WorldWideScience

Sample records for svm-based prediction method

  1. CyclinPred: a SVM-based method for predicting cyclin protein sequences.

    Directory of Open Access Journals (Sweden)

    Mridul K Kalita

    Full Text Available Functional annotation of protein sequences with low similarity to well characterized protein sequences is a major challenge of computational biology in the post genomic era. The cyclin protein family is once such important family of proteins which consists of sequences with low sequence similarity making discovery of novel cyclins and establishing orthologous relationships amongst the cyclins, a difficult task. The currently identified cyclin motifs and cyclin associated domains do not represent all of the identified and characterized cyclin sequences. We describe a Support Vector Machine (SVM based classifier, CyclinPred, which can predict cyclin sequences with high efficiency. The SVM classifier was trained with features of selected cyclin and non cyclin protein sequences. The training features of the protein sequences include amino acid composition, dipeptide composition, secondary structure composition and PSI-BLAST generated Position Specific Scoring Matrix (PSSM profiles. Results obtained from Leave-One-Out cross validation or jackknife test, self consistency and holdout tests prove that the SVM classifier trained with features of PSSM profile was more accurate than the classifiers based on either of the other features alone or hybrids of these features. A cyclin prediction server--CyclinPred has been setup based on SVM model trained with PSSM profiles. CyclinPred prediction results prove that the method may be used as a cyclin prediction tool, complementing conventional cyclin prediction methods.

  2. Hybrid PSO–SVM-based method for forecasting of the remaining useful life for aircraft engines and evaluation of its reliability

    International Nuclear Information System (INIS)

    García Nieto, P.J.; García-Gonzalo, E.; Sánchez Lasheras, F.; Cos Juez, F.J. de

    2015-01-01

    The present paper describes a hybrid PSO–SVM-based model for the prediction of the remaining useful life of aircraft engines. The proposed hybrid model combines support vector machines (SVMs), which have been successfully adopted for regression problems, with the particle swarm optimization (PSO) technique. This optimization technique involves kernel parameter setting in the SVM training procedure, which significantly influences the regression accuracy. However, its use in reliability applications has not been yet widely explored. Bearing this in mind, remaining useful life values have been predicted here by using the hybrid PSO–SVM-based model from the remaining measured parameters (input variables) for aircraft engines with success. A coefficient of determination equal to 0.9034 was obtained when this hybrid PSO–RBF–SVM-based model was applied to experimental data. The agreement of this model with experimental data confirmed its good performance. One of the main advantages of this predictive model is that it does not require information about the previous operation states of the engine. Finally, the main conclusions of this study are exposed. - Highlights: • A hybrid PSO–SVM-based model is built as a predictive model of the RUL values for aircraft engines. • The remaining physical–chemical variables in this process are studied in depth. • The obtained regression accuracy of our method is about 95%. • The results show that PSO–SVM-based model can assist in the diagnosis of the RUL values with accuracy

  3. Settlement Prediction of Road Soft Foundation Using a Support Vector Machine (SVM Based on Measured Data

    Directory of Open Access Journals (Sweden)

    Yu Huiling

    2016-01-01

    Full Text Available The suppor1t vector machine (SVM is a relatively new artificial intelligence technique which is increasingly being applied to geotechnical problems and is yielding encouraging results. SVM is a new machine learning method based on the statistical learning theory. A case study based on road foundation engineering project shows that the forecast results are in good agreement with the measured data. The SVM model is also compared with BP artificial neural network model and traditional hyperbola method. The prediction results indicate that the SVM model has a better prediction ability than BP neural network model and hyperbola method. Therefore, settlement prediction based on SVM model can reflect actual settlement process more correctly. The results indicate that it is effective and feasible to use this method and the nonlinear mapping relation between foundation settlement and its influence factor can be expressed well. It will provide a new method to predict foundation settlement.

  4. A Multi-Classification Method of Improved SVM-based Information Fusion for Traffic Parameters Forecasting

    Directory of Open Access Journals (Sweden)

    Hongzhuan Zhao

    2016-04-01

    Full Text Available With the enrichment of perception methods, modern transportation system has many physical objects whose states are influenced by many information factors so that it is a typical Cyber-Physical System (CPS. Thus, the traffic information is generally multi-sourced, heterogeneous and hierarchical. Existing research results show that the multisourced traffic information through accurate classification in the process of information fusion can achieve better parameters forecasting performance. For solving the problem of traffic information accurate classification, via analysing the characteristics of the multi-sourced traffic information and using redefined binary tree to overcome the shortcomings of the original Support Vector Machine (SVM classification in information fusion, a multi-classification method using improved SVM in information fusion for traffic parameters forecasting is proposed. The experiment was conducted to examine the performance of the proposed scheme, and the results reveal that the method can get more accurate and practical outcomes.

  5. [Application of optimized parameters SVM based on photoacoustic spectroscopy method in fault diagnosis of power transformer].

    Science.gov (United States)

    Zhang, Yu-xin; Cheng, Zhi-feng; Xu, Zheng-ping; Bai, Jing

    2015-01-01

    In order to solve the problems such as complex operation, consumption for the carrier gas and long test period in traditional power transformer fault diagnosis approach based on dissolved gas analysis (DGA), this paper proposes a new method which is detecting 5 types of characteristic gas content in transformer oil such as CH4, C2H2, C2H4, C2H6 and H2 based on photoacoustic Spectroscopy and C2H2/C2H4, CH4/H2, C2H4/C2H6 three-ratios data are calculated. The support vector machine model was constructed using cross validation method under five support vector machine functions and four kernel functions, heuristic algorithms were used in parameter optimization for penalty factor c and g, which to establish the best SVM model for the highest fault diagnosis accuracy and the fast computing speed. Particles swarm optimization and genetic algorithm two types of heuristic algorithms were comparative studied in this paper for accuracy and speed in optimization. The simulation result shows that SVM model composed of C-SVC, RBF kernel functions and genetic algorithm obtain 97. 5% accuracy in test sample set and 98. 333 3% accuracy in train sample set, and genetic algorithm was about two times faster than particles swarm optimization in computing speed. The methods described in this paper has many advantages such as simple operation, non-contact measurement, no consumption for the carrier gas, long test period, high stability and sensitivity, the result shows that the methods described in this paper can instead of the traditional transformer fault diagnosis by gas chromatography and meets the actual project needs in transformer fault diagnosis.

  6. PlantRNA_Sniffer: A SVM-Based Workflow to Predict Long Intergenic Non-Coding RNAs in Plants

    Directory of Open Access Journals (Sweden)

    Lucas Maciel Vieira

    2017-03-01

    Full Text Available Non-coding RNAs (ncRNAs constitute an important set of transcripts produced in the cells of organisms. Among them, there is a large amount of a particular class of long ncRNAs that are difficult to predict, the so-called long intergenic ncRNAs (lincRNAs, which might play essential roles in gene regulation and other cellular processes. Despite the importance of these lincRNAs, there is still a lack of biological knowledge and, currently, the few computational methods considered are so specific that they cannot be successfully applied to other species different from those that they have been originally designed to. Prediction of lncRNAs have been performed with machine learning techniques. Particularly, for lincRNA prediction, supervised learning methods have been explored in recent literature. As far as we know, there are no methods nor workflows specially designed to predict lincRNAs in plants. In this context, this work proposes a workflow to predict lincRNAs on plants, considering a workflow that includes known bioinformatics tools together with machine learning techniques, here a support vector machine (SVM. We discuss two case studies that allowed to identify novel lincRNAs, in sugarcane (Saccharum spp. and in maize (Zea mays. From the results, we also could identify differentially-expressed lincRNAs in sugarcane and maize plants submitted to pathogenic and beneficial microorganisms.

  7. SVM-based prediction of propeptide cleavage sites in spider toxins identifies toxin innovation in an Australian tarantula.

    Directory of Open Access Journals (Sweden)

    Emily S W Wong

    Full Text Available Spider neurotoxins are commonly used as pharmacological tools and are a popular source of novel compounds with therapeutic and agrochemical potential. Since venom peptides are inherently toxic, the host spider must employ strategies to avoid adverse effects prior to venom use. It is partly for this reason that most spider toxins encode a protective proregion that upon enzymatic cleavage is excised from the mature peptide. In order to identify the mature toxin sequence directly from toxin transcripts, without resorting to protein sequencing, the propeptide cleavage site in the toxin precursor must be predicted bioinformatically. We evaluated different machine learning strategies (support vector machines, hidden Markov model and decision tree and developed an algorithm (SpiderP for prediction of propeptide cleavage sites in spider toxins. Our strategy uses a support vector machine (SVM framework that combines both local and global sequence information. Our method is superior or comparable to current tools for prediction of propeptide sequences in spider toxins. Evaluation of the SVM method on an independent test set of known toxin sequences yielded 96% sensitivity and 100% specificity. Furthermore, we sequenced five novel peptides (not used to train the final predictor from the venom of the Australian tarantula Selenotypus plumipes to test the accuracy of the predictor and found 80% sensitivity and 99.6% 8-mer specificity. Finally, we used the predictor together with homology information to predict and characterize seven groups of novel toxins from the deeply sequenced venom gland transcriptome of S. plumipes, which revealed structural complexity and innovations in the evolution of the toxins. The precursor prediction tool (SpiderP is freely available on ArachnoServer (http://www.arachnoserver.org/spiderP.html, a web portal to a comprehensive relational database of spider toxins. All training data, test data, and scripts used are available from

  8. PLS-LS-SVM based modeling of ATR-IR as a robust method in detection and qualification of alprazolam.

    Science.gov (United States)

    Parhizkar, Elahehnaz; Ghazali, Mohammad; Ahmadi, Fatemeh; Sakhteman, Amirhossein

    2017-02-15

    According to the United States pharmacopeia (USP), Gold standard technique for Alprazolam determination in dosage forms is HPLC, an expensive and time-consuming method that is not easy to approach. In this study chemometrics assisted ATR-IR was introduced as an alternative method that produce similar results in fewer time and energy consumed manner. Fifty-eight samples containing different concentrations of commercial alprazolam were evaluated by HPLC and ATR-IR method. A preprocessing approach was applied to convert raw data obtained from ATR-IR spectra to normal matrix. Finally, a relationship between alprazolam concentrations achieved by HPLC and ATR-IR data was established using PLS-LS-SVM (partial least squares least squares support vector machines). Consequently, validity of the method was verified to yield a model with low error values (root mean square error of cross validation equal to 0.98). The model was able to predict about 99% of the samples according to R 2 of prediction set. Response permutation test was also applied to affirm that the model was not assessed by chance correlations. At conclusion, ATR-IR can be a reliable method in manufacturing process in detection and qualification of alprazolam content. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Microcalcification detection in full-field digital mammograms with PFCM clustering and weighted SVM-based method

    Science.gov (United States)

    Liu, Xiaoming; Mei, Ming; Liu, Jun; Hu, Wei

    2015-12-01

    Clustered microcalcifications (MCs) in mammograms are an important early sign of breast cancer in women. Their accurate detection is important in computer-aided detection (CADe). In this paper, we integrated the possibilistic fuzzy c-means (PFCM) clustering algorithm and weighted support vector machine (WSVM) for the detection of MC clusters in full-field digital mammograms (FFDM). For each image, suspicious MC regions are extracted with region growing and active contour segmentation. Then geometry and texture features are extracted for each suspicious MC, a mutual information-based supervised criterion is used to select important features, and PFCM is applied to cluster the samples into two clusters. Weights of the samples are calculated based on possibilities and typicality values from the PFCM, and the ground truth labels. A weighted nonlinear SVM is trained. During the test process, when an unknown image is presented, suspicious regions are located with the segmentation step, selected features are extracted, and the suspicious MC regions are classified as containing MC or not by the trained weighted nonlinear SVM. Finally, the MC regions are analyzed with spatial information to locate MC clusters. The proposed method is evaluated using a database of 410 clinical mammograms and compared with a standard unweighted support vector machine (SVM) classifier. The detection performance is evaluated using response receiver operating (ROC) curves and free-response receiver operating characteristic (FROC) curves. The proposed method obtained an area under the ROC curve of 0.8676, while the standard SVM obtained an area of 0.8268 for MC detection. For MC cluster detection, the proposed method obtained a high sensitivity of 92 % with a false-positive rate of 2.3 clusters/image, and it is also better than standard SVM with 4.7 false-positive clusters/image at the same sensitivity.

  10. SVM-based glioma grading. Optimization by feature reduction analysis

    International Nuclear Information System (INIS)

    Zoellner, Frank G.; Schad, Lothar R.; Emblem, Kyrre E.; Harvard Medical School, Boston, MA; Oslo Univ. Hospital

    2012-01-01

    We investigated the predictive power of feature reduction analysis approaches in support vector machine (SVM)-based classification of glioma grade. In 101 untreated glioma patients, three analytic approaches were evaluated to derive an optimal reduction in features; (i) Pearson's correlation coefficients (PCC), (ii) principal component analysis (PCA) and (iii) independent component analysis (ICA). Tumor grading was performed using a previously reported SVM approach including whole-tumor cerebral blood volume (CBV) histograms and patient age. Best classification accuracy was found using PCA at 85% (sensitivity = 89%, specificity = 84%) when reducing the feature vector from 101 (100-bins rCBV histogram + age) to 3 principal components. In comparison, classification accuracy by PCC was 82% (89%, 77%, 2 dimensions) and 79% by ICA (87%, 75%, 9 dimensions). For improved speed (up to 30%) and simplicity, feature reduction by all three methods provided similar classification accuracy to literature values (∝87%) while reducing the number of features by up to 98%. (orig.)

  11. SVM-based glioma grading. Optimization by feature reduction analysis

    Energy Technology Data Exchange (ETDEWEB)

    Zoellner, Frank G.; Schad, Lothar R. [University Medical Center Mannheim, Heidelberg Univ., Mannheim (Germany). Computer Assisted Clinical Medicine; Emblem, Kyrre E. [Massachusetts General Hospital, Charlestown, A.A. Martinos Center for Biomedical Imaging, Boston MA (United States). Dept. of Radiology; Harvard Medical School, Boston, MA (United States); Oslo Univ. Hospital (Norway). The Intervention Center

    2012-11-01

    We investigated the predictive power of feature reduction analysis approaches in support vector machine (SVM)-based classification of glioma grade. In 101 untreated glioma patients, three analytic approaches were evaluated to derive an optimal reduction in features; (i) Pearson's correlation coefficients (PCC), (ii) principal component analysis (PCA) and (iii) independent component analysis (ICA). Tumor grading was performed using a previously reported SVM approach including whole-tumor cerebral blood volume (CBV) histograms and patient age. Best classification accuracy was found using PCA at 85% (sensitivity = 89%, specificity = 84%) when reducing the feature vector from 101 (100-bins rCBV histogram + age) to 3 principal components. In comparison, classification accuracy by PCC was 82% (89%, 77%, 2 dimensions) and 79% by ICA (87%, 75%, 9 dimensions). For improved speed (up to 30%) and simplicity, feature reduction by all three methods provided similar classification accuracy to literature values ({proportional_to}87%) while reducing the number of features by up to 98%. (orig.)

  12. An S-Transform and Support Vector Machine (SVM-Based Online Method for Diagnosing Broken Strands in Transmission Lines

    Directory of Open Access Journals (Sweden)

    Caxin Sun

    2011-08-01

    Full Text Available During their long-term outdoor field service, overhead transmission lines will be exposed to strikes by lightning, corrosion by chemical contaminants, ice-shedding, wind vibration of conductors, line galloping, external destructive forces and so on, which will generally cause a series of latent faults such as aluminum strand fracture. This may lead to broken transmission lines which will have a very strong impact on the safe operation of power grids that if the latent faults cannot be recognized and fixed as soon as possible. The detection of broken strands in transmission lines using inspection robots equipped with suitable detectors is a method with good prospects. In this paper, a method for detecting broken strands in transmission lines using an eddy current transducer (ECT carried by a robot is developed, and an approach for identifying broken strands in transmission lines based on an S-transform is proposed. The proposed approach utilizes the S-transform to extract the module and phase information at each frequency point from detection signals. Through module phase and comparison, the characteristic frequency points are ascertained, and the fault information of the detection signal is constructed. The degree of confidence of broken strand identification is defined by the Shannon fuzzy entropy (SFE-BSICD. The proposed approach combines module information while utilizing phase information, SFE-BSICD, and the energy, so the reliability is greatly improved. These characteristic qualities of broken strands in transmission lines are used as the input of a multi-classification SVM, allowing the number of broken strands to be determined. Through experimental field verification, it can be shown that the proposed approach displays high accuracy and the SFE-BSICD is defined reasonably.

  13. SVM-based generalized multifactor dimensionality reduction approaches for detecting gene-gene interactions in family studies.

    Science.gov (United States)

    Fang, Yao-Hwei; Chiu, Yen-Feng

    2012-02-01

    Gene-gene interaction plays an important role in the etiology of complex diseases, which may exist without a genetic main effect. Most current statistical approaches, however, focus on assessing an interaction effect in the presence of the gene's main effects. It would be very helpful to develop methods that can detect not only the gene's main effects but also gene-gene interaction effects regardless of the existence of the gene's main effects while adjusting for confounding factors. In addition, when a disease variant is rare or when the sample size is quite limited, the statistical asymptotic properties are not applicable; therefore, approaches based on a reasonable and applicable computational framework would be practical and frequently applied. In this study, we have developed an extended support vector machine (SVM) method and an SVM-based pedigree-based generalized multifactor dimensionality reduction (PGMDR) method to study interactions in the presence or absence of main effects of genes with an adjustment for covariates using limited samples of families. A new test statistic is proposed for classifying the affected and the unaffected in the SVM-based PGMDR approach to improve performance in detecting gene-gene interactions. Simulation studies under various scenarios have been performed to compare the performances of the proposed and the original methods. The proposed and original approaches have been applied to a real data example for illustration and comparison. Both the simulation and real data studies show that the proposed SVM and SVM-based PGMDR methods have great prediction accuracies, consistencies, and power in detecting gene-gene interactions. © 2012 Wiley Periodicals, Inc.

  14. SVM-based Partial Discharge Pattern Classification for GIS

    Science.gov (United States)

    Ling, Yin; Bai, Demeng; Wang, Menglin; Gong, Xiaojin; Gu, Chao

    2018-01-01

    Partial discharges (PD) occur when there are localized dielectric breakdowns in small regions of gas insulated substations (GIS). It is of high importance to recognize the PD patterns, through which we can diagnose the defects caused by different sources so that predictive maintenance can be conducted to prevent from unplanned power outage. In this paper, we propose an approach to perform partial discharge pattern classification. It first recovers the PRPD matrices from the PRPD2D images; then statistical features are extracted from the recovered PRPD matrix and fed into SVM for classification. Experiments conducted on a dataset containing thousands of images demonstrates the high effectiveness of the method.

  15. SVM-Based Spectral Analysis for Heart Rate from Multi-Channel WPPG Sensor Signals

    Directory of Open Access Journals (Sweden)

    Jiping Xiong

    2017-03-01

    Full Text Available Although wrist-type photoplethysmographic (hereafter referred to as WPPG sensor signals can measure heart rate quite conveniently, the subjects’ hand movements can cause strong motion artifacts, and then the motion artifacts will heavily contaminate WPPG signals. Hence, it is challenging for us to accurately estimate heart rate from WPPG signals during intense physical activities. The WWPG method has attracted more attention thanks to the popularity of wrist-worn wearable devices. In this paper, a mixed approach called Mix-SVM is proposed, it can use multi-channel WPPG sensor signals and simultaneous acceleration signals to measurement heart rate. Firstly, we combine the principle component analysis and adaptive filter to remove a part of the motion artifacts. Due to the strong relativity between motion artifacts and acceleration signals, the further denoising problem is regarded as a sparse signals reconstruction problem. Then, we use a spectrum subtraction method to eliminate motion artifacts effectively. Finally, the spectral peak corresponding to heart rate is sought by an SVM-based spectral analysis method. Through the public PPG database in the 2015 IEEE Signal Processing Cup, we acquire the experimental results, i.e., the average absolute error was 1.01 beat per minute, and the Pearson correlation was 0.9972. These results also confirm that the proposed Mix-SVM approach has potential for multi-channel WPPG-based heart rate estimation in the presence of intense physical exercise.

  16. DisArticle: a web server for SVM-based discrimination of articles on traditional medicine.

    Science.gov (United States)

    Kim, Sang-Kyun; Nam, SeJin; Kim, SangHyun

    2017-01-28

    Much research has been done in Northeast Asia to show the efficacy of traditional medicine. While MEDLINE contains many biomedical articles including those on traditional medicine, it does not categorize those articles by specific research area. The aim of this study was to provide a method that searches for articles only on traditional medicine in Northeast Asia, including traditional Chinese medicine, from among the articles in MEDLINE. This research established an SVM-based classifier model to identify articles on traditional medicine. The TAK + HM classifier, trained with the features of title, abstract, keywords, herbal data, and MeSH, has a precision of 0.954 and a recall of 0.902. In particular, the feature of herbal data significantly increased the performance of the classifier. By using the TAK + HM classifier, a total of about 108,000 articles were discriminated as articles on traditional medicine from among all articles in MEDLINE. We also built a web server called DisArticle ( http://informatics.kiom.re.kr/disarticle ), in which users can search for the articles and obtain statistical data. Because much evidence-based research on traditional medicine has been published in recent years, it has become necessary to search for articles on traditional medicine exclusively in literature databases. DisArticle can help users to search for and analyze the research trends in traditional medicine.

  17. SVM-Based Control System for a Robot Manipulator

    Directory of Open Access Journals (Sweden)

    Foudil Abdessemed

    2012-12-01

    Full Text Available Real systems are usually non-linear, ill-defined, have variable parameters and are subject to external disturbances. Modelling these systems is often an approximation of the physical phenomena involved. However, it is from this approximate system of representation that we propose - in this paper - to build a robust control, in the sense that it must ensure low sensitivity towards parameters, uncertainties, variations and external disturbances. The computed torque method is a well-established robot control technique which takes account of the dynamic coupling between the robot links. However, its main disadvantage lies on the assumption of an exactly known dynamic model which is not realizable in practice. To overcome this issue, we propose the estimation of the dynamics model of the nonlinear system with a machine learning regression method. The output of this regressor is used in conjunction with a PD controller to achieve the tracking trajectory task of a robot manipulator. In cases where some of the parameters of the plant undergo a change in their values, poor performance may result. To cope with this drawback, a fuzzy precompensator is inserted to reinforce the SVM computed torque-based controller and avoid any deterioration. The theory is developed and the simulation results are carried out on a two-degree of freedom robot manipulator to demonstrate the validity of the proposed approach.

  18. In-Vivo Imaging of Cell Migration Using Contrast Enhanced MRI and SVM Based Post-Processing.

    Directory of Open Access Journals (Sweden)

    Christian Weis

    Full Text Available The migration of cells within a living organism can be observed with magnetic resonance imaging (MRI in combination with iron oxide nanoparticles as an intracellular contrast agent. This method, however, suffers from low sensitivity and specificty. Here, we developed a quantitative non-invasive in-vivo cell localization method using contrast enhanced multiparametric MRI and support vector machines (SVM based post-processing. Imaging phantoms consisting of agarose with compartments containing different concentrations of cancer cells labeled with iron oxide nanoparticles were used to train and evaluate the SVM for cell localization. From the magnitude and phase data acquired with a series of T2*-weighted gradient-echo scans at different echo-times, we extracted features that are characteristic for the presence of superparamagnetic nanoparticles, in particular hyper- and hypointensities, relaxation rates, short-range phase perturbations, and perturbation dynamics. High detection quality was achieved by SVM analysis of the multiparametric feature-space. The in-vivo applicability was validated in animal studies. The SVM detected the presence of iron oxide nanoparticles in the imaging phantoms with high specificity and sensitivity with a detection limit of 30 labeled cells per mm3, corresponding to 19 μM of iron oxide. As proof-of-concept, we applied the method to follow the migration of labeled cancer cells injected in rats. The combination of iron oxide labeled cells, multiparametric MRI and a SVM based post processing provides high spatial resolution, specificity, and sensitivity, and is therefore suitable for non-invasive in-vivo cell detection and cell migration studies over prolonged time periods.

  19. Prediction and analysis of protein solubility using a novel scoring card method with dipeptide composition

    Science.gov (United States)

    2012-01-01

    Background Existing methods for predicting protein solubility on overexpression in Escherichia coli advance performance by using ensemble classifiers such as two-stage support vector machine (SVM) based classifiers and a number of feature types such as physicochemical properties, amino acid and dipeptide composition, accompanied with feature selection. It is desirable to develop a simple and easily interpretable method for predicting protein solubility, compared to existing complex SVM-based methods. Results This study proposes a novel scoring card method (SCM) by using dipeptide composition only to estimate solubility scores of sequences for predicting protein solubility. SCM calculates the propensities of 400 individual dipeptides to be soluble using statistic discrimination between soluble and insoluble proteins of a training data set. Consequently, the propensity scores of all dipeptides are further optimized using an intelligent genetic algorithm. The solubility score of a sequence is determined by the weighted sum of all propensity scores and dipeptide composition. To evaluate SCM by performance comparisons, four data sets with different sizes and variation degrees of experimental conditions were used. The results show that the simple method SCM with interpretable propensities of dipeptides has promising performance, compared with existing SVM-based ensemble methods with a number of feature types. Furthermore, the propensities of dipeptides and solubility scores of sequences can provide insights to protein solubility. For example, the analysis of dipeptide scores shows high propensity of α-helix structure and thermophilic proteins to be soluble. Conclusions The propensities of individual dipeptides to be soluble are varied for proteins under altered experimental conditions. For accurately predicting protein solubility using SCM, it is better to customize the score card of dipeptide propensities by using a training data set under the same specified

  20. Robust LS-SVM-based adaptive constrained control for a class of uncertain nonlinear systems with time-varying predefined performance

    Science.gov (United States)

    Luo, Jianjun; Wei, Caisheng; Dai, Honghua; Yuan, Jianping

    2018-03-01

    This paper focuses on robust adaptive control for a class of uncertain nonlinear systems subject to input saturation and external disturbance with guaranteed predefined tracking performance. To reduce the limitations of classical predefined performance control method in the presence of unknown initial tracking errors, a novel predefined performance function with time-varying design parameters is first proposed. Then, aiming at reducing the complexity of nonlinear approximations, only two least-square-support-vector-machine-based (LS-SVM-based) approximators with two design parameters are required through norm form transformation of the original system. Further, a novel LS-SVM-based adaptive constrained control scheme is developed under the time-vary predefined performance using backstepping technique. Wherein, to avoid the tedious analysis and repeated differentiations of virtual control laws in the backstepping technique, a simple and robust finite-time-convergent differentiator is devised to only extract its first-order derivative at each step in the presence of external disturbance. In this sense, the inherent demerit of backstepping technique-;explosion of terms; brought by the recursive virtual controller design is conquered. Moreover, an auxiliary system is designed to compensate the control saturation. Finally, three groups of numerical simulations are employed to validate the effectiveness of the newly developed differentiator and the proposed adaptive constrained control scheme.

  1. PSO-SVM-Based Online Locomotion Mode Identification for Rehabilitation Robotic Exoskeletons.

    Science.gov (United States)

    Long, Yi; Du, Zhi-Jiang; Wang, Wei-Dong; Zhao, Guang-Yu; Xu, Guo-Qiang; He, Long; Mao, Xi-Wang; Dong, Wei

    2016-09-02

    Locomotion mode identification is essential for the control of a robotic rehabilitation exoskeletons. This paper proposes an online support vector machine (SVM) optimized by particle swarm optimization (PSO) to identify different locomotion modes to realize a smooth and automatic locomotion transition. A PSO algorithm is used to obtain the optimal parameters of SVM for a better overall performance. Signals measured by the foot pressure sensors integrated in the insoles of wearable shoes and the MEMS-based attitude and heading reference systems (AHRS) attached on the shoes and shanks of leg segments are fused together as the input information of SVM. Based on the chosen window whose size is 200 ms (with sampling frequency of 40 Hz), a three-layer wavelet packet analysis (WPA) is used for feature extraction, after which, the kernel principal component analysis (kPCA) is utilized to reduce the dimension of the feature set to reduce computation cost of the SVM. Since the signals are from two types of different sensors, the normalization is conducted to scale the input into the interval of [0, 1]. Five-fold cross validation is adapted to train the classifier, which prevents the classifier over-fitting. Based on the SVM model obtained offline in MATLAB, an online SVM algorithm is constructed for locomotion mode identification. Experiments are performed for different locomotion modes and experimental results show the effectiveness of the proposed algorithm with an accuracy of 96.00% ± 2.45%. To improve its accuracy, majority vote algorithm (MVA) is used for post-processing, with which the identification accuracy is better than 98.35% ± 1.65%. The proposed algorithm can be extended and employed in the field of robotic rehabilitation and assistance.

  2. A SVM-based method for sentiment analysis in Persian language

    Science.gov (United States)

    Hajmohammadi, Mohammad Sadegh; Ibrahim, Roliana

    2013-03-01

    Persian language is the official language of Iran, Tajikistan and Afghanistan. Local online users often represent their opinions and experiences on the web with written Persian. Although the information in those reviews is valuable to potential consumers and sellers, the huge amount of web reviews make it difficult to give an unbiased evaluation to a product. In this paper, standard machine learning techniques SVM and naive Bayes are incorporated into the domain of online Persian Movie reviews to automatically classify user reviews as positive or negative and performance of these two classifiers is compared with each other in this language. The effects of feature presentations on classification performance are discussed. We find that accuracy is influenced by interaction between the classification models and the feature options. The SVM classifier achieves as well as or better accuracy than naive Bayes in Persian movie. Unigrams are proved better features than bigrams and trigrams in capturing Persian sentiment orientation.

  3. Epitope prediction methods

    DEFF Research Database (Denmark)

    Karosiene, Edita

    on machine learning techniques. Several MHC class I binding prediction algorithms have been developed and due to their high accuracy they are used by many immunologists to facilitate the conventional experimental process of epitope discovery. However, the accuracy of these methods depends on data defining...... the NetMHCIIpan-3.0 predictor based on artificial neural networks, which is capable of giving binding affinities to any human MHC class II molecule. Chapter 4 of this thesis gives an overview of bioinformatics tools developed by the Immunological Bioinformatics group at Center for Biological Sequence...

  4. Motor degradation prediction methods

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, J.R.; Kelly, J.F.; Delzingaro, M.J.

    1996-12-01

    Motor Operated Valve (MOV) squirrel cage AC motor rotors are susceptible to degradation under certain conditions. Premature failure can result due to high humidity/temperature environments, high running load conditions, extended periods at locked rotor conditions (i.e. > 15 seconds) or exceeding the motor`s duty cycle by frequent starts or multiple valve stroking. Exposure to high heat and moisture due to packing leaks, pressure seal ring leakage or other causes can significantly accelerate the degradation. ComEd and Liberty Technologies have worked together to provide and validate a non-intrusive method using motor power diagnostics to evaluate MOV rotor condition and predict failure. These techniques have provided a quick, low radiation dose method to evaluate inaccessible motors, identify degradation and allow scheduled replacement of motors prior to catastrophic failures.

  5. Motor degradation prediction methods

    International Nuclear Information System (INIS)

    Arnold, J.R.; Kelly, J.F.; Delzingaro, M.J.

    1996-01-01

    Motor Operated Valve (MOV) squirrel cage AC motor rotors are susceptible to degradation under certain conditions. Premature failure can result due to high humidity/temperature environments, high running load conditions, extended periods at locked rotor conditions (i.e. > 15 seconds) or exceeding the motor's duty cycle by frequent starts or multiple valve stroking. Exposure to high heat and moisture due to packing leaks, pressure seal ring leakage or other causes can significantly accelerate the degradation. ComEd and Liberty Technologies have worked together to provide and validate a non-intrusive method using motor power diagnostics to evaluate MOV rotor condition and predict failure. These techniques have provided a quick, low radiation dose method to evaluate inaccessible motors, identify degradation and allow scheduled replacement of motors prior to catastrophic failures

  6. Prediction of interactions between viral and host proteins using supervised machine learning methods.

    Directory of Open Access Journals (Sweden)

    Ranjan Kumar Barman

    Full Text Available BACKGROUND: Viral-host protein-protein interaction plays a vital role in pathogenesis, since it defines viral infection of the host and regulation of the host proteins. Identification of key viral-host protein-protein interactions (PPIs has great implication for therapeutics. METHODS: In this study, a systematic attempt has been made to predict viral-host PPIs by integrating different features, including domain-domain association, network topology and sequence information using viral-host PPIs from VirusMINT. The three well-known supervised machine learning methods, such as SVM, Naïve Bayes and Random Forest, which are commonly used in the prediction of PPIs, were employed to evaluate the performance measure based on five-fold cross validation techniques. RESULTS: Out of 44 descriptors, best features were found to be domain-domain association and methionine, serine and valine amino acid composition of viral proteins. In this study, SVM-based method achieved better sensitivity of 67% over Naïve Bayes (37.49% and Random Forest (55.66%. However the specificity of Naïve Bayes was the highest (99.52% as compared with SVM (74% and Random Forest (89.08%. Overall, the SVM and Random Forest achieved accuracy of 71% and 72.41%, respectively. The proposed SVM-based method was evaluated on blind dataset and attained a sensitivity of 64%, specificity of 83%, and accuracy of 74%. In addition, unknown potential targets of hepatitis B virus-human and hepatitis E virus-human PPIs have been predicted through proposed SVM model and validated by gene ontology enrichment analysis. Our proposed model shows that, hepatitis B virus "C protein" binds to membrane docking protein, while "X protein" and "P protein" interacts with cell-killing and metabolic process proteins, respectively. CONCLUSION: The proposed method can predict large scale interspecies viral-human PPIs. The nature and function of unknown viral proteins (HBV and HEV, interacting partners of host

  7. Prediction method abstracts

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    This conference was held December 4--8, 1994 in Asilomar, California. The purpose of this meeting was to provide a forum for exchange of state-of-the-art information concerning the prediction of protein structure. Attention if focused on the following: comparative modeling; sequence to fold assignment; and ab initio folding.

  8. Online Adaptive Error Compensation SVM-Based Sliding Mode Control of an Unmanned Aerial Vehicle

    Directory of Open Access Journals (Sweden)

    Kaijia Xue

    2016-01-01

    Full Text Available Unmanned Aerial Vehicle (UAV is a nonlinear dynamic system with uncertainties and noises. Therefore, an appropriate control system has an obligation to ensure the stabilization and navigation of UAV. This paper mainly discusses the control problem of quad-rotor UAV system, which is influenced by unknown parameters and noises. Besides, a sliding mode control based on online adaptive error compensation support vector machine (SVM is proposed for stabilizing quad-rotor UAV system. Sliding mode controller is established through analyzing quad-rotor dynamics model in which the unknown parameters are computed by offline SVM. During this process, the online adaptive error compensation SVM method is applied in this paper. As modeling errors and noises both exist in the process of flight, the offline SVM one-time mode cannot predict the uncertainties and noises accurately. The control law is adjusted in real-time by introducing new training sample data to online adaptive SVM in the control process, so that the stability and robustness of flight are ensured. It can be demonstrated through the simulation experiments that the UAV that joined online adaptive SVM can track the changing path faster according to its dynamic model. Consequently, the proposed method that is proved has the better control effect in the UAV system.

  9. Recurrence predictive models for patients with hepatocellular carcinoma after radiofrequency ablation using support vector machines with feature selection methods.

    Science.gov (United States)

    Liang, Ja-Der; Ping, Xiao-Ou; Tseng, Yi-Ju; Huang, Guan-Tarn; Lai, Feipei; Yang, Pei-Ming

    2014-12-01

    Recurrence of hepatocellular carcinoma (HCC) is an important issue despite effective treatments with tumor eradication. Identification of patients who are at high risk for recurrence may provide more efficacious screening and detection of tumor recurrence. The aim of this study was to develop recurrence predictive models for HCC patients who received radiofrequency ablation (RFA) treatment. From January 2007 to December 2009, 83 newly diagnosed HCC patients receiving RFA as their first treatment were enrolled. Five feature selection methods including genetic algorithm (GA), simulated annealing (SA) algorithm, random forests (RF) and hybrid methods (GA+RF and SA+RF) were utilized for selecting an important subset of features from a total of 16 clinical features. These feature selection methods were combined with support vector machine (SVM) for developing predictive models with better performance. Five-fold cross-validation was used to train and test SVM models. The developed SVM-based predictive models with hybrid feature selection methods and 5-fold cross-validation had averages of the sensitivity, specificity, accuracy, positive predictive value, negative predictive value, and area under the ROC curve as 67%, 86%, 82%, 69%, 90%, and 0.69, respectively. The SVM derived predictive model can provide suggestive high-risk recurrent patients, who should be closely followed up after complete RFA treatment. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  10. An SVM-Based Classifier for Estimating the State of Various Rotating Components in Agro-Industrial Machinery with a Vibration Signal Acquired from a Single Point on the Machine Chassis

    Directory of Open Access Journals (Sweden)

    Ruben Ruiz-Gonzalez

    2014-11-01

    Full Text Available The goal of this article is to assess the feasibility of estimating the state of various rotating components in agro-industrial machinery by employing just one vibration signal acquired from a single point on the machine chassis. To do so, a Support Vector Machine (SVM-based system is employed. Experimental tests evaluated this system by acquiring vibration data from a single point of an agricultural harvester, while varying several of its working conditions. The whole process included two major steps. Initially, the vibration data were preprocessed through twelve feature extraction algorithms, after which the Exhaustive Search method selected the most suitable features. Secondly, the SVM-based system accuracy was evaluated by using Leave-One-Out cross-validation, with the selected features as the input data. The results of this study provide evidence that (i accurate estimation of the status of various rotating components in agro-industrial machinery is possible by processing the vibration signal acquired from a single point on the machine structure; (ii the vibration signal can be acquired with a uniaxial accelerometer, the orientation of which does not significantly affect the classification accuracy; and, (iii when using an SVM classifier, an 85% mean cross-validation accuracy can be reached, which only requires a maximum of seven features as its input, and no significant improvements are noted between the use of either nonlinear or linear kernels.

  11. SVM-Based Dynamic Reconfiguration CPS for Manufacturing System in Industry 4.0

    Directory of Open Access Journals (Sweden)

    Hyun-Jun Shin

    2018-01-01

    Full Text Available CPS is potential application in various fields, such as medical, healthcare, energy, transportation, and defense, as well as Industry 4.0 in Germany. Although studies on the equipment aging and prediction of problem have been done by combining CPS with Industry 4.0, such studies were based on small numbers and majority of the papers focused primarily on CPS methodology. Therefore, it is necessary to study active self-protection to enable self-management functions, such as self-healing by applying CPS in shop-floor. In this paper, we have proposed modeling of shop-floor and a dynamic reconfigurable CPS scheme that can predict the occurrence of anomalies and self-protection in the model. For this purpose, SVM was used as a machine learning technology and it was possible to restrain overloading in manufacturing process. In addition, we design CPS framework based on machine learning for Industry 4.0, simulate it, and perform. Simulation results show the simulation model autonomously detects the abnormal situation and it is dynamically reconfigured through self-healing.

  12. SVM-based feature extraction and classification of aflatoxin contaminated corn using fluorescence hyperspectral data

    Science.gov (United States)

    Support Vector Machine (SVM) was used in the Genetic Algorithms (GA) process to select and classify a subset of hyperspectral image bands. The method was applied to fluorescence hyperspectral data for the detection of aflatoxin contamination in Aspergillus flavus infected single corn kernels. In the...

  13. Detection of Alzheimer's disease using group lasso SVM-based region selection

    Science.gov (United States)

    Sun, Zhuo; Fan, Yong; Lelieveldt, Boudewijn P. F.; van de Giessen, Martijn

    2015-03-01

    Alzheimer's disease (AD) is one of the most frequent forms of dementia and an increasing challenging public health problem. In the last two decades, structural magnetic resonance imaging (MRI) has shown potential in distinguishing patients with Alzheimer's disease and elderly controls (CN). To obtain AD-specific biomarkers, previous research used either statistical testing to find statistically significant different regions between the two clinical groups, or l1 sparse learning to select isolated features in the image domain. In this paper, we propose a new framework that uses structural MRI to simultaneously distinguish the two clinical groups and find the bio-markers of AD, using a group lasso support vector machine (SVM). The group lasso term (mixed l1- l2 norm) introduces anatomical information from the image domain into the feature domain, such that the resulting set of selected voxels are more meaningful than the l1 sparse SVM. Because of large inter-structure size variation, we introduce a group specific normalization factor to deal with the structure size bias. Experiments have been performed on a well-designed AD vs. CN dataset1 to validate our method. Comparing to the l1 sparse SVM approach, our method achieved better classification performance and a more meaningful biomarker selection. When we vary the training set, the selected regions by our method were more stable than the l1 sparse SVM. Classification experiments showed that our group normalization lead to higher classification accuracy with fewer selected regions than the non-normalized method. Comparing to the state-of-art AD vs. CN classification methods, our approach not only obtains a high accuracy with the same dataset, but more importantly, we simultaneously find the brain anatomies that are closely related to the disease.

  14. Automatic epileptic seizure detection in EEGs using MF-DFA, SVM based on cloud computing.

    Science.gov (United States)

    Zhang, Zhongnan; Wen, Tingxi; Huang, Wei; Wang, Meihong; Li, Chunfeng

    2017-01-01

    Epilepsy is a chronic disease with transient brain dysfunction that results from the sudden abnormal discharge of neurons in the brain. Since electroencephalogram (EEG) is a harmless and noninvasive detection method, it plays an important role in the detection of neurological diseases. However, the process of analyzing EEG to detect neurological diseases is often difficult because the brain electrical signals are random, non-stationary and nonlinear. In order to overcome such difficulty, this study aims to develop a new computer-aided scheme for automatic epileptic seizure detection in EEGs based on multi-fractal detrended fluctuation analysis (MF-DFA) and support vector machine (SVM). New scheme first extracts features from EEG by MF-DFA during the first stage. Then, the scheme applies a genetic algorithm (GA) to calculate parameters used in SVM and classify the training data according to the selected features using SVM. Finally, the trained SVM classifier is exploited to detect neurological diseases. The algorithm utilizes MLlib from library of SPARK and runs on cloud platform. Applying to a public dataset for experiment, the study results show that the new feature extraction method and scheme can detect signals with less features and the accuracy of the classification reached up to 99%. MF-DFA is a promising approach to extract features for analyzing EEG, because of its simple algorithm procedure and less parameters. The features obtained by MF-DFA can represent samples as well as traditional wavelet transform and Lyapunov exponents. GA can always find useful parameters for SVM with enough execution time. The results illustrate that the classification model can achieve comparable accuracy, which means that it is effective in epileptic seizure detection.

  15. Methodology for selection of attributes and operating conditions for SVM-Based fault locator's

    Directory of Open Access Journals (Sweden)

    Debbie Johan Arredondo Arteaga

    2017-01-01

    Full Text Available Context: Energy distribution companies must employ strategies to meet their timely and high quality service, and fault-locating techniques represent and agile alternative for restoring the electric service in the power distribution due to the size of distribution services (generally large and the usual interruptions in the service. However, these techniques are not robust enough and present some limitations in both computational cost and the mathematical description of the models they use. Method: This paper performs an analysis based on a Support Vector Machine for the evaluation of the proper conditions to adjust and validate a fault locator for distribution systems; so that it is possible to determine the minimum number of operating conditions that allow to achieve a good performance with a low computational effort. Results: We tested the proposed methodology in a prototypical distribution circuit, located in a rural area of Colombia. This circuit has a voltage of 34.5 KV and is subdivided in 20 zones. Additionally, the characteristics of the circuit allowed us to obtain a database of 630.000 records of single-phase faults and different operating conditions. As a result, we could determine that the locator showed a performance above 98% with 200 suitable selected operating conditions. Conclusions: It is possible to improve the performance of fault locators based on Support Vector Machine. Specifically, these improvements are achieved by properly selecting optimal operating conditions and attributes, since they directly affect the performance in terms of efficiency and the computational cost.

  16. SVM-based synthetic fingerprint discrimination algorithm and quantitative optimization strategy.

    Science.gov (United States)

    Chen, Suhang; Chang, Sheng; Huang, Qijun; He, Jin; Wang, Hao; Huang, Qiangui

    2014-01-01

    Synthetic fingerprints are a potential threat to automatic fingerprint identification systems (AFISs). In this paper, we propose an algorithm to discriminate synthetic fingerprints from real ones. First, four typical characteristic factors-the ridge distance features, global gray features, frequency feature and Harris Corner feature-are extracted. Then, a support vector machine (SVM) is used to distinguish synthetic fingerprints from real fingerprints. The experiments demonstrate that this method can achieve a recognition accuracy rate of over 98% for two discrete synthetic fingerprint databases as well as a mixed database. Furthermore, a performance factor that can evaluate the SVM's accuracy and efficiency is presented, and a quantitative optimization strategy is established for the first time. After the optimization of our synthetic fingerprint discrimination task, the polynomial kernel with a training sample proportion of 5% is the optimized value when the minimum accuracy requirement is 95%. The radial basis function (RBF) kernel with a training sample proportion of 15% is a more suitable choice when the minimum accuracy requirement is 98%.

  17. Ensemble method for dengue prediction.

    Science.gov (United States)

    Buczak, Anna L; Baugher, Benjamin; Moniz, Linda J; Bagley, Thomas; Babin, Steven M; Guven, Erhan

    2018-01-01

    In the 2015 NOAA Dengue Challenge, participants made three dengue target predictions for two locations (Iquitos, Peru, and San Juan, Puerto Rico) during four dengue seasons: 1) peak height (i.e., maximum weekly number of cases during a transmission season; 2) peak week (i.e., week in which the maximum weekly number of cases occurred); and 3) total number of cases reported during a transmission season. A dengue transmission season is the 12-month period commencing with the location-specific, historical week with the lowest number of cases. At the beginning of the Dengue Challenge, participants were provided with the same input data for developing the models, with the prediction testing data provided at a later date. Our approach used ensemble models created by combining three disparate types of component models: 1) two-dimensional Method of Analogues models incorporating both dengue and climate data; 2) additive seasonal Holt-Winters models with and without wavelet smoothing; and 3) simple historical models. Of the individual component models created, those with the best performance on the prior four years of data were incorporated into the ensemble models. There were separate ensembles for predicting each of the three targets at each of the two locations. Our ensemble models scored higher for peak height and total dengue case counts reported in a transmission season for Iquitos than all other models submitted to the Dengue Challenge. However, the ensemble models did not do nearly as well when predicting the peak week. The Dengue Challenge organizers scored the dengue predictions of the Challenge participant groups. Our ensemble approach was the best in predicting the total number of dengue cases reported for transmission season and peak height for Iquitos, Peru.

  18. YamiPred: A novel evolutionary method for predicting pre-miRNAs and selecting relevant features

    KAUST Repository

    Kleftogiannis, Dimitrios A.

    2015-01-23

    MicroRNAs (miRNAs) are small non-coding RNAs, which play a significant role in gene regulation. Predicting miRNA genes is a challenging bioinformatics problem and existing experimental and computational methods fail to deal with it effectively. We developed YamiPred, an embedded classification method that combines the efficiency and robustness of Support Vector Machines (SVM) with Genetic Algorithms (GA) for feature selection and parameters optimization. YamiPred was tested in a new and realistic human dataset and was compared with state-of-the-art computational intelligence approaches and the prevalent SVM-based tools for miRNA prediction. Experimental results indicate that YamiPred outperforms existing approaches in terms of accuracy and of geometric mean of sensitivity and specificity. The embedded feature selection component selects a compact feature subset that contributes to the performance optimization. Further experimentation with this minimal feature subset has achieved very high classification performance and revealed the minimum number of samples required for developing a robust predictor. YamiPred also confirmed the important role of commonly used features such as entropy and enthalpy, and uncovered the significance of newly introduced features, such as %A-U aggregate nucleotide frequency and positional entropy. The best model trained on human data has successfully predicted pre-miRNAs to other organisms including the category of viruses.

  19. A DWT and SVM based method for rolling element bearing fault diagnosis and its comparison with Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Sunil Tyagi

    2017-04-01

    Full Text Available A classification technique using Support Vector Machine (SVM classifier for detection of rolling element bearing fault is presented here.  The SVM was fed from features that were extracted from of vibration signals obtained from experimental setup consisting of rotating driveline that was mounted on rolling element bearings which were run in normal and with artificially faults induced conditions. The time-domain vibration signals were divided into 40 segments and simple features such as peaks in time domain and spectrum along with statistical features such as standard deviation, skewness, kurtosis etc. were extracted. Effectiveness of SVM classifier was compared with the performance of Artificial Neural Network (ANN classifier and it was found that the performance of SVM classifier is superior to that of ANN. The effect of pre-processing of the vibration signal by Discreet Wavelet Transform (DWT prior to feature extraction is also studied and it is shown that pre-processing of vibration signal with DWT enhances the effectiveness of both ANN and SVM classifiers. It has been demonstrated from experiment results that performance of SVM classifier is better than ANN in detection of bearing condition and pre-processing the vibration signal with DWT improves the performance of SVM classifier.

  20. Candidate Prediction Models and Methods

    DEFF Research Database (Denmark)

    Nielsen, Henrik Aalborg; Nielsen, Torben Skov; Madsen, Henrik

    2005-01-01

    This document lists candidate prediction models for Work Package 3 (WP3) of the PSO-project called ``Intelligent wind power prediction systems'' (FU4101). The main focus is on the models transforming numerical weather predictions into predictions of power production. The document also outlines...

  1. Hybrid Model for Early Onset Prediction of Driver Fatigue with Observable Cues

    Directory of Open Access Journals (Sweden)

    Mingheng Zhang

    2014-01-01

    Full Text Available This paper presents a hybrid model for early onset prediction of driver fatigue, which is the major reason of severe traffic accidents. The proposed method divides the prediction problem into three stages, that is, SVM-based model for predicting the early onset driver fatigue state, GA-based model for optimizing the parameters in the SVM, and PCA-based model for reducing the dimensionality of the complex features datasets. The model and algorithm are illustrated with driving experiment data and comparison results also show that the hybrid method can generally provide a better performance for driver fatigue state prediction.

  2. Prediction of Banking Systemic Risk Based on Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Shouwei Li

    2013-01-01

    Full Text Available Banking systemic risk is a complex nonlinear phenomenon and has shed light on the importance of safeguarding financial stability by recent financial crisis. According to the complex nonlinear characteristics of banking systemic risk, in this paper we apply support vector machine (SVM to the prediction of banking systemic risk in an attempt to suggest a new model with better explanatory power and stability. We conduct a case study of an SVM-based prediction model for Chinese banking systemic risk and find the experiment results showing that support vector machine is an efficient method in such case.

  3. NEURAL METHODS FOR THE FINANCIAL PREDICTION

    Directory of Open Access Journals (Sweden)

    Jerzy Balicki

    2016-06-01

    Full Text Available Artificial neural networks can be used to predict share investment on the stock market, assess the reliability of credit client or predicting banking crises. Moreover, this paper discusses the principles of cooperation neural network algorithms with evolutionary method, and support vector machines. In addition, a reference is made to other methods of artificial intelligence, which are used in finance prediction.

  4. Machine learning methods for metabolic pathway prediction

    Directory of Open Access Journals (Sweden)

    Karp Peter D

    2010-01-01

    Full Text Available Abstract Background A key challenge in systems biology is the reconstruction of an organism's metabolic network from its genome sequence. One strategy for addressing this problem is to predict which metabolic pathways, from a reference database of known pathways, are present in the organism, based on the annotated genome of the organism. Results To quantitatively validate methods for pathway prediction, we developed a large "gold standard" dataset of 5,610 pathway instances known to be present or absent in curated metabolic pathway databases for six organisms. We defined a collection of 123 pathway features, whose information content we evaluated with respect to the gold standard. Feature data were used as input to an extensive collection of machine learning (ML methods, including naïve Bayes, decision trees, and logistic regression, together with feature selection and ensemble methods. We compared the ML methods to the previous PathoLogic algorithm for pathway prediction using the gold standard dataset. We found that ML-based prediction methods can match the performance of the PathoLogic algorithm. PathoLogic achieved an accuracy of 91% and an F-measure of 0.786. The ML-based prediction methods achieved accuracy as high as 91.2% and F-measure as high as 0.787. The ML-based methods output a probability for each predicted pathway, whereas PathoLogic does not, which provides more information to the user and facilitates filtering of predicted pathways. Conclusions ML methods for pathway prediction perform as well as existing methods, and have qualitative advantages in terms of extensibility, tunability, and explainability. More advanced prediction methods and/or more sophisticated input features may improve the performance of ML methods. However, pathway prediction performance appears to be limited largely by the ability to correctly match enzymes to the reactions they catalyze based on genome annotations.

  5. Machine learning methods for metabolic pathway prediction

    Science.gov (United States)

    2010-01-01

    Background A key challenge in systems biology is the reconstruction of an organism's metabolic network from its genome sequence. One strategy for addressing this problem is to predict which metabolic pathways, from a reference database of known pathways, are present in the organism, based on the annotated genome of the organism. Results To quantitatively validate methods for pathway prediction, we developed a large "gold standard" dataset of 5,610 pathway instances known to be present or absent in curated metabolic pathway databases for six organisms. We defined a collection of 123 pathway features, whose information content we evaluated with respect to the gold standard. Feature data were used as input to an extensive collection of machine learning (ML) methods, including naïve Bayes, decision trees, and logistic regression, together with feature selection and ensemble methods. We compared the ML methods to the previous PathoLogic algorithm for pathway prediction using the gold standard dataset. We found that ML-based prediction methods can match the performance of the PathoLogic algorithm. PathoLogic achieved an accuracy of 91% and an F-measure of 0.786. The ML-based prediction methods achieved accuracy as high as 91.2% and F-measure as high as 0.787. The ML-based methods output a probability for each predicted pathway, whereas PathoLogic does not, which provides more information to the user and facilitates filtering of predicted pathways. Conclusions ML methods for pathway prediction perform as well as existing methods, and have qualitative advantages in terms of extensibility, tunability, and explainability. More advanced prediction methods and/or more sophisticated input features may improve the performance of ML methods. However, pathway prediction performance appears to be limited largely by the ability to correctly match enzymes to the reactions they catalyze based on genome annotations. PMID:20064214

  6. Protein structure prediction using hybrid AI methods

    Energy Technology Data Exchange (ETDEWEB)

    Guan, X.; Mural, R.J.; Uberbacher, E.C.

    1993-11-01

    This paper describes a new approach for predicting protein structures based on Artificial Intelligence methods and genetic algorithms. We combine nearest neighbor searching algorithms, neural networks, heuristic rules and genetic algorithms to form an integrated system to predict protein structures from their primary amino acid sequences. First we describe our methods and how they are integrated, and then apply our methods to several protein sequences. The results are very close to the real structures obtained by crystallography. Parallel genetic algorithms are also implemented.

  7. Generalised empirical method for predicting surface subsidence

    International Nuclear Information System (INIS)

    Zhang, M.; Bhattacharyya, A.K.

    1994-01-01

    Based on a simplified strata parameter, i.e. the ratio of total thickness of the strong rock beds in an overburden to the overall thickness of the overburden, a Generalised Empirical Method (GEM) is described for predicting the maximum subsidence and the shape of a complete transverse subsidence profile due to a single completely extracted longwall panel. In the method, a nomogram for predicting the maximum surface subsidence is first developed from the data collected from subsidence measurements worldwide. Then, a method is developed for predicting the shapes of complete transfer subsidence profiles for a horizontal seam and ground surface and is verified by case studies. 13 refs., 9 figs., 2 tabs

  8. Evaluation of protein dihedral angle prediction methods.

    Directory of Open Access Journals (Sweden)

    Harinder Singh

    Full Text Available Tertiary structure prediction of a protein from its amino acid sequence is one of the major challenges in the field of bioinformatics. Hierarchical approach is one of the persuasive techniques used for predicting protein tertiary structure, especially in the absence of homologous protein structures. In hierarchical approach, intermediate states are predicted like secondary structure, dihedral angles, Cα-Cα distance bounds, etc. These intermediate states are used to restraint the protein backbone and assist its correct folding. In the recent years, several methods have been developed for predicting dihedral angles of a protein, but it is difficult to conclude which method is better than others. In this study, we benchmarked the performance of dihedral prediction methods ANGLOR and SPINE X on various datasets, including independent datasets. TANGLE dihedral prediction method was not benchmarked (due to unavailability of its standalone and was compared with SPINE X and ANGLOR on only ANGLOR dataset on which TANGLE has reported its results. It was observed that SPINE X performed better than ANGLOR and TANGLE, especially in case of prediction of dihedral angles of glycine and proline residues. The analysis suggested that angle shifting was the foremost reason of better performance of SPINE X. We further evaluated the performance of the methods on independent ccPDB30 dataset and observed that SPINE X performed better than ANGLOR.

  9. Prediction methods and databases within chemoinformatics

    DEFF Research Database (Denmark)

    Jónsdóttir, Svava Osk; Jørgensen, Flemming Steen; Brunak, Søren

    2005-01-01

    MOTIVATION: To gather information about available databases and chemoinformatics methods for prediction of properties relevant to the drug discovery and optimization process. RESULTS: We present an overview of the most important databases with 2-dimensional and 3-dimensional structural information...... about drugs and drug candidates, and of databases with relevant properties. Access to experimental data and numerical methods for selecting and utilizing these data is crucial for developing accurate predictive in silico models. Many interesting predictive methods for classifying the suitability...... of chemical compounds as potential drugs, as well as for predicting their physico-chemical and ADMET properties have been proposed in recent years. These methods are discussed, and some possible future directions in this rapidly developing field are described....

  10. A method for predicting monthly rainfall patterns

    International Nuclear Information System (INIS)

    Njau, E.C.

    1987-11-01

    A brief survey is made of previous methods that have been used to predict rainfall trends or drought spells in different parts of the earth. The basic methodologies or theoretical strategies used in these methods are compared with contents of a recent theory of Sun-Weather/Climate links (Njau, 1985a; 1985b; 1986; 1987a; 1987b; 1987c) which point towards the possibility of practical climatic predictions. It is shown that not only is the theoretical basis of each of these methodologies or strategies fully incorporated into the above-named theory, but also this theory may be used to develop a technique by which future monthly rainfall patterns can be predicted in further and finer details. We describe the latter technique and then illustrate its workability by means of predictions made on monthly rainfall patterns in some East African meteorological stations. (author). 43 refs, 11 figs, 2 tabs

  11. Multi-class clustering of cancer subtypes through SVM based ensemble of pareto-optimal solutions for gene marker identification.

    Science.gov (United States)

    Mukhopadhyay, Anirban; Bandyopadhyay, Sanghamitra; Maulik, Ujjwal

    2010-11-12

    With the advancement of microarray technology, it is now possible to study the expression profiles of thousands of genes across different experimental conditions or tissue samples simultaneously. Microarray cancer datasets, organized as samples versus genes fashion, are being used for classification of tissue samples into benign and malignant or their subtypes. They are also useful for identifying potential gene markers for each cancer subtype, which helps in successful diagnosis of particular cancer types. In this article, we have presented an unsupervised cancer classification technique based on multiobjective genetic clustering of the tissue samples. In this regard, a real-coded encoding of the cluster centers is used and cluster compactness and separation are simultaneously optimized. The resultant set of near-Pareto-optimal solutions contains a number of non-dominated solutions. A novel approach to combine the clustering information possessed by the non-dominated solutions through Support Vector Machine (SVM) classifier has been proposed. Final clustering is obtained by consensus among the clusterings yielded by different kernel functions. The performance of the proposed multiobjective clustering method has been compared with that of several other microarray clustering algorithms for three publicly available benchmark cancer datasets. Moreover, statistical significance tests have been conducted to establish the statistical superiority of the proposed clustering method. Furthermore, relevant gene markers have been identified using the clustering result produced by the proposed clustering method and demonstrated visually. Biological relationships among the gene markers are also studied based on gene ontology. The results obtained are found to be promising and can possibly have important impact in the area of unsupervised cancer classification as well as gene marker identification for multiple cancer subtypes.

  12. Epileptic Seizures Prediction Using Machine Learning Methods

    Directory of Open Access Journals (Sweden)

    Syed Muhammad Usman

    2017-01-01

    Full Text Available Epileptic seizures occur due to disorder in brain functionality which can affect patient’s health. Prediction of epileptic seizures before the beginning of the onset is quite useful for preventing the seizure by medication. Machine learning techniques and computational methods are used for predicting epileptic seizures from Electroencephalograms (EEG signals. However, preprocessing of EEG signals for noise removal and features extraction are two major issues that have an adverse effect on both anticipation time and true positive prediction rate. Therefore, we propose a model that provides reliable methods of both preprocessing and feature extraction. Our model predicts epileptic seizures’ sufficient time before the onset of seizure starts and provides a better true positive rate. We have applied empirical mode decomposition (EMD for preprocessing and have extracted time and frequency domain features for training a prediction model. The proposed model detects the start of the preictal state, which is the state that starts few minutes before the onset of the seizure, with a higher true positive rate compared to traditional methods, 92.23%, and maximum anticipation time of 33 minutes and average prediction time of 23.6 minutes on scalp EEG CHB-MIT dataset of 22 subjects.

  13. Machine learning techniques in disease forecasting: a case study on rice blast prediction

    Directory of Open Access Journals (Sweden)

    Kapoor Amar S

    2006-11-01

    Full Text Available Abstract Background Diverse modeling approaches viz. neural networks and multiple regression have been followed to date for disease prediction in plant populations. However, due to their inability to predict value of unknown data points and longer training times, there is need for exploiting new prediction softwares for better understanding of plant-pathogen-environment relationships. Further, there is no online tool available which can help the plant researchers or farmers in timely application of control measures. This paper introduces a new prediction approach based on support vector machines for developing weather-based prediction models of plant diseases. Results Six significant weather variables were selected as predictor variables. Two series of models (cross-location and cross-year were developed and validated using a five-fold cross validation procedure. For cross-year models, the conventional multiple regression (REG approach achieved an average correlation coefficient (r of 0.50, which increased to 0.60 and percent mean absolute error (%MAE decreased from 65.42 to 52.24 when back-propagation neural network (BPNN was used. With generalized regression neural network (GRNN, the r increased to 0.70 and %MAE also improved to 46.30, which further increased to r = 0.77 and %MAE = 36.66 when support vector machine (SVM based method was used. Similarly, cross-location validation achieved r = 0.48, 0.56 and 0.66 using REG, BPNN and GRNN respectively, with their corresponding %MAE as 77.54, 66.11 and 58.26. The SVM-based method outperformed all the three approaches by further increasing r to 0.74 with improvement in %MAE to 44.12. Overall, this SVM-based prediction approach will open new vistas in the area of forecasting plant diseases of various crops. Conclusion Our case study demonstrated that SVM is better than existing machine learning techniques and conventional REG approaches in forecasting plant diseases. In this direction, we have also

  14. a Comparison Study of Different Kernel Functions for Svm-Based Classification of Multi-Temporal Polarimetry SAR Data

    Science.gov (United States)

    Yekkehkhany, B.; Safari, A.; Homayouni, S.; Hasanlou, M.

    2014-10-01

    In this paper, a framework is developed based on Support Vector Machines (SVM) for crop classification using polarimetric features extracted from multi-temporal Synthetic Aperture Radar (SAR) imageries. The multi-temporal integration of data not only improves the overall retrieval accuracy but also provides more reliable estimates with respect to single-date data. Several kernel functions are employed and compared in this study for mapping the input space to higher Hilbert dimension space. These kernel functions include linear, polynomials and Radial Based Function (RBF). The method is applied to several UAVSAR L-band SAR images acquired over an agricultural area near Winnipeg, Manitoba, Canada. In this research, the temporal alpha features of H/A/α decomposition method are used in classification. The experimental tests show an SVM classifier with RBF kernel for three dates of data increases the Overall Accuracy (OA) to up to 3% in comparison to using linear kernel function, and up to 1% in comparison to a 3rd degree polynomial kernel function.

  15. Investigation into Methods for Predicting Connection Temperatures

    Directory of Open Access Journals (Sweden)

    K. Anderson

    2009-01-01

    Full Text Available The mechanical response of connections in fire is largely based on material strength degradation and the interactions between the various components of the connection. In order to predict connection performance in fire, temperature profiles must initially be established in order to evaluate the material strength degradation over time. This paper examines two current methods for predicting connection temperatures: The percentage method, where connection temperatures are calculated as a percentage of the adjacent beam lower-flange, mid-span temperatures; and the lumped capacitance method, based on the lumped mass of the connection. Results from the percentage method do not correlate well with experimental results, whereas the lumped capacitance method shows much better agreement with average connection temperatures. A 3D finite element heat transfer model was also created in Abaqus, and showed good correlation with experimental results. 

  16. Prediction Methods for Blood Glucose Concentration

    DEFF Research Database (Denmark)

    “Recent Results on Glucose–Insulin Predictions by Means of a State Observer for Time-Delay Systems” by Pasquale Palumbo et al. introduces a prediction model which in real time predicts the insulin concentration in blood which in turn is used in a control system. The method is tested in simulation......Standard diabetes insulin therapy for type 1 diabetes and late stages of type 2 is based on the expected development of blood glucose (BG) both as a consequence of the metabolic glucose consumption as well as of meals and exogenous insulin intake. Traditionally, this is not done explicitly......, but the insulin amount is chosen using factors that account for this expectation. The increasing availability of more accurate continuous blood glucose measurement (CGM) systems is attracting much interest to the possibilities of explicit prediction of future BG values. Against this background, in 2014 a two...

  17. New prediction methods for collaborative filtering

    Directory of Open Access Journals (Sweden)

    Hasan BULUT

    2016-05-01

    Full Text Available Companies, in particular e-commerce companies, aims to increase customer satisfaction, hence in turn increase their profits, using recommender systems. Recommender Systems are widely used nowadays and they provide strategic advantages to the companies that use them. These systems consist of different stages. In the first stage, the similarities between the active user and other users are computed using the user-product ratings matrix. Then, the neighbors of the active user are found from these similarities. In prediction calculation stage, the similarities computed at the first stage are used to generate the weight vector of the closer neighbors. Neighbors affect the prediction value by the corresponding value of the weight vector. In this study, we developed two new methods for the prediction calculation stage which is the last stage of collaborative filtering. The performance of these methods are measured with evaluation metrics used in the literature and compared with other studies in this field.

  18. On some methods for assessing earthquake predictions

    Science.gov (United States)

    Molchan, G.; Romashkova, L.; Peresan, A.

    2017-09-01

    A regional approach to the problem of assessing earthquake predictions inevitably faces a deficit of data. We point out some basic limits of assessment methods reported in the literature, considering the practical case of the performance of the CN pattern recognition method in the prediction of large Italian earthquakes. Along with the classical hypothesis testing, a new game approach, the so-called parimutuel gambling (PG) method, is examined. The PG, originally proposed for the evaluation of the probabilistic earthquake forecast, has been recently adapted for the case of 'alarm-based' CN prediction. The PG approach is a non-standard method; therefore it deserves careful examination and theoretical analysis. We show that the PG alarm-based version leads to an almost complete loss of information about predicted earthquakes (even for a large sample). As a result, any conclusions based on the alarm-based PG approach are not to be trusted. We also show that the original probabilistic PG approach does not necessarily identifies the genuine forecast correctly among competing seismicity rate models, even when applied to extensive data.

  19. Research on bearing life prediction based on support vector machine and its application

    International Nuclear Information System (INIS)

    Sun Chuang; Zhang Zhousuo; He Zhengjia

    2011-01-01

    Life prediction of rolling element bearing is the urgent demand in engineering practice, and the effective life prediction technique is beneficial to predictive maintenance. Support vector machine (SVM) is a novel machine learning method based on statistical learning theory, and is of advantage in prediction. This paper develops SVM-based model for bearing life prediction. The inputs of the model are features of bearing vibration signal and the output is the bearing running time-bearing failure time ratio. The model is built base on a few failed bearing data, and it can fuse information of the predicted bearing. So it is of advantage to bearing life prediction in practice. The model is applied to life prediction of a bearing, and the result shows the proposed model is of high precision.

  20. Prediction Methods for Blood Glucose Concentration

    DEFF Research Database (Denmark)

    , but the insulin amount is chosen using factors that account for this expectation. The increasing availability of more accurate continuous blood glucose measurement (CGM) systems is attracting much interest to the possibilities of explicit prediction of future BG values. Against this background, in 2014 a two......-day workshop on the design, use and evaluation of prediction methods for blood glucose concentration was held at the Johannes Kepler University Linz, Austria. One intention of the workshop was to bring together experts working in various fields on the same topic, in order to shed light from different angles...... Freckmann et al. discusses performance metrics used to characterize the accuracy of continuous glucose measurement devices. This topic is highly relevant for prediction models since many of them rely on the data given by the continuous sensors which are previously calibrated with blood glucose meter...

  1. Artificial neural network intelligent method for prediction

    Science.gov (United States)

    Trifonov, Roumen; Yoshinov, Radoslav; Pavlova, Galya; Tsochev, Georgi

    2017-09-01

    Accounting and financial classification and prediction problems are high challenge and researchers use different methods to solve them. Methods and instruments for short time prediction of financial operations using artificial neural network are considered. The methods, used for prediction of financial data as well as the developed forecasting system with neural network are described in the paper. The architecture of a neural network used four different technical indicators, which are based on the raw data and the current day of the week is presented. The network developed is used for forecasting movement of stock prices one day ahead and consists of an input layer, one hidden layer and an output layer. The training method is algorithm with back propagation of the error. The main advantage of the developed system is self-determination of the optimal topology of neural network, due to which it becomes flexible and more precise The proposed system with neural network is universal and can be applied to various financial instruments using only basic technical indicators as input data.

  2. Prediction methods environmental-effect reporting

    International Nuclear Information System (INIS)

    Jonker, R.J.; Koester, H.W.

    1987-12-01

    This report provides a survey of prediction methods which can be applied to the calculation of emissions in cuclear-reactor accidents, in the framework of environment-effect reports (dutch m.e.r.) or risk analyses. Also emissions during normal operation are important for m.e.r.. These can be derived from measured emissions of power plants being in operation. Data concerning the latter are reported. The report consists of an introduction into reactor technology, among which a description of some reactor types, the corresponding fuel cycle and dismantling scenarios - a discussion of risk-analyses for nuclear power plants and the physical processes which can play a role during accidents - a discussion of prediction methods to be employed and the expected developments in this area - some background information. (aughor). 145 refs.; 21 figs.; 20 tabs

  3. Mechatronics technology in predictive maintenance method

    Science.gov (United States)

    Majid, Nurul Afiqah A.; Muthalif, Asan G. A.

    2017-11-01

    This paper presents recent mechatronics technology that can help to implement predictive maintenance by combining intelligent and predictive maintenance instrument. Vibration Fault Simulation System (VFSS) is an example of mechatronics system. The focus of this study is the prediction on the use of critical machines to detect vibration. Vibration measurement is often used as the key indicator of the state of the machine. This paper shows the choice of the appropriate strategy in the vibration of diagnostic process of the mechanical system, especially rotating machines, in recognition of the failure during the working process. In this paper, the vibration signature analysis is implemented to detect faults in rotary machining that includes imbalance, mechanical looseness, bent shaft, misalignment, missing blade bearing fault, balancing mass and critical speed. In order to perform vibration signature analysis for rotating machinery faults, studies have been made on how mechatronics technology is used as predictive maintenance methods. Vibration Faults Simulation Rig (VFSR) is designed to simulate and understand faults signatures. These techniques are based on the processing of vibrational data in frequency-domain. The LabVIEW-based spectrum analyzer software is developed to acquire and extract frequency contents of faults signals. This system is successfully tested based on the unique vibration fault signatures that always occur in a rotating machinery.

  4. New methods for fall risk prediction.

    Science.gov (United States)

    Ejupi, Andreas; Lord, Stephen R; Delbaere, Kim

    2014-09-01

    Accidental falls are the leading cause of injury-related death and hospitalization in old age, with over one-third of the older adults experiencing at least one fall or more each year. Because of limited healthcare resources, regular objective fall risk assessments are not possible in the community on a large scale. New methods for fall prediction are necessary to identify and monitor those older people at high risk of falling who would benefit from participating in falls prevention programmes. Technological advances have enabled less expensive ways to quantify physical fall risk in clinical practice and in the homes of older people. Recently, several studies have demonstrated that sensor-based fall risk assessments of postural sway, functional mobility, stepping and walking can discriminate between fallers and nonfallers. Recent research has used low-cost, portable and objective measuring instruments to assess fall risk in older people. Future use of these technologies holds promise for assessing fall risk accurately in an unobtrusive manner in clinical and daily life settings.

  5. Prediction Methods in Solar Sunspots Cycles

    Science.gov (United States)

    Ng, Kim Kwee

    2016-01-01

    An understanding of the Ohl’s Precursor Method, which is used to predict the upcoming sunspots activity, is presented by employing a simplified movable divided-blocks diagram. Using a new approach, the total number of sunspots in a solar cycle and the maximum averaged monthly sunspots number Rz(max) are both shown to be statistically related to the geomagnetic activity index in the prior solar cycle. The correlation factors are significant and they are respectively found to be 0.91 ± 0.13 and 0.85 ± 0.17. The projected result is consistent with the current observation of solar cycle 24 which appears to have attained at least Rz(max) at 78.7 ± 11.7 in March 2014. Moreover, in a statistical study of the time-delayed solar events, the average time between the peak in the monthly geomagnetic index and the peak in the monthly sunspots numbers in the succeeding ascending phase of the sunspot activity is found to be 57.6 ± 3.1 months. The statistically determined time-delayed interval confirms earlier observational results by others that the Sun’s electromagnetic dipole is moving toward the Sun’s Equator during a solar cycle. PMID:26868269

  6. Prediction Methods for Blood Glucose Concentration

    DEFF Research Database (Denmark)

    , but the insulin amount is chosen using factors that account for this expectation. The increasing availability of more accurate continuous blood glucose measurement (CGM) systems is attracting much interest to the possibilities of explicit prediction of future BG values. Against this background, in 2014 a two...... by the authors at the workshop but were written afterward which allowed to include the findings and conclusions of the various discussions and of course updates. The chapter "Alternative Frameworks for Personalized Insulin-Glucose Models" by Harald Kirchsteiger et al. asks the question whether more and more...... that focus not on the prediction of exact future blood glucose values, but rather on the prediction of changes in the patients’ blood glucose range. The chapter “Accuracy of BG Meters and CGM Systems: Possible Influence Factors for the Glucose Prediction Based on Tissue Glucose Concentrations” by Guido...

  7. Multiple relational analysis method for uranium mineral metallogenic prediction

    International Nuclear Information System (INIS)

    Liu Guangping; He Xiangping; Liu Yajie

    1998-10-01

    After introduction of the basic principle of relational analysis, multiple relational analysis method for uranium mineral resources are proposed. Multiple relational analysis prediction method is especially efficient where known ore deposits or ore-bearing units are scarce. Where other prediction methods fail, multiple relational analysis method proves to work well with reliability and accuracy. It is fully illustrated with the examples presented

  8. Which method predicts recidivism best?: A comparison of statistical, machine learning, and data mining predictive models

    OpenAIRE

    Tollenaar, N.; van der Heijden, P.G.M.

    2012-01-01

    Using criminal population conviction histories of recent offenders, prediction mod els are developed that predict three types of criminal recidivism: general recidivism, violent recidivism and sexual recidivism. The research question is whether prediction techniques from modern statistics, data mining and machine learning provide an improvement in predictive performance over classical statistical methods, namely logistic regression and linear discrim inant analysis. These models are compared ...

  9. Machine Learning Methods to Predict Diabetes Complications.

    Science.gov (United States)

    Dagliati, Arianna; Marini, Simone; Sacchi, Lucia; Cogni, Giulia; Teliti, Marsida; Tibollo, Valentina; De Cata, Pasquale; Chiovato, Luca; Bellazzi, Riccardo

    2018-03-01

    One of the areas where Artificial Intelligence is having more impact is machine learning, which develops algorithms able to learn patterns and decision rules from data. Machine learning algorithms have been embedded into data mining pipelines, which can combine them with classical statistical strategies, to extract knowledge from data. Within the EU-funded MOSAIC project, a data mining pipeline has been used to derive a set of predictive models of type 2 diabetes mellitus (T2DM) complications based on electronic health record data of nearly one thousand patients. Such pipeline comprises clinical center profiling, predictive model targeting, predictive model construction and model validation. After having dealt with missing data by means of random forest (RF) and having applied suitable strategies to handle class imbalance, we have used Logistic Regression with stepwise feature selection to predict the onset of retinopathy, neuropathy, or nephropathy, at different time scenarios, at 3, 5, and 7 years from the first visit at the Hospital Center for Diabetes (not from the diagnosis). Considered variables are gender, age, time from diagnosis, body mass index (BMI), glycated hemoglobin (HbA1c), hypertension, and smoking habit. Final models, tailored in accordance with the complications, provided an accuracy up to 0.838. Different variables were selected for each complication and time scenario, leading to specialized models easy to translate to the clinical practice.

  10. Different Methods of Predicting Permeability in Shale

    DEFF Research Database (Denmark)

    Mbia, Ernest Ncha; Fabricius, Ida Lykke; Krogsbøll, Anette

    Permeability is often very difficult to measure or predict in shale lithology. In this work we are determining shale permeability from consolidation tests data using Wissa et al., (1971) approach and comparing the results with predicted permeability from Kozeny’s model. Core and cuttings materials...... were obtained from Fjerritslev shale Formation in Juassic interval of Stenlille and Vedsted on-shore wells of Danish basin. The calculated permeability from specific surface and porosity vary from 0.09 to 48.53 μD while that calculated from consolidation tests data vary from 1000 μD at a low vertical...... effective stress to 9 μD at high vertical effective stress of 100 MPa. The indirect permeability calculated from consolidation tests falls in the same magnitude at higher vertical effective stress, above 40 MPa, as that of the Kozeny model for shale samples with high non-clay content ≥ 70% but are higher...

  11. Predicting speculation: a simple disambiguation approach to hedge detection in biomedical literature

    Directory of Open Access Journals (Sweden)

    Velldal Erik

    2011-10-01

    Full Text Available Abstract Background This paper presents a novel approach to the problem of hedge detection, which involves identifying so-called hedge cues for labeling sentences as certain or uncertain. This is the classification problem for Task 1 of the CoNLL-2010 Shared Task, which focuses on hedging in the biomedical domain. We here propose to view hedge detection as a simple disambiguation problem, restricted to words that have previously been observed as hedge cues. As the feature space for the classifier is still very large, we also perform experiments with dimensionality reduction using the method of random indexing. Results The SVM-based classifiers developed in this paper achieves the best published results so far for sentence-level uncertainty prediction on the CoNLL-2010 Shared Task test data. We also show that the technique of random indexing can be successfully applied for reducing the dimensionality of the original feature space by several orders of magnitude, without sacrificing classifier performance. Conclusions This paper introduces a simplified approach to detecting speculation or uncertainty in text, focusing on the biomedical domain. Evaluated at the sentence-level, our SVM-based classifiers achieve the best published results so far. We also show that the feature space can be aggressively compressed using random indexing while still maintaining comparable classifier performance.

  12. Predicting speculation: a simple disambiguation approach to hedge detection in biomedical literature.

    Science.gov (United States)

    Velldal, Erik

    2011-10-06

    This paper presents a novel approach to the problem of hedge detection, which involves identifying so-called hedge cues for labeling sentences as certain or uncertain. This is the classification problem for Task 1 of the CoNLL-2010 Shared Task, which focuses on hedging in the biomedical domain. We here propose to view hedge detection as a simple disambiguation problem, restricted to words that have previously been observed as hedge cues. As the feature space for the classifier is still very large, we also perform experiments with dimensionality reduction using the method of random indexing. The SVM-based classifiers developed in this paper achieves the best published results so far for sentence-level uncertainty prediction on the CoNLL-2010 Shared Task test data. We also show that the technique of random indexing can be successfully applied for reducing the dimensionality of the original feature space by several orders of magnitude, without sacrificing classifier performance. This paper introduces a simplified approach to detecting speculation or uncertainty in text, focusing on the biomedical domain. Evaluated at the sentence-level, our SVM-based classifiers achieve the best published results so far. We also show that the feature space can be aggressively compressed using random indexing while still maintaining comparable classifier performance.

  13. Can Morphing Methods Predict Intermediate Structures?

    Science.gov (United States)

    Weiss, Dahlia R.; Levitt, Michael

    2009-01-01

    Movement is crucial to the biological function of many proteins, yet crystallographic structures of proteins can give us only a static snapshot. The protein dynamics that are important to biological function often happen on a timescale that is unattainable through detailed simulation methods such as molecular dynamics as they often involve crossing high-energy barriers. To address this coarse-grained motion, several methods have been implemented as web servers in which a set of coordinates is usually linearly interpolated from an initial crystallographic structure to a final crystallographic structure. We present a new morphing method that does not extrapolate linearly and can therefore go around high-energy barriers and which can produce different trajectories between the same two starting points. In this work, we evaluate our method and other established coarse-grained methods according to an objective measure: how close a coarse-grained dynamics method comes to a crystallographically determined intermediate structure when calculating a trajectory between the initial and final crystal protein structure. We test this with a set of five proteins with at least three crystallographically determined on-pathway high-resolution intermediate structures from the Protein Data Bank. For simple hinging motions involving a small conformational change, segmentation of the protein into two rigid sections outperforms other more computationally involved methods. However, large-scale conformational change is best addressed using a nonlinear approach and we suggest that there is merit in further developing such methods. PMID:18996395

  14. Prediction Methods in Science and Technology

    DEFF Research Database (Denmark)

    Høskuldsson, Agnar

    Presents the H-principle, the Heisenberg modelling principle. General properties of the Heisenberg modelling procedure is developed. The theory is applied to principal component analysis and linear regression analysis. It is shown that the H-principle leads to PLS regression in case the task...... is linear regression analysis. The book contains different methods to find the dimensions of linear models, to carry out sensitivity analysis in latent structure models, variable selection methods and presentation of results from analysis....

  15. Force prediction in cold rolling mills by polynomial methods

    Directory of Open Access Journals (Sweden)

    Nicu ROMAN

    2007-12-01

    Full Text Available A method for steel and aluminium strip thickness control is provided including a new technique for predictive rolling force estimation method by statistic model based on polynomial techniques.

  16. Generic methods for aero-engine exhaust emission prediction

    NARCIS (Netherlands)

    Shakariyants, S.A.

    2008-01-01

    In the thesis, generic methods have been developed for aero-engine combustor performance, combustion chemistry, as well as airplane aerodynamics, airplane and engine performance. These methods specifically aim to support diverse emission prediction studies coupled with airplane and engine

  17. A Versatile Nonlinear Method for Predictive Modeling

    Science.gov (United States)

    Liou, Meng-Sing; Yao, Weigang

    2015-01-01

    As computational fluid dynamics techniques and tools become widely accepted for realworld practice today, it is intriguing to ask: what areas can it be utilized to its potential in the future. Some promising areas include design optimization and exploration of fluid dynamics phenomena (the concept of numerical wind tunnel), in which both have the common feature where some parameters are varied repeatedly and the computation can be costly. We are especially interested in the need for an accurate and efficient approach for handling these applications: (1) capturing complex nonlinear dynamics inherent in a system under consideration and (2) versatility (robustness) to encompass a range of parametric variations. In our previous paper, we proposed to use first-order Taylor expansion collected at numerous sampling points along a trajectory and assembled together via nonlinear weighting functions. The validity and performance of this approach was demonstrated for a number of problems with a vastly different input functions. In this study, we are especially interested in enhancing the method's accuracy; we extend it to include the second-orer Taylor expansion, which however requires a complicated evaluation of Hessian matrices for a system of equations, like in fluid dynamics. We propose a method to avoid these Hessian matrices, while maintaining the accuracy. Results based on the method are presented to confirm its validity.

  18. DASPfind: new efficient method to predict drug–target interactions

    KAUST Repository

    Ba Alawi, Wail

    2016-03-16

    Background Identification of novel drug–target interactions (DTIs) is important for drug discovery. Experimental determination of such DTIs is costly and time consuming, hence it necessitates the development of efficient computational methods for the accurate prediction of potential DTIs. To-date, many computational methods have been proposed for this purpose, but they suffer the drawback of a high rate of false positive predictions. Results Here, we developed a novel computational DTI prediction method, DASPfind. DASPfind uses simple paths of particular lengths inferred from a graph that describes DTIs, similarities between drugs, and similarities between the protein targets of drugs. We show that on average, over the four gold standard DTI datasets, DASPfind significantly outperforms other existing methods when the single top-ranked predictions are considered, resulting in 46.17 % of these predictions being correct, and it achieves 49.22 % correct single top ranked predictions when the set of all DTIs for a single drug is tested. Furthermore, we demonstrate that our method is best suited for predicting DTIs in cases of drugs with no known targets or with few known targets. We also show the practical use of DASPfind by generating novel predictions for the Ion Channel dataset and validating them manually. Conclusions DASPfind is a computational method for finding reliable new interactions between drugs and proteins. We show over six different DTI datasets that DASPfind outperforms other state-of-the-art methods when the single top-ranked predictions are considered, or when a drug with no known targets or with few known targets is considered. We illustrate the usefulness and practicality of DASPfind by predicting novel DTIs for the Ion Channel dataset. The validated predictions suggest that DASPfind can be used as an efficient method to identify correct DTIs, thus reducing the cost of necessary experimental verifications in the process of drug discovery. DASPfind

  19. A survey of spectrum prediction methods in cognitive radio networks

    Science.gov (United States)

    Wu, Jianwei; Li, Yanling

    2017-04-01

    Spectrum prediction technology is an effective way to solve the problems of processing latency, spectrum access, spectrum collision and energy consumption in cognitive radio networks. Spectral prediction technology is divided into three categories according to its nature, namely, spectral prediction method based on regression analysis, spectrum prediction method based on Markov model and spectrum prediction method based on machine learning. By analyzing and comparing the three kinds of prediction models, the author hopes to provide some reference for the later researchers. In this paper, the development situation, practical application and existent problems of three kinds of forecasting models are analyzed and summarized. On this basis, this paper discusses the development trend of the next step.

  20. A Privacy-Preserving Prediction Method for Human Travel Routes

    Directory of Open Access Journals (Sweden)

    Wen-Chen Hu

    2014-12-01

    Full Text Available This paper proposes a kind of location-based research, human travel route prediction, which is to predict the track of a subject's future movements. The proposed method works as follows. The mobile user sends his/her current route along with several dummy routes to the server by using a 3D route matrix, which encodes a set of routes. The server restores the routes from the 3D matrix and matches the restored routes to the saved routes. The predicted route is found as the trunk of the tree, which is built by superimposing the matching results. The server then sends the predicted routes back to the user, who will apply the predicted route to a real-world problem such as traffic control and planning. Preliminary experimental results show the proposed method successfully predicts human travel routes based on current and previous routes. User privacy is also rigorously protected by using a simple method of dummy routes.

  1. A Fusion Link Prediction Method Based on Limit Theorem

    Directory of Open Access Journals (Sweden)

    Yiteng Wu

    2017-12-01

    Full Text Available The theoretical limit of link prediction is a fundamental problem in this field. Taking the network structure as object to research this problem is the mainstream method. This paper proposes a new viewpoint that link prediction methods can be divided into single or combination methods, based on the way they derive the similarity matrix, and investigates whether there a theoretical limit exists for combination methods. We propose and prove necessary and sufficient conditions for the combination method to reach the theoretical limit. The limit theorem reveals the essence of combination method that is to estimate probability density functions of existing links and nonexistent links. Based on limit theorem, a new combination method, theoretical limit fusion (TLF method, is proposed. Simulations and experiments on real networks demonstrated that TLF method can achieve higher prediction accuracy.

  2. Deep learning methods for protein torsion angle prediction.

    Science.gov (United States)

    Li, Haiou; Hou, Jie; Adhikari, Badri; Lyu, Qiang; Cheng, Jianlin

    2017-09-18

    Deep learning is one of the most powerful machine learning methods that has achieved the state-of-the-art performance in many domains. Since deep learning was introduced to the field of bioinformatics in 2012, it has achieved success in a number of areas such as protein residue-residue contact prediction, secondary structure prediction, and fold recognition. In this work, we developed deep learning methods to improve the prediction of torsion (dihedral) angles of proteins. We design four different deep learning architectures to predict protein torsion angles. The architectures including deep neural network (DNN) and deep restricted Boltzmann machine (DRBN), deep recurrent neural network (DRNN) and deep recurrent restricted Boltzmann machine (DReRBM) since the protein torsion angle prediction is a sequence related problem. In addition to existing protein features, two new features (predicted residue contact number and the error distribution of torsion angles extracted from sequence fragments) are used as input to each of the four deep learning architectures to predict phi and psi angles of protein backbone. The mean absolute error (MAE) of phi and psi angles predicted by DRNN, DReRBM, DRBM and DNN is about 20-21° and 29-30° on an independent dataset. The MAE of phi angle is comparable to the existing methods, but the MAE of psi angle is 29°, 2° lower than the existing methods. On the latest CASP12 targets, our methods also achieved the performance better than or comparable to a state-of-the art method. Our experiment demonstrates that deep learning is a valuable method for predicting protein torsion angles. The deep recurrent network architecture performs slightly better than deep feed-forward architecture, and the predicted residue contact number and the error distribution of torsion angles extracted from sequence fragments are useful features for improving prediction accuracy.

  3. A New Method of Fatigue Life Prediction for Notched Specimen

    Directory of Open Access Journals (Sweden)

    JIN Dan

    2017-04-01

    Full Text Available The simulations of the notched specimens under multiaxial loading were conducted by finite element method. The simulation results show that the stress gradient increases with the decrease in notch radius for the same strain path. The equivalent strain method is used to predict the fatigue life based on the strain at the notched root. The prediction results are more conservative with the decrease in notch radius. The effective distance is determinated by the stress gradient method, and the effective distances are decreased with the decrease of notch radius for the same strain path. The fatigue life is predicted based on the strain at the effective distance, and the predictions are scattered and unconservative. Combining the test results and simulations, a new method determinating the effective distance is presented considering the strain gradient. Most prediction results are in a factor-2 scatter band.

  4. A Review of Computational Intelligence Methods for Eukaryotic Promoter Prediction.

    Science.gov (United States)

    Singh, Shailendra; Kaur, Sukhbir; Goel, Neelam

    2015-01-01

    In past decades, prediction of genes in DNA sequences has attracted the attention of many researchers but due to its complex structure it is extremely intricate to correctly locate its position. A large number of regulatory regions are present in DNA that helps in transcription of a gene. Promoter is one such region and to find its location is a challenging problem. Various computational methods for promoter prediction have been developed over the past few years. This paper reviews these promoter prediction methods. Several difficulties and pitfalls encountered by these methods are also detailed, along with future research directions.

  5. The new method of prediction on mining subsidence and deformation

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Y.; Zhang, Y.; Song, Z.; Sroka, A.; Tian, M. [Shandong University of Science and Technology, Ti' an (China)

    2001-06-01

    A new probability density function of mining overlying strata and subsidence is put forward that has a general statistical significance based on the ideal stochastic medium displacement model. It establishes a new system of prediction on horizontal mining subsidence and deformation, which gives a new method for prediction of mining subsidence and deformation. 7 refs., 5 figs., 1 tab.

  6. Prediction of epitopes using neural network based methods

    DEFF Research Database (Denmark)

    Lundegaard, Claus; Lund, Ole; Nielsen, Morten

    2011-01-01

    In this paper, we describe the methodologies behind three different aspects of the NetMHC family for prediction of MHC class I binding, mainly to HLAs. We have updated the prediction servers, NetMHC-3.2, NetMHCpan-2.2, and a new consensus method, NetMHCcons, which, in their previous versions, hav...

  7. SUPPORT VECTOR MACHINE METHOD FOR PREDICTING INVESTMENT MEASURES

    Directory of Open Access Journals (Sweden)

    Olga V. Kitova

    2016-01-01

    Full Text Available Possibilities of applying intelligent machine learning technique based on support vectors for predicting investment measures are considered in the article. The base features of support vector method over traditional econometric techniques for improving the forecast quality are described. Computer modeling results in terms of tuning support vector machine models developed with programming language Python for predicting some investment measures are shown.

  8. What Predicts Use of Learning-Centered, Interactive Engagement Methods?

    Science.gov (United States)

    Madson, Laura; Trafimow, David; Gray, Tara; Gutowitz, Michael

    2014-01-01

    What makes some faculty members more likely to use interactive engagement methods than others? We use the theory of reasoned action to predict faculty members' use of interactive engagement methods. Results indicate that faculty members' beliefs about the personal positive consequences of using these methods (e.g., "Using interactive…

  9. PREDICTING BUSINESS FAILURE USING DATA-MINING METHODS

    OpenAIRE

    Sami BEN JABEUR; Youssef FAHMI

    2014-01-01

    The aim of this paper to compare between two statistical methods in predicting corporate financial distress. We will use the PLS (Partial Least-Squares) discriminant analysis and support vector machine (SVM). The PLS discriminant analysis (PLS-DA) regress

  10. Assessment of a method for the prediction of mandibular rotation.

    Science.gov (United States)

    Lee, R S; Daniel, F J; Swartz, M; Baumrind, S; Korn, E L

    1987-05-01

    A new method to predict mandibular rotation developed by Skieller and co-workers on a sample of 21 implant subjects with extreme growth patterns has been tested against an alternative sample of 25 implant patients with generally similar mean values, but with less extreme facial patterns. The method, which had been highly successful in retrospectively predicting changes in the sample of extreme subjects, was much less successful in predicting individual patterns of mandibular rotation in the new, less extreme sample. The observation of a large difference in the strength of the predictions for these two samples, even though their mean values were quite similar, should serve to increase our awareness of the complexity of the problem of predicting growth patterns in individual cases.

  11. Comparing multilabel classification methods for provisional biopharmaceutics class prediction.

    Science.gov (United States)

    Newby, Danielle; Freitas, Alex A; Ghafourian, Taravat

    2015-01-05

    The biopharmaceutical classification system (BCS) is now well established and utilized for the development and biowaivers of immediate oral dosage forms. The prediction of BCS class can be carried out using multilabel classification. Unlike single label classification, multilabel classification methods predict more than one class label at the same time. This paper compares two multilabel methods, binary relevance and classifier chain, for provisional BCS class prediction. Large data sets of permeability and solubility of drug and drug-like compounds were obtained from the literature and were used to build models using decision trees. The separate permeability and solubility models were validated, and a BCS validation set of 127 compounds where both permeability and solubility were known was used to compare the two aforementioned multilabel classification methods for provisional BCS class prediction. Overall, the results indicate that the classifier chain method, which takes into account label interactions, performed better compared to the binary relevance method. This work offers a comparison of multilabel methods and shows the potential of the classifier chain multilabel method for improved biological property predictions for use in drug discovery and development.

  12. Predictive validity of the Hand Arm Risk assessment Method (HARM)

    NARCIS (Netherlands)

    Douwes, M.; Boocock, M.; Coenen, P.; Heuvel, S. van den; Bosch, T.

    2014-01-01

    The Hand Arm Risk assessment Method (HARM) is a simplified risk assessment method for determining musculoskeletal symptoms to the arm, neck and/or shoulder posed by hand-arm tasks of the upper body. The purpose of this study was to evaluate the predictive validity of HARM using data collected from a

  13. Evaluation and comparison of mammalian subcellular localization prediction methods

    Directory of Open Access Journals (Sweden)

    Fink J Lynn

    2006-12-01

    Full Text Available Abstract Background Determination of the subcellular location of a protein is essential to understanding its biochemical function. This information can provide insight into the function of hypothetical or novel proteins. These data are difficult to obtain experimentally but have become especially important since many whole genome sequencing projects have been finished and many resulting protein sequences are still lacking detailed functional information. In order to address this paucity of data, many computational prediction methods have been developed. However, these methods have varying levels of accuracy and perform differently based on the sequences that are presented to the underlying algorithm. It is therefore useful to compare these methods and monitor their performance. Results In order to perform a comprehensive survey of prediction methods, we selected only methods that accepted large batches of protein sequences, were publicly available, and were able to predict localization to at least nine of the major subcellular locations (nucleus, cytosol, mitochondrion, extracellular region, plasma membrane, Golgi apparatus, endoplasmic reticulum (ER, peroxisome, and lysosome. The selected methods were CELLO, MultiLoc, Proteome Analyst, pTarget and WoLF PSORT. These methods were evaluated using 3763 mouse proteins from SwissProt that represent the source of the training sets used in development of the individual methods. In addition, an independent evaluation set of 2145 mouse proteins from LOCATE with a bias towards the subcellular localization underrepresented in SwissProt was used. The sensitivity and specificity were calculated for each method and compared to a theoretical value based on what might be observed by random chance. Conclusion No individual method had a sufficient level of sensitivity across both evaluation sets that would enable reliable application to hypothetical proteins. All methods showed lower performance on the LOCATE

  14. Univariate Time Series Prediction of Solar Power Using a Hybrid Wavelet-ARMA-NARX Prediction Method

    Energy Technology Data Exchange (ETDEWEB)

    Nazaripouya, Hamidreza; Wang, Yubo; Chu, Chi-Cheng; Pota, Hemanshu; Gadh, Rajit

    2016-05-02

    This paper proposes a new hybrid method for super short-term solar power prediction. Solar output power usually has a complex, nonstationary, and nonlinear characteristic due to intermittent and time varying behavior of solar radiance. In addition, solar power dynamics is fast and is inertia less. An accurate super short-time prediction is required to compensate for the fluctuations and reduce the impact of solar power penetration on the power system. The objective is to predict one step-ahead solar power generation based only on historical solar power time series data. The proposed method incorporates discrete wavelet transform (DWT), Auto-Regressive Moving Average (ARMA) models, and Recurrent Neural Networks (RNN), while the RNN architecture is based on Nonlinear Auto-Regressive models with eXogenous inputs (NARX). The wavelet transform is utilized to decompose the solar power time series into a set of richer-behaved forming series for prediction. ARMA model is employed as a linear predictor while NARX is used as a nonlinear pattern recognition tool to estimate and compensate the error of wavelet-ARMA prediction. The proposed method is applied to the data captured from UCLA solar PV panels and the results are compared with some of the common and most recent solar power prediction methods. The results validate the effectiveness of the proposed approach and show a considerable improvement in the prediction precision.

  15. A Study on SVM Based on the Weighted Elitist Teaching-Learning-Based Optimization and Application in the Fault Diagnosis of Chemical Process

    Directory of Open Access Journals (Sweden)

    Cao Junxiang

    2015-01-01

    Full Text Available Teaching-Learning-Based Optimization (TLBO is a new swarm intelligence optimization algorithm that simulates the class learning process. According to such problems of the traditional TLBO as low optimizing efficiency and poor stability, this paper proposes an improved TLBO algorithm mainly by introducing the elite thought in TLBO and adopting different inertia weight decreasing strategies for elite and ordinary individuals of the teacher stage and the student stage. In this paper, the validity of the improved TLBO is verified by the optimizations of several typical test functions and the SVM optimized by the weighted elitist TLBO is used in the diagnosis and classification of common failure data of the TE chemical process. Compared with the SVM combining other traditional optimizing methods, the SVM optimized by the weighted elitist TLBO has a certain improvement in the accuracy of fault diagnosis and classification.

  16. Three-dimensional protein structure prediction: Methods and computational strategies.

    Science.gov (United States)

    Dorn, Márcio; E Silva, Mariel Barbachan; Buriol, Luciana S; Lamb, Luis C

    2014-10-12

    A long standing problem in structural bioinformatics is to determine the three-dimensional (3-D) structure of a protein when only a sequence of amino acid residues is given. Many computational methodologies and algorithms have been proposed as a solution to the 3-D Protein Structure Prediction (3-D-PSP) problem. These methods can be divided in four main classes: (a) first principle methods without database information; (b) first principle methods with database information; (c) fold recognition and threading methods; and (d) comparative modeling methods and sequence alignment strategies. Deterministic computational techniques, optimization techniques, data mining and machine learning approaches are typically used in the construction of computational solutions for the PSP problem. Our main goal with this work is to review the methods and computational strategies that are currently used in 3-D protein prediction. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Methods and techniques for prediction of environmental impact

    International Nuclear Information System (INIS)

    1992-04-01

    Environmental impact assessment (EIA) is the procedure that helps decision makers understand the environmental implications of their decisions. The prediction of environmental effects or impact is an extremely important part of the EIA procedure and improvements in existing capabilities are needed. Considerable attention is paid within environmental impact assessment and in handbooks on EIA to methods for identifying and evaluating environmental impacts. However, little attention is given to the issue distribution of information on impact prediction methods. The quantitative or qualitative methods for the prediction of environmental impacts appear to be the two basic approaches for incorporating environmental concerns into the decision-making process. Depending on the nature of the proposed activity and the environment likely to be affected, a combination of both quantitative and qualitative methods is used. Within environmental impact assessment, the accuracy of methods for the prediction of environmental impacts is of major importance while it provides for sound and well-balanced decision making. Pertinent and effective action to deal with the problems of environmental protection and the rational use of natural resources and sustainable development is only possible given objective methods and techniques for the prediction of environmental impact. Therefore, the Senior Advisers to ECE Governments on Environmental and Water Problems, decided to set up a task force, with the USSR as lead country, on methods and techniques for the prediction of environmental impacts in order to undertake a study to review and analyse existing methodological approaches and to elaborate recommendations to ECE Governments. The work of the task force was completed in 1990 and the resulting report, with all relevant background material, was approved by the Senior Advisers to ECE Governments on Environmental and Water Problems in 1991. The present report reflects the situation, state of

  18. ESG: extended similarity group method for automated protein function prediction.

    Science.gov (United States)

    Chitale, Meghana; Hawkins, Troy; Park, Changsoon; Kihara, Daisuke

    2009-07-15

    Importance of accurate automatic protein function prediction is ever increasing in the face of a large number of newly sequenced genomes and proteomics data that are awaiting biological interpretation. Conventional methods have focused on high sequence similarity-based annotation transfer which relies on the concept of homology. However, many cases have been reported that simple transfer of function from top hits of a homology search causes erroneous annotation. New methods are required to handle the sequence similarity in a more robust way to combine together signals from strongly and weakly similar proteins for effectively predicting function for unknown proteins with high reliability. We present the extended similarity group (ESG) method, which performs iterative sequence database searches and annotates a query sequence with Gene Ontology terms. Each annotation is assigned with probability based on its relative similarity score with the multiple-level neighbors in the protein similarity graph. We will depict how the statistical framework of ESG improves the prediction accuracy by iteratively taking into account the neighborhood of query protein in the sequence similarity space. ESG outperforms conventional PSI-BLAST and the protein function prediction (PFP) algorithm. It is found that the iterative search is effective in capturing multiple-domains in a query protein, enabling accurately predicting several functions which originate from different domains. ESG web server is available for automated protein function prediction at http://dragon.bio.purdue.edu/ESG/.

  19. Towards a unified fatigue life prediction method for marine structures

    CERN Document Server

    Cui, Weicheng; Wang, Fang

    2014-01-01

    In order to apply the damage tolerance design philosophy to design marine structures, accurate prediction of fatigue crack growth under service conditions is required. Now, more and more people have realized that only a fatigue life prediction method based on fatigue crack propagation (FCP) theory has the potential to explain various fatigue phenomena observed. In this book, the issues leading towards the development of a unified fatigue life prediction (UFLP) method based on FCP theory are addressed. Based on the philosophy of the UFLP method, the current inconsistency between fatigue design and inspection of marine structures could be resolved. This book presents the state-of-the-art and recent advances, including those by the authors, in fatigue studies. It is designed to lead the future directions and to provide a useful tool in many practical applications. It is intended to address to engineers, naval architects, research staff, professionals and graduates engaged in fatigue prevention design and survey ...

  20. A Micromechanics-Based Method for Multiscale Fatigue Prediction

    Science.gov (United States)

    Moore, John Allan

    An estimated 80% of all structural failures are due to mechanical fatigue, often resulting in catastrophic, dangerous and costly failure events. However, an accurate model to predict fatigue remains an elusive goal. One of the major challenges is that fatigue is intrinsically a multiscale process, which is dependent on a structure's geometric design as well as its material's microscale morphology. The following work begins with a microscale study of fatigue nucleation around non- metallic inclusions. Based on this analysis, a novel multiscale method for fatigue predictions is developed. This method simulates macroscale geometries explicitly while concurrently calculating the simplified response of microscale inclusions. Thus, providing adequate detail on multiple scales for accurate fatigue life predictions. The methods herein provide insight into the multiscale nature of fatigue, while also developing a tool to aid in geometric design and material optimization for fatigue critical devices such as biomedical stents and artificial heart valves.

  1. Recent advances in B-cell epitope prediction methods

    Science.gov (United States)

    2010-01-01

    Identification of epitopes that invoke strong responses from B-cells is one of the key steps in designing effective vaccines against pathogens. Because experimental determination of epitopes is expensive in terms of cost, time, and effort involved, there is an urgent need for computational methods for reliable identification of B-cell epitopes. Although several computational tools for predicting B-cell epitopes have become available in recent years, the predictive performance of existing tools remains far from ideal. We review recent advances in computational methods for B-cell epitope prediction, identify some gaps in the current state of the art, and outline some promising directions for improving the reliability of such methods. PMID:21067544

  2. Predicting Metabolic Syndrome Using the Random Forest Method

    Directory of Open Access Journals (Sweden)

    Apilak Worachartcheewan

    2015-01-01

    Full Text Available Aims. This study proposes a computational method for determining the prevalence of metabolic syndrome (MS and to predict its occurrence using the National Cholesterol Education Program Adult Treatment Panel III (NCEP ATP III criteria. The Random Forest (RF method is also applied to identify significant health parameters. Materials and Methods. We used data from 5,646 adults aged between 18–78 years residing in Bangkok who had received an annual health check-up in 2008. MS was identified using the NCEP ATP III criteria. The RF method was applied to predict the occurrence of MS and to identify important health parameters surrounding this disorder. Results. The overall prevalence of MS was 23.70% (34.32% for males and 17.74% for females. RF accuracy for predicting MS in an adult Thai population was 98.11%. Further, based on RF, triglyceride levels were the most important health parameter associated with MS. Conclusion. RF was shown to predict MS in an adult Thai population with an accuracy >98% and triglyceride levels were identified as the most informative variable associated with MS. Therefore, using RF to predict MS may be potentially beneficial in identifying MS status for preventing the development of diabetes mellitus and cardiovascular diseases.

  3. Prediction of polymer flooding performance using an analytical method

    International Nuclear Information System (INIS)

    Tan Czek Hoong; Mariyamni Awang; Foo Kok Wai

    2001-01-01

    The study investigated the applicability of an analytical method developed by El-Khatib in polymer flooding. Results from a simulator UTCHEM and experiments were compared with the El-Khatib prediction method. In general, by assuming a constant viscosity polymer injection, the method gave much higher recovery values than the simulation runs and the experiments. A modification of the method gave better correlation, albeit only oil production. Investigation is continuing on modifying the method so that a better overall fit can be obtained for polymer flooding. (Author)

  4. Ensemble learning method for the prediction of new bioactive molecules.

    Directory of Open Access Journals (Sweden)

    Lateefat Temitope Afolabi

    Full Text Available Pharmacologically active molecules can provide remedies for a range of different illnesses and infections. Therefore, the search for such bioactive molecules has been an enduring mission. As such, there is a need to employ a more suitable, reliable, and robust classification method for enhancing the prediction of the existence of new bioactive molecules. In this paper, we adopt a recently developed combination of different boosting methods (Adaboost for the prediction of new bioactive molecules. We conducted the research experiments utilizing the widely used MDL Drug Data Report (MDDR database. The proposed boosting method generated better results than other machine learning methods. This finding suggests that the method is suitable for inclusion among the in silico tools for use in cheminformatics, computational chemistry and molecular biology.

  5. Improved method for predicting linear B-cell epitopes

    OpenAIRE

    Larsen, Jens Erik Pontoppidan; Lund, Ole; Nielsen, Morten

    2006-01-01

    Background B-cell epitopes are the sites of molecules that are recognized by antibodies of the immune system. Knowledge of B-cell epitopes may be used in the design of vaccines and diagnostics tests. It is therefore of interest to develop improved methods for predicting B-cell epitopes. In this paper, we describe an improved method for predicting linear B-cell epitopes. Results In order to do this, three data sets of linear B-cell epitope annotated proteins were constructed. A data set was co...

  6. Method for Predicting Solubilities of Solids in Mixed Solvents

    DEFF Research Database (Denmark)

    Ellegaard, Martin Dela; Abildskov, Jens; O'Connell, J. P.

    2009-01-01

    are made for a single parameter characterizing solute/solvent interactions. Comparisons with available data show that the method is successful in describing a variety of observed mixed solvent solubility behavior, including nearly ideal systems with small excess solubilities, systems with solute......-independent excess solubilities, and systems deviating from these simple rules. Successful predictions for new solvent mixtures cat? be made using limited data from other mixtures.......A method is presented for predicting solubilities of solid solutes in mixed solvents, based on excess Henry's law constants. The basis is statistical mechanical fluctuation solution theory for composition derivatives of solute/solvent infinite dilution activity coefficients. Suitable approximations...

  7. Multichannel Linear Prediction Method Compliant with the MPEG-4 ALS

    Science.gov (United States)

    Kamamoto, Yutaka; Harada, Noboru; Moriya, Takehiro

    A new linear prediction analysis method for multichannel signals was devised, with the goal of enhancing the compression performance of the MPEG-4 Audio Lossless Coding (ALS) compliant encoder and decoder. The multichannel coding tool for this standard carries out an adaptively weighted subtraction of the residual signals of the coding channel from those of the reference channel, both of which are produced by independent linear prediction. Our linear prediction method tries to directly minimize the amplitude of the predicted residual signal after subtraction of the signals of the coding channel, and the method has been implemented in the MPEG-4 ALS codec software. The results of a comprehensive evaluation show that this method reduces the size of a compressed file. The maximum improvement of the compression ratio is 14.6% which is achieved at the cost of a small increase in computational complexity at the encoder and without increase in decoding time. This is a practical method because the compressed bitstream remains compliant with the MPEG-4 ALS standard.

  8. SVM and SVM Ensembles in Breast Cancer Prediction.

    Directory of Open Access Journals (Sweden)

    Min-Wei Huang

    Full Text Available Breast cancer is an all too common disease in women, making how to effectively predict it an active research problem. A number of statistical and machine learning techniques have been employed to develop various breast cancer prediction models. Among them, support vector machines (SVM have been shown to outperform many related techniques. To construct the SVM classifier, it is first necessary to decide the kernel function, and different kernel functions can result in different prediction performance. However, there have been very few studies focused on examining the prediction performances of SVM based on different kernel functions. Moreover, it is unknown whether SVM classifier ensembles which have been proposed to improve the performance of single classifiers can outperform single SVM classifiers in terms of breast cancer prediction. Therefore, the aim of this paper is to fully assess the prediction performance of SVM and SVM ensembles over small and large scale breast cancer datasets. The classification accuracy, ROC, F-measure, and computational times of training SVM and SVM ensembles are compared. The experimental results show that linear kernel based SVM ensembles based on the bagging method and RBF kernel based SVM ensembles with the boosting method can be the better choices for a small scale dataset, where feature selection should be performed in the data pre-processing stage. For a large scale dataset, RBF kernel based SVM ensembles based on boosting perform better than the other classifiers.

  9. The energetic cost of walking: a comparison of predictive methods.

    Science.gov (United States)

    Kramer, Patricia Ann; Sylvester, Adam D

    2011-01-01

    The energy that animals devote to locomotion has been of intense interest to biologists for decades and two basic methodologies have emerged to predict locomotor energy expenditure: those based on metabolic and those based on mechanical energy. Metabolic energy approaches share the perspective that prediction of locomotor energy expenditure should be based on statistically significant proxies of metabolic function, while mechanical energy approaches, which derive from many different perspectives, focus on quantifying the energy of movement. Some controversy exists as to which mechanical perspective is "best", but from first principles all mechanical methods should be equivalent if the inputs to the simulation are of similar quality. Our goals in this paper are 1) to establish the degree to which the various methods of calculating mechanical energy are correlated, and 2) to investigate to what degree the prediction methods explain the variation in energy expenditure. We use modern humans as the model organism in this experiment because their data are readily attainable, but the methodology is appropriate for use in other species. Volumetric oxygen consumption and kinematic and kinetic data were collected on 8 adults while walking at their self-selected slow, normal and fast velocities. Using hierarchical statistical modeling via ordinary least squares and maximum likelihood techniques, the predictive ability of several metabolic and mechanical approaches were assessed. We found that all approaches are correlated and that the mechanical approaches explain similar amounts of the variation in metabolic energy expenditure. Most methods predict the variation within an individual well, but are poor at accounting for variation between individuals. Our results indicate that the choice of predictive method is dependent on the question(s) of interest and the data available for use as inputs. Although we used modern humans as our model organism, these results can be extended

  10. The energetic cost of walking: a comparison of predictive methods.

    Directory of Open Access Journals (Sweden)

    Patricia Ann Kramer

    Full Text Available BACKGROUND: The energy that animals devote to locomotion has been of intense interest to biologists for decades and two basic methodologies have emerged to predict locomotor energy expenditure: those based on metabolic and those based on mechanical energy. Metabolic energy approaches share the perspective that prediction of locomotor energy expenditure should be based on statistically significant proxies of metabolic function, while mechanical energy approaches, which derive from many different perspectives, focus on quantifying the energy of movement. Some controversy exists as to which mechanical perspective is "best", but from first principles all mechanical methods should be equivalent if the inputs to the simulation are of similar quality. Our goals in this paper are 1 to establish the degree to which the various methods of calculating mechanical energy are correlated, and 2 to investigate to what degree the prediction methods explain the variation in energy expenditure. METHODOLOGY/PRINCIPAL FINDINGS: We use modern humans as the model organism in this experiment because their data are readily attainable, but the methodology is appropriate for use in other species. Volumetric oxygen consumption and kinematic and kinetic data were collected on 8 adults while walking at their self-selected slow, normal and fast velocities. Using hierarchical statistical modeling via ordinary least squares and maximum likelihood techniques, the predictive ability of several metabolic and mechanical approaches were assessed. We found that all approaches are correlated and that the mechanical approaches explain similar amounts of the variation in metabolic energy expenditure. Most methods predict the variation within an individual well, but are poor at accounting for variation between individuals. CONCLUSION: Our results indicate that the choice of predictive method is dependent on the question(s of interest and the data available for use as inputs. Although we

  11. Strong earthquakes can be predicted: a multidisciplinary method for strong earthquake prediction

    Directory of Open Access Journals (Sweden)

    J. Z. Li

    2003-01-01

    Full Text Available The imminent prediction on a group of strong earthquakes that occurred in Xinjiang, China in April 1997 is introduced in detail. The prediction was made on the basis of comprehensive analyses on the results obtained by multiple innovative methods including measurements of crustal stress, observation of infrasonic wave in an ultra low frequency range, and recording of abnormal behavior of certain animals. Other successful examples of prediction are also enumerated. The statistics shows that above 40% of 20 total predictions jointly presented by J. Z. Li, Z. Q. Ren and others since 1995 can be regarded as effective. With the above methods, precursors of almost every strong earthquake around the world that occurred in recent years were recorded in our laboratory. However, the physical mechanisms of the observed precursors are yet impossible to explain at this stage.

  12. Computational Methods for Protein Structure Prediction and Modeling Volume 2: Structure Prediction

    CERN Document Server

    Xu, Ying; Liang, Jie

    2007-01-01

    Volume 2 of this two-volume sequence focuses on protein structure prediction and includes protein threading, De novo methods, applications to membrane proteins and protein complexes, structure-based drug design, as well as structure prediction as a systems problem. A series of appendices review the biological and chemical basics related to protein structure, computer science for structural informatics, and prerequisite mathematics and statistics.

  13. Research on the Fatigue Life Prediction Method of Thrust Rod

    Directory of Open Access Journals (Sweden)

    Guoyu Feng

    2016-01-01

    Full Text Available Purpose of this paper is to investigate the fatigue life prediction method of the thrust rod based on the continuum damage mechanics. The equivalent stress used as damage parameters established rubber fatigue life prediction model. Through the finite element simulation and material test, the model parameters and the fatigue damage dangerous positions were obtained. By equivalent stress life model, uniaxial fatigue life of the V-type thrust rod is analyzed to predict the ratio of life and the life of the test was 1.73, within an acceptable range, and the fatigue damage occurring position and finite element analysis are basically the same. Fatigue life analysis shows that the method is of correct, theoretical, and practical value.

  14. Fast Prediction Method for Steady-State Heat Convection

    KAUST Repository

    Wáng, Yì

    2012-03-14

    A reduced model by proper orthogonal decomposition (POD) and Galerkin projection methods for steady-state heat convection is established on a nonuniform grid. It was verified by thousands of examples that the results are in good agreement with the results obtained from the finite volume method. This model can also predict the cases where model parameters far exceed the sample scope. Moreover, the calculation time needed by the model is much shorter than that needed for the finite volume method. Thus, the nonuniform POD-Galerkin projection method exhibits high accuracy, good suitability, and fast computation. It has universal significance for accurate and fast prediction. Also, the methodology can be applied to more complex modeling in chemical engineering and technology, such as reaction and turbulence. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Hybrid robust predictive optimization method of power system dispatch

    Science.gov (United States)

    Chandra, Ramu Sharat [Niskayuna, NY; Liu, Yan [Ballston Lake, NY; Bose, Sumit [Niskayuna, NY; de Bedout, Juan Manuel [West Glenville, NY

    2011-08-02

    A method of power system dispatch control solves power system dispatch problems by integrating a larger variety of generation, load and storage assets, including without limitation, combined heat and power (CHP) units, renewable generation with forecasting, controllable loads, electric, thermal and water energy storage. The method employs a predictive algorithm to dynamically schedule different assets in order to achieve global optimization and maintain the system normal operation.

  16. Kinetic mesh-free method for flutter prediction in turbomachines

    Indian Academy of Sciences (India)

    Kinetic mesh-free method for flutter prediction in turbomachines. V RAMESH1,∗ and S M DESHPANDE2. 1Council for Scientific and Industrial Research, National Aerospace Laboratories,. Computational and Theoretical Fluid Dynamics Division, Bangalore 560 017, India. 2Engineering Mechanics Unit, Jawaharlal Nehru ...

  17. Available Prediction Methods for Corrosion under Insulation (CUI: A Review

    Directory of Open Access Journals (Sweden)

    Burhani Nurul Rawaida Ain

    2014-07-01

    Full Text Available Corrosion under insulation (CUI is an increasingly important issue for the piping in industries especially petrochemical and chemical plants due to its unexpected catastrophic disaster. Therefore, attention towards the maintenance and prediction of CUI occurrence, particularly in the corrosion rates, has grown in recent years. In this study, a literature review in determining the corrosion rates by using various prediction models and method of the corrosion occurrence between the external surface piping and its insulation was carried out. The results, prediction models and methods available were presented for future research references. However, most of the prediction methods available are based on each local industrial data only which might be different based on the plant location, environment, temperature and many other factors which may contribute to the difference and reliability of the model developed. Thus, it is more reliable if those models or method supported by laboratory testing or simulation which includes the factors promoting CUI such as environment temperature, insulation types, operating temperatures, and other factors.

  18. [Computerized logP prediction using fragment methods].

    Science.gov (United States)

    Takácsné, N K

    1998-01-01

    Lipophilicity, expressed by the logarithm of octanol/water partition coefficient (logP) is an important physico-chemical property in rational drug design. Beside the experimental determination, the calculation of logP based on the chemical structure is frequently necessary. This has led to the development of numerous logP prediction methods. In the present paper the fragment type approaches and their computer softwares are surveyed (Table I.). The compilation is extended to the introduction and evaluation of a recently developed method of Meylan and Howard [21]: Atom/Fragment Contribution, AFC method (KOWWIN for Windows, software) which possesses the unique option, the Experimental Value Adjusted, EVA logP prediction. The author compared the highly precise experimental logP values of 28 drugs measured in her laboratory with calculated logP values obtained by four approaches: KOWWIN, CLOGP, PROLOGP, ACD/logP. The best prediction was found as follows in decreasing order: KOWWIN (r = 0.983), CLOGP (r = 0.978), PROLOGP/Combined (r = 0.953), ACD/logP (r = 0.942), PROLOGP/Atomic5 (r = 0.940), PROLOGP/Rekker (r = 0.909). The limits of current logP prediction methods (intramolecular H-bond formation, tautomerization, conformation changes, etc.) and the promising future of the molecular lipophilicity potential, MLP, [42] in drug design is also discussed.

  19. Predicting proteasomal cleavage sites: a comparison of available methods

    DEFF Research Database (Denmark)

    Saxova, P.; Buus, S.; Brunak, Søren

    2003-01-01

    -terminal, in particular, of CTL epitopes is cleaved precisely by the proteasome, whereas the N-terminal is produced with an extension, and later trimmed by peptidases in the cytoplasm and in the endoplasmic reticulum. Recently, three publicly available methods have been developed for prediction of the specificity...... degradation data become available....

  20. Comparative analyses of genetic risk prediction methods reveal ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Genetics; Volume 94; Issue 1. Comparative analyses of genetic risk prediction methods reveal extreme diversity of genetic predisposition to nonalcoholic fatty liver disease (NAFLD) among ethnic populations of India. Ankita Chatterjee Analabha Basu Abhijit Chowdhury Kausik Das Neeta ...

  1. Lattice gas methods for predicting intrinsic permeability of porous media

    Energy Technology Data Exchange (ETDEWEB)

    Santos, L.O.E.; Philippi, P.C. [Santa Catarina Univ., Florianopolis, SC (Brazil). Dept. de Engenharia Mecanica. Lab. de Propriedades Termofisicas e Meios Porosos)]. E-mail: emerich@lmpt.ufsc.br; philippi@lmpt.ufsc.br; Damiani, M.C. [Engineering Simulation and Scientific Software (ESSS), Florianopolis, SC (Brazil). Parque Tecnologico]. E-mail: damiani@lmpt.ufsc.br

    2000-07-01

    This paper presents a method for predicting intrinsic permeability of porous media based on Lattice Gas Cellular Automata methods. Two methods are presented. The first is based on a Boolean model (LGA). The second is Boltzmann method (LB) based on Boltzmann relaxation equation. LGA is a relatively recent method developed to perform hydrodynamic calculations. The method, in its simplest form, consists of a regular lattice populated with particles that hop from site to site in discrete time steps in a process, called propagation. After propagation, the particles in each site interact with each other in a process called collision, in which the number of particles and momentum are conserved. An exclusion principle is imposed in order to achieve better computational efficiency. In despite of its simplicity, this model evolves in agreement with Navier-Stokes equation for low Mach numbers. LB methods were recently developed for the numerical integration of the Navier-Stokes equation based on discrete Boltzmann transport equation. Derived from LGA, LB is a powerful alternative to the standard methods in computational fluid dynamics. In recent years, it has received much attention and has been used in several applications like simulations of flows through porous media, turbulent flows and multiphase flows. It is important to emphasize some aspects that make Lattice Gas Cellular Automata methods very attractive for simulating flows through porous media. In fact, boundary conditions in flows through complex geometry structures are very easy to describe in simulations using these methods. In LGA methods simulations are performed with integers needing less resident memory capability and boolean arithmetic reduces running time. The two methods are used to simulate flows through several Brazilian reservoir petroleum rocks leading to intrinsic permeability prediction. Simulation is compared with experimental results. (author)

  2. Application of the contour method to validate residual stress predictions

    International Nuclear Information System (INIS)

    Welding is the most widespread method employed to join metallic components in nuclear power plants. This is an aggressive process that introduces complex three-dimensional residual stresses of substantial magnitude into engineering components. For safety-critical applications it can be of crucial importance to have an accurate characterisation of the residual stress field present in order to assess plant lifetime and risk of failure. Finite element modelling approaches are being increasingly employed by engineers to predict welding residual stresses. However, such predictions are challenging owing to the innate complexity of the welding process and can give highly variable results. Therefore, it is always desirable to validate residual stress predictions by experimental data. This paper illustrates how the contour method of measuring residual stress can be applied to various weldments in order to provide high quality experimental data. The contour method results are compared with data obtained by other well-established residual stress measurement techniques such as neutron diffraction and slitting methods and show a very satisfactory correlation. (author)

  3. Pedophilia: an evaluation of diagnostic and risk prediction methods.

    Science.gov (United States)

    Wilson, Robin J; Abracen, Jeffrey; Looman, Jan; Picheca, Janice E; Ferguson, Meaghan

    2011-06-01

    One hundred thirty child sexual abusers were diagnosed using each of following four methods: (a) phallometric testing, (b) strict application of Diagnostic and Statistical Manual of Mental Disorders (4th ed., text revision [DSM-IV-TR]) criteria, (c) Rapid Risk Assessment of Sex Offender Recidivism (RRASOR) scores, and (d) "expert" diagnoses rendered by a seasoned clinician. Comparative utility and intermethod consistency of these methods are reported, along with recidivism data indicating predictive validity for risk management. Results suggest that inconsistency exists in diagnosing pedophilia, leading to diminished accuracy in risk assessment. Although the RRASOR and DSM-IV-TR methods were significantly correlated with expert ratings, RRASOR and DSM-IV-TR were unrelated to each other. Deviant arousal was not associated with any of the other methods. Only the expert ratings and RRASOR scores were predictive of sexual recidivism. Logistic regression analyses showed that expert diagnosis did not add to prediction of sexual offence recidivism over and above RRASOR alone. Findings are discussed within a context of encouragement of clinical consistency and evidence-based practice regarding treatment and risk management of those who sexually abuse children.

  4. Comparison of Predictive Modeling Methods of Aircraft Landing Speed

    Science.gov (United States)

    Diallo, Ousmane H.

    2012-01-01

    Expected increases in air traffic demand have stimulated the development of air traffic control tools intended to assist the air traffic controller in accurately and precisely spacing aircraft landing at congested airports. Such tools will require an accurate landing-speed prediction to increase throughput while decreasing necessary controller interventions for avoiding separation violations. There are many practical challenges to developing an accurate landing-speed model that has acceptable prediction errors. This paper discusses the development of a near-term implementation, using readily available information, to estimate/model final approach speed from the top of the descent phase of flight to the landing runway. As a first approach, all variables found to contribute directly to the landing-speed prediction model are used to build a multi-regression technique of the response surface equation (RSE). Data obtained from operations of a major airlines for a passenger transport aircraft type to the Dallas/Fort Worth International Airport are used to predict the landing speed. The approach was promising because it decreased the standard deviation of the landing-speed error prediction by at least 18% from the standard deviation of the baseline error, depending on the gust condition at the airport. However, when the number of variables is reduced to the most likely obtainable at other major airports, the RSE model shows little improvement over the existing methods. Consequently, a neural network that relies on a nonlinear regression technique is utilized as an alternative modeling approach. For the reduced number of variables cases, the standard deviation of the neural network models errors represent over 5% reduction compared to the RSE model errors, and at least 10% reduction over the baseline predicted landing-speed error standard deviation. Overall, the constructed models predict the landing-speed more accurately and precisely than the current state-of-the-art.

  5. The Dissolved Oxygen Prediction Method Based on Neural Network

    Directory of Open Access Journals (Sweden)

    Zhong Xiao

    2017-01-01

    Full Text Available The dissolved oxygen (DO is oxygen dissolved in water, which is an important factor for the aquaculture. Using BP neural network method with the combination of purelin, logsig, and tansig activation functions is proposed for the prediction of aquaculture’s dissolved oxygen. The input layer, hidden layer, and output layer are introduced in detail including the weight adjustment process. The breeding data of three ponds in actual 10 consecutive days were used for experiments; these ponds were located in Beihai, Guangxi, a traditional aquaculture base in southern China. The data of the first 7 days are used for training, and the data of the latter 3 days are used for the test. Compared with the common prediction models, curve fitting (CF, autoregression (AR, grey model (GM, and support vector machines (SVM, the experimental results show that the prediction accuracy of the neural network is the highest, and all the predicted values are less than 5% of the error limit, which can meet the needs of practical applications, followed by AR, GM, SVM, and CF. The prediction model can help to improve the water quality monitoring level of aquaculture which will prevent the deterioration of water quality and the outbreak of disease.

  6. Quantitative Method for Network Security Situation Based on Attack Prediction

    Directory of Open Access Journals (Sweden)

    Hao Hu

    2017-01-01

    Full Text Available Multistep attack prediction and security situation awareness are two big challenges for network administrators because future is generally unknown. In recent years, many investigations have been made. However, they are not sufficient. To improve the comprehensiveness of prediction, in this paper, we quantitatively convert attack threat into security situation. Actually, two algorithms are proposed, namely, attack prediction algorithm using dynamic Bayesian attack graph and security situation quantification algorithm based on attack prediction. The first algorithm aims to provide more abundant information of future attack behaviors by simulating incremental network penetration. Through timely evaluating the attack capacity of intruder and defense strategies of defender, the likely attack goal, path, and probability and time-cost are predicted dynamically along with the ongoing security events. Furthermore, in combination with the common vulnerability scoring system (CVSS metric and network assets information, the second algorithm quantifies the concealed attack threat into the surfaced security risk from two levels: host and network. Examples show that our method is feasible and flexible for the attack-defense adversarial network environment, which benefits the administrator to infer the security situation in advance and prerepair the critical compromised hosts to maintain normal network communication.

  7. Risk prediction, safety analysis and quantitative probability methods - a caveat

    International Nuclear Information System (INIS)

    Critchley, O.H.

    1976-01-01

    Views are expressed on the use of quantitative techniques for the determination of value judgements in nuclear safety assessments, hazard evaluation, and risk prediction. Caution is urged when attempts are made to quantify value judgements in the field of nuclear safety. Criteria are given the meaningful application of reliability methods but doubts are expressed about their application to safety analysis, risk prediction and design guidances for experimental or prototype plant. Doubts are also expressed about some concomitant methods of population dose evaluation. The complexities of new designs of nuclear power plants make the problem of safety assessment more difficult but some possible approaches are suggested as alternatives to the quantitative techniques criticized. (U.K.)

  8. A stacked sequential learning method for investigator name recognition from web-based medical articles

    Science.gov (United States)

    Zhang, Xiaoli; Zou, Jie; Le, Daniel X.; Thoma, George

    2010-01-01

    "Investigator Names" is a newly required field in MEDLINE citations. It consists of personal names listed as members of corporate organizations in an article. Extracting investigator names automatically is necessary because of the increasing volume of articles reporting collaborative biomedical research in which a large number of investigators participate. In this paper, we present an SVM-based stacked sequential learning method in a novel application - recognizing named entities such as the first and last names of investigators from online medical journal articles. Stacked sequential learning is a meta-learning algorithm which can boost any base learner. It exploits contextual information by adding the predicted labels of the surrounding tokens as features. We apply this method to tag words in text paragraphs containing investigator names, and demonstrate that stacked sequential learning improves the performance of a nonsequential base learner such as an SVM classifier.

  9. River Flow Prediction Using the Nearest Neighbor Probabilistic Ensemble Method

    Directory of Open Access Journals (Sweden)

    H. Sanikhani

    2016-02-01

    Full Text Available Introduction: In the recent years, researchers interested on probabilistic forecasting of hydrologic variables such river flow.A probabilistic approach aims at quantifying the prediction reliability through a probability distribution function or a prediction interval for the unknown future value. The evaluation of the uncertainty associated to the forecast is seen as a fundamental information, not only to correctly assess the prediction, but also to compare forecasts from different methods and to evaluate actions and decisions conditionally on the expected values. Several probabilistic approaches have been proposed in the literature, including (1 methods that use resampling techniques to assess parameter and model uncertainty, such as the Metropolis algorithm or the Generalized Likelihood Uncertainty Estimation (GLUE methodology for an application to runoff prediction, (2 methods based on processing the forecast errors of past data to produce the probability distributions of future values and (3 methods that evaluate how the uncertainty propagates from the rainfall forecast to the river discharge prediction, as the Bayesian forecasting system. Materials and Methods: In this study, two different probabilistic methods are used for river flow prediction.Then the uncertainty related to the forecast is quantified. One approach is based on linear predictors and in the other, nearest neighbor was used. The nonlinear probabilistic ensemble can be used for nonlinear time series analysis using locally linear predictors, while NNPE utilize a method adapted for one step ahead nearest neighbor methods. In this regard, daily river discharge (twelve years of Dizaj and Mashin Stations on Baranduz-Chay basin in west Azerbijan and Zard-River basin in Khouzestan provinces were used, respectively. The first six years of data was applied for fitting the model. The next three years was used to calibration and the remained three yeas utilized for testing the models

  10. Improving protein function prediction methods with integrated literature data

    Directory of Open Access Journals (Sweden)

    Gabow Aaron P

    2008-04-01

    Full Text Available Abstract Background Determining the function of uncharacterized proteins is a major challenge in the post-genomic era due to the problem's complexity and scale. Identifying a protein's function contributes to an understanding of its role in the involved pathways, its suitability as a drug target, and its potential for protein modifications. Several graph-theoretic approaches predict unidentified functions of proteins by using the functional annotations of better-characterized proteins in protein-protein interaction networks. We systematically consider the use of literature co-occurrence data, introduce a new method for quantifying the reliability of co-occurrence and test how performance differs across species. We also quantify changes in performance as the prediction algorithms annotate with increased specificity. Results We find that including information on the co-occurrence of proteins within an abstract greatly boosts performance in the Functional Flow graph-theoretic function prediction algorithm in yeast, fly and worm. This increase in performance is not simply due to the presence of additional edges since supplementing protein-protein interactions with co-occurrence data outperforms supplementing with a comparably-sized genetic interaction dataset. Through the combination of protein-protein interactions and co-occurrence data, the neighborhood around unknown proteins is quickly connected to well-characterized nodes which global prediction algorithms can exploit. Our method for quantifying co-occurrence reliability shows superior performance to the other methods, particularly at threshold values around 10% which yield the best trade off between coverage and accuracy. In contrast, the traditional way of asserting co-occurrence when at least one abstract mentions both proteins proves to be the worst method for generating co-occurrence data, introducing too many false positives. Annotating the functions with greater specificity is harder

  11. [Statistical prediction methods in violence risk assessment and its application].

    Science.gov (United States)

    Liu, Yuan-Yuan; Hu, Jun-Mei; Yang, Min; Li, Xiao-Song

    2013-06-01

    It is an urgent global problem how to improve the violence risk assessment. As a necessary part of risk assessment, statistical methods have remarkable impacts and effects. In this study, the predicted methods in violence risk assessment from the point of statistics are reviewed. The application of Logistic regression as the sample of multivariate statistical model, decision tree model as the sample of data mining technique, and neural networks model as the sample of artificial intelligence technology are all reviewed. This study provides data in order to contribute the further research of violence risk assessment.

  12. Toward the Prediction of FBPase Inhibitory Activity Using Chemoinformatic Methods

    Directory of Open Access Journals (Sweden)

    Shuwei Zhang

    2012-06-01

    Full Text Available Currently, Chemoinformatic methods are used to perform the prediction for FBPase inhibitory activity. A genetic algorithm-random forest coupled method (GA-RF was proposed to predict fructose 1,6-bisphosphatase (FBPase inhibitors to treat type 2 diabetes mellitus using the Mold2 molecular descriptors. A data set of 126 oxazole and thiazole analogs was used to derive the GA-RF model, yielding the significant non-cross-validated correlation coefficient r2ncv and cross-validated r2cv values of 0.96 and 0.67 for the training set, respectively. The statistically significant model was validated by a test set of 64 compounds, producing the prediction correlation coefficient r2pred of 0.90. More importantly, the building GA-RF model also passed through various criteria suggested by Tropsha and Roy with r2o and r2m values of 0.90 and 0.83, respectively. In order to compare with the GA-RF model, a pure RF model developed based on the full descriptors was performed as well for the same data set. The resulting GA-RF model with significantly internal and external prediction capacities is beneficial to the prediction of potential oxazole and thiazole series of FBPase inhibitors prior to chemical synthesis in drug discovery programs.

  13. Method of predicting mechanical properties of decayed wood

    Science.gov (United States)

    Kelley, Stephen S.

    2003-07-15

    A method for determining the mechanical properties of decayed wood that has been exposed to wood decay microorganisms, comprising: a) illuminating a surface of decayed wood that has been exposed to wood decay microorganisms with wavelengths from visible and near infrared (VIS-NIR) spectra; b) analyzing the surface of the decayed wood using a spectrometric method, the method generating a first spectral data of wavelengths in VIS-NIR spectra region; and c) using a multivariate analysis to predict mechanical properties of decayed wood by comparing the first spectral data with a calibration model, the calibration model comprising a second spectrometric method of spectral data of wavelengths in VIS-NIR spectra obtained from a reference decay wood, the second spectral data being correlated with a known mechanical property analytical result obtained from the reference decayed wood.

  14. Predicting Hepatic Steatosis in Living Liver Donors via Noninvasive Methods.

    Science.gov (United States)

    Kim, Jong Man; Ha, Sang Yun; Joh, Jae-Won; Sinn, Dong Hyun; Jeong, Woo Kyung; Choi, Gyu-Seong; Gwak, Geum Youn; Kwon, Choon Hyuck David; Kim, Young Kon; Paik, Yong Han; Lee, Joon Hyeok; Lee, Won Jae; Lee, Suk-Koo; Park, Cheol Keun

    2016-02-01

    Hepatic steatosis assessment is of paramount importance for living liver donor selection because significant hepatic steatosis can affect the postoperative outcome of recipients and the safety of the donor. The validity of various noninvasive imaging methods to assess hepatic steatosis remains controversial. The purpose of our study is to investigate the association between noninvasive imaging methods and pathology to detect steatosis in living liver donors and to propose a prediction model for hepatic steatosis. Liver stiffness measurements (LSMs) and controlled attenuation parameter values in vibration controlled transient elastography, ultrasonography, computed tomography (CT), and magnetic resonance imaging were used as pretransplant screening methods to evaluate living liver donors between 2012 and 2014. Only 1 pathologist assessed tissue sample for hepatic steatosis. The median age of the 79 living donors (53 men and 26 women) was 32 years (16-68 years). The CT liver-spleen attenuation (L-S) difference and the controlled attenuation parameter values were well correlated with the level of hepatic steatosis on liver pathology. Multivariate analysis showed that liver stiffness measurement (LSM) (β = 0.903; 95% CI, 0.105-1.702; P = 0.027) and the CT L to S attenuation difference (β = -3.322; 95% CI, -0.502 to -0.142; P = 0.001) were closely associated with hepatic steatosis. We generated the following equation to predict total hepatic steatosis: Hepatic steatosis = 0.903 × LSM - 0.322 × CT L to S attenuation difference (AUC = 86.6% and P = 0.001). The values predicted by the equation correlated well with the presence of hepatic steatosis (r = 0.509 and P The combination of nonenhanced CT L to S attenuation difference and transient elastography using vibration controlled transient elastography provides sufficient information to predict hepatic steatosis in living liver donor candidates.

  15. Comparison of RF spectrum prediction methods for dynamic spectrum access

    Science.gov (United States)

    Kovarskiy, Jacob A.; Martone, Anthony F.; Gallagher, Kyle A.; Sherbondy, Kelly D.; Narayanan, Ram M.

    2017-05-01

    Dynamic spectrum access (DSA) refers to the adaptive utilization of today's busy electromagnetic spectrum. Cognitive radio/radar technologies require DSA to intelligently transmit and receive information in changing environments. Predicting radio frequency (RF) activity reduces sensing time and energy consumption for identifying usable spectrum. Typical spectrum prediction methods involve modeling spectral statistics with Hidden Markov Models (HMM) or various neural network structures. HMMs describe the time-varying state probabilities of Markov processes as a dynamic Bayesian network. Neural Networks model biological brain neuron connections to perform a wide range of complex and often non-linear computations. This work compares HMM, Multilayer Perceptron (MLP), and Recurrent Neural Network (RNN) algorithms and their ability to perform RF channel state prediction. Monte Carlo simulations on both measured and simulated spectrum data evaluate the performance of these algorithms. Generalizing spectrum occupancy as an alternating renewal process allows Poisson random variables to generate simulated data while energy detection determines the occupancy state of measured RF spectrum data for testing. The results suggest that neural networks achieve better prediction accuracy and prove more adaptable to changing spectral statistics than HMMs given sufficient training data.

  16. Linear combination methods for prediction of drug skin permeation

    Directory of Open Access Journals (Sweden)

    Stefan Scheler

    2015-01-01

    Full Text Available Many in-vitro methods for prediction of skin permeability have been reported in literature. Cerasome electrokinetic chromatography is one of the most sophisticated approaches representing a maximum level of similarity to the lipid phase of the stratum corneum. One goal of this study was to investigate the affinity pattern of Cerasome and to compare it with the permeability profile of human skin. Another purpose was to study the applicability of Hansen solubility parameters for modelling skin permeation and to investigate the predictive and explanatory potential of this method. Visualisation in Hansen diagrams revealed very similar profiles of Cerasome electrokinetic chromatography retention factors and skin permeability coefficients. In both cases, the characteristic pattern with two clusters of highly retained or highly permeable substances could be shown to be mainly caused by two groups of compounds, one of them with high affinity to ceramides, fatty acids and lecithin and the other being more affine to cholesterol. If based on a sufficiently comprehensive experimental dataset, model-independent predictions of skin permeability data using three-component Hansen solubility parameters are able to achieve similar accuracy as calculations made with an Abraham linear free energy relationship model in which the compounds are characterized by seven physicochemical descriptors.

  17. Bug Forecast: A Method for Automatic Bug Prediction

    Science.gov (United States)

    Ferenc, Rudolf

    In this paper we present an approach and a toolset for automatic bug prediction during software development and maintenance. The toolset extends the Columbus source code quality framework, which is able to integrate into the regular builds, analyze the source code, calculate different quality attributes like product metrics and bad code smells; and monitor the changes of these attributes. The new bug forecast toolset connects to the bug tracking and version control systems and assigns the reported and fixed bugs to the source code classes from the past. It then applies machine learning methods to learn which values of which quality attributes typically characterized buggy classes. Based on this information it is able to predict bugs in current and future versions of the classes.

  18. Long-Term Prediction of Satellite Orbit Using Analytical Method

    Directory of Open Access Journals (Sweden)

    Jae-Cheol Yoon

    1997-12-01

    Full Text Available A long-term prediction algorithm of geostationary orbit was developed using the analytical method. The perturbation force models include geopotential upto fifth order and degree and luni-solar gravitation, and solar radiation pressure. All of the perturbation effects were analyzed by secular variations, short-period variations, and long-period variations for equinoctial elements such as the semi-major axis, eccentricity vector, inclination vector, and mean longitude of the satellite. Result of the analytical orbit propagator was compared with that of the cowell orbit propagator for the KOREASAT. The comparison indicated that the analytical solution could predict the semi-major axis with an accuarcy of better than ~35meters over a period of 3 month.

  19. Methods for exploring uncertainty in groundwater management predictions

    Science.gov (United States)

    Guillaume, Joseph H. A.; Hunt, Randall J.; Comunian, Alessandro; Fu, Baihua; Blakers, Rachel S; Jakeman, Anthony J.; Barreteau, Olivier; Hunt, Randall J.; Rinaudo, Jean-Daniel; Ross, Andrew

    2016-01-01

    Models of groundwater systems help to integrate knowledge about the natural and human system covering different spatial and temporal scales, often from multiple disciplines, in order to address a range of issues of concern to various stakeholders. A model is simply a tool to express what we think we know. Uncertainty, due to lack of knowledge or natural variability, means that there are always alternative models that may need to be considered. This chapter provides an overview of uncertainty in models and in the definition of a problem to model, highlights approaches to communicating and using predictions of uncertain outcomes and summarises commonly used methods to explore uncertainty in groundwater management predictions. It is intended to raise awareness of how alternative models and hence uncertainty can be explored in order to facilitate the integration of these techniques with groundwater management.

  20. Prediction of Chloride Diffusion in Concrete Structure Using Meshless Methods

    Directory of Open Access Journals (Sweden)

    Ling Yao

    2016-01-01

    Full Text Available Degradation of RC structures due to chloride penetration followed by reinforcement corrosion is a serious problem in civil engineering. The numerical simulation methods at present mainly involve finite element methods (FEM, which are based on mesh generation. In this study, element-free Galerkin (EFG and meshless weighted least squares (MWLS methods are used to solve the problem of simulation of chloride diffusion in concrete. The range of a scaling parameter is presented using numerical examples based on meshless methods. One- and two-dimensional numerical examples validated the effectiveness and accuracy of the two meshless methods by comparing results obtained by MWLS with results computed by EFG and FEM and results calculated by an analytical method. A good agreement is obtained among MWLS and EFG numerical simulations and the experimental data obtained from an existing marine concrete structure. These results indicate that MWLS and EFG are reliable meshless methods that can be used for the prediction of chloride ingress in concrete structures.

  1. Predicting recreational water quality advisories: A comparison of statistical methods

    Science.gov (United States)

    Brooks, Wesley R.; Corsi, Steven R.; Fienen, Michael N.; Carvin, Rebecca B.

    2016-01-01

    Epidemiological studies indicate that fecal indicator bacteria (FIB) in beach water are associated with illnesses among people having contact with the water. In order to mitigate public health impacts, many beaches are posted with an advisory when the concentration of FIB exceeds a beach action value. The most commonly used method of measuring FIB concentration takes 18–24 h before returning a result. In order to avoid the 24 h lag, it has become common to ”nowcast” the FIB concentration using statistical regressions on environmental surrogate variables. Most commonly, nowcast models are estimated using ordinary least squares regression, but other regression methods from the statistical and machine learning literature are sometimes used. This study compares 14 regression methods across 7 Wisconsin beaches to identify which consistently produces the most accurate predictions. A random forest model is identified as the most accurate, followed by multiple regression fit using the adaptive LASSO.

  2. Using simple artificial intelligence methods for predicting amyloidogenesis in antibodies

    Science.gov (United States)

    2010-01-01

    Background All polypeptide backbones have the potential to form amyloid fibrils, which are associated with a number of degenerative disorders. However, the likelihood that amyloidosis would actually occur under physiological conditions depends largely on the amino acid composition of a protein. We explore using a naive Bayesian classifier and a weighted decision tree for predicting the amyloidogenicity of immunoglobulin sequences. Results The average accuracy based on leave-one-out (LOO) cross validation of a Bayesian classifier generated from 143 amyloidogenic sequences is 60.84%. This is consistent with the average accuracy of 61.15% for a holdout test set comprised of 103 AM and 28 non-amyloidogenic sequences. The LOO cross validation accuracy increases to 81.08% when the training set is augmented by the holdout test set. In comparison, the average classification accuracy for the holdout test set obtained using a decision tree is 78.64%. Non-amyloidogenic sequences are predicted with average LOO cross validation accuracies between 74.05% and 77.24% using the Bayesian classifier, depending on the training set size. The accuracy for the holdout test set was 89%. For the decision tree, the non-amyloidogenic prediction accuracy is 75.00%. Conclusions This exploratory study indicates that both classification methods may be promising in providing straightforward predictions on the amyloidogenicity of a sequence. Nevertheless, the number of available sequences that satisfy the premises of this study are limited, and are consequently smaller than the ideal training set size. Increasing the size of the training set clearly increases the accuracy, and the expansion of the training set to include not only more derivatives, but more alignments, would make the method more sound. The accuracy of the classifiers may also be improved when additional factors, such as structural and physico-chemical data, are considered. The development of this type of classifier has significant

  3. Bicycle Frame Prediction Techniques with Fuzzy Logic Method

    Directory of Open Access Journals (Sweden)

    Rafiuddin Syam

    2015-03-01

    Full Text Available In general, an appropriate size bike frame would get comfort to the rider while biking. This study aims to predict the simulation system on the bike frame sizes with fuzzy logic. Testing method used is the simulation test. In this study, fuzzy logic will be simulated using Matlab language to test their performance. Mamdani fuzzy logic using 3 variables and 1 output variable intake. Triangle function for the input and output. The controller is designed in the type mamdani with max-min composition and the method deffuzification using center of gravity method. The results showed that height, inseam and Crank Size generating appropriate frame size for the rider associated with comfort. Has a height range between 142 cm and 201 cm. Inseam has a range between 64 cm and 97 cm. Crank has a size range between 175 mm and 180 mm. The simulation results have a range of frame sizes between 13 inches and 22 inches. By using the fuzzy logic can be predicted the size frame of bicycle suitable for the biker.

  4. Bicycle Frame Prediction Techniques with Fuzzy Logic Method

    Directory of Open Access Journals (Sweden)

    Rafiuddin Syam

    2017-03-01

    Full Text Available In general, an appropriate size bike frame would get comfort to the rider while biking. This study aims to predict the simulation system on the bike frame sizes with fuzzy logic. Testing method used is the simulation test. In this study, fuzzy logic will be simulated using Matlab language to test their performance. Mamdani fuzzy logic using 3 variables and 1 output variable intake. Triangle function for the input and output. The controller is designed in the type mamdani with max-min composition and the method deffuzification using center of gravity method. The results showed that height, inseam and Crank Size generating appropriate frame size for the rider associated with comfort. Has a height range between 142 cm and 201 cm. Inseam has a range between 64 cm and 97 cm. Crank has a size range between 175 mm and 180 mm. The simulation results have a range of frame sizes between 13 inches and 22 inches. By using the fuzzy logic can be predicted the size frame of bicycle suitable for the biker.

  5. Predicting Hepatic Steatosis in Living Liver Donors via Noninvasive Methods

    Science.gov (United States)

    Kim, Jong Man; Ha, Sang Yun; Joh, Jae-Won; Sinn, Dong Hyun; Jeong, Woo Kyung; Choi, Gyu-Seong; Gwak, Geum Youn; Kwon, Choon Hyuck David; Kim, Young Kon; Paik, Yong Han; Lee, Joon Hyeok; Lee, Won Jae; Lee, Suk-Koo; Park, Cheol Keun

    2016-01-01

    Abstract Hepatic steatosis assessment is of paramount importance for living liver donor selection because significant hepatic steatosis can affect the postoperative outcome of recipients and the safety of the donor. The validity of various noninvasive imaging methods to assess hepatic steatosis remains controversial. The purpose of our study is to investigate the association between noninvasive imaging methods and pathology to detect steatosis in living liver donors and to propose a prediction model for hepatic steatosis. Liver stiffness measurements (LSMs) and controlled attenuation parameter values in vibration controlled transient elastography, ultrasonography, computed tomography (CT), and magnetic resonance imaging were used as pretransplant screening methods to evaluate living liver donors between 2012 and 2014. Only 1 pathologist assessed tissue sample for hepatic steatosis. The median age of the 79 living donors (53 men and 26 women) was 32 years (16–68 years). The CT liver–spleen attenuation (L–S) difference and the controlled attenuation parameter values were well correlated with the level of hepatic steatosis on liver pathology. Multivariate analysis showed that liver stiffness measurement (LSM) (β = 0.903; 95% CI, 0.105–1.702; P = 0.027) and the CT L to S attenuation difference (β = −3.322; 95% CI, −0.502 to −0.142; P = 0.001) were closely associated with hepatic steatosis. We generated the following equation to predict total hepatic steatosis: Hepatic steatosis = 0.903 × LSM – 0.322 × CT L to S attenuation difference (AUC = 86.6% and P = 0.001). The values predicted by the equation correlated well with the presence of hepatic steatosis (r = 0.509 and P liver donor candidates. PMID:26886612

  6. Alternative Testing Methods for Predicting Health Risk from Environmental Exposures

    Directory of Open Access Journals (Sweden)

    Annamaria Colacci

    2014-08-01

    Full Text Available Alternative methods to animal testing are considered as promising tools to support the prediction of toxicological risks from environmental exposure. Among the alternative testing methods, the cell transformation assay (CTA appears to be one of the most appropriate approaches to predict the carcinogenic properties of single chemicals, complex mixtures and environmental pollutants. The BALB/c 3T3 CTA shows a good degree of concordance with the in vivo rodent carcinogenesis tests. Whole-genome transcriptomic profiling is performed to identify genes that are transcriptionally regulated by different kinds of exposures. Its use in cell models representative of target organs may help in understanding the mode of action and predicting the risk for human health. Aiming at associating the environmental exposure to health-adverse outcomes, we used an integrated approach including the 3T3 CTA and transcriptomics on target cells, in order to evaluate the effects of airborne particulate matter (PM on toxicological complex endpoints. Organic extracts obtained from PM2.5 and PM1 samples were evaluated in the 3T3 CTA in order to identify effects possibly associated with different aerodynamic diameters or airborne chemical components. The effects of the PM2.5 extracts on human health were assessed by using whole-genome 44 K oligo-microarray slides. Statistical analysis by GeneSpring GX identified genes whose expression was modulated in response to the cell treatment. Then, modulated genes were associated with pathways, biological processes and diseases through an extensive biological analysis. Data derived from in vitro methods and omics techniques could be valuable for monitoring the exposure to toxicants, understanding the modes of action via exposure-associated gene expression patterns and to highlight the role of genes in key events related to adversity.

  7. A novel stepwise support vector machine (SVM) method based on ...

    African Journals Online (AJOL)

    ajl yemi

    2011-11-23

    Nov 23, 2011 ... began to use computational approaches, particularly machine learning methods to identify pre-miRNAs (Xue et al., 2005; Huang et al., 2007; Jiang et al., 2007). Xue et al. (2005) presented a support vector machine (SVM)- based classifier called triplet-SVM, which classifies human pre-miRNAs from pseudo ...

  8. Method for predicting peptide detection in mass spectrometry

    Science.gov (United States)

    Kangas, Lars [West Richland, WA; Smith, Richard D [Richland, WA; Petritis, Konstantinos [Richland, WA

    2010-07-13

    A method of predicting whether a peptide present in a biological sample will be detected by analysis with a mass spectrometer. The method uses at least one mass spectrometer to perform repeated analysis of a sample containing peptides from proteins with known amino acids. The method then generates a data set of peptides identified as contained within the sample by the repeated analysis. The method then calculates the probability that a specific peptide in the data set was detected in the repeated analysis. The method then creates a plurality of vectors, where each vector has a plurality of dimensions, and each dimension represents a property of one or more of the amino acids present in each peptide and adjacent peptides in the data set. Using these vectors, the method then generates an algorithm from the plurality of vectors and the calculated probabilities that specific peptides in the data set were detected in the repeated analysis. The algorithm is thus capable of calculating the probability that a hypothetical peptide represented as a vector will be detected by a mass spectrometry based proteomic platform, given that the peptide is present in a sample introduced into a mass spectrometer.

  9. Bicycle Frame Prediction Techniques with Fuzzy Logic Method

    OpenAIRE

    Rafiuddin Syam; La Ode Asman Muriman

    2017-01-01

    In general, an appropriate size bike frame would get comfort to the rider while biking. This study aims to predict the simulation system on the bike frame sizes with fuzzy logic. Testing method used is the simulation test. In this study, fuzzy logic will be simulated using Matlab language to test their performance. Mamdani fuzzy logic using 3 variables and 1 output variable intake. Triangle function for the input and output. The controller is designed in the type mamdani with max-min composit...

  10. A lifetime prediction method for LEDs considering mission profiles

    DEFF Research Database (Denmark)

    Qu, Xiaohui; Wang, Huai; Zhan, Xiaoqing

    2016-01-01

    and to benchmark the cost-competitiveness of different lighting technologies. The existing lifetime data released by LED manufacturers or standard organizations are usually applicable only for specific temperature and current levels. Significant lifetime discrepancies may be observed in field operations due...... to the varying operational and environmental conditions during the entire service time (i.e., mission profiles). To overcome the challenge, this paper proposes an advanced lifetime prediction method, which takes into account the field operation mission profiles and the statistical properties of the life data...

  11. A Lifetime Prediction Method for LEDs Considering Real Mission Profiles

    DEFF Research Database (Denmark)

    Qu, Xiaohui; Wang, Huai; Zhan, Xiaoqing

    2017-01-01

    and to benchmark the cost-competitiveness of different lighting technologies. However, the existing lifetime data released by LED manufacturers or standard organizations are usually applicable only for some specific temperature and current levels. Significant lifetime discrepancies may be seen in the field...... operations due to the varying operational and environmental conditions during the entire service time (i.e., mission profiles). To overcome the challenge, this paper proposes an advanced lifetime prediction method, which takes into account the field operation mission profiles and also the statistical...

  12. Validation of wind speed prediction methods at offshore sites

    Science.gov (United States)

    McQueen, Dougal; Watson, Simon

    2006-01-01

    As ever more offshore sites are being investigated for the installation of wind farms, there is a need for accurate estimates of the long-term mean wind speeds at these sites. The cost of installing masts at offshore sites is high compared with onshore sites. In the short term this cost may be difficult to avoid. However, if a developer could get an estimate of the expected long-term mean wind speed at a potential offshore site using available onshore data sets, this could at least inform the choice of site for more advanced monitoring. With this in mind we present the results of using a number of simple standard analyses to infer the wind speed at three UK offshore masts and a mast and lighthouse off the coast of Ireland. Onshore surface wind measurements, upper air measurements, numerical weather prediction model output pressure data on a regular grid, wind speed output from two numerical weather prediction models and reanalysis data are transformed to the sites of interest using relatively simple methods neglecting the effect of topography or a roughness change-induced internal boundary layer and assuming neutral atmospheric stability. The predicted wind speeds are compared with actual measurements at the offshore masts and any discrepancies are assessed and discussed. Copyright

  13. Prediction strategies in a TV recommender system - Method and experiments

    NARCIS (Netherlands)

    van Setten, M.J.; Veenstra, M.; van Dijk, Elisabeth M.A.G.; Nijholt, Antinus; Isaísas, P.; Karmakar, N.

    2003-01-01

    Predicting the interests of a user in information is an important process in personalized information systems. In this paper, we present a way to create prediction engines that allow prediction techniques to be easily combined into prediction strategies. Prediction strategies choose one or a

  14. Data Based Prediction of Blood Glucose Concentrations Using Evolutionary Methods.

    Science.gov (United States)

    Hidalgo, J Ignacio; Colmenar, J Manuel; Kronberger, Gabriel; Winkler, Stephan M; Garnica, Oscar; Lanchares, Juan

    2017-08-08

    Predicting glucose values on the basis of insulin and food intakes is a difficult task that people with diabetes need to do daily. This is necessary as it is important to maintain glucose levels at appropriate values to avoid not only short-term, but also long-term complications of the illness. Artificial intelligence in general and machine learning techniques in particular have already lead to promising results in modeling and predicting glucose concentrations. In this work, several machine learning techniques are used for the modeling and prediction of glucose concentrations using as inputs the values measured by a continuous monitoring glucose system as well as also previous and estimated future carbohydrate intakes and insulin injections. In particular, we use the following four techniques: genetic programming, random forests, k-nearest neighbors, and grammatical evolution. We propose two new enhanced modeling algorithms for glucose prediction, namely (i) a variant of grammatical evolution which uses an optimized grammar, and (ii) a variant of tree-based genetic programming which uses a three-compartment model for carbohydrate and insulin dynamics. The predictors were trained and tested using data of ten patients from a public hospital in Spain. We analyze our experimental results using the Clarke error grid metric and see that 90% of the forecasts are correct (i.e., Clarke error categories A and B), but still even the best methods produce 5 to 10% of serious errors (category D) and approximately 0.5% of very serious errors (category E). We also propose an enhanced genetic programming algorithm that incorporates a three-compartment model into symbolic regression models to create smoothed time series of the original carbohydrate and insulin time series.

  15. Predicting linear B-cell epitopes using string kernels

    Science.gov (United States)

    EL-Manzalawy, Yasser; Dobbs, Drena; Honavar, Vasant

    2008-01-01

    The identification and characterization of B-cell epitopes play an important role in vaccine design, immunodiagnostic tests, and antibody production. Therefore, computational tools for reliably predicting linear B-cell epitopes are highly desirable. We evaluated Support Vector Machine (SVM) classifiers trained utilizing five different kernel methods using fivefold cross-validation on a homology-reduced data set of 701 linear B-cell epitopes, extracted from Bcipep database, and 701 non-epitopes, randomly extracted from SwissProt sequences. Based on the results of our computational experiments, we propose BCPred, a novel method for predicting linear B-cell epitopes using the subsequence kernel. We show that the predictive performance of BCPred (AUC = 0.758) outperforms 11 SVM-based classifiers developed and evaluated in our experiments as well as our implementation of AAP (AUC = 0.7), a recently proposed method for predicting linear B-cell epitopes using amino acid pair antigenicity. Furthermore, we compared BCPred with AAP and ABCPred, a method that uses recurrent neural networks, using two data sets of unique B-cell epitopes that had been previously used to evaluate ABCPred. Analysis of the data sets used and the results of this comparison show that conclusions about the relative performance of different B-cell epitope prediction methods drawn on the basis of experiments using data sets of unique B-cell epitopes are likely to yield overly optimistic estimates of performance of evaluated methods. This argues for the use of carefully homology-reduced data sets in comparing B-cell epitope prediction methods to avoid misleading conclusions about how different methods compare to each other. Our homology-reduced data set and implementations of BCPred as well as the APP method are publicly available through our web-based server, BCPREDS, at: http://ailab.cs.iastate.edu/bcpreds/. PMID:18496882

  16. Decision tree methods: applications for classification and prediction.

    Science.gov (United States)

    Song, Yan-Yan; Lu, Ying

    2015-04-25

    Decision tree methodology is a commonly used data mining method for establishing classification systems based on multiple covariates or for developing prediction algorithms for a target variable. This method classifies a population into branch-like segments that construct an inverted tree with a root node, internal nodes, and leaf nodes. The algorithm is non-parametric and can efficiently deal with large, complicated datasets without imposing a complicated parametric structure. When the sample size is large enough, study data can be divided into training and validation datasets. Using the training dataset to build a decision tree model and a validation dataset to decide on the appropriate tree size needed to achieve the optimal final model. This paper introduces frequently used algorithms used to develop decision trees (including CART, C4.5, CHAID, and QUEST) and describes the SPSS and SAS programs that can be used to visualize tree structure.

  17. Influence of the GZ calculation method on parametric roll prediction

    DEFF Research Database (Denmark)

    Vidic-Perunovic, Jelena

    2011-01-01

    to obtain the probability that the roll motion will exceed a given limiting angle. The results have been compared to the results by a Monte Carlo simulation. Using FORM the computational time is greatly reduced as compared to direct simulations, still retaining the probability of failure of the correct......Parametrically excited roll response in a container ship sailing in irregular head sea has been studied. Short-term predictions for roll have been made for a ship at a constant forward speed based on different hydrodynamic roll descriptions.The first order reliability method (FORM) has been used...... to on-board decision support systems, where a computationally efficient method is needed in order to have an operationally feasible time frame....

  18. Predictive ability of machine learning methods for massive crop yield prediction

    Directory of Open Access Journals (Sweden)

    Alberto Gonzalez-Sanchez

    2014-04-01

    Full Text Available An important issue for agricultural planning purposes is the accurate yield estimation for the numerous crops involved in the planning. Machine learning (ML is an essential approach for achieving practical and effective solutions for this problem. Many comparisons of ML methods for yield prediction have been made, seeking for the most accurate technique. Generally, the number of evaluated crops and techniques is too low and does not provide enough information for agricultural planning purposes. This paper compares the predictive accuracy of ML and linear regression techniques for crop yield prediction in ten crop datasets. Multiple linear regression, M5-Prime regression trees, perceptron multilayer neural networks, support vector regression and k-nearest neighbor methods were ranked. Four accuracy metrics were used to validate the models: the root mean square error (RMS, root relative square error (RRSE, normalized mean absolute error (MAE, and correlation factor (R. Real data of an irrigation zone of Mexico were used for building the models. Models were tested with samples of two consecutive years. The results show that M5-Prime and k-nearest neighbor techniques obtain the lowest average RMSE errors (5.14 and 4.91, the lowest RRSE errors (79.46% and 79.78%, the lowest average MAE errors (18.12% and 19.42%, and the highest average correlation factors (0.41 and 0.42. Since M5-Prime achieves the largest number of crop yield models with the lowest errors, it is a very suitable tool for massive crop yield prediction in agricultural planning.

  19. Computational protein biomarker prediction: a case study for prostate cancer

    Directory of Open Access Journals (Sweden)

    Adam Bao-Ling

    2004-03-01

    Full Text Available Abstract Background Recent technological advances in mass spectrometry pose challenges in computational mathematics and statistics to process the mass spectral data into predictive models with clinical and biological significance. We discuss several classification-based approaches to finding protein biomarker candidates using protein profiles obtained via mass spectrometry, and we assess their statistical significance. Our overall goal is to implicate peaks that have a high likelihood of being biologically linked to a given disease state, and thus to narrow the search for biomarker candidates. Results Thorough cross-validation studies and randomization tests are performed on a prostate cancer dataset with over 300 patients, obtained at the Eastern Virginia Medical School using SELDI-TOF mass spectrometry. We obtain average classification accuracies of 87% on a four-group classification problem using a two-stage linear SVM-based procedure and just 13 peaks, with other methods performing comparably. Conclusions Modern feature selection and classification methods are powerful techniques for both the identification of biomarker candidates and the related problem of building predictive models from protein mass spectrometric profiles. Cross-validation and randomization are essential tools that must be performed carefully in order not to bias the results unfairly. However, only a biological validation and identification of the underlying proteins will ultimately confirm the actual value and power of any computational predictions.

  20. FREEZING AND THAWING TIME PREDICTION METHODS OF FOODS II: NUMARICAL METHODS

    Directory of Open Access Journals (Sweden)

    Yahya TÜLEK

    1999-03-01

    Full Text Available Freezing is one of the excellent methods for the preservation of foods. If freezing and thawing processes and frozen storage method are carried out correctly, the original characteristics of the foods can remain almost unchanged over an extended periods of time. It is very important to determine the freezing and thawing time period of the foods, as they strongly influence the both quality of food material and process productivity and the economy. For developing a simple and effectively usable mathematical model, less amount of process parameters and physical properties should be enrolled in calculations. But it is a difficult to have all of these in one prediction method. For this reason, various freezing and thawing time prediction methods were proposed in literature and research studies have been going on.

  1. Predicting human height by Victorian and genomic methods.

    Science.gov (United States)

    Aulchenko, Yurii S; Struchalin, Maksim V; Belonogova, Nadezhda M; Axenovich, Tatiana I; Weedon, Michael N; Hofman, Albert; Uitterlinden, Andre G; Kayser, Manfred; Oostra, Ben A; van Duijn, Cornelia M; Janssens, A Cecile J W; Borodin, Pavel M

    2009-08-01

    In the Victorian era, Sir Francis Galton showed that 'when dealing with the transmission of stature from parents to children, the average height of the two parents, ... is all we need care to know about them' (1886). One hundred and twenty-two years after Galton's work was published, 54 loci showing strong statistical evidence for association to human height were described, providing us with potential genomic means of human height prediction. In a population-based study of 5748 people, we find that a 54-loci genomic profile explained 4-6% of the sex- and age-adjusted height variance, and had limited ability to discriminate tall/short people, as characterized by the area under the receiver-operating characteristic curve (AUC). In a family-based study of 550 people, with both parents having height measurements, we find that the Galtonian mid-parental prediction method explained 40% of the sex- and age-adjusted height variance, and showed high discriminative accuracy. We have also explored how much variance a genomic profile should explain to reach certain AUC values. For highly heritable traits such as height, we conclude that in applications in which parental phenotypic information is available (eg, medicine), the Victorian Galton's method will long stay unsurpassed, in terms of both discriminative accuracy and costs. For less heritable traits, and in situations in which parental information is not available (eg, forensics), genomic methods may provide an alternative, given that the variants determining an essential proportion of the trait's variation can be identified.

  2. Methods and approaches to prediction in the meat industry

    Directory of Open Access Journals (Sweden)

    A. B. Lisitsyn

    2016-01-01

    Full Text Available The modern stage of the agro-industrial complex is characterized by an increasing complexity, intensification of technological processes of complex processing of materials of animal origin also the need for a systematic analysis of the variety of determining factors and relationships between them, complexity of the objective function of product quality and severe restrictions on technological regimes. One of the main tasks that face the employees of the enterprises of the agro-industrial complex, which are engaged in processing biotechnological raw materials, is the further organizational improvement of work at all stages of the food chain, besides an increase in the production volume. The meat industry as a part of the agro-industrial complex has to use the biological raw materials with maximum efficiency, while reducing and even eliminating losses at all stages of processing; rationally use raw material when selecting a type of processing products; steadily increase quality, biological and food value of products; broaden the assortment of manufactured products in order to satisfy increasing consumer requirements and extend the market for their realization in the conditions of uncertainty of external environment, due to the uneven receipt of raw materials, variations in its properties and parameters, limited time sales and fluctuations in demand for products. The challenges facing the meat industry cannot be solved without changes to the strategy for scientific and technological development of the industry. To achieve these tasks, it is necessary to use the prediction as a method of constant improvement of all technological processes and their performance under the rational and optimal regimes, while constantly controlling quality of raw material, semi-prepared products and finished products at all stages of the technological processing by the physico-chemical, physico-mechanical (rheological, microbiological and organoleptic methods. The paper

  3. Method of predicting Splice Sites based on signal interactions

    Directory of Open Access Journals (Sweden)

    Deogun Jitender S

    2006-04-01

    Full Text Available Abstract Background Predicting and proper ranking of canonical splice sites (SSs is a challenging problem in bioinformatics and machine learning communities. Any progress in SSs recognition will lead to better understanding of splicing mechanism. We introduce several new approaches of combining a priori knowledge for improved SS detection. First, we design our new Bayesian SS sensor based on oligonucleotide counting. To further enhance prediction quality, we applied our new de novo motif detection tool MHMMotif to intronic ends and exons. We combine elements found with sensor information using Naive Bayesian Network, as implemented in our new tool SpliceScan. Results According to our tests, the Bayesian sensor outperforms the contemporary Maximum Entropy sensor for 5' SS detection. We report a number of putative Exonic (ESE and Intronic (ISE Splicing Enhancers found by MHMMotif tool. T-test statistics on mouse/rat intronic alignments indicates, that detected elements are on average more conserved as compared to other oligos, which supports our assumption of their functional importance. The tool has been shown to outperform the SpliceView, GeneSplicer, NNSplice, Genio and NetUTR tools for the test set of human genes. SpliceScan outperforms all contemporary ab initio gene structural prediction tools on the set of 5' UTR gene fragments. Conclusion Designed methods have many attractive properties, compared to existing approaches. Bayesian sensor, MHMMotif program and SpliceScan tools are freely available on our web site. Reviewers This article was reviewed by Manyuan Long, Arcady Mushegian and Mikhail Gelfand.

  4. A Newly Proposed Method to Predict Optimum Occlusal Vertical Dimension.

    Science.gov (United States)

    Yamashita, Shuichiro; Shimizu, Mariko; Katada, Hidenori

    2015-06-01

    Establishing the optimum occlusal vertical dimension (OVD) in prosthetic treatment is an important clinical procedure. No methods are considered to be scientifically accurate in determining the reduced OVD in patients with missing posterior teeth. The purpose of this study was to derive a new formula to predict the lower facial height (LFH) using cephalometric analysis. Fifty-eight lateral cephalometric radiographs of Japanese clinical residents (mean age, 28.6 years) with complete natural dentition were used for this study. Conventional skeletal landmarks were traced. Not only the LFH, but six angular parameters and four linear parameters, which did not vary with reduced OVD, were selected. Multiple linear regression analysis with a stepwise forward approach was used to develop a prediction formula for the LFH using other measured parameters as independent variables. The LFH was significantly correlated with Gonial angle, SNA, N-S, Go-Me, Nasal floor to FH, Nasal floor to SN, and FH to SN. By stepwise multiple linear regression analysis, the following formula was obtained: LFH (degree) = 65.38 + 0.30* (Gonial angle; degree) - 0.49* (SNA; degree) - 0.41* (N-S; mm) + 0.21* (Go-Me; mm) - 15.45* (Nasal floor to FH; degree) + 15.22* (Nasal floor to SN; degree) - 15.40* (FH to SN; degree). Within the limitations of this study for one racial group, our prediction formula is valid in every LFH range (37 to 59°), and it may also be applicable to patients in whom the LFH deviated greatly from the average. © 2014 by the American College of Prosthodontists.

  5. PREDICTION OF MEAT PRODUCT QUALITY BY THE MATHEMATICAL PROGRAMMING METHODS

    Directory of Open Access Journals (Sweden)

    A. B. Lisitsyn

    2016-01-01

    Full Text Available Abstract Use of the prediction technologies is one of the directions of the research work carried out both in Russia and abroad. Meat processing is accompanied by the complex physico-chemical, biochemical and mechanical processes. To predict the behavior of meat raw material during the technological processing, a complex of physico-technological and structural-mechanical indicators, which objectively reflects its quality, is used. Among these indicators are pH value, water binding and fat holding capacities, water activity, adhesiveness, viscosity, plasticity and so on. The paper demonstrates the influence of animal proteins (beef and pork on the physico-chemical and functional properties before and after thermal treatment of minced meat made from meat raw material with different content of the connective and fat tissues. On the basis of the experimental data, the model (stochastic dependence parameters linking the quantitative resultant and factor variables were obtained using the regression analysis, and the degree of the correlation with the experimental data was assessed. The maximum allowable levels of meat raw material replacement with animal proteins (beef and pork were established by the methods of mathematical programming. Use of the information technologies will significantly reduce the costs of the experimental search and substantiation of the optimal level of replacement of meat raw material with animal proteins (beef, pork, and will also allow establishing a relationship of product quality indicators with quantity and quality of minced meat ingredients.

  6. Extremely Randomized Machine Learning Methods for Compound Activity Prediction

    Directory of Open Access Journals (Sweden)

    Wojciech M. Czarnecki

    2015-11-01

    Full Text Available Speed, a relatively low requirement for computational resources and high effectiveness of the evaluation of the bioactivity of compounds have caused a rapid growth of interest in the application of machine learning methods to virtual screening tasks. However, due to the growth of the amount of data also in cheminformatics and related fields, the aim of research has shifted not only towards the development of algorithms of high predictive power but also towards the simplification of previously existing methods to obtain results more quickly. In the study, we tested two approaches belonging to the group of so-called ‘extremely randomized methods’—Extreme Entropy Machine and Extremely Randomized Trees—for their ability to properly identify compounds that have activity towards particular protein targets. These methods were compared with their ‘non-extreme’ competitors, i.e., Support Vector Machine and Random Forest. The extreme approaches were not only found out to improve the efficiency of the classification of bioactive compounds, but they were also proved to be less computationally complex, requiring fewer steps to perform an optimization procedure.

  7. An analytical method for predicting postwildfire peak discharges

    Science.gov (United States)

    Moody, John A.

    2012-01-01

    An analytical method presented here that predicts postwildfire peak discharge was developed from analysis of paired rainfall and runoff measurements collected from selected burned basins. Data were collected from 19 mountainous basins burned by eight wildfires in different hydroclimatic regimes in the western United States (California, Colorado, Nevada, New Mexico, and South Dakota). Most of the data were collected for the year of the wildfire and for 3 to 4 years after the wildfire. These data provide some estimate of the changes with time of postwildfire peak discharges, which are known to be transient but have received little documentation. The only required inputs for the analytical method are the burned area and a quantitative measure of soil burn severity (change in the normalized burn ratio), which is derived from Landsat reflectance data and is available from either the U.S. Department of Agriculture Forest Service or the U.S. Geological Survey. The method predicts the postwildfire peak discharge per unit burned area for the year of a wildfire, the first year after a wildfire, and the second year after a wildfire. It can be used at three levels of information depending on the data available to the user; each subsequent level requires either more data or more processing of the data. Level 1 requires only the burned area. Level 2 requires the burned area and the basin average value of the change in the normalized burn ratio. Level 3 requires the burned area and the calculation of the hydraulic functional connectivity, which is a variable that incorporates the sequence of soil burn severity along hillslope flow paths within the burned basin. Measurements indicate that the unit peak discharge response increases abruptly when the 30-minute maximum rainfall intensity is greater than about 5 millimeters per hour (0.2 inches per hour). This threshold may relate to a change in runoff generation from saturated-excess to infiltration-excess overland flow. The

  8. Genomic prediction based on data from three layer lines: a comparison between linear methods

    NARCIS (Netherlands)

    Calus, M.P.L.; Huang, H.; Vereijken, J.; Visscher, J.; Napel, ten J.; Windig, J.J.

    2014-01-01

    Background The prediction accuracy of several linear genomic prediction models, which have previously been used for within-line genomic prediction, was evaluated for multi-line genomic prediction. Methods Compared to a conventional BLUP (best linear unbiased prediction) model using pedigree data, we

  9. A novel time series link prediction method: Learning automata approach

    Science.gov (United States)

    Moradabadi, Behnaz; Meybodi, Mohammad Reza

    2017-09-01

    Link prediction is a main social network challenge that uses the network structure to predict future links. The common link prediction approaches to predict hidden links use a static graph representation where a snapshot of the network is analyzed to find hidden or future links. For example, similarity metric based link predictions are a common traditional approach that calculates the similarity metric for each non-connected link and sort the links based on their similarity metrics and label the links with higher similarity scores as the future links. Because people activities in social networks are dynamic and uncertainty, and the structure of the networks changes over time, using deterministic graphs for modeling and analysis of the social network may not be appropriate. In the time-series link prediction problem, the time series link occurrences are used to predict the future links In this paper, we propose a new time series link prediction based on learning automata. In the proposed algorithm for each link that must be predicted there is one learning automaton and each learning automaton tries to predict the existence or non-existence of the corresponding link. To predict the link occurrence in time T, there is a chain consists of stages 1 through T - 1 and the learning automaton passes from these stages to learn the existence or non-existence of the corresponding link. Our preliminary link prediction experiments with co-authorship and email networks have provided satisfactory results when time series link occurrences are considered.

  10. Prediction of residual stress using explicit finite element method

    Directory of Open Access Journals (Sweden)

    W.A. Siswanto

    2015-12-01

    Full Text Available This paper presents the residual stress behaviour under various values of friction coefficients and scratching displacement amplitudes. The investigation is based on numerical solution using explicit finite element method in quasi-static condition. Two different aeroengine materials, i.e. Super CMV (Cr-Mo-V and Titanium alloys (Ti-6Al-4V, are examined. The usage of FEM analysis in plate under normal contact is validated with Hertzian theoretical solution in terms of contact pressure distributions. The residual stress distributions along with normal and shear stresses on elastic and plastic regimes of the materials are studied for a simple cylinder-on-flat contact configuration model subjected to normal loading, scratching and followed by unloading. The investigated friction coefficients are 0.3, 0.6 and 0.9, while scratching displacement amplitudes are 0.05 mm, 0.10 mm and 0.20 mm respectively. It is found that friction coefficient of 0.6 results in higher residual stress for both materials. Meanwhile, the predicted residual stress is proportional to the scratching displacement amplitude, higher displacement amplitude, resulting in higher residual stress. It is found that less residual stress is predicted on Super CMV material compared to Ti-6Al-4V material because of its high yield stress and ultimate strength. Super CMV material with friction coefficient of 0.3 and scratching displacement amplitude of 0.10 mm is recommended to be used in contact engineering applications due to its minimum possibility of fatigue.

  11. Numerical Weather Predictions Evaluation Using Spatial Verification Methods

    Science.gov (United States)

    Tegoulias, I.; Pytharoulis, I.; Kotsopoulos, S.; Kartsios, S.; Bampzelis, D.; Karacostas, T.

    2014-12-01

    During the last years high-resolution numerical weather prediction simulations have been used to examine meteorological events with increased convective activity. Traditional verification methods do not provide the desired level of information to evaluate those high-resolution simulations. To assess those limitations new spatial verification methods have been proposed. In the present study an attempt is made to estimate the ability of the WRF model (WRF -ARW ver3.5.1) to reproduce selected days with high convective activity during the year 2010 using those feature-based verification methods. Three model domains, covering Europe, the Mediterranean Sea and northern Africa (d01), the wider area of Greece (d02) and central Greece - Thessaly region (d03) are used at horizontal grid-spacings of 15km, 5km and 1km respectively. By alternating microphysics (Ferrier, WSM6, Goddard), boundary layer (YSU, MYJ) and cumulus convection (Kain-­-Fritsch, BMJ) schemes, a set of twelve model setups is obtained. The results of those simulations are evaluated against data obtained using a C-Band (5cm) radar located at the centre of the innermost domain. Spatial characteristics are well captured but with a variable time lag between simulation results and radar data. Acknowledgements: This research is co­financed by the European Union (European Regional Development Fund) and Greek national funds, through the action "COOPERATION 2011: Partnerships of Production and Research Institutions in Focused Research and Technology Sectors" (contract number 11SYN_8_1088 - DAPHNE) in the framework of the operational programme "Competitiveness and Entrepreneurship" and Regions in Transition (OPC II, NSRF 2007-­-2013).

  12. A novel method for prokaryotic promoter prediction based on DNA stability

    OpenAIRE

    Kanhere, Aditi; Bansal, Manju

    2005-01-01

    Abstract Background In the post-genomic era, correct gene prediction has become one of the biggest challenges in genome annotation. Improved promoter prediction methods can be one step towards developing more reliable ab initio gene prediction methods. This work presents a novel prokaryotic promoter prediction method based on DNA stability. Results The promoter region is less stable and hence more prone to melting as compared to other genomic regions. Our analysis shows that a method of promo...

  13. Profiled support vector machines for antisense oligonucleotide efficacy prediction

    Directory of Open Access Journals (Sweden)

    Martín-Guerrero José D

    2004-09-01

    Full Text Available Abstract Background This paper presents the use of Support Vector Machines (SVMs for prediction and analysis of antisense oligonucleotide (AO efficacy. The collected database comprises 315 AO molecules including 68 features each, inducing a problem well-suited to SVMs. The task of feature selection is crucial given the presence of noisy or redundant features, and the well-known problem of the curse of dimensionality. We propose a two-stage strategy to develop an optimal model: (1 feature selection using correlation analysis, mutual information, and SVM-based recursive feature elimination (SVM-RFE, and (2 AO prediction using standard and profiled SVM formulations. A profiled SVM gives different weights to different parts of the training data to focus the training on the most important regions. Results In the first stage, the SVM-RFE technique was most efficient and robust in the presence of low number of samples and high input space dimension. This method yielded an optimal subset of 14 representative features, which were all related to energy and sequence motifs. The second stage evaluated the performance of the predictors (overall correlation coefficient between observed and predicted efficacy, r; mean error, ME; and root-mean-square-error, RMSE using 8-fold and minus-one-RNA cross-validation methods. The profiled SVM produced the best results (r = 0.44, ME = 0.022, and RMSE= 0.278 and predicted high (>75% inhibition of gene expression and low efficacy (http://aosvm.cgb.ki.se/. Conclusions The SVM approach is well suited to the AO prediction problem, and yields a prediction accuracy superior to previous methods. The profiled SVM was found to perform better than the standard SVM, suggesting that it could lead to improvements in other prediction problems as well.

  14. Experimental method to predict avalanches based on neural networks

    Directory of Open Access Journals (Sweden)

    V. V. Zhdanov

    2016-01-01

    Full Text Available The article presents results of experimental use of currently available statistical methods to classify the avalanche‑dangerous precipitations and snowfalls in the Kishi Almaty river basin. The avalanche service of Kazakhstan uses graphical methods for prediction of avalanches developed by I.V. Kondrashov and E.I. Kolesnikov. The main objective of this work was to develop a modern model that could be used directly at the avalanche stations. Classification of winter precipitations into dangerous snowfalls and non‑dangerous ones was performed by two following ways: the linear discriminant function (canonical analysis and artificial neural networks. Observational data on weather and avalanches in the gorge Kishi Almaty in the gorge Kishi Almaty were used as a training sample. Coefficients for the canonical variables were calculated by the software «Statistica» (Russian version 6.0, and then the necessary formula had been constructed. The accuracy of the above classification was 96%. Simulator by the authors L.N. Yasnitsky and F.М. Cherepanov was used to learn the neural networks. The trained neural network demonstrated 98% accuracy of the classification. Prepared statistical models are recommended to be tested at the snow‑avalanche stations. Results of the tests will be used for estimation of the model quality and its readiness for the operational work. In future, we plan to apply these models for classification of the avalanche danger by the five‑point international scale.

  15. Prediction of Deepwater FPSO responses using different numerical analysis methods

    Science.gov (United States)

    Guan, Matthew; Osman, Montasir; Ng, Cheng Yee

    2018-03-01

    The limitations of existing wave basins present a significant challenge when modelling offshore deepwater systems, particularly due to the basin's relatively shallow depth. Numerical simulation thus becomes valuable in predicting its behaviour during operation at sea. The coupled dynamic analysis is preferred over the traditional quasi-static method, as the former enables the inclusion of damping and added mass properties of the complete mooring line system, which becomes increasingly prominent at greater water depths. This paper investigates the motions and mooring line tensions of a turret moored Floating Production Storage Offloading (FPSO) platform using three numerical models, i.e. a dynamic system, quasi-static system and linear spring system subjected to unidirectional random wave condition. Analysis is carried out using a commercial software AQWA. The first two numerical models utilise a complete system of the same setup and configuration, while the linear spring system substitutes the mooring lines with equivalent linear springs and attempts to match the total mooring line restoring forces with that of the coupled dynamic analysis. The study demonstrates the significance of coupled dynamic analysis on the responses of an FPSO in deepwater. The numerical model of the FPSO is validated against the results of a published work.

  16. An Orientation Method with Prediction and Anticipation Features

    Directory of Open Access Journals (Sweden)

    João Ramos

    2017-02-01

    Full Text Available Nowadays, progress is constant and inherent to a living society. This may occur in different arenas, namely in mathematical evaluation and healthcare. Assistive technologies are a topic under this evolution, being extremely important in helping users with diminished capabilities (physical, sensory, intellectual. These technologies assist people in tasks that were difficult or impossible to execute. A common diminished task is orientation, which is crucial for the user autonomy. The adaptation to such technologies should require the minimum effort possible in order to enable the person to use devices that convey assistive functionalities. There are several solutions that help a human being to travel between two different locations, however their authors are essentially concerned with the guidance method, giving special attention to the user interface. The CogHelper system aims to overcome these systems by applying a framework of Speculative Computation, which adds a prediction feature for the next user movement giving an anticipation ability to the system. Thus, an alert is triggered before the user turn towards an incorrect path. The travelling path is also adjusted to the user preferences through a trajectory mining module.

  17. A Low-Cost Method for Multiple Disease Prediction.

    Science.gov (United States)

    Bayati, Mohsen; Bhaskar, Sonia; Montanari, Andrea

    Recently, in response to the rising costs of healthcare services, employers that are financially responsible for the healthcare costs of their workforce have been investing in health improvement programs for their employees. A main objective of these so called "wellness programs" is to reduce the incidence of chronic illnesses such as cardiovascular disease, cancer, diabetes, and obesity, with the goal of reducing future medical costs. The majority of these wellness programs include an annual screening to detect individuals with the highest risk of developing chronic disease. Once these individuals are identified, the company can invest in interventions to reduce the risk of those individuals. However, capturing many biomarkers per employee creates a costly screening procedure. We propose a statistical data-driven method to address this challenge by minimizing the number of biomarkers in the screening procedure while maximizing the predictive power over a broad spectrum of diseases. Our solution uses multi-task learning and group dimensionality reduction from machine learning and statistics. We provide empirical validation of the proposed solution using data from two different electronic medical records systems, with comparisons to a statistical benchmark.

  18. Predictive methods for estimating pesticide flux to air

    Energy Technology Data Exchange (ETDEWEB)

    Woodrow, J.E.; Seiber, J.N. [Univ. of Nevada, Reno, NV (United States)

    1996-10-01

    Published evaporative flux values for pesticides volatilizing from soil, plants, and water were correlated with compound vapor pressures (VP), modified by compound properties appropriate to the treated matrix (e.g., soil adsorption coefficient [K{sub oc}], water solubility [S{sub w}]). These correlations were formulated as Ln-Ln plots with correlation (r{sup 2}) coefficients in the range 0.93-0.99: (1) Soil surface - Ln flux vs Ln (VP/[K{sub oc} x S{sub w}]); (2) soil incorporation - Ln flux vs Ln [(VP x AR)/(K{sub oc} x S{sub w} x d)] (AR = application rate, d = incorporation depth); (3) plants - Ln flux vs Ln VP; and (4) water - Ln (flux/water conc) vs Ln (VP/Sw). Using estimated flux values from the plant correlation as source terms in the EPA`s SCREEN-2 dispersion model gave downwind concentrations that agreed to within 65-114% with measured concentrations. Further validation using other treated matrices is in progress. These predictive methods for estimating flux, when coupled with downwind dispersion modeling, provide tools for limiting downwind exposures.

  19. DRPPP: A machine learning based tool for prediction of disease resistance proteins in plants.

    Science.gov (United States)

    Pal, Tarun; Jaiswal, Varun; Chauhan, Rajinder S

    2016-11-01

    Plant disease outbreak is increasing rapidly around the globe and is a major cause for crop loss worldwide. Plants, in turn, have developed diverse defense mechanisms to identify and evade different pathogenic microorganisms. Early identification of plant disease resistance genes (R genes) can be exploited for crop improvement programs. The present prediction methods are either based on sequence similarity/domain-based methods or electronically annotated sequences, which might miss existing unrecognized proteins or low similarity proteins. Therefore, there is an urgent need to devise a novel machine learning technique to address this problem. In the current study, a SVM-based tool was developed for prediction of disease resistance proteins in plants. All known disease resistance (R) proteins (112) were taken as a positive set, whereas manually curated negative dataset consisted of 119 non-R proteins. Feature extraction generated 10,270 features using 16 different methods. The ten-fold cross validation was performed to optimize SVM parameters using radial basis function. The model was derived using libSVM and achieved an overall accuracy of 91.11% on the test dataset. The tool was found to be robust and can be used for high-throughput datasets. The current study provides instant identification of R proteins using machine learning approach, in addition to the similarity or domain prediction methods. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Extron prediction method based on improved period-3 feature strategy

    Science.gov (United States)

    Chen, Gong; Dou, Xiao-Ming; Zhu, Xi-Fang

    2017-07-01

    To improve the accuracy of the gene encoding (exon) prediction, near period-3 feature exons prediction algorithm is proposed. Near period-3 clustering power spectrum of extrons and introns are extracted as template feature, DNA sequence is divided into frames and moved. Compared with the template feature, the prediction of the Euclidean distance with different weights is realized from each frame. By changing the different feature, number, frame length, gene sequence weight and comparing with period-3 algorithm, the experiment results show that the prediction accuracy of the proposed algorithm is better than that period-3 algorithm.

  1. The Comparison Study of Short-Term Prediction Methods to Enhance the Model Predictive Controller Applied to Microgrid Energy Management

    Directory of Open Access Journals (Sweden)

    César Hernández-Hernández

    2017-06-01

    Full Text Available Electricity load forecasting, optimal power system operation and energy management play key roles that can bring significant operational advantages to microgrids. This paper studies how methods based on time series and neural networks can be used to predict energy demand and production, allowing them to be combined with model predictive control. Comparisons of different prediction methods and different optimum energy distribution scenarios are provided, permitting us to determine when short-term energy prediction models should be used. The proposed prediction models in addition to the model predictive control strategy appear as a promising solution to energy management in microgrids. The controller has the task of performing the management of electricity purchase and sale to the power grid, maximizing the use of renewable energy sources and managing the use of the energy storage system. Simulations were performed with different weather conditions of solar irradiation. The obtained results are encouraging for future practical implementation.

  2. Skill forecasting from different wind power ensemble prediction methods

    International Nuclear Information System (INIS)

    Pinson, Pierre; Nielsen, Henrik A; Madsen, Henrik; Kariniotakis, George

    2007-01-01

    This paper presents an investigation on alternative approaches to the providing of uncertainty estimates associated to point predictions of wind generation. Focus is given to skill forecasts in the form of prediction risk indices, aiming at giving a comprehensive signal on the expected level of forecast uncertainty. Ensemble predictions of wind generation are used as input. A proposal for the definition of prediction risk indices is given. Such skill forecasts are based on the dispersion of ensemble members for a single prediction horizon, or over a set of successive look-ahead times. It is shown on the test case of a Danish offshore wind farm how prediction risk indices may be related to several levels of forecast uncertainty (and energy imbalances). Wind power ensemble predictions are derived from the transformation of ECMWF and NCEP ensembles of meteorological variables to power, as well as by a lagged average approach alternative. The ability of risk indices calculated from the various types of ensembles forecasts to resolve among situations with different levels of uncertainty is discussed

  3. Artificial intelligence methods for predicting T-cell epitopes.

    Science.gov (United States)

    Zhao, Yingdong; Sung, Myong-Hee; Simon, Richard

    2007-01-01

    Identifying epitopes that elicit a major histocompatibility complex (MHC)-restricted T-cell response is critical for designing vaccines for infectious diseases and cancers. We have applied two artificial intelligence approaches to build models for predicting T-cell epitopes. We developed a support vector machine to predict T-cell epitopes for an MHC class I-restricted T-cell clone (TCC) using synthesized peptide data. For predicting T-cell epitopes for an MHC class II-restricted TCC, we built a shift model that integrated MHC-binding data and data from T-cell proliferation assay against a combinatorial library of peptide mixtures.

  4. A prediction method based on wavelet transform and multiple models fusion for chaotic time series

    International Nuclear Information System (INIS)

    Zhongda, Tian; Shujiang, Li; Yanhong, Wang; Yi, Sha

    2017-01-01

    In order to improve the prediction accuracy of chaotic time series, a prediction method based on wavelet transform and multiple models fusion is proposed. The chaotic time series is decomposed and reconstructed by wavelet transform, and approximate components and detail components are obtained. According to different characteristics of each component, least squares support vector machine (LSSVM) is used as predictive model for approximation components. At the same time, an improved free search algorithm is utilized for predictive model parameters optimization. Auto regressive integrated moving average model (ARIMA) is used as predictive model for detail components. The multiple prediction model predictive values are fusion by Gauss–Markov algorithm, the error variance of predicted results after fusion is less than the single model, the prediction accuracy is improved. The simulation results are compared through two typical chaotic time series include Lorenz time series and Mackey–Glass time series. The simulation results show that the prediction method in this paper has a better prediction.

  5. CoPreTHi: a Web tool which combines transmembrane protein segment prediction methods

    OpenAIRE

    Promponas, Vasilis; Palaios, Giorgos; Pasquier, Claude; Hamodrakas, Ioannis; Hamodrakas, Stavros

    2009-01-01

    International audience; CoPreTHi is a Java based web application, which combines the results of methods that predict the location of transmembrane segments in protein sequences into a joint prediction histogram. Clearly, the joint prediction algorithm, produces superior quality results than individual prediction schemes. The program is available at http://o2.db.uoa.gr/CoPreTHi.

  6. Structural class prediction of protein using novel feature extraction method from chaos game representation of predicted secondary structure.

    Science.gov (United States)

    Zhang, Lichao; Kong, Liang; Han, Xiaodong; Lv, Jinfeng

    2016-07-07

    Protein structural class prediction plays an important role in protein structure and function analysis, drug design and many other biological applications. Extracting good representation from protein sequence is fundamental for this prediction task. In recent years, although several secondary structure based feature extraction strategies have been specially proposed for low-similarity protein sequences, the prediction accuracy still remains limited. To explore the potential of secondary structure information, this study proposed a novel feature extraction method from the chaos game representation of predicted secondary structure to mainly capture sequence order information and secondary structure segments distribution information in a given protein sequence. Several kinds of prediction accuracies obtained by the jackknife test are reported on three widely used low-similarity benchmark datasets (25PDB, 1189 and 640). Compared with the state-of-the-art prediction methods, the proposed method achieves the highest overall accuracies on all the three datasets. The experimental results confirm that the proposed feature extraction method is effective for accurate prediction of protein structural class. Moreover, it is anticipated that the proposed method could be extended to other graphical representations of protein sequence and be helpful in future research. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. PREDICTION OF MEAT PRODUCT QUALITY BY THE MATHEMATICAL PROGRAMMING METHODS

    OpenAIRE

    A. B. Lisitsyn; M. A. Nikitina; A. N. Zakharov; E. B. Sus; V. V. Nasonova; L. I. Lebedeva

    2016-01-01

    Abstract Use of the prediction technologies is one of the directions of the research work carried out both in Russia and abroad. Meat processing is accompanied by the complex physico-chemical, biochemical and mechanical processes. To predict the behavior of meat raw material during the technological processing, a complex of physico-technological and structural-mechanical indicators, which objectively reflects its quality, is used. Among these indicators are pH value, water binding and fat hol...

  8. Autonomous Motion Planning Using a Predictive Temporal Method

    Science.gov (United States)

    2009-01-01

    much more accurate predictions of the obstacle movement . Elnagar further extended this work by considering variable time-steps for predictions...navigation (Chang & Song, 1996). For this early study, obstacles were assumed to follow a rectilinear path with constant velocity. Past sensor readings...This resulted in the distance aspect of the search node cost playing a more important role in the cost analysis. Likewise, because of this uniform

  9. Predicting Clustered Dental Implant Survival Using Frailty Methods

    OpenAIRE

    Chuang, S.-K.; Cai, T.

    2006-01-01

    The purpose of this study was to predict future implant survival using information on risk factors and on the survival status of an individual’s existing implant(s). We considered a retrospective cohort study with 677 individuals having 2349 implants placed. We proposed to predict the survival probabilities using the Cox proportional hazards frailty model, with three important risk factors: smoking status, timing of placement, and implant staging. For a non-smoking individual with 2 implants ...

  10. Comparison of Predictive Control Methods for High Consumption Industrial Furnace

    Directory of Open Access Journals (Sweden)

    Goran Stojanovski

    2013-01-01

    Full Text Available We describe several predictive control approaches for high consumption industrial furnace control. These furnaces are major consumers in production industries, and reducing their fuel consumption and optimizing the quality of the products is one of the most important engineer tasks. In order to demonstrate the benefits from implementation of the advanced predictive control algorithms, we have compared several major criteria for furnace control. On the basis of the analysis, some important conclusions have been drawn.

  11. Different protein-protein interface patterns predicted by different machine learning methods.

    Science.gov (United States)

    Wang, Wei; Yang, Yongxiao; Yin, Jianxin; Gong, Xinqi

    2017-11-22

    Different types of protein-protein interactions make different protein-protein interface patterns. Different machine learning methods are suitable to deal with different types of data. Then, is it the same situation that different interface patterns are preferred for prediction by different machine learning methods? Here, four different machine learning methods were employed to predict protein-protein interface residue pairs on different interface patterns. The performances of the methods for different types of proteins are different, which suggest that different machine learning methods tend to predict different protein-protein interface patterns. We made use of ANOVA and variable selection to prove our result. Our proposed methods taking advantages of different single methods also got a good prediction result compared to single methods. In addition to the prediction of protein-protein interactions, this idea can be extended to other research areas such as protein structure prediction and design.

  12. SVMDLF: A novel R-based Web application for prediction of dipeptidyl peptidase 4 inhibitors.

    Science.gov (United States)

    Chandra, Sharat; Pandey, Jyotsana; Tamrakar, Akhilesh K; Siddiqi, Mohammad Imran

    2017-12-01

    Dipeptidyl peptidase 4 (DPP4) is a well-known target for the antidiabetic drugs. However, currently available DPP4 inhibitor screening assays are costly and labor-intensive. It is important to create a robust in silico method to predict the activity of DPP4 inhibitor for the new lead finding. Here, we introduce an R-based Web application SVMDLF (SVM-based DPP4 Lead Finder) to predict the inhibitor of DPP4, based on support vector machine (SVM) model, predictions of which are confirmed by in vitro biological evaluation. The best model generated by MACCS structure fingerprint gave the Matthews correlation coefficient of 0.87 for the test set and 0.883 for the external test set. We screened Maybridge database consisting approximately 53,000 compounds. For further bioactivity assay, six compounds were shortlisted, and of six hits, three compounds showed significant DPP4 inhibitory activities with IC 50 values ranging from 8.01 to 10.73 μm. This application is an OpenCPU server app which is a novel single-page R-based Web application for the DPP4 inhibitor prediction. The SVMDLF is freely available and open to all users at http://svmdlf.net/ocpu/library/dlfsvm/www/ and http://www.cdri.res.in/svmdlf/. © 2017 John Wiley & Sons A/S.

  13. Predicting Solar Activity Using Machine-Learning Methods

    Science.gov (United States)

    Bobra, M.

    2017-12-01

    Of all the activity observed on the Sun, two of the most energetic events are flares and coronal mass ejections. However, we do not, as of yet, fully understand the physical mechanism that triggers solar eruptions. A machine-learning algorithm, which is favorable in cases where the amount of data is large, is one way to [1] empirically determine the signatures of this mechanism in solar image data and [2] use them to predict solar activity. In this talk, we discuss the application of various machine learning algorithms - specifically, a Support Vector Machine, a sparse linear regression (Lasso), and Convolutional Neural Network - to image data from the photosphere, chromosphere, transition region, and corona taken by instruments aboard the Solar Dynamics Observatory in order to predict solar activity on a variety of time scales. Such an approach may be useful since, at the present time, there are no physical models of flares available for real-time prediction. We discuss our results (Bobra and Couvidat, 2015; Bobra and Ilonidis, 2016; Jonas et al., 2017) as well as other attempts to predict flares using machine-learning (e.g. Ahmed et al., 2013; Nishizuka et al. 2017) and compare these results with the more traditional techniques used by the NOAA Space Weather Prediction Center (Crown, 2012). We also discuss some of the challenges in using machine-learning algorithms for space science applications.

  14. A comparison of methods of predicting maximum oxygen uptake.

    OpenAIRE

    Grant, S; Corbett, K; Amjad, A M; Wilson, J; Aitchison, T

    1995-01-01

    The aim of this study was to compare the results from a Cooper walk run test, a multistage shuttle run test, and a submaximal cycle test with the direct measurement of maximum oxygen uptake on a treadmill. Three predictive tests of maximum oxygen uptake--linear extrapolation of heart rate of VO2 collected from a submaximal cycle ergometer test (predicted L/E), the Cooper 12 min walk, run test, and a multi-stage progressive shuttle run test (MST)--were performed by 22 young healthy males (mean...

  15. Predicting Plasma Glucose From Interstitial Glucose Observations Using Bayesian Methods

    DEFF Research Database (Denmark)

    Hansen, Alexander Hildenbrand; Duun-Henriksen, Anne Katrine; Juhl, Rune

    2014-01-01

    One way of constructing a control algorithm for an artificial pancreas is to identify a model capable of predicting plasma glucose (PG) from interstitial glucose (IG) observations. Stochastic differential equations (SDEs) make it possible to account both for the unknown influence of the continuous...... glucose monitor (CGM) and for unknown physiological influences. Combined with prior knowledge about the measurement devices, this approach can be used to obtain a robust predictive model. A stochastic-differential-equation-based gray box (SDE-GB) model is formulated on the basis of an identifiable...

  16. Link Prediction Methods and Their Accuracy for Different Social Networks and Network Metrics

    Directory of Open Access Journals (Sweden)

    Fei Gao

    2015-01-01

    Full Text Available Currently, we are experiencing a rapid growth of the number of social-based online systems. The availability of the vast amounts of data gathered in those systems brings new challenges that we face when trying to analyse it. One of the intensively researched topics is the prediction of social connections between users. Although a lot of effort has been made to develop new prediction approaches, the existing methods are not comprehensively analysed. In this paper we investigate the correlation between network metrics and accuracy of different prediction methods. We selected six time-stamped real-world social networks and ten most widely used link prediction methods. The results of the experiments show that the performance of some methods has a strong correlation with certain network metrics. We managed to distinguish “prediction friendly” networks, for which most of the prediction methods give good performance, as well as “prediction unfriendly” networks, for which most of the methods result in high prediction error. Correlation analysis between network metrics and prediction accuracy of prediction methods may form the basis of a metalearning system where based on network characteristics it will be able to recommend the right prediction method for a given network.

  17. A method for predicting the direct transmittance of atmospheric ...

    African Journals Online (AJOL)

    ... particularly for air masses 20. Appropriate reasons have been given for the observed differences. It is proposed that the developed model may be relevant for the prediction of the transmittances of gases at different strata of the atmosphere for solar radiation models, provided the 'scaled heights' of the gases are known.

  18. Comparative analyses of genetic risk prediction methods reveal ...

    Indian Academy of Sciences (India)

    2015-03-12

    Mar 12, 2015 ... where it is related to modern lifestyle with additional com- plication due to rising incidence of type 2 diabetes melli- tus (DM) and obesity (Angulo and ..... is rapidly becoming a health burden in western and develop- ing countries. In this study we defined a model of disease risk score prediction for different ...

  19. What Predicts Method Effects in Child Behavior Ratings

    Science.gov (United States)

    Low, Justin A.; Keith, Timothy Z.; Jensen, Megan

    2015-01-01

    The purpose of this research was to determine whether child, parent, and teacher characteristics such as sex, socioeconomic status (SES), parental depressive symptoms, the number of years of teaching experience, number of children in the classroom, and teachers' disciplinary self-efficacy predict deviations from maternal ratings in a…

  20. Predicting clustered dental implant survival using frailty methods.

    Science.gov (United States)

    Chuang, S-K; Cai, T

    2006-12-01

    The purpose of this study was to predict future implant survival using information on risk factors and on the survival status of an individual's existing implant(s). We considered a retrospective cohort study with 677 individuals having 2349 implants placed. We proposed to predict the survival probabilities using the Cox proportional hazards frailty model, with three important risk factors: smoking status, timing of placement, and implant staging. For a non-smoking individual with 2 implants placed, an immediate implant and in one stage, the marginal probability that 1 implant would survive 12 months was 85.8% (95%CI: 77%, 91.7%), and the predicted joint probability of surviving for 12 months was 75.1% (95%CI: 62.1%, 84.7%). If 1 implant was placed earlier and had survived for 12 months, then the second implant had an 87.5% (95%CI: 80.3%, 92.4%) chance of surviving 12 months. Such conditional and joint predictions can assist in clinical decision-making for individuals.

  1. Statistical tests for equal predictive ability across multiple forecasting methods

    DEFF Research Database (Denmark)

    Borup, Daniel; Thyrsgaard, Martin

    We develop a multivariate generalization of the Giacomini-White tests for equal conditional predictive ability. The tests are applicable to a mixture of nested and non-nested models, incorporate estimation uncertainty explicitly, and allow for misspecification of the forecasting model as well as ...

  2. Visible/Near Infrared Spectroscopic Method for the Prediction of ...

    African Journals Online (AJOL)

    The aim of the present study was to predict the potential of visible and near infrared (Vis/NIR) Spectroscopy in estimating the amount of lycopene in intact tomato. Eight tomato varieties from loose and cluster type were selected and harvested at commercial ripening stage for the study. The tomato cultivars were prepared ...

  3. DO TIE LABORATORY BASED ASSESSMENT METHODS REALLY PREDICT FIELD EFFECTS?

    Science.gov (United States)

    Sediment Toxicity Identification and Evaluation (TIE) methods have been developed for both porewaters and whole sediments. These relatively simple laboratory methods are designed to identify specific toxicants or classes of toxicants in sediments; however, the question of whethe...

  4. Hybrid Prediction Method for Aircraft Interior Noise, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of the project is research and development of methods for application of the Hybrid FE-SEA method to aircraft vibro-acoustic problems. This proposal...

  5. An Approximate Method for Pitch-Damping Prediction

    National Research Council Canada - National Science Library

    Danberg, James

    2003-01-01

    .... The method is suitable for preliminary design and parametric studies. The procedure is based on concepts from slender body theory, but the method significantly improves the accuracy of the results through the use of correlation functions...

  6. Prediction of Human Drug Targets and Their Interactions Using Machine Learning Methods: Current and Future Perspectives.

    Science.gov (United States)

    Nath, Abhigyan; Kumari, Priyanka; Chaube, Radha

    2018-01-01

    Identification of drug targets and drug target interactions are important steps in the drug-discovery pipeline. Successful computational prediction methods can reduce the cost and time demanded by the experimental methods. Knowledge of putative drug targets and their interactions can be very useful for drug repurposing. Supervised machine learning methods have been very useful in drug target prediction and in prediction of drug target interactions. Here, we describe the details for developing prediction models using supervised learning techniques for human drug target prediction and their interactions.

  7. Predicting volume of distribution with decision tree-based regression methods using predicted tissue:plasma partition coefficients.

    Science.gov (United States)

    Freitas, Alex A; Limbu, Kriti; Ghafourian, Taravat

    2015-01-01

    Volume of distribution is an important pharmacokinetic property that indicates the extent of a drug's distribution in the body tissues. This paper addresses the problem of how to estimate the apparent volume of distribution at steady state (Vss) of chemical compounds in the human body using decision tree-based regression methods from the area of data mining (or machine learning). Hence, the pros and cons of several different types of decision tree-based regression methods have been discussed. The regression methods predict Vss using, as predictive features, both the compounds' molecular descriptors and the compounds' tissue:plasma partition coefficients (Kt:p) - often used in physiologically-based pharmacokinetics. Therefore, this work has assessed whether the data mining-based prediction of Vss can be made more accurate by using as input not only the compounds' molecular descriptors but also (a subset of) their predicted Kt:p values. Comparison of the models that used only molecular descriptors, in particular, the Bagging decision tree (mean fold error of 2.33), with those employing predicted Kt:p values in addition to the molecular descriptors, such as the Bagging decision tree using adipose Kt:p (mean fold error of 2.29), indicated that the use of predicted Kt:p values as descriptors may be beneficial for accurate prediction of Vss using decision trees if prior feature selection is applied. Decision tree based models presented in this work have an accuracy that is reasonable and similar to the accuracy of reported Vss inter-species extrapolations in the literature. The estimation of Vss for new compounds in drug discovery will benefit from methods that are able to integrate large and varied sources of data and flexible non-linear data mining methods such as decision trees, which can produce interpretable models. Graphical AbstractDecision trees for the prediction of tissue partition coefficient and volume of distribution of drugs.

  8. Development of an integrated method for long-term water quality prediction using seasonal climate forecast

    Directory of Open Access Journals (Sweden)

    J. Cho

    2016-10-01

    Full Text Available The APEC Climate Center (APCC produces climate prediction information utilizing a multi-climate model ensemble (MME technique. In this study, four different downscaling methods, in accordance with the degree of utilizing the seasonal climate prediction information, were developed in order to improve predictability and to refine the spatial scale. These methods include: (1 the Simple Bias Correction (SBC method, which directly uses APCC's dynamic prediction data with a 3 to 6 month lead time; (2 the Moving Window Regression (MWR method, which indirectly utilizes dynamic prediction data; (3 the Climate Index Regression (CIR method, which predominantly uses observation-based climate indices; and (4 the Integrated Time Regression (ITR method, which uses predictors selected from both CIR and MWR. Then, a sampling-based temporal downscaling was conducted using the Mahalanobis distance method in order to create daily weather inputs to the Soil and Water Assessment Tool (SWAT model. Long-term predictability of water quality within the Wecheon watershed of the Nakdong River Basin was evaluated. According to the Korean Ministry of Environment's Provisions of Water Quality Prediction and Response Measures, modeling-based predictability was evaluated by using 3-month lead prediction data issued in February, May, August, and November as model input of SWAT. Finally, an integrated approach, which takes into account various climate information and downscaling methods for water quality prediction, was presented. This integrated approach can be used to prevent potential problems caused by extreme climate in advance.

  9. Theoretical prediction method of subcooled flow boiling CHF

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Young Min; Chang, Soon Heung [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    A theoretical critical heat flux (CHF ) model, based on lateral bubble coalescence on the heated wall, is proposed to predict the subcooled flow boiling CHF in a uniformly heated vertical tube. The model is based on the concept that a single layer of bubbles contacted to the heated wall prevents a bulk liquid from reaching the wall at near CHF condition. Comparisons between the model predictions and experimental data result in satisfactory agreement within less than 9.73% root-mean-square error by the appropriate choice of the critical void fraction in the bubbly layer. The present model shows comparable performance with the CHF look-up table of Groeneveld et al.. 28 refs., 11 figs., 1 tab. (Author)

  10. A new near-term breast cancer risk prediction scheme based on the quantitative analysis of ipsilateral view mammograms.

    Science.gov (United States)

    Sun, Wenqing; Tseng, Tzu-Liang Bill; Qian, Wei; Saltzstein, Edward C; Zheng, Bin; Yu, Hui; Zhou, Shi

    2018-03-01

    To help improve efficacy of screening mammography and eventually establish an optimal personalized screening paradigm, this study aimed to develop and test a new near-term breast cancer risk prediction scheme based on the quantitative analysis of ipsilateral view of the negative screening mammograms. The dataset includes digital mammograms acquired from 392 women with two sequential full-field digital mammography examinations. All the first ("prior") sets of mammograms were interpreted as negative during the original reading. In the sequential ("current") screening, 202 were proved positive and 190 remained negative/benign. For each pair of the "prior" ipsilateral mammograms, we adaptively fused the image features computed from two views. Using four different types of image features, we built four elastic net support vector machine (EnSVM) based classifiers. Then, the initial prediction scores form the 4 EnSVMs were combined to build a final artificial neural network (ANN) classifier that produces the final risk prediction score. The performance of the new scheme was evaluated by using a 10-fold cross-validation method and an assessment index of the area under the receiver operating characteristic curve (AUC). A total number of 466 features were initially extracted from each pair of ipsilateral mammograms. Among them, 51 were selected to build the EnSVM based prediction scheme. The AUC = 0.737 ± 0.052 was yielded using the new scheme. Applying an optimal operating threshold, the prediction sensitivity was 60.4% (122 of 202) and the specificity was 79.0% (150 of 190). The study results showed moderately high positive association between computed risk scores using the "prior" negative mammograms and the actual outcome of the image-detectable breast cancers in the next subsequent screening examinations. The study also demonstrated that quantitative analysis of the ipsilateral views of the mammograms enabled to provide useful information in predicting near

  11. Core Engine Noise Control Program. Volume III. Prediction Methods

    Science.gov (United States)

    1974-08-01

    JET dOISE 2.1 OBJECTIVES The objective of this work effort was to develop a jet noise prediction procedure based on detailed acoustic experiments on...RD-71-1Ol-Volumne 1, 1971, Wyle Laboratories, Inc., El Segundo, California. 2.2.1-4 Williams , T.J., Ali, M.R.M., and Anderson, J.S.; "Noise and Flow

  12. Improved Methods for Pitch Synchronous Linear Prediction Analysis of Speech

    OpenAIRE

    劉, 麗清

    2015-01-01

    Linear prediction (LP) analysis has been applied to speech system over the last few decades. LP technique is well-suited for speech analysis due to its ability to model speech production process approximately. Hence LP analysis has been widely used for speech enhancement, low-bit-rate speech coding in cellular telephony, speech recognition, characteristic parameter extraction (vocal tract resonances frequencies, fundamental frequency called pitch) and so on. However, the performance of the co...

  13. Multi-step-ahead Method for Wind Speed Prediction Correction Based on Numerical Weather Prediction and Historical Measurement Data

    Science.gov (United States)

    Wang, Han; Yan, Jie; Liu, Yongqian; Han, Shuang; Li, Li; Zhao, Jing

    2017-11-01

    Increasing the accuracy of wind speed prediction lays solid foundation to the reliability of wind power forecasting. Most traditional correction methods for wind speed prediction establish the mapping relationship between wind speed of the numerical weather prediction (NWP) and the historical measurement data (HMD) at the corresponding time slot, which is free of time-dependent impacts of wind speed time series. In this paper, a multi-step-ahead wind speed prediction correction method is proposed with consideration of the passing effects from wind speed at the previous time slot. To this end, the proposed method employs both NWP and HMD as model inputs and the training labels. First, the probabilistic analysis of the NWP deviation for different wind speed bins is calculated to illustrate the inadequacy of the traditional time-independent mapping strategy. Then, support vector machine (SVM) is utilized as example to implement the proposed mapping strategy and to establish the correction model for all the wind speed bins. One Chinese wind farm in northern part of China is taken as example to validate the proposed method. Three benchmark methods of wind speed prediction are used to compare the performance. The results show that the proposed model has the best performance under different time horizons.

  14. A Generalized Approach to Soil Strength Prediction With Machine Learning Methods

    National Research Council Canada - National Science Library

    Semen, Peter M

    2006-01-01

    .... However, methods to accurately predict strength from other fundamental geotechnical parameters are lacking, especially for a broad range of soil types under widely-varying environmental conditions...

  15. Simple numerical method for predicting steady compressible flows

    Science.gov (United States)

    Vonlavante, Ernst; Nelson, N. Duane

    1986-01-01

    A numerical method for solving the isenthalpic form of the governing equations for compressible viscous and inviscid flows was developed. The method was based on the concept of flux vector splitting in its implicit form. The method was tested on several demanding inviscid and viscous configurations. Two different forms of the implicit operator were investigated. The time marching to steady state was accelerated by the implementation of the multigrid procedure. Its various forms very effectively increased the rate of convergence of the present scheme. High quality steady state results were obtained in most of the test cases; these required only short computational times due to the relative efficiency of the basic method.

  16. Predicting and analyzing DNA-binding domains using a systematic approach to identifying a set of informative physicochemical and biochemical properties

    Science.gov (United States)

    2011-01-01

    Background Existing methods of predicting DNA-binding proteins used valuable features of physicochemical properties to design support vector machine (SVM) based classifiers. Generally, selection of physicochemical properties and determination of their corresponding feature vectors rely mainly on known properties of binding mechanism and experience of designers. However, there exists a troublesome problem for designers that some different physicochemical properties have similar vectors of representing 20 amino acids and some closely related physicochemical properties have dissimilar vectors. Results This study proposes a systematic approach (named Auto-IDPCPs) to automatically identify a set of physicochemical and biochemical properties in the AAindex database to design SVM-based classifiers for predicting and analyzing DNA-binding domains/proteins. Auto-IDPCPs consists of 1) clustering 531 amino acid indices in AAindex into 20 clusters using a fuzzy c-means algorithm, 2) utilizing an efficient genetic algorithm based optimization method IBCGA to select an informative feature set of size m to represent sequences, and 3) analyzing the selected features to identify related physicochemical properties which may affect the binding mechanism of DNA-binding domains/proteins. The proposed Auto-IDPCPs identified m=22 features of properties belonging to five clusters for predicting DNA-binding domains with a five-fold cross-validation accuracy of 87.12%, which is promising compared with the accuracy of 86.62% of the existing method PSSM-400. For predicting DNA-binding sequences, the accuracy of 75.50% was obtained using m=28 features, where PSSM-400 has an accuracy of 74.22%. Auto-IDPCPs and PSSM-400 have accuracies of 80.73% and 82.81%, respectively, applied to an independent test data set of DNA-binding domains. Some typical physicochemical properties discovered are hydrophobicity, secondary structure, charge, solvent accessibility, polarity, flexibility, normalized Van Der

  17. A Case Study Concerning Sales Prediction Using Sales Quantitative Prediction Methods

    Directory of Open Access Journals (Sweden)

    Simona Elena Dragomirescu

    2010-08-01

    Full Text Available The sales condition the entire activity of a enterprise, its variation being considered the main risk factor on the performances and financial position of the enterprise. The importance of elaboration of such budget is given by: (a on long term: the establishing of the investments and financing plans; (b on medium term: the establishing of publicity and promotion expenses budget; and (c on short term: the determination of the production level, of supply program, the optimization of labor force. In planning the sales volume, there exist several methods, from which we remind: causal method, non-causal method, direct method, indirect method, judgment and statistic methods. All these methods have advantages and disadvantages. Quantitative methods are the methods that in predictions’ realization start from numbered statistic data. The linear adjustment, correlation may be applied for the general tendencies of sales evolution research, when the tendency is linear.

  18. Method of predicting a change in an economy

    Science.gov (United States)

    Pryor, Richard J [Albuquerque, NM; Basu, Nipa [Albany, NY

    2006-01-10

    An economy whose activity is to be predicted comprises a plurality of decision makers. Decision makers include, for example, households, government, industry, and banks. The decision makers are represented by agents, where an agent can represent one or more decision makers. Each agent has decision rules that determine the agent's actions. Each agent can affect the economy by affecting variable conditions characteristic of the economy or the internal state of other agents. Agents can communicate actions through messages. On a multiprocessor computer, the agents can be assigned to processing elements.

  19. Simple methods for predicting gas leakage flows through cracks

    International Nuclear Information System (INIS)

    Ewing, D.J.F.

    1989-01-01

    This report presents closed-form approximate analytical formulae with which the flow rate out of a through-wall crack can be estimated. The crack is idealised as a rough, tapering, wedgeshaped channel and the fluid is idealised as an isothermal or polytropically-expanding perfect gas. In practice, uncertainties about the wall friction factor dominate over uncertainties caused by the fluid-dynamics simplifications. The formulae take account of crack taper and for outwardly-diverging cracks they predict flows within 12% of mathematically more accurate one-dimensional numerical models. Upper and lower estimates of wall friction are discussed. (author)

  20. A comparison of two total fatigue life prediction methods

    Energy Technology Data Exchange (ETDEWEB)

    Chen, N.; Lawrence, F.V.

    1999-07-01

    A 2-D analytical model which is termed the PICC-RICC model combines the effects of plasticity-induced crack closure (PICC) and roughness-induced crack closure (RICC). The PICC-RICC model handles naturally the gradual transition from RICC to PICC dominated crack growth. In this study, the PICC-RICC model is combined with a crack nucleation model to predict the total fatigue life of a notched component. This modified PICC-RICC model will be used to examine several controversial aspects of an earlier, computationally simpler total-life model known as the IP model.

  1. Validation of a method to predict hammer speed from cable force

    Directory of Open Access Journals (Sweden)

    Sara M. Brice

    2015-09-01

    Conclusion: This study successfully derived and validated a method that allows prediction of linear hammer speed from directly measured cable force data. Two linear regression models were developed and it was found that either model would be capable of predicting accurate speeds. However, data predicted using the shifted regression model were more accurate.

  2. Comparison on genomic predictions using three GBLUP methods and two single-step blending methods in the Nordic Holstein population

    Directory of Open Access Journals (Sweden)

    Gao Hongding

    2012-07-01

    Full Text Available Abstract Background A single-step blending approach allows genomic prediction using information of genotyped and non-genotyped animals simultaneously. However, the combined relationship matrix in a single-step method may need to be adjusted because marker-based and pedigree-based relationship matrices may not be on the same scale. The same may apply when a GBLUP model includes both genomic breeding values and residual polygenic effects. The objective of this study was to compare single-step blending methods and GBLUP methods with and without adjustment of the genomic relationship matrix for genomic prediction of 16 traits in the Nordic Holstein population. Methods The data consisted of de-regressed proofs (DRP for 5 214 genotyped and 9 374 non-genotyped bulls. The bulls were divided into a training and a validation population by birth date, October 1, 2001. Five approaches for genomic prediction were used: 1 a simple GBLUP method, 2 a GBLUP method with a polygenic effect, 3 an adjusted GBLUP method with a polygenic effect, 4 a single-step blending method, and 5 an adjusted single-step blending method. In the adjusted GBLUP and single-step methods, the genomic relationship matrix was adjusted for the difference of scale between the genomic and the pedigree relationship matrices. A set of weights on the pedigree relationship matrix (ranging from 0.05 to 0.40 was used to build the combined relationship matrix in the single-step blending method and the GBLUP method with a polygenetic effect. Results Averaged over the 16 traits, reliabilities of genomic breeding values predicted using the GBLUP method with a polygenic effect (relative weight of 0.20 were 0.3% higher than reliabilities from the simple GBLUP method (without a polygenic effect. The adjusted single-step blending and original single-step blending methods (relative weight of 0.20 had average reliabilities that were 2.1% and 1.8% higher than the simple GBLUP method, respectively. In

  3. Support vector machine regression (SVR/LS-SVM)--an alternative to neural networks (ANN) for analytical chemistry? Comparison of nonlinear methods on near infrared (NIR) spectroscopy data.

    Science.gov (United States)

    Balabin, Roman M; Lomakina, Ekaterina I

    2011-04-21

    In this study, we make a general comparison of the accuracy and robustness of five multivariate calibration models: partial least squares (PLS) regression or projection to latent structures, polynomial partial least squares (Poly-PLS) regression, artificial neural networks (ANNs), and two novel techniques based on support vector machines (SVMs) for multivariate data analysis: support vector regression (SVR) and least-squares support vector machines (LS-SVMs). The comparison is based on fourteen (14) different datasets: seven sets of gasoline data (density, benzene content, and fractional composition/boiling points), two sets of ethanol gasoline fuel data (density and ethanol content), one set of diesel fuel data (total sulfur content), three sets of petroleum (crude oil) macromolecules data (weight percentages of asphaltenes, resins, and paraffins), and one set of petroleum resins data (resins content). Vibrational (near-infrared, NIR) spectroscopic data are used to predict the properties and quality coefficients of gasoline, biofuel/biodiesel, diesel fuel, and other samples of interest. The four systems presented here range greatly in composition, properties, strength of intermolecular interactions (e.g., van der Waals forces, H-bonds), colloid structure, and phase behavior. Due to the high diversity of chemical systems studied, general conclusions about SVM regression methods can be made. We try to answer the following question: to what extent can SVM-based techniques replace ANN-based approaches in real-world (industrial/scientific) applications? The results show that both SVR and LS-SVM methods are comparable to ANNs in accuracy. Due to the much higher robustness of the former, the SVM-based approaches are recommended for practical (industrial) application. This has been shown to be especially true for complicated, highly nonlinear objects.

  4. A more accurate method of predicting soft tissue changes after mandibular setback surgery.

    Science.gov (United States)

    Suh, Hee-Yeon; Lee, Shin-Jae; Lee, Yun-Sik; Donatelli, Richard E; Wheeler, Timothy T; Kim, Soo-Hwan; Eo, Soo-Heang; Seo, Byoung-Moo

    2012-10-01

    To propose a more accurate method to predict the soft tissue changes after orthognathic surgery. The subjects included 69 patients who had undergone surgical correction of Class III mandibular prognathism by mandibular setback. Two multivariate methods of forming prediction equations were examined using 134 predictor and 36 soft tissue response variables: the ordinary least-squares (OLS) and the partial least-squares (PLS) methods. After fitting the equation, the bias and a mean absolute prediction error were calculated. To evaluate the predictive performance of the prediction equations, a 10-fold cross-validation method was used. The multivariate PLS method showed significantly better predictive performance than the conventional OLS method. The bias pattern was more favorable and the absolute prediction accuracy was significantly better with the PLS method than with the OLS method. The multivariate PLS method was more satisfactory than the conventional OLS method in accurately predicting the soft tissue profile change after Class III mandibular setback surgery. Copyright © 2012 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  5. Using deuterated PAH amendments to validate chemical extraction methods to predict PAH bioavailability in soils

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Eyles, Jose L., E-mail: j.l.gomezeyles@reading.ac.uk [University of Reading, School of Human and Environmental Sciences, Soil Research Centre, Reading, RG6 6DW Berkshire (United Kingdom); Collins, Chris D.; Hodson, Mark E. [University of Reading, School of Human and Environmental Sciences, Soil Research Centre, Reading, RG6 6DW Berkshire (United Kingdom)

    2011-04-15

    Validating chemical methods to predict bioavailable fractions of polycyclic aromatic hydrocarbons (PAHs) by comparison with accumulation bioassays is problematic. Concentrations accumulated in soil organisms not only depend on the bioavailable fraction but also on contaminant properties. A historically contaminated soil was freshly spiked with deuterated PAHs (dPAHs). dPAHs have a similar fate to their respective undeuterated analogues, so chemical methods that give good indications of bioavailability should extract the fresh more readily available dPAHs and historic more recalcitrant PAHs in similar proportions to those in which they are accumulated in the tissues of test organisms. Cyclodextrin and butanol extractions predicted the bioavailable fraction for earthworms (Eisenia fetida) and plants (Lolium multiflorum) better than the exhaustive extraction. The PAHs accumulated by earthworms had a larger dPAH:PAH ratio than that predicted by chemical methods. The isotope ratio method described here provides an effective way of evaluating other chemical methods to predict bioavailability. - Research highlights: > Isotope ratios can be used to evaluate chemical methods to predict bioavailability. > Chemical methods predicted bioavailability better than exhaustive extractions. > Bioavailability to earthworms was still far from that predicted by chemical methods. - A novel method using isotope ratios to assess the ability of chemical methods to predict PAH bioavailability to soil biota.

  6. Verifying a computational method for predicting extreme ground motion

    Science.gov (United States)

    Harris, R.A.; Barall, M.; Andrews, D.J.; Duan, B.; Ma, S.; Dunham, E.M.; Gabriel, A.-A.; Kaneko, Y.; Kase, Y.; Aagaard, Brad T.; Oglesby, D.D.; Ampuero, J.-P.; Hanks, T.C.; Abrahamson, N.

    2011-01-01

    In situations where seismological data is rare or nonexistent, computer simulations may be used to predict ground motions caused by future earthquakes. This is particularly practical in the case of extreme ground motions, where engineers of special buildings may need to design for an event that has not been historically observed but which may occur in the far-distant future. Once the simulations have been performed, however, they still need to be tested. The SCEC-USGS dynamic rupture code verification exercise provides a testing mechanism for simulations that involve spontaneous earthquake rupture. We have performed this examination for the specific computer code that was used to predict maximum possible ground motion near Yucca Mountain. Our SCEC-USGS group exercises have demonstrated that the specific computer code that was used for the Yucca Mountain simulations produces similar results to those produced by other computer codes when tackling the same science problem. We also found that the 3D ground motion simulations produced smaller ground motions than the 2D simulations.

  7. BFC Method For Prediction of Transient Head on Seepage Path

    Directory of Open Access Journals (Sweden)

    Sherly Hartono

    2010-12-01

    Full Text Available Seepage causes weakening of levees and can cause levee failure or overtopping due to levee settlement. A numerical method, called the boundary fitted coordinate (BFC method, was developed to determine seepage through a levee and the transient head on the seepage path due to the changing water level during a flood. The BFC transforms the physical coordinate system into a computational curvilinear coordinate system. The grid generated in this method accurately represents the boundary of the system regardless of its complexity. 

  8. A Nonlinear Reduced Order Method for Prediction of Acoustic Fatigue

    Science.gov (United States)

    Przekop, Adam; Rizzi, Stephen A.

    2006-01-01

    The goal of this investigation is to assess the quality of high-cycle-fatigue life estimation via a reduced order method, for structures undergoing geometrically nonlinear random vibrations. Modal reduction is performed with several different suites of basis functions. After numerically solving the reduced order system equations of motion, the physical displacement time history is obtained by an inverse transformation and stresses are recovered. Stress ranges obtained through the rainflow counting procedure are used in a linear damage accumulation method to yield fatigue estimates. Fatigue life estimates obtained using various basis functions in the reduced order method are compared with those obtained from numerical simulation in physical degrees-of-freedom.

  9. Kinetic mesh-free method for flutter prediction in turbomachines

    Indian Academy of Sciences (India)

    -based mesh-free method for unsteady flows. ... Council for Scientific and Industrial Research, National Aerospace Laboratories, Computational and Theoretical Fluid Dynamics Division, Bangalore 560 017, India; Engineering Mechanics Unit, ...

  10. Method to predict process signals to learn for SVM

    International Nuclear Information System (INIS)

    Minowa, Hirotsugu; Gofuku, Akio

    2013-01-01

    Study of diagnostic system using machine learning to reduce the incidents of the plant is in advance because an accident causes large damage about human, economic and social loss. There is a problem that 2 performances between a classification performance and generalization performance on the machine diagnostic machine is exclusive. However, multi agent diagnostic system makes it possible to use a diagnostic machine specialized either performance by multi diagnostic machines can be used. We propose method to select optimized variables to improve classification performance. The method can also be used for other supervised learning machine but Support Vector Machine. This paper reports that our method and result of evaluation experiment applied our method to output 40% of Monju. (author)

  11. Hybrid Prediction Method for Aircraft Interior Noise, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal discusses the development and application of new methods of structural-acoustic analysis in order to address existing problems in aircraft interior...

  12. Method for Predicting and Optimizing System Parameters for Electrospinning System

    Science.gov (United States)

    Wincheski, Russell A. (Inventor)

    2011-01-01

    An electrospinning system using a spinneret and a counter electrode is first operated for a fixed amount of time at known system and operational parameters to generate a fiber mat having a measured fiber mat width associated therewith. Next, acceleration of the fiberizable material at the spinneret is modeled to determine values of mass, drag, and surface tension associated with the fiberizable material at the spinneret output. The model is then applied in an inversion process to generate predicted values of an electric charge at the spinneret output and an electric field between the spinneret and electrode required to fabricate a selected fiber mat design. The electric charge and electric field are indicative of design values for system and operational parameters needed to fabricate the selected fiber mat design.

  13. Comparison of four statistical and machine learning methods for crash severity prediction.

    Science.gov (United States)

    Iranitalab, Amirfarrokh; Khattak, Aemal

    2017-11-01

    Crash severity prediction models enable different agencies to predict the severity of a reported crash with unknown severity or the severity of crashes that may be expected to occur sometime in the future. This paper had three main objectives: comparison of the performance of four statistical and machine learning methods including Multinomial Logit (MNL), Nearest Neighbor Classification (NNC), Support Vector Machines (SVM) and Random Forests (RF), in predicting traffic crash severity; developing a crash costs-based approach for comparison of crash severity prediction methods; and investigating the effects of data clustering methods comprising K-means Clustering (KC) and Latent Class Clustering (LCC), on the performance of crash severity prediction models. The 2012-2015 reported crash data from Nebraska, United States was obtained and two-vehicle crashes were extracted as the analysis data. The dataset was split into training/estimation (2012-2014) and validation (2015) subsets. The four prediction methods were trained/estimated using the training/estimation dataset and the correct prediction rates for each crash severity level, overall correct prediction rate and a proposed crash costs-based accuracy measure were obtained for the validation dataset. The correct prediction rates and the proposed approach showed NNC had the best prediction performance in overall and in more severe crashes. RF and SVM had the next two sufficient performances and MNL was the weakest method. Data clustering did not affect the prediction results of SVM, but KC improved the prediction performance of MNL, NNC and RF, while LCC caused improvement in MNL and RF but weakened the performance of NNC. Overall correct prediction rate had almost the exact opposite results compared to the proposed approach, showing that neglecting the crash costs can lead to misjudgment in choosing the right prediction method. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Small Engine Technology (Set) Task 8 Aeroelastic Prediction Methods

    Science.gov (United States)

    Eick, Chris D.; Liu, Jong-Shang

    1998-01-01

    AlliedSignal Engines, in cooperation with NASA LeRC, completed an evaluation of recently developed aeroelastic computer codes using test cases from the AlliedSignal Engines fan blisk database. Test data for this task includes strain gage, light probe, performance, and steady-state pressure information obtained for conditions where synchronous or flutter vibratory conditions were found to occur. Aeroelastic codes evaluated include the quasi 3-D UNSFLO (developed at MIT and modified to include blade motion by AlliedSignal), the 2-D FREPS (developed by NASA LeRC), and the 3-D TURBO-AE (under development at NASA LeRC). Six test cases each where flutter and synchronous vibrations were found to occur were used for evaluation of UNSFLO and FREPS. In addition, one of the flutter cases was evaluated using TURBO-AE. The UNSFLO flutter evaluations were completed for 75 percent radial span and provided good agreement with the experimental test data. Synchronous evaluations were completed for UNSFLO but further enhancement needs to be added to the code before the unsteady pressures can be used to predict forced response vibratory stresses. The FREPS evaluations were hindered as the steady flow solver (SFLOW) was unable to converge to a solution for the transonic flow conditions in the fan blisk. This situation resulted in all FREPS test cases being attempted but no results were obtained during the present program. Currently, AlliedSignal is evaluating integrating FREPS with our existing steady flow solvers to bypass the SFLOW difficulties. ne TURBO-AE steady flow solution provided an excellent match with the AlliedSignal Engines calibrated DAWES 3-D viscous solver. Finally, the TURBO-AE unsteady analyses also matched experimental observations by predicting flutter for the single test case evaluated.

  15. A critical pressure based panel method for prediction of unsteady loading of marine propellers under cavitation

    International Nuclear Information System (INIS)

    Liu, P.; Bose, N.; Colbourne, B.

    2002-01-01

    A simple numerical procedure is established and implemented into a time domain panel method to predict hydrodynamic performance of marine propellers with sheet cavitation. This paper describes the numerical formulations and procedures to construct this integration. Predicted hydrodynamic loads were compared with both a previous numerical model and experimental measurements for a propeller in steady flow. The current method gives a substantial improvement in thrust and torque coefficient prediction over a previous numerical method at low cavitation numbers of less than 2.0, where severe cavitation occurs. Predicted pressure coefficient distributions are also presented. (author)

  16. Performance prediction of electrohydrodynamic thrusters by the perturbation method

    International Nuclear Information System (INIS)

    Shibata, H.; Watanabe, Y.; Suzuki, K.

    2016-01-01

    In this paper, we present a novel method for analyzing electrohydrodynamic (EHD) thrusters. The method is based on a perturbation technique applied to a set of drift-diffusion equations, similar to the one introduced in our previous study on estimating breakdown voltage. The thrust-to-current ratio is generalized to represent the performance of EHD thrusters. We have compared the thrust-to-current ratio obtained theoretically with that obtained from the proposed method under atmospheric air conditions, and we have obtained good quantitative agreement. Also, we have conducted a numerical simulation in more complex thruster geometries, such as the dual-stage thruster developed by Masuyama and Barrett [Proc. R. Soc. A 469, 20120623 (2013)]. We quantitatively clarify the fact that if the magnitude of a third electrode voltage is low, the effective gap distance shortens, whereas if the magnitude of the third electrode voltage is sufficiently high, the effective gap distance lengthens.

  17. Performance prediction of electrohydrodynamic thrusters by the perturbation method

    Energy Technology Data Exchange (ETDEWEB)

    Shibata, H., E-mail: shibata@daedalus.k.u-tokyo.ac.jp; Watanabe, Y. [Department of Aeronautics and Astronautics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Suzuki, K. [Department of Advanced Energy, The University of Tokyo, Kashiwanoha, Kashiwa, Chiba 277-8561 (Japan)

    2016-05-15

    In this paper, we present a novel method for analyzing electrohydrodynamic (EHD) thrusters. The method is based on a perturbation technique applied to a set of drift-diffusion equations, similar to the one introduced in our previous study on estimating breakdown voltage. The thrust-to-current ratio is generalized to represent the performance of EHD thrusters. We have compared the thrust-to-current ratio obtained theoretically with that obtained from the proposed method under atmospheric air conditions, and we have obtained good quantitative agreement. Also, we have conducted a numerical simulation in more complex thruster geometries, such as the dual-stage thruster developed by Masuyama and Barrett [Proc. R. Soc. A 469, 20120623 (2013)]. We quantitatively clarify the fact that if the magnitude of a third electrode voltage is low, the effective gap distance shortens, whereas if the magnitude of the third electrode voltage is sufficiently high, the effective gap distance lengthens.

  18. Predicting and explaining inflammation in Crohn's disease patients using predictive analytics methods and electronic medical record data.

    Science.gov (United States)

    Reddy, Bhargava K; Delen, Dursun; Agrawal, Rupesh K

    2018-01-01

    Crohn's disease is among the chronic inflammatory bowel diseases that impact the gastrointestinal tract. Understanding and predicting the severity of inflammation in real-time settings is critical to disease management. Extant literature has primarily focused on studies that are conducted in clinical trial settings to investigate the impact of a drug treatment on the remission status of the disease. This research proposes an analytics methodology where three different types of prediction models are developed to predict and to explain the severity of inflammation in patients diagnosed with Crohn's disease. The results show that machine-learning-based analytic methods such as gradient boosting machines can predict the inflammation severity with a very high accuracy (area under the curve = 92.82%), followed by regularized regression and logistic regression. According to the findings, a combination of baseline laboratory parameters, patient demographic characteristics, and disease location are among the strongest predictors of inflammation severity in Crohn's disease patients.

  19. Ensemble approach combining multiple methods improves human transcription start site prediction.

    LENUS (Irish Health Repository)

    Dineen, David G

    2010-01-01

    The computational prediction of transcription start sites is an important unsolved problem. Some recent progress has been made, but many promoters, particularly those not associated with CpG islands, are still difficult to locate using current methods. These methods use different features and training sets, along with a variety of machine learning techniques and result in different prediction sets.

  20. Prediction of IRI in short and long terms for flexible pavements: ANN and GMDH methods

    NARCIS (Netherlands)

    Ziari, H.; Sobhani, J.; Ayoubinejad, J.; Hartmann, Timo

    2015-01-01

    Prediction of pavement condition is one of the most important issues in pavement management systems. In this paper, capabilities of artificial neural networks (ANNs) and group method of data handling (GMDH) methods in predicting flexible pavement conditions were analysed in three levels: in 1 year,

  1. Sound Zones: On Performance Prediction of Contrast Control Methods

    DEFF Research Database (Denmark)

    Møller, Martin Bo; Olsen, Martin

    2016-01-01

    Low frequency personal sound zones can be created by controlling the squared sound pressure in separate spatial confined control regions. Several methods have been proposed for realizing this scenario, with different constraints and performance. Extrapolating knowledge of the resulting acoustic...... frequency sound zones are compared in an experimental study with eight woofers surrounding two control zones....

  2. Prediction of cell penetrating peptides by support vector machines.

    Directory of Open Access Journals (Sweden)

    William S Sanders

    2011-07-01

    Full Text Available Cell penetrating peptides (CPPs are those peptides that can transverse cell membranes to enter cells. Once inside the cell, different CPPs can localize to different cellular components and perform different roles. Some generate pore-forming complexes resulting in the destruction of cells while others localize to various organelles. Use of machine learning methods to predict potential new CPPs will enable more rapid screening for applications such as drug delivery. We have investigated the influence of the composition of training datasets on the ability to classify peptides as cell penetrating using support vector machines (SVMs. We identified 111 known CPPs and 34 known non-penetrating peptides from the literature and commercial vendors and used several approaches to build training data sets for the classifiers. Features were calculated from the datasets using a set of basic biochemical properties combined with features from the literature determined to be relevant in the prediction of CPPs. Our results using different training datasets confirm the importance of a balanced training set with approximately equal number of positive and negative examples. The SVM based classifiers have greater classification accuracy than previously reported methods for the prediction of CPPs, and because they use primary biochemical properties of the peptides as features, these classifiers provide insight into the properties needed for cell-penetration. To confirm our SVM classifications, a subset of peptides classified as either penetrating or non-penetrating was selected for synthesis and experimental validation. Of the synthesized peptides predicted to be CPPs, 100% of these peptides were shown to be penetrating.

  3. Prediction of periodically correlated processes by wavelet transform and multivariate methods with applications to climatological data

    Science.gov (United States)

    Ghanbarzadeh, Mitra; Aminghafari, Mina

    2015-05-01

    This article studies the prediction of periodically correlated process using wavelet transform and multivariate methods with applications to climatological data. Periodically correlated processes can be reformulated as multivariate stationary processes. Considering this fact, two new prediction methods are proposed. In the first method, we use stepwise regression between the principal components of the multivariate stationary process and past wavelet coefficients of the process to get a prediction. In the second method, we propose its multivariate version without principal component analysis a priori. Also, we study a generalization of the prediction methods dealing with a deterministic trend using exponential smoothing. Finally, we illustrate the performance of the proposed methods on simulated and real climatological data (ozone amounts, flows of a river, solar radiation, and sea levels) compared with the multivariate autoregressive model. The proposed methods give good results as we expected.

  4. A data-driven epidemiological prediction method for dengue outbreaks using local and remote sensing data

    Directory of Open Access Journals (Sweden)

    Buczak Anna L

    2012-11-01

    Full Text Available Abstract Background Dengue is the most common arboviral disease of humans, with more than one third of the world’s population at risk. Accurate prediction of dengue outbreaks may lead to public health interventions that mitigate the effect of the disease. Predicting infectious disease outbreaks is a challenging task; truly predictive methods are still in their infancy. Methods We describe a novel prediction method utilizing Fuzzy Association Rule Mining to extract relationships between clinical, meteorological, climatic, and socio-political data from Peru. These relationships are in the form of rules. The best set of rules is automatically chosen and forms a classifier. That classifier is then used to predict future dengue incidence as either HIGH (outbreak or LOW (no outbreak, where these values are defined as being above and below the mean previous dengue incidence plus two standard deviations, respectively. Results Our automated method built three different fuzzy association rule models. Using the first two weekly models, we predicted dengue incidence three and four weeks in advance, respectively. The third prediction encompassed a four-week period, specifically four to seven weeks from time of prediction. Using previously unused test data for the period 4–7 weeks from time of prediction yielded a positive predictive value of 0.686, a negative predictive value of 0.976, a sensitivity of 0.615, and a specificity of 0.982. Conclusions We have developed a novel approach for dengue outbreak prediction. The method is general, could be extended for use in any geographical region, and has the potential to be extended to other environmentally influenced infections. The variables used in our method are widely available for most, if not all countries, enhancing the generalizability of our method.

  5. [Predictive methods versus clinical titration for the initiation of lithium therapy. A systematic review].

    Science.gov (United States)

    Geeraerts, I; Sienaert, P

    2013-01-01

    When lithium is administered, the clinician needs to know when the lithium in the patient’s blood has reached a therapeutic level. At the initiation of treatment the level is usually achieved gradually through the application of the titration method. In order to increase the efficacy of this procedure several methods for dosing lithium and for predicting lithium levels have been developed. To conduct a systematic review of the publications relating to the various methods for dosing lithium or predicting lithium levels at the initiation of therapy. We searched Medline systematically for articles published in English, French or Dutch between 1966 and April 2012 which described or studied a method for dosing lithium or for predicting the lithium level reached following a specific dosage. We screened the reference lists of relevant articles in order to locate additional papers. We found 38 lithium prediction methods, in addition to the clinical titration method. These methods can be divided into two categories: the ‘a priori’ methods and the ‘test-dose’ methods, the latter requiring the administration of a test dose of lithium. The lithium prediction methods generally achieve a therapeutic blood level faster than the clinical titration method, but none of the methods achieves convincing results. On the basis of our review, we propose that the titration method should be used as the standard method in clinical practice.

  6. Positioning Errors Predicting Method of Strapdown Inertial Navigation Systems Based on PSO-SVM

    Directory of Open Access Journals (Sweden)

    Xunyuan Yin

    2013-01-01

    Full Text Available The strapdown inertial navigation systems (SINS have been widely used for many vehicles, such as commercial airplanes, Unmanned Aerial Vehicles (UAVs, and other types of aircrafts. In order to evaluate the navigation errors precisely and efficiently, a prediction method based on support vector machine (SVM is proposed for positioning error assessment. Firstly, SINS error models that are used for error calculation are established considering several error resources with respect to inertial units. Secondly, flight paths for simulation are designed. Thirdly, the -SVR based prediction method is proposed to predict the positioning errors of navigation systems, and particle swarm optimization (PSO is used for the SVM parameters optimization. Finally, 600 sets of error parameters of SINS are utilized to train the SVM model, which is used for the performance prediction of new navigation systems. By comparing the predicting results with the real errors, the latitudinal predicting accuracy is 92.73%, while the longitudinal predicting accuracy is 91.64%, and PSO is effective to increase the prediction accuracy compared with traditional SVM with fixed parameters. This method is also demonstrated to be effective for error prediction for an entire flight process. Moreover, the prediction method can save 75% of calculation time compared with analyses based on error models.

  7. A generic method for assignment of reliability scores applied to solvent accessibility predictions

    DEFF Research Database (Denmark)

    Petersen, Bent; Petersen, Thomas Nordahl; Andersen, Pernille

    2009-01-01

    the relative exposure of the amino acids. The method assigns a reliability score to each surface accessibility prediction as an inherent part of the training process. This is in contrast to the most commonly used procedures where reliabilities are obtained by post-processing the output. CONCLUSION......Estimation of the reliability of specific real value predictions is nontrivial and the efficacy of this is often questionable. It is important to know if you can trust a given prediction and therefore the best methods associate a prediction with a reliability score or index. For discrete...... qualitative predictions, the reliability is conventionally estimated as the difference between output scores of selected classes. Such an approach is not feasible for methods that predict a biological feature as a single real value rather than a classification. As a solution to this challenge, we have...

  8. A Method for Driving Route Predictions Based on Hidden Markov Model

    Directory of Open Access Journals (Sweden)

    Ning Ye

    2015-01-01

    Full Text Available We present a driving route prediction method that is based on Hidden Markov Model (HMM. This method can accurately predict a vehicle’s entire route as early in a trip’s lifetime as possible without inputting origins and destinations beforehand. Firstly, we propose the route recommendation system architecture, where route predictions play important role in the system. Secondly, we define a road network model, normalize each of driving routes in the rectangular coordinate system, and build the HMM to make preparation for route predictions using a method of training set extension based on K-means++ and the add-one (Laplace smoothing technique. Thirdly, we present the route prediction algorithm. Finally, the experimental results of the effectiveness of the route predictions that is based on HMM are shown.

  9. Predicting land cover using GIS, Bayesian and evolutionary algorithm methods.

    Science.gov (United States)

    Aitkenhead, M J; Aalders, I H

    2009-01-01

    Modelling land cover change from existing land cover maps is a vital requirement for anyone wishing to understand how the landscape may change in the future. In order to test any land cover change model, existing data must be used. However, often it is not known which data should be applied to the problem, or whether relationships exist within and between complex datasets. Here we have developed and tested a model that applied evolutionary processes to Bayesian networks. The model was developed and tested on a dataset containing land cover information and environmental data, in order to show that decisions about which datasets should be used could be made automatically. Bayesian networks are amenable to evolutionary methods as they can be easily described using a binary string to which crossover and mutation operations can be applied. The method, developed to allow comparison with standard Bayesian network development software, was proved capable of carrying out a rapid and effective search of the space of possible networks in order to find an optimal or near-optimal solution for the selection of datasets that have causal links with one another. Comparison of land cover mapping in the North-East of Scotland was made with a commercial Bayesian software package, with the evolutionary method being shown to provide greater flexibility in its ability to adapt to incorporate/utilise available evidence/knowledge and develop effective and accurate network structures, at the cost of requiring additional computer programming skills. The dataset used to develop the models included GIS-based data taken from the Land Cover for Scotland 1988 (LCS88), Land Capability for Forestry (LCF), Land Capability for Agriculture (LCA), the soil map of Scotland and additional climatic variables.

  10. Shelf life prediction of apple brownies using accelerated method

    Science.gov (United States)

    Pulungan, M. H.; Sukmana, A. D.; Dewi, I. A.

    2018-03-01

    The aim of this research was to determine shelf life of apple brownies. Shelf life was determined with Accelerated Shelf Life Testing method and Arrhenius equation. Experiment was conducted at 25, 35, and 45°C for 30 days. Every five days, the sample was analysed for free fatty acid (FFA), water activity (Aw), and organoleptic acceptance (flavour, aroma, and texture). The shelf life of the apple brownies based on FFA were 110, 54, and 28 days at temperature of 25, 35, and 45°C, respectively.

  11. Ensemble Methods in Data Mining Improving Accuracy Through Combining Predictions

    CERN Document Server

    Seni, Giovanni

    2010-01-01

    This book is aimed at novice and advanced analytic researchers and practitioners -- especially in Engineering, Statistics, and Computer Science. Those with little exposure to ensembles will learn why and how to employ this breakthrough method, and advanced practitioners will gain insight into building even more powerful models. Throughout, snippets of code in R are provided to illustrate the algorithms described and to encourage the reader to try the techniques. The authors are industry experts in data mining and machine learning who are also adjunct professors and popular speakers. Although e

  12. A simple method for improving predictions of nuclear masses

    International Nuclear Information System (INIS)

    Yamada, Masami; Tsuchiya, Susumu; Tachibana, Takahiro

    1991-01-01

    The formula for atomic masses which exactly conforms to all nuclides does not exist in reality and cannot be anticipated for the time being hereafter. At present the masses of many nuclides are known experimentally with good accuracy, but the values of whichever mass formulas are more or less different from those experimental values except small number of accidental coincidence. Under such situation, for forecasting the mass of an unknown nuclide, how is it cleverly done ? Generally speaking, to take the value itself of a mass formula seems not the best means. It may be better to take the difference of the values of a mass formula and experiment for the nuclide close to that to be forecast in consideration and to correct the forecast value of the mass formula. In this report, the simple method for this correction is proposed. The formula which connects between two extreme cases, the difference between a true mass and the value of a mass formula is the sum of proton part and neutron part, and the difference distributes randomly around zero, was proposed. The procedure for its concrete application is explained. This method can be applied to other physical quantities than mass, for example the half life of beta decay. (K.I.)

  13. Machine Learning Methods for Prediction of CDK-Inhibitors

    Science.gov (United States)

    Ramana, Jayashree; Gupta, Dinesh

    2010-01-01

    Progression through the cell cycle involves the coordinated activities of a suite of cyclin/cyclin-dependent kinase (CDK) complexes. The activities of the complexes are regulated by CDK inhibitors (CDKIs). Apart from its role as cell cycle regulators, CDKIs are involved in apoptosis, transcriptional regulation, cell fate determination, cell migration and cytoskeletal dynamics. As the complexes perform crucial and diverse functions, these are important drug targets for tumour and stem cell therapeutic interventions. However, CDKIs are represented by proteins with considerable sequence heterogeneity and may fail to be identified by simple similarity search methods. In this work we have evaluated and developed machine learning methods for identification of CDKIs. We used different compositional features and evolutionary information in the form of PSSMs, from CDKIs and non-CDKIs for generating SVM and ANN classifiers. In the first stage, both the ANN and SVM models were evaluated using Leave-One-Out Cross-Validation and in the second stage these were tested on independent data sets. The PSSM-based SVM model emerged as the best classifier in both the stages and is publicly available through a user-friendly web interface at http://bioinfo.icgeb.res.in/cdkipred. PMID:20967128

  14. Prediction of skin sensitizers using alternative methods to animal experimentation.

    Science.gov (United States)

    Johansson, Henrik; Lindstedt, Malin

    2014-07-01

    Regulatory frameworks within the European Union demand that chemical substances are investigated for their ability to induce sensitization, an adverse health effect caused by the human immune system in response to chemical exposure. A recent ban on the use of animal tests within the cosmetics industry has led to an urgent need for alternative animal-free test methods that can be used for assessment of chemical sensitizers. To date, no such alternative assay has yet completed formal validation. However, a number of assays are in development and the understanding of the biological mechanisms of chemical sensitization has greatly increased during the last decade. In this MiniReview, we aim to summarize and give our view on the recent progress of method development for alternative assessment of chemical sensitizers. We propose that integrated testing strategies should comprise complementary assays, providing measurements of a wide range of mechanistic events, to perform well-educated risk assessments based on weight of evidence. © 2014 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  15. Aggregate Interview Method of ranking orthopedic applicants predicts future performance.

    Science.gov (United States)

    Geissler, Jacqueline; VanHeest, Ann; Tatman, Penny; Gioe, Terence

    2013-07-01

    This article evaluates and describes a process of ranking orthopedic applicants using what the authors term the Aggregate Interview Method. The authors hypothesized that higher-ranking applicants using this method at their institution would perform better than those ranked lower using multiple measures of resident performance. A retrospective review of 115 orthopedic residents was performed at the authors' institution. Residents were grouped into 3 categories by matching rank numbers: 1-5, 6-14, and 15 or higher. Each rank group was compared with resident performance as measured by faculty evaluations, the Orthopaedic In-Training Examination (OITE), and American Board of Orthopaedic Surgery (ABOS) test results. Residents ranked 1-5 scored significantly better on patient care, behavior, and overall competence by faculty evaluation (Porthopedic resident candidates who scored highly on the Accreditation Council for Graduate Medical Education resident core competencies as measured by faculty evaluations, performed above the national average on the OITE, and passed the ABOS part 1 examination at rates exceeding the national average. Copyright 2013, SLACK Incorporated.

  16. A prediction method of natural gas hydrate formation in deepwater gas well and its application

    Directory of Open Access Journals (Sweden)

    Yanli Guo

    2016-09-01

    Full Text Available To prevent the deposition of natural gas hydrate in deepwater gas well, the hydrate formation area in wellbore must be predicted. Herein, by comparing four prediction methods of temperature in pipe with field data and comparing five prediction methods of hydrate formation with experiment data, a method based on OLGA & PVTsim for predicting the hydrate formation area in wellbore was proposed. Meanwhile, The hydrate formation under the conditions of steady production, throttling and shut-in was predicted by using this method based on a well data in the South China Sea. The results indicate that the hydrate formation area decreases with the increase of gas production, inhibitor concentrations and the thickness of insulation materials and increases with the increase of thermal conductivity of insulation materials and shutdown time. Throttling effect causes a plunge in temperature and pressure in wellbore, thus leading to an increase of hydrate formation area.

  17. Building Customer Churn Prediction Models in Fitness Industry with Machine Learning Methods

    OpenAIRE

    Shan, Min

    2017-01-01

    With the rapid growth of digital systems, churn management has become a major focus within customer relationship management in many industries. Ample research has been conducted for churn prediction in different industries with various machine learning methods. This thesis aims to combine feature selection and supervised machine learning methods for defining models of churn prediction and apply them on fitness industry. Forward selection is chosen as feature selection methods. Support Vector ...

  18. A method of quantitative prediction for sandstone type uranium deposit in Russia and its application

    International Nuclear Information System (INIS)

    Chang Shushuai; Jiang Minzhong; Li Xiaolu

    2008-01-01

    The paper presents the foundational principle of quantitative predication for sandstone type uranium deposits in Russia. Some key methods such as physical-mathematical model construction and deposits prediction are described. The method has been applied to deposits prediction in Dahongshan region of Chaoshui basin. It is concluded that the technique can fortify the method of quantitative predication for sandstone type uranium deposits, and it could be used as a new technique in China. (authors)

  19. Impact of Statistical Learning Methods on the Predictive Power of Multivariate Normal Tissue Complication Probability Models

    International Nuclear Information System (INIS)

    Xu Chengjian; Schaaf, Arjen van der; Schilstra, Cornelis; Langendijk, Johannes A.; Veld, Aart A. van’t

    2012-01-01

    Purpose: To study the impact of different statistical learning methods on the prediction performance of multivariate normal tissue complication probability (NTCP) models. Methods and Materials: In this study, three learning methods, stepwise selection, least absolute shrinkage and selection operator (LASSO), and Bayesian model averaging (BMA), were used to build NTCP models of xerostomia following radiotherapy treatment for head and neck cancer. Performance of each learning method was evaluated by a repeated cross-validation scheme in order to obtain a fair comparison among methods. Results: It was found that the LASSO and BMA methods produced models with significantly better predictive power than that of the stepwise selection method. Furthermore, the LASSO method yields an easily interpretable model as the stepwise method does, in contrast to the less intuitive BMA method. Conclusions: The commonly used stepwise selection method, which is simple to execute, may be insufficient for NTCP modeling. The LASSO method is recommended.

  20. Impact of Statistical Learning Methods on the Predictive Power of Multivariate Normal Tissue Complication Probability Models

    Energy Technology Data Exchange (ETDEWEB)

    Xu Chengjian, E-mail: c.j.xu@umcg.nl [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Schaaf, Arjen van der; Schilstra, Cornelis; Langendijk, Johannes A.; Veld, Aart A. van' t [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands)

    2012-03-15

    Purpose: To study the impact of different statistical learning methods on the prediction performance of multivariate normal tissue complication probability (NTCP) models. Methods and Materials: In this study, three learning methods, stepwise selection, least absolute shrinkage and selection operator (LASSO), and Bayesian model averaging (BMA), were used to build NTCP models of xerostomia following radiotherapy treatment for head and neck cancer. Performance of each learning method was evaluated by a repeated cross-validation scheme in order to obtain a fair comparison among methods. Results: It was found that the LASSO and BMA methods produced models with significantly better predictive power than that of the stepwise selection method. Furthermore, the LASSO method yields an easily interpretable model as the stepwise method does, in contrast to the less intuitive BMA method. Conclusions: The commonly used stepwise selection method, which is simple to execute, may be insufficient for NTCP modeling. The LASSO method is recommended.

  1. Real-time prediction of respiratory motion based on local regression methods

    International Nuclear Information System (INIS)

    Ruan, D; Fessler, J A; Balter, J M

    2007-01-01

    Recent developments in modulation techniques enable conformal delivery of radiation doses to small, localized target volumes. One of the challenges in using these techniques is real-time tracking and predicting target motion, which is necessary to accommodate system latencies. For image-guided-radiotherapy systems, it is also desirable to minimize sampling rates to reduce imaging dose. This study focuses on predicting respiratory motion, which can significantly affect lung tumours. Predicting respiratory motion in real-time is challenging, due to the complexity of breathing patterns and the many sources of variability. We propose a prediction method based on local regression. There are three major ingredients of this approach: (1) forming an augmented state space to capture system dynamics, (2) local regression in the augmented space to train the predictor from previous observation data using semi-periodicity of respiratory motion, (3) local weighting adjustment to incorporate fading temporal correlations. To evaluate prediction accuracy, we computed the root mean square error between predicted tumor motion and its observed location for ten patients. For comparison, we also investigated commonly used predictive methods, namely linear prediction, neural networks and Kalman filtering to the same data. The proposed method reduced the prediction error for all imaging rates and latency lengths, particularly for long prediction lengths

  2. Prediction of membrane transport proteins and their substrate specificities using primary sequence information.

    Directory of Open Access Journals (Sweden)

    Nitish K Mishra

    Full Text Available Membrane transport proteins (transporters move hydrophilic substrates across hydrophobic membranes and play vital roles in most cellular functions. Transporters represent a diverse group of proteins that differ in topology, energy coupling mechanism, and substrate specificity as well as sequence similarity. Among the functional annotations of transporters, information about their transporting substrates is especially important. The experimental identification and characterization of transporters is currently costly and time-consuming. The development of robust bioinformatics-based methods for the prediction of membrane transport proteins and their substrate specificities is therefore an important and urgent task.Support vector machine (SVM-based computational models, which comprehensively utilize integrative protein sequence features such as amino acid composition, dipeptide composition, physico-chemical composition, biochemical composition, and position-specific scoring matrices (PSSM, were developed to predict the substrate specificity of seven transporter classes: amino acid, anion, cation, electron, protein/mRNA, sugar, and other transporters. An additional model to differentiate transporters from non-transporters was also developed. Among the developed models, the biochemical composition and PSSM hybrid model outperformed other models and achieved an overall average prediction accuracy of 76.69% with a Mathews correlation coefficient (MCC of 0.49 and a receiver operating characteristic area under the curve (AUC of 0.833 on our main dataset. This model also achieved an overall average prediction accuracy of 78.88% and MCC of 0.41 on an independent dataset.Our analyses suggest that evolutionary information (i.e., the PSSM and the AAIndex are key features for the substrate specificity prediction of transport proteins. In comparison, similarity-based methods such as BLAST, PSI-BLAST, and hidden Markov models do not provide accurate predictions

  3. Prediction of membrane transport proteins and their substrate specificities using primary sequence information.

    Science.gov (United States)

    Mishra, Nitish K; Chang, Junil; Zhao, Patrick X

    2014-01-01

    Membrane transport proteins (transporters) move hydrophilic substrates across hydrophobic membranes and play vital roles in most cellular functions. Transporters represent a diverse group of proteins that differ in topology, energy coupling mechanism, and substrate specificity as well as sequence similarity. Among the functional annotations of transporters, information about their transporting substrates is especially important. The experimental identification and characterization of transporters is currently costly and time-consuming. The development of robust bioinformatics-based methods for the prediction of membrane transport proteins and their substrate specificities is therefore an important and urgent task. Support vector machine (SVM)-based computational models, which comprehensively utilize integrative protein sequence features such as amino acid composition, dipeptide composition, physico-chemical composition, biochemical composition, and position-specific scoring matrices (PSSM), were developed to predict the substrate specificity of seven transporter classes: amino acid, anion, cation, electron, protein/mRNA, sugar, and other transporters. An additional model to differentiate transporters from non-transporters was also developed. Among the developed models, the biochemical composition and PSSM hybrid model outperformed other models and achieved an overall average prediction accuracy of 76.69% with a Mathews correlation coefficient (MCC) of 0.49 and a receiver operating characteristic area under the curve (AUC) of 0.833 on our main dataset. This model also achieved an overall average prediction accuracy of 78.88% and MCC of 0.41 on an independent dataset. Our analyses suggest that evolutionary information (i.e., the PSSM) and the AAIndex are key features for the substrate specificity prediction of transport proteins. In comparison, similarity-based methods such as BLAST, PSI-BLAST, and hidden Markov models do not provide accurate predictions for the

  4. A noninvasive method for the prediction of fetal hemolytic disease

    Directory of Open Access Journals (Sweden)

    E. N. Kravchenko

    2017-01-01

    Full Text Available Objective: to improve the diagnosis of fetal hemolytic disease.Subjects and methods. A study group consisted of 42 pregnant women whose newborn infants had varying degrees of hemolytic disease. The women were divided into 3 subgroups according to the severity of neonatal hemolytic disease: 1 pregnant women whose neonates were born with severe hemolytic disease (n = 14; 2 those who gave birth to babies with moderate hemolytic disease (n = 11; 3 those who delivered infants with mild hemolytic disease (n = 17. A comparison group included 42 pregnant women whose babies were born without signs of hemolytic disease. Curvesfor blood flow velocity in the middle cerebral artery were analyzed in a fetus of 25 to 39 weeks’ gestation.Results. The peak systolic blood flow velocity was observed in Subgroup 1; however, the indicator did not exceed 1.5 MoM even in severe fetal anemic syndrome. The fetal middle artery blood flow velocity rating scale was divided into 2 zones: 1 the boundary values of peak systolic blood flow velocity from the median to the obtained midscore; 2 the boundary values of peak systolic blood flow velocity of the obtained values of as high as 1.5 MoM.Conclusion. The value of peak systolic blood flow velocity being in Zone 2, or its dynamic changes by transiting to this zone can serve as a prognostic factor in the development of severe fetal hemolytic disease. 

  5. Predicting sulphur and nitrogen deposition using a simple statistical method

    Science.gov (United States)

    Oulehle, Filip; Kopáček, Jiří; Chuman, Tomáš; Černohous, Vladimír; Hůnová, Iva; Hruška, Jakub; Krám, Pavel; Lachmanová, Zora; Navrátil, Tomáš; Štěpánek, Petr; Tesař, Miroslav; Evans, Christopher D.

    2016-09-01

    Data from 32 long-term (1994-2012) monitoring sites were used to assess temporal development and spatial variability of sulphur (S) and inorganic nitrogen (N) concentrations in bulk precipitation, and S in throughfall, for the Czech Republic. Despite large variance in absolute S and N concentration/deposition among sites, temporal coherence using standardised data (Z score) was demonstrated. Overall significant declines of SO4 concentration in bulk and throughfall precipitation, as well as NO3 and NH4 concentration in bulk precipitation, were observed. Median Z score values of bulk SO4, NO3 and NH4 and throughfall SO4 derived from observations and the respective emission rates of SO2, NOx and NH3 in the Czech Republic and Slovakia showed highly significant (p standard deviation) from monitored to unmonitored sites. Spatially distributed temporal development of S and N depositions were calculated since 1900. The method allows spatio-temporal estimation of the acid deposition in regions with extensive monitoring of precipitation chemistry.

  6. Machine learning methods to predict child posttraumatic stress: a proof of concept study.

    Science.gov (United States)

    Saxe, Glenn N; Ma, Sisi; Ren, Jiwen; Aliferis, Constantin

    2017-07-10

    The care of traumatized children would benefit significantly from accurate predictive models for Posttraumatic Stress Disorder (PTSD), using information available around the time of trauma. Machine Learning (ML) computational methods have yielded strong results in recent applications across many diseases and data types, yet they have not been previously applied to childhood PTSD. Since these methods have not been applied to this complex and debilitating disorder, there is a great deal that remains to be learned about their application. The first step is to prove the concept: Can ML methods - as applied in other fields - produce predictive classification models for childhood PTSD? Additionally, we seek to determine if specific variables can be identified - from the aforementioned predictive classification models - with putative causal relations to PTSD. ML predictive classification methods - with causal discovery feature selection - were applied to a data set of 163 children hospitalized with an injury and PTSD was determined three months after hospital discharge. At the time of hospitalization, 105 risk factor variables were collected spanning a range of biopsychosocial domains. Seven percent of subjects had a high level of PTSD symptoms. A predictive classification model was discovered with significant predictive accuracy. A predictive model constructed based on subsets of potentially causally relevant features achieves similar predictivity compared to the best predictive model constructed with all variables. Causal Discovery feature selection methods identified 58 variables of which 10 were identified as most stable. In this first proof-of-concept application of ML methods to predict childhood Posttraumatic Stress we were able to determine both predictive classification models for childhood PTSD and identify several causal variables. This set of techniques has great potential for enhancing the methodological toolkit in the field and future studies should seek to

  7. MRI texture features as biomarkers to predict MGMT methylation status in glioblastomas

    International Nuclear Information System (INIS)

    Korfiatis, Panagiotis; Kline, Timothy L.; Erickson, Bradley J.; Coufalova, Lucie; Lachance, Daniel H.; Parney, Ian F.; Carter, Rickey E.; Buckner, Jan C.

    2016-01-01

    Purpose: Imaging biomarker research focuses on discovering relationships between radiological features and histological findings. In glioblastoma patients, methylation of the O"6-methylguanine methyltransferase (MGMT) gene promoter is positively correlated with an increased effectiveness of current standard of care. In this paper, the authors investigate texture features as potential imaging biomarkers for capturing the MGMT methylation status of glioblastoma multiforme (GBM) tumors when combined with supervised classification schemes. Methods: A retrospective study of 155 GBM patients with known MGMT methylation status was conducted. Co-occurrence and run length texture features were calculated, and both support vector machines (SVMs) and random forest classifiers were used to predict MGMT methylation status. Results: The best classification system (an SVM-based classifier) had a maximum area under the receiver-operating characteristic (ROC) curve of 0.85 (95% CI: 0.78–0.91) using four texture features (correlation, energy, entropy, and local intensity) originating from the T2-weighted images, yielding at the optimal threshold of the ROC curve, a sensitivity of 0.803 and a specificity of 0.813. Conclusions: Results show that supervised machine learning of MRI texture features can predict MGMT methylation status in preoperative GBM tumors, thus providing a new noninvasive imaging biomarker.

  8. Bayesian Methods for Predicting the Shape of Chinese Yam in Terms of Key Diameters

    Directory of Open Access Journals (Sweden)

    Mitsunori Kayano

    2017-01-01

    Full Text Available This paper proposes Bayesian methods for the shape estimation of Chinese yam (Dioscorea opposita using a few key diameters of yam. Shape prediction of yam is applicable to determining optimal cutoff positions of a yam for producing seed yams. Our Bayesian method, which is a combination of Bayesian estimation model and predictive model, enables automatic, rapid, and low-cost processing of yam. After the construction of the proposed models using a sample data set in Japan, the models provide whole shape prediction of yam based on only a few key diameters. The Bayesian method performed well on the shape prediction in terms of minimizing the mean squared error between measured shape and the prediction. In particular, a multiple regression method with key diameters at two fixed positions attained the highest performance for shape prediction. We have developed automatic, rapid, and low-cost yam-processing machines based on the Bayesian estimation model and predictive model. Development of such shape prediction approaches, including our Bayesian method, can be a valuable aid in reducing the cost and time in food processing.

  9. A Novel Grey Wave Method for Predicting Total Chinese Trade Volume

    Directory of Open Access Journals (Sweden)

    Kedong Yin

    2017-12-01

    Full Text Available The total trade volume of a country is an important way of appraising its international trade situation. A prediction based on trade volume will help enterprises arrange production efficiently and promote the sustainability of the international trade. Because the total Chinese trade volume fluctuates over time, this paper proposes a Grey wave forecasting model with a Hodrick–Prescott filter (HP filter to forecast it. This novel model first parses time series into long-term trend and short-term cycle. Second, the model uses a general GM (1,1 to predict the trend term and the Grey wave forecasting model to predict the cycle term. Empirical analysis shows that the improved Grey wave prediction method provides a much more accurate forecast than the basic Grey wave prediction method, achieving better prediction results than autoregressive moving average model (ARMA.

  10. Studies of the Raman Spectra of Cyclic and Acyclic Molecules: Combination and Prediction Spectrum Methods

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Taijin; Assary, Rajeev S.; Marshall, Christopher L.; Gosztola, David J.; Curtiss, Larry A.; Stair, Peter C.

    2012-04-02

    A combination of Raman spectroscopy and density functional methods was employed to investigate the spectral features of selected molecules: furfural, 5-hydroxymethyl furfural (HMF), methanol, acetone, acetic acid, and levulinic acid. The computed spectra and measured spectra are in excellent agreement, consistent with previous studies. Using the combination and prediction spectrum method (CPSM), we were able to predict the important spectral features of two platform chemicals, HMF and levulinic acid.The results have shown that CPSM is a useful alternative method for predicting vibrational spectra of complex molecules in the biomass transformation process.

  11. Studies of the Raman spectra of cyclic and acyclic molecules: Combination and prediction spectrum methods

    Science.gov (United States)

    Kim, Taejin; Assary, Rajeev S.; Marshall, Christopher L.; Gosztola, David J.; Curtiss, Larry A.; Stair, Peter C.

    2012-04-01

    A combination of Raman spectroscopy and density functional methods was employed to investigate the spectral features of selected molecules: furfural, 5-hydroxymethyl furfural (HMF), methanol, acetone, acetic acid, and levulinic acid. The computed spectra and measured spectra are in excellent agreement, consistent with previous studies. Using the combination and prediction spectrum method (CPSM), we were able to predict the important spectral features of two platform chemicals, HMF and levulinic acid. The results have shown that CPSM is a useful alternative method for predicting vibrational spectra of complex molecules in the biomass transformation process.

  12. Ensemble approach combining multiple methods improves human transcription start site prediction

    LENUS (Irish Health Repository)

    Dineen, David G

    2010-11-30

    Abstract Background The computational prediction of transcription start sites is an important unsolved problem. Some recent progress has been made, but many promoters, particularly those not associated with CpG islands, are still difficult to locate using current methods. These methods use different features and training sets, along with a variety of machine learning techniques and result in different prediction sets. Results We demonstrate the heterogeneity of current prediction sets, and take advantage of this heterogeneity to construct a two-level classifier (\\'Profisi Ensemble\\') using predictions from 7 programs, along with 2 other data sources. Support vector machines using \\'full\\' and \\'reduced\\' data sets are combined in an either\\/or approach. We achieve a 14% increase in performance over the current state-of-the-art, as benchmarked by a third-party tool. Conclusions Supervised learning methods are a useful way to combine predictions from diverse sources.

  13. Prediction of Human Phenotype Ontology terms by means of hierarchical ensemble methods.

    Science.gov (United States)

    Notaro, Marco; Schubach, Max; Robinson, Peter N; Valentini, Giorgio

    2017-10-12

    The prediction of human gene-abnormal phenotype associations is a fundamental step toward the discovery of novel genes associated with human disorders, especially when no genes are known to be associated with a specific disease. In this context the Human Phenotype Ontology (HPO) provides a standard categorization of the abnormalities associated with human diseases. While the problem of the prediction of gene-disease associations has been widely investigated, the related problem of gene-phenotypic feature (i.e., HPO term) associations has been largely overlooked, even if for most human genes no HPO term associations are known and despite the increasing application of the HPO to relevant medical problems. Moreover most of the methods proposed in literature are not able to capture the hierarchical relationships between HPO terms, thus resulting in inconsistent and relatively inaccurate predictions. We present two hierarchical ensemble methods that we formally prove to provide biologically consistent predictions according to the hierarchical structure of the HPO. The modular structure of the proposed methods, that consists in a "flat" learning first step and a hierarchical combination of the predictions in the second step, allows the predictions of virtually any flat learning method to be enhanced. The experimental results show that hierarchical ensemble methods are able to predict novel associations between genes and abnormal phenotypes with results that are competitive with state-of-the-art algorithms and with a significant reduction of the computational complexity. Hierarchical ensembles are efficient computational methods that guarantee biologically meaningful predictions that obey the true path rule, and can be used as a tool to improve and make consistent the HPO terms predictions starting from virtually any flat learning method. The implementation of the proposed methods is available as an R package from the CRAN repository.

  14. Analysis of deep learning methods for blind protein contact prediction in CASP12.

    Science.gov (United States)

    Wang, Sheng; Sun, Siqi; Xu, Jinbo

    2018-03-01

    Here we present the results of protein contact prediction achieved in CASP12 by our RaptorX-Contact server, which is an early implementation of our deep learning method for contact prediction. On a set of 38 free-modeling target domains with a median family size of around 58 effective sequences, our server obtained an average top L/5 long- and medium-range contact accuracy of 47% and 44%, respectively (L = length). A complete implementation has an average accuracy of 59% and 57%, respectively. Our deep learning method formulates contact prediction as a pixel-level image labeling problem and simultaneously predicts all residue pairs of a protein using a combination of two deep residual neural networks, taking as input the residue conservation information, predicted secondary structure and solvent accessibility, contact potential, and coevolution information. Our approach differs from existing methods mainly in (1) formulating contact prediction as a pixel-level image labeling problem instead of an image-level classification problem; (2) simultaneously predicting all contacts of an individual protein to make effective use of contact occurrence patterns; and (3) integrating both one-dimensional and two-dimensional deep convolutional neural networks to effectively learn complex sequence-structure relationship including high-order residue correlation. This paper discusses the RaptorX-Contact pipeline, both contact prediction and contact-based folding results, and finally the strength and weakness of our method. © 2017 Wiley Periodicals, Inc.

  15. Predictive Distribution of the Dirichlet Mixture Model by the Local Variational Inference Method

    DEFF Research Database (Denmark)

    Ma, Zhanyu; Leijon, Arne; Tan, Zheng-Hua

    2014-01-01

    In Bayesian analysis of a statistical model, the predictive distribution is obtained by marginalizing over the parameters with their posterior distributions. Compared to the frequently used point estimate plug-in method, the predictive distribution leads to a more reliable result in calculating t...

  16. Novel computational methods to predict drug–target interactions using graph mining and machine learning approaches

    KAUST Repository

    Olayan, Rawan S.

    2017-12-01

    Computational drug repurposing aims at finding new medical uses for existing drugs. The identification of novel drug-target interactions (DTIs) can be a useful part of such a task. Computational determination of DTIs is a convenient strategy for systematic screening of a large number of drugs in the attempt to identify new DTIs at low cost and with reasonable accuracy. This necessitates development of accurate computational methods that can help focus on the follow-up experimental validation on a smaller number of highly likely targets for a drug. Although many methods have been proposed for computational DTI prediction, they suffer the high false positive prediction rate or they do not predict the effect that drugs exert on targets in DTIs. In this report, first, we present a comprehensive review of the recent progress in the field of DTI prediction from data-centric and algorithm-centric perspectives. The aim is to provide a comprehensive review of computational methods for identifying DTIs, which could help in constructing more reliable methods. Then, we present DDR, an efficient method to predict the existence of DTIs. DDR achieves significantly more accurate results compared to the other state-of-theart methods. As supported by independent evidences, we verified as correct 22 out of the top 25 DDR DTIs predictions. This validation proves the practical utility of DDR, suggesting that DDR can be used as an efficient method to identify 5 correct DTIs. Finally, we present DDR-FE method that predicts the effect types of a drug on its target. On different representative datasets, under various test setups, and using different performance measures, we show that DDR-FE achieves extremely good performance. Using blind test data, we verified as correct 2,300 out of 3,076 DTIs effects predicted by DDR-FE. This suggests that DDR-FE can be used as an efficient method to identify correct effects of a drug on its target.

  17. Improving local clustering based top-L link prediction methods via asymmetric link clustering information

    Science.gov (United States)

    Wu, Zhihao; Lin, Youfang; Zhao, Yiji; Yan, Hongyan

    2018-02-01

    Networks can represent a wide range of complex systems, such as social, biological and technological systems. Link prediction is one of the most important problems in network analysis, and has attracted much research interest recently. Many link prediction methods have been proposed to solve this problem with various techniques. We can note that clustering information plays an important role in solving the link prediction problem. In previous literatures, we find node clustering coefficient appears frequently in many link prediction methods. However, node clustering coefficient is limited to describe the role of a common-neighbor in different local networks, because it cannot distinguish different clustering abilities of a node to different node pairs. In this paper, we shift our focus from nodes to links, and propose the concept of asymmetric link clustering (ALC) coefficient. Further, we improve three node clustering based link prediction methods via the concept of ALC. The experimental results demonstrate that ALC-based methods outperform node clustering based methods, especially achieving remarkable improvements on food web, hamster friendship and Internet networks. Besides, comparing with other methods, the performance of ALC-based methods are very stable in both globalized and personalized top-L link prediction tasks.

  18. A method for uncertainty quantification in the life prediction of gas turbine components

    Energy Technology Data Exchange (ETDEWEB)

    Lodeby, K.; Isaksson, O.; Jaervstraat, N. [Volvo Aero Corporation, Trolhaettan (Sweden)

    1998-12-31

    A failure in an aircraft jet engine can have severe consequences which cannot be accepted and high requirements are therefore raised on engine reliability. Consequently, assessment of the reliability of life predictions used in design and maintenance are important. To assess the validity of the predicted life a method to quantify the contribution to the total uncertainty in the life prediction from different uncertainty sources is developed. The method is a structured approach for uncertainty quantification that uses a generic description of the life prediction process. It is based on an approximate error propagation theory combined with a unified treatment of random and systematic errors. The result is an approximate statistical distribution for the predicted life. The method is applied on life predictions for three different jet engine components. The total uncertainty became of reasonable order of magnitude and a good qualitative picture of the distribution of the uncertainty contribution from the different sources was obtained. The relative importance of the uncertainty sources differs between the three components. It is also highly dependent on the methods and assumptions used in the life prediction. Advantages and disadvantages of this method is discussed. (orig.) 11 refs.

  19. A genetic algorithm-based weighted ensemble method for predicting transposon-derived piRNAs.

    Science.gov (United States)

    Li, Dingfang; Luo, Longqiang; Zhang, Wen; Liu, Feng; Luo, Fei

    2016-08-31

    Predicting piwi-interacting RNA (piRNA) is an important topic in the small non-coding RNAs, which provides clues for understanding the generation mechanism of gamete. To the best of our knowledge, several machine learning approaches have been proposed for the piRNA prediction, but there is still room for improvements. In this paper, we develop a genetic algorithm-based weighted ensemble method for predicting transposon-derived piRNAs. We construct datasets for three species: Human, Mouse and Drosophila. For each species, we compile the balanced dataset and imbalanced dataset, and thus obtain six datasets to build and evaluate prediction models. In the computational experiments, the genetic algorithm-based weighted ensemble method achieves 10-fold cross validation AUC of 0.932, 0.937 and 0.995 on the balanced Human dataset, Mouse dataset and Drosophila dataset, respectively, and achieves AUC of 0.935, 0.939 and 0.996 on the imbalanced datasets of three species. Further, we use the prediction models trained on the Mouse dataset to identify piRNAs of other species, and the models demonstrate the good performances in the cross-species prediction. Compared with other state-of-the-art methods, our method can lead to better performances. In conclusion, the proposed method is promising for the transposon-derived piRNA prediction. The source codes and datasets are available in https://github.com/zw9977129/piRNAPredictor .

  20. A novel method for prokaryotic promoter prediction based on DNA stability.

    Science.gov (United States)

    Kanhere, Aditi; Bansal, Manju

    2005-01-05

    In the post-genomic era, correct gene prediction has become one of the biggest challenges in genome annotation. Improved promoter prediction methods can be one step towards developing more reliable ab initio gene prediction methods. This work presents a novel prokaryotic promoter prediction method based on DNA stability. The promoter region is less stable and hence more prone to melting as compared to other genomic regions. Our analysis shows that a method of promoter prediction based on the differences in the stability of DNA sequences in the promoter and non-promoter region works much better compared to existing prokaryotic promoter prediction programs, which are based on sequence motif searches. At present the method works optimally for genomes such as that of Escherichia coli, which have near 50 % G+C composition and also performs satisfactorily in case of other prokaryotic promoters. Our analysis clearly shows that the change in stability of DNA seems to provide a much better clue than usual sequence motifs, such as Pribnow box and -35 sequence, for differentiating promoter region from non-promoter regions. To a certain extent, it is more general and is likely to be applicable across organisms. Hence incorporation of such features in addition to the signature motifs can greatly improve the presently available promoter prediction programs.

  1. Prediction of stock price developments using the Box-Jenkins method

    Directory of Open Access Journals (Sweden)

    Groda Bořivoj

    2017-01-01

    Full Text Available Stock prices develop in a non-linear way. Naturally, the stock price prediction is one of the most important issues at stock markets. Therefore, a variety of methods and technologies is devoted to the prediction of these prices. The present article predicts the future development of the stock price of ČEZ, a. s., on the Prague Stock Exchange using the ARIMA method - the Box-Jenkins method. The analysis employs the final price of the last trading day in a given month, from February 2012 to September 2017. The data come from the Prague Stock Exchange database. Statistica software is used for processing the data, namely advanced time series prediction methods, the ARIMA tool, and autocorrelation functions. First, the current stock development of ČEZ, a.s., was graphically evaluated, and this was followed by a stock price prediction for the next 60 days in which the shares would be traded. Lastly, the prediction residues were analysed. It was confirmed that the calculation was done correctly, but with little accuracy. The conclusion is an assertion that the Box-Jenkins method is not a suitable tool for prediction.

  2. Advanced Materials Test Methods for Improved Life Prediction of Turbine Engine Components

    National Research Council Canada - National Science Library

    Stubbs, Jack

    2000-01-01

    Phase I final report developed under SBIR contract for Topic # AF00-149, "Durability of Turbine Engine Materials/Advanced Material Test Methods for Improved Use Prediction of Turbine Engine Components...

  3. Observation method to predict meander migration and vertical degradation of rivers.

    Science.gov (United States)

    2014-05-01

    Meander migration and vertical degradation of river bed are processes that have been studied for years. : Different methods have been proposed to make predictions of the behavior of rivers with respect to these : processes. These two erosion controll...

  4. Comparative Study of Different Methods for the Prediction of Drug-Polymer Solubility

    DEFF Research Database (Denmark)

    Knopp, Matthias Manne; Tajber, Lidia; Tian, Yiwei

    2015-01-01

    ranked the predicted solubilities in the same order, except for the felodipine-PVP system. Furthermore, the magnitude of the predicted solubilities from the recrystallization method and melting point depression method correlated well with the estimates based on the solubility in the liquid analogues......In this study, a comparison of different methods to predict drug-polymer solubility was carried out on binary systems consisting of five model drugs (paracetamol, chloramphenicol, celecoxib, indomethacin, and felodipine) and polyvinylpyrrolidone/vinyl acetate copolymers (PVP/VA) of different...... monomer weight ratios. The drug-polymer solubility at 25 °C was predicted using the Flory-Huggins model, from data obtained at elevated temperature using thermal analysis methods based on the recrystallization of a supersaturated amorphous solid dispersion and two variations of the melting point...

  5. Estimation of Mechanical Signals in Induction Motors using the Recursive Prediction Error Method

    DEFF Research Database (Denmark)

    Børsting, H.; Knudsen, Morten; Rasmussen, Henrik

    1993-01-01

    Sensor feedback of mechanical quantities for control applications in induction motors is troublesome and relative expensive. In this paper a recursive prediction error (RPE) method has successfully been used to estimate the angular rotor speed ........Sensor feedback of mechanical quantities for control applications in induction motors is troublesome and relative expensive. In this paper a recursive prediction error (RPE) method has successfully been used to estimate the angular rotor speed .....

  6. Application of Response Surface Methods To Determine Conditions for Optimal Genomic Prediction

    Science.gov (United States)

    Howard, Réka; Carriquiry, Alicia L.; Beavis, William D.

    2017-01-01

    An epistatic genetic architecture can have a significant impact on prediction accuracies of genomic prediction (GP) methods. Machine learning methods predict traits comprised of epistatic genetic architectures more accurately than statistical methods based on additive mixed linear models. The differences between these types of GP methods suggest a diagnostic for revealing genetic architectures underlying traits of interest. In addition to genetic architecture, the performance of GP methods may be influenced by the sample size of the training population, the number of QTL, and the proportion of phenotypic variability due to genotypic variability (heritability). Possible values for these factors and the number of combinations of the factor levels that influence the performance of GP methods can be large. Thus, efficient methods for identifying combinations of factor levels that produce most accurate GPs is needed. Herein, we employ response surface methods (RSMs) to find the experimental conditions that produce the most accurate GPs. We illustrate RSM with an example of simulated doubled haploid populations and identify the combination of factors that maximize the difference between prediction accuracies of best linear unbiased prediction (BLUP) and support vector machine (SVM) GP methods. The greatest impact on the response is due to the genetic architecture of the population, heritability of the trait, and the sample size. When epistasis is responsible for all of the genotypic variance and heritability is equal to one and the sample size of the training population is large, the advantage of using the SVM method vs. the BLUP method is greatest. However, except for values close to the maximum, most of the response surface shows little difference between the methods. We also determined that the conditions resulting in the greatest prediction accuracy for BLUP occurred when genetic architecture consists solely of additive effects, and heritability is equal to one. PMID

  7. A generic method for assignment of reliability scores applied to solvent accessibility predictions

    Directory of Open Access Journals (Sweden)

    Nielsen Morten

    2009-07-01

    Full Text Available Abstract Background Estimation of the reliability of specific real value predictions is nontrivial and the efficacy of this is often questionable. It is important to know if you can trust a given prediction and therefore the best methods associate a prediction with a reliability score or index. For discrete qualitative predictions, the reliability is conventionally estimated as the difference between output scores of selected classes. Such an approach is not feasible for methods that predict a biological feature as a single real value rather than a classification. As a solution to this challenge, we have implemented a method that predicts the relative surface accessibility of an amino acid and simultaneously predicts the reliability for each prediction, in the form of a Z-score. Results An ensemble of artificial neural networks has been trained on a set of experimentally solved protein structures to predict the relative exposure of the amino acids. The method assigns a reliability score to each surface accessibility prediction as an inherent part of the training process. This is in contrast to the most commonly used procedures where reliabilities are obtained by post-processing the output. Conclusion The performance of the neural networks was evaluated on a commonly used set of sequences known as the CB513 set. An overall Pearson's correlation coefficient of 0.72 was obtained, which is comparable to the performance of the currently best public available method, Real-SPINE. Both methods associate a reliability score with the individual predictions. However, our implementation of reliability scores in the form of a Z-score is shown to be the more informative measure for discriminating good predictions from bad ones in the entire range from completely buried to fully exposed amino acids. This is evident when comparing the Pearson's correlation coefficient for the upper 20% of predictions sorted according to reliability. For this subset, values of 0

  8. Predicting the collapse of the femoral head due to osteonecrosis: From basic methods to application prospects

    Directory of Open Access Journals (Sweden)

    Leilei Chen

    2017-10-01

    Full Text Available Collapse of the femoral head is the most significant pathogenic complication arising from osteonecrosis of the femoral head. It is related to the disruption of the maintenance of cartilage and bone, and results in an impaired function of the vascular component. A method for predicting the collapse of the femoral head can be treated as a type of clinical index. Efforts in recent years to predict the collapse of the femoral head due to osteonecrosis include multiple methods of radiographic analysis, stress distribution analysis, finite element analysis, and other innovative methods. Prediction methods for osteonecrosis of the femoral head complications originated in Western countries and have been further developed in Asia. Presently, an increasing number of surgeons have chosen to focus on surgical treatments instead of prediction methods to guide more conservative interventions, resulting in a growing reliance on the more prevalent and highly effective total hip arthroplasty, rather than on more conservative treatments. In this review, we performed a literature search of PubMed and Embase using search terms including “osteonecrosis of femoral head,” “prediction,” “collapse,” “finite element,” “radiographic images,” and “stress analysis,” exploring the basic prediction method and prospects for new applications.

  9. An auxiliary optimization method for complex public transit route network based on link prediction

    Science.gov (United States)

    Zhang, Lin; Lu, Jian; Yue, Xianfei; Zhou, Jialin; Li, Yunxuan; Wan, Qian

    2018-02-01

    Inspired by the missing (new) link prediction and the spurious existing link identification in link prediction theory, this paper establishes an auxiliary optimization method for public transit route network (PTRN) based on link prediction. First, link prediction applied to PTRN is described, and based on reviewing the previous studies, the summary indices set and its algorithms set are collected for the link prediction experiment. Second, through analyzing the topological properties of Jinan’s PTRN established by the Space R method, we found that this is a typical small-world network with a relatively large average clustering coefficient. This phenomenon indicates that the structural similarity-based link prediction will show a good performance in this network. Then, based on the link prediction experiment of the summary indices set, three indices with maximum accuracy are selected for auxiliary optimization of Jinan’s PTRN. Furthermore, these link prediction results show that the overall layout of Jinan’s PTRN is stable and orderly, except for a partial area that requires optimization and reconstruction. The above pattern conforms to the general pattern of the optimal development stage of PTRN in China. Finally, based on the missing (new) link prediction and the spurious existing link identification, we propose optimization schemes that can be used not only to optimize current PTRN but also to evaluate PTRN planning.

  10. MAPPIN: a method for annotating, predicting pathogenicity and mode of inheritance for nonsynonymous variants.

    Science.gov (United States)

    Gosalia, Nehal; Economides, Aris N; Dewey, Frederick E; Balasubramanian, Suganthi

    2017-10-13

    Nonsynonymous single nucleotide variants (nsSNVs) constitute about 50% of known disease-causing mutations and understanding their functional impact is an area of active research. Existing algorithms predict pathogenicity of nsSNVs; however, they are unable to differentiate heterozygous, dominant disease-causing variants from heterozygous carrier variants that lead to disease only in the homozygous state. Here, we present MAPPIN (Method for Annotating, Predicting Pathogenicity, and mode of Inheritance for Nonsynonymous variants), a prediction method which utilizes a random forest algorithm to distinguish between nsSNVs with dominant, recessive, and benign effects. We apply MAPPIN to a set of Mendelian disease-causing mutations and accurately predict pathogenicity for all mutations. Furthermore, MAPPIN predicts mode of inheritance correctly for 70.3% of nsSNVs. MAPPIN also correctly predicts pathogenicity for 87.3% of mutations from the Deciphering Developmental Disorders Study with a 78.5% accuracy for mode of inheritance. When tested on a larger collection of mutations from the Human Gene Mutation Database, MAPPIN is able to significantly discriminate between mutations in known dominant and recessive genes. Finally, we demonstrate that MAPPIN outperforms CADD and Eigen in predicting disease inheritance modes for all validation datasets. To our knowledge, MAPPIN is the first nsSNV pathogenicity prediction algorithm that provides mode of inheritance predictions, adding another layer of information for variant prioritization. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  11. Prediction of the solubility of selected pharmaceuticals in water and alcohols with a group contribution method

    International Nuclear Information System (INIS)

    Pelczarska, Aleksandra; Ramjugernath, Deresh; Rarey, Jurgen; Domańska, Urszula

    2013-01-01

    Highlights: ► The prediction of solubility of pharmaceuticals in water and alcohols was presented. ► Improved group contribution method UNIFAC was proposed for 42 binary mixtures. ► Infinite activity coefficients were used in a model. ► A semi-predictive model with one experimental point was proposed. ► This model qualitatively describes the temperature dependency of Pharms. -- Abstract: An improved group contribution approach using activity coefficients at infinite dilution, which has been proposed by our group, was used for the prediction of the solubility of selected pharmaceuticals in water and alcohols [B. Moller, Activity of complex multifunctional organic compounds in common solvents, PhD Thesis, Chemical Engineering, University of KwaZulu-Natal, 2009]. The solubility of 16 different pharmaceuticals in water, ethanol and octan-1-ol was predicted over a fairly wide range of temperature with this group contribution model. The predicted values, along with values computed with the Schroeder-van Laar equation, are compared to experimental results published by us previously for 42 binary mixtures. The predicted solubility values were lower than those from the experiments for most of the mixtures. In order to improve the prediction method, a semi-predictive calculation using one experimental solubility value was implemented. This one point prediction has given acceptable results when comparison is made to experimental values

  12. Supplementary Material for: DASPfind: new efficient method to predict drug–target interactions

    KAUST Repository

    Ba Alawi, Wail

    2016-01-01

    Abstract Background Identification of novel drug–target interactions (DTIs) is important for drug discovery. Experimental determination of such DTIs is costly and time consuming, hence it necessitates the development of efficient computational methods for the accurate prediction of potential DTIs. To-date, many computational methods have been proposed for this purpose, but they suffer the drawback of a high rate of false positive predictions. Results Here, we developed a novel computational DTI prediction method, DASPfind. DASPfind uses simple paths of particular lengths inferred from a graph that describes DTIs, similarities between drugs, and similarities between the protein targets of drugs. We show that on average, over the four gold standard DTI datasets, DASPfind significantly outperforms other existing methods when the single top-ranked predictions are considered, resulting in 46.17 % of these predictions being correct, and it achieves 49.22 % correct single top ranked predictions when the set of all DTIs for a single drug is tested. Furthermore, we demonstrate that our method is best suited for predicting DTIs in cases of drugs with no known targets or with few known targets. We also show the practical use of DASPfind by generating novel predictions for the Ion Channel dataset and validating them manually. Conclusions DASPfind is a computational method for finding reliable new interactions between drugs and proteins. We show over six different DTI datasets that DASPfind outperforms other state-of-the-art methods when the single top-ranked predictions are considered, or when a drug with no known targets or with few known targets is considered. We illustrate the usefulness and practicality of DASPfind by predicting novel DTIs for the Ion Channel dataset. The validated predictions suggest that DASPfind can be used as an efficient method to identify correct DTIs, thus reducing the cost of necessary experimental verifications in the process of drug discovery

  13. CZ GDP Prediction via neural networks and Box-Jenkins Method

    Directory of Open Access Journals (Sweden)

    Dvořáková Lenka

    2017-01-01

    Full Text Available Economic indicators are nowadays ones of the most observed, their development does not only serve for comparing individual countries among each other but also show how the given country is prospering. That is why economists are trying to predict also the future development of these indicators via different statistical instruments. Neural networks or Box-Jenkins Method, able to predict future development based on data from the past, are one of the many instruments. The aim of this contribution is to find CZ GDP prediction per individual quarters using neural networks and Box-Jenkins Method, compare them mutually, and evaluate which of them is better.

  14. Predicting Paris: Multi-Method Approaches to Forecast the Outcomes of Global Climate Negotiations

    Directory of Open Access Journals (Sweden)

    Detlef F. Sprinz

    2016-09-01

    Full Text Available We examine the negotiations held under the auspices of the United Nations Framework Convention of Climate Change in Paris, December 2015. Prior to these negotiations, there was considerable uncertainty about whether an agreement would be reached, particularly given that the world’s leaders failed to do so in the 2009 negotiations held in Copenhagen. Amid this uncertainty, we applied three different methods to predict the outcomes: an expert survey and two negotiation simulation models, namely the Exchange Model and the Predictioneer’s Game. After the event, these predictions were assessed against the coded texts that were agreed in Paris. The evidence suggests that combining experts’ predictions to reach a collective expert prediction makes for significantly more accurate predictions than individual experts’ predictions. The differences in the performance between the two different negotiation simulation models were not statistically significant.

  15. A prediction method based on grey system theory in equipment condition based maintenance

    International Nuclear Information System (INIS)

    Yan, Shengyuan; Yan, Shengyuan; Zhang, Hongguo; Zhang, Zhijian; Peng, Minjun; Yang, Ming

    2007-01-01

    Grey prediction is a modeling method based on historical or present, known or indefinite information, which can be used for forecasting the development of the eigenvalues of the targeted equipment system and setting up the model by using less information. In this paper, the postulate of grey system theory, which includes the grey generating, the sorts of grey generating and the grey forecasting model, is introduced first. The concrete application process, which includes the grey prediction modeling, grey prediction, error calculation, equal dimension and new information approach, is introduced secondly. Application of a so-called 'Equal Dimension and New Information' (EDNI) technology in grey system theory is adopted in an application case, aiming at improving the accuracy of prediction without increasing the amount of calculation by replacing old data with new ones. The proposed method can provide a new way for solving the problem of eigenvalue data exploding in equal distance effectively, short time interval and real time prediction. The proposed method, which was based on historical or present, known or indefinite information, was verified by the vibration prediction of induced draft fan of a boiler of the Yantai Power Station in China, and the results show that the proposed method based on grey system theory is simple and provides a high accuracy in prediction. So, it is very useful and significant to the controlling and controllable management in safety production. (authors)

  16. Two Classifiers Based on Serum Peptide Pattern for Prediction of HBV-Induced Liver Cirrhosis Using MALDI-TOF MS

    Directory of Open Access Journals (Sweden)

    Yuan Cao

    2013-01-01

    Full Text Available Chronic infection with hepatitis B virus (HBV is associated with the majority of cases of liver cirrhosis (LC in China. Although liver biopsy is the reference method for evaluation of cirrhosis, it is an invasive procedure with inherent risk. The aim of this study is to discover novel noninvasive specific serum biomarkers for the diagnosis of HBV-induced LC. We performed bead fractionation/MALDI-TOF MS analysis on sera from patients with LC. Thirteen feature peaks which had optimal discriminatory performance were obtained by using support-vector-machine-(SVM- based strategy. Based on the previous results, five supervised machine learning methods were employed to construct classifiers that discriminated proteomic spectra of patients with HBV-induced LC from those of controls. Here, we describe two novel methods for prediction of HBV-induced LC, termed LC-NB and LC-MLP, respectively. We obtained a sensitivity of 90.9%, a specificity of 94.9%, and overall accuracy of 93.8% on an independent test set. Comparisons with the existing methods showed that LC-NB and LC-MLP held better accuracy. Our study suggests that potential serum biomarkers can be determined for discriminating LC and non-LC cohorts by using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. These two classifiers could be used for clinical practice in HBV-induced LC assessment.

  17. Prospective evaluation of shape similarity based pose prediction method in D3R Grand Challenge 2015.

    Science.gov (United States)

    Kumar, Ashutosh; Zhang, Kam Y J

    2016-09-01

    Evaluation of ligand three-dimensional (3D) shape similarity is one of the commonly used approaches to identify ligands similar to one or more known active compounds from a library of small molecules. Apart from using ligand shape similarity as a virtual screening tool, its role in pose prediction and pose scoring has also been reported. We have recently developed a method that utilizes ligand 3D shape similarity with known crystallographic ligands to predict binding poses of query ligands. Here, we report the prospective evaluation of our pose prediction method through the participation in drug design data resource (D3R) Grand Challenge 2015. Our pose prediction method was used to predict binding poses of heat shock protein 90 (HSP90) and mitogen activated protein kinase kinase kinase kinase (MAP4K4) ligands and it was able to predict the pose within 2 Å root mean square deviation (RMSD) either as the top pose or among the best of five poses in a majority of cases. Specifically for HSP90 protein, a median RMSD of 0.73 and 0.68 Å was obtained for the top and the best of five predictions respectively. For MAP4K4 target, although the median RMSD for our top prediction was only 2.87 Å but the median RMSD of 1.67 Å for the best of five predictions was well within the limit for successful prediction. Furthermore, the performance of our pose prediction method for HSP90 and MAP4K4 ligands was always among the top five groups. Particularly, for MAP4K4 protein our pose prediction method was ranked number one both in terms of mean and median RMSD when the best of five predictions were considered. Overall, our D3R Grand Challenge 2015 results demonstrated that ligand 3D shape similarity with the crystal ligand is sufficient to predict binding poses of new ligands with acceptable accuracy.

  18. Method for simulating predictive control of building systems operation in the early stages of building design

    DEFF Research Database (Denmark)

    Petersen, Steffen; Svendsen, Svend

    2011-01-01

    A method for simulating predictive control of building systems operation in the early stages of building design is presented. The method uses building simulation based on weather forecasts to predict whether there is a future heating or cooling requirement. This information enables the thermal...... control systems of the building to respond proactively to keep the operational temperature within the thermal comfort range with the minimum use of energy. The method is implemented in an existing building simulation tool designed to inform decisions in the early stages of building design through...... parametric analysis. This enables building designers to predict the performance of the method and include it as a part of the solution space. The method furthermore facilitates the task of configuring appropriate building systems control schemes in the tool, and it eliminates time consuming manual...

  19. A noise level prediction method based on electro-mechanical frequency response function for capacitors.

    Science.gov (United States)

    Zhu, Lingyu; Ji, Shengchang; Shen, Qi; Liu, Yuan; Li, Jinyu; Liu, Hao

    2013-01-01

    The capacitors in high-voltage direct-current (HVDC) converter stations radiate a lot of audible noise which can reach higher than 100 dB. The existing noise level prediction methods are not satisfying enough. In this paper, a new noise level prediction method is proposed based on a frequency response function considering both electrical and mechanical characteristics of capacitors. The electro-mechanical frequency response function (EMFRF) is defined as the frequency domain quotient of the vibration response and the squared capacitor voltage, and it is obtained from impulse current experiment. Under given excitations, the vibration response of the capacitor tank is the product of EMFRF and the square of the given capacitor voltage in frequency domain, and the radiated audible noise is calculated by structure acoustic coupling formulas. The noise level under the same excitations is also measured in laboratory, and the results are compared with the prediction. The comparison proves that the noise prediction method is effective.

  20. Novel Data Fusion Method and Exploration of Multiple Information Sources for Transcription Factor Target Gene Prediction

    Science.gov (United States)

    Dai, Xiaofeng; Yli-Harja, Olli; Lähdesmäki, Harri

    2010-12-01

    Background. Revealing protein-DNA interactions is a key problem in understanding transcriptional regulation at mechanistic level. Computational methods have an important role in predicting transcription factor target gene genomewide. Multiple data fusion provides a natural way to improve transcription factor target gene predictions because sequence specificities alone are not sufficient to accurately predict transcription factor binding sites. Methods. Here we develop a new data fusion method to combine multiple genome-level data sources and study the extent to which DNA duplex stability and nucleosome positioning information, either alone or in combination with other data sources, can improve the prediction of transcription factor target gene. Results. Results on a carefully constructed test set of verified binding sites in mouse genome demonstrate that our new multiple data fusion method can reduce false positive rates, and that DNA duplex stability and nucleosome occupation data can improve the accuracy of transcription factor target gene predictions, especially when combined with other genome-level data sources. Cross-validation and other randomization tests confirm the predictive performance of our method. Our results also show that nonredundant data sources provide the most efficient data fusion.

  1. Evaluation of Four Methods for Predicting Carbon Stocks of Korean Pine Plantations in Heilongjiang Province, China.

    Science.gov (United States)

    Gao, Huilin; Dong, Lihu; Li, Fengri; Zhang, Lianjun

    2015-01-01

    A total of 89 trees of Korean pine (Pinus koraiensis) were destructively sampled from the plantations in Heilongjiang Province, P.R. China. The sample trees were measured and calculated for the biomass and carbon stocks of tree components (i.e., stem, branch, foliage and root). Both compatible biomass and carbon stock models were developed with the total biomass and total carbon stocks as the constraints, respectively. Four methods were used to evaluate the carbon stocks of tree components. The first method predicted carbon stocks directly by the compatible carbon stocks models (Method 1). The other three methods indirectly predicted the carbon stocks in two steps: (1) estimating the biomass by the compatible biomass models, and (2) multiplying the estimated biomass by three different carbon conversion factors (i.e., carbon conversion factor 0.5 (Method 2), average carbon concentration of the sample trees (Method 3), and average carbon concentration of each tree component (Method 4)). The prediction errors of estimating the carbon stocks were compared and tested for the differences between the four methods. The results showed that the compatible biomass and carbon models with tree diameter (D) as the sole independent variable performed well so that Method 1 was the best method for predicting the carbon stocks of tree components and total. There were significant differences among the four methods for the carbon stock of stem. Method 2 produced the largest error, especially for stem and total. Methods 3 and Method 4 were slightly worse than Method 1, but the differences were not statistically significant. In practice, the indirect method using the mean carbon concentration of individual trees was sufficient to obtain accurate carbon stocks estimation if carbon stocks models are not available.

  2. Prediction of the Thermal Conductivity of Refrigerants by Computational Methods and Artificial Neural Network.

    Science.gov (United States)

    Ghaderi, Forouzan; Ghaderi, Amir H; Ghaderi, Noushin; Najafi, Bijan

    2017-01-01

    Background: The thermal conductivity of fluids can be calculated by several computational methods. However, these methods are reliable only at the confined levels of density, and there is no specific computational method for calculating thermal conductivity in the wide ranges of density. Methods: In this paper, two methods, an Artificial Neural Network (ANN) approach and a computational method established upon the Rainwater-Friend theory, were used to predict the value of thermal conductivity in all ranges of density. The thermal conductivity of six refrigerants, R12, R14, R32, R115, R143, and R152 was predicted by these methods and the effectiveness of models was specified and compared. Results: The results show that the computational method is a usable method for predicting thermal conductivity at low levels of density. However, the efficiency of this model is considerably reduced in the mid-range of density. It means that this model cannot be used at density levels which are higher than 6. On the other hand, the ANN approach is a reliable method for thermal conductivity prediction in all ranges of density. The best accuracy of ANN is achieved when the number of units is increased in the hidden layer. Conclusion: The results of the computational method indicate that the regular dependence between thermal conductivity and density at higher densities is eliminated. It can develop a nonlinear problem. Therefore, analytical approaches are not able to predict thermal conductivity in wide ranges of density. Instead, a nonlinear approach such as, ANN is a valuable method for this purpose.

  3. PREDICTION OF DROUGHT IMPACT ON RICE PADDIES IN WEST JAVA USING ANALOGUE DOWNSCALING METHOD

    Directory of Open Access Journals (Sweden)

    Elza Surmaini

    2015-09-01

    Full Text Available Indonesia consistently experiences dry climatic conditions and droughts during El Niño, with significant consequences for rice production. To mitigate the impacts of such droughts, robust, simple and timely rainfall forecast is critically important for predicting drought prior to planting time over rice growing areas in Indonesia. The main objective of this study was to predict drought in rice growing areas using ensemble seasonal prediction. The skill of National Oceanic and Atmospheric Administration’s (NOAA’s seasonal prediction model Climate Forecast System version 2 (CFSv2 for predicting rice drought in West Java was investigated in a series of hindcast experiments in 1989-2010. The Constructed Analogue (CA method was employed to produce downscaled local rainfall prediction with stream function (y and velocity potential (c at 850 hPa as predictors and observed rainfall as predictant. We used forty two rain gauges in northern part of West Java in Indramayu, Cirebon, Sumedang and Majalengka Districts. To be able to quantify the uncertainties, a multi-window scheme for predictors was applied to obtain ensemble rainfall prediction. Drought events in dry season planting were predicted by rainfall thresholds. The skill of downscaled rainfall prediction was assessed using Relative Operating Characteristics (ROC method. Results of the study showed that the skills of the probabilistic seasonal prediction for early detection of rice area drought were found to range from 62% to 82% with an improved lead time of 2-4 months. The lead time of 2-4 months provided sufficient time for practical policy makers, extension workers and farmers to cope with drought by preparing suitable farming practices and equipments.

  4. Predicting human splicing branchpoints by combining sequence-derived features and multi-label learning methods.

    Science.gov (United States)

    Zhang, Wen; Zhu, Xiaopeng; Fu, Yu; Tsuji, Junko; Weng, Zhiping

    2017-12-01

    Alternative splicing is the critical process in a single gene coding, which removes introns and joins exons, and splicing branchpoints are indicators for the alternative splicing. Wet experiments have identified a great number of human splicing branchpoints, but many branchpoints are still unknown. In order to guide wet experiments, we develop computational methods to predict human splicing branchpoints. Considering the fact that an intron may have multiple branchpoints, we transform the branchpoint prediction as the multi-label learning problem, and attempt to predict branchpoint sites from intron sequences. First, we investigate a variety of intron sequence-derived features, such as sparse profile, dinucleotide profile, position weight matrix profile, Markov motif profile and polypyrimidine tract profile. Second, we consider several multi-label learning methods: partial least squares regression, canonical correlation analysis and regularized canonical correlation analysis, and use them as the basic classification engines. Third, we propose two ensemble learning schemes which integrate different features and different classifiers to build ensemble learning systems for the branchpoint prediction. One is the genetic algorithm-based weighted average ensemble method; the other is the logistic regression-based ensemble method. In the computational experiments, two ensemble learning methods outperform benchmark branchpoint prediction methods, and can produce high-accuracy results on the benchmark dataset.

  5. Effectiveness of the cervical vertebral maturation method to predict postpeak circumpubertal growth of craniofacial structures.

    NARCIS (Netherlands)

    Fudalej, P.S.; Bollen, A.M.

    2010-01-01

    INTRODUCTION: Our aim was to assess effectiveness of the cervical vertebral maturation (CVM) method to predict circumpubertal craniofacial growth in the postpeak period. METHODS: The CVM stage was determined in 176 subjects (51 adolescent boys and 125 adolescent girls) on cephalograms taken at the

  6. Comparison of selected methods of prediction of wine exports and imports

    Directory of Open Access Journals (Sweden)

    Radka Šperková

    2008-01-01

    Full Text Available For prediction of future events, there exist a number of methods usable in managerial practice. Decision on which of them should be used in a particular situation depends not only on the amount and quality of input information, but also on a subjective managerial judgement. Paper performs a practical application and consequent comparison of results of two selected methods, which are statistical method and deductive method. Both methods were used for predicting wine exports and imports in (from the Czech Republic. Prediction was done in 2003 and it related to the economic years 2003/2004, 2004/2005, 2005/2006, and 2006/2007, within which it was compared with the real values of the given indicators.Within the deductive methods there were characterized the most important factors of external environment including the most important influence according to authors’ opinion, which was the integration of the Czech Republic into the EU from 1st May, 2004. On the contrary, the statistical method of time-series analysis did not regard the integration, which is comes out of its principle. Statistics only calculates based on data from the past, and cannot incorporate the influence of irregular future conditions, just as the EU integration. Because of this the prediction based on deductive method was more optimistic and more precise in terms of its difference from real development in the given field.

  7. Validation of techniques for the prediction of carboplatin exposure: application of Bayesian methods

    NARCIS (Netherlands)

    Huitema, A. D.; Mathôt, R. A.; Tibben, M. M.; Schellens, J. H.; Rodenhuis, S.; Beijnen, J. H.

    2000-01-01

    Several methods have been developed for the prediction of carboplatin exposure to facilitate pharmacokinetic guided dosing. The aim of this study was to develop and validate sparse data Bayesian methods for the estimation of carboplatin exposure and to validate other commonly applied techniques,

  8. A Simple Microsoft Excel Method to Predict Antibiotic Outbreaks and Underutilization.

    Science.gov (United States)

    Miglis, Cristina; Rhodes, Nathaniel J; Avedissian, Sean N; Zembower, Teresa R; Postelnick, Michael; Wunderink, Richard G; Sutton, Sarah H; Scheetz, Marc H

    2017-07-01

    Benchmarking strategies are needed to promote the appropriate use of antibiotics. We have adapted a simple regressive method in Microsoft Excel that is easily implementable and creates predictive indices. This method trends consumption over time and can identify periods of over- and underuse at the hospital level. Infect Control Hosp Epidemiol 2017;38:860-862.

  9. NetMHCcons: a consensus method for the major histocompatibility complex class I predictions

    DEFF Research Database (Denmark)

    Karosiene, Edita; Lundegaard, Claus; Lund, Ole

    2012-01-01

    A key role in cell-mediated immunity is dedicated to the major histocompatibility complex (MHC) molecules that bind peptides for presentation on the cell surface. Several in silico methods capable of predicting peptide binding to MHC class I have been developed. The accuracy of these methods...

  10. Specialized CFD Grid Generation Methods for Near-Field Sonic Boom Prediction

    Science.gov (United States)

    Park, Michael A.; Campbell, Richard L.; Elmiligui, Alaa; Cliff, Susan E.; Nayani, Sudheer N.

    2014-01-01

    Ongoing interest in analysis and design of low sonic boom supersonic transports re- quires accurate and ecient Computational Fluid Dynamics (CFD) tools. Specialized grid generation techniques are employed to predict near- eld acoustic signatures of these con- gurations. A fundamental examination of grid properties is performed including grid alignment with ow characteristics and element type. The issues a ecting the robustness of cylindrical surface extrusion are illustrated. This study will compare three methods in the extrusion family of grid generation methods that produce grids aligned with the freestream Mach angle. These methods are applied to con gurations from the First AIAA Sonic Boom Prediction Workshop.

  11. CSmetaPred: a consensus method for prediction of catalytic residues.

    Science.gov (United States)

    Choudhary, Preeti; Kumar, Shailesh; Bachhawat, Anand Kumar; Pandit, Shashi Bhushan

    2017-12-22

    Knowledge of catalytic residues can play an essential role in elucidating mechanistic details of an enzyme. However, experimental identification of catalytic residues is a tedious and time-consuming task, which can be expedited by computational predictions. Despite significant development in active-site prediction methods, one of the remaining issues is ranked positions of putative catalytic residues among all ranked residues. In order to improve ranking of catalytic residues and their prediction accuracy, we have developed a meta-approach based method CSmetaPred. In this approach, residues are ranked based on the mean of normalized residue scores derived from four well-known catalytic residue predictors. The mean residue score of CSmetaPred is combined with predicted pocket information to improve prediction performance in meta-predictor, CSmetaPred_poc. Both meta-predictors are evaluated on two comprehensive benchmark datasets and three legacy datasets using Receiver Operating Characteristic (ROC) and Precision Recall (PR) curves. The visual and quantitative analysis of ROC and PR curves shows that meta-predictors outperform their constituent methods and CSmetaPred_poc is the best of evaluated methods. For instance, on CSAMAC dataset CSmetaPred_poc (CSmetaPred) achieves highest Mean Average Specificity (MAS), a scalar measure for ROC curve, of 0.97 (0.96). Importantly, median predicted rank of catalytic residues is the lowest (best) for CSmetaPred_poc. Considering residues ranked ≤20 classified as true positive in binary classification, CSmetaPred_poc achieves prediction accuracy of 0.94 on CSAMAC dataset. Moreover, on the same dataset CSmetaPred_poc predicts all catalytic residues within top 20 ranks for ~73% of enzymes. Furthermore, benchmarking of prediction on comparative modelled structures showed that models result in better prediction than only sequence based predictions. These analyses suggest that CSmetaPred_poc is able to rank putative catalytic

  12. Assessment of the validity of inelastic design analysis methods by comparisons of predictions with test results

    International Nuclear Information System (INIS)

    Corum, J.M.; Clinard, J.A.; Sartory, W.K.

    1976-01-01

    A description is given of some of the work under way in the United States to provide the necessary information to evaluate inelastic analysis methods and computer programs used in fast reactor component design, and typical comparisons of analysis predictions with inelastic structural test results are presented. It is emphasized throughout that rather than asking how valid, or correct, are the analytical predictions, one might more properly question whether or not the combination of the predictions and the associated high-temperature design criteria leads to an acceptable level of structural integrity. It is believed that in this context the analysis predictions are generally valid, even though exact correlations between predictions and actual behavior are not obtained and cannot be expected. Final judgment, however, must be reserved for the design analyst in each specific case

  13. A GPS Satellite Clock Offset Prediction Method Based on Fitting Clock Offset Rates Data

    Directory of Open Access Journals (Sweden)

    WANG Fuhong

    2016-12-01

    Full Text Available It is proposed that a satellite atomic clock offset prediction method based on fitting and modeling clock offset rates data. This method builds quadratic model or linear model combined with periodic terms to fit the time series of clock offset rates, and computes the model coefficients of trend with the best estimation. The clock offset precisely estimated at the initial prediction epoch is directly adopted to calculate the model coefficient of constant. The clock offsets in the rapid ephemeris (IGR provided by IGS are used as modeling data sets to perform certain experiments for different types of GPS satellite clocks. The results show that the clock prediction accuracies of the proposed method for 3, 6, 12 and 24 h achieve 0.43, 0.58, 0.90 and 1.47 ns respectively, which outperform the traditional prediction method based on fitting original clock offsets by 69.3%, 61.8%, 50.5% and 37.2%. Compared with the IGU real-time clock products provided by IGS, the prediction accuracies of the new method have improved about 15.7%, 23.7%, 27.4% and 34.4% respectively.

  14. In silico toxicology: computational methods for the prediction of chemical toxicity

    KAUST Repository

    Raies, Arwa B.

    2016-01-06

    Determining the toxicity of chemicals is necessary to identify their harmful effects on humans, animals, plants, or the environment. It is also one of the main steps in drug design. Animal models have been used for a long time for toxicity testing. However, in vivo animal tests are constrained by time, ethical considerations, and financial burden. Therefore, computational methods for estimating the toxicity of chemicals are considered useful. In silico toxicology is one type of toxicity assessment that uses computational methods to analyze, simulate, visualize, or predict the toxicity of chemicals. In silico toxicology aims to complement existing toxicity tests to predict toxicity, prioritize chemicals, guide toxicity tests, and minimize late-stage failures in drugs design. There are various methods for generating models to predict toxicity endpoints. We provide a comprehensive overview, explain, and compare the strengths and weaknesses of the existing modeling methods and algorithms for toxicity prediction with a particular (but not exclusive) emphasis on computational tools that can implement these methods and refer to expert systems that deploy the prediction models. Finally, we briefly review a number of new research directions in in silico toxicology and provide recommendations for designing in silico models.

  15. A postprocessing method in the HMC framework for predicting gene function based on biological instrumental data

    Science.gov (United States)

    Feng, Shou; Fu, Ping; Zheng, Wenbin

    2018-03-01

    Predicting gene function based on biological instrumental data is a complicated and challenging hierarchical multi-label classification (HMC) problem. When using local approach methods to solve this problem, a preliminary results processing method is usually needed. This paper proposed a novel preliminary results processing method called the nodes interaction method. The nodes interaction method revises the preliminary results and guarantees that the predictions are consistent with the hierarchy constraint. This method exploits the label dependency and considers the hierarchical interaction between nodes when making decisions based on the Bayesian network in its first phase. In the second phase, this method further adjusts the results according to the hierarchy constraint. Implementing the nodes interaction method in the HMC framework also enhances the HMC performance for solving the gene function prediction problem based on the Gene Ontology (GO), the hierarchy of which is a directed acyclic graph that is more difficult to tackle. The experimental results validate the promising performance of the proposed method compared to state-of-the-art methods on eight benchmark yeast data sets annotated by the GO.

  16. Prediction of critical heat flux in fuel assemblies using a CHF table method

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Tae Hyun; Hwang, Dae Hyun; Bang, Je Geon [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Baek, Won Pil; Chang, Soon Heung [Korea Advance Institute of Science and Technology, Taejon (Korea, Republic of)

    1997-12-31

    A CHF table method has been assessed in this study for rod bundle CHF predictions. At the conceptual design stage for a new reactor, a general critical heat flux (CHF) prediction method with a wide applicable range and reasonable accuracy is essential to the thermal-hydraulic design and safety analysis. In many aspects, a CHF table method (i.e., the use of a round tube CHF table with appropriate bundle correction factors) can be a promising way to fulfill this need. So the assessment of the CHF table method has been performed with the bundle CHF data relevant to pressurized water reactors (PWRs). For comparison purposes, W-3R and EPRI-1 were also applied to the same data base. Data analysis has been conducted with the subchannel code COBRA-IV-I. The CHF table method shows the best predictions based on the direct substitution method. Improvements of the bundle correction factors, especially for the spacer grid and cold wall effects, are desirable for better predictions. Though the present assessment is somewhat limited in both fuel geometries and operating conditions, the CHF table method clearly shows potential to be a general CHF predictor. 8 refs., 3 figs., 3 tabs. (Author)

  17. A deep learning-based multi-model ensemble method for cancer prediction.

    Science.gov (United States)

    Xiao, Yawen; Wu, Jun; Lin, Zongli; Zhao, Xiaodong

    2018-01-01

    Cancer is a complex worldwide health problem associated with high mortality. With the rapid development of the high-throughput sequencing technology and the application of various machine learning methods that have emerged in recent years, progress in cancer prediction has been increasingly made based on gene expression, providing insight into effective and accurate treatment decision making. Thus, developing machine learning methods, which can successfully distinguish cancer patients from healthy persons, is of great current interest. However, among the classification methods applied to cancer prediction so far, no one method outperforms all the others. In this paper, we demonstrate a new strategy, which applies deep learning to an ensemble approach that incorporates multiple different machine learning models. We supply informative gene data selected by differential gene expression analysis to five different classification models. Then, a deep learning method is employed to ensemble the outputs of the five classifiers. The proposed deep learning-based multi-model ensemble method was tested on three public RNA-seq data sets of three kinds of cancers, Lung Adenocarcinoma, Stomach Adenocarcinoma and Breast Invasive Carcinoma. The test results indicate that it increases the prediction accuracy of cancer for all the tested RNA-seq data sets as compared to using a single classifier or the majority voting algorithm. By taking full advantage of different classifiers, the proposed deep learning-based multi-model ensemble method is shown to be accurate and effective for cancer prediction. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Basic study on dynamic reactive-power control method with PV output prediction for solar inverter

    Directory of Open Access Journals (Sweden)

    Ryunosuke Miyoshi

    2016-01-01

    Full Text Available To effectively utilize a photovoltaic (PV system, reactive-power control methods for solar inverters have been considered. Among the various methods, the constant-voltage control outputs less reactive power compared with the other methods. We have developed a constant-voltage control to reduce the reactive-power output. However, the developed constant-voltage control still outputs unnecessary reactive power because the control parameter is constant in every waveform of the PV output. To reduce the reactive-power output, we propose a dynamic reactive-power control method with a PV output prediction. In the proposed method, the control parameter is varied according to the properties of the predicted PV waveform. In this study, we performed numerical simulations using a distribution system model, and we confirmed that the proposed method reduces the reactive-power output within the voltage constraint.

  19. Fluvial facies reservoir productivity prediction method based on principal component analysis and artificial neural network

    Directory of Open Access Journals (Sweden)

    Pengyu Gao

    2016-03-01

    Full Text Available It is difficult to forecast the well productivity because of the complexity of vertical and horizontal developments in fluvial facies reservoir. This paper proposes a method based on Principal Component Analysis and Artificial Neural Network to predict well productivity of fluvial facies reservoir. The method summarizes the statistical reservoir factors and engineering factors that affect the well productivity, extracts information by applying the principal component analysis method and approximates arbitrary functions of the neural network to realize an accurate and efficient prediction on the fluvial facies reservoir well productivity. This method provides an effective way for forecasting the productivity of fluvial facies reservoir which is affected by multi-factors and complex mechanism. The study result shows that this method is a practical, effective, accurate and indirect productivity forecast method and is suitable for field application.

  20. PatchSurfers: Two methods for local molecular property-based binding ligand prediction.

    Science.gov (United States)

    Shin, Woong-Hee; Bures, Mark Gregory; Kihara, Daisuke

    2016-01-15

    Protein function prediction is an active area of research in computational biology. Function prediction can help biologists make hypotheses for characterization of genes and help interpret biological assays, and thus is a productive area for collaboration between experimental and computational biologists. Among various function prediction methods, predicting binding ligand molecules for a target protein is an important class because ligand binding events for a protein are usually closely intertwined with the proteins' biological function, and also because predicted binding ligands can often be directly tested by biochemical assays. Binding ligand prediction methods can be classified into two types: those which are based on protein-protein (or pocket-pocket) comparison, and those that compare a target pocket directly to ligands. Recently, our group proposed two computational binding ligand prediction methods, Patch-Surfer, which is a pocket-pocket comparison method, and PL-PatchSurfer, which compares a pocket to ligand molecules. The two programs apply surface patch-based descriptions to calculate similarity or complementarity between molecules. A surface patch is characterized by physicochemical properties such as shape, hydrophobicity, and electrostatic potentials. These properties on the surface are represented using three-dimensional Zernike descriptors (3DZD), which are based on a series expansion of a 3 dimensional function. Utilizing 3DZD for describing the physicochemical properties has two main advantages: (1) rotational invariance and (2) fast comparison. Here, we introduce Patch-Surfer and PL-PatchSurfer with an emphasis on PL-PatchSurfer, which is more recently developed. Illustrative examples of PL-PatchSurfer performance on binding ligand prediction as well as virtual drug screening are also provided. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. RSARF: Prediction of residue solvent accessibility from protein sequence using random forest method

    KAUST Repository

    Ganesan, Pugalenthi

    2012-01-01

    Prediction of protein structure from its amino acid sequence is still a challenging problem. The complete physicochemical understanding of protein folding is essential for the accurate structure prediction. Knowledge of residue solvent accessibility gives useful insights into protein structure prediction and function prediction. In this work, we propose a random forest method, RSARF, to predict residue accessible surface area from protein sequence information. The training and testing was performed using 120 proteins containing 22006 residues. For each residue, buried and exposed state was computed using five thresholds (0%, 5%, 10%, 25%, and 50%). The prediction accuracy for 0%, 5%, 10%, 25%, and 50% thresholds are 72.9%, 78.25%, 78.12%, 77.57% and 72.07% respectively. Further, comparison of RSARF with other methods using a benchmark dataset containing 20 proteins shows that our approach is useful for prediction of residue solvent accessibility from protein sequence without using structural information. The RSARF program, datasets and supplementary data are available at http://caps.ncbs.res.in/download/pugal/RSARF/. - See more at: http://www.eurekaselect.com/89216/article#sthash.pwVGFUjq.dpuf

  2. Accurate prediction of adsorption energies on graphene, using a dispersion-corrected semiempirical method including solvation.

    Science.gov (United States)

    Vincent, Mark A; Hillier, Ian H

    2014-08-25

    The accurate prediction of the adsorption energies of unsaturated molecules on graphene in the presence of water is essential for the design of molecules that can modify its properties and that can aid its processability. We here show that a semiempirical MO method corrected for dispersive interactions (PM6-DH2) can predict the adsorption energies of unsaturated hydrocarbons and the effect of substitution on these values to an accuracy comparable to DFT values and in good agreement with the experiment. The adsorption energies of TCNE, TCNQ, and a number of sulfonated pyrenes are also predicted, along with the effect of hydration using the COSMO model.

  3. A dynamic particle filter-support vector regression method for reliability prediction

    International Nuclear Information System (INIS)

    Wei, Zhao; Tao, Tao; ZhuoShu, Ding; Zio, Enrico

    2013-01-01

    Support vector regression (SVR) has been applied to time series prediction and some works have demonstrated the feasibility of its use to forecast system reliability. For accuracy of reliability forecasting, the selection of SVR's parameters is important. The existing research works on SVR's parameters selection divide the example dataset into training and test subsets, and tune the parameters on the training data. However, these fixed parameters can lead to poor prediction capabilities if the data of the test subset differ significantly from those of training. Differently, the novel method proposed in this paper uses particle filtering to estimate the SVR model parameters according to the whole measurement sequence up to the last observation instance. By treating the SVR training model as the observation equation of a particle filter, our method allows updating the SVR model parameters dynamically when a new observation comes. Because of the adaptability of the parameters to dynamic data pattern, the new PF–SVR method has superior prediction performance over that of standard SVR. Four application results show that PF–SVR is more robust than SVR to the decrease of the number of training data and the change of initial SVR parameter values. Also, even if there are trends in the test data different from those in the training data, the method can capture the changes, correct the SVR parameters and obtain good predictions. -- Highlights: •A dynamic PF–SVR method is proposed to predict the system reliability. •The method can adjust the SVR parameters according to the change of data. •The method is robust to the size of training data and initial parameter values. •Some cases based on both artificial and real data are studied. •PF–SVR shows superior prediction performance over standard SVR

  4. Disorder Prediction Methods, Their Applicability to Different Protein Targets and Their Usefulness for Guiding Experimental Studies

    Directory of Open Access Journals (Sweden)

    Jennifer D. Atkins

    2015-08-01

    Full Text Available The role and function of a given protein is dependent on its structure. In recent years, however, numerous studies have highlighted the importance of unstructured, or disordered regions in governing a protein’s function. Disordered proteins have been found to play important roles in pivotal cellular functions, such as DNA binding and signalling cascades. Studying proteins with extended disordered regions is often problematic as they can be challenging to express, purify and crystallise. This means that interpretable experimental data on protein disorder is hard to generate. As a result, predictive computational tools have been developed with the aim of predicting the level and location of disorder within a protein. Currently, over 60 prediction servers exist, utilizing different methods for classifying disorder and different training sets. Here we review several good performing, publicly available prediction methods, comparing their application and discussing how disorder prediction servers can be used to aid the experimental solution of protein structure. The use of disorder prediction methods allows us to adopt a more targeted approach to experimental studies by accurately identifying the boundaries of ordered protein domains so that they may be investigated separately, thereby increasing the likelihood of their successful experimental solution.

  5. A novel method for improved accuracy of transcription factor binding site prediction

    KAUST Repository

    Khamis, Abdullah M.

    2018-03-20

    Identifying transcription factor (TF) binding sites (TFBSs) is important in the computational inference of gene regulation. Widely used computational methods of TFBS prediction based on position weight matrices (PWMs) usually have high false positive rates. Moreover, computational studies of transcription regulation in eukaryotes frequently require numerous PWM models of TFBSs due to a large number of TFs involved. To overcome these problems we developed DRAF, a novel method for TFBS prediction that requires only 14 prediction models for 232 human TFs, while at the same time significantly improves prediction accuracy. DRAF models use more features than PWM models, as they combine information from TFBS sequences and physicochemical properties of TF DNA-binding domains into machine learning models. Evaluation of DRAF on 98 human ChIP-seq datasets shows on average 1.54-, 1.96- and 5.19-fold reduction of false positives at the same sensitivities compared to models from HOCOMOCO, TRANSFAC and DeepBind, respectively. This observation suggests that one can efficiently replace the PWM models for TFBS prediction by a small number of DRAF models that significantly improve prediction accuracy. The DRAF method is implemented in a web tool and in a stand-alone software freely available at http://cbrc.kaust.edu.sa/DRAF.

  6. Comparison of classical statistical methods and artificial neural network in traffic noise prediction

    International Nuclear Information System (INIS)

    Nedic, Vladimir; Despotovic, Danijela; Cvetanovic, Slobodan; Despotovic, Milan; Babic, Sasa

    2014-01-01

    Traffic is the main source of noise in urban environments and significantly affects human mental and physical health and labor productivity. Therefore it is very important to model the noise produced by various vehicles. Techniques for traffic noise prediction are mainly based on regression analysis, which generally is not good enough to describe the trends of noise. In this paper the application of artificial neural networks (ANNs) for the prediction of traffic noise is presented. As input variables of the neural network, the proposed structure of the traffic flow and the average speed of the traffic flow are chosen. The output variable of the network is the equivalent noise level in the given time period L eq . Based on these parameters, the network is modeled, trained and tested through a comparative analysis of the calculated values and measured levels of traffic noise using the originally developed user friendly software package. It is shown that the artificial neural networks can be a useful tool for the prediction of noise with sufficient accuracy. In addition, the measured values were also used to calculate equivalent noise level by means of classical methods, and comparative analysis is given. The results clearly show that ANN approach is superior in traffic noise level prediction to any other statistical method. - Highlights: • We proposed an ANN model for prediction of traffic noise. • We developed originally designed user friendly software package. • The results are compared with classical statistical methods. • The results are much better predictive capabilities of ANN model

  7. Assessment of Protein Side-Chain Conformation Prediction Methods in Different Residue Environments

    Science.gov (United States)

    Peterson, Lenna X.; Kang, Xuejiao; Kihara, Daisuke

    2016-01-01

    Computational prediction of side-chain conformation is an important component of protein structure prediction. Accurate side-chain prediction is crucial for practical applications of protein structure models that need atomic detailed resolution such as protein and ligand design. We evaluated the accuracy of eight side-chain prediction methods in reproducing the side-chain conformations of experimentally solved structures deposited to the Protein Data Bank. Prediction accuracy was evaluated for a total of four different structural environments (buried, surface, interface, and membrane-spanning) in three different protein types (monomeric, multimeric, and membrane). Overall, the highest accuracy was observed for buried residues in monomeric and multimeric proteins. Notably, side-chains at protein interfaces and membrane-spanning regions were better predicted than surface residues even though the methods did not all use multimeric and membrane proteins for training. Thus, we conclude that the current methods are as practically useful for modeling protein docking interfaces and membrane-spanning regions as for modeling monomers. PMID:24619909

  8. Performance of the Autoregressive Method in Long-Term Prediction of Sunspot Number

    Science.gov (United States)

    Chae, Jongchul; Kim, Yeon Han

    2017-04-01

    The autoregressive method provides a univariate procedure to predict the future sunspot number (SSN) based on past record. The strength of this method lies in the possibility that from past data it yields the SSN in the future as a function of time. On the other hand, its major limitation comes from the intrinsic complexity of solar magnetic activity that may deviate from the linear stationary process assumption that is the basis of the autoregressive model. By analyzing the residual errors produced by the method, we have obtained the following conclusions: (1) the optimal duration of the past time for the forecast is found to be 8.5 years; (2) the standard error increases with prediction horizon and the errors are mostly systematic ones resulting from the incompleteness of the autoregressive model; (3) there is a tendency that the predicted value is underestimated in the activity rising phase, while it is overestimated in the declining phase; (5) the model prediction of a new Solar Cycle is fairly good when it is similar to the previous one, but is bad when the new cycle is much different from the previous one; (6) a reasonably good prediction of a new cycle can be made using the AR model 1.5 years after the start of the cycle. In addition, we predict the next cycle (Solar Cycle 25) will reach the peak in 2024 at the activity level similar to the current cycle.

  9. Webinar of paper 2013, Which method predicts recidivism best? A comparison of statistical, machine learning and data mining predictive models

    NARCIS (Netherlands)

    Tollenaar, N.; Van der Heijden, P.G.M.

    2013-01-01

    Using criminal population criminal conviction history information, prediction models are developed that predict three types of criminal recidivism: general recidivism, violent recidivism and sexual recidivism. The research question is whether prediction techniques from modern statistics, data mining

  10. Prediction of Protein Coding Regions Using a Wide-Range Wavelet Window Method.

    Science.gov (United States)

    Marhon, Sajid A; Kremer, Stefan C

    2016-01-01

    Prediction of protein coding regions is an important topic in the field of genomic sequence analysis. Several spectrum-based techniques for the prediction of protein coding regions have been proposed. However, the outstanding issue in most of the proposed techniques is that these techniques depend on an experimentally-selected, predefined value of the window length. In this paper, we propose a new Wide-Range Wavelet Window (WRWW) method for the prediction of protein coding regions. The analysis of the proposed wavelet window shows that its frequency response can adapt its width to accommodate the change in the window length so that it can allow or prevent frequencies other than the basic frequency in the analysis of DNA sequences. This feature makes the proposed window capable of analyzing DNA sequences with a wide range of the window lengths without degradation in the performance. The experimental analysis of applying the WRWW method and other spectrum-based methods to five benchmark datasets has shown that the proposed method outperforms other methods along a wide range of the window lengths. In addition, the experimental analysis has shown that the proposed method is dominant in the prediction of both short and long exons.

  11. Benchmarking pKa prediction methods for Lys115 in acetoacetate decarboxylase.

    Science.gov (United States)

    Liu, Yuli; Patel, Anand H G; Burger, Steven K; Ayers, Paul W

    2017-05-01

    Three different pK a prediction methods were used to calculate the pK a of Lys115 in acetoacetate decarboxylase (AADase): the empirical method PROPKA, the multiconformation continuum electrostatics (MCCE) method, and the molecular dynamics/thermodynamic integration (MD/TI) method with implicit solvent. As expected, accurate pK a prediction of Lys115 depends on the protonation patterns of other ionizable groups, especially the nearby Glu76. However, since the prediction methods do not explicitly sample the protonation patterns of nearby residues, this must be done manually. When Glu76 is deprotonated, all three methods give an incorrect pK a value for Lys115. If protonated, Glu76 is used in an MD/TI calculation, the pK a of Lys115 is predicted to be 5.3, which agrees well with the experimental value of 5.9. This result agrees with previous site-directed mutagenesis studies, where the mutation of Glu76 (negative charge when deprotonated) to Gln (neutral) causes no change in K m , suggesting that Glu76 has no effect on the pK a shift of Lys115. Thus, we postulate that the pK a of Glu76 is also shifted so that Glu76 is protonated (neutral) in AADase. Graphical abstract Simulated abundances of protonated species as pH is varied.

  12. VIRsiRNApred: a web server for predicting inhibition efficacy of siRNAs targeting human viruses.

    Science.gov (United States)

    Qureshi, Abid; Thakur, Nishant; Kumar, Manoj

    2013-12-11

    Selection of effective viral siRNA is an indispensable step in the development of siRNA based antiviral therapeutics. Despite immense potential, a viral siRNA efficacy prediction algorithm is still not available. Moreover, performances of the existing general mammalian siRNA efficacy predictors are not satisfactory for viral siRNAs. Therefore, we have developed "VIRsiRNApred" a support vector machine (SVM) based method for predicting the efficacy of viral siRNA. In the present study, we have employed a new dataset of 1725 viral siRNAs with experimentally verified quantitative efficacies tested under heterogeneous experimental conditions and targeting as many as 37 important human viruses including HIV, Influenza, HCV, HBV, SARS etc. These siRNAs were divided into training (T1380) and validation (V345) datasets. Important siRNA sequence features including mono to penta nucleotide frequencies, binary pattern, thermodynamic properties and secondary structure were employed for model development. During 10-fold cross validation on T1380 using hybrid approach, we achieved a maximum Pearson Correlation Coefficient (PCC) of 0.55 between predicted and actual efficacy of viral siRNAs. On V345 independent dataset, our best model achieved a maximum correlation of 0.50 while existing general siRNA prediction methods showed PCC from 0.05 to 0.18. However, using leave one out cross validation PCC was improved to 0.58 and 0.55 on training and validation datasets respectively. SVM performed better than other machine learning techniques used like ANN, KNN and REP Tree. VIRsiRNApred is the first algorithm for predicting inhibition efficacy of viral siRNAs which is developed using experimentally verified viral siRNAs. We hope this algorithm would be useful in predicting highly potent viral siRNA to aid siRNA based antiviral therapeutics development. The web server is freely available at http://crdd.osdd.net/servers/virsirnapred/.

  13. HomPPI: a class of sequence homology based protein-protein interface prediction methods

    Directory of Open Access Journals (Sweden)

    Dobbs Drena

    2011-06-01

    Full Text Available Abstract Background Although homology-based methods are among the most widely used methods for predicting the structure and function of proteins, the question as to whether interface sequence conservation can be effectively exploited in predicting protein-protein interfaces has been a subject of debate. Results We studied more than 300,000 pair-wise alignments of protein sequences from structurally characterized protein complexes, including both obligate and transient complexes. We identified sequence similarity criteria required for accurate homology-based inference of interface residues in a query protein sequence. Based on these analyses, we developed HomPPI, a class of sequence homology-based methods for predicting protein-protein interface residues. We present two variants of HomPPI: (i NPS-HomPPI (Non partner-specific HomPPI, which can be used to predict interface residues of a query protein in the absence of knowledge of the interaction partner; and (ii PS-HomPPI (Partner-specific HomPPI, which can be used to predict the interface residues of a query protein with a specific target protein. Our experiments on a benchmark dataset of obligate homodimeric complexes show that NPS-HomPPI can reliably predict protein-protein interface residues in a given protein, with an average correlation coefficient (CC of 0.76, sensitivity of 0.83, and specificity of 0.78, when sequence homologs of the query protein can be reliably identified. NPS-HomPPI also reliably predicts the interface residues of intrinsically disordered proteins. Our experiments suggest that NPS-HomPPI is competitive with several state-of-the-art interface prediction servers including those that exploit the structure of the query proteins. The partner-specific classifier, PS-HomPPI can, on a large dataset of transient complexes, predict the interface residues of a query protein with a specific target, with a CC of 0.65, sensitivity of 0.69, and specificity of 0.70, when homologs of

  14. Critical evaluation of in silico methods for prediction of coiled-coil domains in proteins.

    Science.gov (United States)

    Li, Chen; Ching Han Chang, Catherine; Nagel, Jeremy; Porebski, Benjamin T; Hayashida, Morihiro; Akutsu, Tatsuya; Song, Jiangning; Buckle, Ashley M

    2016-03-01

    Coiled-coils refer to a bundle of helices coiled together like strands of a rope. It has been estimated that nearly 3% of protein-encoding regions of genes harbour coiled-coil domains (CCDs). Experimental studies have confirmed that CCDs play a fundamental role in subcellular infrastructure and controlling trafficking of eukaryotic cells. Given the importance of coiled-coils, multiple bioinformatics tools have been developed to facilitate the systematic and high-throughput prediction of CCDs in proteins. In this article, we review and compare 12 sequence-based bioinformatics approaches and tools for coiled-coil prediction. These approaches can be categorized into two classes: coiled-coil detection and coiled-coil oligomeric state prediction. We evaluated and compared these methods in terms of their input/output, algorithm, prediction performance, validation methods and software utility. All the independent testing data sets are available at http://lightning.med.monash.edu/coiledcoil/. In addition, we conducted a case study of nine human polyglutamine (PolyQ) disease-related proteins and predicted CCDs and oligomeric states using various predictors. Prediction results for CCDs were highly variable among different predictors. Only two peptides from two proteins were confirmed to be CCDs by majority voting. Both domains were predicted to form dimeric coiled-coils using oligomeric state prediction. We anticipate that this comprehensive analysis will be an insightful resource for structural biologists with limited prior experience in bioinformatics tools, and for bioinformaticians who are interested in designing novel approaches for coiled-coil and its oligomeric state prediction. © The Author 2015. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  15. A Practical Radiosity Method for Predicting Transmission Loss in Urban Environments

    Directory of Open Access Journals (Sweden)

    Liang Ming

    2004-01-01

    Full Text Available The ability to predict transmission loss or field strength distribution is crucial for determining coverage in planning personal communication systems. This paper presents a practical method to accurately predict entire average transmission loss distribution in complicated urban environments. The method uses a 3D propagation model based on radiosity and a simplified city information database including surfaces of roads and building groups. Narrowband validation measurements with line-of-sight (LOS and non-line-of-sight (NLOS cases at 1800 MHz give excellent agreement in urban environments.

  16. Statistical Analysis of a Method to Predict Drug-Polymer Miscibility

    DEFF Research Database (Denmark)

    Knopp, Matthias Manne; Olesen, Niels Erik; Huang, Yanbin

    2016-01-01

    In this study, a method proposed to predict drug-polymer miscibility from differential scanning calorimetry measurements was subjected to statistical analysis. The method is relatively fast and inexpensive and has gained popularity as a result of the increasing interest in the formulation of drugs...... procedure is problematic and may foster uncritical and misguiding interpretations. From a statistical perspective, the drug-polymer miscibility prediction should instead be examined by deriving an objective function, which results in the unbiased, minimum variance properties of the least-square estimator...

  17. Large-scale validation of methods for cytotoxic T-lymphocyte epitope prediction

    DEFF Research Database (Denmark)

    Larsen, Mette Voldby; Lundegaard, Claus; Lamberth, K.

    2007-01-01

    BACKGROUND: Reliable predictions of Cytotoxic T lymphocyte (CTL) epitopes are essential for rational vaccine design. Most importantly, they can minimize the experimental effort needed to identify epitopes. NetCTL is a web-based tool designed for predicting human CTL epitopes in any given protein....... of the other methods achieved a sensitivity of 0.64. The NetCTL-1.2 method is available at http://www.cbs.dtu.dk/services/NetCTL.All used datasets are available at http://www.cbs.dtu.dk/suppl/immunology/CTL-1.2.php....

  18. Computational Methods for Protein Structure Prediction and Modeling Volume 1: Basic Characterization

    CERN Document Server

    Xu, Ying; Liang, Jie

    2007-01-01

    Volume one of this two volume sequence focuses on the basic characterization of known protein structures as well as structure prediction from protein sequence information. The 11 chapters provide an overview of the field, covering key topics in modeling, force fields, classification, computational methods, and struture prediction. Each chapter is a self contained review designed to cover (1) definition of the problem and an historical perspective, (2) mathematical or computational formulation of the problem, (3) computational methods and algorithms, (4) performance results, (5) existing software packages, and (6) strengths, pitfalls, challenges, and future research directions.

  19. Evaluation of Machine Learning Methods to Predict Coronary Artery Disease Using Metabolomic Data.

    Science.gov (United States)

    Forssen, Henrietta; Patel, Riyaz; Fitzpatrick, Natalie; Hingorani, Aroon; Timmis, Adam; Hemingway, Harry; Denaxas, Spiros

    2017-01-01

    Metabolomic data can potentially enable accurate, non-invasive and low-cost prediction of coronary artery disease. Regression-based analytical approaches however might fail to fully account for interactions between metabolites, rely on a priori selected input features and thus might suffer from poorer accuracy. Supervised machine learning methods can potentially be used in order to fully exploit the dimensionality and richness of the data. In this paper, we systematically implement and evaluate a set of supervised learning methods (L1 regression, random forest classifier) and compare them to traditional regression-based approaches for disease prediction using metabolomic data.

  20. A research on scenic information prediction method based on RBF neural network

    Science.gov (United States)

    Li, Jingwen; Yin, Shouqiang; Wang, Ke

    2015-12-01

    Based on the rapid development of the wisdom tourism, it is conform to the trend of the development of the wisdom tourism through the scientific method to realize the prediction of the scenic information. The article,using the super nonlinear fitting ability of RBF neural network[1-2],builds a prediction and inference method of comprehensive information for the complex geographic time, space and attribute of scenic through the hyper-surface data organization of the scenic geographic entity information[3]. And it uses Guilin scenic area as an example to deduce the process of the forecasting of the whole information.

  1. Methods and Strategies to Impute Missing Genotypes for Improving Genomic Prediction

    DEFF Research Database (Denmark)

    Ma, Peipei

    Genomic prediction has been widely used in dairy cattle breeding. Genotype imputation is a key procedure to efficently utilize marker data from different chips and obtain high density marker data with minimizing cost. This thesis investigated methods and strategies to genotype imputation...... for improving genomic prediction. The results indicate the IMPUTE2 and Beagle are accurate imputation methods, while Fimpute is a good alternative for routine imputation with large data set. Genotypes of non-genotyped animals can be accurately imputed if they have genotyped porgenies. A combined reference...

  2. Application of artificial intelligence methods for prediction of steel mechanical properties

    Directory of Open Access Journals (Sweden)

    Z. Jančíková

    2008-10-01

    Full Text Available The target of the contribution is to outline possibilities of applying artificial neural networks for the prediction of mechanical steel properties after heat treatment and to judge their perspective use in this field. The achieved models enable the prediction of final mechanical material properties on the basis of decisive parameters influencing these properties. By applying artificial intelligence methods in combination with mathematic-physical analysis methods it will be possible to create facilities for designing a system of the continuous rationalization of existing and also newly developing industrial technologies.

  3. Machine learning and statistical methods for the prediction of maximal oxygen uptake: recent advances

    Directory of Open Access Journals (Sweden)

    Abut F

    2015-08-01

    Full Text Available Fatih Abut, Mehmet Fatih AkayDepartment of Computer Engineering, Çukurova University, Adana, TurkeyAbstract: Maximal oxygen uptake (VO2max indicates how many milliliters of oxygen the body can consume in a state of intense exercise per minute. VO2max plays an important role in both sport and medical sciences for different purposes, such as indicating the endurance capacity of athletes or serving as a metric in estimating the disease risk of a person. In general, the direct measurement of VO2max provides the most accurate assessment of aerobic power. However, despite a high level of accuracy, practical limitations associated with the direct measurement of VO2max, such as the requirement of expensive and sophisticated laboratory equipment or trained staff, have led to the development of various regression models for predicting VO2max. Consequently, a lot of studies have been conducted in the last years to predict VO2max of various target audiences, ranging from soccer athletes, nonexpert swimmers, cross-country skiers to healthy-fit adults, teenagers, and children. Numerous prediction models have been developed using different sets of predictor variables and a variety of machine learning and statistical methods, including support vector machine, multilayer perceptron, general regression neural network, and multiple linear regression. The purpose of this study is to give a detailed overview about the data-driven modeling studies for the prediction of VO2max conducted in recent years and to compare the performance of various VO2max prediction models reported in related literature in terms of two well-known metrics, namely, multiple correlation coefficient (R and standard error of estimate. The survey results reveal that with respect to regression methods used to develop prediction models, support vector machine, in general, shows better performance than other methods, whereas multiple linear regression exhibits the worst performance

  4. An SVM Based Approach for the Analysis Of Mammography Images

    Science.gov (United States)

    Gan, X.; Kapsokalivas, L.; Skaliotis, A.; Steinhöfel, K.; Tangaro, S.

    2007-09-01

    Mammography is among the most popular imaging techniques used in the diagnosis of breast cancer. Nevertheless distinguishing between healthy and ill images is hard even for an experienced radiologist, because a single image usually includes several regions of interest (ROIs). The hardness of this classification problem along with the substantial amount of data, gathered from patients' medical history, motivates the use of a machine learning approach as part of a CAD (Computer Aided Detection) tool, aiming to assist radiologists in the characterization of mammography images. Specifically, our approach involves: i) the ROI extraction, ii) the Feature Vector extraction, iii) the Support Vector Machine (SVM) classification of ROIs and iv) the characterization of the whole image. We evaluate the performance of our approach in terms of the SVM's training and testing error and in terms of ROI specificity—sensitivity. The results show a relation between the number of features used and the SVM's performance.

  5. An SVM Based Approach for the Analysis Of Mammography Images

    International Nuclear Information System (INIS)

    Gan, X.; Kapsokalivas, L.; Skaliotis, A.; Steinhoefel, K.; Tangaro, S.

    2007-01-01

    Mammography is among the most popular imaging techniques used in the diagnosis of breast cancer. Nevertheless distinguishing between healthy and ill images is hard even for an experienced radiologist, because a single image usually includes several regions of interest (ROIs). The hardness of this classification problem along with the substantial amount of data, gathered from patients' medical history, motivates the use of a machine learning approach as part of a CAD (Computer Aided Detection) tool, aiming to assist radiologists in the characterization of mammography images. Specifically, our approach involves: i) the ROI extraction, ii) the Feature Vector extraction, iii) the Support Vector Machine (SVM) classification of ROIs and iv) the characterization of the whole image. We evaluate the performance of our approach in terms of the SVM's training and testing error and in terms of ROI specificity - sensitivity. The results show a relation between the number of features used and the SVM's performance

  6. Dissolved oxygen content prediction in crab culture using a hybrid intelligent method

    Science.gov (United States)

    Yu, Huihui; Chen, Yingyi; Hassan, Shahbazgul; Li, Daoliang

    2016-06-01

    A precise predictive model is needed to obtain a clear understanding of the changing dissolved oxygen content in outdoor crab ponds, to assess how to reduce risk and to optimize water quality management. The uncertainties in the data from multiple sensors are a significant factor when building a dissolved oxygen content prediction model. To increase prediction accuracy, a new hybrid dissolved oxygen content forecasting model based on the radial basis function neural networks (RBFNN) data fusion method and a least squares support vector machine (LSSVM) with an optimal improved particle swarm optimization(IPSO) is developed. In the modelling process, the RBFNN data fusion method is used to improve information accuracy and provide more trustworthy training samples for the IPSO-LSSVM prediction model. The LSSVM is a powerful tool for achieving nonlinear dissolved oxygen content forecasting. In addition, an improved particle swarm optimization algorithm is developed to determine the optimal parameters for the LSSVM with high accuracy and generalizability. In this study, the comparison of the prediction results of different traditional models validates the effectiveness and accuracy of the proposed hybrid RBFNN-IPSO-LSSVM model for dissolved oxygen content prediction in outdoor crab ponds.

  7. Urban Link Travel Time Prediction Based on a Gradient Boosting Method Considering Spatiotemporal Correlations

    Directory of Open Access Journals (Sweden)

    Faming Zhang

    2016-11-01

    Full Text Available The prediction of travel times is challenging because of the sparseness of real-time traffic data and the intrinsic uncertainty of travel on congested urban road networks. We propose a new gradient–boosted regression tree method to accurately predict travel times. This model accounts for spatiotemporal correlations extracted from historical and real-time traffic data for adjacent and target links. This method can deliver high prediction accuracy by combining simple regression trees with poor performance. It corrects the error found in existing models for improved prediction accuracy. Our spatiotemporal gradient–boosted regression tree model was verified in experiments. The training data were obtained from big data reflecting historic traffic conditions collected by probe vehicles in Wuhan from January to May 2014. Real-time data were extracted from 11 weeks of GPS records collected in Wuhan from 5 May 2014 to 20 July 2014. Based on these data, we predicted link travel time for the period from 21 July 2014 to 25 July 2014. Experiments showed that our proposed spatiotemporal gradient–boosted regression tree model obtained better results than gradient boosting, random forest, or autoregressive integrated moving average approaches. Furthermore, these results indicate the advantages of our model for urban link travel time prediction.

  8. Prediction of antimicrobial peptides based on sequence alignment and feature selection methods.

    Directory of Open Access Journals (Sweden)

    Ping Wang

    Full Text Available Antimicrobial peptides (AMPs represent a class of natural peptides that form a part of the innate immune system, and this kind of 'nature's antibiotics' is quite promising for solving the problem of increasing antibiotic resistance. In view of this, it is highly desired to develop an effective computational method for accurately predicting novel AMPs because it can provide us with more candidates and useful insights for drug design. In this study, a new method for predicting AMPs was implemented by integrating the sequence alignment method and the feature selection method. It was observed that, the overall jackknife success rate by the new predictor on a newly constructed benchmark dataset was over 80.23%, and the Mathews correlation coefficient is 0.73, indicating a good prediction. Moreover, it is indicated by an in-depth feature analysis that the results are quite consistent with the previously known knowledge that some amino acids are preferential in AMPs and that these amino acids do play an important role for the antimicrobial activity. For the convenience of most experimental scientists who want to use the prediction method without the interest to follow the mathematical details, a user-friendly web-server is provided at http://amp.biosino.org/.

  9. Usefulness of indirect noninvasive methods in predicting progression to cirrhosis in chronic hepatitis C.

    Science.gov (United States)

    Vergara, Mercedes; Bejarano, Guillermina; Dalmau, Blai; Gil, Montserrat; Miquel, Mireia; Sanchez-Delgado, Jordi; Casas, Meritxell; Puig, Jordi; Martinez-Bauer, Eva; Dosal, Angelina; Lopez, Maria; Moreno, Laura; Valero, Oliver; Bella, Maria-Rosa; Calvet, Xavier

    2015-07-01

    The ability of noninvasive methods to predict the development of cirrhosis has not been established. We evaluated the ability of three noninvasive methods [the Forns index, the aspartate aminotransferase-to-platelet ratio index (APRI), and the Non-Invasive Hepatitis-C-related Cirrhosis Early Detection (NIHCED) score] to determine the risk of developing cirrhosis in chronic hepatitis C. Consecutive patients with chronic hepatitis C who had undergone liver biopsy between 1998 and 2004 were eligible. We used the three methods to evaluate patients at baseline and at follow-up (4-10 years later). When these methods yielded discordant or indeterminate results, a second liver biopsy was performed. Logistic regression models were fitted for each method to predict whether cirrhosis would appear and to predict long-term mortality from cirrhosis. We included 289 patients in our study. The mean scores at baseline and at follow-up, respectively, were as follows: Forns, 5.47 ± 1.95 and 6.56 ± 2.02; APRI, 1.1 ± 2.33 and 1.4 ± 1.53; and NIHCED, 7.79 ± 11.45 and 15.48 ± 15.28. The area under the receiver operating characteristic curve for predicting cirrhosis was 0.83 for Forns, 0.79 for APRI, and 0.76 for NIHCED. The sensitivity and specificity for predicting cirrhosis, respectively, were 75 and 71% for Forns (cutoff 4.7), 86 and 42% for APRI (cutoff 0.48), and 41 and 82% for NIHCED (cutoff 0). The area under the receiver operating characteristic curve for predicting mortality was 0.86 for Forns, 0.79 for APRI, and 0.84 for NIHCED. Indirect noninvasive markers could help identify patients with chronic hepatitis C at risk of progression to cirrhosis.

  10. Method for estimating capacity and predicting remaining useful life of lithium-ion battery

    International Nuclear Information System (INIS)

    Hu, Chao; Jain, Gaurav; Tamirisa, Prabhakar; Gorka, Tom

    2014-01-01

    Highlights: • We develop an integrated method for the capacity estimation and RUL prediction. • A state projection scheme is derived for capacity estimation. • The Gauss–Hermite particle filter technique is used for the RUL prediction. • Results with 10 years’ continuous cycling data verify the effectiveness of the method. - Abstract: Reliability of lithium-ion (Li-ion) rechargeable batteries used in implantable medical devices has been recognized as of high importance from a broad range of stakeholders, including medical device manufacturers, regulatory agencies, physicians, and patients. To ensure Li-ion batteries in these devices operate reliably, it is important to be able to assess the capacity of Li-ion battery and predict the remaining useful life (RUL) throughout the whole life-time. This paper presents an integrated method for the capacity estimation and RUL prediction of Li-ion battery used in implantable medical devices. A state projection scheme from the author’s previous study is used for the capacity estimation. Then, based on the capacity estimates, the Gauss–Hermite particle filter technique is used to project the capacity fade to the end-of-service (EOS) value (or the failure limit) for the RUL prediction. Results of 10 years’ continuous cycling test on Li-ion prismatic cells in the lab suggest that the proposed method achieves good accuracy in the capacity estimation and captures the uncertainty in the RUL prediction. Post-explant weekly cycling data obtained from field cells with 4–7 implant years further verify the effectiveness of the proposed method in the capacity estimation

  11. FLORA: a novel method to predict protein function from structure in diverse superfamilies.

    Directory of Open Access Journals (Sweden)

    Oliver C Redfern

    2009-08-01

    Full Text Available Predicting protein function from structure remains an active area of interest, particularly for the structural genomics initiatives where a substantial number of structures are initially solved with little or no functional characterisation. Although global structure comparison methods can be used to transfer functional annotations, the relationship between fold and function is complex, particularly in functionally diverse superfamilies that have evolved through different secondary structure embellishments to a common structural core. The majority of prediction algorithms employ local templates built on known or predicted functional residues. Here, we present a novel method (FLORA that automatically generates structural motifs associated with different functional sub-families (FSGs within functionally diverse domain superfamilies. Templates are created purely on the basis of their specificity for a given FSG, and the method makes no prior prediction of functional sites, nor assumes specific physico-chemical properties of residues. FLORA is able to accurately discriminate between homologous domains with different functions and substantially outperforms (a 2-3 fold increase in coverage at low error rates popular structure comparison methods and a leading function prediction method. We benchmark FLORA on a large data set of enzyme superfamilies from all three major protein classes (alpha, beta, alphabeta and demonstrate the functional relevance of the motifs it identifies. We also provide novel predictions of enzymatic activity for a large number of structures solved by the Protein Structure Initiative. Overall, we show that FLORA is able to effectively detect functionally similar protein domain structures by purely using patterns of structural conservation of all residues.

  12. Comparison and validation of statistical methods for predicting power outage durations in the event of hurricanes.

    Science.gov (United States)

    Nateghi, Roshanak; Guikema, Seth D; Quiring, Steven M

    2011-12-01

    This article compares statistical methods for modeling power outage durations during hurricanes and examines the predictive accuracy of these methods. Being able to make accurate predictions of power outage durations is valuable because the information can be used by utility companies to plan their restoration efforts more efficiently. This information can also help inform customers and public agencies of the expected outage times, enabling better collective response planning, and coordination of restoration efforts for other critical infrastructures that depend on electricity. In the long run, outage duration estimates for future storm scenarios may help utilities and public agencies better allocate risk management resources to balance the disruption from hurricanes with the cost of hardening power systems. We compare the out-of-sample predictive accuracy of five distinct statistical models for estimating power outage duration times caused by Hurricane Ivan in 2004. The methods compared include both regression models (accelerated failure time (AFT) and Cox proportional hazard models (Cox PH)) and data mining techniques (regression trees, Bayesian additive regression trees (BART), and multivariate additive regression splines). We then validate our models against two other hurricanes. Our results indicate that BART yields the best prediction accuracy and that it is possible to predict outage durations with reasonable accuracy. © 2011 Society for Risk Analysis.

  13. Building blocks for automated elucidation of metabolites: Machine learning methods for NMR prediction

    Directory of Open Access Journals (Sweden)

    Neumann Steffen

    2008-09-01

    Full Text Available Abstract Background Current efforts in Metabolomics, such as the Human Metabolome Project, collect structures of biological metabolites as well as data for their characterisation, such as spectra for identification of substances and measurements of their concentration. Still, only a fraction of existing metabolites and their spectral fingerprints are known. Computer-Assisted Structure Elucidation (CASE of biological metabolites will be an important tool to leverage this lack of knowledge. Indispensable for CASE are modules to predict spectra for hypothetical structures. This paper evaluates different statistical and machine learning methods to perform predictions of proton NMR spectra based on data from our open database NMRShiftDB. Results A mean absolute error of 0.18 ppm was achieved for the prediction of proton NMR shifts ranging from 0 to 11 ppm. Random forest, J48 decision tree and support vector machines achieved similar overall errors. HOSE codes being a notably simple method achieved a comparatively good result of 0.17 ppm mean absolute error. Conclusion NMR prediction methods applied in the course of this work delivered precise predictions which can serve as a building block for Computer-Assisted Structure Elucidation for biological metabolites.

  14. Prediction and validation of gene-disease associations using methods inspired by social network analyses.

    Directory of Open Access Journals (Sweden)

    U Martin Singh-Blom

    Full Text Available Correctly identifying associations of genes with diseases has long been a goal in biology. With the emergence of large-scale gene-phenotype association datasets in biology, we can leverage statistical and machine learning methods to help us achieve this goal. In this paper, we present two methods for predicting gene-disease associations based on functional gene associations and gene-phenotype associations in model organisms. The first method, the Katz measure, is motivated from its success in social network link prediction, and is very closely related to some of the recent methods proposed for gene-disease association inference. The second method, called Catapult (Combining dATa Across species using Positive-Unlabeled Learning Techniques, is a supervised machine learning method that uses a biased support vector machine where the features are derived from walks in a heterogeneous gene-trait network. We study the performance of the proposed methods and related state-of-the-art methods using two different evaluation strategies, on two distinct data sets, namely OMIM phenotypes and drug-target interactions. Finally, by measuring the performance of the methods using two different evaluation strategies, we show that even though both methods perform very well, the Katz measure is better at identifying associations between traits and poorly studied genes, whereas Catapult is better suited to correctly identifying gene-trait associations overall [corrected].

  15. Application of statistical classification methods for predicting the acceptability of well-water quality

    Science.gov (United States)

    Cameron, Enrico; Pilla, Giorgio; Stella, Fabio A.

    2018-01-01

    The application of statistical classification methods is investigated—in comparison also to spatial interpolation methods—for predicting the acceptability of well-water quality in a situation where an effective quantitative model of the hydrogeological system under consideration cannot be developed. In the example area in northern Italy, in particular, the aquifer is locally affected by saline water and the concentration of chloride is the main indicator of both saltwater occurrence and groundwater quality. The goal is to predict if the chloride concentration in a water well will exceed the allowable concentration so that the water is unfit for the intended use. A statistical classification algorithm achieved the best predictive performances and the results of the study show that statistical classification methods provide further tools for dealing with groundwater quality problems concerning hydrogeological systems that are too difficult to describe analytically or to simulate effectively.

  16. A Noise-Filtering Method for Link Prediction in Complex Networks.

    Directory of Open Access Journals (Sweden)

    Bo Ouyang

    Full Text Available Link prediction plays an important role in both finding missing links in networked systems and complementing our understanding of the evolution of networks. Much attention from the network science community are paid to figure out how to efficiently predict the missing/future links based on the observed topology. Real-world information always contain noise, which is also the case in an observed network. This problem is rarely considered in existing methods. In this paper, we treat the existence of observed links as known information. By filtering out noises in this information, the underlying regularity of the connection information is retrieved and then used to predict missing or future links. Experiments on various empirical networks show that our method performs noticeably better than baseline algorithms.

  17. A variable capacitance based modeling and power capability predicting method for ultracapacitor

    Science.gov (United States)

    Liu, Chang; Wang, Yujie; Chen, Zonghai; Ling, Qiang

    2018-01-01

    Methods of accurate modeling and power capability predicting for ultracapacitors are of great significance in management and application of lithium-ion battery/ultracapacitor hybrid energy storage system. To overcome the simulation error coming from constant capacitance model, an improved ultracapacitor model based on variable capacitance is proposed, where the main capacitance varies with voltage according to a piecewise linear function. A novel state-of-charge calculation approach is developed accordingly. After that, a multi-constraint power capability prediction is developed for ultracapacitor, in which a Kalman-filter-based state observer is designed for tracking ultracapacitor's real-time behavior. Finally, experimental results verify the proposed methods. The accuracy of the proposed model is verified by terminal voltage simulating results under different temperatures, and the effectiveness of the designed observer is proved by various test conditions. Additionally, the power capability prediction results of different time scales and temperatures are compared, to study their effects on ultracapacitor's power capability.

  18. Correlation and prediction of environmental properties of alcohol ethoxylate surfactants using the UNIFAC method

    DEFF Research Database (Denmark)

    Cheng, Hongyuan; Kontogeorgis, Georgios; Stenby, Erling Halfdan

    2005-01-01

    Environmental properties of one type of nonionic surfactants, the alcohol ethoxylates (polyoxyethylene alcohols), are predicted using the UNIFAC (universal quasi-chemical functional group activity coefficient) method. Various properties are considered; the octanol-water partition coefficient (Kow......), the bioconcentration factor (BCF), and the toxicity. Kow values of alcohol ethoxylates are difficult to measure. Existing methods such as those in commercial software like ACD,ClogP and KowWin have not been applied to surfactants, and they fail for heavy alcohol ethoxylates (alkyl carbon numbers above 12). Thus......, the Kow values are predicted here via UNIFAC and compared to the few available experimental data. Based on the predicted Kow values, a correlation between Kow and hydrophilic-lipophilic balance (HLB) is establi2shed because HLB is a widely used parameter in surfactant applications. Finally, BCF...

  19. Anisotropic Elastoplastic Damage Mechanics Method to Predict Fatigue Life of the Structure

    Directory of Open Access Journals (Sweden)

    Hualiang Wan

    2016-01-01

    Full Text Available New damage mechanics method is proposed to predict the low-cycle fatigue life of metallic structures under multiaxial loading. The microstructure mechanical model is proposed to simulate anisotropic elastoplastic damage evolution. As the micromodel depends on few material parameters, the present method is very concise and suitable for engineering application. The material parameters in damage evolution equation are determined by fatigue experimental data of standard specimens. By employing further development on the ANSYS platform, the anisotropic elastoplastic damage mechanics-finite element method is developed. The fatigue crack propagation life of satellite structure is predicted using the present method and the computational results comply with the experimental data very well.

  20. In Silico Prediction of Chemical Toxicity for Drug Design Using Machine Learning Methods and Structural Alerts

    Directory of Open Access Journals (Sweden)

    Hongbin Yang

    2018-02-01

    Full Text Available During drug development, safety is always the most important issue, including a variety of toxicities and adverse drug effects, which should be evaluated in preclinical and clinical trial phases. This review article at first simply introduced the computational methods used in prediction of chemical toxicity for drug design, including machine learning methods and structural alerts. Machine learning methods have been widely applied in qualitative classification and quantitative regression studies, while structural alerts can be regarded as a complementary tool for lead optimization. The emphasis of this article was put on the recent progress of predictive models built for various toxicities. Available databases and web servers were also provided. Though the methods and models are very helpful for drug design, there are still some challenges and limitations to be improved for drug safety assessment in the future.

  1. In Silico Prediction of Chemical Toxicity for Drug Design Using Machine Learning Methods and Structural Alerts.

    Science.gov (United States)

    Yang, Hongbin; Sun, Lixia; Li, Weihua; Liu, Guixia; Tang, Yun

    2018-01-01

    During drug development, safety is always the most important issue, including a variety of toxicities and adverse drug effects, which should be evaluated in preclinical and clinical trial phases. This review article at first simply introduced the computational methods used in prediction of chemical toxicity for drug design, including machine learning methods and structural alerts. Machine learning methods have been widely applied in qualitative classification and quantitative regression studies, while structural alerts can be regarded as a complementary tool for lead optimization. The emphasis of this article was put on the recent progress of predictive models built for various toxicities. Available databases and web servers were also provided. Though the methods and models are very helpful for drug design, there are still some challenges and limitations to be improved for drug safety assessment in the future.

  2. Tracking Maneuvering Group Target with Extension Predicted and Best Model Augmentation Method Adapted

    Directory of Open Access Journals (Sweden)

    Linhai Gan

    2017-01-01

    Full Text Available The random matrix (RM method is widely applied for group target tracking. The assumption that the group extension keeps invariant in conventional RM method is not yet valid, as the orientation of the group varies rapidly while it is maneuvering; thus, a new approach with group extension predicted is derived here. To match the group maneuvering, a best model augmentation (BMA method is introduced. The existing BMA method uses a fixed basic model set, which may lead to a poor performance when it could not ensure basic coverage of true motion modes. Here, a maneuvering group target tracking algorithm is proposed, where the group extension prediction and the BMA adaption are exploited. The performance of the proposed algorithm will be illustrated by simulation.

  3. Method to Predict Long Time Span of Scour Around Offshore Wind Turbine Foundations

    DEFF Research Database (Denmark)

    Dixen, Martin; Lohmann, Iris P.; Christensen, Erik Damgaard

    2012-01-01

    tables have been made based on full 3D numerical simulations of the flow and sediment transport for fixed configurations of the scour hole. When changing the governing parameters which are causing the scour development around the structure, the erosion rate or backfilling rate can be calculated from......A new method to predict scour development around offshore structures has been developed. The method has been tested on a monopile. The method consists of table of scour rates, which is used to predict the scour development around the structure at diffirent stages of the scour hole. The scour rate...... the mass balance of the sediment. This leads to the scour rates tables that are used to analyse the development of the scour hole under different wave and current conditions. The method has been tested against experimental scour data and showed very promising results....

  4. The Relevance Voxel Machine (RVoxM): A Bayesian Method for Image-Based Prediction

    DEFF Research Database (Denmark)

    Sabuncu, Mert R.; Van Leemput, Koen

    2011-01-01

    This paper presents the Relevance VoxelMachine (RVoxM), a Bayesian multivariate pattern analysis (MVPA) algorithm that is specifically designed for making predictions based on image data. In contrast to generic MVPA algorithms that have often been used for this purpose, the method is designed...

  5. Energy Utilization and Environmental Health: Methods for Prediction and Evaluation of Impact on Human Health.

    Science.gov (United States)

    Wadden, Richard A., Ed.

    A variety of socio-economic criteria are suggested for the choice of how best to utilize energy resources. One of the most significant of these criteria is the prediction and evaluation of existing and potential human health effects of recovery and usage of various energy resources. Suggestions are made for incorporation of these methods in site…

  6. Method for predicting future developments of traffic noise in urban areas in Europe

    NARCIS (Netherlands)

    Salomons, E.; Hout, D. van den; Janssen, S.; Kugler, U.; MacA, V.

    2010-01-01

    Traffic noise in urban areas in Europe is a major environmental stressor. In this study we present a method for predicting how environmental noise can be expected to develop in the future. In the project HEIMTSA scenarios were developed for all relevant environmental stressors to health, for all

  7. Early Diagnosis of Breas Cancer Dissemination by Tumor Markers Follow-Up and Method of Prediction

    Czech Academy of Sciences Publication Activity Database

    Nekulová, M.; Šimíčková, M.; Pecen, Ladislav; Eben, Kryštof; Vermousek, I.; Stratil, P.; Černoch, M.; Lang, B.

    1994-01-01

    Roč. 41, č. 2 (1994), s. 113-118 ISSN 0028-2685 R&D Projects: GA AV ČR IAA230106 Keywords : breast cancer * progression * CEA * CA 15-3 * MCA * TPA * mathematical method of prediction Impact factor: 0.354, year: 1994

  8. A Novel Method to Predict Genomic Islands Based on Mean Shift Clustering Algorithm

    Science.gov (United States)

    de Brito, Daniel M.; Maracaja-Coutinho, Vinicius; de Farias, Savio T.; Batista, Leonardo V.; do Rêgo, Thaís G.

    2016-01-01

    Genomic Islands (GIs) are regions of bacterial genomes that are acquired from other organisms by the phenomenon of horizontal transfer. These regions are often responsible for many important acquired adaptations of the bacteria, with great impact on their evolution and behavior. Nevertheless, these adaptations are usually associated with pathogenicity, antibiotic resistance, degradation and metabolism. Identification of such regions is of medical and industrial interest. For this reason, different approaches for genomic islands prediction have been proposed. However, none of them are capable of predicting precisely the complete repertory of GIs in a genome. The difficulties arise due to the changes in performance of different algorithms in the face of the variety of nucleotide distribution in different species. In this paper, we present a novel method to predict GIs that is built upon mean shift clustering algorithm. It does not require any information regarding the number of clusters, and the bandwidth parameter is automatically calculated based on a heuristic approach. The method was implemented in a new user-friendly tool named MSGIP—Mean Shift Genomic Island Predictor. Genomes of bacteria with GIs discussed in other papers were used to evaluate the proposed method. The application of this tool revealed the same GIs predicted by other methods and also different novel unpredicted islands. A detailed investigation of the different features related to typical GI elements inserted in these new regions confirmed its effectiveness. Stand-alone and user-friendly versions for this new methodology are available at http://msgip.integrativebioinformatics.me. PMID:26731657

  9. A Novel Method to Predict Genomic Islands Based on Mean Shift Clustering Algorithm.

    Directory of Open Access Journals (Sweden)

    Daniel M de Brito

    Full Text Available Genomic Islands (GIs are regions of bacterial genomes that are acquired from other organisms by the phenomenon of horizontal transfer. These regions are often responsible for many important acquired adaptations of the bacteria, with great impact on their evolution and behavior. Nevertheless, these adaptations are usually associated with pathogenicity, antibiotic resistance, degradation and metabolism. Identification of such regions is of medical and industrial interest. For this reason, different approaches for genomic islands prediction have been proposed. However, none of them are capable of predicting precisely the complete repertory of GIs in a genome. The difficulties arise due to the changes in performance of different algorithms in the face of the variety of nucleotide distribution in different species. In this paper, we present a novel method to predict GIs that is built upon mean shift clustering algorithm. It does not require any information regarding the number of clusters, and the bandwidth parameter is automatically calculated based on a heuristic approach. The method was implemented in a new user-friendly tool named MSGIP--Mean Shift Genomic Island Predictor. Genomes of bacteria with GIs discussed in other papers were used to evaluate the proposed method. The application of this tool revealed the same GIs predicted by other methods and also different novel unpredicted islands. A detailed investigation of the different features related to typical GI elements inserted in these new regions confirmed its effectiveness. Stand-alone and user-friendly versions for this new methodology are available at http://msgip.integrativebioinformatics.me.

  10. Method for predicting selective uprooting by mechanical weeders from plant anchorage forces

    NARCIS (Netherlands)

    Kurstjens, D.A.G.; Kropff, M.J.; Perdok, U.D.

    2004-01-01

    Reliable mechanical weed control requires knowledge of the achievable levels of weed control and crop damage when using certain implements in specific conditions. Quantitative methods that use weed, crop, soil, and cultivator characteristics to predict weed control and crop damage need to be

  11. A Practical and Fast Method To Predict the Thermodynamic Preference of omega-Transaminase-Based Transformations

    DEFF Research Database (Denmark)

    Meier, Robert J.; Gundersen Deslauriers, Maria; Woodley, John

    2015-01-01

    A simple, easy-to-use, and fast approach method is proposed and validated that can predict whether a transaminase reaction is thermodynamically unfavourable. This allowed us to de-select, in the present case, at least 50% of the reactions because they were thermodynamically unfavourable as confir...

  12. Selecting the minimum prediction base of historical data to perform 5-year predictions of the cancer burden: The GoF-optimal method.

    Science.gov (United States)

    Valls, Joan; Castellà, Gerard; Dyba, Tadeusz; Clèries, Ramon

    2015-06-01

    Predicting the future burden of cancer is a key issue for health services planning, where a method for selecting the predictive model and the prediction base is a challenge. A method, named here Goodness-of-Fit optimal (GoF-optimal), is presented to determine the minimum prediction base of historical data to perform 5-year predictions of the number of new cancer cases or deaths. An empirical ex-post evaluation exercise for cancer mortality data in Spain and cancer incidence in Finland using simple linear and log-linear Poisson models was performed. Prediction bases were considered within the time periods 1951-2006 in Spain and 1975-2007 in Finland, and then predictions were made for 37 and 33 single years in these periods, respectively. The performance of three fixed different prediction bases (last 5, 10, and 20 years of historical data) was compared to that of the prediction base determined by the GoF-optimal method. The coverage (COV) of the 95% prediction interval and the discrepancy ratio (DR) were calculated to assess the success of the prediction. The results showed that (i) models using the prediction base selected through GoF-optimal method reached the highest COV and the lowest DR and (ii) the best alternative strategy to GoF-optimal was the one using the base of prediction of 5-years. The GoF-optimal approach can be used as a selection criterion in order to find an adequate base of prediction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Method to predict fatigue lifetimes of GRP wind turbine blades and comparison with experiments

    Energy Technology Data Exchange (ETDEWEB)

    Echtermeyer, A.T. [Det Norske Veritas Research AS, Hoevik (Norway); Kensche, C. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Stuttgart (Germany, F.R); Bach, P. [Netherlands Energy Research Foundation (ECN), Petten (Netherlands); Poppen, M. [Aeronautical Research Inst. of Sweden, Bromma (Sweden); Lilholt, H.; Andersen, S.I.; Broendsted, P. [Risoe National Lab., Roskilde (Denmark)

    1996-12-01

    This paper describes a method to predict fatigue lifetimes of fiber reinforced plastics in wind turbine blades. It is based on extensive testing within the EU-Joule program. The method takes the measured fatigue properties of a material into account so that credit can be given to materials with improved fatigue properties. The large number of test results should also give confidence in the fatigue calculation method for fiber reinforced plastics. The method uses the Palmgren-Miner sum to predict lifetimes and is verified by tests using well defined load sequences. Even though this approach is generally well known in fatigue analysis, many details in the interpretation and extrapolation of the measurements need to be clearly defined, since they can influence the results considerably. The following subjects will be described: Method to measure SN curves and to obtain tolerance bounds, development of a constant lifetime diagram, evaluation of the load sequence, use of Palmgren-Miner sum, requirements for load sequence testing. The fatigue lifetime calculation method has been compared against measured data for simple loading sequences and the more complex WISPERX loading sequence for blade roots. The comparison is based on predicted mean lifetimes, using the same materials to obtain the basic SN curves and to measure laminates under complicated loading sequences. 24 refs, 7 figs, 5 tabs

  14. A NEW METHOD FOR PREDICTING SURVIVAL AND ESTIMATING UNCERTAINTY IN TRAUMA PATIENTS

    Directory of Open Access Journals (Sweden)

    V. G. Schetinin

    2017-01-01

    Full Text Available The Trauma and Injury Severity Score (TRISS is the current “gold” standard of screening patient’s condition for purposes of predicting survival probability. More than 40 years of TRISS practice revealed a number of problems, particularly, 1 unexplained fluctuation of predicted values caused by aggregation of screening tests, and 2 low accuracy of uncertainty intervals estimations. We developed a new method made it available for practitioners as a web calculator to reduce negative effect of factors given above. The method involves Bayesian methodology of statistical inference which, being computationally expensive, in theory provides most accurate predictions. We implemented and tested this approach on a data set including 571,148 patients registered in the US National Trauma Data Bank (NTDB with 1–20 injuries. These patients were distributed over the following categories: (1 174,647 with 1 injury, (2 381,137 with 2–10 injuries, and (3 15,364 with 11–20 injuries. Survival rates in each category were 0.977, 0.953, and 0.831, respectively. The proposed method has improved prediction accuracy by 0.04%, 0.36%, and 3.64% (p-value <0.05 in the categories 1, 2, and 3, respectively. Hosmer-Lemeshow statistics showed a significant improvement of the new model calibration. The uncertainty 2σ intervals were reduced from 0.628 to 0.569 for patients of the second category and from 1.227 to 0.930 for patients of the third category, both with p-value <0.005. The new method shows the statistically significant improvement (p-value <0.05 in accuracy of predicting survival and estimating the uncertainty intervals. The largest improvement has been achieved for patients with 11–20 injuries. The method is available for practitioners as a web calculator http://www.traumacalc.org.

  15. BacHbpred: Support Vector Machine Methods for the Prediction of Bacterial Hemoglobin-Like Proteins

    Directory of Open Access Journals (Sweden)

    MuthuKrishnan Selvaraj

    2016-01-01

    Full Text Available The recent upsurge in microbial genome data has revealed that hemoglobin-like (HbL proteins may be widely distributed among bacteria and that some organisms may carry more than one HbL encoding gene. However, the discovery of HbL proteins has been limited to a small number of bacteria only. This study describes the prediction of HbL proteins and their domain classification using a machine learning approach. Support vector machine (SVM models were developed for predicting HbL proteins based upon amino acid composition (AC, dipeptide composition (DC, hybrid method (AC + DC, and position specific scoring matrix (PSSM. In addition, we introduce for the first time a new prediction method based on max to min amino acid residue (MM profiles. The average accuracy, standard deviation (SD, false positive rate (FPR, confusion matrix, and receiver operating characteristic (ROC were analyzed. We also compared the performance of our proposed models in homology detection databases. The performance of the different approaches was estimated using fivefold cross-validation techniques. Prediction accuracy was further investigated through confusion matrix and ROC curve analysis. All experimental results indicate that the proposed BacHbpred can be a perspective predictor for determination of HbL related proteins. BacHbpred, a web tool, has been developed for HbL prediction.

  16. Estimation of uncertainties in predictions of environmental transfer models: evaluation of methods and application to CHERPAC

    International Nuclear Information System (INIS)

    Koch, J.; Peterson, S-R.

    1995-10-01

    Models used to simulate environmental transfer of radionuclides typically include many parameters, the values of which are uncertain. An estimation of the uncertainty associated with the predictions is therefore essential. Difference methods to quantify the uncertainty in the prediction parameter uncertainties are reviewed. A statistical approach using random sampling techniques is recommended for complex models with many uncertain parameters. In this approach, the probability density function of the model output is obtained from multiple realizations of the model according to a multivariate random sample of the different input parameters. Sampling efficiency can be improved by using a stratified scheme (Latin Hypercube Sampling). Sample size can also be restricted when statistical tolerance limits needs to be estimated. Methods to rank parameters according to their contribution to uncertainty in the model prediction are also reviewed. Recommended are measures of sensitivity, correlation and regression coefficients that can be calculated on values of input and output variables generated during the propagation of uncertainties through the model. A parameter uncertainty analysis is performed for the CHERPAC food chain model which estimates subjective confidence limits and intervals on the predictions at a 95% confidence level. A sensitivity analysis is also carried out using partial rank correlation coefficients. This identified and ranks the parameters which are the main contributors to uncertainty in the predictions, thereby guiding further research efforts. (author). 44 refs., 2 tabs., 4 figs

  17. Recent advances in protein-protein interaction prediction: experimental and computational methods.

    Science.gov (United States)

    Jessulat, Matthew; Pitre, Sylvain; Gui, Yuan; Hooshyar, Mohsen; Omidi, Katayoun; Samanfar, Bahram; Tan, Le Hoa; Alamgir, Md; Green, James; Dehne, Frank; Golshani, Ashkan

    2011-09-01

    Proteins within the cell act as part of complex networks, which allow pathways and processes to function. Therefore, understanding how proteins interact is a significant area of current research. This review aims to present an overview of key experimental techniques (yeast two-hybrid, tandem affinity purification and protein microarrays) used to discover protein-protein interactions (PPIs), as well as to briefly discuss certain computational methods for predicting protein interactions based on gene localization, phylogenetic information, 3D structural modeling or primary protein sequence data. Due to the large-scale applicability of primary sequence-based methods, the authors have chosen to focus on this strategy for our review. There is an emphasis on a recent algorithm called Protein Interaction Prediction Engine (PIPE) that can predict global PPIs. The readers will discover recent advances both in the practical determination of protein interaction and the strategies that are available to attempt to anticipate interactions without the time and costs of experimental work. Global PPI maps can help understand the biology of complex diseases and facilitate the identification of novel drug target sites. This study describes different techniques used for PPI prediction that we believe will significantly impact the development of the field in a new future. We expect to see a growing number of similar techniques capable of large-scale PPI predictions.

  18. Simplified method to predict mutual interactions of human transcription factors based on their primary structure.

    Directory of Open Access Journals (Sweden)

    Sebastian Schmeier

    Full Text Available BACKGROUND: Physical interactions between transcription factors (TFs are necessary for forming regulatory protein complexes and thus play a crucial role in gene regulation. Currently, knowledge about the mechanisms of these TF interactions is incomplete and the number of known TF interactions is limited. Computational prediction of such interactions can help identify potential new TF interactions as well as contribute to better understanding the complex machinery involved in gene regulation. METHODOLOGY: We propose here such a method for the prediction of TF interactions. The method uses only the primary sequence information of the interacting TFs, resulting in a much greater simplicity of the prediction algorithm. Through an advanced feature selection process, we determined a subset of 97 model features that constitute the optimized model in the subset we considered. The model, based on quadratic discriminant analysis, achieves a prediction accuracy of 85.39% on a blind set of interactions. This result is achieved despite the selection for the negative data set of only those TF from the same type of proteins, i.e. TFs that function in the same cellular compartment (nucleus and in the same type of molecular process (transcription initiation. Such selection poses significant challenges for developing models with high specificity, but at the same time better reflects real-world problems. CONCLUSIONS: The performance of our predictor compares well to those of much more complex approaches for predicting TF and general protein-protein interactions, particularly when taking the reduced complexity of model utilisation into account.

  19. Simplified method to predict mutual interactions of human transcription factors based on their primary structure

    KAUST Repository

    Schmeier, Sebastian

    2011-07-05

    Background: Physical interactions between transcription factors (TFs) are necessary for forming regulatory protein complexes and thus play a crucial role in gene regulation. Currently, knowledge about the mechanisms of these TF interactions is incomplete and the number of known TF interactions is limited. Computational prediction of such interactions can help identify potential new TF interactions as well as contribute to better understanding the complex machinery involved in gene regulation. Methodology: We propose here such a method for the prediction of TF interactions. The method uses only the primary sequence information of the interacting TFs, resulting in a much greater simplicity of the prediction algorithm. Through an advanced feature selection process, we determined a subset of 97 model features that constitute the optimized model in the subset we considered. The model, based on quadratic discriminant analysis, achieves a prediction accuracy of 85.39% on a blind set of interactions. This result is achieved despite the selection for the negative data set of only those TF from the same type of proteins, i.e. TFs that function in the same cellular compartment (nucleus) and in the same type of molecular process (transcription initiation). Such selection poses significant challenges for developing models with high specificity, but at the same time better reflects real-world problems. Conclusions: The performance of our predictor compares well to those of much more complex approaches for predicting TF and general protein-protein interactions, particularly when taking the reduced complexity of model utilisation into account. © 2011 Schmeier et al.

  20. K-Line Patterns’ Predictive Power Analysis Using the Methods of Similarity Match and Clustering

    Directory of Open Access Journals (Sweden)

    Lv Tao

    2017-01-01

    Full Text Available Stock price prediction based on K-line patterns is the essence of candlestick technical analysis. However, there are some disputes on whether the K-line patterns have predictive power in academia. To help resolve the debate, this paper uses the data mining methods of pattern recognition, pattern clustering, and pattern knowledge mining to research the predictive power of K-line patterns. The similarity match model and nearest neighbor-clustering algorithm are proposed for solving the problem of similarity match and clustering of K-line series, respectively. The experiment includes testing the predictive power of the Three Inside Up pattern and Three Inside Down pattern with the testing dataset of the K-line series data of Shanghai 180 index component stocks over the latest 10 years. Experimental results show that (1 the predictive power of a pattern varies a great deal for different shapes and (2 each of the existing K-line patterns requires further classification based on the shape feature for improving the prediction performance.

  1. Predicting community structure in snakes on Eastern Nearctic islands using ecological neutral theory and phylogenetic methods.

    Science.gov (United States)

    Burbrink, Frank T; McKelvy, Alexander D; Pyron, R Alexander; Myers, Edward A

    2015-11-22

    Predicting species presence and richness on islands is important for understanding the origins of communities and how likely it is that species will disperse and resist extinction. The equilibrium theory of island biogeography (ETIB) and, as a simple model of sampling abundances, the unified neutral theory of biodiversity (UNTB), predict that in situations where mainland to island migration is high, species-abundance relationships explain the presence of taxa on islands. Thus, more abundant mainland species should have a higher probability of occurring on adjacent islands. In contrast to UNTB, if certain groups have traits that permit them to disperse to islands better than other taxa, then phylogeny may be more predictive of which taxa will occur on islands. Taking surveys of 54 island snake communities in the Eastern Nearctic along with mainland communities that have abundance data for each species, we use phylogenetic assembly methods and UNTB estimates to predict island communities. Species richness is predicted by island area, whereas turnover from the mainland to island communities is random with respect to phylogeny. Community structure appears to be ecologically neutral and abundance on the mainland is the best predictor of presence on islands. With regard to young and proximate islands, where allopatric or cladogenetic speciation is not a factor, we find that simple neutral models following UNTB and ETIB predict the structure of island communities. © 2015 The Author(s).

  2. Machine learning and statistical methods for the prediction of maximal oxygen uptake: recent advances.

    Science.gov (United States)

    Abut, Fatih; Akay, Mehmet Fatih

    2015-01-01

    Maximal oxygen uptake (VO2max) indicates how many milliliters of oxygen the body can consume in a state of intense exercise per minute. VO2max plays an important role in both sport and medical sciences for different purposes, such as indicating the endurance capacity of athletes or serving as a metric in estimating the disease risk of a person. In general, the direct measurement of VO2max provides the most accurate assessment of aerobic power. However, despite a high level of accuracy, practical limitations associated with the direct measurement of VO2max, such as the requirement of expensive and sophisticated laboratory equipment or trained staff, have led to the development of various regression models for predicting VO2max. Consequently, a lot of studies have been conducted in the last years to predict VO2max of various target audiences, ranging from soccer athletes, nonexpert swimmers, cross-country skiers to healthy-fit adults, teenagers, and children. Numerous prediction models have been developed using different sets of predictor variables and a variety of machine learning and statistical methods, including support vector machine, multilayer perceptron, general regression neural network, and multiple linear regression. The purpose of this study is to give a detailed overview about the data-driven modeling studies for the prediction of VO2max conducted in recent years and to compare the performance of various VO2max prediction models reported in related literature in terms of two well-known metrics, namely, multiple correlation coefficient (R) and standard error of estimate. The survey results reveal that with respect to regression methods used to develop prediction models, support vector machine, in general, shows better performance than other methods, whereas multiple linear regression exhibits the worst performance.

  3. New method for probabilistic traffic demand predictions for en route sectors based on uncertain predictions of individual flight events.

    Science.gov (United States)

    2011-06-14

    This paper presents a novel analytical approach to and techniques for translating characteristics of uncertainty in predicting sector entry times and times in sector for individual flights into characteristics of uncertainty in predicting one-minute ...

  4. Predicting protein complex in protein interaction network - a supervised learning based method.

    Science.gov (United States)

    Yu, Feng; Yang, Zhi; Tang, Nan; Lin, Hong; Wang, Jian; Yang, Zhi

    2014-01-01

    Protein complexes are important for understanding principles of cellular organization and function. High-throughput experimental techniques have produced a large amount of protein interactions, making it possible to predict protein complexes from protein -protein interaction networks. However, most of current methods are unsupervised learning based methods which can't utilize the information of the large amount of available known complexes. We present a supervised learning-based method for predicting protein complexes in protein - protein interaction networks. The method extracts rich features from both the unweighted and weighted networks to train a Regression model, which is then used for the cliques filtering, growth, and candidate complex filtering. The model utilizes additional "uncertainty" samples and, therefore, is more discriminative when used in the complex detection algorithm. In addition, our method uses the maximal cliques found by the Cliques algorithm as the initial cliques, which has been proven to be more effective than the method of expanding from the seeding proteins used in other methods. The experimental results on several PIN datasets show that in most cases the performance of our method are superior to comparable state-of-the-art protein complex detection techniques. The results demonstrate the several advantages of our method over other state-of-the-art techniques. Firstly, our method is a supervised learning-based method that can make full use of the information of the available known complexes instead of being only based on the topological structure of the PIN. That also means, if more training samples are provided, our method can achieve better performance than those unsupervised methods. Secondly, we design the rich feature set to describe the properties of the known complexes, which includes not only the features from the unweighted network, but also those from the weighted network built based on the Gene Ontology information. Thirdly

  5. A Bayesian method and its variational approximation for prediction of genomic breeding values in multiple traits

    Directory of Open Access Journals (Sweden)

    Hayashi Takeshi

    2013-01-01

    Full Text Available Abstract Background Genomic selection is an effective tool for animal and plant breeding, allowing effective individual selection without phenotypic records through the prediction of genomic breeding value (GBV. To date, genomic selection has focused on a single trait. However, actual breeding often targets multiple correlated traits, and, therefore, joint analysis taking into consideration the correlation between traits, which might result in more accurate GBV prediction than analyzing each trait separately, is suitable for multi-trait genomic selection. This would require an extension of the prediction model for single-trait GBV to multi-trait case. As the computational burden of multi-trait analysis is even higher than that of single-trait analysis, an effective computational method for constructing a multi-trait prediction model is also needed. Results We described a Bayesian regression model incorporating variable selection for jointly predicting GBVs of multiple traits and devised both an MCMC iteration and variational approximation for Bayesian estimation of parameters in this multi-trait model. The proposed Bayesian procedures with MCMC iteration and variational approximation were referred to as MCBayes and varBayes, respectively. Using simulated datasets of SNP genotypes and phenotypes for three traits with high and low heritabilities, we compared the accuracy in predicting GBVs between multi-trait and single-trait analyses as well as between MCBayes and varBayes. The results showed that, compared to single-trait analysis, multi-trait analysis enabled much more accurate GBV prediction for low-heritability traits correlated with high-heritability traits, by utilizing the correlation structure between traits, while the prediction accuracy for uncorrelated low-heritability traits was comparable or less with multi-trait analysis in comparison with single-trait analysis depending on the setting for prior probability that a SNP has zero

  6. Assessment of temporal predictive models for health care using a formal method.

    Science.gov (United States)

    van Breda, Ward; Hoogendoorn, Mark; Eiben, A E; Berking, Matthias

    2017-08-01

    Recent developments in the field of sensor devices provide new possibilities to measure a variety of health related aspects in a precise and fine-grained manner. Subsequently, more empirical data will be generated than ever before. While this greatly improves the opportunities for creating accurate predictive models, other types of models besides the more traditional machine learning approaches can provide insights into temporal relationships in the data. Models that express temporal relationships between states in a mathematical manner are examples of such models. However, the evaluation methods traditionally used in the field of predictive modeling are not appropriate for those models, making it difficult to distinguish them in terms of validity. Appropriate assessment methodology is therefore necessary to drive the research of mathematical modeling forward. In this paper we investigate the applicability of such a formalized method. The method takes into account important model aspects, namely descriptive and predictive capability, parameter sensitivity and model complexity. As a case study the method is applied to a mathematical model in the domain of mental health, showing that the method generates useful insights into the behavior of the model. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. A Novel Method for Accurate Operon Predictions in All SequencedProkaryotes

    Energy Technology Data Exchange (ETDEWEB)

    Price, Morgan N.; Huang, Katherine H.; Alm, Eric J.; Arkin, Adam P.

    2004-12-01

    We combine comparative genomic measures and the distance separating adjacent genes to predict operons in 124 completely sequenced prokaryotic genomes. Our method automatically tailors itself to each genome using sequence information alone, and thus can be applied to any prokaryote. For Escherichia coli K12 and Bacillus subtilis, our method is 85 and 83% accurate, respectively, which is similar to the accuracy of methods that use the same features but are trained on experimentally characterized transcripts. In Halobacterium NRC-1 and in Helicobacterpylori, our method correctly infers that genes in operons are separated by shorter distances than they are in E.coli, and its predictions using distance alone are more accurate than distance-only predictions trained on a database of E.coli transcripts. We use microarray data from sixphylogenetically diverse prokaryotes to show that combining intergenic distance with comparative genomic measures further improves accuracy and that our method is broadly effective. Finally, we survey operon structure across 124 genomes, and find several surprises: H.pylori has many operons, contrary to previous reports; Bacillus anthracis has an unusual number of pseudogenes within conserved operons; and Synechocystis PCC6803 has many operons even though it has unusually wide spacings between conserved adjacent genes.

  8. A Review of Computational Methods to Predict the Risk of Rupture of Abdominal Aortic Aneurysms

    Directory of Open Access Journals (Sweden)

    Tejas Canchi

    2015-01-01

    Full Text Available Computational methods have played an important role in health care in recent years, as determining parameters that affect a certain medical condition is not possible in experimental conditions in many cases. Computational fluid dynamics (CFD methods have been used to accurately determine the nature of blood flow in the cardiovascular and nervous systems and air flow in the respiratory system, thereby giving the surgeon a diagnostic tool to plan treatment accordingly. Machine learning or data mining (MLD methods are currently used to develop models that learn from retrospective data to make a prediction regarding factors affecting the progression of a disease. These models have also been successful in incorporating factors such as patient history and occupation. MLD models can be used as a predictive tool to determine rupture potential in patients with abdominal aortic aneurysms (AAA along with CFD-based prediction of parameters like wall shear stress and pressure distributions. A combination of these computer methods can be pivotal in bridging the gap between translational and outcomes research in medicine. This paper reviews the use of computational methods in the diagnosis and treatment of AAA.

  9. TEHRAN AIR POLLUTANTS PREDICTION BASED ON RANDOM FOREST FEATURE SELECTION METHOD

    Directory of Open Access Journals (Sweden)

    A. Shamsoddini

    2017-09-01

    Full Text Available Air pollution as one of the most serious forms of environmental pollutions poses huge threat to human life. Air pollution leads to environmental instability, and has harmful and undesirable effects on the environment. Modern prediction methods of the pollutant concentration are able to improve decision making and provide appropriate solutions. This study examines the performance of the Random Forest feature selection in combination with multiple-linear regression and Multilayer Perceptron Artificial Neural Networks methods, in order to achieve an efficient model to estimate carbon monoxide and nitrogen dioxide, sulfur dioxide and PM2.5 contents in the air. The results indicated that Artificial Neural Networks fed by the attributes selected by Random Forest feature selection method performed more accurate than other models for the modeling of all pollutants. The estimation accuracy of sulfur dioxide emissions was lower than the other air contaminants whereas the nitrogen dioxide was predicted more accurate than the other pollutants.

  10. Tehran Air Pollutants Prediction Based on Random Forest Feature Selection Method

    Science.gov (United States)

    Shamsoddini, A.; Aboodi, M. R.; Karami, J.

    2017-09-01

    Air pollution as one of the most serious forms of environmental pollutions poses huge threat to human life. Air pollution leads to environmental instability, and has harmful and undesirable effects on the environment. Modern prediction methods of the pollutant concentration are able to improve decision making and provide appropriate solutions. This study examines the performance of the Random Forest feature selection in combination with multiple-linear regression and Multilayer Perceptron Artificial Neural Networks methods, in order to achieve an efficient model to estimate carbon monoxide and nitrogen dioxide, sulfur dioxide and PM2.5 contents in the air. The results indicated that Artificial Neural Networks fed by the attributes selected by Random Forest feature selection method performed more accurate than other models for the modeling of all pollutants. The estimation accuracy of sulfur dioxide emissions was lower than the other air contaminants whereas the nitrogen dioxide was predicted more accurate than the other pollutants.

  11. Automatic counting method for complex overlapping erythrocytes based on seed prediction in microscopic imaging

    Directory of Open Access Journals (Sweden)

    Xudong Wei

    2016-09-01

    Full Text Available Blood cell counting is an important medical test to help medical staffs diagnose various symptoms and diseases. An automatic segmentation of complex overlapping erythrocytes based on seed prediction in microscopic imaging is proposed. The four main innovations of this research are as follows: (1 Regions of erythrocytes extracted rapidly and accurately based on the G component. (2 K-means algorithm is applied on edge detection of overlapping erythrocytes. (3 Traces of erythrocytes’ biconcave shape are utilized to predict erythrocyte’s position in overlapping clusters. (4 A new automatic counting method which aims at complex overlapping erythrocytes is presented. The experimental results show that the proposed method is efficient and accurate with very little running time. The average accuracy of the proposed method reaches 97.0%.

  12. A Multifeatures Fusion and Discrete Firefly Optimization Method for Prediction of Protein Tyrosine Sulfation Residues.

    Science.gov (United States)

    Guo, Song; Liu, Chunhua; Zhou, Peng; Li, Yanling

    2016-01-01

    Tyrosine sulfation is one of the ubiquitous protein posttranslational modifications, where some sulfate groups are added to the tyrosine residues. It plays significant roles in various physiological processes in eukaryotic cells. To explore the molecular mechanism of tyrosine sulfation, one of the prerequisites is to correctly identify possible protein tyrosine sulfation residues. In this paper, a novel method was presented to predict protein tyrosine sulfation residues from primary sequences. By means of informative feature construction and elaborate feature selection and parameter optimization scheme, the proposed predictor achieved promising results and outperformed many other state-of-the-art predictors. Using the optimal features subset, the proposed method achieved mean MCC of 94.41% on the benchmark dataset, and a MCC of 90.09% on the independent dataset. The experimental performance indicated that our new proposed method could be effective in identifying the important protein posttranslational modifications and the feature selection scheme would be powerful in protein functional residues prediction research fields.

  13. Whole-Genome Regression and Prediction Methods Applied to Plant and Animal Breeding

    Science.gov (United States)

    de los Campos, Gustavo; Hickey, John M.; Pong-Wong, Ricardo; Daetwyler, Hans D.; Calus, Mario P. L.

    2013-01-01

    Genomic-enabled prediction is becoming increasingly important in animal and plant breeding and is also receiving attention in human genetics. Deriving accurate predictions of complex traits requires implementing whole-genome regression (WGR) models where phenotypes are regressed on thousands of markers concurrently. Methods exist that allow implementing these large-p with small-n regressions, and genome-enabled selection (GS) is being implemented in several plant and animal breeding programs. The list of available methods is long, and the relationships between them have not been fully addressed. In this article we provide an overview of available methods for implementing parametric WGR models, discuss selected topics that emerge in applications, and present a general discussion of lessons learned from simulation and empirical data analysis in the last decade. PMID:22745228

  14. Reliable B cell epitope predictions: impacts of method development and improved benchmarking

    DEFF Research Database (Denmark)

    Kringelum, Jens Vindahl; Lundegaard, Claus; Lund, Ole

    2012-01-01

    evaluation data set improved from 0.712 to 0.727. Our results thus demonstrate that given proper benchmark definitions, B-cell epitope prediction methods achieve highly significant predictive performances suggesting these tools to be a powerful asset in rational epitope discovery. The updated version...... biomedical applications such as; rational vaccine design, development of disease diagnostics and immunotherapeutics. However, experimental mapping of epitopes is resource intensive making in silico methods an appealing complementary approach. To date, the reported performance of methods for in silico mapping...... of B-cell epitopes has been moderate. Several issues regarding the evaluation data sets may however have led to the performance values being underestimated: Rarely, all potential epitopes have been mapped on an antigen, and antibodies are generally raised against the antigen in a given biological...

  15. Reliability residual-life prediction method for thermal aging based on performance degradation

    International Nuclear Information System (INIS)

    Ren Shuhong; Xue Fei; Yu Weiwei; Ti Wenxin; Liu Xiaotian

    2013-01-01

    The paper makes the study of the nuclear power plant main pipeline. The residual-life of the main pipeline that failed due to thermal aging has been studied by the use of performance degradation theory and Bayesian updating methods. Firstly, the thermal aging impact property degradation process of the main pipeline austenitic stainless steel has been analyzed by the accelerated thermal aging test data. Then, the thermal aging residual-life prediction model based on the impact property degradation data is built by Bayesian updating methods. Finally, these models are applied in practical situations. It is shown that the proposed methods are feasible and the prediction accuracy meets the needs of the project. Also, it provides a foundation for the scientific management of aging management of the main pipeline. (authors)

  16. Prediction of protein subcellular multisite localization using a new feature extraction method.

    Science.gov (United States)

    Wang, L Y; Wang, D; Chen, Y H

    2016-09-23

    A basic problem of proteomics is identifying the subcellular locations of a protein. One factor making the problem more complicated is that some proteins may simultaneously exist in two or more than two subcellular locations. To improve multisite prediction quality, it is necessary to use effective feature extraction methods. Here, we developed a new feature extraction method based on the pK value and frequencies of amino acids to represent a protein as a real values vector. Using this novel feature extraction method, the multi-label k-nearest neighbors (ML-KNN) algorithm and setting different weights into different attributes' ML-KNN, known as wML-KNN, were employed to predict multiplex protein subcellular locations. The best overall accuracy rate on dataset S1 from the predictor of Virus-mPLoc was 59.92 and 86.04% on dataset S2 from Gpos-mPLoc, respectively.

  17. Variable selection methods for developing a biomarker panel for prediction of dengue hemorrhagic fever.

    Science.gov (United States)

    Ju, Hyunsu; Brasier, Allan R

    2013-09-11

    The choice of selection methods to identify important variables for binary classification modeling is critical to produce stable models that are interpretable, that generate accurate predictions and have minimum bias. This work is motivated by data on clinical and laboratory features of severe dengue infections (dengue hemorrhagic fever, DHF) obtained from 51 individuals enrolled in a prospective observational study of acute human dengue infections. We carry out a comprehensive performance comparison using several classification models for DHF over the dengue data set. We compared variable selection results by Multivariate Adaptive Regression Splines, Learning Ensemble, Random Forest, Bayesian Moving Averaging, Stochastic Search Variable Selection, and Generalized Regularized Logistics Regression. Model averaging methods (bagging, boosting and ensemble learners) have higher accuracy, but the generalized regularized regression model has the highest predictive power because the linearity assumptions of candidate predictors are strongly satisfied via deviance chi-square testing procedures. Bootstrapping applications for evaluating predictive regression coefficients in regularized regression model are performed. Feature reduction methods introduce inherent biases and therefore are data-type dependent. We propose that these limitations can be overcome using an exhaustive approach for searching feature space. Using this approach, our results suggest that IL-10, platelet and lymphocyte counts are the major features for predicting dengue DHF on the basis of blood chemistries and cytokine measurements.

  18. Relative proportions of polycyclic aromatic hydrocarbons differ between accumulation bioassays and chemical methods to predict bioavailability

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Eyles, Jose L., E-mail: j.l.gomezeyles@reading.ac.u [University of Reading, School of Human and Environmental Sciences, Department of Soil Science, Reading RG6 6DW, Berkshire (United Kingdom); Collins, Chris D.; Hodson, Mark E. [University of Reading, School of Human and Environmental Sciences, Department of Soil Science, Reading RG6 6DW, Berkshire (United Kingdom)

    2010-01-15

    Chemical methods to predict the bioavailable fraction of organic contaminants are usually validated in the literature by comparison with established bioassays. A soil spiked with polycyclic aromatic hydrocarbons (PAHs) was aged over six months and subjected to butanol, cyclodextrin and tenax extractions as well as an exhaustive extraction to determine total PAH concentrations at several time points. Earthworm (Eisenia fetida) and rye grass root (Lolium multiflorum) accumulation bioassays were conducted in parallel. Butanol extractions gave the best relationship with earthworm accumulation (r{sup 2} <= 0.54, p <= 0.01); cyclodextrin, butanol and acetone-hexane extractions all gave good predictions of accumulation in rye grass roots (r{sup 2} <= 0.86, p <= 0.01). However, the profile of the PAHs extracted by the different chemical methods was significantly different (p < 0.01) to that accumulated in the organisms. Biota accumulated a higher proportion of the heavier 4-ringed PAHs. It is concluded that bioaccumulation is a complex process that cannot be predicted by measuring the bioavailable fraction alone. - The ability of chemical methods to predict PAH accumulation in Eisenia fetida and Lolium multiflorum was hindered by the varied metabolic fate of the different PAHs within the organisms.

  19. Data-Driven Nonlinear Subspace Modeling for Prediction and Control of Molten Iron Quality Indices in Blast Furnace Ironmaking

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Ping; Song, Heda; Wang, Hong; Chai, Tianyou

    2017-09-01

    Blast furnace (BF) in ironmaking is a nonlinear dynamic process with complicated physical-chemical reactions, where multi-phase and multi-field coupling and large time delay occur during its operation. In BF operation, the molten iron temperature (MIT) as well as Si, P and S contents of molten iron are the most essential molten iron quality (MIQ) indices, whose measurement, modeling and control have always been important issues in metallurgic engineering and automation field. This paper develops a novel data-driven nonlinear state space modeling for the prediction and control of multivariate MIQ indices by integrating hybrid modeling and control techniques. First, to improve modeling efficiency, a data-driven hybrid method combining canonical correlation analysis and correlation analysis is proposed to identify the most influential controllable variables as the modeling inputs from multitudinous factors would affect the MIQ indices. Then, a Hammerstein model for the prediction of MIQ indices is established using the LS-SVM based nonlinear subspace identification method. Such a model is further simplified by using piecewise cubic Hermite interpolating polynomial method to fit the complex nonlinear kernel function. Compared to the original Hammerstein model, this simplified model can not only significantly reduce the computational complexity, but also has almost the same reliability and accuracy for a stable prediction of MIQ indices. Last, in order to verify the practicability of the developed model, it is applied in designing a genetic algorithm based nonlinear predictive controller for multivariate MIQ indices by directly taking the established model as a predictor. Industrial experiments show the advantages and effectiveness of the proposed approach.

  20. Methods to improve genomic prediction and GWAS using combined Holstein populations

    DEFF Research Database (Denmark)

    Li, Xiujin

    The thesis focuses on methods to improve GWAS and genomic prediction using combined Holstein populations and investigations G by E interaction. The conclusions are: 1) Prediction reliabilities for Brazilian Holsteins can be increased by adding Nordic and Frensh genotyped bulls and a large G by E...... interaction exists between populations. 2) Combining data from Chinese and Danish Holstein populations increases the power of GWAS and detects new QTL regions for milk fatty acid traits. 3) The novel multi-trait Bayesian model efficiently estimates region-specific genomic variances, covariances...

  1. Input-constrained model predictive control via the alternating direction method of multipliers

    DEFF Research Database (Denmark)

    Sokoler, Leo Emil; Frison, Gianluca; Andersen, Martin S.

    2014-01-01

    is quadratic in the dimensions of the controlled system, and linear in the length of the prediction horizon. Simulations show that the approach proposed in this paper is more than an order of magnitude faster than several state-of-the-art quadratic programming algorithms, and that the difference in computation......This paper presents an algorithm, based on the alternating direction method of multipliers, for the convex optimal control problem arising in input-constrained model predictive control. We develop an efficient implementation of the algorithm for the extended linear quadratic control problem (LQCP...

  2. One accelerated method for predicting thermal annealing effects in post-irradiation CMOS devices

    International Nuclear Information System (INIS)

    He Baoping; Zhou Heqin; Guo Hongxia; Luo Yinhong; Zhang Fengqi; Yao Zhibin

    2005-01-01

    A method for accelerated predictions of the long-term anneal effects was presented. In order to find the correspondence between two anneals time, our estimating conditions were that each isochronal step was equal to the duration of the isothermal anneal leading to the same level of charge detrapping. The long term isothermal behavior at 100 degree C and 24 degree C of the type CC4007 CMOS devices were predicted by using isochronal anneal data of 25-250 degree C and compared with an experimental isothermal. The authors note a good agreement between simulation and experiment. (authors)

  3. Fast computational methods for predicting protein structure from primary amino acid sequence

    Science.gov (United States)

    Agarwal, Pratul Kumar [Knoxville, TN

    2011-07-19

    The present invention provides a method utilizing primary amino acid sequence of a protein, energy minimization, molecular dynamics and protein vibrational modes to predict three-dimensional structure of a protein. The present invention also determines possible intermediates in the protein folding pathway. The present invention has important applications to the design of novel drugs as well as protein engineering. The present invention predicts the three-dimensional structure of a protein independent of size of the protein, overcoming a significant limitation in the prior art.

  4. A prediction method for radon in groundwater using GIS and multivariate statistics.

    Science.gov (United States)

    Skeppström, Kirlna; Olofsson, Bo

    2006-08-31

    Radon (222Rn) in groundwater constitutes a source of natural radioactivity to indoor air. It is difficult to make predictions of radon levels in groundwater due to the heterogeneous distribution of uranium and radium, flow patterns and varying geochemical conditions. High radon concentrations in groundwater are not always associated with high uranium content in the bedrock, since groundwater with a high radon content has been found in regions with low to moderate uranium concentrations in the bedrock. This paper describes a methodology for predicting areas with high concentrations of 222Rn in groundwater on a general scale, within an area of approximately 185x145km2. The methodology is based on multivariate statistical analyses, including principal component analysis and regression analysis, and investigates the factors of geology, land use, topography and uranium (U) content in the bedrock. A statistical variable based method (the RV method) was used to estimate risk values related to different radon concentrations. The method was calibrated and tested on more than 4400 drilled wells in Stockholm County. The results showed that radon concentration was clearly correlated to bedrock type, well altitude and distance from fracture zones. The weighted index (risk value) estimated by the RV method provided a fair prediction of radon potential in groundwater on a general scale. Risk values obtained using the RV method were compared to radon measurements in 12 test areas (on a local scale, each of area 25x25km2) in Stockholm County and a high correlation (r=-0.87) was observed. The study showed that the occurrence and spread of radon in groundwater are guided by multiple factors, which can be used in a radon prediction method on a general scale. However, it does not provide any direct information on the geochemical and flow processes involved.

  5. Prediction of Human Vertebral Compressive Strength Using Quantitative Computed Tomography Based Nonlinear Finite Element Method

    Directory of Open Access Journals (Sweden)

    Ahad Zeinali

    2007-12-01

    Full Text Available Introduction: Because of the importance of vertebral compressive fracture (VCF role in increasing the patients’ death rate and reducing their quality of life, many studies have been conducted for a noninvasive prediction of vertebral compressive strength based on bone mineral density (BMD determination and recently finite element analysis. In this study, QCT-voxel based nonlinear finite element method is used for predicting vertebral compressive strength. Material and Methods: Four thoracolumbar vertebrae were excised from 3 cadavers with an average age of 42 years. They were then put in a water phantom and were scanned using the QCT. Using a computer program prepared in MATLAB, detailed voxel based geometry and mechanical characteristics of the vertebra were extracted from the CT images. The three dimensional finite element models of the samples were created using ANSYS computer program. The compressive strength of each vertebra body was calculated based on a linearly elastic-linearly plastic model and large deformation analysis in ANSYS and was compared to the value measured experimentally for that sample. Results: Based on the obtained results the QCT-voxel based nonlinear finite element method (FEM can predict vertebral compressive strength more effectively and accurately than the common QCT-voxel based linear FEM. The difference between the predicted strength values using this method and the measured ones was less than 1 kN for all the samples. Discussion and Conclusion: It seems that the QCT-voxel based nonlinear FEM used in this study can predict more effectively and accurately the vertebral strengths based on every vertebrae specification by considering their detailed geometric and densitometric characteristics.

  6. Prediction of pKa values using the PM6 semiempirical method

    Directory of Open Access Journals (Sweden)

    Jimmy C. Kromann

    2016-08-01

    Full Text Available The PM6 semiempirical method and the dispersion and hydrogen bond-corrected PM6-D3H+ method are used together with the SMD and COSMO continuum solvation models to predict pKa values of pyridines, alcohols, phenols, benzoic acids, carboxylic acids, and phenols using isodesmic reactions and compared to published ab initio results. The pKa values of pyridines, alcohols, phenols, and benzoic acids considered in this study can generally be predicted with PM6 and ab initio methods to within the same overall accuracy, with average mean absolute differences (MADs of 0.6–0.7 pH units. For carboxylic acids, the accuracy (0.7–1.0 pH units is also comparable to ab initio results if a single outlier is removed. For primary, secondary, and tertiary amines the accuracy is, respectively, similar (0.5–0.6, slightly worse (0.5–1.0, and worse (1.0–2.5, provided that di- and tri-ethylamine are used as reference molecules for secondary and tertiary amines. When applied to a drug-like molecule where an empirical pKa predictor exhibits a large (4.9 pH unit error, we find that the errors for PM6-based predictions are roughly the same in magnitude but opposite in sign. As a result, most of the PM6-based methods predict the correct protonation state at physiological pH, while the empirical predictor does not. The computational cost is around 2–5 min per conformer per core processor, making PM6-based pKa prediction computationally efficient enough to be used for high-throughput screening using on the order of 100 core processors.

  7. RANDOM FUNCTIONS AND INTERVAL METHOD FOR PREDICTING THE RESIDUAL RESOURCE OF BUILDING STRUCTURES

    Directory of Open Access Journals (Sweden)

    Shmelev Gennadiy Dmitrievich

    2017-11-01

    Full Text Available Subject: possibility of using random functions and interval prediction method for estimating the residual life of building structures in the currently used buildings. Research objectives: coordination of ranges of values to develop predictions and random functions that characterize the processes being predicted. Materials and methods: when performing this research, the method of random functions and the method of interval prediction were used. Results: in the course of this work, the basic properties of random functions, including the properties of families of random functions, are studied. The coordination of time-varying impacts and loads on building structures is considered from the viewpoint of their influence on structures and representation of the structures’ behavior in the form of random functions. Several models of random functions are proposed for predicting individual parameters of structures. For each of the proposed models, its scope of application is defined. The article notes that the considered approach of forecasting has been used many times at various sites. In addition, the available results allowed the authors to develop a methodology for assessing the technical condition and residual life of building structures for the currently used facilities. Conclusions: we studied the possibility of using random functions and processes for the purposes of forecasting the residual service lives of structures in buildings and engineering constructions. We considered the possibility of using an interval forecasting approach to estimate changes in defining parameters of building structures and their technical condition. A comprehensive technique for forecasting the residual life of building structures using the interval approach is proposed.

  8. Novel Methods for Drug-Target Interaction Prediction using Graph Mining

    KAUST Repository

    Ba Alawi, Wail

    2016-08-31

    The problem of developing drugs that can be used to cure diseases is important and requires a careful approach. Since pursuing the wrong candidate drug for a particular disease could be very costly in terms of time and money, there is a strong interest in minimizing such risks. Drug repositioning has become a hot topic of research, as it helps reduce these risks significantly at the early stages of drug development by reusing an approved drug for the treatment of a different disease. Still, finding new usage for a drug is non-trivial, as it is necessary to find out strong supporting evidence that the proposed new uses of drugs are plausible. Many computational approaches were developed to narrow the list of possible candidate drug-target interactions (DTIs) before any experiments are done. However, many of these approaches suffer from unacceptable levels of false positives. We developed two novel methods based on graph mining networks of drugs and targets. The first method (DASPfind) finds all non-cyclic paths that connect a drug and a target, and using a function that we define, calculates a score from all the paths. This score describes our confidence that DTI is correct. We show that DASPfind significantly outperforms other state-of-the-art methods in predicting the top ranked target for each drug. We demonstrate the utility of DASPfind by predicting 15 novel DTIs over a set of ion channel proteins, and confirming 12 out of these 15 DTIs through experimental evidence reported in literature and online drug databases. The second method (DASPfind+) modifies DASPfind in order to increase the confidence and reliability of the resultant predictions. Based on the structure of the drug-target interaction (DTI) networks, we introduced an optimization scheme that incrementally alters the network structure locally for each drug to achieve more robust top 1 ranked predictions. Moreover, we explored effects of several similarity measures between the targets on the prediction

  9. Alternative prediction methods of protein and energy evaluation of pig feeds.

    Science.gov (United States)

    Święch, Ewa

    2017-01-01

    Precise knowledge of the actual nutritional value of individual feedstuffs and complete diets for pigs is important for efficient livestock production. Methods of assessment of protein and energy values in pig feeds have been briefly described. In vivo determination of protein and energy values of feeds in pigs are time-consuming, expensive and very often require the use of surgically-modified animals. There is a need for more simple, rapid, inexpensive and reproducible methods for routine feed evaluation. Protein and energy values of pig feeds can be estimated using the following alternative methods: 1) prediction equations based on chemical composition; 2) animal models as rats, cockerels and growing pigs for adult animals; 3) rapid methods, such as the mobile nylon bag technique and in vitro methods. Alternative methods developed for predicting the total tract and ileal digestibility of nutrients including amino acids in feedstuffs and diets for pigs have been reviewed. This article focuses on two in vitro methods that can be used for the routine evaluation of amino acid ileal digestibility and energy value of pig feeds and on factors affecting digestibility determined in vivo in pigs and by alternative methods. Validation of alternative methods has been carried out by comparing the results obtained using these methods with those acquired in vivo in pigs. In conclusion, energy and protein values of pig feeds may be estimated with satisfactory precision in rats and by the two- or three-step in vitro methods providing equations for the calculation of standardized ileal digestibility of amino acids and metabolizable energy content. The use of alternative methods of feed evaluation is an important way for reduction of stressful animal experiments.

  10. Methods of suicide predict the risks and method-switching of subsequent suicide attempts: a community cohort study in Taiwan

    Directory of Open Access Journals (Sweden)

    Huang YC

    2014-05-01

    Full Text Available Yu-Chi Huang,1 Ya-Wen Wu,2 Chih-Ken Chen,3 Liang-Jen Wang41Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; 2Department of Psychiatry, Chang Gung Memorial Hospital, Keelung, Taiwan; 3Department of Psychiatry, Chang Gung Memorial Hospital, Keelung and Chang Gung University School of Medicine, Taoyuan, Taiwan; 4Department of Child and Adolescent Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, TaiwanObjective: Suicide is a major public health concern. This study aimed to determine the predictors of repeated suicide attempts, focusing on whether lethality level of the suicidal method predicts the risk of subsequent suicide attempts.Methods: All consecutive individuals (N=2,070 with an episode of nonfatal self-harm registered in a surveillance database provided by the Department of Health of Keelung City Government in Taiwan from January 1, 2006 to December 31, 2010 were enrolled and followed up until the end of 2011. The earliest attempt recorded in the database was defined as the index attempt. Subjects were classified according to suicide method into low-lethal and high-lethal groups. Data on time of and methods chosen for subsequent suicide attempts during the follow-up period were analyzed.Results: Of the total people screened for the study, 18.1% made a repeated suicide attempt. Subjects in the high-lethal group were more likely to be male; aged 35–64 years; and single, divorced, or widowed. Compared to other time intervals, most subsequent suicide attempts occurred within 6 months from the index attempt. The independent predictors for repeated suicide attempts were the use of low-lethal methods in the index attempt and being 35–49 years old. Using high-lethal methods and being older than 50 years were associated with changing suicide method for the second attempt.Conclusion: Lethality level of

  11. A New Hybrid Method for Improving the Performance of Myocardial Infarction Prediction

    Directory of Open Access Journals (Sweden)

    Hojatollah Hamidi

    2016-06-01

    Full Text Available Abstract Introduction: Myocardial Infarction, also known as heart attack, normally occurs due to such causes as smoking, family history, diabetes, and so on. It is recognized as one of the leading causes of death in the world. Therefore, the present study aimed to evaluate the performance of classification models in order to predict Myocardial Infarction, using a feature selection method that includes Forward Selection and Genetic Algorithm. Materials & Methods: The Myocardial Infarction data set used in this study contains the information related to 519 visitors to Shahid Madani Specialized Hospital of Khorramabad, Iran. This data set includes 33 features. The proposed method includes a hybrid feature selection method in order to enhance the performance of classification algorithms. The first step of this method selects the features using Forward Selection. At the second step, the selected features were given to a genetic algorithm, in order to select the best features. Classification algorithms entail Ada Boost, Naïve Bayes, J48 decision tree and simpleCART are applied to the data set with selected features, for predicting Myocardial Infarction. Results: The best results have been achieved after applying the proposed feature selection method, which were obtained via simpleCART and J48 algorithms with the accuracies of 96.53% and 96.34%, respectively. Conclusion: Based on the results, the performances of classification algorithms are improved. So, applying the proposed feature selection method, along with classification algorithms seem to be considered as a confident method with respect to predicting the Myocardial Infarction.

  12. A high-throughput exploration of magnetic materials by using structure predicting methods

    Science.gov (United States)

    Arapan, S.; Nieves, P.; Cuesta-López, S.

    2018-02-01

    We study the capability of a structure predicting method based on genetic/evolutionary algorithm for a high-throughput exploration of magnetic materials. We use the USPEX and VASP codes to predict stable and generate low-energy meta-stable structures for a set of representative magnetic structures comprising intermetallic alloys, oxides, interstitial compounds, and systems containing rare-earths elements, and for both types of ferromagnetic and antiferromagnetic ordering. We have modified the interface between USPEX and VASP codes to improve the performance of structural optimization as well as to perform calculations in a high-throughput manner. We show that exploring the structure phase space with a structure predicting technique reveals large sets of low-energy metastable structures, which not only improve currently exiting databases, but also may provide understanding and solutions to stabilize and synthesize magnetic materials suitable for permanent magnet applications.

  13. NetMHCpan, a method for MHC class I binding prediction beyond humans

    DEFF Research Database (Denmark)

    Hoof, Ilka; Peters, B; Sidney, J

    2009-01-01

    immunologists in interpreting cellular immune responses in large out-bred populations is demonstrated. Further, we used NetMHCpan-2.0 to predict potential binding peptides for the pig MHC class I molecule SLA-1*0401. Ninety-three percent of the predicted peptides were demonstrated to bind stronger than 500 n...... MHC molecule. The potentially unique specificity of the majority of HLA alleles that have been identified to date remains uncharacterized. Likewise, only a limited number of chimpanzee and rhesus macaque MHC class I molecules have been characterized experimentally. Here, we present NetMHCpan-2.......0, a method that generates quantitative predictions of the affinity of any peptide-MHC class I interaction. NetMHCpan-2.0 has been trained on the hitherto largest set of quantitative MHC binding data available, covering HLA-A and HLA-B, as well as chimpanzee, rhesus macaque, gorilla, and mouse MHC class I...

  14. Prediction of Student Dropout in E-Learning Program Through the Use of Machine Learning Method

    Directory of Open Access Journals (Sweden)

    Mingjie Tan

    2015-02-01

    Full Text Available The high rate of dropout is a serious problem in E-learning program. Thus it has received extensive concern from the education administrators and researchers. Predicting the potential dropout students is a workable solution to prevent dropout. Based on the analysis of related literature, this study selected student’s personal characteristic and academic performance as input attributions. Prediction models were developed using Artificial Neural Network (ANN, Decision Tree (DT and Bayesian Networks (BNs. A large sample of 62375 students was utilized in the procedures of model training and testing. The results of each model were presented in confusion matrix, and analyzed by calculating the rates of accuracy, precision, recall, and F-measure. The results suggested all of the three machine learning methods were effective in student dropout prediction, and DT presented a better performance. Finally, some suggestions were made for considerable future research.

  15. Analysis backpropagation methods with neural network for prediction of children's ability in psychomotoric

    Science.gov (United States)

    Izhari, F.; Dhany, H. W.; Zarlis, M.; Sutarman

    2018-03-01

    A good age in optimizing aspects of development is at the age of 4-6 years, namely with psychomotor development. Psychomotor is broader, more difficult to monitor but has a meaningful value for the child's life because it directly affects his behavior and deeds. Therefore, there is a problem to predict the child's ability level based on psychomotor. This analysis uses backpropagation method analysis with artificial neural network to predict the ability of the child on the psychomotor aspect by generating predictions of the child's ability on psychomotor and testing there is a mean squared error (MSE) value at the end of the training of 0.001. There are 30% of children aged 4-6 years have a good level of psychomotor ability, excellent, less good, and good enough.

  16. Selection of Prediction Methods for Thermophysical Properties for Process Modeling and Product Design of Biodiesel Manufacturing

    DEFF Research Database (Denmark)

    Su, Yung-Chieh; Liu, Y. A.; Díaz Tovar, Carlos Axel

    2011-01-01

    To optimize biodiesel manufacturing, many reported studies have built simulation models to quantify the relationship between operating conditions and process performance. For mass and energy balance simulations, it is essential to know the four fundamental thermophysical properties of the feed oil......: liquid density (ρL), vapor pressure (Pvap), liquid heat capacity (CPL), and heat of vaporization (ΔHvap). Additionally, to characterize the fuel qualities, it is critical to develop quantitative correlations to predict three biodiesel properties, namely, viscosity, cetane number, and flash point. Also......, to ensure the operability of biodiesel in cold weather, one needs to quantitatively predict three low-temperature flow properties: cloud point (CP), pour point (PP), and cold filter plugging point (CFPP). This article presents the results from a comprehensive evaluation of the methods for predicting...

  17. Method and apparatus for autonomous, in-receiver prediction of GNSS ephemerides

    Science.gov (United States)

    Bar-Sever, Yoaz E. (Inventor); Bertiger, William I. (Inventor)

    2012-01-01

    Methods and apparatus for autonomous in-receiver prediction of orbit and clock states of Global Navigation Satellite Systems (GNSS) are described. Only the GNSS broadcast message is used, without need for periodic externally-communicated information. Earth orientation information is extracted from the GNSS broadcast ephemeris. With the accurate estimation of the Earth orientation parameters it is possible to propagate the best-fit GNSS orbits forward in time in an inertial reference frame. Using the estimated Earth orientation parameters, the predicted orbits are then transformed into Earth-Centered-Earth-Fixed (ECEF) coordinates to be used to assist the GNSS receiver in the acquisition of the signals. GNSS satellite clock states are also extracted from the broadcast ephemeris and a parameterized model of clock behavior is fit to that data. The estimated modeled clocks are then propagated forward in time to enable, together with the predicted orbits, quicker GNSS signal acquisition.

  18. Permeability Prediction for Nahr-Umr Reservoir / Subba field by Using FZI Method

    Directory of Open Access Journals (Sweden)

    Sameera M. Hamd- Allah

    2016-09-01

    Full Text Available The permeability determination in the reservoirs that are anisotropic and heterogeneous is a complicated problem due to the limited number of wells that contain core samples and well test data. This paper presents hydraulic flow units and flow zone indicator for predicting permeability of rock mass from core for Nahr-Umr reservoir/ Subba field. The Permeability measurement is better found in the laboratory work on the cored rock that taken from the formation. Nahr-Umr Formation is the main lower cretaceous sandstone reservoir in southern of Iraq. This formation is made up mainly of sandstone. Nahr-Umr formation was deposited on a gradually rising basin floor. The digenesis of Nahr-Umr sediments is very important due to its direct relation to the porosity and permeability. In this study permeability has been predicated by using the flow zone indicator methods. This method attempts to identify the flow zone indicator in un-cored wells using log records. Once the flow zone indicator is calculated from the core data, a relationship between this FZI value and the well logs can be obtained. Three relationships have been found for Nahr-Umr reservoir/Subba field by FZI method. By plotting the permeability of the core versus the permeability that is predicted by FZI method the parameter R2 was found (0.905 which is very good for predict the permeability.

  19. Prediction Study of Tunnel Collapse Risk in Advance based on Efficacy Coefficient Method and Geological Forecast

    Directory of Open Access Journals (Sweden)

    QIU Daohong

    2014-08-01

    Full Text Available Collapse is one of the most common accidents in underground constructions. Risk evaluation is the method of measuring the risk of chamber collapse. To ensure the safety of construction, a risk evaluation model of tunnel collapse based on an efficacy coefficient method and geological prediction was put forward. Based on the comprehensive analysis of collapse factors, five main factors including rock uniaxial compressive strength, surrounding rock integrated coefficient, state of discontinuous structural planes, the angle between tunnel axis and major structural plane and underground water were chosen as the risk evaluation indices of tunnel collapse. The evaluation indices were quantitatively described by using TSP203 system and core-drilling to establish the risk early warning model of tunnel collapse based on the basic principle of the efficacy coefficient method. The model established in this research was applied in the collapse risk recognition of Kiaochow Bay subsea tunnel in Qingdao, China. The results showed that the collapse risk recognition method presents higher prediction accuracy and provided a new idea for the risk prediction of tunnel collapse.

  20. Critical assessment of methods of protein structure prediction (CASP) - round x

    KAUST Repository

    Moult, John

    2013-12-17

    This article is an introduction to the special issue of the journal PROTEINS, dedicated to the tenth Critical Assessment of Structure Prediction (CASP) experiment to assess the state of the art in protein structure modeling. The article describes the conduct of the experiment, the categories of prediction included, and outlines the evaluation and assessment procedures. The 10 CASP experiments span almost 20 years of progress in the field of protein structure modeling, and there have been enormous advances in methods and model accuracy in that period. Notable in this round is the first sustained improvement of models with refinement methods, using molecular dynamics. For the first time, we tested the ability of modeling methods to make use of sparse experimental three-dimensional contact information, such as may be obtained from new experimental techniques, with encouraging results. On the other hand, new contact prediction methods, though holding considerable promise, have yet to make an impact in CASP testing. The nature of CASP targets has been changing in recent CASPs, reflecting shifts in experimental structural biology, with more irregular structures, more multi-domain and multi-subunit structures, and less standard versions of known folds. When allowance is made for these factors, we continue to see steady progress in the overall accuracy of models, particularly resulting from improvement of non-template regions.

  1. Prediction of pKa Values for Druglike Molecules Using Semiempirical Quantum Chemical Methods.

    Science.gov (United States)

    Jensen, Jan H; Swain, Christopher J; Olsen, Lars

    2017-01-26

    Rapid yet accurate pK a prediction for druglike molecules is a key challenge in computational chemistry. This study uses PM6-DH+/COSMO, PM6/COSMO, PM7/COSMO, PM3/COSMO, AM1/COSMO, PM3/SMD, AM1/SMD, and DFTB3/SMD to predict the pK a values of 53 amine groups in 48 druglike compounds. The approach uses an isodesmic reaction where the pK a value is computed relative to a chemically related reference compound for which the pK a value has been measured experimentally or estimated using a standard empirical approach. The AM1- and PM3-based methods perform best with RMSE values of 1.4-1.6 pH units that have uncertainties of ±0.2-0.3 pH units, which make them statistically equivalent. However, for all but PM3/SMD and AM1/SMD the RMSEs are dominated by a single outlier, cefadroxil, caused by proton transfer in the zwitterionic protonation state. If this outlier is removed, the RMSE values for PM3/COSMO and AM1/COSMO drop to 1.0 ± 0.2 and 1.1 ± 0.3, whereas PM3/SMD and AM1/SMD remain at 1.5 ± 0.3 and 1.6 ± 0.3/0.4 pH units, making the COSMO-based predictions statistically better than the SMD-based predictions. For pK a calculations where a zwitterionic state is not involved or proton transfer in a zwitterionic state is not observed, PM3/COSMO or AM1/COSMO is the best pK a prediction method; otherwise PM3/SMD or AM1/SMD should be used. Thus, fast and relatively accurate pK a prediction for 100-1000s of druglike amines is feasible with the current setup and relatively modest computational resources.

  2. A Critical Review for Developing Accurate and Dynamic Predictive Models Using Machine Learning Methods in Medicine and Health Care.

    Science.gov (United States)

    Alanazi, Hamdan O; Abdullah, Abdul Hanan; Qureshi, Kashif Naseer

    2017-04-01

    Recently, Artificial Intelligence (AI) has been used widely in medicine and health care sector. In machine learning, the classification or prediction is a major field of AI. Today, the study of existing predictive models based on machine learning methods is extremely active. Doctors need accurate predictions for the outcomes of their patients' diseases. In addition, for accurate predictions, timing is another significant factor that influences treatment decisions. In this paper, existing predictive models in medicine and health care have critically reviewed. Furthermore, the most famous machine learning methods have explained, and the confusion between a statistical approach and machine learning has clarified. A review of related literature reveals that the predictions of existing predictive models differ even when the same dataset is used. Therefore, existing predictive models are essential, and current methods must be improved.

  3. Feature Selection Methods for Early Predictive Biomarker Discovery Using Untargeted Metabolomic Data.

    Science.gov (United States)

    Grissa, Dhouha; Pétéra, Mélanie; Brandolini, Marion; Napoli, Amedeo; Comte, Blandine; Pujos-Guillot, Estelle

    2016-01-01

    Untargeted metabolomics is a powerful phenotyping tool for better understanding biological mechanisms involved in human pathology development and identifying early predictive biomarkers. This approach, based on multiple analytical platforms, such as mass spectrometry (MS), chemometrics and bioinformatics, generates massive and complex data that need appropriate analyses to extract the biologically meaningful information. Despite various tools available, it is still a challenge to handle such large and noisy datasets with limited number of individuals without risking overfitting. Moreover, when the objective is focused on the identification of early predictive markers of clinical outcome, few years before occurrence, it becomes essential to use the appropriate algorithms and workflow to be able to discover subtle effects among this large amount of data. In this context, this work consists in studying a workflow describing the general feature selection process, using knowledge discovery and data mining methodologies to propose advanced solutions for predictive biomarker discovery. The strategy was focused on evaluating a combination of numeric-symbolic approaches for feature selection with the objective of obtaining the best combination of metabolites producing an effective and accurate predictive model. Relying first on numerical approaches, and especially on machine learning methods (SVM-RFE, RF, RF-RFE) and on univariate statistical analyses (ANOVA), a comparative study was performed on an original metabolomic dataset and reduced subsets. As resampling method, LOOCV was applied to minimize the risk of overfitting. The best k-features obtained with different scores of importance from the combination of these different approaches were compared and allowed determining the variable stabilities using Formal Concept Analysis. The results revealed the interest of RF-Gini combined with ANOVA for feature selection as these two complementary methods allowed selecting the 48

  4. Bayesian prediction of future ice sheet volume using local approximation Markov chain Monte Carlo methods

    Science.gov (United States)

    Davis, A. D.; Heimbach, P.; Marzouk, Y.

    2017-12-01

    We develop a Bayesian inverse modeling framework for predicting future ice sheet volume with associated formal uncertainty estimates. Marine ice sheets are drained by fast-flowing ice streams, which we simulate using a flowline model. Flowline models depend on geometric parameters (e.g., basal topography), parameterized physical processes (e.g., calving laws and basal sliding), and climate parameters (e.g., surface mass balance), most of which are unknown or uncertain. Given observations of ice surface velocity and thickness, we define a Bayesian posterior distribution over static parameters, such as basal topography. We also define a parameterized distribution over variable parameters, such as future surface mass balance, which we assume are not informed by the data. Hyperparameters are used to represent climate change scenarios, and sampling their distributions mimics internal variation. For example, a warming climate corresponds to increasing mean surface mass balance but an individual sample may have periods of increasing or decreasing surface mass balance. We characterize the predictive distribution of ice volume by evaluating the flowline model given samples from the posterior distribution and the distribution over variable parameters. Finally, we determine the effect of climate change on future ice sheet volume by investigating how changing the hyperparameters affects the predictive distribution. We use state-of-the-art Bayesian computation to address computational feasibility. Characterizing the posterior distribution (using Markov chain Monte Carlo), sampling the full range of variable parameters and evaluating the predictive model is prohibitively expensive. Furthermore, the required resolution of the inferred basal topography may be very high, which is often challenging for sampling methods. Instead, we leverage regularity in the predictive distribution to build a computationally cheaper surrogate over the low dimensional quantity of interest (future ice

  5. Prediction of serotonin transporter promoter polymorphism genotypes from single nucleotide polymorphism arrays using machine learning methods.

    Science.gov (United States)

    Lu, Ake Tzu-Hui; Bakker, Steven; Janson, Esther; Cichon, Sven; Cantor, Rita M; Ophoff, Roel A

    2012-08-01

    The serotonin transporter gene (SLC6A4) and its promoter (5-HTTLPR) polymorphism have been the focus of a large number of association studies of behavioral traits and psychiatric disorders. However, large-scale genotyping of the polymorphism has been very difficult. We report the development and validation of a 5-HTTLPR genotype prediction model. The single nucleotide polymorphisms (SNPs) from the 2000 kb region surrounding 5-HTTLPR were used to construct a prediction model through a newly developed machine learning method, multicategory vertex discriminant analysis with 2147 individuals from the Northern Finnish Birth Cohort genotyped with the Illumina 370K SNP array and manually genotyped for 5-HTTLPR polymorphism. The prediction model was applied to SNP genotypes in a Dutch/German schizophrenia case-control sample of 3318 individuals to test the association of the polymorphism with schizophrenia. The prediction model of eight SNPs achieved a 92.4% accuracy rate and a 0.98±0.01 area under the receiving operating characteristic. Evidence for an association of the polymorphism with schizophrenia was observed (P=0.05, odds ratio=1.105). This prediction model provides an effective substitute of manually genotyped 5-HTTLPR alleles, providing a new approach for large scale association studies of this polymorphism.

  6. A link prediction method for heterogeneous networks based on BP neural network

    Science.gov (United States)

    Li, Ji-chao; Zhao, Dan-ling; Ge, Bing-Feng; Yang, Ke-Wei; Chen, Ying-Wu

    2018-04-01

    Most real-world systems, composed of different types of objects connected via many interconnections, can be abstracted as various complex heterogeneous networks. Link prediction for heterogeneous networks is of great significance for mining missing links and reconfiguring networks according to observed information, with considerable applications in, for example, friend and location recommendations and disease-gene candidate detection. In this paper, we put forward a novel integrated framework, called MPBP (Meta-Path feature-based BP neural network model), to predict multiple types of links for heterogeneous networks. More specifically, the concept of meta-path is introduced, followed by the extraction of meta-path features for heterogeneous networks. Next, based on the extracted meta-path features, a supervised link prediction model is built with a three-layer BP neural network. Then, the solution algorithm of the proposed link prediction model is put forward to obtain predicted results by iteratively training the network. Last, numerical experiments on the dataset of examples of a gene-disease network and a combat network are conducted to verify the effectiveness and feasibility of the proposed MPBP. It shows that the MPBP with very good performance is superior to the baseline methods.

  7. Prediction of cloud condensation nuclei activity for organic compounds using functional group contribution methods

    Science.gov (United States)

    Petters, M. D.; Kreidenweis, S. M.; Ziemann, P. J.

    2016-01-01

    A wealth of recent laboratory and field experiments demonstrate that organic aerosol composition evolves with time in the atmosphere, leading to changes in the influence of the organic fraction to cloud condensation nuclei (CCN) spectra. There is a need for tools that can realistically represent the evolution of CCN activity to better predict indirect effects of organic aerosol on clouds and climate. This work describes a model to predict the CCN activity of organic compounds from functional group composition. Following previous methods in the literature, we test the ability of semi-empirical group contribution methods in Köhler theory to predict the effective hygroscopicity parameter, kappa. However, in our approach we also account for liquid-liquid phase boundaries to simulate phase-limited activation behavior. Model evaluation against a selected database of published laboratory measurements demonstrates that kappa can be predicted within a factor of 2. Simulation of homologous series is used to identify the relative effectiveness of different functional groups in increasing the CCN activity of weakly functionalized organic compounds. Hydroxyl, carboxyl, aldehyde, hydroperoxide, carbonyl, and ether moieties promote CCN activity while methylene and nitrate moieties inhibit CCN activity. The model can be incorporated into scale-bridging test beds such as the Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A) to evaluate the evolution of kappa for a complex mix of organic compounds and to develop suitable parameterizations of CCN evolution for larger-scale models.

  8. Development and validation of a spectroscopic method to predict wheat protein digestibility.

    Science.gov (United States)

    Wang, L F; Swift, M L; Zijlstra, R T

    2012-12-01

    The CP digestibility is traditionally measured by chemical analyses of CP and marker concentration in digesta and diets. Potentially, CP digestibility can also be predicted by marker concentrations and spectral analyses of digesta and diet. Spectroscopy is a rapid, nondestructive method to ascertain qualitative and quantitative chemical information. Based on Beer's law, a spectroscopic method was developed to predict in vivo CP digestibility. To validate, samples of digesta and diet of wheat grain with predetermined apparent ileal digestibility (AID) of CP were scanned on a Fourier transform midinfrared (FTIR) instrument with a single-reflection attenuated total reflectance attachment. The AID of CP was calculated from peak intensities of spectra and measured marker concentrations in digesta and diet and then compared with in vivo AID of CP. The AID of CP of a wheat-based diet was predicted accurately with a deviation of 0.68 ± 0.86% from in vivo AID of CP ranging from 60.4 to 87.8%. Functional group digestibility based on the peak at 1,643 cm(-1) or the Amide I region was strongly correlated (r ≥ 0.99; P digestibility can also be potentially predicted directly from FTIR spectra.

  9. A prediction method for the wax deposition rate based on a radial basis function neural network

    Directory of Open Access Journals (Sweden)

    Ying Xie

    2017-06-01

    Full Text Available The radial basis function neural network is a popular supervised learning tool based on machinery learning technology. Its high precision having been proven, the radial basis function neural network has been applied in many areas. The accumulation of deposited materials in the pipeline may lead to the need for increased pumping power, a decreased flow rate or even to the total blockage of the line, with losses of production and capital investment, so research on predicting the wax deposition rate is significant for the safe and economical operation of an oil pipeline. This paper adopts the radial basis function neural network to predict the wax deposition rate by considering four main influencing factors, the pipe wall temperature gradient, pipe wall wax crystal solubility coefficient, pipe wall shear stress and crude oil viscosity, by the gray correlational analysis method. MATLAB software is employed to establish the RBF neural network. Compared with the previous literature, favorable consistency exists between the predicted outcomes and the experimental results, with a relative error of 1.5%. It can be concluded that the prediction method of wax deposition rate based on the RBF neural network is feasible.

  10. Novel Method to Predict In Vivo Liver-to-Plasma Kpuufor OATP Substrates Using Suspension Hepatocytes.

    Science.gov (United States)

    Riccardi, Keith; Lin, Jian; Li, Zhenhong; Niosi, Mark; Ryu, Sangwoo; Hua, Wenyi; Atkinson, Karen; Kosa, Rachel E; Litchfield, John; Di, Li

    2017-05-01

    The ability to predict human liver-to-plasma unbound partition coefficient (K puu ) is of great importance to estimate unbound liver concentration, develop PK/PD relationships, predict efficacy and toxicity in the liver, and model the drug-drug interaction potential for drugs that are asymmetrically distributed into the liver. A novel in vitro method has been developed to predict in vivo K puu with good accuracy using cryopreserved suspension hepatocytes in InVitroGRO HI media with 4% BSA. Validation was performed using six OATP substrates with rat in vivo K puu data from i.v. infusion studies where a steady state was achieved. Good in vitro-in vivo correlation (IVIVE) was observed as the in vitro K puu values were mostly within 2-fold of in vivo K puu Good K puu IVIVE in human was also observed with in vivo K puu data of dehydropravastatin from positron emission tomography and in vivo K puu data from PK/PD modeling for pravastatin and rosuvastatin. Under the specific K puu assay conditions, the drug-metabolizing enzymes and influx/efflux transporters appear to function at physiologic levels. No scaling factors are necessary to predict in vivo K puu from in vitro data. The novel in vitro K puu method provides a useful tool in drug discovery to project in vivo K puu . Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  11. Prediction Model of Collapse Risk Based on Information Entropy and Distance Discriminant Analysis Method

    Directory of Open Access Journals (Sweden)

    Hujun He

    2017-01-01

    Full Text Available The prediction and risk classification of collapse is an important issue in the process of highway construction in mountainous regions. Based on the principles of information entropy and Mahalanobis distance discriminant analysis, we have produced a collapse hazard prediction model. We used the entropy measure method to reduce the influence indexes of the collapse activity and extracted the nine main indexes affecting collapse activity as the discriminant factors of the distance discriminant analysis model (i.e., slope shape, aspect, gradient, and height, along with exposure of the structural face, stratum lithology, relationship between weakness face and free face, vegetation cover rate, and degree of rock weathering. We employ postearthquake collapse data in relation to construction of the Yingxiu-Wolong highway, Hanchuan County, China, as training samples for analysis. The results were analyzed using the back substitution estimation method, showing high accuracy and no errors, and were the same as the prediction result of uncertainty measure. Results show that the classification model based on information entropy and distance discriminant analysis achieves the purpose of index optimization and has excellent performance, high prediction accuracy, and a zero false-positive rate. The model can be used as a tool for future evaluation of collapse risk.

  12. Predictive efficiency of distinct color image segmentation methods for measuring intramuscular fat in beef

    Directory of Open Access Journals (Sweden)

    Renius Mello

    2015-10-01

    Full Text Available Intramuscular fat (IMF influences important quality characteristics of meat, such as flavor, juiciness, palatability, odor and tenderness. Thus, the objective of this study was to apply the following image processing techniques to quantify the IMF in beef: palette; sampling, interval of coordinates; black and white threshold; and discriminant function of colors. Thirty-five samples of beef, with a wide range of IMF, were used. Color images were taken of the meat samples from different muscles, with variability in the IMF content. The IMF of a thin cross-section meat was determined by chemical lipid extraction and was predicted by image analysis. The chemical method was compared with the image analysis. The segmentation procedures were validated by the adjustment of a linear regression equation to the series of values that were observed and predicted, as well as the regression parameters evaluated by the F-test. The predictive power of these approaches was also compared by residual analysis and by the decomposition of the mean square deviations. The results showed that the discriminant function was the best color segmentation method to measure intramuscular fat via digital images, but required adjustments in the prediction pattern.

  13. Prediction Method for the Complete Characteristic Curves of a Francis Pump-Turbine

    Directory of Open Access Journals (Sweden)

    Wei Huang

    2018-02-01

    Full Text Available Complete characteristic curves of a pump-turbine are essential for simulating the hydraulic transients and designing pumped storage power plants but are often unavailable in the preliminary design stage. To solve this issue, a prediction method for the complete characteristics of a Francis pump-turbine was proposed. First, based on Euler equations and the velocity triangles at the runners, a mathematical model describing the complete characteristics of a Francis pump-turbine was derived. According to multiple sets of measured complete characteristic curves, explicit expressions for the characteristic parameters of characteristic operating point sets (COPs, as functions of a specific speed and guide vane opening, were then developed to determine the undetermined coefficients in the mathematical model. Ultimately, by combining the mathematical model with the regression analysis of COPs, the complete characteristic curves for an arbitrary specific speed were predicted. Moreover, a case study shows that the predicted characteristic curves are in good agreement with the measured data. The results obtained by 1D numerical simulation of the hydraulic transient process using the predicted characteristics deviate little from the measured characteristics. This method is effective and sufficient for a priori simulations before obtaining the measured characteristics and provides important support for the preliminary design of pumped storage power plants.

  14. Complex data modeling and computationally intensive methods for estimation and prediction

    CERN Document Server

    Secchi, Piercesare; Advances in Complex Data Modeling and Computational Methods in Statistics

    2015-01-01

    The book is addressed to statisticians working at the forefront of the statistical analysis of complex and high dimensional data and offers a wide variety of statistical models, computer intensive methods and applications: network inference from the analysis of high dimensional data; new developments for bootstrapping complex data; regression analysis for measuring the downsize reputational risk; statistical methods for research on the human genome dynamics; inference in non-euclidean settings and for shape data; Bayesian methods for reliability and the analysis of complex data; methodological issues in using administrative data for clinical and epidemiological research; regression models with differential regularization; geostatistical methods for mobility analysis through mobile phone data exploration. This volume is the result of a careful selection among the contributions presented at the conference "S.Co.2013: Complex data modeling and computationally intensive methods for estimation and prediction" held...

  15. Evaluation of two methods of predicting MLC leaf positions using EPID measurements

    International Nuclear Information System (INIS)

    Parent, Laure; Seco, Joao; Evans, Phil M.; Dance, David R.; Fielding, Andrew

    2006-01-01

    In intensity modulated radiation treatments (IMRT), the position of the field edges and the modulation within the beam are often achieved with a multileaf collimator (MLC). During the MLC calibration process, due to the finite accuracy of leaf position measurements, a systematic error may be introduced to leaf positions. Thereafter leaf positions of the MLC depend on the systematic error introduced on each leaf during MLC calibration and on the accuracy of the leaf position control system (random errors). This study presents and evaluates two methods to predict the systematic errors on the leaf positions introduced during the MLC calibration. The two presented methods are based on a series of electronic portal imaging device (EPID) measurements. A comparison with film measurements showed that the EPID could be used to measure leaf positions without introducing any bias. The first method, referred to as the 'central leaf method', is based on the method currently used at this center for MLC leaf calibration. It mimics the manner in which leaf calibration parameters are specified in the MLC control system and consequently is also used by other centers. The second method, a new method proposed by the authors and referred to as the ''individual leaf method,'' involves the measurement of two positions for each leaf (-5 and +15 cm) and the interpolation and extrapolation from these two points to any other given position. The central leaf method and the individual leaf method predicted leaf positions at prescribed positions of -11, 0, 5, and 10 cm within 2.3 and 1.0 mm, respectively, with a standard deviation (SD) of 0.3 and 0.2 mm, respectively. The individual leaf method provided a better prediction of the leaf positions than the central leaf method. Reproducibility tests for leaf positions of -5 and +15 cm were performed. The reproducibility was within 0.4 mm on the same day and 0.4 mm six weeks later (1 SD). Measurements at gantry angles of 0 deg., 90 deg., and 270 deg

  16. Predicting metabolic syndrome using decision tree and support vector machine methods.

    Science.gov (United States)

    Karimi-Alavijeh, Farzaneh; Jalili, Saeed; Sadeghi, Masoumeh

    2016-05-01

    Metabolic syndrome which underlies the increased prevalence of cardiovascular disease and Type 2 diabetes is considered as a group of metabolic abnormalities including central obesity, hypertriglyceridemia, glucose intolerance, hypertension, and dyslipidemia. Recently, artificial intelligence based health-care systems are highly regarded because of its success in diagnosis, prediction, and choice of treatment. This study employs machine learning technics for predict the metabolic syndrome. This study aims to employ decision tree and support vector machine (SVM) to predict the 7-year incidence of metabolic syndrome. This research is a practical one in which data from 2107 participants of Isfahan Cohort Study has been utilized. The subjects without metabolic syndrome according to the ATPIII criteria were selected. The features that have been used in this data set include: gender, age, weight, body mass index, waist circumference, waist-to-hip ratio, hip circumference, physical activity, smoking, hypertension, antihypertensive medication use, systolic blood pressure (BP), diastolic BP, fasting blood sugar, 2-hour blood glucose, triglycerides (TGs), total cholesterol, low-density lipoprotein, high density lipoprotein-cholesterol, mean corpuscular volume, and mean corpuscular hemoglobin. Metabolic syndrome was diagnosed based on ATPIII criteria and two methods of decision tree and SVM were selected to predict the metabolic syndrome. The criteria of sensitivity, specificity and accuracy were used for validation. SVM and decision tree methods were examined according to the criteria of sensitivity, specificity and accuracy. Sensitivity, specificity and accuracy were 0.774 (0.758), 0.74 (0.72) and 0.757 (0.739) in SVM (decision tree) method. The results show that SVM method sensitivity, specificity and accuracy is more efficient than decision tree. The results of decision tree method show that the TG is the most important feature in predicting metabolic syndrome. According

  17. Support Vector Machine Analysis of Functional Magnetic Resonance Imaging of Interoception Does Not Reliably Predict Individual Outcomes of Cognitive Behavioral Therapy in Panic Disorder with Agoraphobia

    Directory of Open Access Journals (Sweden)

    Benedikt Sundermann

    2017-06-01

    Full Text Available BackgroundThe approach to apply multivariate pattern analyses based on neuro imaging data for outcome prediction holds out the prospect to improve therapeutic decisions in mental disorders. Patients suffering from panic disorder with agoraphobia (PD/AG often exhibit an increased perception of bodily sensations. The purpose of this investigation was to assess whether multivariate classification applied to a functional magnetic resonance imaging (fMRI interoception paradigm can predict individual responses to cognitive behavioral therapy (CBT in PD/AG.MethodsThis analysis is based on pretreatment fMRI data during an interoceptive challenge from a multicenter trial of the German PANIC-NET. Patients with DSM-IV PD/AG were dichotomized as responders (n = 30 or non-responders (n = 29 based on the primary outcome (Hamilton Anxiety Scale Reduction ≥50% after 6 weeks of CBT (2 h/week. fMRI parametric maps were used as features for response classification with linear support vector machines (SVM with or without automated feature selection. Predictive accuracies were assessed using cross validation and permutation testing. The influence of methodological parameters and the predictive ability for specific interoception-related symptom reduction were further evaluated.ResultsSVM did not reach sufficient overall predictive accuracies (38.0–54.2% for anxiety reduction in the primary outcome. In the exploratory analyses, better accuracies (66.7% were achieved for predicting interoception-specific symptom relief as an alternative outcome domain. Subtle information regarding this alternative response criterion but not the primary outcome was revealed by post hoc univariate comparisons.ConclusionIn contrast to reports on other neurofunctional probes, SVM based on an interoception paradigm was not able to reliably predict individual response to CBT. Results speak against the clinical applicability of this technique.

  18. A load-following controller for PWRs using fuzzy model predictive method

    Energy Technology Data Exchange (ETDEWEB)

    Man Gyun, Na; In Joon, Hwang [Chosun Univ., Dept. of Nuclear Engineering, Gwangju (Korea, Republic of); Yoon Joon, Lee [Cheju National Univ., Dept. of Nuclear and Energy Engineering (Korea, Republic of)

    2007-07-01

    In this paper, a fuzzy model predictive control (MPC) method is applied to design an automatic controller for power level and axial power distribution controls in pressurized water reactors. The future reactor power and axial shape index (ASI) are predicted by using the fuzzy model identified by a subtractive clustering method of a fast and robust algorithm. The proposed controller is applied to the integrated power level and axial power distribution controls for a Korea Standard Nuclear Power Plant (KSNP). The power level and the ASI are controlled by two kinds of the 5 regulating control rod banks and the 2 part-strength control rod banks together with the automatic adjustment of boric acid concentration. The 3-dimensional reactor analysis code, MASTER, which models the KSNP, is interfaced to the proposed controller to verify the proposed controller for controlling the reactor power level and the ASI. It is known from numerical simulations that the proposed controller exhibits very fast tracking responses. (authors)

  19. A Method of Calculating Functional Independence Measure at Discharge from Functional Independence Measure Effectiveness Predicted by Multiple Regression Analysis Has a High Degree of Predictive Accuracy.

    Science.gov (United States)

    Tokunaga, Makoto; Watanabe, Susumu; Sonoda, Shigeru

    2017-09-01

    Multiple linear regression analysis is often used to predict the outcome of stroke rehabilitation. However, the predictive accuracy may not be satisfactory. The objective of this study was to elucidate the predictive accuracy of a method of calculating motor Functional Independence Measure (mFIM) at discharge from mFIM effectiveness predicted by multiple regression analysis. The subjects were 505 patients with stroke who were hospitalized in a convalescent rehabilitation hospital. The formula "mFIM at discharge = mFIM effectiveness × (91 points - mFIM at admission) + mFIM at admission" was used. By including the predicted mFIM effectiveness obtained through multiple regression analysis in this formula, we obtained the predicted mFIM at discharge (A). We also used multiple regression analysis to directly predict mFIM at discharge (B). The correlation between the predicted and the measured values of mFIM at discharge was compared between A and B. The correlation coefficients were .916 for A and .878 for B. Calculating mFIM at discharge from mFIM effectiveness predicted by multiple regression analysis had a higher degree of predictive accuracy of mFIM at discharge than that directly predicted. Copyright © 2017 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  20. Predicting the relative binding affinity of mineralocorticoid receptor antagonists by density functional methods

    Science.gov (United States)

    Roos, Katarina; Hogner, Anders; Ogg, Derek; Packer, Martin J.; Hansson, Eva; Granberg, Kenneth L.; Evertsson, Emma; Nordqvist, Anneli

    2015-12-01

    In drug discovery, prediction of binding affinity ahead of synthesis to aid compound prioritization is still hampered by the low throughput of the more accurate methods and the lack of general pertinence of one method that fits all systems. Here we show the applicability of a method based on density functional theory using core fragments and a protein model with only the first shell residues surrounding the core, to predict relative binding affinity of a matched series of mineralocorticoid receptor (MR) antagonists. Antagonists of MR are used for treatment of chronic heart failure and hypertension. Marketed MR antagonists, spironolactone and eplerenone, are also believed to be highly efficacious in treatment of chronic kidney disease in diabetes patients, but is contra-indicated due to the increased risk for hyperkalemia. These findings and a significant unmet medical need among patients with chronic kidney disease continues to stimulate efforts in the discovery of new MR antagonist with maintained efficacy but low or no risk for hyperkalemia. Applied on a matched series of MR antagonists the quantum mechanical based method gave an R2 = 0.76 for the experimental lipophilic ligand efficiency versus relative predicted binding affinity calculated with the M06-2X functional in gas phase and an R2 = 0.64 for experimental binding affinity versus relative predicted binding affinity calculated with the M06-2X functional including an implicit solvation model. The quantum mechanical approach using core fragments was compared to free energy perturbation calculations using the full sized compound structures.

  1. Unbiased and non-supervised learning methods for disruption prediction at JET

    International Nuclear Information System (INIS)

    Murari, A.; Vega, J.; Ratta, G.A.; Vagliasindi, G.; Johnson, M.F.; Hong, S.H.

    2009-01-01

    The importance of predicting the occurrence of disruptions is going to increase significantly in the next generation of tokamak devices. The expected energy content of ITER plasmas, for example, is such that disruptions could have a significant detrimental impact on various parts of the device, ranging from erosion of plasma facing components to structural damage. Early detection of disruptions is therefore needed with evermore increasing urgency. In this paper, the results of a series of methods to predict disruptions at JET are reported. The main objective of the investigation consists of trying to determine how early before a disruption it is possible to perform acceptable predictions on the basis of the raw data, keeping to a minimum the number of 'ad hoc' hypotheses. Therefore, the chosen learning techniques have the common characteristic of requiring a minimum number of assumptions. Classification and Regression Trees (CART) is a supervised but, on the other hand, a completely unbiased and nonlinear method, since it simply constructs the best classification tree by working directly on the input data. A series of unsupervised techniques, mainly K-means and hierarchical, have also been tested, to investigate to what extent they can autonomously distinguish between disruptive and non-disruptive groups of discharges. All these independent methods indicate that, in general, prediction with a success rate above 80% can be achieved not earlier than 180 ms before the disruption. The agreement between various completely independent methods increases the confidence in the results, which are also confirmed by a visual inspection of the data performed with pseudo Grand Tour algorithms.

  2. Rule-based knowledge acquisition method for promoter prediction in human and Drosophila species.

    Science.gov (United States)

    Huang, Wen-Lin; Tung, Chun-Wei; Liaw, Chyn; Huang, Hui-Ling; Ho, Shinn-Ying

    2014-01-01

    The rapid and reliable identification of promoter regions is important when the number of genomes to be sequenced is increasing very speedily. Various methods have been developed but few methods investigate the effectiveness of sequence-based features in promoter prediction. This study proposes a knowledge acquisition method (named PromHD) based on if-then rules for promoter prediction in human and Drosophila species. PromHD utilizes an effective feature-mining algorithm and a reference feature set of 167 DNA sequence descriptors (DNASDs), comprising three descriptors of physicochemical properties (absorption maxima, molecular weight, and molar absorption coefficient), 128 top-ranked descriptors of 4-mer motifs, and 36 global sequence descriptors. PromHD identifies two feature subsets with 99 and 74 DNASDs and yields test accuracies of 96.4% and 97.5% in human and Drosophila species, respectively. Based on the 99- and 74-dimensional feature vectors, PromHD generates several if-then rules by using the decision tree mechanism for promoter prediction. The top-ranked informative rules with high certainty grades reveal that the global sequence descriptor, the length of nucleotide A at the first position of the sequence, and two physicochemical properties, absorption maxima and molecular weight, are effective in distinguishing promoters from non-promoters in human and Drosophila species, respectively.

  3. Demonstration of two novel methods for predicting functional siRNA efficiency

    Directory of Open Access Journals (Sweden)

    Shi Tieliu

    2006-05-01

    Full Text Available Abstract Background siRNAs are small RNAs that serve as sequence determinants during the gene silencing process called RNA interference (RNAi. It is well know that siRNA efficiency is crucial in the RNAi pathway, and the siRNA efficiency for targeting different sites of a specific gene varies greatly. Therefore, there is high demand for reliable siRNAs prediction tools and for the design methods able to pick up high silencing potential siRNAs. Results In this paper, two systems have been established for the prediction of functional siRNAs: (1 a statistical model based on sequence information and (2 a machine learning model based on three features of siRNA sequences, namely binary description, thermodynamic profile and nucleotide composition. Both of the two methods show high performance on the two datasets we have constructed for training the model. Conclusion Both of the two methods studied in this paper emphasize the importance of sequence information for the prediction of functional siRNAs. The way of denoting a bio-sequence by binary system in mathematical language might be helpful in other analysis work associated with fixed-length bio-sequence.

  4. Report on the sixth blind test of organic crystal structure prediction methods.

    Science.gov (United States)

    Reilly, Anthony M; Cooper, Richard I; Adjiman, Claire S; Bhattacharya, Saswata; Boese, A Daniel; Brandenburg, Jan Gerit; Bygrave, Peter J; Bylsma, Rita; Campbell, Josh E; Car, Roberto; Case, David H; Chadha, Renu; Cole, Jason C; Cosburn, Katherine; Cuppen, Herma M; Curtis, Farren; Day, Graeme M; DiStasio, Robert A; Dzyabchenko, Alexander; van Eijck, Bouke P; Elking, Dennis M; van den Ende, Joost A; Facelli, Julio C; Ferraro, Marta B; Fusti-Molnar, Laszlo; Gatsiou, Christina Anna; Gee, Thomas S; de Gelder, René; Ghiringhelli, Luca M; Goto, Hitoshi; Grimme, Stefan; Guo, Rui; Hofmann, Detlef W M; Hoja, Johannes; Hylton, Rebecca K; Iuzzolino, Luca; Jankiewicz, Wojciech; de Jong, Daniël T; Kendrick, John; de Klerk, Niek J J; Ko, Hsin Yu; Kuleshova, Liudmila N; Li, Xiayue; Lohani, Sanjaya; Leusen, Frank J J; Lund, Albert M; Lv, Jian; Ma, Yanming; Marom, Noa; Masunov, Artëm E; McCabe, Patrick; McMahon, David P; Meekes, Hugo; Metz, Michael P; Misquitta, Alston J; Mohamed, Sharmarke; Monserrat, Bartomeu; Needs, Richard J; Neumann, Marcus A; Nyman, Jonas; Obata, Shigeaki; Oberhofer, Harald; Oganov, Artem R; Orendt, Anita M; Pagola, Gabriel I; Pantelides, Constantinos C; Pickard, Chris J; Podeszwa, Rafal; Price, Louise S; Price, Sarah L; Pulido, Angeles; Read, Murray G; Reuter, Karsten; Schneider, Elia; Schober, Christoph; Shields, Gregory P; Singh, Pawanpreet; Sugden, Isaac J; Szalewicz, Krzysztof; Taylor, Christopher R; Tkatchenko, Alexandre; Tuckerman, Mark E; Vacarro, Francesca; Vasileiadis, Manolis; Vazquez-Mayagoitia, Alvaro; Vogt, Leslie; Wang, Yanchao; Watson, Rona E; de Wijs, Gilles A; Yang, Jack; Zhu, Qiang; Groom, Colin R

    2016-08-01

    The sixth blind test of organic crystal structure prediction (CSP) methods has been held, with five target systems: a small nearly rigid molecule, a polymorphic former drug candidate, a chloride salt hydrate, a co-crystal and a bulky flexible molecule. This blind test has seen substantial growth in the number of participants, with the broad range of prediction methods giving a unique insight into the state of the art in the field. Significant progress has been seen in treating flexible molecules, usage of hierarchical approaches to ranking structures, the application of density-functional approximations, and the establishment of new workflows and `best practices' for performing CSP calculations. All of the targets, apart from a single potentially disordered Z' = 2 polymorph of the drug candidate, were predicted by at least one submission. Despite many remaining challenges, it is clear that CSP methods are becoming more applicable to a wider range of real systems, including salts, hydrates and larger flexible molecules. The results also highlight the potential for CSP calculations to complement and augment experimental studies of organic solid forms.

  5. An improved method for predicting the evolution of the characteristic parameters of an information system

    Science.gov (United States)

    Dushkin, A. V.; Kasatkina, T. I.; Novoseltsev, V. I.; Ivanov, S. V.

    2018-03-01

    The article proposes a forecasting method that allows, based on the given values of entropy and error level of the first and second kind, to determine the allowable time for forecasting the development of the characteristic parameters of a complex information system. The main feature of the method under consideration is the determination of changes in the characteristic parameters of the development of the information system in the form of the magnitude of the increment in the ratios of its entropy. When a predetermined value of the prediction error ratio is reached, that is, the entropy of the system, the characteristic parameters of the system and the depth of the prediction in time are estimated. The resulting values of the characteristics and will be optimal, since at that moment the system possessed the best ratio of entropy as a measure of the degree of organization and orderliness of the structure of the system. To construct a method for estimating the depth of prediction, it is expedient to use the maximum principle of the value of entropy.

  6. Prediction system of hydroponic plant growth and development using algorithm Fuzzy Mamdani method

    Science.gov (United States)

    Sudana, I. Made; Purnawirawan, Okta; Arief, Ulfa Mediaty

    2017-03-01

    Hydroponics is a method of farming without soil. One of the Hydroponic plants is Watercress (Nasturtium Officinale). The development and growth process of hydroponic Watercress was influenced by levels of nutrients, acidity and temperature. The independent variables can be used as input variable system to predict the value level of plants growth and development. The prediction system is using Fuzzy Algorithm Mamdani method. This system was built to implement the function of Fuzzy Inference System (Fuzzy Inference System/FIS) as a part of the Fuzzy Logic Toolbox (FLT) by using MATLAB R2007b. FIS is a computing system that works on the principle of fuzzy reasoning which is similar to humans' reasoning. Basically FIS consists of four units which are fuzzification unit, fuzzy logic reasoning unit, base knowledge unit and defuzzification unit. In addition to know the effect of independent variables on the plants growth and development that can be visualized with the function diagram of FIS output surface that is shaped three-dimensional, and statistical tests based on the data from the prediction system using multiple linear regression method, which includes multiple linear regression analysis, T test, F test, the coefficient of determination and donations predictor that are calculated using SPSS (Statistical Product and Service Solutions) software applications.

  7. Briefing in Application of Machine Learning Methods in Ion Channel Prediction

    Directory of Open Access Journals (Sweden)

    Hao Lin

    2015-01-01

    Full Text Available In cells, ion channels are one of the most important classes of membrane proteins which allow inorganic ions to move across the membrane. A wide range of biological processes are involved and regulated by the opening and closing of ion channels. Ion channels can be classified into numerous classes and different types of ion channels exhibit different functions. Thus, the correct identification of ion channels and their types using computational methods will provide in-depth insights into their function in various biological processes. In this review, we will briefly introduce and discuss the recent progress in ion channel prediction using machine learning methods.

  8. Review of the status of reactor physics predictive methods for burnable poisons in CAGRs

    International Nuclear Information System (INIS)

    Edens, D.J.; McEllin, M.

    1983-01-01

    An essential component of the design of Commercial Advanced Gas Cooled Reactor fuel necessary to achieve higher discharge irradiations is the incorporation of burnable poisons. The poisons enable the more highly enriched fuel required to reach higher irradiation to be loaded without increasing the peak channel power. The optimum choice of fuel enrichment and poison loading will be made using reactor physics predictive methods developed by Berkeley Nuclear Laboratories. The paper describes these methods and the evidence available to support them from theoretical comparisons, zero energy experiments, WAGR irradiations, and measurements on operating CAGR's. (author)

  9. A Predictive-Control-Based Over-Modulation Method for Conventional Matrix Converters

    DEFF Research Database (Denmark)

    Zhang, Guanguan; Yang, Jian; Sun, Yao

    2018-01-01

    to further enhance the system performance promptly. This method has advantages like the maximum voltage transfer ratio can reach 0.987 in the experiments; the total harmonic distortion of the input and output current are reduced, and the losses in the matrix converter are decreased. Moreover, the specific......To increase the voltage transfer ratio of the matrix converter and improve the input/output current performance simultaneously, an over-modulation method based on predictive control is proposed in this paper, where the weighting factor is selected by an automatic adjusting mechanism, which is able...

  10. Recursive prediction error methods for online estimation in nonlinear state-space models

    Directory of Open Access Journals (Sweden)

    Dag Ljungquist

    1994-04-01

    Full Text Available Several recursive algorithms for online, combined state and parameter estimation in nonlinear state-space models are discussed in this paper. Well-known algorithms such as the extended Kalman filter and alternative formulations of the recursive prediction error method are included, as well as a new method based on a line-search strategy. A comparison of the algorithms illustrates that they are very similar although the differences can be important for the online tracking capabilities and robustness. Simulation experiments on a simple nonlinear process show that the performance under certain conditions can be improved by including a line-search strategy.

  11. The PFP and ESG protein function prediction methods in 2014: effect of database updates and ensemble approaches.

    Science.gov (United States)

    Khan, Ishita K; Wei, Qing; Chapman, Samuel; Kc, Dukka B; Kihara, Daisuke

    2015-01-01

    Functional annotation of novel proteins is one of the central problems in bioinformatics. With the ever-increasing development of genome sequencing technologies, more and more sequence information is becoming available to analyze and annotate. To achieve fast and automatic function annotation, many computational (automated) function prediction (AFP) methods have been developed. To objectively evaluate the performance of such methods on a large scale, community-wide assessment experiments have been conducted. The second round of the Critical Assessment of Function Annotation (CAFA) experiment was held in 2013-2014. Evaluation of participating groups was reported in a special interest group meeting at the Intelligent Systems in Molecular Biology (ISMB) conference in Boston in 2014. Our group participated in both CAFA1 and CAFA2 using multiple, in-house AFP methods. Here, we report benchmark results of our methods obtained in the course of preparation for CAFA2 prior to submitting function predictions for CAFA2 targets. For CAFA2, we updated the annotation databases used by our methods, protein function prediction (PFP) and extended similarity group (ESG), and benchmarked their function prediction performances using the original (older) and updated databases. Performance evaluation for PFP with different settings and ESG are discussed. We also developed two ensemble methods that combine function predictions from six independent, sequence-based AFP methods. We further analyzed the performances of our prediction methods by enriching the predictions with prior distribution of gene ontology (GO) terms. Examples of predictions by the ensemble methods are discussed. Updating the annotation database was successful, improving the Fmax prediction accuracy score for both PFP and ESG. Adding the prior distribution of GO terms did not make much improvement. Both of the ensemble methods we developed improved the average Fmax score over all individual component methods except for

  12. Prediction of CpG-island function: CpG clustering vs. sliding-window methods

    Directory of Open Access Journals (Sweden)

    Luque-Escamilla Pedro L

    2010-05-01

    Full Text Available Abstract Background Unmethylated stretches of CpG dinucleotides (CpG islands are an outstanding property of mammal genomes. Conventionally, these regions are detected by sliding window approaches using %G + C, CpG observed/expected ratio and length thresholds as main parameters. Recently, clustering methods directly detect clusters of CpG dinucleotides as a statistical property of the genome sequence. Results We compare sliding-window to clustering (i.e. CpGcluster predictions by applying new ways to detect putative functionality of CpG islands. Analyzing the co-localization with several genomic regions as a function of window size vs. statistical significance (p-value, CpGcluster shows a higher overlap with promoter regions and highly conserved elements, at the same time showing less overlap with Alu retrotransposons. The major difference in the prediction was found for short islands (CpG islets, often exclusively predicted by CpGcluster. Many of these islets seem to be functional, as they are unmethylated, highly conserved and/or located within the promoter region. Finally, we show that window-based islands can spuriously overlap several, differentially regulated promoters as well as different methylation domains, which might indicate a wrong merge of several CpG islands into a single, very long island. The shorter CpGcluster islands seem to be much more specific when concerning the overlap with alternative transcription start sites or the detection of homogenous methylation domains. Conclusions The main difference between sliding-window approaches and clustering methods is the length of the predicted islands. Short islands, often differentially methylated, are almost exclusively predicted by CpGcluster. This suggests that CpGcluster may be the algorithm of choice to explore the function of these short, but putatively functional CpG islands.

  13. Studying Musical and Linguistic Prediction in Comparable Ways: The Melodic Cloze Probability Method.

    Science.gov (United States)

    Fogel, Allison R; Rosenberg, Jason C; Lehman, Frank M; Kuperberg, Gina R; Patel, Aniruddh D

    2015-01-01

    Prediction or expectancy is thought to play an important role in both music and language processing. However, prediction is currently studied independently in the two domains, limiting research on relations between predictive mechanisms in music and language. One limitation is a difference in how expectancy is quantified. In language, expectancy is typically measured using the cloze probability task, in which listeners are asked to complete a sentence fragment with the first word that comes to mind. In contrast, previous production-based studies of melodic expectancy have asked participants to sing continuations following only one to two notes. We have developed a melodic cloze probability task in which listeners are presented with the beginning of a novel tonal melody (5-9 notes) and are asked to sing the note they expect to come next. Half of the melodies had an underlying harmonic structure designed to constrain expectations for the next note, based on an implied authentic cadence (AC) within the melody. Each such 'authentic cadence' melody was matched to a 'non-cadential' (NC) melody matched in terms of length, rhythm and melodic contour, but differing in implied harmonic structure. Participants showed much greater consistency in the notes sung following AC vs. NC melodies on average. However, significant variation in degree of consistency was observed within both AC and NC melodies. Analysis of individual melodies suggests that pitch prediction in tonal melodies depends on the interplay of local factors just prior to the target note (e.g., local pitch interval patterns) and larger-scale structural relationships (e.g., melodic patterns and implied harmonic structure). We illustrate how the melodic cloze method can be used to test a computational model of melodic expectation. Future uses for the method include exploring the interplay of different factors shaping melodic expectation, and designing experiments that compare the cognitive mechanisms of prediction in

  14. The steady performance prediction of propeller-rudder-bulb system based on potential iterative method

    International Nuclear Information System (INIS)

    Liu, Y B; Su, Y M; Ju, L; Huang, S L

    2012-01-01

    A new numerical method was developed for predicting the steady hydrodynamic performance of propeller-rudder-bulb system. In the calculation, the rudder and bulb was taken into account as a whole, the potential based surface panel method was applied both to propeller and rudder-bulb system. The interaction between propeller and rudder-bulb was taken into account by velocity potential iteration in which the influence of propeller rotation was considered by the average influence coefficient. In the influence coefficient computation, the singular value should be found and deleted. Numerical results showed that the method presented is effective for predicting the steady hydrodynamic performance of propeller-rudder system and propeller-rudder-bulb system. Comparing with the induced velocity iterative method, the method presented can save programming and calculation time. Changing dimensions, the principal parameter—bulb size that affect energy-saving effect was studied, the results show that the bulb on rudder have a optimal size at the design advance coefficient.

  15. COMPARISON OF TREND PROJECTION METHODS AND BACKPROPAGATION PROJECTIONS METHODS TREND IN PREDICTING THE NUMBER OF VICTIMS DIED IN TRAFFIC ACCIDENT IN TIMOR TENGAH REGENCY, NUSA TENGGARA

    Directory of Open Access Journals (Sweden)

    Aleksius Madu

    2016-10-01

    Full Text Available The purpose of this study is to predict the number of traffic accident victims who died in Timor Tengah Regency with Trend Projection method and Backpropagation method, and compare the two methods based on the degree of guilt and predict the number traffic accident victims in the Timor Tengah Regency for the coming year. This research was conducted in Timor Tengah Regency where data used in this study was obtained from Police Unit in Timor Tengah Regency. The data is on the number of traffic accidents in Timor Tengah Regency from 2000 – 2013, which is obtained by a quantitative analysis with Trend Projection and Backpropagation method. The results of the data analysis predicting the number of traffic accidents victims using Trend Projection method obtained the best model which is the quadratic trend model with equation Yk = 39.786 + (3.297 X + (0.13 X2. Whereas by using back propagation method, it is obtained the optimum network that consists of 2 inputs, 3 hidden screens, and 1 output. Based on the error rates obtained, Back propagation method is better than the Trend Projection method which means that the predicting accuracy with Back propagation method is the best method to predict the number of traffic accidents victims in Timor Tengah Regency. Thus obtained predicting the numbers of traffic accident victims for the next 5 years (Years 2014-2018 respectively - are 106 person, 115 person, 115 person, 119 person and 120 person.   Keywords: Trend Projection, Back propagation, Predicting.

  16. Method for predicting dry mechanical properties from wet wood and standing trees

    Science.gov (United States)

    Meglen, Robert R.; Kelley, Stephen S.

    2003-08-12

    A method for determining the dry mechanical strength for a green wood comprising: illuminating a surface of the wood to be determined with light between 350-2,500 nm, the wood having a green moisture content; analyzing the surface using a spectrometric method, the method generating a first spectral data, and using a multivariate analysis to predict the dry mechanical strength of green wood when dry by comparing the first spectral data with a calibration model, the calibration model comprising a second spectrometric method of spectral data obtained from a reference wood having a green moisture content, the second spectral data correlated with a known mechanical strength analytical result obtained from a reference wood when dried and having a dry moisture content.

  17. Prediction and analysis of 3D hydrofoil and propeller under potential flow using panel method

    Directory of Open Access Journals (Sweden)

    Chen Chen-Wei

    2016-01-01

    Full Text Available Potential flow over an airfoil plays an important historical role in the theory of airfoil. The governing equation for potential flow is Laplace’s equation. One of Green’s identities can be used to write a solution to Laplace’s equation as a boundary integral. Using distributions of singularity solutions and determining their strength via the boundary conditions is the essence of panel method. This paper introduces a quick prediction method of three-dimensional hydrofoil and propeller performance based on panel method. The surface of hydrofoil and propeller is divided into numbers of quadrilateral panels. Combined sources with doublets singularities will be distributed on the corners of panels. Calculated blade pressure distributions of hydrofoil and propeller agree well with experimental data. Several sample calculations have been included using panel method.

  18. Multigrid methods for improving the variational data assimilation in numerical weather prediction

    Directory of Open Access Journals (Sweden)

    Youn-Hee Kang

    2014-07-01

    Full Text Available Two conditions are needed to solve numerical weather prediction models: initial condition and boundary condition. The initial condition has an especially important bearing on the model performance. To get a good initial condition, many data assimilation techniques have been developed for the meteorological and the oceanographical fields. Currently, the most commonly used technique for operational applications is the 3 dimensional (3-D or 4 dimensional variational data assimilation method. The numerical method used for the cost function minimising process is usually an iterative method such as the conjugate gradient. In this paper, we use the multigrid method based on the cell-centred finite difference on the variational data assimilation to improve the performance of the minimisation procedure for 3D-Var data assimilation.

  19. Constructing Optimal Prediction Intervals by Using Neural Networks and Bootstrap Method.

    Science.gov (United States)

    Khosravi, Abbas; Nahavandi, Saeid; Srinivasan, Dipti; Khosravi, Rihanna

    2015-08-01

    This brief proposes an efficient technique for the construction of optimized prediction intervals (PIs) by using the bootstrap technique. The method employs an innovative PI-based cost function in the training of neural networks (NNs) used for estimation of the target variance in the bootstrap method. An optimization algorithm is developed for minimization of the cost function and adjustment of NN parameters. The performance of the optimized bootstrap method is examined for seven synthetic and real-world case studies. It is shown that application of the proposed method improves the quality of constructed PIs by more than 28% over the existing technique, leading to narrower PIs with a coverage probability greater than the nominal confidence level.

  20. Extended Lattice Boltzmann Method with Application to Predict Aerodynamic Loads of Long Span Bridge

    Science.gov (United States)

    Liu, Tiancheng; Liu, Gao; Li, Yi; Ge, Yaojun

    2010-05-01

    The lattice Boltzmann (LB) method, a new conceptual approach to solve the fluid dynamics problem, is presented at first. The turbulence model is incorporated into the normal LB equation to simulate turbulence flow in the form of turbulence relaxation time determined by the nonequilibrium particle distribution function and Smagorinsky model. The total relaxation time is defined as the contribution of molecule viscosity and turbulence eddy viscosity. The aerodynamic forces on bridge girders are predicted by present LB method and the analysis of flow state is performed. The validity of LB method is verified through comparing the present results with the available experimental data and those obtained from the solutions of Navier-Stockes equation like Reynolds averaged Navier-Stokes (RANS) and discrete vortex method (DVM).

  1. Variable importance and prediction methods for longitudinal problems with missing variables.

    Directory of Open Access Journals (Sweden)

    Iván Díaz

    Full Text Available We present prediction and variable importance (VIM methods for longitudinal data sets containing continuous and binary exposures subject to missingness. We demonstrate the use of these methods for prognosis of medical outcomes of severe trauma patients, a field in which current medical practice involves rules of thumb and scoring methods that only use a few variables and ignore the dynamic and high-dimensional nature of trauma recovery. Well-principled prediction and VIM methods can provide a tool to make care decisions informed by the high-dimensional patient's physiological and clinical history. Our VIM parameters are analogous to slope coefficients in adjusted regressions, but are not dependent on a specific statistical model, nor require a certain functional form of the prediction regression to be estimated. In addition, they can be causally interpreted under causal and statistical assumptions as the expected outcome under time-specific clinical interventions, related to changes in the mean of the outcome if each individual experiences a specified change in the variable (keeping other variables in the model fixed. Better yet, the targeted MLE used is doubly robust and locally efficient. Because the proposed VIM does not constrain the prediction model fit, we use a very flexible ensemble learner (the SuperLearner, which returns a linear combination of a list of user-given algorithms. Not only is such a prediction algorithm intuitive appealing, it has theoretical justification as being asymptotically equivalent to the oracle selector. The results of the analysis show effects whose size and significance would have been not been found using a parametric approach (such as stepwise regression or LASSO. In addition, the procedure is even more compelling as the predictor on which it is based showed significant improvements in cross-validated fit, for instance area under the curve (AUC for a receiver-operator curve (ROC. Thus, given that 1 our VIM

  2. A Machine Learning Method for the Prediction of Receptor Activation in the Simulation of Synapses

    Science.gov (United States)

    Montes, Jesus; Gomez, Elena; Merchán-Pérez, Angel; DeFelipe, Javier; Peña, Jose-Maria

    2013-01-01

    Chemical synaptic transmission involves the release of a neurotransmitter that diffuses in the extracellular space and interacts with specific receptors located on the postsynaptic membrane. Computer simulation approaches provide fundamental tools for exploring various aspects of the synaptic transmission under different conditions. In particular, Monte Carlo methods can track the stochastic movements of neurotransmitter molecules and their interactions with other discrete molecules, the receptors. However, these methods are computationally expensive, even when used with simplified models, preventing their use in large-scale and multi-scale simulations of complex neuronal systems that may involve large numbers of synaptic connections. We have developed a machine-learning based method that can accurately predict relevant aspects of the behavior of synapses, such as the percentage of open synaptic receptors as a function of time since the release of the neurotransmitter, with considerably lower computational cost compared with the conventional Monte Carlo alternative. The method is designed to learn patterns and general principles from a corpus of previously generated Monte Carlo simulations of synapses covering a wide range of structural and functional characteristics. These patterns are later used as a predictive model of the behavior of synapses under different conditions without the need for additional computationally expensive Monte Carlo simulations. This is performed in five stages: data sampling, fold creation, machine learning, validation and curve fitting. The resulting procedure is accurate, automatic, and it is general enough to predict synapse behavior under experimental conditions that are different to the ones it has been trained on. Since our method efficiently reproduces the results that can be obtained with Monte Carlo simulations at a considerably lower computational cost, it is suitable for the simulation of high numbers of synapses and it is

  3. Using genetic algorithms to optimize the analogue method for precipitation prediction in the Swiss Alps

    Science.gov (United States)

    Horton, Pascal; Jaboyedoff, Michel; Obled, Charles

    2018-01-01

    Analogue methods provide a statistical precipitation prediction based on synoptic predictors supplied by general circulation models or numerical weather prediction models. The method samples a selection of days in the archives that are similar to the target day to be predicted, and consider their set of corresponding observed precipitation (the predictand) as the conditional distribution for the target day. The relationship between the predictors and predictands relies on some parameters that characterize how and where the similarity between two atmospheric situations is defined. This relationship is usually established by a semi-automatic sequential procedure that has strong limitations: (i) it cannot automatically choose the pressure levels and temporal windows (hour of the day) for a given meteorological variable, (ii) it cannot handle dependencies between parameters, and (iii) it cannot easily handle new degrees of freedom. In this work, a global optimization approach relying on genetic algorithms could optimize all parameters jointly and automatically. The global optimization was applied to some variants of the analogue method for the Rhône catchment in the Swiss Alps. The performance scores increased compared to reference methods, especially for days with high precipitation totals. The resulting parameters were found to be relevant and coherent between the different subregions of the catchment. Moreover, they were obtained automatically and objectively, which reduces the effort that needs to be invested in exploration attempts when adapting the method to a new region or for a new predictand. For example, it obviates the need to assess a large number of combinations of pressure levels and temporal windows of predictor variables that were manually selected beforehand. The optimization could also take into account parameter inter-dependencies. In addition, the approach allowed for new degrees of freedom, such as a possible weighting between pressure levels, and

  4. A machine learning method for the prediction of receptor activation in the simulation of synapses.

    Directory of Open Access Journals (Sweden)

    Jesus Montes

    Full Text Available Chemical synaptic transmission involves the release of a neurotransmitter that diffuses in the extracellular space and interacts with specific receptors located on the postsynaptic membrane. Computer simulation approaches provide fundamental tools for exploring various aspects of the synaptic transmission under different conditions. In particular, Monte Carlo methods can track the stochastic movements of neurotransmitter molecules and their interactions with other discrete molecules, the receptors. However, these methods are computationally expensive, even when used with simplified models, preventing their use in large-scale and multi-scale simulations of complex neuronal systems that may involve large numbers of synaptic connections. We have developed a machine-learning based method that can accurately predict relevant aspects of the behavior of synapses, such as the percentage of open synaptic receptors as a function of time since the release of the neurotransmitter, with considerably lower computational cost compared with the conventional Monte Carlo alternative. The method is designed to learn patterns and general principles from a corpus of previously generated Monte Carlo simulations of synapses covering a wide range of structural and functional characteristics. These patterns are later used as a predictive model of the behavior of synapses under different conditions without the need for additional computationally expensive Monte Carlo simulations. This is performed in five stages: data sampling, fold creation, machine learning, validation and curve fitting. The resulting procedure is accurate, automatic, and it is general enough to predict synapse behavior under experimental conditions that are different to the ones it has been trained on. Since our method efficiently reproduces the results that can be obtained with Monte Carlo simulations at a considerably lower computational cost, it is suitable for the simulation of high numbers of

  5. A new wind power prediction method based on chaotic theory and Bernstein Neural Network

    International Nuclear Information System (INIS)

    Wang, Cong; Zhang, Hongli; Fan, Wenhui; Fan, Xiaochao

    2016-01-01

    The accuracy of wind power prediction is important for assessing the security and economy of the system operation when wind power connects to the grids. However, multiple factors cause a long delay and large errors in wind power prediction. Hence, efficient wind power forecasting approaches are still required for practical applications. In this paper, a new wind power forecasting method based on Chaos Theory and Bernstein Neural Network (BNN) is proposed. Firstly, the largest Lyapunov exponent as a judgment for wind power system's chaotic behavior is made. Secondly, Phase Space Reconstruction (PSR) is used to reconstruct the wind power series' phase space. Thirdly, the prediction model is constructed using the Bernstein polynomial and neural network. Finally, the weights and thresholds of the model are optimized by Primal Dual State Transition Algorithm (PDSTA). The practical hourly data of wind power generation in Xinjiang is used to test this forecaster. The proposed forecaster is compared with several current prominent research findings. Analytical results indicate that the forecasting error of PDSTA + BNN is 3.893% for 24 look-ahead hours, and has lower errors obtained compared with the other forecast methods discussed in this paper. The results of all cases studying confirm the validity of the new forecast method. - Highlights: • Lyapunov exponent is used to verify chaotic behavior of wind power series. • Phase Space Reconstruction is used to reconstruct chaotic wind power series. • A new Bernstein Neural Network to predict wind power series is proposed. • Primal dual state transition algorithm is chosen as the training strategy of BNN.

  6. Beyond discrimination: A comparison of calibration methods and clinical usefulness of predictive models of readmission risk.

    Science.gov (United States)

    Walsh, Colin G; Sharman, Kavya; Hripcsak, George

    2017-12-01

    Prior to implementing predictive models in novel settings, analyses of calibration and clinical usefulness remain as important as discrimination, but they are not frequently discussed. Calibration is a model's reflection of actual outcome prevalence in its predictions. Clinical usefulness refers to the utilities, costs, and harms of using a predictive model in practice. A decision analytic approach to calibrating and selecting an optimal intervention threshold may help maximize the impact of readmission risk and other preventive interventions. To select a pragmatic means of calibrating predictive models that requires a minimum amount of validation data and that performs well in practice. To evaluate the impact of miscalibration on utility and cost via clinical usefulness analyses. Observational, retrospective cohort study with electronic health record data from 120,000 inpatient admissions at an urban, academic center in Manhattan. The primary outcome was thirty-day readmission for three causes: all-cause, congestive heart failure, and chronic coronary atherosclerotic disease. Predictive modeling was performed via L1-regularized logistic regression. Calibration methods were compared including Platt Scaling, Logistic Calibration, and Prevalence Adjustment. Performance of predictive modeling and calibration was assessed via discrimination (c-statistic), calibration (Spiegelhalter Z-statistic, Root Mean Square Error [RMSE] of binned predictions, Sanders and Murphy Resolutions of the Brier Score, Calibration Slope and Intercept), and clinical usefulness (utility terms represented as costs). The amount of validation data necessary to apply each calibration algorithm was also assessed. C-statistics by diagnosis ranged from 0.7 for all-cause readmission to 0.86 (0.78-0.93) for congestive heart failure. Logistic Calibration and Platt Scaling performed best and this difference required analyzing multiple metrics of calibration simultaneously, in particular Calibration

  7. Power Transformer Operating State Prediction Method Based on an LSTM Network

    Directory of Open Access Journals (Sweden)

    Hui Song

    2018-04-01

    Full Text Available The state of transformer equipment is usually manifested through a variety of information. The characteristic information will change with different types of equipment defects/faults, location, severity, and other factors. For transformer operating state prediction and fault warning, the key influencing factors of the transformer panorama information are analyzed. The degree of relative deterioration is used to characterize the deterioration of the transformer state. The membership relationship between the relative deterioration degree of each indicator and the transformer state is obtained through fuzzy processing. Through the long short-term memory (LSTM network, the evolution of the transformer status is extracted, and a data-driven state prediction model is constructed to realize preliminary warning of a potential fault of the equipment. Through the LSTM network, the quantitative index and qualitative index are organically combined in order to perceive the corresponding relationship between the characteristic parameters and the operating state of the transformer. The results of different time-scale prediction cases show that the proposed method can effectively predict the operation status of power transformers and accurately reflect their status.

  8. Prediction method of seismic residual deformation of caisson quay wall in liquefied foundation

    Science.gov (United States)

    Wang, Li-Yan; Liu, Han-Long; Jiang, Peng-Ming; Chen, Xiang-Xiang

    2011-03-01

    The multi-spring shear mechanism plastic model in this paper is defined in strain space to simulate pore pressure generation and development in sands under cyclic loading and undrained conditions, and the rotation of principal stresses can also be simulated by the model with cyclic behavior of anisotropic consolidated sands. Seismic residual deformations of typical caisson quay walls under different engineering situations are analyzed in detail by the plastic model, and then an index of liquefaction extent is applied to describe the regularity of seismic residual deformation of caisson quay wall top under different engineering situations. Some correlated prediction formulas are derived from the results of regression analysis between seismic residual deformation of quay wall top and extent of liquefaction in the relative safety backfill sand site. Finally, the rationality and the reliability of the prediction methods are validated by test results of a 120 g-centrifuge shaking table, and the comparisons show that some reliable seismic residual deformation of caisson quay can be predicted by appropriate prediction formulas and appropriate index of liquefaction extent.

  9. A quality control method for nuclear instrumentation and control systems based on software safety prediction

    Science.gov (United States)

    Son, Han Seong; Seong, Poong Hyun

    2000-04-01

    In the case of safety-related applications like nuclear instrumentation and control (NI&C), safety-oriented quality control is required. The objective of this paper is to present a software safety classification method as a safety-oriented quality control tool. Based on this method, we predict the risk (and thus safety) of software items that are at the core of NI&C systems. Then we classify the software items according to the degree of the risk. The method can be used earlier than at the detailed design phase. Furthermore, the method can also be used in all the development phases without major changes. The proposed method seeks to utilize the measures that can be obtained from the safety analysis and requirements analysis. Using the measures proved to be desirable in a few aspects. The authors have introduced fuzzy approximate reasoning to the classification method because experts' knowledge covers the vague frontiers between good quality and bad quality with linguistic uncertainty and fuzziness. Fuzzy Colored Petri Net (FCPN) is introduced in order to offer a formal framework for the classification method and facilitate the knowledge representation, modification, or verification. Through the proposed quality control method, high-quality NI&C systems can be developed effectively and used safely.

  10. Prediction of MicroRNA-Disease Associations Based on Social Network Analysis Methods

    Directory of Open Access Journals (Sweden)

    Quan Zou

    2015-01-01

    Full Text Available MicroRNAs constitute an important class of noncoding, single-stranded, ~22 nucleotide long RNA molecules encoded by endogenous genes. They play an important role in regulating gene transcription and the regulation of normal development. MicroRNAs can be associated with disease; however, only a few microRNA-disease associations have been confirmed by traditional experimental approaches. We introduce two methods to predict microRNA-disease association. The first method, KATZ, focuses on integrating the social network analysis method with machine learning and is based on networks derived from known microRNA-disease associations, disease-disease associations, and microRNA-microRNA associations. The other method, CATAPULT, is a supervised machine learning method. We applied the two methods to 242 known microRNA-disease associations and evaluated their performance using leave-one-out cross-validation and 3-fold cross-validation. Experiments proved that our methods outperformed the state-of-the-art methods.

  11. Geostatistical methods for rock mass quality prediction using borehole and geophysical survey data

    Science.gov (United States)

    Chen, J.; Rubin, Y.; Sege, J. E.; Li, X.; Hehua, Z.

    2015-12-01

    For long, deep tunnels, the number of geotechnical borehole investigations during the preconstruction stage is generally limited. Yet tunnels are often constructed in geological structures with complex geometries, and in which the rock mass is fragmented from past structural deformations. Tunnel Geology Prediction (TGP) is a geophysical technique widely used during tunnel construction in China to ensure safety during construction and to prevent geological disasters. In this paper, geostatistical techniques were applied in order to integrate seismic velocity from TGP and borehole information into spatial predictions of RMR (Rock Mass Rating) in unexcavated areas. This approach is intended to apply conditional probability methods to transform seismic velocities to directly observed RMR values. The initial spatial distribution of RMR, inferred from the boreholes, was updated by including geophysical survey data in a co-kriging approach. The method applied to a real tunnel project shows significant improvements in rock mass quality predictions after including geophysical survey data, leading to better decision-making for construction safety design.

  12. Mixed price and load forecasting of electricity markets by a new iterative prediction method

    International Nuclear Information System (INIS)

    Amjady, Nima; Daraeepour, Ali

    2009-01-01

    Load and price forecasting are the two key issues for the participants of current electricity markets. However, load and price of electricity markets have complex characteristics such as nonlinearity, non-stationarity and multiple seasonality, to name a few (usually, more volatility is seen in the behavior of electricity price signal). For these reasons, much research has been devoted to load and price forecast, especially in the recent years. However, previous research works in the area separately predict load and price signals. In this paper, a mixed model for load and price forecasting is presented, which can consider interactions of these two forecast processes. The mixed model is based on an iterative neural network based prediction technique. It is shown that the proposed model can present lower forecast errors for both load and price compared with the previous separate frameworks. Another advantage of the mixed model is that all required forecast features (from load or price) are predicted within the model without assuming known values for these features. So, the proposed model can better be adapted to real conditions of an electricity market. The forecast accuracy of the proposed mixed method is evaluated by means of real data from the New York and Spanish electricity markets. The method is also compared with some of the most recent load and price forecast techniques. (author)

  13. Predicting influenza antigenicity from Hemagglutintin sequence data based on a joint random forest method.

    Science.gov (United States)

    Yao, Yuhua; Li, Xianhong; Liao, Bo; Huang, Li; He, Pingan; Wang, Fayou; Yang, Jiasheng; Sun, Hailiang; Zhao, Yulong; Yang, Jialiang

    2017-05-08

    Timely identification of emerging antigenic variants is critical to influenza vaccine design. The accuracy of a sequence-based antigenic prediction method relies on the choice of amino acids substitution matrices. In this study, we first compared a comprehensive 95 substitution matrices reflecting various amino acids properties in predicting the antigenicity of influenza viruses by a random forest model. We then proposed a novel algorithm called joint random forest regression (JRFR) to jointly consider top substitution matrices. We applied JRFR to human H3N2 seasonal influenza data from 1968 to 2003. A 10-fold cross-validation shows that JRFR outperforms other popular methods in predicting antigenic variants. In addition, our results suggest that structure features are most relevant to influenza antigenicity. By restricting the analysis to data involving two adjacent antigenic clusters, we inferred a few key amino acids mutation driving the 11 historical antigenic drift events, pointing to experimentally validated mutations. Finally, we constructed an antigenic cartography of all H3N2 viruses with hemagglutinin (the glycoprotein on the surface of the influenza virus responsible for its binding to host cells) sequence available from NCBI flu database, and showed an overall correspondence and local inconsistency between genetic and antigenic evolution of H3N2 influenza viruses.

  14. Improved prediction of meat and bone meal metabolizable energy content for ducks through in vitro methods.

    Science.gov (United States)

    Garcia, R A; Phillips, J G; Adeola, O

    2012-08-01

    Apparent metabolizable energy (AME) of meat and bone meal (MBM) for poultry is highly variable, but impractical to measure routinely. Previous efforts at developing an in vitro method for predicting AME have had limited success. The present study uses data from a previous publication on the AME of 12 MBM samples, determined using 288 White Pekin ducks, as well as composition data on these samples. Here, we investigate the hypothesis that 2 noncompositional attributes of MBM, particle size and protease resistance, will have utility in improving predictions of AME based on in vitro measurements. Using the same MBM samples as the previous study, 2 measurements of particle size were recorded and protease resistance was determined using a modified pepsin digestibility assay. Analysis of the results using a stepwise construction of multiple linear regression models revealed that the measurements of particle size were useful in building models for AME, but the measure of protease resistance was not. Relatively simple (4-term) and complex (7-term) models for both AME and nitrogen-corrected AME were constructed, with R-squared values ranging from 0.959 to 0.996. The rather minor analytical effort required to conduct the measurements involved is discussed. Although the generality of the results are limited by the number of samples involved and the species used, they suggest that AME for poultry can be accurately predicted through simple and inexpensive in vitro methods.

  15. Handling imbalance data in churn prediction using combined SMOTE and RUS with bagging method

    Science.gov (United States)

    Pura Hartati, Eka; Adiwijaya; Arif Bijaksana, Moch

    2018-03-01

    Customer churn has become a significant problem and also a challenge for Telecommunication company such as PT. Telkom Indonesia. It is necessary to evaluate whether the big problems of churn customer and the company’s managements will make appropriate strategies to minimize the churn and retaining the customer. Churn Customer data which categorized churn Atas Permintaan Sendiri (APS) in this Company is an imbalance data, and this issue is one of the challenging tasks in machine learning. This study will investigate how is handling class imbalance in churn prediction using combined Synthetic Minority Over-Sampling (SMOTE) and Random Under-Sampling (RUS) with Bagging method for a better churn prediction performance’s result. The dataset that used is Broadband Internet data which is collected from Telkom Regional 6 Kalimantan. The research firstly using data preprocessing to balance the imbalanced dataset and also to select features by sampling technique SMOTE and RUS, and then building churn prediction model using Bagging methods and C4.5.

  16. Method for predicting homology modeling accuracy from amino acid sequence alignment: the power function.

    Science.gov (United States)

    Iwadate, Mitsuo; Kanou, Kazuhiko; Terashi, Genki; Umeyama, Hideaki; Takeda-Shitaka, Mayuko

    2010-01-01

    We have devised a power function (PF) that can predict the accuracy of a three-dimensional (3D) structure model of a protein using only amino acid sequence alignments. This Power Function (PF) consists of three parts; (1) the length of a model, (2) a homology identity percent value and (3) the agreement rate between PSI-PRED secondary structure prediction and the secondary structure judgment of a reference protein. The PF value is mathematically computed from the execution process of homology search tools, such as FASTA or various BLAST programs, to obtain the amino acid sequence alignments. There is a high correlation between the global distance test-total score (GDT_TS) value of the protein model based upon the PF score and the GDT_TS(MAX) value used as an index of protein modeling accuracy in the international contest Critical Assessment of Techniques for Protein Structure Prediction (CASP). Accordingly, the PF method is valuable for constructing a highly accurate model without wasteful calculations of homology modeling that is normally performed by an iterative method to move the main chain and side chains in the modeling process. Moreover, a model with higher accuracy can be obtained by combining the models ordered by the PF score with models sorted by the size of the CIRCLE score. The CIRCLE software is a 3D-1D program, in which energetic stabilization is estimated based upon the experimental environment of each amino acid residue in the protein solution or protein crystals.

  17. Method of fission product beta spectra measurements for predicting reactor anti-neutrino emission

    Energy Technology Data Exchange (ETDEWEB)

    Asner, David M.; Burns, Kimberly A.; Campbell, Luke W.; Greenfield, Bryce A.; Kos, Marek S.; Orrell, John L.; Schram, Malachi; VanDevender, Brent A.; Wood, Lynn S.; Wootan, David W.

    2015-03-01

    The nuclear fission process that occurs in the core of nuclear reactors results in unstable, neutron-rich fission products that subsequently beta decay and emit electron antineutrinos. These reactor neutrinos have served neutrino physics research from the initial discovery of the neutrino to today's precision measurements of neutrino mixing angles. The prediction of the absolute flux and energy spectrum of the emitted reactor neutrinos hinges upon a series of seminal papers based on measurements performed in the 1970s and 1980s. The steadily improving reactor neutrino measurement techniques and recent reconsiderations of the agreement between the predicted and observed reactor neutrino flux motivates revisiting the underlying beta spectra measurements. A method is proposed to use an accelerator proton beam delivered to an engineered target to yield a neutron field tailored to reproduce the neutron energy spectrum present in the core of an operating nuclear reactor. Foils of the primary reactor fissionable isotopes placed in this tailored neutron flux will ultimately emit beta particles from the resultant fission products. Measurement of these beta particles in a time projection chamber with a perpendicular magnetic field provides a distinctive set of systematic considerations for comparison to the original seminal beta spectra measurements. Ancillary measurements such as gamma-ray emission and post-irradiation radiochemical analysis will further constrain the absolute normalization of beta emissions per fission. The requirements for unfolding the beta spectra measured with this method into a predicted reactor neutrino spectrum are explored.

  18. HMM_RA: An Improved Method for Alpha-Helical Transmembrane Protein Topology Prediction

    Directory of Open Access Journals (Sweden)

    Changhui Yan

    2008-01-01

    Full Text Available α-helical transmembrane (TM proteins play important and diverse functional roles in cells. The ability to predict the topology of these proteins is important for identifying functional sites and inferring function of membrane proteins. This paper presents a Hidden Markov Model (referred to as HMM_RA that can predict the topology of α-helical transmembrane proteins with improved performance. HMM_RA adopts the same structure as the HMMTOP method, which has five modules: inside loop, inside helix tail, membrane helix, outside helix tail and outside loop. Each module consists of one or multiple states. HMM_RA allows using reduced alphabets to encode protein sequences. Thus, each state of HMM_RA is associated with n emission probabilities, where n is the size of the reduced alphabet set. Direct comparisons using two standard data sets show that HMM_RA consistently outperforms HMMTOP and TMHMM in topology prediction. Specifically, on a high-quality data set of 83 proteins, HMM_RA outperforms HMMTOP by up to 7.6% in topology accuracy and 6.4% in α-helices location accuracy. On the same data set, HMM_RA outperforms TMHMM by up to 6.4% in topology accuracy and 2.9% in location accuracy. Comparison also shows that HMM_RA achieves comparable performance as Phobius, a recently published method.

  19. A prediction method for long-term behavior of prestressed concrete containment vessels

    International Nuclear Information System (INIS)

    Ozaki, M.; Abe, T.; Watanabe, Y.; Kato, A.; Yamaguchi, T.; Yamamoto, M.

    1995-01-01

    This paper presents results of studies on the long-term behavior of PCCVs at Taruga Unit No 2 and Ohi Unit No 3/4 power stations. The objective of this study is to evaluate the measured strain in the concrete and reduction force in the tendons, and to establish the prediction methods for long-term PCCVs behavior. Comparing the measured strains with those calculated due to creep and shrinkage of the concrete, those in contrast were investigated. Furthermore, the reduced tendon forces are calculated considering losses in elasticity, relaxation, creep and shrinkage. The measured reduction in the tendon forces is compared with the calculated. Considering changes in temperature and humidity, the measured strains and tendon forces were in good agreement with those calculated. From the above results, it was confirmed that the residual pre stresses in the PCCVs maintain the predicted values at the design stage, and that the prediction method of long-term behaviors has sufficient reliability. (author). 10 refs., 8 figs., 3 tabs

  20. Predicting singlet-triplet energy splittings with projected Hartree-Fock methods.

    Science.gov (United States)

    Rivero, Pablo; Jiménez-Hoyos, Carlos A; Scuseria, Gustavo E

    2013-08-22

    Hartree-Fock (HF) and density functional theory (DFT) methods are known for having problems in predicting singlet-triplet energy splittings when the system displays significant diradical character. Multireference methods are traditionally advocated to deal with the spin-contamination problem inherent in broken-symmetry mean-field methods. In the present work, spin-contamination is rigorously eliminated by means of a symmetry projection approach, carried out in a variation-after-projection fashion, recently implemented in our research group. We here explore the performance of a variety of projected Hartree-Fock (PHF) approaches (SUHF, KSUHF, SGHF, and KSGHF) in predicting singlet-triplet energy gaps in a broad set of diradical systems: small diatomic molecules, carbenes and silenes, and a few larger molecules (trimethylenemethane and benzyne isomers). For most of these systems, accurate experimental data is available in the literature. Additionally, we assess the quality of the geometrical parameters obtained in SUHF-based optimizations for some of the systems considered. Our results indicate that PHF methods yield high-quality multireference wave functions, providing a good description of the ground state potential surface as well as an accurate singlet-triplet splitting gap, all within a modest mean-field computational cost.

  1. Clustering of hydrological data: a review of methods for runoff predictions in ungauged basins

    Science.gov (United States)

    Dogulu, Nilay; Kentel, Elcin

    2017-04-01

    There is a great body of research that has looked into the challenge of hydrological predictions in ungauged basins as driven by the Prediction in Ungauged Basins (PUB) initiative of the International Association of Hydrological Sciences (IAHS). Transfer of hydrological information (e.g. model parameters, flow signatures) from gauged to ungauged catchment, often referred as "regionalization", is the main objective and benefits from identification of hydrologically homogenous regions. Within this context, indirect representation of hydrologic similarity for ungauged catchments, which is not a straightforward task due to absence of streamflow measurements and insufficient knowledge of hydrologic behavior, has been explored in the literature. To this aim, clustering methods have been widely adopted. While most of the studies employ hard clustering techniques such as hierarchical (divisive or agglomerative) clustering, there have been more recent attempts taking advantage of fuzzy set theory (fuzzy clustering) and nonlinear methods (e.g. self-organizing maps). The relevant research findings from this fundamental task of hydrologic sciences have revealed the value of different clustering methods for improved understanding of catchment hydrology. However, despite advancements there still remains challenges and yet opportunities for research on clustering for regionalization purposes. The present work provides an overview of clustering techniques and their applications in hydrology with focus on regionalization for the PUB problem. Identifying their advantages and disadvantages, we discuss the potential of innovative clustering methods and reflect on future challenges in view of the research objectives of the PUB initiative.

  2. A New Global Regression Analysis Method for the Prediction of Wind Tunnel Model Weight Corrections

    Science.gov (United States)

    Ulbrich, Norbert Manfred; Bridge, Thomas M.; Amaya, Max A.

    2014-01-01

    A new global regression analysis method is discussed that predicts wind tunnel model weight corrections for strain-gage balance loads during a wind tunnel test. The method determines corrections by combining "wind-on" model attitude measurements with least squares estimates of the model weight and center of gravity coordinates that are obtained from "wind-off" data points. The method treats the least squares fit of the model weight separate from the fit of the center of gravity coordinates. Therefore, it performs two fits of "wind- off" data points and uses the least squares estimator of the model weight as an input for the fit of the center of gravity coordinates. Explicit equations for the least squares estimators of the weight and center of gravity coordinates are derived that simplify the implementation of the method in the data system software of a wind tunnel. In addition, recommendations for sets of "wind-off" data points are made that take typical model support system constraints into account. Explicit equations of the confidence intervals on the model weight and center of gravity coordinates and two different error analyses of the model weight prediction are also discussed in the appendices of the paper.

  3. A method for gear fatigue life prediction considering the internal flow field of the gear pump

    Science.gov (United States)

    Shen, Haidong; Li, Zhiqiang; Qi, Lele; Qiao, Liang

    2018-01-01

    Gear pump is the most widely used volume type hydraulic pump, and it is the main power source of the hydraulic system. Its performance is influenced by many factors, such as working environment, maintenance, fluid pressure and so on. It is different from the gear transmission system, the internal flow field of gear pump has a greater impact on the gear life, therefore it needs to consider the internal hydraulic system when predicting the gear fatigue life. In this paper, a certain aircraft gear pump as the research object, aim at the typical failure forms, gear contact fatigue, of gear pump, proposing the prediction method based on the virtual simulation. The method use CFD (Computational fluid dynamics) software to analyze pressure distribution of internal flow field of the gear pump, and constructed the unidirectional flow-solid coupling model of gear to acquire the contact stress of tooth surface on Ansys workbench software. Finally, employing nominal stress method and Miner cumulative damage theory to calculated the gear contact fatigue life based on modified material P-S-N curve. Engineering practice show that the method is feasible and efficient.

  4. Validation of engineering methods for predicting hypersonic vehicle controls forces and moments

    Science.gov (United States)

    Maughmer, M.; Straussfogel, D.; Long, L.; Ozoroski, L.

    1991-01-01

    This work examines the ability of the aerodynamic analysis methods contained in an industry standard conceptual design code, the Aerodynamic Preliminary Analysis System (APAS II), to estimate the forces and moments generated through control surface deflections from low subsonic to high hypersonic speeds. Predicted control forces and moments generated by various control effectors are compared with previously published wind-tunnel and flight-test data for three vehicles: the North American X-15, a hypersonic research airplane concept, and the Space Shuttle Orbiter. Qualitative summaries of the results are given for each force and moment coefficient and each control derivative in the various speed ranges. Results show that all predictions of longitudinal stability and control derivatives are acceptable for use at the conceptual design stage.

  5. Crystal Structure Predictions Using Adaptive Genetic Algorithm and Motif Search methods

    Science.gov (United States)

    Ho, K. M.; Wang, C. Z.; Zhao, X.; Wu, S.; Lyu, X.; Zhu, Z.; Nguyen, M. C.; Umemoto, K.; Wentzcovitch, R. M. M.

    2017-12-01

    Material informatics is a new initiative which has attracted a lot of attention in recent scientific research. The basic strategy is to construct comprehensive data sets and use machine learning to solve a wide variety of problems in material design and discovery. In pursuit of this goal, a key element is the quality and completeness of the databases used. Recent advance in the development of crystal structure prediction algorithms has made it a complementary and more efficient approach to explore the structure/phase space in materials using computers. In this talk, we discuss the importance of the structural motifs and motif-networks in crystal structure predictions. Correspondingly, powerful methods are developed to improve the sampling of the low-energy structure landscape.

  6. Travel Time Estimation and Prediction using Mobile Phones: A Cost Effective Method for Developing Countries

    Directory of Open Access Journals (Sweden)

    Satyakumar, M.

    2014-01-01

    Full Text Available Conventional data collection methods lack real time information and involve excessive cost of installation and maintenance. A real-time, low cost travel time data collection system can be developed using mobile phones. This project examines the use of mobile phones for travel time prediction of public transit vehicles and develops a dynamic travel time prediction model. Personnel were employed in public transit vehicles with mobile phones and these mobile phones were tracked continuously. Space information of the mobile phones represents the position of the buses and movement pattern of these mobile phones in turn represents the movement pattern of the public buses. The starting and arrival time at sections obtained from the cellular database were used to get the travel time and speed. Results obtained were statistically significant and it shows that use of mobile phone for travel time data collection is a low cost data collection technique for Indian cities.

  7. An efficient ray tracing method for propagation prediction along a mobile route in urban environments

    Science.gov (United States)

    Hussain, S.; Brennan, C.

    2017-07-01

    This paper presents an efficient ray tracing algorithm for propagation prediction in urban environments. The work presented in this paper builds upon previous work in which the maximum coverage area where rays can propagate after interaction with a wall or vertical edge is described by a lit polygon. The shadow regions formed by buildings within the lit polygon are described by shadow polygons. In this paper, the lit polygons of images are mapped to a coarse grid superimposed over the coverage area. This mapping reduces the active image tree significantly for a given receiver point to accelerate the ray finding process. The algorithm also presents an efficient method of quickly determining the valid ray segments for a mobile receiver moving along a linear trajectory. The validation results show considerable computation time reduction with good agreement between the simulated and measured data for propagation prediction in large urban environments.

  8. Shelf Life Prediction for Canned Gudeg using Accelerated Shelf Life Testing (ASLT) Based on Arrhenius Method

    Science.gov (United States)

    Nurhayati, R.; Rahayu NH, E.; Susanto, A.; Khasanah, Y.

    2017-04-01

    Gudeg is traditional food from Yogyakarta. It is consist of jackfruit, chicken, egg and coconut milk. Gudeg generally have a short shelf life. Canning or commercial sterilization is one way to extend the shelf life of gudeg. This aims of this research is to predict the shelf life of Andrawinaloka canned gudeg with Accelerated Shelf Life Test methods, Arrhenius model. Canned gudeg stored at three different temperature, there are 37, 50 and 60°C for two months. Measuring the number of Thio Barbituric Acid (TBA), as a critical aspect, were tested every 7 days. Arrhenius model approach is done with the equation order 0 and order 1. The analysis showed that the equation of order 0 can be used as an approach to estimating the shelf life of canned gudeg. The storage of Andrawinaloka canned gudeg at 30°C is predicted untill 21 months and 24 months for 25°C.

  9. Research on Fault Rate Prediction Method of T/R Component

    Science.gov (United States)

    Hou, Xiaodong; Yang, Jiangping; Bi, Zengjun; Zhang, Yu

    2017-07-01

    T/R component is an important part of the large phased array radar antenna array, because of its large numbers, high fault rate, it has important significance for fault prediction. Aiming at the problems of traditional grey model GM(1,1) in practical operation, the discrete grey model is established based on the original model in this paper, and the optimization factor is introduced to optimize the background value, and the linear form of the prediction model is added, the improved discrete grey model of linear regression is proposed, finally, an example is simulated and compared with other models. The results show that the method proposed in this paper has higher accuracy and the solution is simple and the application scope is more extensive.

  10. Critical assessment of methods of protein structure prediction (CASP)-round IX

    KAUST Repository

    Moult, John

    2011-01-01

    This article is an introduction to the special issue of the journal PROTEINS, dedicated to the ninth Critical Assessment of Structure Prediction (CASP) experiment to assess the state of the art in protein structure modeling. The article describes the conduct of the experiment, the categories of prediction included, and outlines the evaluation and assessment procedures. Methods for modeling protein structure continue to advance, although at a more modest pace than in the early CASP experiments. CASP developments of note are indications of improvement in model accuracy for some classes of target, an improved ability to choose the most accurate of a set of generated models, and evidence of improvement in accuracy for short "new fold" models. In addition, a new analysis of regions of models not derivable from the most obvious template structure has revealed better performance than expected.

  11. Development of a coupled level set and immersed boundary method for predicting dam break flows

    Science.gov (United States)

    Yu, C. H.; Sheu, Tony W. H.

    2017-12-01

    Dam-break flow over an immersed stationary object is investigated using a coupled level set (LS)/immersed boundary (IB) method developed in Cartesian grids. This approach adopts an improved interface preserving level set method which includes three solution steps and the differential-based interpolation immersed boundary method to treat fluid-fluid and solid-fluid interfaces, respectively. In the first step of this level set method, the level set function ϕ is advected by a pure advection equation. The intermediate step is performed to obtain a new level set value through a new smoothed Heaviside function. In the final solution step, a mass correction term is added to the re-initialization equation to ensure the new level set is a distance function and to conserve the mass bounded by the interface. For accurately calculating the level set value, the four-point upwinding combined compact difference (UCCD) scheme with three-point boundary combined compact difference scheme is applied to approximate the first-order derivative term shown in the level set equation. For the immersed boundary method, application of the artificial momentum forcing term at points in cells consisting of both fluid and solid allows an imposition of velocity condition to account for the presence of solid object. The incompressible Navier-Stokes solutions are calculated using the projection method. Numerical results show that the coupled LS/IB method can not only predict interface accurately but also preserve the mass conservation excellently for the dam-break flow.

  12. A Digital Signal Processing Method for Gene Prediction with Improved Noise Suppression

    Directory of Open Access Journals (Sweden)

    Carreira Alex

    2004-01-01

    Full Text Available It has been observed that the protein-coding regions of DNA sequences exhibit period-three behaviour, which can be exploited to predict the location of coding regions within genes. Previously, discrete Fourier transform (DFT and digital filter-based methods have been used for the identification of coding regions. However, these methods do not significantly suppress the noncoding regions in the DNA spectrum at . Consequently, a noncoding region may inadvertently be identified as a coding region. This paper introduces a new technique (a single digital filter operation followed by a quadratic window operation that suppresses nearly all of the noncoding regions. The proposed method therefore improves the likelihood of correctly identifying coding regions in such genes.

  13. Use of predictive models and rapid methods to nowcast bacteria levels at coastal beaches

    Science.gov (United States)

    Francy, Donna S.

    2009-01-01

    The need for rapid assessments of recreational water quality to better protect public health is well accepted throughout the research and regulatory communities. Rapid analytical methods, such as quantitative polymerase chain reaction (qPCR) and immunomagnetic separation/adenosine triphosphate (ATP) analysis, are being tested but are not yet ready for widespread use.Another solution is the use of predictive models, wherein variable(s) that are easily and quickly measured are surrogates for concentrations of fecal-indicator bacteria. Rainfall-based alerts, the simplest type of model, have been used by several communities for a number of years. Deterministic models use mathematical representations of the processes that affect bacteria concentrations; this type of model is being used for beach-closure decisions at one location in the USA. Multivariable statistical models are being developed and tested in many areas of the USA; however, they are only used in three areas of the Great Lakes to aid in notifications of beach advisories or closings. These “operational” statistical models can result in more accurate assessments of recreational water quality than use of the previous day's Escherichia coli (E. coli)concentration as determined by traditional culture methods. The Ohio Nowcast, at Huntington Beach, Bay Village, Ohio, is described in this paper as an example of an operational statistical model. Because predictive modeling is a dynamic process, water-resource managers continue to collect additional data to improve the predictive ability of the nowcast and expand the nowcast to other Ohio beaches and a recreational river. Although predictive models have been shown to work well at some beaches and are becoming more widely accepted, implementation in many areas is limited by funding, lack of coordinated technical leadership, and lack of supporting epidemiological data.

  14. Prediction of human core body temperature using non-invasive measurement methods

    Science.gov (United States)

    Niedermann, Reto; Wyss, Eva; Annaheim, Simon; Psikuta, Agnes; Davey, Sarah; Rossi, René Michel

    2014-01-01

    The measurement of core body temperature is an efficient method for monitoring heat stress amongst workers in hot conditions. However, invasive measurement of core body temperature (e.g. rectal, intestinal, oesophageal temperature) is impractical for such applications. Therefore, the aim of this study was to define relevant non-invasive measures to predict core body temperature under various conditions. We conducted two human subject studies with different experimental protocols, different environmental temperatures (10 °C, 30 °C) and different subjects. In both studies the same non-invasive measurement methods (skin temperature, skin heat flux, heart rate) were applied. A principle component analysis was conducted to extract independent factors, which were then used in a linear regression model. We identified six parameters (three skin temperatures, two skin heat fluxes and heart rate), which were included for the calculation of two factors. The predictive value of these factors for core body temperature was evaluated by a multiple regression analysis. The calculated root mean square deviation (rmsd) was in the range from 0.28 °C to 0.34 °C for all environmental conditions. These errors are similar to previous models using non-invasive measures to predict core body temperature. The results from this study illustrate that multiple physiological parameters (e.g. skin temperature and skin heat fluxes) are needed to predict core body temperature. In addition, the physiological measurements chosen in this study and the algorithm defined in this work are potentially applicable as real-time core body temperature monitoring to assess health risk in broad range of working conditions.

  15. Prediction of human core body temperature using non-invasive measurement methods.

    Science.gov (United States)

    Niedermann, Reto; Wyss, Eva; Annaheim, Simon; Psikuta, Agnes; Davey, Sarah; Rossi, René Michel

    2014-01-01