously supplied to the bottles. Coral calcification and photosynthesis were estimated based on the change in total alkalinity and pH during a few hours when we temporary cease the water flow. Results and Discussion Higher diuron of 563 ng/L in water and 26 μg/kg in sediment was detected at the headwater of the Todoroki river in Ishigaki. in June. Sugarcane plantation is prevailing in Todoroki river area and rainwater can tend to gather topographically to upstream of the river. The higher concentration at the headwater decreased to 23 ng/L toward the river mouth. On the whole, the concentrations were higher during summer and lower in the other seasons in Ishigaki. On the other hand, seasonal variation was not

  16. Pesticides residues in the Prochilodus costatus (Valenciennes, 1850) fish caught in the São Francisco River, Brazil.

    Science.gov (United States)

    Oliveira, Fabiano A; Reis, Lilian P G; Soto-Blanco, Benito; Melo, Marília M

    2015-01-01

    The objective of this study was to determine the levels of pesticides in the fish Prochilodus costatus caught in São Francisco River, one of most important rivers in Brazil. Thirty-six fish were captured in three different areas, and samples of the dorsal muscle and pooled viscera were collected for toxicological analysis. We evaluated the presence of 150 different classes of insecticides, fungicides, herbicides and acaricides by multiresidue analysis technique using liquid chromatography-tandem mass spectrometry (LC-MS/MS), with the limit of detection of 5 ppb. In this study, organophosphorus and carbamate pesticides were detected at the highest levels in the caught fish. Among the 41 organophosphorus pesticides surveyed, nine types were detected (chlorpyrifos, diazinon, dichlorvos, disulfoton, ethion, etrimfos, phosalone, phosmet and pyrazophos) in the muscle, viscera pool, or both in 22 (61.1%) fish. Sampled tissues of 20 (55.6%) fish exhibited at least one of the eight evaluated carbamate pesticides and their metabolites: aldicarb, aldicarb sulfoxide, carbaryl, carbofuran, carbosulfan, furathiocarb, methomyl and propoxur. Fungicides (carbendazim, benalaxyl, kresoxim-methyl, trifloxystrobin, pyraclostrobin and its metabolite BF 500 pyraclostrobin), herbicides (pyridate and fluasifop p-butyl), acaricide (propargite) and pyrethroid (flumethrin) were also detected. In conclusion, P. costatus fish caught in the São Francisco River contained residues of 17 different pesticides, in both muscles and the viscera pool, indicating heavy environmental contamination by pesticides in the study area.

  17. Molecular classification of pesticides including persistent organic pollutants, phenylurea and sulphonylurea herbicides.

    Science.gov (United States)

    Torrens, Francisco; Castellano, Gloria

    2014-06-05

    Pesticide residues in wine were analyzed by liquid chromatography-tandem mass spectrometry. Retentions are modelled by structure-property relationships. Bioplastic evolution is an evolutionary perspective conjugating effect of acquired characters and evolutionary indeterminacy-morphological determination-natural selection principles; its application to design co-ordination index barely improves correlations. Fractal dimensions and partition coefficient differentiate pesticides. Classification algorithms are based on information entropy and its production. Pesticides allow a structural classification by nonplanarity, and number of O, S, N and Cl atoms and cycles; different behaviours depend on number of cycles. The novelty of the approach is that the structural parameters are related to retentions. Classification algorithms are based on information entropy. When applying procedures to moderate-sized sets, excessive results appear compatible with data suffering a combinatorial explosion. However, equipartition conjecture selects criterion resulting from classification between hierarchical trees. Information entropy permits classifying compounds agreeing with principal component analyses. Periodic classification shows that pesticides in the same group present similar properties; those also in equal period, maximum resemblance. The advantage of the classification is to predict the retentions for molecules not included in the categorization. Classification extends to phenyl/sulphonylureas and the application will be to predict their retentions.

  18. Effect of pesticides on nitrification in aquatic sediment

    Directory of Open Access Journals (Sweden)

    A. Enrich-Prast

    Full Text Available The aim of this work was to study the effect of the herbicides glyphosate, nonanoic acid, and dichlorprop-P and the insecticides potassium oil, malation and Pyretrin and their combinations on nitrification. Nitrification was measured in slurries from the eutrophic and shallow Brabrand Lake (Aarhus, Denmark, by inhibiting oxidation of nitrite to nitrate with chloride. All herbicides and insecticides influenced nitrification. The No Observed Effect Concentration (NOEC was assessed to be 30 µg.L-1 for glyphosate and nonanoic acid and 1 µg.L-1 for dichlorprop-P. The NOEC for malation and Pyretrin on nitrification was assessed to be 3 µg.L-1. No accumulation effect on nitrification of the insecticides malation and Pyretrin, or of the studied herbicides, was observed, indicating that their environmental impact is low at reduced concentrations, even in combination. The procedure used in this study can provide a useful tool for obtaining concentration limits for pesticides or other chemicals in a short period of time.

  19. Evaluation of various QuEChERS based methods for the analysis of herbicides and other commonly used pesticides in polished rice by LC-MS/MS.

    Science.gov (United States)

    Pareja, Lucía; Cesio, Verónica; Heinzen, Horacio; Fernández-Alba, Amadeo R

    2011-02-15

    Four different extraction and clean-up protocols based on the QuEChERS method were compared for the development of an optimized sample preparation procedure for the multiresidue analysis of 16 commonly applied herbicides in rice crops using LC-QqQ/MS. Additionally the methods were evaluated for the analysis of 26 insecticides and fungicides currently used in rice crops. The methods comprise, in general, the hydratation of the sample with water followed by the extraction with acetonitrile, phase separation with the addition of different salts and finally a clean-up step with various sorbents. Matrix effects were evaluated for the 4 studied methods using LC-QqQ/MS. Additionally LC-TOF/MS was used to compare the co-extractants obtained with the four assayed methodologies. Thirty-six pesticides presented good performance with recoveries in the range 70-120% and relative standard deviations below 20% using 7.5 g of milled polished rice and the buffered acetate QuEChERS method without clean-up at both fortification levels: 10 and 300 μg kg(-1). The other six pesticides presented low recovery rates, nevertheless all these analytes could be analyzed with at least one of the other three studied procedures. Copyright © 2010. Published by Elsevier B.V.

  20. Effects of Chlorophenoxy Herbicides and Their Main Transformation Products on DNA Damage and Acetylcholinesterase Activity

    Directory of Open Access Journals (Sweden)

    Sofia Benfeito

    2014-01-01

    Full Text Available Persistent pesticide transformation products (TPs are increasingly being detected among different environmental compartments, including groundwater and surface water. However, there is no sufficient experimental data on their toxicological potential to assess the risk associated with TPs, even if their occurrence is known. In this study, the interaction of chlorophenoxy herbicides (MCPA, mecoprop, 2,4-D and dichlorprop and their main transformation products with calf thymus DNA by UV-visible absorption spectroscopy has been assessed. Additionally, the toxicity of the chlorophenoxy herbicides and TPs was also assessed evaluating the inhibition of acetylcholinesterase activity. On the basis of the results found, it seems that AChE is not the main target of chlorophenoxy herbicides and their TPs. However, the results found showed that the transformation products displayed a higher inhibitory activity when compared with the parent herbicides. The results obtained in the DNA interaction studies showed, in general, a slight effect on the stability of the double helix. However, the data found for 4-chloro-2-methyl-6-nitrophenol suggest that this transformation product can interact with DNA through a noncovalent mode.

  1. Iowa Commercial Pesticide Applicator Manual, Category 1A: Agricultural Weed Control.

    Science.gov (United States)

    Jennings, Vivan M.; Ryan, Stephen O.

    This manual provides information needed to meet the standards for pesticide applicator certification. Weeds, their effects, and control in relation to crop production are presented. Pre- and post-emergence treatments are discussed for row crops such as corn and soybeans. Problems with herbicide application to grass pastures, small grains, and…

  2. Multiple Pesticides Detoxification Function of Maize (Zea mays) GST34.

    Science.gov (United States)

    Li, Dongzhi; Xu, Li; Pang, Sen; Liu, Zhiqian; Zhao, Weisong; Wang, Chengju

    2017-03-08

    ZmGST34 is a maize Tau class GST gene and was found to be differently expressed between two maize cultivars differing in tolerance to herbicide metolachlor. To explore the possible role of ZmGST34 in maize development, the expression pattern and substrate specificity of ZmGST34 were characterized by quantitative RT-PCR and heterologous expression system, respectively. The results indicated that the expression level of ZmGST34 was increased ∼2-5-fold per day during the second-leaf stage of maize seedling. Chloroacetanilide herbicides or phytohormone treatments had no influence on the expression level of ZmGST34, suggesting that ZmGST34 is a constitutively expressed gene in maize seedling. Heterologous expression in Escherichia coli and in Arabidopsis thaliana proved that ZmGST34 can metabolize most chloroacetanilide herbicides and increase tolerance to these herbicides in transgenic Arabidopsis thaliana. The constitutive expression pattern and broad substrate activity of ZmGST34 suggested that this gene may play an important role in maize development in addition to the detoxification of pesticides.

  3. Pesticide transport simulation in a tropical catchment by SWAT

    International Nuclear Information System (INIS)

    Bannwarth, M.A.; Sangchan, W.; Hugenschmidt, C.; Lamers, M.; Ingwersen, J.; Ziegler, A.D.; Streck, T.

    2014-01-01

    The application of agrochemicals in Southeast Asia is increasing in rate, variety and toxicity with alarming speed. Understanding the behavior of these different contaminants within the environment require comprehensive monitoring programs as well as accurate simulations with hydrological models. We used the SWAT hydrological model to simulate the fate of three different pesticides, one of each usage type (herbicide, fungicide and insecticide) in a mountainous catchment in Northern Thailand. Three key parameters were identified: the sorption coefficient, the decay coefficient and the coefficient controlling pesticide percolation. We yielded satisfactory results simulating pesticide load dynamics during the calibration period (NSE: 0.92–0.67); the results during the validation period were also acceptable (NSE: 0.61–0.28). The results of this study are an important step in understanding the modeling behavior of these pesticides in SWAT and will help to identify thresholds of worst-case scenarios in order to assess the risk for the environment. - Highlights: • We performed a global LH-sensitivity analysis of all pesticide related parameters. • Key physical parameters are associated to percolation, degradation and sorption. • We simulated the measured loads of three different pesticides. • We performed an uncertainty analysis of all pesticide simulations. • All Pesticides differed considerably in their sensitivity and simulation behavior. - Pesticide load simulations of three pesticides were modeled by SWAT, providing clues on how to handle pesticides in future SWAT studies

  4. Determination of polar pesticides with atmospheric pressure chemical ionisation mass spectrometry-mass spectrometry using methanol and/or acetonitrile for solid-phase desorption and gradient liquid chromatography.

    NARCIS (Netherlands)

    Geerdink, R.B.; Kooistra-Slijpersma, A.; Tiesnitsch, J.; Kienhuis, P.G.M.; Brinkman, U.A.T.

    1999-01-01

    Thirty-seven polar pesticides, mainly triazines, phenylurea herbicides and phenoxy acids, were determined by LC-atmospheric pressure chemical ionisation MS-MS with methanol and acetonitrile as the organic modifiers. For most pesticides, detection limits were the same irrespective of the modifier.

  5. Effect of some adjuvants application on enhancing sulfosulfuron herbicide performance on Phalaris minor- Poaceae

    Directory of Open Access Journals (Sweden)

    Mohammad Mehdizadeh

    2015-02-01

    Full Text Available Nowadays environmental pollution by pesticides application is a major concern for health. Efficiency of many herbicides can be increased by adding adjuvants to the spray solution. Therefore greenhouse study was conducted during 2014 to determine the efficacy of three adjuvants (Citogate, Castor oil and Canola oil at concentrations of 0.1 and 0.2 (%v/v with 5, 10, 20, 30 and 40 g a.i\\ha of sulfosulfuron herbicide on littleseed canary grass. Results showed that the adjuvants enhanced the efficacy of sulfosulfuron in decreasing the dry weights of littleseed canary grass. Performance of herbicide was increased with enhancing its concentrations. Measured ED50 and ED90 concentrations of sulfosulfuron in control were 16.74 and 32.22 g a.i\\ha, respectively. Whereas the values for Citogate 0.2 (%v\\v, was 5.86 and 13.34 g a.i\\ha, respectively. The addition of Citogate and Castor oil had the highest and lowest effect on sulfosulfuron efficacy against Littleseed canary grass. In conclusion, the study revealed that Citogate concentrations had powerful effects on herbicide efficacy followed by Canola oil.

  6. Biodegradation of glyphosate herbicide by Salinicoccus spp isolated from Qom Hoze-soltan lake, Iran

    Directory of Open Access Journals (Sweden)

    Yaser Sharifi

    2015-01-01

    Full Text Available Background: Glyphosate (N-phosphonomethyl Glycine is an organophosphorus pesticide with dangerous effects on the environment. In this study, the biodegradation of glyphosate herbicide by halophilic bacteria isolated from Qom Hoze-Soltan Lake has been investigated. Methods: After sampling and bacterial isolation, native halophilic strains grown in the presence of glyphosate at a wavelength of 660 nm and also the disappearance of the glyphosate in the plates at a wavelength of 220 nm were determined and the dominant bacteria were isolated. Biochemical, molecular (according to the 16S rRNA sequence, antibiotic, and the Minimum Inhibitory Concentration (MIC test was performed for the dominant bacteria. Analysis of the remaining glyphosate herbicide was performed by HPLC analysis after derivation with FMOC-Cl. Results: According to the results of the biochemical, antibiotic and molecular 16S rRNA tests, the native halophilic isolates with the ability to biodegrade glyphosate were gram positive cocci very similar to Salinicoccusspp. The results of HPLC showed that Salinicoccusspp is able to biodegrade glyphosate herbicide. Conclusion: The native bacteria in Qom Hoze-soltanlake, Iran can be used for biodegradation of glyphosate herbicide.

  7. Toxicity of a glufosinate- and several glyphosate-based herbicides to juvenile amphibians from the Southern High Plains, USA.

    Science.gov (United States)

    Dinehart, Simon K; Smith, Loren M; McMurry, Scott T; Anderson, Todd A; Smith, Philip N; Haukos, David A

    2009-01-15

    Pesticide toxicity is often proposed as a contributing factor to the world-wide decline of amphibian populations. We assessed acute toxicity (48 h) of a glufosinate-based herbicide (Ignite 280 SL) and several glyphosate-based herbicide formulations (Roundup WeatherMAX, Roundup Weed and Grass Killer Super Concentrate, Roundup Weed and Grass Killer Ready-To-Use Plus on two species of amphibians housed on soil or moist paper towels. Survival of juvenile Great Plains toads (Bufo cognatus) and New Mexico spadefoots (Spea multiplicata) was reduced by exposure to Roundup Weed and Grass Killer Ready-To-Use Plus on both substrates. Great Plains toad survival was also reduced by exposure to Roundup Weed and Grass Killer Super Concentrate on paper towels. New Mexico spadefoot and Great Plains toad survival was not affected by exposure to the two agricultural herbicides (Roundup WeatherMAX and Ignite 280 SL) on either substrate, suggesting that these herbicides likely do not pose an immediate risk to these species under field conditions.

  8. Health effects related to pesticide use among rice farmers of the MUDA area

    International Nuclear Information System (INIS)

    Jamal Hisham Hashim; Noor Hassim Ismail; Syarif Husin Lubis; Syed Mohd Syed Alwee; Noraziah Daud

    2002-01-01

    The objectives of this study were to assess the knowledge and practices related to pesticide handling and use among rice farmers; the types of pesticides most often associated with exposure symptoms; the types of exposure symptoms experienced by the farmers; and the neurological effect among farmers as shown by serum cholinesterase inhibition, as a result of exposure to carbarnate and organophosphate pesticides. Results indicate that farmers knowledge is still inadequate with respect to the need for proper storage of pesticides, the danger of pesticide exposure during mixing, proper disposal of pesticide containers, early symptoms of pesticide poisoning, and the possibility of pesticide absorption through the skin. Both farmers' knowledge and practices on the use of personal protective equipment (PPE) are unsatisfactory. Improper practices include the use of increased dosages and mixing of pesticides. The prevalence of pesticide exposure symptoms increased from 1991 to 1993. A majority of the health effects are due to exposure to herbicides. Among the farmers examined, 29% had below normal serum cholinesterase level. In conclusion, indiscriminate use of pesticides in rice farming has resulted in recognisable impact on the farmers' state of health even though the situation is not alarming. (Author)

  9. Hematological Alterations in Common Carp (Cyprinus carpio L.) Exposed to Herbicides: Pendimethalin and Ethofumesate Tested Separately and in Mixture.

    Science.gov (United States)

    Bojarski, Bartosz; Ludwikowska, Agnieszka; Kurek, Anna; Pawlak, Krzysztof; Tombarkiewicz, Barbara; Lutnicka, Hanna

    2015-01-01

    Herbicides are used in large amounts in agriculture and the evaluation of their toxic effects is of major concern to environmental safety. The aim of the present study was to investigate common carp hematological alterations caused by herbicide exposure. Fish were treated with pendimethalin and ethofumesate tested separately and in mixture administered to aquarium water. Peripheral blood of treated fish was collected after 1, 3 and 7 days of exposure and compared to control. The total number of erythrocytes (RBC), total number of leukocytes (WBC), hematocrit value (Hct), total hemoglobin concentration (Hb), mean corpuscular hemoglobin (MCH), mean corpuscular volume (MCV), mean corpuscular hemoglobin concentration (MCHC) and leukograms were determined at once. The results indicate that herbicide exposure caused different changes in the hematological profile of the fish. In the case of exposure to individual herbicides, short-term fluctuations of various hematological indices were noted. Moreover, a significant increase in RBC and Hct after a short period of exposure (1-3 days) in fish exposed simultaneously to both tested herbicides was observed. Exposure to herbicides affected the leukocyte profile after 3 and 7 days of duration. Fluctuations of hematological parameters are a typical change in fish exposed to pesticides.

  10. Progress in herbicide determination with the thylakoid bioassay.

    Science.gov (United States)

    Trapmann, S; Etxebarria, N; Schnabl, H; Grobecker, K H

    1998-01-01

    Chloroplast thylakoids are used as biological units to determine herbicides in different kinds of water samples as well as in aqueous extracts of compost, soil or food samples. The thylakoid bioassay shows clearly inhibition of fluorescence yield in the presence of photosystem II specific herbicides. Due to this method the ecotoxicological effect of samples with unknown pollutants can be tested fast and cost effective. It has been proven that all photosynthetic active compounds are recorded at the same time because only additive interactions occur. Therefore, the contamination level can be expressed as cumulative parameter for photosystem II active substances. Application was improved clearly by the addition of the radical scavenger sodium ascorbate to the isolation media and by a higher concentration of the measuring medium. A new data evaluation method is described yielding in a lower detection limit of 0.4 microg diuron/1. The guidelines for the quality of water for human consumption with an allowable concentration of pesticides in groups is 0,5 microg/1 and can be controlled with the thylakoid bioassay without performing any preconcentration steps.

  11. Urinary Concentrations of Insecticide and Herbicide Metabolites among Pregnant Women in Rural Ghana: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Blair J. Wylie

    2017-03-01

    Full Text Available Use of pesticides by households in rural Ghana is common for residential pest control, agricultural use, and for the reduction of vectors carrying disease. However, few data are available about exposure to pesticides among this population. Our objective was to quantify urinary concentrations of metabolites of organophosphate (OP, pyrethroid, and select herbicides during pregnancy, and to explore exposure determinants. In 2014, 17 pregnant women from rural Ghana were surveyed about household pesticide use and provided weekly first morning urine voids during three visits (n = 51 samples. A total of 90.1% (46/51 of samples had detectable OP metabolites [geometric mean, GM (95% CI: 3,5,6-trichloro-2-pyridinol 0.54 µg/L (0.36–0.81, para-nitrophenol 0.71 µg/L (0.51–1.00], 75.5% (37/49 had detectable pyrethroid metabolites [GM: 3-phenoxybenzoic acid 0.23 µg/L (0.17, 0.32], and 70.5% (36/51 had detectable 2,4-dichlorophenoxyacetic acid levels, a herbicide [GM: 0.46 µg/L (0.29–0.73]. Concentrations of para-nitrophenol and 2,4-dichlorophenoxyacetic acid in Ghanaian pregnant women appear higher when compared to nonpregnant reproductive-aged women in a reference U.S. population. Larger studies are necessary to more fully explore predictors of exposure in this population.

  12. Study of herbicide ametryne degradation in HDPE packaging using the advanced oxidation process by ionizing radiation

    International Nuclear Information System (INIS)

    Andrade, Debora Cristina de

    2008-01-01

    This study is part of the project with the objective to evaluate pesticides degradation for decontamination of commercial polymeric packaging of high density polyethylene, HDPE, used in agriculture. The herbicide used to this study was the herbicide ametryne (commercial name, Gesapax 500), due to its great use, mainly on field crops and on corn. Ametryne is commercialized since 1975, and, depending on the pesticide formulation and type of application, residues may be detectable in water, soil and on the surfaces for months or years. In order to evaluate the efficiency of radiation processing on removal the pesticides contamination, HDPE packaging were irradiated using Radiation Dynamics Electron Beam Accelerator with 1,5 MeV energy and 37 kW, in batch system. The samples were irradiated with water, in various absorbed doses. Ametryne was analyzed by gas chromatography (GC Shimadzu 17A), after extraction with hexane/dichloromethane (1:1 v/v) solution. The calibration curve was obtained with a regression coefficient of 0.986, and the relative standard deviation was lower than 10%. The radiation processing yield was evaluated by the rate of ametryne degradation and by the destruction G-value (Gd). The electron beam irradiation processing, showed high efficiency in destroying ametryne in the HDPE packaging when the samples were irradiated in presence of small quantities of water. (author)

  13. Effects of chronic low concentrations of pesticides chlorpyrifos and atrazine in indoor freshwater microcosms.

    NARCIS (Netherlands)

    Brink, van den P.J.; Donk, van E.; Gylstra, R.; Crum, S.J.H.; Brock, T.C.M.

    1995-01-01

    Standards for pesticide concentrations in water are based on the laboratory toxicity of the most susceptible standard test organisms (algae, crustaceans or fish). Field studies have shown that the standards for the insecticide chlorpyrifos and the herbicide atrazine will protect aquatic ecosystems

  14. A survey of pesticide usage in the MUDA rice agroecosystem between 2001 and 2003

    International Nuclear Information System (INIS)

    Nashriyah Mat; Misman Sumin; Zawahil Ahmad Nadzir; Zaifah Abdul Kadir; Ismail Sahid

    2004-01-01

    Pesticides are widely used in rice granary area to protect crops against pests, weeds and diseases. It is the most common chemicals that come in contact with human population, fauna and flora so much so that its misuse may affect human health and agroecosystem. A survey on pesticide usage by rice farmer in the Muda Rice Agroecosystem was carried out between 2001 and 2003 at sir sites that include recycled area (3) and non-recycled area (3). A total of 65 respondents were interviewed using two sets of questionnaire. In 2001, a preliminary questionnaire was used to survey the pesticide input. In 2003, a modified questionnaire was used which also include the pest problem, farmer's background and cost and purchase of pesticide. The most frequently used pesticide per respondent was herbicide (65%), followed by insecticide (33%), fungicides (I %) and molluscicide (1%). The study has identified a total of 32 different types of pesticide that include 15 insecticides, 15 herbicides, 1 fungicide and 1 molluscicide. Results showed that 80% and 78.5% of respondent preferred Rumputax and Nurelle 5050 to control weed and insect, respectively. Most respondents spent RM100-500 per season (58%) to buy pesticide, followed by more than RM1000 (201196), RM600-1000 (15%) and less than RM100 (7%). Results show that 71% of pesticides were bought from shop and only 29% ftom the Muda Agricultural Development Authority (MADA). The farmers' background results showed that 52% of respondents were from 51 years and above age group, 22% (41-50 years), 18% (31-40 years) and 8% (21-30 years). Only 56% of respondents have attended the pesticide application and safety course even though 71% of respondents have been planting rice for more than 21 years. This course should be carried out more often to give a wider impact on crop protection and productivity, including the farmers health. (Author)

  15. Polycyclic aromatic hydrocarbons - fate and long-range atmospheric transport studied using a global model, EMAC-SVOC

    Science.gov (United States)

    Octaviani, Mega; Tost, Holger; Lammel, Gerhard

    2017-04-01

    Polycyclic aromatic hydrocarbons (PAHs) are emitted by incomplete combustion from fossil fuel, vehicles, and biomass burning. They may persist in environmental compartments, pose a health hazard and may bio accumulate along food chains. The ECHAM/MESSy Atmospheric Chemistry (EMAC) model had been used to simulate global tropospheric, stratospheric chemistry and climate. In this study, we improve the model to include simulations of the transport and fate of semi-volatile organic compounds (SVOC). The EMAC-SVOC model takes into account essential environmental processes including gas-particle partitioning, dry and wet deposition, chemical and bio-degradation, and volatilization from sea surface, soils, vegetation, and snow. The model was evaluated against observational data in the Arctic, mid-latitudes, and tropics, and further applied to study total environmental lifetime and long-range transport potential (LRTP) of PAHs. We selected four compounds for study, spanning a wide range of volatility, i.e., phenanthrene, fluoranthene, pyrene, and benzo[a]pyrene. Several LRTP indicators were investigated, including the Arctic contamination potential, meridional spreading, and zonal and meridional fluxes to remote regions.

  16. Decadal-scale changes of pesticides in ground water of the United States, 1993-2003

    Science.gov (United States)

    Bexfield, L.M.

    2008-01-01

    Pesticide data for ground water sampled across the United States between 1993-1995 and 2001-2003 by the U.S. Geological Survey National Water-Quality Assessment Program were evaluated for trends in detection frequency and concentration. The data analysis evaluated samples collected from a total of 362 wells located in 12 local well networks characterizing shallow ground water in agricultural areas and six local well networks characterizing the drinking water resource in areas of variable land use. Each well network was sampled once during 1993-1995 and once during 2001-2003. The networks provide an overview of conditions across a wide range of hydrogeologic settings and in major agricultural areas that vary in dominant crop type and pesticide use. Of about 80 pesticide compounds analyzed, only six compounds were detected in ground water from at least 10 wells during both sampling events. These compounds were the triazine herbicides atrazine, simazine, and prometon; the acetanilide herbicide metolachlor; the urea herbicide tebuthiuron; and an atrazine degradate, deethylatrazine (DEA). Observed concentrations of these compounds generally were spikes. In wells yielding detectable concentrations of atrazine, DEA, and prometon, concentrations were significantly lower (?? = 0.1) in 2001-2003 than in 1993-1995, whereas detection frequency of these compounds did not change significantly. Trends in atrazine concentrations at shallow wells in agricultural areas were found to be consistent overall with recent atrazine use data. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  17. Atmospheric Photooxidation Products and Chemistry of Current-use Pesticides

    Science.gov (United States)

    Murschell, T.; Farmer, D.

    2017-12-01

    Pesticides are widely used in agricultural, commercial, and residential applications across the United States. Pesticides can volatilize off targets and travel long distances, with atmospheric lifetimes determined by both physical and chemical loss processes. In particular, oxidation by the hydroxyl radical (OH) can reduce the lifetime and thus atmospheric transport of pesticides, though the rates and oxidation products of atmospheric pesticide oxidation are poorly understood. Here, we investigate reactions of current-use pesticides with OH. MCPA, triclopyr, and fluroxypyr are herbicides that are often formulated together to target broadleaf weeds. We detect these species in the gas-phase using real-time high resolution chemical ionization mass spectrometry (CIMS) with both acetate and iodide reagent ions. We used an Oxidative Flow Reactor to explore OH radical oxidation and photolysis of these compounds, simulating up to 5 equivalent days of atmospheric aging by OH. Use of two ionization schemes allowed for the more complete representation of the OH radical oxidation of the three pesticides. The high resolution mass spectra allows us to deduce structures of the oxidation products and identify multi-generational chemistry. In addition, we observe nitrogen oxides, as well as isocyanic acid (HNCO), from some nitrogen-containing pesticides. We present yields of species of atmospheric importance, including NOx and halogen species and consider their impact on air quality following pesticide application.

  18. Metabolic profiling of goldfish (Carassius auratis) after long-term glyphosate-based herbicide exposure.

    Science.gov (United States)

    Li, Ming-Hui; Ruan, Ling-Yu; Zhou, Jin-Wei; Fu, Yong-Hong; Jiang, Lei; Zhao, He; Wang, Jun-Song

    2017-07-01

    Glyphosate is an efficient herbicide widely used worldwide. However, its toxicity to non-targeted organisms has not been fully elucidated. In this study, the toxicity of glyphosate-based herbicide was evaluated on goldfish (Carassius auratus) after long-term exposure. Tissues of brains, kidneys and livers were collected and submitted to NMR-based metabolomics analysis and histopathological inspection. Plasma was collected and the blood biochemical indexes of AST, ALT, BUN, CRE, LDH, SOD, GSH-Px, GR and MDA were measured. Long-term glyphosate exposure caused disorders of blood biochemical indexes and renal tissue injury in goldfish. Metabolomics analysis combined with correlation network analysis uncovered significant perturbations in oxidative stress, energy metabolism, amino acids metabolism and nucleosides metabolism in glyphosate dosed fish, which provide new clues to the toxicity of glyphosate. This integrated metabolomics approach showed its applicability in discovering the toxic mechanisms of pesticides, which provided new strategy for the assessment of the environmental risk of herbicides to non-target organisms. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Large-scale bioreactor production of the herbicide-degrading Aminobacter sp. strain MSH1

    DEFF Research Database (Denmark)

    Schultz-Jensen, Nadja; Knudsen, Berith Elkær; Frkova, Zuzana

    2014-01-01

    The Aminobacter sp. strain MSH1 has potential for pesticide bioremediation because it degrades the herbicide metabolite 2,6-dichlorobenzamide (BAM). Production of the BAM-degrading bacterium using aerobic bioreactor fermentation was investigated. A mineral salt medium limited for carbon and with ......The Aminobacter sp. strain MSH1 has potential for pesticide bioremediation because it degrades the herbicide metabolite 2,6-dichlorobenzamide (BAM). Production of the BAM-degrading bacterium using aerobic bioreactor fermentation was investigated. A mineral salt medium limited for carbon...... and with an element composition similar to the strain was generated. The optimal pH and temperature for strain growth were determined using shaker flasks and verified in bioreactors. Glucose, fructose, and glycerol were suitable carbon sources for MSH1 (μ =0.1 h−1); slower growth was observed on succinate and acetic...... acid (μ =0.01 h−1). Standard conditions for growth of theMSH1 strain were defined at pH 7 and 25 °C, with glucose as the carbon source. In bioreactors (1 and 5 L), the specific growth rate of MSH1 increased from μ =0.1 h−1 on traditional mineral salt medium to μ =0.18 h−1 on the optimized mineral salt...

  20. Removal of pesticides and ecotoxicological changes during the simultaneous treatment of triazines and chlorpyrifos in biomixtures.

    Science.gov (United States)

    Lizano-Fallas, Verónica; Masís-Mora, Mario; Espinoza-Villalobos, David; Lizano-Brenes, Michelle; Rodríguez-Rodríguez, Carlos E

    2017-09-01

    Biopurification systems constitute a biological approach for the treatment of pesticide-containing wastewaters produced in agricultural activities, and contain an active core called biomixture. This work evaluated the performance of a biomixture to remove and detoxify a combination of three triazine herbicides (atrazine/terbuthylazine/terbutryn) and one insecticide (chlorpyrifos), and this efficiency was compared with dissipation in soil alone. The potential enhancement of the process was also assayed by bioaugmentation with the ligninolytic fungi Trametes versicolor. Globally, the non-bioaugmented biomixture exhibited faster pesticide removal than soil, but only in the first stages of the treatment. After 20 d, the largest pesticide removal was achieved in the biomixture, while significant removal was detected only for chlorpyrifos in soil. However, after 60 d the removal values in soil matched those achieved in the biomixture for all the pesticides. The bioaugmentation failed to enhance, and even significantly decreased the biomixture removal capacity. Final removal values were 82.8% (non-bioaugmented biomixture), 43.8% (fungal bioaugmented biomixture), and 84.7% (soil). The ecotoxicological analysis revealed rapid detoxification (from 100 to 170 TU to pesticide removal. On the contrary, despite important herbicide elimination, no clear detoxification patterns were observed in the phytotoxicity towards Lactuca sativa. Findings suggest that the proposed biomixture is useful for fast removal of the target pesticides; even though soil also removes the agrochemicals, longer periods would be required. On the other hand, the use of fungal bioaugmentation is discouraged in this matrix. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Occupational Exposure to Pesticides With Occupational Sun Exposure Increases the Risk for Cutaneous Melanoma.

    Science.gov (United States)

    Fortes, Cristina; Mastroeni, Simona; Segatto M, Marjorie; Hohmann, Clarissa; Miligi, Lucia; Bakos, Lucio; Bonamigo, Renan

    2016-04-01

    The objective of the study was to examine the association between occupational exposure to pesticides and cutaneous melanoma, controlling for all possible confounders. A pooled analysis of two case-control studies was conducted in two different geographic areas (Italy and Brazil). Detailed pesticides exposure histories were obtained. Ever use of any pesticide was associated with a high risk of cutaneous melanoma (odds ratio 2.58; 95% confidence interval 1.18-5.65) in particular exposure to herbicides (glyphosate) and fungicides (mancozeb, maneb), after controlling for confounding factors. When subjects were exposed to both pesticides and occupational sun exposure, the risk increased even more (odds ratio 4.68; 95% confidence interval 1.29-17.0). The study suggests an augmented risk of cutaneous melanoma among subjects with exposure to pesticides, in particular among those exposed to occupational sun exposure.

  2. Selectivity of pesticides used in rice crop on Telenomus podisi and Trichogramma pretiosum

    Directory of Open Access Journals (Sweden)

    Juliano de Bastos Pazini

    2016-09-01

    Full Text Available Telenomus and Trichogramma species stand out as agents for the biological control in rice crops, and the main strategy for preserving them is the use of selective pesticides. This study aimed at evaluating the toxicity of pesticides used in irrigated rice crop on Telenomus podisi Ashmead (Hymenoptera: Platygastridae and Trichogramma pretiosum Riley (Hymenoptera: Trichogrammatidae. Adults of these parasitoids were exposed to dry residues of pesticides, in a completely randomized experiment, with 25 treatments (24 pesticides + control and four replications. The insecticides clorantraniliprole, flubendiamide and diflubenzuron and the biological insecticides based on Beauveria bassiana and Metarhizium anisopliae were harmless to T. podisi and T. pretiosum. The harmless herbicides were: 2.4-D amine, profoxydim, quinclorac, ethoxysulfuron and saflufenacil. The fungicide epoxiconazole + kresoxim-methyl was also harmless to these two biological control agents. Therefore, these pesticides are indicated for the integrated pest management, in flooded rice areas.

  3. Studies of radioisotope tracer technique and its applications to pesticide sciences in China

    International Nuclear Information System (INIS)

    Jia Minghong; Chen Qing; Zheng Ran

    1996-05-01

    The improper use of chemical pesticides has resulted in serious environmental problems and food pollutions, affecting the ecosystem balance and human being health. There are more and more scientists and research institutions being engaged in the area of radioisotope tracer techniques for pesticide sciences in China. So far, more than 80 labeled compounds, including insecticides, fungicides, acaricides, herbicides, metabolic intermediates, fertilizer and biological agents, etc. have been synthesized at the laboratory for application of isotopes in Institute for Application of Atomic Energy, Chinese Academy of Agricultural Sciences. Over past several years, the great achievements have been made in the researches of radioisotope tracer techniques and their applications to pesticide sciences in China, especially in the researches for isotopic labeling, residues, degradation and metabolism of pesticides in plant and animal, behavior and fate of pesticides in environment, and techniques for safe application of pesticide, and so on. The researches of radioisotope tracer techniques and their applications to pesticide sciences in China in the past years are briefly introduced. Some problems are put forward and the development in future is predicted. (1 tab.)

  4. The impact of pesticides on oxidative stress level in human organism and their activity as an endocrine disruptor.

    Science.gov (United States)

    Jabłońska-Trypuć, Agata; Wołejko, Elżbieta; Wydro, Urszula; Butarewicz, Andrzej

    2017-07-03

    Pesticides cause serious environmental and health problems both to humans and animals. The aim of this review is to discuss selected herbicides and fungicides regarding their mode of action and their influence on basic oxidative stress parameters and endocrine disruption properties tested in selected cell cultures in vitro. Because of numerous difficulties which animal studies are subject to, cell cultures are an excellent experimental model reflecting human exposure to different pesticides through all relevant routes. This experimental model can be used to monitor aggregate and cumulative pesticide exposures.

  5. Occupational exposure to pesticides are associated with fixed airflow obstruction in middle-age.

    Science.gov (United States)

    Alif, Sheikh M; Dharmage, Shyamali C; Benke, Geza; Dennekamp, Martine; Burgess, John A; Perret, Jennifer L; Lodge, Caroline J; Morrison, Stephen; Johns, David Peter; Giles, Graham G; Gurrin, Lyle C; Thomas, Paul S; Hopper, John Llewelyn; Wood-Baker, Richard; Thompson, Bruce R; Feather, Iain H; Vermeulen, Roel; Kromhout, Hans; Walters, E Haydn; Abramson, Michael J; Matheson, Melanie Claire

    2017-11-01

    Population-based studies have found evidence of a relationship between occupational exposures and Chronic Obstructive Pulmonary Disease (COPD), but these studies are limited by the use of prebronchodilator spirometry. Establishing this link using postbronchodilator is critical, because occupational exposures are a modifiable risk factor for COPD. To investigate the associations between occupational exposures and fixed airflow obstruction using postbronchodilator spirometry. One thousand three hundred and thirty-five participants were included from 2002 to 2008 follow-up of the Tasmanian Longitudinal Health Study (TAHS). Spirometry was performed and lifetime work history calendars were used to collect occupational history. ALOHA plus Job Exposure Matrix was used to assign occupational exposure, and defined as ever exposed and cumulative exposure unit (EU)-years. Fixed airflow obstruction was defined by postbronchodilator FEV 1 /FVC biological dust (relative risk (RR)=1.58, 95% CI 1.01 to 2.48), pesticides (RR=1.74,95% CI 1.00 to 3.07) and herbicides (RR=2.09,95% CI 1.18 to 3.70) were associated with fixed airflow obstruction. Cumulative EU-years to all pesticides (RR=1.11,95% CI 1.00 to 1.25) and herbicides (RR=1.15,95% CI 1.00 to 1.32) were also associated with fixed airflow obstruction. In addition, all pesticides exposure was consistently associated with chronic bronchitis and symptoms that are consistent with airflow obstruction. Ever exposure to mineral dust, gases/fumes and vapours, gases, dust or fumes were only associated with fixed airflow obstruction in non-asthmatics only. Pesticides and herbicides exposures were associated with fixed airflow obstruction and chronic bronchitis. Biological dust exposure was also associated with fixed airflow obstruction in non-asthmatics. Minimising occupational exposure to these agents may help to reduce the burden of COPD. © Article author(s) (or their employer(s) unless otherwise stated in the text of the

  6. On the occurrence of a widespread contamination by herbicides of coral reef biota in French Polynesia.

    Science.gov (United States)

    Salvat, Bernard; Roche, Hélène; Ramade, François

    2016-01-01

    Research has been conducted within the framework of the French Initiative for Coral Reefs (IFRECOR) to assess pesticide pollution levels in the coral reef trophic webs in French Polynesia. Unexpected widespread contamination by herbicides was found in algae, fishes and macro-invertebrates located at various levels of the reef trophic web. Concentrations in organisms investigated were for the majority below the lowest observable effect level and do not pose a dietary risk to native population who subsist on these fish. However, the widespread contamination may affect the reef ecosystem in the future as coral symbiotic algae, Symbidinium sp. (Dinophyta) are particularly sensitive to photosystem II herbicides, particularly the substituted urea and triazine derivatives.

  7. Herbicide-tolerant Transgenic Soybean over 15 Years of Cultivation: Pesticide Use, Weed Resistance, and Some Economic Issues. The Case of the USA

    Directory of Open Access Journals (Sweden)

    Sylvie Bonny

    2011-08-01

    Full Text Available Genetically modified (GM herbicide-tolerant (HT crops have been largely adopted where they have been authorized. Nevertheless, they are fiercely criticized by some, notably because of the herbicide use associated with them. However, how much herbicide is applied to GMHT crops compared to conventional crops, and what impacts does the use of herbicide have? The paper first presents some factors explaining the predominance of GMHT crops. Then, trends in the use of herbicide for GM crops are studied in the case of the most widespread HT crop: HT soybean in the USA. The trends in the toxicity of herbicides applied to HT soybean are also addressed, as well as the appearance of glyphosate-resistant (GR weeds. Lastly, the paper examines the spread of GR weeds and its impact. How are farmers, weed scientists, and the industry coping with this development, and what are the prospects of glyphosate-tolerant crops given weed resistance? In conclusion, some issues of sustainability and innovation governance raised by genetically modified herbicide-tolerant crops are discussed.

  8. Environmental fate of fungicides and other current-use pesticides in a central California estuary

    Science.gov (United States)

    Smalling, Kelly L.; Kuivila, Kathryn; Orlando, James L.; Phillips, Bryn M.; Anderson, Brian S.; Siegler, Katie; Hunt, John W.; Hamilton, Mary

    2013-01-01

    The current study documents the fate of current-use pesticides in an agriculturally-dominated central California coastal estuary by focusing on the occurrence in water, sediment and tissue of resident aquatic organisms. Three fungicides (azoxystrobin, boscalid, and pyraclostrobin), one herbicide (propyzamide) and two organophosphate insecticides (chlorpyrifos and diazinon) were detected frequently. Dissolved pesticide concentrations in the estuary corresponded to the timing of application while bed sediment pesticide concentrations correlated with the distance from potential sources. Fungicides and insecticides were detected frequently in fish and invertebrates collected near the mouth of the estuary and the contaminant profiles differed from the sediment and water collected. This is the first study to document the occurrence of many current-use pesticides, including fungicides, in tissue. Limited information is available on the uptake, accumulation and effects of current-use pesticides on non-target organisms. Additional data are needed to understand the impacts of pesticides, especially in small agriculturally-dominated estuaries.

  9. Seasonal herbicide monitoring in soil, runoff and sediments of an olive orchard under conventional tillage

    Science.gov (United States)

    Calderón, Maria Jesus; de Luna, Elena; Gómez, José Alfonso; Cornejo, Juan; Hermosín, M. Carmen

    2015-04-01

    Several pollution episodes in surface and groundwaters with pesticides have occurred in areas where olive crops are established. For that reason, it is necessary to know the evolution of some pesticides in olive trees plantation depending on their seasonal application. This is especially important when conventional tillage is used. A monitoring of two herbicides (terbuthylazine and oxyfluorfen)in the first cm of soil and, in runoff and sediment yield was carried out after several rainfall events. The rainfall occurred during the study was higher in winter than in spring giving rise more runoff in winter. However, no differences in sediment yields were observed between spring and winter. Terbuthylazine depletion from soil is associated to the first important rainfall events in both seasons (41 mm in spring and 30 mm in winter). At the end of the experiment, no terbuthylazine soil residues were recovered in winter whereas 15% of terbuthylazine applied remained in spring. Oxyfluorfen showed a character more persistent than terbuthylazine remaining 48% of the applied at the end of the experiment due to its low water solubility. Higher percentage from the applied of terbuthylazine was recovered in runoff in winter (0.55%) than in spring (0.17%). Nevertheless, no differences in terbuthylazine sediments yields between both seasons were observed. That is in agreement with the values of runoff and sediment yields accumulated in tanks in both seasons. Due to the low water solubility of oxyfluorfen very low amount of this herbicide was recovered in runoff. Whereas, in sediment yields the 39.5% of the total applied was recovered. These data show that the dissipation of terbuthylazine from soil is closely related with leaching processes and in less extent with runoff. However, oxyfluorfen dissipation is more affected by runoff processes since this herbicide is co-transported in sediment yields. Keywords: olive crop, pesticide, runoff, sediments, surface water, groundwater

  10. Occurrence of sulfonylurea, sulfonamide, imidazolinone, and other herbicides in rivers, reservoirs and ground water in the Midwestern United States, 1998

    Science.gov (United States)

    Battaglin, W.A.; Furlong, E.T.; Burkhardt, M.R.; Peter, C.J.

    2000-01-01

    Sulfonylurea (SU), sulfonamide (SA), and imidazolinone (IMI) herbicides are relatively new classes of chemical compounds that function by inhibiting the action of a plant enzyme, stopping plant growth, and eventually killing the plant. These compounds generally have low mammalian toxicity, but plants demonstrate a wide range in sensitivity to SUs, SAs, and IMIs with over a 10000-fold difference in observed toxicity levels for some compounds. SUs, SAs, and IMIs are applied either pre- or post-emergence to crops commonly at 1/50th or less of the rate of other herbicides. Little is known about their occurrence, fate, or transport in surface water or ground water in the USA. To obtain information on the occurrence of SU, SA, and IMI herbicides in the Midwestern United States, 212 water samples were collected from 75 surface-water and 25 ground-water sites in 1998. These samples were analyzed for 16 SU, SA and IMI herbicides by USGS Methods Research and Development Program staff using high-performance liquid chromatography/mass spectrometry. Samples were also analyzed for 47 pesticides or pesticide degradation products. At least one of the 16 SUs, SAs or IMIs was detected above the method reporting limit (MRL) of 0.01 ??g/l in 83% of 130 stream samples. Imazethapyr was detected most frequently (71% of samples) followed by flumetsulam (63% of samples) and nicosulfuron (52% of samples). The sum of SU, SA and IMI concentrations exceeded 0.5 ??g/l in less than 10% of stream samples. Acetochlor, alachlor, atrazine, cyanazine and metolachlor were all detected in 90% or more of 129 stream samples. The sum of the concentration of these five herbicides exceeded 50 ??g/l in approximately 10% of stream samples. At least one SU, SA, or IMI herbicide was detected above the MRL in 24% of 25 ground-water samples and 86% of seven reservoir samples. Copyright (C) 2000 Elsevier Science B.V.

  11. Pesticide fate on catchment scale: conceptual modelling of stream CSIA data

    Science.gov (United States)

    Lutz, Stefanie R.; van der Velde, Ype; Elsayed, Omniea F.; Imfeld, Gwenaël; Lefrancq, Marie; Payraudeau, Sylvain; van Breukelen, Boris M.

    2017-10-01

    Compound-specific stable isotope analysis (CSIA) has proven beneficial in the characterization of contaminant degradation in groundwater, but it has never been used to assess pesticide transformation on catchment scale. This study presents concentration and carbon CSIA data of the herbicides S-metolachlor and acetochlor from three locations (plot, drain, and catchment outlets) in a 47 ha agricultural catchment (Bas-Rhin, France). Herbicide concentrations at the catchment outlet were highest (62 µg L-1) in response to an intense rainfall event following herbicide application. Increasing δ13C values of S-metolachlor and acetochlor by more than 2 ‰ during the study period indicated herbicide degradation. To assist the interpretation of these data, discharge, concentrations, and δ13C values of S-metolachlor were modelled with a conceptual mathematical model using the transport formulation by travel-time distributions. Testing of different model setups supported the assumption that degradation half-lives (DT50) increase with increasing soil depth, which can be straightforwardly implemented in conceptual models using travel-time distributions. Moreover, model calibration yielded an estimate of a field-integrated isotopic enrichment factor as opposed to laboratory-based assessments of enrichment factors in closed systems. Thirdly, the Rayleigh equation commonly applied in groundwater studies was tested by our model for its potential to quantify degradation on catchment scale. It provided conservative estimates on the extent of degradation as occurred in stream samples. However, largely exceeding the simulated degradation within the entire catchment, these estimates were not representative of overall degradation on catchment scale. The conceptual modelling approach thus enabled us to upscale sample-based CSIA information on degradation to the catchment scale. Overall, this study demonstrates the benefit of combining monitoring and conceptual modelling of concentration

  12. Isolation and characterization of the pesticide-degrading plasmid pJP1 from Alcaligenes paradoxus

    International Nuclear Information System (INIS)

    Fisher, P.R.; Appleton, J.; Pemberton, J.M.

    1978-01-01

    A strain of Alcaligenes paradoxus, unable to degrade phenoxyacetic acid, was shown to degrade two synthetic derivatives of this molecule, the herbicides 2,4-dichlorophenoxyacetic acid and 2-methyl-4-chlorophenoxyacetic acid. The ability to degrade these pesticides is encoded by a 58-megadalton conjugal plasmid, pJP1

  13. Apply Pesticides Correctly, A Guide for Commercial Applicators: Right-of-Way Pest Control.

    Science.gov (United States)

    Wamsley, Mary Ann, Ed.; Vermeire, Donna M., Ed.

    This guide contains basic information to meet specific standards for pesticide applicators. The text is concerned with the recognition of weeds and methods of their control in rights-of-way. Different types of application equipment both airborne and ground are discussed with precautions for the safe and effective use of herbicides. (CS)

  14. Silicone Wristband Passive Samplers Yield Highly Individualized Pesticide Residue Exposure Profiles.

    Science.gov (United States)

    Aerts, Raf; Joly, Laure; Szternfeld, Philippe; Tsilikas, Khariklia; De Cremer, Koen; Castelain, Philippe; Aerts, Jean-Marie; Van Orshoven, Jos; Somers, Ben; Hendrickx, Marijke; Andjelkovic, Mirjana; Van Nieuwenhuyse, An

    2018-01-02

    Monitoring human exposure to pesticides and pesticide residues (PRs) remains crucial for informing public health policies, despite strict regulation of plant protection product and biocide use. We used 72 low-cost silicone wristbands as noninvasive passive samplers to assess cumulative 5-day exposure of 30 individuals to polar PRs. Ethyl acetate extraction and LC-MS/MS analysis were used for the identification of PRs. Thirty-one PRs were detected of which 15 PRs (48%) were detected only in worn wristbands, not in environmental controls. The PRs included 16 fungicides (52%), 8 insecticides (26%), 2 herbicides (6%), 3 pesticide derivatives (10%), 1 insect repellent (3%), and 1 pesticide synergist (3%). Five detected pesticides were not approved for plant protection use in the EU. Smoking and dietary habits that favor vegetable consumption were associated with higher numbers and higher cumulative concentrations of PRs in wristbands. Wristbands featured unique PR combinations. Our results suggest both environment and diet contributed to PR exposure in our study group. Silicone wristbands could serve as sensitive passive samplers to screen population-wide cumulative dietary and environmental exposure to authorized, unauthorized and banned pesticides.

  15. Human exposure and risk assessment to airborne pesticides in a rural French community.

    Science.gov (United States)

    Coscollà, Clara; López, Antonio; Yahyaoui, Abderrazak; Colin, Patrice; Robin, Corine; Poinsignon, Quentin; Yusà, Vicent

    2017-04-15

    Outdoor air samples collected during the pesticide agricultural application period (spring and summer) from a rural community in the Centre Region (France) were analyzed to investigate temporal variation of atmospheric pesticide levels (2006-2013) and human inhalation exposure in adults, children and infants. The most frequently detected pesticides were herbicides (trifluralin, pendimethalin), fungicides (chlorothalonil) and insecticides (lindane and α-endosulfan). The three currently-used pesticides most frequently detected presented concentrations ranging from 0.18 to 1128.38ngm -3 ; 0.13 to 117.32ngm -3 and 0.16 to 25.80ngm -3 for chlorothalonil, pendimethalin and trifluralin, respectively. The estimated chronic inhalation risk, expressed as Hazard Quotient (HQ), for adults, children and infants, was exposure for detected organophosphorus and chloroacetamide pesticides, was estimated using the Relative Potency Factor (RPF) and Hazard Index (HI) as metrics, which was indicated that no risk was observed. The cancer risk classified as likely or possibly carcinogen was estimated to be <8.93 E-05 in infants, for the detected pesticides. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. A gas/liquid chromatographic-mass spectrometric method for the rapid screening of 250 pesticides in aqueous matrices

    Energy Technology Data Exchange (ETDEWEB)

    Chandramouli, B.; Harvan, D.; Brittain, S.; Hass, R. [Eno River Labs, LLC. Durham, NC (United States)

    2004-09-15

    Pesticide residues in food present a potentially serious and significant cause for concern. Many pesticides have been associated with significant health effects to the nervous and endocrine systems and some have been deemed carcinogenic. There are many well-established techniques for pesticide analysis. However, commercial pesticide methods have traditionally only been available for specific pesticide families, such as chlorinated pesticides or herbicides, and at detection limits ranging from 0.05 ppb to 1 ppm in aqueous matrices. Techniques that can quickly screen for the presence/absence of pesticide residues in food matrices are critical in ensuring the safety of food and water. This paper outlines a combined Gas Chromatographic-High Resolution Mass Spectrometric (GC-HRMS) and Liquid Chromatographic Tandem Mass Spectrometric (LC-MS/MS) screening assay for 250 pesticides that was developed for use in water, and soda samples at screening levels ranging from 0.1-5 ppb. The pesticides selected have been identified by the European Union as being of concern and the target of possible legislation. The list encompasses a variety of pesticide classes and compound groupings.

  17. Using compound-specific isotope analysis to assess the degradation of chloroacetanilide herbicides in lab-scale wetlands.

    Science.gov (United States)

    Elsayed, O F; Maillard, E; Vuilleumier, S; Nijenhuis, I; Richnow, H H; Imfeld, G

    2014-03-01

    Compound-specific isotope analysis (CSIA) is a promising tool to study the environmental fate of a wide range of contaminants including pesticides. In this study, a novel CSIA method was developed to analyse the stable carbon isotope signatures of widely used chloroacetanilide herbicides. The developed method was applied in combination with herbicide concentration and hydrochemical analyses to investigate in situ biodegradation of metolachlor, acetochlor and alachlor during their transport in lab-scale wetlands. Two distinct redox zones were identified in the wetlands. Oxic conditions prevailed close to the inlet of the four wetlands (oxygen concentration of 212±24μM), and anoxic conditions (oxygen concentrations of 28±41μM) prevailed towards the outlet, where dissipation of herbicides mainly occurred. Removal of acetochlor and alachlor from inlet to outlet of wetlands was 56% and 51%, whereas metolachlor was more persistent (23% of load dissipation). CSIA of chloroacetanilides at the inlet and outlet of the wetlands revealed carbon isotope fractionation of alachlor (εbulk=-2.0±0.3‰) and acetochlor (εbulk=-3.4±0.5‰), indicating that biodegradation contributes to the dissipation of both herbicides. This study is a first step towards the application of CSIA to evaluate the transport and degradation of chloroacetanilide herbicides in the environment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Factors Affecting the Occurrence and Distribution of Pesticides in the Yakima River Basin, Washington, 2000

    Science.gov (United States)

    Johnson, Henry M.

    2007-01-01

    The Yakima River Basin is a major center of agricultural production. With a cultivated area of about 450,000 ha (hectares), the region is an important producer of tree fruit, grapes, hops, and dairy products as well as a variety of smaller production crops. To control pest insects, weeds, and fungal infections, about 146 pesticide active ingredients were applied in various formulations during the 2000 growing season. Forty-six streams or drains in the Yakima River Basin were sampled for pesticides in July and October of 2000. Water samples also were collected from 11 irrigation canals in July. The samples were analyzed for 75 of the pesticide active ingredients applied during the 2000 growing season - 63 percent of the pesticides were detected. An additional 14 pesticide degradates were detected, including widespread occurrence of 2 degradates of DDT. The most frequently detected herbicide was 2,4-D, which was used on a variety of crops and along rights-of-way. It was detected in 82 percent of the samples collected in July. The most frequently detected insecticide was azinphos-methyl, which was used primarily on tree fruit. It was detected in 37 percent of the samples collected in July. All occurrences of azinphos-methyl exceeded the Environmental Protection Agency recommended chronic concentration for the protection of aquatic organisms. More than 90 percent of the July samples and 79 percent of the October samples contained two or more pesticides, with a median of nine in July and five in October. The most frequently occurring herbicides in mixtures were atrazine, 2,4-D, and the degradate deethylatrazine. The most frequently occurring insecticides in mixtures were azinphos-methyl, carbaryl, and p,p'-DDE (a degradate of DDT). A greater number of pesticides and higher concentrations were found in July than in October, reflecting greater usage and water availability for transport during the summer growing and irrigation season. Most of the samples collected in

  19. Sorption, desorption and leaching potential of sulfonylurea herbicides in Argentinean soils.

    Science.gov (United States)

    Azcarate, Mariela P; Montoya, Jorgelina C; Koskinen, William C

    2015-01-01

    The sulfonylurea (SUs) herbicides are used to control broadleaf weeds and some grasses in a variety of crops. They have become popular because of their low application rates, low mammalian toxicity and an outstanding herbicidal activity. Sorption is a major process influencing the fate of pesticides in soil. The objective of this study was to characterize sorption-desorption of four sulfonylurea herbicides: metsulfuron-methyl (methyl 2-[(4-methoxy-6-methyl-1,3,5-triazin-2-yl)carbamoylsulfamoyl)]benzoate), sulfometuron-methyl (methyl 2-[(4,6-dimethylpyrimidin-2-yl)carbamoylsulfamoyl]benzoate), rimsulfuron (1-(4,6-dimethoxypyrimidin-2-yl)-3-(3-ethylsulfonyl-2-pyridylsulfonyl)urea) and nicosulfuron (2-[(4,6-dimethoxypyrimidin-2-yl)carbamoylsulfamoyl]-N,N-dimethylnicotinamide) from different soil horizons of different landscape positions. Sorption was studied in the laboratory by batch equilibration method. Sorption coefficients (K(d-SE)) showed that rimsulfuron (K(d-SE) = 1.18 to 2.08 L kg(-1)) and nicosulfuron (K(d-SE) = 0.02 to 0.47 L kg(-1)) were more highly sorbed than metsulfuron-methyl (K(d-SE) = 0.00 to 0.05 L kg(-1)) and sulfometuron-methyl (K(d-SE) = 0.00 to 0.05 L kg(-1)). Sorption coefficients (K(d-SE)) were correlated with pH and organic carbon content. All four herbicides exhibited desorption hysteresis where the desorption coefficients (K(d-D)) > K(d-SE). To estimate the leaching potential, K(oc) and ground-water ubiquity score (GUS) were used to calculate the half-life (t1/2) required to be classified as "leacher" or "nonleacher". According to the results, rimsulfuron and nicosulfuron herbicides would be classified as leachers, but factors such as landscape position, soil depth and the rate of decomposition in surface and subsurface soils could change the classification. In contrast, these factors do not affect classification of sulfometuron-methyl and metsulfuron-methyl; they would rank as leachers.

  20. Pesticide residues and microbial contamination of water resources in the MUDA rice agroecosystem

    International Nuclear Information System (INIS)

    Cheah Uan Boh; Lum Keng Yeang

    2002-01-01

    Studies on the water resources of the Muda rice growing areas revealed evidence of pesticide residues in the agroecosystem. While the cyclodiene endosulfan was found as a ubiquitous contaminant, the occurrence of other organochlorine insecticides was sporadic. The presence of 2,4-D, paraquat and molinate residues was also evident but the occurrence of these herbicides was seasonal. Residue levels of molinate were generally higher than those from the other herbicides. The problem of thiobencarb and carbofuran residues was not encountered. Analyses for microbial contamination revealed that the water resources were unfit for drinking; coliform counts were higher during certain periods of the year than others. (Author)

  1. Environmental determinants of the urinary concentrations of herbicides during pregnancy: the PELAGIE mother-child cohort (France).

    Science.gov (United States)

    Chevrier, Cécile; Serrano, Tania; Lecerf, Rémi; Limon, Gwendolina; Petit, Claire; Monfort, Christine; Hubert-Moy, Laurence; Durand, Gaël; Cordier, Sylvaine

    2014-02-01

    Herbicides are generally the most extensively used of the pesticides applied to agricultural crops. However, the literature contains little evidence useful in assessing the potential sources of the general population's exposure to herbicides, including by residential proximity to crops. The objective of this study was to take advantage of data from the PELAGIE mother-child cohort to identify the main determinants of the body burden of exposure to the chloroacetanilide and triazine herbicides commonly used on corn crops in Brittany, France, before 2006. Urine samples from a randomly selected subcohort of women in the first trimester of pregnancy (n=579) were assayed for herbicide metabolites. The residential exposure resulting from proximity to corn crops was assessed with satellite-image-based scores combined with meteorological data. Data on diet, drinking tap water (from the public water supply), occupations, and household herbicide use were collected by questionnaires. Herbicides were quantified in 5.3% to 39.7% of urine samples. Alachlor and acetochlor were found most frequently in the urine of women living in rural areas. The presence of dealkylated triazine metabolites in urine samples was positively associated with residential proximity to corn crops (OR=1.38, 95% CI: 1.05-1.80). Urinary metabolites of both atrazine and dealkylated triazine were correlated with tap water consumption (OR=2.94, 1.09-7.90, and OR=1.82, 1.10-3.03, respectively); hydroxylated triazine metabolites were correlated with fish intake (OR=1.48, 1.09-1.99). This study reinforces previous results that suggest that environmental contamination resulting from agricultural activities may contribute to the general population's exposure to herbicides. © 2013.

  2. Environmental impacts of genetically modified (GM) crop use 1996-2014: Impacts on pesticide use and carbon emissions.

    Science.gov (United States)

    Brookes, Graham; Barfoot, Peter

    2016-04-02

    This paper updates previous assessments of important environmental impacts associated with using crop biotechnology in global agriculture. It focuses on the environmental impacts associated with changes in pesticide use and greenhouse gas emissions arising from the use of GM crops since their first widespread commercial use in the mid 1990s. The adoption of GM insect resistant and herbicide tolerant technology has reduced pesticide spraying by 581.4 million kg (-8.2%) and, as a result, decreased the environmental impact associated with herbicide and insecticide use on these crops (as measured by the indicator, the Environmental Impact Quotient [EIQ]) by18.5%. The technology has also facilitated important cuts in fuel use and tillage changes, resulting in a significant reduction in the release of greenhouse gas emissions from the GM cropping area. In 2014, this was equivalent to removing nearly 10 million cars from the roads.

  3. Environmental impacts of genetically modified (GM) crop use 1996-2015: Impacts on pesticide use and carbon emissions.

    Science.gov (United States)

    Brookes, Graham; Barfoot, Peter

    2017-04-03

    This paper updates previous assessments of important environmental impacts associated with using crop biotechnology in global agriculture. It focuses on the environmental impacts associated with changes in pesticide use and greenhouse gas emissions arising from the use of GM crops since their first widespread commercial use in the mid-1990s. The adoption of GM insect resistant and herbicide tolerant technology has reduced pesticide spraying by 618.7 million kg (-8.1%) and, as a result, decreased the environmental impact associated with herbicide and insecticide use on these crops (as measured by the indicator, the Environmental Impact Quotient (EIQ)) by18.6%. The technology has also facilitated important cuts in fuel use and tillage changes, resulting in a significant reduction in the release of greenhouse gas emissions from the GM cropping area. In 2015, this was equivalent to removing 11.9 million cars from the roads.

  4. Removal of triazine herbicides from aqueous systems by a biofilm reactor continuously or intermittently operated.

    Science.gov (United States)

    Sánchez-Sánchez, R; Ahuatzi-Chacón, D; Galíndez-Mayer, J; Ruiz-Ordaz, N; Salmerón-Alcocer, A

    2013-10-15

    The impact of pesticide movement via overland flow or tile drainage water on the quality of receiving water bodies has been a serious concern in the last decades; thus, for remediation of water contaminated with herbicides, bioreaction systems designed to retain biomass have been proposed. In this context, the aim of this study was to evaluate the atrazine and terbutryn biodegradation capacity of a microbial consortium, immobilized in a biofilm reactor (PBR), packed with fragments of porous volcanic stone. The microbial consortium, constituted by four predominant bacterial strains, was used to degrade a commercial formulation of atrazine and terbutryn in the biofilm reactor, intermittently or continuously operated at volumetric loading rates ranging from 44 to 306 mg L(-1) d(-1). The complete removal of both herbicides was achieved in both systems; however, higher volumetric removal rates were obtained in the continuous system. It was demonstrated that the adjuvants of the commercial formulation of the herbicide significantly enhanced the removal of atrazine and terbutryn. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Liquid-phase extraction coupled with metal-organic frameworks-based dispersive solid phase extraction of herbicides in peanuts.

    Science.gov (United States)

    Li, Na; Wang, Zhibing; Zhang, Liyuan; Nian, Li; Lei, Lei; Yang, Xiao; Zhang, Hanqi; Yu, Aimin

    2014-10-01

    Liquid-phase extraction coupled with metal-organic frameworks-based dispersive solid phase extraction was developed and applied to the extraction of pesticides in high fatty matrices. The herbicides were ultrasonically extracted from peanut using ethyl acetate as extraction solvent. The separation of the analytes from a large amount of co-extractive fat was achieved by dispersive solid-phase extraction using MIL-101(Cr) as sorbent. In this step, the analytes were adsorbed on MIL-101(Cr) and the fat remained in bulk. The herbicides were separated and determined by high-performance liquid chromatography. The experimental parameters, including type and volume of extraction solvent, ultrasonication time, volume of hexane and eluting solvent, amount of MIL-101(Cr) and dispersive solid phase extraction time, were optimized. The limits of detection for herbicides range from 0.98 to 1.9 μg/kg. The recoveries of the herbicides are in the range of 89.5-102.7% and relative standard deviations are equal or lower than 7.0%. The proposed method is simple, effective and suitable for treatment of the samples containing high content of fat. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Integrative assessment of multiple pesticides as risk factors for non-Hodgkin's lymphoma among men.

    Science.gov (United States)

    De Roos, A J; Zahm, S H; Cantor, K P; Weisenburger, D D; Holmes, F F; Burmeister, L F; Blair, A

    2003-09-01

    An increased rate of non-Hodgkin's lymphoma (NHL) has been repeatedly observed among farmers, but identification of specific exposures that explain this observation has proven difficult. During the 1980s, the National Cancer Institute conducted three case-control studies of NHL in the midwestern United States. These pooled data were used to examine pesticide exposures in farming as risk factors for NHL in men. The large sample size (n = 3417) allowed analysis of 47 pesticides simultaneously, controlling for potential confounding by other pesticides in the model, and adjusting the estimates based on a prespecified variance to make them more stable. Reported use of several individual pesticides was associated with increased NHL incidence, including organophosphate insecticides coumaphos, diazinon, and fonofos, insecticides chlordane, dieldrin, and copper acetoarsenite, and herbicides atrazine, glyphosate, and sodium chlorate. A subanalysis of these "potentially carcinogenic" pesticides suggested a positive trend of risk with exposure to increasing numbers. Consideration of multiple exposures is important in accurately estimating specific effects and in evaluating realistic exposure scenarios.

  7. Fatal pesticide intoxication - case report of a 2 patients

    Directory of Open Access Journals (Sweden)

    Jędrzej Tkaczyk

    2018-05-01

    Full Text Available Pesticides is a collective term for a group of chemicals used predominantly in agriculture and against vectors in vectorborne diseases such as malaria, filariasis, etc. Organophosphates (OP have become nowadays the most widely used pesticides among the world. However, they are very highly toxic to humans. Poisoning with OP is a life - threatening condition. It is responsible for the symptoms due to a cholinergic effects. The Acetylcholinesterase (ACHE enzyme inhibition leads to an acetylcholine accumulation, which causes symptoms such as diarrhea, sweating, vomiting, small pupils, muscle tremors, increased saliva and tears production and confusion. Other type of pesticides are also common used in agriculture. Glyphosate is a broad‐spectrum systemic herbicide used to kill weeds. It is promoted by the manufacturer as having no risks to human health. We present two patients with a fatal pesticide poisoning. First patient drank OP agent, which was decanted in a non-original bottle. Despite the intensive treatment, including high doses of atropine, and toxogonine, patient died after 6 days due to acute respiratory failure. The second one, tried to commit suicide by drinking 2 glasses of a pesticide called ‘Roundap’ (glyphosate. Short time after admission to a hospital, a myocardial infarction occurred. The patient died the same day, due to a cardiac arrest.

  8. Assessing human health risks from pesticide use in conventional and innovative cropping systems with the BROWSE model.

    Science.gov (United States)

    Lammoglia, Sabine-Karen; Kennedy, Marc C; Barriuso, Enrique; Alletto, Lionel; Justes, Eric; Munier-Jolain, Nicolas; Mamy, Laure

    2017-08-01

    Reducing the risks and impacts of pesticide use on human health and on the environment is one of the objectives of the European Commission Directive 2009/128/EC in the quest for a sustainable use of pesticides. This Directive, developed through European national plans such as Ecophyto plan in France, promotes the introduction of innovative cropping systems relying, for example, on integrated pest management. Risk assessment for human health of the overall pesticide use in these innovative systems is required before the introduction of those systems to avoid that an innovation becomes a new problem. The objectives of this work were to assess and to compare (1) the human exposure to pesticides used in conventional and innovative cropping systems designed to reduce pesticide needs, and (2) the corresponding risks for human health. Humans (operator and residents) exposure to pesticides and risks for human health were assessed for each pesticide with the BROWSE model. Then, a method was proposed to represent the overall risk due to all pesticides used in one system. This study considers 3 conventional and 9 associated innovative cropping systems, and 116 plant protection products containing 89 different active substances (i.e. pesticides). The modelling results obtained with BROWSE showed that innovative cropping systems such as low input or no herbicide systems would reduce the risk for human health in comparison to the corresponding conventional cropping systems. On the contrary, BROWSE showed that conservation tillage system would lead to unacceptable risks in the conditions of our study, because of a high number of pesticide applications, and especially of some herbicides. For residents, the dermal absorption was the main exposure route while ingestion was found to be negligible. For operators, inhalation was also a predominant route of exposure. In general, human exposure to pesticides and human health risks were found to be correlated to the treatment frequency

  9. Degradation Processes of Pesticides Used in Potato Cultivations.

    Science.gov (United States)

    Kurek, M; Barchańska, H; Turek, M

    Potato is one of the most important crops, after maize, rice and wheat. Its global production is about 300 million tons per year and is constantly increasing. It grows in temperate climate and is used as a source of starch, food, and in breeding industry.Potato cultivation requires application of numerous agro-technical products, including pesticides, since it can be affected by insects, weeds, fungi, and viruses. In the European Union the most frequently used pesticides in potato cultivations check are: thiamethoxam, lambda-cyhalothrin and deltamethrin (insecticides), rimsulfuron (herbicide) and metalaxyl (fungicide).Application of pesticides improves crop efficiency, however, as pesticides are not totally selective, it affects also non-target organisms. Moreover, the agrochemicals may accumulate in crops and, as a consequence, negatively influence the quality of food products and consumer health. Additional risks of plant protection products are related to their derivatives, that are created both in the environment (soil, water) and in plant organisms, since many of these compounds may exhibit toxic effects.This article is devoted to the degradation processes of pesticides used in potato crop protection. Attention is also paid to the toxicity of both parent compounds and their degradation products for living organisms, including humans. Information about the level of pesticide contamination in the environment (water, soil) and accumulation level in edible plants complement the current knowledge about the risks associated with widespread use of thiamethoxam, lambda-cyhalothrin and deltamethrin, rimsulfuron and metalaxyl in potato cultivation.

  10. Prediction of gas chromatography/electron capture detector retention times of chlorinated pesticides, herbicides, and organohalides by multivariate chemometrics methods

    International Nuclear Information System (INIS)

    Ghasemi, Jahanbakhsh; Asadpour, Saeid; Abdolmaleki, Azizeh

    2007-01-01

    A quantitative structure-retention relationship (QSRR) study, has been carried out on the gas chromatograph/electron capture detector (GC/ECD) system retention times (t R s) of 38 diverse chlorinated pesticides, herbicides, and organohalides by using molecular structural descriptors. Modeling of retention times of these compounds as a function of the theoretically derived descriptors was established by multiple linear regression (MLR) and partial least squares (PLS) regression. The stepwise regression using SPSS was used for the selection of the variables that resulted in the best-fitted models. Appropriate models with low standard errors and high correlation coefficients were obtained. Three types of molecular descriptors including electronic, steric and thermodynamic were used to develop a quantitative relationship between the retention times and structural properties. MLR and PLS analysis has been carried out to derive the best QSRR models. After variables selection, MLR and PLS methods used with leave-one-out cross validation for building the regression models. The predictive quality of the QSRR models were tested for an external prediction set of 12 compounds randomly chosen from 38 compounds. The PLS regression method was used to model the structure-retention relationships, more accurately. However, the results surprisingly showed more or less the same quality for MLR and PLS modeling according to squared regression coefficients R 2 which were 0.951 and 0.948 for MLR and PLS, respectively

  11. Occurrence of pesticides in water and sediment collected from amphibian habitats located throughout the United States, 2009-10

    Science.gov (United States)

    Smalling, Kelly L.; Orlando, James L.; Calhoun, Daniel; Battaglin, William A.; Kuivila, Kathryn

    2012-01-01

    herbicides, 4 insecticides, 1 synergist, and 2 pesticide degradates. On a national scale, aminomethylphosphonic acid (AMPA), the primary degradate of the herbicide glyphosate, which is the active ingredient in Roundup®, was the most frequently detected pesticide in water (16 of 54 samples) followed by glyphosate (8 of 54 samples). The maximum number of pesticides observed at a single site was nine compounds in a water sample from a site in Louisiana. The maximum concentration of a pesticide or degradate observed in water was 2,880 nanograms per liter of clomazone (a herbicide) at a site in Louisiana. In California, a total of eight pesticides were detected among all of the low and high elevation sites; AMPA was the most frequently detected pesticide, but glyphosate was detected at the highest concentrations (1.1 micrograms per liter). Bed-sediment samples were analyzed for 94 pesticides by using accelerated solvent extraction, gel permeation chromatography for sulfur removal, and carbon/alumina stacked solid-phase extraction cartridges to remove interfering sediment matrices. In bed sediment, 22 pesticides were detected in one or more of the samples, including 9 fungicides, 3 pyrethroid insecticides, p,p'-dichlorodiphenyltrichloroethane (p,p'-DDT) and its major degradates, as well as several herbicides. Pyraclostrobin, a strobilurin fungicide, and bifenthrin, a pyrethroid insecticide, were detected most frequently. Maximum pesticide concentrations ranged from less than their respective method detection limits to 1,380 micrograms per kilogram (tebuconazole in California). The number of pesticides detected in samples from each site ranged from zero to six compounds. The sites with the greatest number of pesticides were in Maine and Oregon with six pesticides detected in one sample from each state, followed by Georgia with four pesticides in one sample. For California, a total of 10 pesticides were detected among all sites, and 4 pesticides were detected at both low and high

  12. Exposure to pesticides as risk factor for non-Hodgkin's lymphoma and hairy cell leukemia: pooled analysis of two Swedish case-control studies.

    Science.gov (United States)

    Hardell, Lennart; Eriksson, Mikael; Nordstrom, Marie

    2002-05-01

    Increased risk for non-Hodgkin's lymphoma (NHL) following exposure to certain pesticides has previously been reported. To further elucidate the importance of phenoxyacetic acids and other pesticides in the etiology of NHL a pooled analysis was performed on two case-control studies, one on NHL and another on hairy cell leukemia (HCL), a rare subtype of NHL. The studies were population based with cases identified from cancer registry and controls from population registry. Data assessment was ascertained by questionnaires supplemented over the telephone by specially trained interviewers. The pooled analysis of NHL and HCL was based on 515 cases and 1141 controls. Increased risks in univariate analysis were found for subjects exposed to herbicides (OR 1.75, CI 95% 1.26-2.42), insecticides (OR 1.43, CI 95% 1.08-1.87), fungicides (OR 3.11, CI 95% 1.56-6.27) and impregnating agents (OR 1.48, CI 95% 1.11-1.96). Among herbicides, significant associations were found for glyphosate (OR 3.04, CI 95% 1.08-8.52) and 4-chloro-2-methyl phenoxyacetic acid (MCPA) (OR 2.62, CI 95% 1.40-4.88). For several categories of pesticides the highest risk was found for exposure during the latest decades before diagnosis. However, in multivariate analyses the only significantly increased risk was for a heterogeneous category of other herbicides than above.

  13. Evaluation Effect of Adjuvant on Mesosulfuron+Iodosulfuron Herbicide Performance on Littleseed Canarygrass Control

    Directory of Open Access Journals (Sweden)

    M. kargar

    2016-02-01

    Full Text Available Introduction: Adjuvant application is one of the most important ways to increase herbicide efficacy and decrease environmental damaging effects of herbicides. In general, It has displayed that a very few of the spray droplets retained on the surface of leaf plants and the majority of them bounce off the leaf surface. Therefore, in spraying processes, adjuvant designed to enhance the absorbing, emulsifying, dispersing, spreading, sticking, wetting, or penetrating properties of pesticides. Adjuvant are most often used with herbicides to help a pesticide spread over a leaf surface and penetrate the waxy cuticle of a leaf or to penetrate through the small hairs present on a leaf surface. Surfactants and crop oils are two types of adjuvant that are used for increasing efficacy of herbicides. In many cases, significant increases have been observed in biological activity with the addition of surfactants or crop oils. For example, the performance of specific graminicides and some sulfonylureas is usually increased by the addition of tank-mix oils. It is generally accepted that the benefit of oils is related to their ability to increase the drying period of droplets during their fly time before their impact on the plants, to improve the spreading of the deposit on difficult-to-wet targets (mainly Graminaceae, to act as solubilizing agents, and above all to enhance the penetration of herbicides into the plants. Among commercially available adjuvants, emulsified vegetable oils have been shown to increase droplet retention and spreading, and enhance absorption and translocation of active ingredients. It has been reported that efficacy of atrazine, bentazone, phenmedipham and rimsulfuron on various weeds were increased by the addition of rapeseed oils to solution spray. Materials and Methods: In order to evaluate the effect of adjuvant concentrations on surface tension of aqueous solutions, an experiment was conducted as completely randomized design with 4

  14. Raw or incubated olive-mill wastes and its biotransformed products as agricultural soil amendments-effect on sorption-desorption of triazine herbicides.

    Science.gov (United States)

    Delgado-Moreno, Laura; Almendros, Gonzalo; Peña, Aránzazu

    2007-02-07

    Raw olive-mill waste and soil amendments obtained from their traditional composting or vermicomposting were added, at rates equivalent to 200 Mg ha-1, to a calcareous silty clay loam soil in a laboratory test, in order to improve its fertility and physicochemical characteristics. In particular, the effects on the sorption-desorption processes of four triazine herbicides have been examined. We found that comparatively hydrophobic herbicides terbuthylazine and prometryn increased their retention on amended soil whereas the more polar herbicides simazine and cyanazine were less affected. Soil application of olive cake, without transformation, resulted in the highest herbicide retention. Its relatively high content in aliphatic fractions and lipids could explain the increased herbicide retention through hydrophobic bonding and herbicide diffusion favored by poorly condensed macromolecular structures. On the other hand, the condensed aromatic structure of the compost and vermicompost from olive cake could hinder diffusion processes, resulting in lower herbicide sorption. In fact, the progressive humification in soil of olive-mill solid waste led to a decrease of sorption capacity, which suggested important changes in organic matter quality and interactions during the mineralization process. When soil amended with vermicompost was incubated for different periods of time, the enhanced herbicide sorption capacity persisted for 2 months. Pesticide desorption was reduced by the addition of fresh amendments but was enhanced during the transformation process of amendments in soil. Our results indicate the potential of soil amendments based on olive-mill wastes in the controlled, selective release of triazine herbicides, which varies depending on the maturity achieved by their biological transformation.

  15. Pesticides in the surface waters of Lake Vistonis Basin, Greece: Occurrence and environmental risk assessment.

    Science.gov (United States)

    Papadakis, Emmanouil-Nikolaos; Tsaboula, Aggeliki; Kotopoulou, Athina; Kintzikoglou, Katerina; Vryzas, Zisis; Papadopoulou-Mourkidou, Euphemia

    2015-12-01

    A study was undertaken for the evaluation of the pesticide pollution caused by the agricultural activities in the basin of Lake Vistonis, Greece during the years 2010-2012. Water samples were collected from Lake Vistonis, four major rivers and various small streams and agriculture drainage canals. The concentration of 302 compounds was determined after solid-phase extraction of the water samples and subsequent LC-MS/MS and GC-MS/MS analysis of the extracts. Overall, herbicides were the most frequently detected pesticides (57%), followed by insecticides (28%) and fungicides (14%). In Lake Vistonis 11 pesticides were detected. Specifically, fluometuron was detected in the 75% of the samples (maximum concentration 0.088 μg/L) whereas lambda-cyhalothrin was detected in all the samples of spring 2011 and alphamethrin in all the samples of spring 2012 (maximum concentration 0.041 and 0.168 μg/L, respectively). In the rivers and drainage canals 68 pesticides were detected. Specifically, fluometuron was detected in the 53% of the samples (maximum concentration 317.6 μg/L) followed by chlorpyrifos and prometryn (16 and 13% of the samples respectively). An environmental risk assessment was performed by employing the Risk Quotient (RQ) method. The risk assessment revealed that at least one pesticide concentration led to a RQ>1 in 20% of the samples. In Lake Vistonis, alphamethrin and lambda-cyhalothrin concentrations resulted in RQ>1, whereas in the other water bodies this was mainly the result of chlorpyrifos-methyl and alphamethrin exposure. In contrast, herbicide and fungicide concentrations contributed substantially less to environmental risks. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Host-Guest Interaction between Herbicide Oxadiargyl and Hydroxypropyl- β -Cyclodextrin

    Directory of Open Access Journals (Sweden)

    Sofia Benfeito

    2013-01-01

    Full Text Available In the face of a growing human population and increased urbanization, the demand for pesticides will simply rise. Farmers must escalate yields on increasingly fewer farm acres. However, the risks of pesticides, whether real or perceived, may force changes in the way these chemicals are used. Scientists are working toward pest control plans that are environmentally sound, effective, and profitable. In this context the development of new pesticide formulations which may improve application effectiveness, safety, handling, and storage can be pointed out as a solution. As a contribution to the area, the microencapsulation of the herbicide oxadiargyl (OXA in (2-hydroxypropyl-β-cyclodextrin (HP-β-CD was performed. The study was conducted in different aqueous media (ultrapure water and in different pH buffer solutions. In all cases an increment of the oxadiargyl solubility as a function of the HP-β-CD concentration that has been related to the formation of an inclusion complex was verified. UV-Vis and NMR experiments allowed concluding that the stoichiometry of the OXA/HP-β-CD complex formed is 1 : 1. The gathered results can be regarded as an important step for its removal from industrial effluents and/or to increase the stabilizing action, encapsulation, and adsorption in water treatment plants.

  17. Environmental impacts of genetically modified (GM) crop use 1996–2013: Impacts on pesticide use and carbon emissions

    Science.gov (United States)

    Brookes, Graham; Barfoot, Peter

    2015-01-01

    ABSTRACT This paper updates previous assessments of how crop biotechnology has changed the environmental impact of global agriculture. It focuses on the environmental impacts associated with changes in pesticide use and greenhouse gas emissions arising from the use of GM crops since their first widespread commercial use in the mid 1990s. The adoption of GM insect resistant and herbicide tolerant technology has reduced pesticide spraying by 553 million kg (−8.6%) and, as a result, decreased the environmental impact associated with herbicide and insecticide use on these crops (as measured by the indicator the Environmental Impact Quotient (EIQ)) by19.1%. The technology has also facilitated important cuts in fuel use and tillage changes, resulting in a significant reduction in the release of greenhouse gas emissions from the GM cropping area. In 2013, this was equivalent to removing 12.4 million cars from the roads. PMID:25760405

  18. Effect of washing on pesticide residues in olives.

    Science.gov (United States)

    Guardia-Rubio, M; Ayora-Cañada, M J; Ruiz-Medina, A

    2007-03-01

    The present work aims at contributing to the knowledge of the fate of 5 pesticides in olives in order to evaluate how washing may affect the presence of these residues in this fruit (and consequently in olive oil). For this purpose, olives were sprayed with commercial formulations containing the active ingredients and a series of analyses were performed for 64 d by using gas chromatography with mass spectrometric detection. Selected pesticides, ranked by their importance, were diuron, terbuthylazine, simazine, alpha-endosulfan, and beta-endosulfan. The pesticide fraction, which was not removable from olives by washing, increased with time after treatment until their degradation started at week 6. Washing performed 1 d after treatment was the most effective in reducing residues, especially for simazine. Consequently, the washing step performed in olive mills could be effective in removing those herbicide residues present in olives as a consequence of contact with contaminated soil for a short time. This happens when olives are dropped and harvested off the ground by means of brushes or suction equipment.

  19. Gene transcription in Daphnia magna: effects of acute exposure to a carbamate insecticide and an acetanilide herbicide.

    Science.gov (United States)

    Pereira, Joana Luísa; Hill, Christopher J; Sibly, Richard M; Bolshakov, Viacheslav N; Gonçalves, Fernando; Heckmann, Lars-Henrik; Callaghan, Amanda

    2010-05-05

    Daphnia magna is a key invertebrate in the freshwater environment and is used widely as a model in ecotoxicological measurements and risk assessment. Understanding the genomic responses of D. magna to chemical challenges will be of value to regulatory authorities worldwide. Here we exposed D. magna to the insecticide methomyl and the herbicide propanil to compare phenotypic effects with changes in mRNA expression levels. Both pesticides are found in drainage ditches and surface water bodies standing adjacent to crops. Methomyl, a carbamate insecticide widely used in agriculture, inhibits acetylcholinesterase, a key enzyme in nerve transmission. Propanil, an acetanilide herbicide, is used to control grass and broad-leaf weeds. The phenotypic effects of single doses of each chemical were evaluated using a standard immobilisation assay. Immobilisation was linked to global mRNA expression levels using the previously estimated 48h-EC(1)s, followed by hybridization to a cDNA microarray with more than 13,000 redundant cDNA clones representing >5000 unique genes. Following exposure to methomyl and propanil, differential expression was found for 624 and 551 cDNAs, respectively (one-way ANOVA with Bonferroni correction, Ppesticides promoted transcriptional changes in energy metabolism (e.g., mitochondrial proteins, ATP synthesis-related proteins), moulting (e.g., chitin-binding proteins, cuticular proteins) and protein biosynthesis (e.g., ribosomal proteins, transcription factors). Methomyl induced the transcription of genes involved in specific processes such as ion homeostasis and xenobiotic metabolism. Propanil highly promoted haemoglobin synthesis and up-regulated genes specifically related to defence mechanisms (e.g., innate immunity response systems) and neuronal pathways. Pesticide-specific toxic responses were found but there is little evidence for transcriptional

  20. Reducing pesticide use while preserving crop productivity and profitability on arable farms.

    Science.gov (United States)

    Lechenet, Martin; Dessaint, Fabrice; Py, Guillaume; Makowski, David; Munier-Jolain, Nicolas

    2017-03-01

    Achieving sustainable crop production while feeding an increasing world population is one of the most ambitious challenges of this century 1 . Meeting this challenge will necessarily imply a drastic reduction of adverse environmental effects arising from agricultural activities 2 . The reduction of pesticide use is one of the critical drivers to preserve the environment and human health. Pesticide use could be reduced through the adoption of new production strategies 3-5 ; however, whether substantial reductions of pesticide use are possible without impacting crop productivity and profitability is debatable 6-17 . Here, we demonstrated that low pesticide use rarely decreases productivity and profitability in arable farms. We analysed the potential conflicts between pesticide use and productivity or profitability with data from 946 non-organic arable commercial farms showing contrasting levels of pesticide use and covering a wide range of production situations in France. We failed to detect any conflict between low pesticide use and both high productivity and high profitability in 77% of the farms. We estimated that total pesticide use could be reduced by 42% without any negative effects on both productivity and profitability in 59% of farms from our national network. This corresponded to an average reduction of 37, 47 and 60% of herbicide, fungicide and insecticide use, respectively. The potential for reducing pesticide use appeared higher in farms with currently high pesticide use than in farms with low pesticide use. Our results demonstrate that pesticide reduction is already accessible to farmers in most production situations. This would imply profound changes in market organization and trade balance.

  1. Pesticide use in the wheat-maize double cropping systems of the North China Plain: Assessment, field study, and implications

    DEFF Research Database (Denmark)

    Brauns, Bentje; Jakobsen, Rasmus; Song, Xianfang

    2018-01-01

    In the North China Plain (NCP), rising inputs of pesticides have intensified the environmental impact of farming activities in recent decades by contributing to surface water and groundwater contamination. In response to this, the Chinese government imposed stricter regulations on pesticide...... contamination by pesticides in the NCP are reviewed and assessed. Additionally, a small-scale field study was performed to determine if residuals from currently-used pesticides in the NCP can be detected in surface water, and in connected shallow groundwater. The contaminants of interest were commonly used...... studies focus on organic chlorinated pesticides (OCPs) like the isomers of dichlorodiphenyltrichloroethane (DDT) and hexachlorocyclohexane (HCH), which were banned in China in 1983. However, currently-used herbicides like 2,4-D and atrazine were detected in river water and groundwater in all samplings...

  2. Dissolved pesticides, dissolved organic carbon, and water-quality characteristics in selected Idaho streams, April--December 2010

    Science.gov (United States)

    Reilly, Timothy J.; Smalling, Kelly L.; Wilson, Emma R.; Battaglin, William A.

    2012-01-01

    Water-quality samples were collected from April through December 2010 from four streams in Idaho and analyzed for a suite of pesticides, including fungicides, by the U.S. Geological Survey. Water samples were collected from two agricultural and two nonagricultural (control) streams approximately biweekly from the beginning of the growing season (April) through the end of the calendar year (December). Samples were analyzed for 90 pesticides using gas chromatography/mass spectrometry. Twenty-three pesticides, including 8 fungicides, 10 herbicides, 3 insecticides, and 2 pesticide degradates, were detected in 45 water samples. The most frequently detected compounds in the two agricultural streams and their detection frequencies were metolachlor, 96 percent; azoxystrobin, 79 percent; boscalid, 79 percent; atrazine, 46 percent; pendimethalin, 33 percent; and trifluralin, 33 percent. Dissolved-pesticide concentrations ranged from below instrumental limits of detection (0.5-1.0 nanograms per liter) to 771 nanograms per liter (hexazinone). The total number of pesticides detected in any given water sample ranged from 0 to 11. Only three pesticides (atrazine, fipronil, and simazine) were detected in samples from the control streams during the sampling period.

  3. THE EFFECT OF SELECTED PESTICIDES ON THE GROWTH OF ENTOMOPATHOGENIC FUNGI HIRSUTELLA NODULOSA AND BEAUVERIA BASSIANA

    Directory of Open Access Journals (Sweden)

    Cezary Tkaczuk

    2015-06-01

    Full Text Available The effect of three pesticides used in corn protection: Targa Super 05 (chizalofop-P-ethyl, Roundup 360SL (glyphosate and Karate Zeon 050CS (lambda-cyhalothrin, on the growth of entomopathogenic fungi Hirsutella nodulosa Petch and Beauveria bassiana (Bals. Vuill. was evaluated under laboratory conditions. Fungi isolates were cultured on Sabouraud’s medium with addition of pesticides at three different concentrations. H. nodulosa was more susceptible to pesticides than B. bassiana. The most inhibitory effect on tested entomopathogenic fungi showed chizalofop-P-ethyl herbicide. Lambda-cyhalothrin at the recommended field dose showed minor toxic effect on entomopathogenic fungi, which suggests the possibility of compatible use of this insecticide with biopesticides based on the tested species.

  4. Accumulation of pesticides in pacific chorus frogs (Pseudacris regilla) from California's Sierra Nevada Mountains, USA

    Science.gov (United States)

    Smalling, Kelly L.; Fellers, Gary M.; Kleeman, Patrick M.; Kuivila, Kathryn

    2013-01-01

    Pesticides are receiving increasing attention as potential causes of amphibian declines, acting singly or in combination with other stressors, but limited information is available on the accumulation of current-use pesticides in tissue. The authors examined potential exposure and accumulation of currently used pesticides in pond-breeding frogs (Pseudacris regilla) collected from 7 high elevations sites in northern California. All sites sampled are located downwind of California's highly agricultural Central Valley and receive inputs of pesticides through precipitation and/or dry deposition. Whole frog tissue, water, and sediment were analyzed for more than 90 current-use pesticides and pesticide degradates using gas chromatography–mass spectrometry. Two fungicides, pyraclostrobin and tebuconazole, and one herbicide, simazine, were the most frequently detected pesticides in tissue samples. Median pesticide concentration ranged from 13 µg/kg to 235 µg/kg wet weight. Tebuconazole and pyraclostrobin were the only 2 compounds observed frequently in frog tissue and sediment. Significant spatial differences in tissue concentration were observed, which corresponded to pesticide use in the upwind counties. Data generated indicated that amphibians residing in remote locations are exposed to and capable of accumulating current-use pesticides. A comparison of P. regilla tissue concentrations with water and sediment data indicated that the frogs are accumulating pesticides and are potentially a more reliable indicator of exposure to this group of pesticides than either water or sediment.

  5. Risk factors for acute pesticide poisoning in Sri Lanka

    DEFF Research Database (Denmark)

    van der Hoek, Wim; Konradsen, Flemming

    2005-01-01

    This report describes the characteristics of patients with acute pesticide poisoning in a rural area of Sri Lanka and, for intentional self-poisoning cases, explores the relative importance of the different determinants. Data were collected for 239 acute pesticide-poisoning cases, which were...... admitted to two rural hospitals in Sri Lanka. Sociodemographic characteristics, negative life events and agricultural practices of the intentional self-poisoning cases were compared with a control group. Most cases occurred among young adults and the large majority (84%) was because of intentional self-poisoning....... Case fatality was 18% with extremely high case fatality for poisoning with the insecticide endosulfan and the herbicide paraquat. Cases were generally younger than controls, of lower educational status and were more often unemployed. No agricultural risk factors were found but a family history...

  6. Structural and functional effects of herbicides on non-target organisms in aquatic ecosystems with an emphasis on atrazine

    Science.gov (United States)

    Fairchild, James; Kortekamp, Andreas

    2011-01-01

    Herbicide use has increased dramatically around the world over the past 6 decades (Gianessi and Reigner, 2007). Few herbicides were in use in the 1950s. However, by 2001 approximately 1.14 billion kilograms of herbicides were applied globally for the control of undesireable vegetation in agricultural, silvicultural, lawncare, aquacultural, and irrigation/recreational water management activities (Kiely et al., 2004). Twenty-eight percent of the total mass of herbicides is applied in the United States, with the remaining 72 percent being applied elsewhere around the globe (Kiely et al., 2004). Herbicides represent 36% of global pesticide use, followed by insecticides (25%), fungicides (10%) and other chemical classes (Kiely et al., 2004). Agricultural production accounts for approximately 90% of herbicide use in the U.S. (Kiely et al., 2004). Gianessi and Reigner (2007) indicated that herbicides are routinely used on more than 90% of the area designated for large commercial crops including corn, soybeans, cotton, sugar beets, peanuts, and rice. Increased farm mechanization, technological advancements in production of inexpensive sources of inorganic nitrogen fertilizer (e.g., anhydrous ammonia), and conversion of forest, grassland, and wetland habitats to cropland has led to a tremendous increase in global food production over the past half-century. Herbicides have augmented advances in large-scale agricultural systems and have largely replaced mechanical and hand-weeding control mechanisms (Gianessi and Reigner, 2007). The wide-spread use of herbicides in agriculture has resulted in frequent chemical detections in surface and groundwaters (Gilliom, 2007). The majority of herbicides used are highly water soluble and are therefore prone to runoff from terrestrial environments. In additon, spray drift and atmospheric deposition can contribute to herbicide contamination of aquatic environments. Lastly, selected herbicides are deliberately applied to aquatic environments

  7. Pesticides from wastewater treatment plant effluents affect invertebrate communities.

    Science.gov (United States)

    Münze, Ronald; Hannemann, Christin; Orlinskiy, Polina; Gunold, Roman; Paschke, Albrecht; Foit, Kaarina; Becker, Jeremias; Kaske, Oliver; Paulsson, Elin; Peterson, Märit; Jernstedt, Henrik; Kreuger, Jenny; Schüürmann, Gerrit; Liess, Matthias

    2017-12-01

    We quantified pesticide contamination and its ecological impact up- and downstream of seven wastewater treatment plants (WWTPs) in rural and suburban areas of central Germany. During two sampling campaigns, time-weighted average pesticide concentrations (c TWA ) were obtained using Chemcatcher® passive samplers; pesticide peak concentrations were quantified with event-driven samplers. At downstream sites, receiving waters were additionally grab sampled for five selected pharmaceuticals. Ecological effects on macroinvertebrate structure and ecosystem function were assessed using the biological indicator system SPEAR pesticides (SPEcies At Risk) and leaf litter breakdown rates, respectively. WWTP effluents substantially increased insecticide and fungicide concentrations in receiving waters; in many cases, treated wastewater was the exclusive source for the neonicotinoid insecticides acetamiprid and imidacloprid in the investigated streams. During the ten weeks of the investigation, five out of the seven WWTPs increased in-stream pesticide toxicity by a factor of three. As a consequence, at downstream sites, SPEAR values and leaf litter degradation rates were reduced by 40% and 53%, respectively. The reduced leaf litter breakdown was related to changes in the macroinvertebrate communities described by SPEAR pesticides and not to altered microbial activity. Neonicotinoids showed the highest ecological relevance for the composition of invertebrate communities, occasionally exceeding the Regulatory Acceptable Concentrations (RACs). In general, considerable ecological effects of insecticides were observed above and below regulatory thresholds. Fungicides, herbicides and pharmaceuticals contributed only marginally to acute toxicity. We conclude that pesticide retention of WWTPs needs to be improved. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Heavy metals incidence in the application of inorganic fertilizers and pesticides to rice farming soils.

    Science.gov (United States)

    Gimeno-García, E; Andreu, V; Boluda, R

    1996-01-01

    The concentrations of Cd, Co, Cu, Ni, Pb, Zn, Fe and Mn in different inorganic fertilizers (urea, calcium superphosphate, iron sulphate and copper sulphate) and in pesticides (two herbicides and one fungicide) are evaluated together with the contribution of these metals in soils from their use. The study was made in rice farming areas to the north of Albufera Natural Park (Valencia, Spain). The results obtained show that superphosphate is the fertilizer that contains the highest concentrations of Cd, Co, Cu and Zn as impurities. Copper sulphate and iron sulphate have the most significant concentrations of Pb, and are the only fertilizers in which Ni was detected. The three pesticides analysed show similar Cd contents and the highest levels of Fe, Mn, Zn, Pb and Ni are found in the herbicides. The most significant additions of heavy metals as impurities that soil receives from agricultural practices, are Mn, Zn, Co and Pb. Three contamination indexes have been applied to provide a basis for comparison of potential heavy metal toxicity. These results denote the potential toxicity of heavy metals in the studied soils.

  9. GROWTH AND NUTRITIONAL ANALYSIS OF TREE SPECIES IN CONTAMINATED SUBSTRATE BY LEACHABLE HERBICIDES

    Directory of Open Access Journals (Sweden)

    Rebecca de Araújo Fiore

    Full Text Available ABSTRACT Ecosystems contamination by residues of pesticides requires special attention to the herbicides subject to leaching. The objective was to select tree species to rhizodegradation contaminated by residues of 2,4-D and atrazine and to recompose riparian areas to agricultural fields, then reducing the risk of contamination of water courses. A total of 36 treatments consisted of the combinations of forest species were evaluated [Inga marginata (Inga, Schizolobium parahyba (guapuruvu, Handroanthus serratifolius (ipê amarelo, Jacaranda puberula (carobinha, Cedrela fissilis (cedro, Calophyllum brasiliensis (landin, Psidium mirsinoides (goiabinha, Tibouchina glandulosa (quaresmeira, Caesalpinia férrea (pau-ferro, Caesalpinia pluviosa (sibipiruna, Terminalia argêntea (capitão and Schinopsis brasiliensis (braúna] and three solutions simulating leachate compound (atrazine, 2,4-D and water - control, with four replicates each. The characteristics measured were plant height, stem diameter, number of leaves, leaf area and dry biomass, and foliar nutrition. Forest species survived the herbicide application, and most showed an increase in macronutrients even under an herbicide application, and the Inga had the highest tolerance regarding growth analysis. It is recommended to use species that are more tolerant to Atrazine and 2,4-D in field experiments to confirm previous results of this simulation.

  10. Environmental impacts of genetically modified (GM) crop use 1996–2014: Impacts on pesticide use and carbon emissions

    Science.gov (United States)

    Brookes, Graham; Barfoot, Peter

    2016-01-01

    ABSTRACT This paper updates previous assessments of important environmental impacts associated with using crop biotechnology in global agriculture. It focuses on the environmental impacts associated with changes in pesticide use and greenhouse gas emissions arising from the use of GM crops since their first widespread commercial use in the mid 1990s. The adoption of GM insect resistant and herbicide tolerant technology has reduced pesticide spraying by 581.4 million kg (−8.2%) and, as a result, decreased the environmental impact associated with herbicide and insecticide use on these crops (as measured by the indicator, the Environmental Impact Quotient [EIQ]) by18.5%. The technology has also facilitated important cuts in fuel use and tillage changes, resulting in a significant reduction in the release of greenhouse gas emissions from the GM cropping area. In 2014, this was equivalent to removing nearly 10 million cars from the roads. PMID:27253265

  11. Environmental impacts of genetically modified (GM) crop use 1996–2015: Impacts on pesticide use and carbon emissions

    Science.gov (United States)

    Brookes, Graham

    2017-01-01

    ABSTRACT This paper updates previous assessments of important environmental impacts associated with using crop biotechnology in global agriculture. It focuses on the environmental impacts associated with changes in pesticide use and greenhouse gas emissions arising from the use of GM crops since their first widespread commercial use in the mid-1990s. The adoption of GM insect resistant and herbicide tolerant technology has reduced pesticide spraying by 618.7 million kg (−8.1%) and, as a result, decreased the environmental impact associated with herbicide and insecticide use on these crops (as measured by the indicator, the Environmental Impact Quotient (EIQ)) by18.6%. The technology has also facilitated important cuts in fuel use and tillage changes, resulting in a significant reduction in the release of greenhouse gas emissions from the GM cropping area. In 2015, this was equivalent to removing 11.9 million cars from the roads. PMID:28414252

  12. Predicting sublethal effects of herbicides on terrestrial non-crop plant species in the field from greenhouse data

    International Nuclear Information System (INIS)

    Riemens, Marleen M.; Dueck, Thom; Kempenaar, Corne

    2008-01-01

    Guidelines provided by OECD and EPPO allow the use of data obtained in greenhouse experiments in the risk assessment for pesticides to non-target terrestrial plants in the field. The present study was undertaken to investigate the predictability of effects on field-grown plants using greenhouse data. In addition, the influence of plant development stage on plant sensitivity and herbicide efficacy, the influence of the surrounding vegetation on individual plant sensitivity and of sublethal herbicide doses on the biomass, recovery and reproduction of non-crop plants was studied. Results show that in the future, it might well be possible to translate results from greenhouse experiments to field situations, given sufficient experimental data. The results also suggest consequences at the population level. Even when only marginal effects on the biomass of non-target plants are expected, their seed production and thereby survival at the population level may be negatively affected. - The response of greenhouse-grown wild plant species to herbicide exposure could be related to the response of the same species when grown in the field

  13. Assessment of the levels of N- (Phosphonomethyl) glycine glyphosate in selected glyphosate-based herbicides on the Ghanaian market

    International Nuclear Information System (INIS)

    Iddrisu, Adisatu

    2016-07-01

    recommended to regulators of pesticides in Ghana to strengthen their pesticide control system to ensure that importers comply with regulations and Glyphosate herbicides that do not meet their requirements should be taken out of the system. (au)

  14. Strains of the soil fungus Mortierella show different degradation potentials for the phenylurea herbicide diuron

    DEFF Research Database (Denmark)

    Ellegaard-Jensen, Lea; Aamand, Jens; Kragelund, Birthe Brandt

    2013-01-01

    Microbial pesticide degradation studies have until now mainly focused on bacteria, although fungi have also been shown to degrade pesticides. In this study we clarify the background for the ability of the common soil fungus Mortierella to degrade the phenylurea herbicide diuron. Diuron degradation...... potentials of five Mortierella strains were compared, and the role of carbon and nitrogen for the degradation process was investigated. Results showed that the ability to degrade diuron varied greatly among the Mortierella strains tested, and the strains able to degrade diuron were closely related....... Degradation of diuron was fastest in carbon and nitrogen rich media while suboptimal nutrient levels restricted degradation, making it unlikely that Mortierella utilize diuron as carbon or nitrogen sources. Degradation kinetics showed that diuron degradation was followed by formation of the metabolites 1...

  15. Effect of Mycorrhizal Fungi and Trifluralin Herbicide on Emergence, Growth and Root Colonization of Clover (Trifolium repens L.

    Directory of Open Access Journals (Sweden)

    Hassan Shahgholi

    2016-09-01

    Full Text Available Introduction: Herbicides, despite of their control of weeds, have the potential to affect sensitive crops in rotation and also beneficial non-targeted soil microbes including vesicular arbuscular mycorrhiza (VAM fungi (6. AM fungi can increase the growth of crops through increasing uptake of phosphorus and insoluble micronutrients, and indirectly by improving soil quality parameters (30. However, several authors have reported different effects of herbicides on VAM symbiosis, which ranges from no adverse effects to slightly or highly toxic effects (6. Pesticides have also been reported to stimulate colonization of plant roots by AM fungi (27. Therefore, the objective of this study was to investigate the interaction effects of mycorrhizal fungi and Trifluralin herbicide on the growth and root colonization of clover. Materials and Methods: A factorial experiment was arranged in randomized complete block design with three replicates at the College of Agricultural, University of Shahrood during 2012. Treatments were included three levels of mycorrhiza inoculation, M1: non mycorrhiza (control, M2: Glommus mosseae and M3: Glommus intraradices and herbicide treatments were included four levels of Trifluralin(T1: 0, T2: 1000, T3: 1500 and T4: 2000 ml ha-1. In mycorrhizal treatments, 20 g inoculums were thoroughly mixed with soil. Seeds of clover (Trifolium repens L. were sown in the pots maintained near the field in order to provide normal environmental conditions. Seedlings were thinned to two plants per pot at three leaf stages. At the time of harvesting, the emergence and growth characteristics of clover and root colonization was also registered. Statistical analyses of data were performed with statistical software MSTATC. Significant differences between means refer to the probability level of 0.05 calculated by LSD test. Results and Discussion: The results showed that emergence, uniformity (EU values decreased and time to 10% (D10 and 90% (D90 of

  16. Pesticides in water supply wells in Zealand, Denmark: A statistical analysis

    DEFF Research Database (Denmark)

    Malaguerra, Flavio; Albrechtsen, Hans-Jørgen; Thorling, Lærke

    2012-01-01

    Data from the Danish National Borehole Database are used to predict drinking water well vulnerability to contamination by pesticides, and to identify the dominant mechanisms leading to well pollution in Zealand, Denmark. The frequency of detection and concentrations of 4 herbicides and 3 herbicide...... metabolites are related to factors accounting for geology (thicknesses of sand, clay and chalk layers), geographical location (distance to surface water and distance to contaminated sites), redox conditions and well depth using logistic regression, the binomial test and Spearman correlation techniques....... Results show that drinking water wells located in urban areas are more vulnerable to BAM and phenoxy acids contamination, while non-urban area wells are more subject to bentazone contamination. Parameters accounting for the hydraulic connection between the well and the surface (well depth and thickness...

  17. Residential Agricultural Pesticide Exposures and Risk of Neural Tube Defects and Orofacial Clefts Among Offspring in the San Joaquin Valley of California

    Science.gov (United States)

    Yang, Wei; Carmichael, Suzan L.; Roberts, Eric M.; Kegley, Susan E.; Padula, Amy M.; English, Paul B.; Shaw, Gary M.

    2014-01-01

    We examined whether early gestational exposures to pesticides were associated with an increased risk of anencephaly, spina bifida, cleft lip with or without cleft palate (CLP), or cleft palate only. We used population-based data along with detailed information from maternal interviews. Exposure estimates were based on residential proximity to agricultural pesticide applications during early pregnancy. The study population derived from the San Joaquin Valley, California (1997–2006). Analyses included 73 cases with anencephaly, 123 with spina bifida, 277 with CLP, and 117 with cleft palate only in addition to 785 controls. A total of 38% of the subjects were exposed to 52 chemical groups and 257 specific chemicals. There were relatively few elevated odds ratios with 95% confidence intervals that excluded 1 after adjustment for relevant covariates. Those chemical groups included petroleum derivatives for anencephaly, hydroxybenzonitrile herbicides for spina bifida, and 2,6-dinitroaniline herbicides and dithiocarbamates-methyl isothiocyanate for CLP. The specific chemicals included 2,4-D dimethylamine salt, methomyl, imidacloprid, and α-(para-nonylphenyl)-ω-hydroxypoly(oxyethylene) phosphate ester for anencephaly; the herbicide bromoxynil octanoate for spina bifida; and trifluralin and maneb for CLP. Adjusted odds ratios ranged from 1.6 to 5.1. Given that such odds ratios might have arisen by chance because of the number of comparisons, our study showed a general lack of association between a range of agricultural pesticide exposures and risks of selected birth defects. PMID:24553680

  18. Pesticide residues in canned foods, fruits, and vegetables: the application of Supercritical Fluid Extraction and chromatographic techniques in the analysis.

    Science.gov (United States)

    El-Saeid, Mohamed H

    2003-12-11

    Multiple pesticide residues have been observed in some samples of canned foods, frozen vegetables, and fruit jam, which put the health of the consumers at risk of adverse effects. It is quite apparent that such a state of affairs calls for the need of more accurate, cost-effective, and rapid analytical techniques capable of detecting the minimum concentrations of the multiple pesticide residues. The aims of this paper were first, to determine the effectiveness of the use of Supercritical Fluid Extraction (SFE) and Supercritical Fluid Chromatography (SFC) techniques in the analysis of the levels of pesticide residues in canned foods, vegetables, and fruits; and second, to contribute to the promotion of consumer safety by excluding pesticide residue contamination from markets. Fifteen different types of imported canned and frozen fruits and vegetables samples obtained from the Houston local food markets were investigated. The major types of pesticides tested were pyrethroids, herbicides, fungicides, and carbamates. By using these techniques, the overall data showed 60.82% of the food samples had no detection of any pesticide residues under this investigation. On the other hand, 39.15% different food samples were contaminated by four different pyrethroid residues +/- RSD% ranging from 0.03 +/- 0.005 to 0.05 +/- 0.03 ppm, of which most of the pyrethroid residues were detected in frozen vegetables and strawberry jam. Herbicide residues in test samples ranged from 0.03 +/- 0.005 to 0.8 +/- 0.01 ppm. Five different fungicides, ranging from 0.05 +/- 0.02 to 0.8 +/- 0.1 ppm, were found in five different frozen vegetable samples. Carbamate residues were not detected in 60% of investigated food samples. It was concluded that SFE and SFC techniques were accurate, reliable, less time consuming, and cost effective in the analysis of imported canned foods, fruits, and vegetables and are recommended for the monitoring of pesticide contaminations.

  19. Chemical exposure reduction: Factors impacting on South African herbicide sprayers' personal protective equipment compliance and high risk work practices.

    Science.gov (United States)

    Andrade-Rivas, Federico; Rother, Hanna-Andrea

    2015-10-01

    The high exposure risks of workers to herbicides in low- and middle-income countries is an important public health concern because of the potential resulting negative impacts on workers' health. This study investigated workers' personal protective equipment (PPE) compliance as a risk mitigation measure; particularly workers who apply herbicides for Working for Water (WfW) - a South African invasive alien vegetation control programme. The study aim was to understand workers' low PPE compliance by analysing their risk perceptions of herbicide use, working conditions and socio-cultural context. Research methods included ethnographic observations, informal interviews, visual media, questionnaires and a focus group. Study results indicated that low PPE compliance persists despite workers' awareness of herbicide exposure risks and as a result of the influence from workers' socio-cultural context (i.e. gender dynamics and social status), herbicide risk perceptions and working conditions (i.e. environmental and logistical). Interestingly, teams comprised of mostly women had the highest compliance rate. These findings highlighted that given the complexity of PPE compliance, especially in countries with several economic and social constraints, exposure reduction interventions should not rely solely on PPE use promotion. Instead, other control strategies requiring less worker input for effectiveness should be implemented, such as elimination and substitution of highly hazardous pesticides, and altering application methods. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Containing arsenic-enriched groundwater tracing lead isotopic compositions of common arsenical pesticides in a coastal Maine watershed

    Science.gov (United States)

    Ayuso, Robert A.; Foley, Nora K.; Robinson, Glipin R.; Colvin, A.S.; Lipfert, G.; Reeve, A.S.

    2006-01-01

    Arsenical pesticides and herbicides were extensively used on apple, blueberry, and potato crops in New England during the first half of the twentieth century. Lead arsenate was the most heavily used arsenical pesticide until it was officially banned. Lead arsenate, calcium arsenate, and sodium arsenate have similar Pb isotope compositions: 208Pb207Pb = 2.3839-2.4722, and 206Pb207Pb = 1.1035-1.2010. Other arsenical pesticides such as copper acetoarsenite (Paris green), methyl arsonic acid and methane arsonic acid, as well as arsanilic acid are widely variable in isotope composition. Although a complete understanding of the effects of historical use of arsenical pesticides is not available, initial studies indicate that arsenic and lead concentrations in stream sediments in New England are higher in agricultural areas that intensely used arsenical pesticides than in other areas. The Pb isotope compositions of pesticides partially overlap values of stream sediments from areas with the most extensive agricultural use. The lingering effects of arsenical pesticide use were tested in a detailed geochemical and isotopic study of soil profiles from a watershed containing arsenic-enriched ground water in coastal Maine. Acid-leach compositions of the soils represent lead adsorbed to mineral surfaces or held in soluble minerals (Fe- and Mn-hydroxides, carbonate, and some micaceous minerals), whereas residue compositions likely reflect bedrock compositions. The soil profiles contain labile Pb (acid-leach) showing a moderate range in 206Pb 207Pb (1.1870-1.2069), and 208Pb207Pb (2.4519-2.4876). Isotope values vary as a function of depth: the lowest Pb isotope ratios (e.g.,208Pb206Pb) representing labile lead are in the uppermost soil horizons. Lead contents decrease with depth in the soil profiles. Arsenic contents show no clear trend with depth. A multi-component mixing scheme that included lead from the local parent rock (Penobscot Formation), lead derived from combustion of

  1. Occurrence of pesticides and some of their degradation products in waters in a Spanish wine region

    Science.gov (United States)

    Herrero-Hernández, E.; Andrades, M. S.; Álvarez-Martín, A.; Pose-Juan, E.; Rodríguez-Cruz, M. S.; Sánchez-Martín, M. J.

    2013-04-01

    SummaryA multi-residual analytical method based on solid phase extraction (SPE) followed by liquid chromatography-electrospray ionisation-mass spectrometry (LC-MS) was developed to monitor pesticides in natural waters. Fifty-eight compounds, including herbicides, fungicides, insecticides and some of their degradation products, were surveyed to evaluate the quality of natural waters throughout the wine-growing region of La Rioja (Rioja DOCa). Ninety-two sampling points were selected, including surface and ground waters that could be affected by agricultural activities covering the region's three sub-areas. Different parameters that may affect the efficiency of the SPE procedure were optimised (sorbent type, elution solvent and sample volume), and matrix-matched standards were used to eliminate the variable matrix effect and ensure good quantification. The developed method allows the determination of target compounds below the level established by the European Union for waters for human use with suitable precision (relative standard deviations lower than 18%) and accuracy (with recoveries over 61%). Forty compounds included in this study (six insecticides, 12 herbicides, 16 fungicides and six degradation products) were detected in one or more samples. The herbicides terbuthylazine, its metabolite desethyl terbuthylazine, fluometuron and ethofumesate and the fungicides pyrimethanil and tebuconazole were the compounds most frequently detected in water samples (present in more than 60% of the samples). Concentrations above 0.1 μg L-1 were detected for 37 of the compounds studied, and in several cases recorded values of over 18 μg L-1. The results reveal the presence of pesticides in most of the samples investigated. In 64% of groundwaters and 62% of surface waters, the sum of compounds detected was higher than 0.5 μg L-1 (the limit established by EU legislation for the sum of all pesticides detected in waters for human use).

  2. Herbicide-resistant crops: utilities and limitations for herbicide-resistant weed management.

    Science.gov (United States)

    Green, Jerry M; Owen, Micheal D K

    2011-06-08

    Since 1996, genetically modified herbicide-resistant (HR) crops, particularly glyphosate-resistant (GR) crops, have transformed the tactics that corn, soybean, and cotton growers use to manage weeds. The use of GR crops continues to grow, but weeds are adapting to the common practice of using only glyphosate to control weeds. Growers using only a single mode of action to manage weeds need to change to a more diverse array of herbicidal, mechanical, and cultural practices to maintain the effectiveness of glyphosate. Unfortunately, the introduction of GR crops and the high initial efficacy of glyphosate often lead to a decline in the use of other herbicide options and less investment by industry to discover new herbicide active ingredients. With some exceptions, most growers can still manage their weed problems with currently available selective and HR crop-enabled herbicides. However, current crop management systems are in jeopardy given the pace at which weed populations are evolving glyphosate resistance. New HR crop technologies will expand the utility of currently available herbicides and enable new interim solutions for growers to manage HR weeds, but will not replace the long-term need to diversify weed management tactics and discover herbicides with new modes of action. This paper reviews the strengths and weaknesses of anticipated weed management options and the best management practices that growers need to implement in HR crops to maximize the long-term benefits of current technologies and reduce weed shifts to difficult-to-control and HR weeds.

  3. PREVENTION AND CONTROL OF DIMETHYLAMINE VAPORS EMISSION: HERBICIDE PRODUCTION PLANT

    Directory of Open Access Journals (Sweden)

    Zorana Arsenijević

    2008-11-01

    Full Text Available The widely used herbicide, dimethylamine salt of 2,4-dichlorophenoxy acetic acid (2,4-D-DMA, is usually prepared by mixing a dimethylamine (DMA aqueous solution with a solid 2,4-dichlorophenoxy acetic acid (2,4-D. The vapors of the both, reactants and products, are potentially hazardous for the environment. The contribution of DMA vapors in overall pollution from this process is most significant, concerning vapor pressures data of these pollutants. Therefore, the control of the air pollution in the manufacture and handling of methylamines is very important. Within this paper, the optimal air pollution control system in preparation of 2,4-D-DMA was developed for the pesticides manufacturing industry. This study employed the simple pollution prevention concept to reduce the emission of DMA vapors at the source. The investigations were performed on the pilot plant scale. To reduce the emission of DMA vapors, the effluent gases from the herbicide preparation zone were passed through the packed bed scrubber (water - scrubbing medium, and the catalytic reactor in sequence. The end result is a substantially improved air quality in the working area, as well as in the urbanized areas located near the chemical plant.

  4. Spray Toxicity and Risk Potential of 42 Commonly Used Formulations of Row Crop Pesticides to Adult Honey Bees (Hymenoptera: Apidae).

    Science.gov (United States)

    Zhu, Yu Cheng; Adamczyk, John; Rinderer, Thomas; Yao, Jianxiu; Danka, Robert; Luttrell, Randall; Gore, Jeff

    2015-12-01

    To combat an increasing abundance of sucking insect pests, >40 pesticides are currently recommended and frequently used as foliar sprays on row crops, especially cotton. Foraging honey bees may be killed when they are directly exposed to foliar sprays, or they may take contaminated pollen back to hives that maybe toxic to other adult bees and larvae. To assess acute toxicity against the honey bee, we used a modified spray tower to simulate field spray conditions to include direct whole-body exposure, inhalation, and continuing tarsal contact and oral licking after a field spray. A total of 42 formulated pesticides, including one herbicide and one fungicide, were assayed for acute spray toxicity to 4-6-d-old workers. Results showed significantly variable toxicities among pesticides, with LC50s ranging from 25 to thousands of mg/liter. Further risk assessment using the field application concentration to LC1 or LC99 ratios revealed the risk potential of the 42 pesticides. Three pesticides killed less than 1% of the worker bees, including the herbicide, a miticide, and a neonicotinoid. Twenty-six insecticides killed more than 99% of the bees, including commonly used organophosphates and neonicotinoids. The remainder of the 13 chemicals killed from 1-99% of the bees at field application rates. This study reveals a realistic acute toxicity of 42 commonly used foliar pesticides. The information is valuable for guiding insecticide selection to minimize direct killing of foraging honey bees, while maintaining effective control of field crop pests. Published by Oxford University Press [on behalf of Entomological Society of America] 2015. This work is written by US Government employees and is in the public domain in the US.

  5. A Cross-Sectional Study of Pesticide Use and Knowledge of Smallholder Potato Farmers in Uganda

    Directory of Open Access Journals (Sweden)

    Joshua Sikhu Okonya

    2015-01-01

    Full Text Available In response to increased pest and disease problems, potato farmers use pesticides, which could raise environmental and health concerns. This study sought to promote proper and safe pesticide-handling practices by providing data needed to guide pesticide regulation policy and training for extension staff and farmers. A household survey was conducted in three major potato-growing agroecological zones of Uganda. Two hundred and four potato farmers were interviewed about the type and source of pesticides they use in potato cultivation, the frequency of applications, the use of protective clothing, and cases of pesticide poisoning. The types of pesticides used in potato were fungicides (72%, insecticides (62%, and herbicides (3%. Overall, use of personal protective equipment was low, that is, gumboots (73%, gloves (7%, face masks (16%, and long sleeve shirts (42%. Forty-three percent of farmers who applied pesticides reported having experienced skin itching, 25% skin burning sensation, 43% coughing, 60% a runny nose, 27% teary eyes, and 42% dizziness. An IPM approach involving only moderately to slightly hazardous pesticides when pest and disease incidence has reached economic injury levels and by considering all safety measures during application and storage would be environmentally recommendable and result in reduced health risks.

  6. A Cross-Sectional Study of Pesticide Use and Knowledge of Smallholder Potato Farmers in Uganda

    Science.gov (United States)

    Okonya, Joshua Sikhu; Kroschel, Jürgen

    2015-01-01

    In response to increased pest and disease problems, potato farmers use pesticides, which could raise environmental and health concerns. This study sought to promote proper and safe pesticide-handling practices by providing data needed to guide pesticide regulation policy and training for extension staff and farmers. A household survey was conducted in three major potato-growing agroecological zones of Uganda. Two hundred and four potato farmers were interviewed about the type and source of pesticides they use in potato cultivation, the frequency of applications, the use of protective clothing, and cases of pesticide poisoning. The types of pesticides used in potato were fungicides (72%), insecticides (62%), and herbicides (3%). Overall, use of personal protective equipment was low, that is, gumboots (73%), gloves (7%), face masks (16%), and long sleeve shirts (42%). Forty-three percent of farmers who applied pesticides reported having experienced skin itching, 25% skin burning sensation, 43% coughing, 60% a runny nose, 27% teary eyes, and 42% dizziness. An IPM approach involving only moderately to slightly hazardous pesticides when pest and disease incidence has reached economic injury levels and by considering all safety measures during application and storage would be environmentally recommendable and result in reduced health risks. PMID:26581164

  7. Carboxylesterase activities toward pesticide esters in crops and weeds.

    Science.gov (United States)

    Gershater, Markus; Sharples, Kate; Edwards, Robert

    2006-12-01

    Proteins were extracted from maize, rice, sorghum, soybean, flax and lucerne; the weeds Abutilon theophrasti, Echinochloa crus-galli, Phalaris canariensis, Setaria faberii, Setaria viridis, Sorghum halepense and the model plant Arabidopsis thaliana and assayed for carboxylesterase activity toward a range of xenobiotics. These included the pro-herbicidal esters clodinafop-propargyl, fenoxaprop-ethyl, fenthioprop-ethyl, methyl-2,4-dichlorophenoxyacetic acid (2,4-d-methyl), bromoxynil-octanoate, the herbicide-safener cloquintocet-mexyl and the pyrethroid insecticide permethrin. Highest activities were recorded with alpha-naphthyl acetate and methylumbelliferyl acetate. Esters of p-nitrophenol were also readily hydrolysed, with turnover declining as the chain length of the acyl component increased. Activities determined with model substrates were much higher than those observed with pesticide esters and were of limited value in predicting the relative rates of hydrolysis of the crop protection agents. Substrate preferences with the herbicides were typically 2,4-d-methyl>clodinafop-propargyl>fenthioprop-ethyl, fenoxaprop-ethyl and bromoxynil-octanoate. Isoelectric focussing in conjunction with staining for esterase activity using alpha-naphthyl acetate as substrate confirmed the presence of multiple carboxylesterase isoenzymes in each plant, with major qualitative differences observed between species. The presence of serine hydrolases among the resolved isoenzymes was confirmed through their selective inhibition by the organophosphate insecticide paraoxon. Our studies identify potentially exploitable differences between crops and weeds in their ability to bioactivate herbicides by enzymic hydrolysis and also highlight the usefulness of Arabidopsis as a plant model to study xenobiotic biotransformation.

  8. Mechanism underlying the effect of long-term exposure to low dose of pesticides on DNA integrity.

    Science.gov (United States)

    Alleva, Renata; Manzella, Nicola; Gaetani, Simona; Bacchetti, Tiziana; Bracci, Massimo; Ciarapica, Veronica; Monaco, Federica; Borghi, Battista; Amati, Monica; Ferretti, Gianna; Tomasetti, Marco

    2018-04-01

    Pesticides, including herbicides, insecticides and fungicides, are widely used in intensive agriculture. Recently, the long-term effects of pesticide exposure were found to be associated with many diseases. In this study, we evaluated the long-term effect of low-level exposure to a mixture of pesticides on DNA damage response (DDR) in relation to individual detoxifying variability. A residential population chronically exposed to pesticides was enrolled, biological/environmental pesticide levels; paroxonase 1 (PON-1) activity and 192 Q/R polymorphism and DDR were evaluated at three different periods of pesticide exposure. OGG1-dependent DNA repair activity was decreased in relation to pesticide exposure. The increase of DNA lesions and pesticide levels in the intensive pesticide-spraying period was independent on PON-1 activity. Next, human bronchial epithelial and neuronal cells were used as a model for in vitro evaluation of the mechanistic effect of pesticides. Pesticides induced mitochondrial dysfunction leading to ROS formation. ROS from mitochondria induced DNA damage, which in turn induced OGG1-dependent DNA repair activity through 8-oxoguanine DNA glycosylase 1 (OGG1) expression and activation. Even though OGG1 was overexpressed, an inhibition of its activity, associated with DNA lesion accumulation, was found at prolonged pesticide-exposure. A post-translational regulation of OGG1 by pesticide may be postulated. Taken together, long-term exposure to low-levels of pesticides affects DDR resulting in accumulation of DNA lesions that eventually may lead to cancer or neurological disorders. © 2018 Wiley Periodicals, Inc.

  9. Soil fungi as indicators of pesticide soil pollution

    Directory of Open Access Journals (Sweden)

    Mandić Leka

    2005-01-01

    Full Text Available Soil fungi, with their pronounced enzymic activity and high osmotic potential, represent a significant indicator of negative effects of different pesticides on the agroecosystem as a whole. In that respect, a trial was set up on the alluvium soil type with the aim to investigate the effect of different herbicides (Simazine, Napropamid, Paraquat, fungicides (Captan and Mancozeb and insecticides (Fenitrothion and Dimethoate on a number of soil fungi under apple trees. The number of soil fungi was determined during four growing seasons by an indirect method of dilution addition on the Czapek agar. The study results indicate that the fungi belong to the group of microorganisms that, after an initial sensible response to the presence of pesticides in the soil, very rapidly establish normal metabolism enabling them even to increase their number. The fungicides and insecticides applied were found to be particularly effective in that respect.

  10. Fluctuating asymmetry in Bobwhite quail chicks (Colinus virginianus) does not follow a predictable dose-response relationship following maternal exposure to four different herbicides

    International Nuclear Information System (INIS)

    Knopper, Loren D.; Mineau, Pierre

    2004-01-01

    Most biomonitoring studies that have investigated the relationship between fluctuating asymmetry (FA) and anthropogenic stressors have measured organisms from polluted ecosystems and compared them to organisms at reference sites. What has received little attention is whether FA follows a dose-response relationship with stress, a key criterion of a useful biomarker. Using chicks from currently mandated avian reproductive tests we tested whether a composite index of FA (FA C ), was related to the dose or duration of exposure of their parents to one of four different herbicides, and if FA C was indeed a more sensitive marker of stress than standard reproductive endpoints measured from this test. We found no consistent relationship between FA C and dose or duration of herbicide exposure in any of the four studies. Exposure to one of the four pesticides did result in significant reproductive toxicity but this was not accompanied or foreshadowed by higher levels of FA C . Our results do not support the hypothesis that FA is a reliable general biomarker of pesticide exposure

  11. Mixtures of herbicides and metals affect the redox system of honey bees.

    Science.gov (United States)

    Jumarie, Catherine; Aras, Philippe; Boily, Monique

    2017-02-01

    The increasing loss of bee colonies in many countries has prompted a surge of studies on the factors affecting bee health. In North America, main crops such as maize and soybean are cultivated with extensive use of pesticides that may affect non-target organisms such as bees. Also, biosolids, used as a soil amendment, represent additional sources of metals in agroecosystems; however, there is no information about how these metals could affect the bees. In previous studies we investigated the effects of environmentally relevant doses of herbicides and metals, each individually, on caged honey bees. The present study aimed at investigating the effects of mixtures of herbicides (glyphosate and atrazine) and metals (cadmium and iron), as these mixtures represent more realistic exposure conditions. Levels of metal, vitamin E, carotenoids, retinaldehyde, at-retinol, retinoic acid isomers (9-cis RA, 13-cis RA, at-RA) and the metabolites 13-cis-4-oxo-RA and at-4-oxo-RA were measured in bees fed for 10 days with contaminated syrup. Mixtures of herbicides and cadmium that did not affect bee viability, lowered bee α- and β-carotenoid contents and increased 9-cis-RA as well as 13-cis-4-oxo-RA without modifying the levels of at-retinol. Bee treatment with either glyphosate, a combination of atrazine and cadmium, or mixtures of herbicides promoted lipid peroxidation. Iron was bioconcentrated in bees and led to high levels of lipid peroxidation. Metals also decreased zeaxanthin bee contents. These results show that mixtures of atrazine, glyphosate, cadmium and iron may affect different reactions occurring in the metabolic pathway of vitamin A in the honey bee. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Pesticide sorption by low organic carbon sediments: A sceening for seven herbicides

    DEFF Research Database (Denmark)

    Madsen, Lene; Lindhardt, Bo; Rosenberg, Per

    2000-01-01

    The sorption of seven pesticides in 10 Danish aquifer sediments has been studied. These sediments all have a total organic carbon (TOC) content below 1 g kg(-1), and include carbonate-bearing and carbonate-free Quatenary sand deposits and a Cretaceous chalk aquifer. Batch experiments were carried...

  13. Toxicity of Pesticide Tank Mixtures from Rice Crops Against Telenomus podisi Ashmead (Hymenoptera: Platygastridae).

    Science.gov (United States)

    de B Pazini, J; Pasini, R A; Rakes, M; de Armas, F S; Seidel, E J; da S Martins, J F; Grützmacher, A D

    2017-08-01

    The use of insecticides, herbicides, and fungicides commonly occurs in mixtures in tanks in order to control phytosanitary problems in crops. However, there is no information regarding the effects of these mixtures on non-target organisms associated to the rice agroecosystem. The aim of this study was to know the toxicity of pesticide tank mixtures from rice crops against Telenomus podisi Ashmead (Hymenoptera: Platygastridae). Based on the methods adapted from the International Organisation for Biological and Integrated Control of Noxious Animals and Plants (IOBC), adults of T. podisi were exposed to residues of insecticides, herbicides, and fungicides, individually or in mixture commonly used by growers, in laboratory and on rice plants in a greenhouse. The mixture between fungicides tebuconazole, triclyclazole, and azoxystrobin and the mixture between herbicides cyhalofop-butyl, imazethapyr, imazapyr/imazapic, and penoxsulam are harmless to T. podisi and can be used in irrigated rice crops without harming the natural biological control. The insecticides cypermethin, thiamethoxam, and bifenthrin/carbosulfan increase the toxicity of the mixtures in tank with herbicides and fungicides, being more toxic to T. podisi and less preferred for use in phytosanitary treatments in the rice crop protection.

  14. Seizures in patients with acute pesticide intoxication, with a focus on glufosinate ammonium.

    Science.gov (United States)

    Park, S; Kim, D E; Park, S Y; Gil, H W; Hong, S Y

    2018-04-01

    The incidence and clinical aspects of seizures remain to be elucidated in patients with acute pesticide intoxication. The present study included subjects who ingested pesticide with the intention of committing suicide and were treated at Soonchunhyang University Hospital (Cheonan, Korea) between January 2011 and December 2014. We analyzed the incidence and characterized the type and frequency of seizure, from the medical records of 464 patients with acute pesticide intoxication, according to the pesticide class. The effect of seizure on the clinical outcome was assessed. The incidence of seizure was 31.5% in patients who ingested glufosinate ammonium {2-amino-4-[hydroxyl (methyl) phosphinoyl] butyrate; ammonium DL-homoalanin-4-yl (methyl) phosphinate}, followed by those who ingested pyrethroid (5.9%) or glycine derivatives (5.4%). All of the seizures developed between 12 and 24 h of pesticide ingestion and had ceased by 72 h after seizure initiation, following treatment with antiseizure medication. Generalized tonic-clonic seizures were the most commonly observed (85.7% of the cases). Multivariable logistic regression analysis showed that the effect of seizure on mortality was not statistically significant. In conclusion, glufosinate ammonium herbicide is the most common seizurogenic pesticide class. Seizure itself was not a risk factor for mortality in patients with acute glufosinate ammonium intoxication.

  15. Exposure to Multiple Pesticides and Risk of Non-Hodgkin Lymphoma in Men from Six Canadian Provinces

    Science.gov (United States)

    Hohenadel, Karin; Harris, Shelley A.; McLaughlin, John R.; Spinelli, John J.; Pahwa, Punam; Dosman, James A.; Demers, Paul A.; Blair, Aaron

    2011-01-01

    Non-Hodgkin lymphoma (NHL) has been linked to several agricultural exposures, including some commonly used pesticides. Although there is a significant body of literature examining the effects of exposure to individual pesticides on NHL, the impact of exposure to multiple pesticides or specific pesticide combinations has not been explored in depth. Data from a six-province Canadian case-control study conducted between 1991 and 1994 were analyzed to investigate the relationship between NHL, the total number of pesticides used and some common pesticide combinations. Cases (n = 513) were identified through hospital records and provincial cancer registries and controls (n = 1,506), frequency matched to cases by age and province of residence, were obtained through provincial health records, telephone listings, or voter lists. In multiple logistic regression analyses, risk of NHL increased with the number of pesticides used. Similar results were obtained in analyses restricted to herbicides, insecticides and several pesticide classes. Odds ratios increased further when only ‘potentially carcinogenic’ pesticides were considered (OR[one pesticide] = 1.30, 95% CI = 0.90–1.88; OR[two to four] = 1.54, CI = 1.11–2.12; OR[five or more] = 1.94, CI = 1.17–3.23). Elevated risks were also found among those reporting use of malathion in combination with several other pesticides. These analyses support and extend previous findings that the risk of NHL increases with the number of pesticides used and some pesticide combinations. PMID:21776232

  16. The use of gamma radiation for removal of pesticides from waste water

    International Nuclear Information System (INIS)

    Dessouki, A.M.; Aly, H.F.; Sokker, H.H.

    1999-01-01

    In the present study, a try was made to explain the degradation kinetics due to irradiation of aqueous solutions of some active ingredient pesticides. These pesticides are as follows: one type of triazine herbicide Ametryn and one type of carbamate insecticide (Applaud) and two types of chlorinated organic pesticides, Aldrin and Chlorothalonil. Factors affecting the radiolysis of these pesticides such as the pesticide concentration, irradiation dose, dose rate and pH of the solutions were studied. Ametryn, Applaud, Chlorothalonil and Aldrin insecticides were degraded by gamma radiation and in the case of the chlorinated pesticides hydrochloric acid was detected. The pH effect has proved to vary according to the type of the pesticide and little degradation was observed in alkaline medium, while more degradation of the pesticides in the neutral medium was observed depending on the type of pesticide and on its chemical structure. However, the degradation in the acid medium was even higher. A drop in pH was observed and may be attributed to the degradation of the pesticide molecules to lower molecular weight compounds, such as organic acids. A combined treatment of gamma irradiation and conventional methods was applied and the effect of different additives such as nitrogen and oxygen showed that nitrogen did not enhance the degradation, while an enhancement in the degradation process was observed when oxygen was added. Experiments on the adsorption of these pesticides on certain polymeric materials and on Granular Activated Carbon (GAC), showed that GAC has the highest adsorption capacity. It may be concluded that the radiation degradation followed by adsorption of the toxic pesticide pollutants and their removal from wastewater down to concentrations not exceeding the maximum permissible concentration (MPC), according to international standards, proved to be better than the conventional methods of purification. (author)

  17. The use of gamma radiation for removal of pesticides from waste water

    Science.gov (United States)

    Dessouki, A. M.; Aly, H. F.; Sokker, H. H.

    1999-01-01

    In the present study, a try was made to explain the degradation kinetics due to irradiation of aqueous solutions of some active ingredient pesticides. These pesticides are as follows: one type of triazine herbicide Ametryn and one type of carbamate insecticide (Applaud) and two types of chlorinated organic pesticides, Aldrin and Chlorothalonil. Factors affecting the radiolysis of these pesticides such as the pesticide concentration, irradiation dose, dose rate and pH of the solutions were studied. Ametryn, Applaud, Chlorothalonil and Aldrin insecticides were degraded by γ-radiation and in the case of the chlorinated pesticides hydrochloric acid was detected. The pH effect has proved to vary according to the type of the pesticide and little degradation was observed in allkaline medium, while more degradation of the pesticides in the neutral medium was observed depending on the type of pesticide and on its chemical structure. However, the degradation in the acid medium was even higher. A drop in pH was observed and may be attributed to the degradation of the pesticide molecules to lower molecular weight compounds, such as organic acids. A combined treatment of gamma irradiation and conventional methods was applied and the effect of different additives such as nitrogen and oxygen showed that nitrogen did not enhance the degradation, while an enhancement in the degradation process was observed when oxygen was added. Experiments on the adsorption of these pesticides on certain polymeric materials and on Granular Activated Carbon (GAC), showed that GAC has the highest adsorption capacity. It may be concluded that the radiation degradation followed by adsorption of the toxic pesticide pollutants and their removal from wastewater down to concentrations not exceeding the maximum permissible concentration (MPC), according to international standards, proved to be better than the conventional methods of purification.

  18. Pesticides analysed in rainwater in Alsace region (Eastern France): Comparison between urban and rural sites

    Science.gov (United States)

    Scheyer, Anne; Morville, Stéphane; Mirabel, Philippe; Millet, Maurice

    Current-used pesticides commonly applied in Alsace region (Eastern France) on diverse crops (maize, vineyard, vegetables, etc.) were analysed, together with Lindane, in rainwater between January 2002 and June 2003 simultaneously on two sites situated in a typical rural (Erstein, France) and urban area (Strasbourg, France). Rainwater samples were collected on a weekly basis by using two automatic wet only collectors associated with an open collector for the measurement of rainwater height. Pesticides were analysed by GC-MSMS and extracted from rainwater by SPME. Two runs were performed. The first one was performed by using a PDMS (100 μm) fibre for pesticides where direct injection into GC is possible (alachlor, atrazine, azinphos-ethyl, azinphos-methyl, captan, chlorfenvinphos, dichlorvos, diflufenican, α- and β-endosulfan, iprodione, lindane, metolachlor, mevinphos, parathion-methyl, phosalone, phosmet, tebuconazole, triadimefon and trifluralin). The second run was performed by using PDMS/DVB fibre and this run concerns pesticides where a preliminary derivatisation step with pentafluorobenzylbromide (PFBBr) is required for very low volatiles (bromoxynil,2,4-MCPA, MCPP and 2,4-D) or thermo labiles (chlorotoluron, diuron and isoproturon) pesticides. Results showed that the more concentrated pesticides detected were those used as herbicides in large quantities in Alsace region for maize crops (alachlor, metolachlor and atrazine). Maximum concentrations for these herbicides have been measured during intensive applications periods on maize crops following by rapid decrease immediately after use. For Alachlor, most important peaks have been observed between 21 and 28 April 2003 (3327 ng L -1 at Erstein and 5590 ng L -1 at Strasbourg). This is also the case for Metolachlor where most important peak was observed during the same week. Concentrations of pesticides measured out of application periods were very low for many pesticides and some others where never detected

  19. Smallholder farmers’ knowledge, perception and practice in pesticide use in South Western Ethiopia

    Directory of Open Access Journals (Sweden)

    Fikre Lemessa Ocho

    2016-12-01

    Full Text Available Pesticides are often used to manage pests and enhance agricultural productivity. However, pesticides have negative impacts on human and animal health as well as on the environment if not properly used and handled. Hence, this study aimed at assessing the knowledge, attitude and practices of smallholder farmers in agricultural pesticides utilization in three major cereal producing districts of Jimma zone, Ethiopia. For the study original data collected from 140 randomly selected farmers using a pre-tested structured questionnaire and key informant interviews with district level experts were used. The results showed that 98% of the sample households use pesticides; of which 45% purchase pesticides from open market. Furthermore, while the herbicide 2, 4-D was used by 57% of the households, 48% of the respondents did not know the type of pesticides they used. Only 30% read the instructions and less than 40% understand the signs on pesticide containers. Most households perceived that pesticides are useful; however, 98.5% of them witnessed its negative effects. Some health related discomforts reported include nausea, vomiting, headache, and skin irritation with the respective shares of 68%, 18%, 12% and 2%. Ninety five percent of the respondents believed that it is possible to minimize the negative effects of pesticides. But, 80% use normal clothes for spraying pesticides; 40% wash spray equipments in yard; 23% throw pesticide containers in open field and 32% reuse pesticide containers for other purposes. Findings of the study revealed that there is mismatch among knowledge, perception and practice of the farmers. Hence, it is important to carefully design pesticides supply chain and train farmers to create awareness about the careful use of pesticide, and disposal of the leftover and containers.

  20. Morphological effects on helminth parasites caused by herbicide under experimental conditions

    Directory of Open Access Journals (Sweden)

    Tainá Carneiro de Castro Monte

    2018-02-01

    Full Text Available Abstract Helminth parasites have been studied as potential accumulators for different pollutants. Echinostoma paraensei is a foodborne trematode whose vertebrate host, the rodent Nectomys squamipes, is naturally exposed to environmental pesticides. However, little information exists regarding the pesticide’s effects on helminths. This study investigated the morphological effects on the trematode, E. paraensei, after experimental Roundup® herbicide exposure, in concentrations below those recommended for agricultural use. After two hours of exposure, scanning electron microscopy (SEM showed changes to the tegument, such as furrowing, shrinkage, peeling, spines loss on the peristomic collar, and histopathological evidence of altered cells in the cecum and acinus vitelline glands with vacuoles and structural changes to the muscular layers. Glycidic content was decreased, primarily in the connective tissue. As E. paraensei is an intestinal parasite of the semi-aquatic wild rodent, N. squamipes, it is predisposed to pesticide exposure resulting from agricultural practices. Therefore, we emphasize the need to evaluate its impact on helminth parasites, due to their pivotal role in regulating host populations.

  1. Occurrence and distribution study of residues from pesticides applied under controlled conditions in the field during rice processing.

    Science.gov (United States)

    Pareja, Lucía; Colazzo, Marcos; Pérez-Parada, Andrés; Besil, Natalia; Heinzen, Horacio; Böcking, Bernardo; Cesio, Verónica; Fernández-Alba, Amadeo R

    2012-05-09

    The results of an experiment to study the occurrence and distribution of pesticide residues during rice cropping and processing are reported. Four herbicides, nine fungicides, and two insecticides (azoxystrobin, byspiribac-sodium, carbendazim, clomazone, difenoconazole, epoxiconazole, isoprothiolane, kresoxim-methyl, propanil, quinclorac, tebuconazole, thiamethoxam, tricyclazole, trifloxystrobin, λ-cyhalotrin) were applied to an isolated rice-crop plot under controlled conditions, during the 2009-2010 cropping season in Uruguay. Paddy rice was harvested and industrially processed to brown rice, white rice, and rice bran, which were analyzed for pesticide residues using the original QuEChERS methodology and its citrate variation by LC-MS/MS and GC-MS. The distribution of pesticide residues was uneven among the different matrices. Ten different pesticide residues were found in paddy rice, seven in brown rice, and eight in rice bran. The highest concentrations were detected in paddy rice. These results provide information regarding the fate of pesticides in the rice food chain and its safety for consumers.

  2. Influence of pesticide applications on degradation of the herbicide 14C - 2,4-D in different soils

    International Nuclear Information System (INIS)

    Marcondes, Marcilio Amaral

    2001-01-01

    Despite the importance of pesticide usage for the food production, its indiscriminate use may cause changes in the soil fertility, because pesticides influence soil microorganisms which are important for the biogeochemical cycles. The influence of applications of several pesticides, as recommended for cotton culture, was studied on the bioactivity of different soils (from Sao Paulo and Tatui, SP) by using radiometric techniques and a closed system for detection of bio mineralization of ''1 4 C-2,4-D ( 14 C-2,4-dichlorophenoxyacetic acid) and production of 14 C-volatile compounds. The 14 C-2,4-D dissipation under influence of other pesticide applications was also studied by determination of 14 C-extractable residues, 14 C-bound residues and qualitative and quantitative analysis of the 14 C-extractable residues by high pressure liquid chromatography (HPLC) and thin layer chromatography (TLC). 14 C-volatile compounds were never detected but increases and decreases of bio mineralization were detected in both soils after different treatments. The mixture of deltamethrin + methyl parathion increased significantly the bioactivity in both soils; nevertheless, monocrotophos did not have any influence. The applications of different pesticides have also influenced the 14 C-2,4-D dissipation, because the radiocarbon recovered as 14 C-extractable residues differed between the treated and untreated samples of both soils. On the other hand, the pesticide applications did not influence the production of 14 C-bound residues. This 14 C-residue was produced in larger amounts by the richest in organic matter soil (Sao Paulo). Although radiocarbon had been detected not only as 14 'C-2,4-D but also as a 14 C-metabolite, in both soils and treatments, results indicate that the ' 14 C-2,4-D dissipation varied in the two studied soils and was influenced by treatments with others pesticides. (author)

  3. The need for independent research on the health effects of glyphosate-based herbicides.

    Science.gov (United States)

    Landrigan, Philip J; Belpoggi, Fiorella

    2018-05-29

    Glyphosate, formulated as Roundup, is the world's most widely used herbicide. Glyphosate is used extensively on genetically modified (GM) food crops designed to tolerate the herbicide, and global use is increasing rapidly. Two recent reviews of glyphosate's health hazards report conflicting results. An independent review by the International Agency for Research on Cancer (IARC) found that glyphosate is a "probable human carcinogen". A review by the European Food Safety Agency (EFSA) found no evidence of carcinogenic hazard. These differing findings have produced regulatory uncertainty. Reflecting this regulatory uncertainty, the European Commission on November 27 2017, extended authorization for glyphosate for another 5 years, while the European Parliament opposed this decision and issued a call that pesticide approvals be based on peer-reviewed studies by independent scientists rather than on the current system that relies on proprietary industry studies. The Ramazzini Institute has initiated a pilot study of glyphosate's health hazards that will be followed by an integrated experimental research project. This evaluation will be independent of industry support and entirely sponsored by worldwide crowdfunding. The aim of the Ramazzini Institute project is to explore comprehensively the effects of exposures to glyphosate-based herbicides at current real-world levels on several toxicological endpoints, including carcinogenicity, long-term toxicity, neurotoxicity, endocrine disrupting effects, prenatal developmental toxicity, the microbiome and multi-generational effects.

  4. Natural compounds as next-generation herbicides.

    Science.gov (United States)

    Dayan, Franck E; Duke, Stephen O

    2014-11-01

    Herbicides with new modes of action (MOAs) are badly needed due to the rapidly evolving resistance to commercial herbicides, but a new MOA has not been introduced in over 20 years. The greatest pest management challenge for organic agriculture is the lack of effective natural product herbicides. The structural diversity and evolved biological activity of natural phytotoxins offer opportunities for the development of both directly used natural compounds and synthetic herbicides with new target sites based on the structures of natural phytotoxins. Natural phytotoxins are also a source for the discovery of new herbicide target sites that can serve as the focus of traditional herbicide discovery efforts. There are many examples of strong natural phytotoxins with MOAs other than those used by commercial herbicides, which indicates that there are molecular targets of herbicides that can be added to the current repertoire of commercial herbicide MOAs. © 2014 American Society of Plant Biologists. All Rights Reserved.

  5. Primary and complex stressors in polluted mediterranean rivers: Pesticide effects on biological communities

    Science.gov (United States)

    Ricart, Marta; Guasch, Helena; Barceló, Damià; Brix, Rikke; Conceição, Maria H.; Geiszinger, Anita; José López de Alda, Maria; López-Doval, Julio C.; Muñoz, Isabel; Postigo, Cristina; Romaní, Anna M.; Villagrasa, Marta; Sabater, Sergi

    2010-03-01

    SummaryWe examined the presence of pesticides in the Llobregat river basin (Barcelona, Spain) and their effects on benthic biological communities (invertebrates and diatoms). The Llobregat river is one of Barcelona's major drinking water resources. It has been highly polluted by industrial, agricultural, and urban wastewaters, and—as a typical Mediterranean river—is regularly subjected to periodic floods and droughts. Water scarcity periods result in reduced water flow and dilution capacity, increasing the potential environmental risk of pollutants. Seven sites were selected, where we analysed the occurrence of 22 pesticides (belonging to the classes of triazines, organophosphates, phenylureas, anilides, chloroacetanilides, acidic herbicides and thiocarbamates) in the water and sediment, and the benthic community structure. Biofilm samples were taken to measure several metrics related to both the algal and bacterial components of fluvial biofilms. Multivariate analyses revealed a potential relationship between triazine-type herbicides and the distribution of the diatom community, although no evidence of disruption in the invertebrate community distribution was found. Biofilm metrics were used as response variables rather than abundances of individual species to identify possible cause-effect relationships between pesticide pollution and biotic responses. Certain effects of organophosphates and phenylureas in both structural and functional aspects of the biofilm community were suggested, but the sensitivity of each metric to particular stressors must be assessed before we can confidently assign causality. Complemented with laboratory experiments, which are needed to confirm causality, this approach could be successfully incorporated into environmental risk assessments to better summarise biotic integrity and improve the ecological management.

  6. Childhood pesticide poisoning in Zhejiang, China: a retrospective analysis from 2006 to 2015.

    Science.gov (United States)

    Yimaer, Aziguli; Chen, Guangdi; Zhang, Meibian; Zhou, Lifang; Fang, Xinglin; Jiang, Wei

    2017-06-28

    Pesticide poisoning in children has been a serious public health issue around the world, especially in the developing countries where agriculture is still one of the largest economic sectors. The purpose of this study was to analyze epidemiological characteristics of acute pesticide poisoning in children from Zhejiang province, China. The pesticide poisoning cases for children were retrieved from Occupational Disease Surveillance and Reporting System, Zhejiang Provincial Center for Disease Control and Prevention, China. The incident cases, deaths, and fatality rate of child pesticide poisoning from 2006 through 2015 were calculated. During the study period, totally 2952 children were poisoned by pesticides, with 66 deaths, resulting in a fatality rate of 2.24%. Among them, there were 1607 male cases with 28 deaths, and 1345 female cases with 38 deaths. Most of the cases occurred in preschool children (1349) and adolescent age group (1269). Organophosphate and carbamate insecticides were the cause of most poisonings (1130), leading to 34 deaths. The highest fatality rate (3.13%) was due to poisoning by herbicides and fungicides, causing 14 deaths out of 448 cases. Poisoning occurred mostly in rural areas (78%). And most pesticide poisoning occurred in the summer (896) and fall (811), while fewest poisoning cases in the winter (483) but with the highest fatality rate (3.52%). This study shows that pesticide poisoning of children is a major health problem in Zhejiang, suggesting preventive strategies should be conducted to control childhood pesticide poisoning.

  7. Effects of the herbicide isoproturon on metallothioneins, growth, and antioxidative defenses in the aquatic worm Tubifex tubifex (Oligochaeta, Tubificidae).

    Science.gov (United States)

    Mosleh, Yahia Y; Paris-Palacios, Séverine; Couderchet, Michel; Biagianti-Risbourg, Sylvie; Vernet, Guy

    2005-07-01

    Metallothioneins (MTs) are low molecular weight proteins, mainly implicated in metal ion detoxification. Increase in MT contents is considered to be a specific biomarker of metal exposure. Recently it has been demonstrated that MTs participate in several cellular functions such as regulation of growth, and antioxidative defenses. Therefore, the induction of MTs as biomarkers of exposure to the pesticide isoproturon has been investigated in the aquatic worms Tubifex tubifex. MT levels in exposed worms increased significantly (p isoproturon (maximum increase compared to unexposed controls: +148.56% for 10 mg l(-1) after 4 days of exposure). In response to isoproturon, the activity of glutathione-S-transferase (max. +52%), glutathione-reductase (max. +100%), and catalase (max. +117%) increased, demonstrating the occurrence of an oxidative stress response to the herbicide. Thus, the increase in MT contents caused by isoproturon was interpreted as a defense response towards increased oxidative stress generated by the herbicide. Residues of isoproturon and its metabolites, 1-(4-isopropylphenyl)-3-methylurea, 1-(4-isopropylphenyl) urea, and 4-isopropylanilin were detected in the worm growth medium. Half-life of the herbicide was shorter at a low (0.1 mg l(-1)) initial concentration. The herbicide accumulated in T. tubifex but no metabolite could be detected.

  8. Exposure of native bees foraging in an agricultural landscape to current-use pesticides

    Science.gov (United States)

    Hladik, Michelle; Vandever, Mark W.; Smalling, Kelly L.

    2016-01-01

    The awareness of insects as pollinators and indicators of environmental quality has grown in recent years, partially in response to declines in honey bee (Apis mellifera) populations. While most pesticide research has focused on honey bees, there has been less work on native bee populations. To determine the exposure of native bees to pesticides, bees were collected from an existing research area in northeastern Colorado from two land cover types: grasslands (2013-2014) and wheat fields (2014). Traps were deployed bi-monthly during the summer at each land cover type and all bees, regardless of species, were composited as whole samples and analyzed for 136 current-use pesticides and degradates. This reconnaissance approach provides a sampling of all species and represents overall pesticide exposure (internal and external). Nineteen pesticides and degradates were detected in 54 composite samples collected. Compounds detected in >10% of the samples included the insecticides thiamethoxam (46%), bifenthrin (28%), clothianidin (24%), chlorpyrifos (17%), and imidacloprid (13%), the fungicides azoxystrobin (17%), and pyraclostrobin (11%), and the herbicide atrazine (19%). Concentrations ranged from 1.1 to 312 ng/g for individual pesticides. Pesticides were detected in samples collected from both grasslands and wheat fields; the location of the sample and the surrounding land cover at the 1000 m buffer influenced the pesticides detected but because of a small number of temporally comparable samples, correlations between pesticide concentration and land cover were not significant. The results show native bees collected in both grasslands and wheat fields are exposed to multiple pesticides, these results can direct future research on routes/timing of pesticide exposure and the design of future conservation efforts for pollinators.

  9. Exposure of native bees foraging in an agricultural landscape to current-use pesticides.

    Science.gov (United States)

    Hladik, Michelle L; Vandever, Mark; Smalling, Kelly L

    2016-01-15

    The awareness of insects as pollinators and indicators of environmental quality has grown in recent years, partially in response to declines in honey bee (Apis mellifera) populations. While most pesticide research has focused on honey bees, there has been less work on native bee populations. To determine the exposure of native bees to pesticides, bees were collected from an existing research area in northeastern Colorado in both grasslands (2013-2014) and wheat fields (2014). Traps were deployed bi-monthly during the summer at each land cover type and all bees, regardless of species, were composited as whole samples and analyzed for 136 current-use pesticides and degradates. This reconnaissance approach provides a sampling of all species and represents overall pesticide exposure (internal and external). Nineteen pesticides and degradates were detected in 54 composite samples collected. Compounds detected in >2% of the samples included: insecticides thiamethoxam (46%), bifenthrin (28%), clothianidin (24%), chlorpyrifos (17%), imidacloprid (13%), fipronil desulfinyl (7%; degradate); fungicides azoxystrobin (17%), pyraclostrobin (11%), fluxapyroxad (9%), and propiconazole (9%); herbicides atrazine (19%) and metolachlor (9%). Concentrations ranged from 1 to 310 ng/g for individual pesticides. Pesticides were detected in samples collected from both grasslands and wheat fields; the location of the sample and the surrounding land cover at the 1000 m radius influenced the pesticides detected but because of a small number of temporally comparable samples, correlations between pesticide concentration and land cover were not significant. The results show native bees collected in an agricultural landscape are exposed to multiple pesticides, these results can direct future research on routes/timing of pesticide exposure and the design of future conservation efforts for pollinators. Published by Elsevier B.V.

  10. Fungal degradation of pesticides - construction of microbial consortia for bioremediation

    DEFF Research Database (Denmark)

    Ellegaard-Jensen, Lea

    in groundwater contamination. New technologies are therefore needed for cleaning up contaminated soil and water resources. This PhD was part of the project entitled Microbial Remediation of Contaminated Soil and Water Resources (MIRESOWA) where the overall aim is to develop new technologies for bioremediation...... of pesticide contaminated soil and water. The objectives of this PhD were to investigate fungal degradation of pesticides and following to construct microbial consortia for bioremediation. In Manuscript I the fungal degradation of the phenylurea herbicide diuron was studied. Isolates of soil fungi of the genus...... slightly enhanced BAM distribution. From this work it is evident that the fungal-bacterial consortium is capable of enhancing BAM-degradation in unsaturated systems, and may therefore be a promising application for soil bioremediation. In Manuscript III two- and three-member consortia were constructed...

  11. Mixture of commercial herbicides based on 2,4-D and glyphosate mixture can suppress the emergence of zooplankton from sediments.

    Science.gov (United States)

    Portinho, Jorge L; Nielsen, Daryl L; Daré, Luana; Henry, Raoul; Oliveira, Régis C; Branco, Ciro C Z

    2018-07-01

    It is generally assumed that zooplankton can recolonize lakes that have been exposed to pesticides, via their dormant egg banks. Hitherto, few studies have evaluated the relative importance of dormant egg bank recruitment in the re-establishment of zooplankton communities in the presence of pesticide. This study investigated the effects of commercial products Bratt ® (a.i. 2,4-D), Roundup ® (a.i. glyphosate) and their mixture on the emergence (abundance and taxon richness) of dormant zooplankton egg banks from natural lake sediment. Sediment samples were collected from the surface sediment (commercial products Bratt ® , Roundup ® and their mixture can suppress the emergence of rotifers, thereby influencing zooplankton recruitment potential in lakes impacted by the presence of these commercial herbicides. Our results stress the importance of the need for additional studies to assess the effects of pesticides on dormant egg banks. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Long-term persistence of various 14C-labeled pesticides in soils

    International Nuclear Information System (INIS)

    Jablonowski, Nicolai D.; Linden, Andreas; Köppchen, Stephan; Thiele, Björn; Hofmann, Diana; Mittelstaedt, Werner; Pütz, Thomas; Burauel, Peter

    2012-01-01

    The fate of the 14 C-labeled herbicides ethidimuron (ETD), methabenzthiazuron (MBT), and the fungicide anilazine (ANI) in soils was evaluated after long-term aging (9–17 years) in field based lysimeters subject to crop rotation. Analysis of residual 14 C activity in the soils revealed 19% (ETD soil; 0–10 cm depth), 35% (MBT soil; 0–30), and 43% (ANI soil; 0–30) of the total initially applied. Accelerated solvent extraction yielded 90% (ETD soil), 26% (MBT soil), and 41% (ANI soil) of residual pesticide 14 C activity in the samples. LC-MS/MS analysis revealed the parent compounds ETD and MBT, accounting for 3% and 2% of applied active ingredient in the soil layer, as well as dihydroxy-anilazine as the primary ANI metabolite. The results for ETD and MBT were matching with values obtained from samples of a 12 year old field plot experiment. The data demonstrate the long-term persistence of these pesticides in soils based on outdoor trials. - Highlights: ► The environmental persistence of three 14 C-labeled pesticides in soils is presented. ► Extract analysis revealed the pesticides and metabolites after 9–17 years of aging. ► Pesticide residues may represent a long-term soil burden. ► The bioaccessibility and/or bioavailability of long-term aged pesticide residues remain unknown. - Residual fractions of the pesticides ethidimuron, methabenzthiazuron, and metabolites of anilazine are highly persistent in soils and remain extractable after long-term environmental aging.

  13. Pesticide Application among Farmers in the Catchment of Ashaiman Irrigation Scheme of Ghana: Health Implications

    Directory of Open Access Journals (Sweden)

    Memuna M. Mattah

    2015-01-01

    Full Text Available Pesticide use in modern day agriculture has increased tremendously. Pesticides are used to control pests and weeds, as well as protect crops from postharvest losses; however, their effects on humans and the environment cannot be overstated. This study examined pesticide acquisition, handling, and use among 120 farmers within the catchment of a small urban irrigation scheme. Also, in-depth interviews and focus group discussions were conducted among selected farmers through which further data was collected to augment that of the survey. Twelve types of pesticides, including herbicides, insecticides, and fungicides, were found in use in the study areas. Three main sources of information about pesticides were identified, 43.3% from extension officers, 39.2% from agrochemical dealers, and 10% from colleague farmers. Seventy-five percent (75% of the respondents purchased the pesticides from agrochemical shops. Out of 74 farmers who were observed spraying pesticides on their farms, only 25.7% wore dresses that covered their whole body but without goggles. About sixty-seven percent (66.7% of the farmers whose chemical got finished left the containers on their farms or threw them into the bushes around. The frequency of application was influenced by affordability and size of farm, among others. The study recommended that training of farmers on pesticide handling and use should be intensified.

  14. Lethal and behavioral effects of selected novel pesticides on adults of Trichogramma pretiosum (Hymenoptera: Trichogrammatidae).

    Science.gov (United States)

    Khan, Muhammad Ashraf; Khan, Hizbullah; Ruberson, John R

    2015-12-01

    Growing demand for reduced chemical inputs in agricultural systems requires more effective integration of biological control with pesticides. The egg parasitoid Trichogramma pretiosum Riley is an important natural enemy of lepidopteran pests, used in biological control. In an investigation of the interaction of T. pretiosum and pesticides, we studied the acute toxicity of 19 pesticides (insecticides, miticides, fungicides and herbicides) to adult parasitoids and the behavioral effects of 11 pesticides on foraging parasitoid females, including host antennation, stinging and host feeding. At recommended field doses, fipronil, dinotefuran, spinetoram, tolfenpyrad and abamectin induced nearly 100% adult mortality within 24 h of exposure to treated cotton leaves by comparison with controls. Acetamiprid was also toxic, but significantly less so than the former materials. The other pesticides had no significant toxic effects. Only glufosinate ammonium exhibited increased toxicity among the non-toxic materials when increased two- or fourfold over recommended rates. The foraging behavior of parasitoids was affected only by tolfenpyrad among the materials tested. Most novel pesticides, except for several insecticides, exhibited little to no acute toxicity to the parasitoid. Parasitoid foraging behavior was only affected by tolfenpyrad, indicating that parasitoids could successfully forage on eggs treated with most pesticides evaluated. Therefore, many of these pesticides may have good compatibility with Trichogramma. © 2015 Society of Chemical Industry.

  15. Managed aquifer recharge as environmental tool risk mitigation linked to the presence of herbicides.

    Science.gov (United States)

    Di Roma, Antonella; Nieto Yàbar, Daniel; Pepi, Salvatore; Vaccaro, Carmela

    2017-04-01

    The pollution due to some herbicides which was used in flood plains and karst areas of various regions in the world is causing major problems in supplying drinking water from surface water bodies and aquifers. Pesticides and herbicides are widely used in agriculture, vineyards, industry and public hygiene. They are spread on soil surface, in air, into deep soil causing problems in surface water bodies and aquifers. In Italy the interest of presence of pesticides in water resources began around 1980 after episodes of drinking water contamination due to some herbicides and atrazine (ATR). After years away from the ban on the use of atrazine (use prohibition in the 90's), its degradation products are still present in groundwater of large areas of the plains of Nord Italy (Bottoni et al.,2013). Intensive use of triazines has become harmful for the local population that live in the Veneto-Friuli plain where the high gravels permeability of alluvial fans allowed to the widespread diffusion of triazines and related metabolites. The main mechanism of atrazine action in soil is microbial degradation, the kinetics of these products is closely connected with the availability of nitrates in the soil. The half-life of atrazine is 30-180 days but its disintegration is blocked by nitrates presence (Jones et al 1982). ATR is trapped in cohesive levels as peat and silty clay soils and periodically released by the interaction water sediment. Artificial recharge in areas with highly permeable aquifers allows to realize qualitative and quantitative regeneration because water low in nitrates and Dissolved Oxygen can promote the biological and chemical disintegration of pesticides such as atrazine and its metabolites. A case study is represented by the Friuli plain, near the Tagliamento river. Based on the WARBO project data that has applied artificial recharge in Mereto di Tomba test site where the dissolved nitrate content of water in some cases exceed the 50 mg/L limit according to

  16. Controlled Release Formulations of Auxinic Herbicides

    Science.gov (United States)

    Kowalski, Witold J.; Siłowiecki, Andrzej.; Romanowska, Iwona; Glazek, Mariola; Bajor, Justyna; Cieciwa, Katarzyna; Rychter, Piotr

    2013-04-01

    Controlled release formulations are applied extensively for the release of active ingredients such as plant protection agents and fertilizers in response to growing concern for ecological problems associated with increased use of plant protection chemicals required for intensive agricultural practices [1]. We synthesized oligomeric mixtures of (R,S)-3-hydroxy butyric acid chemically bonded with 2,4-D, Dicamba and MCPA herbicides (HBA) respectively, and determined their molecular structure and molecular weight dispersion by the size exclusion chromatography, proton magnetic resonance spectrometry and electro-spray ionization mass spectrometry. Further we carried out bioassays of herbicidal effectiveness of the HBA herbicides vs. series of dicotyledonous weeds and crop injury tests [2, 3, 4]. Field bioassays were accomplished according to the EPPO standards [5]. Groups of representative weeds (the development stages in the BCCH scale: 10 - 30) were selected as targets. Statistical variabilities were assessed by the Fisher LSD test for plants treated with the studied herbicides in form of HBA oligomers, the reference herbicides in form of dimethyl ammonium salts (DMA), and untreated plants. No statistically significant differences in the crop injuries caused by the HBA vs. the DMA reference formulation were observed. The effectiveness of the HBA herbicides was lower through the initial period (ca. 2 weeks) relative to the DMA salts, but a significant increase in the effectiveness of the HBA systems followed during the remaining fraction of each assay. After 6 weeks all observed efficiencies approached 100%. The death of weeds treated with the HBA herbicides was delayed when compared with the DMA reference herbicides. The delayed uptake observed for the HBA oligomers relative to the DMA salts was due to controlled release phenomena. In case of the DMA salts the total amount of active ingredients was available at the target site. By contrast, the amount of an active

  17. Determining the probability of pesticide exposures among migrant farmworkers: results from a feasibility study.

    Science.gov (United States)

    Ward, M H; Prince, J R; Stewart, P A; Zahm, S H

    2001-11-01

    Migrant and seasonal farmworkers are exposed to pesticides through their work with crops and livestock. Because workers are usually unaware of the pesticides applied, specific pesticide exposures cannot be determined by interviews. We conducted a study to determine the feasibility of identifying probable pesticide exposures based on work histories. The study included 162 farm workers in seven states. Interviewers obtained a lifetime work history including the crops, tasks, months, and locations worked. We investigated the availability of survey data on pesticide use for crops and livestock in the seven pilot states. Probabilities of use for pesticide types (herbicides, insecticides, fungicides, etc.) and specific chemicals were calculated from the available data for two farm workers. The work histories were chosen to illustrate how the quality of the pesticide use information varied across crops, states, and years. For most vegetable and fruit crops there were regional pesticide use data in the late 1970s, no data in the 1980s, and state-specific data every other year in the 1990s. Annual use surveys for cotton and potatoes began in the late 1980s. For a few crops, including asparagus, broccoli, lettuce, strawberries, plums, and Christmas trees, there were no federal data or data from the seven states before the 1990s. We conclude that identifying probable pesticide exposures is feasible in some locations. However, the lack of pesticide use data before the 1990s for many crops will limit the quality of historic exposure assessment for most workers. Published 2001 Wiley-Liss, Inc.

  18. Comparisons of Herbicide Treated and Cultivated Herbicide-Resistant Corn

    Directory of Open Access Journals (Sweden)

    H. Arnold Bruns

    2010-01-01

    Full Text Available Four glyphosate resistant corn (Zea mays L. hybrids, a glufosinate-ammonium resistant hybrid, and a conventional atrazine resistant hybrid gown at Stoneville, MS in 2005, 2006, and 2007 with furrow irrigation were treated with their respective herbicides and their growth, yield, and mycotoxin incidence were compared with untreated cultivated plots. Leaf area index (LAI and dry matter accumulation (DMA were collected on a weekly basis beginning at growth stage V3 and terminating at anthesis. Crop growth rates (CRGs and relative growth rates (RGRs were calculated. Plots were later harvested, yield and yield component data collected, and kernel samples analyzed for aflatoxin and fumonisin. Leaf area index, DMA, CRG, and RGR were not different among the herbicide treated plots and from those that were cultivated. Curves for LAI and DMA were similar to those previously reported. Aflatoxin and fumonisin were relatively low in all plots. Herbicide application or the lack thereof had no negative impact on the incidence of kernel contamination by these two mycotoxins. Herbicides, especially glyphosate on resistant hybrids, have no negative effects on corn yields or kernel quality in corn produced in a humid subtropical environment.

  19. Radiation chemistry and the environment: the radiation degradation of pesticides

    International Nuclear Information System (INIS)

    Cornelius, K.; Laurence, G.

    1996-01-01

    Full text: The chemistry of the degradation of organic pesticides, herbicides and fungicides in natural systems determines operationally important parameters such as withholding times before planting or consumption. Free radicals are being increasingly recognised as important in environmental chemistry and in aqueous systems the OH, H, and O 2 - radicals are believed to be relevant to the degradation of organic molecules. Sources of these radicals in natural aqueous systems have been suggested as photochemical or transition metal reactions involving dissolved organic species such as humic acids. We are undertaking a systematic study of the reactions of OH, H, and O 2 - radicals and halogen radical ions such as Cl 2 - , with important herbicides and fungicides in order to obtain rate constant data for modelling the possible reactions in field conditions and to establish whether the postulated reactions are capable of accounting for the disappearance of the materials in the environment. In addition to using gamma and pulse radiolysis to determine product yields, rate constants and the presence of reactive intermediates, we have begun to explore the stability and geometry of possible radial intermediates using Gaussian computations. At present six pesticides in current use in Australia are being studied. Our results for one of these, Inoxyl will be discussed. While electron transfer to or from the molecule is the initial reaction path for OH and H radicals, superoxide radical species are unreactive. (authors)

  20. Using of scanner on the evaluation of pesticides mobility by thin-layer chromatography

    International Nuclear Information System (INIS)

    Tornisielo, V.L.; Costa, M.A.; Furlan, G.R.

    1995-01-01

    Knowledge of pesticide leaching potential is an essential information to preview environmental fate. The experiment confirms the possibility of using radiochromatogram scanning as a substitute for X-ray autoradiography, when Thin Layer Chromatografy (TLC) methodogy is used to determine mobility of a pesticide. Three types of soil from Sao Paulo state and five herbicides (metolachlor, asulan, simazing, 2,4-D and trifluralin), labeled with 14 C, were used. The radiochromatogram scanners permits a quick detection of the position of the radioactive spots to determine the Rf for each pesticide, while X-ray film has to be placed on the plate on the dark room for several days or weeks and then developed to detect spots, subsequently measure and calculate Rf. The results showed that the evaluation by scanner and X-ray were similar. Hence we conclude that the use of the scanner should be considered since this methodology is faster and as accurate as the X-ray methodology. (author). 4 refs, 1 fig, 2 tabs

  1. Pesticide interactions with soils affected by olive oil mill wastewater

    Science.gov (United States)

    Keren, Yonatan; Bukhanovsky, Nadezhda; Borisover, Mikhail

    2013-04-01

    Soil pesticide sorption is well known to affect the fate of pesticides, their bioavailability and the potential to contaminate air and water. Soil - pesticide interactions may be strongly influenced by soil organic matter (SOM) and organic matter (OM)-rich soil amendments. One special OM source in soils is related to olive oil production residues that may include both solid and liquid wastes. In the Mediterranean area, the olive oil production is considered as an important field in the agricultural sector. Due to the significant rise in olive oil production, the amount of wastes is growing respectively. Olive oil mill waste water (OMWW) is the liquid byproduct in the so-called "three phase" technological process. Features of OMWW include the high content of fatty aliphatic components and polyphenols and their often-considered toxicity. One way of OMWW disposal is the land spreading, e.g., in olive orchards. The land application of OMWW (either controlled or not) is supposed to affect the multiple soil properties, including hydrophobicity and the potential of soils to interact with pesticides. Therefore, there is both basic and applied interest in elucidating the interactions between organic compounds and soils affected by OMWW. However, little is known about the impact of OMWW - soil interactions on sorption of organic compounds, and specifically, on sorption of agrochemicals. This paper reports an experimental study of sorption interactions of a series of organic compounds including widely used herbicides such as diuron and simazine, in a range of soils that were affected by OMWW (i) historically or (ii) in the controlled land disposal experiments. It is demonstrated that there is a distinct increase in apparent sorption of organic chemicals in soils affected by OMWW. In selected systems, this increase may be explained by increase in SOM content. However, the SOM quality places a role: the rise in organic compound - soil interactions may both exceed the SOM

  2. APPLICATION OF QuEChERS METHOD FOR THE DETERMINATION OF PHENYLUREA HERBICIDES IN BEETROOT BY HPLC WITH UV-VIS DETECTION

    Directory of Open Access Journals (Sweden)

    Magdalena Surma

    2015-02-01

    Full Text Available Phenylurea herbicides are an important group of herbicides utilized in weed control. They have been on sale since the 1950s and are still in common use throughout the world from pre- and post-emergence control of many annual and perennial broad-leaved weeds. The aim of this work was to evaluate the utility of the QuEChERS method for the determination of phenylurea pesticides (chlortoluron, isoproturon, linuron, metobromuron, metoxuron, monolinuron in beetroot by HPLC with UV/Vis detection. Different types of sorbents (PSA, C18, SAX and NH2 and solvents (hexane, ethyl acetate were applied. The obtained results showed that the best recovery ratios were received for the method with PSA and GCB sorbents and using acetonitrile as an extraction solvent with RSD lower than 15% for most compounds. The linearity of calibration curves was higher than 0.98 for all target analytes. The results show that the QuEChERS method can be successfully applied for the determination of phenylurea herbicides in beetroot.

  3. The study of environmental impact quotient (EIQ of pesticides used in wheat and barley farms in Mashhad

    Directory of Open Access Journals (Sweden)

    L maleki

    2016-05-01

    to pesticides (insecticides, herbicides and fungicides used in wheat and barley in the city of Mashhad located in the Khorasan Razavi province were gathered through face to face filling questionnaires by the users. The indices measured in this study include Environmental Impact Quotient (EIQ and its components (farm worker, consumer, leaching and ecology and Field Use Rate - EIQ (FUR-EIQ. EIQ is calculated based on the work of Kovach et al. (1992. The formula is: EIQ={C[(DT×5+(DT×P]+[(C×((S+P/2×SY+(L]+[(F×R+(D×((S+P/2×3+(Z×P×3+(B×P×5]}/3 In this formula: DT: Dermal Toxicity; C: long term health effects; SY: mode of action; F: fish toxicity; L: leaching potential; R: surface runoff potential; D: bird toxicity; S: soil residue half-life; Z: bee toxicity; B: beneficial arthropod toxicity; P: plant surface half-life. EIQ field use rating was calculated by multiplying the EIQ value for a specific chemical from the table by the percent active ingredient in the formulation and the rate of its dosage used per hectare: EIQ Field Use Rating = EIQ × % active ingredient × Rate Results and Discussion A large degree of variation was observed in the amount of EIQ and its components. The results showed that in wheat cultivation, Carbendazim had the most effect on the farm worker component and Diazinon had the least effect on this component. The most risk of the consumer and leaching component in wheat fields were shown in fungicides. The fungicide Carbendazim had the most effect on the consumer and leaching component. The least effect on consumer and leaching component were obtained in Deltamethrin. Replacement of Carbendazim with Iprodione, Thiram and Carboxin which are used for disinfection of seeds will improve the consumer and leaching component. In terms of ecology, the Diazinon component had the most dangerous environmental risk in wheat fields. In this section, pesticides were more importance than fungicides. The use of Deltamethrin to control Eurygaster

  4. Selectivity and stability of herbicides and herbicide combinations for the grain yield of maize (Zea Mays L.

    Directory of Open Access Journals (Sweden)

    T. Barakova

    2016-09-01

    Full Text Available Abstract. The research was conducted during 2012 - 2014 on pellic vertisol soil type. Under investigation was cycloxydim tolerant maize hybrid Ultrafox duo (Zea mays L.. Factor A included the years of investigation. Factor B included no treated check and 3 soil-applied herbicides – Adengo 465 SC (isoxaflutol + tiencarbazon – 440 ml/ha, Wing P (pendimethalin + dimethenamid – 4 l/ha and Lumax 538 SC (S-metolachlor + terbuthylazine + mesotrione – 4 l/ha. Factor C included no treated check and 5 foliar-applied herbicides – Stellar 210 SL (topramezon + dicamba – 1 l/ha, Principal plus (nicosulfuron + rimsulfuron + dicamba – 380 g/ha, Ventum WG (foramsulfuron + iodosulfuron – 150 g/ha, Monsun active OD (foramsulfuron + tiencarbazon – 1.5 l/ha and Laudis OD (tembotrione – 2 l/ha. In addition to these variants by conventional technology for maize growing one variant by Duo system technology is also included in the experiment. It includes soil-applied herbicide Merlin flex 480 SC (isoxaflutole – 420 g/ha and tank mixture of antigraminaceous herbicide Focus ultra (cycloxydim - 2 l/ha + antibroadleaved herbicide Kalam (tritosulfuron + dicamba – 300 g/ha. It is found that herbicide combination of soil-applied herbicide Merlin flex with tank mixture Focus ultra + Kalam by Duo system technology leads to obtaining high grain yield. High yields of maize grain are also obtained by herbicide combinations Lumax + Principal plus, Lumax + Laudis and Wing + Principal plus. The most unstable are the non-treated check and single use of soilapplied herbicides Adengo, Wing and Lumax. Technologically the most valuable are herbicide combination Merlin flex + Focus ultra + Kalam by Duo system technology, followed by combinations of foliar-applied herbicides Principal plus and Laudis with soil-applied herbicides Adengo, Wing and Lumax by conventional technology. Single use of herbicides has low estimate due to must to combine soil-applied with foliar

  5. Pesticide Residues in Canned Foods, Fruits, and Vegetables: The Application of Supercritical Fluid Extraction and Chromatographic Techniques in the Analysis

    Directory of Open Access Journals (Sweden)

    Mohamed H. EL-Saeid

    2003-01-01

    Full Text Available Multiple pesticide residues have been observed in some samples of canned foods, frozen vegetables, and fruit jam, which put the health of the consumers at risk of adverse effects. It is quite apparent that such a state of affairs calls for the need of more accurate, cost-effective, and rapid analytical techniques capable of detecting the minimum concentrations of the multiple pesticide residues. The aims of this paper were first, to determine the effectiveness of the use of Supercritical Fluid Extraction (SFE and Supercritical Fluid Chromatography (SFC techniques in the analysis of the levels of pesticide residues in canned foods, vegetables, and fruits; and second, to contribute to the promotion of consumer safety by excluding pesticide residue contamination from markets. Fifteen different types of imported canned and frozen fruits and vegetables samples obtained from the Houston local food markets were investigated. The major types of pesticides tested were pyrethroids, herbicides, fungicides, and carbamates.By using these techniques, the overall data showed 60.82% of the food samples had no detection of any pesticide residues under this investigation. On the other hand, 39.15% different food samples were contaminated by four different pyrethroid residues ± RSD% ranging from 0.03 ± 0.005 to 0.05 ± 0.03 ppm, of which most of the pyrethroid residues were detected in frozen vegetables and strawberry jam. Herbicide residues in test samples ranged from 0.03 ± 0.005 to 0.8 ± 0.01 ppm. Five different fungicides, ranging from 0.05 ± 0.02 to 0.8 ±0.1 ppm, were found in five different frozen vegetable samples. Carbamate residues were not detected in 60% of investigated food samples. It was concluded that SFE and SFC techniques were accurate, reliable, less time consuming, and cost effective in the analysis of imported canned foods, fruits, and vegetables and are recommended for the monitoring of pesticide contaminations.

  6. Pesticides in surface water measured at select sites in the Sacramento River basin, California, 1996-1998

    Science.gov (United States)

    Domagalski, Joseph L.

    2000-01-01

    Pesticides were measured in one urban stream, one agricultural stream, one site on the Sacramento River, and one large flood control channel over a period of 18 months during 1996-1998. All sites were located within the Sacramento River Basin of California. Measurements were made on 83 pesticides or pesticide transformation products by either gas chromatography/mass spectrometry or by high performance liquid chromatography with ultraviolet light spectrometry. Some pesticides were detected frequently at the agricultural stream and downstream in the Sacramento River and at the flood control channel of the Sacramento River. These were pesticides related to rice farming (molinate, carbofuran, thiobencarb, and bentazon); herbicides used both agriculturally or for roadside maintenance (diuron, simazine, and metolachlor); or insecticides used on orchards and row corps (diazinon and chlorpyrifos). No pesticide concen-trations above enforceable water quality criteria were measured at either the agricultural site or the Sacramento River sites. In contrast to the agricul-tural site, insecticides used for household, lawn, or garden maintenance were the most frequently detected pesticides at the urban site. Diazinon, an organophosphate insecticide, exceeded recom-mended criteria for the protection of aquatic life, and the diazinon levels were frequently above known toxic levels for certain zooplankton species at the urban site. Because of the low discharge of the urban stream, pesticide concentrations were greatly diluted upon mixing with Sacramento River water.

  7. Determination of multi-class herbicides in soil by liquid-solid extraction coupled with headspace solid phase microextraction method

    Directory of Open Access Journals (Sweden)

    Đurović-Pejčev Rada

    2016-01-01

    Full Text Available A method is described for simultaneous determination of five herbicides (metribuzin, acetochlor, clomazone, oxyfluorfen and dimethenamid belonging to different pesticides groups in soil samples. Developed headspace solid phase microextraction method (HS-SPME in combination with liquid-solid sample preparation (LS was optimized and applied in the analysis of some agricultural samples. Optimization of microextraction conditions, such as temperature, extraction time and sodium chloride (NaCl content was perfor-med using 100 μm polydimethyl-siloxane (PDMS fiber. The extraction effi-ciencies of methanol, methanol:acetone=1:1 and methanol:acetone:hexane= =2:2:1 and the optimum number of extraction steps during the sample prepa-ration, were tested, as well. Gas chromatography-mass spectrometry (GC-MS was used for detection and quantification, obtaining relative standard deviation (RSD below 13%, and recovery values higher than 83% for multiple analyses of soil samples fortified at 30 μg kg-1 of each herbicide. Limits of detection (LOD were less than 1.2 μg kg-1 for all the studied herbicides. [Projekat Ministarstva nauke Republike Srbije, br. TR31043 i br. III43005

  8. Determination of solid-liquid partition coefficients (Kd) for the herbicides inspiration and trifluralin in five UK agricultural soils

    International Nuclear Information System (INIS)

    Cooke, Cindy M.; Shaw, George; Collins, Chris D.

    2004-01-01

    Isoproturon and trifluralin are herbicides of contrasting chemical characters and modes of action. Standard batch sorption procedures were carried out to investigate the individual sorption behaviour of 14 C-isoproturon and 14 C-trifluralin in five agricultural soils (1.8-4.2% OC), and the soil solid-liquid partition coefficients (K d values) were determined. Trifluralin exhibited strong partitioning to the soil solid phase (K d range 106-294) and low desorption potential, thus should not pose a threat to sensitive waters via leaching, although particle erosion and preferential flow pathways may facilitate transport. For isoproturon, soil adsorption was low (K d range 1.96-5.75) and desorption was high, suggesting a high leaching potential, consistent with isoproturon being the most frequently found pesticide in UK surface waters. Soil partitioning was directly related to soil organic carbon (OC) content. Accumulation isotherms were modelled using a dual-phase adsorption model to estimate adsorption and desorption rate coefficients. Associations between herbicides and soil humic substances were also shown using gel filtration chromatography. - Capsule: Herbicide soil sorption described by a dual-phase adsorption model reflected soil partitioning, as influenced by soil OC and humic substances

  9. Childhood pesticide poisoning in Zhejiang, China: a retrospective analysis from 2006 to 2015

    Directory of Open Access Journals (Sweden)

    Aziguli Yimaer

    2017-06-01

    Full Text Available Abstract Background Pesticide poisoning in children has been a serious public health issue around the world, especially in the developing countries where agriculture is still one of the largest economic sectors. The purpose of this study was to analyze epidemiological characteristics of acute pesticide poisoning in children from Zhejiang province, China. Methods The pesticide poisoning cases for children were retrieved from Occupational Disease Surveillance and Reporting System, Zhejiang Provincial Center for Disease Control and Prevention, China. The incident cases, deaths, and fatality rate of child pesticide poisoning from 2006 through 2015 were calculated. Results During the study period, totally 2952 children were poisoned by pesticides, with 66 deaths, resulting in a fatality rate of 2.24%. Among them, there were 1607 male cases with 28 deaths, and 1345 female cases with 38 deaths. Most of the cases occurred in preschool children (1349 and adolescent age group (1269. Organophosphate and carbamate insecticides were the cause of most poisonings (1130, leading to 34 deaths. The highest fatality rate (3.13% was due to poisoning by herbicides and fungicides, causing 14 deaths out of 448 cases. Poisoning occurred mostly in rural areas (78%. And most pesticide poisoning occurred in the summer (896 and fall (811, while fewest poisoning cases in the winter (483 but with the highest fatality rate (3.52%. Conclusions This study shows that pesticide poisoning of children is a major health problem in Zhejiang, suggesting preventive strategies should be conducted to control childhood pesticide poisoning.

  10. Pesticide exposure and risk of Parkinson's disease: A family-based case-control study

    Directory of Open Access Journals (Sweden)

    Scott Burton L

    2008-03-01

    Full Text Available Abstract Background Pesticides and correlated lifestyle factors (e.g., exposure to well-water and farming are repeatedly reported risk factors for Parkinson's disease (PD, but few family-based studies have examined these relationships. Methods Using 319 cases and 296 relative and other controls, associations of direct pesticide application, well-water consumption, and farming residences/occupations with PD were examined using generalized estimating equations while controlling for age-at-examination, sex, cigarette smoking, and caffeine consumption. Results Overall, individuals with PD were significantly more likely to report direct pesticide application than their unaffected relatives (odds ratio = 1.61; 95% confidence interval, 1.13–2.29. Frequency, duration, and cumulative exposure were also significantly associated with PD in a dose-response pattern (p ≤ 0.013. Associations of direct pesticide application did not vary by sex but were modified by family history of PD, as significant associations were restricted to individuals with no family history. When classifying pesticides by functional type, both insecticides and herbicides were found to significantly increase risk of PD. Two specific insecticide classes, organochlorines and organophosphorus compounds, were significantly associated with PD. Consuming well-water and living/working on a farm were not associated with PD. Conclusion These data corroborate positive associations of broadly defined pesticide exposure with PD in families, particularly for sporadic PD. These data also implicate a few specific classes of pesticides in PD and thus emphasize the need to consider a more narrow definition of pesticides in future studies.

  11. Effects of the herbicide diuron on cordgrass (Spartina foliosa) reflectance and photosynthetic parameters

    Science.gov (United States)

    Williams, S.L.; Carranza, A.; Kunzelman, J.; Datta, S.; Kuivila, K.M.

    2009-01-01

    Early indicators of salt marsh plant stress are needed to detect stress before it is manifested as changes in biomass and coverage. We explored a variety of leaf-level spectral reflectance and fluorescence variables as indicators of stress in response to the herbicide diuron. Diuron, a Photosystem II inhibitor, is heavily used in areas adjacent to estuaries, but its ecological effects are just beginning to be recognized. In a greenhouse experiment, we exposed Spartina foliosa, the native cordgrass in California salt marshes, to two levels of diuron. After plant exposure to diuron for 28 days, all spectral reflectance indices and virtually all fluorescence parameters indicated reduced pigment and photosynthetic function, verified as reduced CO2 assimilation. Diuron exposure was not evident, however, in plant morphometry, indicating that reflectance and fluorescence were effective indicators of sub-lethal diuron exposure. Several indices (spectral reflectance index ARI and fluorescence parameters EQY, Fo, and maximum rETR) were sensitive to diuron concentration. In field trials, most of the indices as well as biomass, % cover, and canopy height varied predictably and significantly across a pesticide gradient. In the field, ARI and Fo regressed most significantly and strongly with pesticide levels. The responses of ARI and Fo in both the laboratory and the field make these indices promising as sensitive, rapid, non-destructive indicators of responses of S. foliosa to herbicides in the field. These techniques are employed in remote sensing and could potentially provide a link between landscapes of stressed vegetation and the causative stressor(s), which is crucial for effective regulation of pollution. ?? 2008 Coastal and Estuarine Research Federation.

  12. Herbicide Persistence in Seawater Simulation Experiments.

    Directory of Open Access Journals (Sweden)

    Philip Mercurio

    Full Text Available Herbicides are detected year-round in marine waters, including those of the World Heritage listed Great Barrier Reef (GBR. The few previous studies that have investigated herbicide persistence in seawater generally reported half-lives in the order of months, and several studies were too short to detect significant degradation. Here we investigated the persistence of eight herbicides commonly detected in the GBR or its catchments in standard OECD simulation flask experiments, but with the aim to mimic natural conditions similar to those found on the GBR (i.e., relatively low herbicide concentrations, typical temperatures, light and microbial communities. Very little degradation was recorded over the standard 60 d period (Experiment 1 so a second experiment was extended to 365 d. Half-lives of PSII herbicides ametryn, atrazine, diuron, hexazinone and tebuthiuron were consistently greater than a year, indicating high persistence. The detection of atrazine and diuron metabolites and longer persistence in mercuric chloride-treated seawater confirmed that biodegradation contributed to the breakdown of herbicides. The shortest half-life recorded was 88 d for growth-regulating herbicide 2,4-D at 31°C in the dark, while the fatty acid-inhibitor metolachlor exhibited a minimum half-life of 281 d. The presence of moderate light and elevated temperatures affected the persistence of most of the herbicides; however, the scale and direction of the differences were not predictable and were likely due to changes in microbial community composition. The persistence estimates here represent some of the first appropriate data for application in risk assessments for herbicide exposure in tropical marine systems. The long persistence of herbicides identified in the present study helps explain detection of herbicides in nearshore waters of the GBR year round. Little degradation of these herbicides would be expected during the wet season with runoff and associated

  13. Herbicide Persistence in Seawater Simulation Experiments

    Science.gov (United States)

    Mercurio, Philip; Mueller, Jochen F.; Eaglesham, Geoff; Flores, Florita; Negri, Andrew P.

    2015-01-01

    Herbicides are detected year-round in marine waters, including those of the World Heritage listed Great Barrier Reef (GBR). The few previous studies that have investigated herbicide persistence in seawater generally reported half-lives in the order of months, and several studies were too short to detect significant degradation. Here we investigated the persistence of eight herbicides commonly detected in the GBR or its catchments in standard OECD simulation flask experiments, but with the aim to mimic natural conditions similar to those found on the GBR (i.e., relatively low herbicide concentrations, typical temperatures, light and microbial communities). Very little degradation was recorded over the standard 60 d period (Experiment 1) so a second experiment was extended to 365 d. Half-lives of PSII herbicides ametryn, atrazine, diuron, hexazinone and tebuthiuron were consistently greater than a year, indicating high persistence. The detection of atrazine and diuron metabolites and longer persistence in mercuric chloride-treated seawater confirmed that biodegradation contributed to the breakdown of herbicides. The shortest half-life recorded was 88 d for growth-regulating herbicide 2,4-D at 31°C in the dark, while the fatty acid-inhibitor metolachlor exhibited a minimum half-life of 281 d. The presence of moderate light and elevated temperatures affected the persistence of most of the herbicides; however, the scale and direction of the differences were not predictable and were likely due to changes in microbial community composition. The persistence estimates here represent some of the first appropriate data for application in risk assessments for herbicide exposure in tropical marine systems. The long persistence of herbicides identified in the present study helps explain detection of herbicides in nearshore waters of the GBR year round. Little degradation of these herbicides would be expected during the wet season with runoff and associated flood plumes

  14. In-situ Mass Distribution Quotient (iMDQ) - A New Factor to Compare Bioavailability of Pesticides in Soils?

    Science.gov (United States)

    Schroll, R.; Folberth, C.; Scherb, H.; Suhadolc, M.; Munch, J. C.

    2009-04-01

    Aim of this work was the development of a new non-biological factor to determine microbial in-situ bioavailability of chemicals in soils. Pesticide residues were extracted from ten highly different agricultural soils that had been incubated with the 14C-herbicide isoproturon (IPU) under comparable soil conditions (water tension - 15 kPa; soil density 1.3 g cm 3). Two different pesticide extraction approaches were compared: (i) 14C-Pesticide residues were measured in the pore water (PW) which was extracted from soil by centrifugation; (ii) 14C-Pesticide residues were extracted from soil samples with an excess of water (EEW). We introduce the pesticide's in-situ mass distribution quotient (iMDQ) as a measure for pesticide bioavailability, which is calculated as a quotient of adsorbed and dissolved chemical amounts for both approaches (iMDQPW, iMDQEEW). Pesticide mineralization in soils served as a reference for real microbial availability. A highly significant correlation between iMDQPW and mineralization showed that pore water extraction is adequate to assess IPU bioavailability. In contrast, no correlation exists between IPU mineralization and its extractability from soil with an excess of water. Therefore, it can be concluded that soil equilibration at comparable conditions and subsequent pore water extraction is vital for a isoproturon bioavailability ranking of soils.

  15. Effects of pesticides used in soybean crops to the egg parasitoid Trichogramma pretiosum.

    OpenAIRE

    BUENO, A. de F.; BUENO, R. C. O. de F.; PARRA, J. R. P.; VIEIRA, S. S.

    2008-01-01

    This research aimed to study the effects of different insecticides, herbicides and fungicides on eggs, larvae and pupae of Trichogramma pretiosum. The results showed that studied pesticides had different impact on T. pretiosum. Esfenvalerate 7.5 and spinosad 24.0 grams ha-1 were classified as harmfull (class 4) while clorfluazuron 10.0, methoxyfenozide 19.2, lactofen 165.0, fomesafen 250.0, fluazifop 125.0, glyphosate 960.0 (Gliz® and Roundup Transorb®), azoxistrobin + ciproconazol 60.0 + 24....

  16. [Analysis of acute pesticide poisoning in Ningbo city from 2011 to 2016].

    Science.gov (United States)

    Li, X H; Leng, P B; Mao, G C; Wang, A H

    2018-01-20

    Objective: To analyze the characteristics of acute pesticide poisoning in Ningbo, and to provide scientific basis for the prevention and control strategy. Methods: In February 2017, the pesticide poisoning report card of Ningbo from 2011 to 2016 was drawn from the China Disease Control and prevention information system. The data of the report card was organized by Excel and analyzed by SPSS19.0 software. Results: 2593 cases of acute pesticide poisoning were reported in Ningbo from 2011 to 2016, 125 deaths, and the case fatality rate was 4.82%. The productive pesticide poisoning and unproductive pesticide poisoning were 299 and 2294, respectively, the ratio was 1: 7.67. The case fatality rate were 0.33% and 5.41%, respectively. The difference was statistically significant (χ(2)=14.83, PPesticide poisoning mainly occurred from July to September (55.85%) , the unproductive pesticides mainly occurred from April to June (30.64%) and July to September (30.34%). The seasonal distribution of the pesticide poisoning in the two groups was statistically significant (χ2=82.21, Ppesticide poisoning in male (80.27%) was significantly higher than the proportion of unproductive pesticide poisoning (52.09%) , the differences in gender composition between the two types of pesticide poisoning was significant (χ2=84.97, Ppesticide poisoning from 55 to 65 years old group was in the largest number (35.45%) , and the distribution of unproductive pesticide poisoning was uniform in each age group including 25 years old and above, the difference in age composition between two types of pesticide poisoning was statistically significant (χ2=177.84, Ppesticide poisoning. The counties with more reports were Ninghai county (18.28%) , Fenghua district (14.69%) and Yuyao (12.42%). The acute pesticide poisoning was mainly caused by pesticides and herbicides, mainly in organophosphorus (45.74%) and paraquat (16.81%) . Conclusions: At present, the pesticide poisoning in Ningbo is given priority to

  17. CADDIS Volume 2. Sources, Stressors and Responses: Herbicides

    Science.gov (United States)

    Introduction to the herbicides module, when to list herbicides as a candidate cause, ways to measure herbicides, simple and detailed conceptual diagrams for herbicides, herbicides module references and literature reviews.

  18. Spatial variation in herbicide leaching from a marine clay soil via subsurface drains

    Science.gov (United States)

    Ulén, Barbro M; Larsbo, Mats; Kreuger, Jenny K; Svanbäck, Annika

    2013-01-01

    Background Subsurface transport via tile drains can significantly contribute to pesticide contamination of surface waters. The spatial variation in subsurface leaching of normally applied herbicides was examined together with phosphorus losses in 24 experimental plots with water sampled flow-proportionally. The study site was a flat, tile-drained area with 60% marine clay in the topsoil in southeast Sweden. The objectives were to quantify the leaching of frequently used herbicides from a tile drained cracking clay soil and to evaluate the variation in leaching within the experimental area and relate this to topsoil management practices (tillage method and structure liming). Results In summer 2009, 0.14, 0.22 and 1.62%, respectively, of simultaneously applied amounts of MCPA, fluroxypyr and clopyralid were leached by heavy rain five days after spraying. In summer 2011, on average 0.70% of applied bentazone was leached by short bursts of intensive rain 12 days after application. Peak flow concentrations for 50% of the treated area for MCPA and 33% for bentazone exceeded the Swedish no-effect guideline values for aquatic ecosystems. Approximately 0.08% of the glyphosate applied was leached in dissolved form in the winters of 2008/2009 and 2010/2011. Based on measurements of glyphosate in particulate form, total glyphosate losses were twice as high (0.16%) in the second winter. The spatial inter-plot variation was large (72–115%) for all five herbicides studied, despite small variations (25%) in water discharge. Conclusions The study shows the importance of local scale soil transport properties for herbicide leaching in cracking clay soils. © 2013 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. PMID:23658148

  19. Pesticides are Associated with Allergic and Non-Allergic Wheeze among Male Farmers

    Science.gov (United States)

    Hoppin, Jane A.; Umbach, David M.; Long, Stuart; London, Stephanie J.; Henneberger, Paul K.; Blair, Aaron; Alavanja, Michael; Freeman, Laura E. Beane; Sandler, Dale P.

    2016-01-01

    Background: Growing evidence suggests that pesticide use may contribute to respiratory symptoms. Objective: We evaluated the association of currently used pesticides with allergic and non-allergic wheeze among male farmers. Methods: Using the 2005–2010 interview data of the Agricultural Health Study, a prospective study of farmers in North Carolina and Iowa, we evaluated the association between allergic and non-allergic wheeze and self-reported use of 78 specific pesticides, reported by ≥ 1% of the 22,134 men interviewed. We used polytomous regression models adjusted for age, BMI, state, smoking, and current asthma, as well as for days applying pesticides and days driving diesel tractors. We defined allergic wheeze as reporting both wheeze and doctor-diagnosed hay fever (n = 1,310, 6%) and non-allergic wheeze as reporting wheeze but not hay fever (n = 3,939, 18%); men without wheeze were the referent. Results: In models evaluating current use of specific pesticides, 19 pesticides were significantly associated (p pyraclostrobin) had significantly different associations for allergic and non-allergic wheeze. In exposure–response models with up to five exposure categories, we saw evidence of an exposure–response relationship for several pesticides including the commonly used herbicides 2,4-D and glyphosate, the insecticides permethrin and carbaryl, and the rodenticide warfarin. Conclusions: These results for farmers implicate several pesticides that are commonly used in agricultural and residential settings with adverse respiratory effects. Citation: Hoppin JA, Umbach DM, Long S, London SJ, Henneberger PK, Blair A, Alavanja M, Beane Freeman LE, Sandler DP. 2017. Pesticides are associated with allergic and non-allergic wheeze among male farmers. Environ Health Perspect 125:535–543; http://dx.doi.org/10.1289/EHP315 PMID:27384423

  20. Distribution of pesticide residues in soil and uncertainty of sampling.

    Science.gov (United States)

    Suszter, Gabriela K; Ambrus, Árpád

    2017-08-03

    Pesticide residues were determined in about 120 soil cores taken randomly from the top 15 cm layer of two sunflower fields about 30 days after preemergence herbicide treatments. Samples were extracted with acetone-ethyl acetate mixture and the residues were determined with GC-TSD. Residues of dimethenamid, pendimethalin, and prometryn ranged from 0.005 to 2.97 mg/kg. Their relative standard deviations (CV) were between 0.66 and 1.13. The relative frequency distributions of residues in soil cores were very similar to those observed in root and tuber vegetables grown in pesticide treated soils. Based on all available information, a typical CV of 1.00 was estimated for pesticide residues in primary soil samples (soil cores). The corresponding expectable relative uncertainty of sampling is 20% when composite samples of size 25 are taken. To obtain a reliable estimate of the average residues in the top 15 cm layer of soil of a field up to 8 independent replicate random samples should be taken. To obtain better estimate of the actual residue level of the sampled filed would be marginal if larger number of samples were taken.

  1. Herbicide residues in grapes and wine.

    Science.gov (United States)

    Ying, G G; Williams, B

    1999-05-01

    The persistence of several common herbicides from grapes to wine has been studied. Shiraz, Tarrango and Doradillo grapes were separately sprayed with either norflurazon, oxyfluorfen, oxadiazon or trifluralin-persistent herbicides commonly used for weed control in vineyards. The dissipation of the herbicides from the grapes was followed for 28 days following treatment. Results showed that norflurazon was the most persist herbicide although there were detectable residues of all the herbicides on both red and white grapes at the end of the study period. The penetration of herbicides into the flesh of the grapes was found to be significantly greater for white grapes than for red grapes. Small-lot winemaking experiments showed that norflurazon persisted at levels close to the initial concentration through vinification and into the finished wine. The other herbicides degraded, essentially via first-order kinetics, within the period of "first fermentation" and had largely disappeared after 28 days. The use of charcoal together with filter pads, or with diatomaceous earth was shown to be very effective in removing herbicide residues from the wine. A 5% charcoal filter removed more than 96% of the norflurazon persisting in the treated wine.

  2. Quantification of pesticides used in agriculture in the EU-27

    Science.gov (United States)

    Wagner, Susanne; Fantke, Peter; Theloke, Jochen; Friedrich, Rainer

    2010-05-01

    were identified for each EU member state. The focus was on herbicides and insecticides. Also, the average dosage (i.e. application rate [kg active substance/ha]) for chemical classes per crop category and country was provided. Each active substance was then related to the average dosage of its chemical class for each crop category and country. The amount of active substance applied on a specific crop type in a country was calculated by multiplying the country specific crop production area with the respective dosage. Based on the loss fraction of applied substance to air, the emission into air can be calculated. With this approach we identified 89 active substances of relevance (63 herbicides, 26 insecticides) in the EU-27. The analysis showed a high variation of active substances between the member states, i.e. each country uses particular herbicides and insecticides for particular commodities according to specific climate conditions. For the majority of the member states, our approach covers more than 70 % of total use compared to the aggregated consumption of active substances per country as published in Eurostat. For some specific countries with substance-specific application data available, our results can be compared to real application rates. Discrepancies can be considered as an indicator for the variation of our estimates. By relating the emission inventory data sets to land use maps, they can be spatially disaggregated and thus may serve as input for a subsequent exposure and impact assessment modelling of individual pesticides. References: Arias-Estévez, M., López-Periago, E., Martínez-Carballo, E., Simal-Gándara, J., Mejuto, J.-C., García-Río, L. (2008). The mobility and degradation of pesticides in soils and the pollution of groundwater resources. Agriculture, Ecosystems and Environment 123(4): 247-260. EPER. The European Pollutant Emission Register. Available online at: http://www.eper.ec.europa.eu/. E-PRTR. The European Pollutant Release and

  3. Spot Spraying Reduces Herbicide Concentrations in Runoff.

    Science.gov (United States)

    Melland, Alice R; Silburn, D Mark; McHugh, Allen D; Fillols, Emilie; Rojas-Ponce, Samuel; Baillie, Craig; Lewis, Stephen

    2016-05-25

    Rainfall simulator trials were conducted on sugar cane paddocks across dry-tropical and subtropical Queensland, Australia, to examine the potential for spot spraying to reduce herbicide losses in runoff. Recommended rates of the herbicides glyphosate, 2,4-D, fluoroxypyr, atrazine, and diuron were sprayed onto 0, 20, 40, 50, 70, or 100% of the area of runoff plots. Simulated rainfall was applied 2 days after spraying to induce runoff at one plant cane and three ratoon crop sites. Over 50% of all herbicides were transported in the dissolved phase of runoff, regardless of the herbicide's sediment-water partition coefficient. For most sites and herbicides, runoff herbicide concentrations decreased with decreasing spray coverage and with decreasing herbicide load in the soil and cane residues. Importantly, sites with higher infiltration prior to runoff and lower total runoff had lower runoff herbicide concentrations.

  4. Pesticide runoff from energy crops: A threat to aquatic invertebrates?

    Science.gov (United States)

    Bunzel, Katja; Schäfer, Ralf B; Thrän, Daniela; Kattwinkel, Mira

    2015-12-15

    The European Union aims to reach a 10% share of biofuels in the transport sector by 2020. The major burden is most likely to fall on already established annual energy crops such as rapeseed and cereals for the production of biodiesel and bioethanol, respectively. Annual energy crops are typically cultivated in intensive agricultural production systems, which require the application of pesticides. Agricultural pesticides can have adverse effects on aquatic invertebrates in adjacent streams. We assessed the relative ecological risk to aquatic invertebrates associated with the chemical pest management from six energy crops (maize, potato, sugar beet, winter barley, winter rapeseed, and winter wheat) as well as from mixed cultivation scenarios. The pesticide exposure related to energy crops and cultivation scenarios was estimated as surface runoff for 253 small stream sites in Central Germany using a GIS-based runoff potential model. The ecological risk for aquatic invertebrates, an important organism group for the functioning of stream ecosystems, was assessed using acute toxicity data (48-h LC50 values) of the crustacean Daphnia magna. We calculated the Ecological Risk from potential Pesticide Runoff (ERPR) for all three main groups of pesticides (herbicides, fungicides, and insecticides). Our findings suggest that the crops potato, sugar beet, and rapeseed pose a higher ecological risk to aquatic invertebrates than maize, barley, and wheat. As maize had by far the lowest ERPR values, from the perspective of pesticide pollution, its cultivation as substrate for the production of the gaseous biofuel biomethane may be preferable compared to the production of, for example, biodiesel from rapeseed. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Land use effects on pesticides in sediments of prairie pothole wetlands in North and South Dakota

    Science.gov (United States)

    McMurry, Scott T.; Belden, Jason B.; Smith, Loren M.; Morrison, Shane A.; Daniel, Dale W.; Euliss, Betty R.; Euliss, Ned H. Jr.; Kensinger, Bart J.; Tangen, Brian

    2016-01-01

    Prairie potholes are the dominant wetland type in the intensively cultivated northern Great Plains of North America, and thus have the potential to receive pesticide runoff and drift. We examined the presence of pesticides in sediments of 151 wetlands split among the three dominant land use types, Conservation Reserve Program (CRP), cropland, and native prairie, in North and South Dakota in 2011. Herbicides (glyphosate and atrazine) and fungicides were detected regularly, with no insecticide detections. Glyphosate was the most detected pesticide, occurring in 61% of all wetlands, with atrazine in only 8% of wetlands. Pyraclostrobin was one of five fungicides detected, but the only one of significance, being detected in 31% of wetlands. Glyphosate was the only pesticide that differed by land use, with concentrations in cropland over four-times that in either native prairie or CRP, which were equal in concentration and frequency of detection. Despite examining several landscape variables, such as wetland proximity to specific crop types, watershed size, and others, land use was the best variable explaining pesticide concentrations in potholes. CRP ameliorated glyphosate in wetlands at concentrations comparable to native prairie and thereby provides another ecosystem service from this expansive program.

  6. Strains of the soil fungus Mortierella show different degradation potentials for the phenylurea herbicide diuron.

    Science.gov (United States)

    Ellegaard-Jensen, Lea; Aamand, Jens; Kragelund, Birthe B; Johnsen, Anders H; Rosendahl, Søren

    2013-11-01

    Microbial pesticide degradation studies have until now mainly focused on bacteria, although fungi have also been shown to degrade pesticides. In this study we clarify the background for the ability of the common soil fungus Mortierella to degrade the phenylurea herbicide diuron. Diuron degradation potentials of five Mortierella strains were compared, and the role of carbon and nitrogen for the degradation process was investigated. Results showed that the ability to degrade diuron varied greatly among the Mortierella strains tested, and the strains able to degrade diuron were closely related. Degradation of diuron was fastest in carbon and nitrogen rich media while suboptimal nutrient levels restricted degradation, making it unlikely that Mortierella utilize diuron as carbon or nitrogen sources. Degradation kinetics showed that diuron degradation was followed by formation of the metabolites 1-(3,4-dichlorophenyl)-3-methylurea, 1-(3,4-dichlorophenyl)urea and an hitherto unknown metabolite suggested to be 1-(3,4-dichlorophenyl)-3-methylideneurea.

  7. DNA analysis of herbarium Specimens of the grass weed Alopecurus myosuroides reveals herbicide resistance pre-dated herbicides.

    Science.gov (United States)

    Délye, Christophe; Deulvot, Chrystel; Chauvel, Bruno

    2013-01-01

    Acetyl-CoA carboxylase (ACCase) alleles carrying one point mutation that confers resistance to herbicides have been identified in arable grass weed populations where resistance has evolved under the selective pressure of herbicides. In an effort to determine whether herbicide resistance evolves from newly arisen mutations or from standing genetic variation in weed populations, we used herbarium specimens of the grass weed Alopecurus myosuroides to seek mutant ACCase alleles carrying an isoleucine-to-leucine substitution at codon 1781 that endows herbicide resistance. These specimens had been collected between 1788 and 1975, i.e., prior to the commercial release of herbicides inhibiting ACCase. Among the 734 specimens investigated, 685 yielded DNA suitable for PCR. Genotyping the ACCase locus using the derived Cleaved Amplified Polymorphic Sequence (dCAPS) technique identified one heterozygous mutant specimen that had been collected in 1888. Occurrence of a mutant codon encoding a leucine residue at codon 1781 at the heterozygous state was confirmed in this specimen by sequencing, clearly demonstrating that resistance to herbicides can pre-date herbicides in weeds. We conclude that point mutations endowing resistance to herbicides without having associated deleterious pleiotropic effects can be present in weed populations as part of their standing genetic variation, in frequencies higher than the mutation frequency, thereby facilitating their subsequent selection by herbicide applications.

  8. Herbicide glufosinate inhibits yeast growth and extends longevity during wine fermentation.

    Science.gov (United States)

    Vallejo, Beatriz; Picazo, Cecilia; Orozco, Helena; Matallana, Emilia; Aranda, Agustín

    2017-09-29

    Glufosinate ammonium (GA) is a widely used herbicide that inhibits glutamine synthetase. This inhibition leads to internal amino acid starvation which, in turn, causes the activation of different nutrient sensing pathways. GA also inhibits the enzyme of the yeast Saccharomyces cerevisiae in such a way that, although it is not used as a fungicide, it may alter yeast performance in industrial processes like winemaking. We describe herein how GA indeed inhibits the yeast growth of a wine strain during the fermentation of grape juice. In turn, GA extends longevity in a variety of growth media. The biochemical analysis indicates that GA partially inhibits the nutrient sensing TORC1 pathway, which may explain these phenotypes. The GCN2 kinase mutant is hypersensitive to GA. Hence the control of translation and amino acid biosynthesis is required to also deal with the damaging effects of this pesticide. A global metabolomics analysis under winemaking conditions indicated that an increase in amino acid and in polyamines occurred. In conclusion, GA affects many different biochemical processes during winemaking, which provides us with some insights into both the effect of this herbicide on yeast physiology and into the relevance of the metabolic step for connecting nitrogen and carbon metabolism.

  9. Pesticides and Arthropods: Sublethal Effects and Demographic Toxicology

    Directory of Open Access Journals (Sweden)

    Dejan Marčić

    2007-01-01

    Full Text Available Insecticides and acaricides designed to control primary harmful insects and mites may also variously affect some other arthopods present in an (agroecosystem (e.g. secondary pests, predators, parasitoids, saprophytes, bioindicators, pollinators. Apart from insecticides and acaricides, arthropods may also be affected by the activity of other pesticides (fungicides, herbicides, etc.. Regardless of whether they are deemed desirable or not, the effects that pesticides have on arthopods need to be quantified as closely as possible through appropriate experimental procedures. Data acquired in tests designed to determined LD50/LC50 values are inadequate for evaluation of pesticide effectiveness in the field as pesticidesalso cause various sublethal effects, generally disregarded in such investigations. The sublethal effects of pesticides refer to any altered behaviour and/or physiology of individuals that have survived exposure to pesticides at doses/concentrations that can be lethal(within range causing mortality in an experimental population that exceeds mortality in an untreated population or sublethal (below that range. Pesticides affect locomotion and mobility, stimulate dispersion of arthropods from treated areas, complicate or prevent their navigation, orientation and ability to locate hosts, and cause changes in their feeding, mating and egg-laying patterns. Sublethal pesticide effects on arthropod physiology reflect on the life span, rate of development, fecundity and/or fertility, sex ratio and immunity of surviving individuals. Different parameters are being used in arthropod bioassays to determine sublethal effects (ED50/EC50, LOEC, NOEC, total effect index. Compared to acute toxicity tests, these parameters improve the quality of evaluation and create a more accurate view of the effects of a pesticide. However, such approach covers mainly fecundity/fertility alone, while all other sublethal effects remain unaccounted for. Besides, it

  10. Herbicide options for hardwood management

    Science.gov (United States)

    Andrew W. Ezell; A. Brady Self

    2016-01-01

    The use of herbicides in hardwood management presents special problems in that many of the most effective herbicides are either designed to control hardwoods or the product is not labeled for such applications. Numerous studies involving herbicide application in hardwoods have been completed at Mississippi State University. This paper is a compilation of results from...

  11. Oxidative stress induced by glyphosate-based herbicide on freshwater turtles.

    Science.gov (United States)

    Héritier, Laurent; Duval, David; Galinier, Richard; Meistertzheim, Anne-Leila; Verneau, Olivier

    2017-12-01

    Freshwater ecosystems face very strong anthropogenic pressures, among which overexploitation, habitat degradation, flow modification, species invasion, and water pollution lead to growing threats on biodiversity. Urbanization through wastewater treatment, industry through the release of inorganic and organic chemicals, and agriculture through the use of pesticides and herbicides are the main factors involved in water pollution. In France, more precisely in the Pyrénées-Orientales department, the poor quality of the watercourses is attributable overall to the use of glyphosate-based herbicides in agricultural activities. Because these chemicals can impact individuals, populations, and biodiversity, we investigated, under experimental conditions, the physiological response of animals facing abiotic contaminants. We selected as a model, juveniles of the freshwater turtle Trachemys scripta elegans. We measured the gene expression and activity of the catalase and superoxide dismutase enzymes as well as the levels of lipid peroxidation, which are all oxidative stress biomarkers, in turtles challenged with high concentrations of glyphosate-based herbicides, on the one hand, and with degraded waters collected from a local watercourse, on the other. We also measured the acetylcholinesterase activity across the same animals. We showed through variations in gene expression and enzyme activity that a glyphosate commercial formulation induced a stress in turtles. A similar outcome was obtained when turtles faced degraded waters. The results indicated that the poor quality of regional waters could be a real threat for animal health. Because turtles are globally less sensitive to contaminants than amphibians, which are lacking in the degraded waters of the Pyrénées-Orientales department, they could constitute an excellent model to follow the evolution of water quality through the study of oxidative stress biomarkers. Environ Toxicol Chem 2017;36:3343-3350. © 2017 SETAC.

  12. Exposure to pesticides or solvents and risk of Parkinson disease.

    Science.gov (United States)

    Pezzoli, Gianni; Cereda, Emanuele

    2013-05-28

    To investigate the risk of Parkinson disease (PD) associated with exposure to pesticides and solvents using meta-analyses of data from cohort and case-control studies. Prospective cohort and case-control studies providing risk and precision estimates relating PD to exposure to pesticides or solvents or to proxies of exposure were considered eligible. The heterogeneity in risk estimates associated with objective study quality was also investigated. A total of 104 studies/3,087 citations fulfilled inclusion criteria for meta-analysis. In prospective studies, study quality was not a source of heterogeneity. PD was associated with farming and the association with pesticides was highly significant in the studies in which PD diagnosis was self-reported. In case-control studies, study quality appeared to be a source of heterogeneity in risk estimates for some exposures. Higher study quality was frequently associated with a reduction in heterogeneity. In high-quality case-control studies, PD risk was increased by exposure to any-type pesticides, herbicides, and solvents. Exposure to paraquat or maneb/mancozeb was associated with about a 2-fold increase in risk. In high-quality case-control studies including an appreciable number of cases (>200), heterogeneity remained significantly high (>40%) only for insecticides, organochlorines, organophosphates, and farming; also, the risk associated with rural living was found to be significant. The literature supports the hypothesis that exposure to pesticides or solvents is a risk factor for PD. Further prospective and high-quality case-control studies are required to substantiate a cause-effect relationship. The studies should also focus on specific chemical agents.

  13. Pesticide residue concentration in soil following conventional and Low-Input Crop Management in a Mediterranean agro-ecosystem, in Central Greece

    Energy Technology Data Exchange (ETDEWEB)

    Karasali, Helen, E-mail: e.karassali@bpi.gr [Laboratory of Chemical Control of Pesticides, Department of Pesticides Control and Phytopharmacy, Benaki Phytopathological Institute, 8 St. Delta Street, Kifissia, 14561 Athens (Greece); Marousopoulou, Anna [Laboratory of Chemical Control of Pesticides, Department of Pesticides Control and Phytopharmacy, Benaki Phytopathological Institute, 8 St. Delta Street, Kifissia, 14561 Athens (Greece); Machera, Kyriaki, E-mail: k.machera@bpi.gr [Laboratory of Pesticides Toxicology, Department of Pesticides Control and Phytopharmacy, Benaki Phytopathological Institute, 8 St. Delta Street, Kifissia, 14561 Athens (Greece)

    2016-01-15

    The present study was focused on the comparative evaluation of pesticide residues, determined in soil samples from Kopaida region, Greece before and after the implementation of Low-Input Crop Management (LCM) protocols. LCM has been suggested as an environmental friendly plant protection approach to be applied on crops growing in vulnerable to pollution ecosystems, with special focus on the site specific problems. In the case of the specific pilot area, the vulnerability was mainly related to the pollution of water bodies from agrochemicals attributed to diffuse pollution primarily from herbicides and secondarily from insecticides. A total of sixty-six soil samples, were collected and analyzed during a three-year monitoring study and the results of the determined pesticide residues were considered for the impact evaluation of applied plant protection methodology. The LCM was developed and applied in the main crops growing in the pilot area i.e. cotton, maize and industrial tomato. Herbicides active ingredients such as ethalfluralin, trifluralin, pendimethalin, S-metolachlor and fluometuron were detected in most samples at various concentrations. Ethalfluralin, which was the active ingredient present in the majority of the samples ranged from 0.01 μg g{sup −1} to 0.26 μg g{sup −1} soil dry weight. However, the amount of herbicides measured after the implementation of LCM for two cropping periods, was reduced by more than 75% in all cases. The method of analysis was based on the simultaneous extraction of the target compounds by mechanical shaking, followed by liquid chromatography mass spectrometric and gas chromatography electron capture (LC–MS/MS and GC–ECD) analysis. - Highlights: • Effect of Low Input Crop Management (LCM) in a vulnerable to pollution ecosystem. • LCM resulted in herbicide residues reduction in the range of 75 and 100% in all cases. • Conventional practices resulted in increased herbicide residues up to 18%. • Anthropogenic

  14. Photosensitized herbicidal action

    Energy Technology Data Exchange (ETDEWEB)

    Zweig, A; Nachtigall, G W [American Cyanamid Co., Stamford, Conn.

    1975-12-01

    The herbicidal action produced by the colorless hydrocarbon fluoranthene sprayed on the leaves of growing plants did not occur when uv radiation was removed from the light to which the plants are exposed. If the uv component of the light under which the plants were grown was augmented, the herbicidal effect of fluoranthene was increased. The mechanism of this photodynamic action is discussed.

  15. Drawing-up of pesticide selectivity lists to beneficial arthropods for IPM programmes in potato.

    Science.gov (United States)

    Hautier, L; Jansen, J P; Schiffers, B; Deleu, R; Moreira, C

    2004-01-01

    In order to promote IPM programmes in potato, the toxicity of 19 fungicides, 4 herbicides and 11 insecticides commonly used in this crop in Belgium was assessed on three beneficial arthropods. These species were representative of the most important aphid specific natural enemies encountered in potatoes: a parasitic wasp--Aphidius rhopalosiphi (De Stefani-Perez) (Hym., Aphidiidae), a ladybird--Adalia bipunctata (L.) (Col., Coccinellidae) and a hoverfly--Episyrphus balteatus (Dipt., Syrphidae). In a first time, pesticides were tested on glass plates on A. rhopalosiphi adults and A. bipunctata and E. balteatus larvae. For each insect, products inducing corrected mortality (Mc) lower than 30% were directly classified in a positive list for harmless products (green list). The other compounds were further tested on plants and listed in toxicity classes according to mortalities induced during this extended laboratory test: harmless (Mc 80). A chemical determination of pesticides residues was also performed for each experiment in order to determine the exposure of beneficial arthropods to pesticide residues and to validate the application of chemicals on tested substrates. On the basis of the results of acute toxicity tests, the period of each pesticide use according to normal agricultural practices and the abundance and importance of the three different groups of aphid natural enemies at different periods of the year, four pesticides lists were built up. Each list corresponded to a different period of pesticides application: Period I--from seedling to beginning of June (based on A. rhopalosiphi tests), Period II--beginning to end of June (based on A. rhopalosiphi tests), Period III beginning to end of July (based on E. balteatus and A. bipunctata tests) and Period IV--August to harvest (no exposure of beneficials). Results showed that herbicides were not toxic to the three species and can be used according to normal agricultural practices without restrictions. All

  16. Sensor-based assessment of herbicide effects

    DEFF Research Database (Denmark)

    Streibig, Jens Carl; Rasmussen, Jesper; Andújar, D.

    2014-01-01

    Non-destructive assessment of herbicide effects may be able to support integrated weed management. To test whether effects of herbicides on canopy variables could be detected by sensors, two crops were used as models and treated with herbicides at BBCH 20 using a logarithmic sprayer. Twelve days...... after spraying at BBCH 25 and 42 days after sowing, nine sensor systems scanned a spring barley and an oilseed rape field experiment sown at different densities and sprayed with increasing field rates of glyphosate and tribenuron-methyl. The objective was to compare ED50s for crops and weeds derived...... by the different sensors in relation to crop density and herbicides. Although sensors were not directly developed to detect herbicide symptoms, they all detected changes in canopy colours or height and crop density. Generally ED50s showed the same pattern in response to crop density within herbicide...

  17. Vegetative filter strips efficiency controlling soil loss and trapping herbicides in two olive orchards at the short-term

    Science.gov (United States)

    de Luna, Elena; Guzmán, Gema; Gómez, José A.

    2014-05-01

    The optimization of water use in a semi-arid climate is based on an optimal use of rainwater adopting management practices that prevent and/or control runoff. This is a key point for increasing the economic and environmental sustainability of agriculture due to the minimization of diffuse pollution associated to runoff and to sediment and chemical transport. One strategy is the establishment of vegetative filters strips that prevent pesticides (Stehle et al. 2011), herbicides (Vianello et al. 2005), fertilizers (Withers et al. 2009) and runoff-sediment (Campo-Bescós et al. 2013) from entering streams or surface water reservoirs. To evaluate the short-term risks associated with the use of herbicides a trial was designed in two olive groves located in Benacazón (Sevilla) and Cabra (Córdoba) both with an average steepness of 11%. Two different management systems were evaluated, bare soil and bare soil with vegetative filter strips. Pre-emergence herbicides were applied and analysed at the beginning of the trial by chromatography GC-MS and after each rainfall event both in soil and sediment. Runoff and soil losses were measured, as well. The results obtained from this study show that soil management practices such as, the use of vegetative filter strips results in a reduction of soil losses and runoff. This it is translated in the improvement of soil quality and a reduction of water pollution caused by the use of herbicides. This information will improve the understanding of insufficiently known aspects and it will help to increase the knowledge for a better implementation of sustainable management practices at a farm scale and at larger temporal scale. References: Campo-Bescós, M. A., Muñoz-Carpena, R., & Kiker, G. (2013) Influencia del suelo en la eficiencia de la implantación de filtros verdes en un distrito de riego por superficie en medio árido. En Estudios de la Zona no Saturada del Suelo, Vol. XI: 183-187. Stehle, S., Elsaesser, D., Gregoire, C., Imfeld

  18. Ecological Intensification Through Pesticide Reduction: Weed Control, Weed Biodiversity and Sustainability in Arable Farming.

    Science.gov (United States)

    Petit, Sandrine; Munier-Jolain, Nicolas; Bretagnolle, Vincent; Bockstaller, Christian; Gaba, Sabrina; Cordeau, Stéphane; Lechenet, Martin; Mézière, Delphine; Colbach, Nathalie

    2015-11-01

    Amongst the biodiversity components of agriculture, weeds are an interesting model for exploring management options relying on the principle of ecological intensification in arable farming. Weeds can cause severe crop yield losses, contribute to farmland functional biodiversity and are strongly associated with the generic issue of pesticide use. In this paper, we address the impacts of herbicide reduction following a causal framework starting with herbicide reduction and triggering changes in (i) the management options required to control weeds, (ii) the weed communities and functions they provide and (iii) the overall performance and sustainability of the implemented land management options. The three components of this framework were analysed in a multidisciplinary project that was conducted on 55 experimental and farmer's fields that included conventional, integrated and organic cropping systems. Our results indicate that the reduction of herbicide use is not antagonistic with crop production, provided that alternative practices are put into place. Herbicide reduction and associated land management modified the composition of in-field weed communities and thus the functions of weeds related to biodiversity and production. Through a long-term simulation of weed communities based on alternative (?) cropping systems, some specific management pathways were identified that delivered high biodiversity gains and limited the negative impacts of weeds on crop production. Finally, the multi-criteria assessment of the environmental, economic and societal sustainability of the 55 systems suggests that integrated weed management systems fared better than their conventional and organic counterparts. These outcomes suggest that sustainable management could possibly be achieved through changes in weed management, along a pathway starting with herbicide reduction.

  19. Determination of solid-liquid partition coefficients (K{sub d}) for the herbicides inspiration and trifluralin in five UK agricultural soils

    Energy Technology Data Exchange (ETDEWEB)

    Cooke, Cindy M. [Department of Environmental Science and Technology, Faculty of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire SL5 7PY (United Kingdom)]. E-mail: cindy.cooke@imperial.ac.uk; Shaw, George [Department of Environmental Science and Technology, Faculty of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire SL5 7PY (United Kingdom); Collins, Chris D. [Department of Environmental Science and Technology, Faculty of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire SL5 7PY (United Kingdom)

    2004-12-01

    Isoproturon and trifluralin are herbicides of contrasting chemical characters and modes of action. Standard batch sorption procedures were carried out to investigate the individual sorption behaviour of {sup 14}C-isoproturon and {sup 14}C-trifluralin in five agricultural soils (1.8-4.2% OC), and the soil solid-liquid partition coefficients (K{sub d} values) were determined. Trifluralin exhibited strong partitioning to the soil solid phase (K{sub d} range 106-294) and low desorption potential, thus should not pose a threat to sensitive waters via leaching, although particle erosion and preferential flow pathways may facilitate transport. For isoproturon, soil adsorption was low (K{sub d} range 1.96-5.75) and desorption was high, suggesting a high leaching potential, consistent with isoproturon being the most frequently found pesticide in UK surface waters. Soil partitioning was directly related to soil organic carbon (OC) content. Accumulation isotherms were modelled using a dual-phase adsorption model to estimate adsorption and desorption rate coefficients. Associations between herbicides and soil humic substances were also shown using gel filtration chromatography. - Capsule: Herbicide soil sorption described by a dual-phase adsorption model reflected soil partitioning, as influenced by soil OC and humic substances.

  20. Bio-accessibility and Risk of Exposure to Metals and SVOCs in Artificial Turf Field Fill Materials and Fibers

    Science.gov (United States)

    Pavilonis, Brian T.; Weisel, Clifford P.; Buckley, Brian; Lioy, Paul J.

    2014-01-01

    To reduce maintenance costs, municipalities and schools are starting to replace natural grass fields with a new generation synthetic turf. Unlike Astro-Turf, which was first introduced in the 1960’s, synthetic field turf provides more cushioning to athletes. Part of this cushioning comes from materials like crumb rubber infill, which is manufactured from recycled tires and may contain a variety of chemicals. The goal of this study was to evaluate potential exposures from playing on artificial turf fields and associated risks to trace metals, semivolatile organic compounds (SVOCs), and polycyclic aromatic hydrocarbons (PAHs) by examining typical artificial turf fibers (n=8), different types of infill (n=8), and samples from actual fields (n=7). Three artificial biofluids were prepared which included: lung, sweat, and digestive fluids. Artificial biofluids were hypothesized to yield a more representative estimation of dose than the levels obtained from total extraction methods. PAHs were routinely below the limit of detection across all three biofluids precluding completion of a meaningful risk assessment. No SVOCs were identified at quantifiable levels in any extracts based on a match of their mass spectrum to compounds that are regulated in soil. The metals were measurable but at concentrations for which human health risk was estimated to be low. The study demonstrated that for the products and fields we tested, exposure to infill and artificial turf was generally considered de minimus, with the possible exception of lead for some fields and materials. PMID:23758133

  1. Predicting the aquatic risk of realistic pesticide mixtures to species assemblages in Portuguese river basins.

    Science.gov (United States)

    Silva, Emília; Daam, Michiel A; Cerejeira, Maria José

    2015-05-01

    Although pesticide regulatory tools are mainly based on individual substances, aquatic ecosystems are usually exposed to multiple pesticides from their use on the variety of crops within the catchment of a river. This study estimated the impact of measured pesticide mixtures in surface waters from 2002 and 2008 within three important Portuguese river basins ('Mondego', 'Sado' and 'Tejo') on primary producers, arthropods and fish by toxic pressure calculation. Species sensitivity distributions (SSDs), in combination with mixture toxicity models, were applied. Considering the differences in the responses of the taxonomic groups as well as in the pesticide exposures that these organisms experience, variable acute multi-substance potentially affected fractions (msPAFs) were obtained. The median msPAF for primary producers and arthropods in surface waters of all river basins exceeded 5%, the cut-off value used in the prospective SSD approach for deriving individual environmental quality standards. A ranking procedure identified various photosystem II inhibiting herbicides, with oxadiazon having the relatively largest toxic effects on primary producers, while the organophosphorus insecticides, chlorfenvinphos and chlorpyrifos, and the organochloride endosulfan had the largest effects on arthropods and fish, respectively. These results ensure compliance with European legislation with regard to ecological risk assessment and management of pesticides in surface waters. Copyright © 2015. Published by Elsevier B.V.

  2. Bioaccessibility and Risk of Exposure to Metals and SVOCs in Artificial Turf Field Fill Materials and Fibers.

    Science.gov (United States)

    Pavilonis, Brian T; Weisel, Clifford P; Buckley, Brian; Lioy, Paul J

    2014-01-01

    To reduce maintenance costs, municipalities and schools are starting to replace natural grass fields with a new generation synthetic turf. Unlike Astro-Turf, which was first introduced in the 1960s, synthetic field turf provides more cushioning to athletes. Part of this cushioning comes from materials like crumb rubber infill, which is manufactured from recycled tires and may contain a variety of chemicals. The goal of this study was to evaluate potential exposures from playing on artificial turf fields and associated risks to trace metals, semi-volatile organic compounds (SVOCs), and polycyclic aromatic hydrocarbons (PAHs) by examining typical artificial turf fibers (n = 8), different types of infill (n = 8), and samples from actual fields (n = 7). Three artificial biofluids were prepared, which included: lung, sweat, and digestive fluids. Artificial biofluids were hypothesized to yield a more representative estimation of dose than the levels obtained from total extraction methods. PAHs were routinely below the limit of detection across all three biofluids, precluding completion of a meaningful risk assessment. No SVOCs were identified at quantifiable levels in any extracts based on a match of their mass spectrum to compounds that are regulated in soil. The metals were measurable but at concentrations for which human health risk was estimated to be low. The study demonstrated that for the products and fields we tested, exposure to infill and artificial turf was generally considered de minimus, with the possible exception of lead for some fields and materials. © 2013 Society for Risk Analysis.

  3. Effect of selectivity of herbicides and plant growth regulators used in sugarcane crops on immature stages of Trichogramma galloi (Hymenoptera: Trichogrammatidae).

    OpenAIRE

    OLIVEIRA, H. N. de; ANTIGO, M. R.; CARVALHO, G. A.; GLAESER, D. F.

    2014-01-01

    Herbicides and plant growth regulators are often used in sugarcane management. However, the use of non-selective pesticides can cause adverse effects on the efficiency of beneficial insects in integrated pest management. Within this context, this study aimed to evaluate the effect of such products on the immature stages of the parasitoid Trichogramma galloi. Eggs of Diatraea saccharalis containing the parasitoid at the egg-larva stage and at the prepupal and pupal stages were immersed in test...

  4. Effect of selectivity of herbicides and plant growth regulators used in sugarcane crops on immature stages of Trichogramma galloi (Hymenoptera: Trichogrammatidae)

    OpenAIRE

    Oliveira, H.N.; Antigo, M.R.; Carvalho, G.A.; Glaeser, D.F.

    2014-01-01

    Herbicides and plant growth regulators are often used in sugarcane management. However, the use of non-selective pesticides can cause adverse effects on the efficiency of beneficial insects in integrated pest management. Within this context, this study aimed to evaluate the effect of such products on the immature stages of the parasitoid Trichogramma galloi. Eggs of Diatraea saccharalis containing the parasitoid at the egg-larva stage and at the prepupal and pupal stages were immersed in test...

  5. Amphibians at risk? Susceptibility of terrestrial amphibian life stages to pesticides.

    Science.gov (United States)

    Brühl, Carsten A; Pieper, Silvia; Weber, Brigitte

    2011-11-01

    Current pesticide risk assessment does not specifically consider amphibians. Amphibians in the aquatic environment (aquatic life stages or postmetamorphic aquatic amphibians) and terrestrial living juvenile or adult amphibians are assumed to be covered by the risk assessment for aquatic invertebrates and fish, or mammals and birds, respectively. This procedure has been evaluated as being sufficiently protective regarding the acute risk posed by a number of pesticides to aquatic amphibian life stages (eggs, larvae). However, it is unknown whether the exposure and sensitivity of terrestrial living amphibians are comparable to mammalian and avian exposure and sensitivity. We reviewed the literature on dermal pesticide absorption and toxicity studies for terrestrial life stages of amphibians, focusing on the dermal exposure pathway, that is, through treated soil or direct overspray. In vitro studies demonstrated that cutaneous absorption of chemicals is significant and that chemical percutaneous passage, P (cm/h), is higher in amphibians than in mammals. In vivo, the rapid and substantial uptake of the herbicide atrazine from treated soil by toads (Bufo americanus) has been described. Severe toxic effects on various amphibian species have been reported for field-relevant application rates of different pesticides. In general, exposure and toxicity studies for terrestrial amphibian life stages are scarce, and the reported data indicate the need for further research, especially in light of the global amphibian decline. Copyright © 2011 SETAC.

  6. Comparison of Gas Chromatography-Mass Spectrometry and Gas Chromatography-Tandem Mass Spectrometry with Electron Ionization and Negative-Ion Chemical Ionization for Analyses of Pesticides at Trace Levels in Atmospheric Samples

    Directory of Open Access Journals (Sweden)

    Renata Raina

    2008-01-01

    Full Text Available A comparison of detection limits of gas chromatography-mass spectrometry (GC-MS in selected ion monitoring (SIM with gas chromatography-tandem mass spectrometry (GC-MS/MS in selected reaction monitoring (SRM mode with both electron ionization (EI and negative-ion chemical ionization (NCI are presented for over 50 pesticides ranging from organochlorines (OCs, organophosphorus pesticides (OPs and pre-emergent herbicides used in the Canadian prairies (triallate, trifluralin, ethalfluralin. The developed GC-EI/SIM, GC-NCI/SIM, and GC-NCI/SRM are suitable for the determination of pesticides in air sample extracts at concentrations <100 pg µL -1 (< 100 pg m -3 in air. No one method could be used to analyze the range of pre-emergent herbicides, OPs, and OCs investigated. In general GC-NCI/SIM provided the lowest method detection limits (MDLs commonly 2.5-10 pg µL -1 along with best confirmation (<25% RSD of ion ratio, while GC-NCI/SRM is recommended for use where added selectivity or confirmation is required (such as parathion-ethyl, tokuthion, carbofenothion. GC-EI/SRM at concentration < 100 pg µL -1 was not suitable for most pesticides. GC-EI/SIM was more prone to interference issues than NCI methods, but gave good sensitivity (MDLs 1-10 pg µL -1 for pesticides with poor NCI response (OPs: sulfotep, phorate, aspon, ethion, and OCs: alachlor, aldrin, perthane, and DDE, DDD, DDT.

  7. Simulation of pesticide dissipation in soil at the catchment scale over 23 years

    Science.gov (United States)

    Queyrel, Wilfried; Florence, Habets; Hélène, Blanchoud; Céline, Schott; Laurine, Nicola

    2014-05-01

    Pesticide applications lead to contamination risks of environmental compartments causing harmful effects on water resource used for drinking water. Pesticide fate modeling is assumed to be a relevant approach to study pesticide dissipation at the catchment scale. Simulations of five herbicides (atrazine, simazine, isoproturon, chlortoluron, metolachor) and one metabolite (DEA) were carried out with the crop model STICS over a 23-year period (1990-2012). The model application was performed using real agricultural practices over a small rural catchment (104 km²) located at 60km east from Paris (France). Model applications were established for two crops: wheat and maize. The objectives of the study were i) to highlight the main processes implied in pesticide fate and transfer at long-term; ii) to assess the influence of dynamics of the remaining mass of pesticide in soil on transfer; iii) to determine the most sensitive parameters related to pesticide losses by leaching over a 23-year period. The simulated data related to crop yield, water transfer, nitrates and pesticide concentrations were first compared to observations over the 23-year period, when measurements were available at the catchment scale. Then, the evaluation of the main processes related to pesticide fate and transfer was performed using long-term simulations at a yearly time step and monthly average variations. Analyses of the monthly average variations were oriented on the impact of pesticide application, water transfer and pesticide transformation on pesticide leaching. The evolution of the remaining mass of pesticide in soil, including the mobile phase (the liquid phase) and non-mobile (adsorbed at equilibrium and non-equilibrium), was studied to evaluate the impact of pesticide stored in soil on the fraction available for leaching. Finally, a sensitivity test was performed to evaluate the more sensitive parameters regarding the remaining mass of pesticide in soil and leaching. The findings of the

  8. Temporal and seasonal variation of atmospheric concentrations of currently used pesticides in Champagne in the centre of Reims from 2012 to 2015

    Science.gov (United States)

    Villiot, A.; Chrétien, E.; Drab-Sommesous, E.; Rivière, E.; Chakir, A.; Roth, E.

    2018-02-01

    For four years (2012-2015), pesticides were analyzed in atmospheric samples in the Centre of Reims (France). Among the analyzed substances, 28 have been quantified at least one time during the 4 sampling years. The annual cumulated pesticide concentrations were respectively 158.8, 38.5, 84.5 and 86.6 ng m-3 from 2012 to 2015, showing a great variability in the presence of pesticides in the atmosphere of the Centre of Reims. The top nine pesticides quantified in the atmosphere were cymoxanil, chlorothalonil and prosulfocarb reaching concentrations up to 13-14 ng m-3 and folpel, cyazofamid, fluazinam, pendimethalin, fenpropidin and spiroxamine reaching concentrations between 1 and 5 ng m-3. Among the nine predominant pesticides, seven of them were fungicides especially used against septoriose, mildew and oïdium occurring as well in vineyard and arable crops. Herbicides quantified were those which are used in arable crops. Insecticides especially carbaryl, chlorpyrifos ethyl and lindane were negligible in the atmosphere. The role of meteorological conditions in the development of diseases and the application rates of pesticide was related to the presence of pesticide in the atmosphere.

  9. Pesticide sorption and desorption from soils having different land use

    Directory of Open Access Journals (Sweden)

    Ismael Madrigal Monárrez

    2008-09-01

    Full Text Available This study was carried out within the framework of a multidisciplinary project for evaluating buffer zones for combating pesticide contamination of surface water. Such areas are effective in removing pesticides transported by run-off; however, little information is available about the fate of the pesticides so intercepted. Two herbicides having contrasting properties (isoproturon, moderately hydrophobic (log Kow = 2.5, diflufenican, strongly hydrophobic (log K ow = 4.9 and isopropylaniline (an isoproturon metabolite were used for characterising sorption and desorption from soil having three different land uses: grass buffer strip, woodland and cultivated plot. The experiments were carried out in controlled laboratory conditions using isoproturon labelled with 14C in the benzene ring. The results demonstrated that diflufenican and isopropilaniline retention was more significant than isoproturon in three soils. The three molecules’ Kd values revealed that isoproturon and diflufenicanil retention was more important in woodland soil where carbon content was more significant (ZB 0-2: Kd IPU = 15.1 Ls kg-1; Kd DFF = 169.2 Ls kg-1. Isopropilanilina Kd was higher in grass buffer strip soil (BE 0-2: Kd IPA = 53.1 L kg-1. These differences were related to different organic matter content and nature according to the type of land use.

  10. Occurrence of Pesticides in Ground Water of Wyoming, 1995-2006

    Science.gov (United States)

    Bartos, Timothy T.; Eddy-Miller, Cheryl A.; Hallberg, Laura L.

    2009-01-01

    Little existing information was available describing pesticide occurrence in ground water of Wyoming, so the U.S. Geological Survey, in cooperation with the Wyoming Department of Agriculture and the Wyoming Department of Environmental Quality on behalf of the Wyoming Ground-water and Pesticides Strategy Committee, collected ground-water samples twice (during late summer/early fall and spring) from 296 wells during 1995-2006 to characterize pesticide occurrence. Sampling focused on the State's ground water that was mapped as the most vulnerable to pesticide contamination because of either inherent hydrogeologic sensitivity (for example, shallow water table or highly permeable aquifer materials) or a combination of sensitivity and associated land use. Because of variations in reporting limits among different compounds and for the same compound during this study, pesticide detections were recensored to two different assessment levels to facilitate qualitative and quantitative examination of pesticide detection frequencies - a common assessment level (CAL) of 0.07 microgram per liter and an assessment level that differed by compound, referred to herein as a compound-specific assessment level (CSAL). Because of severe data censoring (fewer than 50 percent of the data are greater than laboratory reporting limits), categorical statistical methods were used exclusively for quantitative comparisons of pesticide detection frequencies between seasons and among various natural and anthropogenic (human-related) characteristics. One or more pesticides were detected at concentrations greater than the CAL in water from about 23 percent of wells sampled in the fall and from about 22 percent of wells sampled in the spring. Mixtures of two or more pesticides occurred at concentrations greater than the CAL in about 9 percent of wells sampled in the fall and in about 10 percent of wells sampled in the spring. At least 74 percent of pesticides detected were classified as herbicides

  11. Occurrence of priority organic pollutants in the fertilizers, China.

    Science.gov (United States)

    Mo, Ce-Hui; Cai, Quan-Ying; Li, Yun-Hui; Zeng, Qiao-Yun

    2008-04-15

    The use of large quantities of chemical fertilizers is usually associated with environmental problems. A lot of work has been done on the concentrations of heavy metals and radionuclides in chemical fertilizers, but little work has focused on the occurrence of semi-volatile organic compounds (SVOCs). In this study the occurrence of 43 SVOCs listed as priority pollutants in 22 widely used-fertilizers of China was determined by gas chromatography coupled with mass spectrometry. Twenty-six SVOCs were detected with different detection frequencies and concentrations. The most abundant compounds were phthalic acid esters (PAEs; ranging from 1.17 to 2795 microg kg(-1) dry weight, d.w.) and nitroaromatics (up to 9765 microg kg(-1) d.w.), followed by polycyclic aromatic hydrocarbons (PAHs; fertilizers, and the total concentrations of each class of contaminants varied widely, too. The highest levels of sum concentration for 16 PAHs, for 6 PAEs and for nitroaromatics were found in organic fertilizer containing pesticide and soil amendments. Concentrations of SVOCs in coated fertilizers (the controlled release fertilizer with coating) were considerably higher than those in the corresponding fertilizers without coating. The occurrence frequencies of SVOCs in the straight fertilizers (containing only one of the major plant nutrients) were lower than in the other fertilizers.

  12. Use of isotopic tracers in pesticide and environmental contamination research

    International Nuclear Information System (INIS)

    Casida, J.E.

    1976-01-01

    The era of synthetic organic pesticides, starting with DDT and the herbicide 2,4-D about 1940, coincides with that of rapid advances in radiotracer applications. This is indeed fortunate since isotopic experiments are an essential step in evaluating each new pesticide and in continually reassessing older compounds for safety and most efficient utilization. This research is carried out in all developed nations with important supplementation on local problems or use conditions from investigations in the developing countries. Several slides will help illustrate the sequence of studies for establishing the disposition and fate of pesticides and other environmental contaminants.It is clear that very little of the pesticide ever contacts the pest. Pesticide chemicals are generally applied at dosages of 0.2 to 2 kilogram per hectare from one to five or more times per crop season. Less than 0.01% of an insecticide is absorbed or ingested by the pest insect. The remaining amount, more than 99.99%, is an environmental contaminant, a portion of which is a potential residue in food, feed and fibre. Isotopic research is critical in understanding or solving several aspects of the problem. The isotopic label is introduced into the chemical by synthesis in a commercial or university laboratory or in a national or regional atomic research centre. The most common radioisotopes used are tritium, 14carbon, 32phosphorus, 35sulphur and 36chlorine. Stable isotopes are becoming increasingly important in pesticide research, particularly carbon 13, nitrogen 15 and oxygen 18. The initial studies usually involve administration of the 14 carbon-labelled pesticide to rats, which are then held in metabolism cages that allow separate collection of expired gases, urine and faeces. The products in the excreta are identified by various chromatographic and spectroscopic techniques. The persistence of the chemical and its metabolites in various tissues is also determined to make sure that the material

  13. Effect of herbicides on microbiological properties of soil

    Directory of Open Access Journals (Sweden)

    Milošević Nada A.

    2002-01-01

    Full Text Available Microorganisms decompose herbicides and they may serve as bioindicators of soil changes following herbicide application. Certain microbial species may be used as bioherbicides. This study has shown that Azotobacter is most sensitive to herbicide application; it is, therefore, a reliable indicator of the biological value of soil. The numbers of this group of nitrogen-fixing bacteria decrease considerably in the period of 7-14 days after herbicide application. Simultaneously, the numbers of Actinomycetes and less so of fungi increase, indicating that these microorganisms use herbicides as sources of biogenous elements. Rate of herbicidal decomposition depends on the properties of the preparation applied herbicide dose as well as on the physical and chemical soil properties, soil moisture and temperature, ground cover, agrotechnical measures applied and the resident microbial population.

  14. Pressure of non-professional use of pesticides on operators, aquatic organisms and bees in Belgium.

    Science.gov (United States)

    Fevery, Davina; Houbraken, Michael; Spanoghe, Pieter

    2016-04-15

    Various studies focus on professional pesticide use, whereas pressure of non-professional use on human and the environment is often neglected. In this study, an attempt was made to estimate the pressure of non-professional use of pesticides on operators, aquatic organisms and bees in Belgium based on sales figures and by using three exposure models. A classification in non-professional use was made based on type of pesticide, application method and on intensity of non-professional use. Pressure of non-professional use on operators is highest for intensive operators, caused by the use of insecticides in an aerosol spray can. Pressure of non-professional pesticides on aquatic life is mainly generated by the use of herbicides. The aerosol spray induces the highest pressure whereas the trigger application hardly affects operator and environmental exposure. The ordinary non-professional user generates most pressure on aquatic organisms. Pressure of non-professional pesticides on bees is mainly caused by the use of insecticides, especially the active substance imidacloprid in combination with the aerosol spray can application method applied by an intensive operator. In general, both total usage (kg) and pressure of pesticides decreased for the period 2005 to 2012 due to efforts made by the government and industry. The results of this study suggest to pay special attention to aerosol spray applications and the non-professional use of insecticides. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Adsorption of chloroacetanilide herbicides on soil and its components. III. Influence of clay acidity, humic acid coating and herbicide structure on acetanilide herbicide adsorption on homoionic clays.

    Science.gov (United States)

    Liu, Wei-ping; Fang, Zhuo; Liu, Hui-jun; Yang, Wei-chun

    2002-04-01

    Adsorption of chloroacetanilide herbicides on homoionic montmorillonite, soil humic acid, and their mixtures was studied by coupling batch equilibration and FT-IR analysis. Adsorption isotherms of acetochlor, alachlor, metolachlor and propachlor on Ca(2+)-, Mg(2+)-, Al(3+)- and Fe(3+)-saturated clays were well described by the Freundlich equation. Regardless of the type of exchange cations, Kf decreased in the order of metolachlor > acetolachlor > alachlor > propachlor on the same clay. FT-IR spectra showed that the carbonyl group of the herbicide molecule was involved in binding, probably via H-bond with water molecules in the clay interlayer. The type and position of substitutions around the carbonyl group may have affected the electronegativity of oxygen, thus influencing the relative adsorption of these herbicides. For the same herbicide, adsorption on clay increased in the order of Mg2+ < Ca2+ < Al3+ < or = Fe3+ which coincided with the increasing acidity of homoionic clays. Acidity of cations may have affected the protonation of water, and thus the strength of H-bond between the clay water and herbicide. Complexation of clay and humic acid resulted in less adsorption than that expected from independent adsorption by the individual constituents. The effect varied with herbicides, but the greatest decrease in adsorption occurred at a 60:40 clay-to-humic acid ratio for all the herbicides. Causes for the decreased adsorption need to be characterized to better understand adsorption mechanisms and predict adsorption from soil compositions.

  16. Side-effects of pesticides used in irrigated rice areas on Telenomus podisi Ashmead (Hymenoptera: Platygastridae).

    Science.gov (United States)

    Pazini, Juliano de Bastos; Pasini, Rafael Antonio; Seidel, Enio Júnior; Rakes, Matheus; Martins, José Francisco da Silva; Grützmacher, Anderson Dionei

    2017-08-01

    Telenomus podisi Ashmead (Hymenoptera: Platygastridae) is an important agent for the biological control of stink bug eggs in irrigated rice areas and the best strategy for its preservation is the use of selective pesticides. The aim of this study was to know the side-effects of pesticides used in Brazilian irrigated rice areas on egg parasitoid T. podisi. We evaluated, under laboratory conditions, 13 insecticides, 11 fungicides, 11 herbicides, and a control (distilled water) in choice and no-choice tests. In the no-choice tests, the pesticides were sprayed at pre and post-parasitism stages (egg and larval stages of T. podisi). In the choice tests, sprays were conducted only at pre-parasitism stages. For all tests, we prepared cards with 25 eggs of the alternative host Euschistus heros (Fabricius) (Hemiptera: Pentatomidae) non-parasitized (pre-parasitism) and parasitized (post-parasitism), which were subjected to pesticide sprays. The parasitism and emergence rates of T. podisi were determined classifying the pesticides in terms of the reduction of parasitism or emergence rates compared to the control. The neurotoxic insecticide cypermethrin, lambda-cyhalothrin, zeta-cypermethrin, etofenprox, thiamethoxam, thiamethoxam + lambda-cyhalothrin, acetamiprid + alpha-cypermethrin, and bifenthrin + alpha-cypermethrin + carbosulfan were more harmful to T. podisi and, therefore, are less suitable for the integrated management of insect pests in irrigated rice areas.

  17. [Analysis of reports of cases of pesticide poisoning in Jiangsu Province, China, from 2006 to 2013].

    Science.gov (United States)

    Yu, Bin; Ding, Bangmei; Shen, Han; Zhu, Baoli; Gao, Qianqian

    2015-03-01

    To investigate the characteristics of pesticide poisoning in Jiangsu Province, China, and to provide a scientific basis for developing effective intervention measures and prevention strategies. The data from report cards of pesticide poisoning in Jiangsu Province from 2006 to 2013 were arranged using EXCEL tables, and assessed. Statistical analysis was applied to the epidemiological data using SPSS. From 2006 to 2013, a total of 32672 cases of pesticide poisoning were reported in Jiangsu Province. Most of the cases were caused by non-occupational poisoning (life poisoning) (72.78%). A majority of patients with pesticide poisoning were 35-54 years old (40.85%) or older than 65 years (15.69%). There were more female patients (58.22%) than male patients (41.78%). Among patients with occupational poisoning, male patients (50.90%) were more than female patients. Among patients with non-occupational poisoning, female patients were more than male patients (38.37%). Pesticide poisoning mainly occurred from July to September. The case-fatality rate of occupational poisoning (0.47%) was lower than that of non-occupational poisoning (7.10%). All 13 cities in Jiangsu Province reported cases of pesticide poisoning. There were more cases in the northern regions than in the southern regions. Pesticide poisoning was mainly caused by organophosphorus insecticides including methamidophos, dichlorvos, dimethoate, omethoate, and parathion, which accounted for 65.58%of all cases. Paraquat had the highest case-fatality rate (10.06%) among all pesticides, followed by tetramine (10.00%), dimethoate or omethoate (7.85%), methamidophos (7.79%), and dimehypo (7.68%). Pesticide poisoning cannot be ignored. The management and control should be improved in production and usage of highly toxic pesticides including organophosphorus insecticides, rodenticides, and herbicides. More attention should be paid to the protection of vulnerable groups including women, children, and the elderly.

  18. Occurrence of non extractable pesticide residues in physical and chemical fractions of two soils

    Science.gov (United States)

    Andreou, Kostas; Semple, Kirk; Jones, Kevin

    2010-05-01

    Soils are considered to be a significant sink for organic contaminants, including pesticides, in the environment. Understanding the distribution and localisation of aged pesticide residues in soil is of great importance for assessing the mobility and availability of these chemicals in the environment. This study aimed to characterise the distribution of radiolabeled herbicide isoproturon and the radiolabeled insecticides diazinon and cypermethrin in two organically managed soils. The soils were spiked and aged under laboratory conditions for 17 months. The labile fraction of the pesticides residues was recovered in CaCl2 (0.01M) and then subjected to physical size fractionation using sedimentation and centrifugation steps, with >20μm, 20-2μm and 2-0.1μm soil factions collected. Further, the distribution of the pesticide residues in the organic matter of the fractionated soil was investigated using a sequential alkaline extraction (0.1N NaOH) into humic and fulvic acid and humin. Soil fractions of 20-2μm and 2-0.1μm had the largest burden of the 14C-residues. Different soil constituents have different capacities to form non-extractable residues. Soil solid fractions of 20-2 µm and 20 µm). Fulvic acid showed to play a vital role in the formation and stabilisation of non-extractable 14C-pesticide residues in most cases.Assessment of the likelihood of the pesticide residues to become available to soil biota requires an understanding of the structure of the SOM matrix and the definition of the kinetics of the pesticide residues in different SOM pools as a function of the time.

  19. Agricultural pesticides and veterinary substances in Uruguayan beeswax.

    Science.gov (United States)

    Harriet, Jorge; Campá, Juan Pablo; Grajales, Mauricio; Lhéritier, Christophe; Gómez Pajuelo, Antonio; Mendoza-Spina, Yamandú; Carrasco-Letelier, Leonidas

    2017-06-01

    Over the last decade, Uruguay has expanded and intensified its rainfed crop production. This process has affected beekeeping in several ways: for example, by reducing the space available. This has increased the density of apiaries, the risk of varroosis and acaricide use. Additionally, the dominance of no-tillage crops has increased the frequencies of application and of loads of pesticides in regions where such crops share the land with beekeeping and honey production. Therefore, the exposure of bees to xenobiotics (agricultural pesticides and veterinary products) has increased in line with pollution of hives and their products. To document pollution from hive exposure to pesticides, we surveyed the presence of 30 xenobiotics normally used in Uruguay, in recycled beeswax (RB) and in honey cappings (HC) from the main Uruguayan beekeeping regions. There was contamination of all the analyzed samples (RB and HC) with the herbicide atrazine at a range of 1-2 ng g -1 . At least three or four additional xenobiotics were detected: insecticides (chlorpyrifos-ethyl and thiacloprid); fungicides (azoxystrobin and tebuconazole); and veterinary products (coumaphos, ethion, and tau-fluvalinate). The frequency of detection of chlorpyrifos-ethyl and coumaphos in RB samples was higher than in those of HC. Moreover, the concentrations of azoxystrobin, coumaphos, and tebuconazole in RB samples were higher than in HC samples. Therefore, we suggest the use of HC to produce recycled printed beeswax films for use in hives to minimize pollution transfer. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Pesticide Use and Asthma in Alberta Grain Farmers

    Directory of Open Access Journals (Sweden)

    Nicola Cherry

    2018-03-01

    Full Text Available A study of the respiratory health of grain farmers in Alberta, Canada was carried out in March 2002. Two populations were identified: members, in 1983, of a province-wide farm organisation, and grain farmers registered with the provincial agriculture department. A telephone interview addressed pesticide use (using pre-circulated trade names, chronic disease and respiratory symptoms. Pesticide ingredients were identified from provincial crop protection guides. Total years of use were calculated for seven chemical groups. Consent for linkage to administrative health records was obtained in 2009. A likelihood score (Lscore is computed, relating symptoms to asthma diagnosis. Self-reported asthma and the Lscore are examined against duration of pesticide exposures. Of the 10,767 farmers listed, 2426 were still living, had farmed grain and were interviewed; 1371 were re-contacted and matched to health records. After allowance for confounders, years of exposure to phenoxy compounds are related to self-reported asthma and Lscore. Compared to no exposure, the adjusted odds ratios (95% Confidence Intervals for self-reported asthma for short, medium and long exposure to phenoxy compounds are 1.29 (0.66–2.52, 2.52 (1.25–5.09, and 3.18 (1.54–6.58, and for Lscore are 1.19 (0.91–1.55, 1.50 (1.13–1.99, and 1.58 (1.18–2.12. We conclude that lifetime exposure to phenoxy herbicides is associated with an increased risk of asthma.

  1. Delineating spring recharge areas in a fractured sandstone aquifer (Luxembourg) based on pesticide mass balance

    Science.gov (United States)

    Farlin, J.; Drouet, L.; Gallé, T.; Pittois, D.; Bayerle, M.; Braun, C.; Maloszewski, P.; Vanderborght, J.; Elsner, M.; Kies, A.

    2013-06-01

    A simple method to delineate the recharge areas of a series of springs draining a fractured aquifer is presented. Instead of solving the flow and transport equations, the delineation is reformulated as a mass balance problem assigning arable land in proportion to the pesticide mass discharged annually in a spring at minimum total transport cost. The approach was applied to the Luxembourg Sandstone, a fractured-rock aquifer supplying half of the drinking water for Luxembourg, using the herbicide atrazine. Predictions of the recharge areas were most robust in situations of strong competition by neighbouring springs while the catchment boundaries for isolated springs were extremely sensitive to the parameter controlling flow direction. Validation using a different pesticide showed the best agreement with the simplest model used, whereas using historical crop-rotation data and spatially distributed soil-leaching data did not improve predictions. The whole approach presents the advantage of integrating objectively information on land use and pesticide concentration in spring water into the delineation of groundwater recharge zones in a fractured-rock aquifer.

  2. A client-server software for the identification of groundwater vulnerability to pesticides at regional level.

    Science.gov (United States)

    Di Guardo, Andrea; Finizio, Antonio

    2015-10-15

    The groundwater VULnerability to PESticide software system (VULPES) is a user-friendly, GIS-based and client-server software developed to identify vulnerable areas to pesticides at regional level making use of pesticide fate models. It is a Decision Support System aimed to assist the public policy makers to investigate areas sensitive to specific substances and to propose limitations of use or mitigation measures. VULPES identify the so-called Uniform Geographical Unit (UGU) which are areas characterised by the same agro-environmental conditions. In each UGU it applies the PELMO model obtaining the 80th percentile of the substance concentration at 1 metre depth; then VULPES creates a vulnerability map in shapefile format which classifies the outputs comparing them with the lower threshold set to the legal limit concentration in groundwater (0.1 μg/l). This paper describes the software structure in details and a case study with the application of the terbuthylazine herbicide on the Lombardy region territory. Three zones with different degrees of vulnerabilities has been identified and described. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Pesticide impact study in the peri-urban horticultural area of Gran La Plata, Argentina.

    Science.gov (United States)

    Mac Loughlin, Tomás M; Peluso, Leticia; Marino, Damián J G

    2017-11-15

    Vegetable production systems are characterized by intense pesticide use, yet the effects on the surrounding environment are largely unknown and need to be studied. Given this knowledge gap, the objective of this work is to determine the impact of horticulture on a representative watercourse by conducting an integrated study of the occurrence and concentration of pesticides in bottom sediments and their relation to lethal and sublethal effects on benthic fauna. Two sampling campaigns were conducted during seasons of low and high pesticide application in five sites along the Carnaval creek, located in the peri-urban area of La Plata City (Buenos Aires, Argentina). The samples were tested for 36 pesticide compounds by GC-MS and LC-MS, and whole-sediment laboratory toxicity tests were performed using the native amphipod Hyalella curvispina. The results showed a general but variable distribution in the concentrations detected along the stream. For each sampling campaign (first/second), the total pesticide loads, measured as the sum of herbicides, insecticides and fungicides, were 1080/2329, 3715/88, and 367/5ngg -1 dw, respectively. Lethal and sublethal effects were observed in both sampling campaigns. In order to correlate both sets of results, data were assessed by multivariate analysis, including principal component analysis. The observed toxicity was considered to be mainly due to insecticides; thus, horticultural practices have an impact on nearby watercourses and can potentially endanger the benthic fauna. This is the first study in Argentina to assess the impact of pesticides on aquatic environments close to horticultural production areas. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Herbicide injury induces DNA methylome alterations in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Gunjune Kim

    2017-07-01

    Full Text Available The emergence of herbicide-resistant weeds is a major threat facing modern agriculture. Over 470 weedy-plant populations have developed resistance to herbicides. Traditional evolutionary mechanisms are not always sufficient to explain the rapidity with which certain weed populations adapt in response to herbicide exposure. Stress-induced epigenetic changes, such as alterations in DNA methylation, are potential additional adaptive mechanisms for herbicide resistance. We performed methylC sequencing of Arabidopsis thaliana leaves that developed after either mock treatment or two different sub-lethal doses of the herbicide glyphosate, the most-used herbicide in the history of agriculture. The herbicide injury resulted in 9,205 differentially methylated regions (DMRs across the genome. In total, 5,914 of these DMRs were induced in a dose-dependent manner, wherein the methylation levels were positively correlated to the severity of the herbicide injury, suggesting that plants can modulate the magnitude of methylation changes based on the severity of the stress. Of the 3,680 genes associated with glyphosate-induced DMRs, only 7% were also implicated in methylation changes following biotic or salinity stress. These results demonstrate that plants respond to herbicide stress through changes in methylation patterns that are, in general, dose-sensitive and, at least partially, stress-specific.

  5. Development of a passive air sampler to measure airborne organophosphorus pesticides and oxygen analogs in an agricultural community.

    Science.gov (United States)

    Armstrong, Jenna L; Yost, Michael G; Fenske, Richard A

    2014-09-01

    Organophosphorus pesticides are some of the most widely used insecticides in the US, and spray drift may result in human exposures. We investigate sampling methodologies using the polyurethane foam passive air sampling device to measure cumulative monthly airborne concentrations of OP pesticides chlorpyrifos, azinphos-methyl, and oxygen analogs. Passive sampling rates (m(3)d(-1)) were determined using calculations using chemical properties, loss of depuration compounds, and calibration with side-by-side active air sampling in a dynamic laboratory exposure chamber and in the field. The effects of temperature, relative humidity, and wind velocity on outdoor sampling rates were examined at 23 sites in Yakima Valley, Washington. Indoor sampling rates were significantly lower than outdoors. Outdoor rates significantly increased with average wind velocity, with high rates (>4m(3)d(-1)) observed above 8ms(-1). In exposure chamber studies, very little oxygen analog was observed on the PUF-PAS, yet substantial amounts chlorpyrifos-oxon and azinphos methyl oxon were measured in outdoor samples. PUF-PAS is a practical and useful alternative to AAS because it results in little artificial transformation to the oxygen analog during sampling, it provides cumulative exposure estimates, and the measured sampling rates were comparable to rates for other SVOCs. It is ideal for community based participatory research due to low subject burden and simple deployment in remote areas. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Sorption behaviour of herbicides in soils

    International Nuclear Information System (INIS)

    Luchini, L.C.; Wiendl, F.M.; Ruegg, E.F.; Instituto Biologico, Sao Paulo

    1988-01-01

    Environmental contamination by herbicides is related with the sorption phenomenon of these compounds in the soils. The behaviour of paraquat, 2,4-D and diuron was studied in soils with different physico-chemical properties, through the Freundlich adsorption and desorption isotherms, using 14 C-radiolabeled herbicides. Results of the range of the adsorption-desorption of each herbicide was related mainly with the chemical characteristics of these compounds. (author) [pt

  7. Fungal phytotoxins with potential herbicidal activity: chemical and biological characterization.

    Science.gov (United States)

    Cimmino, Alessio; Masi, Marco; Evidente, Marco; Superchi, Stefano; Evidente, Antonio

    2015-12-19

    Covering: 2007 to 2015 Fungal phytotoxins are secondary metabolites playing an important role in the induction of disease symptoms interfering with host plant physiological processes. Although fungal pathogens represent a heavy constraint for agrarian production and for forest and environmental heritage, they can also represent an ecofriendly alternative to manage weeds. Indeed, the phytotoxins produced by weed pathogenic fungi are an efficient tool to design natural, safe bioherbicides. Their use could avoid that of synthetic pesticides causing resistance in the host plants and the long term impact of residues in agricultural products with a risk to human and animal health. The isolation and structural and biological characterization of phytotoxins produced by pathogenic fungi for weeds, including parasitic plants, are described. Structure activity relationships and mode of action studies for some phytotoxins are also reported to elucidate the herbicide potential of these promising fungal metabolites.

  8. Influence of ageing of residues on the availability of herbicides for leaching

    International Nuclear Information System (INIS)

    Walker, A.; Rodriguez-Cruz, M.S.; Mitchell, M.J.

    2005-01-01

    Losses by leaching of chlorotoluron, isoproturon and triasulfuron from small intact columns of a structured clay loam and an unstructured sandy loam soil were measured in five separate field experiments. In general, losses of all three herbicides were greater from the clay loam than from the sandy loam soil and the order between herbicides was always triasulfuron>>isoproturon>chlorotoluron. Differences between experiments were also consistent for every soil/herbicide combination. There was no relationship between total loss and either total rainfall or cumulative leachate volume. When weighting factors were applied to the rainfall data to make early rainfall more important than later rainfall, there were significant positive relationships between cumulative weighted rainfall and total losses. Also, there were significant negative correlations between total losses and the delay to accumulation of 25 mm rainfall (equivalent to one pore volume of available water) in the different experiments. In laboratory incubations, there was a more rapid decline in aqueous (0.01 M calcium chloride) extractable residues than in total solvent extractable residues indicating increasing sorption with residence time. However, the rate of change in water extractable residues could not completely explain the decrease in leachability with ageing of residues in the field. Short-term sorption studies with aggregates of the two soils indicated slower sorption by those of the clay loam than by those of the sandy loam suggesting that diffusion into and out of aggregates may affect availability for leaching in the more structured soil. Small scale leaching studies with aggregates of the soils also demonstrated reductions in availability for leaching as residence time in soil was increased, which could not be explained by degradation. These results therefore indicate that time-dependent sorption processes are important in controlling pesticide movement in soils, although the data do not give a

  9. Influence of ageing of residues on the availability of herbicides for leaching

    Energy Technology Data Exchange (ETDEWEB)

    Walker, A.; Rodriguez-Cruz, M.S.; Mitchell, M.J

    2005-01-01

    Losses by leaching of chlorotoluron, isoproturon and triasulfuron from small intact columns of a structured clay loam and an unstructured sandy loam soil were measured in five separate field experiments. In general, losses of all three herbicides were greater from the clay loam than from the sandy loam soil and the order between herbicides was always triasulfuron>>isoproturon>chlorotoluron. Differences between experiments were also consistent for every soil/herbicide combination. There was no relationship between total loss and either total rainfall or cumulative leachate volume. When weighting factors were applied to the rainfall data to make early rainfall more important than later rainfall, there were significant positive relationships between cumulative weighted rainfall and total losses. Also, there were significant negative correlations between total losses and the delay to accumulation of 25 mm rainfall (equivalent to one pore volume of available water) in the different experiments. In laboratory incubations, there was a more rapid decline in aqueous (0.01 M calcium chloride) extractable residues than in total solvent extractable residues indicating increasing sorption with residence time. However, the rate of change in water extractable residues could not completely explain the decrease in leachability with ageing of residues in the field. Short-term sorption studies with aggregates of the two soils indicated slower sorption by those of the clay loam than by those of the sandy loam suggesting that diffusion into and out of aggregates may affect availability for leaching in the more structured soil. Small scale leaching studies with aggregates of the soils also demonstrated reductions in availability for leaching as residence time in soil was increased, which could not be explained by degradation. These results therefore indicate that time-dependent sorption processes are important in controlling pesticide movement in soils, although the data do not give a

  10. Derivatives of phenyl tribromomethyl sulfone as novel compounds with potential pesticidal activity

    Directory of Open Access Journals (Sweden)

    Krzysztof M. Borys

    2012-02-01

    Full Text Available A halogenmethylsulfonyl moiety is incorporated in numerous active herbicides and fungicides. The synthesis of tribromomethyl phenyl sulfone derivatives as novel potential pesticides is reported. The title sulfone was obtained by following three different synthetic routes, starting from 4-chlorothiophenol or 4-halogenphenyl methyl sulfone. Products of its subsequent nitration were subjected to the SNAr reactions with ammonia, amines, hydrazines and phenolates to give 2-nitroaniline, 2-nitrophenylhydrazine and diphenyl ether derivatives. Reduction of the nitro group of 4-tribromomethylsulfonyl-2-nitroaniline yielded the corresponding o-phenylenediamine substrate for preparation of structurally varied benzimidazoles.

  11. Role of clothing in both accelerating and impeding dermal absorption of airborne SVOCs

    DEFF Research Database (Denmark)

    Morrison, Glenn C.; Weschler, Charles J.; Bekö, Gabriel

    2016-01-01

    To assess the influence of clothing on dermal uptake of semi-volatile organic compounds (SVOCs), we measured uptake of selected airborne phthalates for an individual wearing clean clothes or air-exposed clothes and compared these results with dermal uptake for bare-skinned individuals under....... The individual wore either clean (fresh) cotton clothes or cotton clothes that had been exposed to the same chamber air concentrations for 9 days. For a 6-h exposure, the net amounts of DEP and DnBP absorbed when wearing fresh clothes were, respectively, 0.017 and 0.007 μg/kg/(μg/m3); for exposed clothes...... the results were 0.178 and 0.261 μg/kg/(μg/m3), respectively (values normalized by air concentration and body mass). When compared against the average results for bare-skinned participants, clean clothes were protective, whereas exposed clothes increased dermal uptake for DEP and DnBP by factors of 3.3 and 6...

  12. In vitro bioassays reveal that additives are significant contributors to the toxicity of commercial household pesticides.

    Science.gov (United States)

    van de Merwe, Jason P; Neale, Peta A; Melvin, Steven D; Leusch, Frederic D L

    2018-06-01

    Pesticides commonly used around households can contain additives of unknown concentrations and toxicity. Given the likelihood of these chemicals washing into urban waterways, it is important to understand the effects that these additives may have on aquatic organisms. The aim of this study was to compare the toxicity of commercially available household pesticides to that of the active ingredient(s) alone. The toxicity of five household pesticides (three herbicides and two insecticides) was investigated using a bacterial cytotoxicity bioassay and an algal photosynthesis bioassay. The commercial products were up to an order of magnitude more toxic than the active ingredient(s) alone. In addition, two commercial products with the same listed active ingredients in the same ratio had a 600× difference in potency. These results clearly demonstrate that additives in commercial formulations are significant contributors to the toxicity of household pesticides. The toxicity of pesticides in aquatic systems is therefore likely underestimated by conventional chemical monitoring and risk assessment when only the active ingredients are considered. Regulators and customers should require more clarity from pesticide manufacturers about the nature and concentrations of not only the active ingredients, but also additives used in commercial formulations. In addition, monitoring programmes and chemical risk assessments schemes should develop a structured approach to assessing the toxic effects of commercial formulations, including additives, rather than simply those of the listed active ingredients. Copyright © 2018. Published by Elsevier B.V.

  13. Monitoring a large number of pesticides and transformation products in water samples from Spain and Italy.

    Science.gov (United States)

    Rousis, Nikolaos I; Bade, Richard; Bijlsma, Lubertus; Zuccato, Ettore; Sancho, Juan V; Hernandez, Felix; Castiglioni, Sara

    2017-07-01

    Assessing the presence of pesticides in environmental waters is particularly challenging because of the huge number of substances used which may end up in the environment. Furthermore, the occurrence of pesticide transformation products (TPs) and/or metabolites makes this task even harder. Most studies dealing with the determination of pesticides in water include only a small number of analytes and in many cases no TPs. The present study applied a screening method for the determination of a large number of pesticides and TPs in wastewater (WW) and surface water (SW) from Spain and Italy. Liquid chromatography coupled to high-resolution mass spectrometry (HRMS) was used to screen a database of 450 pesticides and TPs. Detection and identification were based on specific criteria, i.e. mass accuracy, fragmentation, and comparison of retention times when reference standards were available, or a retention time prediction model when standards were not available. Seventeen pesticides and TPs from different classes (fungicides, herbicides and insecticides) were found in WW in Italy and Spain, and twelve in SW. Generally, in both countries more compounds were detected in effluent WW than in influent WW, and in SW than WW. This might be due to the analytical sensitivity in the different matrices, but also to the presence of multiple sources of pollution. HRMS proved a good screening tool to determine a large number of substances in water and identify some priority compounds for further quantitative analysis. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Pesticide risk assessment: A study on inhalation and dermal exposure to 2,4-D and paraquat among Malaysian paddy farmers.

    Science.gov (United States)

    Baharuddin, Mohd Rafee B; Sahid, Ismail B; Noor, Mohamad Azhar B Mohd; Sulaiman, Norela; Othman, Fadzil

    2011-01-01

    A cross-section analytical study was conducted to evaluate the risk of pesticide exposure to those applying the Class II pesticides 2,4-D and paraquat in the paddy-growing areas of Kerian, Perak, Malaysia. It investigated the influence of weather on exposure as well as documented health problems commonly related to pesticide exposure. Potential inhalation and dermal exposure for 140 paddy farmers (handlers of pesticides) were assessed. Results showed that while temperature and humidity affected exposure, windspeed had the strongest impact on pesticide exposure via inhalation. However, the degree of exposure to both herbicides via inhalation was below the permissible exposure limits set by United States National Institute of Occupational Safety and Health (NIOSH). Dermal Exposure Assessment Method (DREAM) readings showed that dermal exposure with manual spraying ranged from moderate to high. With motorized sprayers, however, the level of dermal exposure ranged from low to moderate. Dermal exposure was significantly negatively correlated with the usage of protective clothing. Various types of deleterious health effects were detected among users of manual knapsack sprayers. Long-term spraying activities were positively correlated with increasing levels of the gamma-glutamyl transpeptidase (GGT) liver enzyme. The type of spraying equipment, usage of proper protective clothing and adherence to correct spraying practices were found to be the most important factors influencing the degree of pesticide exposure among those applying pesticides.

  15. Banana leaf and glucose mineralization and soil organic matter in microhabitats of banana plantations under long-term pesticide use.

    Science.gov (United States)

    Blume, Elena; Reichert, José Miguel

    2015-06-01

    Soil organic matter (SOM) and microbial activity are key components of soil quality and sustainability. In the humid tropics of Costa Rica 3 pesticide regimes were studied-fungicide (low input); fungicide and herbicide (medium input); and fungicide, herbicide, and nematicide (high input)-under continuous banana cultivation for 5 yr (young) or 20 yr (old) in 3 microhabitats-nematicide ring around plants, litter pile of harvested banana, and bare area between litter pile and nematicide ring. Soil samples were incubated sequentially in the laboratory: unamended, amended with glucose, and amended with ground banana leaves. Soil organic matter varied with microhabitat, being greatest in the litter pile, where microbes had the greatest basal respiration with ground banana leaf, whereas microbes in the nematicide ring had the greatest respiration with glucose. These results suggest that soil microbes adapt to specific microhabitats. Young banana plantations had similar SOM compared with old plantations, but the former had greater basal microbial respiration in unamended and in glucose-amended soil and greater first-order mineralization rates in glucose-amended soil, thus indicating soil biological quality decline over time. High pesticide input did not decrease microbial activity or mineralization rate in surface soil. In conclusion, microbial activity in tropical volcanic soil is highly adaptable to organic and inorganic inputs. © 2015 SETAC.

  16. Assessment of the contamination of fresh water ecosystems by ...

    African Journals Online (AJOL)

    This paper assessed reports and records of the contamination of fresh water ecosystem by pesticides and herbicides in irrigated rice fields and their effects on fish production. It highlights pesticides and herbicides application in agriculture in view of the transfer and degradation processes. The pesticides often remain ...

  17. Health Risk Assessment of Pesticide Usage in Menia El-Kamh Province of Sharkia Governorate in Egypt

    Directory of Open Access Journals (Sweden)

    Jean-Claude Assad

    2002-10-01

    Full Text Available Abstract: Menia El-Kamh province of the Sharkia Governorate constitutes one of the largest agricultural areas in Egypt. About 88% of the nearly 472,000 people living in this province rely on agricultural activities for subsistence. Several pesticides including organochloride, organophosphorus, carbamate, and pyrethroid insecticides, fungicides, and herbicides are commonly used in citrus, vegetable and other crop-growing areas to increase agricultural productivity. However, their use has also been associated with several cases of pesticide poisoning. In this research, we conducted a field survey to assess the knowledge, attitudes, and practices of the farmer’s community regarding the safe use of pesticides. We also evaluated the residual concentrations of selected pesticides in water, soil, milk, fish, and orange samples, and estimated the potential health risks associated with the exposure to these pesticides. Data obtained from the field survey indicate that more than 95% of farm workers do not practice safety precautions during pesticide formulation and application; leading to a considerable prevalence of pesticide-related illnesses in this agricultural community. Pesticide residues in various environmental samples varied greatly; from below detection levels (3-5 ng to as high as 325 ppb depending on the matrix of interest, and the specific pesticide of concern. The analysis of health risk estimates indicated that chlorpyrifos, DDT, dimethoate, methomyl, and larvin did not pose a direct hazard to human health, although present in water, milk, orange, and/or fish. However, aldicarb, and carbosulfan levels exceeded the reference doses, indicating a great potential for systemic toxicity, especially in children who are considered to be the most vulnerable population subgroup. The upper-bound values of cancer risk from DDT exposure were estimated to be about 8 (adults, and 55 (children excess cancers in a population of one million.

  18. Determination of solid-liquid partition coefficients (Kd) for the herbicides isoproturon and trifluralin in five UK agricultural soils.

    Science.gov (United States)

    Cooke, Cindy M; Shaw, George; Collins, Chris D

    2004-12-01

    Isoproturon and trifluralin are herbicides of contrasting chemical characters and modes of action. Standard batch sorption procedures were carried out to investigate the individual sorption behaviour of 14C-isoproturon and 14C-trifluralin in five agricultural soils (1.8-4.2% OC), and the soil solid-liquid partition coefficients (Kd values) were determined. Trifluralin exhibited strong partitioning to the soil solid phase (Kd range 106-294) and low desorption potential, thus should not pose a threat to sensitive waters via leaching, although particle erosion and preferential flow pathways may facilitate transport. For isoproturon, soil adsorption was low (Kd range 1.96-5.75) and desorption was high, suggesting a high leaching potential, consistent with isoproturon being the most frequently found pesticide in UK surface waters. Soil partitioning was directly related to soil organic carbon (OC) content. Accumulation isotherms were modelled using a dual-phase adsorption model to estimate adsorption and desorption rate coefficients. Associations between herbicides and soil humic substances were also shown using gel filtration chromatography.

  19. Genotoxic Potential of Two Herbicides and their Active Ingredients Assessed with Comet Assay on a Fish Cell Line, Epithelioma Papillosum Cyprini (EPC)

    DEFF Research Database (Denmark)

    Syberg, Kristian; Rank, Jette; Jensen, Klara

    2013-01-01

    The aim of this study was to optimize the epithelioma papillosum cyprini (EPC) cell line handling procedure for the comet assay to investigate the genotoxic potential of widely used pesticides. The effects of various media and handling of the EPC cell line were examined. Results indicated......-(2,4-dichlorophenoxy)propionic acid) individually and in a ternary mixture were examined with the comet assay. Data showed that among the active ingredients only 2,4-D andMCPA induced DNA damage, while both herbicides were genotoxic at high concentrations....

  20. Pesticide exposure as a risk factor for myelodysplastic syndromes: a meta-analysis based on 1,942 cases and 5,359 controls.

    Directory of Open Access Journals (Sweden)

    Jie Jin

    Full Text Available Pesticide exposure has been linked to increased risk of cancer at several sites, but its association with risk of myelodysplastic syndromes (MDS is still unclear. A meta-analysis of studies published through April, 2014 was performed to investigate the association of pesticide exposure with the risk of MDS.Studies were identified by searching the Web of Science, Cochrane Library and PubMed databases. Summary odds ratios (ORs with corresponding 95% confidence intervals (CIs were calculated using random- or fixed-effect models.This meta-analysis included 11 case-control studies, all of which demonstrated a correlation between pesticide exposure and a statistically significant increased risk of MDS (OR=1.95, 95% CI 1.23-3.09. In subgroup analyses, patients with pesticide exposure had increased risk of developing MDS if they were living in the Europe or Asia and had refractory anemia (RA or RA with ringed sideroblasts (RARS. Moreover, in the analysis by specific pesticides, increased risk was associated with exposure to insecticides (OR=1.71, 95% CI 1.22-2.40 but not exposure to herbicides or fungicides.This meta-analysis supports the hypothesis that exposure to pesticides increases the risk of developing MDS. Further prospective cohort studies are warranted to verify the association and guide clinical practice in MDS prevention.

  1. Maize, switchgrass, and ponderosa pine biochar added to soil increased herbicide sorption and decreased herbicide efficacy.

    Science.gov (United States)

    Clay, Sharon A; Krack, Kaitlynn K; Bruggeman, Stephanie A; Papiernik, Sharon; Schumacher, Thomas E

    2016-08-02

    Biochar, a by-product of pyrolysis made from a wide array of plant biomass when producing biofuels, is a proposed soil amendment to improve soil health. This study measured herbicide sorption and efficacy when soils were treated with low (1% w/w) or high (10% w/w) amounts of biochar manufactured from different feedstocks [maize (Zea mays) stover, switchgrass (Panicum vigatum), and ponderosa pine (Pinus ponderosa)], and treated with different post-processing techniques. Twenty-four hour batch equilibration measured sorption of (14)C-labelled atrazine or 2,4-D to two soil types with and without biochar amendments. Herbicide efficacy was measured with and without biochar using speed of seed germination tests of sensitive species. Biochar amended soils sorbed more herbicide than untreated soils, with major differences due to biochar application rate but minor differences due to biochar type or post-process handling technique. Biochar presence increased the speed of seed germination compared with herbicide alone addition. These data indicate that biochar addition to soil can increase herbicide sorption and reduce efficacy. Evaluation for site-specific biochar applications may be warranted to obtain maximal benefits without compromising other agronomic practices.

  2. Estimation of herbicide bioconcentration in sugarcane (Saccharum officinarum L.

    Directory of Open Access Journals (Sweden)

    Antonio Luiz Cerdeira

    2015-04-01

    Full Text Available Sugarcane is an important crop for sugar and biofuel production in Brazil. Growers depend greatly on herbicides to produce it. This experiment used herbicide physical-chemical and sugarcane plant physiological properties to simulate herbicide uptake and estimate the bioconcentration factor (BCF. The (BCF was calculated for the steady state chemical equilibrium between the plant herbicide concentration and soil solution. Plant-water partition coefficient (sugarcane bagasse-water partition coefficient, herbicide dilution rate, metabolism and dissipation in the soil-plant system, as well as total plant biomass factors were used. In addition, we added Tebuthiuron at rate of 5.0kg a.i. ha-1 to physically test the model. In conclusion, the model showed the following ranking of herbicide uptake: sulfentrazone > picloram >tebuthiuron > hexazinone > metribuzin > simazine > ametryn > diuron > clomazone > acetochlor. Furthermore, the highest BCF herbicides showed higher Groundwater Ubiquity Score (GUS index indicating high leaching potential. We did not find tebuthiuron in plants after three months of herbicide application

  3. Selective Herbicides for Cultivation of Eucalyptus urograndis Clones

    Directory of Open Access Journals (Sweden)

    Patrick J. Minogue

    2015-01-01

    Full Text Available Competition control is essential for successful eucalyptus plantation establishment, yet few selective herbicides have been identified. Five herbicides, flumioxazin, imazamox, imazapic, oxyfluorfen, and sulfometuron methyl, were evaluated for selective weed control in the establishment of genetically modified frost tolerant Eucalyptus urograndis clones. Herbicides were applied at two or three rates, either before or after weed emergence, and compared to a nontreated control and to near-complete weed control obtained with glyphosate directed sprays. Applications prior to weed emergence were most effective for weed control and, with the exception of imazapic, all resulted in enhanced eucalyptus growth relative to the nontreated control. Among postemergent treatments, only imazamox enhanced stem volume. Among selective herbicide treatments, preemergent 2240 g ha−1 oxyfluorfen produced the best growth response, resulting in stem volume index that was 860% greater than the nontreated control, although only 15% of the volume index obtained with near-complete weed control. Imazapic was the most phytotoxic of all herbicides, resulting in 40% mortality when applied preemergent. Survival was 100% for all other herbicide treatments. This research found the previously nontested herbicides imazamox and imazapic to be effective for selective weed control and refined application rate and timing of five herbicides for use in clonal plantations.

  4. Hazard and risk of herbicides for marine microalgae

    International Nuclear Information System (INIS)

    Sjollema, Sascha B.; MartínezGarcía, Gema; Geest, Harm G. van der; Kraak, Michiel H.S.; Booij, Petra; Vethaak, A. Dick; Admiraal, Wim

    2014-01-01

    Due to their specific effect on photosynthesis, herbicides pose a potential threat to coastal and estuarine microalgae. However, comprehensive understanding of the hazard and risk of these contaminants is currently lacking. Therefore the aim of the present study was to investigate the toxic effects of four ubiquitous herbicides (atrazine, diuron, Irgarol ® 1051 and isoproturon) and herbicide mixtures on marine microalgae. Using a Pulse Amplitude Modulation (PAM) fluorometry based bioassay we demonstrated a clear species and herbicide specific toxicity and showed that the current environmental legislation does not protect algae sufficiently against diuron and isoproturon. Although a low actual risk of herbicides in the field was demonstrated, monitoring data revealed that concentrations occasionally reach potential effect levels. Hence it cannot be excluded that herbicides contribute to observed changes in phytoplankton species composition in coastal waters, but this is likely to occur only occasionally. - Highlights: • The hazard of herbicides for microalgae is compound and species specific. • In general a low risk although occasional potential effect levels are reached. • Current legislation does not protect marine microalgae sufficiently. - The hazard of herbicides in the coastal waters is compound and species specific and although the general risk in the field is low, occasionally potential effect levels are reached

  5. Adsorption of sugar beet herbicides to Finnish soils.

    Science.gov (United States)

    Autio, Sari; Siimes, Katri; Laitinen, Pirkko; Rämö, Sari; Oinonen, Seija; Eronen, Liisa

    2004-04-01

    Three sugar beet herbicides, ethofumesate, phenmedipham and metamitron, are currently used on conventional sugar beet cultivation, while new varieties of herbicide resistant (HR) sugar beet, tolerant of glyphosate or glufosinate-ammonium, are under field testing in Finland. Little knowledge has so far been available on the adsorption of these herbicides to Finnish soils. The adsorption of these five herbicides was studied using the batch equilibrium method in 21 soil samples collected from different depths. Soil properties like organic carbon content, texture, pH and partly the phosphorus and oxide content of the soils were tested against the adsorption coefficients of the herbicides. In general, the herbicides studied could be arranged according to their adsorption coefficients as follows: glyphosate>phenmedipham>ethofumesate approximately glufosinate-ammonium>metamitron, metamitron meaning the highest risk of leaching. None of the measured soil parameters could alone explain the adsorption mechanism of these five herbicides. The results can be used in model assessments of risk for leaching to ground water resulting from weed control of sugar beet in Finland.

  6. A multiresidue method for determination of trace levels of pesticides in air and water.

    Science.gov (United States)

    Millet, M; Wortham, H; Sanusi, A; Mirabel, P

    1996-11-01

    A multiresidue analytical method is described for the analysis of 13 pesticides in fogwater, rainwater, gas, and particles. This method is based upon solid-liquid extraction using Sep-Pak tC18 light cartridges for aqueous samples, soxhlet for gas (adsorbed on XAD-2) and particles (on glass fiber filters), HPLC-based fractionation of the extracted residues using a silica column, and a linear gradient of n-hexane/tert butyl methyl ether followed by GC-ECD and HPLC-UV analyses of each fraction. Prior to analysis with GC-ECD, a methylation procedure using BF3/methanol was developed for the analysis of the fraction which contains chlorophenoxy acid herbicides. The recoveries of the extraction procedure of liquid samples and of the methylation were greater than 92 and 97% with a standard deviation lower than 8 and 5%, respectively. The detection limits varied between 0.1 and 0.01 microgram.ml-1 for the 13 pesticides studied with a standard deviation less than 9%. This method was used for the determination of pesticides in 18 fogwater samples (soluble + insoluble), 31 rainwater samples, and 17 air (gas + particles) samples collected between 1991 and 1993 in Colmar (east of France).

  7. CADDIS Volume 2. Sources, Stressors and Responses: Herbicides - Detailed Conceptual Diagram

    Science.gov (United States)

    Introduction to the herbicides module, when to list herbicides as a candidate cause, ways to measure herbicides, simple and detailed conceptual diagrams for herbicides, herbicides module references and literature reviews.

  8. CADDIS Volume 2. Sources, Stressors and Responses: Herbicides - Simple Conceptual Diagram

    Science.gov (United States)

    Introduction to the herbicides module, when to list herbicides as a candidate cause, ways to measure herbicides, simple and detailed conceptual diagrams for herbicides, herbicides module references and literature reviews.

  9. Potential organic herbicides for squash production: Pelargonic acid herbicides AXXE (registered trademark) and Scythe (registered trademark)

    Science.gov (United States)

    Organic squash (Cucurbita pepo L.) producers need appropriate herbicides that can effectively provide season- long weed control. Research was conducted in southeast Oklahoma (Atoka County, Lane, OK) to determine the impact of potential organic herbicides on weed control efficacy, crop injury, and y...

  10. Hazard and risk of herbicides for marine microalgae.

    Science.gov (United States)

    Sjollema, Sascha B; Martínezgarcía, Gema; van der Geest, Harm G; Kraak, Michiel H S; Booij, Petra; Vethaak, A Dick; Admiraal, Wim

    2014-04-01

    Due to their specific effect on photosynthesis, herbicides pose a potential threat to coastal and estuarine microalgae. However, comprehensive understanding of the hazard and risk of these contaminants is currently lacking. Therefore the aim of the present study was to investigate the toxic effects of four ubiquitous herbicides (atrazine, diuron, Irgarol(®)1051 and isoproturon) and herbicide mixtures on marine microalgae. Using a Pulse Amplitude Modulation (PAM) fluorometry based bioassay we demonstrated a clear species and herbicide specific toxicity and showed that the current environmental legislation does not protect algae sufficiently against diuron and isoproturon. Although a low actual risk of herbicides in the field was demonstrated, monitoring data revealed that concentrations occasionally reach potential effect levels. Hence it cannot be excluded that herbicides contribute to observed changes in phytoplankton species composition in coastal waters, but this is likely to occur only occasionally. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Assessment of pest and pesticide trends in vegetable crops in united arab emirates and sultanate of oman

    International Nuclear Information System (INIS)

    Waakeh, W.; Aldahmani, J.H.; Deadman, M.L.; Saadi, A.A.

    2007-01-01

    A preliminary survey on pesticide uses in 40 vegetable-growing farms representing different agricultural areas in Oman and the UAE, twenty farms from each country, revealed that all the vegetable farms used pesticides for crop protection. Among the major insect-pests, white flies (Bemisia tabaci), leafminers (Liriomyza trifolii), melon fruit flies (Bactrocera ciliatus), aphids (Aphis spp.) and tobacco leafworm (Spodoptera litteralis) were recorded in Omani farms. In the UAE, white flies, leafminers, cutworms (Agrotis ypsilan), tomato fruitworms (Helicoverpa armigera) and eggplant fruitworms (Leucinodes orbonalis) were the 5 top insect-pests. Among the plant diseases, powdery mildew (Erysiphe spp.), blight (Alternaria spp.), damping off (Pythium spp.), leafspot (Alternaria spp.) and mosaic (CMV) Were major cause of vegetable diseases in Omani farms; whereas, damping off (Pythium aphanidermatum), downy mildew (Pseudoperonspora cubensis), early blight (Alternaria solani), septoria leaf spot (Septoria lycopersici) and anthracnose rip rot (colletotrichum spp.) were the most predominant diseases encountered in most UAE farms. Among the most commonly used pesticides, 29 insecticides, 16 fungicides and 3 herbicides were used by the vegetable farmers. Around 55% of Omani farms used routine application of pesticides, irrespective of the pest presence. Whereas, in the UAE, most farmers started to spray pesticides at 6-20% pest (insect, disease and weeds) infection. Over 65 of the farms, in both the countries, received chemical pest management information from the sales representatives. (author)

  12. Toxicity effects of an environmental realistic herbicide mixture on the seagrass Zostera noltei.

    Science.gov (United States)

    Diepens, Noël J; Buffan-Dubau, Evelyne; Budzinski, Hélène; Kallerhoff, Jean; Merlina, Georges; Silvestre, Jérome; Auby, Isabelle; Nathalie Tapie; Elger, Arnaud

    2017-03-01

    Worldwide seagrass declines have been observed due to multiple stressors. One of them is the mixture of pesticides used in intensive agriculture and boat antifouling paints in coastal areas. Effects of mixture toxicity are complex and poorly understood. However, consideration of mixture toxicity is more realistic and ecologically relevant for environmental risk assessment (ERA). The first aim of this study was to determine short-term effects of realistic herbicide mixture exposure on physiological endpoints of Zostera noltei. The second aim was to assess the environmental risks of this mixture, by comparing the results to previously published data. Z. noltei was exposed to a mixture of four herbicides: atrazine, diuron, irgarol and S-metolachlor, simulating the composition of typical cocktail of contaminants in the Arcachon bay (Atlantic coast, France). Three stress biomarkers were measured: enzymatic activity of glutathione reductase, effective quantum yield (EQY) and photosynthetic pigment composition after 6, 24 and 96 h. Short term exposure to realistic herbicide mixtures affected EQY, with almost 100% inhibition for the two highest concentrations, and photosynthetic pigments. Effect on pigment composition was detected after 6 h with a no observed effect concentration (NOEC) of 1 μg/L total mixture concentration. The lowest EQY effect concentration at 10% (EC 10 ) (2 μg/L) and pigment composition NOEC with an assessment factor of 10 were above the maximal field concentrations along the French Atlantic coast, suggesting that there are no potential short term adverse effects of this particular mixture on Z. noltei. However, chronic effects on photosynthesis may lead to reduced energy reserves, which could thus lead to effects at whole plant and population level. Understanding the consequences of chemical mixtures could help to improve ERA and enhance management strategies to prevent further declines of seagrass meadows worldwide. Copyright © 2016

  13. Removal of glyphosate herbicide from water using biopolymer membranes.

    Science.gov (United States)

    Carneiro, Rafael T A; Taketa, Thiago B; Gomes Neto, Reginaldo J; Oliveira, Jhones L; Campos, Estefânia V R; de Moraes, Mariana A; da Silva, Camila M G; Beppu, Marisa M; Fraceto, Leonardo F

    2015-03-15

    Enormous amounts of pesticides are manufactured and used worldwide, some of which reach soils and aquatic systems. Glyphosate is a non-selective herbicide that is effective against all types of weeds and has been used for many years. It can therefore be found as a contaminant in water, and procedures are required for its removal. This work investigates the use of biopolymeric membranes prepared with chitosan (CS), alginate (AG), and a chitosan/alginate combination (CS/AG) for the adsorption of glyphosate present in water samples. The adsorption of glyphosate by the different membranes was investigated using the pseudo-first order and pseudo-second order kinetic models, as well as the Langmuir and Freundlich isotherm models. The membranes were characterized regarding membrane solubility, swelling, mechanical, chemical and morphological properties. The results of kinetics experiments showed that adsorption equilibrium was reached within 4 h and that the CS membrane presented the best adsorption (10.88 mg of glyphosate/g of membrane), followed by the CS/AG bilayer (8.70 mg of glyphosate/g of membrane). The AG membrane did not show any adsorption capacity for this herbicide. The pseudo-second order model provided good fits to the glyphosate adsorption data on CS and CS/AG membranes, with high correlation coefficient values. Glyphosate adsorption by the membranes could be fitted by the Freundlich isotherm model. There was a high affinity between glyphosate and the CS membrane and moderate affinity in the case of the CS/AG membrane. Physico-chemical characterization of the membranes showed low values of solubility in water, indicating that the membranes are stable and not soluble in water. The SEM and AFM analysis showed evidence of the presence of glyphosate on CS membranes and on chitosan face on CS/AG membranes. The results showed that the glyphosate herbicide can be adsorbed by chitosan membranes and the proposed membrane-based methodology was successfully used to

  14. Analysis of banned veterinary drugs and herbicide residues in shellfish by liquid chromatography-tandem mass spectrometry (LC/MS/MS) and gas chromatography-tandem mass spectrometry (GC/MS/MS)

    International Nuclear Information System (INIS)

    Chang, Geng-Ruei; Chen, Hui-Shan; Lin, Feng-Yi

    2016-01-01

    Seafood safety is a crucial public health concern for consumers. In this study, we applied a validated method to analyze the residue of banned veterinary drugs in shellfish, namely chloramphenicol, malachite green, leucomalachite green, and nitrofuran metabolites; additionally, the QuEChERS method was employed to detect 76 herbicides by LC/MS/MS and GC/MS/MS. In total, 42 shellfish samples, which included hard clams, freshwater clams, and oysters, were collected from aquafarms and production areas in Taiwan during 2012. Our results revealed 3.8 ng/g of chloramphenicol in one hard clam, 19.9–32.1 ng/g of ametryn in two hard clams, 16.1–60.1 ng/g of pendimethalin in four hard clams, and 17.0 ng/g of mefenacet in one oyster, indicating that 19.1% of the samples contained residues from banned veterinary drugs and pesticides. These data can be used to monitor the residue of veterinary drugs and pesticides in aquatic organisms and as a reference for food safety. - Highlights: • A certified method was employed for analyzing residues of banned veterinary drugs and herbicides in shellfish samples. • The trace levels of chloramphenicol, ametryn, pendimethalin were detected in hard clam samples. • For ensuring food safety, continual monitoring of aquatic products is necessary.

  15. Impact of chronic and acute pesticide exposures on periphyton communities

    Energy Technology Data Exchange (ETDEWEB)

    Tlili, Ahmed, E-mail: ahmed.tlili@cemagref.fr [CEMAGREF, UR MAEP, 3 quai Chauveau CP 69336 Lyon Cedex 09 (France); Montuelle, Bernard, E-mail: bernard.montuelle@cemagref.fr [CEMAGREF, UR MAEP, 3 quai Chauveau CP 69336 Lyon Cedex 09 (France); INRA UMR CARRTEL, Laboratoire de Microbiologie Aquatique, BP 511, 74203, Thonon Cedex (France); Berard, Annette, E-mail: annette.berard@avignon.inra.fr [INRA UMR EMMAH 1114, Domaine Saint-Paul-Site Agroparc 84914 Avignon Cedex 9 (France); Bouchez, Agnes, E-mail: agnes.bouchez@thonon.inra.fr [INRA UMR CARRTEL, Laboratoire de Microbiologie Aquatique, BP 511, 74203, Thonon Cedex (France)

    2011-05-01

    Aquatic ecosystems face variable exposure to pesticides, especially during floodings which are associated with short bursts of high contaminant concentrations that influence biological systems. A study was undertaken to highlight the impact of the herbicide diuron applied in mixture with the fungicide tebuconazole on natural periphyton during flooding events. Periphyton were grown in two series of two lotic outdoor mesocosms: one series was non-contaminated while the other was exposed to chronic contamination. After 4 weeks, one channel of each series was exposed to three successive pulses, with each pulse followed by one week of recovery. Impacts on periphyton were assessed by using Denaturing Gel Gradient Electrophoresis to characterize eukaryotic community structure. At a functional scale, photosynthetic efficiency was quantified during each pulse, and the induced tolerance to diuron was estimated by performing short-term inhibition tests based on photosynthetic efficiency. Moreover, pesticide concentrations in the water column and periphyton matrix were measured. Diuron was adsorbed in the periphyton during each pulse and desorbed 13 h after pulse end. The different pulses affected the eukaryotic community structures of the control biofilms, but not of the chronically exposed ones. During the first pulse, photosynthetic efficiency was correlated with pesticide concentration in the water phase, and there was no difference between periphyton from chronically contaminated channels and control channels. However, during the second and third pulses, the photosynthetic efficiency of periphyton chronically exposed to pesticides appeared to be less impacted by the acute pulsed exposure of pesticide. These changes were consistent with the acquisition of induced tolerance to diuron since only after the third pulse that periphyton from chronic channel became tolerant to diuron. Our experimental study indicates that the effects of pulsed acute exposures to pesticides on

  16. Impact of chronic and acute pesticide exposures on periphyton communities

    International Nuclear Information System (INIS)

    Tlili, Ahmed; Montuelle, Bernard; Berard, Annette; Bouchez, Agnes

    2011-01-01

    Aquatic ecosystems face variable exposure to pesticides, especially during floodings which are associated with short bursts of high contaminant concentrations that influence biological systems. A study was undertaken to highlight the impact of the herbicide diuron applied in mixture with the fungicide tebuconazole on natural periphyton during flooding events. Periphyton were grown in two series of two lotic outdoor mesocosms: one series was non-contaminated while the other was exposed to chronic contamination. After 4 weeks, one channel of each series was exposed to three successive pulses, with each pulse followed by one week of recovery. Impacts on periphyton were assessed by using Denaturing Gel Gradient Electrophoresis to characterize eukaryotic community structure. At a functional scale, photosynthetic efficiency was quantified during each pulse, and the induced tolerance to diuron was estimated by performing short-term inhibition tests based on photosynthetic efficiency. Moreover, pesticide concentrations in the water column and periphyton matrix were measured. Diuron was adsorbed in the periphyton during each pulse and desorbed 13 h after pulse end. The different pulses affected the eukaryotic community structures of the control biofilms, but not of the chronically exposed ones. During the first pulse, photosynthetic efficiency was correlated with pesticide concentration in the water phase, and there was no difference between periphyton from chronically contaminated channels and control channels. However, during the second and third pulses, the photosynthetic efficiency of periphyton chronically exposed to pesticides appeared to be less impacted by the acute pulsed exposure of pesticide. These changes were consistent with the acquisition of induced tolerance to diuron since only after the third pulse that periphyton from chronic channel became tolerant to diuron. Our experimental study indicates that the effects of pulsed acute exposures to pesticides on

  17. Chiral separation of aryloxyphenoxy-propionate herbicides in a permethyl-β-cyclodextrin based column. Influence of temperature and mobile phase composition on enantioselectivity.

    Science.gov (United States)

    Lubomirsky, Ester; Padró, Juan M; Di Loreto, Héctor; Castells, Cecilia B

    2017-08-01

    We used a permethyl-β-cyclodextrin chiral stationary phase under reversed-phase conditions for the chiral separation of four aryloxyphenoxy-propionate herbicides (fenoxaprop-p-ethyl, quizalofop-p-ethyl and tefuryl, and haloxyfop-p-methyl) with mixtures of methanol, ethanol, 2-propanol, n-propanol, tert-butanol, or acetonitrile and water as mobile phases and investigated the influence of mobile phase composition and column temperature (from 0 to 50°C) on the separation. The retention factors (k) and selectivity factors (α) of all the herbicides investigated decreased with increasing temperature. The lnα versus 1/T and lnk versus 1/T plots for the enantiomers of the chiral pesticides were linear within the range of 0-50°C with all alcohol/water mixtures constituting the mobile phase, but the lnk versus 1/T plots were nonlinear for all the enantiomers chromatographed in acetonitrile/water mixtures. The thermodynamic parameters based on linear van't Hoff plots were calculated. The influence of temperature and mobile phase composition on the enantioseparation of the solutes has rarely been considered simultaneously. The temperature and the solvents used in the mobile phase, however, were found to have a profound effect on the enantioseparation of these herbicides. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Studies on maize inbred lines susceptibility to herbicides

    Directory of Open Access Journals (Sweden)

    Stefanović Lidija

    2010-01-01

    Full Text Available This paper presents the analysis of results obtained during long- term studies on the response of maize inbred lines to herbicides. Under the agroecological conditions of Zemun Polje the response (reaction of maize inbred lines to herbicides of different classes was investigated. Biological tests were performed and some agronomic, morphological, physiological and biochemical parameters were determined when the response of maize inbred lines to herbicides was estimated. The use of active ingredients of herbicides from triazine, acetanilide, thiocarbamate to new chemical groups (sulfonylurea etc., have been resulted in changes in weed suppression and susceptibility of inbred lines. Obtained results show that effects of herbicides on susceptible maize genotypes can be different: they can slowdown the growth and development and affect the plant height; they can also affect the stages of the tassel and ear development and at the end they can reduced grain yield of the tested inbreds. Numerous studies confirmed the existence of differences in susceptibility level of maize genotypes in relation to herbicides. According to gained results the recommendations for growers are made on the possibility of the application of new herbicides in the hybrid seed production.

  19. Antifungal and Herbicidal Effects of Fruit Essential Oils of Four Myrtus communis Genotypes.

    Science.gov (United States)

    Kordali, Saban; Usanmaz, Ayse; Cakir, Ahmet; Komaki, Amanmohammad; Ercisli, Sezai

    2016-01-01

    The chemical composition of the essential oils isolated by hydrodistillation from the fruits of four selected Myrtus communis L. genotypes from Turkey was characterized by GC-FID and GC/MS analyses. 1,8-Cineole (29.20-31.40%), linalool (15.67-19.13%), α-terpineol (8.40-18.43%), α-pinene (6.04-20.71%), and geranyl acetate (3.98-7.54%) were found to be the major constituents of the fruit essential oils of all M. communis genotypes investigated. The oils were characterized by high amounts of oxygenated monoterpenes, representing 73.02-83.83% of the total oil compositions. The results of the fungal growth inhibition assays showed that the oils inhibited the growth of 19 phytopathogenic fungi. However, their antifungal activity was generally lower than that of the commercial pesticide benomyl. The herbicidal effects of the oils on the seed germination and seedling growth of Amaranthus retroflexus L., Chenopodium album L., Cirsium arvense (L.) Scop., Lactuca serriola L., and Rumex crispus L. were also determined. The oils completely or partly inhibited the seed germinations and seedling growths of the plants. The findings of the present study suggest that the M. communis essential oils might have potential to be used as natural herbicides as well as fungicides. Copyright © 2016 Verlag Helvetica Chimica Acta AG, Zürich.

  20. Mechanistic insights into the role of river sediment in the attenuation of the herbicide isoproturon.

    Science.gov (United States)

    Trinh, Son B; Hiscock, Kevin M; Reid, Brian J

    2012-11-01

    Mechanistic insights into the relative contribution of sorption and biodegradation on the removal of the herbicide isoproturon (IPU) are reported. (14)C-radiorespirometry indicated very low levels of catabolic activity in IPU-undosed and IPU-dosed (0.1, 1, 100 μg L(-1)) river water (RW) and groundwater (GW) (mineralisation: <2%). In contrast, levels of catabolic activity in IPU-undosed and IPU-dosed river sediment (RS) were significantly higher (mineralisation: 14.5-36.9%). Levels of IPU catabolic competence showed a positive log-linear relationship (r(2) = 0.768) with IPU concentration present. A threshold IPU concentration of between 0.1 μg L(-1) and 1 μg L(-1) was required to significantly (p < 0.05) increase levels of catabolic activity. Given the EU Drinking Water Directive limit for a single pesticide in drinking water of <0.1 μg L(-1) this result suggests that riverbed sediment infiltration is potentially an appropriate 'natural' means of improving water quality in terms of pesticide levels at concentrations that are in keeping with regulatory limits. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Assessment of pesticide contamination in soil samples from an intensive horticulture area, using ultrasonic extraction and gas chromatography-mass spectrometry.

    Science.gov (United States)

    Gonçalves, C; Alpendurada, M F

    2005-03-15

    In order to reduce the amount of sample to be collected and the time consumed in the analytical process, a broad range of analytes should be preferably considered in the same analytical procedure. A suitable methodology for pesticide residue analysis in soil samples was developed based on ultrasonic extraction (USE) and gas chromatography-mass spectrometry (GC-MS). For this study, different classes of pesticides were selected, both recent and old persistent molecules: parent compounds and degradation products, namely organochlorine, organophosphorous and pyrethroid insecticides, triazine and acetanilide herbicides and other miscellaneous pesticides. Pesticide residues could be detected in the low- to sub-ppb range (0.05-7.0mugkg(-1)) with good precision (7.5-20.5%, average 13.7% R.S.D.) and extraction efficiency (69-118%, average 88%) for the great majority of analytes. This methodology has been applied in a monitoring program of soil samples from an intensive horticulture area in Póvoa de Varzim, North of Portugal. The pesticides detected in four sampling programs (2001/2002) were the following: lindane, dieldrin, endosulfan, endosulfan sulfate, 4,4'-DDE, 4,4'-DDD, atrazine, desethylatrazine, alachlor, dimethoate, chlorpyrifos, pendimethalin, procymidone and chlorfenvinphos. Pesticide contamination was investigated at three depths and in different soil and crop types to assess the influence of soil characteristics and trends over time.

  2. 75 FR 40857 - Small Business Size Standards: Waiver of the Nonmanufacturer Rule

    Science.gov (United States)

    2010-07-14

    ... Herbicides, Insecticides, and Fungicides, PSC 6840, under NAICS code 325320, Pesticides and Other... Herbicides, Insecticides, and Fungicides, under Product Service Code (PSC) 6840, under North American Industry Classification System (NAICS) code 325320, Pesticides and Other Agricultural Chemical...

  3. Methods for Rapid Screening in Woody Plant Herbicide Development

    Directory of Open Access Journals (Sweden)

    William Stanley

    2014-07-01

    Full Text Available Methods for woody plant herbicide screening were assayed with the goal of reducing resources and time required to conduct preliminary screenings for new products. Rapid screening methods tested included greenhouse seedling screening, germinal screening, and seed screening. Triclopyr and eight experimental herbicides from Dow AgroSciences (DAS 313, 402, 534, 548, 602, 729, 779, and 896 were tested on black locust, loblolly pine, red maple, sweetgum, and water oak. Screening results detected differences in herbicide and species in all experiments in much less time (days to weeks than traditional field screenings and consumed significantly less resources (<500 mg acid equivalent per herbicide per screening. Using regression analysis, various rapid screening methods were linked into a system capable of rapidly and inexpensively assessing herbicide efficacy and spectrum of activity. Implementation of such a system could streamline early-stage herbicide development leading to field trials, potentially freeing resources for use in development of beneficial new herbicide products.

  4. Multiresidue determination and potential risks of emerging pesticides in aquatic products from Northeast China by LC-MS/MS.

    Science.gov (United States)

    Fu, Lei; Lu, Xianbo; Tan, Jun; Wang, Longxing; Chen, Jiping

    2018-01-01

    A simple method for determining 33 pesticides with a wide polarity range (logK ow 0.6-4.5) in aquatic products was developed based on LC-MS/MS. The target analytes included three types of widely used pesticides: insecticides, fungicides and herbicides. Based on the optimization of ultrasonic assisted extraction and GPC clean-up procedures, the matrix effect, extraction recoveries and LOD were improved distinctively. LOQ of this method was below 0.5ng/g for all pesticides, which is superior to values in the literature, and the matrix effect was reduced effectively (-14.7% to 7.5%). The method was successfully applied to investigate the pesticide residue levels of twenty-five samples including seven common kinds of fishes from Northeast China. The results showed that all targeted pesticides were present in the fish samples; however, their levels were low, except for atrazine, linuron, ethoprophos, tetrachlorvinphos, acetochlor and fenthion. Atrazine and linuron caught our attention because the concentrations of atrazine in fish samples from Liaoning province were in the range of 0.5-8ng/g (w/w) with mean concentration of 2.3ng/g, which were far above those of other pesticides. The levels of linuron were in the range of 0.6-6ng/g (mean concentration 2.8ng/g), which were the highest among all targeted pesticides in the Inner Mongolia. This is the first systematic investigation on the characteristics and levels of these pesticides in aquatic products from northeast China. Considering their toxicity and bioaccumulation, the potential risk of atrazine and linuron from consuming aquatic products should be paid more attention. Copyright © 2017. Published by Elsevier B.V.

  5. Expanding the eco-evolutionary context of herbicide resistance research.

    Science.gov (United States)

    Neve, Paul; Busi, Roberto; Renton, Michael; Vila-Aiub, Martin M

    2014-09-01

    The potential for human-driven evolution in economically and environmentally important organisms in medicine, agriculture and conservation management is now widely recognised. The evolution of herbicide resistance in weeds is a classic example of rapid adaptation in the face of human-mediated selection. Management strategies that aim to slow or prevent the evolution of herbicide resistance must be informed by an understanding of the ecological and evolutionary factors that drive selection in weed populations. Here, we argue for a greater focus on the ultimate causes of selection for resistance in herbicide resistance studies. The emerging fields of eco-evolutionary dynamics and applied evolutionary biology offer a means to achieve this goal and to consider herbicide resistance in a broader and sometimes novel context. Four relevant research questions are presented, which examine (i) the impact of herbicide dose on selection for resistance, (ii) plant fitness in herbicide resistance studies, (iii) the efficacy of herbicide rotations and mixtures and (iv) the impacts of gene flow on resistance evolution and spread. In all cases, fundamental ecology and evolution have the potential to offer new insights into herbicide resistance evolution and management. © 2014 Society of Chemical Industry.

  6. Pesticide usage pattern in tea ecosystem, their retrospects and alternative measures.

    Science.gov (United States)

    Gurusubramanian, G; Rahman, A; Sarmah, M; Ray, Somnath; Bora, S

    2008-11-01

    Tea is a perennial plantation crop grown under monoculture providing favorable conditions for a variety of pests. The concept of pest control has undergone a considerable change over the past few decades. In recent years there has been a greater dependence on the use of pesticides (7.35-16.75 kgha(-1)) with little importance laid on other safe control methods for the management of tea pests. Due to this practice, the tea pests showed a higher tolerance/ resistance status due to formation of greater amount of esterases, glutathione S-transferase and acetylcholinesterase. Thus, over reliance on pesticides end up with pesticide residue in made tea (DDT - 10.4-47.1%; endosulfan - 41.1-98.0%; dicofol- 0.0-82.4%; ethion - 0.0-36.2%; cypermethrin - 6.0- 45.1%). The growing concern about the pesticide residue in made tea, its toxicity hazards to consumers, the spiraling cost of pesticides and their application have necessitated a suitable planning which will ensure a safe, economic as well as effective pest management in tea. At present it is a global concern to minimize chemical residue in tea and European union and German law imposed stringent measures for the application of chemicals in tea and fixed MRL values at market at global level, central insecticide board and prevention of food adulteration regulation committee have reviewed the MRL position for tea and has recommended 10 insecticides, 5 acaricides, 9 herbicides and 5 fungicides for use in tea and issued the tea distribution and export control order 2005 which will help the country to limit the presence of undesirable substances in tea. This review attempts to provide the readers with a comprehensive account of pesticide use in North East in tea, surveillance report of the European community regarding the residue level in Assam and Darjeeling tea, recent amendments by international and national regulatory bodies, revised MRL values of pesticides in tea, an update about the current strategies for the management

  7. FLAMMABILITY OF HERBICIDE-TREATED GUAVA FOLIAGE

    Science.gov (United States)

    Guava leaves treated with herbicide were found to be less flammable than untreated green leaves or dead leaves . Differences in flammability were...determined by small-scale laboratory fires, differential thermal analysis, and thermogravimetric analysis. The herbicide-treated leaves had a higher ash

  8. The benefits of herbicide-resistant crops.

    Science.gov (United States)

    Green, Jerry M

    2012-10-01

    Since 1996, genetically modified herbicide-resistant crops, primarily glyphosate-resistant soybean, corn, cotton and canola, have helped to revolutionize weed management and have become an important tool in crop production practices. Glyphosate-resistant crops have enabled the implementation of weed management practices that have improved yield and profitability while better protecting the environment. Growers have recognized their benefits and have made glyphosate-resistant crops the most rapidly adopted technology in the history of agriculture. Weed management systems with glyphosate-resistant crops have often relied on glyphosate alone, have been easy to use and have been effective, economical and more environmentally friendly than the systems they have replaced. Glyphosate has worked extremely well in controlling weeds in glyphosate-resistant crops for more than a decade, but some key weeds have evolved resistance, and using glyphosate alone has proved unsustainable. Now, growers need to renew their weed management practices and use glyphosate with other cultural, mechanical and herbicide options in integrated systems. New multiple-herbicide-resistant crops with resistance to glyphosate and other herbicides will expand the utility of existing herbicide technologies and will be an important component of future weed management systems that help to sustain the current benefits of high-efficiency and high-production agriculture. Copyright © 2012 Society of Chemical Industry.

  9. Phototransformation of the herbicide sulcotrione on maize cuticular wax.

    Science.gov (United States)

    Ter Halle, Alexandra; Drncova, Daniela; Richard, Claire

    2006-05-01

    Vegetation plays a key role in environmental cycling and the fate of many organic pollutants. This is especially the case for pesticides because plant leaves are their first reaction environment after application. It is commonly accepted that photochemical reactions of pollutants on plants predominantly take place in the cuticular wax coating of the leaves. Thus, we used films made of either cuticular wax extracted from maize or carnauba gray wax as a model support. Under simulated sunlight irradiation, sulcotrione (a new class of triketone herbicides) sorbed on cuticular wax films was photolyzed and mainly underwent an intramolecular cyclization. The photoproduct is a chromone derivative which was isolated and fully characterized. It is reported for the first time as a sulcotrione degradation product. The photoreactivity of formulated sulcotrione at the surface of cuticular waxes was investigated too. It photodegraded more rapidly than nonformulated sulcotrione. This study also shows that the rate of sulcotrione photolysis was much faster than the rate of penetration into the wax; photolysis should be, thus, a relevant process in real conditions.

  10. The herbicide Glyphosate affects nitrification in the Elbe estuary, Germany

    Science.gov (United States)

    Sanders, Tina; Lassen, Stephan

    2015-04-01

    The Elbe River is one of the biggest European rivers discharging into the North Sea. It also transports high amounts of nutrients and pollutants like pesticides. Important source regions of both nutrients and pollutants are located within the river catchment, which is dominated by agricultural land-use. From these agricultural soils, pesticides can be carried via the river and estuary into the North Sea. Glyphosate (N-(phosphonomethyl) glycine) is the most commonly used herbicide worldwide and mainly used to regulate unwanted plant growth and for the expedition of crop ripening. In Germany, ~ 6000 tons of glyphosate are applied yearly in agriculture and private use. Glyphosate is degradable by microorganisms and has a half-life in water of 35 to 60 days. This herbicide specifically inhibits 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), an enzyme that catalyzes the biosynthesis of essential aromatic amino acids in plants, fungi, and bacteria. Nitrifying bacteria, which play an important role in the internal nitrogen cycling in the Elbe estuary, also possess this enzyme. The aim of our study was to quantify the concentration of glyphosate in water and sediment samples of the Elbe to get an overview about relevant environmental levels and to assess the impact of glyphosate on inhibition of nitrifying activities. To quantify the effect of glyphosate on nitrification activity, natural samples as well as pure cultures of Nitrosomonas europea (strain Nm50) were incubated with different concentrations of glyphosate over a period of some weeks. The nitrifying activity was determined according to changes of the nitrite and nitrate concentration as well as the cell number. Glyphosate was detectable in water and sediment samples in the Elbe estuary with up to 5 ppb mainly in the Port of Hamburg region. In both incubation experiments an inhibiting effect of glyphosate on nitrification could be shown. The incubated natural water sample was affected by a glyphosate

  11. Use and occurrence of pesticides in the Apalachicola-Chattahoochee-Flint River basin, Georgia, Alabama, and Florida, 1960-91

    Science.gov (United States)

    Stell, Susan M.; Hopkins, Evelyn H.; Buell, Gary R.; Hippe, Daniel J.

    1995-01-01

    The Apalachicola-Chattahoochee-Flint (ACF) River basin was one of the first 20 study units selected in 1991 by the U.S. Geological Survey for its National Water-Quality Assessment (NAWQA) program. Because pesticide contamination of surface water and ground water is a concern nationwide, a major emphasis of the NAWQA program is to examine the occurrence and distribution of pesticides in the water resources of these study unit basins. An understanding of the types and distribution of land uses; pesticide properties, pest-control practices, and pesticide use; and an evaluation of the occurrence and distribution of pesticides in the water resources of the ACF are necessary to meet this objective of the NAWQA program. This report describes land use and pesticide use at a county level, and the occurrence and distribution of pesticides in the water resources of the ACF River basin on the basis of previously-collected data. About 33 percent of the ACF River basin is used for agriculture, 16 percent is used for silviculture, and about 5 percent of the basin is in urban and suburban settings; primarily the Columbus, Albany, and Atlanta Metropolitan areas. The remainder is in wetlands and non-silvicultural forest. A broad range of synthetic-organic herbicides, insecticides, and fungicides are applied to land in agricultural, silvicultural, urban, and suburban areas. The period of intensive pesticide applications extends from March to October. Pesticide data available for the period from 1971 through 1989 in the U.S. Geological Survey National Water Information System (NWIS) and for the period from 1960 through 1991 in the U.S. Environmental Protection Agency Storage and Retrieval System (STORET) were analyzed to describe the occurrence and distribution of pesticides in water resources of the ACF River basin. Collectively, the NWIS and STORET databases contain about 19,600 individual analyses for pesticide concentration in the ACF River basin. Pesticide concentrations were at

  12. Biotechnology approaches to developing herbicide tolerance ...

    African Journals Online (AJOL)

    The use of herbicides has revolutionized weed control in many crop production systems. However, with the increasing development of weed resistances to many popular selective herbicides, the need has arisen to rethink the application of chemical weed control. Approaches to maintain the efficiency of chemical weed ...

  13. Data analysis considerations for pesticides determined by National Water Quality Laboratory schedule 2437

    Science.gov (United States)

    Shoda, Megan E.; Nowell, Lisa H.; Stone, Wesley W.; Sandstrom, Mark W.; Bexfield, Laura M.

    2018-04-02

    In 2013, the U.S. Geological Survey National Water Quality Laboratory (NWQL) made a new method available for the analysis of pesticides in filtered water samples: laboratory schedule 2437. Schedule 2437 is an improvement on previous analytical methods because it determines the concentrations of 225 fungicides, herbicides, insecticides, and associated degradates in one method at similar or lower concentrations than previously available methods. Additionally, the pesticides included in schedule 2437 were strategically identified in a prioritization analysis that assessed likelihood of occurrence, prevalence of use, and potential toxicity. When the NWQL reports pesticide concentrations for analytes in schedule 2437, the laboratory also provides supplemental information useful to data users for assessing method performance and understanding data quality. That supplemental information is discussed in this report, along with an initial analysis of analytical recovery of pesticides in water-quality samples analyzed by schedule 2437 during 2013–2015. A total of 523 field matrix spike samples and their paired environmental samples and 277 laboratory reagent spike samples were analyzed for this report (1,323 samples total). These samples were collected in the field as part of the U.S. Geological Survey National Water-Quality Assessment groundwater and surface-water studies and as part of the NWQL quality-control program. This report reviews how pesticide samples are processed by the NWQL, addresses how to obtain all the data necessary to interpret pesticide concentrations, explains the circumstances that result in a reporting level change or the occurrence of a raised reporting level, and describes the calculation and assessment of recovery. This report also discusses reasons why a data user might choose to exclude data in an interpretive analysis and outlines the approach used to identify the potential for decreased data quality in the assessment of method recovery. The

  14. Influence of herbicide structure, clay acidity, and humic acid coating on acetanilide herbicide adsorption on homoionic clays.

    Science.gov (United States)

    Liu, Weiping; Gan, Jianying; Yates, Scott R

    2002-07-03

    Adsorption of chloroacetanilide herbicides on homoionic montmorillonite was studied by coupling batch equilibration and FT-IR analysis. Adsorption decreased in the order metolachlor > acetochlor > alachlor > propachlor on Ca(2+)- or Mg(2+)-saturated clays and in the order metolachlor > alachlor > acetachlor > propachlor on Al(3+)- or Fe(3+)-saturated clays. FT-IR spectra showed that the carbonyl group of the herbicide molecule was involved in bonding. For the same herbicide, adsorption of alachlor, acetachlor, and metolachlor on clay followed the order Ca(2+) approximately Mg(2+) < Al(3+) < or = Fe(3+), which coincided with the increasing acidity of homoionic clays. Adsorption of propachlor, however, showed an opposite dependence, suggesting a different governing interaction. In clay and humic acid mixtures, herbicide adsorption was less than that expected from independent additive adsorption by the individual constituents, and the deviation was dependent on the clay-to-humic acid ratio, with the greatest deviation consistently occurring at a 60:40 clay-to-humic acid ratio.

  15. Pesticide acute toxicity is a better correlate of U.S. grassland bird declines than agricultural intensification.

    Directory of Open Access Journals (Sweden)

    Pierre Mineau

    Full Text Available Common agricultural birds are in decline, both in Europe and in North America. Evidence from Europe suggests that agricultural intensification and, for some species, the indirect effects of pesticides mediated through a loss of insect food resource is in part responsible. On a state-by-state basis for the conterminous Unites States (U.S., we looked at several agronomic variables to predict the number of grassland species increasing or declining according to breeding bird surveys conducted between 1980 and 2003. Best predictors of species declines were the lethal risk from insecticide use modeled from pesticide impact studies, followed by the loss of cropped pasture. Loss of permanent pasture or simple measures of agricultural intensification such as the proportion of land under crop or the proportion of farmland treated with herbicides did not explain bird declines as well. Because the proportion of farmland treated with insecticides, and more particularly the lethal risk to birds from the use of current insecticides feature so prominently in the best models, this suggests that, in the U.S. at least, pesticide toxicity to birds should be considered as an important factor in grassland bird declines.

  16. SELECTIVITY OF DIFFERENT HERBICIDES TO COWPEA

    Directory of Open Access Journals (Sweden)

    Francisco Aires Sizenando Filho2

    2013-12-01

    1.5 = recommended rate + half the recommended rate. At the end of the experiment it was found that: the cowpea showed phytotoxicity to use herbicide among 14 and 21 AAD; the herbicides diuron and metolachlor showed a rate "middle" in control weed, while the pendimethalin wasn't efficient for those function.

  17. Occurrence of priority organic pollutants in the fertilizers, China

    International Nuclear Information System (INIS)

    Mo Cehui; Cai Quanying; Li Yunhui; Zeng Qiaoyun

    2008-01-01

    The use of large quantities of chemical fertilizers is usually associated with environmental problems. A lot of work has been done on the concentrations of heavy metals and radionuclides in chemical fertilizers, but little work has focused on the occurrence of semi-volatile organic compounds (SVOCs). In this study the occurrence of 43 SVOCs listed as priority pollutants in 22 widely used-fertilizers of China was determined by gas chromatography coupled with mass spectrometry. Twenty-six SVOCs were detected with different detection frequencies and concentrations. The most abundant compounds were phthalic acid esters (PAEs; ranging from 1.17 to 2795 μg kg -1 dry weight, d.w.) and nitroaromatics (up to 9765 μg kg -1 d.w.), followed by polycyclic aromatic hydrocarbons (PAHs; -1 d.w.) and halogenated hydrocarbons ( -1 d.w.). Chlorobenzenes and haloethers occurred generally at low concentrations. There are large variations in concentrations of various compounds in different fertilizers, and the total concentrations of each class of contaminants varied widely, too. The highest levels of sum concentration for 16 PAHs, for 6 PAEs and for nitroaromatics were found in organic fertilizer containing pesticide and soil amendments. Concentrations of SVOCs in coated fertilizers (the controlled release fertilizer with coating) were considerably higher than those in the corresponding fertilizers without coating. The occurrence frequencies of SVOCs in the straight fertilizers (containing only one of the major plant nutrients) were lower than in the other fertilizers

  18. Pesticides in the Lake Kinneret basin: a combined approach towards mircopollutant management

    Science.gov (United States)

    Gaßmann, M.; Friedler, E.; Dubwoski, Y.; Dinerman, E.; Olsson, O.; Bauer, M.

    2009-04-01

    Lake Kinneret is the only large surface waterbody in Israel, supplying about 27% of the country's freshwater. Water quality in Lake Kinneret is of major concern and improving the ecological status of this large water body is now a national priority. While many studies in the past focused on nutrients inflows and phytoplankton dynamics, less research has been done on assessing the fate and pathways of micropollutants at semi-arid environments in common and Lake Kinneret in particular. Since the watershed area of Lake Kinneret is used primarily for agriculture, it is important to evaluate the fate and dynamic transfer of organic micropollutants such as pesticides and herbicides in the watershed streams and in the lake itself. This study introduces a combined concept of extensive measurements and modelling tools to observe and simulate the pesticide release chain (i) application - (ii) diffuse release to rivers - (iii) transport in the river - (iv) accumulation in the lake. The available information regarding identification of application zones (i) and the amounts of used pesticides is based on stakeholders interviews, a survey of the different crop types and orchards and a comparison to sold amounts of the target pesticides (Melman and Bar-Ilan 2008). In the current research, a single field mass balance of pesticides is carried out to determine the field release to rivers (ii) by an extensive measurement campaign on the different compartments (soil, vegetation, atmosphere) and phases (water, air, solids) of a single field. The mass balance results in a release pattern of pesticide, which will be overtaken into the modelling approach. Transport of pesticides in rivers (iii) is modelled on the base of a recently developed stream network model for ephemeral streams (MOHID River), introducing important instream fate processes of pesticides and supported by six instream measurement stations of hydrological as well as pesticide data in the basin. To determine the final

  19. Adsorption of triazine herbicides from aqueous solution by functionalized multiwall carbon nanotubes grown on silicon substrate

    Science.gov (United States)

    D'Archivio, Angelo Antonio; Maggi, Maria Anna; Odoardi, Antonella; Santucci, Sandro; Passacantando, Maurizio

    2018-02-01

    Multi-walled carbon nanotubes (MWCNTs), because of their small size and large available surface area, are potentially efficient sorbents for the extraction of water solutes. Dispersion of MWCNTs in aqueous medium is suitable to adsorb organic contaminants from small sample volumes, but, the recovery of the suspended sorbent for successive re-use represents a critical step, which makes this method inapplicable in large-scale water-treatment technologies. To overcome this problem, we proposed here MWCNTs grown on silicon supports and investigated on a small-volume scale their adsorption properties towards triazine herbicides dissolved in water. The adsorption efficiency of the supported MWCNTs has been tested on seven triazine herbicides, which are emerging water contaminants in Europe and USA, because of their massive use, persistence in soils and potential risks for the aquatic organisms and human health. The investigated compounds, in spite of their common molecular skeleton, cover a relatively large property range in terms of both solubility in water and hydrophilicity/hydrophobicity. The functionalisation of MWCNTs carried out by acidic oxidation, apart from increasing wettability of the material, results in a better adsorption performance. Increasing of functionalisation time between 17 and 60 h progressively increases the extraction of all seven pesticides and produces a moderate increment of selectivity.

  20. Dual isotope plots reflect transformation pathways of pesticides: Potential to assess pesticide fate and elucidate transformation mechanisms

    Science.gov (United States)

    Meyer, Armin; Penning, Holger; Sorensen, Sebastian; Aamand, Jens; Elsner, Martin

    2010-05-01

    The degradation of pesticides in deeper soil layers and groundwater is of growing interest, because they have repeatedly been found in drinking water supply wells and may pose a risk to future water resources. Current assessment schemes face a common problem, however: natural degradation often cannot be reliably assessed by concentration measurements alone, since mass balances are difficult to establish and transformation cannot be distinguished from sorption or dilution. Even detection of metabolites may only give an incomplete picture. When several transformation pathways occur, some metabolites may be degraded or form bound residues so that the associated pathways may be missed. Our research shows that dual isotope plots derived from compound specific isotope analysis offer a novel approach to give additional, complementary insight into the natural degradation of pesticides. Detection of metabolites is not required, since the isotope fractionation can be fully observed in the pesticide itself. Specifically, different initial biotransformation reactions of the phenylurea herbicide isoproturon (3-(4-isopropylphenyl)-1,1-dimethylurea) in pure culture experiments with bacterial and fungal strains showed strongly pathway-dependent isotope fractionation. When analyzing isotopic changes in different parts of the isoproturon molecule, hydroxylation of the isopropyl group by fungi was found to be associated with C and H isotope fractionation. In contrast, hydrolysis by Arthrobacter globiformis D47 caused strong C and N isotope fractionation, albeit in a different manner than abiotic hydrolysis so that isotope measurements can distinguish between both modes of transformation. Likewise, we observed highly pathway-dependent C and N isotope fractionation of atrazine (1-chloro-3-ethylamino-5-isopropylamino-2,4,6-triazine). Desalkylation of atrazine by Rhodococcus sp. strain NI86/21 resulted in enrichment of both 13-C and 15-N in atrazine, whereas hydrolysis to hydroxyatrazine

  1. Antioxidant activity of rice plants sprayed with herbicides

    Directory of Open Access Journals (Sweden)

    Marcos André Nohatto

    2016-03-01

    Full Text Available Understanding the physiological defense behavior of plants subjected to herbicide application may help to identify products with higher or lower capacity to cause oxidative stress in crops. This study aimed at evaluating the effect of herbicides in the antioxidant activity of rice plants. The experimental design was completely randomized, with six replications. Treatments consisted of the herbicides bentazon (photosystem II inhibitor; 960 g ha-1, penoxsulam (acetolactate synthase inhibitor; 60 g ha-1, cyhalofop-butyl (acetyl coenzyme-A carboxylase inhibitor; 315 g ha-1 and a control. After the herbicides application, samples of rice shoots were collected at 12, 24, 48 and 96 hours after application (HAA. The components evaluated were hydrogen peroxide (H2O2, lipid peroxidation and activity of the antioxidant enzymes superoxide dismutase (SOD and catalase (CAT. Bentazon (up to 24 HAA and penoxsulam (48 and 96 HAA reduced the CAT activity. Moreover, these herbicides increased the levels of H2O2, lipid peroxidation and SOD activity, indicating a condition of oxidative stress in rice plants. The cyhalofop-butyl herbicide did not alter the antioxidant activity, showing that it causes less stress to the crop.

  2. Association between Parkinson's Disease and Cigarette Smoking, Rural Living, Well-Water Consumption, Farming and Pesticide Use: Systematic Review and Meta-Analysis.

    Directory of Open Access Journals (Sweden)

    Charles B Breckenridge

    Full Text Available Bradford Hill's viewpoints were used to conduct a weight-of-the-evidence assessment of the association between Parkinson's disease (PD and rural living, farming and pesticide use. The results were compared with an assessment based upon meta-analysis. For comparison, we also evaluated the association between PD and cigarette smoking as a "positive control" because a strong inverse association has been described consistently in the literature.PubMed was searched systematically to identify all published epidemiological studies that evaluated associations between Parkinson's disease (PD and cigarette smoking, rural living, well-water consumption, farming and the use of pesticides, herbicides, insecticides, fungicides or paraquat. Studies were categorized into two study quality groups (Tier 1 or Tier 2; data were abstracted and a forest plot of relative risks (RRs was developed for each risk factor. In addition, when available, RRs were tabulated for more highly exposed individuals compared with the unexposed. Summary RRs for each risk factor were calculated by meta-analysis of Tier 1, Tier 2 and all studies combined, with sensitivity analyses stratified by other study characteristics. Indices of between-study heterogeneity and evidence of reporting bias were assessed. Bradford Hill's viewpoints were used to determine if a causal relationship between PD and each risk factor was supported by the weight of the evidence.There was a consistent inverse (negative association between current cigarette smoking and PD risk. In contrast, associations between PD and rural living, well-water consumption, farming and the use of pesticides, herbicides, insecticides, fungicides or paraquat were less consistent when assessed quantitatively or qualitatively.The weight of the evidence and meta-analysis support the conclusion that there is a causal relationship between PD risk and cigarette smoking, or some unknown factor correlated with cigarette smoking. There may be

  3. Uses of thaxtomin and thaxtomin compositions as herbicides

    Energy Technology Data Exchange (ETDEWEB)

    Koivunen, Marja; Marrone, Pamela

    2016-12-27

    There is a need for a selective, low-risk herbicide that can be used to control weeds in cereal cultures and turf. The present invention discloses that a bacterial secondary metabolite, thaxtomin and optionally another herbicide is an effective herbicide on broadleaved, sedge and grass weeds. Thaxtomin A and structurally similar compounds can be used as natural herbicides to control the germination and growth of weeds in cereal, turf grass, Timothy grass and pasture grass cultures with no phytotoxicity to these crops. As a natural, non-toxic compound, thaxtomin can be used as a safe alternative for weed control in both conventional and organic farming and gardening systems.

  4. Occurrence and distribution of dissolved pesticides in the San Joaquin River basin, California

    Science.gov (United States)

    Panshin, Sandra Yvonne; Dubrovsky, Neil M.; Gronberg, JoAnn M.; Domagalski, Joseph L.

    1998-01-01

    The effects of pesticide application, hydrology, and chemical and physical properties on the occurrence of pesticides in surface water in the San Joaquin River Basin, California, were examined. The study of pesticide occurrence in the highly agricultural San Joaquin?Tulare Basins is part of the National Water-Quality Assessment Program of the U.S. Geological Survey. One hundred forty-three water samples were collected throughout 1993 from sites on the San Joaquin River and three of its tributaries: Orestimba Creek, Salt Slough, and the Merced River. Of the 83 pesticides selected for analysis in this study, 49 different compounds were detected in samples from the four sites and ranged in concentration from less than the detection limit to 20 micrograms per liter. All but one sample contained at least one pesticide, and more than 50 percent of the samples contained seven or more pesticides. Six compounds were detected in more than 50 percent of the samples: four herbicides (dacthal, EPTC, metolachlor, and simazine) and two insecticides (chlorpyrifos and diazinon). None of the measured concentrations exceeded U.S. Environmental Protection Agency drinking water criteria, and many of the measured concentrations were very low. The concentrations of seven pesticides exceeded criteria for the protection of freshwater aquatic life: azinphos-methyl, carbaryl, chlorpyrifos, diazinon, diuron, malathion, and trifluralin. Overall, some criteria for protection of aquatic life were exceeded in a total of 97 samples. Factors affecting the spatial patterns of occurrence of the pesticides in the different subbasins included the pattern of application and hydrology. Seventy percent of pesticides with known application were detected. Overall, 40 different pesticides were detected in Orestimba Creek, 33 in Salt Slough, and 26 in the Merced River. Samples from the Merced River had a relatively low number of detections, despite the high number (35) of pesticides applied, owing to the

  5. Potential interactions among disease, pesticides, water quality and adjacent land cover in amphibian habitats in the United States.

    Science.gov (United States)

    Battaglin, W A; Smalling, K L; Anderson, C; Calhoun, D; Chestnut, T; Muths, E

    2016-10-01

    To investigate interactions among disease, pesticides, water quality, and adjacent land cover, we collected samples of water, sediment, and frog tissue from 21 sites in 7 States in the United States (US) representing a variety of amphibian habitats. All samples were analyzed for >90 pesticides and pesticide degradates, and water and frogs were screened for the amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd) using molecular methods. Pesticides and pesticide degradates were detected frequently in frog breeding habitats (water and sediment) as well as in frog tissue. Fungicides occurred more frequently in water, sediment, and tissue than was expected based upon their limited use relative to herbicides or insecticides. Pesticide occurrence in water or sediment was not a strong predictor of occurrence in tissue, but pesticide concentrations in tissue were correlated positively to agricultural and urban land, and negatively to forested land in 2-km buffers around the sites. Bd was detected in water at 45% of sites, and on 34% of swabbed frogs. Bd detections in water were not associated with differences in land use around sites, but sites with detections had colder water. Frogs that tested positive for Bd were associated with sites that had higher total fungicide concentrations in water and sediment, but lower insecticide concentrations in sediments relative to frogs that were Bd negative. Bd concentrations on frog swabs were positively correlated to dissolved organic carbon, and total nitrogen and phosphorus, and negatively correlated to pH and water temperature. Data were collected from a range of locations and amphibian habitats and represent some of the first field-collected information aimed at understanding the interactions between pesticides, land use, and amphibian disease. These interactions are of particular interest to conservation efforts as many amphibians live in altered habitats and may depend on wetlands embedded in these landscapes to survive

  6. Potential interactions among disease, pesticides, water quality and adjacent land cover in amphibian habitats in the United States

    Science.gov (United States)

    Battaglin, William A.; Smalling, Kelly L.; Anderson, Chauncey; Calhoun, Daniel L.; Chestnut, Tara E.; Muths, Erin L.

    2016-01-01

    To investigate interactions among disease, pesticides, water quality, and adjacent land cover, we collected samples of water, sediment, and frog tissue from 21 sites in 7 States in the United States (US) representing a variety of amphibian habitats. All samples were analyzed for > 90 pesticides and pesticide degradates, and water and frogs were screened for the amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd) using molecular methods. Pesticides and pesticide degradates were detected frequently in frog breeding habitats (water and sediment) as well as in frog tissue. Fungicides occurred more frequently in water, sediment, and tissue than was expected based upon their limited use relative to herbicides or insecticides. Pesticide occurrence in water or sediment was not a strong predictor of occurrence in tissue, but pesticide concentrations in tissue were correlated positively to agricultural and urban land, and negatively to forested land in 2-km buffers around the sites. Bd was detected in water at 45% of sites, and on 34% of swabbed frogs. Bd detections in water were not associated with differences in land use around sites, but sites with detections had colder water. Frogs that tested positive for Bd were associated with sites that had higher total fungicide concentrations in water and sediment, but lower insecticide concentrations in sediments relative to frogs that were Bd negative. Bd concentrations on frog swabs were positively correlated to dissolved organic carbon, and total nitrogen and phosphorus, and negatively correlated to pH and water temperature.Data were collected from a range of locations and amphibian habitats and represent some of the first field-collected information aimed at understanding the interactions between pesticides, land use, and amphibian disease. These interactions are of particular interest to conservation efforts as many amphibians live in altered habitats and may depend on wetlands embedded in these landscapes to

  7. Bio stimulation for the Enhanced Degradation of Herbicides in Soil

    International Nuclear Information System (INIS)

    Kanissery, R.G; Sims, G.K

    2011-01-01

    Cleanup of herbicide-contaminated soils has been a dire environmental concern since the advent of industrial era. Although microorganisms are excellent degraders of herbicide compounds in the soil, some reparation may need to be brought about, in order to stimulate them to degrade the herbicide at a faster rate in a confined time frame. Bio stimulation through the appropriate utilization of organic amendments and nutrients can accelerate the degradation of herbicides in the soil. However, effective use of bio stimulants requires thorough comprehension of the global redox cycle during the microbial degradation of the herbicide molecules in the soil. In this paper, we present the prospects of using bio stimulation as a powerful remediation strategy for the rapid cleanup of herbicide-polluted soils.

  8. Accumulation of current-use and organochlorine pesticides in crab embryos from northern California, USA.

    Science.gov (United States)

    Smalling, Kelly L; Morgan, Steven; Kuivila, Kathryn K

    2010-11-01

    Invertebrates have long been used as resident sentinels for assessing ecosystem health and productivity. The shore crabs, Hemigrapsus oregonensis and Pachygrapsus crassipes, are abundant in estuaries and beaches throughout northern California, USA and have been used as indicators of habitat conditions in several salt marshes. The overall objectives of the present study were to conduct a lab-based study to test the accumulation of current-use pesticides, validate the analytical method and to analyze field-collected crabs for a suite of 74 current-use and legacy pesticides. A simple laboratory uptake study was designed to determine if embryos could bioconcentrate the herbicide molinate over a 7-d period. At the end of the experiment, embryos were removed from the crabs and analyzed by gas chromatography/mass spectrometry. Although relatively hydrophilic (log K(OW) of 2.9), molinate did accumulate with an estimated bioconcentration factor (log BCF) of approximately 2.5. Following method validation, embryos were collected from two different Northern California salt marshes and analyzed. In field-collected embryos 18 current-use and eight organochlorine pesticides were detected including synthetic pyrethroids and organophosphate insecticides, as well as DDT and its degradates. Lipid-normalized concentrations of the pesticides detected in the field-collected crab embryos ranged from 0.1 to 4 ppm. Pesticide concentrations and profiles in crab embryos were site specific and could be correlated to differences in land-use practices. These preliminary results indicate that embryos are an effective sink for organic contaminants in the environment and have the potential to be good indicators of ecosystem health, especially when contaminant body burden analyses are paired with reproductive impairment assays. © 2010 SETAC.

  9. Light induced heterogeneous ozone processing on the pesticides adsorbed on silica particles

    Science.gov (United States)

    Socorro, J.; Désert, M.; Quivet, E.; Gligorovski, S.; Wortham, H.

    2013-12-01

    In France, in 2010, the sales of pesticides reached 1.8 billion euros for 61 900 tons of active ingredients, positioning France as a first European consumer of pesticides, as reported by the European Crop Protection Association. About 19 million hectares of crops are sprayed annually with pesticides, i.e., 35% of the total surface area of France. This corresponds to an average pesticide dose of 3.2 kg ha-1. The consumption of herbicide and fungicide is favoured in comparison to the use of insecticides in France and the other European countries, as well. The partitioning of pesticides between the gas and particulate phases influences the atmospheric fate of these compounds such as their photo-chemical degradation. There is much uncertainty concerning the behavior of the pesticides in the atmosphere. Especially, there is a gap of knowledge concerning the degradation of the pesticides induced by heterogeneous reactions in absence and especially in presence of solar light. Considering that most of the pesticides currently used are semi-volatile, it is of crucial importance to investigate the heterogeneous reactivity of particulate pesticides with light and with atmospheric oxidants such as ozone and OH radical. The aim of the present work is to evaluate the light induced heterogeneous ozonation of suspended pesticide particles. 8 pesticides (cyprodinil, deltamethrin, difenoconazole, fipronil, oxadiazon, pendimethalin, permethrin and tetraconazole) were chosen for their physico-chemical properties and their concentration levels in the PACA (Région Provence-Alpes-Côte d'Azur) region, France. Silica particles with well-known properties were chosen as model particles of atmospheric relevance. Kinetic rate constants were determined to allow estimate the atmospheric lifetimes relating to ozone. The rate constants were determined as follows: k = (6.6 × 0.2) 10-19, (7.2 × 0.3) 10-19, (5.1 × 0.5) 10-19, (3.9 × 0.3) 10-19 [cm3 molecules-1 s-1] for Cyprodinil

  10. Pesticides in house dust from urban and farmworker households in California: an observational measurement study

    Directory of Open Access Journals (Sweden)

    McKone Thomas E

    2011-03-01

    Full Text Available Abstract Background Studies report that residential use of pesticides in low-income homes is common because of poor housing conditions and pest infestations; however, exposure data on contemporary-use pesticides in low-income households is limited. We conducted a study in low-income homes from urban and agricultural communities to: characterize and compare house dust levels of agricultural and residential-use pesticides; evaluate the correlation of pesticide concentrations in samples collected several days apart; examine whether concentrations of pesticides phased-out for residential uses, but still used in agriculture (i.e., chlorpyrifos and diazinon have declined in homes in the agricultural community; and estimate resident children's pesticide exposures via inadvertent dust ingestion. Methods In 2006, we collected up to two dust samples 5-8 days apart from each of 13 urban homes in Oakland, California and 15 farmworker homes in Salinas, California, an agricultural community (54 samples total. We measured 22 insecticides including organophosphates (chlorpyrifos, diazinon, diazinon-oxon, malathion, methidathion, methyl parathion, phorate, and tetrachlorvinphos and pyrethroids (allethrin-two isomers, bifenthrin, cypermethrin-four isomers, deltamethrin, esfenvalerate, imiprothrin, permethrin-two isomers, prallethrin, and sumithrin, one phthalate herbicide (chlorthal-dimethyl, one dicarboximide fungicide (iprodione, and one pesticide synergist (piperonyl butoxide. Results More than half of the households reported applying pesticides indoors. Analytes frequently detected in both locations included chlorpyrifos, diazinon, permethrin, allethrin, cypermethrin, and piperonyl butoxide; no differences in concentrations or loadings were observed between locations for these analytes. Chlorthal-dimethyl was detected solely in farmworker homes, suggesting contamination due to regional agricultural use. Concentrations in samples collected 5-8 days apart in

  11. Effects of the Safe Drinking Water Act Amendments of 1986 on Army Fixed Installation Water Treatment Plants

    Science.gov (United States)

    1992-06-01

    Methylene Chloride) Dinoseb Pesticide Diquat Herbicide Endothall Herbicide Endrin Pesticide (banned in U.S.) Glyphosate Herbicide Hexachlorobenzene...has been shown to cause cancer in laboratory animals such as rats and mice when the animals are exposed at high levels over their lifetimes...Chemicals which cause cancer in laboratory animals also may increase the risk of cancer in humans who are exposed at lower levels over long periods of time

  12. Agricultural herbicide transport in a first-order intermittent stream, Nebraska, USA

    Science.gov (United States)

    Vogel, J.R.; Linard, J.I.

    2011-01-01

    The behavior of herbicides in surface waters is a function of many variables, including scale of the watershed, physical and chemical properties of the herbicide, physical and chemical properties of the soil, rainfall intensity, and time of year. In this study, the transport of 6 herbicides and 12 herbicide degradates was examined during the 2004 growing season in an intermediate-scale agricultural watershed (146 ha) that is drained by a first-order intermittent stream, and the mass load for each herbicide in the stream was estimated. The herbicide load during the first week of storm events after application ranged from 17% of annual load for trifluralin to 84% of annual load for acetochlor. The maximum weekly herbicide load in the stream was generally within the first 3 weeks after application for those compounds that were applied within the watershed during 2004, and later for herbicides not applied within the watershed during 2004 but still detected in the stream. The apparent dominant mode of herbicide transport in the stream-determined by analysis amongst herbicide and conservative ion concentrations at different points in the hydrograph and in base flow samples-was either overland runoff or shallow subsurface flow, depending on the elapsed time after application and type of herbicide. The load as a percentage of use (LAPU) for the parent compounds in this study was similar to literature values for those compounds applied by the farmer within the watershed, but smaller for those herbicides that had rainfall as their only source within the watershed.

  13. Environmental Assessment, Project MOUNTAINVIEW Facility, Buckley Air Force Base, Colorado

    Science.gov (United States)

    2011-10-01

    noise exposures are considered harmless . The standard defines a “hazardous noise environment” where continuous exposures are at or above 85 dBA. The...regulated waste at Buckley AFB (BAFB 2010c). Hazardous wastes generated at Buckley AFB include pesticides, herbicides , deicing fluids, flammable...control to minimize the types and quantities of pesticides used at the installation (BAFB 2005). No pesticides, insecticides, or herbicides are

  14. Agricultural Use of Burkholderia (Pseudomonas) Cepacia: A Threat to Human Health?

    Science.gov (United States)

    1998-06-01

    against fungal diseases and has potential as a bioremediation agent for breaking down recalcitrant herbicides and pesticides. However, B. cepacia is...need for pesticides and its ability to degrade complex herbicides and pesticides is harnessed for bioremediation . Molecular Epidemiology of B... sunflower wilt fungus and role of antifungal compounds in controlling disease. Appl Environ Microbiol 1992;58:1760-3. 36. Homma Y, Sato Z, Hirayama F

  15. Occurrence of dichloroacetamide herbicide safeners and co-applied herbicides in midwestern U.S. streams

    Science.gov (United States)

    Woodward, Emily; Hladik, Michelle; Kolpin, Dana W.

    2018-01-01

    Dichloroacetamide safeners (e.g., AD-67, benoxacor, dichlormid, and furilazole) are co-applied with chloroacetanilide herbicides to protect crops from herbicide toxicity. While such safeners have been used since the early 1970s, there are minimal data about safener usage, occurrence in streams, or potential ecological effects. This study focused on one of these research gaps, occurrence in streams. Seven Midwestern U.S. streams (five in Iowa and two in Illinois), with extensive row-crop agriculture, were sampled at varying frequencies from spring 2016 through summer 2017. All four safeners were detected at least once; furilazole was the most frequently detected (31%), followed by benoxacor (29%), dichlormid (15%), and AD-67 (2%). The maximum concentrations ranged from 42 to 190 ng/L. Stream detections and concentrations of safeners appear to be driven by a combination of timing of application (spring following herbicide application) and precipitation events. Detected concentrations were below known toxicity levels for aquatic organisms.

  16. Selectivity and stability of new herbicides and herbicide combinations for the seed yields of some field crops I. Effect at Coriander (Coriandrum Sativum L.)

    OpenAIRE

    G. Delchev

    2016-01-01

    Abstract. . The research was conducted during 2013 – 2015 on pellic vertisol soil type. Under investigation was Bulgarian coriander cultivar Lozen 1 (Coriandrum sativum L.). The purpose of the investigation was to establish the selectivity and stability of some herbicides, herbicide combinations and herbicide tank mixtures on the coriander. Factor A included the years of investigation. Factor B included no treated check, 6 soil-applied herbicides – Tendar EC, Silba SC, Sharpen 33 EC,...

  17. Control of Butterfly Bush with Postemergence Herbicides

    Science.gov (United States)

    Butterfly bush (Buddleja davidii) is classified as invasive in several parts of the United States. Two experiments were conducted to evaluate the effectiveness of four herbicides and two application methods on postemergence butterfly bush control. The four herbicides included: Roundup (glyphosate)...

  18. ACETANILIDE HERBICIDE DEGRADATION PRODUCTS BY LC/MS

    Science.gov (United States)

    Acetanilide herbicides are frequently applied in the U.S. on crops (corn, soybeans, popcorn, etc.) to control broadleaf and annual weeds. The acetanilide and acetamide herbicides currently registered for use in the U.S. are alachlor, acetochlor, metolachlor, propachlor, flufen...

  19. Herbicide Safeners Decrease Sensitivity to Herbicides Inhibiting Acetolactate-Synthase and Likely Activate Non-Target-Site-Based Resistance Pathways in the Major Grass Weed Lolium sp. (Rye-Grass)

    OpenAIRE

    Duhoux, Arnaud; Pernin, Fanny; Desserre, Diane; D?lye, Christophe

    2017-01-01

    Herbicides are currently pivotal to control weeds and sustain food security. Herbicides must efficiently kill weeds while being as harmless as possible for crops, even crops taxonomically close to weeds. To increase their selectivity toward crops, some herbicides are sprayed in association with safeners that are bioactive compounds exacerbating herbicide-degrading pathways reputedly specifically in crops. However, exacerbated herbicide metabolism is also a key mechanism underlying evolved non...

  20. Report on repetition analyses for pesticide residues: 1988-1995; Rapporto sulle revisioni di analisi per residui di antiparassitari-1995

    Energy Technology Data Exchange (ETDEWEB)

    Di Muccio, A; Attard Barbini, D; De Merulis, G; Vergori, L; Girolimetti, S; Sernicola, L; Dommarco, R [Ist. Superiore di Sanita` , Rome (Italy). Lab. di Tossicologia Applicata

    1995-12-01

    From 1988 to 1995, 1,254 analyses were carried out on samples of fruits (61%), vegetables (29%), cereals and derived products (3%). The analyses were for 80 different pesticides, of which 51% were fungicides, 31% insecticides, 8% diphenylamine and ethoxiquin (post-harvest antioxidans agents for protection of fruits), and 5% antigermogliants and herbicides. Regions that mostly contributed with samples were: Emilia-Romagna (35%), Piedmont (15%), Liguria (11%), Tuscany (10%). Global rate of confirmation between first analysis and repetition analysis was 64% for all the samples analysed.

  1. Acute and additive toxicity of ten photosystem-II herbicides to seagrass

    OpenAIRE

    Adam D. Wilkinson; Catherine J. Collier; Florita Flores; Andrew P. Negri

    2015-01-01

    Photosystem II herbicides are transported to inshore marine waters, including those of the Great Barrier Reef, and are usually detected in complex mixtures. These herbicides inhibit photosynthesis, which can deplete energy reserves and reduce growth in seagrass, but the toxicity of some of these herbicides to seagrass is unknown and combined effects of multiple herbicides on seagrass has not been tested. Here we assessed the acute phytotoxicity of 10 PSII herbicides to the seagrass Halophila ...

  2. Herbicidal treatments for control of Papaver somniferum L.

    Science.gov (United States)

    Horowitz, M

    1980-01-01

    Fifty-five commercially available herbicides were evaluated for possible use to destroy illicit opium poppy crops (Papaver somniferum). In the first stage, herbicides were sprayed on poppy plants grown in containers. The following compounds killed poppy plants: (a) herbicides with typical foliar activity--amitrole, bromoxynil, 2,4-D, glyphosate, ioxynil and paraquat; and (b) herbicides with root and foliar activity--the triazines ametryn, atrazine, metribuzin, prometryn, simazine and terbutryn; the substituted ureas benzthiazuron, chloroxuron, diuron, fluometuron, linuron, methabenzthiazuron, neburon and phenobenzuron; and the miscellaneous compounds karbutilate, methazole, oxadiazon and pyrazon. Severe but sublethal injury was caused by cycloate, EPTC, molinate, pobulate, cacodylate + MSMA, ethofumesate, perfluidone and phenmedipham. Abnormal development of vegetative or reproductive parts of the plant was induced by benefin, butralin, dinitramine, pendimethalin, trifluralin, diphenamid, napropamide, dalapon and propham. Efficient herbicides with negligible persistence in soil at the doses applied were evaluated on poppy plants in the field at various stages of growth. Small plants were severely injured by 2,4-D, killed rapidly by bromoxynil, ioxynil, paraquat (in mixture + diquat), and more slowly by glyphosate and metribuzin. The resistance to herbicides increased with the age of the poppy plant. Severe damage with partial kill of developed plants was obtained with bromoxynil, ioxynil, glyphosate, and paraquat + diquat; the last treatment produced the fastest effect.

  3. Effect of sugarcane cropping systems on herbicide losses in surface runoff.

    Science.gov (United States)

    Nachimuthu, Gunasekhar; Halpin, Neil V; Bell, Michael J

    2016-07-01

    Herbicide runoff from cropping fields has been identified as a threat to the Great Barrier Reef ecosystem. A field investigation was carried out to monitor the changes in runoff water quality resulting from four different sugarcane cropping systems that included different herbicides and contrasting tillage and trash management practices. These include (i) Conventional - Tillage (beds and inter-rows) with residual herbicides used; (ii) Improved - only the beds were tilled (zonal) with reduced residual herbicides used; (iii) Aspirational - minimum tillage (one pass of a single tine ripper before planting) with trash mulch, no residual herbicides and a legume intercrop after cane establishment; and (iv) New Farming System (NFS) - minimum tillage as in Aspirational practice with a grain legume rotation and a combination of residual and knockdown herbicides. Results suggest soil and trash management had a larger effect on the herbicide losses in runoff than the physico-chemical properties of herbicides. Improved practices with 30% lower atrazine application rates than used in conventional systems produced reduced runoff volumes by 40% and atrazine loss by 62%. There were a 2-fold variation in atrazine and >10-fold variation in metribuzin loads in runoff water between reduced tillage systems differing in soil disturbance and surface residue cover from the previous rotation crops, despite the same herbicide application rates. The elevated risk of offsite losses from herbicides was illustrated by the high concentrations of diuron (14μgL(-1)) recorded in runoff that occurred >2.5months after herbicide application in a 1(st) ratoon crop. A cropping system employing less persistent non-selective herbicides and an inter-row soybean mulch resulted in no residual herbicide contamination in runoff water, but recorded 12.3% lower yield compared to Conventional practice. These findings reveal a trade-off between achieving good water quality with minimal herbicide contamination and

  4. Co-Formulants in Glyphosate-Based Herbicides Disrupt Aromatase Activity in Human Cells below Toxic Levels

    Directory of Open Access Journals (Sweden)

    Nicolas Defarge

    2016-02-01

    Full Text Available Pesticide formulations contain declared active ingredients and co-formulants presented as inert and confidential compounds. We tested the endocrine disruption of co-formulants in six glyphosate-based herbicides (GBH, the most used pesticides worldwide. All co-formulants and formulations were comparably cytotoxic well below the agricultural dilution of 1% (18–2000 times for co-formulants, 8–141 times for formulations, and not the declared active ingredient glyphosate (G alone. The endocrine-disrupting effects of all these compounds were measured on aromatase activity, a key enzyme in the balance of sex hormones, below the toxicity threshold. Aromatase activity was decreased both by the co-formulants alone (polyethoxylated tallow amine—POEA and alkyl polyglucoside—APG and by the formulations, from concentrations 800 times lower than the agricultural dilutions; while G exerted an effect only at 1/3 of the agricultural dilution. It was demonstrated for the first time that endocrine disruption by GBH could not only be due to the declared active ingredient but also to co-formulants. These results could explain numerous in vivo results with GBHs not seen with G alone; moreover, they challenge the relevance of the acceptable daily intake (ADI value for GBHs exposures, currently calculated from toxicity tests of the declared active ingredient alone.

  5. Delivery of calibration workshops covering herbicide application equipment : final report.

    Science.gov (United States)

    2014-03-31

    Proper herbicide sprayer set-up and calibration are critical to the success of the Oklahoma Department of Transportation (ODOT) herbicide program. Sprayer system set-up and calibration training is provided in annual continuing education herbicide wor...

  6. Herbicide-resistant crop biotechnology: potential and pitfalls

    Science.gov (United States)

    Herbicide-resistant crops are an important agricultural biotechnology that can enable farmers to effectively control weeds without harming their crops. Glyphosate-resistant (i.e. Roundup Ready) crops have been the most commercially successful varieties of herbicide-resistant crops and have been plan...

  7. Five pesticides decreased oxidation of atmospheric methane in a forest soil

    DEFF Research Database (Denmark)

    Priemé, Anders; Ekelund, Flemming

    2001-01-01

    We found that five tested pesticides (the insecticide Dimethoat 40 EC, the herbicide Tolkan, and the fungicides Tilt 250 EC, Tilt Top, and Corbel) decreased the oxidation of atmospheric methane in slurries from a Danish forest soil. Dimethoat 40 EC was the most toxic with an EC50 value (i.......e. the concentration which caused a 50% inhibition of the methane oxidation) of 10 mg active ingredient (AI) l-1, followed by Tilt 250 EC (EC50=56 mg AI l-1). EC50 of Tilt Top was 350 AI mg l-1, the value of Tolkan was 410 mg AI l-1, while Corbel had a value of 1600 mg AI l-1. Dimethoat 40 EC and Tolkan inhibited...

  8. Methods of analysis-Determination of pesticides in sediment using gas chromatography/mass spectrometry

    Science.gov (United States)

    Hladik, Michelle; McWayne, Megan M.

    2012-01-01

    A method for the determination of 119 pesticides in environmental sediment samples is described. The method was developed by the U.S. Geological Survey (USGS) in support of the National Water Quality Assessment (NAWQA) Program. The pesticides included in this method were chosen through prior prioritization. Herbicides, insecticides, and fungicides along with degradates are included in this method and span a variety of chemical classes including, but not limited to, chloroacetanilides, organochlorines, organophosphates, pyrethroids, triazines, and triazoles. Sediment samples are extracted by using an accelerated solvent extraction system (ASE®, and the compounds of interest are separated from co-extracted matrix interferences (including sulfur) by passing the extracts through high performance liquid chromatography (HPLC) with gel-permeation chromatography (GPC) along with the use of either stacked graphitized carbon and alumina solid-phase extraction (SPE) cartridges or packed Florisil®. Chromatographic separation, detection, and quantification of the pesticides from the sediment-sample extracts are done by using gas chromatography with mass spectrometry (GC/MS). Recoveries in test sediment samples fortified at 10 micrograms per kilogram (μg/kg) dry weight ranged from 75 to 102 percent; relative standard deviations ranged from 3 to 13 percent. Method detection limits (MDLs), calculated by using U.S. Environmental Protection Agency procedures (40 CFR 136, Appendix B), ranged from 0.6 to 3.4 μg/kg dry weight.

  9. Levels of pesticides residues in the White Nile water in the Sudan.

    Science.gov (United States)

    Nesser, Gibreel A A; Abdelbagi, Azhari O; Hammad, Ahmed Mohammed Ali; Tagelseed, Mirghani; Laing, Mark D

    2016-06-01

    Twenty-two commonly used pesticides were monitored during autumn, winter, and summer of 2004-2005 in 27 water samples from three sites along the White Nile in Sudan (former Sudan). Sites were selected to reflect pesticides gathered from drainage canals in central Sudan and from upstream sources. Collected samples were extracted and subjected to gas chromatographic analysis. Pesticides levels were measured in nanograms per liter. Pesticides residues were detected in 96 % of the samples with a total residue burden of 4132.6 ng L(-1), and an overall mean concentration and range of 50.99 and not detected-1570 ng L(-1), respectively. Ororganochlorines were the most frequently detected contaminants, which were found in 70 % of the samples, causing a total burden of 2852.8 ng L(-1), followed by pyrethroids 15 % of the samples, with a total burden of 926.5 ng L(-1). The tested herbicides were detected in ˂4 % of the samples with a total burden of 353.3 ng L(-1), while organophosphorus levels were below the detection limit. The most frequent contaminants were the following: heptachlor and its epoxide (52 % of samples), followed by DDTs (dichlorodiphenyltrichloroethanes) (DDT and DDE, in 19 % of the samples), cypermethrin and fenvalerate (in 11 % of the samples), and pendimethalin (in oxyfluorfen were not detected in the analyzed samples. Generally, levels were least in autumn, and followed by summer and winter. Sources of contamination might include agricultural lands in central Sudan and upstream sources. Both recent and old contaminations were indicated.

  10. Microbiological degradation of products for detoxication of chemical weapons and organophosphoric herbicides

    Energy Technology Data Exchange (ETDEWEB)

    Zharikov, G.A. [Research Center for Toxicology and Hygienic Regulation of Biopreparations (RCT and HRB), Serpukhov, Moscow region (Russian Federation); Starovoitov, I.I.; Ermakova, I.T.; Shushkova, T.V. [Inst. for Biochemistry and Physiology of Microorganisms, Pushchino, Moscow region (Russian Federation)

    2003-07-01

    Wide and uncontrolled application of some pesticides, herbicides, and insecticides in agriculture has led to intensive contamination of the environment by phosphoroorganic compounds (PO{sub s}). Development of ecologically sound technologies for bioremediation is an urgent task at cleanup of territories contaminated as a result of implementation of chemical weapons destruction program (toxic agents - TA). Presently, the greatest problem when cleaning the environment is decomposition of PO{sub s} with hardly hydrolyzed direct N-D bond. The bond is resistant to photolysis, chemical hydrolysis, heat degradation and it can be found in many natural and anthropogenic PO{sub s} (methylphosphoric acid (MPA), glyphosate or round-up, phosphonolipids, methylphosphonylfloride, etc.). The goal of the present work is search and selection of highly efficient strains of microorganisms-degraders, hydrolyzing C-P bond in phosphoroorganic compounds for further development of technology for bioremediation of contaminated soils. Microorganisms, capable of hydrolysis of PO{sub s} with direct C-P bond, were isolated from soil samples taken at territories, contaminated by TA detoxication products (sarin, soman), as well as from rice fields subjected to long-term treatment by herbicide glyphosate. Activity of isolated microorganism strains was assessed by the amount of produced biomass as well as by specific growth velocity on the media with mentioned above sources of phosphorus and glutamate as a carbon source. As a result, most active bacteria strains, growing with maximal specific velocity 0.12-0.15 hour{sup -1} and producing biomass 2.0-2.5 g/l were selected. (orig.)

  11. Bacterial communities in batch and continuous-flow wetlands treating the herbicide S-metolachlor

    Energy Technology Data Exchange (ETDEWEB)

    Elsayed, O.F. [Laboratory of Hydrology and Geochemistry of Strasbourg (LHyGeS), UMR 7517 University of Strasbourg/ENGEES/CNRS (France); Génétique Moléculaire, Génomique, Microbiologie (GMGM), UMR 7156 University of Strasbourg/CNRS (France); Maillard, E. [Laboratory of Hydrology and Geochemistry of Strasbourg (LHyGeS), UMR 7517 University of Strasbourg/ENGEES/CNRS (France); Vuilleumier, S. [Génétique Moléculaire, Génomique, Microbiologie (GMGM), UMR 7156 University of Strasbourg/CNRS (France); Imfeld, G., E-mail: imfeld@unistra.fr [Laboratory of Hydrology and Geochemistry of Strasbourg (LHyGeS), UMR 7517 University of Strasbourg/ENGEES/CNRS (France)

    2014-11-15

    Knowledge of wetland bacterial communities in the context of pesticide contamination and hydrological regime is scarce. We investigated the bacterial composition in constructed wetlands receiving Mercantor Gold{sup ®} contaminated water (960 g L{sup −1} of the herbicide S-metolachlor, > 80% of the S-enantiomer) operated under continuous-flow or batch modes to evaluate the impact of the hydraulic regime. In the continuous-flow wetland, S-metolachlor mass removal was > 40%, whereas in the batch wetland, almost complete removal of S-metolachlor (93–97%) was observed. Detection of ethanesulfonic and oxanilic acid degradation products further indicated S-metolachlor biodegradation in the two wetlands. The dominant bacterial populations were characterised by terminal restriction fragment length polymorphism (T-RFLP) and 454 pyrosequencing. The bacterial profiles evolved during the first 35 days of the experiment, starting from a composition similar to that of inlet water, with the use of nitrate and to a lesser extent sulphate and manganese as terminal electron acceptors for microbial metabolism. Proteobacteria were the most abundant phylum, with Beta-, Alpha- and Gammaproteobacteria representing 26%, 19% and 17% respectively of total bacterial abundance. Bacterial composition in wetland water changed gradually over time in continuous-flow wetland and more abruptly in the batch wetland. Differences in overall bacterial water structure in the two systems were modest but significant (p = 0.008), and S-metolachlor, nitrate, and total inorganic carbon concentrations correlated with changes in the bacterial profiles. Together, the results highlight that bacterial composition profiles and their dynamics may be used as bioindicators of herbicide exposure and hydraulic disturbances in wetland systems. - Highlights: • We evaluated the bacterial composition in wetlands treating S-metolachlor • Hydraulic regime impacted biogeochemical processes and S-metolachlor removal

  12. Bacterial communities in batch and continuous-flow wetlands treating the herbicide S-metolachlor

    International Nuclear Information System (INIS)

    Elsayed, O.F.; Maillard, E.; Vuilleumier, S.; Imfeld, G.

    2014-01-01

    Knowledge of wetland bacterial communities in the context of pesticide contamination and hydrological regime is scarce. We investigated the bacterial composition in constructed wetlands receiving Mercantor Gold ® contaminated water (960 g L −1 of the herbicide S-metolachlor, > 80% of the S-enantiomer) operated under continuous-flow or batch modes to evaluate the impact of the hydraulic regime. In the continuous-flow wetland, S-metolachlor mass removal was > 40%, whereas in the batch wetland, almost complete removal of S-metolachlor (93–97%) was observed. Detection of ethanesulfonic and oxanilic acid degradation products further indicated S-metolachlor biodegradation in the two wetlands. The dominant bacterial populations were characterised by terminal restriction fragment length polymorphism (T-RFLP) and 454 pyrosequencing. The bacterial profiles evolved during the first 35 days of the experiment, starting from a composition similar to that of inlet water, with the use of nitrate and to a lesser extent sulphate and manganese as terminal electron acceptors for microbial metabolism. Proteobacteria were the most abundant phylum, with Beta-, Alpha- and Gammaproteobacteria representing 26%, 19% and 17% respectively of total bacterial abundance. Bacterial composition in wetland water changed gradually over time in continuous-flow wetland and more abruptly in the batch wetland. Differences in overall bacterial water structure in the two systems were modest but significant (p = 0.008), and S-metolachlor, nitrate, and total inorganic carbon concentrations correlated with changes in the bacterial profiles. Together, the results highlight that bacterial composition profiles and their dynamics may be used as bioindicators of herbicide exposure and hydraulic disturbances in wetland systems. - Highlights: • We evaluated the bacterial composition in wetlands treating S-metolachlor • Hydraulic regime impacted biogeochemical processes and S-metolachlor removal

  13. Characterization of the expression of the thcB gene, coding for a pesticide-degrading cytochrome P-450 in Rhodococcus strains.

    OpenAIRE

    Shao, Z Q; Behki, R

    1996-01-01

    A cytochrome P-450 system in Rhodococcus strains, encoded by thcB, thcC, and thcD, participates in the degradation of thiocarbamates and several other pesticides. The regulation of the system was investigated by fusing a truncated lacZ in frame to thcB, the structural gene for the cytochrome P-450 monooxygenase. Analysis of the thcB-lacZ fusion showed that the expression of thcB was 10-fold higher in the presence of the herbicide EPTC (s-ethyl dipropylthiocarbamate). Similar enhancement of th...

  14. Procedures to evaluate the efficiency of protective clothing worn by operators applying pesticide.

    Science.gov (United States)

    Espanhol-Soares, Melina; Nociti, Leticia A S; Machado-Neto, Joaquim Gonçalves

    2013-10-01

    The evaluation of the efficiency of whole-body protective clothing against pesticides has already been carried out through field tests and procedures defined by international standards, but there is a need to determine the useful life of these garments to ensure worker safety. The aim of this article is to compare the procedures for evaluating efficiency of two whole-body protective garments, both new and previously used by applicators of herbicides, using a laboratory test with a mannequin and in the field with the operator. The evaluation of the efficiency of protective clothing used both quantitative and qualitative methodologies, leading to a proposal for classification according to efficiency, and determination of the useful life of protective clothing for use against pesticides, based on a quantitative assessment. The procedures used were in accordance with the standards of the modified American Society for Testing and Materials (ASTM) F 1359:2007 and International Organization for Standardization 17491-4. The protocol used in the field was World Health Organization Vector Biology and Control (VBC)/82.1. Clothing tested was personal water repellent and pesticide protective. Two varieties of fabric were tested: Beige (100% cotton) and Camouflaged (31% polyester and 69% cotton). The efficiency in exposure control of the personal protective clothing was measured before use and after 5, 10, 20, and 30 uses and washes under field conditions. Personal protective clothing was worn by workers in the field during the application of the herbicide glyphosate on weed species in mature sugar cane plantations using a knapsack sprayer. The modified ASTM 1359:2007 procedure was chosen as the most appropriate due to its greater repeatability (lower coefficient of variation). This procedure provides quantitative evaluation needed to determine the efficiency and useful life of individual protective clothing, not just at specific points of failure, but according to dermal

  15. Acute and additive toxicity of ten photosystem-II herbicides to seagrass.

    Science.gov (United States)

    Wilkinson, Adam D; Collier, Catherine J; Flores, Florita; Negri, Andrew P

    2015-11-30

    Photosystem II herbicides are transported to inshore marine waters, including those of the Great Barrier Reef, and are usually detected in complex mixtures. These herbicides inhibit photosynthesis, which can deplete energy reserves and reduce growth in seagrass, but the toxicity of some of these herbicides to seagrass is unknown and combined effects of multiple herbicides on seagrass has not been tested. Here we assessed the acute phytotoxicity of 10 PSII herbicides to the seagrass Halophila ovalis over 24 and/or 48 h. Individual herbicides exhibited a broad range of toxicities with inhibition of photosynthetic activity (∆F/F(m)') by 50% at concentrations ranging from 3.5 μg l(-1) (ametryn) to 132 μg l(-1) (fluometuron). We assessed potential additivity using the Concentration Addition model of joint action for binary mixtures of diuron and atrazine as well as complex mixtures of all 10 herbicides. The effects of both mixture types were largely additive, validating the application of additive effects models for calculating the risk posed by multiple PSII herbicides to seagrasses. This study extends seagrass ecotoxicological data to ametryn, metribuzin, bromacil, prometryn and fluometuron and demonstrates that low concentrations of PSII herbicide mixtures have the potential to impact ecologically relevant endpoints in seagrass, including ∆F/F(m)'.

  16. Acute and additive toxicity of ten photosystem-II herbicides to seagrass

    Science.gov (United States)

    Wilkinson, Adam D.; Collier, Catherine J.; Flores, Florita; Negri, Andrew P.

    2015-11-01

    Photosystem II herbicides are transported to inshore marine waters, including those of the Great Barrier Reef, and are usually detected in complex mixtures. These herbicides inhibit photosynthesis, which can deplete energy reserves and reduce growth in seagrass, but the toxicity of some of these herbicides to seagrass is unknown and combined effects of multiple herbicides on seagrass has not been tested. Here we assessed the acute phytotoxicity of 10 PSII herbicides to the seagrass Halophila ovalis over 24 and/or 48 h. Individual herbicides exhibited a broad range of toxicities with inhibition of photosynthetic activity (∆F/Fm‧) by 50% at concentrations ranging from 3.5 μg l-1 (ametryn) to 132 μg l-1 (fluometuron). We assessed potential additivity using the Concentration Addition model of joint action for binary mixtures of diuron and atrazine as well as complex mixtures of all 10 herbicides. The effects of both mixture types were largely additive, validating the application of additive effects models for calculating the risk posed by multiple PSII herbicides to seagrasses. This study extends seagrass ecotoxicological data to ametryn, metribuzin, bromacil, prometryn and fluometuron and demonstrates that low concentrations of PSII herbicide mixtures have the potential to impact ecologically relevant endpoints in seagrass, including ∆F/Fm‧.

  17. Determination of triazine herbicides and their metabolites in multiple medicinal parts of traditional Chinese medicines using streamlined pretreatment and UFLC-ESI-MS/MS.

    Science.gov (United States)

    Liu, Congmin; Dou, Xiaowen; Zhang, Lei; Li, Qian; Qin, Jia'an; Duan, Yaping; Yang, Meihua

    2018-01-01

    A rapid, sensitive, and reliable ultra-fast liquid chromatography combined with electrospray ionization tandem mass spectrometry (UFLC-ESI-MS/MS) method was established and applied to simultaneous determination of 31 triazine herbicides and their metabolites in multiple medicinal parts of traditional Chinese medicines (TCMs). A streamlined pretreatment approach using one-step extraction and dilution was proposed, which provided high-throughput processing, excellent recovery, and negligible interference. Afterwards, multiple-reaction monitoring (MRM) and information-dependent acquisition (IDA) triggered enhanced product ion spectra (EPI) was adopted to identify and quantify the targets in a single analysis. The optimized method was then validated according to the guidelines of the European Commission for the following parameters: Matrix effects, specificity, accuracy, precision, linearity, range, and stability. The LOD and LOQ for the 31 triazine herbicides were 0.1-10 μg kg -1 and 0.5-25 μg kg -1 , respectively. Recoveries at three concentration levels were within 67.9-120.3% with an associated precision RSD <20%. Using the proposed approach, trazines herbicides were determined from 44 commercially available TCMs. The detection rate of triazine herbicides residues was 15.9% of the total samples. Among them, atrazine, simeton, and simetryn were found in the radix, herba, and seed TCMs with values far below the referenced maximum residue limits (MRLs), but no residues were detected in either the flos or fructus. Taken together, this method has the potential to provide a means for triazines screening in extensive matrices, thereby laying the foundation for pesticide registration on TCMs. Moreover, it has the potential to guide further triazine residue control in TCMs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. COPPER AND COPPER-CONTAINING PESTICIDES: METABOLISM, TOXICITY AND OXIDATIVE STRESS

    Directory of Open Access Journals (Sweden)

    Viktor Husak

    2015-05-01

    Full Text Available The purpose of this paper is to provide a brief review of the current knowledge regarding metabolism and toxicity of copper and copper-based pesticides in living organisms. Copper is an essential trace element in all living organisms (bacteria, fungi, plants, and animals, because it participates in different metabolic processes and maintain functions of organisms. The transport and metabolism of copper in living organisms is currently the subject of many studies. Copper is absorbed, transported, distributed, stored, and excreted in the body via the complex of homeostatic processes, which provide organisms with a needed constant level of this micronutrient and avoid excessive amounts. Many aspects of copper homeostasis were studied at the molecular level. Copper based-pesticides, in particularly fungicides, bacteriocides and herbicides, are widely used in agricultural practice throughout the world. Copper is an integral part of antioxidant enzymes, particularly copper-zinc superoxide dismutase (Cu,Zn-SOD, and plays prominent roles in iron homeostasis. On the other hand, excess of copper in organism has deleterious effect, because it stimulates free radical production in the cell, induces lipid peroxidation, and disturbs the total antioxidant capacity of the body. The mechanisms of copper toxicity are discussed in this review also.

  19. A complete and continuous pesticide screening during one growing season in five small Swiss rivers with agricultural watersheds

    Science.gov (United States)

    Mangold, Simon; Comte, Rahel; Doppler, Tobias; Wittmer, Irene; Moschet, Christoph; Stamm, Christian; Singer, Heinz; Kunz, Manuel

    2016-04-01

    Agricultural pesticides are regularly found in surface waters at concentration levels that raise ecotoxicological concerns. Due to large fluctuations in concentration over time and the potentially high number of pesticides in agricultural watersheds, it is difficult to obtain a comprehensive overview of the actual pollution level. This collaborative project between research and Swiss federal and cantonal authorities aimed for a comprehensive analysis of pesticide pollution in five small agricultural streams to address this knowledge gap. The five rivers are located in catchments (1.5 to 9 km2) with intensive agriculture covering a wide range of crops, such as grains, vegetables, vineyards and orchards. Urban activities and influences are low. Twelve-hour composite samples were collected continuously from March until the end of August with automatic sampling devices, resulting in 360 samples per site. Using precipitation and water level data, we differentiated between discharge events and low-flow periods. Samples taken during dry weather were pooled for the analysis. This procedure resulted in a complete concentration profile over the entire monitoring period covered by 60 samples per site. The analysis, using liquid chromatography coupled to high resolution mass spectrometry (Orbitrap technology), involved a target screening of 248 pesticides including fungicides, herbicides, insecticides, as well as important transformation products. Data on the total number and distribution of pesticides, their detection frequency, crop specific applications and concentration time profiles will be presented. Preliminary results indicate substantial pesticide exposure since at least 20 different compounds were detected in all samples. One sample even contained a mixture of 80 pesticides. The majority of concentrations were in the low ng/L range but concentrations of a few compounds were very high (several micrograms/L) during discharge events as well as during low flow conditions

  20. Complex mixtures of dissolved pesticides show potential aquatic toxicity in a synoptic study of Midwestern U.S. streams

    Science.gov (United States)

    Nowell, Lisa H.; Moran, Patrick W.; Schmidt, Travis S.; Norman, Julia E.; Nakagaki, Naomi; Shoda, Megan E.; Mahler, Barbara J.; Van Metre, Peter C.; Stone, Wesley W.; Sandstrom, Mark W.; Hladik, Michelle L.

    2018-01-01

    Aquatic organisms in streams are exposed to pesticide mixtures that vary in composition over time in response to changes in flow conditions, pesticide inputs to the stream, and pesticide fate and degradation within the stream. To characterize mixtures of dissolved-phase pesticides and degradates in Midwestern streams, a synoptic study was conducted at 100 streams during May–August 2013. In weekly water samples, 94 pesticides and 89 degradates were detected, with a median of 25 compounds detected per sample and 54 detected per site. In a screening-level assessment using aquatic-life benchmarks and the Pesticide Toxicity Index (PTI), potential effects on fish were unlikely in most streams. For invertebrates, potential chronic toxicity was predicted in 53% of streams, punctuated in 12% of streams by acutely toxic exposures. For aquatic plants, acute but likely reversible effects on biomass were predicted in 75% of streams, with potential longer-term effects on plant communities in 9% of streams. Relatively few pesticides in water—atrazine, acetochlor, metolachlor, imidacloprid, fipronil, organophosphate insecticides, and carbendazim—were predicted to be major contributors to potential toxicity. Agricultural streams had the highest potential for effects on plants, especially in May–June, corresponding to high spring-flush herbicide concentrations. Urban streams had higher detection frequencies and concentrations of insecticides and most fungicides than in agricultural streams, and higher potential for invertebrate toxicity, which peaked during July–August. Toxicity-screening predictions for invertebrates were supported by quantile regressions showing significant associations for the Benthic Invertebrate-PTI and imidacloprid concentrations with invertebrate community metrics for MSQA streams, and by mesocosm toxicity testing with imidacloprid showing effects on invertebrate communities at environmentally relevant concentrations. This study documents the most

  1. Multiclass pesticide determination in olives and their processing factors in olive oil: comparison of different olive oil extraction systems.

    Science.gov (United States)

    Amvrazi, Elpiniki G; Albanis, Triantafyllos A

    2008-07-23

    The processing factors (pesticide concentration found in olive oil/pesticide concentration found in olives) of azinphos methyl, chlorpyrifos, lambda-cyhalothrin, deltamethrin, diazinon, dimethoate, endosulfan, and fenthion were determined in olive oil production process in various laboratory-scale olive oil extractions based on three- or two-phase centrifugation systems in comparison with samples collected during olive oil extractions in conventional olive mills located at different olive oil production areas in Greece. Pesticide analyses were performed using a multiresidue method developed in our laboratory for the determination of different insecticides and herbicides in olive oil by solid-phase extraction techniques coupled to gas chromatography detection (electron capture detection and nitrogen phosphorus detection), optimized, and validated for olive fruits sample preparation. Processing factors were found to vary among the different pesticides studied. Water addition in the oil extraction procedure (as in a three-phase centrifugation system) was found to decrease the processing factors of dimethoate, alpha-endosulfan, diazinon, and chlorpyrifos, whereas those of fenthion, azinphos methyl, beta-endosulfan, lambda-cyhalothrin, and deltamethrin residues were not affected. The water content of olives processed was found to proportionally affect pesticide processing factors. Fenthion sulfoxide and endosulfan sulfate were the major metabolites of fenthion and endosulfan, respectively, that were detected in laboratory-produced olive oils, but only the concentration of fenthion sulfoxide was found to increase with the increase of water addition in the olive oil extraction process.

  2. Testing of leachability and persistence of sixteen pesticides in three agricultural soils of a semiarid Mediterranean region

    Energy Technology Data Exchange (ETDEWEB)

    Garrido, I.; Vela, N.; Fenoll, J.; Navarro, G.; Pérez-Lucas, G.; Navarro, S.

    2015-07-01

    Leaching, the movement of water and chemicals into deeper soil layers and groundwater is a subject of worldwide interest because a high percentage of drinking water is extracted from groundwater. The objective of this study was to evaluate the potential leaching and persistence of sixteen pesticides (one fungicide, three nematicides/insecticides, and twelve herbicides) for three Mediterranean agricultural soils with similar texture (clay loam) but different organic matter content (1.2-3.1%). Adsorption was studied in batch experiments and leaching was tested using disturbed soil columns (40 cm length × 4 cm i.d.). Degradation studies were carried out during 120 days under laboratory conditions. Mobility experiments showed that pesticides can be grouped according to their potential leaching. Thus, pesticides showing medium leachability were included in group 1 (referred as G1) while those with high leachability were termed as G2. The differences observed in the leachability can be attributed to the different organic carbon (OC) content in the soils (0.7-1.8%). Values of log KOC were higher in the order: soil C > soil B > soil A, which agrees with the OC content in each soil. The calculated half-lives ranged from 4.2 days for carbofuran in soil A to 330 days for prometon in soil C. As a general rule, when higher OC content in the soil the greater persistence of the pesticide was observed as a consequence of the increased adsorption. The first order kinetics model satisfactorily explains the disappearance of the studied pesticides in the soil. (Author)

  3. Sorption of selected pesticides on soils, sediment and straw from a constructed agricultural drainage ditch or pond.

    Science.gov (United States)

    Vallée, Romain; Dousset, Sylvie; Billet, David; Benoit, Marc

    2014-04-01

    Buffer zones such as ponds and ditches are used to reduce field-scale losses of pesticides from subsurface drainage waters to surface waters. The objective of this study was to assess the efficiency of these buffer zones, in particular constructed wetlands, focusing specifically on sorption processes. We modelled the sorption processes of three herbicides [2-methyl-4-chlorophenoxyacetic acid (2,4-MCPA), isoproturon and napropamide] and three fungicides (boscalid, prochloraz and tebuconazole) on four substrates (two soils, sediment and straw) commonly found in a pond and ditch in Lorraine (France). A wide range of Freundlich coefficient (K fads) values was obtained, from 0.74 to 442.63 mg(1 - n) L (n) kg(-1), and the corresponding K foc values ranged from 56 to 3,725 mg(1 - n) L (n) kg(-1). Based on potential retention, the substrates may be classified as straw > sediments > soils. These results show the importance of organic carbon content and nature in the process of sorption. Similarly, the studied pesticides could be classified according to their adsorption capacity as follows: prochloraz > tebuconazole-boscalid > napropamide > MCPA-isoproturon. This classification is strongly influenced by the physico-chemical properties of pesticides, especially solubility and K oc. Straw exhibited the largest quantity of non-desorbable pesticide residues, from 12.1 to 224.2 mg/L for all pesticides. The presence of plants could increase soil-sediment sorption capacity. Thus, establishment and maintenance of plants and straw filters should be promoted to optimise sorption processes and the efficiency of ponds and ditches in reducing surface water pollution.

  4. Development of groundwater pesticide exposure modeling scenarios for vulnerable spring and winter wheat-growing areas.

    Science.gov (United States)

    Padilla, Lauren; Winchell, Michael; Peranginangin, Natalia; Grant, Shanique

    2017-11-01

    Wheat crops and the major wheat-growing regions of the United States are not included in the 6 crop- and region-specific scenarios developed by the US Environmental Protection Agency (USEPA) for exposure modeling with the Pesticide Root Zone Model conceptualized for groundwater (PRZM-GW). The present work augments the current scenarios by defining appropriately vulnerable PRZM-GW scenarios for high-producing spring and winter wheat-growing regions that are appropriate for use in refined pesticide exposure assessments. Initial screening-level modeling was conducted for all wheat areas across the conterminous United States as defined by multiple years of the Cropland Data Layer land-use data set. Soil, weather, groundwater temperature, evaporation depth, and crop growth and management practices were characterized for each wheat area from publicly and nationally available data sets and converted to input parameters for PRZM. Approximately 150 000 unique combinations of weather, soil, and input parameters were simulated with PRZM for an herbicide applied for postemergence weed control in wheat. The resulting postbreakthrough average herbicide concentrations in a theoretical shallow aquifer were ranked to identify states with the largest regions of relatively vulnerable wheat areas. For these states, input parameters resulting in near 90 th percentile postbreakthrough average concentrations corresponding to significant wheat areas with shallow depth to groundwater formed the basis for 4 new spring wheat scenarios and 4 new winter wheat scenarios to be used in PRZM-GW simulations. Spring wheat scenarios were identified in North Dakota, Montana, Washington, and Texas. Winter wheat scenarios were identified in Oklahoma, Texas, Kansas, and Colorado. Compared to the USEPA's original 6 scenarios, postbreakthrough average herbicide concentrations in the new scenarios were lower than all but Florida Potato and Georgia Coastal Peanuts of the original scenarios and better

  5. Spatial and temporal trends and flow dynamics of glyphosate and other pesticides within an agricultural watershed in Argentina.

    Science.gov (United States)

    Pérez, Débora J; Okada, Elena; De Gerónimo, Eduardo; Menone, Mirta L; Aparicio, Virginia C; Costa, José L

    2017-12-01

    In the present study, we evaluated the spatial and temporal trends of current-use pesticides in surface water and sediments as well as their relationship with hydrological stream dynamics within the agricultural watershed of El Crespo stream (Buenos Aires Province, Argentina). We sampled 2 contrasting sites: site 1 (upstream), surrounded by agricultural lands, and site 2 (downstream), surrounded by natural grasslands. Most of the applied pesticides (glyphosate, 2,4-D, atrazine, tebuconazole, and imidacloprid) were detected at high frequencies in surface water samples at both sites. However, only glyphosate and aminomethylphosphonic acid (AMPA) were present at high concentrations and had a significant spatial-temporal trend. The highest concentrations were found during spring 2014 at site 1, in association with the intense rains that occurred in that season. The fact that glyphosate and AMPA concentrations were higher than the rest of the studied compounds is closely related to the land use within the watershed, as glyphosate was the most applied herbicide during the fallow period of glyphosate-resistant crops (soybean, maize). The pesticide mixture had a significant spatial-temporal trend, reaching the highest levels during storm flow events in spring 2014. The intensive rains in spring 2014 could be the main factor influencing stream hydrology and pesticide behavior at El Crespo watershed. The estimated annual pesticide losses were 3.11 g/ha at site 1 and 0.72 g/ha at site 2. This result indicates that an attenuation process could be decreasing pesticide loads during downstream transport from site 1 to site 2. Environ Toxicol Chem 2017;36:3206-3216. © 2017 SETAC. © 2017 SETAC.

  6. Discovery of new herbicide modes of action with natural phytotoxins

    Science.gov (United States)

    About 20 modes of action (MOAs) are utilized by commercial herbicides, and almost 30 years have passed since the last new MOA was introduced. Rapidly increasing evolution of resistance to herbicides with these MOAs has greatly increased the need for herbicides with new MOAs. Combinatorial chemistry ...

  7. Imazapyr (herbicide) seed dressing increases yield, suppresses ...

    African Journals Online (AJOL)

    from damage. In 1998/99 season, a trial was initiated at Chitedze Research Station under artificial infection, to evaluate the effects of seed dressing with imazapyr (an acetolactate synthase {ALS} inhibiting herbicide) using three seed treatment methods (coating, priming or drenching) and three herbicide rates (15, 30 and 45 ...

  8. Scale-up of the electrokinetic fence technology for the removal of pesticides. Part II: Does size matter for removal of herbicides?

    Science.gov (United States)

    López-Vizcaíno, R; Risco, C; Isidro, J; Rodrigo, S; Saez, C; Cañizares, P; Navarro, V; Rodrigo, M A

    2017-01-01

    This work reports results of the application of electrokinetic fence technology in a 32 m 3 -prototype which contains soil polluted with 2,4-D and oxyfluorfen, focusing on the evaluation of the mechanisms that describe the removal of these two herbicides and comparing results to those obtained in smaller plants: a pilot-scale mockup (175 L) and a lab-scale soil column (1 L). Results show that electric heating of soil (coupled with the increase in the volatility) is the key to explain the removal of pollutants in the largest scale facility while electrokinetic transport processes are the primary mechanisms that explain the removal of herbicides in the lab-scale plant. 2-D and 3-D maps of the temperature and pollutant concentrations are used in the discussion of results trying to give light about the mechanisms and about how the size of the setup can lead to different conclusions, despite the same processes are occurring in the soil. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Fourier transform of delayed fluorescence as an indicator of herbicide concentration.

    Science.gov (United States)

    Guo, Ya; Tan, Jinglu

    2014-12-21

    It is well known that delayed fluorescence (DF) from Photosystem II (PSII) of plant leaves can be potentially used to sense herbicide pollution and evaluate the effect of herbicides on plant leaves. The research of using DF as a measure of herbicides in the literature was mainly conducted in time domain and qualitative correlation was often obtained. Fourier transform is often used to analyze signals. Viewing DF signal in frequency domain through Fourier transform may allow separation of signal components and provide a quantitative method for sensing herbicides. However, there is a lack of an attempt to use Fourier transform of DF as an indicator of herbicide. In this work, the relationship between the Fourier transform of DF and herbicide concentration was theoretically modelled and analyzed, which immediately yielded a quantitative method to measure herbicide concentration in frequency domain. Experiments were performed to validate the developed method. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Prioritizing pesticide compounds for analytical methods development

    Science.gov (United States)

    Norman, Julia E.; Kuivila, Kathryn; Nowell, Lisa H.

    2012-01-01

    compounds are high priority as new analytes. The objective for analytical methods development is to design an integrated analytical strategy that includes as many of the Tier 1 pesticide compounds as possible in a relatively few, cost-effective methods. More than 60 percent of the Tier 1 compounds are high priority because they are anticipated to be present at concentrations approaching levels that could be of concern to human health or aquatic life in surface water or groundwater. An additional 17 percent of Tier 1 compounds were frequently detected in monitoring studies, but either were not measured at levels potentially relevant to humans or aquatic organisms, or do not have benchmarks available with which to compare concentrations. The remaining 21 percent are pesticide degradates that were included because their parent pesticides were in Tier 1. Tier 1 pesticide compounds for water span all major pesticide use groups and a diverse range of chemical classes, with herbicides and their degradates composing half of compounds. Many of the high priority pesticide compounds also are in several national regulatory programs for water, including those that are regulated in drinking water by the U.S. Environmental Protection Agency under the Safe Drinking Water Act and those that are on the latest Contaminant Candidate List. For sediment, a total of 175 pesticide compounds were classified as Tier 1 and, thus, are high priority for inclusion in analytical methods available for monitoring and studies. More than 60 percent of these compounds are included in some USGS analytical method; however, some are spread across several research methods that are expensive to perform, and monitoring data are not extensive for many compounds. The remaining Tier 1 compounds for sediment are high priority as new analytes. The objective for analytical methods development for sediment is to enhance an existing analytical method that currently includes nearly half of the pesticide compounds in Tier 1

  11. Degradation and leaching of the herbicides metolachlor and diuron: a case study in an area of Northern Italy

    International Nuclear Information System (INIS)

    Barra Caracciolo, A.; Giuliano, G.; Grenni, P.; Guzzella, L.; Pozzoni, F.; Bottoni, P.; Fava, L.; Crobe, A.; Orru, M.; Funari, E.

    2005-01-01

    In this work the degradation of the herbicides metolachlor, diuron, monuron and of the metabolites 2-ethyl-6-methylaniline (EMA), and 3,4-dichloroaniline (DCA) was assessed in laboratory experiments on microbiologically active and sterilized soils. Their leaching potentials were calculated, using Gustafson's equation, by determining their mobility (as K oc ) and persistence (expressed as DT 50 ). Lysimeter experiments were also conducted to assess the actual leaching of the studied herbicides in a cereal crop tillage area vulnerable to groundwater contamination. The data obtained from the field were compared to the laboratory results. Moreover, some compounds of particular concern were searched for in the groundwater located near the experimental area in order to evaluate actual contamination and to test the reliability of the leaching potential. The GUS index, computed on data from microbiologically active soil, shows monuron as a leacher compound, EMA and DCA as non-leachers, metolachlor and diuron as transient ones. The presence of metolachlor in the groundwater monitored, even at concentrations up to 0.1 μg/l, confirms the possibility that transient compounds can be leached if microbial activity has not completely occurred in active surface soil. - Pesticide mobility to vulnerable groundwaters in Italy is assessed and ranked

  12. selective herbicide glyphosate

    African Journals Online (AJOL)

    Aghomotsegin

    2016-05-04

    May 4, 2016 ... concentrations of the test chemical at 0.625, 1.25, 2.5, 5 and 10 mg/L, respectively. The percentage growth rate ... production, processing, storage, transport or marketing of ... Herbicides commonly known as weed-killers are.

  13. Rationale for a natural products approach to herbicide discovery.

    Science.gov (United States)

    Dayan, Franck E; Owens, Daniel K; Duke, Stephen O

    2012-04-01

    Weeds continue to evolve resistance to all the known modes of herbicidal action, but no herbicide with a new target site has been commercialized in nearly 20 years. The so-called 'new chemistries' are simply molecules belonging to new chemical classes that have the same mechanisms of action as older herbicides (e.g. the protoporphyrinogen-oxidase-inhibiting pyrimidinedione saflufenacil or the very-long-chain fatty acid elongase targeting sulfonylisoxazoline herbicide pyroxasulfone). Therefore, the number of tools to manage weeds, and in particular those that can control herbicide-resistant weeds, is diminishing rapidly. There is an imminent need for truly innovative classes of herbicides that explore chemical spaces and interact with target sites not previously exploited by older active ingredients. This review proposes a rationale for a natural-products-centered approach to herbicide discovery that capitalizes on the structural diversity and ingenuity afforded by these biologically active compounds. The natural process of extended-throughput screening (high number of compounds tested on many potential target sites over long periods of times) that has shaped the evolution of natural products tends to generate molecules tailored to interact with specific target sites. As this review shows, there is generally little overlap between the mode of action of natural and synthetic phytotoxins, and more emphasis should be placed on applying methods that have proved beneficial to the pharmaceutical industry to solve problems in the agrochemical industry. Published 2012 by John Wiley & Sons, Ltd.

  14. The fate of pesticides in soil and aquifers from a small-scale point of view: Does microbial and spatial heterogeneity have an impact?

    DEFF Research Database (Denmark)

    Aamand, J.; Badawi, N.; Rosenbom, Annette Elisabeth

    Millions of tonnes of pesticides are used each year worldwide in agricultural production resulting in pollution of groundwater aquifers. There is, however, a striking contrast between the input levels (up to several kg per hectare) and the contaminant concentrations detected in groundwater, which...... are normally in the microgram to nanogram per litre range. Resent research has revealed a large spatial variation in pesticide mineralisation potentials, but little is known about how these variations/heterogeneities affect the fate of contaminants. We analysed how mineralisation potentials of phenoxy acid...... herbicides (MCPA, 2,4-D) were spatially distributed in soil, subsoil, and groundwater aquifers using a 96-well microplate mineralisation assay. In the top soil, all samples showed rapid mineralisation following Monod mineralisation kinetics. In the subsoil sediments, a more heterogeneous distribution...

  15. Australia's pesticide environmental risk assessment failure: the case of diuron and sugarcane.

    Science.gov (United States)

    Holmes, Glen

    2014-11-15

    In November 2012, the Australian Pesticide and Veterinary Medicines Authority (APVMA) concluded a 12 year review of the PSII herbicide diuron. One of the primary concerns raised during the review was the potential impact on aquatic ecosystems, particularly in the catchments draining to the Great Barrier Reef. The environmental risk assessment process used by the APVMA utilised a runoff risk model developed and validated under European farming conditions. However, the farming conditions in the sugarcane regions of the Great Barrier Reef catchments have environmental parameters beyond the currently validated bounds of the model. The use of the model to assess environmental risk in these regions is therefore highly inappropriate, demonstrating the pitfalls of a one size fits all approach. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Herbicides interfere with antigrazer defenses in Scenedesmus obliquus.

    Science.gov (United States)

    Zhu, Xuexia; Sun, Yunfei; Zhang, Xingxing; Heng, Hailu; Nan, Haihong; Zhang, Lu; Huang, Yuan; Yang, Zhou

    2016-11-01

    The extensive application of herbicides has led to a serious threat of herbicide contamination to aquatic ecosystem. Herbicide exposure affects aquatic communities not only by exerting toxicity on single species but also by changing interspecific interactions. This study investigated the antigrazer defenses of the common green alga Scenedesmus obliquus against different herbicides [glyphosate, 2,4-dichlorophenoxyacetic acid (2,4-D), and atrazine] at various concentrations (0-2.0 mg L(-1)). In the presence of grazer (Daphnia)-derived cues, S. obliquus populations without herbicides formed high proportions of multicelled (e.g., four- and eight-celled) colonies. This result confirms that S. obliquus exhibits a morphological defense against grazing risk. At the low concentration range of 0.002-0.02 mg L(-1), the three herbicides exerted no influence on the growth and photosynthetic efficiency of S. obliquus, and multicelled colonies showed constant proportions. At the high concentration range of 0.20-2.0 mg L(-1), atrazine significantly inhibited the algal growth and photosynthesis whereas glyphosate or 2,4-D did not. Nonetheless, these levels of glyphosate or 2,4-D remarkably decreased the proportion of multicelled colonies, with reduced numbers of cells per particle in Daphnia filtrate-treated population. No eight-celled colony was formed after treatment with atrazine at 0.20-2.0 mg L(-1) despite the addition of Daphnia filtrate. These results suggest that herbicide exposure impairs antigrazer colonial morphs in phytoplankton although it is not sufficient to hamper algal growth. This phenomenon can increase the risk of predation by herbivores, thereby disrupting the inducible phytoplankton community. Furthermore, the predator-prey interactions between herbivores and phytoplankton can be potentially changed more seriously than previously considered. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Determination of 54 pesticides in waters of the Iberian Douro River estuary and risk assessment of environmentally relevant mixtures using theoretical approaches and Artemia salina and Daphnia magna bioassays.

    Science.gov (United States)

    Cruzeiro, Catarina; Amaral, Sofia; Rocha, Eduardo; Rocha, Maria João

    2017-11-01

    As a case study, the estuary of the international Douro River (Iberian Peninsula) was sampled over a year (2010) at six sampling sites to determine the presence of 56 pesticides of different categories (insecticides, herbicides, and fungicides). 96% of measured pesticides were detected in 79% of the quantified samples. Individual average pesticide concentrations ranged from 39 to 1 265ng/L, indicating a ubiquitous presence of the selected compounds; moreover, twelve pesticides were above the 2013/39/EU Directive limits. Due to its highly impacted profile, a theoretical hazard assessment was done considering the average and maximum environmental mixtures of all measured pesticides to identify the most sensitive trophic level. For both environmental mixtures, the theoretical approach suggested that invertebrates were the most sensitive group. Therefore, short-time exposure assays using both invertebrates Artemia salina and Daphnia magna, were done using the referred mixtures. Data demonstrated significant toxic effects ─ high mortality rate and abnormal swimming behaviour ─ of the exposed animals. Both approaches (theoretical and experimental) support the analytical results, alerting for an intervention on this estuarine environment and of other comparable. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Fate of 2,4-D herbicide in soil-plant ecosystems

    International Nuclear Information System (INIS)

    Onal, G.

    1983-01-01

    Herbicide was applied to wheat, barley and oat plants grown under laboratory, greenhouse and field conditions and the fate of the herbicide was investigated using carbon 14 radioisotope. Results of the investigation indicate that (1) under laboratory condition degradation of the herbicide was faster in the soil, rich in organic matter and was not influenced by humidity; (2) the absorption of the herbicide by the plants was low under greenhouse conditions and (3) the uptake of the chemical by the plants grown in the field was higher in the presence of fertilizer (diammonium phosphate)

  19. Vasogenic edema in striatum following ingestion of glufosinate-containing herbicide.

    Science.gov (United States)

    Lee, Hui-Young; Song, Seo-Young; Lee, Seung-Hwan; Lee, Seo-Young; Kim, Sung-Hun; Ryu, Sook-Won

    2009-10-01

    Glufosinate-ammonium (GLA) is a broad-spectrum herbicide used worldwide. We report a patient who attempted suicide by ingesting a liquid herbicide containing GLA. A diffusion-weighted MRI showed cytotoxic edema in the hippocampus as well as vasogenic edema in the striata. To our knowledge, vasogenic edema caused by GLA-containing herbicide involving the striatum has not been reported in association with cytotoxic edema in the hippocampus. We assume that this herbicide affected the central nervous system via different mechanisms to produce both cytotoxic and vasogenic edema in the same patient.

  20. Pesticide use in the wheat-maize double cropping systems of the North China Plain: Assessment, field study, and implications.

    Science.gov (United States)

    Brauns, Bentje; Jakobsen, Rasmus; Song, Xianfang; Bjerg, Poul L

    2018-03-01

    In the North China Plain (NCP), rising inputs of pesticides have intensified the environmental impact of farming activities in recent decades by contributing to surface water and groundwater contamination. In response to this, the Chinese government imposed stricter regulations on pesticide approval and application, and better monitoring strategies are being developed. However, sufficient and well-directed research on the accumulation and impact of different pesticides is needed for informed decision-making. In this study, current pesticide use, and recent and current research on water contamination by pesticides in the NCP are reviewed and assessed. Additionally, a small-scale field study was performed to determine if residuals from currently-used pesticides in the NCP can be detected in surface water, and in connected shallow groundwater. The contaminants of interest were commonly used pesticides on winter wheat-summer maize fields (the dominant cropping system in the NCP), such as 2,4-D and atrazine. Sampling took place in May, July, and October 2013; and March 2014. Results from our literature research showed that sampling is biased towards surface water monitoring. Furthermore, most studies focus on organic chlorinated pesticides (OCPs) like the isomers of dichlorodiphenyltrichloroethane (DDT) and hexachlorocyclohexane (HCH), which were banned in China in 1983. However, currently-used herbicides like 2,4-D and atrazine were detected in river water and groundwater in all samplings of our field study. The highest concentrations of 2,4-D and atrazine were found in the river water, ranging up to 3.00 and 0.96μg/L, respectively. The monitoring of banned compounds was found to be important because several studies indicate that they are still accumulating in the environment and/or are still illegally in use. However, supported by our own data, we find that the monitoring in groundwater and surface water of currently permitted pesticides in China needs equal

  1. Herbicide effects on freshwater benthic diatoms: Induction of nucleus alterations and silica cell wall abnormalities

    International Nuclear Information System (INIS)

    Debenest, T.; Silvestre, J.; Coste, M.; Delmas, F.; Pinelli, E.

    2008-01-01

    Benthic diatoms are well known bio-indicators of river pollution by nutrients (nitrogen and phosphorus). Biological indexes, based on diatom sensitivity for non-toxic pollution, have been developed to assess the water quality. Nevertheless, they are not reliable tools to detect pollution by pesticides. Many authors have suggested that toxic agents, like pesticides, induce abnormalities of the diatom cell wall (frustule). High abnormal frustule abundances have been reported in natural diatom communities sampled in streams contaminated by pesticides. However, no direct link was found between the abundances of abnormal frustules in these communities and the pesticide concentrations in stream water. In the present study, a freshwater benthic diatom community, isolated from natural biofilm and cultured under controlled conditions, was treated with a known genotoxic herbicide, maleic hydrazide (MH). Cells were exposed to three concentrations of MH (5 x 10 -6 , 10 -6 , 10 -7 M) for 6 h followed by a 24 h-recovery time. After MH treatments, nucleus alterations were observed: abnormal nucleus location, micronucleus, multinuclear cell or disruption of the nuclear membrane. A dose-dependent increase of nuclear alterations was observed. The difference between the control (9.65 nuclear alterations per 1000 cells observed (9.65 per mille ), S.D. = 4.23) and the highest concentrations (29.40 per mille , S.D. = 8.49 for 10 -6 M and 35.96 per mille , S.D. = 3.71 for 5 x 10 -6 M) was statistically significant (Tukey test, P -6 and 5 x 10 -6 M; Tukey test, P < 0.05). These two parameters tended to increase together (Pearson correlation = 0.702, P < 0.05). The results suggest that the induction of abnormal frustules could be associated with the genotoxic effects of MH. The alterations observed could be related to the effects of MH on the synthesis of the proteins involved in frustule formation or in the regulation of the cytoskeleton of the diatom cells

  2. Effects of three pesticides on superoxide dismutase and glutathione-S-transferase activities and reproduction of Daphnia magna

    Directory of Open Access Journals (Sweden)

    Song Yuzhi

    2017-03-01

    Full Text Available Applying pesticides to crops is one of the causes of water pollution by surface runoff, and chlorpyrifos, trifluralin and chlorothalonil are used respectively as insecticide, herbicide and fungicide for crop plants widely. To explore effects of three pesticides on aquatic organisms, superoxide dismutase (SOD and glutathione S-transferase (GST activities were determined after 24 h and 48 h exposure of D. magna with ages of 6–24 h to several low concentrations of chlorpyrifos (0.36, 0.72, 1.43, 2.86, 5.72 μg∙L−1, trifluralin (0.17, 0.33, 0.66, 1.33, 2.65 mg∙L−1 and chlorothalonil (0.09, 0.18, 0.36, 0.72, 1.43 mg∙L−1 respectively. Main reproductive parameters including first pregnancy time, first brood time, the number of first brood and total fecundity after 21 d exposures at the same concentrations of pesticides as described above were also measured. The results showed that the activities of GST increased in lower concentrations and decreased in higher concentrations after 24 h exposure to three pesticides, respectively. The activities of SOD showed the same changes after 48 h exposure. With the time prolonged, the activities of GST decreased while the activities of SOD increased. After 21 d exposure, the first pregnancy time and first brood time were delayed, while the number of the first brood and total fecundity per female decreased with increasing concentrations. These results corroborated that GST activity was more sensitive to those pesticides than SOD activity, and there was a significant relationship between total fecundity and pesticides-dose(r>0.94, n=6, GST activity after 48 h exposure and total fecundity after 21 d exposure (r>0.92, n=6.

  3. Relation between flow and temporal variations of nitrate and pesticides in two karst springs in northern Alabama

    Science.gov (United States)

    Kingsbury, J.A.

    2008-01-01

    Two karst springs in the Mississippian Carbonate Aquifer of northern Alabama were sampled between March 1999 and March 2001 to characterize the variability in concentration of nitrate, pesticides, selected pesticide degradates, water temperature, and inorganic constituents. Water temperature and inorganic ion data for McGeehee Spring indicate that this spring represents a shallow flow system with a relatively short average ground-water residence time. Water issuing from the larger of the two springs, Meridianville Spring, maintained a constant temperature, and inorganic ion data indicate that this water represents a deeper flow system having a longer average ground-water residence time than McGeehee Spring. Although water-quality data indicate differing short-term responses to rainfall at the two springs, the seasonal variation of nitrate and pesticide concentrations generally is similar for the two springs. With the exception of pesticides detected at low concentrations, the coefficient of variation for most constituent concentrations was less than that of flow at both springs, with greater variability in concentration at McGeehee Spring. Degradates of the herbicides atrazine and fluometuron were detected at concentrations comparable to or greater than the parent pesticides. Decreases in concentration of the principal degradate of fluometuron from about July to November indicate that the degradation rate may decrease as fluometuron (demethylfluometuron) moves deeper into the soil after application. Data collected during the study show that from about November to March when recharge rates increase, nitrate and residual pesticides in the soil, unsaturated zone, and storage within the aquifer are transported to the spring discharges. Because of the increase in recharge, fluometuron loads discharged from the springs during the winter were comparable to loads discharged at the springs during the growing season. ?? 2008 American Water Resources Association.

  4. Metallothionein induction in aquatic oligochaete tubifex tubifex exposed to herbicide isoproturon.

    Science.gov (United States)

    Mosleh, Y Y; Paris-Palacios, S; Arnoult, F; Couderchet, M; Biagianti-Risbourg, S; Vernet, G

    2004-02-01

    Metallothioneins (MTs) are low-molecular-weight proteins mainly involved in metal ion detoxification. Recently it has been demonstrated that MTs participate in several cellular functions such as regulation of growth and antioxidative defenses. Moreover, pesticides can induce their synthesis. The aim of the current work was to determine the effects of isoproturon, either pure or formulated as Matin (suspension containing an isoproturon concentration of 500 g. L(-1)), on the metallothionein and total protein contents of the aquatic worm Tubifex tubifex. MT levels in exposed worms increased significantly after 7 and 15 days of exposure to a concentration of the herbicide of 50 mg. L(-1). Isoproturon reduced the metal (Cu, Zn, and Cd) content of metallothioneins, and it also increased the total protein content of the worms. These results suggest that MT induction may not be considered a specific biomarker of metal exposure but that it can be used as a nonspecific biomarker of the effect of isoproturon effect in aquatic worms. Copyright 2004 Wiley Periodicals, Inc. Environ Toxicol 19: 88-93, 2004.

  5. [Effects of herbicide on grape leaf photosynthesis and nutrient storage].

    Science.gov (United States)

    Tan, Wei; Wang, Hui; Zhai, Heng

    2011-09-01

    Selecting three adjacent vineyards as test objects, this paper studied the effects of applying herbicide in growth season on the leaf photosynthetic apparatus and branch nutrient storage of grape Kyoho (Vitis vinfrraxVitis labrusca). In the vineyards T1 and T2 where herbicide was applied in 2009, the net photosynthesis rate (Pa) of grape leaves had a significant decrease, as compared with that in vineyard CK where artificial weeding was implemented. The leaves at the fourth node in vineyard T1 and those at the sixth node in vineyard T2 had the largest decrement of Pn (40.5% and 32.1%, respectively). Herbicide had slight effects on the leaf stomatal conductance (Gs). In T1 where herbicide application was kept on with in 2010, the Pn, was still significantly lower than that in CK; while in T2 where artificial weeding was implemented in 2010, the Pn and Gs of top- and middle node leaves were slightly higher than those in T1, but the Pn was still lower than that in CK, showing the aftereffects of herbicide residual. The herbicide application in 2009 decreased the leaf maximum photochemical efficiency of PS II (Fv/Fm) and performance index (P1) while increased the relative variable fluorescence in the J step and K step, indicating the damage of electron transportation of PS II center and oxygen-evolving complex. Herbicide application decreased the pigment content of middle-node leaves in a dose-manner. Applying herbicide enhanced the leaf catalase and peroxidase activities significantly, increased the superoxide dismutase (SOD) activity of middle-node leaves, but decreased the SOD activity of top- and bottom node leaves. After treated with herbicide, the ascorbate peroxidase (APX) activity of middle- and bottom node leaves increased, but that of top-node leaves decreased. Herbicide treatment aggravated leaf lipid peroxidation, and reduced the soluble sugar, starch, free amino acids, and soluble protein storage in branches.

  6. Evaluation of generic and branded herbicides : technical report.

    Science.gov (United States)

    2015-03-01

    As with other generic brand products in the marketplace, generic herbicides often have a lower initial product cost than : their brand-name counterparts. While the purchase price of herbicides is important to TxDOT, it is essential to look at : more ...

  7. On the rumors about the silent spring: review of the scientific evidence linking occupational and environmental pesticide exposure to endocrine disruption health effects

    Directory of Open Access Journals (Sweden)

    Cocco Pierluigi

    2002-01-01

    Full Text Available Occupational exposure to some pesticides, and particularly DBCP and chlordecone, may adversely affect male fertility. However, apart from the therapeutic use of diethylstilbestrol, the threat to human reproduction posed by "endocrine disrupting" environmental contaminants has not been supported by epidemiological evidence thus far. As it concerns other endocrine effects described in experimental animals, only thyroid inhibition following occupational exposure to amitrole and mancozeb has been confirmed in humans. Cancer of the breast, endometrium, ovary, prostate, testis, and thyroid are hormone-dependent, which fostered research on the potential risk associated with occupational and environmental exposure to the so-called endocrine-disrupting pesticides. The most recent studies have ruled out the hypothesis of DDT derivatives as responsible for excess risks of cancer of the reproductive organs. Still, we cannot exclude a role for high level exposure to o,p'-DDE, particularly in post-menopausal ER+ breast cancer. On the other hand, other organochlorine pesticides and triazine herbicides require further investigation for a possible etiologic role in some hormone-dependent cancers.

  8. Predicting herbicidal plant mortality with mobile photosynthesis meters

    NARCIS (Netherlands)

    Kempenaar, C.; Lotz, L.A.P.; Snel, J.F.H.; Smutny, V.; Zhang, H.J.

    2011-01-01

    Herbicide dose optimisation, i.e. maximising weed control and crop yield with herbicide dose, is an important part of integrated weed management strategies. However, the adoption of optimised dose technology and variable rate application has been limited because of the relatively long period between

  9. Response of Saw Palmetto to Three Herbicides

    Science.gov (United States)

    J.L. Michael; D.G. Neary

    1985-01-01

    Saw palmetto [Serona repens (Bartram) Small] can be controlled with herbicides. Garion® 4E1/2 and Brush Killer® 800 were evaluated for effectiveness againest saw palmetto when they were applied at three rates in April, June, and August. Oust® was tested at three rates in April only. Herbicides were not effective with April...

  10. Toxic effects and bioaccumulation of the herbicide isoproturon in Tubifex tubifex (Oligocheate, Tubificidae): a study of significance of autotomy and its utility as a biomarker.

    Science.gov (United States)

    Paris-Palacios, Séverine; Mosleh, Yahia Y; Almohamad, Mohamad; Delahaut, Laurence; Conrad, Arnaud; Arnoult, Fabrice; Biagianti-Risbourg, Sylvie

    2010-06-01

    Tubifex is the only animal reported to respond with autotomy to contamination. This response of contaminated worm is understood as a mode of metal excretion. Few data concern the potential of organic compounds to induce tubifex autotomy. The objective of this study was to investigate if autotomy can be induced by a herbicide isoproturon (IP) and be related to the way of excretion. Isoproturon accumulation in worm tissues and its effect on tubifex mortality, autotomy and regeneration rates were analysed after 4 and 7 days of exposure to the herbicide and also when worms were replaced for 10 days in clean water. IP accumulated in the same way in all parts of the worm body but IP metabolite rates were significantly higher in the posterior part of the worm. Thus the loss of the posterior part allows the worm to eliminate an important amount of pesticide. Autotomy has a population importance and is related to the degree of worm contamination so it may become an interesting biomarker. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  11. 75 FR 17857 - Removal of Obsolete References to Herbicides Containing Dioxin

    Science.gov (United States)

    2010-04-08

    ... Herbicides Containing Dioxin AGENCY: Department of Veterans Affairs. ACTION: Final rule. SUMMARY: The... health effects of exposure to herbicides containing dioxin and radiation to remove the obsolete references to herbicides containing dioxin. This final rule reflects changes made by the Agent Orange Act of...

  12. A GIS-based method for household recruitment in a prospective pesticide exposure study

    Directory of Open Access Journals (Sweden)

    Phillips Michael J

    2008-04-01

    Full Text Available Abstract Background Recent advances in GIS technology and remote sensing have provided new opportunities to collect ecologic data on agricultural pesticide exposure. Many pesticide studies have used historical or records-based data on crops and their associated pesticide applications to estimate exposure by measuring residential proximity to agricultural fields. Very few of these studies collected environmental and biological samples from study participants. One of the reasons for this is the cost of identifying participants who reside near study fields and analyzing samples obtained from them. In this paper, we present a cost-effective, GIS-based method for crop field selection and household recruitment in a prospective pesticide exposure study in a remote location. For the most part, our multi-phased approach was carried out in a research facility, but involved two brief episodes of fieldwork for ground truthing purposes. This method was developed for a larger study designed to examine the validity of indirect pesticide exposure estimates by comparing measured exposures in household dust, water and urine with records-based estimates that use crop location, residential proximity and pesticide application data. The study focused on the pesticide atrazine, a broadleaf herbicide used in corn production and one of the most widely-used pesticides in the U.S. Results We successfully used a combination of remotely-sensed data, GIS-based methods and fieldwork to select study fields and recruit participants in Illinois, a state with high corn production and heavy atrazine use. Our several-step process consisted of the identification of potential study fields and residential areas using aerial photography; verification of crop patterns and land use via site visits; development of a GIS-based algorithm to define recruitment areas around crop fields; acquisition of geocoded household-level data within each recruitment area from a commercial vendor; and

  13. Bioactivity of Several Herbicides on the Nanogram Level Under Different Soil Moisture Conditions.

    Science.gov (United States)

    Jung, S C; Kuk, Y I; Senseman, S A; Ahn, H G; Seong, C N; Lee, D J

    2015-01-01

    In this study, a double-tube centrifuge method was employed to determine the effects of soil moisture on the bioactivity of cafenstrole, pretilachlor, benfuresate, oxyfluorfen and simetryn. In general, the available herbicide concentration in soil solution (ACSS) showed little change as soil moisture increased for herbicides. The total available herbicide in soil solution (TASS) typically increased as soil moisture increased for all herbicides. The relationship between TASS and % growth rate based on dry weight showed strong linear relationships for both cafenstrole and pretilachlor, with r2 values of 0.95 and 0.84, respectively. Increasing TASS values were consistent with increasing herbicide water solubility, with the exception of the ionizable herbicide simetryn. Plant absorption and % growth rate exhibited a strong linear relationship with TASS. According to the results suggested that TASS was a better predictor of herbicidal bioactivity than ACSS for all herbicides under unsaturated soil moisture conditions.

  14. Emissions of Selected Semivolatile Organic Chemicals from Forest and Savannah Fires.

    Science.gov (United States)

    Wang, Xianyu; Thai, Phong K; Mallet, Marc; Desservettaz, Maximilien; Hawker, Darryl W; Keywood, Melita; Miljevic, Branka; Paton-Walsh, Clare; Gallen, Michael; Mueller, Jochen F

    2017-02-07

    The emission factors (EFs) for a broad range of semivolatile organic chemicals (SVOCs) from subtropical eucalypt forest and tropical savannah fires were determined for the first time from in situ investigations. Significantly higher (t test, P fire (7,000 ± 170) compared to the tropical savannah fires (1,600 ± 110), due to the approximately 60-fold higher EFs for 3-ring PAHs from the former. EF data for many PAHs from the eucalypt forest fire were comparable with those previously reported from pine and fir forest combustion events. EFs for other SVOCs including polychlorinated biphenyl (PCB), polychlorinated naphthalene (PCN), and polybrominated diphenyl ether (PBDE) congeners as well as some pesticides (e.g., permethrin) were determined from the subtropical eucalypt forest fire. The highest concentrations of total suspended particles, PAHs, PCBs, PCNs, and PBDEs, were typically observed in the flaming phase of combustion. However, concentrations of levoglucosan and some pesticides such as permethrin peaked during the smoldering phase. Along a transect (10-150-350 m) from the forest fire, concentration decrease for PCBs during flaming was faster compared to PAHs, while levoglucosan concentrations increased.

  15. Selectivity of herbicides in Camelina (Camelina sativa (L. Crtz.

    Directory of Open Access Journals (Sweden)

    Scheliga, Maria

    2016-02-01

    Full Text Available Camelina (Camelina sativa (L. Crtz. is a cruciferous plant. As an oilseed crop camelina is mainly grown for oil production. After the 1960s, however, the cultivation has become less important. Only in recent years, interest in this culture was awakened in the search for new sources of omega 3 fatty acids, natural antioxidants and a potential crop for the production of biofuels. The use of camelina oil for different purposes within the framework of the material use of renewable raw materials is of particular interest due to the high levels of linoleic and linolenic acid. For the establishment of camelina as a crop in agricultural crop rotation systems weed control should not be disregarded despite the rather good competitive ability against weeds. Based on greenhouse experiments a field trial in 2015 with different herbicide strategies was carried out. Besides Butisan Top (metazachlor + quinmerac, Devrinol FL (napropamide and Stomp Aqua (pendimethalin and also Betasana SC (phenmedipham has been tested in various amounts and combinations. Using assessments to weed density and herbicide tolerance different herbicide strategies were compared with each other. Though, it is difficult to find a compromise between satisfactory herbicidal effect and a slight injury to the crop plant. The herbicide selection, the application rate and the combination of different herbicides have an effect on the crop. To confirm the data obtained further tests are necessary.

  16. Dinitroaniline herbicide resistance in a multiple-resistant Lolium rigidum population.

    Science.gov (United States)

    Chen, Jinyi; Yu, Qin; Owen, Mechelle; Han, Heping; Powles, Stephen

    2018-04-01

    The pre-emergence dinitroaniline herbicides (such as trifluralin and pendimethalin) are vital to Australian no-till farming systems. A Lolium rigidum population collected from the Western Australian grain belt with a 12-year trifluralin use history was characterised for resistance to dinitroaniline, acetyl CoA carboxylase (ACCase)- and acetolactate synthase (ALS)-inhibiting herbicides. Target-site resistance mechanisms were investigated. This L. rigidum population exhibited 32-fold resistance to trifluralin, as compared with the susceptible population. It also displayed 12- to 30-fold cross-resistance to other dinitroaniline herbicides (pendimethalin, ethalfluralin and oryzalin). In addition, this population showed multiple resistance to commonly used post-emergence ACCase- and ALS-inhibiting herbicides. Two target-site α-tubulin gene mutations (Val-202-Phe and Thr-239-Ile) previously documented in other dinitroaniline-resistant weed species were identified, and some known target-site mutations in ACCase (Ile-1781-Leu, Asp-2078-Gly and Cys-2088-Arg) and ALS (Pro-197-Gln/Ser) were found in the same population. An agar-based Petri dish screening method was established for the rapid diagnosis of resistance to dinitroaniline herbicides. Evolution of target-site resistance to both pre- and post-emergence herbicides was confirmed in a single L. rigidum population. The α-tubulin mutations Val-202-Phe and Thr-239-Ile, documented here for the first time in L. rigidum, are likely to be responsible for dinitroaniline resistance in this population. Early detection of dinitroaniline herbicide resistance and integrated weed management strategies are needed to maintain the effectiveness of dinitroaniline herbicides. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  17. Changes in bacterial community after application of three different herbicides.

    Science.gov (United States)

    Moretto, Jéssica Aparecida Silva; Altarugio, Lucas Miguel; Andrade, Pedro Avelino; Fachin, Ana Lúcia; Andreote, Fernando Dini; Stehling, Eliana Guedes

    2017-07-06

    The native soil microbiota is very important to maintain the quality of that environment, but with the intensive use of agrochemicals, changes in microbial biomass and formation of large quantities of toxic waste were observed in soil, groundwater and surface water. Thereby, the goal of this study was to evaluate if the selective pressure exerted by the presence of the herbicides atrazine, diuron and 2,4-D changes the bacterial community structure of an agricultural soil, using denaturing gradient gel electrophoresis technique. According to PERMANOVA analysis, a greater effect of the herbicide persistence time in the soil, the effect of the herbicide class and the effect of interaction between these two factors (persistence time and herbicide class) were observed. In conclusion, the results showed that the selective pressure exerted by the presence of these herbicides altered the composition of the local microbiota, being atrazine and diuron that most significantly affected the bacterial community in soil, and the herbicide 2,4-D was the one that less altered the microbial community and that bacterial community was reestablished first. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Oxidative stress caused by the use of preemergent herbicides in rice crops

    Directory of Open Access Journals (Sweden)

    Ana Claudia Langaro

    Full Text Available ABSTRACT Among the methods of weed control, stands out chemical control. However, even selective, herbicides can trigger the production of reactive species of oxygen and cause oxidative stress. The aim of the study was to evaluate changes in photosynthetic parameters, oxidative damage, antioxidant enzyme activity and altered metabolism of rice plants after applying pre-emergent herbicides. The experiment was conducted in a greenhouse and herbicides used were oxadiazon, pendimethalin and oxyfluorfen, beyond the control without herbicide. There was a reduction of photosynthetic rate and efficiency of carboxylation, compared to the control, when applied herbicides oxyfluorfen and pendimethalin. The major lipid peroxidation and proline accumulation was observed for the herbicide oxyfluorfen. The oxyfluorfen and oxadiazon herbicides also resulted in increased activity of superoxide dismutase, compared to control. When evaluated ascorbate peroxidase activity, there was a higher enzyme activity in plants treated with oxadiazon and pendimethalin. Even selective herbicides registered for weed control in rice crops cause phytotoxicity, reduce height and alter the metabolism of plants, generating reactive oxygen species, which activate enzymatic and non-enzymatic defense systems and result in the degradation of photosynthetic pigments and in reduced protein content.

  19. Phorate can reverse P450 metabolism-based herbicide resistance in Lolium rigidum.

    Science.gov (United States)

    Busi, Roberto; Gaines, Todd Adam; Powles, Stephen

    2017-02-01

    Organophosphate insecticides can inhibit specific cytochrome P450 enzymes involved in metabolic herbicide resistance mechanisms, leading to synergistic interactions between the insecticide and the herbicide. In this study we report synergistic versus antagonistic interactions between the organophosphate insecticide phorate and five different herbicides observed in a population of multiple herbicide-resistant Lolium rigidum. Phorate synergised with three different herbicide modes of action, enhancing the activity of the ALS inhibitor chlorsulfuron (60% LD 50 reduction), the VLCFAE inhibitor pyroxasulfone (45% LD 50 reduction) and the mitosis inhibitor trifluralin (70% LD 50 reduction). Conversely, phorate antagonised the two thiocarbamate herbicides prosulfocarb and triallate with a 12-fold LD 50 increase. We report the selective reversal of P450-mediated metabolic multiple resistance to chlorsulfuron and trifluralin in the grass weed L. rigidum by synergistic interaction with the insecticide phorate, and discuss the putative mechanistic basis. This research should encourage diversity in herbicide use patterns for weed control as part of a long-term integrated management effort to reduce the risk of selection of metabolism-based multiple herbicide resistance in L. rigidum. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  20. Effects Of Spring Herbicide Treatments On Winter Wheat Growth And Grain Yield*

    Directory of Open Access Journals (Sweden)

    Hamouz P.

    2015-03-01

    Full Text Available Herbicides provide a low-cost solution for protecting crops from significant yield losses. If weed infestations are below damage thresholds, however, then herbicide application is unnecessary and can even lead to yield loss. A small-plot field trial was conducted to examine the effect of herbicides on winter wheat yields. Weeds were removed manually from the trial area before herbicide application. Twenty-four treatments were tested in four replications. Treatment 1 consisted of an untreated weed-free control, whereas the other treatments comprised applications of the following herbicides and their combinations: metsulfuron-methyl + tribenuron-methyl (4.95 + 9.99 g ha−1, pinoxaden (30 g ha−1, fluroxypyr (175 g ha−1, and clopyralid (120 g ha−1. Water (250 l ha−1 or a urea-ammonium nitrate fertilizer solution (UAN, 120.5 l ha−1 was used as the herbicide carrier. Crop injury 30 days after treatment and yield loss were recorded. Results showed minor crop injury by herbicides and their combinations when applied without UAN and moderate injury caused by UAN in combination with herbicides. Yield losses reached 5.3% and 4.3% in those treatments where all of the tested herbicides were applied with and without UAN, respectively. The effect of all treatments on crop yield was, however, statistically insignificant (P = 0.934.