WorldWideScience

Sample records for sv40 uv radiation

  1. Test of models for replication of SV40 DNA following UV irradiation

    International Nuclear Information System (INIS)

    Barnett, S.W.

    1983-01-01

    The replication of SV40 DNA immediately after irradiation of infected monkey cells has been examined. SV40 DNA synthesis is inhibited in a UV fluence-dependent fashion, and the synthesis of completely replicated (Form I) SV40 molecules is more severely inhibited than is total SV40 DNA synthesis. Two models for DNA replication-inhibition have been tested. Experimental results have been compared to those predicted by mathematical models derived to describe two possible molecular mechanisms of replication inhibition. No effect of UV irradiation on the uptake and phosphorylation of 3 H-thymidine nor on the size of the intracellular deoxythymidine triphosphate pool of SV40-infected cells have been observed, validating the use of 3 H-thymidine incorporation as a measure of DNA synthesis in this system. In vitro studies have been performed to further investigate the mechanism of dimer-specific inhibition of completion of SV40 DNA synthesis observed in in vivo. The results of these studies are consistent with a mechanism of discontinuous synthesis past dimer sites, but it is equally possible that the mechanism of DNA replication of UV-damaged DNA in the in vitro system is different from that which occurs in vivo

  2. Biological activity of SV40 DNA

    International Nuclear Information System (INIS)

    Abrahams, P.J.

    1978-01-01

    This thesis deals with a study on the biological activity of SV40 DNA. The transforming activity of SV40 DNA and DNA fragments is investigated in order to define as precisely as possible the area of the viral genome that is involved in the transformation. The infectivity of SV40 DNA is used to study the defective repair mechanisms of radiation damages of human xeroderma pigmentosum cells. (C.F.)

  3. Defective repair of UV-damaged DNA in human tumor and SV40-transformed human cells but not in adenovirus-transformed human cells

    International Nuclear Information System (INIS)

    Rainbow, A.J.

    1989-01-01

    The DNA repair capacities of five human tumor cell lines, one SV40-transformed human cell line and one adenovirus-transformed human cell line were compared with that of normal human fibroblasts using a sensitive host cell reactivation (HCR) technique. Unirradiated and UV-irradiated suspensions of adenovirus type 2 (Ad 2) were assayed for their ability to form viral structural antigens (Vag) in the various cell types using immunofluorescent staining. The survival of Vag formation for UV-irradiated Ad 2 was significantly reduced in all the human tumor cell lines and the SV40-transformed human line compared to the normal human fibroblasts, but was apparently normal in the adenovirus-transformed human cells. D 0 values for the UV survival of Ad 2 Vag synthesis in the tumor and virally transformed lines expressed as a percentage of that obtained on normal fibroblast strains were used as a measure of DNA repair capacity. Percent HCR values ranged from 26 to 53% in the tumor cells. These results indicate a deficiency in the repair of UV-induced DNA damage associated with human tumorigenesis and the transformation of human cells by SV40 but not the transformation of human cells by adenovirus. (author)

  4. Effect of caffeine on the ultraviolet light induction of SV40 virus from transformed hamster cells

    International Nuclear Information System (INIS)

    Zamansky, G.B.; Kleinman, L.F.; Little, J.B.; Black, P.H.; Kaplan, J.C.

    1976-01-01

    The effect of caffeine on the uv light induction of SV40 virus from two transformed hamster cell lines heterogeneous for the induction of infectious virus was studied. The amount of virus induced was significantly increased in both cell lines when exposure to uv light was followed by treatment with caffeine. Caffeine in the absence of uv irradiation did not stimulate virus induction, nor did it stimulate SV40 replication in a lytic infection. There was an apparent difference in the concentrations of caffeine which maximally stimulated SV40 virus induction in the two cell lines. This effect could not be explained by differences in cell survival after exposure to uv light and caffeine. Since caffeine is known to cause the accumulation of gaps formed in DNA during postreplication repair of uv-irradiated rodent cells, our results support the hypothesis that the formation of gaps or breaks in DNA is an important early step in virus induction

  5. Preirradiation of host (monkey) cells mitigates the effects of UV upon simian virus 40 DNA replication

    International Nuclear Information System (INIS)

    Scaria, A.; Edenberg, H.J.

    1987-01-01

    The authors examined the effects of preirradiation of host (monkey) cells upon the replication of UV-damaged SV40. Control cells and cells preirradiated with low fluences of UV were infected with undamaged SV40, and the immediate effects of a subsequent irradiation were determined. UV inhibited total SV40 DNA synthesis in both preirradiated and control cells, but the extent of inhibition was less in the preirradiated cells. A test fluence of 60 J/m 2 to SV40 replicating in preirradiated cells reduced synthesis only as much as a test fluence of 25 J/m 2 in control cells. The fraction of recently replicated SV40 molecules that re-entered the replication pool and subsequently completed one round of replication in the first 2 h after UV was also decreased less in the preirradiated cells. Thus preirradiation of the host cell mitigates the immediate inhibitory effects of a subsequent UV exposure upon SV40 replication. (Auth.)

  6. Ultraviolet radiation inactivates SV40 by disrupting at least four genetic functions

    International Nuclear Information System (INIS)

    Brown, T.C.; Cerutti, P.A.

    1986-01-01

    The most UV sensitive region within the SV40 viral genome contains the transcriptional promotors and enhancers for the early and late viral genes plus part of the origin of DNA replication. Lesions within this regulatory region are 3.2-fold more effective in inactivating viral DNA than is the same amount of damage randomly distributed throughout the viral genome. The region least sensitive to damage lies within the coding portion of the viral coat protein genes, which are expressed only late in infection and would therefore be transcribed from undamaged progeny viral genomes, provided DNA replication occurs. Damage within this region is only 45% as effective in inactivating viral DNA as are randomly distributed lesions. Thus there is a 7-fold difference in the lethal effect of DNA damage within the most and least sensitive regions of the viral genome. Intermediate sensitivities are observed within the transcribed portion of the viral A gene, coding for the T antigen whose expression is required early in infection, and in a region at the terminus of DNA replication. The sum of the individual sensitivities for all regions of the SV40 genome is equal to the total sensitivity of viral DNA subjected to random damage. (author)

  7. Host-cell reactivation of ultraviolet-irradiated SV 40 DNA in five complementation groups of xeroderma pigmentosum

    International Nuclear Information System (INIS)

    Abrahams, P.J.; Eb, A.J. van der

    1976-01-01

    Host-cell reactivation of UV-irradiated double-stranded SV40 DNA was studied in BSC-1 monkey cells, normal human cells, heterozygous Xeroderma pigmentosum xp cells, representative cell strains of the five complemention groups of XP and in XP 'variant' cells. The following percentages of survival of the plaque-forming ability of double-stranded SV40 DNA were found in XP cells compared with the value found in normal monkey and human cells: groupA, 13%; group B, 30%; group C, 18%; group D, 14%; group E, 59%; and in the heterozygous XP cells almost 100%. The survival in XP 'variant' cells was 66%. The survival of single-stranded SV40 DNA in BSC-1 cells was much lower than that of double-stranded SV40 DNA in XP cells of complementation group A, which possibly indicates that some repair of UV damage occurs even in XP cells of group A

  8. Random integration of SV40 in SV40-transformed, immortalized human fibroblasts.

    Science.gov (United States)

    Hara, H; Kaji, H

    1987-02-01

    We have studied the relationship between immortalization of SV40-transformed human embryonic fibroblasts and their SV40 integration sites. From several independently transformed cell pools, we have isolated clones which do not harbor unintegrated SV40 DNA. We have analysed whole-cell DNA from these clones, using the Southern blot method. Our results suggest that no specific integration sites in the cellular genome exist which are a prerequisite for the immortalization process. Although some integration sites were found to be predominant in pre-crisis clones, they could not be detected in the post-crisis clones. This suggests that none of these predominating sites is selected for during the crisis period.

  9. Enhanced replication of UV-damaged Simian virus 40 DNA in carcinogen-treated mammalian cells

    International Nuclear Information System (INIS)

    Maga, J.A.

    1983-01-01

    The replication of UV-damaged Simian virus 40 (SV40) in carcinogen-treated monkey cells has been studied to elucidate the mechanism of carcinogen-enhanced reactivation. Carcinogen enhanced reactivation is the observed increase in UV-irradiated virus survival in host cells treated with low doses of carcinogen compared to UV-irradiated virus survival in untreated hosts. Carcinogen treatment of monkey kidney cells with either N-acetoxy-2-acetylaminofluorene (AAAF) or UV radiation leads to an enhanced capacity to replicate UV-damaged virus during the first round of infection. To further define the mechanism leading to enhanced replication, a detailed biochemical analysis of replication intermediates in carcinogen-treated cells was performed. Several conclusions can be drawn. First enhanced replication can be observed in the first four rounds of replication after UV irradiation of viral templates. The second major finding is that the relaxed circular intermediate model proposed for the replication of UV-damaged templates in untreated cells appears valid for replication of UV-damaged templates in carcinogen-treated cells. Possible mechanisms and the supporting evidence are discussed and future experiments outlined

  10. Effect of uv-irradiation on genetic recombination of Simian virus 40 mutants

    International Nuclear Information System (INIS)

    Gentil, A.; Margot, A.; Sarasin, A.

    1983-01-01

    Genetic recombination in monkey kidney cells has been studied using Simian virus 40 (SV40) as a molecular probe. Control or uv-irradiated cells have been co-infected with two thermosensitive mutants of SV40, tsA58 and tsA30. Recombination between the two viral genomes gives rise to a wild type virus phenotype, able to grow at the restrictive temperature of 41 0 C, which was taken as a measure of the recombination activity of the host cells. Results show that recombination takes place at a low frequency when viruses are not uv-irradiated. Irradiation of one or both viruses increases drastically recombination frequency. Pretreatment of the host cells with uv-light or mitomycin C 24 hours before being infected does not increase recombination frequency measured in our experimental conditions. 23 references, 5 tables

  11. Replicative intermediates in UV-irradiated Simian virus 40

    International Nuclear Information System (INIS)

    Clark, J.M.; Hanawalt, P.C.

    1984-01-01

    The authors have used Simian virus 40 (SV40) as a probe to study the replication of UV-damaged DNA in mammalian cells. Viral DNA replication in infected monkey kidney cells was synchronized by incubating a mutant of SV40 (tsA58) temperature-sensitive for the initiation of DNA synthesis at the restrictive temperature and then adding aphidicolin to temporarily inhibit DNA synthesis at the permissive temperature while permitting pre-replicative events to occur. After removal of the drug, the infected cells were irradiated at 100 J/m 2 (254 nm) to produce 6-7 pyrimidine dimers per SV40 genome, and returned to the restrictive temperature to prevent reinitiation of replication from the SV40 origin. Replicative intermediates (RI) were labeled with [ 3 H]thymidine. The size distribution of daughter DNA strands in RI isolated shortly after irradiation was skewed towards lengths less than the interdimer spacing in parental DNA; this bias persisted for at least 1 h after irradiation, but disappeared within 3 h by which time the size of the newly-synthesized DNA exceeded the interdimer distance. Evidence was obtained for the generation at late times after irradiation, of Form I molecules in which the daughter DNA strand contain dimers. Thus DNA strand exchange as well as trans-dimer synthesis may be involved in the generation of supercoiled Form I DNA from 0V-damaged SV40 replicative intermediates. (Auth.)

  12. Enhancement of SV40 transformation by treatment of C3H2K cells with uv light and caffeine. I. Combined effect of uv light and caffeine

    International Nuclear Information System (INIS)

    Ide, T.; Anzai, K.; Andoh, T.

    1975-01-01

    Treatment of cultured mouse cells, C3H2K, with uv light and/or caffeine enhanced the frequency of SV40-induced transformation. This enhancement depends upon the doses of uv and caffeine and the mode of combination of these agents. Irradiation of cells with increasing doses of uv just before infection resulted in approximately 2-fold enhancement of the transformation frequency up to a dose of 90 ergs/mm 2 and 3.3-fold at 150 ergs/mm 2 . Addition of 1 mM caffeine to the medium for 4 days subsequent to infection brought about a 2-fold enhancement. When cells were irradiated and treated with 1 mM caffeine, the enhancement was approximately 4-fold up to a uv dose of 90 ergs/mm 2 and 5.9-fold at 150 ergs/mm 2 . When 0.1 to 4 mM caffeine was added for 4 days postinfection, the absolute number of transformations increased, and an enhancement ratio of 1.3 to 6.8 resulted. After the addition of the same increasing doses of caffeine to uv-irradiated cells (75 ergs/mm 2 ), the enhancement of transformation frequency was even higher ranging 2.0 to 13.3. The transformation frequencies thus obtained by the double treatment were always higher than those predicted if uv and caffeine acted additively. The transformation frequency was little affected by the addition of dibutyrylcyclic AMP and theophylline

  13. Radiation-induced gene amplification in rodent and human cells

    International Nuclear Information System (INIS)

    Luecke-Huhle, C.; Gloss, B.; Herrlich, P.

    1990-01-01

    Ionizing and UV radiations induce amplification of SV40 DNA sequences integrated in the genome of Chinese hamster cells and increase amplification of the dihydrofolate reductase (DHFR) gene during methotrexate selection in human skin fibroblasts of a patient with ataxia telangiectasia. Various types of external (60-Co-γ-rays, 241-Am-α-particles, UV) or internal radiation (caused by the decay of 125 I incorporated into DNA in form of I-UdR) were applied. By cell fusion experiments it could be shown that SV40 gene amplification is mediated by one or several diffusible trans-acting factors induced or activated in a dose dependent manner by all types of radiation. One of these factors binds to a 10 bp sequence within the minimal origin of replication of SV40. In vivo competition with an excess of a synthetic oligonucleotide comprising this sequence blocks radiation-induced amplification. (author) 25 refs.; 8 figs

  14. Internal 40K radiation dose to Indians

    International Nuclear Information System (INIS)

    Ranganathan, S.; Someswara Rao, M.; Nagaratnam, A.; Mishra, U.C.

    2002-01-01

    A group of 350 Indians from both sexes (7-65 years) representing different regions of India was studied for internal 40 K radiation dose from the naturally occurring body 40 K, which was measured in the National Institute of Nutrition (NIN) whole-body counter. Although the 40 K radioactivity reached a peak value by 18 years in female (2,412 Bq) and by 20 years in male (3,058 Bq) and then varied inversely with age in both sexes, the radiation dose did not show such a trend. Boys and girls of 11 years had annual effective dose of nearly 185 mSv, which decreased during adolescence (165 mSv), increased to 175 mSv by 18-20 years in adults and decreased progressively on further ageing to 99 mSv in males and 69 mSv in females at 65 years. The observed annual effective dose (175 mSv) of the young adults was close to that of the ICRP Reference Man (176 mSv) and Indian Reference Man (175 mSv). With a mean specific activity of 55 Bq/kg for the subjects and a conversion coefficient close to 3 mSv per annum per Bq/kg, the average annual effective dose from the internal 40 K turned out to be 165 mSv for Indians. (author)

  15. Properties of the simian virus 40 (SV40) large T antigens encoded by SV40 mutants with deletions in gene A.

    Science.gov (United States)

    Cole, C N; Tornow, J; Clark, R; Tjian, R

    1986-01-01

    The biochemical properties of the large T antigens encoded by simian virus 40 (SV40) mutants with deletions at DdeI sites in the SV40 A gene were determined. Mutant large T antigens containing only the first 138 to 140 amino acids were unable to bind to the SV40 origin of DNA replication as were large T antigens containing at their COOH termini 96 or 97 amino acids encoded by the long open reading frame located between 0.22 and 0.165 map units (m.u.). All other mutant large T antigens were able to bind to the SV40 origin of replication. Mutants with in-phase deletions at 0.288 and 0.243 m.u. lacked ATPase activity, but ATPase activity was normal in mutants lacking origin-binding activity. The 627-amino acid large T antigen encoded by dlA2465, with a deletion at 0.219 m.u., was the smallest large T antigen displaying ATPase activity. Mutant large T antigens with the alternate 96- or 97-amino acid COOH terminus also lacked ATPase activity. All mutant large T antigens were found in the nuclei of infected cells; a small amount of large T with the alternate COOH terminus was also located in the cytoplasm. Mutant dlA2465 belonged to the same class of mutants as dlA2459. It was unable to form plaques on CV-1p cells at 37 or 32 degrees C but could form plaques on BSC-1 monolayers at 37 degrees C but not at 32 degrees C. It was positive for viral DNA replication and showed intracistronic complementation with any group A mutant whose large T antigen contained a normal carboxyl terminus. These findings and those of others suggest that both DNA binding and ATPase activity are required for the viral DNA replication function of large T antigen, that these two activities must be located on the same T antigen monomer, and that these two activities are performed by distinct domains of the polypeptide. These domains are distinct and separable from the domain affected by the mutation of dlA2465 and indicate that SV40 large T antigen is made up of at least three separate functional

  16. The monetary value of the man-mSv for Korean NPP radiation workers assessed by the radiation aversion factor

    International Nuclear Information System (INIS)

    Lee, B. I.; Suh, D. H.; Kim, S. I.; Jeong, M. S.; Lim, Y. K.

    2008-01-01

    The monetary value of the man-mSv for operators of Korean nuclear power plants (NPPs) was calculated using a radiation aversion factor based on a survey of NPP workers. Initially, the life expectancy in the population is 79.4 y, the average age of cancer occurrence is 60 y, the average annual wage for an electric worker is 56 000 $ y -1 and the nominal risk coefficient induced by radiation is 4.2 E-5 mSv were used to evaluate the basic monetary value (α base) resulting in 45.6 $ mSv -1 . To investigate the degree of radiation aversion, the subject of the investigation was selected as the working radiation workers in 10 NPPs in Korea (Kori 1-2, Yeonggwang 1-3, Ulchin 1-3 and Wolseong 1-2). In August 2010, with the cooperation of KHNP and partner companies, a total of 2500 survey questionnaires to 10 NPPs (or 250 surveys to each NPP) were distributed to currently employed radiation workers. From these, 2157 responses were obtained between August and October 2010. The assessed radiation aversion factor and the monetary value of the man-mSv from the calculated radiation aversion factor were 1.26 and ∼50 $ in the 0-1 mSv range, 1.38 and ∼200 $ in the 1-5 mSv range, 1.52 and ∼1000 $ in the 5-10 mSv range, 1.65 and ∼4000 $ in the 10-20 mSv range and 1.74 and ∼8500 $ >20 mSv. (authors)

  17. High throughput testing of the SV40 Large T antigen binding to cellular p53 identifies putative drugs for the treatment of SV40-related cancers

    International Nuclear Information System (INIS)

    Carbone, Michele; Rudzinski, Jennifer; Bocchetta, Maurizio

    2003-01-01

    SV40 has been linked to some human malignancies, and the evidence that this virus plays a causative role in mesothelioma and brain tumors is mounting. The major SV40 oncoprotein is the Large tumor antigen (Tag). A key Tag transforming activity is connected to its capability to bind and inactivate cellular p53. In this study we developed an effective, high throughput, ELISA-based method to study Tag-p53 interaction in vitro. This assay allowed us to screen a chemical library and to identify a chemical inhibitor of the Tag binding to p53. We propose that our in vitro assay is a useful method to identify molecules that may be used as therapeutic agents for the treatment of SV40-related human cancers

  18. Comparative human cellular radiosensitivity: I. The effect of SV40 transformation and immortalisation on the gamma-irradiation survival of skin derived fibroblasts from normal individuals and from ataxia-telangiectasia patients and heterozygotes.

    Science.gov (United States)

    Arlett, C F; Green, M H; Priestley, A; Harcourt, S A; Mayne, L V

    1988-12-01

    We have compared cell killing following 60Co gamma irradiation in 22 primary human fibroblast strains, nine SV40-immortalized human fibroblast lines and seven SV40-transformed pre-crisis human fibroblast cultures. We have examined material from normal individuals, from ataxia-telangiectasia (A-T) patients and from A-T heterozygotes. We have confirmed the greater sensitivity of A-T derived cells to gamma radiation. The distinction between A-T and normal cells is maintained in cells immortalized by SV40 virus but the immortal cells are more gamma radiation resistant than the corresponding primary fibroblasts. Cells transformed by plasmids (pSV3gpt and pSV3neo) expressing SV40 T-antigen, both pre- and post-crisis, show this increased resistance, indicating that it is expression of SV40 T-antigen, rather than immortalization per se which is responsible for the change. We use D0, obtained from a straight line fit, and D, estimated from a multitarget curve, as parameters to compare radiosensitivity. We suggest that both have their advantages; D0 is perhaps more reproducible, but D is more realistic when comparing shouldered and non-shouldered data.

  19. The Influence of SV40 polyA on Gene Expression of Baculovirus Expression Vector Systems.

    Directory of Open Access Journals (Sweden)

    Tamer Z Salem

    Full Text Available The simian virus 40 polyadenylation signal (SV40 polyA has been routinely inserted downstream of the polyhedrin promoter in many baculovirus expression vector systems (BEVS. In the baculovirus prototype Autographa californica multiple nucleopolyhedrovirus (AcMNPV, the polyhedrin promoter (very late promoter transcribes its gene by a viral RNA polymerase therefore there is no supporting evidence that SV40 polyA is required for the proper gene expression under the polyhedrin promoter. Moreover, the effect of the SV40 polyA sequence on the polyhedrin promoter activity has not been tested either at its natural polyhedrin locus or in other loci in the viral genome. In order to test the significance of adding the SV40 polyA sequence on gene expression, the expression of the enhanced green fluorescent protein (egfp was evaluated with and without the presence of SV40 polyA under the control of the polyhedrin promoter at different genomic loci (polyherin, ecdysteroid UDP-glucosyltransferase (egt, and gp37. In this study, spectrofluorometry and western blot showed reduction of EGFP protein for all recombinant viruses with SV40 polyA, whereas qPCR showed an increase in the egfp mRNA levels. Therefore, we conclude that SV40 polyA increases mRNA levels but decreases protein production in the BEVS when the polyhedrin promoter is used at different loci. This work suggests that SV40 polyA in BEVSs should be replaced by an AcMNPV late gene polyA for optimal protein production or left untouched for optimal RNA production (RNA interference applications.

  20. The Influence of SV40 polyA on Gene Expression of Baculovirus Expression Vector Systems

    Science.gov (United States)

    Salem, Tamer Z.; Seaborn, Craig P.; Turney, Colin M.; Xue, Jianli; Shang, Hui; Cheng, Xiao-Wen

    2015-01-01

    The simian virus 40 polyadenylation signal (SV40 polyA) has been routinely inserted downstream of the polyhedrin promoter in many baculovirus expression vector systems (BEVS). In the baculovirus prototype Autographa californica multiple nucleopolyhedrovirus (AcMNPV), the polyhedrin promoter (very late promoter) transcribes its gene by a viral RNA polymerase therefore there is no supporting evidence that SV40 polyA is required for the proper gene expression under the polyhedrin promoter. Moreover, the effect of the SV40 polyA sequence on the polyhedrin promoter activity has not been tested either at its natural polyhedrin locus or in other loci in the viral genome. In order to test the significance of adding the SV40 polyA sequence on gene expression, the expression of the enhanced green fluorescent protein (egfp) was evaluated with and without the presence of SV40 polyA under the control of the polyhedrin promoter at different genomic loci (polyherin, ecdysteroid UDP-glucosyltransferase (egt), and gp37). In this study, spectrofluorometry and western blot showed reduction of EGFP protein for all recombinant viruses with SV40 polyA, whereas qPCR showed an increase in the egfp mRNA levels. Therefore, we conclude that SV40 polyA increases mRNA levels but decreases protein production in the BEVS when the polyhedrin promoter is used at different loci. This work suggests that SV40 polyA in BEVSs should be replaced by an AcMNPV late gene polyA for optimal protein production or left untouched for optimal RNA production (RNA interference applications). PMID:26659470

  1. Radiation Doses to Hanford Workers from Natural Potassium-40

    Energy Technology Data Exchange (ETDEWEB)

    Strom, Daniel J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lynch, Timothy P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Weier, Dennis R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2009-02-01

    The chemical element potassium is an essential mineral in people and is subject to homeostatic regulation. Natural potassium comprises three isotopes, 39K, 40K, and 41K. Potassium-40 is radioactive, with a half life of 1.248 billion years. In most transitions, it emits a β particle with a maximum energy of 0.560 MeV, and sometimes a gamma photon of 1.461 MeV. Because it is ubiquitous, 40K produces radiation dose to all human beings. This report contains the results of new measurements of 40K in 248 adult females and 2,037 adult males performed at the Department of Energy Hanford Site in 2006 and 2007. Potassium concentrations diminish with age, are generally lower in women than in men, and decrease with body mass index (BMI). The average annual effective dose from 40K in the body is 0.149 mSv y-1 for men and 0.123 mSv y-1 women respectively. Averaged over both men and women, the average effective dose per year is 0.136 mSv y-1. Calculated effective doses range from 0.069 to 0.243 mSv y-1 for adult males, and 0.067 to 0.203 mSv y-1 for adult females, a roughly three-fold variation for each gender. The need for dosimetric phantoms with a greater variety of BMI values should be investigated. From our data, it cannot be determined whether the potassium concentration in muscle in people with large BMI values differs from that in people with small BMI values. Similarly, it would be important to know the potassium concentration in other soft tissues, since much of the radiation dose is due to beta radiation, in which the source and target tissues are the same. These uncertainties should be evaluated to determine their consequences for dosimetry.

  2. SV40-transformed human fibroblasts: evidence for cellular aging in pre-crisis cells.

    Science.gov (United States)

    Stein, G H

    1985-10-01

    Pre-crisis SV40-transformed human diploid fibroblast (HDF) cultures have a finite proliferative lifespan, but they do not enter a viable senescent state at end of lifespan. Little is known about either the mechanism for this finite lifespan in SV40-transformed HDF or its relationship to finite lifespan in normal HDF. Recently we proposed that in normal HDF the phenomena of finite lifespan and arrest in a viable senescent state depend on two separate processes: 1) an age-related decrease in the ability of the cells to recognize or respond to serum and/or other mitogens such that the cells become functionally mitogen-deprived at the end of lifespan; and 2) the ability of the cells to enter a viable, G1-arrested state whenever they experience mitogen deprivation. In this paper, data are presented that suggest that pre-crisis SV40-transformed HDF retain the first process described above, but lack the second process. It is shown that SV40-transformed HDF have a progressively decreasing ability to respond to serum as they age, but they continue to traverse the cell cycle at the end of lifespan. Concomitantly, the rate of cell death increases steadily toward the end of lifespan, thereby causing the total population to cease growing and ultimately to decline. Previous studies have shown that when SV40-transformed HDF are environmentally serum deprived, they likewise exhibit continued cell cycle traverse coupled with increased cell death. Thus, these results support the hypothesis that pre-crisis SV40-transformed HDF still undergo the same aging process as do normal HDF, but they end their lifespan in crisis rather than in the normal G1-arrested senescent state because they have lost their ability to enter a viable, G1-arrested state in response to mitogen deprivation.

  3. Radiation enhanced reactivation of nuclear replicating mammalian viruses

    International Nuclear Information System (INIS)

    Bockstahler, L.E.; Lytle, C.D.

    1977-01-01

    When CV-1 monkey kidney cells were UV-irradiated (0 to 18 J/m 2 ) or X-irradiated (0 to 10 krads) before infection with UV-irradiated simian adenovirus 7 (SA7) or simian virus 40 (SV40), increases in the infectivity of these nuclear replicating viruses as measured by plaque formation were observed. These radiation enhanced reactivations, UV enhanced reactivation (UVER) and X-ray enhanced reactivation (X-ray ER), occurred both when virus infection immediately followed irradiation of the cells (except for X-ray ER with SA7) and when virus infection was delayed until 3 to 5 days after cell irradiation. While there was little difference in the levels of reactivation of UV-irradiated SV40 between immediate and delayed infection, delayed infection resulted in higher levels of reactivation of SA7. X-ray enhanced reactivation of UV-irradiated Herpes simplex virus persisted for several days but did not increase. Thus, X-ray enhanced and UV enhanced reactivations of these mammalian viruses were relatively long-lived effects. Essentially no UVER or X-ray ER was found in CV-1 cells for either immediate or delayed infection with UV-irradiated vaccinia virus or poliovirus, both of which replicate in the cell cytoplasm. These results suggest UVER and X-ray ER in mammalian cells may be restricted to viruses which are replicated in the cell nucleus. (author)

  4. Characterization of SV-40 Tag rats as a model to study prostate cancer

    International Nuclear Information System (INIS)

    Harper, Curt E; Patel, Brijesh B; Cook, Leah M; Wang, Jun; Shirai, Tomoyuki; Eltoum, Isam A; Lamartiniere, Coral A

    2009-01-01

    Prostate cancer is the second most frequently diagnosed cancer in men. Animal models that closely mimic clinical disease in humans are invaluable tools in the fight against prostate cancer. Recently, a Simian Virus-40 T-antigen (SV-40 Tag) targeted probasin promoter rat model was developed. This model, however, has not been extensively characterized; hence we have investigated the ontogeny of prostate cancer and determined the role of sex steroid receptor and insulin-like growth factor-1 (IGF-1) signaling proteins in the novel SV-40 Tag rat. The SV-40 Tag rat was histopathologically characterized for time to tumor development, incidence and multiplicity and in the ventral, dorsal, lateral and anterior lobes of the prostate. Immunoassay techniques were employed to measure cell proliferation, apoptosis, and sex steroid receptor and growth factor signaling-related proteins. Steroid hormone concentrations were measured via coated well enzyme linked immunosorbent assay (ELISA) kits. Prostatic intraepithelial neoplasia (PIN) and well-differentiated prostate cancer developed as early as 2 and 10 weeks of age, respectively in the ventral prostate (VP) followed by in the dorsolateral (DLP). At 8 weeks of age, testosterone and dihydrotestosterone (DHT) concentrations in SV-40 Tag rats were increased when compared to non-transgenic rats. High cell proliferation and apoptotic indices were found in VP and DLP of transgenic rats. Furthermore, we observed increased protein expression of androgen receptor, IGF-1, IGF-1 receptor, and extracellular signal-regulated kinases in the prostates of SV-40 Tag rats. The rapid development of PIN and prostate cancer in conjunction with the large prostate size makes the SV-40 Tag rat a useful model for studying prostate cancer. This study provides evidence of the role of sex steroid and growth factor proteins in prostate cancer development and defines appropriate windows of opportunity for preclinical trials and aids in the rational design of

  5. Analysis of plasma membrane Ca(2+)-ATPase expression in control and SV40-transformed human fibroblasts.

    Science.gov (United States)

    Reisner, P D; Brandt, P C; Vanaman, T C

    1997-01-01

    It has been long known that neoplastic transformation is accompanied by a lowered requirement for extracellular Ca2+ for growth. The studies presented here demonstrate that human fibroblastic cell lines produce the two commonly found 'housekeeping' isoforms of the plasma membrane Ca(2+)-ATPase (PMCA), PMCA1b and 4b, and at the expression of both is demonstrably lower in cell lines neoplastically transformed by SV40 than in the corresponding parental cell lines. Western blot analyses of lysates from control (GM00037) and SV40-transformed (GM00637) skin fibroblasts revealed a 138 kDa PMCA whose level was significantly lower in the SV40-transformed cells relative to either total cellular protein or alpha-tubulin. Similar analyses of plasma membrane preparations from control WI-38) and SV40-transformed (WI-38VA13) lung fibroblasts revealed 3-4-fold lower levels of PMCA in the SV40-transformed cells. Competitive ELISAs performed on detergent solubilized plasma membrane preparations indicated at least 3-4-fold lower levels of PMCA in the SV40-transformed cell lines compared to controls. Reverse transcriptase coupled-PCR analyses showed that PMCA1b and PMCA4b were the only isoforms expressed in all four cell lines. The PMCA4b mRNA level detected by Northern analysis also was substantially lower in SV40 transformed skin fibroblasts than in non-transformed fibroblasts. Quantitative RT-PCR analyses showed levels of PMCA1b and 4b mRNAs to be 5 and 10-fold lower, respectively, in GM00637 than in GM00037 when the levels of PCR products were normalized to glyceraldehyde-3-phosphate dehydrogenase (G3PDH) mRNA. These results demonstrate that the expression of these distinct PMCA genes is substantially lower in SV40 transformed human skin and lung fibroblasts and may be coordinately regulated in these cells.

  6. Chimeric SV40 virus-like particles induce specific cytotoxicity and protective immunity against influenza A virus without the need of adjuvants

    International Nuclear Information System (INIS)

    Kawano, Masaaki; Morikawa, Katsuma; Suda, Tatsuya; Ohno, Naohito; Matsushita, Sho; Akatsuka, Toshitaka; Handa, Hiroshi; Matsui, Masanori

    2014-01-01

    Virus-like particles (VLPs) are a promising vaccine platform due to the safety and efficiency. However, it is still unclear whether polyomavirus-based VLPs are useful for this purpose. Here, we attempted to evaluate the potential of polyomavirus VLPs for the antiviral vaccine using simian virus 40 (SV40). We constructed chimeric SV40-VLPs carrying an HLA-A ⁎ 02:01-restricted, cytotoxic T lymphocyte (CTL) epitope derived from influenza A virus. HLA-A ⁎ 02:01-transgenic mice were then immunized with the chimeric SV40-VLPs. The chimeric SV40-VLPs effectively induced influenza-specific CTLs and heterosubtypic protection against influenza A viruses without the need of adjuvants. Because DNase I treatment of the chimeric SV40-VLPs did not disrupt CTL induction, the intrinsic adjuvant property may not result from DNA contaminants in the VLP preparation. In addition, immunization with the chimeric SV40-VLPs generated long-lasting memory CTLs. We here propose that the chimeric SV40-VLPs harboring an epitope may be a promising CTL-based vaccine platform with self-adjuvant properties. - Highlights: • We constructed chimeric SV40-VLPs carrying an influenza virus-derived CTL epitope. • Chimeric SV40-VLPs induce influenza-specific CTLs in mice without adjuvants. • Chimeric SV40-VLPs induce heterosubtypic protection against influenza A viruses. • Chimeric SV40-VLPs induce long-lasting memory CTLs. • Chimeric SV40-VLPs is a promising vaccine platform with self-adjuvant properties

  7. Chimeric SV40 virus-like particles induce specific cytotoxicity and protective immunity against influenza A virus without the need of adjuvants

    Energy Technology Data Exchange (ETDEWEB)

    Kawano, Masaaki [Department of Allergy and Immunology, Faculty of Medicine, Saitama Medical University, Moroyama-cho, Iruma-gun, Saitama 350-0495 (Japan); Morikawa, Katsuma [Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501 (Japan); Suda, Tatsuya [Department of Microbiology, Faculty of Medicine, Saitama Medical University, Moroyama-cho, Iruma-gun, Saitama 350-0495 (Japan); Laboratory for Immunopharmacology of Microbial Products, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392 (Japan); Ohno, Naohito [Laboratory for Immunopharmacology of Microbial Products, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392 (Japan); Matsushita, Sho [Department of Allergy and Immunology, Faculty of Medicine, Saitama Medical University, Moroyama-cho, Iruma-gun, Saitama 350-0495 (Japan); Allergy Center, Saitama Medical University, Moroyama-cho, Iruma-gun, Saitama 350-0495 (Japan); Akatsuka, Toshitaka [Department of Microbiology, Faculty of Medicine, Saitama Medical University, Moroyama-cho, Iruma-gun, Saitama 350-0495 (Japan); Handa, Hiroshi, E-mail: handa.h.aa@m.titech.ac.jp [Solutions Research Laboratory, Tokyo Institute of Technology, Midori-ku, Yokohama 226-8503 (Japan); Matsui, Masanori, E-mail: mmatsui@saitama-med.ac.jp [Department of Microbiology, Faculty of Medicine, Saitama Medical University, Moroyama-cho, Iruma-gun, Saitama 350-0495 (Japan)

    2014-01-05

    Virus-like particles (VLPs) are a promising vaccine platform due to the safety and efficiency. However, it is still unclear whether polyomavirus-based VLPs are useful for this purpose. Here, we attempted to evaluate the potential of polyomavirus VLPs for the antiviral vaccine using simian virus 40 (SV40). We constructed chimeric SV40-VLPs carrying an HLA-A{sup ⁎}02:01-restricted, cytotoxic T lymphocyte (CTL) epitope derived from influenza A virus. HLA-A{sup ⁎}02:01-transgenic mice were then immunized with the chimeric SV40-VLPs. The chimeric SV40-VLPs effectively induced influenza-specific CTLs and heterosubtypic protection against influenza A viruses without the need of adjuvants. Because DNase I treatment of the chimeric SV40-VLPs did not disrupt CTL induction, the intrinsic adjuvant property may not result from DNA contaminants in the VLP preparation. In addition, immunization with the chimeric SV40-VLPs generated long-lasting memory CTLs. We here propose that the chimeric SV40-VLPs harboring an epitope may be a promising CTL-based vaccine platform with self-adjuvant properties. - Highlights: • We constructed chimeric SV40-VLPs carrying an influenza virus-derived CTL epitope. • Chimeric SV40-VLPs induce influenza-specific CTLs in mice without adjuvants. • Chimeric SV40-VLPs induce heterosubtypic protection against influenza A viruses. • Chimeric SV40-VLPs induce long-lasting memory CTLs. • Chimeric SV40-VLPs is a promising vaccine platform with self-adjuvant properties.

  8. Ultraviolet-irradiated simian virus 40 activates a mutator function in rat cells under conditions preventing viral DNA replication

    Energy Technology Data Exchange (ETDEWEB)

    Cornelis, J.; Su, Z.Z.; Dinsart, C.; Rommelaere, J. (Universite libre de Bruxelles, Rhode St Genese (Belgium))

    The UV-irradiated temperature-sensitive early SV40 mutant tsA209 is able to activate at the nonpermissive temperature the expression of mutator and recovery functions in rat cells. Unirradiated SV40 activates these functions only to a low extent. The expression of these mutator and recovery functions in SV40-infected cells was detected using the single-stranded DNA parvovirus H-1 as a probe. Because early SV40 mutants are defective in the initiation of viral DNA synthesis at the nonpermissive temperature, these results suggest that replication of UV-damaged DNA is not a prerequisite for the activation of mutator and recovery functions in mammalian cells. The expression of the mutator function is dose-dependent, i.e., the absolute number of UV-irradiated SV40 virions introduced per cell determines its level. Implications for the interpretation of mutation induction curves in the progeny of UV-irradiated SV40 in permissive host cells are discussed.

  9. Inhibitory effects of ambient levels of solar UV-A and UV-B radiation on growth of cucumber

    International Nuclear Information System (INIS)

    Krizek, D.T.; Mirecki, R.M.; Britz, S.J.

    1997-01-01

    The influence of solar UV-A and UV-B radiation at Beltsville, Maryland, on growth and flavonoid content in four cultivars of Cucumis sativus L. (Ashley, Poinsett, Marketmore, and Salad Bush cucumber) was examined during the summers of 1994 and 1995. Plants were grown from seed in UV exclusion chambers consisting of UV-transmitting Plexiglas, lined with Llumar to exclude UV-A and UV-B, polyester to exclude UV-B, or cellulose acetate to transmit UV-A and UV-B. Despite previously determined differences in sensitivity to supplemental UV-B radiation, all four cultivars responded similarly to UV-B exclusion treatment. After 19–21 days, the four cultivars grown in the absence of solar UV-B (polyester) had an average of 34, 55, and 40% greater biomass of leaves, stems, and roots, respectively, 27% greater stem height, and 35% greater leaf area than those grown under ambient UV-B (cellulose acetate). Plants protected from UV-A radiation as well (Llumar) showed an additional 14 and 22% average increase, respectively, in biomass of leaves and stems, and a 22 and 19% average increase, respectively, in stem elongation and leaf area over those grown under polyester. These findings demonstrate the extreme sensitivity of cucumber not only to present levels of UV-B but also to UV-A and suggest that even small changes in ozone depletion may have important biological consequences for certain plant species. (author)

  10. A mouse model for chronic lymphocytic leukemia based on expression of the SV40 large T antigen

    DEFF Research Database (Denmark)

    ter Brugge, Petra J; Ta, Van B T; de Bruijn, Marjolein J W

    2009-01-01

    The simian virus 40 (SV40) T antigen is a potent oncogene able to transform many cell types and has been implicated in leukemia and lymphoma. In this report, we have achieved sporadic SV40 T-antigen expression in mature B cells in mice, by insertion of a SV40 T antigen gene in opposite...... transcriptional orientation in the immunoglobulin (Ig) heavy (H) chain locus between the D and J(H) segments. SV40 T-antigen expression appeared to result from retention of the targeted germline allele and concomitant antisense transcription of SV40 large T in mature B cells, leading to chronic lymphocytic...... leukemia (CLL). Although B-cell development was unperturbed in young mice, aging mice showed accumulation of a monoclonal B-cell population in which the targeted IgH allele was in germline configuration and the wild-type IgH allele had a productive V(D)J recombination. These leukemic B cells were Ig...

  11. Enhanced mutagenesis of UV-irradiated simian virus 40 occurs in mitomycin C-treated host cells only at a low multiplicity of infection

    International Nuclear Information System (INIS)

    Sarasin, A.; Benoit, A.

    1986-01-01

    Treatment of monkey kidney cells with mitomycin C (MMC) 24 h prior to infection with UV-irradiated simian virus 40 (SV40) enhanced both virus survival and virus mutagenesis. The use of SV40 as a biological probe has been taken as an easy method to analyse SOS response of mammalian cells to the stress caused by DNA damage or inhibition of DNA replication. The mutation assay we used was based on the reversion from a temperature-sensitive phenotype (tsA58 mutant) to a wild-type phenotype. The optimal conditions for producing enhanced survival and mutagenesis in the virus progeny were determined with regard to the multiplicity of infection (MOI). Results showed that the level of enhanced mutagenesis observed for UV-irradiated virus grown in MMC-treated cells was an inverse function of the MOI, while enhanced survival was observed at nearly the same level regardless of the MOI. For the unirradiated virus, almost no increase in the mutation of virus progeny issued from MMC-treated cells was observed, while a small amount of enhanced virus survival was obtained. These results show that enhanced virus mutagenesis and enhanced virus survival can be dissociated under some experimental conditions. Enhanced virus mutagenesis, analogous to the error-prone replication of phages in SOS-induced bacteria, was observed, at least for SV40, only when DNA of both virus and host cells was damaged and when infection occurred with a small number of viral particles. We therefore hypothesize that an error-prone replication mode of UV-damaged templates is observed in induced monkey kidney cells

  12. SV40 Assembly In Vivo and In Vitro

    Directory of Open Access Journals (Sweden)

    Ariella Oppenheim

    2008-01-01

    Full Text Available The Simian virus 40 (SV40 capsid is a T = 7d icosahedral lattice ∼45 nm in diameter surrounding the ∼5 kb circular minichromosome. The outer shell is composed of 360 monomers of the major capsid protein VP1, tightly bound in 72 pentamers. VP1 is a jellyroll β-barrel, with extending N- and C-terminal arms. The N-terminal arms bind DNA and face the interior of the capsid. The flexible C-arms tie together the 72 pentamers in three distinct kinds of interactions, thus facilitating the formation of a T = 7 icosahedron from identical pentameric building blocks. Assembly in vivo was shown to occur by addition of capsomers around the DNA. We apply a combination of biochemical and genetic approaches to study SV40 assembly. Our in vivo and in vitro studies suggest the following model: one or two capsomers bind at a high affinity to ses, the viral DNA encapsidation signal, forming the nucleation centre for assembly. Next, multiple capsomers attach concomitantly, at lower affinity, around the minichromosome. This increases their local concentration facilitating rapid, cooperative assembly reaction. Formation of the icosahedron proceeds either by gradual addition of single pentamers to the growing shell or by concerted assembly of pentamer clusters.

  13. A monoclonal antibody against SV40 large T antigen (PAb416) does not label Merkel cell carcinoma.

    Science.gov (United States)

    Pelletier, Daniel J; Czeczok, Thomas W; Bellizzi, Andrew M

    2018-07-01

    Merkel cell carcinoma represents poorly differentiated neuroendocrine carcinoma of cutaneous origin. In most studies, the vast majority of Merkel cell carcinomas are Merkel cell polyomavirus (MCPyV)-associated. SV40 polyomavirus immunohistochemistry is typically used in the diagnosis of other polyomavirus-associated diseases, including tubulointerstitial nephritis and progressive multifocal leukoencephalopathy, given cross-reactivity with BK and JC polyomaviruses. MCPyV-specific immunohistochemistry is commercially available, but, if antibodies against SV40 also cross-reacted with MCPyV, that would be advantageous from a resource-utilisation perspective. Tissue microarrays were constructed from 39 Merkel cell carcinomas, 24 small-cell lung carcinomas, and 18 extrapulmonary visceral small-cell carcinomas. SV40 large T antigen immunohistochemistry (clone PAb416) was performed; MCPyV large T antigen immunohistochemistry (clone CM2B4) had been previously performed. UniProt was used to compare the amino acid sequences of the SV40, BK, JC and MCPyV large T antigens, focusing on areas recognised by the PAb416 and CM2B4 clones. SV40 immunohistochemistry was negative in all tumours; MCPyV immunohistochemistry was positive in 38% of Merkel cell carcinomas and in 0% of non-cutaneous poorly differentiated neuroendocrine carcinomas. UniProt analysis revealed a high degree of similarity between SV40, BK, and JC viruses in the region recognised by PAb416. There was less homology between SV40 and MCPyV in this region, which was also interrupted by two long stretches of amino acids unique to MCPyV. The CM2B4 clone recognises a unique epitope in one of these stretches. The PAb416 antibody against the SV40 large T antigen does not cross-react with MCPyV large T antigen, and thus does not label Merkel cell carcinoma. © 2018 John Wiley & Sons Ltd.

  14. UV radiation and its effects. Proceedings

    International Nuclear Information System (INIS)

    1993-01-01

    The National Science Strategy Committee for Climate Change was established in 1991 by the New Zealand Minister of Research, Science and Technology. It advises government through the Minister on research priorities and on levels of expenditure appropriate in various topics relating to climate change. An additional role is to promote coordination between research groups and the user communities to ensure an appropriate range of research strategies. To assist with implementing the latter aspects the NSS Committee will organise workshops on specific aspects of atmosphere and climate change, with a broad spectrum of participants. The first of these was the Workshop on UV Radiation and its Effects held in Christchurch on 20-21 May 1993. The workshop had 40 participants, including representatives from specialist science groups, medicine, veterinary science, farming, forestry and environmental groups. This publication will update the interested reader, whether scientist or lay-person, on the current state of knowledge on changing UV radiation levels and potential problems. As the summaries of papers show, research on ozone levels and on UV radiation and its effects is particularly appropriate for New Zealand scientists with their access to sites covering a wide range of latitudes from Antarctica to the Pacific Islands. New Zealand is part of an important international monitoring network, measuring local stratospheric ozone levels and related surface UV radiation levels. There are concerns about increasing UVB levels and the consequent effects on human health, plant and tree growth, and phytoplankton growth in the oceans. Priorities for further work on these areas are included in the summary of the workshop. (author). 13 figs.; 5 tabs

  15. Transformation and radiosensitivity of human diploid skin fibroblasts transfected with activated ras oncogene and SV40 T-antigen.

    Science.gov (United States)

    Su, L N; Little, J B

    1992-08-01

    Three normal human diploid cell strains were transfected with an activated Ha-ras oncogene (EJ ras) or SV40 T-antigen. Multiple clones were examined for morphological alterations, growth requirements, ability to grow under anchorage independent conditions, immortality and tumorigenicity in nude mice. Clones expressing SV40 T-antigen alone or in combination with ras protein p21 were significantly radioresistant as compared with their parent cells or clones transfected with the neo gene only. This radioresistant phenotype persisted in post-crisis, immortalized cell lines. Cells transfected with EJ ras alone showed no morphological alterations nor significant changes in radiosensitivity. Cell clones expressing ras and/or SV40 T-antigen showed a reduced requirement for serum supplements, an increase in aneuploidy and chromosomal aberrations, and enhanced growth in soft agar as an early cellular response to SV40 T-antigen expression. The sequential order of transfection with SV40 T-antigen and ras influenced radio-sensitivity but not the induction of morphological changes. These data suggest that expression of the SV40 T-antigen but not activated Ha-ras plays an important role in the radiosensitivity of human diploid cells. The radioresistant phenotype in SV40 T transfected cells was not related to the enhanced level of genetic instability seen in pre-crisis and newly immortalized cells, nor to the process of immortalization itself.

  16. Generation of a Vero-Based Packaging Cell Line to Produce SV40 Gene Delivery Vectors for Use in Clinical Gene Therapy Studies

    Directory of Open Access Journals (Sweden)

    Miguel G. Toscano

    2017-09-01

    Full Text Available Replication-defective (RD recombinant simian virus 40 (SV40-based gene delivery vectors hold a great potential for clinical applications because of their presumed non-immunogenicity and capacity to induce immune tolerance to the transgene products in humans. However, the clinical use of SV40 vectors has been hampered by the lack of a packaging cell line that produces replication-competent (RC free SV40 particles in the vector production process. To solve this problem, we have adapted the current SV40 vector genome used for the production of vector particles and generated a novel Vero-based packaging cell line named SuperVero that exclusively expresses the SV40 large T antigen. SuperVero cells produce similar numbers of SV40 vector particles compared to the currently used packaging cell lines, albeit in the absence of contaminating RC SV40 particles. Our unique SV40 vector platform named SVac paves the way to clinically test a whole new generation of SV40-based therapeutics for a broad range of important diseases.

  17. Early superoxide dismutase alterations during SV40-transformation of human fibroblasts.

    Science.gov (United States)

    Bravard, A; Hoffschir, F; Sabatier, L; Ricoul, M; Pinton, A; Cassingena, R; Estrade, S; Luccioni, C; Dutrillaux, B

    1992-11-11

    The expression of superoxide dismutases (SOD) 1 and 2 was studied in 4 clones of human fibroblasts after their infection by simian virus 40 (SV40), in parallel with the alterations of chromosomes 21 and chromosome 6q arms, carrying the genes that encode for SOD1 and SOD2 respectively. For all clones, a similar scheme with 2 main phases was observed for both chromosome and SOD variations. The first phase, defined as the pre-crisis phase, was characterized by chromosomal instability, but maintenance of normal numbers of chromosome 6q arms and chromosomes 21. The level of SOD2 mRNA was high, while SOD2 activity and immunoreactive protein were low. SOD1 protein and activity were decreased. In the second phase, defined as the post-crisis phase, the accumulation of clonal chromosomal rearrangements led to the loss of 6q arms, while the number of chromosomes 21 remained normal. SOD2 mRNA level was decreased and SOD2 immunoreactive protein and activity remained low. SOD1 protein and activity increased with passages, reaching values similar to those of control cells at late passages. As in established SV40-transformed human fibroblast cell lines, good correlation was found between SOD2 activity and the relative number of 6q arms. These results allow us to reconstruct the sequence of events leading to the decrease of SOD2, a possible tumor-suppressor gene, during the process of SV40-transformation of human fibroblasts.

  18. Changes of diffuse UV-B radiation on clear sky days

    International Nuclear Information System (INIS)

    Kon, H.; Ichibayashi, R.; Matsuoka, N.

    2004-01-01

    Measurements of global and diffuse UV-B radiation have been carried out in Matsudo City (35.3 deg N, 139.9 deg E), Japan. Forty clear sky days were chosen and the annual variation of global and diffuse UV-B radiation was analyzed. The dependence of the diffuse component on visibility was also examined. The results are summarized as follows. 1. The maximum of daily global UV-B was beyond 40kJrec mE-2 daysup(-1) and was recorded in late July. The maximum of daily diffuse UV-B was recorded in early July. There was a tendency for the diffuse UV-B to be larger than the direct UV-B during a year in Matsudo. 2. The fraction of diffuse UV-B to global UV-B changed a lot each day. The observed minimum value of the fraction during a year was recorded in early August. 3. There was a tendency for the fraction of diffuse UV-B to global UV-B to decrease when visibility increased. 4. The diffuse components that change a lot each day were properly estimated by using the expected minimum fraction and visibility. Key words: Diffuse UV-B, Ultraviolet, UV-B, Visibility

  19. SV40 host-substituted variants: a new look at the monkey DNA inserts and recombinant junctions.

    Science.gov (United States)

    Singer, Maxine; Winocour, Ernest

    2011-04-10

    The available monkey genomic data banks were examined in order to determine the chromosomal locations of the host DNA inserts in 8 host-substituted SV40 variant DNAs. Five of the 8 variants contained more than one linked monkey DNA insert per tandem repeat unit and in all cases but one, the 19 monkey DNA inserts in the 8 variants mapped to different locations in the monkey genome. The 50 parental DNAs (32 monkey and 18 SV40 DNA segments) which spanned the crossover and flanking regions that participated in monkey/monkey and monkey/SV40 recombinations were characterized by substantial levels of microhomology of up to 8 nucleotides in length; the parental DNAs also exhibited direct and inverted repeats at or adjacent to the crossover sequences. We discuss how the host-substituted SV40 variants arose and the nature of the recombination mechanisms involved. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Chimeric SV40 virus-like particles induce specific cytotoxicity and protective immunity against influenza A virus without the need of adjuvants.

    Science.gov (United States)

    Kawano, Masaaki; Morikawa, Katsuma; Suda, Tatsuya; Ohno, Naohito; Matsushita, Sho; Akatsuka, Toshitaka; Handa, Hiroshi; Matsui, Masanori

    2014-01-05

    Virus-like particles (VLPs) are a promising vaccine platform due to the safety and efficiency. However, it is still unclear whether polyomavirus-based VLPs are useful for this purpose. Here, we attempted to evaluate the potential of polyomavirus VLPs for the antiviral vaccine using simian virus 40 (SV40). We constructed chimeric SV40-VLPs carrying an HLA-A*02:01-restricted, cytotoxic T lymphocyte (CTL) epitope derived from influenza A virus. HLA-A*02:01-transgenic mice were then immunized with the chimeric SV40-VLPs. The chimeric SV40-VLPs effectively induced influenza-specific CTLs and heterosubtypic protection against influenza A viruses without the need of adjuvants. Because DNase I treatment of the chimeric SV40-VLPs did not disrupt CTL induction, the intrinsic adjuvant property may not result from DNA contaminants in the VLP preparation. In addition, immunization with the chimeric SV40-VLPs generated long-lasting memory CTLs. We here propose that the chimeric SV40-VLPs harboring an epitope may be a promising CTL-based vaccine platform with self-adjuvant properties. © 2013 Elsevier Inc. All rights reserved.

  1. Transformation of SV40-immortalized human uroepithelial cells by 3-methylcholanthrene increases IFN- and Large T Antigen-induced transcripts

    Directory of Open Access Journals (Sweden)

    Easton Marilyn J

    2010-02-01

    Full Text Available Abstract Background Simian Virus 40 (SV40 immortalization followed by treatment of cells with 3-methylcholanthrene (3-MC has been used to elicit tumors in athymic mice. 3-MC carcinogenesis has been thoroughly studied, however gene-level interactions between 3-MC and SV40 that could have produced the observed tumors have not been explored. The commercially-available human uroepithelial cell lines were either SV40-immortalized (HUC or SV40-immortalized and then 3-MC-transformed (HUC-TC. Results To characterize the SV40 - 3MC interaction, we compared human gene expression in these cell lines using a human cancer array and confirmed selected changes by RT-PCR. Many viral Large T Antigen (Tag expression-related changes occurred in HUC-TC, and it is concluded that SV40 and 3-MC may act synergistically to transform cells. Changes noted in IFP 9-27, 2'-5' OAS, IF 56, MxA and MxAB were typical of those that occur in response to viral exposure and are part of the innate immune response. Because interferon is crucial to innate immune host defenses and many gene changes were interferon-related, we explored cellular growth responses to exogenous IFN-γ and found that treatment impeded growth in tumor, but not immortalized HUC on days 4 - 7. Cellular metabolism however, was inhibited in both cell types. We conclude that IFN-γ metabolic responses were functional in both cell lines, but IFN-γ anti-proliferative responses functioned only in tumor cells. Conclusions Synergism of SV40 with 3-MC or other environmental carcinogens may be of concern as SV40 is now endemic in 2-5.9% of the U.S. population. In addition, SV40-immortalization is a generally-accepted method used in many research materials, but the possibility of off-target effects in studies carried out using these cells has not been considered. We hope that our work will stimulate further study of this important phenomenon.

  2. Ultraviolet radiation exposure from UV-transilluminators.

    Science.gov (United States)

    Akbar-Khanzadeh, Farhang; Jahangir-Blourchian, Mahdi

    2005-10-01

    UV-transilluminators use ultraviolet radiation (UVR) to visualize proteins, DNA, RNA, and their precursors in a gel electrophoresis procedure. This study was initiated to evaluate workers' exposure to UVR during their use of UV-transilluminators. The levels of irradiance of UV-A, UV-B, and UV-C were determined for 29 UV-transilluminators at arbitrary measuring locations of 6, 25, 62, and 125 cm from the center of the UV-transilluminator's filter surface in the direction of the operator's head. The operators (faculty, research staff, and graduate students) worked within 62 cm of the transilluminators, with most subjects commonly working at time ranged from 1 to 60 min. Actinic hazard (effective irradiance level of UVR) was also determined for three representative UV-transilluminators at arbitrary measuring locations of 2.5, 5, 10, 15, 20, 30, 40, and 50 cm from these sets' filter surface in the direction of the operator's head. The allowable exposure time for these instruments was less than 20 sec within 15 cm, less than 35 sec within 25 cm, and less than 2 min within 50 cm from the UV-transilluminators' filter surface. The results of this study suggest that the use of UV-transilluminators exposes operators to levels of UVR in excess of exposure guidelines. It is recommended that special safety training be provided for the affected employees and that exposure should be controlled by one or the combination of automation, substitution, isolation, posted warning signs, shielding, and/or personal protective equipment.

  3. Effects of UV radiation on freshwater metazooplankton

    International Nuclear Information System (INIS)

    Tartarotti, B.

    1999-06-01

    There is evidence that fluxes of solar ultraviolet-B radiation (UV-B, 290-320 nm) are increasing over wide parts of the earth's surface due to stratospheric ozone depletion. UV radiation (290-400 nm) can have damaging effects on biomolecules and cell components that are common to most living organisms. The aim of this thesis is to gain a more thorough understanding of the potential impacts of solar radiation on freshwater metazooplankton. To detect UV-vulnerability in zooplankton populations dominating the zooplankton community of two clear-water, high mountain lakes located one in the Austrian Alps and another in the Chilean Andes, the survival of two copepod species was studied. The organisms were exposed to a 10- to 100-fold increase in UV-B radiation compared to those levels found at their natural, maximum daytime distribution. Both species vertically migrate and are pigmented. UV-absorbing compounds with a maximum absorption at ∼334 nm were also detected. Cyclops abyssorum tatricus, a common cyclopoid copepod species of Alpine lakes, was highly resistant to UV-B radiation and no significant lethal effect was observed. The calanoid copepod Boeckella gracilipes, frequent in Andean lakes, had a mortality ∼5 times higher in the treatment receiving full sunlight than in the UV-B excluded treatment (3.2 %) only when exposed for 70 h. The resistance of B. gracilipes was higher than that reported in the literature for the same species suggesting the existence of intraspecific differences in UV sensitivity. Survival, fecundity and development of the zooplankton community of a clear-water, high elevation Andean lake (33 o S) were studied with mesocosms experiments after prolonged UV exposure (48 days). When exposed to full sunlight, the population of the cladoceran Chydorus sphaericus and the rotifer Lepadella ovalis were strongly inhibited by UV-B, whereas both species were resistant to UV-A radiation. Conversely, UV-B radiation had no effect on the survival of the

  4. Impaired CK1 delta activity attenuates SV40-induced cellular transformation in vitro and mouse mammary carcinogenesis in vivo.

    Directory of Open Access Journals (Sweden)

    Heidrun Hirner

    Full Text Available Simian virus 40 (SV40 is a powerful tool to study cellular transformation in vitro, as well as tumor development and progression in vivo. Various cellular kinases, among them members of the CK1 family, play an important role in modulating the transforming activity of SV40, including the transforming activity of T-Ag, the major transforming protein of SV40, itself. Here we characterized the effects of mutant CK1δ variants with impaired kinase activity on SV40-induced cell transformation in vitro, and on SV40-induced mammary carcinogenesis in vivo in a transgenic/bi-transgenic mouse model. CK1δ mutants exhibited a reduced kinase activity compared to wtCK1δ in in vitro kinase assays. Molecular modeling studies suggested that mutation N172D, located within the substrate binding region, is mainly responsible for impaired mutCK1δ activity. When stably over-expressed in maximal transformed SV-52 cells, CK1δ mutants induced reversion to a minimal transformed phenotype by dominant-negative interference with endogenous wtCK1δ. To characterize the effects of CK1δ on SV40-induced mammary carcinogenesis, we generated transgenic mice expressing mutant CK1δ under the control of the whey acidic protein (WAP gene promoter, and crossed them with SV40 transgenic WAP-T-antigen (WAP-T mice. Both WAP-T mice as well as WAP-mutCK1δ/WAP-T bi-transgenic mice developed breast cancer. However, tumor incidence was lower and life span was significantly longer in WAP-mutCK1δ/WAP-T bi-transgenic animals. The reduced CK1δ activity did not affect early lesion formation during tumorigenesis, suggesting that impaired CK1δ activity reduces the probability for outgrowth of in situ carcinomas to invasive carcinomas. The different tumorigenic potential of SV40 in WAP-T and WAP-mutCK1δ/WAP-T tumors was also reflected by a significantly different expression of various genes known to be involved in tumor progression, specifically of those involved in wnt-signaling and DNA

  5. The global and UV-B radiation over Egypt

    OpenAIRE

    BASSET, H. A.; KORANY, M. H.

    2007-01-01

    This work studies the relation between UV-B radiation and global radiation over Egypt. The relationships between the global solar radiation and UV-B radiation at four stations in Egypt have been studied, and linear empirical formulas for estimating UV-B from global radiation at these stations has been deduced. The deduced equations were applied to calculate the UV-B radiation for other stations where measurements were unavailable, using records of global radiation at these stations. Because o...

  6. Amplification of oncogenes and integrated SV40 sequences in mammalian cells by the decay of incorporated iodine-125

    International Nuclear Information System (INIS)

    Ehrfeld, A.; Planas-Bohne, F.; Luecke-Huhle, C.

    1986-01-01

    Iodine-125, in the form of 5-[ 125 I]iododeoxyuridine (I-UdR), was incorporated into the DNA of SV40 transformed Chinese hamster embryo cells. Disintegration of the 125 I led to increased cell killing with increasing dose as measured by the colony-forming ability of single cells. The D37 (the dose at which 37% of the cells survive) amounts to 95 decays per cell, corresponding to 0.66 Gy. Variations in the copy number of specific DNA sequences was measured by using dispersed cell blotting with sensitive DNA hybridizations. A 13-fold amplification of the viral DNA sequences (SV40) and a twofold amplification of two cellular oncogenes of the ras-family (Ki-ras and Ha-ras) were found. Other cellular genes, like the alpha-actin gene, were not amplified, and no variation in gene copy number was detected after incubation of cells with cold I-UdR. We suggest the observed gene amplifications are induced by the densely ionizing radiation emitted by the decay of the incorporated 125 I atoms

  7. Effect of enhanced UV-B radiation on yield and quality of rice

    International Nuclear Information System (INIS)

    Yin Hong; Guo Wei; Mao Xiaoyan

    2009-01-01

    The effects of enhanced UV-B radiation on yield and quality of two rice cuhivars(ShenNong 6014 and ShenNong 265) are studied in potted method. There were three treatments including natural light (TCK), enhanced 5% UV-B radiation (T) and enhanced 10% (T). The results showed that enhanced UV-B radiation decreases yield components, the percentage of brown rice (0.66%-7.06%), head rice rate (5.65%-18.88%), the rate of white rice (22.17%-40.16%), grain area (2.61%-6.25%), fatty acid contents (1.23%-54.19%) and eating quality (1.07%-16.78%) but increasea protein content (4.65%-10.71%) and amylose content of rice (0.56%-4.81%). The effects of T2 was stronger than T1

  8. Susceptibility of Campylobacter jejuni and Yersinia enterocolitica to UV radiation

    Energy Technology Data Exchange (ETDEWEB)

    Butler, R.C.; Lund, V.; Carlson, D.A.

    1987-02-01

    Two enteric pathogens, Campylobacter jejuni and Yersinia enterocolitica serogroup O:3, together with Escherichia coli, were investigated for susceptibility to UV radiation at 254 nm. The UV dose required for a 3-log reduction (99.9% inactivation) of C. jejuni, Y. enterocolitica, and E. coli was 1.8, 2.7, and 5.0 mWs/cm2, respectively. Using E. coli as the basis for comparison, it appears that C. jejuni and Y. enterocolitica serogroup O:3 are more sensitive to UV than many of the pathogens associated with waterborne disease outbreaks and can be easily inactivated in most commercially available UV reactors. No association was found between the sensitivity of Y. enterocolitica to UV and the presence of a 40- to 50-megadalton virulence plasmid.

  9. Susceptibility of Campylobacter jejuni and Yersinia enterocolitica to UV radiation

    International Nuclear Information System (INIS)

    Butler, R.C.; Lund, V.; Carlson, D.A.

    1987-01-01

    Two enteric pathogens, Campylobacter jejuni and Yersinia enterocolitica serogroup O:3, together with Escherichia coli, were investigated for susceptibility to UV radiation at 254 nm. The UV dose required for a 3-log reduction (99.9% inactivation) of C. jejuni, Y. enterocolitica, and E. coli was 1.8, 2.7, and 5.0 mWs/cm2, respectively. Using E. coli as the basis for comparison, it appears that C. jejuni and Y. enterocolitica serogroup O:3 are more sensitive to UV than many of the pathogens associated with waterborne disease outbreaks and can be easily inactivated in most commercially available UV reactors. No association was found between the sensitivity of Y. enterocolitica to UV and the presence of a 40- to 50-megadalton virulence plasmid

  10. Transformation and radiosensitivity of human diploid skin fibroblasts transfected with activated RAS oncogene and SV40 T-antigen

    Energy Technology Data Exchange (ETDEWEB)

    Su, L.-N.; Little, J.B. (Harvard School of Public Health, Boston, MA (United States))

    1992-08-01

    Three normal human diploid cell strains were transfected with an activated Ha-ras oncogene (EJ ras) or SV40 T-antigen. Multiple clones were examined for morphological alterations, growth requirements, ability to grow under anchorage independent conditions, immortality and tumorigenicity in nude mice. Clones expressing SV40 T-antigen alone or in combination with ras protein p21 were significantly radioresistant as compared with their parent cells or clones transfected with the neo gene only. This radioresistant phenotype persisted in post-crisis, immortalized cell lines. These data suggest that expression of the SV40 T-antigen but not activated Ha-ras plays an important role in the radiosensitivity of human diploid cells. The radioresistant phenotype in SV40 T transfected cells was not related to the enhanced level of genetic instability seen in pre-crisis and newly immortalized cells, nor to the process of immortalization itself. (author).

  11. Transformation and radiosensitivity of human diploid skin fibroblasts transfected with activated RAS oncogene and SV40 T-antigen

    International Nuclear Information System (INIS)

    Su, L.-N.; Little, J.B.

    1992-01-01

    Three normal human diploid cell strains were transfected with an activated Ha-ras oncogene (EJ ras) or SV40 T-antigen. Multiple clones were examined for morphological alterations, growth requirements, ability to grow under anchorage independent conditions, immortality and tumorigenicity in nude mice. Clones expressing SV40 T-antigen alone or in combination with ras protein p21 were significantly radioresistant as compared with their parent cells or clones transfected with the neo gene only. This radioresistant phenotype persisted in post-crisis, immortalized cell lines. These data suggest that expression of the SV40 T-antigen but not activated Ha-ras plays an important role in the radiosensitivity of human diploid cells. The radioresistant phenotype in SV40 T transfected cells was not related to the enhanced level of genetic instability seen in pre-crisis and newly immortalized cells, nor to the process of immortalization itself. (author)

  12. Transformation of Balb 3T3 cells exposed to a germicidal UV lamp and a sunlamp

    International Nuclear Information System (INIS)

    Withrow, T.J.; Lugo, M.H.; Dempsey, M.J.

    1980-01-01

    The effect of germicidal UV and sunlamp exposure on direct and simian virus-40 (SV-40) transformatioon of Balb 3T3 cells was studied. Transformation was determined by the ability of transformed cells to grow as clones in agar. Radiation from these lamps enhanced direct transformation, and enhanced viral transformation to approximately the same degree. Enhanced transformation was seen with exposures of light that caused no measurable cell killing, which suggests that the induction of new transformants is involved rather than the selection of pre-existing transformants. Induction is also suggested by post-irradiation growth kinetics experiments. (author)

  13. UV-B Radiation Contributes to Amphibian Population Declines

    Science.gov (United States)

    Blaustein, Andrew

    2007-05-01

    UV-B (280-315 nm) radiation is the most significant biologically damaging radiation at the terrestrial surface. At the organismal level, UV-B radiation can slow growth rates, cause immune dysfunction and result in sublethal damage. UV-B radiation can lead to mutations and cell death. Over evolutionary time, UV radiation has been an important stressor on living organisms. Natural events, including impacts from comets and asteroids, volcanic activity, supernova explosions and solar flares, can cause large-scale ozone depletion with accompanying increases in UV radiation. However, these natural events are transient. Moreover, the amount of ozone damage due to natural events depends upon a number of variables, including the magnitude of the event. This is different from modern-day human-induced production of chlorofluorocarbons (CFCs) and other chemicals that deplete stratospheric ozone continuously, resulting in long-term increases in UV-B radiation at the surface of the earth. We will briefly review the effects of UV-B exposure in one group of aquatic organisms_amphibians. UV-B has been implicated as a possible factor contributing to global declines and range reductions in amphibian populations.

  14. SV40 large T-p53 complex: evidence for the presence of two immunologically distinct forms of p53

    International Nuclear Information System (INIS)

    Milner, J.; Gamble, J.

    1985-01-01

    The transforming protein of SV40 is the large T antigen. Large T binds a cellular protein, p53, which is potentially oncogenic by virtue of its functional involvement in the control of cell proliferation. This raises the possibility that p53 may mediate, in part, the transforming function of SV40 large T. Two immunologically distinct forms of p53 have been identified in normal cells: the forms are cell-cycle dependent, one being restricted to nondividing cells (p53-Go) and the second to dividing cells (p53-G divided by). The authors have now dissociated and probed the multimeric complex of SV40 large T-p53 for the presence of immunologically distinct forms of p53. Here they present evidence for the presence of p53-Go and p53-G divided by complexed with SV40 large T

  15. Inhibition of in vitro SV40 DNA replication by ultraviolet light

    International Nuclear Information System (INIS)

    Gough, G.; Wood, R.W.

    1989-01-01

    Ultraviolet light-induced DNA damage was found to inhibit SV40 origin-dependent DNA synthesis carried out by soluble humancell extracts. Replication of SV40-based plasmids was reduced to approx. 35% of that in unirradiated controls after irradiation with 50-100 J/m 2 germicidal ultraviolet light, where an average of 3-6 pyrimidine dimer photoproducts were formed per plasmid circle. Inhibition of the DNA helicase activity of T antigen (required for initiation of replication in the in vitro system) was also investigated, and was only significant after much higher fluences, 1000-5000 J/m 2 . The data indicate that DNA damage by ultraviolet light inhibits DNA synthesis in cell-free extracts principally by affecting components of the replication complex other than the DNA helicase activity of T antigen. The soluble system could be used to biochemically investigate the possible bypass or tolerance of DNA damage during replication (author). 21 refs.; 2 figs

  16. Growth enhancement of soybean (Glycine max) upon exclusion of UV-B and UV-B/A components of solar radiation: characterization of photosynthetic parameters in leaves.

    Science.gov (United States)

    Guruprasad, Kadur; Kadur, Guruprasad; Bhattacharjee, Swapan; Swapan, Bhattacharjee; Kataria, Sunita; Sunita, Kataria; Yadav, Sanjeev; Sanjeev, Yadav; Tiwari, Arjun; Arjun, Tiwari; Baroniya, Sanjay; Sanjay, Baroniya; Rajiv, Abhinav; Abhinav, Rajiv; Mohanty, Prasanna

    2007-01-01

    Exclusion of UV (280-380 nm) radiation from the solar spectrum can be an important tool to assess the impact of ambient UV radiation on plant growth and performance of crop plants. The effect of exclusion of UV-B and UV-A from solar radiation on the growth and photosynthetic components in soybean (Glycine max) leaves were investigated. Exclusion of solar UV-B and UV-B/A radiation, enhanced the fresh weight, dry weight, leaf area as well as induced a dramatic increase in plant height, which reflected a net increase in biomass. Dry weight increase per unit leaf area was quite significant upon both UV-B and UV-B/A exclusion from the solar spectrum. However, no changes in chlorophyll a and b contents were observed by exclusion of solar UV radiation but the content of carotenoids was significantly (34-46%) lowered. Analysis of chlorophyll (Chl) fluorescence transient parameters of leaf segments suggested no change in the F v/F m value due to UV-B or UV-B/A exclusion. Only a small reduction in photo-oxidized signal I (P700+)/unit Chl was noted. Interestingly the total soluble protein content per unit leaf area increased by 18% in UV-B/A and 40% in UV-B excluded samples, suggesting a unique upregulation of biosynthesis and accumulation of biomass. Solar UV radiation thus seems to primarily affect the photomorphogenic regulatory system that leads to an enhanced growth of leaves and an enhanced rate of net photosynthesis in soybean, a crop plant of economic importance. The presence of ultra-violet components in sunlight seems to arrest carbon sequestration in plants.

  17. Hyperacetylation and differential deacetylation of histones H4 and H3 define two distinct classes of acetylated SV40 chromosomes early in infection

    International Nuclear Information System (INIS)

    Milavetz, Barry

    2004-01-01

    SV40 chromosomes undergoing encapsidation late in infection and SV40 chromatin in virions are hyperacetylated on histones H4 and H3. However, the fate of the SV40 chromosomes containing hyperacetylated histones in a subsequent round of infection has not been determined. In order to determine if SV40 chromosomes undergo changes in the extent of histone acetylation during early infection, we have analyzed SV40 chromosomes isolated 30 min and 3 h postinfection by quantitative ChIP assays, depletion ChIP assays, competitive ChIP assays, and ChIP assays combined with restriction endonuclease sensitivity using antibodies to hyperacetylated histones H4 and H3. We have shown that at 30 min postinfection, the hyperacetylated histones are associated with two distinct classes of SV40 chromosomes. One form is hyperacetylated specifically on histone H4 while a second form is hyperacetylated on both H4 and H3. Both forms of chromosomes appear to contain a nucleosome-free promoter region. Over the course of the next few hours of infection, the class of SV40 chromosomes hyperacetylated on only H4 is reduced or completely eliminated through deacetylation

  18. The effect of exposure to enhanced UV-B radiation on the penetration of monochromatic and polychromatic UV-B radiation in leaves of Brassica napus

    International Nuclear Information System (INIS)

    Cen, Y.-P.; Bornman, J.F.

    1993-01-01

    Using quartz optical fibres, penetration of both monochromatic (310 nm) and polychromatic UV-B (280–320 nm) radiation in leaves of Brassica napus L. (cv. Ceres) was measured. Plants were grown under either visible light (750 μmol m −2 s −1 photosynthetically active radiation) or with the addition of 8. 9 KJ m −2 day −1 biologically effective UV-B (UV-B BE ) radiation. Results showed that of the 310 nm radiation that penetreated the leaf, 90% was within the intial one third of the leaf with high attenuation in the leaf epidermis, especially in UV-treated plants. Polychromatic UV-B radiation, relative to incident radiation, showed a relatively uniform spectral distribution within the leaf, except for collimated radiation. Over 30% of the UV-screening pigments in the leaf, including flavonoids, were found in the adaxial epidermal layer, making this layer less transparent to UV-B radiation than the abaxial epidermis, which contained less than 12% of the UV-screening pigments. UV-screening pigments increased by 20% in UV-treated leaves relative to control leaves. Densely arranged epicuticular wax on the adaxial leaf surface of UV-treated plants may have further decreased penetration of UV-B radiation by reflectance. An increased leaf thickness, and decreases in leaf area and leaf dry weight were also found for UV-treated plants. (author)

  19. Study on DNA damages induced by UV radiation

    International Nuclear Information System (INIS)

    Doan Hong Van; Dinh Ba Tuan; Tran Tuan Anh; Nguyen Thuy Ngan; Ta Bich Thuan; Vo Thi Thuong Lan; Tran Minh Quynh; Nguyen Thi Thom

    2015-01-01

    DNA damages in Escherichia coli (E. coli) exposed to UV radiation have been investigated. After 30 min of exposure to UV radiation of 5 mJ/cm"2, the growth of E. coli in LB broth medium was about only 10% in compared with non-irradiated one. This results suggested that the UV radiation caused the damages for E. coli genome resulted in reduction in its growth and survival, and those lesions can be somewhat recovered. For both solutions of plasmid DNAs and E. coli cells containing plasmid DNA, this dose also caused the breakage on single and double strands of DNA, shifted the morphology of DNA plasmid from supercoiled to circular and linear forms. The formation of pyrimidine dimers upon UV radiation significantly reduced when the DNA was irradiated in the presence of Ganoderma lucidum extract. Thus, studies on UV-induced DNA damage at molecular level are very essential to determine the UV radiation doses corresponding to the DNA damages, especially for creation and selection of useful radiation-induced mutants, as well as elucidation the protective effects of the specific compounds against UV light. (author)

  20. Sun, UV Radiation and Your Eyes

    Science.gov (United States)

    ... Sunglasses Sun Smart UV Safety Infographic The Sun, UV Radiation and Your Eyes Leer en Español: El ... Aug. 28, 2014 Keep an Eye on Ultraviolet (UV) Safety Eye medical doctors (ophthalmologists) caution us that ...

  1. Alterations of DNA content in human endometrial stromal cells transfected with a temperature-sensitive SV40: tetraploidization and physiological consequences.

    Science.gov (United States)

    Rinehart, C A; Mayben, J P; Butler, T D; Haskill, J S; Kaufman, D G

    1992-01-01

    The normal genomic stability of human cells is reversed during neoplastic transformation. The SV40 large T antigen alters the DNA content in human endometrial stromal cells in a manner that relates to neoplastic progression. Human endometrial stromal cells were transfected with a plasmid containing the A209 temperature-sensitive mutant of SV40 (tsSV40), which is also defective in the viral origin of replication. Ninety-seven clonal transfectants from seven different primary cell strains were isolated. Initial analysis revealed that 20% of the clonal populations (19/97) had an apparent diploid DNA content, 35% (34/97) had an apparent tetraploid DNA content, and the remainder were mixed populations of diploid and tetraploid cells. No aneuploid populations were observed. Diploid tsSV40 transformed cells always give rise to a population of cells with a tetraploid DNA content when continuously cultured at the permissive temperature. The doubling of DNA content can be vastly accelerated by the sudden reintroduction of large T antigen activity following a shift from non-permissive to permissive temperature. Tetraploid tsSV40 transfected cells have a lower capacity for anchorage-independent growth and earlier entry into 'crisis' than diploid cells. These results indicate that during the pre-crisis, extended lifespan phase of growth, the SV40 large T antigen causes a doubling of DNA content. This apparent doubling of DNA content does not confer growth advantage during the extended lifespan that precedes 'crisis'.

  2. UV radiation dependent flavonoid accumulation of Cistus laurifolius L

    International Nuclear Information System (INIS)

    Vogt, T.; Gülz, P.-G.; Reznik, H.

    1991-01-01

    Epicuticular and intracellular flavonoids of Cistus laurifolius grown with and without UV radiation in a phytotron as well as under natural garden conditions in the field were studied. The amount of intracellular flavonoid glycosides of leaves receiving UV-A radiation was two fold higher than that measured in the absence o f UV-A radiation, whether grown in the phytotron or in the field. Exposure of previously protected leaves to UV-A radiation increased the intracellular flavonoid glycoside content to that of unprotected leaves. The qualitative composition of intracellular flavonoid glycosides showed a reduced amount of quercetin-3-galactoside to the myricetin monosides when the leaves were grown without UV-A radiation in the field and in the phytotron. Epicuticular flavonoid aglycones were not influenced by UV radiation significantly. (author)

  3. Radiation protection guidelines for space missions

    International Nuclear Information System (INIS)

    Fry, R.J.; Nachtwey, D.S.

    1988-01-01

    The current radiation protection guidelines of the National Aeronautics and Space Administration (NASA) were recommended in 1970. The career limit was set at 4.0 Sv (400 rem). Using the same approach as in 1970 but current risk estimates, a considerably lower career limit would obtain today. Also, there is now much more information about the radiation environments that will be experienced in different missions. Furthermore, since 1970 women have joined the ranks of the astronauts. For these and other reasons, it was considered necessary to re-examine the radiation protection guidelines. This task has been undertaken by the National Council on Radiation Protection and Measurements Scientific Committee 75. Within the magnetosphere, the radiation environment varies with altitude and inclination of the orbit. In outer space missions, galactic cosmic rays, with the small but important heavy-ion component, determine the radiation environment. The new recommendations for career dose limits, based on lifetime excess risk of cancer mortality, take into account age at first exposure and sex. The career limits range from 1.0 Sv (100 rem) for a 24-y-old female up to 4.0 Sv (400 rem) for a 55-y-old male, compared with the previous single limit of 4.0 Sv (400 rem). The career limit for the lens of the eye has been reduced from 6.0 Sv (600 rem) to 4.0 Sv (400 rem)

  4. Radiative models for the evaluation of the UV radiation at the ground

    International Nuclear Information System (INIS)

    Koepke, P.

    2009-01-01

    The variety of radiative models for solar UV radiation is discussed. For the evaluation of measured UV radiation at the ground the basic problem is the availability of actual values of the atmospheric parameters that influence the UV radiation. The largest uncertainties are due to clouds and aerosol, which are highly variable. In the case of tilted receivers, like the human skin for most orientations, and for conditions like a street canyon or tree shadow, besides the classical radiative transfer in the atmosphere additional modelling is necessary. (authors)

  5. Transformation and radiosensitivity of human diploid skin fibroblasts transfected with SV40 T-antigen mutants defective in RB and P53 binding domains

    International Nuclear Information System (INIS)

    LingNah Su; Little, J.B.

    1992-01-01

    A series of human diploid fibroblast cell clones were developed by DNA transfection with either wild-type SV40 T-antigen (SV40T) or T-antigen mutants defective in its various functional domains. Cell clones expressing the wild-type SV40 T were significantly radioresistant as compared with clones transfected with the neo gene only (D o 192 ± 13 vs 127 ± 19). This radioresistance persisted in post-crisis, immortalized cell lines. A series of mutants with point or deletion mutations within each functionally active domain of SV40 T were also examined for their ability to alter radiosensitivity and induce morphological transformation. Cell clones transfected with T-antigen mutants defective in nuclear localization or origin binding showed increased radioresistance similar to clones transfected with wild-type T-antigen, and expressed morphological changes characteristic of SV40 T-transfected cells. (author)

  6. Effects of UV radiation on phytoplankton

    Science.gov (United States)

    Smith, Raymond C.; Cullen, John J.

    1995-07-01

    It is now widely documented that reduced ozone will result in increased levels of ultraviolet (UV) radiation, especially UV-B (280-320nm), incident at the surface of the earth [Watson, 1988; Anderson et al., 1991; Schoeberl and Hartmann, 1991; Frederick and Alberts, 1991; WMO, 1991; Madronich, 1993; Kerr and McElroy, 1993], and there is considerable and increasing evidence that these higher levels of UV-B radiation may be detrimental to various forms of marine life in the upper layers of the ocean. With respect to aquatic ecosystems, we also know that this biologically- damaging mid-ultraviolet radiation can penetrate to ecologically- significant depths in marine and freshwater systems [Jerlov, 1950; Lenoble, 1956; Smith and Baker, 1979; Smith and Baker, 1980; Smith and Baker, 1981; Kirk et al., 1994]. This knowledge, plus the dramatic decline in stratospheric ozone over the Antarctic continent each spring, now known to be caused by anthropogenically released chemicals [Solomon, 1990; Booth et al., 1994], has resulted in increased UV-environmental research and a number of summary reports. The United Nations Environmental Program (UNEP) has provided recent updates with respect to the effects of ozone depletion on aquatic ecosystems (Hader, Worrest, Kumar in UNEP 1989, 1991, Hader, Worrest, Kumar and Smith UNEP 1994) and the Scientific Committee on Problems of the Environment (SCOPE) has provided [SCOPE, 1992] a summary of the effects of increased UV radiation on biological systems. SCOPE has also reported [SCOPE, 1993] on the effects of increased UV on the biosphere. In addition, several books have recently been published reviewing various aspects of environmental UV photobiology [Young et al., 1993], UV effects on humans, animals and plants [Tevini, 1993], the biological effects of UV radiation in Antarctica [Weiler and Penhale, 1994], and UV research in freshwater ecosystems [Williamson and Zagarese, 1994]. Several other reviews are relevant [NAS, 1984; Caldwell

  7. UV inactivation: Combined effects of UV radiation and xenobiotics in two strains of Saccharomyces

    International Nuclear Information System (INIS)

    Lochmann, E.R.; Lochmann, G.

    1997-01-01

    The effects of eight chemicals on the inactivation rate of ultraviolet radiation on the colony building capabilities of two strains of Saccharomyces cervisae - a wild type strain and a mutant deficient in excision repair - were studied. The insecticide methoxychlor, the herbicide 2,4-dichlorophenoxyacetic acid, the fungicide pentachlorophenol and its metabolite tetrachlorohydroquinone, as well as the chemicals acrylonitrile and 2,3-dichloro-1-propene have no significant impact on the effects of UV radiation in Saccharomyces cerevisae. Depending on the concentration, trichloroethylene increases the sensitivity to UV radiation. The herbicide paraquat provides efficient protection against UV radiation at concentrations where a toxic effect cannot be observed even without UV. The results were rather similar for both strains. (orig.) [de

  8. Reactivation of herpes simplex virus in a cell line inducible for simian virus 40 synthesis

    International Nuclear Information System (INIS)

    Zamansky, G.B.; Kleinman, L.F.; Black, P.H.; Kaplan, J.C.

    1980-01-01

    The reactivation of UV-irradiated herpes simplex virus (HSV) was investigated in irradiated and unirradiated transformed hamster cells in which infectious simian virus 40(SV40) can be induced. Reactivation was enhanced when the cells were treated with UV light or mitomycin C prior to infection with HSV. The UV dose-response curve of this enhanced reactivation was strikingly similar to that found for induction of SV40 virus synthesis in cells treated under identical conditions. This is the first time that two SOS functions described in bacteria have been demonstrated in a single mammalian cell line. (orig.)

  9. Radiative flux calculations at UV and visible wavelengths

    International Nuclear Information System (INIS)

    Grossman, A.S.; Grant, K.E.; Wuebbles, D.J.

    1993-10-01

    A radiative transfer model to calculate the short wavelength fluxes at altitudes between 0 and 80 km has been developed at LLNL. The wavelength range extends from 175--735 nm. This spectral range covers the UV-B wavelength region, 250--350 nm, with sufficient resolution to allow comparison of UV-B measurements with theoretical predictions. Validation studies for the model have been made for both UV-B ground radiation calculations and tropospheric solar radiative forcing calculations for various ozone distributions. These studies indicate that the model produces results which agree well with respect to existing UV calculations from other published models

  10. SV40 Utilizes ATM Kinase Activity to Prevent Non-homologous End Joining of Broken Viral DNA Replication Products

    Science.gov (United States)

    Sowd, Gregory A.; Mody, Dviti; Eggold, Joshua; Cortez, David; Friedman, Katherine L.; Fanning, Ellen

    2014-01-01

    Simian virus 40 (SV40) and cellular DNA replication rely on host ATM and ATR DNA damage signaling kinases to facilitate DNA repair and elicit cell cycle arrest following DNA damage. During SV40 DNA replication, ATM kinase activity prevents concatemerization of the viral genome whereas ATR activity prevents accumulation of aberrant genomes resulting from breakage of a moving replication fork as it converges with a stalled fork. However, the repair pathways that ATM and ATR orchestrate to prevent these aberrant SV40 DNA replication products are unclear. Using two-dimensional gel electrophoresis and Southern blotting, we show that ATR kinase activity, but not DNA-PKcs kinase activity, facilitates some aspects of double strand break (DSB) repair when ATM is inhibited during SV40 infection. To clarify which repair factors associate with viral DNA replication centers, we examined the localization of DSB repair proteins in response to SV40 infection. Under normal conditions, viral replication centers exclusively associate with homology-directed repair (HDR) and do not colocalize with non-homologous end joining (NHEJ) factors. Following ATM inhibition, but not ATR inhibition, activated DNA-PKcs and KU70/80 accumulate at the viral replication centers while CtIP and BLM, proteins that initiate 5′ to 3′ end resection during HDR, become undetectable. Similar to what has been observed during cellular DSB repair in S phase, these data suggest that ATM kinase influences DSB repair pathway choice by preventing the recruitment of NHEJ factors to replicating viral DNA. These data may explain how ATM prevents concatemerization of the viral genome and promotes viral propagation. We suggest that inhibitors of DNA damage signaling and DNA repair could be used during infection to disrupt productive viral DNA replication. PMID:25474690

  11. SV40 utilizes ATM kinase activity to prevent non-homologous end joining of broken viral DNA replication products.

    Directory of Open Access Journals (Sweden)

    Gregory A Sowd

    2014-12-01

    Full Text Available Simian virus 40 (SV40 and cellular DNA replication rely on host ATM and ATR DNA damage signaling kinases to facilitate DNA repair and elicit cell cycle arrest following DNA damage. During SV40 DNA replication, ATM kinase activity prevents concatemerization of the viral genome whereas ATR activity prevents accumulation of aberrant genomes resulting from breakage of a moving replication fork as it converges with a stalled fork. However, the repair pathways that ATM and ATR orchestrate to prevent these aberrant SV40 DNA replication products are unclear. Using two-dimensional gel electrophoresis and Southern blotting, we show that ATR kinase activity, but not DNA-PK(cs kinase activity, facilitates some aspects of double strand break (DSB repair when ATM is inhibited during SV40 infection. To clarify which repair factors associate with viral DNA replication centers, we examined the localization of DSB repair proteins in response to SV40 infection. Under normal conditions, viral replication centers exclusively associate with homology-directed repair (HDR and do not colocalize with non-homologous end joining (NHEJ factors. Following ATM inhibition, but not ATR inhibition, activated DNA-PK(cs and KU70/80 accumulate at the viral replication centers while CtIP and BLM, proteins that initiate 5' to 3' end resection during HDR, become undetectable. Similar to what has been observed during cellular DSB repair in S phase, these data suggest that ATM kinase influences DSB repair pathway choice by preventing the recruitment of NHEJ factors to replicating viral DNA. These data may explain how ATM prevents concatemerization of the viral genome and promotes viral propagation. We suggest that inhibitors of DNA damage signaling and DNA repair could be used during infection to disrupt productive viral DNA replication.

  12. Temporal variation of optimal UV exposure time over Korea: risks and benefits of surface UV radiation

    Science.gov (United States)

    Lee, Y. G.; Koo, J. H.

    2015-12-01

    Solar UV radiation in a wavelength range between 280 to 400 nm has both positive and negative influences on human body. Surface UV radiation is the main natural source of vitamin D, providing the promotion of bone and musculoskeletal health and reducing the risk of a number of cancers and other medical conditions. However, overexposure to surface UV radiation is significantly related with the majority of skin cancer, in addition other negative health effects such as sunburn, skin aging, and some forms of eye cataracts. Therefore, it is important to estimate the optimal UV exposure time, representing a balance between reducing negative health effects and maximizing sufficient vitamin D production. Previous studies calculated erythemal UV and vitamin-D UV from the measured and modelled spectral irradiances, respectively, by weighting CIE Erythema and Vitamin D3 generation functions (Kazantzidis et al., 2009; Fioletov et al., 2010). In particular, McKenzie et al. (2009) suggested the algorithm to estimate vitamin-D production UV from erythemal UV (or UV index) and determined the optimum conditions of UV exposure based on skin type Ⅱ according to the Fitzpatrick (1988). Recently, there are various demands for risks and benefits of surface UV radiation on public health over Korea, thus it is necessary to estimate optimal UV exposure time suitable to skin type of East Asians. This study examined the relationship between erythemally weighted UV (UVEry) and vitamin D weighted UV (UVVitD) over Korea during 2004-2012. The temporal variations of the ratio (UVVitD/UVEry) were also analyzed and the ratio as a function of UV index was applied in estimating the optimal UV exposure time. In summer with high surface UV radiation, short exposure time leaded to sufficient vitamin D and erythema and vice versa in winter. Thus, the balancing time in winter was enough to maximize UV benefits and minimize UV risks.

  13. The effect of ultraviolet (UV)-B radiation on primary producers

    International Nuclear Information System (INIS)

    Germ, M.

    2003-01-01

    Ozone layer in stratosphere is thinning and consequently UV-B radiation on the Earth surface is increasing. Although there is a small portion of UV-B radiation in the solar radiation, it has strong influence on organisms. Targets of UV-B radiation and protective mechanisms in primary producers are described. In the framework of the international project we studied the effect of UV-B radiation on blue-greens, algae, mosses, lichens and vascular plants on the National Institute of Biology

  14. UV radiation sources for artificial skin tanning and protection

    International Nuclear Information System (INIS)

    Zivkovic, D.; Hrnjak, M.

    1999-01-01

    UV radiation sources for artificial tanning are more utilized at the last time. UV radiation is not harmless, so there are not safety devices for tanning. If people do not want to avoid exposure to their radiation, than it is necessary to take the prevention measure: strictly dose of UV radiation according to skin type, use of appropriate protective eye-wears and respect for inhibit of some medicaments and some cosmetic products use. (author)

  15. Reconstitution of wild type viral DNA in simian cells transfected with early and late SV40 defective genomes.

    Science.gov (United States)

    O'Neill, F J; Gao, Y; Xu, X

    1993-11-01

    The DNAs of polyomaviruses ordinarily exist as a single circular molecule of approximately 5000 base pairs. Variants of SV40, BKV and JCV have been described which contain two complementing defective DNA molecules. These defectives, which form a bipartite genome structure, contain either the viral early region or the late region. The defectives have the unique property of being able to tolerate variable sized reiterations of regulatory and terminus region sequences, and portions of the coding region. They can also exchange coding region sequences with other polyomaviruses. It has been suggested that the bipartite genome structure might be a stage in the evolution of polyomaviruses which can uniquely sustain genome and sequence diversity. However, it is not known if the regulatory and terminus region sequences are highly mutable. Also, it is not known if the bipartite genome structure is reversible and what the conditions might be which would favor restoration of the monomolecular genome structure. We addressed the first question by sequencing the reiterated regulatory and terminus regions of E- and L-SV40 DNAs. This revealed a large number of mutations in the regulatory regions of the defective genomes, including deletions, insertions, rearrangements and base substitutions. We also detected insertions and base substitutions in the T-antigen gene. We addressed the second question by introducing into permissive simian cells, E- and L-SV40 genomes which had been engineered to contain only a single regulatory region. Analysis of viral DNA from transfected cells demonstrated recombined genomes containing a wild type monomolecular DNA structure. However, the complete defectives, containing reiterated regulatory regions, could often compete away the wild type genomes. The recombinant monomolecular genomes were isolated, cloned and found to be infectious. All of the DNA alterations identified in one of the regulatory regions of E-SV40 DNA were present in the recombinant

  16. Prediction of UV spectra and UV-radiation damage in actual plasma etching processes using on-wafer monitoring technique

    International Nuclear Information System (INIS)

    Jinnai, Butsurin; Fukuda, Seiichi; Ohtake, Hiroto; Samukawa, Seiji

    2010-01-01

    UV radiation during plasma processing affects the surface of materials. Nevertheless, the interaction of UV photons with surface is not clearly understood because of the difficulty in monitoring photons during plasma processing. For this purpose, we have previously proposed an on-wafer monitoring technique for UV photons. For this study, using the combination of this on-wafer monitoring technique and a neural network, we established a relationship between the data obtained from the on-wafer monitoring technique and UV spectra. Also, we obtained absolute intensities of UV radiation by calibrating arbitrary units of UV intensity with a 126 nm excimer lamp. As a result, UV spectra and their absolute intensities could be predicted with the on-wafer monitoring. Furthermore, we developed a prediction system with the on-wafer monitoring technique to simulate UV-radiation damage in dielectric films during plasma etching. UV-induced damage in SiOC films was predicted in this study. Our prediction results of damage in SiOC films shows that UV spectra and their absolute intensities are the key cause of damage in SiOC films. In addition, UV-radiation damage in SiOC films strongly depends on the geometry of the etching structure. The on-wafer monitoring technique should be useful in understanding the interaction of UV radiation with surface and in optimizing plasma processing by controlling UV radiation.

  17. Covalent dimerization of ribulose bisphosphate carboxylase subunits by UV radiation

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, R.M.B. [Universidade Tecnica, Lisbon (Portugal). Inst. Superior de Agronomia]|[Universidade Nova de Lisboa, Oeiras (Portugal). Instituto de Tecnologia Quimica e Biologica; Franco, E.; Teixeira, A.R.N. [Universidade Tecnica, Lisbon (Portugal). Inst. Superior de Agronomia

    1996-08-15

    The effect of UV radiation (UV-A, UV-B and UV-C) on ribulose bisphosphate carboxylase from a variety of plant species was examined. The exposition of plant leaves or the pure enzyme to UV radiation produced a UV-dependent accumulation of a 65 kDa polypeptide (P65). Different approaches were utilized to elucidate the origin and structure of P65: electrophoretic and fluorographic analyses of {sup 35}S-labelled ribulose biphosphate carboxylase exposed to UV radiation and immunological experiments using antibodies specific for P65, for the large and small subunits of ribulose biphosphate carboxylase and for high-molecular-mass aggregates of the enzyme. These studies revealed that P65 is a dimer, formed by the covalent, non-disulphide linkage of one small subunit with one large subunit of ribulose biphosphate carboxylase. For short periods of time (<1 h), the amount of P65 formed increased with the duration of the exposure to the UV radiation and with the energy of the radiation applied. Prolonged exposure to UV radiation (1-6 h) resulted in the formation of high-molecular-mass aggregates of ribulose biphosphate carboxylase. Formation of P65 was shown to depend on the native state of the protein, was stimulated by inhibitors of enzyme activity, and was inhibited by activators of enzyme activity. A UV-independent accumulation of P65 was also achieved by the in vitro incubation of plant crude extracts. However, the UV-dependent and the UV-independent formation of P65 seemed to occur by distinct molecular mechanisms. The UV-dependent accumulation of P65 was immunologically detected in all species examined, including Lemna minor, Arum italicum, Brassica oleracea, Triticum aestivum, Zea mays, Pisum sativum and Phaseolus vulgaris, suggesting that it may constitute a universal response to UV radiation, common to all photosynthetic tissues. (Author).

  18. Covalent dimerization of ribulose bisphosphate carboxylase subunits by UV radiation

    International Nuclear Information System (INIS)

    Ferreira, R.M.B.; Universidade Nova de Lisboa, Oeiras; Franco, E.; Teixeira, A.R.N.

    1996-01-01

    The effect of UV radiation (UV-A, UV-B and UV-C) on ribulose bisphosphate carboxylase from a variety of plant species was examined. The exposition of plant leaves or the pure enzyme to UV radiation produced a UV-dependent accumulation of a 65 kDa polypeptide (P65). Different approaches were utilized to elucidate the origin and structure of P65: electrophoretic and fluorographic analyses of 35 S-labelled ribulose biphosphate carboxylase exposed to UV radiation and immunological experiments using antibodies specific for P65, for the large and small subunits of ribulose biphosphate carboxylase and for high-molecular-mass aggregates of the enzyme. These studies revealed that P65 is a dimer, formed by the covalent, non-disulphide linkage of one small subunit with one large subunit of ribulose biphosphate carboxylase. For short periods of time (<1 h), the amount of P65 formed increased with the duration of the exposure to the UV radiation and with the energy of the radiation applied. Prolonged exposure to UV radiation (1-6 h) resulted in the formation of high-molecular-mass aggregates of ribulose biphosphate carboxylase. Formation of P65 was shown to depend on the native state of the protein, was stimulated by inhibitors of enzyme activity, and was inhibited by activators of enzyme activity. A UV-independent accumulation of P65 was also achieved by the in vitro incubation of plant crude extracts. However, the UV-dependent and the UV-independent formation of P65 seemed to occur by distinct molecular mechanisms. The UV-dependent accumulation of P65 was immunologically detected in all species examined, including Lemna minor, Arum italicum, Brassica oleracea, Triticum aestivum, Zea mays, Pisum sativum and Phaseolus vulgaris, suggesting that it may constitute a universal response to UV radiation, common to all photosynthetic tissues. (Author)

  19. Antiradiation UV Vaccine: UV Radiation, Biological effects, lesions and medical management - immune-therapy and immune-protection.

    Science.gov (United States)

    Popov, Dmitri; Jones, Jeffrey; Maliev, Slava

    Key Words: Ultraviolet radiation,Standard Erythema Dose(SED), Minimal Erythema Dose(MED), Sun Burns, Solar Dermatitis, Sun Burned Disease, DNA Damage,Cell Damage, Antiradiation UV Vaccine, Immune-Prophylaxis of Sun Burned Diseases, Immune-Prophylaxis of Sun Burns, Immune-Therapy of Sun-Burned Disease and Sun Burns,Basal Cell Carcinoma (BCC), Squamous Cell Carcinoma (SCC), Toxic Epidermal Necrolysis(TEN). Introduction: High doses of UV generated by solar source and artificial sources create an exposure of mammals and other species which can lead to ultraviolet(UV)radiation- associated disease (including erythema, epilation, keratitis, etc.). UV radiation belongs to the non-ionizing part of the electromagnetic spectrum and ranges between 100 nm and 400 nm with 100 nm having been chosen arbitrarily as the boundary between non-ionizing and ionizing radiation, however EMR is a spectrum and UV can produce molecular ionization. UV radiation is conventionally categorized into 3 areas: UV-A (>315-400 nm),UV-B (>280-315 nm)and UV-C (>100-280 nm) [IARC,Working Group Reports,2005] An important consequence of stratospheric ozone depletion is the increased transmission of solar ultraviolet (UV)radiation to the Earth's lower atmosphere and surface. Stratospheric ozone levels have been falling, in certain areas, for the past several decades, so current surface ultraviolet-B (UV-B) radiation levels are thought to be close to their modern day maximum. [S.Madronich et al.1998] Overexposure of ultraviolet radiation a major cause of skin cancer including basal cell carcinoma (BCC), squamous cell carcinoma (SCC) { collectively referred to as “non-melanoma" skin cancer (NMSC) and melanoma as well, with skin cancers being the most common cancer in North America. [Armstrong et al. 1993, Gallagher et al. 2005] Methods and Experimental Design: Our experiments and testing of a novel UV “Antiradiation Vaccine” have employed a wide variety of laboratory animals which include : Chinchilla

  20. Risks of increased UV-B radiation for humans

    International Nuclear Information System (INIS)

    Przybilla, B.; Eberlein-Koenig, B.; Bergner, T.

    1994-01-01

    If not compensated in any way, depletion of the stratospheric ozone layer leads to an increase of UV-B radiation at the earth's surface, especially towards the short-wave range, which is biologically the more active. The most concerning effect here is that of UV-B induced skin reactions, in particular malignant skintumors (malignant melanoma, spinocellular carcinoma, basalioma), whose incidence is expected to increase in future. As some photoreactions can be inhibited or enhanced also by radiation outside their action spectrum, it is possible for changes in solar spectral radiation flux density to influence photo-induced reactions that are driven at wavelengths outside the UV-B range. The authors have performed studies for developing methods of quantifying individual UV sensitivity. In vitro studies have shown that UV-A dependent photoreactions can be partly inhibited by UV-B. A number of drugs, as well as sulphites, which are used as preservatives amongst other things, have been shown to have phototoxic properties that may be relevant to photocarcinogenesis. Irradiation tests on cell cultures for different UV-B ranges have shown that irradiation at shorter wavelengths leads to a stronger release of proinflammatory cytokines that ar longer wavelengths with the same dose. Altogether it can be said that despite compelling theoretical evidence it is not easily possible to predict the actual consequences of an increase in particular of short-wave UV-B radiation at the earth's surface. The assumed effects must be examined individually by appropriate methods. (orig.) [de

  1. Effects and mechanism of UV-B radiation on rice growth

    International Nuclear Information System (INIS)

    Gao Xiaoxiao; Gao Zhaohua; Zu Yanqun

    2009-01-01

    The enhancement of UV-B radiation influences the growth of rice and physiology in different levels and this performances as changes in morphology destroyed photosynthetic system unstable anti-oxidation system changes of endogenous hormone content exacerbated rice diseases decreased biomass and developmental stage delay. Through the establishment of the response index we can evaluate the varietal differences in responses of the rice to UV-B radiation. Reasons for such varietal differences were differences in rice gene physiology and morphology developmental stage and environmental factors. The main mechanism in responses of the rice to UV-B radiation was induction of flavonoid compounds and accumulation of anthocyanins. Based on the analysis of the influence of enhanced UV-B radiation to rice and the varietal differences in responses to UV-B radiation and mechanism of rice the direction of the further research about the relationship between the rice and UV-B was put forward

  2. Enhanced replication of damaged SV40 DNA in carcinogen-treated monkey cells

    International Nuclear Information System (INIS)

    Maga, J.A.; Dixon, K.

    1984-01-01

    Treatment of mammalian cells with certain chemical or physical carcinogens prior to infection with ultraviolet-irradiated virus results in enhanced survival or reactivation of the damaged virus. To investigate the molecular basis of this enhanced reactivation (ER), Simian virus 40 DNA replication in carcinogen-treated cells was examined. Treatment of monkey kidney cells with N-acetoxy-2-acetylamino-fluorene or UV radiation 24 h prior to infection with ultraviolet-irradiated Simian virus 40 leads to enhancement of viral DNA replication measured at 36 h after infection by [ 3 H]thymidine incorporation or hybridization. The enhancement of DNA replication is observed when cells are treated from 1 to 60 h before infection or 1 to 16 h after infection. The fact that enhancement is observed also when cells are treated after infection rules out the possiblity that enhancement occurs at the level of adsorption or penetration of the virus. Measurements of the time course of viral DNA replication indicate that pretreatment of cells does not alter the time of onset of viral DNA replication. It is concluded that ER of Simain virus 40 occurs at the level of viral DNA replication. (author)

  3. UV-Radiation: From Physics to Impacts

    Directory of Open Access Journals (Sweden)

    Hanns Moshammer

    2017-02-01

    Full Text Available Ultraviolet (UV radiation has affected life at least since the first life forms moved out of the seas and crawled onto the land. Therefore, one might assume that evolution has adapted to natural UV radiation. However, evolution is mostly concerned with the propagation of the genetic code, not with a long, happy, and fulfilling life. Because rickets is bad for a woman giving birth, the beneficial effects of UV-radiation outweigh the adverse effects like aged skin and skin tumors of various grades of malignancy that usually only afflict us at older age. Anthropogenic damage to the stratospheric ozone layer and frighteningly high rates of melanoma skin cancer in the light-skinned descendants of British settlers in Australia piqued interest in the health impacts of UV radiation. A changing cultural perception of the beauty of tanned versus light skin and commercial interests in selling UV-emitting devices such as tanning booths caught public health experts off-guard. Counseling and health communication are extremely difficult when dealing with a “natural” risk factor, especially when this risk factor cannot (and should not be completely avoided. How much is too much for whom or for which skin type? How even measure “much”? Is it the (cumulative dose or the dose rate that matters most? Or should we even construct a more complex metric such as the cumulative dose above a certain dose rate threshold? We find there are still many open questions, and we are glad that this special issue offered us the opportunity to present many interesting aspects of this important topic.

  4. Effect of far-UV and near-UV radiation on the cell surface charge of the protozoan Tritrichomonas foetus

    Energy Technology Data Exchange (ETDEWEB)

    Silva Filho, F C; Elias, C A; Souza, W de

    1986-05-01

    Cell electrophoresis was used to detect the effect of far-UV or near-UV radiation on the cell surface charge of the pathogenic protozoan Tritrichomonas foetus. Either far-UV or near-UV radiation interfered with the surface charge of T. foetus at fluences which inhibited cell growth by 50%. Both UV-radiations induced a significant decrease on surface charge of T. foetus, as evaluated by measurement of its electrophoretic mobility (EPM). Determinations of EPM of protozoa in solution of low ionic strength indicated that the decrease in the EPM induced by far-UV is much less pronounced that that observed for near-UV or control cells.

  5. Effect of far-UV and near-UV radiation on the cell surface charge of the protozoan Tritrichomonas foetus

    International Nuclear Information System (INIS)

    Silva Filho, F.C.; Elias, C.A.; Souza, W. de

    1986-01-01

    Cell electrophoresis was used to detect the effect of far-UV or near-UV radiation on the cell surface charge of the pathogenic protozoan Tritrichomonas foetus. Either far-UV or near-UV radiation interfered with the surface charge of T. foetus at fluences which inhibited cell growth by 50%. Both UV-radiations induced a significant decrease on surface charge of T. foetus, as evaluated by measurement of its electrophoretic mobility (EPM). Determinations of EPM of protozoa in solution of low ionic strength indicated that the decrease in the EPM induced by far-UV is much less pronounced that that observed for near-UV or control cells. (author)

  6. UV Radiation and the Skin

    Directory of Open Access Journals (Sweden)

    Timothy Scott

    2013-06-01

    Full Text Available UV radiation (UV is classified as a “complete carcinogen” because it is both a mutagen and a non-specific damaging agent and has properties of both a tumor initiator and a tumor promoter. In environmental abundance, UV is the most important modifiable risk factor for skin cancer and many other environmentally-influenced skin disorders. However, UV also benefits human health by mediating natural synthesis of vitamin D and endorphins in the skin, therefore UV has complex and mixed effects on human health. Nonetheless, excessive exposure to UV carries profound health risks, including atrophy, pigmentary changes, wrinkling and malignancy. UV is epidemiologically and molecularly linked to the three most common types of skin cancer, basal cell carcinoma, squamous cell carcinoma and malignant melanoma, which together affect more than a million Americans annually. Genetic factors also influence risk of UV-mediated skin disease. Polymorphisms of the melanocortin 1 receptor (MC1R gene, in particular, correlate with fairness of skin, UV sensitivity, and enhanced cancer risk. We are interested in developing UV-protective approaches based on a detailed understanding of molecular events that occur after UV exposure, focusing particularly on epidermal melanization and the role of the MC1R in genome maintenance.

  7. Gene expression promoted by the SV40 DNA targeting sequence and the hypoxia-responsive element under normoxia and hypoxia

    Directory of Open Access Journals (Sweden)

    C.B. Sacramento

    2010-08-01

    Full Text Available The main objective of the present study was to find suitable DNA-targeting sequences (DTS for the construction of plasmid vectors to be used to treat ischemic diseases. The well-known Simian virus 40 nuclear DTS (SV40-DTS and hypoxia-responsive element (HRE sequences were used to construct plasmid vectors to express the human vascular endothelial growth factor gene (hVEGF. The rate of plasmid nuclear transport and consequent gene expression under normoxia (20% O2 and hypoxia (less than 5% O2 were determined. Plasmids containing the SV40-DTS or HRE sequences were constructed and used to transfect the A293T cell line (a human embryonic kidney cell line in vitro and mouse skeletal muscle cells in vivo. Plasmid transport to the nucleus was monitored by real-time PCR, and the expression level of the hVEGF gene was measured by ELISA. The in vitro nuclear transport efficiency of the SV40-DTS plasmid was about 50% lower under hypoxia, while the HRE plasmid was about 50% higher under hypoxia. Quantitation of reporter gene expression in vitro and in vivo, under hypoxia and normoxia, confirmed that the SV40-DTS plasmid functioned better under normoxia, while the HRE plasmid was superior under hypoxia. These results indicate that the efficiency of gene expression by plasmids containing DNA binding sequences is affected by the concentration of oxygen in the medium.

  8. Biological responses to current UV-B radiation in Arctic regions

    DEFF Research Database (Denmark)

    Albert, Kristian Rost; Mikkelsen, Teis Nørgaard; Ro-Poulsen, H.

    2008-01-01

    on high-arctic vegetation. They supplement previous investigations from the Arctic focussing on other variables like growth etc., which have reported no or minor plant responses to UV-B, and clearly indicates that UV-B radiation is an important factor affecting plant life at high-arctic Zackenberg......Depletion of the ozone layer and the consequent increase in solar ultraviolet-B radiation (UV-B) may impact living conditions for arctic plants significantly. In order to evaluate how the prevailing UV-B fluxes affect the heath ecosystem at Zackenberg (74°30'N, 20°30'W) and other high......-arctic regions, manipulation experiments with various set-ups have been performed. Activation of plant defence mechanisms by production of UV-B absorbing compounds was significant in ambient UV-B in comparison to a filter treatment reducing the UV-B radiation. Despite the UV-B screening response, ambient UV...

  9. Biological responses to current UV-B radiation in Arctic regions

    DEFF Research Database (Denmark)

    Albert, Kristian Rost; Mikkelsen, Teis Nørgaard; Ro-Poulsen, H.

    2008-01-01

    Depletion of the ozone layer and the consequent increase in solar ultraviolet-B radiation (UV-B) may impact living conditions for arctic plants significantly. In order to evaluate how the prevailing UV-B fluxes affect the heath ecosystem at Zackenberg (74°30'N, 20°30'W) and other high......-arctic regions, manipulation experiments with various set-ups have been performed. Activation of plant defence mechanisms by production of UV-B absorbing compounds was significant in ambient UV-B in comparison to a filter treatment reducing the UV-B radiation. Despite the UV-B screening response, ambient UV...... (mycorrhiza) or in the biomass of microbes in the soil of the root zone. However, the composition of the soil microbial community was different in the soils under ambient and reduced UV radiation after three treatment years. These results provide new insight into the negative impact of current UV-B fluxes...

  10. Ecological responses to UV radiation: interactions between the biological effects of UV on plants and on associated organisms.

    Science.gov (United States)

    Paul, Nigel D; Moore, Jason P; McPherson, Martin; Lambourne, Cathryn; Croft, Patricia; Heaton, Joanna C; Wargent, Jason J

    2012-08-01

    Solar ultraviolet (UV)-B radiation (280-315 nm) has a wide range of effects on terrestrial ecosystems, yet our understanding of how UV-B influences the complex interactions of plants with pest, pathogen and related microorganisms remains limited. Here, we report the results of a series of experiments in Lactuca sativa which aimed to characterize not only key plant responses to UV radiation in a field environment but also consequential effects for plant interactions with a sap-feeding insect, two model plant pathogens and phylloplane microorganism populations. Three spectrally modifying filters with contrasting UV transmissions were used to filter ambient sunlight, and when compared with our UV-inclusive filter, L. sativa plants grown in a zero UV-B environment showed significantly increased shoot fresh weight, reduced foliar pigment concentrations and suppressed population growth of green peach aphid (Myzus persicae). Plants grown under a filter which allowed partial transmission of UV-A radiation and negligible UV-B transmission showed increased density of leaf surface phylloplane microbes compared with the UV-inclusive treatment. Effects of UV treatment on the severity of two plant pathogens, Bremia lactucae and Botrytis cinerea, were complex as both the UV-inclusive and zero UV-B filters reduced the severity of pathogen persistence. These results are discussed with reference to known spectral responses of plants, insects and microorganisms, and contrasted with established fundamental responses of plants and other organisms to solar UV radiation, with particular emphasis on the need for future integration between different experimental approaches when investigating the effects of solar UV radiation. Copyright © Physiologia Plantarum 2011.

  11. Is UV-A radiation a cause of malignant melanoma?

    International Nuclear Information System (INIS)

    Moan, J.

    1994-01-01

    The first action spectrum for cutaneous malignant melanoma was published recently. This spectrum was obtained using the fish Xiphophorus. If the same action spectrum applies to humans, the following statements are true: Sunbathing products (agents to protect against the sun) that absorb UV-B radiation provide almost no protection against cutaneous malignant melanoma. UV-A-solaria are more dangerous than expected so far. If people are determined to use artificial sources of radiation for tanning, they should choose UV-B solaria rather than UV-A-solaria. Fluorescent tubes and halogen lamps may have weak melanomagenic effects. Ozone depletion has almost no effect on the incidence rates of CMM, since ozone absorbs very little UV-A radiation. Sunbathing products which contain UV-A-absorbing compounds or neutral filter (like titanium oxide) provide real protection against cutaneous malignant melanoma, at least if they are photochemically inert. 34 refs., 2 figs

  12. Polycyclic aromatic hydrocarbons (PAHs) skin permeation rates change with simultaneous exposures to solar ultraviolet radiation (UV-S).

    Science.gov (United States)

    Hopf, Nancy B; Spring, Philipp; Hirt-Burri, Nathalie; Jimenez, Silvia; Sutter, Benjamin; Vernez, David; Berthet, Aurelie

    2018-05-01

    Road construction workers are simultaneously exposed to two carcinogens; solar ultraviolet (UV-S) radiation and polycyclic aromatic hydrocarbons (PAHs) in bitumen emissions. The combined exposure may lead to photogenotoxicity and enhanced PAH skin permeation rates. Skin permeation rates (J) for selected PAHs in a mixture (PAH-mix) or in bitumen fume condensate (BFC) with and without UV-S co-exposures were measured with in vitro flow-through diffusion cells mounted with human viable skin and results compared. Possible biomarkers were explored. Js were greater with UV-S for naphthalene, anthracene, and pyrene in BFC (0.08-0.1 ng/cm 2 /h) compared to without (0.02-0.26 ng/cm 2 /h). This was true for anthracene, pyrene, and chrysene in the PAH-mix. Naphthalene and benzo(a)pyrene (BaP) in the PAH-mix had greater Js without (0.97-13.01 ng/cm 2 /h) compared to with UV-S (0.40-6.35 ng/cm 2 /h). Time until permeation (T lags ) in the PAH-mix were generally shorter compared to the BFC, and they ranged from 1 to 13 h. The vehicle matrix could potentially be the reason for this discrepancy as BFC contains additional not identified substances. Qualitative interpretation of p53 suggested a dose-response with UV-S, and somewhat with the co-exposures. MMP1, p65 and cKIT were not exploitable. Although not statistically different, PAHs permeate human viable skin faster with simultaneous exposures to UV. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Plant Responses to Increased UV-B Radiation: A Research Project

    Science.gov (United States)

    DAntoni, H. L.; Skiles, J. W.; Armstrong, R.; Coughlan, J.; Daleo, G.; Mayoral, A.; Lawless, James G. (Technical Monitor)

    1994-01-01

    Ozone decrease implies more ultraviolet-B (UV-B) radiation reaching the surface of the Earth. Increased UV-B radiation triggers responses by living organisms. Despite the large potential impacts on vegetation, little is known about UV-B effects on terrestrial ecosystems. Long-term ecological studies are needed to quantify the effects of increased UV radiation on terrestrial ecosystems, asses the risks, and produce reliable data for prediction. Screening pigments are part of one of the protective mechanism in plants. Higher concentrations of screening pigments in leaves may be interpreted as a response to increased UV radiation. If the screening effect is not sufficient, important molecules will be disturbed by incoming radiation. Thus, genetics, photosynthesis, growth, plant and leaf shape and size, and pollen grains may be affected. This will have an impact on ecosystem dynamics, structure and productivity. It is necessary to monitor selected terrestrial ecosystems to permit detection and interpretation of changes attributable to global climate change and depleted ozone shield. The objectives of this project are: (1) To identify and measure indicators of the effects of increased solar UV-B radiation on terrestrial plants; (2) to select indicators with the greatest responses to UV-B exposure; (3) to test, adapt or create ecosystem models that use the information gathered by this project for prediction and to enhance our understanding of the effects of increased UV-B radiation on terrestrial ecosystems. As a first step to achieve these objectives we propose a three-year study of forest and steppe vegetation on the North slope of the Brooks Range (within the Arctic circle, in Alaska), in the Saguaro National Monument (near Tucson, Arizona) and in the forests and steppes of Patagonia (Argentina). We selected (1) vegetation north of the Polar Circle because at 70N there is 8% risk of plant damage due to increased UV-B radiation; (2) the foothills of Catalina Mountains

  14. Bactericidal effectiveness of UV radiators, type DRT-400, in a broilerhouse

    International Nuclear Information System (INIS)

    Dobrzanski, Z.; Al Faouri, W.; Markiewicz, M.; Pawiak, R.

    1989-01-01

    Three UV radiators, type DRT-400, were used in a broilerhouse of BIOS type; 12 lamps in a set, type ZNUV, worked inside of the premises for 5, 8, 12, 16 and 20 min. It was found a high degree reduction of bacteria and fungi in the air, at 60.3 and 74.0% respectively, on the external surface of bedding at 40.3% and 72.2%, and in automatic watering troughs at 44.0 and 97.7% respectively. The degree of microorganisms reduction depended on the time exposition to UV, general air contamination, place of contamination, i.e. bedding or water in troughs. (author)

  15. Is UV-A radiation a cause of malignant melanoma. Er UV-A aarsak til malignt melanom

    Energy Technology Data Exchange (ETDEWEB)

    Moan, J. (Det Norske Radiumhospital, Oslo (Norway))

    1994-03-01

    The first action spectrum for cutaneous malignant melanoma was published recently. This spectrum was obtained using the fish Xiphophorus. If the same action spectrum applies to humans, the following statements are true: Sunbathing products (agents to protect against the sun) that absorb UV-B radiation provide almost no protection against cutaneous malignant melanoma. UV-A-solaria are more dangerous than expected so far. If people are determined to use artificial sources of radiation for tanning, they should choose UV-B solaria rather than UV-A-solaria. Fluorescent tubes and halogen lamps may have weak melanomagenic effects. Ozone depletion has almost no effect on the incidence rates of CMM, since ozone absorbs very little UV-A radiation. Sunbathing products which contain UV-A-absorbing compounds or neutral filter (like titanium oxide) provide real protection against cutaneous malignant melanoma, at least if they are photochemically inert. 34 refs., 2 figs.

  16. SV40 late protein VP4 forms toroidal pores to disrupt membranes for viral release.

    Science.gov (United States)

    Raghava, Smita; Giorda, Kristina M; Romano, Fabian B; Heuck, Alejandro P; Hebert, Daniel N

    2013-06-04

    Nonenveloped viruses are generally released from the cell by the timely lysis of host cell membranes. SV40 has been used as a model virus for the study of the lytic nonenveloped virus life cycle. The expression of SV40 VP4 at later times during infection is concomitant with cell lysis. To investigate the role of VP4 in viral release and its mechanism of action, VP4 was expressed and purified from bacteria as a fusion protein for use in membrane disruption assays. Purified VP4 perforated membranes as demonstrated by the release of fluorescent markers encapsulated within large unilamellar vesicles or liposomes. Dynamic light scattering results revealed that VP4 treatment did not cause membrane lysis or change the size of the liposomes. Liposomes encapsulated with 4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-3-indacene-labeled streptavidin were used to show that VP4 formed stable pores in membranes. These VP4 pores had an inner diameter of 1-5 nm. Asymmetrical liposomes containing pyrene-labeled lipids in the outer monolayer were employed to monitor transbilayer lipid diffusion. Consistent with VP4 forming toroidal pore structures in membranes, VP4 induced transbilayer lipid diffusion or lipid flip-flop. Altogether, these studies support a central role for VP4 acting as a viroporin in the disruption of cellular membranes to trigger SV40 viral release by forming toroidal pores that unite the outer and inner leaflets of membrane bilayers.

  17. Plant's adaptive response under UV-B-radiation influence

    International Nuclear Information System (INIS)

    Danil'chenko, O.A.; Grodzinskij, D.M.

    2002-01-01

    Reduction of ozone layer, owing to anthropogenic contamination of an atmosphere results in increase of intensity of UV-radiation and shift of its spectrum in the short-wave side that causes strengthening of various biological effects of irradiation. Consequences of these processes may include increase of injuring of plants and decrease of productivity of agricultural crops to increased UV levels. The important significance in the plant's adaptation to different unfavorable factors has the plant's radioadaptive answer. It has been shown that radioadaptation of plants occurred not only after irradiation with g-radiation in low doses but after UV-rays action . Reaction of radioadaptation it seems to be nonspecific phenomenon in relation to type radiations

  18. Comparison of the dose-effect relationship for UV radiation and ionizing radiation

    International Nuclear Information System (INIS)

    Leenhouts, H.P.; Sijsma, M.J.; Chadwick, K.H.

    1990-06-01

    Ionizing radiation and ultraviolet radiation (UV) are both physical agents with mutagenic and carcinogenic properties. However, there are some basic differences in the fundamental mechanism of their interaction with biological material that may have consequences for risk assessment. In this paper the dose-effect relationships for gamma radiation and UV at cellular level will be used to demonstrate the different radio-biological effectiveness of both agents. The results will be discussed in the framework of a biophysical model, based on the assumption that DNA doublestranded lesions are crucial for the cytotoxic action. After exposure to ionizing radiation, the lesions are fixed immediately following irradiation, but after UV exposure the lethal lesions are recognized only in the next DNA synthesis phase. The combination of this concept with the mechanism of lesion induction and the possibility of repair, leads to different dose and time relationships for the radiation effects of both agents. The possible consequences for risk assessment at low levels will be discussed. (author). 9 refs.; 5 figs

  19. Inhibition of photosystem II by UV-B-radiation

    International Nuclear Information System (INIS)

    Tevini, M.; Pfister, K.

    1985-01-01

    The effect of UV-B-radiation on PSII activity of spinach chloroplasts was analyzed by measuring the integrity of the herbicide-binding protein (HBP 32), by measurement of fluorescence induction in the presence of Diuron (DCMU), and by mathematical analysis of the fluorescence induction curves. It was shown that UV-B inactivates the PSII α-centers but not PSII β-centers. However, the possibility cannot be excluded that in addition the donor site of PSII near the reaction center is attacked by UV-B-radiation. (orig.)

  20. Inhibitory effects of ambient levels of solar UV-A and UV-B radiation in growth of cv. New Red Fire lettuce

    International Nuclear Information System (INIS)

    Krizek, D.T.; Britz, S.J.; Mirecki, R.M.

    1998-01-01

    The influence of solar UV-A and UV-B radiation at Beltsville, MD, USA, on growth of Lactuca sativa L. (cv. New Red Fire lettuce) was examined during early summer of 1996 and 1997. Plants were grown from seed in plastic window boxes covered with Llumar to exclude UV-A and UV-B, polyester to exclude UV-B, or tefzel (1996) or teflon (1997) to transmit UV-A and UV-B radiation. After 31-34 days, plants grown in the absence of solar UV-B radiation (polyester) had 63 and 57% greater fresh weight and dry weight of tops, respectively, and 57, 72 and 47% greater dry weight of leaves, stems and roots, respectively, as compared to those grown under ambient UV-B (tefzel or teflon). Plants protected from UV-A radiation as well (Llumar) showed an additional 43 and 35% increase, respectively, in fresh and dry weight of tops and a 33 and 33% increase, respectively, in dry weight of leaves and stems, but no difference in root biomass over those grown under polyester. Excluding ambient UV-B (polyester) significantly reduced the UV absorbance of leaf extracts at 270, 300 and 330 nm (presumptive flavonoids) and the concentration of anthocyantins at 550 nm as compared to those of leaf extract from plants grown under ambient UV-A and UV-B. Additional removal of ambient UV-A (Llumar) reduced the concentration of anthocyanins, but had no further effect on UV absorbance at 270, 300 or 330 nm. These findings provide evidence that UV-B radiation is more important than UV-A radiation for flavonoid induction in this red-pigmented lettuce cultivar. Although previous workers have obtained decreases in lettuce yield under enhanced UV-B, this is the first evidence for inhibitory effects of solar UV-A and UV-B radiation on lettuce growth. (au)

  1. Inhibitory effects of ambient levels of solar UV-A and UV-B radiation in growth of cv. New Red Fire lettuce

    Energy Technology Data Exchange (ETDEWEB)

    Krizek, D.T.; Britz, S.J.; Mirecki, R.M. [Climate Stress Laboratory, Beltsville, MD (United States)

    1998-05-01

    The influence of solar UV-A and UV-B radiation at Beltsville, MD, USA, on growth of Lactuca sativa L. (cv. New Red Fire lettuce) was examined during early summer of 1996 and 1997. Plants were grown from seed in plastic window boxes covered with Llumar to exclude UV-A and UV-B, polyester to exclude UV-B, or tefzel (1996) or teflon (1997) to transmit UV-A and UV-B radiation. After 31-34 days, plants grown in the absence of solar UV-B radiation (polyester) had 63 and 57% greater fresh weight and dry weight of tops, respectively, and 57, 72 and 47% greater dry weight of leaves, stems and roots, respectively, as compared to those grown under ambient UV-B (tefzel or teflon). Plants protected from UV-A radiation as well (Llumar) showed an additional 43 and 35% increase, respectively, in fresh and dry weight of tops and a 33 and 33% increase, respectively, in dry weight of leaves and stems, but no difference in root biomass over those grown under polyester. Excluding ambient UV-B (polyester) significantly reduced the UV absorbance of leaf extracts at 270, 300 and 330 nm (presumptive flavonoids) and the concentration of anthocyantins at 550 nm as compared to those of leaf extract from plants grown under ambient UV-A and UV-B. Additional removal of ambient UV-A (Llumar) reduced the concentration of anthocyanins, but had no further effect on UV absorbance at 270, 300 or 330 nm. These findings provide evidence that UV-B radiation is more important than UV-A radiation for flavonoid induction in this red-pigmented lettuce cultivar. Although previous workers have obtained decreases in lettuce yield under enhanced UV-B, this is the first evidence for inhibitory effects of solar UV-A and UV-B radiation on lettuce growth. (au) 34 refs.

  2. Risks of increased UV-B radiation: higher plants

    International Nuclear Information System (INIS)

    Rau, W.; Hofmann, H.

    1994-01-01

    The question pursued within the Bavarian climate research programme (BayFORKLIM) in the present context was as follows: Does the fact that UV-B radiation increases with growing site elevation mean that the low sensitivity of predominantly alpine plants compared with that of lowland plants is attributable to their different genetic constitution, possibly as a result of selective pressure and/or de alpine species have a greater capacity to develop protective mechanisms? Pairs and triplets of species belonging to the same genus but occuring at different site elevations were grown from seeds in a greenhouse that is, without UV-B. In order to determine their capacity to adapt to UV-B radiation, some of the plants were additionally exposed to UV-B for 5-6 weeks prior to sensitivity testing. Sensitivity was tested by exposing the plants to additional UV-B of different intensities in test chambers. Visible damage, ranging from light bronzing or yellowing to withering, served as an assessment criterion. Levels of UV-B absorbing substances (phenylpropane species, usually flavonoids) were also measured in these plants. The results obtained permit the following conclusions: The greater UV-B resistance of alpine species compared with that of lowland species of the same genus is not attributable to their genetic constitution but rather to their superior adaptability. Superior resistance is in part due to a greater accumulation of UV-B absorbing substances. Distinct differences in sensitivity between different genera could lead to population shifts within ecosystems as a result of increased UV-B radiation. (orig./KW) [de

  3. Plant responses to UV-B irradiation are modified by UV-A irradiation

    International Nuclear Information System (INIS)

    Middleton, E.M.; Teramura, A.H.

    1993-01-01

    The increasing UV-B radiation (0.28-0.32 μm) reaching the earth's surface is an important concern. Plant response in artificial UV-B irradiation studies has been difficult to assess, especially regarding photosynthetic pigments, because the fluorescent lamps also produce UV-A (0.32-0.40μm) radiation which is involved with blue light in pigment synthesis. Both UV-A and UV-B irradiances were controlled in two glasshouse experiments conducted under relatively high PPFD (> 1300μmol m -2 s -1 ) at two biologically effective daily UV-B irradiances (10.7 and 14.1 kJ m -2 ); UV-A irradiances were matched in Controls (∼5, 9 kJ m -2 ). Normal, chlorophyll-deficient, and flavonoid-deficient isolines of soybean cultivar, Clark, were utilized. Many growth/ pigment variables exhibited a statistically significant interaction between light quality and quantity: in general, UV-A radiation moderated the damaging effects of UV-B radiation. Regression analyses demonstrated that a single negative function related photosynthetic efficiency to carotenoid Content (r 2 =0.73, P≤0.001), implying a open-quotes costclose quotes in maintaining carotenoids for photoprotection. A stomatal limitation to photosynthesis was verified and carotenoid content was correlated with UV-B absorbing compound levels, in UV-B irradiated plants

  4. The response of human skin commensal bacteria as a reflection of UV radiation: UV-B decreases porphyrin production.

    Directory of Open Access Journals (Sweden)

    Yanhan Wang

    Full Text Available Recent global radiation fears reflect the urgent need for a new modality that can simply determine if people are in a radiation risk of developing cancer and other illnesses. Ultraviolet (UV radiation has been thought to be the major risk factor for most skin cancers. Although various biomarkers derived from the responses of human cells have been revealed, detection of these biomarkers is cumbersome, probably requires taking live human tissues, and varies significantly depending on human immune status. Here we hypothesize that the reaction of Propionibacterium acnes (P. acnes, a human resident skin commensal, to UV radiation can serve as early surrogate markers for radiation risk because the bacteria are immediately responsive to radiation. In addition, the bacteria can be readily accessible and exposed to the same field of radiation as human body. To test our hypothesis, P. acnes was exposed to UV-B radiation. The production of porphyrins in P. acnes was significantly reduced with increasing doses of UV-B. The porphyrin reduction can be detected in both P. acnes and human skin bacterial isolates. Exposure of UV-B to P. acnes- inoculated mice led to a significant decrease in porphyrin production in a single colony of P. acnes and simultaneously induced the formation of cyclobutane pyrimidine dimers (CPD in the epidermal layers of mouse skin. Mass spectrometric analysis via a linear trap quadrupole (LTQ-Orbitrap XL showed that five peptides including an internal peptide (THLPTGIVVSCQNER of a peptide chain release factor 2 (RF2 were oxidized by UV-B. Seven peptides including three internal peptides of 60 kDa chaperonin 1 were de-oxidized by UV-B. When compared to UV-B, gamma radiation also decreased the porphyrin production of P. acnes in a dose-dependent manner, but induced a different signature of protein oxidation/de-oxidation. We highlight that uncovering response of skin microbiome to radiation will facilitate the development of pre

  5. The response of human skin commensal bacteria as a reflection of UV radiation: UV-B decreases porphyrin production.

    Science.gov (United States)

    Wang, Yanhan; Zhu, Wenhong; Shu, Muya; Jiang, Yong; Gallo, Richard L; Liu, Yu-Tsueng; Huang, Chun-Ming

    2012-01-01

    Recent global radiation fears reflect the urgent need for a new modality that can simply determine if people are in a radiation risk of developing cancer and other illnesses. Ultraviolet (UV) radiation has been thought to be the major risk factor for most skin cancers. Although various biomarkers derived from the responses of human cells have been revealed, detection of these biomarkers is cumbersome, probably requires taking live human tissues, and varies significantly depending on human immune status. Here we hypothesize that the reaction of Propionibacterium acnes (P. acnes), a human resident skin commensal, to UV radiation can serve as early surrogate markers for radiation risk because the bacteria are immediately responsive to radiation. In addition, the bacteria can be readily accessible and exposed to the same field of radiation as human body. To test our hypothesis, P. acnes was exposed to UV-B radiation. The production of porphyrins in P. acnes was significantly reduced with increasing doses of UV-B. The porphyrin reduction can be detected in both P. acnes and human skin bacterial isolates. Exposure of UV-B to P. acnes- inoculated mice led to a significant decrease in porphyrin production in a single colony of P. acnes and simultaneously induced the formation of cyclobutane pyrimidine dimers (CPD) in the epidermal layers of mouse skin. Mass spectrometric analysis via a linear trap quadrupole (LTQ)-Orbitrap XL showed that five peptides including an internal peptide (THLPTGIVVSCQNER) of a peptide chain release factor 2 (RF2) were oxidized by UV-B. Seven peptides including three internal peptides of 60 kDa chaperonin 1 were de-oxidized by UV-B. When compared to UV-B, gamma radiation also decreased the porphyrin production of P. acnes in a dose-dependent manner, but induced a different signature of protein oxidation/de-oxidation. We highlight that uncovering response of skin microbiome to radiation will facilitate the development of pre-symptomatic diagnosis

  6. Solar UV-assisted sample preparation of river water for ultra-trace determination of uranium by adsorptive stripping voltammetry

    International Nuclear Information System (INIS)

    Woldemichael, G.; Tulu, T.; Flechsig, G.-U.

    2012-01-01

    The article describes how solar ultraviolet-A radiation can be used to digest samples as needed for voltammetric ultratrace determination of uranium(VI) in river water. We applied adsorptive stripping voltammetry (AdSV) using chloranilic acid as the complexing agent. Samples from the river Warnow in Rostock (Germany) were pretreated with either soft solar UV or wit artificial hard UV from a 30-W source emitting 254-nm light. Samples were irradiated for 12 h, and both methods yielded the same results. We were able to detect around 1 μg.L -1 of uranium(VI) in a sample of river water that also contained dissolved organic carbon at a higher mg.L -1 levels. No AdSV signal was obtained for U(VI) without any UV pre-treatment. Pseudo-polarographic experiments confirmed the dramatic effect of both digestion techniques the the AdSV response. The new method is recommended for use in mobile ultratrace voltammetry of heavy metals for most kinds of natural water samples including tap, spring, ground, sea, and river waters. The direct use of solar radiation for sample pre-treatment represents a sustainable technique for sample preparation that does not consume large quantities of chemicals or energy. (author)

  7. Effects of combined X-radiation and UV-radiation on HeLa cells

    International Nuclear Information System (INIS)

    Luible, M.

    1982-01-01

    A combined X-ray-UV irradiation was performed in nonsynchronized HeLa-cells. A pre-irradiation with UV-light, that reduced the survival rate to 42% and the following X-ray radiation yielded a similar dose-effect characteristic as with ordinary X-ray irradiation, only its shoulder was smaller. An additive radiation interaction with the cellular molecular structure was observed. A pre-irradiation with X-rays followed by step-wise UV-irradiation yielded a function similar to the UV-action curve but also with a narrower shoulder. A additive effect could be observed. One can conclude from this that in combined irradiation two interacting processes cause the death of the cells. The gene mutations caused by UV-light lead to cell death. X-rays however cause chromosome breaks, that in an unfavourable combination also lead to cell death. The DNA distorsion caused by the UV-light increases the possibility of misrepair. (orig.) [de

  8. Ecological and nonhuman biological effects of solar UV-B radiation

    International Nuclear Information System (INIS)

    Worrest, R.C.

    1984-01-01

    Recent studies regarding the impact of UV-B radiation upon ecological and nonhuman biological systems is the subject of the report. For years scientists and laymen alike have causally noted the impact of solar ultraviolet radiation upon the nonhuman component of the biosphere. Stratospheric ozone functions effectively as an ultraviolet screen by filtering out solar radiation in the 220-320 nm waveband as it penetrates through the atmosphere, thus allowing only small amounts of the longer wavelengths of radiation in the waveband to leak through to the surface of the earth. Although this radiation (UV-B radiation, 290-320 nm) comprises only a small fraction (lesser tha 1%) of the total solar spectrum, it can have a major impact on biological systems due to its actinic nature. Many organic molecules, most notably DNA, absorb UV-B radiation which can initiate photochemical reactions. It is life's ability, or lack thereof, to cope with enhanced levels of solar UV-B radiation that has generated concern over the potential depletion of stratospheric ozone

  9. The analysis of radiation exposure of hospital radiation workers

    International Nuclear Information System (INIS)

    Jeong, Tae Sik; Shin, Byung Chul; Moon, Chang Woo; Cho, Yeong Duk; Lee, Yong Hwan; Yum, Ha Yong

    2000-01-01

    This investigation was performed in order to improve the health care of radiation workers, to predict a risk, to minimize the radiation exposure hazard to them and for them to realize radiation exposure danger when they work in radiation area in hospital. The documentations checked regularly for personal radiation exposure in four university hospitals in Pusan city in Korea between January 1, 1993 and December 31, 1997 were analyz ed. There were 458 persons in this documented but 111 persons who worked less then one year were excluded and only 347 persons were included in this study. The average of yearly radiation exposure of 347 persons was 1.52±1.35 mSv. Though it was less than 5OmSv, the limitaion of radiation in law but 125 (36%) people received higher radiation exposure than non-radiation workers. Radiation workers under 30 year old have received radiation exposure of mean 1.87±1.01 mSv/year, mean 1.22±0.69 mSv between 31 and 40 year old and mean 0.97±0.43 mSv/year over, 41year old (p<0.001). Men received mean 1.67±1.54 mSv/year were higher than women who received mean 1.13±0.61 mSv/year (p<0.01). Radiation exposure in the department of nuclear medicine department in spite of low energy sources is higher than other departments that use radiations in hospital (p<0.05). And the workers who received mean 3.69±1.81 mSv/year in parts of management of radiation sources and injection of sources to patient receive high radiation exposure in nuclear medicine department (0<0.01). In department of diagnostic radiology high radiation exposure is in barium enema rooms where workers received mean 3.74±1.74 mSv/year and other parts where they all use fluoroscopy such as angiography room of mean 1.17±0.35 mSv/year and upper gastrointestinal room of mean 1.74±1.34 mSv/year represented higher radiation exposure than average radiation exposure in diagnostic radiology (p<0.01). Doctors and radiation technologists received higher radiation exposure of each mean 1.75±1

  10. UV radiation and organic matter composition shape bacterial functional diversity in sediments

    NARCIS (Netherlands)

    Hunting, E.R.; White, C.M.; van Gemert, M.; Mes, D.; Stam, E.; van der Geest, H.G.; Kraak, M.H.S.; Admiraal, W.

    2013-01-01

    UV radiation and organic matter (OM) composition are known to influence the species composition of bacterioplankton communities. Potential effects of UV radiation on bacterial communities residing in sediments remain completely unexplored to date. However, it has been demonstrated that UV radiation

  11. Arginine-rich cross-linking peptides with different SV40 nuclear localization signal content as vectors for intranuclear DNA delivery.

    Science.gov (United States)

    Bogacheva, Mariia; Egorova, Anna; Slita, Anna; Maretina, Marianna; Baranov, Vladislav; Kiselev, Anton

    2017-11-01

    The major barriers for intracellular DNA transportation by cationic polymers are their toxicity, poor endosomal escape and inefficient nuclear uptake. Therefore, we designed novel modular peptide-based carriers modified with SV40 nuclear localization signal (NLS). Core peptide consists of arginine, histidine and cysteine residues for DNA condensation, endosomal escape promotion and interpeptide cross-linking, respectively. We investigated three polyplexes with different NLS content (10 mol%, 50 mol% and 90 mol% of SV40 NLS) as vectors for intranuclear DNA delivery. All carriers tested were able to condense DNA, to protect it from DNAase I and were not toxic to the cells. We observed that cell cycle arrest by hydroxyurea did not affect transfection efficacy of NLS-modified carriers which we confirmed using quantitative confocal microscopy analysis. Overall, peptide carrier modified with 90 mol% of SV40 NLS provided efficient transfection and nuclear uptake in non-dividing cells. Thus, incorporation of NLS into arginine-rich cross-linking peptides is an adequate approach to the development of efficient intranuclear gene delivery vehicles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. UV-B radiation and photosynthetic irradiance acclimate eggplant for outdoor exposure

    International Nuclear Information System (INIS)

    Latimer, J.G.; Mitchell, G.A.

    1987-01-01

    Treatment of greenhouse-grown eggplant (Solanum melongena L. var. esculentum Nees. 'Burpee's Black Beauty') seedlings with supplemental photosynthetically active radiation from cool-white fluorescent lamps increased growth of plants subsequently transferred outdoors relative to growth of plants that received no supplemental radiation or were shaded to 45% of solar irradiation in the greenhouse before transfer outdoors. Eggplant seedlings transferred outdoors were placed under plastic tarps either to provide relative protection from solar ultraviolet-B (UV-B) radiation (280-315 nm) using Mylar film or to allow exposure to UV-B using cellulose acetate. Protection of seedlings from UV-B radiation resulted in greater leaf expansion than for UV-B-exposed seedlings, but no change in leaf or shoot dry weight occurred after 9 days of treatment. Specific leaf weight increased in response to UV-B exposure outdoors. Exposure of eggplant to UV-B radiation from fluorescent sunlamps in the greenhouse also decreased leaf expansion and leaf and shoot dry weight gain after 5 days of treatment. However, there were no differences in leaf or shoot dry weight relative to control plants after 12 days of UV-B treatment, indicating that UV-B treated plants had acclimated to the treatment and actually had caught up with non-UV-B-irradiated plants in terms of growth

  13. Impact of UV Radiation on Genome Stability and Human Health.

    Science.gov (United States)

    Roy, Sujit

    2017-01-01

    Gradual depletion of the atmospheric ozone layer during the past few years has increased the incidence of solar UV radiation specifically the UV-C on earth's surface is one of the major environmental concerns because of the harmful effects of this radiation in all forms of life. The solar UV radiation including the harmful wavelength range of UV-B (280-320 nm) represents a significant climatic stress for both animals and plants, causing damage to the fundamental biomolecules such as DNA, proteins and lipids, thus activating genotoxic stress and induces genome instability. When DNA absorbs UV-B light, energy from the photon causes covalent linkages to form between adjacent pyrimidine bases, creating photoproducts, primarily cyclobutane pyrimidine dimers (CPDs) and pyrimidine-6,4-pyrimidinone photoproduct (6,4PPs). Pyrimidine dimers create distortions in the DNA strands and therefore can inhibit DNA replication as well transcription. Lack of efficient repair of UV-induced DNA damage may induce the formation of DNA double stand breaks (DSBs), one of the serious forms of damage in DNA double helix, as well as oxidative damage. Unrepaired DSBs in the actively dividing somatic cells severely affect cell growth and development, finally results in loss of cell viability and development of various diseases, such as cancer in man.This chapter mainly highlights the incidence of solar UV-radiation on earth's surface along with the formation of major types of UV-induced DNA damage and the associated repair mechanisms as well as methods of detecting DNA damage and finally our present understanding on the impact on solar UV radiation on human health.

  14. COMPARATIVE ANALYSIS OF UV-C AND UV-B RADIATION INFLUENCE ON PLANT OBJECTS

    Directory of Open Access Journals (Sweden)

    О. Міхєєв

    2011-04-01

    Full Text Available General aim of work – comparative research of temporal regularities of growth processes of pea,that was grown under normal conditions and with application of UV-C and UV-B irradiation ofstem part, and also detection of irradiation dose relations to parameter of root and stem part sproutsgrowth rate of Aronis pea. Research subject of UV-C and UV-B irradiation influence on dynamicsof plant growth parameters in each set of experiments was alteration of growth rate, pecularities ofgrowth dynamics in different conditions of experiment, detection of UV-C and UV-B irradiationdoses range, that stimulate or inhibit growth parameters of pea sprouts. The investigation resulted indetermination 1,3 times higher efficiency of UV-V irradiation comparing to UV-B irradiation.Reaction of root didn’t depend on the type of UV-radiation

  15. UV and EB radiation processing in developing countries

    International Nuclear Information System (INIS)

    Garnett, J.L.

    1991-01-01

    Ultraviolet and electron beams (EB) are to be considered as complementary technologies in the radiation processing field. In many countries, UV processing is used as the pathfinder for EB. In the developing countries the decision to adopt radiation processing techniques to choose between UV and EB will largely be determined by economics, the availability of the chemists and also skilled personnel to service both lines and equipment. (orig./A.B.)

  16. Oncogenic transformation of rat lung epithelioid cells by SV40 DNA and restriction enzyme fragments

    International Nuclear Information System (INIS)

    Daya-Grosjean, L.; Lasne, C.; Nardeux, P.; Chouroulinkov, I.; Monier, R.

    1979-01-01

    Rat epithelioid lung cells were transformed with various preparations of SV40 DNA using the Ca 2+ -precipitation technique. The amount of SV40 genetic information integrated into transformed clones was evaluated by DNA-DNA renaturation kinetics. The growth properties on plastic and in soft-agar were examined, as well as the ability to induce tumors in syngeneic newborn animals or in adult nude mice. One particular transformed line, which had received the HpaII/BamHIA (59 per cent) fragment, was found to contain about 3 integrated copies of this fragment per cell and no significant amount of the HpaII/BamHIB (41 per cent fragment). This line which grew to high saturatio densities and efficiently formed clones in low serum on plastic, produced tumors in both syngeneic rats and nude mice. Thus the HpaII/BamHIA fragment, which mainly includes early viral information, was sufficient to impart these properties to rat epithelioid lung cells. (author)

  17. Transformation of UV-hypersensitive Chinese hamster ovary cell mutants with UV-irradiated plasmids

    International Nuclear Information System (INIS)

    Nairn, R.S.; Humphrey, R.M.; Adair, G.M.

    1988-01-01

    Transfection of UV-hypersensitive, DNA repair-deficient Chinese hamster ovary (CHO) cell lines and parental, repair-proficient CHO cells with UV-irradiated pHaprt-1 or pSV2gpt plasmids resulted in different responses by recipient cell lines to UV damage in transfected DNA. Unlike results reported for human cells, UV irradiation of transfecting DNA did not stimulate genetic transformation of CHO recipient cells. In repair-deficient CHO cells, proportionally fewer transformants were produced with increasing UV damage than in repair-proficient cells in transfections with UV-irradiated hamster adenine phosphoribosyltransferase (APRT) gene contained in plasmid pHaprt-1. Transfection of CHO cells with UV-irradiated pSV2gpt resulted in neither decline in transformation frequencies in repair-deficient cell lines relative to repair-proficient cells nor stimulation of genetic transformation by UV damage in the plasmid. Blot hybridization analysis of DNA samples isolated from transformed cells showed no dramatic changes in copy number or arrangement of transfected plasmid DNA with increasing UV dose. The authors conclude responses of recipient cells to UV-damaged transfecting plasmids depend on type of recipient cell and characteristics of the genetic sequence used for transfection. (author)

  18. Interfacial Shear Strength Evaluation of Pinewood Residue/High-Density Polyethylene Composites Exposed to UV Radiation and Moisture Absorption-Desorption Cycles

    Directory of Open Access Journals (Sweden)

    Soledad C. Pech-Cohuo

    2016-03-01

    Full Text Available In outdoor applications, the mechanical performance of wood-plastic composites (WPCs is affected by UV radiation, facilitating moisture intake and damaging the wood-polymer interfacial region. The purpose of this study was to evaluate the effect of moisture absorption-desorption cycles (MADCs, and the exposure to UV radiation on the interfacial shear strength (IFSS of WPCs with 40% pinewood residue and 60% high-density polyethylene. One of the WPCs incorporated 5% coupling agent (CA with respect to wood content. The IFSS was evaluated following the Iosipescu test method. The specimens were exposed to UV radiation using an accelerated weathering test device and subsequently subjected to four MADCs. Characterization was also performed by scanning electron microscopy (SEM and Fourier transform infrared spectroscopy (FTIR. The absorption and desorption of moisture was slower in non-UV-irradiated WPCs, particularly in those with the CA. The UV radiation did not significantly contribute to the loss of the IFSS. Statistically, the CA had a favorable effect on the IFSS. Exposure of the samples to MADCs contributed to reduce the IFSS. The FTIR showed lignin degradation and the occurrence of hydrolysis reactions after exposure to MADCs. SEM confirmed that UV radiation did not significantly affect the IFSS.

  19. Bystander Effect Induced by UV Radiation; why should we be interested? 

    Directory of Open Access Journals (Sweden)

    Maria Widel

    2012-11-01

    Full Text Available The bystander effect, whose essence is an interaction of cells directly subjected to radiation with adjacent non-subjected cells, via molecular signals, is an important component of ionizing radiation action. However, knowledge of the bystander effect in the case of ultraviolet (UV radiation is quite limited. Reactive oxygen and nitrogen species generated by UV in exposed cells induce bystander effects in non-exposed cells, such as reduction in clonogenic cell survival and delayed cell death, oxidative DNA damage and gene mutations, induction of micronuclei, lipid peroxidation and apoptosis. Although the bystander effect after UV radiation has been recognized in cell culture systems, its occurrence in vivo has not been studied. However, solar UV radiation, which is the main source of UV in the environment, may induce in human dermal tissue an inflammatory response and immune suppression, events which can be considered as bystander effects of UV radiation. The oxidative damage to DNA, genomic instability and the inflammatory response may lead to carcinogenesis. UV radiation is considered one of the important etiologic factors for skin cancers, basal- and squamous-cell carcinomas and malignant melanoma. Based on the mechanisms of actions it seems that the UV-induced bystander effect can have some impact on skin damage (carcinogenesis?, and probably on cells of other tissues. The paper reviews the existing data about the UV-induced bystander effect and discusses a possible implication of this phenomenon for health risk. 

  20. Investigation of the use of FXG gel dosimeter for UV radiation detection

    International Nuclear Information System (INIS)

    Bero, M.; Abu Kassem, I.

    2009-02-01

    The radio-chromic chemical radiation dosimeter is well known type of detectors that have been used in the measurement application of radiation dose resulting for ionizing radiation such as γ and X-rays. The detector materials consist of mainly water with added gelatin powder that gives the detector its solid shape. Other chemicals sensitive to radiation are also added to form the Ferrous-sulfate Xylenol-orange Gelatin gel detector (FXG). Ionizing radiation effects appears as an increase in the optical absorbance within a defined range of wavelengths located in the visible region of the light spectrum. These visible changes in the materials optical characteristic as a result of radiation exposure is proportional to the radiation absorbed dose at certain wave lengths. Ultraviolet radiation was found to produce similar effects in the FXG detector materials; hence we suggested studying the UV effects in details. It is known that UV radiation carry relatively high quantum energies big enough to enhance important chemical and biological reactions in some exposed medium. This study examines the most important properties required for the FXG detector to be used as a UV monitoring system that is capable of measuring the absorbed UV radiation dose. The study also works on finding chemical detector structure that is easy to be used for simulating the UV interactions with human body. It has been shown that the optical absorbance of standard size FXG samples increases linearly with the exposure time to UV radiation produced by a sun simulator source, when the beam is filtered to produces exposure similar to that found in nature. However, the UV effects are also influenced by the applied UV radiation spectrum used for irradiation as well as the thicknesses of the FXG materials.(authors)

  1. The effects of UV-B radiation on European heathland species

    International Nuclear Information System (INIS)

    Björn, L.O.; Callaghan, T.V.; Johnsen, I.; Lee, J.A.; Manetas, Y.; Paul, N.D.; Sonesson, M.; Wellburn, A.R.; Coop, D.; Heide-Jørgensen, H.S.; Gehrke, C.; Gwynn-Jones, D.; Johanson, U.; Kyparissis, A.; Levizou, E.; Nikolopoulos, D.; Petropoulou, Y.; Stephanou, M.

    1997-01-01

    The effects of enhanced UV-B radiation on three examples of European shrub-dominated vegetation were studied in situ. The experiments were in High Arctic Greenland, northern Sweden and Greece, and at all sites investigated the interaction of enhanced UV-B radiation (simulating a 15% reduction in the ozone layer) with artificially increased precipitation. The Swedish experiment also involved a study of the interaction between enhanced UV-B radiation and elevated CO 2 (600 ppm). These field studies were supported by an outdoor controlled environment study in the United Kingdom involving modulated enhancement of UV-B radiation in combination with elevated CO 2 (700 ppm). Effects of the treatments on plant growth, morphology, phenology and physiology were measured. The effects observed were species specific, and included both positive and negative responses to the treatments. In general the negative responses to UV-B treatments of up to three growing seasons were small, but included reductions in shoot growth and premature leaf senescence. Positive responses included a marked increase in flowering in some species and a stimulation of some photosynthetic processes. UV-B treatment enhanced the drought tolerance of Pinus pinea and Pinus halepensis by increasing leaf cuticle thickness. In general, there were few interactions between the elevated CO 2 and enhanced UV-B treatments. There was evidence to suggest that although the negative responses to the treatments were small, damage may be increasing with time in some long-lived woody perennials. There was also evidence in the third year of treatments for effects of UV-B on insect herbivory in Vaccinium species. The experiments point to the necessity for long-term field investigations to predict the likely ecological consequences of increasing UV-B radiation. (author)

  2. Dielectric spectroscopy of [P(NID2OD-T2)]n thin films: Effects of UV radiation on charge transport

    International Nuclear Information System (INIS)

    Sepulveda, Pablo I.; Rosado, Alexander O.; Pinto, Nicholas J.

    2014-01-01

    Poly[N,N′-bis(2-octyldodecyl)-naphthalene-1,4,5,8-bis(dicarboximide) -2,6-diyll-alt-5,5′-(2,2′-bithiophene)]-[P(ND12OD-T2)] n is a n-doped polymer that is stable in air. Low frequency (40 Hz–30 kHz) dielectric spectroscopy shows that the polymer impedance strength is reduced under ultra-violet (UV) radiation as a result of charge increase in the bulk polymer. Photo-excitation and the creation of electron-hole pairs and subsequent hole recombination with electron trapping species adsorbed by the polymer are suggested as possible doping mechanisms. The relaxation times were also faster in the presence of UV indicating multiple pathways for oscillating dipoles to relax. These results imply increased polymer conductance with corresponding enhancement of charge mobility due to reduced scattering in the presence of UV radiation. A thin film field effect transistor was fabricated using this polymer as the active material and characterized in the presence of UV radiation. As expected, the device exhibited n-type behavior with a charge mobility of 3.0 × 10 −3 cm 2 /V-s. Exposure to UV radiation increased the channel current, shifted the threshold voltage to more negative values and doubled the value of the mobility. These results are consistent with dielectric measurements and suggest an easy method of increasing device currents and charge mobility in this polymer via UV irradiation. - Highlights: • Ultra-violet (UV) radiation dopes the polymer. • The doping is n-type. • UV radiation enhances charge mobility without post polymer processing. • Dielectric spectroscopy and field effect transistor results are self-consistent

  3. UV Irradiance Enhancements by Scattering of Solar Radiation from Clouds

    Directory of Open Access Journals (Sweden)

    Uwe Feister

    2015-08-01

    Full Text Available Scattering of solar radiation by clouds can reduce or enhance solar global irradiance compared to cloudless-sky irradiance at the Earth’s surface. Cloud effects to global irradiance can be described by Cloud Modification Factors (CMF. Depending on strength and duration, irradiance enhancements affect the energy balance of the surface and gain of solar power for electric energy generation. In the ultraviolet region, they increase the risk for damage to living organisms. Wavelength-dependent CMFs have been shown to reach 1.5 even in the UV-B region at low altitudes. Ground-based solar radiation measurements in the high Andes region at altitudes up to 5917 m a.s.l showed cloud-induced irradiance enhancements. While UV-A enhancements were explained by cloud scattering, both radiation scattering from clouds and Negative Ozone Anomalies (NOA have been discussed to have caused short-time enhancement of UV-B irradiance. Based on scenarios using published CMF and additional spectroradiometric measurements at a low-altitude site, the contribution of cloud scattering to the UV-B irradiance enhancement in the Andes region has been estimated. The range of UV index estimates converted from measured UV-B and UV-A irradiance and modeled cloudless-sky ratios UV-B/erythemal UV is compatible with an earlier estimate of an extreme UV index value of 43 derived for the high Andes.

  4. Effects of ozone depletion and UV-B radiation on humans and the environment

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, K.R. [Guelph Univ., ON (Canada). Centre for Toxicology

    2008-03-15

    This paper summarized current research related to the effects of ultraviolet (UV-B) radiation on human health and the environment. Effects included direct responses in human as well as effects on biogeochemistry and the environmental cycling of substances. UV radiation has many harmful effects on the skin, eyes, and immune systems of humans. Skin cancer is a leading cause of death among fair-skinned populations exposed to UV radiation. The role of UV radiation in cataract formation was discussed, as well as issues related to the suppression of immune responses. The link between sunlight exposure and vitamin D levels in human populations was examined. The effects of UV radiation on terrestrial and aquatic ecosystems were reviewed. Issues related to biogeochemistry and atmospheric processes were discussed. The review suggested that changes in the intensity of solar UV radiation due to ozone depletion will have important repercussions for all organisms on the planet. It was concluded that the combined effects of UV-B radiation and climate change will not be easy to predict. 201 refs., 4 figs.

  5. UV-B Radiation Induces Root Bending Through the Flavonoid-Mediated Auxin Pathway in Arabidopsis.

    Science.gov (United States)

    Wan, Jinpeng; Zhang, Ping; Wang, Ruling; Sun, Liangliang; Wang, Wenying; Zhou, Huakun; Xu, Jin

    2018-01-01

    Ultraviolet (UV)-B radiation-induced root bending has been reported; however, the underlying mechanisms largely remain unclear. Here, we investigate whether and how auxin and flavonoids are involved in UV-B radiation-induced root bending in Arabidopsis using physiological, pharmacological, and genetic approaches. UV-B radiation modulated the direction of root growth by decreasing IAA biosynthesis and affecting auxin distribution in the root tips, where reduced auxin accumulation and asymmetric auxin distribution were observed. UV-B radiation increased the distribution of auxin on the nonradiated side of the root tips, promoting growth and causing root bending. Further analysis indicated that UV-B induced an asymmetric accumulation of flavonoids; this pathway is involved in modulating the accumulation and asymmetric distribution of auxin in root tips and the subsequent redirection of root growth by altering the distribution of auxin carriers in response to UV-B radiation. Taken together, our results indicate that UV-B radiation-induced root bending occurred through a flavonoid-mediated phototropic response to UV-B radiation.

  6. Effects of UV-B radiation on wax biosynthesis

    International Nuclear Information System (INIS)

    Barnes, J.; Paul, N.; Percy, K.; Broadbent, P.; McLaughlin, C.; Mullineaux, P.; Creissen, G.; Wellburn, A.

    1994-01-01

    Two genotypes of tobacco (Nicotiana tabacum L.) were exposed in controlled environment chambers to three levels of biologically effective ultraviolet-B radiation (UV-B BE ; 280-320nm): 0, 4.54 (ambient) and 5.66 (∼ 25% enhancement) kJ m -2 d -1 . After 28 days, the quantity of wax deposited on leaf surfaces was determined gravimetrically; epicuticular wax chemical composition was determined by capillary gas chromatography with homologue assignments confirmed by gas chromatography-mass spectrometry. Leaf wettability was assessed by measuring the contact angle of water droplets placed on leaf surfaces. Tobacco wax consisted of three major hydrocarbon classes: Straight-chain alkanes (C 27 -C 33 ) which comprised ∼ 59% of the hydrocarbon fraction, containing a predominance of odd-chain alkanes with C 31 as the most abundant homologue; branched-chain alkanes (C 25 -C 32 ) which comprised ∼38% of the hydrocarbon fraction with anteiso 3-methyltriacontane (C 30 ) as the predominant homologue; and fatty acids (C 14 -C 18 ) which comprised ∼ 3% of the wax. Exposure to enhanced UV-B radiation reduced the quantity of wax on the adaxial surface of the transgenic mutant, and resulted in marked changes in the chemical composition of the wax on the exposed leaf surface. Enhanced UV-B decreased the quantity of straight-chain alkanes, increased the quantity of branched-chain alkanes and fatty acids, and resulted in shifts toward shorter straight-chain lengths. Furthermore, UV-B-induced changes in wax composition were associated with increased wettability of tobacco leaf surfaces. Overall, the data are consistent with the view that UV-B radiation has a direct and fundamental effect on wax biosynthesis. Relationships between the physico-chemical nature of the leaf surface and sensitivity to UV-B radiation are discussed. (orig.)

  7. Attempts on producing lymphoid cell line from Penaeus monodon by induction with SV40-T and 12S EIA oncogenes.

    Science.gov (United States)

    Puthumana, Jayesh; Prabhakaran, Priyaja; Philip, Rosamma; Singh, I S Bright

    2015-12-01

    In an attempt of in vitro transformation, transfection mediated expression of Simian virus-40 (T) antigen (SV40-T) and transduction mediated expression of Adenovirus type 12 early region 1A (12S E1A) oncogene were performed in Penaeus monodon lymphoid cells. pSV3-neo vector encoding SV40-T oncogene and a recombinant baculovirus BacP2-12S E1A-GFP encoding 12S E1A oncogene under the control of hybrid promoters were used. Electroporation and lipofection mediated transformation of SV40-T in lymphoid cells confirmed the transgene expression by phenotypic variation and the expression of GFP in co-transfection experiment. The cells transfected by lipofection (≥ 5%) survived for 14 days with lower toxicity (30%), whilst on electroporation, most of the cells succumbed to death (60%) and survived cells lived up to 7 days. Transduction efficiency in primary lymphoid cells was more than 80% within 14 days of post-transduction, however, an incubation period of 7 days post-transduction was observed without detectable expression of 12S E1A. High level of oncogenic 12S E1A expression were observed after 14 day post-transduction and the proliferating cells survived for more than 90 days with GFP expression, however, without in vitro transformation and immortalization. The study put forth the requirement of transduction mediated 'specific' oncogene expression along with telomerase activation and epigenetic induction for the immortalization and establishment of shrimp cell line. Copyright © 2015. Published by Elsevier Ltd.

  8. pSv3neo transfection and radiosensitivity of human cancer cell lines

    International Nuclear Information System (INIS)

    Parris, C.N.; Masters, J.R.W.; Green, M.H.L.

    1990-01-01

    Immortalisation of human fibroblasts by transfection with a plasmid, pSV3neo, results in an increase in their radioresistance. The change in radiosensitivity may either be a consequence of transformation or due to expression of the SV40 T-antigen in pSV3neo. To investigate these two possibilities, we transfected pSV3neo into cells already transformed and immortalised. The radiosensitivies of three human bladder cancer cell lines were unaltered in clones expressing T-antigen, indicating that the changes observed in fibroblasts probably are a consequence of transformation, and not the presence of SV40 T-antigen. (author)

  9. Epidermal UV-A absorbance and whole-leaf flavonoid composition in pea respond more to solar blue light than to solar UV radiation.

    Science.gov (United States)

    Siipola, Sari M; Kotilainen, Titta; Sipari, Nina; Morales, Luis O; Lindfors, Anders V; Robson, T Matthew; Aphalo, Pedro J

    2015-05-01

    Plants synthesize phenolic compounds in response to certain environmental signals or stresses. One large group of phenolics, flavonoids, is considered particularly responsive to ultraviolet (UV) radiation. However, here we demonstrate that solar blue light stimulates flavonoid biosynthesis in the absence of UV-A and UV-B radiation. We grew pea plants (Pisum sativum cv. Meteor) outdoors, in Finland during the summer, under five types of filters differing in their spectral transmittance. These filters were used to (1) attenuate UV-B; (2) attenuate UV-B and UV-A radiation signals that extend into the visible region of the solar spectrum. Furthermore, solar blue light instead of solar UV-B radiation can be the main regulator of phenolic compound accumulation in plants that germinate and develop outdoors. © 2014 John Wiley & Sons Ltd.

  10. Simvastatin (SV) metabolites in mouse tissues

    International Nuclear Information System (INIS)

    Duncan, C.A.; Vickers, S.

    1990-01-01

    SV, a semisynthetic analog of lovastatin, is hydrolyzed in vivo to its hydroxy acid (SVA), a potent inhibitor of HMG CoA reductase (HR). Thus SV lowers plasma cholesterol. SV is a substrate for mixed function oxidases whereas SVA undergoes lactonization and β-oxidation. Male CD-1 mice were dosed orally with a combination of ( 14 C)SV and ( 3 H)SVA at 25 mg/kg of each, bled and killed at 0.5, 2 and 4 hours. Labeled SV, SVA, 6'exomethylene SV (I), 6'CH 2 OH-SV (II), 6'COOH-SV (III) and a β-oxidized metabolite (IV) were assayed in liver, bile, kidneys, testes and plasma by RIDA. Levels of potential and active HR inhibitors in liver were 10 to 40 fold higher than in other tissues. II and III, in which the configuration at 6' is inverted, may be 2 metabolites of I. Metabolites I-III are inhibitors of HR in their hydroxy acid forms. Qualitatively ( 14 C)SV and ( 3 H)SVA were metabolized similarly (consistent with their proposed interconversion). However 3 H-SVA, I-III (including hydroxy acid forms) achieved higher concentrations than corresponding 14 C compounds (except in gall bladder bile). Major radioactive metabolites in liver were II-IV (including hydroxy acid forms). These metabolites have also been reported in rat tissues. In bile a large fraction of either label was unidentified polar metabolites. The presence of IV indicated that mice (like rats) are not good models for SV metabolism in man

  11. Reproductive, morphological, and phytochemical responses of Arabidopsis thaliana ecotypes to enhanced UV-B radiation

    Energy Technology Data Exchange (ETDEWEB)

    Trumbull, V.L.; McCloud, E.S.; Paige, K.N. (Univ. of Illinois, Urbana, IL (United States))

    1994-06-01

    Two ecotypes of Arabidopsis thaliana, collected from Libya and Norway, were grown in the greenhouse under. UV-B doses of 0 and 10.5 kJ m[sup [minus]2] UV-B[sub BE]. The high UV-B dose simulated midsummer ambient conditions over Libya and a 40% reduction in stratospheric ozone over Norway. The Libyan ectotype, which originated from latitudes where solar UV-B is high, showed no UV-B induced damage to plant growth. However the Norwegian ecotype, which originated from latitudes where solar UV-B is low, showed a significant reduction in plant height, inflorescence weight, and rosette weight in response to enhanced UV-B. Although fruit and seed number for both ecotypes were unaffected by enhanced UV-B radiation the germination success of the seeds harvested from the irradiated Norwegian plants were significantly reduced. The two ecotypes also differed with respect to their accumulation of kaempferol, a putative UV-B protective filter. The Libyan ecotype increased kaempferol concentration by 38% over the 0 kJ treatment whereas the Norwegian ecotype increased by only 15%. These data suggest that, for these ecotypes, variation in UV-B sensitivity may be explained by the differential induction of UV-absorbing leaf pigments.

  12. UV radiation and organic matter composition shape bacterial functional diversity in sediments

    Directory of Open Access Journals (Sweden)

    Ellard Roy Hunting

    2013-10-01

    Full Text Available AbstractUV radiation and organic matter (OM composition are known to influence the speciescomposition of bacterioplankton communities. Potential effects of UV radiation onbacterial communities residing in sediments remain completely unexplored to date.However, it has been demonstrated that UV radiation can reach the bottom of shallowwaters and wetlands and alter the OM composition of the sediment, suggesting thatUV radiation may be more important for sediment bacteria than previously anticipated.It is hypothesized here that exposure of shallow OMcontaining sediments to UVradiation induces OMsource dependant shifts in the functional composition ofsediment bacterial communities. This study therefore investigated the combinedinfluence of both UV radiation and OM composition on bacterial functional diversity inlaboratory sediments. Two different organic matter sources, labile and recalcitrantorganic matter (OM, were used and metabolic diversity was measured with BiologGN. Radiation exerted strong negative effects on the metabolic diversity in thetreatments containing recalcitrant OM, more than in treatments containing labile OM.The functional composition of the bacterial community also differed significantlybetween the treatments. Our findings demonstrate that a combined effect of UVradiation and OM composition shapes the functional composition of microbialcommunities developing in sediments, hinting that UV radiation may act as animportant sorting mechanism for bacterial communities and driver for bacterialfunctioning in shallow lakes and wetlands.

  13. MicroRNA-22 promotes cell survival upon UV radiation by repressing PTEN

    International Nuclear Information System (INIS)

    Tan, Guangyun; Shi, Yuling; Wu, Zhao-Hui

    2012-01-01

    Highlights: ► miR-22 is induced in cells treated with UV radiation. ► ATM is required for miR-22 induction in response to UV. ► miR-22 targets 3′-UTR of PTEN to repress its expression in UV-treated cells. ► Upregulated miR-22 inhibits apoptosis in cells exposed to UV. -- Abstract: DNA damage response upon UV radiation involves a complex network of cellular events required for maintaining the homeostasis and restoring genomic stability of the cells. As a new class of players involved in DNA damage response, the regulation and function of microRNAs in response to UV remain poorly understood. Here we show that UV radiation induces a significant increase of miR-22 expression, which appears to be dependent on the activation of DNA damage responding kinase ATM (ataxia telangiectasia mutated). Increased miR-22 expression may result from enhanced miR-22 maturation in cells exposed to UV. We further found that tumor suppressor gene phosphatase and tensin homolog (PTEN) expression was inversely correlated with miR-22 induction and UV-induced PTEN repression was attenuated by overexpression of a miR-22 inhibitor. Moreover, increased miR-22 expression significantly inhibited the activation of caspase signaling cascade, leading to enhanced cell survival upon UV radiation. Collectively, these results indicate that miR-22 is an important player in the cellular stress response upon UV radiation, which may promote cell survival via the repression of PTEN expression.

  14. Long-term variations of the UV-B radiation over Central Europe as derived from the reconstructed UV time series

    Directory of Open Access Journals (Sweden)

    J. W. Krzyscin

    2004-04-01

    Full Text Available The daily doses of the erythemally weighted UV radiation are reconstructed for three sites in Central Europe: Belsk-Poland (1966–2001, Hradec Kralove-Czech Republic (1964–2001, and Tõravere-Estonia (1967–2001 to discuss the UV climatology and the long-term changes of the UV-B radiation since the mid 1960s. Various reconstruction models are examined: a purely statistical model based on the Multivariate Adaptive Regression Splines (MARS methodology, and a hybrid model combining radiative transfer model calculations with empirical estimates of the cloud effects on the UV radiation. Modeled long-term variations of the surface UV doses appear to be in a reasonable agreement with the observed ones. A simple quality control procedure is proposed to check the homogeneity of the biometer and pyranometer data. The models are verified using the results of UV observations carried out at Belsk since 1976. MARS provides the best estimates of the UV doses, giving a mean difference between the modeled and observed monthly means equal to 0.6±2.5%. The basic findings are: similar climatological forcing by clouds for all considered stations (~30% reduction in the surface UV, long-term variations in UV monthly doses having the same temporal pattern for all stations with extreme low monthly values (~5% below overall mean level at the end of the 1970s and extreme high monthly values (~5% above overall mean level in the mid 1990s, regional peculiarities in the cloud long-term forcing sometimes leading to extended periods with elevated UV doses, recent stabilization of the ozone induced UV long-term changes being a response to a trendless tendency of total ozone since the mid 1990s. In the case of the slowdown of the total ozone trend over Northern Hemisphere mid-latitudes it seems that clouds will appear as the most important modulator of the UV radiation both in long- and short-time scales over next decades. Key words. Atmospheric composition and structure

  15. Long-term variations of the UV-B radiation over Central Europe as derived from the reconstructed UV time series

    Directory of Open Access Journals (Sweden)

    J. W. Krzyscin

    2004-04-01

    Full Text Available The daily doses of the erythemally weighted UV radiation are reconstructed for three sites in Central Europe: Belsk-Poland (1966–2001, Hradec Kralove-Czech Republic (1964–2001, and Tõravere-Estonia (1967–2001 to discuss the UV climatology and the long-term changes of the UV-B radiation since the mid 1960s. Various reconstruction models are examined: a purely statistical model based on the Multivariate Adaptive Regression Splines (MARS methodology, and a hybrid model combining radiative transfer model calculations with empirical estimates of the cloud effects on the UV radiation. Modeled long-term variations of the surface UV doses appear to be in a reasonable agreement with the observed ones. A simple quality control procedure is proposed to check the homogeneity of the biometer and pyranometer data. The models are verified using the results of UV observations carried out at Belsk since 1976. MARS provides the best estimates of the UV doses, giving a mean difference between the modeled and observed monthly means equal to 0.6±2.5%. The basic findings are: similar climatological forcing by clouds for all considered stations (~30% reduction in the surface UV, long-term variations in UV monthly doses having the same temporal pattern for all stations with extreme low monthly values (~5% below overall mean level at the end of the 1970s and extreme high monthly values (~5% above overall mean level in the mid 1990s, regional peculiarities in the cloud long-term forcing sometimes leading to extended periods with elevated UV doses, recent stabilization of the ozone induced UV long-term changes being a response to a trendless tendency of total ozone since the mid 1990s. In the case of the slowdown of the total ozone trend over Northern Hemisphere mid-latitudes it seems that clouds will appear as the most important modulator of the UV radiation both in long- and short-time scales over next decades.

    Key words. Atmospheric composition and

  16. Effects of solar UV-B radiation on aquatic ecosystems

    Science.gov (United States)

    Häder, D.-P.

    Solar UV degrades dissolved organic carbon photolytically so that they can readily be taken up by bacterioplankton. On the other hand solar UV radiation inhibits bacterioplankton activity. Bacterioplankton productivity is far greater than previously thought and is comparable to phytoplankton primary productivity. According to the "microbial loop hypothesis," bacterioplankton is seen in the center of a food web, having a similar function to phytoplankton and protists. The penetration of UV and PAR into the water column can be measured. Marine waters show large temporal and regional differences in their concentrations of dissolved and particulate absorbing substances. A network of dosimeters (ELDONET) has been installed in Europe ranging from Abisko in Northern Sweden to Gran Canaria. Cyanobacteria are capable of fixing atmospheric nitrogen which is then made available to higher plants. The agricultural potential of cyanobacteria has been recognized as a biological fertilizer for wet soils such as in rice paddies. UV-B is known to impair processes such as growth, survival, pigmentation, motility, as well as the enzymes of nitrogen metabolism and CO 2 fixation. The marine phytoplankton represents the single most important ecosystem on our planet and produces about the same biomass as all terrestrial ecosystems taken together. It is the base of the aquatic food chain and any changes in the size and composition of phytoplankton communities will directly affect food production for humans from marine sources. Another important role of marine phytoplankton is to serve as a sink for atmospheric carbon dioxide. Recent investigations have shown a large sensitivity of most phytoplankton organisms toward solar short-wavelength ultraviolet radiation (UV-B); even at ambient levels of UV-B radiation many organisms seem to be under UV stress. Because of their requirement for solar energy, the phytoplankton dwell in the top layers of the water column. In this near-surface position

  17. Pleomorphic adenoma cells vary in their susceptibility to SV40 transformation depending on the initial karyotype.

    Science.gov (United States)

    Kazmierczak, B; Thode, B; Bartnitzke, S; Bullerdiek, J; Schloot, W

    1992-07-01

    Chromosomal aberrations involving 8q12 or 12q13-15 characterize two cytogenetic subgroups of salivary gland pleomorphic adenomas. As the tumors of the two groups differ in their clinical and histologic characteristics, we decided to determine their susceptibility to SV40 transformation. We transfected cell cultures from 13 adenomas with aberrations involving 8q12 and from seven adenomas with involvement of 12q13-15 using an SV40 plasmid coding for the early region of the viral genome. Whereas all cultures with aberrations of 12q13-15 showed transformed foci, only 4 of the 13 cultures with 8q12 abnormalities showed foci of transformed cells. We also observed a much higher immortalization rate in the first group (3/7 vs. 1/13). All successfully transformed tumor cell cultures showed a relatively stable karyotype in the pre-crisis stage and a high mitotic index, were T-antigen positive, and had an extended life span in vitro.

  18. Genetic study of resistance to inhibitory effects of UV radiation in rice (Oryza sativa)

    International Nuclear Information System (INIS)

    Sato, T.; Kang, H.S.; Kumagai, T.

    1994-01-01

    Genetic analysis of resistance to the inhibitory effects of UV radiation on growth of rice (Oryza sativa L.) cultivars was carried out. Some experimental plants were grown in visible radiation supplemented with UV radiation containing a large amount of UV-B and a small amount of UV-C in a phytotron, while others were grown without UV radiation. The degree of resistance to UV radiation was estimated in terms of the degree of reduction caused by supplemental UV radiation in the fresh weight of the aboveground plant parts and the chlorophyll content per unit fresh weight. Fresh weight and chlorophyll content in F 2 plants generated by reciprocally crossing cv. Sasanishiki, a cultivar more resistant to UV radiation, and Norin 1, a cultivar less resistant to such radiation exhibited a normal frequency distribution. The heritabilities of these two properties in F 2 plants were low under conditions of non-supplemental UV radiation. Under elevated UV radiation, the F 2 population shifted to the lower range of fresh weight and chlorophyll content, and the means were close to those of Norin 1. The heritabilities of these two properties were the same in the reciprocal crosses, indicating that maternal inheritance was not involved. Inheritance of chlorophyll content per unit fresh weight was further determined in F 3 lines generated by self-fertilizing F 2 plants of Sasanishiki and Norin 1. The results showed that the F 3 population was segregated into three genotypes, namely, resistant homozygotes, segregated heterozygotes and sensitive homozygotes, with a ratio of 1:65:16. It was thus evident that the resistance to the inhibitory effect of elevated UV radiation in these rice plants was controlled by recessive polygenes. (author)

  19. Photomimetic effect of serotonin on yeast cells irradiated by far-UV radiation

    International Nuclear Information System (INIS)

    Fraikin, G.Y.; Strakhovskaya, M.G.; Rubin, L.B.

    1982-01-01

    The effect of serotonin on the survival of far-UV irradiated cells of the yeast Candida guilliermondii was studied. Serotonin was found to have a photomimetic property. Preincubation of cells with serotonin results in protection against far-UV inactivation, whereas the post-radiation treatment with serotonin causes a potentiation of far-UV lethality. Both effects are similar to those produced by near-UV (334 nm) radiation. The observations provide support to the previously proposed idea that photosynthesized serotonin is the underlying cause of the two effects of near-UV radiation, photoprotection and potentiation of far-UV lethality. Experiments with an excision-deficient strain of the yeast Saccharomyces cerevisiae suggest that the effect of serotonin is by its binding to DNA. (author)

  20. SV40 T antigen alone drives karyotype instability that precedes neoplastic transformation of human diploid fibroblasts.

    Science.gov (United States)

    Ray, F A; Peabody, D S; Cooper, J L; Cram, L S; Kraemer, P M

    1990-01-01

    To define the role of SV40 large T antigen in the transformation and immortalization of human cells, we have constructed a plasmid lacking most of the unique coding sequences of small t antigen as well as the SV40 origin of replication. The promoter for T antigen, which lies within the origin of replication, was deleted and replaced by the Rous sarcoma virus promoter. This minimal construct was co-electroporated into normal human fibroblasts of neonatal origin along with a plasmid containing the neomycin resistance gene (neo). Three G418-resistant, T antigen-positive clones were expanded and compared to three T antigen-positive clones that received the pSV3neo plasmid (capable of expressing large and small T proteins and having two origins of replication). Autonomous replication of plasmid DNA was observed in all three clones that received pSV3neo but not in any of the three origin minus clones. Immediately after clonal expansion, several parameters of neoplastic transformation were assayed. Low percentages of cells in T antigen-positive populations were anchorage independent or capable of forming colonies in 1% fetal bovine serum. The T antigen-positive clones generally exhibited an extended lifespan in culture but rarely became immortalized. Large numbers of dead cells were continually generated in all T antigen-positive, pre-crisis populations. Ninety-nine percent of all T antigen-positive cells had numerical or structural chromosome aberrations. Control cells that received the neo gene did not have an extended life span, did not have noticeable numbers of dead cells, and did not exhibit karyotype instability. We suggest that the role of T antigen protein in the transformation process is to generate genetic hypervariability, leading to various consequences including neoplastic transformation and cell death.

  1. Protective effect of UV-A radiation during acclimation of the photosynthetic apparatus to UV-B treatment

    Czech Academy of Sciences Publication Activity Database

    Štroch, Michal; Materová, Z.; Vrábl, D.; Karlický, Václav; Šigut, Ladislav; Nezval, J.; Špunda, Vladimír

    2015-01-01

    Roč. 96, nov (2015), s. 90-96 ISSN 0981-9428 R&D Projects: GA MŠk(CZ) LO1415; GA MŠk(CZ) LM2010007 Grant - others:EHP(CZ) EHP-CZ02-OV-1-014-2014 Program:CZ02 Institutional support: RVO:67179843 Keywords : barley (Hordeum vulgare L.) * chlorophyll fluorescence * photosynthesis * photosynthetic pigments * UV-A radiation * UV-B radiation Subject RIV: BO - Biophysics Impact factor: 2.928, year: 2015

  2. Design and Fabrication of an Integrated Circuit for Monitoring UV Radiation for Health Physics Applications

    International Nuclear Information System (INIS)

    Nazififard, Mohammad; Faghihi, Reyhaneh; Champiri, Afshin Mahmoudieh; Norov, Enkhbat; Suh, Kune Y.

    2014-01-01

    A particularly important term in the clinical photobiology is the standard erythemal dose (SED), which is a measure of the erythemal effectiveness of a UV exposure. However, both the quality and quantity of the UV radiation are important factors for the UV monitoring. This paper aims to introduce and investigate a UV radiation meter in order to establish its applicability for non-ionizing radiation detection. The ultraviolet (UV) radiation is part of the electromagnetic spectrum. The biological effects of UV radiation vary enormously with wavelength and for this reason the UV spectrum is further divided into three regions: UVA, UVB, and UVC. There is increasing evidence that long wave UV radiation plays a vital role in the pathogenesis of photo-dermatoses such as polymorphous light eruption as well as photo-aging. UVA, UVB, and UVC can all damage collagen fibers and, therefore, accelerate aging of the skin. Both UVA and UVB destroy vitamin A in the skin, which may cause further damage. The quantities of the UV radiation are generally expressed using the radiometric terminology

  3. Design and Fabrication of an Integrated Circuit for Monitoring UV Radiation for Health Physics Applications

    Energy Technology Data Exchange (ETDEWEB)

    Nazififard, Mohammad; Faghihi, Reyhaneh [Kashan Univ., Kashan (Iran, Islamic Republic of); Champiri, Afshin Mahmoudieh [Shahid Chamran Univ., Ahwaz (Iran, Islamic Republic of); Norov, Enkhbat [POSTECH, Pohang (Korea, Republic of); Suh, Kune Y. [Seoul National Univ., Seoul (Korea, Republic of)

    2014-05-15

    A particularly important term in the clinical photobiology is the standard erythemal dose (SED), which is a measure of the erythemal effectiveness of a UV exposure. However, both the quality and quantity of the UV radiation are important factors for the UV monitoring. This paper aims to introduce and investigate a UV radiation meter in order to establish its applicability for non-ionizing radiation detection. The ultraviolet (UV) radiation is part of the electromagnetic spectrum. The biological effects of UV radiation vary enormously with wavelength and for this reason the UV spectrum is further divided into three regions: UVA, UVB, and UVC. There is increasing evidence that long wave UV radiation plays a vital role in the pathogenesis of photo-dermatoses such as polymorphous light eruption as well as photo-aging. UVA, UVB, and UVC can all damage collagen fibers and, therefore, accelerate aging of the skin. Both UVA and UVB destroy vitamin A in the skin, which may cause further damage. The quantities of the UV radiation are generally expressed using the radiometric terminology.

  4. Mechanism of Cuticle Hole Development in Human Hair Due to UV-Radiation Exposure

    Directory of Open Access Journals (Sweden)

    Kazuhisa Maeda

    2018-03-01

    Full Text Available Hair is easily damaged by ultraviolet (UV radiation, bleaching agents or permanent wave treatments, and as damage progresses, hair loses its gloss, develops split ends and breaks. However, the causes of hair damage due to UV radiation have not yet been clarified. We discovered that in one mechanism facilitating damage to wet hair by UV radiation, the unsaturated fatty acids in wet hair produce hydroxy radicals upon exposure to UV radiation, and these radicals produce cuticle holes between the cuticle layers. In wet hair exposed to UV radiation, cuticle holes were produced only between the cuticle layers, whereas when human hair was immersed in a solution containing hydroxy radicals produced by Fenton’s reaction, a random production of cuticle holes was noted. It is thought that hydroxy radicals are produced only between the cuticle layers by exposure to UV radiation, and cuticle holes are formed only in this region because one of the polyunsaturated fatty acids, linoleic acid, with a bis-allyl hydrogen, is found between the cuticle layers.

  5. Water and Wastewater Disinfection with Peracetic Acid and UV Radiation and Using Advanced Oxidative Process PAA/UV

    Directory of Open Access Journals (Sweden)

    Jeanette Beber de Souza

    2015-01-01

    Full Text Available The individual methods of disinfection peracetic acid (PAA and UV radiation and combined process PAA/UV in water (synthetic and sanitary wastewater were employed to verify the individual and combined action of these advanced oxidative processes on the effectiveness of inactivation of microorganisms indicators of fecal contamination E. coli, total coliforms (in the case of sanitary wastewater, and coliphages (such as virus indicators. Under the experimental conditions investigated, doses of 2, 3, and 4 mg/L of PAA and contact time of 10 minutes and 60 and 90 s exposure to UV radiation, the results indicated that the combined method PAA/UV provided superior efficacy when compared to individual methods of disinfection.

  6. Biological and medical effects of UV radiation on human health

    International Nuclear Information System (INIS)

    Piazena, H.

    1994-01-01

    Effecsts of UV radiation on human health are discussed. UV radiation is taken up through the skin and eyes. In the case of the eyes, the only known effects are damaging ones (e.g. cataracts). Irradiation of the skin, on the other hand, may either have a prophylactic and therapeutic effect or cause health problems if the exposure is too frequent and/or the dose too high. Positive effects are: Stimulation of the vitamin-D-3 synthesis and the autoimmune system, economisation of blood circulation, higher fitness, and the development of a UV protection system in the skin. Negative effects are: UV erythema, disturbances of the unspecific resistance and the immune system, and photocarcinogenesis. (orig.) [de

  7. Modelling of the UV Index on vertical and 40° tilted planes for different orientations.

    Science.gov (United States)

    Serrano, D; Marín, M J; Utrillas, M P; Tena, F; Martínez-Lozano, J A

    2012-02-01

    In this study, estimated data of the UV Index on vertical planes are presented for the latitude of Valencia, Spain. For that purpose, the UVER values have been generated on vertical planes by means of four different geometrical models a) isotropic, b) Perez, c) Gueymard, d) Muneer, based on values of the global horizontal UVER and the diffuse horizontal UVER, measured experimentally. The UVER values, obtained by any model, overestimate the experimental values for all orientations, with the exception of the Perez model for the East plane. The results show statistical values of the MAD parameter (Mean Absolute Deviation) between 10% and 25%, the Perez model being the one that obtained a lower MAD for all levels. As for the statistic RMSD parameter (Root Mean Square Deviation), the results show values between 17% and 32%, and again the Perez model provides the best results in all vertical planes. The difference between the estimated UV Index and the experimental UV Index, for vertical and 40° tilted planes, was also calculated. 40° is an angle close to the latitude of Burjassot, Valencia, (39.5°), which, according to various studies, is the optimum angle to capture maximum radiation on tilted planes. We conclude that the models provide a good estimate of the UV Index, as they coincide or differ in one unit compared to the experimental values in 99% of cases, and this is valid for all orientations. Finally, we examined the relation between the UV Index on vertical and 40° tilted planes, both the experimental and estimated by the Perez model, and the experimental UV Index on a horizontal plane at 12 GMT. Based on the results, we can conclude that it is possible to estimate with a good approximation the UV Index on vertical and 40° tilted planes in different directions on the basis of the experimental horizontal UVI value, thus justifying the interest of this study. This journal is © The Royal Society of Chemistry and Owner Societies 2012

  8. p53 levels, cell cycle kinetics and radiosensitivity in two SV40 transformed Wi38VA13 fibroblast strains

    International Nuclear Information System (INIS)

    Werner, F.; Zoelzer, F.; Streffer, C.

    2001-01-01

    Background: The tumor suppressor protein p53 which can mediate an ionizing radiation-induced G 1 arrest in mammalian cells, forms complexes with SV40 large T antigen (l-T-Ag). We have analyzed the p53 levels, the capability to undergo a G 1 arrest and the radiosensitivity of two SV40 transformed fibroblast strains differing in their large T antigen expression. Material and Methods: One of the two strains (VA13F) is the commercially available form of Wi38VA13, the other (VA13E) arose spontaneously from the original one in our laboratory. Their p53 levels were measured by means of flow cytometry (FCM) and Western blot (WB) with two p53 antibodies (Ab-3, clone PAb240; Ab-6, clone DO-1; both Oncogene Science). Cell cycle distributions were determined flow cytometrically after BrdU labeling at regular time intervals after exposure to 250 kV X-rays. Radiosensitivity was assessed in a clonogenicity assay. Results: The p53 levels of the two strains corresponded to their large T antigen expression, presumably due to complex formation between the two proteins. The strain with a high p53 level did not show a G 1 arrest and had a relatively high radiosensitivity, whereas the strain with a low p53 level showed a significant G 1 arrest and a lower radiosensitivity. Conclusion: These results suggest that 1. complex formation between the large T antigen and p53 reduces the latter's functionality; 2. in these two strains the G 1 arrest is one of the factors determining radiosensitivity. (orig.) [de

  9. UV cross-linking of polypeptides associated with 3'-terminal exons

    International Nuclear Information System (INIS)

    Stolow, D.T.; Berget, S.M.

    1990-01-01

    Association of nuclear proteins with chimeric vertebrate precursor RNAs containing both polyadenylation signals and an intron was examined by UV cross-linking. One major difference in cross-linking pattern was observed between this chimeric precursor RNA and precursors containing only polyadenylation or splicing signals. The heterogeneous nuclear ribonucleoprotein (hnRNP) polypeptide C cross-linked strongly to sequences downstream of the A addition site in polyadenylation precursor RNA containing only the polyadenylation signal from the simian virus 40 (SV40) late transcription unit. In contrast, the hnRNP C polypeptide cross-linked to chimeric RNA containing the same SV40 late poly(A) cassette very poorly, at a level less than 5% of that observed with the precursor RNA containing just the poly(A) site. Observation that cross-linking of the hnRNP C polypeptide to elements within the SV40 late poly(A) site was altered by the presence of an upstream intron suggests differences in the way nuclear factors associate with poly(A) sites in the presence and absence of an upstream intron. Cross-linking of C polypeptide to chimeric RNA increased with RNAs mutated for splicing or polyadenylation consensus sequences and under reaction conditions (high magnesium) that inhibited polyadenylation. Furthermore, cross-linking of hnRNP C polypeptide to precursors containing just the SV40 late poly(A) site was eliminated in the presence of competing poly(U); polyadenylation, however, was unaffected. Correlation of loss of activity with high levels of hnRNP C polypeptide cross-linking raises questions about the specificity of the interaction between the hnRNP C polypeptide and polyadenylation precursor RNAs in vitro

  10. Hydroxycinnamic acid derivatives in an aquatic liverwort as possible bioindicators of enhanced UV radiation

    Energy Technology Data Exchange (ETDEWEB)

    Arroniz-Crespo, M.; Nunez-Olivera, E. [Universidad de La Rioja, Complejo Cientifico-Tecnologico, Avda. Madre de Dios 51, 26006 Logrono (La Rioja) (Spain); Martinez-Abaigar, J. [Universidad de La Rioja, Complejo Cientifico-Tecnologico, Avda. Madre de Dios 51, 26006 Logrono (La Rioja) (Spain)], E-mail: javier.martinez@unirioja.es

    2008-01-15

    We examined, under laboratory conditions, the physiological responses of the aquatic liverwort Jungermannia exsertifolia subsp. cordifolia to artificially enhanced ultraviolet (UV) radiation for 82 days, especially considering the responses of five hydroxycinnamic acid derivatives. This species lives in mountain streams, where it is exposed to low temperatures and high UV levels, and this combination is believed to increase the adverse effects of UV. Enhanced UV radiation hardly caused any change in several physiological variables indicative of vitality, such as F{sub v}/F{sub m} and chlorophylls/phaeopigments ratio (OD430/OD410). Thus, this liverwort seemed to be tolerant to UV radiation, probably due to the accumulation of three UV-absorbing hydroxycinnamic acid derivatives: p-coumaroylmalic acid, 5''-(7'',8''-dihydroxycoumaroyl)-2-caffeoylmalic acid, and 5''-(7'',8''-dihydroxy-7-O-{beta}-glucosyl-coumaroyl)-2-caffeoylmalic acid. These compounds might serve as bioindicators of enhanced UV radiation. - Several hydroxycinnamic acid derivatives of an aquatic liverwort are induced by enhanced UV radiation and might serve as bioindicators of changes in UV levels.

  11. UV-B Radiation Impacts Shoot Tissue Pigment Composition in Allium fistulosum L. Cultigens

    Directory of Open Access Journals (Sweden)

    Kristin R. Abney

    2013-01-01

    Full Text Available Plants from the Allium genus are valued worldwide for culinary flavor and medicinal attributes. In this study, 16 cultigens of bunching onion (Allium fistulosum L. were grown in a glasshouse under filtered UV radiation (control or supplemental UV-B radiation [7.0 μmol·m−2·s−2 (2.68 W·m−2] to determine impacts on growth, physiological parameters, and nutritional quality. Supplemental UV-B radiation influenced shoot tissue carotenoid concentrations in some, but not all, of the bunching onions. Xanthophyll carotenoid pigments lutein and β-carotene and chlorophylls a and b in shoot tissues differed between UV-B radiation treatments and among cultigens. Cultigen “Pesoenyj” responded to supplemental UV-B radiation with increases in the ratio of zeaxanthin + antheraxanthin to zeaxanthin + antheraxanthin + violaxanthin, which may indicate a flux in the xanthophyll carotenoids towards deepoxydation, commonly found under high irradiance stress. Increases in carotenoid concentrations would be expected to increase crop nutritional values.

  12. Highly Sensitive Detection of UV Radiation Using a Uranium Coordination Polymer.

    Science.gov (United States)

    Liu, Wei; Dai, Xing; Xie, Jian; Silver, Mark A; Zhang, Duo; Wang, Yanlong; Cai, Yawen; Diwu, Juan; Wang, Jian; Zhou, Ruhong; Chai, Zhifang; Wang, Shuao

    2018-02-07

    The accurate detection of UV radiation is required in a wide range of chemical industries and environmental or biological related applications. Conventional methods taking advantage of semiconductor photodetectors suffer from several drawbacks such as sophisticated synthesis and manufacturing procedure, not being able to measure the accumulated UV dosage as well as high defect density in the material. Searching for new strategies or materials serving as precise UV dosage sensor with extremely low detection limit is still highly desirable. In this work, a radiation resistant uranium coordination polymer [UO 2 (L)(DMF)] (L = 5-nitroisophthalic acid, DMF = N,N-dimethylformamide, denoted as compound 1) was successfully synthesized through mild solvothermal method and investigated as a unique UV probe with the detection limit of 2.4 × 10 -7 J. On the basis of the UV dosage dependent luminescence spectra, EPR analysis, single crystal structure investigation, and the DFT calculation, the UV-induced radical quenching mechanism was confirmed. Importantly, the generated radicals are of significant stability which offers the opportunity for measuring the accumulated UV radiation dosage. Furthermore, the powder material of compound 1 was further upgraded into membrane material without loss in luminescence intensity to investigate the real application potentials. To the best of our knowledge, compound 1 represents the most sensitive coordination polymer based UV dosage probe reported to date.

  13. Additives in UV and ionising radiation grafting and curing processes

    International Nuclear Information System (INIS)

    Garnett, J.L.; Ng, L.T.; Viengkhou, V.

    1998-01-01

    Full text: Curing of polymers induced by both UV and ionising radiation are now established technologies. Currently both systems are predominantly based on acrylate chemistry. UV processes use photoinitiators to achieve fast polymerisation. In the proposed paper the significance of the occurrence of concurrent grafting with cure will be examined. particularly with respect to the recycling of finished product. Basic studies on grafting initiated by UV and ionising radiation will be discussed. Polar methyl methacrylate (MMA) and non-polar styrene will be used as representative monomers with cellulose and propylene typifying the backbone polymers. The additives chosen for examination in this study are predominantly components used in radiation curing formulations since grafting and curing are known to be mechanically related. The additives used were mineral acid, photoinitiators, vinyl ethers, oligomers, polyfunctional monomers including multifunctional acrylates (MFAs) and methacrylates (MFMAs). For the first time the use of charge transfer complexes in the Mulliken sense as additives in radiation grafting will be discussed. The CT complexes themselves, being monomers, have also been grafted to the above polymers. Recent developments with excimer laser sources for initiating these processes will be discussed, especially the use of non-acrylate chemistry. Excimer laser sources are shown to complement conventional UV and ionising radiation and are photoinitiator free. Mechanisms for the above grafting and curing processes will be outlined

  14. A morphological and cytological study of Petunia hybrida exposed to UV-B radiation

    International Nuclear Information System (INIS)

    Staxén, I.; Bornmann, J.F.

    1994-01-01

    The aim of this study was to investigate whether the cytoskeleton, and in particular the microtubular system, is affected by enhanced levels of ultraviolet-B (280–320 nm, 9 kJ m −2 day −1 biologically effective UV-B radiation) radiation in epidermal cells of Petunia x hybrida Vilm, isolated from leaves of plants grown under UV-B radiation and visible light. In addition, morphological changes during development were monitored. In a previous study microtubules were depolymerized and delays in the different stages of the cell cycle were found when protoplasts of Petunia were irradiated with UV-B radiation (Staxén et al. 1993. Protoplasma 173: 70–76). Thus it was of interest to ascertain whether the cytoskeleton would be similarly affected in an intact system. Assuming an effect of UV-B radiation on the microtubular system, we wished to determine whether this could be correlated to concomitant changes in leaf morphology. Plants of Petunia hybrida were grown in greenhouse conditions in the presence or absence of UV-B radiation. During the course of the experiment, samples were taken from young, expanding leaves and from older, fully expanded leaves and prepared for localization and analysis of microtubules from the adaxial epidermal cells. Morphology rather than the cytoskeleton was affected by UV radiation, despite the fact that the epidermal cytoskeleton would most likely be affected, since it is located in the cells which form the first intercepting layer for incident radiation. Morphological changes under UV-B radiation, as compared to those under control conditions, were reflected in earlier flowering and an increase in leaf number. Cell division was thus stimulated as was also evidenced from the increased leaf area. Our results indicate that the number of stomata differentiated on a leaf area basis was not altered although the number of stomata per epidermal cell was reduced. (author)

  15. The mechanisms of protection of antioxidants on Nostoc sphaeroides against UV-B radiation

    Science.gov (United States)

    Wang, G. H.

    UV radiation is one of space harmful factor for earth organisms in space exploration In the present work we studied on the role of antioxidant system in Nostoc sphaeroides K u tz Cyanobacteria and the effects of exogenous antioxidant molecules on its photosynthetic rate under UV-B radiation It was found that UV-B radiation decreased the photosynthetic activity of cyanobacterium but promoted the activity of antioxidant system to protect photosystem II PSII and exogenous antioxidant sodium nitroprusside SNP N-acetylcysteine NAC had an obvious protection on PSII activity under UV-B radiation The activity of SOD Superoxide Dismutase EC 1 15 1 1 CAT Catalase EC 1 11 1 6 POD Peroxidase EC 1 11 1 7 and content of MDA and ASC were improved by 0 5mM and 1mM SNP but 0 1mM SNP decreased the activity of antioxide system Exogenous NAC addition decreased the activity of SOD POD CAT and the content MDA and ASC but exogenous NAC addition increased the content of GSH The results suggested that exogenous SNP and NAC may protect algae by different mechanisms in which SNP maybe play double roles as sources of reactive free radicals or ROS scavengers in formation of algae s protection of PSII under UV-B radiation while NAC does function as antioxidant reagent or precursor of glutathione which could protect PSII directly from UV-B radiation Keyword antioxidant system exogenous or endogenous antioxidant Nostoc sphaeroides photosynthesis UV-B radiation

  16. Synergism between UV-B radiation and pathogen magnifies amphibian embryo mortality in nature

    International Nuclear Information System (INIS)

    Kiesecker, J.M.; Blaustein, R.

    1995-01-01

    Previous research has shown that amphibians have differential sensitivity to ultraviolet-B (UV-B) radiation. In some species, ambient levels of UV-B radiation cause embryonic mortality in nature. The detrimental effects of UV-B alone or with other agents may ultimately affect amphibians at the population level. Here, we experimentally demonstrate a synergistic effect between UV-B radiation and a pathogenic fungus in the field that increases the mortality of amphibian embryos compared with either factor alone. Studies investigating single factors for causes of amphibian egg mortality or population declines may not reveal the complex factors involved in declines

  17. Experimental assessment of cumulative temperature and UV-B radiation effects on Mediterranean plankton metabolism

    KAUST Repository

    Garcia-Corral, Lara S.; Martinez Ayala, Juan; Duarte, Carlos M.; Agusti, Susana

    2015-01-01

    . The oligotrophic waters are already highly transparent, however, exposure of Mediterranean plankton to ultraviolet radiation (UV-B and UV-A) may increase further if the waters become more oligotrophic, thereby, allowing a deeper UV radiation penetration and likely

  18. Are the surgeons safe during UV-A radiation exposure in collagen cross-linking procedure?

    Science.gov (United States)

    Shetty, Rashmi; Shetty, Rohit; Mahendradas, Padmamalini; Shetty, Bhujang K

    2012-02-01

    To quantify the effect of scattered UV-A radiation used in the collagen cross-linking (CXL) procedure and the amount of radiation reaching the surgeon and the surrounding area and to estimate the dampening effect by various protective devices. In this case series, 3 patients [aged 25-30 (±2.5) years] with keratoconus underwent a CXL procedure with UV-A light and riboflavin. Irradiance was measured using a spectrometer (Model USB2000; Ocean Optics, Inc) for various distances from the source, at various angles, and for different durations of radiation. The spectrometer was also used to measure the dampening effect produced by gown, latex gloves, and UV-protective glasses. Maximum UV-A radiation (1.4 × 10(-9) mW/cm(2)) was measured at 2 cm from the limbus, when the probe was held at a 45-degree angle to the floor. UV-A radiation reaching the surgeon's eye and the abdomen was 3.403 × 10(-11) and 2.36 × 10(-11) mW/cm(2), respectively. Gown, latex gloves, and UV-protective glasses showed dampening effects of 99.58%, 95.01%, and 99.73%, respectively. CXL appears to be a safe procedure with respect to UV-A radiation exposure to the surgeon. Further safety can be ensured by UV-protective devices.

  19. Reduction of patulin in apple cider by UV radiation.

    Science.gov (United States)

    Dong, Qingfang; Manns, David C; Feng, Guoping; Yue, Tianli; Churey, John J; Worobo, Randy W

    2010-01-01

    The presence of the mycotoxin patulin in processed apple juice and cider presents a continual challenge to the food industry as both consumer health and product quality issues. Although several methods for control and/or elimination of patulin have been proposed, no unifying method has been commercially successful for reducing patulin burdens while maintaining product quality. In the present study, exposure to germicidal UV radiation was evaluated as a possible commercially viable alternative for the reduction and possible elimination of the patulin mycotoxin in fresh apple cider. UV exposure of 14.2 to 99.4 mJ/cm(2) resulted in a significant and nearly linear decrease in patulin levels while producing no quantifiable changes in the chemical composition (i.e., pH, Brix, and total acids) or organoleptic properties of the cider. For the range of UV doses tested, patulin levels decreased by 9.4 to 43.4%; the greatest reduction was achieved after less than 15 s of UV exposure. The method of UV radiation (the CiderSure 3500 system) is an easily implemented, high-throughput, and cost-effective method that offers simultaneous UV pasteurization of cider and juice products and reduction and/or elimination of patulin without unwanted alterations in the final product.

  20. Secondary UV radiation from biota as a proof of radiation hormesis and Gurwitsch phenomena

    International Nuclear Information System (INIS)

    Goraczko, W.

    1997-01-01

    High (large) and low (small) doses of ionizing radiation consistently induce opposite physiologic effects in biological systems. The effects of low doses cannot be inferred by interpolation between the result from groups exposed to high doses and controls irradiated only by Natural Background Radiation. Stimulation NBR ('bio-positive') effects by low-level doses of ionizing radiation is called radiation hormesis. It is still a controversial idea; however it was found that some biological objects (yeast, sees, animals) after γ-irradiation by low-level doses (10-50 times more NBR) can increase their development. The results of the researches demonstrate that the excitation of living systems by ionizing radiation (high energy, low doses) produces among other hydrogen peroxide which initiates prolonged secondary emission that can influence biota and activate many important processes in biological systems. On the other hand it is well known that after water irradiation by ionizing radiation as the product of radiolysis concentration of hydrogen peroxide has been received. The spectral analysis of this secondary emission confirmed the contribution of the UV component to the total emission. This secondary radiation can play a very important role in the intercellular communication. The influence of hydrogen peroxide on glycine has been examined. I have measured secondary emission from Gly using the Single Photon Counting device SPC. The data obtained made possible at least a partial understanding of the radiation hormesis phenomenon and suggest closer relationship to mitogenetic radiation. I propose deexcitation processes in biomolecules as a common denominator of UV and ionizing radiation interacting with living cells, underlying both radiation hormesis and mitogenetic effect. Based on the above experiments and other authors' reports it is postulated that low-level doses of ionizing radiation through radiolysis products (among others hydrogen peroxide) generate UV

  1. UV and vacuum-UV biological spectroscopy using synchrotron radiation

    International Nuclear Information System (INIS)

    Ito, Amando Siuiti

    1996-01-01

    Full text. Synchrotron radiation has been used as light source in the UV and VUV region for the study of many biological systems. In the time domain, measurements are made that allow the observation of dynamics and kinetics of biomolecules like proteins and peptides, using the fluorescent properties of either intrinsic or extrinsic probes. Optical activity of groups inside biomolecules allows the use of circular dichroism techniques to generate structural information and to follow processes like protein folding. Confocal scanning of synchrotron light generates microscopy resolution below 100 nm, allowing the creation of high quality three dimensional images of biological samples, and the collection of fluorescence originated from microvolumes inside the samples. We propose a station at LNLS for these three techniques: time-resolved fluorescence, circular dischroism and confocal microscopy, using UV and VUV light. (author)

  2. Raman spectroscopic analysis of the responds of desert cyanobacterium Nostoc sp under UV-B radiation

    Science.gov (United States)

    Wang, Gaohong; Hao, Zongjie; Hu, Chunxiang; Liu, Yongding

    Cyanobacteria are renowned for tolerating extremes of desiccation, UV radiation, freezethaw cycles, hypersalinity and oligotrophy, which make them as candidate par excellence for terraforming in extraterrestrial planet. Recently Raman spectrum was applied to study the biochemical information changes in different field of life science. In this study, we investigated the respond of desert cyanobactreium Nostoc sp under UV-B radiation via FT-Raman spectra. It was found that the spectral biomarkers of protectant molecular of UV radiation such as β-carotene and scytonemin were induced by UV-B radiation, but Chlorophyll a content was decreased, and also the photosynthesis activity was inhibited significantly. After light adaptation without UV-B radiation, the Chlorophyll a content and photosynthesis activity returned to high level, butβ-carotene and scytonemin content remained in the cells. Those results indicated that desert Cyanobacteria have good adaptation ability for UV-B radiation and synthesis of protectant molecular may be an effective strategy for its adaptation in evolution.

  3. Evaluation of UV-permeability and photo-oxidisability of organic ultraviolet radiation-absorbing coatings

    Energy Technology Data Exchange (ETDEWEB)

    Li, Neng; Chen, Yuhe, E-mail: yuhec@sina.com; Bao, Yongjie; Zhang, Zeqian; Wu, Zaixing; Chen, Zhangmin

    2015-03-30

    Highlights: • We investigate organic UV radiation-absorbing coatings for use on bamboo surfaces. • The size of glass exactly inserted into sample cell of UV-Vis spectrophotometer. • A model was made to predict UV absorption of coatings. • We examine carbonyl groups change of coatings after ageing. • Two formulations which could effectively protect coating were obtained. - Abstract: Enhancing the durability of the coatings used on bamboo products is essential for increasing their use in outdoor environments. In this study, we investigated organic UV radiation-absorbing coatings for use on bamboo surfaces. The degree of resistance of the coatings, which contained 2-(2-hydroxy-3-tert-butyl-5-methyl-phenyl)-5-chlorinated benzotriazole (BTZ-1), to UV radiation degradation was determined through spectroscopic analysis. The critical BTZ-1 loading amount was determined by analysing the spectroscopic data. Fourier transform infrared spectroscopy was used to elucidate the relationship between the degree of photooxidation of the coatings and their BTZ-1 concentration. The experimental results showed that the coatings provided a high degree of shielding from UV radiation. The critical loading amount was determined to be 1.82 ± 0.05 g BTZ-1/m{sup 2}. The coatings formed using the formulations that contained 3 and 5 wt% BTZ-1 exhibited the lowest degree of photooxidation after exposure to UV radiation.

  4. Extensive reduction of surface UV radiation since 1750 in world's populated regions

    Directory of Open Access Journals (Sweden)

    M. M. Kvalevåg

    2009-10-01

    Full Text Available Human activity influences a wide range of components that affect the surface UV radiation levels, among them ozone at high latitudes. We calculate the effect of human-induced changes in the surface erythemally weighted ultra-violet radiation (UV-E since 1750. We compare results from a radiative transfer model to surface UV-E radiation for year 2000 derived by satellite observations (from Total Ozone Mapping Spectroradiometer and to ground based measurements at 14 sites. The model correlates well with the observations; the correlation coefficients are 0.97 and 0.98 for satellite and ground based measurements, respectively. In addition to the effect of changes in ozone, we also investigate the effect of changes in SO2, NO2, the direct and indirect effects of aerosols, albedo changes and aviation-induced contrails and cirrus. The results show an increase of surface UV-E in polar regions, most strongly in the Southern Hemisphere. Furthermore, our study also shows an extensive surface UV-E reduction over most land areas; a reduction up to 20% since 1750 is found in some industrialized regions. This reduction in UV-E over the industrial period is particularly large in highly populated regions.

  5. MEDICAL AND ENVIRONMENTAL EFFECTS OF UV RADIATION.

    Energy Technology Data Exchange (ETDEWEB)

    SUTHERLAND, B.M.

    2001-07-26

    Organisms living on the earth are exposed to solar radiation, including its ultraviolet (UV) components (for general reviews, the reader is referred to Smith [1] and Young et al. [2]). UV wavelength regions present in sunlight are frequently designated as UVB (290-320 nm) and UVA (320-400 nm). In today's solar spectrum, UVA is the principal UV component, with UVB present at much lower levels. Ozone depletion will increase the levels of UVB reaching the biosphere, but the levels of UVA will not be changed significantly [3]. Because of the high efficiency of UVB in producing damage in biological organisms in the laboratory experiments, it has sometimes been assumed that UVA has little or no adverse biological effects. However, accumulating data [4, 5], including action spectra (efficiency of biological damage as a function of wavelength of radiation; see Section 5) for DNA damage in alfalfa seedlings [6], in human skin [7], and for a variety of plant damages (Caldwell, this volume) indicate that UVA can induce damage in DNA in higher organisms. Thus, understanding the differential effects of UVA and UVB wavebands is essential for estimating the biological consequences of stratospheric ozone depletion.

  6. Reconstruction of solar spectral surface UV irradiances using radiative transfer simulations.

    Science.gov (United States)

    Lindfors, Anders; Heikkilä, Anu; Kaurola, Jussi; Koskela, Tapani; Lakkala, Kaisa

    2009-01-01

    UV radiation exerts several effects concerning life on Earth, and spectral information on the prevailing UV radiation conditions is needed in order to study each of these effects. In this paper, we present a method for reconstruction of solar spectral UV irradiances at the Earth's surface. The method, which is a further development of an earlier published method for reconstruction of erythemally weighted UV, relies on radiative transfer simulations, and takes as input (1) the effective cloud optical depth as inferred from pyranometer measurements of global radiation (300-3000 nm); (2) the total ozone column; (3) the surface albedo as estimated from measurements of snow depth; (4) the total water vapor column; and (5) the altitude of the location. Reconstructed daily cumulative spectral irradiances at Jokioinen and Sodankylä in Finland are, in general, in good agreement with measurements. The mean percentage difference, for instance, is mostly within +/-8%, and the root mean square of the percentage difference is around 10% or below for wavelengths over 310 nm and daily minimum solar zenith angles (SZA) less than 70 degrees . In this study, we used pseudospherical radiative transfer simulations, which were shown to improve the performance of our method under large SZA (low Sun).

  7. Experimental assessment of cumulative temperature and UV-B radiation effects on Mediterranean plankton metabolism

    Directory of Open Access Journals (Sweden)

    Lara S. eGarcia-Corral

    2015-07-01

    Full Text Available The Mediterranean Sea is a vulnerable region for climate change, warming at higher rates compare to the global ocean. Warming leads to increased stratification of the water column and enhanced the oligotrophic nature of the Mediterranean Sea. The oligotrophic waters are already highly transparent, however, exposure of Mediterranean plankton to ultraviolet radiation (UV-B and UV-A may increase further if the waters become more oligotrophic, thereby, allowing a deeper UV radiation penetration and likely enhancing impacts to biota.Here we experimentally elucidate the cumulative effects of warming and natural UV-B radiation on the net community production (NCP of plankton communities. We conducted five experiments at monthly intervals, from June to October 2013, and evaluated the responses of NCP to ambient UV-B radiation and warming (+3ºC, alone and in combination, in a coastal area of the northwest Mediterranean Sea. UV-B radiation and warming lead to reduced net community production and resulted in a heterotrophic (NCP<0 metabolic balance. Both UV-B radiation and temperature, showed a significant individual effect in NCP across treatments and time. However, their joint effect showed to be synergistic as the interaction between them (UV x Temp was statistically significant in most of the experiments performed. Our results showed that both drivers, would affect the gas exchange of CO2-O2 from and to the atmosphere and the role of plankton communities in the Mediterranean carbon cycle

  8. Experimental assessment of cumulative temperature and UV-B radiation effects on Mediterranean plankton metabolism

    KAUST Repository

    Garcia-Corral, Lara S.

    2015-07-07

    The Mediterranean Sea is a vulnerable region for climate change, warming at higher rates compare to the global ocean. Warming leads to increased stratification of the water column and enhanced the oligotrophic nature of the Mediterranean Sea. The oligotrophic waters are already highly transparent, however, exposure of Mediterranean plankton to ultraviolet radiation (UV-B and UV-A) may increase further if the waters become more oligotrophic, thereby, allowing a deeper UV radiation penetration and likely enhancing impacts to biota. Here we experimentally elucidate the cumulative effects of warming and natural UV-B radiation on the net community production (NCP) of plankton communities. We conducted five experiments at monthly intervals, from June to October 2013, and evaluated the responses of NCP to ambient UV-B radiation and warming (+3°C), alone and in combination, in a coastal area of the northwest Mediterranean Sea. UV-B radiation and warming lead to reduced NCP and resulted in a heterotrophic (NCP < 0) metabolic balance. Both UV-B radiation and temperature, showed a significant individual effect in NCP across treatments and time. However, their joint effect showed to be synergistic as the interaction between them (UV × Temp) was statistically significant in most of the experiments performed. Our results showed that both drivers, would affect the gas exchange of CO2−O2 from and to the atmosphere and the role of plankton communities in the Mediterranean carbon cycle.

  9. Effect of UV Radiation by Projectors on 3D Printing

    Directory of Open Access Journals (Sweden)

    Kovalenko Iaroslav

    2017-01-01

    Full Text Available Polymers that solidify under light radiation are commonly used in digital light processing (DLP 3D printing. A wide range of photopolymers use photoinitiators that react to radiation in range of ultraviolet (UV wavelength. In the present study we provided measurement of radiant fluence in the UV wavelength range from 280 nm to 400 nm for two data projectors and compared effect of radiation on quality of 3D printing. One projector is commonly used DLP projector with high energy lamp. Second one is an industrial projector, in which RGB light emitting diodes (LEDs are replaced by UV LEDs with wattage at the level of 3.6 % of the first one. Achieved data confirmed uneven distribution of radiant energy on illuminated area. These results validate, that undesired heating light causes internal stress inside built models that causes defects in final products.

  10. Photosynthesis and pigment production in Liquidambar styraciflua - developmental and UV-B radiation effects

    International Nuclear Information System (INIS)

    Dillenburg, L.R.; Sullivan, J.H.; Teramura, A.H.

    1993-01-01

    Leaf expansion is very sensitive to different environmental stresses. This study describes ontogenetic changes in leaf size and physiology of Liquidambar styraciflua seedlings grown under UV-B irradiance levels simulating 0% (control), 16% (low) and 25% (high) stratospheric ozone reductions. Leaf size, light- and CO 2 -saturated rates of O 2 evolution (A max ), and concentration of chlorophylls (chl), and UV-B absorbing pigments were measured over a 4-week period. Specific leaf weight, A max and chl concentration increased with leaf age, except for a peak in A max at early development. Chlorophyll b concentration increased at a slower rate than chl a. Recently unfurled leaves has the greatest concentration of UV-B absorbing pigments. The effect of UV-B radiation on leaf growth and physiology were small and not dose-dependent. Expansion of leaves exposed to low UV-B was slightly delayed compared to controls (1.663 vs. 1.90 cm 2 /day), but final leaf size was unaffected by UV-B radiation. Physiological effects were less pronounced during the rapid expansion period. High UV-B tended to promote, while low UV-B inhibited accumulation of chl, especially chl a. In contrast, concentration of UV-B absorbing compounds was promoted only by low UV-B. The small inhibitory effects of UV-B on leaf growth and physiology suggests a high tolerance of the species to damaging UV-B radiation

  11. Influence of UV-radiation on granulocytic phagocytosis in vitro

    International Nuclear Information System (INIS)

    Walther, T.; Rytter, M.; Gast, W.; Haustein, U.F.

    1987-01-01

    The influence of UV radiation on the vitality, the performance of phagocytosis and the ability to reduce nitro-blue tetrazolium test (NBT) by human granulocytes was investigated in vitro. Already by low doses of UVA (8% UVB) the percentage of phagocytizing granulocytes was decreased more distinctly than their cell vitality. The number of ingested Candida albicans particles was 4.5 particles per granulocyte in the controls. It was reduced to about 1.4 particles per cell by UV radiation independent of the dosis applied. On the other hand the ability of granulocytes to reduce NBT intracellularly remained completely unchanged. (author)

  12. Attenuated UV Radiation Alters Volatile Profile in Cabernet Sauvignon Grapes under Field Conditions.

    Science.gov (United States)

    Liu, Di; Gao, Yuan; Li, Xiao-Xi; Li, Zheng; Pan, Qiu-Hong

    2015-09-17

    This study aimed to explore the effect of attenuated UV radiation around grape clusters on the volatile profile of Cabernet Sauvignon grapes (Vitis vinifera L. cv.) under field conditions. Grape bunches were wrapped with two types of polyester films that cut off 89% (film A) and 99% (film B) invisible sunlight of less than 380 nm wavelength, respectively. Solar UV radiation reaching the grape berry surface was largely attenuated, and an increase in the concentrations of amino acid-derived benzenoid volatiles and fatty acid-derived esters was observed in the ripening grapes. Meanwhile, the attenuated UV radiation significantly reduced the concentrations of fatty acid-derived aldehydes and alcohols and isoprenoid-derived norisoprenoids. No significant impact was observed for terpenes. In most case, these positive or negative effects were stage-dependent. Reducing UV radiation from the onset of veraison to grape harvest, compared to the other stages, caused a larger alteration in the grape volatile profile. Partial Least Square Discriminant Analysis (PLS-DA) revealed that (E)-2-hexenal, 4-methyl benzaldehyde, 2-butoxyethyl acetate, (E)-2-heptenal, styrene, α-phenylethanol, and (Z)-3-hexen-1-ol acetate were affected most significantly by the attenuated UV radiation.

  13. Attenuated UV Radiation Alters Volatile Profile in Cabernet Sauvignon Grapes under Field Conditions

    Directory of Open Access Journals (Sweden)

    Di Liu

    2015-09-01

    Full Text Available This study aimed to explore the effect of attenuated UV radiation around grape clusters on the volatile profile of Cabernet Sauvignon grapes (Vitis vinifera L. cv. under field conditions. Grape bunches were wrapped with two types of polyester films that cut off 89% (film A and 99% (film B invisible sunlight of less than 380 nm wavelength, respectively. Solar UV radiation reaching the grape berry surface was largely attenuated, and an increase in the concentrations of amino acid-derived benzenoid volatiles and fatty acid-derived esters was observed in the ripening grapes. Meanwhile, the attenuated UV radiation significantly reduced the concentrations of fatty acid-derived aldehydes and alcohols and isoprenoid-derived norisoprenoids. No significant impact was observed for terpenes. In most case, these positive or negative effects were stage-dependent. Reducing UV radiation from the onset of veraison to grape harvest, compared to the other stages, caused a larger alteration in the grape volatile profile. Partial Least Square Discriminant Analysis (PLS-DA revealed that (E-2-hexenal, 4-methyl benzaldehyde, 2-butoxyethyl acetate, (E-2-heptenal, styrene, α-phenylethanol, and (Z-3-hexen-1-ol acetate were affected most significantly by the attenuated UV radiation.

  14. Different atmospheric parameters influence on spectral UV radiation (measurements and modelling)

    Energy Technology Data Exchange (ETDEWEB)

    Chubarova, N Y [Moscow State Univ. (Russian Federation). Meteorological Observatory; Krotkov, N A [Maryland Univ., MD (United States). JCESS/Meteorology Dept.; Geogdzhaev, I V; Bushnev, S V; Kondranin, T V [SUMGF/MIPT, Dolgoprudny (Russian Federation); Khattatov, V U [Central Aerological Observatory, Dolgoprudny (Russian Federation)

    1996-12-31

    The ultraviolet (UV) radiation plays a vital role in the biophysical processes despite its small portion in the total solar flux. UV radiation is subject to large variations at the Earth surface depending greatly on solar elevation, ozone and cloud amount, aerosols and surface albedo. The analysis of atmospheric parameters influence is based on the spectral archive data of three spectral instruments: NSF spectroradiometer (Barrow network) (NSF Polar Programs UV Spectroradiometer Network 1991-1992,1992), spectrophotometer (SUVS-M) of Central Aerological Observatory CAO, spectroradiometer of Meteorological Observatory of the Moscow State University (MO MSU) and model simulations based on delta-Eddington approximation

  15. Different atmospheric parameters influence on spectral UV radiation (measurements and modelling)

    Energy Technology Data Exchange (ETDEWEB)

    Chubarova, N.Y. [Moscow State Univ. (Russian Federation). Meteorological Observatory; Krotkov, N.A. [Maryland Univ., MD (United States). JCESS/Meteorology Dept.; Geogdzhaev, I.V.; Bushnev, S.V.; Kondranin, T.V. [SUMGF/MIPT, Dolgoprudny (Russian Federation); Khattatov, V.U. [Central Aerological Observatory, Dolgoprudny (Russian Federation)

    1995-12-31

    The ultraviolet (UV) radiation plays a vital role in the biophysical processes despite its small portion in the total solar flux. UV radiation is subject to large variations at the Earth surface depending greatly on solar elevation, ozone and cloud amount, aerosols and surface albedo. The analysis of atmospheric parameters influence is based on the spectral archive data of three spectral instruments: NSF spectroradiometer (Barrow network) (NSF Polar Programs UV Spectroradiometer Network 1991-1992,1992), spectrophotometer (SUVS-M) of Central Aerological Observatory CAO, spectroradiometer of Meteorological Observatory of the Moscow State University (MO MSU) and model simulations based on delta-Eddington approximation

  16. Exposure of Finnish population to solar UV radiation and consequent carcinogenic effects

    Energy Technology Data Exchange (ETDEWEB)

    Huurto, L; Jansen, C [Turku Univ. Hospital, Turku (Finland); Jokela, K [Finnish Centre for Radiation and Nuclear Safety, Helsinki (Finland)

    1997-12-31

    Depletion of stratospheric ozone increases irradiance of terrestrial ultraviolet (UV) radiation at short wavelengths, which may be harmful to the human health. To understand quantitatively the risks caused by increasing UV radiation to the Finnish population, the actual UV exposure of the population has to be assessed. It was shown that the snow reflection increases the UV exposure to the face and eyes particularly in the northern Finland. In 1993 exceptionally low ozone levels persisted up to the end of May, which resulted in a theoretical increase in the annual UV dose ranging from 8 % to 13 % in Finland. The maximal increase in the measured erythemally effective dose rate was 34 % on 23 April, when compared with the theoretical normal value. During this study exposure models have been developed. The models have been combined them with Green`s radiation transfer model to estimate annual facial UV doses received by different groups of Finnish population. Also, an updated estimate for increase in skin cancer incidence due to the ozone depletion is presented. It is estimated that the maximal increase in UV doses caused by the depletion of the stratospheric ozone will be 12 % in the first years of the next century in Finland. This may result in increase in skin carcinomas by 20-30 % if the people do not improve their protection against solar UV radiation. At the moment the annual facial UV dose of the Finnish indoor worker varies from 3 % to 6 % of the annual ambient dose. In the worst case an outdoor worker may receive even 16% of the annual ambient dose. However, the doses received by indoor workers during vacation to an untanned skin may be more harmful due to the increased risk of malignant melanoma.

  17. Exposure of Finnish population to solar UV radiation and consequent carcinogenic effects

    Energy Technology Data Exchange (ETDEWEB)

    Huurto, L.; Jansen, C. [Turku Univ. Hospital, Turku (Finland); Jokela, K. [Finnish Centre for Radiation and Nuclear Safety, Helsinki (Finland)

    1996-12-31

    Depletion of stratospheric ozone increases irradiance of terrestrial ultraviolet (UV) radiation at short wavelengths, which may be harmful to the human health. To understand quantitatively the risks caused by increasing UV radiation to the Finnish population, the actual UV exposure of the population has to be assessed. It was shown that the snow reflection increases the UV exposure to the face and eyes particularly in the northern Finland. In 1993 exceptionally low ozone levels persisted up to the end of May, which resulted in a theoretical increase in the annual UV dose ranging from 8 % to 13 % in Finland. The maximal increase in the measured erythemally effective dose rate was 34 % on 23 April, when compared with the theoretical normal value. During this study exposure models have been developed. The models have been combined them with Green`s radiation transfer model to estimate annual facial UV doses received by different groups of Finnish population. Also, an updated estimate for increase in skin cancer incidence due to the ozone depletion is presented. It is estimated that the maximal increase in UV doses caused by the depletion of the stratospheric ozone will be 12 % in the first years of the next century in Finland. This may result in increase in skin carcinomas by 20-30 % if the people do not improve their protection against solar UV radiation. At the moment the annual facial UV dose of the Finnish indoor worker varies from 3 % to 6 % of the annual ambient dose. In the worst case an outdoor worker may receive even 16% of the annual ambient dose. However, the doses received by indoor workers during vacation to an untanned skin may be more harmful due to the increased risk of malignant melanoma.

  18. Environmental radioactivity and radiation exposure in Switzerland 1993

    International Nuclear Information System (INIS)

    1994-01-01

    Systematic monitoring of radioactivity in the environment and food has been going on in Switzerland since the mid 1950s. This report contains a summary of the values measured in 1993, along with the interpretation of the data and the resultant radiation dose for the population. The monitoring programme deals with radioactivity in the atmosphere, precipitation, aquatic systems, grass, foodstuffs and the human body, but also includes natural radiation, doses due to radon inside dwellings, emissions from nuclear power stations and other radiation sources. With two exceptions, the nuclear power plants and other facilities licensed to handle radioactive substances remained within their annual release limits in 1993, and measurements carried out in the environment revealed no inadmissible radioactivity concentrations or dose values. The population's mean annual radiation dose totals 4 mSv. Some 40% of this is due to radon in the home, with a mean of 1.6 mSv and extreme values as high as around 100 mSv; 30% or 1.2 mSv, may be ascribed to natural radiation, leaving less then 0.2 mSv ascribable to man-made sources, excluding medical applications. (author) figs., tabs

  19. STX140, but not paclitaxel, inhibits mammary tumour initiation and progression in C3(1/SV40 T/t-antigen transgenic mice.

    Directory of Open Access Journals (Sweden)

    Florence Meyer-Losic

    Full Text Available Despite paclitxael's clinical success, treating hormone-refractory breast cancer remains challenging. Paclitaxel has a poor pharmacological profile, characterized by a low therapeutic index (TIX caused by severe dose limiting toxicities, such as neutropenia and peripheral neuropathy. Consequently, new drugs are urgently required. STX140, a compound previously shown to have excellent efficacy against many tumors, is here compared to paclitaxel in three translational in vivo breast cancer models, a rat model of peripheral neuropathy, and through pharmacological testing. Three different in vivo mouse models of breast cancer were used; the metastatic 4T1 orthotopic model, the C3(1/SV40 T-Ag model, and the MDA-MB-231 xenograft model. To determine TIX and pharmacological profile of STX140, a comprehensive dosing regime was performed in mice bearing MDA-MD-231 xenografts. Finally, peripheral neuropathy was examined using a rat plantar thermal hyperalgesia model. In the 4T1 metastatic model, STX140 and paclitaxel significantly inhibited primary tumor growth and lung metastases. All C3(1/SV40 T-Ag mice in the control and paclitaxel treated groups developed palpable mammary cancer. STX140 blocked 47% of tumors developing and significantly inhibited growth of tumors that did develop. STX140 treatment caused a significant (P<0.001 survival advantage for animals in early and late intervention groups. Conversely, in C3(1/SV40 T-Ag mice, paclitaxel failed to inhibit tumor growth and did not increase survival time. Furthermore, paclitaxel, but not STX140, induced significant peripheral neuropathy and neutropenia. These results show that STX140 has a greater anti-cancer efficacy, TIX, and reduced neurotoxicity compared to paclitaxel in C3(1/SV40 T-Ag mice and therefore may be of significant benefit to patients with breast cancer.

  20. Improving radiation data quality of USDA UV-B monitoring and research program and evaluating UV decomposition in DayCent and its ecological impacts

    Science.gov (United States)

    Chen, Maosi

    Solar radiation impacts many aspects of the Earth's atmosphere and biosphere. The total solar radiation impacts the atmospheric temperature profile and the Earth's surface radiative energy budget. The solar visible (VIS) radiation is the energy source of photosynthesis. The solar ultraviolet (UV) radiation impacts plant's physiology, microbial activities, and human and animal health. Recent studies found that solar UV significantly shifts the mass loss and nitrogen patterns of plant litter decomposition in semi-arid and arid ecosystems. The potential mechanisms include the production of labile materials from direct and indirect photolysis of complex organic matters, the facilitation of microbial decomposition with more labile materials, and the UV inhibition of microbes' population. However, the mechanisms behind UV decomposition and its ecological impacts are still uncertain. Accurate and reliable ground solar radiation measurements help us better retrieve the atmosphere composition, validate satellite radiation products, and simulate ecosystem processes. Incorporating the UV decomposition into the DayCent biogeochemical model helps to better understand long-term ecological impacts. Improving the accuracy of UV irradiance data is the goal of the first part of this research and examining the importance of UV radiation in the biogeochemical model DayCent is the goal of the second part of the work. Thus, although the dissertation is separated into two parts, accurate UV irradiance measurement links them in what follows. In part one of this work the accuracy and reliability of the current operational calibration method for the (UV-) Multi-Filter Rotating Shadowband Radiometer (MFRSR), which is used by the U.S. Department of Agriculture UV-B Monitoring and Research Program (UVMRP), is improved. The UVMRP has monitored solar radiation in the 14 narrowband UV and VIS spectral channels at 37 sites across U.S. since 1992. The improvements in the quality of the data result

  1. Exclusion of solar UV radiation improves photosynthetic performance and yield of wheat varieties.

    Science.gov (United States)

    Kataria, Sunita; Guruprasad, K N

    2015-12-01

    Field studies were conducted to determine the potential for alterations in photosynthetic performance and grain yield of four wheat (Triticum aestivum) varieties of India- Vidisha, Purna, Swarna and Naveen Chandausi by ambient ultraviolet radiation (UV). The plants were grown in specially designed UV exclusion chambers, wrapped with filters that excluded UV-B (solar UV exclusion increased the leaf mass per area ratio, leaf weight ratio and chlorophylls per unit area of flag leaves in all the four varieties of wheat. Polyphasic chlorophyll a fluorescence transients from the flag leaves of UV excluded wheat plants gave a higher fluorescence yield. Exclusion of solar UV significantly enhanced photosynthetic performance as a consequence of increased efficiency of PS II, performance index (PIABS) and rate of photosynthesis in the flag leaves of wheat varieties along with a remarkable increase in carbonic anhydrase, Rubisco and nitrate reductase activities. This additional fixation of carbon and nitrogen by exclusion of UV was channelized towards the improvement in grain yield of wheat varieties as there was a decrease in the UV-B absorbing substances and an increase in soluble protein content in flag leaves of all the four varieties of wheat. The magnitude of response for UV exclusion for all the measured parameters was higher in two varieties of wheat Vidisha and Purna as compared to Swarna and Naveen Chandausi. Cumulative stress response index (CSRI) for each variety was developed from the cumulative sum of physiological and yield parameters such as leaf mass area ratio of flag leaf, total chlorophyll content, performance index at absorption basis, rate of photosynthesis and grain yield. All the varieties had a negative CSRI, demonstrating a negative impact of ambient UV radiation. Naveen Chandausi and Swarna are less sensitive to ambient UV radiation; Vidisha is more sensitive to both UV-A and UV-B and Purna is more sensitive to ambient UV-B radiation. Copyright

  2. Absorption of uv-radiation by Chibro trademark -Uvelin eye drops

    International Nuclear Information System (INIS)

    Schreder, J.G.; Blumthaler, M.; Daxer, A.; Ettl, A.

    1998-01-01

    The preparation Chibro trademark -Uvelin is recommended against both solar and artificial uv-radiation. At wavelengths greater than 290 nm and at an effective layer thickness of 10 μm measurements with a high resolution doublemonochromator showed a transmission larger than 90%. The solar spectrum is characterised by almost no irradiance on the earth's surface for wavelengths smaller than 290 nm due to absorption in the atmospheric ozon layer. Therefore, no significant protective effect of the eye-drops against keratitis and cataract under solar exposure can be expected. A significantly better sagging of the radiation of artificial UV-sources with a high amount of UV-C is reached. The recommended application as chemical protective goggles in this spectral range is not permissible. (orig.) [de

  3. The effect of UV-B radiation on chloroplast translation in Pisum sativum

    International Nuclear Information System (INIS)

    Raab, M.M.; Jagendorf, A.T.

    1990-01-01

    UV-B radiation has previously been reported to reduce growth, flowering, and net photosynthesis. The present study examines the effect of UV-B radiation on isolated chloroplast of 7-10 day old pea seedlings. Amount of ( 3 H)-Leu incorporated into isolated chloroplasts was measured in the presence or absence of UV-B exposure. Preliminary experiments show a 30% inhibition of protein synthesis in isolated chloroplasts after only 20 mins of UV-B exposure (6.9 J/m 2 /30 min). Percent inhibition of chloroplast translation is directly correlated with UV-B exposure over a 60 min time span. Preliminary studies also show no change in both cold and radiolabeled protein profiles as expressed on 1-D PAGE and autofluorography. Comparative studies on the sensitivity of e - flow vs protein synthesis following UV-B exposure are underway. Further work on the role of oxygen free radicals and the specific site of action of UV-B damage to the translation machinery of chloroplasts will be discussed

  4. The role of coccoliths in protecting Emiliania huxleyi against stressful light and UV radiation

    Science.gov (United States)

    Xu, Juntian; Bach, Lennart T.; Schulz, Kai G.; Zhao, Wenyan; Gao, Kunshan; Riebesell, Ulf

    2016-08-01

    Coccolithophores are a group of phytoplankton species which cover themselves with small scales (coccoliths) made of calcium carbonate (CaCO3). The reason why coccolithophores form these calcite platelets has been a matter of debate for decades but has remained elusive so far. One hypothesis is that they play a role in light or UV protection, especially in surface dwelling species like Emiliania huxleyi, which can tolerate exceptionally high levels of solar radiation. In this study, we tested this hypothesis by culturing a calcified and a naked strain under different light conditions with and without UV radiation. The coccoliths of E. huxleyi reduced the transmission of visible radiation (400-700 nm) by 7.5 %, that of UV-A (315-400 nm) by 14.1 % and that of UV-B (280-315 nm) by 18.4 %. Growth rates of the calcified strain (PML B92/11) were about 2 times higher than those of the naked strain (CCMP 2090) under indoor constant light levels in the absence of UV radiation. When exposed to outdoor conditions (fluctuating sunlight with UV radiation), growth rates of calcified cells were almost 3.5 times higher compared to naked cells. Furthermore, the relative electron transport rate was 114 % higher and non-photochemical quenching (NPQ) was 281 % higher in the calcified compared to the naked strain, implying higher energy transfer associated with higher NPQ in the presence of calcification. When exposed to natural solar radiation including UV radiation, the maximal quantum yield of photosystem II was only slightly reduced in the calcified strain but strongly reduced in the naked strain. Our results reveal an important role of coccoliths in mitigating light and UV stress in E. huxleyi.

  5. Distribution of ultraviolet-induced lesions in Simian Virus 40 DNA

    International Nuclear Information System (INIS)

    Bourre, F.; Renault, G.; Sarasin, A.; Seawell, P.C.

    1985-01-01

    In order to analyze the molecular mechanisms of mutagenesis in mammalian cells, we devised an analytical assay using Simian Virus 40 as biological probe. To study the possible correlations between the distribution of the lesions on the treated DNA and the distribution of mutations, we have located and quantified the lesions induced by ultraviolet light (254 nm) on a SV40 DNA fragment. At a fluence of 2,000J/m 2 , our results show that the formation frequency of thymine-thymine dimers (TT) is three to four times higher than the formation frequency of the other types of dimers (TC, CT, CC). On the other hand, the formation frequency of a dimer is influenced by the adjacent sequence. In particular, a pyrimidine in the 5' position of a thymine-thymine dimer enhances its formation frequency. At the dose used the formation frequency of the pyrimidine (6-4) pyrimidone photoproducts is twenty times less than the formation frequency of pyrimidine dimers. This paper shows the distribution of the major lesions induced by UV-light on a defined fragment of SV40 genome after UV irradiation. This work is necessary to get an insight in the molecular mechanisms of UV-mutagenesis

  6. Effects of the ultraviolet-B radiation (UV-B) on conifers: a review

    International Nuclear Information System (INIS)

    Laakso, K.; Huttunen, S.

    1998-01-01

    The current knowledge on conifer responses to enhanced ultraviolet-B (UV-B) radiation is mainly based on greenhouse or growth chamber experiments of one growing season in duration. However, the biomass losses observed in greenhouses do not occur in field-grown trees in their natural habitats. Moreover, the majority of the 20 conifer species studied have been 1-year-old seedlings, and no studies have been undertaken on mature trees. Fully grown needles, with their glaucous waxy surfaces and thick epidermal cells with both soluble and wall-bound UV-B screening metabolites, are well protected against UV-B radiation. However, it is not known whether these are sufficient protectants in young emerging needles or during the early spring period of high UV-B levels reflected from snow. In order to understand all the mechanisms that result in the protection of conifer needles against UV-B radiation, future research should focus on the epidermal layer, separating the waxes, cuticle and epidermal and hypodermal cells. Parallel studies should consist of wall-bound and soluble secondary metabolite analysis, antioxidant measurements and microscopic observations. (author)

  7. Differential flavonoid response to enhanced UV-B radiation in Brassica napus

    International Nuclear Information System (INIS)

    Olsson, L.C.; Veit, M.; Weissenböck, G.; Bornman, J.F.

    1998-01-01

    We have examined the qualitative and quantitative differences in methanol-soluble flavonoids of leaves of two cultivars of Brassica napus, which were grown with or without (control) supplemental UV-B radiation. The flavonoids were identified using HPLC-diode array spectroscopy (-DAS), -electrospray ionization-mass spectroscopy (-ESI-MS) and 1H and 13C NMR, and quantitatively analysed by HPLC-DAS. After exposure to supplementary UV-B radiation, the overall amount of soluble flavonoids, kaempferol and quercetin glycosides, increased by ca 150% in cv. Paroll, compared to control plants. Cultivar Stallion showed a 70% increase, and also a lower overall content of soluble flavonoids compared to Paroll. The supplementary UV-B radiation resulted in a marked, specific increase in the amount of quercetin glycosides relative to the kaempferol glycosides with a 36- and 23-fold increase in cvs Paroll and Stallion, respectively. Four of the flavonol glycosides appearing after supplemental UV-B exposure were identified as quercetin- and kaempferol 3-sophoroside-7-glucoside and 3-(2″′-E-sinapoylsophoroside)-7-glucoside. (author)

  8. Researchers lack data on trends in UV radiation at Earth's surface

    International Nuclear Information System (INIS)

    Zurer, P.S.

    1993-01-01

    Current anxiety about depletion of stratospheric ozone stems from the expected resulting increase in biologically damaging ultraviolet (UV) radiation at Earth's surface. Atmospheric ozone absorbs sunlight with wavelengths shorter than 320 nm--the highest-energy UV-B wavelengths (280-320 nm) that can damage DNA in living systems. But surprisingly, despite firm evidence the ozone layer is being eroded by chlorine and bromine from man-made compounds, very little information exists on how UV light intensity is changing. Solid data from Antarctica reveal that UV radiation soars under the ozone hole, where fully half of the atmospheric ozone is destroyed each spring. But elsewhere on the globe, where ozone has been thinning at a rate of a few percent per decade, the corresponding trends in UV intensity are not at all clear. In the late 1970s and early 1980s the problem of ozone depletion seemed solved. The US had banned the use of chlorofluorocarbons (CFCs) in aerosols. Model calculations were predicting CFCs would cause only a small loss of ozone by the second half of the 21st century. Costly monitoring of UV radiation commanded little attention. Attitudes began to change with the 1985 discovery of the Antarctic ozone hole. The National Science Foundation (NSF) established UV monitoring stations in the Antarctic in 1988, adding an Alaskan station in 1990. Both the Department of Agriculture (USDA) and the Environmental Protection Agency (EPA) have programs in the works that will eventually place monitoring stations across the US, but it will be many years before researchers have access to the kind of extensive database necessary to reliably evaluation long-term trends in UV intensity

  9. UV radiation hardness of silicon inversion layer solar cells

    International Nuclear Information System (INIS)

    Hezel, R.

    1990-01-01

    For full utilization of the high spectral response of inversion layer solar cells in the very-short-wavelength range of the solar spectrum sufficient ultraviolet-radiation hardness is required. In addition to the charge-induced passivation achieved by cesium incorporation into the silicon nitride AR coating, in this paper the following means for further drastic reduction of UV light-induced effects in inversion layer solar cells without encapsulation are introduced and interpretations are given: increasing the nitride deposition temperature, silicon surface oxidation at low temperatures, and texture etching and using higher substrate resistivities. High UV radiation tolerance and improvement of the cell efficiency could be obtained simultaneously

  10. Effects of UV-B radiation on growth, photosynthesis, UV-B-absorbing compounds and NADP-malic enzyme in bean (Phaseolus vulgaris L.) grown under different nitrogen conditions.

    Science.gov (United States)

    Pinto, M E; Casati, P; Hsu, T P; Ku, M S; Edwards, G E

    1999-02-01

    The effects of UV-B radiation on growth, photosynthesis, UV-B-absorbing compounds and NADP-malic enzyme have been examined in different cultivars of Phaseolous vulgaris L. grown under 1 and 12 mM nitrogen. Low nitrogen nutrition reduces chlorophyll and soluble protein contents in the leaves and thus the photosynthesis rate and dry-matter accumulation. Chlorophyll, soluble protein and Rubisco contents and photosynthesis rate are not significantly altered by ambient levels of UV-B radiation (17 microW m-2, 290-320 nm, 4 h/day for one week). Comparative studies show that under high nitrogen, UV-B radiation slightly enhances leaf expansion and dry-matter accumulation in cultivar Pinto, but inhibits these parameters in Vilmorin. These results suggest that the UV-B effect on growth is mediated through leaf expansion, which is particularly sensitive to UV-B, and that Pinto is more tolerant than Vilmorin. The effect of UV-B radiation on UV-B-absorbing compounds and on NADP-malic enzyme (NADP-ME) activity is also examined. Both UV-B radiation and low-nitrogen nutrition enhance the content of UV-B-absorbing compounds, and among the three cultivars used, Pinto exhibits the highest increases and Arroz the lowest. The same trend is observed for the specific activity and content of NADP-ME. On a leaf-area basis, the amount of UV-B-absorbing compounds is highly correlated with the enzyme activity (r2 = 0.83), suggesting that NADP-ME plays a key role in biosynthesis of these compounds. Furthermore, the higher sensitivity of Vilmorin than Pinto to UV-B radiation appears to be related to the activity of NADP-ME and the capacity of the plants to accumulate UV-B-absorbing compounds.

  11. Near-UV radiation acts as a beneficial factor for physiological responses in cucumber plants.

    Science.gov (United States)

    Mitani-Sano, Makiko; Tezuka, Takafumi

    2013-11-05

    Effects of near-UV radiation on the growth and physiological activity of cucumber plants were investigated morphologically, physiologically and biochemically using 3-week-old seedlings grown under polyvinyl chloride films featuring transmission either above 290 nm or above 400 nm in growth chambers. The hypocotyl length and leaf area of cucumber seedlings were reduced but the thickness of leaves was enhanced by near-UV radiation, due to increased upper/lower epidermis thickness, palisade parenchyma thickness and volume of palisade parenchyma cells. Photosynthetic and respiratory activities were also promoted by near-UV radiation, associated with general enhancement of physiological/biochemical responses. Particularly, metabolic activities in the photosynthetic system of chloroplasts and the respiratory system of mitochondria were analyzed under the conditions of visible light with and without near-UV radiation. For example, the activities of NAD(P)-dependent enzymes such as glyceraldehyde-3-phosphate dehydrogenase (G3PDH) in chloroplasts and isocitrate dehydrogenase (ICDH) in mitochondria were elevated, along with levels of pyridine nucleotides (nicotinamide coenzymes) [NAD(H) and NADP(H)] and activity of NAD kinase (NADP forming enzyme). Taken together, these data suggest that promotion of cucumber plant growth by near-UV radiation involves activation of carbon and nitrogen metabolism in plants. The findings of this research showed that near-UV radiation reaching the Earth's surface is a beneficial factor for plant growth. Copyright © 2013. Published by Elsevier B.V.

  12. Non-radiation induced signals in TL dosimetry

    International Nuclear Information System (INIS)

    German, U.; Weinstein, M.

    2002-01-01

    One source of background signals, which are non-radiation related, is the reader system and it includes dark current, external contaminants and electronic spikes. These factors can induce signals equivalent to several hundredths of mSv. Mostly, the effects are minimised by proper design of the TLD reader, but some effects are dependent on proper operation of the system. The other main group of background signals originate in the TL crystal and is due to tribothermoluminescence, dirt, chemical reactions and stimulation by visible or UV light. These factors can have a significant contribution, equivalent to over several mSv, depending on whether the crystal is bare or protected by PTFE. Working in clean environments, monitoring continuously the glow curve and performing glow curve deconvolution are suggested to minimise non-radiation induced spurious signals. (author)

  13. The responses to supplementary of UV radiation of some temperate meadow species

    International Nuclear Information System (INIS)

    Cooley, N.M.

    2002-01-01

    Full text: The growth and development of various meadow species was monitored while growing under enhanced UV-radiation in the natural light environment. Growth responses to supplementary ultraviolet-B (UV-B+A) and ultraviolet-A (UV-A) were compared to the ambient daylight treatment for Bellis perennis, Cardamine pratensis, Cynosurus critatus and Ranunculus ficaria. When the response of ultraviolet A (UV-A) treated plants were compared with those of the UV-B+A, differences were found which varied according to the species and parameter investigated. To further understand the growth responses of the UV-A treatment and their relationship to the UV-B responses polychromatic action spectra in the natural environment was employed B perennis had an action maximum in the UV B (280-315 nm) while C cristatus demonstrates no action in the UV-B but action in the UV-A region (315-400 nm.). To enable further explanation of the effects of elevated UV radiation on the meadow plants Arabidopsis thaliana ecotypes and mutants were investigated. A thaliana ecotypes dry weight accumulation was found to respond differently to the UV treatments. UV B+A treatment was found to inhibit dry weight accumulation in most ecotypes. When UV B+A induced inhibition was expressed in terms of ambient growth rate for each ecotype a linear relationship could be derived. The higher the growth rate the more susceptible the ecotype was to UV-B+A inhibition. The pertinence of the UV-A treatment and UV protocol is discussed. It is suggested that UV responses could alter the diversity of the meadow equilibrium

  14. Protection policies for ionizing and UV radiation

    International Nuclear Information System (INIS)

    Bosnjakovic, B.F.M.

    1987-01-01

    Although ultraviolet radiation is generally considered as being part of non-ionizing radiation, the existing similarities with ionizing radiation are too striking to be overseen. A comparison of these two agents is becoming important in view of the increasing awareness of various environmental and health risks and the tendency to develop more uniform risk management policies with respect to the different physical and chemical agents. This paper explores the similarities and differences of UV and ionizing radiation from the point of view of policies either adopted or in development. Policy determinants include, among others, the following factors: biological effects, dosimetric quantities, relative contribution to exposure from different sources, hazard potential of different sources, quantification of detrimental consequences, public perception of the radiation hazards and regulation developments. These factors are discussed

  15. Experimental Evolution of UV-C Radiation Tolerance: Emergence of Adaptive and Non-Adaptive Traits in Escherichia coli Under Differing Flux Regimes

    Science.gov (United States)

    Moffet, A.; Okansinski, A.; Sloan, C.; Grace, J. M.; Paulino-Lima, I. G.; Gentry, D.; Rothschild, L. J.; Camps, M.

    2014-12-01

    High-energy ultraviolet (UV-C) radiation is a significant challenge to life in environments such as high altitude areas, the early Earth, the Martian surface, and space. As UV-C exposure is both a selection pressure and a mutagen, adaptation dynamics in such environments include a high rate of change in both tolerance-related and non-tolerance-related genes, as well changes in linkages between the resulting traits. Determining the relationship between the intensity and duration of the UV-C exposure, mutation rate, and emergence of UV-C resistance will inform our understanding of both the emergence of radiation-related extremophily in natural environments and the optimal strategies for generating artificial extremophiles. In this study, we iteratively exposed an Escherichia colistrain to UV-C radiation of two different fluxes, 3.3 J/m^2/s for 6 seconds and 0.5 J/m^2/s for 40 seconds, with the same overall fluence of 20 J/m^2. After each iteration, cells from each exposure regime were assayed for increased UV-C tolerance as an adaptive trait. The exposed cells carried a plasmid bearing a TEM beta-lactamase gene, which in the absence of antibiotic treatment is a neutral reporter for mutagenesis. Sequencing of this gene allowed us to determine the baseline mutation frequency for each flux. As an additional readout for adaptation, the presence of extended-spectrum beta-lactamase mutations was tested by plating UV-exposed cultures in cefotaxime plates. We observed an increase of approximately one-million-fold in UV-C tolerance over seven iterations; no significant difference between the two fluxes was found. Future work will focus on identifying the genomic changes responsible for the change in UV-C tolerance; determining the mechanisms of the emerged UV-C tolerance; and performing competition experiments between the iteration strains to quantify fitness tradeoffs resulting from UV-C adaptation.

  16. Effect of elevated CO2, O3, and UV radiation on soils.

    Science.gov (United States)

    Formánek, Pavel; Rejšek, Klement; Vranová, Valerie

    2014-01-01

    In this work, we have attempted to review the current knowledge on the impact of elevated CO2, O3, and UV on soils. Elevated CO2 increases labile and stabile soil C pool as well as efficiency of organic pollutants rhizoremediation and phytoextraction of heavy metals. Conversely, both elevated O3 and UV radiation decrease inputs of assimilates to the rhizosphere being accompanied by inhibitory effects on decomposition processes, rhizoremediation, and heavy metals phytoextraction efficiency. Contrary to elevated CO2, O3, or UV-B decreases soil microbial biomass, metabolisable C, and soil N t content leading to higher C/N of soil organic matter. Elevated UV-B radiation shifts soil microbial community and decreases populations of soil meso- and macrofauna via direct effect rather than by induced changes of litter quality and root exudation as in case of elevated CO2 or O3. CO2 enrichment or increased UV-B is hypothesised to stimulate or inhibit both plant and microbial competitiveness for soluble soil N, respectively, whereas O3 favours only microbial competitive efficiency. Understanding the consequences of elevated CO2, O3, and UV radiation for soils, especially those related to fertility, phytotoxins inputs, elements cycling, plant-microbe interactions, and decontamination of polluted sites, presents a knowledge gap for future research.

  17. The effect of UV-B and UV-C radiation on Hibiscus leaves determined by ultraweak luminescence and fluorescence induction [chlorophyll fluorescence induction, ultraweak luminescence

    International Nuclear Information System (INIS)

    Panagopoulos, I.; Bornman, J.F.; Björn, L.O.

    1989-01-01

    The effects of UV-C (254 nm) and UV-B (280-320 nm) on chlorophyll fluorescence induction and ultraweak luminescence (UL) in detached leaves of Hibiscus rosa-sinensis L. were investigated. UL from leaves exposed to UV-B and UV-C radiation reached a maximum 72 h after irradiation. In both cases most of the light was of a wavelength over 600 nm. An increase in the percentage of long wavelength light with time was detected. UV radiation increased peroxidase activity, which also reached a maximum 72 h after irradiation. UV-B and UV-C both reduced variable chlorophyll fluorescence. No effect on the amount of chlorophyll or UV screening pigments was observed with the short-term irradiation used in this investigation. (author)

  18. Adverse Effects of UV-B Radiation on Plants Growing at Schirmacher Oasis, East Antarctica.

    Science.gov (United States)

    Singh, Jaswant; Singh, Rudra P

    2014-01-01

    This study aimed to assess the impacts of ultraviolet-B (UV-B) radiation over a 28-day period on the levels of pigments of Umbilicaria aprina and Bryum argenteum growing in field. The depletion of stratospheric ozone is most prominent over Antarctica, which receives more UV-B radiation than most other parts of the planet. Although UV-B radiation adversely affects all flora, Antarctic plants are better equipped to survive the damaging effects of UV-B owing to defenses provided by UV-B absorbing compounds and other screening pigments. The UV-B radiations and daily average ozone values were measured by sun photometer and the photosynthetic pigments were analyzed by the standard spectrophotometric methods of exposed and unexposed selected plants. The daily average atmospheric ozone values were recorded from 5 January to 2 February 2008. The maximum daily average for ozone (310.7 Dobson Units (DU)) was recorded on 10 January 2008. On that day, average UV-B spectral irradiances were 0.016, 0.071, and 0.186 W m(-2) at wavelengths of 305, 312, and 320 nm, respectively. The minimum daily average ozone value (278.6 DU) was recorded on 31 January 2008. On that day, average UV-B spectral irradiances were 0.018, 0.085, and 0.210 W m(-2) at wavelengths of 305, 312, and 320 nm, respectively. Our results concludes that following prolonged UV-B exposure, total chlorophyll levels decreased gradually in both species, whereas levels of UV-B absorbing compounds, phenolics, and carotenoids gradually increased.

  19. The response of bean plants to UV-B radiation under different irradiances of background visible light

    International Nuclear Information System (INIS)

    Cen, Y.P.; Bornman, J.F.

    1990-01-01

    Plants of Phaseolus vulgaris L. (cv. Stella) were grown in controlled conditions under three different irradiances of visible light with or without UV-B (280–320nm) radiation. The biologically effective UV-B radiation (UV-BBE) was 6.17 kJ m −2 d −1 , and simulated a c. 5% decrease in stratospheric ozone at 55.7°N, 13.4°E. The photon flux densities of the photosynthetically active radiation (PAR, 400–700 nm) were either 700 μmol m −2−1 (HL), 500, μmol m −2 s −1 (ML) or 230 μmol m −2 s −1 PAR (LL). Under high light (HL) conditions plus UV-B radiation, bean plants appeared most resistant to the enhanced levels of UV-B radiation, and responded only by increasing leaf thickness by c. 18%. A small increase in UV screening pigments was also observed. Both the lower irradiances (ML and LL) increased the sensitivity of the plants to UV-B radiation. Changes in leaf structure were also observed. Photosystem II was inhibited under ML and LL together with UV-B radiation, as determined by Chi fluorescence induction and calculation of the fluorescence half-rise times. Leaf reflectivity measurements showed that the amount of PAR able to penetrate leaves of UV-B treated plants was reduced, and that a possible correlation may exist between the reduced PAR levels, loss of Chi and lowered photosynthetic activity, especially for LL +UV-B grown plants, where surface reflection from leaves was highest. Changes in leaf chlorophyll content were mostly confined to plants grown under LL + UV-B, where a decrease of c. 20% was found. With regard to protective pigments (the carotenoids and UV screening pigments) plants subjected to different visible light conditions responded differently. Among the growth parameters measured, there was a substantial decrease in leaf area, particularly under LL + UV-B (c. 47% relative to controls), where leaf dry weight was also reduced by c. 25%. (author)

  20. Investigations of the effects of UV and X-ray radiation and the repair of radiation damage in the ciliate Stylonychia mytilus

    International Nuclear Information System (INIS)

    Dittmann, F.N.

    1978-01-01

    Using the example of Stylomychia mytilus, the effects of UV-radiation and ionizing X-ray radiation are compared. The effects on cell division and on the repair of radiation damage in DNA are compared. Sensitivity to UV radiation differs between the stages of the cell cycle while the effects of X-ray radiation are independent of phase. There is no difference in repair processes. (AJ) 891 AJ/AJ 892 MKO [de

  1. Effects of UV-B radiation on the isoflavone accumulation and physiological-biochemical changes of soybean during germination: Physiological-biochemical change of germinated soybean induced by UV-B.

    Science.gov (United States)

    Ma, Meng; Wang, Pei; Yang, Runqiang; Gu, Zhenxin

    2018-06-01

    In this study, the effects of UV-B radiation on the isoflavones accumulation, physiological and nutritional quality, water status, and characteristics of proteins in germinated soybeans were investigated. The results showed that isoflavones content in soybeans increased with appropriate intensity and time of UV-B radiation and decreased with excessive treatment. Fresh weight, length, free amino acids, reducing sugar contents and bulk water (T 23 ) in germinated soybeans decreased with increasing radiation time, indicating that UV-B inhibited the growth and nutrients metabolism of soybean during germination. Cell damage was detected in germinated soybeans with excessive UV-B radiation, as shown by the black spots in cotyledons and the increased intercellular water determined by LF-NMR. Germination resulted in an increase in random coil structures, while UV-B radiation induced no obvious changes in FT-IR spectrum and protein conformation of soybeans. Both UV-B radiation and germination caused the increase in soluble proteins, especially in 1.0-75.0 kDa fraction. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. UV-C radiation based methods for aqueous metoprolol elimination

    Energy Technology Data Exchange (ETDEWEB)

    Rivas, F.J., E-mail: fjrivas@unex.es [Departamento de Ingenieria Quimica y Quimica Fisica, Universidad de Extremadura, Facultad de Ciencias, Edificio Jose Luis Sotelo, Avenida de Elvas S/N, 06071 Badajoz (Spain); Gimeno, O.; Borralho, T.; Carbajo, M. [Departamento de Ingenieria Quimica y Quimica Fisica, Universidad de Extremadura, Facultad de Ciencias, Edificio Jose Luis Sotelo, Avenida de Elvas S/N, 06071 Badajoz (Spain)

    2010-07-15

    The endocrine disruptor metoprolol has been oxidised in aqueous solution by means of the systems UV-C, UV-C/H{sub 2}O{sub 2}, UV-C/percarbonate, UV-C/monopersulfate, UV-C/TiO{sub 2}, UV-C/H{sub 2}O{sub 2}/TiO{sub 2} and photo-Fenton. From simple photolysis experiments the quantum yield of metoprolol has been calculated (roughly 5 x 10{sup -3} mol Einstein{sup -1} at circumneutral pH). Addition of free radicals promoters significantly enhanced the metoprolol depletion rate. Mineralization degree was negligible when no promoter was added, while low values were achieved in the presence of either inorganic peroxides or titanium dioxide. The combination of radiation, hydrogen peroxide and TiO{sub 2} increased the mineralization level up to values in the proximity of 45-50% under the best conditions investigated. The photo-Fenton process was the best system in terms of total oxidation (mineralization degree 70%) when optimum conditions were applied.

  3. UV-C radiation based methods for aqueous metoprolol elimination

    International Nuclear Information System (INIS)

    Rivas, F.J.; Gimeno, O.; Borralho, T.; Carbajo, M.

    2010-01-01

    The endocrine disruptor metoprolol has been oxidised in aqueous solution by means of the systems UV-C, UV-C/H 2 O 2 , UV-C/percarbonate, UV-C/monopersulfate, UV-C/TiO 2 , UV-C/H 2 O 2 /TiO 2 and photo-Fenton. From simple photolysis experiments the quantum yield of metoprolol has been calculated (roughly 5 x 10 -3 mol Einstein -1 at circumneutral pH). Addition of free radicals promoters significantly enhanced the metoprolol depletion rate. Mineralization degree was negligible when no promoter was added, while low values were achieved in the presence of either inorganic peroxides or titanium dioxide. The combination of radiation, hydrogen peroxide and TiO 2 increased the mineralization level up to values in the proximity of 45-50% under the best conditions investigated. The photo-Fenton process was the best system in terms of total oxidation (mineralization degree 70%) when optimum conditions were applied.

  4. Influence of low ozone episodes on erythemal UV-B radiation in Austria

    Science.gov (United States)

    Schwarz, Matthias; Baumgartner, Dietmar J.; Pietsch, Helga; Blumthaler, Mario; Weihs, Philipp; Rieder, Harald E.

    2017-06-01

    This study investigates the influence of low ozone episodes on UV-B radiation in Austria during the period 1999 to 2015. To this aim observations of total column ozone (TCO) in the Greater Alpine Region (Arosa, Switzerland; Hohenpeissenberg, Germany; Hradec Kralove, Czech Republic; Sonnblick, Austria), and erythemal UV-B radiation, available from 12 sites of the Austrian UV-B monitoring network, are analyzed. As previous definitions for low ozone episodes are not particularly suited to investigate effects on UV radiation, a novel threshold approach—considering anomalies—is developed to provide a joint framework for the analysis of extremes. TCO and UV extremes are negatively correlated, although modulating effects of sunshine duration impact the robustness of the statistical relationship. Therefore, information on relative sunshine duration (SDrel), available at (or nearby) UV-B monitoring sites, is included as explanatory variable in the analysis. The joint analysis of anomalies of both UV index (UVI) and total ozone (∆UVI, ∆TCO) and SDrel across sites shows that more than 65% of observations with strongly negative ozone anomalies (∆TCO 1), we find (across all sites) that about 90% correspond to negative ∆TCO. The remaining 10% of days occurred during fair weather conditions (SDrel ≥ 80%) explaining the appearance of ∆UVI > 1 despite positive TCO anomalies. Further, we introduce an anomaly amplification factor (AAF), which quantifies the expected change of the ∆UVI for a given change in ∆TCO.

  5. SvABA

    DEFF Research Database (Denmark)

    Wala, Jeremiah A; Bandopadhayay, Pratiti; Greenwald, Noah

    2018-01-01

    Structural variants (SVs), including small insertion and deletion variants (indels), are challenging to detect through standard alignment-based variant calling methods. Sequence assembly offers a powerful approach to identifying SVs, but is difficult to apply at scale genome-wide for SV detection...... due to its computational complexity and the difficulty of extracting SVs from assembly contigs. We describe SvABA, an efficient and accurate method for detecting SVs from short-read sequencing data using genome-wide local assembly with low memory and computing requirements. We evaluated Sv...... complex somatic rearrangements with chains of short (applied SvABA to 344 cancer genomes from 11 cancer types and found that short templated-sequence insertions occur in ∼4% of all somatic rearrangements. Finally, we...

  6. UV-radiation and skin cancer dose effect curves

    International Nuclear Information System (INIS)

    Henriksen, T.; Dahlback, A.; Larsen, S.H.

    1988-08-01

    Norwegian skin cancer data were used in an attempt to arrive at the dose effect relationship for UV-carcinogenesis. The Norwegian population is relatively homogenous with regard to skin type and live in a country where the annual effective UV-dose varies by approximately 40 percent. Four different regions of the country, each with a broadness of 1 o in latitude (approximately 111 km), were selected . The annual effective UV-doses for these regions were calculated assuming normal ozone conditions throughout the year. The incidence of malignant melanoma and non-melanoma skin cancer (mainly basal cell carcinoma) in these regions were considered and compared to the annual UV-doses. For both these types of cancer a quadratic dose effect curve seems to be valid. Depletions of the ozone layer results in larger UV-doses which in turn may yield more skin cancer. The dose effect curves suggest that the incidence rate will increase by an ''amplification factor'' of approximately 2

  7. Effects of Solar UV Radiation and Climate Change on Biogeochemical Cycling: Interactions and Feedbacks

    Science.gov (United States)

    Solar UV radiation, climate and other drivers of global change are undergoing significant changes and models forecast that these changes will continue for the remainder of this century. Here we assess the effects of solar UV radiation on biogeochemical cycles and the interactions...

  8. Effect of Elevated CO2, O3, and UV Radiation on Soils

    Directory of Open Access Journals (Sweden)

    Pavel Formánek

    2014-01-01

    Full Text Available In this work, we have attempted to review the current knowledge on the impact of elevated CO2, O3, and UV on soils. Elevated CO2 increases labile and stabile soil C pool as well as efficiency of organic pollutants rhizoremediation and phytoextraction of heavy metals. Conversely, both elevated O3 and UV radiation decrease inputs of assimilates to the rhizosphere being accompanied by inhibitory effects on decomposition processes, rhizoremediation, and heavy metals phytoextraction efficiency. Contrary to elevated CO2, O3, or UV-B decreases soil microbial biomass, metabolisable C, and soil Nt content leading to higher C/N of soil organic matter. Elevated UV-B radiation shifts soil microbial community and decreases populations of soil meso- and macrofauna via direct effect rather than by induced changes of litter quality and root exudation as in case of elevated CO2 or O3. CO2 enrichment or increased UV-B is hypothesised to stimulate or inhibit both plant and microbial competitiveness for soluble soil N, respectively, whereas O3 favours only microbial competitive efficiency. Understanding the consequences of elevated CO2, O3, and UV radiation for soils, especially those related to fertility, phytotoxins inputs, elements cycling, plant-microbe interactions, and decontamination of polluted sites, presents a knowledge gap for future research.

  9. Effect of Elevated CO2, O3, and UV Radiation on Soils

    Science.gov (United States)

    Rejšek, Klement; Vranová, Valerie

    2014-01-01

    In this work, we have attempted to review the current knowledge on the impact of elevated CO2, O3, and UV on soils. Elevated CO2 increases labile and stabile soil C pool as well as efficiency of organic pollutants rhizoremediation and phytoextraction of heavy metals. Conversely, both elevated O3 and UV radiation decrease inputs of assimilates to the rhizosphere being accompanied by inhibitory effects on decomposition processes, rhizoremediation, and heavy metals phytoextraction efficiency. Contrary to elevated CO2, O3, or UV-B decreases soil microbial biomass, metabolisable C, and soil Nt content leading to higher C/N of soil organic matter. Elevated UV-B radiation shifts soil microbial community and decreases populations of soil meso- and macrofauna via direct effect rather than by induced changes of litter quality and root exudation as in case of elevated CO2 or O3. CO2 enrichment or increased UV-B is hypothesised to stimulate or inhibit both plant and microbial competitiveness for soluble soil N, respectively, whereas O3 favours only microbial competitive efficiency. Understanding the consequences of elevated CO2, O3, and UV radiation for soils, especially those related to fertility, phytotoxins inputs, elements cycling, plant-microbe interactions, and decontamination of polluted sites, presents a knowledge gap for future research. PMID:24688424

  10. UV- and gamma-radiation sensitive mutants of Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Jiang, C.Z.; Yen, C.N.; Cronin, K.; Mitchell, D.; Britt, A.B.

    1997-01-01

    Arabidopsis seedlings repair UV-induced DNA damage via light-dependent and -independent pathways. The mechanism of the ''dark repair'' pathway is still unknown. To determine the number of genes required for dark repair and to investigate the substrate-specificity of this process we isolated mutants with enhanced sensitivity to UV radiation in the absence of photoreactivating light. Seven independently derived UV sensitive mutants were isolated from an EMS-mutagenized population. These fell into six complementation groups, two of which (UVR1 and UVH1) have previously been defined. Four of these mutants are defective in the dark repair of UV-induced pyrimidine [6-4] pyrimidinone dimers. These four mutant lines are sensitive to the growth-inhibitory effects of gamma radiation, suggesting that this repair pathway is also involved in the repair of some type of gamma-induced DNA damage product. The requirement for the coordinate action of several different gene products for effective repair of pyrimidine dimers, as well as the nonspecific nature of the repair activity, is consistent with nucleotide excision repair mechanisms previously described in Saccharomyces cerevisiae and nonplant higher eukaryotes and inconsistent with substrate-specific base excision repair mechanisms found in some bacteria, bacteriophage, and fungi. (author)

  11. The fascinating diatom frustule—can it play a role for attenuation of UV radiation?

    DEFF Research Database (Denmark)

    Ellegaard, Marianne; Lenau, Torben Anker; Lundholm, Nina

    2016-01-01

    size range as wave lengths of visible and ultraviolet (UV) light. This has prompted research into the possible role of the frustule in mediating light for the diatoms’ photosynthesis as well as into possible photonic applications of the diatom frustule. One of the possible biological roles, as well...... as area of potential application, is UV protection. In this review, we explore the possible adaptive value of the silica frustule with focus on research on the effect of UV radiation ondiatoms. We also explore the possible effect of the frustules on UV radiation, from a theoretical, biological......, and applied perspective, including recent experimental data on UV transmission of diatom frustules....

  12. Transcriptional repression is epigenetically marked by H3K9 methylation during SV40 replication

    OpenAIRE

    Kallestad, Les; Christensen, Kendra; Woods, Emily; Milavetz, Barry

    2014-01-01

    Background We have recently shown that T-antigen binding to Site I results in the replication-dependent introduction of H3K9me1 into SV40 chromatin late in infection. Since H3K9me2 and H3K9me3 are also present late in infection, we determined whether their presence was also related to the status of ongoing transcription and replication. Transcription was either inhibited with 5,6-dichloro-1-beta-D-ribofuranosylbenzimidizole (DRB) or stimulated with sodium butyrate and the effects on histone m...

  13. Effect of UV-B radiation on the marine diatom bellerochea yucatanensis

    International Nuclear Information System (INIS)

    Doehler, G.

    1982-01-01

    There exists no information about the UV-B fluence on several photosynthetic products and nitrogen metabolism. The present report describes the effect of low levels of UV-B radiation on pigments, 14 C- and 15 N-incorporation of the marine diatom Bellerochea yucatanensis. (orig./AJ)

  14. The sensitivity of sunflower (Helianthus annuus L. plants to UV-B radiation is altered by nitrogen status

    Directory of Open Access Journals (Sweden)

    Inês Cechin

    2018-02-01

    Full Text Available ABSTRACT: Interaction effects between nitrogen and UV-B radiation were studied in sunflower (Helianthus annuus L. variety IAC-Iarama plants grown in a greenhouse under natural photoperiod conditions. Plants were irradiated with 0.8W m-2 (control or 8.0W m-2 (+UV-B of UV-B radiation for 7h per day. The plants were grown in pots containing vermiculite and watered with 70% of full strength nitrogen-free Long Ashton solution, containing either low (42.3ppm or high (282ppm nitrogen as ammonium nitrate. High nitrogen increased dry matter of stem, leaves and shoot, photosynthetic pigments and photosynthesis (A without any alteration in stomatal conductance (gs nor transpiration (E while it reduced the intercellular CO2 (Ci concentration, and malondialdehyde (MDA content. High UV-B radiation had negative effects on dry matter production, A, gs and E with the effects more marked under high nitrogen, whereas it increased Ci under high nitrogen. Activity of PG-POD was reduced by high UV-B radiation under low nitrogen but it was not changed under high nitrogen. The UV-B radiation increased the MDA content independently of nitrogen level. Results indicate that the effects of UV-B radiation on sunflower plants are dependent of nitrogen supply with high nitrogen making their physiological processes more sensitive to UV-B radiation.

  15. Diurnal changes in CN metabolism and response of rice seedlings to UV-B radiation.

    Science.gov (United States)

    Yun, Hyejin; Lim, Sunhyung; Kim, Yangmin X; Lee, Yejin; Lee, Seulbi; Lee, Deogbae; Park, Keewoong; Sung, Jwakyung

    2018-03-13

    Plants regulate a number of primary metabolites, including carbohydrates, organic acids, and amino acids, in response to UV-B radiation. Therefore, it is essential to understand the time-dependent response of rice plants to UV-B stress. This study focused on the response of plants to UV-B at different leaf developmental phases (emerging, growing, and maturing) in an attempt to fully comprehend the metabolic shift. We analyzed the expression levels of genes related to starch/sucrose metabolism in the leaf blades of rice seedlings (Oryza sativa L. "Saechuchenog") exposed to UV-B irradiation for short (1 day) and long terms (5 days) using quantitative real-time polymerase chain reaction. We also examined the diurnal variations in the contents of primary metabolites using an established GCTOF-MS (gas chromatography time of flight-mass spectrometry) method. The results showed that the levels of primary metabolites were largely dependent upon the diurnal rhythm and leaf developmental phase. The young leaves (sink) produced and accumulated starch rather than sucrose. The short-term (4 h, 1 day) UV-B exposure inhibited sucrose synthesis, which could be the first target of UV-B radiation. Following short- and long-term (5 days) exposure to UV-B radiation, the dynamic response of primary metabolites was evaluated. It was found that the content of carbohydrates decreased throughout the period of exposure to UV-B stress, especially in terms of sucrose concentration. However, the content of the majority of amino acids increased after an early decrease. Our data revealed that the metabolic response, as well as the gene expression, differed with the period (intensity) of exposure to UV-B radiation and with the phase of leaf development. These findings provide new insights for a better understanding of the metabolic response of a variety of plant species exposed to a wide range of UV-B radiation. Copyright © 2018. Published by Elsevier GmbH.

  16. Electrophysiological and growing aspects of ultraviolet (UV-C) radiation action

    International Nuclear Information System (INIS)

    Karcz, W.

    1992-01-01

    Effects of UV-C (254 nm) radiation on electrical parameters and growth processes in plant cells were studied. It was found in Nitellopsis obtusa cells the UV-C radiation caused transient depolarization of plasmalemma and tonoplast and simultaneous increase in electric conductance. These effects were partly reversible and the degree of the recovery depended on the duration of the exposure, temperature of the medium and area of the irradiation. Exposure of Nitellopsis obtusa cells with large potential difference between vacuole and external medium (more negative than - 140 mV) brought about the generation of an action potential, whose shape depended on the duration of irradiation. In the cells pretreated with IAA in the dark or exposed to visible light, the UV-C irradiation not only abolished the hyper polarization induced by IAA or visible light, but caused a further depolarization. Similar effects of IAA and UV-C on membrane potential were demonstrated in cells of Zea mays L. coleoptile segments. The hyper polarized state created by visible light in Sagittaria leaf cells was also fully suppressed by the radiation. The growth experiments were based on elongation growth of Zea mays L. coleoptile segments and simultaneously measured changes of pH of the incubation medium. It was shown that for high doses of irradiation (1170, 3900, and 5850 J m -2 ) UV-C inhibited elongation growth, whereas at 195 J m -2 stimulation of growth was observed. The administration of IAA (10 -5 M) and FC (10 -6 M) to the incubation medium of coleoptile segments partially abolished the inhibitory effect of UV-C. The pH of the incubation medium showed that the exposure of the segments to UV-C caused inhibition H + -extrusion (or stimulation of H + uptake). The presence of IAA (10 -5 M) or FC (10 -6 M) in the incubation medium of irradiated coleoptile segments promoted H + -extrusion to a level comparable with that produced by IAA or FC in non-irradiated coleoptile segments. It is suggested

  17. Changes in epicuticular flavonoids and photosynthetic pigments as a plant response to UV-B radiation

    Energy Technology Data Exchange (ETDEWEB)

    Cuadra, P.; Harborne, J. B. [Universidad de Magallances, Punta Arenas (Chile)

    1996-07-01

    Treatment of Gnaphalium vira-vira plants with UV-B radiation caused changes in plant growth and in plant chemistry. The leaf surface contained two O-methylated flavones, araneol and 7-O-methylaraneol. HPLC analysis showed that 20 days of UV-B radiation increased the synthesis of 7-O-methylaraneol at the expense of araneol. Spectrophotometric analysis of the photosynthetic pigments showed that UV-B radiation also increases the pigment content in treated plants. Another U V alteration is epidermal hair damage, as observed in SEM pictures of treated leaves. This combination of physiological and phytochemical effects may be interpreted as a plant response to UV-B stress.

  18. Changes in epicuticular flavonoids and photosynthetic pigments as a plant response to UV-B radiation

    International Nuclear Information System (INIS)

    Cuadra, P.; Harborne, J.B.

    1996-01-01

    Treatment of Gnaphalium vira-vira plants with UV-B radiation caused changes in plant growth and in plant chemistry. The leaf surface contained two O-methylated flavones, araneol and 7-O-methylaraneol. HPLC analysis showed that 20 days of UV-B radiation increased the synthesis of 7-O-methylaraneol at the expense of araneol. Spectrophotometric analysis of the photosynthetic pigments showed that UV-B radiation also increases the pigment content in treated plants. Another U V alteration is epidermal hair damage, as observed in SEM pictures of treated leaves. This combination of physiological and phytochemical effects may be interpreted as a plant response to UV-B stress

  19. Radiation exposure to staff involved in diagnostic and therapeutic nuclear medicine procedures in some hospitals in Sudan

    International Nuclear Information System (INIS)

    Salih, Lamia Hamza Bashir

    2015-05-01

    Study was performed to evaluate radiation dose to staff involved in nuclear medicine procedures in some hospitals in Sudan. 15 radiation workers were studied in three hospitals. Radiation dose was measured using personal dose equivalent Hp (10), using calibrated electronic personal dosimeters (EPDs) worn on the chest and read at the end of the day. Staff doses were monitored in each hospital for a period of four weeks, The measured monthly Hp(10) values to staff ranged between 82.96-83.94μSv (to nurses), 38.81-53.97 μSv (to pharmacists), 16.87-70.21μSv (to technologists), 40.22-76.56μSv (to medical physicists). These mean monthly radiation doses were projected to the annual radiation doses received by the staff. The mean monthly radiation doses were projected to the annual radiation doses were found to be between ranges (185.57-923.34μSv/y). Results found showed that there was no dose that exceeded the limits of annual dose recommended for workers by International Commission on Radiology Protection (ICRP) (20 mSv/year). This study is expected to increase the awareness of staff about the radiation hazards and protection.(Author)

  20. An action spectrum for UV-B radiation and the rat lens.

    Science.gov (United States)

    Merriam, J C; Löfgren, S; Michael, R; Söderberg, P; Dillon, J; Zheng, L; Ayala, M

    2000-08-01

    To determine an action spectrum for UV-B radiation and the rat lens and to show the effect of the atmosphere and the cornea on the action spectrum. One eye of young female rats was exposed to 5-nm bandwidths of UV-B radiation (290, 295, 300, 305, 310, and 315 nm). Light scattering of exposed and nonexposed lenses was measured 1 week after irradiation. A quadratic polynomial was fit to the dose-response curve for each wave band. The dose at each wave band that produced a level of light scattering greater than 95% of the nonexposed lenses was defined as the maximum acceptable dose (MAD). Transmittance of the rat cornea was measured with a fiberoptic spectrophotometer. The times to be exposed to the MAD in Stockholm (59.3 degrees N) and La Palma (28 degrees N) were compared. Significant light scattering was detected after UV-B at 295, 300, 305, 310, and 315 nm. The lens was most sensitive to UV-B at 300 nm. Correcting for corneal transmittance showed that the rat lens is at least as sensitive to UV radiation at 295 nm as at 300 nm. The times to be exposed to the MAD at each wave band were greater in Stockholm than in La Palma, and in both locations the theoretical time to be exposed to the MAD was least at 305 nm. After correcting for corneal transmittance, the biological sensitivity of the rat lens to UV-B is at least as great at 295 nm as at 300 nm. After correcting for transmittance by the atmosphere, UV-B at 305 nm is the most likely wave band to injure the rat lens in both Stockholm and La Palma.

  1. Effect of enhanced UV-B radiation on motile microorganisms

    International Nuclear Information System (INIS)

    Haeder, D.P.

    1985-02-01

    The effect of slightly increased UV-B radiation was studied in four taxonomically very different microorganisms: the gliding prokaryotic cyanobacterium, Phormidium, the unicellular green alga Cosmarium, the flagellate Euglena and the cellular slime mold Dictyostelium. UV-B doses which can be expected as a result of a slight decrease of the protective ozone layer in the stratosphere, do not kill or damage the microorganisms visibly. However, such UV-B doses impair the development, motility and photoorientation of these organisms. Due to the inhibition of these physiological important parameters the organisms cannot respond adequately to the changing factors in their environment, which prevents the survival of the populations. (orig.) [de

  2. Research And Investigation To Establish The Database Of Environment Radiation Background For Vietnam (Phase 2009 -2011)

    International Nuclear Information System (INIS)

    Trinh Van Giap; Nguyen Huu Quyet; Nguyen Quang Long; Bui Dac Dung; Vuong Thu Bac; Le Dinh Cuong; Chu Vu Long; Le Ngoc Thiem; Truong Y; Nguyen Van Mai; Nguyen Ba Tien

    2013-01-01

    Setting up data base of natural radiation background serves for planning socio-economics development in a province as well as the whole country and estimating annual effective dose of population. Beside external irradiation dose caused by the natural radioisotopes in the series 238 U, 232 Th and 40 K in soil, population has been received internal dose caused by the above radioisotopes taken in the body from several ways. In order to complete the database of national radiation background and go to estimate annual effective radiation dose of population in the whole country, this project focus to carry out the works as following: (i) Setting up database of radiation background in the whole country: 150 soil samples that collected in the districts of 46 provinces have been analyzed. The average activity concentration of 238 U, 232 Th and 40 K are 37.86 Bq/kg, 58.88 Bq/kg and 462.78 Bq/kg, respectively. The outdoor, indoor and total annual effective doses are calculated: 0.087±0.036 mSv; 0.488±0.202 mSv and 0.576± 0.240 mSv, respectively. (ii) Setting up database of radiation background of province Ninh Thuan and Quang Nam: The detailed database of radiation background of all villages in Ninh Thuan and Quang Nam has been established. 84 soil samples in Ninh Thuan and 311 in Quang Nam were collected for analyze. The indoor and outdoor radon concentration at sampling positions has been measured. The average activities of 238 U, 232 Th, 40 K, and 222 Rn isotopes in Ninh Thuan are reported: 33.50 Bq/kg, 55.43 Bq/kg, 701.12 Bq/kg and 12.1 Bq/m 3 , 9.5 Bq/m 3 , respectively. The outdoor, indoor and total annual effective doses in Ninh Thuan are calculated: 0.095±0.029 mSv; 0.529±0.162 mSv and 0.624± 0.382 mSv, respectively. The average activities of 238 U, 232 Th, 40 K, and 222 Rn isotopes in Quang Nam are reported: 44.47 Bq/kg, 52.68 Bq/kg, 459.33 Bq/kg, 18.0 Bq/m 3 . The outdoor, indoor and total annual effective doses are calculated: 0.086±0.039 mSv; 0.482±0.216 mSv

  3. The effects of near-UV radiation on elasmobranch lens cytoskeletal actin.

    Science.gov (United States)

    Zigman, S; Rafferty, N S; Scholz, D L; Lowe, K

    1992-08-01

    The role of near-UV radiation as a cytoskeletal actin-damaging agent was investigated. Two procedures were used to analyse fresh smooth dogfish (Mustelus canis) eye lenses that were incubated for up to 22 hr in vitro, with elasmobranch Ringer's medium, and with or without exposure to a near-UV lamp (emission principally at 365 nm; irradiance of 2.5 mW cm-2). These were observed histologically using phalloidin-rhodamine specific staining and by transmission electron microscopy. In addition, solutions of purified polymerized rabbit muscle actin were exposed to the same UV conditions and depolymerization was assayed by ultracentrifugation and high-pressure liquid chromatography. While the two actins studied do differ very slightly in some amino acid sequences, they would react physically nearly identically. The results showed that dogfish lenses developed superficial opacities due to near-UV exposure. Whole mounts of lens epithelium exhibited breakdown of actin filaments in the basal region of the cells within 18 hr of UV exposure. TEM confirmed the breakdown of actin filaments due to UV exposure. SDS-PAGE and immunoblotting positively identified actin in these cells. Direct exposure of purified polymerized muscle actin in polymerizing buffer led to an increase in actin monomer of approximately 25% in the UV-exposed solutions within 3-18 hr, whether assayed by ultracentrifugation or HPLC. The above indicates that elasmobranch lens epithelial cells contain UV-labile actin filaments, and that near-UV radiation, as is present in the sunlit environment, can break down the actin structure in these cells. Furthermore, breakdown of purified polymerized muscle actin does occur due to near-UV light exposure.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. Exposure to solar UV in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Jokela, K; Leszczynski, K; Visuri, R; Ylianttila, L [Finnish Centre for Radiation and Nuclear Safety, Helsinki (Finland)

    1996-12-31

    Exceptionally low total ozone, up to 40 % below the normal level, was measured over Northern Europe during winter and spring in 1992 and 1993. In 1993 the depletion persisted up to the end of May, resulting in a significant increase in biologically effective ultraviolet (UV) radiation. The increases were significantly smaller in 1992 and 1994 than in 1993. A special interest in Northern Europe is the effect of high reflection of UV from the snow. The period from the mid March to the mid May is critical in Northern Finland, because in that time the UV radiation is intense enough to cause significant biological effects, and the UV enhancing snow still covers the ground. Moreover, there is some evidence of increasing springtime depletions of ozone over Arctic regions. In this study the increase of UV exposure associated with the ozone depletions was examined with measurements and theoretical calculations. The measurements were carried out with spectroradiometrically calibrated Solar Light Model 500 and 501 UV radiometers which measure the erythemally effective UV doses and dose rates. The theoretical UV doses and dose rates were computed with the clear sky model of Green

  5. Exposure to solar UV in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Jokela, K.; Leszczynski, K.; Visuri, R.; Ylianttila, L. [Finnish Centre for Radiation and Nuclear Safety, Helsinki (Finland)

    1995-12-31

    Exceptionally low total ozone, up to 40 % below the normal level, was measured over Northern Europe during winter and spring in 1992 and 1993. In 1993 the depletion persisted up to the end of May, resulting in a significant increase in biologically effective ultraviolet (UV) radiation. The increases were significantly smaller in 1992 and 1994 than in 1993. A special interest in Northern Europe is the effect of high reflection of UV from the snow. The period from the mid March to the mid May is critical in Northern Finland, because in that time the UV radiation is intense enough to cause significant biological effects, and the UV enhancing snow still covers the ground. Moreover, there is some evidence of increasing springtime depletions of ozone over Arctic regions. In this study the increase of UV exposure associated with the ozone depletions was examined with measurements and theoretical calculations. The measurements were carried out with spectroradiometrically calibrated Solar Light Model 500 and 501 UV radiometers which measure the erythemally effective UV doses and dose rates. The theoretical UV doses and dose rates were computed with the clear sky model of Green

  6. Homologous SV40 RNA trans-splicing: Special case or prime example of viral RNA trans-splicing?

    Directory of Open Access Journals (Sweden)

    Sushmita Poddar

    2014-06-01

    Full Text Available To date the Simian Virus 40 (SV40 is the only proven example of a virus that recruits the mechanism of RNA trans-splicing to diversify its sequences and gene products. Thereby, two identical viral transcripts are efficiently joined by homologous trans-splicing triggering the formation of a highly transforming 100 kDa super T antigen. Sequences of other viruses including HIV-1 and the human adenovirus type 5 were reported to be involved in heterologous trans-splicing towards cellular or viral sequences but the meaning of these events remains unclear. We computationally and experimentally investigated molecular features associated with viral RNA trans-splicing and identified a common pattern: Viral RNA trans-splicing occurs between strong cryptic or regular viral splice sites and strong regular or cryptic splice sites of the trans-splice partner sequences. The majority of these splice sites are supported by exonic splice enhancers. Splice sites that could compete with the trans-splicing sites for cis-splice reactions are weaker or inexistent. Finally, all but one of the trans-splice reactions seem to be facilitated by one or more complementary binding domains of 11 to 16 nucleotides in length which, however occur with a statistical probability close to one for the given length of the involved sequences. The chimeric RNAs generated via heterologous viral RNA trans-splicing either did not lead to fusion proteins or led to proteins of unknown function. Our data suggest that distinct viral RNAs are highly susceptible to trans-splicing and that heterologous viral trans-splicing, unlike homologous SV40 trans-splicing, represents a chance event.

  7. Effects of enhanced UV-B radiation on Mentha spicata essential oils

    International Nuclear Information System (INIS)

    Karousou, R.; Grammatikopoulos, G.; Lanaras, T.; Manetas, Y.; Kokkini, S.

    1998-01-01

    In vitro propagated plantlets representing two distinct chemotypes of Mentha spicata, viz. plants producing essential oils rich in piperitone oxide and piperitenone oxide (chemotype I) and rich in carvone and dihydrocarvone (chemotype II), were grown in the field under ambient or ambient plus supplemental UV-B radiation, biologically equivalent to a 15% ozone depletion over Patras (38.3°N, 29.1°E), Greece. Enhanced UV-B radiation stimulated essential oil production in chemotype II substantially, while a similar, non-significant trend was observed in chemotype I. No effect was found on the qualitative composition of the essential oils, whereas the quantitative composition was slightly modified in chemotype I. This is the first investigation reporting an improved essential oil content under UV-B supplementation in aromatic plants under field conditions

  8. UV dosimetry in pollen of Pinus silvestris and stimulation studies of pollen tube growth after irradiation with UV and ionizing radiations

    International Nuclear Information System (INIS)

    Seibold, H.W.

    1976-01-01

    Pollen tube growth after exposure to UV- and ionizing radiation was investigated in Pinus silvestris as a function of different parameters. The preconditions for this are an exact UV dosimetry and the conversion of the UV dose of [erg] into [rad]. In spite of the fact that the calculation methods are theoretically already well known, the experimental determination of the absorbed energy dose, in particular the absorption factors, was complicated by the morphological structure of the pollen. The total-irradiation experiments showed that the stimulation and inhibition of pollen tube growth is highly dependent on the dose/dose rate region chosen. Stimulation is highly dependent on the dose rate after UV irradiation as well as after exposure to ionizing radiation. When the dose rates are very small, the values are practically the same as in non-irradiated controls; with increasing doses rate, stimulation increases, whereas at very high dose rates only growth inhibition is observed. After exposure to ionizing radiation, the quantum energy or wavelength of the radiation has no effect on tube growth; after UV irradiation, on the other hand, there is hardly any stimulation at short wavelengths. As these observations were not sufficient for drawing conclusions on the site of the stimulatory action, partial UV exposure with separate irradiation of the two nuclei and the cytoplasm was also carried out. Stimulation was found in each of the three irradiation sites; although nuclei and cytoplasma react differently and also differ in the initial reaction stages, there is always an anhancement of pollen tube growth. These findings are compared with some of the current hypotheses for an explanation of the stimulatory effect. (orig.) [de

  9. UV- Radiation Absorption by Ozone in a Model Atmosphere using ...

    African Journals Online (AJOL)

    UV- radiation absorption is studied through variation of ozone transmittance with altitude in the atmosphere for radiation in the 9.6μm absorption band using Goody's model atmosphere with cubic spline interpolation technique to improve the quality of the curve. The data comprising of pressure and temperature at different ...

  10. Impact of UV radiation on the physical properties of polypropylene ...

    African Journals Online (AJOL)

    The purpose of this study was to analyse the influence of simulated sun light radiation (xenon lamp) on physical properties of polypropylene (PP) nonwoven material, which is used for the production of agrotextiles. The research showed that the properties of row cover change when radiated with UV light. Tensile, tearing ...

  11. Effects of terrestrial UV radiation on selected outdoor materials: an interdisciplinary approach

    Science.gov (United States)

    Heikkilä, A.; Kazadzis, S.; Tolonen-Kivimäki, O.; Meinander, O.; Lindfors, A.; Lakkala, K.; Koskela, T.; Kaurola, J.; Sormanen, A.; Kärhä, P.; Naula-Iltanen, A.; Syrjälä, S.; Kaunismaa, M.; Juhola, J.; Ture, T.; Feister, U.; Kouremeti, N.; Bais, A.; Vilaplana, J. M.; Rodriguez, J. J.; Guirado, C.; Cuevas, E.; Koskinen, J.

    2009-08-01

    Modern polymeric materials possess an ever increasing potential in a large variety of outdoor objects and structures offering an alternative for many traditional materials. In outdoor applications, however, polymers are subject to a phenomenon called weathering. This is primarily observed as unwanted property changes: yellowing or fading, chalking, blistering, and even severe erosion of the material surface. One of the major weathering factors is UV radiation. In spring 2005, the Finnish Meteorological Institute with its research and industrial partners launched a five-year material research project named UVEMA (UV radiation Effects on MAterials). Within the framework of the project, a weathering network of seven European sites was established. The network extends from the Canary Islands of Spain (latitude 28.5°N) to the Lapland of Finland (latitude 67.4°N), covering a wide range of UV radiation conditions. Since autumn 2005, the sites of the network have been maintaining weathering platforms of specimens of different kinds of polymeric materials. At the same time, the sites have been maintaining their long-term monitoring programmes for spectrally resolved UV radiation. Within UVEMA, these data are used for explaining the differences between the degradation rates of the materials at each site and for correlating the UV conditions in accelerated ageing tests to those under the Sun. We will present the objectives of the UVEMA project aiming at deeper understanding of the ageing of polymers and more reliable assessments for their service life time. Methodologies adopted within the project and the first results of the project will be summarized.

  12. Measuring solar UV radiation with EBT radiochromic film

    International Nuclear Information System (INIS)

    Butson, Ethan T; Cheung Tsang; Yu, Peter K N; Butson, Martin J

    2010-01-01

    Ultraviolet radiation dosimetry has been performed with the use of a radiochromic film dosimeter called Gafchromic EBT for solar radiation exposure. The film changes from a clear colour to blue colour when exposed to ultraviolet radiation and results have shown that the colour change is reproducible within ±10% at 5 kJ m -2 UV exposure under various conditions of solar radiation. Parameters tested included changes in season (summer versus winter exposure), time of day, as well as sky conditions such as cloudy skies versus clear skies. As the radiochromic films' permanent colour change occurs in the visible wavelengths the film can be analysed with a desktop scanner with the most sensitive channel for analysis being the red component of the signal. Results showed that an exposure of 5 kJ m -2 (approximately 1 h exposure in full sun during summer) produced an approximate 0.28 change in the net OD when analysed in reflection mode on the desktop scanner which is significant darkening. The main advantages of this film type, and thus the new EBT2 film which has replaced EBT for measurement of UV exposure, is the visible colour change and thus easy analysis using a desktop scanner, its uniformity in response and its robust physical strength for use in outside exposure situations. (note)

  13. Five years of solar UV-radiation monitoring in Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Josefsson, Weine

    1996-10-01

    A network of five stations measuring the solar UV-radiation has been operated for about five years. Data are presented as plotted time-series of monthly and yearly values for the sites. A general climatology can be deduced from these data. Daily and hourly maximum values are shown for each month as indicators of the potential extreme exposure levels. The large annual variation at high latitudes is easily seen in the data set. This illustrates the importance of the solar elevation on the level of the UV-irradiance. Influence of cloud variation and of larger changes in ozone is also detectable. A few examples of the daily variation also show the strong solar elevation dependence of the UV-irradiance. The quantity and unit of the UV-radiation in this presentation is CIE-weighted irradiance expressed as MED (minimum erythermal dose), where one MED equals 210 Jm{sup -2}. The values have been recomputed to refer to the international intercomparison of broad-band meters in Helsinki in 1995. In the following named WMO-STUK 1995 scale. As will be seen there are many sources of error and detailed studies are prevented by the large uncertainty connected with these data. Due to the short period of the record and the low accuracy no attempt to study trends is done. 6 refs, 27 figs, 4 tabs

  14. An assessment of ozone levels, UV radiation and their occupational health hazard estimation during photocopying operation

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Bhupendra Pratap, E-mail: bpsingh0783@gmail.com; Kumar, Amit; Singh, Deepak; Punia, Monika; Kumar, Krishan; Jain, Vinod Kumar

    2014-06-30

    Highlights: • First quantitative report of ozone level and UV radiation emission from photocopier. • Ozone production is directly proportional with intensity of photocopy operation. • Ozone level from ground floor is significantly higher than basement photocopier. • Ozone production and UV radiation studied has less correlation during photocopy. • Health hazard issue has been evaluated for effect of UV radiation in terms of SED. - Abstract: This study investigates the levels of ozone concentration along with an ultraviolet (UV) and visible spectral radiation at eight photocopy centers in an academic institute, Delhi. Sampling was done in two types of locations, i.e., basement photocopy centers (BPC) and ground floor photocopy centers (GPC) for 8 h. Measurements of levels of ozone, UV and visible radiation were done by ozone analyzer, UV radiometer and Field spectra instrument, respectively. Results show that the hourly mean concentration of ozone was observed to be in the range of 1.8–10.0 ppb and 5.3–45.8 ppb for BPC and GPC, respectively. In terms UV radiations, energy lies between 5.0 × 10{sup −3} and 7.0 × 10{sup −3} mW/cm{sup 2} for ultraviolet A (UVA), 1.0 × 10{sup −3} and 2.0 × 10{sup −3} mW/cm{sup 2} for ultraviolet B (UVB) and 6.0 × 10{sup −3} and 8.0 × 10{sup −3} mW/cm{sup 2} for ultraviolet C (UVC). Correlation between the UV radiations and ozone production observed was statistically insignificant. To know the health hazard occurred to the workers, the standard erythema dose (SED) value was calculated for emitting UV radiation. The SED was estimated to be in the range of 0.02–0.04 and 0.02–0.32 for direct and indirect methods which is less than the guideline prescribed by Commission Internationale del’ Eclairage (CIE). In nutshell, person involved in photocopy operation for their livelihood must be trained and should have knowledge for the long term gradual build up health problems due to ozone and UV production from

  15. Radiative symmetry breaking from interacting UV fixed points

    DEFF Research Database (Denmark)

    Abel, Steven; Sannino, Francesco

    2017-01-01

    It is shown that the addition of positive mass-squared terms to asymptotically safe gauge-Yukawa theories with perturbative UV fixed points leads to calculable radiative symmetry breaking in the IR. This phenomenon, and the multiplicative running of the operators that lies behind it, is akin...

  16. Rapid bioelectric reaction of elodea leaf cells to the UV radiation

    International Nuclear Information System (INIS)

    Aliev, D.A.; Mamedov, T.G.; Akhmedov, I.S.; Khalilov, R.I.

    1984-01-01

    It has been established that changes of membrane potential (MP) of elodea leaf cells in the UV radiation are manifested in a form of rapid response reaction, which is similar to an action potential. At present a lot of new data confirming the existence of electrogenic proton pump on plasmalemma plant cells is making their appearance. The plant cell membrane potential consists of two components: equilibrium( passive) potential and potential created by an electrogenic proton pump. A contribution of the second component to the elodea leaf cell MP is considerable and constitutes more than a half of the total MP. Constant values of membrane conductivity and intracell electric bonds in the process of depolarization development and after MP recovery testify to the fact, that UV radiation does not effect upon the MP passive component. High degree of depolarization and its strong dependence on medium pH and also the observed effect independence on potassium and sodium ions presence in the external medium testify to the fact that UV radiation ingenuously inactivates electrogenic proton pumps

  17. Long-term effects of elevated UV-B radiation on photosynthesis and ultrastructure of Eriophorum russeolum and Warnstorfia exannulata

    International Nuclear Information System (INIS)

    Haapala, Jaana K.; Moersky, Sami K.; Saarnio, Sanna; Suokanerva, Hanne; Kyroe, Esko; Silvola, Jouko; Holopainen, Toini

    2010-01-01

    The depletion of stratospheric ozone above the Arctic regions may increase the amount of UV-B radiation to which the northern ecosystems are exposed. In this paper, we examine the hypothesis that supplemental UV-B radiation may affect the growth rate and photosynthesis of boreal peatland plants and could thereby affect the carbon uptake of these ecosystems. In this study, we report the effects of 3-year exposure to elevated UV-B radiation (46% above ambient) on the photosynthetic performance and ultrastructure of a boreal sedge Eriophorum russeolum and a moss Warnstorfia exannulata. The experiment was conducted on a natural fen ecosystem at Sodankylae in northern Finland. The effects of UV-B radiation on the light response of E. russeolum CO 2 assimilation and the maximal photochemical efficiency of photosystem II in a dark-adapted state (F v /F m ) were measured in the field. In addition, the effect of supplemental UV-B radiation on organelles of photosynthetic cells was studied by electron microscopy. The UV-B treatment had no effect on the CO 2 assimilation rate of either species, nor did it affect the structure of the cell organelles. On chlorophyll fluorescence, the UV-B exposure had only a temporary effect during the third exposure year. Our results suggested that in a natural ecosystem, even long-term exposure to reasonably elevated UV-B radiation levels does not affect the photosynthesis of peatland plants. - Research highlights: →Eriophorum russeolum and Warnstorfia exannulata are resistant to UV-B radiationUV-B exposure does not affect the growth or photosynthesis of E. russeolum →Long-term UV-B exposure has no effect on the ultrastructure of E. russeolum

  18. Water and Wastewater Disinfection with Peracetic Acid and UV Radiation and Using Advanced Oxidative Process PAA/UV

    OpenAIRE

    Beber de Souza, Jeanette; Queiroz Valdez, Fernanda; Jeranoski, Rhuan Felipe; Vidal, Carlos Magno de Sousa; Cavallini, Grasiele Soares

    2015-01-01

    The individual methods of disinfection peracetic acid (PAA) and UV radiation and combined process PAA/UV in water (synthetic) and sanitary wastewater were employed to verify the individual and combined action of these advanced oxidative processes on the effectiveness of inactivation of microorganisms indicators of fecal contamination E. coli, total coliforms (in the case of sanitary wastewater), and coliphages (such as virus indicators). Under the experimental conditions investigated, doses o...

  19. Occupational radiation exposure in Germany in 2012. Report of the radiation protection register; Die berufliche Strahlenexposition in Deutschland 2012. Bericht des Strahlenschutzregisters

    Energy Technology Data Exchange (ETDEWEB)

    Frasch, Gerhard; Kammerer, Lothar; Karofsky, Ralf; Mordek, Else; Schlosser, Andrea; Spiesl, Josef

    2014-04-15

    In Germany, persons who are occupationally exposed to ionising radiation are monitored by several official dosimetry services that transmit the dose records about individual radiation monitoring to the Radiation Protection Register of the Federal Office for Radiation Protection (BfS). The purpose of the Radiation Protection Register is to supervise the keeping of the dose limits and to monitor the compliance with the radiation protection principle ''Optimisation'' by performing detailed annual statistical analyses of the monitored persons and their radiation exposure. The annual report of the Radiation Protection Register provides information about status and development of occupational radiation exposure in Germany. In 2012, about 350,000 workers were monitored with dosemeters for occupational radiation exposure. The number increased continuously by totally 10 % into the past five years. 19 % of the monitored persons received measurable personal doses. The average annual dose of these exposed workers was 0.52 mSv corresponding to 2.6 % of the annual dose limit of 20 mSv for radiation workers. In total, 2 persons exceeded the annual dose limit of 20 mSv, i.e. less than one case per 100,000 monitored persons. The collective dose of the monitored persons decreased to 27.9 Person-Sv, the lowest value since the last fifty years of occupational dose monitoring. 45 airlines calculated the route doses of 40,000 aircraft crew members by using certified computer programmes for dose calculation and sent the accumulated monthly doses via the Federal Office for Civil Aviation (''Luftfahrt-Bundesamt, LBA'') to the BfS. The collective dose of the aircraft crew personnel is 78.5 person- Sv, and thus significantly higher than the total collective dose of the workers monitored with personal dosemeters. The annual average dose of aircraft crew personnel was 1.96 mSv and decreased compared to 2011 (2.12 mSv) due to solar cycle. In 2012, about

  20. A comparative approach of methylparaben photocatalytic degradation assisted by UV-C, UV-A and Vis radiations.

    Science.gov (United States)

    Doná, Giovanna; Dagostin, João Luiz Andreoti; Takashina, Thiago Atsushi; de Castilhos, Fernanda; Igarashi-Mafra, Luciana

    2018-05-01

    Due to the widespread use of methylparaben (MEP) and its high chemical stability, it can be found in wastewater treatment plants and can act as an endocrine disrupting compound. In this study, the photocatalytic degradation and mineralization of MEP solutions were evaluated under UV-A, UV-C and Vis radiations in the presence of the photocatalyst TiO 2 . In this sense, the effects of the catalyst load, pH and MEP initial concentration were studied. Remarkably higher reaction rates and total photodegradation were achieved in systems assisted by UV-C radiation. The complete degradation was achieved after 60 min of reaction using the MEP concentration of 30 mg L -1 at pH 9 and 500 mg L -1 TiO 2 . The experimental data apparently followed a Langmuir-Hinshelwood kinetic model, which could predict 88-98% of the reaction behavior. For the best photodegradation condition, the model predicted an apparent reaction rate constant (k app ) equal to 0.0505 min -1 and an initial reaction rate of 1.5641 mg (L min) -1 . Mineralization analyses showed high removal for MEP and derived compounds from the initial solution when using UV-C after 90 min of reaction. The lower toxicity was also confirmed by in vivo tests using MEP solutions previously treated by photocatalysis.

  1. UV light-induced survival response in a highly radiation-resistant isolate of the Moraxella-acinetobacter group

    International Nuclear Information System (INIS)

    Keller, L.C.; Thompson, T.L.; Maxcy, R.B.

    1982-01-01

    A highly radiation-resistant member of the Moraxella-Acinetobacter group, isolate 4, obtained from meat, was studied to determine the effect of preexposure to UV radiation on subsequent UV light resistance. Cultures that were preexposed to UV light and incubated for a short time in plate count broth exhibited increased survival of a UV light challenge dose. This response was inhibited in the presence of chloramphenicol. Frequencies of mutation to streptomycin, trimethoprim, and sulfanilamide resistance remained the same after the induction of this survival response and were not altered by treatment with mutagens, with the exception of mutation to streptomycin resistance after γ-irradiation or nitrosoguanidine or methyl methane sulfonate treatment. The results indicated that isolate 4 has a UV light-inducible UV light resistance mechanism which is not associated with increased mutagenesis. The characteristics of the radiation resistance response in this organism are similar to those of certain other common food contaminants. Therefore, considered as part of the total microflora of meat, isolate 4 and the other radiation-resistant Moraxella-Acinetobacter isolates should not pose unique problems in a proposed radappertizaton process

  2. Combined impact of solar UV-B radiation and selenium treatment on respiratory potential in pumpkins (Cucurbita pepo L.)

    International Nuclear Information System (INIS)

    Germ, M.

    2005-01-01

    The effects of ambient and filtered solar UV-B radiation and of selenium treatment on respiratory potential measured by electron transport system (ETS) activity in pumpkins, Cucurbita pepo L. were studied. Measurements were conducted three times in the growth period. Solar UV-B radiation decreased ETS activity in plants, regardless selenium treatment. The results suggested that the solar UV-B radiation impaired flow of electrons in the respiratory chain. Selenium decreased ETS activity in plants exposed to solar UV-B radiation in the end of the vegetation period

  3. Effect of ionizing (gamma and non-ionizing (UV radiation on the development of Trichogramma euproctidis (Hymenoptera: Trichogrammatidae

    Directory of Open Access Journals (Sweden)

    Tuncbilek Aydin S.

    2012-01-01

    Full Text Available The potential of using gamma and ultraviolet radiation as an alternative treatment to increase the efficiency of Trichogramma euproctidis (Girault 1911 (Hymenoptera: Trichogrammatidae was investigated in the laboratory. The developmental and adult stages of T. euproctidis were exposed to gamma radiation of different doses (0-30 Gy and ultraviolet radiation of 254 nm wavelengths (UV-C for different durations (0-10 min to assess their effect on each of the instars and their potential in breaking the developmental cycle of the egg parasitoid. The LD50 values for eggs, prepupae, pupae and adults were 8.1, 10.0, 22.7 and 9.5 Gy for gamma radiation and 9.5, 0.12, 2.0 and 11.9 min for UV radiation, respectively. The pupa and adult stages were more radioresistant to both gamma and UV radiation. The most interesting and unexpected result obtained for the prepupal stage was that UV radiation has a greater effect on prepupal stages than gamma radiation.

  4. Sensitivity to UV radiation in early life stages of the Mediterranean sea urchin Sphaerechinus granularis (Lamarck)

    International Nuclear Information System (INIS)

    Nahon, Sarah; Castro Porras, Viviana A.; Pruski, Audrey M.; Charles, Francois

    2009-01-01

    The sea urchin Sphaerechinus granularis was used to investigate the impact of relevant levels of UV-B radiation on the early life stages of a common Mediterranean free spawning benthic species. Sperm, eggs and embryos were exposed to a range of UV radiation doses. The resulting endpoints were evaluated in terms of fertilisation success, development and survival rates. Above a weighted UV radiation dose of 0.0029 kJ m -2 , fertilisation capability of irradiated sperm decreased rapidly. The exposure of the eggs to 0.0175 kJ m -2 and more led to delayed and inhibited development with ensuing embryonic morphological abnormalities. One-day old larvae remained strongly sensitive to UV radiation as shown by the 50% decrease of the larval survival rate for a dose of 0.025 kJ m -2 UVR. The elevated sensitivity of embryos to experimental UVR went along with a lack of significant amount of sunscreen compounds (e.g., mycosporine-like amino acids) in the eggs. The present results demonstrated that gamete viability and embryonic development may be significantly impaired by solar UV radiation in S. granularis, compromising in this way the reproduction of the species. Unless adaptive behavioural reproductive strategies exist, the influence of ambient UV radiation appears as a selective force for population dynamics of broadcast spawners in the shallow benthic Mediterranean environment

  5. Sensitivity to UV radiation in early life stages of the Mediterranean sea urchin Sphaerechinus granularis (Lamarck)

    Energy Technology Data Exchange (ETDEWEB)

    Nahon, Sarah [UPMC Univ Paris 06, UMR 7621, LOBB, Observatoire Oceanologique, F-66651, Banyuls/mer (France); CNRS, UMR 7621, LOBB, Observatoire Oceanologique, F-66651, Banyuls/mer (France); Castro Porras, Viviana A. [UPMC Univ Paris 06, UMR 7621, LOBB, Observatoire Oceanologique, F-66651, Banyuls/mer (France); Pruski, Audrey M. [UPMC Univ Paris 06, UMR 7621, LOBB, Observatoire Oceanologique, F-66651, Banyuls/mer (France); CNRS, UMR 7621, LOBB, Observatoire Oceanologique, F-66651, Banyuls/mer (France); Charles, Francois [UPMC Univ Paris 06, UMR 7621, LOBB, Observatoire Oceanologique, F-66651, Banyuls/mer (France); CNRS, UMR 7621, LOBB, Observatoire Oceanologique, F-66651, Banyuls/mer (France)], E-mail: charles@obs-banyuls.fr

    2009-03-01

    The sea urchin Sphaerechinus granularis was used to investigate the impact of relevant levels of UV-B radiation on the early life stages of a common Mediterranean free spawning benthic species. Sperm, eggs and embryos were exposed to a range of UV radiation doses. The resulting endpoints were evaluated in terms of fertilisation success, development and survival rates. Above a weighted UV radiation dose of 0.0029 kJ m{sup -2}, fertilisation capability of irradiated sperm decreased rapidly. The exposure of the eggs to 0.0175 kJ m{sup -2} and more led to delayed and inhibited development with ensuing embryonic morphological abnormalities. One-day old larvae remained strongly sensitive to UV radiation as shown by the 50% decrease of the larval survival rate for a dose of 0.025 kJ m{sup -2} UVR. The elevated sensitivity of embryos to experimental UVR went along with a lack of significant amount of sunscreen compounds (e.g., mycosporine-like amino acids) in the eggs. The present results demonstrated that gamete viability and embryonic development may be significantly impaired by solar UV radiation in S. granularis, compromising in this way the reproduction of the species. Unless adaptive behavioural reproductive strategies exist, the influence of ambient UV radiation appears as a selective force for population dynamics of broadcast spawners in the shallow benthic Mediterranean environment.

  6. Response of antioxidant defense system to laser radiation apical meristem of Isatis indigotica seedlings exposed to UV-B.

    Science.gov (United States)

    Chen, Yi-Ping

    2009-07-01

    To determine the response of antioxidant defense system to laser radiation apical meristem of Isatis indigotica seedlings, Isatis indigotica seedlings were subjected to UV-B radiation (10.08 kJ m(-2)) for 8 h day(-1) for 8 days (PAR, 220 micromol m(-2) s(-1)) and then exposed to He-Ne laser radiation (633 nm; 5.23 mW mm(-2); beam diameter: 1.5 mm) for 5 min each day without ambient light radiation. Changes in free radical elimination systems were measured, the results indicate that: (1) UV-B radiation enhanced the concentration of Malondialdahyde (MDA) and decreased the activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) in seedlings compared with the control. The concentration of MDA was decreased and the activities of SOD, CAT and POD were increased when seedlings were subjected to elevated UV-B damage followed by laser; (2) the concentration of UV absorbing compounds and proline were increased progressively with UV-B irradiation, laser irradiation and He-Ne laser irradiation plus UV-B irradiation compared with the control. These results suggest that laser radiation has an active function in repairing UV-B-induced lesions in seedlings.

  7. Increased UV-B radiation reduces N2-fixation in tropical leguminous crops

    International Nuclear Information System (INIS)

    Anupa Singh

    1997-01-01

    Net photosynthesis, leaf area, biomass, and number, size and activity of nodules were examined in three leguminous plants subjected under field conditions to supplemental UV-B radiation equivalent to a 15% ozone depletion at 25 degrees N latitude. Enhanced UV-B radiation adversely affected the net photosynthetic rate, growth characteristics and nodule activity in all three species. Maximum reduction in net photosynthesis occurred in Phaseolus mungo cv. Pant U-30, whereas the greatest reduction in nitrogenase activity occurred in Vigna radiata. (author)

  8. Natural Microbial UV Radiation Filters - Mycosporine-like Amino Acids

    Czech Academy of Sciences Publication Activity Database

    Řezanka, Tomáš; Temina, M.; Tolstikov, A. G.; Dembitsky, V. M.

    2004-01-01

    Roč. 49, č. 4 (2004), s. 339-352 ISSN 0015-5632 Institutional research plan: CEZ:AV0Z5020903 Keywords : uv radiation * maas * ultraviolet-b Subject RIV: EE - Microbiology, Virology Impact factor: 1.034, year: 2004

  9. UV-B radiation-induced oxidative stress and p38 signaling pathway involvement in the benthic copepod Tigriopus japonicus.

    Science.gov (United States)

    Kim, Bo-Mi; Rhee, Jae-Sung; Lee, Kyun-Woo; Kim, Min-Jung; Shin, Kyung-Hoon; Lee, Su-Jae; Lee, Young-Mi; Lee, Jae-Seong

    2015-01-01

    Ultraviolet B (UV-B) radiation presents an environmental hazard to aquatic organisms. To understand the molecular responses of the intertidal copepod Tigriopus japonicus to UV-B radiation, we measured the acute toxicity response to 96 h of UV-B radiation, and we also assessed the intracellular reactive oxygen species (ROS) levels, glutathione (GSH) content, and antioxidant enzyme (GST, GR, GPx, and SOD) activities after 24 h of exposure to UV-B with LD50 and half LD50 values. Also, expression patterns of p53 and hsp gene families with phosphorylation of p38 MAPK were investigated in UV-B-exposed copepods. We found that the ROS level, GSH content, and antioxidant enzyme activity levels were increased with the transcriptional upregulation of antioxidant-related genes, indicating that UV-B induces oxidative stress by generating ROS and stimulating antioxidant enzymatic activity as a defense mechanism. Additionally, we found that p53 expression was significantly increased after UV-B irradiation due to increases in the phosphorylation of the stress-responsive p38 MAPK, indicating that UV-B may be responsible for inducing DNA damage in T. japonicus. Of the hsp family genes, transcriptional levels of hsp20, hsp20.7, hsp70, and hsp90 were elevated in response to a low dose of UV-B radiation (9 kJ m(-2)), suggesting that these hsp genes may be involved in cellular protection against UV-B radiation. In this paper, we performed a pathway-oriented mechanistic analysis in response to UV-B radiation, and this analysis provides a better understanding of the effects of UV-B in the intertidal benthic copepod T. japonicus. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Penetration of UV-B radiation in foliage: evidence that the epidermis behaves as a non-uniform filter

    International Nuclear Information System (INIS)

    Day, T.A.; Martin, G.; Vogelmann, T.C.

    1993-01-01

    In some plants, particularly herbaceous species, a considerable proportion of incident ultraviolet-B radiation (UV-B, 280-320 nm) penetrates into the leaf mesophyll where it is potentially damaging to nucleic acids and the photosynthetic machinery. We used optical techniques to look at the spatial variation in UV-B penetration through the epidermis of foliage of two herbaceous species (Chenopodium album and Smilacina stellata) and a conifer (Picea pungens). Measurements of UV-B penetration in intact foliage with a fibre-optic microprobe revealed that 300 nm radiation reached 161±36μm (mean±SD) into leaves of C. album, 154±40μm in S. stellata and 17±2μm in P. pungens, with epidermal transmittance being 39±14%, 55±19% and 0%, respectively. A thin polymer film was developed which fluoresced blue when irradiated by UV-B. Fresh epidermal leaf peels were placed over the film and irradiated with UV-B, and microscopic examination of the film from below allowed us to determine the spatial pattern of UV-B penetration through the epidermis. In herbaceous species, film fluorescence below cell walls, but not epidermal and guard cell protoplasts indicated that UV-B transmittance was much greater through anticlinal cell wall regions than protoplasts. Ultraviolet-B transmittance through large areas of epidermal cells could be induced by plasmolysis. Epidermal transmittance was also relatively high through stomal pores (and what appear to be nuclei in Smilacina), but relatively low through stomatal guard cells. Results from the fluorescing film technique were substantiated by direct measurements of UV-B transmittance through epidermal peels with a fibre-optic microprobe run paradermally along the bottom or inner side of irradiated peels. In Smilacina, we estimate that UV-B epidermal transmittance was up to 90% through anticlinal cell wall regions, but <10% through protoplast areas. In contrast to herbaceous species, we did not detect any UV-B transmittance through the

  11. DSMC simulation of two-phase plume flow with UV radiation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jie; Liu, Ying; Wang, Ning; Jin, Ling [College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, Hunan, 410073 (China)

    2014-12-09

    Rarefied gas-particle two-phase plume in which the phase of particles is liquid or solid flows from a solid propellant rocket of hypersonic vehicle flying at high altitudes, the aluminum oxide particulates not only impact the rarefied gas flow properties, but also make a great difference to plume radiation signature, so the radiation prediction of the rarefied gas-particle two-phase plume flow is very important for space target detection of hypersonic vehicles. Accordingly, this project aims to study the rarefied gas-particle two-phase flow and ultraviolet radiation (UV) characteristics. Considering a two-way interphase coupling of momentum and energy, the direct simulation Monte Carlo (DSMC) method is developed for particle phase change and the particle flow, including particulate collision, coalescence as well as separation, and a Monte Carlo ray trace model is implemented for the particulate UV radiation. A program for the numerical simulation of the gas-particle two-phase flow and radiation in which the gas flow nonequilibrium is strong is implemented as well. Ultraviolet radiation characteristics of the particle phase is studied based on the calculation of the flow field coupled with the radiation calculation, the radiation model for different size particles is analyzed, focusing on the effects of particle emission, absorption, scattering as well as the searchlight emission of the nozzle. A new approach may be proposed to describe the rarefied gas-particle two-phase plume flow and radiation transfer characteristics in this project.

  12. DSMC simulation of two-phase plume flow with UV radiation

    Science.gov (United States)

    Li, Jie; Liu, Ying; Wang, Ning; Jin, Ling

    2014-12-01

    Rarefied gas-particle two-phase plume in which the phase of particles is liquid or solid flows from a solid propellant rocket of hypersonic vehicle flying at high altitudes, the aluminum oxide particulates not only impact the rarefied gas flow properties, but also make a great difference to plume radiation signature, so the radiation prediction of the rarefied gas-particle two-phase plume flow is very important for space target detection of hypersonic vehicles. Accordingly, this project aims to study the rarefied gas-particle two-phase flow and ultraviolet radiation (UV) characteristics. Considering a two-way interphase coupling of momentum and energy, the direct simulation Monte Carlo (DSMC) method is developed for particle phase change and the particle flow, including particulate collision, coalescence as well as separation, and a Monte Carlo ray trace model is implemented for the particulate UV radiation. A program for the numerical simulation of the gas-particle two-phase flow and radiation in which the gas flow nonequilibrium is strong is implemented as well. Ultraviolet radiation characteristics of the particle phase is studied based on the calculation of the flow field coupled with the radiation calculation, the radiation model for different size particles is analyzed, focusing on the effects of particle emission, absorption, scattering as well as the searchlight emission of the nozzle. A new approach may be proposed to describe the rarefied gas-particle two-phase plume flow and radiation transfer characteristics in this project.

  13. Survival of thermophilic and hyperthermophilic microorganisms after exposure to UV-C, ionizing radiation and desiccation.

    Science.gov (United States)

    Beblo, Kristina; Douki, Thierry; Schmalz, Gottfried; Rachel, Reinhard; Wirth, Reinhard; Huber, Harald; Reitz, Günther; Rettberg, Petra

    2011-11-01

    In this study, we investigated the ability of several (hyper-) thermophilic Archaea and phylogenetically deep-branching thermophilic Bacteria to survive high fluences of monochromatic UV-C (254 nm) and high doses of ionizing radiation, respectively. Nine out of fourteen tested microorganisms showed a surprisingly high tolerance against ionizing radiation, and two species (Aquifex pyrophilus and Ignicoccus hospitalis) were even able to survive 20 kGy. Therefore, these species had a comparable survivability after exposure to ionizing radiation such as Deinococcus radiodurans. In contrast, there was nearly no difference in survival of the tested strains after exposure to UV-C under anoxic conditions. If the cells had been dried in advance of UV-C irradiation, they were more sensitive to UV-C radiation compared with cells irradiated in liquid suspension; this effect could be reversed by the addition of protective material like sulfidic ores before irradiation. By exposure to UV-C, photoproducts were formed in the DNA of irradiated Archaea and Bacteria. The distribution of the main photoproducts was species specific, but the amount of the photoproducts was only partly dependent on the applied fluence. Overall, our results show that tolerance to radiation seems to be a common phenomenon among thermophilic and hyperthermophilic microorganisms.

  14. Frequency of intrachromosomal homologous recombination induced by UV radiation in normally repairing and excision repair-deficient human cells

    International Nuclear Information System (INIS)

    Tsujimura, T.; Maher, V.M.; McCormick, J.J.; Godwin, A.R.; Liskay, R.M.

    1990-01-01

    To investigate the role of DNA damage and nucleotide excision repair in intrachromosomal homologous recombination, a plasmid containing duplicated copies of the gene coding for hygromycin resistance was introduced into the genome of a repair-proficient human cell line, KMST-6, and two repair-deficient lines, XP2OS(SV) from xeroderma pigmentosum complementation group A and XP2YO(SV) from complementation group F. Neither hygromycin-resistance gene codes for a functional enzyme because each contains an insertion/deletion mutation at a unique site, but recombination between the two defective genes can yield hygromycin-resistant cells. The rates of spontaneous recombination in normal and xeroderma pigmentosum cell strains containing the recombination substrate were found to be similar. The frequency of UV-induced recombination was determined for three of these cell strains. At low doses, the group A cell strain and the group F cell strain showed a significant increase in frequency of recombinants. The repair-proficient cell strain required 10-to 20-fold higher doses of UV to exhibit comparable increases in frequency of recombinants. These results suggest that unexcised DNA damage, rather than the excision repair process per se, stimulates such recombination

  15. Photomorphogenetic responses to UV radiation and short-term red light in lettuce seedlings

    International Nuclear Information System (INIS)

    Kobzar, E.F.; Kreslavski, V.D.; Muzafarov, E.N.

    1998-01-01

    Effects of red light (R), far-red light (FR) and UV radiation on growth and greening of lettuce seedlings (Latuca sativa L., cv. Berlinskii) have been investigated. UV-B and UV-C inhibited hypocotyl elongation and stimulated cotyledonary growth. R in combination with UV-B and UV-C partly eliminated these effects, but FR increased those and reversed the R effect. Chlorophyll accumulation was inhibited by UV-B and UV-C. In comparison with cotyledonary growth, R strengthened the UV inhibitory effect, and FR reversed this effect of R. Thus, UV and phytochrome system modify the effects of each other on hypocotyl and leaf growth in lettuce seedlings depending on the level of active phytochrome formed

  16. Light scattering on PHA granules protects bacterial cells against the harmful effects of UV radiation.

    Science.gov (United States)

    Slaninova, Eva; Sedlacek, Petr; Mravec, Filip; Mullerova, Lucie; Samek, Ota; Koller, Martin; Hesko, Ondrej; Kucera, Dan; Marova, Ivana; Obruca, Stanislav

    2018-02-01

    Numerous prokaryotes accumulate polyhydroxyalkanoates (PHA) in the form of intracellular granules. The primary function of PHA is the storage of carbon and energy. Nevertheless, there are numerous reports that the presence of PHA granules in microbial cells enhances their stress resistance and fitness when exposed to various stress factors. In this work, we studied the protective mechanism of PHA granules against UV irradiation employing Cupriavidus necator as a model bacterial strain. The PHA-accumulating wild type strain showed substantially higher UV radiation resistance than the PHA non-accumulating mutant. Furthermore, the differences in UV-Vis radiation interactions with both cell types were studied using various spectroscopic approaches (turbidimetry, absorption spectroscopy, and nephelometry). Our results clearly demonstrate that intracellular PHA granules efficiently scatter UV radiation, which provides a substantial UV-protective effect for bacterial cells and, moreover, decreases the intracellular level of reactive oxygen species in UV-challenged cells. The protective properties of the PHA granules are enhanced by the fact that granules specifically bind to DNA, which in turn provides shield-like protection of DNA as the most UV-sensitive molecule. To conclude, the UV-protective action of PHA granules adds considerable value to their primary storage function, which can be beneficial in numerous environments.

  17. Effects of lanthanum(III) on nitrogen metabolism of soybean seedlings under elevated UV-B radiation.

    Science.gov (United States)

    Cao, Rui; Huang, Xiao-hua; Zhou, Qing; Cheng, Xiao-ying

    2007-01-01

    The hydroponic culture experiments of soybean bean seedlings were conducted to investigate the effect of lanthanum (La) on nitrogen metabolism under two different levels of elevated UV-B radiation (UV-B, 280-320 nm). The whole process of nitrogen metabolism involves uptake and transport of nitrate, nitrate assimilation, ammonium assimilation, amino acid biosynthesis, and protein synthesis. Compared with the control, UV-B radiation with the intensity of low level 0.15 W/m2 and high level 0.45 W/m2 significantly affected the whole nitrogen metabolism in soybean seedlings (p nitrogen-metabolism-related enzymes, such as: nitrate reductase (NR) to the nitrate reduction, glutamine systhetase (GS) and glutamine synthase (GOGAT) to the ammonia assimilation, while it increased the content of free amino acids and decreased that of soluble protein as well. The damage effect of high level of UV-B radiation on nitrogen metabolism was greater than that of low level. And UV-B radiation promoted the activity of the anti-adversity enzyme glutamate dehydrogenase (GDH), which reduced the toxicity of excess ammonia in plant. After pretreatment with the optimum concentration of La (20 mg/L), La could increase the activity of NR, GS, GOGAT, and GDH, and ammonia assimilation, but decrease nitrate and ammonia accumulation. In conclusion, La could relieve the damage effect of UV-B radiation on plant by regulating nitrogen metabolism process, and its alleviating effect under low level was better than that under the high one.

  18. Effects of increasing UV-B radiation and atmospheric CO2 on photosynthesis and growth: implications for terrestrial ecosystems

    International Nuclear Information System (INIS)

    Sullivan, J.H.

    1997-01-01

    Increases in UV-B radiation reaching the earth as a result of stratospheric ozone depletion will most likely accompany increases in atmospheric CO 2 concentrations. Many studies have examined the effects of each factor independently, but few have evaluated the combined effects of both UV-B radiation and elevated CO 2 . In general the results of such studies have shown independent effects on growth or seed yield. Although interspecific variation is large, high levels of UV-B radiation tends to reduce plant growth in sensitive species, while CO 2 enrichment tends to promote growth in most C 3 species. However, most previous studies have not looked at temporal effects or at the relationship between photosynthetic acclimation to CO 2 and possible photosynthetic limitations imposed by UV-B radiation. Elevated CO 2 may provide some protection against UV-B for some species. In contrast, UV-B radiation may limit the ability to exploit elevated CO 2 in other species. Interactions between the effects of CO 2 enrichment and UV-B radiation exposure have also been shown for biomass allocation. Effects on both biomass allocation and photosynthetic acclimation may be important to ecosystem structure in terms of seedling establishment, competition and reproductive output. Few studies have evaluated ecosystem processes such as decomposition or nutrient cycling. Interactive effects may be subtle and species specific but should not be ignored in the assessment of the potential impacts of increases in CO 2 and UV-B radiation on plants. (author)

  19. Rapid maize leaf and immature ear responses to UV-B radiation

    International Nuclear Information System (INIS)

    Casati, P.; Morrow, D.; Fernandes, J.; Walbot, V.

    2011-01-01

    Plants have evolved adaptations to environmental factors, including solar radiation. In addition to acting as a developmental and physiological signal, UV-B photons also cause cellular damage. Elevated UV-B radiation has pleiotropic effects on plant development, morphology, and physiology, but the regulation of systemic responses is not well-understood. To gain a better understanding of the initial events in UV-B acclimation, we have analyzed a 10min to 1h time course of transcriptome responses in irradiated and shielded leaves, and immature maize ears to unravel the systemic physiological and developmental responses in exposed and shielded organs. To identify metabolites as possible signaling molecules, we looked for compounds that increased within 5-90 min in both irradiated and shielded leaves, to explain the kinetics of profound transcript changes within 1h. We found that myoinositol is one such candidate metabolite, and it also has support from RNA profiling: after 1h UV-B, transcripts for myoinositol-1-phosphate synthase, are decreased in both irradiated and shielded leaves suggesting down-regulation of biogenesis. We also demonstrate that if 0.1mM myoinositol is applied to leaves of greenhouse maize, some metabolites that are changed by UV-B are also changed similarly by the chemical treatment. (author)

  20. Sequence-selective topoisomerase II inhibition by anthracycline derivatives in SV40 DNA: Relationship with DNA binding affinity and cytotoxicity

    International Nuclear Information System (INIS)

    Capranico, G.; Kohn, K.W.; Pommier, Y.; Zunino, F.

    1990-01-01

    Topoisomerase II mediated double-strand breaks produced by anthracycline analogues were studied in SV40 DNA. The compounds included doxorubicin, daunorubicin, two doxorubicin stereoisomers (4'-epimer and β-anomer), and five chromophore-modified derivatives, with a wide range of cytotoxic activity and DNA binding affinity. Cleavage of 32 P-end-labeled DNA fragments was visualized by autoradiography of agarose and polyacrylamide gels. Structure-activity relationships indicated that alterations in the chromophore structure greatly affected drug action on topoisomerase II. In particular, removal of substituents on position 4 of the D ring resulted in more active inducers of cleavage with lower DNA binding affinity. The stereochemistry between the sugar and the chromophore was also essential for activity. All the active anthracyclines induced a single region of prominent cleavage in the entire SV40 DNA, which resulted from a cluster of sites between nucleotides 4237 and 4294. DNA cleavage intensity patterns exhibited differences among analogues and were also dependent upon drug concentration. Intensity at a given site dependent on both stimulatory and suppressive effects depending upon drug concentration and DNA sequence. A good correlation was found between cytotoxicity and intensity of topoisomerase II mediated DNA breakage

  1. Photoprotectant improves photostability and bioactivity of abscisic acid under UV radiation.

    Science.gov (United States)

    Gao, Fei; Hu, Tanglu; Tan, Weiming; Yu, Chunxin; Li, Zhaohu; Zhang, Lizhen; Duan, Liusheng

    2016-05-01

    Photosensitivity causes serious drawback for abscisic acid (ABA) application, but preferable methods to stabilize the compound were not found yet. To select an efficient photoprotectant for the improvement of photostability and bioactivity of ABA when exposed to UV light, we tested the effects of a photostabilizer bis(2,2,6,6-tetramethyl-4-piperidinyl) sebacate (HS-770) and two UV absorbers 2-hydroxy-4-n-octoxy-benzophenone (UV-531) and 2-hydroxy-4-methoxybenzophenone-5-sulfonic acid (BP-4) with or without HS-770 on the photodegradation of ABA. Water soluble UV absorber BP-4 and oil soluble UV absorber UV-531 showed significant photo-stabilizing capability on ABA, possibly due to competitive energy absorption of UVB by the UV absorbers. The two absorbers showed no significant difference. Photostabilizer HS-770 accelerated the photodegradation of ABA and did not improve the photo-stabilizing capability of BP-4, likely due to no absorption in UVB region and salt formation with ABA and BP-4. Approximately 26% more ABA was kept when 280mg/l ABA aqueous solution was irradiated by UV light for 2h in the presence of 200mg/l BP-4. What's more, its left bioactivity on wheat seed (JIMAI 22) germination was greatly kept by BP-4, comparing to that of ABA alone. The 300 times diluent of 280mg/l ABA plus 200mg/l BP-4 after 2h irradiation showed more than 13% inhibition on shoot and root growth of wheat seed than that of ABA diluent alone. We concluded that water soluble UV absorber BP-4 was an efficient agent to keep ABA activity under UV radiation. The results could be used to produce photostable products of ABA compound or other water soluble agrichemicals which are sensitive to UV radiation. The frequencies and amounts of the agrichemicals application could be thereafter reduced. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Effect of UV-B Radiation and Desiccation Stress on Photoprotective Compounds Accumulation in Marine Leptolyngbya sp.

    Science.gov (United States)

    Joshi, Devika; Mohandass, C; Dhale, Mohan

    2018-01-01

    Increased awareness regarding the harmful effects of ultraviolet (UV)-B radiation has led to the search for new sources of natural UV-B protecting compounds. Mycosporine-like amino acids are one of such promising compounds found in several organisms. Cyanobacteria are ideal organisms for isolation of these compounds due to their compatibility and adaptability to thrive under harsh environmental conditions. In the following investigation, we report the production of shinorine in Leptolyngbya sp. isolated from the intertidal region. Based on the spectral characteristics and liquid chromatography-mass spectrometry analysis, the UV-absorbing compound was identified as shinorine. To the best of our knowledge, this is the first report on the occurrence of shinorine in Leptolyngbya sp. We also investigated the effect of artificial UV-B radiation and periodic desiccation on chlorophyll-a, total carotenoids, and mycosporine-like amino acids (MAAs) production. The UV-B radiation had a negative effect on growth and chlorophyll concentration, whereas it showed an inductive effect on the production of total carotenoids and MAAs. Desiccation along with UV-B radiation led to an increase in the concentration of photoprotective compounds. These results indicate that carotenoids and MAAs thus facilitate cyanobacteria to avoid and protect themselves from the deleterious effects of UV-B and desiccation.

  3. Beneficial effects of solar UV-B radiation on soybean yield mediated by reduced insect herbivory under field conditions.

    Science.gov (United States)

    Mazza, Carlos A; Giménez, Patricia I; Kantolic, Adriana G; Ballaré, Carlos L

    2013-03-01

    Ultraviolet-B radiation (UV-B: 280-315 nm) has damaging effects on cellular components and macromolecules. In plants, natural levels of UV-B can reduce leaf area expansion and growth, which can lead to reduced productivity and yield. UV-B can also have important effects on herbivorous insects. Owing to the successful implementation of the Montreal Protocol, current models predict that clear-sky levels of UV-B radiation will decline during this century in response to ozone recovery. However, because of climate change and changes in land use practices, future trends in UV doses are difficult to predict. In the experiments reported here, we used an exclusion approach to study the effects of solar UV-B radiation on soybean crops, which are extensively grown in many areas of the world that may be affected by future variations in UV-B radiation. In a first experiment, performed under normal management practices (which included chemical pest control), we found that natural levels of UV-B radiation reduced soybean yield. In a second experiment, where no pesticides were applied, we found that solar UV-B significantly reduced insect herbivory and, surprisingly, caused a concomitant increase in crop yield. Our data support the idea that UV-B effects on agroecosystems are the result of complex interactions involving multiple trophic levels. A better understanding of the mechanisms that mediate the anti-herbivore effect of UV-B radiation may be used to design crop varieties with improved adaptation to the cropping systems that are likely to prevail in the coming decades in response to agricultural intensification. Copyright © Physiologia Plantarum 2012.

  4. Effect of UV-B radiation on biomass production, pigmentation and protein content of marine diatoms

    International Nuclear Information System (INIS)

    Doehler, G.

    1984-01-01

    Several species of marine diatoms were grown at + 18 0 C and + 22 0 C under normal air conditions (0.035 vol.% CO 2 ) at a light/dark alteration of 14.8 h. Intensity of white light was 1 mW (approx.= 5000 lux). An artifical nutrient solution of 35per mille salinity was used. Algae - harvested during exponential growth - were exposed to different intensities of UV-B radiation (439, 717 and 1230 J m -2 m -1 ) for 2 days. UV-B radiation depressed the growth of all tested marine diatoms. Low levels of UV-B resulted in a slight increase of the biomass production (dry weight) compared to not UV-B treated cells. Enhanced UV-B doses caused a diminution of the primary productivity in all species. Algae exposed to UV-B stress showed a marked decrease in the protein and pigment content (chlorophyll a, chlorophyll c 1 + c 2 and carotenoids). In + 22 0 C grown cells of Lauderia annulata and Thalassiosira rotula were more sensitive to UV-B radiation than those cultures grown at + 18 0 C. Bellerochea yucatanensis cells grown at + 22 0 C were less affected after UV-B exposure than at + 18 0 C grown algae. The UV-B sensibility and growth of the individual species varied in a mixture of several marine diatoms. Results were discussed with reference to the UV-B effect on metabolic processes. (orig.)

  5. Effects of ultraviolet-B radiation (UV-B) on growth and physiology of the dune grassland species Calamagrostis epigeios

    International Nuclear Information System (INIS)

    Tosserams, M.; Rozema, J.

    1995-01-01

    Seedlings of Calamagrostis epigeios were exposed to four levels of UV-B radiation (280-320 nm), simulating up to 44% reduction of stratospheric ozone concentration during summertime in The Netherlands, to determine the response of this plant species to UV-B irradiation. After six weeks of UV-B treatment, total biomass of all UV-B treated plants was higher, compared to plants that had received no UV-B radiation. The increase of biomass did not appear to be the result of a stimulation of net photosynthesis. Also, transpiration rate and water use efficiency were not altered by UV-B at any exposure level. Pigment analysis of leaf extracts showed no effect of enhanced UV-B radiation on chlorophyll content and accumulation of UV absorbing pigments. UV-B irradiance, however, did reduce the transmittance of visible light (400-700 nm) of intact attached leaves, suggesting a change in anatomical characteristics of the leaves. Additionally, the importance of including an ambient UV-B treatment in indoor experiments is discussed

  6. Effect of UV-B radiation on UV absorbing compounds and pigments of moss and lichen of Schirmacher oasis region, East Antarctica.

    Science.gov (United States)

    Singh, J; Gautam, S; Bhushan Pant, A

    2012-12-22

    The survival of Antarctic flora under ozone depletion depends on their ability to acclimate against increasing UV—B radiation by employing photo protective mechanisms either by avoiding or repairing UV—B damage. A fifteen days experiment was designed to study moss (Bryum argenteum) and lichen (Umbilicaria aprina) under natural UV—B exposure and under UV filter frames at the Maitri region of Schirmacher oasis, East Antarctica. Changes in UV absorbing compounds, phenolics, carotenoids and chlorophyll content were studied for continuous fifteen days and significant changes were observed in the UV exposed plants of B. argenteum and U. aprina. The change in the UV absorbing compounds was more significant in B. argenteum (P<0.0001) than U. aprina (P<0.0002). The change in phenolic contents and total carotenoid content was significant (P<0.0001) in both B. argenteum and lichen U. aprina indicating that the increase in UV absorbing compounds, phenolic contents and total carotenoid content act as a protective mechanism against the deleterious effect of UV—B radiations.

  7. Distribution of Radiation Exposure from Natural Radiation in Big Cities

    International Nuclear Information System (INIS)

    Udiyani, P.M.; Ahmad, Yus R.

    2000-01-01

    The measurement of radiation exposure from the natural radiation in the big city in Java such as Jakarta, Bandung, Semarang, Yogyakarta, and Surabaya have be done. Based on radiation dose and population at the sample location, the dose collective and risk probability will be know. The maximal exposure at Yogyakarta is 0.291 mSv/year and the minimal exposure at Surabaya is 0.216 mSv/year. Collective dose at Jakarta is 1.649.526 men mSv/year; Bandung 124.844 men mSv/year; Semarang : 64.558 men mSv/year; Yogyakarta 136.188 men mSv/year; and Surabaya 145.152 men mSv/year. The person probability of radiation disease at jakarta is 16.49 person/year, Bandung is 1.24 person/year, Semarang 1.64 person/year, Yogyakarta is 1.36 person/year, and Surabaya is 1.45 person/year

  8. Photomorphogenic effects of UV-B radiation on plants: consequences for light competition

    International Nuclear Information System (INIS)

    Barnes, P.W.; Ballaré, C.L.; Caldwell, M.M.

    1996-01-01

    A combination of field and labotatory studies were conducted to explore the nature of photomorphogenic effects of ultraviolet-B radiation (UV-B; 280–320 nm) on plant morphology and to evaluate the ecological consequences of these alterations in morphology for interspecific competition. Under laboratory conditions, seedlings of cucumber (Cucumis sativus L.) and tomato (Lycopersicon esculentum Mill.) exhibited appreciable (ca. 50%) and rapid (< 3h) inhibition in hypocotyl elongation in response to UV-B exposure. In cucumber, this inhibition was reversible, occurred without any associated changes in dry matter production and was caused by UV-B incident on the cotyledons and not the stem or growing tip. Inhibition of stem elongation in etiolated tomato seedlings occurred at least 3 h prior to the onset of accumulation of UV-absorbing pigments and monochromatic UV supplied against a background of visible radiation revealed maximum effectiveness in inhibition around 300 nm. Collectively, these findings suggest that a specific, but yet unidentified, UV-B photoreceptor is involved in mediating certain morphological responses to UV-B. For mixtures of wheat (Triticum aestivum L.) and wild oat (Avena fatua L.), a common weedy competitor, supplemental UV-B irradiation in the field differentially altered shoot morphology which resulted in changes in canopy structure, light interception and calculated stand photosynthesis. It is argued that, because of its asymmetrical nature, competition for light can potentially amplify the effects of UV-B on shoot morphology and may, therefore, be an important mechanism by which changes in the solar UV-B spectrum associated with stratospheric ozone reduction could alter the composition and character of terrestrial vegetation

  9. The chemistry of UV and EB radiation curing

    International Nuclear Information System (INIS)

    Garnett, J.L.

    1987-01-01

    The application of photopolymerisation (UV) and electron beam (EB) technologies in radiation rapid cure (RRC) processing is discussed. The chemistry associated with such reactions and the mechanisms of the processes are treated. The occurrence of concurrent grafting to substrate with radiation curing of film is shown to be an advantage in enhancing the properties of certain finished products. The parameters influencing the optimum grafting yield in such RRC processes are discussed. In many applications, the chemistry of the process combined with the machine, expecially for EB, is shown a so-called ''turn-key'' operation. (author)

  10. The chemistry of UV and BE radiation curing

    International Nuclear Information System (INIS)

    Garnett, J.L.

    1991-01-01

    The application of photopolymerisation (UV) and electron beams (EB) technologies in radiation rapid cure (PRC) processing is discussed. The chemistry associated with such reactions and the mechanisms of the processes are treated. The occurrence of concurrent grafting to substrate with radiation curing of films is shown to be an advantage in enhancing the properties of certain finished products. The parameters influencing the optimum grafting yield in such PRC processes are discussed. In many applications, the chemistry of such processes combined with the machine, specially for EB is shown. (author)

  11. Measurement and evaluation of the external radiation level at reactor Kartini

    International Nuclear Information System (INIS)

    Atok Suhartanto; Suparno

    2013-01-01

    Measurement and evaluation of external radiation level at reactor Kartini in 2012 has been done. The purpose of this activity is to know the external radiation level as a result of the radioactive or radiation source usage, toward the operational of limit condition. The measurement is using survey meter Inspector 11086, factor of calibration 0.991 mR/h, at 9 locations is: Control room area, Thermal column facilities, Demineralizer, Beamport radiography facilities, bulk shielding Deck, Subcritical facilities, Reactor hall, Deck reactor and on the surface of reactor water tank . The highest room average measurement result in 9 working areas for 12 months continuously are at the reactor tank location is between 13.05±1.09 (xlO -2 mSv/hour) to 16.80±1.40 (x10 -2 mSv/hour), and the lowest measurement result in 1 location (control room) is 0.02±0.005 (x10 -2 mSv/hour) to 0.035±0.009 (x10 -2 mSv/hour). The Kartini reactor is involved in the control area which has potentially contaminated and has radiation exposure at the level of 6 mSv/year. Radiation Protection Officer that work in interval will received radiation exposure dosage of 8.4 mSv/year. This dosage is still below the Below Dosage Value which is recommended by, BAPETEN decree No, 4, 2013 about Protection and Radiation Safety in Nuclear Energy Application at 20 mSv/year. The result of the evaluation above shows that the external radiation which occurred in each area is still below the operational of limit condition that is written on the Kartini reactor safety analysis report, on document number: C7/05/B2/LAK/2010, revision 7. So that the workplace is safe for work monitored. (author)

  12. Effects of environmental and artificial UV-B radiation on freshwater prawn Macrobrachium olfersi embryos

    Energy Technology Data Exchange (ETDEWEB)

    Nazari, Evelise Maria [Programa de Pos-Graduacao em Ciencias Morfologicas, Instituto de Ciencias Biomedicas, Universidade Federal do Rio de Janeiro, 21949-902 Rio de Janeiro, RJ (Brazil); Universidade Federal de Santa Catarina, Departamento de Biologia Celular, Embriologia e Genetica, Campus Universitario, 88040-900 Florianopolis, SC (Brazil); Ammar, Dib [Universidade do Oeste de Santa Catarina, Departamento de Biologia, Campus Universitario, 89600-000 Joacaba, SC (Brazil); Bem, Andreza Fabro de; Latini, Alexandra [Universidade Federal de Santa Catarina, Departamento de Bioquimica, Campus Universitario, 88040-900 Florianopolis, SC (Brazil); Mueller, Yara Maria Rauh [Universidade Federal de Santa Catarina, Departamento de Biologia Celular, Embriologia e Genetica, Campus Universitario, 88040-900 Florianopolis, SC (Brazil); Allodi, Silvana, E-mail: sallodi@histo.ufrj.br [Programa de Pos-Graduacao em Ciencias Morfologicas, Instituto de Ciencias Biomedicas, Universidade Federal do Rio de Janeiro, 21949-902 Rio de Janeiro, RJ (Brazil)

    2010-06-01

    The recent decrease of the stratospheric ozone has resulted in an increase of ultraviolet-B (UV-B) radiation reaching the Earth's surface. In freshwater ecosystems with transparent water, UV-B rays easily penetrate and potentially cause harmful effects to organisms. In this study, embryos of the prawn Macrobrachium olfersi were used to evaluate the impact of UV-B rays in freshwater environments. We observed three groups of embryos: the first was to assess whether UV-B radiation produced morphological defects and/or biochemical impairments in the laboratory. The second was to check whether embryos with the same impairments as those observed in the laboratory were found in their environment, under natural solar radiation. The third group was the non-irradiated control. The embryos irradiated with 310 mW cm{sup -2} UV-B for 30 min showed morphological alterations similar to those observed in embryos from the environmental control group. The most important effects of the UV-B radiation observed in M. olfersi embryos were morphological (1.2% of the total number of embryos from the environment and 2.8% of the total number of irradiated embryos), pigmentation changes in the eyes (78.0% of the total number of embryos from the environment and 98.9% of the total number of irradiated embryos), and disruption of the chromatophores (46.9% of the total number of embryos from the environment and 95.5% of the total number of irradiated embryos). We also observed an increase in egg volume, which was accompanied by a significant increase in water content in UV-B irradiated groups when compared with aquaria control embryos. In addition, a significant decrease in the mitotic index in eggs exposed to UV-B radiation was detected (0.17 for the embryos from the aquaria control, 0.10 for the embryos of the environmental control, and 0.04 for the irradiated groups). The low levels of NPSH and high levels of TBARS indicated that UV-B rays directly compromised the antioxidant function of

  13. Effects of environmental and artificial UV-B radiation on freshwater prawn Macrobrachium olfersi embryos

    International Nuclear Information System (INIS)

    Nazari, Evelise Maria; Ammar, Dib; Bem, Andreza Fabro de; Latini, Alexandra; Mueller, Yara Maria Rauh; Allodi, Silvana

    2010-01-01

    The recent decrease of the stratospheric ozone has resulted in an increase of ultraviolet-B (UV-B) radiation reaching the Earth's surface. In freshwater ecosystems with transparent water, UV-B rays easily penetrate and potentially cause harmful effects to organisms. In this study, embryos of the prawn Macrobrachium olfersi were used to evaluate the impact of UV-B rays in freshwater environments. We observed three groups of embryos: the first was to assess whether UV-B radiation produced morphological defects and/or biochemical impairments in the laboratory. The second was to check whether embryos with the same impairments as those observed in the laboratory were found in their environment, under natural solar radiation. The third group was the non-irradiated control. The embryos irradiated with 310 mW cm -2 UV-B for 30 min showed morphological alterations similar to those observed in embryos from the environmental control group. The most important effects of the UV-B radiation observed in M. olfersi embryos were morphological (1.2% of the total number of embryos from the environment and 2.8% of the total number of irradiated embryos), pigmentation changes in the eyes (78.0% of the total number of embryos from the environment and 98.9% of the total number of irradiated embryos), and disruption of the chromatophores (46.9% of the total number of embryos from the environment and 95.5% of the total number of irradiated embryos). We also observed an increase in egg volume, which was accompanied by a significant increase in water content in UV-B irradiated groups when compared with aquaria control embryos. In addition, a significant decrease in the mitotic index in eggs exposed to UV-B radiation was detected (0.17 for the embryos from the aquaria control, 0.10 for the embryos of the environmental control, and 0.04 for the irradiated groups). The low levels of NPSH and high levels of TBARS indicated that UV-B rays directly compromised the antioxidant function of the

  14. Elevated UV-B radiation increased the decomposition of Cinnamomum camphora and Cyclobalanopsis glauca leaf litter in subtropical China

    Energy Technology Data Exchange (ETDEWEB)

    Song, Xinzhang Z.; Zhang, Huiling L.; Jiang, Hong; Yu, Shuquan Q. [Zhejiang Agriculture and Forestry Univ., Lin' an (China). The Nurturing Station for the State Key Lab. of Subtropical Silviculture; Zhejiang Agriculture and Forestry Univ., Lin' an (China). Zhejiang Provincial Key Lab. of Carbon Cycling and Carbon Sequestration in Forest Ecosystems; Chang, Scott X. [Alberta Univ., Edmonton (Canada). Dept. of Renewable Resources; Peng, Changhui H. [Quebec Univ., Montreal (Canada). Inst. of Environment Sciences

    2012-03-15

    Ultraviolet-B (UV-B) radiation reaching the earth's surface has been increasing due to ozone depletion and can profoundly influence litter decomposition and nutrient cycling in terrestrial ecosystems. The role of UV-B radiation in litter decomposition in humid environments is poorly understood; we thus investigated the effect of UV-B radiation on litter decomposition and nitrogen (N) release in a humid subtropical ecosystem in China. We conducted a field-based experiment using the litterbag method to study litter decomposition and N release under ambient and elevated (31% above ambient) UV-B radiation, using the leaf litter of two common tree species, Cinnamomum camphora and Cyclobalanopsis glauca, native to subtropical China. Elevated UV-B radiation significantly increased the decomposition rate of C. camphora and C. glauca leaf litter by 16.7% and 27.8%, respectively, and increased the N release from the decomposing litter of C. glauca but not C. camphora. Elevated UV-B radiation significantly accelerated the decomposition of litter of two native tree species and the N release from the decomposition litter of C. glauca in humid subtropical China, which has implications for soil carbon flux and forest productivity. (orig.)

  15. Solar UV-B radiation modulates chemical defenses against Anticarsia gemmatalis larvae in leaves of field-grown soybean.

    Science.gov (United States)

    Dillon, Francisco M; Chludil, Hugo D; Zavala, Jorge A

    2017-09-01

    Although it is well known that solar ultraviolet B (UV-B) radiation enhances plant defenses, there is less knowledge about traits that define insect resistance in field-grown soybean. Here we study the effects of solar UV-B radiation on: a) the induction of phenolic compounds and trypsin proteinase inhibitors (TPI) in soybean undamaged leaves or damaged by Anticarsia gemmatalis neonates during six days, and b) the survival and mass gain of A. gemmatalis larvae that fed on soybean foliage. Two soybean cultivars (cv.), Charata and Williams, were grown under plastic with different transmittance to solar UV-B radiation, which generated two treatments: ambient UV-B (UVB+) and reduced UV-B (UVB-) radiation. Solar UV-B radiation decreased survivorship by 30% and mass gain by 45% of larvae that fed on cv. Charata, but no effect was found in those larvae that fed on cv. Williams. TPI activity and malonyl genistin were induced by A. gemmatalis damage in both cultivars, but solar UV-B radiation and damage only synergistically increased the induction of these compounds in cv. Williams. Although TPI activity and genistein derivatives were induced by herbivory, these results did not explain the differences found in survivorship and mass gain of larvae that fed on cv. Charata. However, we found a positive association between lower larval performance and the presence of two quercetin triglycosides and a kaempferol triglycoside in foliage of cv. Charata, which were identified by HPLC-DAD/MS 2 . We conclude that exclusion of solar UV-B radiation reduce resistance to A. gemmatalis, due to a reduction in flavonol concentration in a cultivar that has low levels of genistein derivatives like cv. Charata. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Heated water and UV-C radiation to post harvest control of Cryptosporiopsis perennans on apples

    International Nuclear Information System (INIS)

    Bartnicki, Vinicius Adao; Amarante, Cassandro Vidal Talamini do; Castro, Luis Antonio Suita de; Rizzatti, Mara Regina; Souza, Joao Antonio Vargas de

    2010-01-01

    The objective of this work was to assess the colonization of Cryptosporiopsis perennans in the epidermis of apples and the efficiency of heated water and UV-C radiation application to control this pathogen. In apples inoculated with C. perennans, the colonization of lenticels and adjacent areas by the pathogen was observed by electronic scanning microscopy. The sensitivity of C. perennans conidia was evaluated in aqueous suspension, at temperatures of 28, 45, 50 and 55 deg C for 15 and 30 s, and at UV.C radiation doses of 0.018, 0.037, 0.075, 0.150, 0.375, 0.750, 1.500 and 3.000 kJ m.2. The effects of UV.C radiation doses at 0.375, 0.750 and 1.500 kJ m.2 and heated water at 50 deg C, sprayed during 15 and 30 s were evaluated for controlling C. perennans in apples inoculated with the pathogen. The fungus produced abundant mycelium and conidia in lenticels and adjacent areas on the epidermis of the apples. The heated water at 50 deg C during 15 s and a 0.750 kJ m.2 UV.C radiation dose reduced conidia survival in more than 99%. Heated water sprayed at 50 deg C during 15 s and a UV.C radiation dose of 0.375 kJ m.2 control C. perennans in apples. (author)

  17. Room-temperature effects of UV radiation in KBr:Eu{sup 2+} crystals

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Salas, R; Melendrez, R [Centro de Investigacion Cientifica y de Educacion Superior de Ensenada - IFUNAM, Ensenada, Apartado Postal 2732 Ensenada, BC, 22800 (Mexico); Aceves, R; Rodriguez, R; Barboza-Flores, M [Centro de Investigacion en Fisica, Universidad de Sonora, Apartado Postal 5-088 Hermosillo, Sonora, 83190 (Mexico)

    1996-07-01

    Thermoluminescence and optical absorption measurements have been carried out in KBr:Eu{sup 2+} crystals irradiated with monochromatic UV light (200-300 nm) and x-rays at room temperature. For UV- and x-irradiated crystals strong similarities between the thermoluminescence glow curves have been found, suggesting that the low-energy UV radiation produces the same defects as produced by x-irradiation in this material. The thermoluminescence glow curves are composed of six glow peaks located at 337, 383, 403, 435, 475 and 509 K. Thermal annealing experiments in previously irradiated crystals show clearly a correlation between the glow peak located at 383 K and the F-centre thermal bleaching process. Also, the excitation spectrum for each thermoluminescence glow peak has been investigated, showing that the low-energy radiation induces the formation of F centres. (author)

  18. Effects of UV-B radiation on tetraspores of Chondrus ocellatus Holm (Rhodophyta), and effects of red and blue light on repair of UV-B-induced damage

    Science.gov (United States)

    Ju, Qing; Xiao, Hui; Wang, You; Tang, Xuexi

    2015-05-01

    We evaluated the effects of red and blue light on the repair of UV-B radiation-induced damage in tetraspores of Chondrus ocellatus Holm. Tetraspores of C. ocellatus were treated with different UV-B radiation levels (0, 36, 72, 108, 144 and 180 J/m2), and thereafter subjected to PAR, darkness, or red or blue light during a 2-h repair stage, each day for 48 days. The diameters and cellular contents of cyclobutane pyrimidine dimmers (CPDs), chlorophyll a (Chl a), phycoerythrin, and UV-B-absorbing mycosporinelike amino acids (MAAs) contents of the tetraspores were determined. Our results show that low doses of UV-B radiation (36 and 72 J/m2) promoted the growth of C. ocellatus; however, increased UV-B radiation gradually reduced the C. ocellatus growth (greater than 72 J/m2). The MAAs (palythine and asterina-330) in C. ocellatus were detected and analyzed by LC/MS. Our results suggest that moderate red light could induce the growth of this alga in aquaculture. In addition, photorepair was inhibited by red light, so there may be some other DNA repair mechanism activated by red light. Blue light promoted the activity of DNA photolyase, greatly improving remediation efficiency. Red and blue lights were found to reduce the capacity of C. ocellatus to form MAAs. Therefore, PAR, red light, and blue light play different roles during the repair processes for damage induced by UV-B radiation.

  19. Distinct physiological and metabolic reprogramming by highbush blueberry (Vaccinium corymbosum) cultivars revealed during long-term UV-B radiation.

    Science.gov (United States)

    Luengo Escobar, Ana; Alberdi, Miren; Acevedo, Patricio; Machado, Mariana; Nunes-Nesi, Adriano; Inostroza-Blancheteau, Claudio; Reyes-Díaz, Marjorie

    2017-05-01

    Despite the Montreal protocol and the eventual recovery of the ozone layer over Antarctica, there are still concerns about increased levels of ultraviolet-B (UV-B) radiation in the Southern Hemisphere. UV-B induces physiological, biochemical and morphological stress responses in plants, which are species-specific and different even for closely related cultivars. In woody plant species, understanding of long-term mechanisms to cope with UV-B-induced stress is limited. Therefore, a greenhouse UV-B daily course simulation was performed for 21 days with two blueberry cultivars (Legacy and Bluegold) under UV-B BE irradiance doses of 0, 0.07 and 0.19 W m -2 . Morphological changes, photosynthetic performance, antioxidants, lipid peroxidation and metabolic features were evaluated. We found that both cultivars behaved differently under UV-B exposure, with Legacy being a UV-B-resistant cultivar. Interestingly, Legacy used a combined strategy: initially, in the first week of exposure its photoprotective compounds increased, coping with the intake of UV-B radiation (avoidance strategy), and then, increasing its antioxidant capacity. These strategies proved to be UV-B radiation dose dependent. The avoidance strategy is triggered early under high UV-B radiation in Legacy. Moreover, the rapid metabolic reprogramming capacity of this cultivar, in contrast to Bluegold, seems to be the most relevant contribution to its UV-B stress-coping strategy. © 2016 Scandinavian Plant Physiology Society.

  20. Beta-Carotene production enhancement by UV-A radiation in Dunaliella bardawil cultivated in laboratory reactors

    International Nuclear Information System (INIS)

    Mogedas, B.; Casal, C.; Forjan, E.; Vilchez, C.

    2009-01-01

    beta-Carotene is an antioxidant molecule of commercial value that can be naturally produced by certain microalgae that mostly belong to the genus Dunaliella. So far, nitrogen starvation has been the most efficient condition for enhancing beta-carotene accumulation in Dunaliella. However, while nitrogen starvation promotes beta-carotene accumulation, the cells become non-viable; consequently under such conditions, continuous beta-carotene production is limited to less than 1 week. In this study, the use of UV-A radiation as a tool to enhance long-term beta-carotene production in Dunaliella bardawil cultures was investigated. The effect of UV-A radiation (320-400 nm) added to photosynthetically active radiation (PAR, 400-700 nm) on growth and carotenoid accumulation of D. bardawil in a laboratory air-fluidized bed photobioreactor was studied. The results were compared with those from D. bardawil control cultures incubated with PAR only. The addition of 8.7 W/square m UV-A radiation to 250 W/square m PAR stimulated long-term growth of D. bardawil. Throughout the exponential growth period the UV-A irradiated cultures showed enhanced carotenoid accumulation, mostly as beta-carotene. After 24 days, the concentration of beta-carotene in UV-A irradiated cultures was approximately two times that of control cultures. Analysis revealed that UV-A clearly induced major accumulation of all-trans beta-carotene. In N-starved culture media, beta-carotene biosynthesis in UV-A irradiated cultures was stimulated. We conclude that the addition of UV-A to PAR enhances carotenoid production processes, specifically all-trans beta-carotene, in D. bardawil cells without negative effects on cell growth

  1. Environmental Gamma Radiation Measurements in Baskil District

    International Nuclear Information System (INIS)

    Canbazoglu, C.

    2008-01-01

    In this study, we have determined environmental gamma radiation dose rate in Baskil district which has very high granite content in its geographical structure. Gamma radiation dose rate measurements were achieved by portable radiation monitoring equipment based on the energy range between 40 keV and 1.3 MeV. The measurements were performed on asphalt and soil surface level and also one meter above the ground surface. The gamma dose rate was also performed inside and outside of buildings over the district. The dose rates were found to be between 8.46μR/h and 34.66 μR/h. Indoor and outdoor effective dose rate of the gamma radiation exposure has been calculated to be 523μSv/y and 196μSv/y, respectively

  2. Biological dosimetry to determine the UV radiation climate inside the MIR station and its role in vitamin D biosynthesis

    Science.gov (United States)

    Rettberg, P.; Horneck, G.; Zittermann, A.; Heer, M.

    1998-11-01

    The vitamin D synthesis in the human skin, is absolutely dependent on UVB radiation. Natural UVB from sunlight is normally absent in the closed environment of a space station like MIR. Therefore it was necessary to investigate the UV radiation climate inside the station resulting from different lamps as well as from occasional solar irradiation behind a UV-transparent quartz window. Biofilms, biologically weighting and integrating UV dosimeters successfully applied on Earth (e.g. in Antarctica) and in space (D-2, Biopan I) were used to determine the biological effectiveness of the UV radiation climate at different locations in the space station. Biofilms were also used to determine the personal UV dose of an individual cosmonaut. These UV data were correlated with the concentration of vitamin D in the cosmonaut's blood and the dietary vitamin D intake. The results showed that the UV radiation climate inside the Mir station is not sufficient for an adequate supply of vitamin D, which should therefore be secured either by vitamin D supplementat and/or by the regular exposure to special UV lamps like those in sun-beds. The use of natural solar UV radiation through the quartz window for `sunbathing' is dangerous and should be avoided even for short exposure periods.

  3. Differential responses of tetrasporophytes and gametophytes of Mazzaella laminarioides (Gigartinales, Rhodophyta) under solar UV radiation.

    Science.gov (United States)

    Navarro, Nelso P; Figueroa, Félix L; Korbee, Nathalie; Mansilla, Andrés; Plastino, Estela M

    2016-06-01

    The effects of solar UV radiation on mycosporine-like amino acids (MAAs), growth, photosynthetic pigments (Chl a, phycobiliproteins), soluble proteins (SP), and C and N content of Mazzaella laminarioides tetrasporophytes and gametophytes were investigated. Apical segments of tetrasporophytes and gametophytes were exposed to solar radiation under three treatments (PAR [P], PAR+UVA [PA], and PAR+UVA+UVB [PAB]) during 18 d in spring 2009, Punta Arenas, Chile. Samples were taken after 2, 6, 12, and 18 d of solar radiation exposure. Most of the parameters assessed on M. laminarioides were significantly influenced by the radiation treatment, and both gametophytes and tetrasporophytes seemed to respond differently when exposed to high UV radiation. The two main effects promoted by UV radiation were: (i) higher synthesis of MAAs in gametophytes than tetrasporophytes at 2 d, and (ii) a decrease in phycoerythrin, phycocyanin, and SPs, but an increase in MAA content in tetrasporophytes at 6 and 12 d of culture. Despite some changes that were observed in biochemical parameters in both tetrasporophytes and gametophytes of M. laminarioides when exposed to UVB radiation, these changes did not promote deleterious effects that might interfere with the growth in the long term (18 d). The tolerance and resistance of M. laminarioides to higher UV irradiance were expected, as this intertidal species is exposed to variation in solar radiation, especially during low tide. © 2016 Phycological Society of America.

  4. Formulation comprising silicon microparticles, as a pigment that can absorb visible UV radiation and reflect ir radiation

    OpenAIRE

    Rodríguez, Marie-Isabelle; Fenollosa Esteve, Roberto; Meseguer, Francisco

    2011-01-01

    [EN] The invention relates to a formulation characterised in that it comprises silicon microparticles having a size between 0.010 um and 50 um in diameter, and to the use thereof as a pigment that can absorb visible UV radiation and reflect IR radiation.

  5. Radiation chemical oxidation of propen under the influence of UV- and gamma radiation

    International Nuclear Information System (INIS)

    Litschke, P.I.

    1978-01-01

    The oxidation of propen is studied in the liquid state under the influence of electromagnetic radiation using hydrogenperoxide, organic hydroperoxides and oxygen. In this investigation propen oxide is of main interest. The study of systems with oxygen is based on the concept that the formation of hydroperoxide from organic oxygen compounds is enhanced by irradiation, thus favouring an in situ method for expoxidation with hydroperoxides. The influence of UV-radiation from high and low pressure mercury discharge lamps and 60 Co gamma radiation has been studied as well as the effect of solvents and catalysers, which are resolved in the system. (orig./WBU) [de

  6. Survival of thermophilic and hyper-thermophilic microorganisms after exposure to UV-C, ionizing radiation and desiccation

    International Nuclear Information System (INIS)

    Beblo, K.; Wirth, R.; Huber, H.; Douki, T.; Schmalz, G.; Rachel, R.

    2011-01-01

    In this study, we investigated the ability of several (hyper-) thermophilic Archaea and phylo-genetically deep-branching thermophilic Bacteria to survive high fluences of monochromatic UV-C (254 nm) and high doses of ionizing radiation, respectively. Nine out of fourteen tested microorganisms showed a surprisingly high tolerance against ionizing radiation, and two species (Aquifex pyrophilus and Ignicoccus hospitalis) were even able to survive 20 kGy. Therefore, these species had a comparable survivability after exposure to ionizing radiation such as Deinococcus radiodurans. In contrast, there was nearly no difference in survival of the tested strains after exposure to UV-C under anoxic conditions. If the cells had been dried in advance of UV-C irradiation, they were more sensitive to UV-C radiation compared with cells irradiated in liquid suspension; this effect could be reversed by the addition of protective material like sulfidic ores before irradiation. By exposure to UV-C, photoproducts were formed in the DNA of irradiated Archaea and Bacteria. The distribution of the main photoproducts was species specific, but the amount of the photoproducts was only partly dependent on the applied fluence. Overall, our results show that tolerance to radiation seems to be a common phenomenon among thermophilic and hyper-thermophilic microorganisms. (authors)

  7. Effects of UV-B radiation on soybean yield and seed quality: a 6-year field study

    International Nuclear Information System (INIS)

    Teramura, A.H.; Sullivan, J.H.; Lydon, J.

    1990-01-01

    Two soybean [Glycine max (L.) Merr.] cultivars, Essex and Williams, were grown in the field for 6 consecutive seasons under ambient and supplemental levels of ultravio-Set-B radiation to determine the potential for alterations in yield or seed quality with a reduction in the stratospheric ozone column. The supplemental UV-B fluences simulated a 16 or 25% ozone depletion. The data presented here represent the first field experiment conducted over multiple seasons which assesses the effects of increased UV-B radiation on seed yield. Overall, the cultivar Essex was found to be sensitive to UV-B radiation (yield reductions of 20%) while the cultivar Williams was tolerant. However, the effectiveness of UV-B radiation in altering yield was strongly influenced by the seasonal microclimate, and the 2 cultivars responded differently to these changing factors. Yield was reduced most in Essex during seasons in which water availability was high and was reduced in Williams only when water was severely limiting. The results of these experiments demonstrate the necessity for multiple-year experiments and the need to increase our understanding of the interaction between UV-B radiation and other environmental stresses in order to assess the potential consequences of stratospheric ozone depletion. (author)

  8. Operation of the radiation dose registration system for decontamination and related works

    International Nuclear Information System (INIS)

    Ogawa, Tsubasa; Yasutake, Tsuneo; Itoh, Atsuo; Miyabe, Kenjiro

    2017-01-01

    The radiation dose registration system for decontamination and related works was established on 15 November 2013. Radiation dose registration center and primary contractors of decontamination and related works manage decontamination registration and management system. As of 31 March 2017, 384 primary contractors joined in the radiation dose registration system for decontamination and related works. 383,087 quarterly exposure dose records for decontamination and related works were registered. Based on the registered data provided by the primary contractors, radiation dose registration center has released the statistical data that represent the radiation control status for workers engaged in radiation work at the work areas of decontamination and related works, etc. The statistical data shows that there were 40,377 workers engaged in decontamination and related works in 2015. The average exposure dose for workers was 0.6 mSv in 2015. The maximum exposure dose for workers was 7.8 mSv in 2015. Dose distribution by age of workers shows the range of 60 to 64 years old were most engaged in decontamination and related works in 2015. Dose distribution by gender of workers shows 97% of workers were male in 2015. From 2012 to 2015, about 95% of workers were exposed to radiation less than 3 mSv. And about 80% of workers were exposed to radiation less than 1 mSv. The average exposure dose per year was ranged from 0.5 to 0.7 mSv. (author)

  9. Elevated UV-B radiation incident on Quercus robur leaf canopies enhances decomposition of resulting leaf litter in soil

    International Nuclear Information System (INIS)

    Newsham, K.K.; Greenslade, P.D.; Kennedy, V.H.; McLeod, A.R.

    1999-01-01

    We examined whether the exposure of Quercus robur L. to elevated UV-B radiation (280–315 nm) during growth would influence leaf decomposition rate through effects on litter quality. Saplings were exposed for eight months at an outdoor facility in the UK to a 30% elevation above the ambient level of erythemally weighted UV-B radiation under UV-B treatment arrays of fluorescent lamps filtered with cellulose diacetate, which transmitted both UV-B and UV-A (315–400 nm) radiation. Saplings were exposed to elevated UV-A alone under control arrays of lamps filtered with polyester and to ambient radiation under unenergised arrays of lamps. Abscised leaves from saplings were enclosed in 1 mm2 mesh nylon bags, placed in a Quercus–Fraxinus woodland and were sampled at 0.11, 0.53, 1.10 and 1.33 years for dry weight loss, chemical composition and saprotrophic fungal colonization. At abscission, litters from UV-A control arrays had ≈ 7.5% higher lignin/nitrogen ratios than those from UV-B treatment and ambient arrays (P < 0.06). Dry weight loss of leaves treated with elevated UV-B radiation during growth was 2.5% and 5% greater than that of leaves from UV-A control arrays at 0.53 and 1.33 years, respectively. Litter samples from UV-B treatment arrays lost more nitrogen and phosphorus than samples from ambient arrays and more carbon than samples from UV-A control arrays. The annual fractional weight loss of litter from UV-B treatment arrays was 8% and 6% greater than that of litter from UV-A control and ambient arrays, respectively. Regression analyses indicated that the increased decomposition rate of UV-B treated litters was associated with enhanced colonization of leaves by basidiomycete fungi, the most active members of the soil fungal community, and that the frequency of these fungi was negatively associated with the initial lignin/nitrogen ratio of leaves. (author)

  10. Decontamination of poultry feed from ochratoxin A by UV and sunlight radiations.

    Science.gov (United States)

    Ameer Sumbal, Gul; Hussain Shar, Zahid; Hussain Sherazi, Syed Tufail; Sirajuddin; Nizamani, Shafi Muhammad; Mahesar, Safaraz Ahmed

    2016-06-01

    Mycotoxin-contaminated feed is very dangerous for the growth and even life of poultry. The objective of the current study was to investigate the efficacy of ultra-violet irradiation for decontamination of ochratoxin A (OTA) in spiked and naturally contaminated poultry feed samples. Spiked and naturally contaminated feed samples were irradiated with ultra-violet light (UV) at distance of 25 cm over the feed samples. In vitro, the effect of UV intensity (0.1 mW cm(-2) at 254 nm UV-C) on different types of poultry feeds contaminated with OTA was evaluated. The same samples were also irradiated with sunlight and analysed for OTA by an indirect enzyme linked immunosorbent assay method. Poultry feed samples containing 500 µg kg(-1) were 100% decontaminated in 180 min with UV radiation while OTA was decreased to 70-95 µg kg(-1) using the same poultry feed samples after 8 h sunlight irradiation. Therefore, UV light was found to be more effective. Only 1 h of UV irradiation was found to be sufficient to bring the OTA level to the maximum regulatory limit suggested for poultry feeds (100 µg kg(-1) ), while 8 h were needed to obtain this level using sunlight radiations. The proposed approach is a viable option to reduce the level of OTA in contaminated poultry feeds. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  11. [Effects of silicon supply on diurnal variations of physiological properties at rice heading stage under elevated UV-B radiation].

    Science.gov (United States)

    Wu, Lei; Lou, Yun-sheng; Meng, Yan; Wang, Wei-qing; Cui, He-yang

    2015-01-01

    A pot experiment was conducted to investigate the effects of silicon (Si) supply on diurnal variations of photosynthesis and transpiration-related physiological parameters at rice heading stage under elevated UV-B radiation. The experiment was designed with two UV-B radiation levels, i.e. ambient UV-B. (ambient, A) and elevated UV-B (elevated by 20%, E), and four Si supply levels, i.e. Sio (control, 0 kg SiO2 . hm-2), Si, (sodium silicate, 100 kg SiO2 . hm-2), Si2 (sodium silicate, 200 kg SiO2 . hm2), Si3 (slag fertilizer, 200 kg SiO2 . hm-2). The results showed that, compared with ambient UV-B radiation, elevated UV-B radiation decreased the net photosynthesis rate (Pn) , intercellular CO2 concentration (Ci), transpiration rate (Tr), stomatal conductivity (gs) and water use efficiency (WUE) by 11.3%, 5.5%, 10.4%, 20.3% and 6.3%, respectively, in the treatment without Si supply (Si, level), and decreased the above parameters by 3.8%-5.5%, 0.7%-4.8%, 4.0%-8.7%, 7.4%-20.2% and 0.7%-5.9% in the treatments with Si supply (Si1, Si2 and Si3 levels) , respectively. Namely, elevated UV-B radiation decreased the photosynthesis and transpiration-related physiological parameters, but silicon supply could obviously mitigate the depressive effects of elevated UV-B radiation. Under elevated UV-B radiation, compared with control (Si0 level), silicon supply increased Pn, Ci, gs and WUE by 16.9%-28.0%, 3.5%-14.3%, 16.8% - 38.7% and 29.0% - 51.2%, respectively, but decreased Tr by 1.9% - 10.8% in the treatments with Si supply (Si1 , Si2 and Si3 levels). That is, silicon supply could mitigate the depressive effects of elevated UV-B radiation through significantly increasingnP., CigsgK and WUE, but decreasing T,. However, the difference existed in ameliorating the depressive effects of elevated UV-B radiation on diurnal variations of physiological parameters among the treatments of silicon supply, with the sequence of Si3>Si2>1i >Si0. This study suggested that fertilizing slag was

  12. Human chromosome 9 can complement UV sensitivity of xeroderma pigmentosum group A cells

    International Nuclear Information System (INIS)

    Ishizaki, Kanji; Sasaki, Masao S.; Ikenaga, Mituo; Nakamura, Yusuke

    1990-01-01

    A single human chromosome derived from normal human fibroblasts and tagged with the G418 resistance gene was transferred into SV40-transformed xeroderma pigmentosum group A (XP-A) cells via microcell fusion. When chromosome 1 or 12 was transferred, UV sensitivity of microcell hybrid cells was not changed. By contrast, after transferring chromosome 9,7 of 11 reipient clones were as UV-resistant as normal human cells. Four other clones were still as UV-sensitive as the parental XP-A cells. Southern hybridization analysis using a polymorphic probe, pEKZ19.3, which is homologous to a sequence of the D9S17 locus on chromosome 9, has confirmed that at least a part of normal human chromosome 9 was transferred into the recipient clones. However, amounts iof UV-induced unscheduled DNA synthesis in the UV-resistant clones were only one-third of those in normal human cells. These results indicate that a gene on chromosome 9 can confer complementation of high UV sensitivity of XP-A cells although it is still possible that 2 or more genes might be involved in the defective-repair phenotypes of XP-A. (author). 20 refs.; 3 figs.; 1 tab

  13. Effects of different levels of UV-B radiation on marine epilithic communities: a short-term microcosm study

    Directory of Open Access Journals (Sweden)

    R. A. Danilov

    2000-12-01

    Full Text Available Epilithic communities from brackish coastal water of the east coast of Sweden were studied in order to reveal their responses to different levels of UV-B radiation. The experiment was conducted for seven days in an indoor microcosm system. The epilithic communities were exposed daily to different doses of UV-B radiation: 1, 3, 5 and 7 hours, respectively. The intensity of the UV-B radiation used was similar to that in natural environments. After seven days clear shifts both in species composition and community structure were observed. All species of diatoms showed negative correlation with enhanced levels of UV-B. On the other hand, abundance of cyanobacteria was positively correlated with enhanced levels of UV-B (Calothrix aeruginea, R=0.49;Oscillatoria amphibia, R=0.93; Pseudanabaena mucicola, R=0.26. Communities dominated by diatoms and green algae at the initial stage of the experiment did show a drastic decrease in diatom abundance under UV-B stress and finally became dominated by cyanobacteria. Among green algae the abundance of Cladophora sericea correlated positively (R=0.33 with enhanced exposure to UV-B, while Monoraphidium-species exhibited negative correlation to UV-B. Otherwise, no significant correlation between other green algae species identified and UV-B stress could be detected. We conclude that UV-B radiation, even at lower levels, is capable to induce severe changes to marine epilithic communities. The trends revealed in the present study predict a shift from communities dominated by diatoms and green algae to those dominated by cyanobacteria.

  14. In vitro study of cytotoxicity by U.V. radiation and differential sensitivity in combination with alkylating agents on established cell systems

    International Nuclear Information System (INIS)

    Ramudu, K.

    1991-01-01

    The effect of U.V. radiation or alkylating agents, such as actinomycin-D, cycloheximide and mitomycin-C (MMC), was studied on CHO, BHK and HeLa cells. U.V. radiation caused DNA ssb and dsb and were prevented by cycloheximide and actinomycin-D. MMC is known to be cytotoxic in CHO/BHK cells by forming free radical generation. MMC in combination with U.V. radiation enhanced DNA ssb ampersand dsb in these cell types. However, HeLa cells were insensitive to U.V. radiation. This insensitivity to U.V. radiation could be ascribed to the presence of glutathione transferase which is absent in CHO/BHK cell line

  15. UV light induced DNA damages and the radiation protection effects of Lingzi mushroom extract

    International Nuclear Information System (INIS)

    Vo Thi Thuong Lan; Dinh Ba Tuan; Ta Bich Thuan; Tran Bang Diep; Tran Minh Quynh

    2016-01-01

    UV light has strongly influenced on the growth of E. coli as well as caused DNA damages. Configurations of both genomic DNA and pUC 19 plasmids extracted from E. coli were significantly changed by the exposure to UV light of 254 nm and DLT, an extract of Ganoderma lucidum Lingzi mushroom. The results also revealed the radio-protective effects of DLT to UV radiation. By adding 2% DLT to its culturing suspension, the growth of E. coli was significantly decreased, whereas a low DLT amount of about 0.5% slightly improved its growth, indicated that the DLT extract can be used as a promising protective substance against UV radiation. At the molecular level, the radio-protective effects of DLT were observed for both UV treated DNA and protein. Thus, DLT can protect DNA in vivo, but not in vitro. This effect was also observed for Taq polymerase, suggested that the radioprotection effect of DLT may due to it accelerated the degradation of radicals or species that produced in the suspensions during UV exposure. (author)

  16. The Study of External Radiation Dose for Radiation Worker at PRSG-BATAN Serpong

    International Nuclear Information System (INIS)

    Sunarningsih; Mashudi; A Lilik W; Yosep S

    2012-01-01

    The study of External radiation dose for radiation worker at PRSG-BATAN Serpong has been carried out. The sample is taken from the System Reactor division (BSR), Operation Reactor division, (BOR) Safety division UPN, UJM and head of PRSG by setting Thermoluminescence Dosemeter (TLD) on the chest, then is detected by a tool TLD reader model 6600. The aim of this study is to evaluate the occupational exposure dose that has been accepted by the radiation worker for the last five years. The result in average doses at BSR is 0,99 mSv, BOR is 3,27 mSv, at BK is 0,69 mSv and UPN + UJM + head of PRSG is 0,03 mSv. The result highest doses at BSR is 6,58 mSv, BOR is 28,94 mSv, BK is 4,24 mSv, and UPN UJM Head of PRSG is 0,52 mSv. Dose interval radiation worker at PRSG BATAN ttd - 28,98 mSv. To overall the external personal dose acceptant for radiation worker at PRSG BATAN one below maximum permissible dose acceptant that allowed by BAPETEN, that is 20 mSv in average every year during five years. (author)

  17. Radiation damage and repair in cells and cell components. Progress report, November 1, 1977--October 31, 1978. [Uv and x radiation, bacteriophages

    Energy Technology Data Exchange (ETDEWEB)

    Fluke, D.J.; Pollard, E.C.

    1978-01-01

    Progress is reported on the following research projects: coordinate induction of mutagenesis, radioresistance, and inhibition of post-radiation DNA degradation; radioinduced filamentation; action spectrum for induction of K12 lambda phage; effects of uv radiation on cells in the frozen state; dependence of mutagenesis on wavelength of uv; and w-reactivation of x-irradiated phage lambda. (HLW)

  18. Preparation of inorganic crystalline compounds induced by ionizing, UV and laser radiation

    International Nuclear Information System (INIS)

    Cuba, V.; Pavelkova, T.; Barta, J.; Indrei, J.; Gbur, T.; Pospisil, M.; Mucka, V.; Docekalova, Z.; Zavadilova, A.; Vlk, M.

    2011-01-01

    Complete text of publication follows. Radiation methods represent powerful tool for synthesis of various inorganic materials. Study of solid particles formation from solutions in the field of UV or ionizing radiation is one of the very promising and long term pursued trends in photochemistry and radiation chemistry. The motivation may be various, either preparation of new materials or removal of hazardous contaminants (e.g. heavy metals) from wastewater. This work deals with preparation of some metal oxides, synthetic garnets and spinel structures via irradiation of aqueous solutions containing precursors, i.e. soluble metal salts, radical scavengers and/or macromolecular stabilizers. Namely, results on radiation induced preparation of nickel, zinc, yttrium and aluminium oxides are summarized, as well as zinc peroxide, yttrium / lutetium - aluminium garnets and cobalt(II) aluminate. 60 Co irradiator, linear electron accelerator, medium pressure UV lamp and solid state laser were used as the sources of radiation. Aside from preparation, various physico-chemical and structural properties of compounds prepared were also studied. All used modifications of radiation method are rather convenient and simple, and yield (nano)powder materials with interesting characteristics. Prepared materials generally have high chemical purity, high specific surface area and narrow distribution of particles size (ranging in tens of nm). Generally, all types of irradiation result in materials with comparable properties and structural characteristics; but in the case of synthetic garnets and spinels, preparation using UV-radiation seems to be the most convenient for their preparation. Among compounds discussed, only zinc oxide and zinc peroxide were prepared directly via irradiation. For preparation of other crystalline compounds, additional heat treatment (at low temperature) of amorphous solid phase formed under irradiation was necessary.

  19. The use of UV radiation to control architecture of cucurbits transplants

    International Nuclear Information System (INIS)

    Bartolomeo, L.; Diara, C.; Bertram, L.

    2003-01-01

    UV treatments of plug transplants of muskmelon, cucumber and squash were performed in greenhouse to control seedling height and improve their adaptation to outdoor conditions. UVB sources, Philips TL12-40W, were placed 0.6 m above the seedlings. UV treatments were repeated daily, 0.5-2 h/day [4.3 - 25.8 kJm*[-2) d*[-1)] in the middle of the night, for one week and started when cotyledons emerged from the soil. Plant height, leaf area and stem and leaf dry weights were significantly lowered by UV treatments in all species investigated. Cucumber was the most and muskmelon the least sensitive to the UV treatments [it

  20. 40K activities and potassium concentrations in tobacco samples of Mexican cigarettes

    International Nuclear Information System (INIS)

    Martinez, T.; Navarrete, M.; Cabrera, L.; Ramos, A.; Vazquez, K.; Juarez, F.

    2007-01-01

    Nine brands of tobacco cigarettes manufactured and distributed in the Mexican market were analyzed by γ-spectrometry to certify their nonartificial radioactive contamination. Since natural occurring radioactive materials (NORM) 40 K, 232 Th, 235 U, and 239 U (and decay products from the latter three nuclides) are the main sources for human radiation exposure, the aim of this work was to determine the activity of 40 K and potassium concentration. Averages of 40 K and potassium concentration were of 1.29 ± 0.18 Bq x g -1 , and 4.0 ± 0.57%. The annual dose equivalents to the whole body from ingestion and inhalation of 26 Bq 40 K were 0.23 μSv and 15.8 μSv, respectively. The corresponding 50 years committed dose equivalents was 0.23 μSv. The total committed dose to the lungs due to inhalation of 40 K in tobacco was 16 μSv. Potassium concentrations obtained in this work were in the same range of those obtained by INAA, so showing that the used technique is acute, reproducible, and accessible to laboratories equipped with low background scintillation detectors. (author)

  1. Influence of light, UV-B radiation, and herbicides on wax biosynthesis of cucumber seedlings

    International Nuclear Information System (INIS)

    Tevini, M.; Steinmüller, D.

    1987-01-01

    The behavior of cuticular alkane-1-ols and alkanes were studied in different developmental stages of cucumber seedlings grown in the dark or under white light, with or without UV-B radiation or in presence of wax biosynthesis inhibitors, trichloroacetic acid and metolachlor. Accumulation of alkane-1-ols increased light independently with seedling age. Synthesis of alkanes was strictly light and dose dependent. Addition of UV-B radiation did not alter the amounts of alkanes or alcohols, however, the distribution of homologues was shifted towards shorter chain homologues. Treatments with Cl 3 AcOH resulted in strong inhibition of alkane accumulation, whereas the amount of alkane-1-ols was changed neither at low nor at moderate concentrations of Cl 3 AcOH but their homologue distribution shifted towards longer chain lengths. This shifting was depressed in the presence of UV-B. At high concentrations of Cl 3 Ac0H similar homologue distributions as produced by UV-B (shift to shorter homologues) were observed. Metolachlor treatment resulted in an inhibition of alkane-1-ol production connected with rising amounts of alkanes, predominantly of short chain species. A simple model of wax biosynthesis is proposed which describes the interactions with white light, UV-B radiation and herbicides. (author)

  2. Implementation of ICRP-60 recommendations on dose limits to radiation workers in India

    International Nuclear Information System (INIS)

    Parthasarathy, K.S.

    2000-01-01

    The handling of radioactive material and radiation generating plants in India is regulated by the Atomic Energy Act, 1962 and rules issued under the Act. The Atomic Energy Regulatory Board enforces the rules. Currently, there are about 40,000 radiation workers in the country. Nearly half of them are employed in nuclear installations. During 1989, the Board considered the impact of restricting the maximum individual exposure to different values of dose limits. Through this analysis, the Board alerted all radiation users including persons responsible for radiation safety in nuclear facilities. When ICRP published ICRP-60, the Board issued directives to all radiation installations reducing the dose limit to occupational workers in a phased manner (40 mSv for 1991, 35 mSv for 1992 and 30 mSv for 1993). To meet the recommendations of ICRP-60, AERB issued a directive for the five year block 1994-1998, restricting the cumulative effective dose constraint to one hundred milliSievert (100 mSv) for individual radiation workers. Also, the annual effective dose to individual workers in any calendar year during the five-year block was restricted to thirty milliSievert (30 mSv). The stipulations of AERB are thus more conservative than those of ICRP. There was near total compliance with the dose limits by radiation installations in the country. For instance, in 1989, the number of radiation workers in nuclear power plants, who exceeded the dose level of 20 mSv/year was 9% of the total. This declined gradually to 2.2% in 1993 and 0.3% in 1997. During 1998, only 9 out of 10,145 exceeded 20 mSv/year. This has been achieved by the concerted efforts of the management, health physics staff and radiation workers. The health physicists regulated the radiation doses to workers by issuing work permits when the workers are assigned any job in high radiation areas. Appropriate training programmes are also in place. The broad guidelines to regulate radiation exposures in nuclear facilities

  3. Effect of enhanced UV-B radiation on pollen quantity, quality, and seed yield in Brassica rapa (Brassicaceae)

    International Nuclear Information System (INIS)

    Demchik, S.M.; Day, T.A.

    1996-01-01

    Three experiments examined the influence of ultraviolet-B radiation (UV-B; 280-320 nm) exposure on reproduction in Brassica rapa (Brassicacaeae). Plants were grown in a greenhouse under three biologically effective UV-B levels that stimulated either an ambient stratospheric ozone level (control), 16% (open-quotes low enhancedclose quotes), or 32% (open-quotes high enhancedclose quotes) ozone depletion levels at Morgantown, WV, USA in mid-March. In the first experiment,pollen production and viability per flower were reduced by ∼50% under both enhanced UV-B levels relative to ambient controls. While plants under high-enhanced UV-B produced over 40% more flowers than plants under the two lower UV-B treatments, whole-plant production of viable pollen was reduced under low-enhanced UV-B to 34% of ambient controls. In the second experiment, the influence of source-plant UV-B exposure on in vitro pollen from plants was examined and whether source-plant UV-B exposure influenced in vitro pollen germination and viability. Pollen from plants under both enhanced-UV-B was reduced from 65 to 18%. Viability of the pollen from plants grown under both enhanced UV-B treatments was reduced to a much lesser extent: only from ∼43 to 22%. Thus, ambient source-plant pollen was more sensitive to enhanced UV-B levels to fertilize plants growing under ambient-UV-B levels, and assessed subsequent seed production and germination. Seed abortion rates were higher in plants pollinated with pollen from the enhanced UV-B treatments, than from ambient UV-B. Despite this, seed yield (number and mass) per plant was similar, regardless of the UV-B exposure of their pollen source. Our findings demonstrate that enhanced UV-B levels associated with springtime ozone depletion events have the capacity to substantially reduce viable pollen production, and could ultimately reduce reproductive success of B. rapa. 37 refs., 4 figs., 2 tabs

  4. Impact of UV-B radiation on photosynthetic assimilation of 14C-bicarbonate and inorganic 15N-compounds by cyanobacteria

    International Nuclear Information System (INIS)

    Doehler, G.; Biermann, I.; Zink, J.

    1986-01-01

    The cyanobacteria Anabaena cylindrica and Synechococcus leopoliensis (=Anacystis nidulans) were grown at different levels of UV-B radiation (439, 717, 1230 and 1405 J m -2 d -1 , weighted according Caldwell, 1971) for 2 days. Dry weight was hardly affected but phycocyanin content of both species decreased linearly to the level of UV-B radiation. Contents of protein, carotenoids and chlorophyll a were reduced only after exposure to high doses (1230 J m -2 d -1 ) of UV-B radiation. Photosynthetic 14 CO 2 fixation of Anabaena cells was reduced linearly with increasing UV-B dose whereas no effect could be observed in Synechococcus. A depression of photosynthetic 15 N-nitrate uptake was found after UV-B stress in both species. UV-B irradiance caused an increase of 15 N-incorporation into glutamine, but no effect was noted for incorporation into alanine or aspartic acid. An increase of 15 N-excess in glutamic acid linear with the UV-B dose was observed in Synechococcus, only. Patterns of 14 C-labelled photosynthetic products were either less affected by UV-B radiation (Anabaena) or an enhancement of 14 C-label in total amino acids was detected (Synechococcus). The amount of total free amino acids increased parallel to the level of UV-B radiation. Only, the high dose of UV-B (1405 J m -2 d -1 , weighted) results in a decrease of the glutamine pool. Our results indicate an inhibition of glutamate synthase by UV-B irradiation in Anabaena, only. Results were discussed with reference to the damage of the photosynthetic apparatus. (orig.)

  5. Action spectrum and mechanisms of UV radiation-induced injury in lupus erythematosus

    International Nuclear Information System (INIS)

    Kochevar, I.E.

    1985-01-01

    Photosensitivity associated with lupus erythematosus (LE) is well established. The photobiologic basis for this abnormal response to ultraviolet radiation, however, has not been determined. This paper summarizes the criteria for elucidating possible photobiologic mechanisms and reviews the literature relevant to the mechanism of photosensitivity in LE. In patients with LE, photosensitivity to wavelengths shorter than 320 nm has been demonstrated; wavelengths longer than 320 nm have not been adequately evaluated. DNA is a possible chromophore for photosensitivity below 320 nm. UV irradiation of skin produces thymine photodimers in DNA. UV-irradiated DNA is more antigenic than native DNA and the antigenicity of UV-irradiated DNA has been proposed, but not proven, to be involved in the development of clinical lesions. UV irradiation of mice previously injected with anti-UV-DNA antibodies produces Ig deposition and complement fixation that appears to be similar to the changes seen in lupus lesions. Antibodies to UV-irradiated DNA occur in the serum of LE patients although a correlation between antibody titers and photosensitivity was not observed. Defective repair of UV-induced DNA damage does not appear to be a mechanism for the photosensitivity in LE. Other mechanisms must also be considered. The chromophore for photosensitivity induced by wavelengths longer than 320 nm has not been investigated in vivo. In vitro studies indicate that 360-400 nm radiation activates a photosensitizing compound in the lymphocytes and serum of LE patients and causes chromosomal aberrations and cell death. The mechanism appears to involve superoxide anion

  6. Properties of Natural Radiation and Radioactivity

    International Nuclear Information System (INIS)

    Strom, Daniel J.

    2009-01-01

    Ubiquitous natural sources of radiation and radioactive material (naturally occurring radioactive material, NORM) have exposed humans throughout history. To these natural sources have been added technologically-enhanced naturally occurring radioactive material (TENORM) sources and human-made (anthropogenic) sources. This chapter describes the ubiquitous radiation sources that we call background, including primordial radionuclides such as 40K, 87Rb, the 232Th series, the 238U series, and the 235U series; cosmogenic radionuclides such as 3H and 14C; anthropogenic radionuclides such as 3H, 14C, 137Cs, 90Sr, and 129I; radiation from space; and radiation from technologically-enhanced concentrations of natural radionuclides, particularly the short-lived decay products of 222Rn ('radon') and 220Rn ('thoron') in indoor air. These sources produce radiation doses to people principally via external irradiation or internal irradiation following intakes by inhalation or ingestion. The effective doses from each are given, with a total of 3.11 mSv y-1 (311 mrem y-1) to the average US resident. Over 2.5 million US residents receive over 20 mSv y-1 (2 rem y-1), primarily due to indoor radon. Exposure to radiation from NORM and TENORM produces the largest fraction of ubiquitous background exposure to US residents, on the order of 2.78 mSv (278 mrem) or about 89%. This is roughly 45% of the average annual effective dose to a US resident of 6.2 mSv y-1 (620 mrem y-1) that includes medical (48%), consumer products and air travel (2%), and occupational and industrial (0.1%). Much of this chapter is based on National Council on Radiation Protection and Measurements (NCRP) Report No. 160, 'Ionizing Radiation Exposure of the Population of the United States,' for which the author chaired the subcommittee that wrote Chapter 3 on 'Ubiquitous Background Radiation.'

  7. The effects of different UV-B radiation intensities on morphological and biochemical characteristics in Ocimum basilicum L.

    Science.gov (United States)

    Sakalauskaitė, Jurga; Viskelis, Pranas; Dambrauskienė, Edita; Sakalauskienė, Sandra; Samuolienė, Giedrė; Brazaitytė, Aušra; Duchovskis, Pavelas; Urbonavičienė, Dalia

    2013-04-01

    The effects of short-term ultraviolet B (UV-B) irradiation on sweet basil (Ocimum basilicum L. cv. Cinnamon) plants at the 3-4 leaf pair and flowering stages were examined in controlled environment growth chambers. Plants were exposed to 0 (reference), 2 and 4 kJ UV-B m(-2) day(-1) over 7 days. Exposure of basil plants to supplementary UV-B light resulted in increased assimilating leaf area, fresh biomass and dry biomass. Stimulation of physiological functions in young basil plants under either applied UV-B dose resulted in increased total chlorophyll content but no marked variation in carotenoid content. At the flowering stage the chlorophyll and carotenoid contents of basil were affected by supplementary UV-B radiation, decreasing with enhanced UV-B exposure. Both total antioxidant activity (2,2-diphenyl-1-picrylhydrazyl free radical assay) and total phenolic compound content were increased by UV-B light supplementation. Young and mature basil plants differed in their ascorbic acid content, which was dependent on UV-B dose and plant age. UV-B radiation resulted in decreased nitrate content in young basil plants (3-4 leaf pair stage). These results indicate that the application of short-exposure UV-B radiation beneficially influenced both growth parameters and biochemical constituents in young and mature basil plants. © 2012 Society of Chemical Industry.

  8. Effects of Ultraviolet (UV) Radiations at Different Wave Lengths on ...

    African Journals Online (AJOL)

    Prof. Ogunji

    The effects of UV-radiation on the bacterial load and yeast viability of palm wine were ... shelf life due to the uncontrolled metabolic activities of yeast and bacteria. .... Process. Biochemistry International 8:23-220. Okafor, N. (2007). Palm Wine ...

  9. Ambient solar UV radiation and seasonal trends in potential sunburn ...

    African Journals Online (AJOL)

    Background. The detrimental effects of excess personal solar ultraviolet (UV) radiation exposure include sunburn, immunosuppression and skin cancer. In South Africa, individuals with minimum natural protection from melanin, including fair-skinned individuals and African albinos, and people spending extended ...

  10. THE ACTION OF UV RADIATION ON MITOTIC INDEX AND MITOTIC DIVISION PHASES AT PHASEOLUS VULGARIS L

    Directory of Open Access Journals (Sweden)

    Csilla Iuliana Bara

    2005-08-01

    Full Text Available In this work, damaging effects of UV radiations on bean Phaseolus vulgaris L. plantule root tips were investigated. Our study proves that by bean plants, the decrease of cell division frequency appears to be part of protection mechanism against especially the short waved UV radiation, with variations depending on cultivar.

  11. TiO2 nanoparticles as an effective UV-B radiation skin-protective compound in sunscreens

    International Nuclear Information System (INIS)

    Popov, A P; Priezzhev, A V; Lademann, J; Myllylae, R

    2005-01-01

    Protecting human skin against harmful UV-B radiation coming from the sun is currently a problem. Due to the decreased thickness of the ozone layer, a more dangerous amount of UV-B light reaches the surface of our planet. This causes increased frequency of skin diseases. Titanium dioxide (TiO 2 ) fine particles are embedded with sunscreens into the skin to effectively attenuate UV-B radiation. This study evaluates the most appropriate size of such particles assuming they are spheres. The distribution of TiO 2 particles within the skin, achieved with topically applied sunscreens, is determined experimentally by the tape-stripping technique. Computer code implementing the Monte Carlo method is used to simulate photon migration within the plain 20 μm thick horny layer matrix partially filled with nano-sized TiO 2 particles. Dependences of harmful UV-B radiation of 307-311 nm absorbed by, backscattered from and transmitted through the horny layer on the concentration of TiO 2 particles are obtained and analysed. As a result, particles of 62 nm are found to be the most effective in protecting skin against UV-B light

  12. Exposure of the Bulgarian population from natural and manmade ionizing radiation sources in the mid 90-ies

    International Nuclear Information System (INIS)

    Vasilev, G.; Bajrakova, A.; Ingilizova, Kh.; Khristova, M.; Karadzhov, A.

    1997-01-01

    The main radiation sources the Bulgarian population is exposed to, e.g. natural radiation background and manmade exposure such as occupational, medical, nuclear power engineering and the like, are analyzed. The study covers the period 1991-1994 but it also contains a number of retrospective assessments concerning the last few decades. It is prepared with a special reference to the forthcoming report of the United Nations Scientific Committee on the effect of atomic radiation scheduled for publication in 1998/1999. The Bulgarian population exposure presented as average annual effective collective doses amounts to 20240 mSv/a from natural background, 6400 mSv/a from x-ray diagnostics, 400 mSv/a from nuclear medicine, 17 mSv/a from occupational exposure (uranium mining excluded) etc. Total exposure in excess to background irradiation is about 40% of the background one

  13. [Effects of silicon supply on rice growth and methane emission from paddy soil under elevated UV-B radiation].

    Science.gov (United States)

    Meng, Yan; Lou, Yun-sheng; Wu, Lei; Cui, He-yang; Wang, Wei-qing

    2015-01-01

    A pot experiment was conducted to investigate the effects of silicon supply on rice growth and methane (CH4) emission in paddy field under elevated UV-B radiation. The experiment was designed with two UV-B radiation levels, i.e. ambient UV-B (ambient, A) and elevated UV-B radiation (elevated by 20%, E) ; with four silicon supply levels, i.e., Si0 (control, without silicon), Si2 (as sodium silicate, 100 kg SiO2 . hm-2), Si2 (as sodium silicate, 200 kg SiO2 hm-2) and Si3 (as slag fertilizer, 200 kg SiO2 . hm-2). The results indicated that, silicon supply obviously alleviated the depressive effect of elevated UV-B radiation on rice growth, and increased the tiller numbers, chlorophyll content, and shoot and root dry masses. Silicon supply promoted rice growth, which increased with the silicon supply level (sodium silicate). Slag fertilizer was better than*sodium silicate in promoting rice growth. CH4 flux and accumulated CH4emission were obviously increased by elevated UV-B radiation, but significantly decreased by silicon application. CH4 emission was reduced with increasing the silicon supply level. Under the same silicon supply level, slag fertilizer was better than sodium silicate in inhibiting CH4 flux and accumulated CH4 emission. This research suggested that fertilizing slag in rice production was helpful not only in utilizing industrial wastes, but also in significantly mitigating CH4 emissions in rice paddy under elevated UV-B radiation.

  14. Effect of UV radiation and its implications on carotenoid pathway in Bixa orellana L.

    Science.gov (United States)

    Sankari, M; Hridya, H; Sneha, P; George Priya Doss, C; Ramamoorthy, Siva

    2017-11-01

    The current study was undertaken to analyse the effect of short-term UV-B and UV-C radiations in provoking carotenoid biosynthesis in Bixa orellana. Seeds of B. orellana were germinated and exposed to the short term UV pre-treatment under controlled environmental condition for 5days. The UV treated young seedlings response in pigment contents; antioxidant enzyme activity and mRNA gene expression level were analysed. The pigment content such as chlorophyll was increased in both UV-B and UV-C treated seedlings, but the total carotenoid level was decreased when compared to the control seedlings this can be attributed to the plant adaptability to survive in a stressed condition. The β-carotene level was increased in UV-B, and UV-C treated young seedlings. No significant changes have occurred in the secondary pigment such as bixin and ABA. The activity of the antioxidant enzymes such as catalase, peroxidase, and superoxide dismutase was significantly increased in UV-B treated seedlings when compared to the UV-C treated seedlings and control. The mRNA expression of the genes involved in bixin biosynthesis pathways such as DXS, PSY, PDS, LCY-β, LCY-ε, CMT, LCD, ADH and CCD genes showed different expression pattern in UV-B and UV-C treated young seedlings. Further we analysed the gene co-expression network to identify the genes which are mainly involved in carotenoid/bixin biosynthesis pathway. Form our findings the CCD, LCY, PDS, ZDS and PSY showed a close interaction. The result of our study shows that the short term UV-B and UV-C radiations induce pigment content, antioxidant enzyme activity and different gene expression pattern allowing the plant to survive in the oxidative stress condition. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Alteration of foliar flavonoid chemistry induced by enhanced UV-B radiation in field-grown Pinus ponderosa, Quercus rubra and Pseudotsuga menziesii.

    Science.gov (United States)

    Warren, Jeffrey M; Bassman, John H; Mattinson, D Scott; Fellman, John K; Edwards, Gerald E; Robberecht, Ronald

    2002-03-01

    Chromatographic analyses of foliage from several tree species illustrate the species-specific effects of UV-B radiation on both quantity and composition of foliar flavonoids. Pinus ponderosa, Quercus rubra and Pseudotsuga menziesii were field-grown under modulated ambient (1x) and enhanced (2x) biologically effective UV-B radiation. Foliage was harvested seasonally over a 3-year period, extracted, purified and the flavonoid fraction applied to a mu Bondapak/C(18) column HPLC system sampling at 254 nm. Total flavonoid concentrations in Quercus rubra foliage were more than twice (leaf area basis) that of the other species; Pseudotsuga menziesii foliage had intermediate levels and P. ponderosa had the lowest concentrations of total flavonoids. No statistically significant UV-B radiation-induced effects were found in total foliar flavonoid concentrations for any species; however, concentrations of specific compounds within each species exhibited significant treatment effects. Higher (but statistically insignificant) levels of flavonoids were induced by UV-B irradiation in 1- and 2-year-old P. ponderosa foliage. Total flavonoid concentrations in 2-year-old needles increased by 50% (1x ambient UV-B radiation) or 70% (2x ambient UV-B radiation) from that of 1-year-old tissue. Foliar flavonoids of Q. rubra under enhanced UV-B radiation tended to shift from early-eluting compounds to less polar flavonoids eluting later. There were no clear patterns of UV-B radiation effects on 1-year-old P. menziesii foliage. However, 2-year-old tissue had slightly higher foliar flavonoids under the 2x UV-B radiation treatment compared to ambient levels. Results suggest that enhanced UV-B radiation will alter foliar flavonoid composition and concentrations in forest tree species, which could impact tissue protection, and ultimately, competition, herbivory or litter decomposition.

  16. Color, physicochemical parameters and antioxidant potential of whole grape juices subject to different UV-C radiation doses

    Directory of Open Access Journals (Sweden)

    Paôla de Castro Henrique

    2016-04-01

    Full Text Available ABSTRACT Knowing that moderate stress such as UV radiation can activate defense mechanisms in plants, the use of UV-C radiation appears as hypothesis of a promising technique that would help to stimulate and enhance beneficial compounds for health, through a clean and healthy technology. In this study, the possible induction of secondary metabolism, the increase in the content of phytochemical compounds and physicochemical changes through the use of UV-C radiation were evaluated on whole grape juices produced with Vitis labrusca grapes, cultivar Isabel Precoce. Grapes were harvested, sanitized, exposed to UV-C radiation at doses of 0, 2, 4 and 6 KJ m-2, and then the juices were prepared and packed into amber glass bottles at room temperature. Analyses were performed at 0, 30, 60, 90 and 120 days of storage. Based on results obtained and conditions in which the experiment was performed, UV-C treatment in grapes caused abiotic stress in the fruits, affecting color, titratable acidity, soluble solids/titratable acidity ratio, vitamin C and percentage of protection against oxidation. Application of UV-C did not change levels of phenolic compounds in fruit juices or the percentage of scavenging free radicals, pH and soluble solids.

  17. Hope and challenge: the importance of ultraviolet (UV) radiation for cutaneous vitamin D synthesis and skin cancer.

    Science.gov (United States)

    Reichrath, Jörg; Reichrath, Sandra

    2012-01-01

    Abstract Solar ultraviolet (UV)-radiation is the most important environmental risk factor for the development of non-melanoma skin cancer (most importantly basal and squamous cell carcinomas), that represent the most common malignancies in Caucasian populations. To prevent these malignancies, public health campaigns were developed to improve the awareness of the general population of the role of UV-radiation. The requirements of vitamin D is mainly achieved by UV-B-induced cutaneous photosynthesis, and the vitamin D-mediated positive effects of UV-radiation were not always adequately considered in these campaigns; a strict "no sun policy" might lead to vitamin D-deficiency. This dilemma represents a serious problem in many populations, for an association of vitamin D-deficiency and multiple independent diseases has been convincingly demonstrated. It is crucial that guidelines for UV-exposure (e.g. in skin cancer prevention campaigns) consider these facts and give recommendations how to prevent vitamin D-deficiency. In this review, we analyze the present literature to help developing well-balanced guidelines on UV-protection that ensure an adequate vitamin D-status without increasing the risk to develop UV-induced skin cancer.

  18. Exclusion of UV-B radiation from normal solar spectrum on the growth of mung bean and maize

    International Nuclear Information System (INIS)

    Pal, M.; Sharma, A.; Abrol, Y.P.; Sengupta, U.K.

    1997-01-01

    The increase in UV-B radiation due to depletion of the ozone layer has potentially harmful effects on plant growth and performance. The bulk of these studies conducted in growth chambers, greenhouses or in the field use different types of exposure systems which may be responsible for differences in the sensitivity of a crop to UV-B radiation. A field study using selective filters to remove the UV-B portion of the solar spectrum was conducted with mung bean (a dicotyledonous C 3 plant) and maize (a monocotyledonous C 4 plant) to determine the sensitivity of these crop plants to ambient UV-B levels without disturbing the microenvironment. Mung bean was found to be sensitive to ambient UV-B levels in terms of leaf area development, plant height attained and net photosynthesis, while maize was found to be unaffected by ambient UV-B levels (22.8 |GmW cm −2 nm −1 ) found in Delhi, India (28°38′N, 77°13′E). The level of ambient UV-B radiation thus appears to be inhibitory for optimal growth of plants, especially dicotyledonous mung bean. (author)

  19. ER Operations Installation of Three FLUTe Soil-Vapor Monitoring Wells (MWL-SV03 MWL-SV04 and MWL-SV05) at the Mixed Waste Landfill.

    Energy Technology Data Exchange (ETDEWEB)

    Copland, John Robin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-09-01

    This installation report describes the May through July 2014 drilling activities performed for the installation of three multi-port soil-vapor monitoring wells (MWL-SV03, MWL-SV04, and MWL-SV05) at the Mixed Waste Landfill (MWL), which is located at Sandia National Laboratories, New Mexico (SNL/NM). SNL/NM is managed and operated by Sandia Corporation (Sandia), a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy (DOE)/National Nuclear Security Administration. The MWL is designated as Solid Waste Management Unit (SWMU) 76 and is located in Technical Area (TA) III (Figure 1-1). The locations of the three soil-vapor monitoring wells (MWL-SV03, MWL-SV04, and MWL-SV05) are shown in Figure 1-2

  20. Formation of pyrimidine dimers in Simian virus 40 chromosomes and DNA in vitro: effects of salt

    International Nuclear Information System (INIS)

    Edenberg, H.J.

    1984-01-01

    Simian virus 40 chromosomes were used to determine whether packaging of DNA into chromatin affected the yield of cylcobutane pyrimidine dimers introduced by ultraviolet light (254 nm). SV40 chromatin and purified SV40 DNA (radioactively labeled with different isotopes) were mixed and irradiated in vitro. The proteins were extracted and pyrimidine dimers detected as sites sensitive to the UV-endonuclease encoded by bacteriophage T4. When irradiation was carried out in the presence of at least 0.05 M NaCl the same number of dimers were formed in chromatin as in free DNA. Irradiation in the absence of NaCl, however, reduced the relative yield of dimers in chromatin to 89% of that in free DNA. Different methods of chromatin preparation did not influence these results. (author)

  1. Crosslink the Novel Group of Polymeric Binders BioCo by the UV-radiation

    Directory of Open Access Journals (Sweden)

    Grabowska B.

    2016-06-01

    Full Text Available The spectroscopic FT-IR and FT-Raman methods allowed to identify the cross-linking process of the aqueous composition of poly(acrylic acid/sodium salt of carboxymethyl starch (PAA/CMS-Na applied as a binder for moulding sands (as a novel group binders BioCo. The cross-linking was performed by physical agent, applying the UV-radiation. The results of structural studies (IR, Raman confirm the overlapping of the process of cross-linking polymer composition PAA/CMS-Na in UV radiation. Taking into account the ingredients and structure of the polymeric composition can also refer to a curing process in a binder - mineral matrix mixture. In the system of binder-mineral matrix under the influence of ultraviolet radiation is also observed effect of binding. However, the bonding process does not occur in the entire volume of the investigated system, but only on the surface, which gives some possibilities for application in the use of UV curing surface of cores, and also to cure sand moulds in 3D printing technology.

  2. Effects of UV-B Radiation and Periodic Desiccation on the Morphogenesis of the Edible Terrestrial Cyanobacterium Nostoc flagelliforme

    Science.gov (United States)

    Feng, Yan-Na; Zhang, Zhong-Chun; Feng, Jun-Li

    2012-01-01

    The terrestrial cyanobacterium Nostoc flagelliforme Berk. et M. A. Curtis has been a popular food and herbal ingredient for hundreds of years. To meet great market demand and protect the local ecosystem, for decades researchers have tried to cultivate N. flagelliforme but have failed to get macroscopic filamentous thalli. In this study, single trichomes with 50 to 200 vegetative cells were induced from free-living cells by low light and used to investigate the morphogenesis of N. flagelliforme under low UV-B radiation and periodic desiccation. Low-fluence-rate UV-B (0.1 W m−2) did not inhibit trichome growth; however, it significantly increased the synthesis of extracellular polysaccharides and mycosporine-like amino acids and promoted sheath formation outside the trichomes. Under low UV-B radiation, single trichomes developed into filamentous thalli more than 1 cm long after 28 days of cultivation, most of which grew separately in liquid BG11 medium. With periodic desiccation treatment, the single trichomes formed flat or banded thalli that grew up to 2 cm long after 3 months on solid BG11 medium. When trichomes were cultivated on solid BG11 medium with alternate treatments of low UV-B and periodic desiccation, dark and scraggly filamentous thalli that grew up to about 3 cm in length after 40 days were obtained. In addition, the cultivation of trichomes on nitrogen-deficient solid BG11 medium (BG110) suggested that nitrogen availability could affect the color and lubricity of newly developed thalli. This study provides promising techniques for artificial cultivation of N. flagelliforme in the future. PMID:22865081

  3. Recent studies on UV radiation in Brazil

    Science.gov (United States)

    Correa, M. P.; Ceballos, J. C.; Moregula, A.; Okuno, E.; Fausto, A.; Mol, A.; Santos, J. C.

    2009-04-01

    This presentation shows a summary of UV index measurements performed in the last years in Southeastern (SE) and Northeastern (NE) Brazilian regions. Brazil has an area of 8.5 million km2 distributed between latitudes 5˚ N and 35˚ S and longitudes 5˚ W and 75˚ W. SE is the most important economic pole of South America and the NE coast is an important tourist region. This large area has a great diversity of climatic, atmospheric and geographical conditions in addition to very diverse social and cultural habits. Non-melanoma skin cancer (NMSC) is an epidemiological health problem with more than 120,000 new cases each year. The most of these cases are found in the South and Southeast regions, with about 70 new NMSC per 100,000 inhabitants. Solar Light UV501 biometers are installed in the SE cities of São Paulo (23.6˚ S, 46.7˚ W, 865 m ASL), Itajubá/Minas Gerais (22.4˚ S; 45.5˚ W, 846 m ASL) and the NE city of Ilhéus/Bahia (14.8˚ S; 39.3˚ W; 54 m ASL). First measurements began in 2005 in São Paulo city, while Itajubá and Ilhéus have regular measurements from the beginning of 2008. Other studies related to the UV radiation modeling and interactions with atmosphere components, as ozone, aerosols and clouds, have also been performed. For example: a) UVI modelling calculations performed by a multiple-scattering spectral models; b) studies on the aerosol radiative properties based on satellite (MODIS/Terra-Aqua) and ground-based (Aeronet) observation; c) ozone content variability from satellite (OMI/Aura) and ground-based (Microtops ozonometer) measurements; d) behavioral profile of the population, as regarding habits of solar exposure and sun protection measures. Results show that more than 75% of the measurements conducted in the summer (outside noon) can be classified as upper than high UVI according to World Health Organization (WHO) recommended categories: Low (UVI UV radiation levels to have a population very exposed during its

  4. Role of p-aminobenzoic acid in the repair of injuries induced by UV- and. gamma. -radiation

    Energy Technology Data Exchange (ETDEWEB)

    Rapoport, I A; Vasil' eva, S V; Davnichenko, L S [AN SSSR, Moscow. Inst. Khimicheskoj Fiziki

    1979-07-01

    For the first time it was proved that low doses of p-aminobenzoic acid (PABA) were capable of sharply decreasing lethal mutational effects of UV light and less significantly-gamma effect on a bacterial cell. The experiments were carried out on E.Coli strains which differed in the activity of ferment system of DNA UV-induced injuries reparation. UV radiation dose equaled 10-1500 erd/mm/sup 2/. PABA capability to intensify the reparative process under mutagenic effects of 3 main types: chemical, UV as a representative of non-penetrating radiation, and penetrating radiation permitted to characterize this compound as ''reparagen''. It was emphasized that the application of reparagens capable of intensifying or weakening the reparative process permitted to observe different effects of reparation dependence on the concentration of a chemical agent being introduced from outside and localize the process of reparagen effect in time.

  5. Occupational radiation exposure in Germany in 2011. Report of the radiation protection register

    International Nuclear Information System (INIS)

    Frasch, Gerhard; Kammerer, Lothar; Karofsky, Ralf; Mordek, Else; Schlosser, Andrea; Spiesl, Josef

    2013-04-01

    In Germany, persons who are occupationally exposed to ionising radiation are monitored by several official dosimetry services that transmit the dose records about individual radiation monitoring to the Radiation Protection Register of the Federal Office for Radiation Protection (BfS). The purpose of the Radiation Protection Register is to supervise the keeping of the dose limits and to monitor the compliance with the radiation protection principle ''Optimisation'' by performing detailed annual statistical analyses of the monitored persons and their radiation exposure. The annual report of the Radiation Protection Register provides information about status and development of occupational radiation exposure in Germany. In 2011, about 350,000 workers were monitored with dosemeters for occupational radiation exposure. The number increased during the past five years continuously by 10 %. Only 19 % of the monitored persons received measurable personal doses. The average annual dose of these exposed workers was 0.58 mSv corresponding to 3 % of the annual dose limit of 20 mSv for radiation workers. In total, 7 persons exceeded the annual dose limit of 20 mSv, i.e. two cases per 100,000 monitored persons. The collective dose of the monitored persons decreased to 38.5 Person-Sv, the lowest value since the last fifty years of occupational dose monitoring. In 2010, 45 airlines calculated the route doses of 39,000 members of the aircraft crew personnel by using certified computer programmes for dose calculation and sent the accumulated monthly doses via the Federal Office for Civil Aviation (''Luftfahrt-Bundesamt, LBA'') to the BfS. The collective dose of the aircraft crew personnel is 83 person-Sv, and thus significantly higher than the total collective dose of the workers monitored with personal dosemeters (38.5 person-Sv). The annual average dose of aircraft crew personnel was 2.12 mSv and decreased compared to 2010 (2,30 mSv). In 2011, about 70,000 outside-workers were in

  6. The influence of UV radiation on protistan evolution

    Science.gov (United States)

    Rothschild, L. J.

    1999-01-01

    Ultraviolet radiation has provided an evolutionary challenge to life on Earth. Recent increases in surficial ultraviolet B fluxes have focused attention on the role of UV radiation in protistan ecology, cancer, and DNA damage. Exploiting this new wealth of data, I examine the possibility that ultraviolet radiation may have played a significant role in the evolution of the first eukaryotes, that is, protists. Protists probably arose well before the formation of a significant ozone shield, and thus were probably subjected to substantial ultraviolet A, ultraviolet B, and ultraviolet C fluxes early in their evolution. Evolution consists of the generation of heritable variations and the subsequent selection of these variants. Ultraviolet radiation has played a role both as a mutagen and as a selective agent. In its role as a mutagen, it may have been crucial in the origin of sex and as a driver of molecular evolution. As a selective agent, its influence has been broad. Discussed in this paper are the influence of ultraviolet radiation on biogeography, photosynthesis, and desiccation resistance.

  7. Dissociation of DNA damage and mitochondrial injury caused by hydrogen peroxide in SV-40 transformed lung epithelial cells

    Directory of Open Access Journals (Sweden)

    Adcock Ian M

    2002-11-01

    Full Text Available Abstract Background Since lung epithelial cells are constantly being exposed to reactive oxygen intermediates (ROIs, the alveolar surface is a major site of oxidative stress, and each cell type may respond differently to oxidative stress. We compared the extent of oxidative DNA damage with that of mitochondrial injury in lung epithelial cells at the single cell level. Result DNA damage and mitochondrial injury were measured after oxidative stress in the SV-40 transformed lung epithelial cell line challenged with hydrogen peroxide (H2O2. Single cell analysis of DNA damage was determined by assessing the number of 8-oxo-2-deoxyguanosine (8-oxo-dG positive cells, a marker of DNA modification, and the length of a comet tail. Mitochondrial membrane potential, ΔΨm, was determined using JC-1. A 1 h pulse of H2O2 induced small amounts of apoptosis (3%. 8-oxo-dG-positive cells and the length of the comet tail increased within 1 h of exposure to H2O2. The number of cells with reduced ΔΨm increased after the addition of H2O2 in a concentration-dependent manner. In spite of a continual loss of ΔΨm, DNA fragmentation was reduced 2 h after exposure to H2O2. Conclusion The data suggest that SV-40 transformed lung epithelial cells are resistant to oxidative stress, showing that DNA damage can be dissociated from mitochondrial injury.

  8. Effects of UV-B radiation on a hereditary suture cataract in mice

    International Nuclear Information System (INIS)

    Forker, Carina; Wegener, Alfred

    1997-01-01

    UV-B (290-320 nm, λ max = 305 nm) radiation and the Cat2 ns (suture cataract) mutation in mice affect both the anterior lens epithelium and the formation of the suture. A low dose of UV-B radiation (2.2 Jcm -2 ) induces similar anterior subcapsular and cortical lens opacities in wild type as in heterozygous mutant mice. The UV-B treatment of the mutant lenses, however, leads to an increase in the number of epithelial cell layers in the anterior central part as compared to the wild type indicating a more severe form of the cataract formation in mutants. In addition, mutants demonstrate a predisposition for a rupture of the posterior lens capsule, because from 2.9 Jcm -2 and higher, this phenomenon could always be observed in the UV-B treated mutants, but never in the treated wild type mice. The protein biochemical analyses were performed by gel electrophoresis and isoelectric focusing of extracts of total lenses or from defined areas of the lens (lens slice technique). These covered the patterns of those proteins already synthesized before irradiation, which in irradiated lenses in no case evidenced a difference to the untreated control, neither in the wild type nor in the mutants. In contrast, by analysing specifically those proteins, which are synthesized after irradiation, in both treated groups a protein with a molecular mass of about 31 kDa becomes discernable in both treated groups. In addition, the cataractous lenses demonstrate a significantly enhanced overall synthesis of water-soluble proteins after irradiation, which might promote the rupture of the posterior capsule at the posterior pole. The present study offers for the first time the possibility to discriminate between endogeneous (genetic) effects and exogeneous (environmental) effects in cataractogenesis and to study their interactive effects. The first set of experiments demonstrated a clear intensification of the hereditary cataract by the UV-B treatment. The study supports the hypothesis that

  9. Natural background radiation at flight altitudes; Natuerliche Strahlenexposition in Flughoehen durch kosmische Strahlung

    Energy Technology Data Exchange (ETDEWEB)

    Wissmann, F. [Physikalisch-Technische Bundesanstalt, Berlin (Germany). FB Ionenbeschleuniger und Referenzstrahlungsfelder

    2006-12-15

    At sea level, the background radiation of about 40 nSv/h consists of about 80 percent of muons and electrons and about 0 percent of neutrons. The picture is different at an altitude of 10 km. Here, the background dose equivalent of about 5000 nSv/h (= 5 {mu}Sv/h) consists of about 60 percent of neutrons and about 25 percent of muons and electrons. Protons account for about 15 percent. This particle composition makes dosimetric measurements difficult. In addition, the energy emitted by the particles is far beyond the the measuring range of conventional radiation protection dosemeters. For these reasons, conventional dosemeters are not suited for applications in aeroplanes and such. The PTB method for measuring local dose rates uses a proportional counter whose wall consists of a tissue equivalent material and which is operated with tissue equivalent counting gas at very low pressure (about 40 hPa). (orig.)

  10. Toxic effects of combined effects of anthracene and UV radiation on Brachionus plicatilis

    Science.gov (United States)

    Gao, Ceng; Zhang, Xinxin; Xu, Ningning; Tang, Xuexi

    2017-05-01

    Anthracene is a typical polycyclic aromatic hydrocarbon, with photo activity, can absorb ultraviolet light a series of chemical reactions, aquatic organisms in the ecosystem has a potential light induced toxicity. In this paper, the effects of anthracene and UV radiation on the light-induced toxicity of Brachionus plicatilis were studied. The main methods and experimental results were as follows: (1) The semi-lethal concentration of anthracene in UV light was much lower than that in normal light, The rotifers have significant light-induced acute toxicity. (2) Under UV irradiation, anthracene could induce the increase of ROS and MDA content in B. plicatilis, and the activity of antioxidant enzymes in B. plicatilis significantly changed, Where SOD, GPx activity was induced within 24 hours of the beginning of the experiment. And the content of GPX and CAT was inhibited after 48 hours. Therefore, the anthracite stress induced by UV radiation could more strongly interfere with the ant oxidative metabolism of B. plicatilis, and more seriously cause oxidative damage, significant light-induced toxicity.

  11. The role of solar UV radiation in the ecology of alpine lakes.

    Science.gov (United States)

    Sommaruga, R

    2001-09-01

    Solar ultraviolet radiation (UVR, 290-400 nm) is a crucial environmental factor in alpine lakes because of the natural increase of the UVR flux with elevation and the high water transparency of these ecosystems. The ecological importance of UVR, however, has only recently been recognized. This review, examines the general features of alpine lakes regarding UVR, summarizes what is known about the role of solar UVR in the ecology of alpine lakes, and identifies future research directions. Unlike the pattern observed in most lowland lakes, variability of UV attenuation in alpine lakes is poorly explained by differences in dissolved organic carbon (DOC) concentrations, and depends mainly on optical characteristics (absorption) of the chromophoric dissolved organic matter (CDOM). Within the water column of lakes with low DOC concentrations (0.2-0.4 mg l(-1)), UV attenuation is influenced by phytoplankton whose development at depth (i.e. the deep chlorophyll maximum) causes important changes in UV attenuation. Alpine aquatic organisms have developed a number of strategies to minimize UV damage. The widespread synthesis or bioaccumulation of different compounds that directly or indirectly absorb UV energy is one such strategy. Although most benthic and planktonic primary producers and crustacean zooplankton are well adapted to high intensities of solar radiation, heterotrophic protists, bacteria, and viruses seem to be particularly sensitive to UVR. Understanding the overall impact of UVR on alpine lakes would need to consider synergistic and antagonistic processes resulting from the pronounced climatic warming, which have the potential to modify the UV underwater climate and consequently the stress on aquatic organisms.

  12. The formation of ozone and UV radiation from high-power pulsed electric discharges

    Science.gov (United States)

    Piskarev, I. M.; Ushkanov, V. A.; Selemir, V. D.; Spirov, G. M.; Malevannaya Pikar', I. A.; Zuimach, E. A.

    2008-09-01

    High-power electric discharges with pulse energies of from 0.15 J to 4 kJ were studied. The yields of UV photons and ozone were found to be approximately equal, which led us to conclude that discharge conditions under which UV radiation and ozone fully destroyed each other were possible. If ozone formation was suppressed, as when a negative volume charge was created in the spark gap region, the flux of UV photons reached 3 × 1023 photons/(cm2 s).

  13. Long-term variability and impact on human health of biologically active UV radiation in Moscow

    Science.gov (United States)

    Zhdanova, Ekaterina; Chubarova, Natalia

    2014-05-01

    Measurements of erythemally weighted UV irradiance (Qer) have been performed at the Meteorological Observatory of Moscow State University since 1999 with the UVB-1 YES pyranometers. These types of devices are broadband with a spectral sensitivity curve close to the action spectrum of erythema. Main uncertainties of UVB-1 YES measurements include the difference in spectral curves of the instrument and the action spectrum of erythema, as well as the deviation from the cosine law. These uncertainties were taken into account in the database of Qer measurements (Chubarova, 2008. Additional corrections of UVB-1 measurements at low ambient temperatures have been made. We analyze interannual, seasonal and diurnal Qer changes over the time period 1999-2012. In addition, the comparisons with the results of UV reconstruction model (Chubarova, 2008) are made. This model allows us to evaluate relative changes in Qer due to variations in total ozone, effective cloud amount transmission, aerosol and cloud optical thickness since 1968. It is important to note that the main reason for UV irradiance monitoring development is the strong influence of UV irradiance on the biosphere and especially on human health mainly on human skin (CIE, 1993, CIE, 2006) and eyes (Oriowo, M. et al., 2001). Based on the detailed studies we have shown the possibility of utilizing UVB-1 pyranometers for measuring the eye-damage UV radiation. Parallel measurements by the Bentham DTM-300 spectrometer and the UVB-1 YES pyranometer at the Innsbruck Medical University (Austria) have provided us the calibration factor in eye-damage units for this broadband instrument. Influence of main geophysical factors on different types of UV irradiance is estimated by means the RAF ideology (Booth, Madronich, 1994). We discuss the responses of different types of biologically active UV radiation to the impact of various atmospheric factors. The UV conditions (deficiency, optimum, excess for human) are analyzed according to

  14. Increased exposure to UV-B radiation during early development leads to enhanced photoprotection and improved long-term performance in Lactuca sativa.

    Science.gov (United States)

    Wargent, Jason J; Elfadly, Eslam M; Moore, Jason P; Paul, Nigel D

    2011-08-01

    Plant responses to solar UV radiation are numerous and have often been considered from a perspective of negative outcomes for plant productivity. In this study, we used two experimental approaches consisting of: (1) field-based spectrally modifying filters in addition to (2) controlled indoor exposure to UV-B, to examine the effects of UV radiation on growth and photosynthetic performance of lettuce (Lactuca sativa L.) seedlings. Various aspects of growth were affected in plants grown under a UV-inclusive environment compared to a UV-depleted environment, including reductions in leaf expansion, increases in leaf thickness and the rate of net photosynthesis. After transplantation to a uniform field environment, lettuce plants initially propagated under the UV-inclusive environment exhibited higher harvestable yields than those from a UV-depleted environment. In controlled conditions, photosynthetic rates were higher in plants grown in the presence of UV-B radiation, and relative growth of plants pre-acclimatized to UV-B was also increased, in addition to higher maximum photochemical efficiency of photosystem II (PSII) (F(v) /F(m) ) following subsequent exposure to high photosynthetically active radiation (PAR) and temperature stress. Our findings are discussed within the context of sustainability in agriculture and the paradigm shift in photobiology which such beneficial responses to UV radiation could represent. © 2011 Blackwell Publishing Ltd.

  15. Significance of grafting in radiation curing reactions. Comparison of ionising radiation and UV systems

    International Nuclear Information System (INIS)

    Zilic, E.; Ng, L.; Viengkhou, V.; Garnett, J.L.

    1998-01-01

    Full text: Radiation curing is now an accepted commercial technology where both ionising radiation (electron beam) and ultra violet light (UV) sources are used. Grafting is essentially the copolymerisation of a monomer/oligomer to a backbone polymer whereas curing is the rapid polymerisation of a monomer/oligomer mixture onto the surface of the substrate. There is no time scale theoretically associated with grafting processes which can occur in minutes or hours whereas curing reactions are usually very rapid, occurring within a fraction of a second. An important difference between grafting and curing is the nature of the bonding occurring in each process. In grafting covalent carbon-carbon bonds are formed, whereas in curing, bonding usually involves weaker Van der Waals or London dispersion forces. The bonding properties of the systems are important in determining their use commercially. Thus the possibility that concurrent grafting during curing could occur in a system is important since if present, grafting would not only minimise delamination of the coated product but could also, in some circumstances, render difficulties recycling of the finished product especially if it were cellulosic. Hence the conditions for observing the occurrence of concurrent grafting during radiation curing are important. In the present paper, this problem has been studied by examining the effect that the components used in radiation curing exert on a typical reaction. Instead of electron beam sources, the spent fuel element facility at Lucas Heights is used to simulate such ionising radiation sources. The model system utilised is the grafting of a typical methacrylate to cellulose. This is the generic chemistry used in curing systems. The effect of typical additives from curing systems including polyfunctional monomer and oligomers in the grafting reactions have been studied. The ionising radiation results have been compared with analogous data from UV experiments. The significance

  16. The effects of UV-B radiation on European heathland species

    DEFF Research Database (Denmark)

    Björn, Lars O.; Callaghan, T. V.; Johnsen, Ib

    1997-01-01

    in the ozone layer) with artificially increased precipitation. The Swedish experiment also involved a study of the interaction between enhanced UV-B radiation and elevated CO2 (600 ppm). These field studies were supported by an outdoor controlled environment study in the United Kingdom involving modulated...

  17. Validity of satellite measurements used for the monitoring of UV radiation risk on health

    Directory of Open Access Journals (Sweden)

    F. Jégou

    2011-12-01

    Full Text Available In order to test the validity of ultraviolet index (UVI satellite products and UVI model simulations for general public information, intercomparison involving three satellite instruments (SCIAMACHY, OMI and GOME-2, the Chemistry and Transport Model, Modélisation de la Chimie Atmosphérique Grande Echelle (MOCAGE, and ground-based instruments was performed in 2008 and 2009. The intercomparison highlighted a systematic high bias of ~1 UVI in the OMI clear-sky products compared to the SCIAMACHY and TUV model clear-sky products. The OMI and GOME-2 all-sky products are close to the ground-based observations with a low 6 % positive bias, comparable to the results found during the satellite validation campaigns. This result shows that OMI and GOME-2 all-sky products are well appropriate to evaluate the UV-risk on health. The study has pointed out the difficulty to take into account either in the retrieval algorithms or in the models, the large spatial and temporal cloud modification effect on UV radiation. This factor is crucial to provide good quality UV information. OMI and GOME-2 show a realistic UV variability as a function of the cloud cover. Nevertheless these satellite products do not sufficiently take into account the radiation reflected by clouds. MOCAGE numerical forecasts show good results during periods with low cloud covers, but are actually not adequate for overcast conditions; this is why Météo-France currently uses human-expertised cloudiness (rather than direct outputs from Numerical Prediction Models together with MOCAGE clear-sky UV indices for its operational forecasts. From now on, the UV monitoring could be done using free satellite products (OMI, GOME-2 and operational forecast for general public by using modelling, as long as cloud forecasts and the parametrisation of the impact of cloudiness on UV radiation are adequate.

  18. UV-induced skin damage

    International Nuclear Information System (INIS)

    Ichihashi, M.; Ueda, M.; Budiyanto, A.; Bito, T.; Oka, M.; Fukunaga, M.; Tsuru, K.; Horikawa, T.

    2003-01-01

    Solar radiation induces acute and chronic reactions in human and animal skin. Chronic repeated exposures are the primary cause of benign and malignant skin tumors, including malignant melanoma. Among types of solar radiation, ultraviolet B (290-320 nm) radiation is highly mutagenic and carcinogenic in animal experiments compared to ultraviolet A (320-400 nm) radiation. Epidemiological studies suggest that solar UV radiation is responsible for skin tumor development via gene mutations and immunosuppression, and possibly for photoaging. In this review, recent understanding of DNA damage caused by direct UV radiation and by indirect stress via reactive oxygen species (ROS) and DNA repair mechanisms, particularly nucleotide excision repair of human cells, are discussed. In addition, mutations induced by solar UV radiation in p53, ras and patched genes of non-melanoma skin cancer cells, and the role of ROS as both a promoter in UV-carcinogenesis and an inducer of UV-apoptosis, are described based primarily on the findings reported during the last decade. Furthermore, the effect of UV on immunological reaction in the skin is discussed. Finally, possible prevention of UV-induced skin cancer by feeding or topical use of antioxidants, such as polyphenols, vitamin C, and vitamin E, is discussed

  19. Biological effects of N+ ion implantation and UV radiation on streptomyces albus

    International Nuclear Information System (INIS)

    Wu Jian; Dai Guifu

    2005-01-01

    The results of both 30 keV N + ion implantation and UV irradiation of Streptomyces albus showed complicate biological effects. The 'saddle shape' pattern of the dose-dependent curve formed by N + ion implantation with low energy was studied, and it proved that vacuum was not the reason, and the fact, the 'saddle shape' curve may be regarded as a HRS/IRR (hyper-radiosensitivity/increased radiaoresistance) effect caused by low dose irradiation. But Streptomyces albus UV irradiated after vacuum treatment only showed IRR effect or hormesis (survival rate >100%). The streptomycin resistance mutation of Streptomyces albus caused by low energy N + ion implantation and UV irradiation was also studied. the results showed that UV radiation is one effective means for streptomyces albus breeding. (authors)

  20. Impact of shortwave ultraviolet (UV-C) radiation on the antioxidant activity of thyme (Thymus vulgaris L.).

    Science.gov (United States)

    Dogu-Baykut, Esra; Gunes, Gurbuz; Decker, Eric Andrew

    2014-08-15

    Thyme is a good source of antioxidant compounds but it can be contaminated by microorganisms. An experimental fluid bed ultraviolet (UV) reactor was designed for microbial decontamination of thyme samples and the effect of shortwave ultraviolet light (UV-C) radiation on antioxidant properties of thyme was studied. Samples were exposed to UV-C radiation for 16 or 64 min. UV-C treatment led to 1.04 and 1.38 log CFU/g reduction of total aerobic mesophilic bacteria (TAMB) counts. Hunter a(∗) value was the most sensitive colour parameter during UV-C treatment. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) scavenging activity of extracts was not significantly affected by UV-C. Addition of thyme extracts at 0.15 and 0.3 μmol GAE/ml emulsion delayed the formation of lipid hydroperoxides and headspace hexanal in the 5.0%(wt) corn oil-in-water emulsion from 4 to 9 and 14 days, respectively. No significant changes in oxidation rates were observed between UV-C treated and untreated samples at same concentrations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. [Temperature sensitivity of wheat plant respiration and soil respiration influenced by increased UV-B radiation from elongation to flowering periods].

    Science.gov (United States)

    Chen, Shu-Tao; Hu, Zheng-Hua; Li, Han-Mao; Ji, Yu-Hong; Yang, Yan-Ping

    2009-05-15

    Field experiment was carried out in the spring of 2008 in order to investigate the effects of increased UV-B radiation on the temperature sensitivity of wheat plant respiration and soil respiration from elongation to flowering periods. Static chamber-gas chromatography method was used to measure ecosystem respiration and soil respiration under 20% UV-B radiation increase and control. Environmental factors such as temperature and moisture were also measured. Results indicated that supplemental UV-B radiation inhibited the ecosystem respiration and soil respiration from wheat elongation to flowering periods, and the inhibition effect was more obvious for soil respiration than for ecosystem respiration. Ecosystem respiration rates, on daily average, were 9%, 9%, 3%, 16% and 30% higher for control than for UV-B treatment forthe five measurement days, while soil respiration rates were 99%, 93%, 106%, 38% and 10% higher for control than for UV-B treatment. The Q10s (temperature sensitivity coefficients) for plant respiration under control and UV-B treatments were 1.79 and 1.59, respectively, while the Q10s for soil respiration were 1.38 and 1.76, respectively. The Q10s for ecosystem respiration were 1.65 and 1.63 under CK and UV-B treatments, respectively. Supplemental UV-B radiation caused a lower Q10 for plant respiration and a higher Q10 for soil respiration, although no significant effect of supplemental UV-B radiation on the Q10 for ecosystem respiration was found.

  2. Evaluation of radiation protection in some nuclear medicine department

    International Nuclear Information System (INIS)

    Abdelrahim, Yassir Mohammed

    2015-12-01

    This study was carryout to evaluate the radiation protection in nuclear medicine department in Sudan, accordance with the standards international recommendation and code of practice for radiation protection in nuclear medicine, the evaluation was done for three nuclear medicine departments, included direct measurement of dose rate and the contamination level in some areas, were radiation sources, radiation workers and public are involved. The data was collected and analyzed from the results for three nuclear medicine departments that the average reading of ambient dose rate in : outside the door of imaging room (SPECT) 0.18μSv/h in hospital (1)& and 0.19μSv/h in hospital(2) and 0.19μSv/h hospital(3), inside control of imaging room (SPECT) 27.8μSv/h in hospital(1)& 0.14μSv/h in hospital(2)& 14μSv/h in hospital(3), inside the injection room 28.81μSv/h in hospital(1), 0.36μSv/h in hpspital(2), 0.06μSv/h in hospital(3) outside the door of lap, 0.65μSv/h in hospital(1), 0.13μSv/h in hospital(2) & 0.12μSv/h in hospital(3), inside the hot lap, 9.68μSv/h in hospital(1) & 0.30μSv/h in hospital(2) & 0.85 μSv/h in hospital(3), in outsidee the door of waiting room of injected patient 1.41μSv/h in hospital(1)& 0.16μSv/h in hospital(2) & 1.08μSv/h in hospital(3). Avaerge reading of contamination in: Floor of hot lap 44.50 B/cm"2 hospital(1) & 4.42B/cm"2in hospital(2) & 6.22 B/cm"2 in hospital (3) . on the bench tap 186.30 B/cm"2 hospital(1), 19.91 B/cm"2 in hospital(2) & 8.77B/cm"2 in hospital(3) floor of injection room 12.60 B/cm"2 in hospital(1) & 11.70 B/cm"2 in hospital(2) & 13.73 B/cm"2 hospital(3) & table of injection room 13.00 B/cm"2 in hospital(1)& 11.70 B/cm"2in hospital(2)& 13.73 B/cm"2 in hospital & tble of injection room 13.00 B/cm"2 in hospital(1) & 20.40 B/cm"2 in hospital(2) & 23.23 B/cm"2 B/cm"2 in hospital(3) on the shield of working surface 144.30 B/cm in hospital(1)& 47.00 B/cm"2 in hospital(2) & 52.33 B/cm"2 in hospital(3) , and makes check

  3. Radiation doses to patients undergoing barium meal and barium enema examinations

    International Nuclear Information System (INIS)

    Delichas, M. G.; Hatziioannou, K.; Papanastassiou, E.; Albanopoulou, P.; Chatzi, E.; Sioundas, A.; Psarrakos, K.

    2004-01-01

    The radiation doses received by patients during 41 barium meal (BM) and 42 barium enema (BE) examinations in two Greek hospitals are presented. Radiation dose was measured in terms of the dose area product (DAP). The effective dose and doses to certain organs were estimated using the ODS-60 software. Mean total DAP values were found to be 25 ± 11 Gy cm 2 for BM and 60 ± 35 Gy cm 2 for BE examinations, whereas the estimated mean values of effective dose were 8.6 ± 4.0 and 24 ± 16 mSv respectively. DAP to effective dose conversion coefficients were estimated to be 0.34 mSv per Gy cm 2 for BM and 0.41 mSv per Gy cm 2 for BE. (authors)

  4. Effects of near-UV radiation on the protein of the grey squirrel lens

    International Nuclear Information System (INIS)

    Zigman, S.; Paxhia, T.; Waldron, W.

    1988-01-01

    In vivo exposure of grey squirrels to 40W BLB illumination resulted in alterations in the state of the lens crystallins, mainly in the outer layer of the lens. HPLC revealed an increase of the void volume or crosslinked crystallins and an increase in peptides with molecular weights lower than 20,000 d. In vitro exposure of squirrel lens aqueous extracts to Woods lamp radiation (predominantly 365 nm) led to similar but more exaggerated changes as viewed by high performance liquid chromatography. When viewed by polyacrylamide gel electrophoresis (PAGE), soluble protein crosslinking was also observed. The near-UV absorbing chromophores of low molecular weight present in the lens served as photosensitizers that enhanced the protein changes. Sodium azide inhibited the changes, indicating a role for singlet oxygen in the crosslinking. (author)

  5. Effects of near-UV radiation on the protein of the grey squirrel lens.

    Science.gov (United States)

    Zigman, S; Paxhia, T; Waldron, W

    1988-06-01

    In vivo exposure of grey squirrels to 40W BLB illumination resulted in alterations in the state of the lens crystallins, mainly in the outer layer of the lens. HPLC revealed an increase of the void volume or crosslinked crystallins and an increase in peptides with molecular weights lower than 20,000 d. In vitro exposure of squirrel lens aqueous extracts to Woods lamp radiation (predominantly 365 nm) led to similar but more exaggerated changes as viewed by high performance liquid chromatography. When viewed by polyacrylamide gel electrophoresis (PAGE), soluble protein crosslinking was also observed. The near-UV absorbing chromophores of low molecular weight present in the lens served as photosensitizers that enhanced the protein changes. Sodium azide inhibited the changes, indicating a role for singlet oxygen in the crosslinking.

  6. Effects of near-UV radiation on the protein of the grey squirrel lens

    Energy Technology Data Exchange (ETDEWEB)

    Zigman, S; Paxhia, T; Waldron, W

    1988-06-01

    In vivo exposure of grey squirrels to 40W BLB illumination resulted in alterations in the state of the lens crystallins, mainly in the outer layer of the lens. HPLC revealed an increase of the void volume or crosslinked crystallins and an increase in peptides with molecular weights lower than 20,000 d. In vitro exposure of squirrel lens aqueous extracts to Woods lamp radiation (predominantly 365 nm) led to similar but more exaggerated changes as viewed by high performance liquid chromatography. When viewed by polyacrylamide gel electrophoresis (PAGE), soluble protein crosslinking was also observed. The near-UV absorbing chromophores of low molecular weight present in the lens served as photosensitizers that enhanced the protein changes. Sodium azide inhibited the changes, indicating a role for singlet oxygen in the crosslinking.

  7. The estimation of doses to the inhabitants arising from natural radiation source in the high background radiation area of Yangjiang, China

    International Nuclear Information System (INIS)

    Yuan Yongling; Shen Hong; Morishima, H.; Wei Lvxin; Jian Yuannu

    2004-01-01

    Objective: The purposes is to estimate the average annual effective dose of the inhabitants and absorbed dose in some human tissues and organs arising from natural radiation sources in the High Background Radiation Area (HBRA) of Yangjiang and in the neighboring Control Area (CA). In order to provide more effective evidence for analyzing the dose-effect relationships among the cohort members in the investigated areas, authors divided the local inhabitant into different dose-groups. Methods: The authors measured the environmental gamma external radiation levels and individual accumulated doses of 5293 people in the investigated areas. The concentrations for 222 Rn, 220 Rn and their decay products in air were also surveyed. The authors estimated the internal doses of natural radionuclides based on the results obtained from measurements in food, in drinking water, in human teeth, in several human tissues, in human placenta, and in activity concentration of exhaled 222 Rn and 220 Rn of the residents living in the investigated areas. Results: The estimation of average annual effective doses in HBRA and CA based on the data of environmental measurements of radiation level respectively are 2.12 ± 0.29 mSv a -1 and 0.69 ± 0.09 mSv a -1 . The sources of higher background radiation in HBRA are mainly contributed from terrestrial gamma radiation. The estimation of average annual effective doses to the residents arising from inhalation of 222 Rn, 220 Rn and their decay products was 3.28 mSv a -1 in HBRA, while that in CA was 1.03 mSv a -1 . The values of the absorbed dose of the residents in their trachea-bronchial tree and lung in HBRA arising from inhalation of 222 Rn, 220 Rn and their decay products are 5.40 mGy a -1 and 1.08 mGy a -1 respectively, which are about four times of the values of the absorbed dose in CA. The estimation of average annual effective doses to the inhabitants caused by 226 Ra and 228 Ra in HBRA and CA were 281.88 μSv a -1 and 84.54 μSv a -1

  8. Enhanced metastatic potential of murine fibrosarcomas treated in vitro with ultraviolet radiation

    International Nuclear Information System (INIS)

    Fisher, M.S.; Cifone, M.A.

    1981-01-01

    The purpose of this study was to determine whether repeated treatment of tumor cells in vitro with mutagenic doses of ultraviolet (UV) radiation could influence the metastatic behavior of these cells in vivo. Three cloned lines of UV-2237, a fibrosarcoma induced in a C3H- mouse by chronic irradiation with UV, and SF-19, a spontaneous C3H- fibrosarcoma, were grown in culture. These cell lines varied from low to high metastatic potential as determined by in vivo tests. The cultures were exposed to UV radiation from an FS40 sunlamp at a dose that killed 40% of the cells. These UV radiation exposures were repeated at 3- to 5-day intervals for a total of 5 treatments. The mutation frequency was analyzed by monitoring the appearance of ouabain-resistant colonies following UV irradiation. With all four tumor lines, the frequency of conversion to ouabain resistance was increased more than 10-fold. Tumor cells given 5 UV radiation treatments and control cultures carried in parallel without exposure to UV radiation were tested for metastatic potential in an in vivo lung colony assay. Cell lines treated in vitro with UV radiation produced more experimental metastases than the counterpart unirradiated cultures. We conclude that, in all four tumor lines, exposure of tumorigenic cells to mutagenic doses of UV radiation can alter their biological behavior and that this may contribute to the progression of tumors from low to high metastatic capability

  9. The Ultraviolet radiation (UV-C for the microbiological stabilization of red wine

    Directory of Open Access Journals (Sweden)

    Matias Fábio

    2016-01-01

    Full Text Available The traditional procedure for the control of the microbiological stability of wine consists of the addition of sulfur dioxide (SO2, which acts as an antimicrobial agent and also as an antioxidant. The search for alternative methods of microbiological control is important and necessary, since SO2 is a potential allergen and consumers are increasingly looking for healthier and preservative free products. Ultraviolet radiation was tested as an innovative technology that can help reduce the amount of sulphur dioxide used in winemaking. The object of this study was to optimize the process conditions compared to the results obtained previously, and to evaluate the efficiency of microbiological stabilization and its influence on the physico-chemical characteristics, the phenolic composition and sensory profile. Thus, red wine with very low content of sulphur dioxide was subjected to UV-C radiation in two different doses 424J/l e 778J/l, and the preparation of a control wine was carried out to which 30 mg/l sulfur dioxide was added. The wines (control=UV0, UV1 and UV2 were analyzed over time (from 0 to 4 months. The results show that treatment with a lower dosage is effective in the microbiological control of the product. The wines subjected to treatment with UV-C showed an increase in intensity of colour, and the treatment does not affect the flavour and taste of the wine.

  10. How do environmental and behavioral factors impact ultraviolet radiation effects on health: the RISC-UV Project

    Science.gov (United States)

    Correa, M. P.; Godin-Beekmann, S.; Haeffelin, M.; Saiag, P.; Mahe, E.; Brogniez, C.; Dupont, J. C.; Pazmiño, A.; Auriol, F.; Bonnel, B.

    2009-04-01

    Introduction: RISC-UV is a research project on "Impact of climate change on ultraviolet radiation and risks for health", a research project in which physicists, meteorologists and physicians work together to assess the relative role played by environmental and behavioral factors in the UV-related diseases as skin cancer and vitamin D deficiency. Environmental factors are related to the role played by the alteration in intensity of UV radiation at the Earth's surface resulting from variation in several factors affected by climate change and human activities: stratospheric ozone, cloud cover, aerosols and the reflectivity of the surface. On the other hand, behavioral factors are related to the sun over/underexposure and the correct use of sun-protection (hats, caps, sunglasses, sunscreen lotion, etc.). RISC-UV is organized around three main areas: 1) Organization of a workshop, scheduled for January 2009, which aims to describe the state of the art in the subject within each community and define the requirements of pathologists for epidemiological studies; 2) A pilot study intended to evaluate the consistency between UV measurements delivered simultaneously by satellite-based instruments, ground instruments, radiometers and individual dosimeters. This study is based on measurements campaigns and an analysis of the long-term consistency of data series relating to UV radiation and associated parameters; and 3) Analysis of the weights of medical, behavioral and environmental parameters involved in skin carcinogenesis. A detailed description of these areas can be found in http://www.gisclimat.fr/Doc/GB/D_projects/RISC-UV_GB.html. This presentation focuses on the first results of the UV experimental measurements performed between September 8th and October 8th 2008 in Palaiseau, France (48.7˚ N; 2.2˚ E; 170m - Haeffelin et al., 2005). A second campaign is foreseen for the spring of 2009. The purpose of these campaigns is to obtain, analyze and quantitatively link the

  11. Fabrication and characterization of UV-emitting nanoparticles as novel radiation sensitizers targeting hypoxic tumor cells

    Science.gov (United States)

    Squillante, Michael R.; Jüstel, Thomas; Anderson, R. Rox; Brecher, Charles; Chartier, Daniel; Christian, James F.; Cicchetti, Nicholas; Espinoza, Sara; McAdams, Daniel R.; Müller, Matthias; Tornifoglio, Brooke; Wang, Yimin; Purschke, Martin

    2018-06-01

    Radiation therapy is one of the primary therapeutic techniques for treating cancer, administered to nearly two-thirds of all cancer patients. Although largely effective in killing cancer cells, radiation therapy, like other forms of cancer treatment, has difficulty dealing with hypoxic regions within solid tumors. The incomplete killing of cancer cells can lead to recurrence and relapse. The research presented here is investigating the enhancement of the efficacy of radiation therapy by using scintillating nanoparticles that emit UV photons. UV photons, with wavelengths between 230 nm and 280 nm, are able to inactivate cells due to their direct interaction with DNA, causing a variety of forms of damage. UV-emitting nanoparticles will enhance the treatment in two ways: first by generating UV photons in the immediate vicinity of cancer cells, leading to direct and oxygen-independent DNA damage, and second by down-converting the applied higher energy X-rays into softer X-rays and particles that are more efficiently absorbed in the targeted tumor region. The end result will be nanoparticles with a higher efficacy in the treatment of hypoxic cells in the tumor, filling an important, unmet clinical need. Our preliminary experiments show an increase in cell death using scintillating LuPO4:Pr nanoparticles over that achieved by the primary radiation alone. This work describes the fabrication of the nanoparticles, their physical characterization, and the spectroscopic characterization of the UV emission. The work also presents in vitro results that demonstrate an enhanced efficacy of cell killing with x-rays and a low unspecific toxicity of the nanoparticles.

  12. Radiation biology for pediatric radiologists

    International Nuclear Information System (INIS)

    Hall, Eric J.

    2009-01-01

    The biological effects of radiation result primarily from damage to DNA. There are three effects of concern to the radiologist that determine the need for radiation protection and the dose principle of ALARA (As Low As Reasonably Achievable). (1) Heritable effects. These were thought to be most important in the 1950s, but concern has declined in recent years. The current ICRP risk estimate is very small at 0.2%/Sv. (2) Effects on the developing embryo and fetus include weight retardation, congenital anomalies, microcephaly and mental retardation. During the sensitive period of 8 to 15 weeks of gestation, the risk estimate for mental retardation is very high at 40%/Sv, but because it is a deterministic effect, there is likely to be a threshold of about 200 mSv. (3) Carcinogenesis is considered to be the most important consequence of low doses of radiation, with a risk of fatal cancer of about 5%/Sv, and is therefore of most concern in radiology. Our knowledge of radiation carcinogenesis comes principally from the 60-year study of the A-bomb survivors. The use of radiation for diagnostic purposes has increased dramatically in recent years. The annual collective population dose has increased by 750% since 1980 to 930,000 person Sv. One of the principal reasons is the burgeoning use of CT scans. In 2006, more than 60 million CT scans were performed in the U.S., with about 6 million of them in children. As a rule of thumb, an abdominal CT scan in a 1-year-old child results in a life-time mortality risk of about one in a thousand. While the risk to the individual is small and acceptable when the scan is clinically justified, even a small risk when multiplied by an increasingly large number is likely to produce a significant public health concern. It is for this reason that every effort should be made to reduce the doses associated with procedures such as CT scans, particularly in children, in the spirit of ALARA. (orig.)

  13. A Survey of the Potential Effects of Increasing UV-B Radiation on the Biosphere. Revision

    National Research Council Canada - National Science Library

    Martin, L

    1998-01-01

    ..., and an increase in UV-B radiation at the surface of the Earth. An increase in UV-B on average would increase the incidence rate of non-melanoma skin cancer worldwide, with an unproved but likely increase in melanoma skin cancer...

  14. Some cosmic radiation dose measurements aboard flights connecting Zagreb Airport

    International Nuclear Information System (INIS)

    Vukovic, B.; Radolic, V.; Lisjak, I.; Vekic, B.; Poje, M.; Planinic, J.

    2008-01-01

    When primary particles from space, mainly protons, enter the atmosphere, they produce interactions with air nuclei, and cosmic-ray showers are induced. The radiation field at aircraft altitude is complex, with different types of particles, mainly photons, electrons, positrons and neutrons, with a large energy range. The non-neutron component of cosmic radiation dose aboard A320 and ATR40 aircraft was measured with TLD-100 (LiF:Mg,Ti) detectors and the Mini 6100 semiconductor dosimeter; the neutron dose was measured with the neutron dosimeter consisted of LR-115 track detector and boron foil BN-1 or 10 B converter. The estimated occupational effective dose for the aircraft crew (A320) working 500 h per year was 1.64 mSv. Another experiment was performed at the flights Zagreb-Paris-Buenos Aires and reversely, when one measured non-neutron cosmic radiation dose; for 26.7 h of flight, the MINI 6100 dosimeter gave an average dose rate of 2.3 μSv/h and the TLD dosimeter registered the dose equivalent of 75 μSv or the average dose rate of 2.7 μSv/h; the neutron dosimeter gave the dose rate of 2.4 μSv/h. In the same month, February 2005, a traveling to Japan (24-h-flight: Zagreb-Frankfurt-Tokyo and reversely) and the TLD-100 measurement showed the average dose rate of 2.4 μSv/h; the neutron dosimeter gave the dose rate of 2.5 μSv/h. Comparing dose rates of the non-neutron component (low LET) and the neutron one (high LET) of the radiation field at the aircraft flight level, we could conclude that the neutron component carried about 50% of the total dose, that was near other known data

  15. Some cosmic radiation dose measurements aboard flights connecting Zagreb Airport

    Energy Technology Data Exchange (ETDEWEB)

    Vukovic, B.; Radolic, V. [Department of Physics, University of Osijek, Osijek, P.O. Box 125 (Croatia); Lisjak, I. [Croatia Airlines, Zagreb (Croatia); Vekic, B. [Rudjer Boskovic Institute, Zagreb (Croatia); Poje, M. [Department of Physics, University of Osijek, Osijek, P.O. Box 125 (Croatia); Planinic, J. [Department of Physics, University of Osijek, Osijek, P.O. Box 125 (Croatia)], E-mail: planinic@ffos.hr

    2008-02-15

    When primary particles from space, mainly protons, enter the atmosphere, they produce interactions with air nuclei, and cosmic-ray showers are induced. The radiation field at aircraft altitude is complex, with different types of particles, mainly photons, electrons, positrons and neutrons, with a large energy range. The non-neutron component of cosmic radiation dose aboard A320 and ATR40 aircraft was measured with TLD-100 (LiF:Mg,Ti) detectors and the Mini 6100 semiconductor dosimeter; the neutron dose was measured with the neutron dosimeter consisted of LR-115 track detector and boron foil BN-1 or {sup 10}B converter. The estimated occupational effective dose for the aircraft crew (A320) working 500 h per year was 1.64 mSv. Another experiment was performed at the flights Zagreb-Paris-Buenos Aires and reversely, when one measured non-neutron cosmic radiation dose; for 26.7 h of flight, the MINI 6100 dosimeter gave an average dose rate of 2.3 {mu}Sv/h and the TLD dosimeter registered the dose equivalent of 75 {mu}Sv or the average dose rate of 2.7 {mu}Sv/h; the neutron dosimeter gave the dose rate of 2.4 {mu}Sv/h. In the same month, February 2005, a traveling to Japan (24-h-flight: Zagreb-Frankfurt-Tokyo and reversely) and the TLD-100 measurement showed the average dose rate of 2.4 {mu}Sv/h; the neutron dosimeter gave the dose rate of 2.5 {mu}Sv/h. Comparing dose rates of the non-neutron component (low LET) and the neutron one (high LET) of the radiation field at the aircraft flight level, we could conclude that the neutron component carried about 50% of the total dose, that was near other known data.

  16. Luminescent emission of LiF: Mg, Ti exposed to UV radiation

    International Nuclear Information System (INIS)

    Estrada G, A.; Castano M, V.M.; Cruz Z, E.; Garcia F, F.

    2002-01-01

    It was investigated the luminescent emission stimulated by heat (Tl) of LiF: Mg, Ti crystals which were exposed to UV radiation coming from a mercury lamp. Since this crystal depends on the thermal history, it has been used a thermal treatment consisting of a baking at 380 C during one hour for each reading and they were irradiated with UV. The brilliance curves between 5 and 840 minutes of exposure in the face of UV light were obtained. An important loss in the response, starting from 150 minutes of irradiation was observed. Also the relative intensity of the brilliance curve decay when the crystals being stored in darkness and room temperature conditions, which is according to the results in the literature about. (Author)

  17. Structural and functional changes in catalase induced by near-UV radiation

    International Nuclear Information System (INIS)

    Zigman, S.; Schultz, J.B.; McDaniel, T.

    1996-01-01

    Part one of this study shows that exposure of purified beef liver catalase in buffered solutions to BL lamps that provide a mixture of 99% UVA and 1% UVB (to be labeled UV A ) alters its chemistry and enzymatic activity. Thus, its spectral absorbance lose detail, it aggregated and exhibited a lower isoelectric point and its enzymatic activity was substantially reduced. These photochemically induced changes were increased by irradiation in phosphate buffer or in physiological medium (minimal essential medium) containing riboflavin and tryptophan. Neither α-tocopherol nor deferoxamine were protective against these UV A -induced changes in pure catalase. We further investigated the effect of UV A radiation on the activity of catalase in cultured lens epithelial cells and the protective effects of antioxidants. (Author)

  18. Analysis of Photosynthetic Characteristics and UV-B Absorbing Compounds in Mung Bean Using UV-B and Red LED Radiation

    Directory of Open Access Journals (Sweden)

    Fang-Min Li

    2014-01-01

    Full Text Available Mung bean has been reported to have antioxidant, antidiabetic, anti-inflammatory, and antitumor activities. Various factors have important effects on the types and contents of plant chemical components. In order to study quality of mung bean from different light sources, mung bean seedlings were exposed to red light-emitting diodes (LEDs and ultraviolet-B (UV-B. Changes in the growth parameters, photosynthetic characteristics, the concentrations of chlorophyll a and chlorophyll b and the content of UV-B absorbing compounds were measured. The results showed that photosynthetic characteristics and chlorophyll a and chlorophyll b concentrations were enhanced by red LEDs. The concentrations of UV-B absorbing compounds were enhanced by UV-B on the 20th day, while photosynthetic characteristics, plant length, and the concentrations of chlorophyll a and chlorophyll b were reduced by UV-B on the 40th day; at the same time the values of the stem diameter, plant fresh weight, dry weight, and the concentrations of UV-B absorbing compounds were enhanced. It is suggested that red LEDs promote the elongation of plant root growth and photosynthetic characteristics, while UV-B promotes horizontal growth of stems and the synthesis of UV-B absorbing compounds.

  19. The response of antioxidant systems in Nostoc sphaeroides against UV-B radiation and the protective effects of exogenous antioxidants

    Science.gov (United States)

    Wang, Gaohong; Hu, Chunxiang; Li, Dunhai; Zhang, Delu; Li, Xiaoyan; Chen, Kun; Liu, Yongding

    UV radiation is one of many harmful factors found in space that are detrimental to organisms on earth in space exploration. In the present work, we examined the role of antioxidant system in Nostoc sphaeroides Kütz (Cyanobacterium) and the effects of exogenously applied antioxidant molecules on its photosynthetic rate under UV-B radiation. It was found that UV-B radiation promoted the activity of antioxidant system to protect photosystem II (PSII) and exogenously applied antioxidant: sodium nitroprusside (SNP) and N-acetylcysteine (NAC) had an obvious protection on PSII activity under UV-B radiation. The activity of superoxide dismutase (SOD, EC 1.15.1.1), catalase (CAT, EC 1.11.1.6), peroxidase (POD, EC 1.11.1.7) and content of MDA (malondialdehyde) and ASC (ascorbate) were improved by 0.5 mM and 1 mM SNP, but 0.1 mM SNP decreased the activity of antioxidant system. Addition of exogenous NAC decreased the activity of SOD, POD, CAT and the content MDA and ASC. In contrast, exogenously applied NAC increased GSH content. The results suggest that exogenous SNP and NAC may protect algae by different mechanisms: SNP may play double roles as both sources of reactive free radicals as well as ROS scavengers in mediating the protective role of PSII on algae under UV-B radiation. On the other hand, NAC functions as an antioxidant or precursor of glutathione, which could protect PSII directly from UV-B radiation.

  20. He-Ne laser treatment improves the photosynthetic efficiency of wheat exposed to enhanced UV-B radiation

    International Nuclear Information System (INIS)

    Chen, Huize; Han, Rong

    2014-01-01

    The level of ultraviolet-B (UV-B) radiation on the Earth’s surface has increased due to depletion of the ozone layer. Here, we explored the effects of continuous wave He-Ne laser irradiation (632 nm, 5 mW mm –2 , 2 min d –1 ) on the physiological indexes of wheat seedlings exposed to enhanced UV-B radiation (10 KJ m –2 d –1 ) at the early growth stages. Wheat seedlings were irradiated with enhanced UV-B, He-Ne laser treatment or a combination of the two. Enhanced UV-B radiation had deleterious effects on wheat photosynthesis parameters including photosystem II (chlorophyll content, Hill reaction, chlorophyll fluorescence parameters, electron transport rate (ETR), and yield), the thylakoid (optical absorption ability, cyclic photophosphorylation, Mg 2+ -ATPase, and Ca 2+ -ATPase) and some enzymes in the dark reaction (phosphoenolpyruvate carboxylase (PEPC), carbonic anhydrase (CA), malic dehydrogenase (MDH), and chlorophyllase). These parameters were improved in UV-B-exposed wheat treated with He-Ne laser irradiation; the parameters were near control levels and the enzyme activities increased, suggesting that He-Ne laser treatment partially alleviates the injury caused by enhanced UV-B irradiation. Furthermore, the use of He-Ne laser alone had a favourable effect on seedling photosynthesis compared with the control. Therefore, He-Ne laser irradiation can enhance the adaptation capacity of crops. (paper)

  1. Natural background radiation exposures world-wide

    International Nuclear Information System (INIS)

    Bennett, B.G.

    1993-01-01

    The average radiation dose to the world's population from natural radiation sources has been assessed by UNSCEAR to be 2.4 mSv per year. The components of this exposure, methods of evaluation and, in particular, the variations in the natural background levels are presented in this paper. Exposures to cosmic radiation range from 0.26 mSv per year at sea level to 20 times more at an altitude of 6000 m. Exposures to cosmogenic radionuclides ( 3 H, 14 C) are relatively insignificant and little variable. The terrestrial radionuclides 40 K, 238 U, and 232 Th and the decay products of the latter two constitute the remainder of the natural radiation exposure. Wide variations in exposure occur for these components, particularly for radon and its decay products, which can accumulate to relatively high levels indoors. Unusually high exposures to uranium and thorium series radionuclides characterize the high natural background areas which occur in several localized regions in the world. Extreme values in natural radiation exposures have been estimated to range up to 100 times the average values. (author). 15 refs, 3 tabs

  2. A ΔdinB mutation that sensitizes Escherichia coli to the lethal effects of UV- and X-radiation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Mei-Chong W.; Franco, Magdalena; Vargas, Doris M. [Department of Biological Sciences, San Jose State University, San Jose, CA 95192 (United States); Hudman, Deborah A. [Department of Microbiology and Immunology, A.T. Still University, Kirksville College of Osteopathic Medicine, Kirksville, MO 63501 (United States); White, Steven J. [Department of Biological Sciences, San Jose State University, San Jose, CA 95192 (United States); Fowler, Robert G., E-mail: rfowler@sjsu.edu [Department of Biological Sciences, San Jose State University, San Jose, CA 95192 (United States); Sargentini, Neil J. [Department of Microbiology and Immunology, A.T. Still University, Kirksville College of Osteopathic Medicine, Kirksville, MO 63501 (United States)

    2014-05-15

    Highlights: • We describe Δ(dinB-yafN)883(::kan), a novel dinB allele, referred to as ΔdinB883, a deletion that sensitizes E. coli cells to UV irradiation. • This UV radiation sensitivity is most acute in the early logarithmic phase of culture growth. • This UV radiation sensitivity is completely dependent upon a functional umuDC operon. • Sequencing reveals ΔdinB883 retains the proximal 161 nucleotides, i.e., 54 amino acids, of the wild-type sequence. • The ΔdinB883 mutant is hypothesized to produce a peptide of 83 amino acids, DinB883, that compromises UmuDC function. - Abstract: The DinB (PolIV) protein of Escherichia coli participates in several cellular functions. We investigated a dinB mutation, Δ(dinB-yafN)883(::kan) [referred to as ΔdinB883], which strongly sensitized E. coli cells to both UV- and X-radiation killing. Earlier reports indicated dinB mutations had no obvious effect on UV radiation sensitivity which we confirmed by showing that normal UV radiation sensitivity is conferred by the ΔdinB749 allele. Compared to a wild-type strain, the ΔdinB883 mutant was most sensitive (160-fold) in early to mid-logarithmic growth phase and much less sensitive (twofold) in late log or stationary phases, thus showing a growth phase-dependence for UV radiation sensitivity. This sensitizing effect of ΔdinB883 is assumed to be completely dependent upon the presence of UmuDC protein; since the ΔdinB883 mutation did not sensitize the ΔumuDC strain to UV radiation killing throughout log phase and early stationary phase growth. The DNA damage checkpoint activity of UmuDC was clearly affected by ΔdinB883 as shown by testing a umuC104 ΔdinB883 double-mutant. The sensitivities of the ΔumuDC strain and the ΔdinB883 ΔumuDC double-mutant strain were significantly greater than for the ΔdinB883 strain, suggesting that the ΔdinB883 allele only partially suppresses UmuDC activity. The ΔdinB883 mutation partially sensitized (fivefold) uvrA and uvr

  3. Risk assessment and late effects of radiation in low-earth orbits

    International Nuclear Information System (INIS)

    Fry, R.J.M.

    1989-01-01

    The radiation dose rates in low-earth orbits are dependent on the altitude and orbital inclination. The doses to which the crews of space vehicles are exposed is governed by the duration of the mission and the shielding, and in low-earth orbit missions protons are the dominant particles encountered. The risk of concern with the low dose rates and the relatively low total doses of radiation that will be incurred on the space station is excess cancer. The National Council on Radiation Protection and Measurements has recently recommended career dose-equivalent limits that take into account sex and age. The new recommendations for career limits range from 1.0 Sv to 4 Sv, depending on sex and on the age at the time of their first space mission, compared to a single career limit of 4.0 Sv previously used by NASA. Risk estimates for radiated-induced cancer are evolving and changes in the current guidance may be required in the next few years. 10 refs., 1 fig., 3 tabs

  4. The evolutionary response of plants to increased UV-B radiation: Field studies with Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Trumbull, V.L.; Paige, K.N.

    1995-01-01

    The response of a species to any environmental change is determined by both phenotypic and evolutionary adjustments. To date, the majority of research concerning the response of terrestrial plants to increased UV-B radiation has focused on phenotypic adjustments. Recently we have initiated field studies aimed at assessing genetic variation for UV-B sensitivity within a natural population of Arabidopsis thaliana. This population consists of at least eight discrete genotypes that have been confirmed by RAPD analysis. We used an incomplete block design to assess the impact of UV-B (ambient and ambient + 6 kJ) and PAR (low and high) on these genotypes. The high UV-B treatment caused a significant reduction in fruit number and plant height while the high PAR treatment caused a significant increase in these variables. In addition, there was a marginally significant (p=0.1) UV-B x PAR x maternal line interaction for fruit number, indicating that genetic variation for UV-B sensitivity within this population depends on the PAR environment. The combination of high UV-B and high PAR caused a change in fruit number (relative to the ambient UV-B/high PAR treatment) ranging from an increase of 24% to a decrease of 47%. This range was much smaller in the low PAR treatment. These results indicate the potential for increased UV-B radiation to act as an agent of natural selection within this population

  5. A combined plant and reaction chamber setup to investigate the effect of pollution and UV-B radiation on biogenic emissions

    Science.gov (United States)

    Timkovsky, J.; Gankema, P.; Pierik, R.; Holzinger, R.

    2012-12-01

    Biogenic emissions account for almost 90% of total non-methane organic carbon emissions in the atmosphere. The goal of this project is to study the effect of pollution (ozone, NOx) and UV radiation on the emission of real plants. We have designed and built a setup where we combine plant chambers with a reaction chamber (75L volume) allowing the addition of pollutants at different locations. The main analytical tool is a PTR-TOF-MS instrument that can be optionally coupled with a GC system for improved compound identification. The setup is operational since March 2012 and first measurements indicate interesting results, three types of experiments will be presented: 1. Ozonolysis of b-pinene. In this experiment the reaction chamber was flushed with air containing b-pinene at approximate levels of 50 nmol/mol. After ~40 min b-pinene levels reached equilibrium in the reaction chamber and a constant supply of ozone was provided. Within 30 minutes this resulted in a 10 nmol/mol decrease of b-pinene levels in accordance with a reaction rate constant of 1.5*10-17 cm3molec-1s-1 and a residence time of 10 minutes in the reaction chamber. In addition we observed known oxidation products such as formaldehyde, acetone, and nopinone the molar yields of which were also in accordance with reported values. 2. Ozonolysis of biogenic emissions from tomato plants. The air containing the emissions from tomato plants was supplied to the reaction chamber. After adding ozone we observed the decrease of monoterpene concentrations inside the reaction chamber. The observed decrease is consistent for online PTR-MS and GC/PTR-MS measurements. Several ozonolysis products have been observed in the chamber. 3. The effect of UV-B radiation on biogenic emissions of tomato plants. Tomato plants were exposed to UV-B radiation and their emissions measured during and after the treatment. We observed significant changes in the emissions of volatile organic compounds, with specific compounds increasing

  6. The dominant allele Aft induces a shift from flavonol to anthocyanin production in response to UV-B radiation in tomato fruit.

    Science.gov (United States)

    Catola, Stefano; Castagna, Antonella; Santin, Marco; Calvenzani, Valentina; Petroni, Katia; Mazzucato, Andrea; Ranieri, Annamaria

    2017-08-01

    The introgression of the A ft allele into domesticated tomato induced a shift from flavonol to anthocyanin production in response to UV-B radiation, while the hp - 1 allele negatively influenced the response of flavonoid biosynthesis to UV-B. Introgression of the dominant allele Anthocyanin fruit (Aft) from Solanum chilense induces anthocyanin accumulation in the peel of tomato (Solanum lycopersicum L.) fruit. UV-B radiation can influence plant secondary metabolism regulating the expression of several genes, among which those involved in flavonoid biosynthesis. Here, we investigated whether post-harvest UV-B treatment could up-regulate flavonoid production in tomato fruits and whether the Aft allele could affect flavonoid biosynthesis under UV-B radiation. Mature green fruits of an anthocyanin-rich tomato mutant line (SA206) and of its wild-type reference, cv. Roma, were daily subjected to post-harvest UV-B treatment until full ripening. Up-regulation of CHS and CHI transcription by UV-B treatment induced flavonoid accumulation in the peel of cv. Roma. Conversely, UV-B decreased the total flavonoid content and CHS transcript levels in the SA206 peel. SA206 being a double mutant containing also hp-1 allele, we investigated also the behavior of hp-1 fruit. The decreased peel flavonoid accumulation and gene transcription in response to UV-B suggest that hp-1 allele is involved in the marked down-regulation of the flavonoid biosynthesis observed in SA206 fruit. Interestingly, in SA206, UV-B radiation promoted the synthesis of delphinidin, petunidin, and malvidin by increasing F3'5'H and DFR transcription, but it decreased rutin production, suggesting a switch from flavonols to anthocyanins. Finally, although UV-B radiation does not reach the inner fruit tissues, it down-regulated flavonoid biosynthesis in the flesh of both genotypes. This study provides, for the first time, evidence that the presence of the functional Aft allele, under UV-B radiation, redirects

  7. Pigmented binding material which can be photo-polymerised by UV radiation

    Energy Technology Data Exchange (ETDEWEB)

    McGinniss, V C

    1977-10-20

    The invention concerns the improvement of a binding material which can be photo-polymerised by UV radiation, which contains aromatic hydrocarbons and ethylene unsaturated film material. Coatings with a film thickness of about 2 x 5 to 21 x 5 ..mu..m are made from this. In order to harden ethylene unsaturated binding material in the presence of pigments which are made opaque by UV and laser energy and to polymerise it, an additive consisting of a synergistic sensitising mixture is necessary, which consists of three components, all of whose variations are described in detail.

  8. Impact of UV radiation on activity of linear furanocoumarins and Bacillus thuringiensis var. kurstaki against Spodoptera exigua: Implications for tritrophic interactions

    Energy Technology Data Exchange (ETDEWEB)

    Trumble, J.T.; Moar, W.J.; Brewer, M.J.; Carson, W.G. (Univ. of California, Riverside (United States))

    1991-05-01

    Acidic fogs with a pH of 2.0 and duration of 2 hr did not reduce the efficacy of Bacillus thuringiensis var. kurstaki. Therefore, the impact of UV radiation was investigated on the interactions between (1) levels of the antibacterial linear furanocoumarins psoralen, bergapten, and xanthotoxin in Apium graveolens (L.) occurring following a 2.0 pH acidic fog episode, (2) the noctuid Spodoptera exigua, and (3) a sublethal dosage of the microbial pathogen B. thuringiensis var. kurstaki. Mean time to pupation in the absence of UV radiation was significantly extended by the addition of either psoralens or B. thuringiensis. Larvae developing on diets containing B. thuringiensis plus psoralens required nearly 40% longer to pupate than controls, but their effects were additive as the interaction was not significant. Mean time to mortality, a weighted average time of death, was not significantly affected by any of the treatments. In a 2 {times} 2 {times} 2 factorial analysis, all main effects reduced survival significantly, as did the three-way interaction. Thus, antagonistic interactions with psoralens that would reduce the effectiveness of B. thuringiensis in the field were not observed. When pairs of main effects were nested within the two levels of the third factor, several two-way interactions were found. Interestingly, the activity of B. thuringiensis and the psoralens, individually or in combination, was enhanced by exposure to UV radiation. Implications of this research are discussed for both natural and agricultural ecosystems.

  9. Impact of UV radiation on activity of linear furanocoumarins and Bacillus thuringiensis var. kurstaki against Spodoptera exigua: Implications for tritrophic interactions

    International Nuclear Information System (INIS)

    Trumble, J.T.; Moar, W.J.; Brewer, M.J.; Carson, W.G.

    1991-01-01

    Acidic fogs with a pH of 2.0 and duration of 2 hr did not reduce the efficacy of Bacillus thuringiensis var. kurstaki. Therefore, the impact of UV radiation was investigated on the interactions between (1) levels of the antibacterial linear furanocoumarins psoralen, bergapten, and xanthotoxin in Apium graveolens (L.) occurring following a 2.0 pH acidic fog episode, (2) the noctuid Spodoptera exigua, and (3) a sublethal dosage of the microbial pathogen B. thuringiensis var. kurstaki. Mean time to pupation in the absence of UV radiation was significantly extended by the addition of either psoralens or B. thuringiensis. Larvae developing on diets containing B. thuringiensis plus psoralens required nearly 40% longer to pupate than controls, but their effects were additive as the interaction was not significant. Mean time to mortality, a weighted average time of death, was not significantly affected by any of the treatments. In a 2 x 2 x 2 factorial analysis, all main effects reduced survival significantly, as did the three-way interaction. Thus, antagonistic interactions with psoralens that would reduce the effectiveness of B. thuringiensis in the field were not observed. When pairs of main effects were nested within the two levels of the third factor, several two-way interactions were found. Interestingly, the activity of B. thuringiensis and the psoralens, individually or in combination, was enhanced by exposure to UV radiation. Implications of this research are discussed for both natural and agricultural ecosystems

  10. Bacterial Survival under Extreme UV Radiation: A Comparative Proteomics Study of Rhodobacter sp., Isolated from High Altitude Wetlands in Chile

    Directory of Open Access Journals (Sweden)

    Vilma Pérez

    2017-06-01

    Full Text Available Salar de Huasco, defined as a polyextreme environment, is a high altitude saline wetland in the Chilean Altiplano (3800 m.a.s.l., permanently exposed to the highest solar radiation doses registered in the world. We present here the first comparative proteomics study of a photoheterotrophic bacterium, Rhodobacter sp., isolated from this remote and hostile habitat. We developed an innovative experimental approach using different sources of radiation (in situ sunlight and UVB lamps, cut-off filters (Mylar, Lee filters and a high-throughput, label-free quantitative proteomics method to comprehensively analyze the effect of seven spectral bands on protein regulation. A hierarchical cluster analysis of 40 common proteins revealed that all conditions containing the most damaging UVB radiation induced similar pattern of protein regulation compared with UVA and visible light spectral bands. Moreover, it appeared that the cellular adaptation of Rhodobacter sp. to osmotic stress encountered in the hypersaline environment from which it was originally isolated, might further a higher resistance to damaging UV radiation. Indeed, proteins involved in the synthesis and transport of key osmoprotectants, such as glycine betaine and inositol, were found in very high abundance under UV radiation compared to the dark control, suggesting the function of osmolytes as efficient reactive oxygen scavengers. Our study also revealed a RecA-independent response and a tightly regulated network of protein quality control involving proteases and chaperones to selectively degrade misfolded and/or damaged proteins.

  11. The sensitivity of sunflower (Helianthus annuus L.) plants to UV-B radiation is altered by nitrogen status

    OpenAIRE

    Cechin, Inês; Gonzalez, Gisely Cristina; Corniani, Natália; Fumis, Terezinha de Fátima

    2018-01-01

    ABSTRACT: Interaction effects between nitrogen and UV-B radiation were studied in sunflower (Helianthus annuus L. variety IAC-Iarama) plants grown in a greenhouse under natural photoperiod conditions. Plants were irradiated with 0.8W m-2 (control) or 8.0W m-2 (+UV-B) of UV-B radiation for 7h per day. The plants were grown in pots containing vermiculite and watered with 70% of full strength nitrogen-free Long Ashton solution, containing either low (42.3ppm) or high (282ppm) nitrogen as ammoniu...

  12. UV Radiation in an Urban Canyon in Southeast Queensland

    Science.gov (United States)

    McKinley, A. R.; Moore, M. R.; Kimlin, M. G.

    2006-12-01

    Ultraviolet radiation (UV) has the possibility to both harm and to benefit human beings when unprotected exposure occurs. After receiving small amounts of UV our bodies begin to synthesise vitamin D, which is essential for maintaining healthy bones, however excessive UV exposure can result in a variety of damaging outcomes ranging from sunburn to skin cancer and cataracts. For this reason it is very important to understand the different environments in which people encounter UV so as to better prepare the public to make smart and healthy sun exposure decisions. Each day more and more people are moving into large cities around the world and spending their time inside the urban canyon, however UV measurements are generally taken at scientific stations in open areas or on top of tall buildings, meaning that at times the environmental characteristics measured may not accurately represent those found at street-level in these highly urbanized areas. Urban canyons are home to both very tall buildings and tropospheric air pollution, each of which reduces the amount of UV reaching street-level. This study measured the varying difference between UV measurements taken at street-level and at a standard UV monitoring site on top of a building outside of the urban canyon. Investigation was conducted in the central business district (CBD) of Brisbane, Australia, which models the CBDs of large cities around the world in that it boasts a great number of tall buildings, including many skyscrapers. Data was collected under clear sky conditions at five different street-level sites in the CBD (on either side of two streets running perpendicular to one another (four sites) and in a public square) and then compared to that obtained on the same day at the Queensland University of Technology's Australian Sun and Health Research Laboratory (ASHRL), which is located 2.5 kilometres outside Brisbane's CBD. Minimum erythemal dose (MED) data was collected at each location and it was found that

  13. Is the standard dose rate for de-contamination, 0.23 mc-Sv/hr, truly 1 mSv/year?

    International Nuclear Information System (INIS)

    Furuta, Sadaaki

    2014-01-01

    Examined is the validity of the standard dose rates in the title, which have been additionally defined by Ministry of the Environment (ME) to the measures of Fukushima Nuclear Power Plant Accident. The standard 0.23 mc-Sv/hr is the sum of natural ambient dose rate 0.04 mc-Sv/hr in average of Japan as measured with NaI scintillation surveymeter, plus additional accidental exposure dose 1 mSv/y, which is defined equivalent to 0.19 mc-Sv/hr. Here, the equation of addition 0.04+0.19 mc-Sv/hr is not exactly correct because the unit of each dose value has different means as follows. The natural dose is derived from the value 5.8 mc-R/hr (0.038 mc-Sv/hr, effective dose) of the average national natural dose data (2011) of Ministry of Education, Culture, Sports, Science and Technology. However, if the measurement is done with the surveymeter which practically gives 1 cm dose equivalent, the rate is calculated to be 0.06 mc-Sv/hr. When the Fukushima prefectural natural dose rate 6.4 mc-R/hr is employed, the calculation gives 0.07 mc-Sv/hr. ME defines the additional doses to be 0.19 mc-Sv/hr and 1 mSv/y, which are derived from the calculation: (0.19 mc-Sv/hr x 8 hr outdoor + 0.19 mc-Sv/hr x 0.4 indoor, shielded) x 365 d/y= 1 mSv/y. The dose is assumed to be measurable with the surveymeter (1 cm dose equivalent) and thereby calculation, if the source is mainly "1"3"4Cs and "1"3"7Cs, gives the effective dose of 0.32 mc-Sv/hr to be managed by the meter. As this, the effective dose unit and 1 cm equivalent dose unit are used for calculation of the administrative standard dose rate of 1 mSv/y, which should be recognized by both radiological experts and administration for the explanation to general public. (T.T.)

  14. Accelerated degradation by UV radiation of adhesive materials used in solar equipment

    International Nuclear Information System (INIS)

    Tilca, F.; Acosta, D; Barcena, H.; Suarez, H.; Cadena, C.; Bolzi, Claudio

    2003-01-01

    Several materials which are used as common adhesives in photovoltaic cells, were tested in order to study their stability. Accelerated degradation effects were produced using high radiation doses of UV-C and UV-b in a previously described camera at different times. The exposed and unexposed films were studied by transmittance, X-ray diffraction and infrared. The results are in agreement with complex degradation process at long exposition times, while transmittance doesn't change significantly. (author)

  15. Cryo-electron microscopy of vitrified SV40 minichromosomes: the liquid drop model.

    Science.gov (United States)

    Dubochet, J; Adrian, M; Schultz, P; Oudet, P

    1986-03-01

    The structure of SV40 minichromosomes has been studied by cryo-electron microscopy of vitrified thin layers of solution. In high-salt buffer (130 mM NaCl), freshly prepared minichromosomes are condensed into globules 30 nm or more in diameter. On the micrograph, they appear to be formed by the close packing of 10 nm granules which give rise to a 10 nm reflection in the optical diffractogram. The globules can adopt many different conformations. At high concentration, they fuse into a homogeneous 'sea' of closely packed 10 nm granules. In low-salt buffer (less than 10 mM NaCl), the globules open, first into 10 nm filaments, and then into nucleosome-strings. The 'liquid drop' model is proposed to explain the condensed structure of the minichromosome in high-salt buffer: nucleosomes stack specifically on top of one another, thus forming the 10 nm filaments. 10 nm filaments in turn, tend to aggregate laterally. Optimizing both these interactions results in the condensation of 10 nm filaments or portions thereof into a structure similar to that of a liquid. Some implications of this model for the structure of cellular chromatin are discussed.

  16. The effects of UV radiation during the vegetative period on antioxidant compounds and postharvest quality of broccoli (Brassica oleracea L.).

    Science.gov (United States)

    Topcu, Yasin; Dogan, Adem; Kasimoglu, Zehra; Sahin-Nadeem, Hilal; Polat, Ersin; Erkan, Mustafa

    2015-08-01

    In this study, the effects of supplementary UV radiation during the vegetative period on antioxidant compounds, antioxidant activity and postharvest quality of broccoli heads during long term storage was studied. The broccolis were grown under three different doses of supplementary UV radiation (2.2, 8.8 and 16.4 kJ/m(2)/day) in a soilless system in a glasshouse. Harvested broccoli heads were stored at 0 °C in modified atmosphere packaging for 60 days. The supplementary UV radiation (280-315 nm) during the vegetative period significantly decreased total carotenoid, the chlorophyll a and chlorophyll b content but increased the ascorbic acid, total phenolic and flavonoid contents of broccolis. All supplementary UV treatments slightly reduced the antioxidant activity of the broccolis, however, no remarkable change was observed between 2.2 and 8.8 kJ/m(2) radiation levels. The sinigrin and glucotropaeolin contents of the broccolis were substantially increased by UV treatments. The prolonged storage period resulted in decreased ascorbic acid, total phenolic and flavonoid contents, as well as antioxidant activity. Discoloration of the heads, due to decreased chlorophyll and carotenoid contents, was also observed with prolonged storage duration. Glucosinolates levels showed an increasing tendency till the 45th day of storage, and then their levels started to decline. The weight loss of broccoli heads during storage progressively increased with storage time in all treatments. Total soluble solids, solids content and titratable acidity decreased continuously during storage. Titratable acidity was not affected by UV radiation doses during the storage time whereas soluble solids and solids content (dry matter) were significantly affected by UV doses. Supplementary UV radiation increased the lightness (L*) and chroma (C*) values of the broccoli heads. Pre-harvest UV radiation during vegetative period seems to be a promising tool for increasing the beneficial health components

  17. Effects of stron UV-B radiation on air chemistry and climate; Auswirkungen verstaerkter UV-B-Strahlung auf Luftchemie und Klima

    Energy Technology Data Exchange (ETDEWEB)

    Schoenemeyer, T.; Seidl, W.; Forkel, R.; Kuhn, M.; Wehrhahn, J.; Grell, G.

    1998-07-01

    Effects of enhanced UV radiation on air chemistry, climate and climate change were investigated, and its interactions with other environmental problems like acidification of soil and surface water, reduction in the variety of species, and desertification were gone into. [German] In der vorliegenden Arbeit wurden die bisher vorliegenden Erkenntnisse ueber die Auswirkungen erhoehter UV-Strahlung infolge des Abbaus von Ozon in der Stratosphaere auf Luftchemie und Klima zusammengetragen. Die Problematik wird in ihrer ganzen Breite beleuchtet und dabei deutlich gemacht, ueber welche zahlreichen Mechanismen eine erhoehte UV-Strahlung auch zu Klimaaenderungen fuehren kann. Dies unterstreicht die Notwendigkeit, Verknuepfungen mit anderen Umweltproblemen wie der Versauerung des Bodens und von Gewaessern, der Abnahme der Artenvielfalt sowie der zunehmenden Wuestenbildung herzustellen. (orig.)

  18. Effects of UV-B radiation on microcystin production of a toxic strain of Microcystis aeruginosa and its competitiveness against a non-toxic strain

    International Nuclear Information System (INIS)

    Yang, Zhen; Kong, Fanxiang; Shi, Xiaoli; Yu, Yang; Zhang, Min

    2015-01-01

    Highlights: • UV-B radiation showed higher inhibition to non-toxin producing than toxin-producing strains on growth and photosynthetic activity. • Both intracellular and extracellular MC contents decreased markedly under UV-B radiation. • Higher resistance to UV-B radiation helped toxin-producing M. aeruginosa to predominate in the competition. - Abstract: Microcystins (MCs) produced by toxic cyanobacteria pose a health hazard to humans and animals. Some environmental factors can alter the MC concentrations by affecting the abundance of toxin-producing strains in a cyanobacteria population and/or their toxin production. In this study, we designed a monoculture and competition experiment to investigate the impacts of UV-B radiation on MC production and the competition between toxin and non-toxin producing strains of Microcystis aeruginosa. UV-B radiation resulted in higher inhibition of the growth and photosynthetic activity of the non-toxin producing strain relative to that observed for the toxin-producing strain. Both intracellular and extracellular MC contents decreased markedly when the toxin-producing strain was exposed to UV-B radiation. In addition, a quantitative real-time PCR assay revealed that the ratio of toxin-producing M. aeruginosa under UV-B exposure was higher than that under PAR alone at an early stage of the experiment. However, its abundance under UV-B exposure was lower compared with the PAR alone treatment after day 12. Our study demonstrated that UV-B radiation has a great impact on the abundance of the toxin-producing strain in the Microcystis population and their toxin production, which suggests that the fluctuation of UV-B radiation affects the MC level of cyanobacteria blooms

  19. Effects of UV-B radiation on microcystin production of a toxic strain of Microcystis aeruginosa and its competitiveness against a non-toxic strain

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhen, E-mail: zhyang@niglas.ac.cn; Kong, Fanxiang, E-mail: fxkong@niglas.ac.cn; Shi, Xiaoli; Yu, Yang; Zhang, Min

    2015-02-11

    Highlights: • UV-B radiation showed higher inhibition to non-toxin producing than toxin-producing strains on growth and photosynthetic activity. • Both intracellular and extracellular MC contents decreased markedly under UV-B radiation. • Higher resistance to UV-B radiation helped toxin-producing M. aeruginosa to predominate in the competition. - Abstract: Microcystins (MCs) produced by toxic cyanobacteria pose a health hazard to humans and animals. Some environmental factors can alter the MC concentrations by affecting the abundance of toxin-producing strains in a cyanobacteria population and/or their toxin production. In this study, we designed a monoculture and competition experiment to investigate the impacts of UV-B radiation on MC production and the competition between toxin and non-toxin producing strains of Microcystis aeruginosa. UV-B radiation resulted in higher inhibition of the growth and photosynthetic activity of the non-toxin producing strain relative to that observed for the toxin-producing strain. Both intracellular and extracellular MC contents decreased markedly when the toxin-producing strain was exposed to UV-B radiation. In addition, a quantitative real-time PCR assay revealed that the ratio of toxin-producing M. aeruginosa under UV-B exposure was higher than that under PAR alone at an early stage of the experiment. However, its abundance under UV-B exposure was lower compared with the PAR alone treatment after day 12. Our study demonstrated that UV-B radiation has a great impact on the abundance of the toxin-producing strain in the Microcystis population and their toxin production, which suggests that the fluctuation of UV-B radiation affects the MC level of cyanobacteria blooms.

  20. Biochemical and ultrastructural changes in pollen of Zea mays L. grown under enhanced UV-B radiation

    International Nuclear Information System (INIS)

    Santos, A.; Almeida, J.M.; Santos, I.; Salema, R.

    1998-01-01

    The influence of ultraviolet-B (UV-B) radiation on the development of the male gametophyte was studied in Zea mays L. cv. LG12 grown in a growth chamber under PAR light supplemented with UV-B radiation and compared with a second set of plants grown under PAR light. Pollen samples collected from both groups of plants were cultured on germination medium and it was found that UV-B had no effect on pollen germination. Total pollen protein content was not affected but UV-B absorbing pigments increased. Some ultrastructural alterations were observed in pollen and pollen tubes, in particular large amounts of electron dense deposits were seen throughout the cytoplasm and in association with the pollen wall. In mature spikes of UV-B treated plants, anthers retained numerous pollen grains in their loculi while anthers of control plants were almost empty. UV-B treatment delayed flowering by 2±3 d. These results show that UV-B treatment of maize plants interferes with flowering, pollen ultrastructure and anther maturation even though pollen germination is unaffected. The significant increase of UV-B absorbing pigments in pollen grains could represent a defence mechanism that enables plants to complete their reproductive cycle. (author)

  1. Assessment of natural background radiation in one of the highest regions of Ecuador

    Science.gov (United States)

    Pérez, Mario; Chávez, Estefanía; Echeverría, Magdy; Córdova, Rafael; Recalde, Celso

    2018-05-01

    Natural background radiation was measured in the province of Chimborazo (Ecuador) with the following reference coordinates 1°40'00''S 78°39'00''W, where the furthest point to the center of the planet is located. Natural background radiation measurements were performed at 130 randomly selected sites using a Geiger Müller GCA-07W portable detector; these measurements were run at 6 m away from buildings or walls and 1 m above the ground. The global average natural background radiation established by UNSCEAR is 2.4 mSv y-1. In the study area measurements ranged from 0.57 mSv y-1 to 3.09 mSv y-1 with a mean value of 1.57 mSv y-1, the maximum value was recorded in the north of the study area at 5073 metres above sea level (m.a.s.l.), and the minimum value was recorded in the southwestern area at 297 m.a.s.l. An isodose map was plotted to represent the equivalent dose rate due to natural background radiation. An analysis of variance (ANOVA) between the data of the high and low regions of the study area showed a significant difference (p < α), in addition a linear correlation coefficient of 0.92 was obtained, supporting the hypothesis that in high altitude zones extraterrestrial radiation contributes significantly to natural background radiation.

  2. Ambient UV-B radiation reduces PSII performance and net photosynthesis in high Arctic Salix arctica

    DEFF Research Database (Denmark)

    Albert, Kristian Rost; Mikkelsen, Teis Nørgaard; Ro-Poulsen, Helge

    2011-01-01

    Ambient ultraviolet-B (UV-B) radiation potentially impacts the photosynthetic performance of high Arctic plants. We conducted an UV-B exclusion experiment in a dwarf shrub heath in NE Greenland (74°N), with open control, filter control, UV-B filtering and UV-AB filtering, all in combination......, nitrogen and UV-B absorbing compounds. Compared to a 60% reduced UV-B irradiance, the ambient solar UV-B reduced net photosynthesis in Salix arctica leaves fixed in the 45° position which exposed leaves to maximum natural irradiance. Also a reduced Calvin Cycle capacity was found, i.e. the maximum rate...... across position in the vegetation. These findings add to the evidence that the ambient solar UV-B currently is a significant stress factor for plants in high Arctic Greenland....

  3. Radiation-induced cataract

    International Nuclear Information System (INIS)

    Martignoni, K.

    1986-01-01

    Dose assessments for cataract threshold doses are available based on epidemiological studies of radiotherapy patients, survivors of the nuclear bombing of Hiroshima and Nagasaki, and of persons with occupational exposure to radiation. According to these, short-term application of low-level LET radiation of a dose ranging between 0.5 and 2.0 Gy may suffice to cause a cataract in the course of a few months or years which results in inpairment of vision (UNSCEAR, 1982). In fractionated irradiation, cataractogenic threshold dose increases to 4 Sv at treatment times between 3 weeks and 3 months, and to more than 5 Sv at more than 3 months (ICRP 41). Densely ionizing radiation must be assumed to have threshold doses between 2 and 20 Sv. An ICRP assessment (ICRP Publ. No. 41, 1984) gives a threshold dose of more than 8 Sv for a vision-impairing cataract if these was protracted irradiation at a low-level dose rate. Concerning radiation protection, a maximum lens dose of 150 mSv per annum was recommended which should not be exceeded. This indicates a maximum of 7.5 Sv of exposure throughout a period of 50 years of working life. (orig./HP) [de

  4. Chromatin damage induced by fast neutrons or UV laser radiation

    Energy Technology Data Exchange (ETDEWEB)

    Radu, L.; Constantinescu, B.; Gazdaru, D.; Mihailescu, I

    2002-07-01

    Chromatin samples from livers of Wistar rats were subjected to fast neutron irradiation in doses of 10-100 Gy or to a 248 nm excimer laser radiation, in doses of 0.5-3 MJ.m{sup -2}. The action of the radiation on chromatin was monitored by chromatin intrinsic fluorescence and fluorescence lifetimes (of bound ethidium bromide to chromatin) and by analysing fluorescence resonance energy transfer between dansyl chloride and acridine orange coupled to chromatin. For the mentioned doses of UV excimer laser radiation, the action on chromatin was more intense than in the case of fast neutrons. The same types of damage are produced by the two radiations: acidic and basic destruction of chromatin protein structure, DNA strand breaking and the increase of the distance between DNA and proteins in chromatin. (author)

  5. Chromatin damage induced by fast neutrons or UV laser radiation

    International Nuclear Information System (INIS)

    Radu, L.; Constantinescu, B.; Gazdaru, D.; Mihailescu, I.

    2002-01-01

    Chromatin samples from livers of Wistar rats were subjected to fast neutron irradiation in doses of 10-100 Gy or to a 248 nm excimer laser radiation, in doses of 0.5-3 MJ.m -2 . The action of the radiation on chromatin was monitored by chromatin intrinsic fluorescence and fluorescence lifetimes (of bound ethidium bromide to chromatin) and by analysing fluorescence resonance energy transfer between dansyl chloride and acridine orange coupled to chromatin. For the mentioned doses of UV excimer laser radiation, the action on chromatin was more intense than in the case of fast neutrons. The same types of damage are produced by the two radiations: acidic and basic destruction of chromatin protein structure, DNA strand breaking and the increase of the distance between DNA and proteins in chromatin. (author)

  6. A review of cancer mortality data of radiation workers of Nuclear Power Plant, Paks, Hungary, in the light the international radiation epidemiology study

    International Nuclear Information System (INIS)

    Turai, I.; Kerekes, A.; Otos, M.; Veress, K.

    2007-01-01

    Complete text of publication follows. Objective: To give a review of cancer mortality data among Hungarian radiation workers in nuclear industry in comparison with the results of the international nuclear workers' study prevailing the size of the study group of all former studies. Methods: Retrospective cohort study including 598,068 workers of 154 nuclear establishments in 15 countries (AUS, BEL, CAN, FIN, FRA, GER, HUN, JAP, LIT, ROK, SLK, SPA, SWE, UK, USA) coordinated by the International Agency for Research on Cancer (IARC, Lyon, France). The national study was extended for an additional 4-year period. Results: In the international study 407,391 persons in 13 years of average employment received 19.4 mSv mean cumulative dose, while in the national study 3322 radiation workers of Nuclear Power Plant (NPP) Paks, Hungary, in 14 years of follow-up period accumulated in average 5.13 mSv, only. There were 5233 cancer deaths registered in the international study, associated with an estimated ERR of 0.97 per Sv. Thus, 19.4 mSv recorded cumulative dose can explain 1 to 2% of cancer death cases. In radiation workers of NPP, Paks, during the period of 1985-1998 there were 40 cancer deaths observed against the expected 58.8 cases. In a further four year period (1999-2002) 29 cancer death cases were identified vs. the expected 65.5 cases. The SMR for the cancer death cases registered in recent and former radiation workers of NPP, Paks in the 18-year follow-up period is 56%. The SMR from all causes was even lower, 40% only. Conclusions: In the international study the mean accumulated radiation dose received by nuclear workers in 13 years is below of the recent annual dose limit (20 mSv/yr of the effective dose). The average value for the whole of radiation workers in 15 countries is almost 4-times higher of that registered in Hungary. The 'healthy worker effect' in the nuclear industry, and particularly in Hungary has been proven, once again. Nevertheless, the results

  7. Heated water and UV-C radiation to post harvest control of Cryptosporiopsis perennans on apples; Agua aquecida e radiacao UV-C no controle pos-colheita de Cryptosporiopsis perennans em macas

    Energy Technology Data Exchange (ETDEWEB)

    Bartnicki, Vinicius Adao; Amarante, Cassandro Vidal Talamini do, E-mail: vinibart@hotmail.co, E-mail: amarante@cav.udesc.b [Universidade do Estado de Santa Catarina (UDESC), Lages, SC (Brazil). Centro de Ciencias Agroveterinarias. Dept. de Agronomia; Valdebenito-Sanhueza, Rosa Maria, E-mail: rosamaria@m2net.com.b [Proterra Engenharia Agronomica, Vacaria, RS (Brazil); Castro, Luis Antonio Suita de, E-mail: suita@cpact.embrapa.b [EMBRAPA Clima Temperado, Pelotas, RS (Brazil); Rizzatti, Mara Regina; Souza, Joao Antonio Vargas de, E-mail: marar@pucrs.b [Pontificia Universidade Catolica do Rio Grande do Sul (PUC-RS), Porto Alegre, RS (Brazil). Centro em Pesquisa e Desenvolvimento em Fisica. Grupo de Fisica das Radiacoes

    2010-02-15

    The objective of this work was to assess the colonization of Cryptosporiopsis perennans in the epidermis of apples and the efficiency of heated water and UV-C radiation application to control this pathogen. In apples inoculated with C. perennans, the colonization of lenticels and adjacent areas by the pathogen was observed by electronic scanning microscopy. The sensitivity of C. perennans conidia was evaluated in aqueous suspension, at temperatures of 28, 45, 50 and 55 deg C for 15 and 30 s, and at UV.C radiation doses of 0.018, 0.037, 0.075, 0.150, 0.375, 0.750, 1.500 and 3.000 kJ m.2. The effects of UV.C radiation doses at 0.375, 0.750 and 1.500 kJ m.2 and heated water at 50 deg C, sprayed during 15 and 30 s were evaluated for controlling C. perennans in apples inoculated with the pathogen. The fungus produced abundant mycelium and conidia in lenticels and adjacent areas on the epidermis of the apples. The heated water at 50 deg C during 15 s and a 0.750 kJ m.2 UV.C radiation dose reduced conidia survival in more than 99%. Heated water sprayed at 50 deg C during 15 s and a UV.C radiation dose of 0.375 kJ m.2 control C. perennans in apples. (author)

  8. Physical, biochemical and physiological effects of ultraviolet radiation on Brassica napus and Phaseolus vulgaris

    International Nuclear Information System (INIS)

    Cen Yan-Ping.

    1993-01-01

    In order to follow some of the changes induced by ultraviolet-B (UV-B, 280-320 nm) radiation in Phaseolus vulgaris and Brassica napus, experiments were designed to localize sites of changes in leaves and to correlate some of the physiological and biochemical changes with penetration of UV-B radiation. B.napus was exposed to 8.9 kJ m -2 day -1 biologically effective UV-B radiation (UV-B BE ). The penetration of UV-B radiation into the leaf was followed using a quartz fibre optic microprobe. Monochromatic radiation at 310 nm was decreased by ca 50 and 34% in the adaxial and abaxial epidermis, respectively, in plants not exposed to UV-B, whereas the radiation was decreased by ca 70 and 42%, respectively, in the same region in UV-treated plants. Polychromatic radiation showed a wavelength dependent change mainly for the collimated radiation. The results correlated with the distribution of phenolic compounds analysed from 40 μm paradermal leaf sections. The first adaxial section (40μm) contained 35% of the whole leaf sample flavonoid glycosides in control plants, and 66% in UV-treated plants. Hydroxycinnamic acid derivatives increased by 26% in UV-treated plants relative to controls. The ratio of quercetin to kaempferol derivatives increased from 0.11 in controls to 0.91 in leaves of UV-treated plants. The leaf epidermis protected the inner leaf tissue where most of the photosynthetic apparatus is located. P. vulgaris was subjected to 6.17 kJ m -2 day -1 UV-B BE with different levels of visible light. The largest UV-induced changes in photosynthesis, chlorophyll, carotenoids, UV-screening pigments, and surface leaf reflectance occurred under growth conditions of low levels of visible light together with UV radiation

  9. Physical, biochemical and physiological effects of ultraviolet radiation on Brassica napus and Phaseolus vulgaris

    Energy Technology Data Exchange (ETDEWEB)

    Cen Yan-Ping

    1993-12-31

    In order to follow some of the changes induced by ultraviolet-B (UV-B, 280-320 nm) radiation in Phaseolus vulgaris and Brassica napus, experiments were designed to localize sites of changes in leaves and to correlate some of the physiological and biochemical changes with penetration of UV-B radiation. B.napus was exposed to 8.9 kJ m{sup -2} day{sup -1} biologically effective UV-B radiation (UV-B{sub BE}). The penetration of UV-B radiation into the leaf was followed using a quartz fibre optic microprobe. Monochromatic radiation at 310 nm was decreased by ca 50 and 34% in the adaxial and abaxial epidermis, respectively, in plants not exposed to UV-B, whereas the radiation was decreased by ca 70 and 42%, respectively, in the same region in UV-treated plants. Polychromatic radiation showed a wavelength dependent change mainly for the collimated radiation. The results correlated with the distribution of phenolic compounds analysed from 40 {mu}m paradermal leaf sections. The first adaxial section (40{mu}m) contained 35% of the whole leaf sample flavonoid glycosides in control plants, and 66% in UV-treated plants. Hydroxycinnamic acid derivatives increased by 26% in UV-treated plants relative to controls. The ratio of quercetin to kaempferol derivatives increased from 0.11 in controls to 0.91 in leaves of UV-treated plants. The leaf epidermis protected the inner leaf tissue where most of the photosynthetic apparatus is located. P. vulgaris was subjected to 6.17 kJ m{sup -2} day{sup -1} UV-B{sub BE} with different levels of visible light. The largest UV-induced changes in photosynthesis, chlorophyll, carotenoids, UV-screening pigments, and surface leaf reflectance occurred under growth conditions of low levels of visible light together with UV radiation.

  10. Urban forest influences on exposure to UV radiation and potential consequences for human health

    Science.gov (United States)

    Gordon M. Heisler

    2010-01-01

    This chapter explores the literature on ultraviolet (UV) irradiance in urban ecosystems with respect to the likely effects on human health. The focus was the question of whether the health effects of UV radiation should be included in the planning of landscape elements such as trees and shading structures, especially for high use pedestrian areas and school play...

  11. Combined effects of O3 and UV radiation on secondary metabolites and endogenous hormones of soybean leaves.

    Directory of Open Access Journals (Sweden)

    Bing Mao

    Full Text Available Enhanced ultraviolet radiation (UV and elevated tropospheric ozone (O3 may individually cause reductions in the growth and productivity of important agricultural crops. However, research regarding their combined effects on important agricultural crops is still scarce, especially on changes in secondary metabolites and endogenous hormones, which are important protective substances and signal components that control plant responses to environment stresses. In this study, using an experimental setup of open top chambers, we monitored the responses of seed yield per plant, leaf secondary metabolites and leaf endogenous hormones under the stress of elevated O3 and enhanced UV radiation individually, as well as their combined stress. The results indicated that elevated O3 (110 ± 10 nmol mol-1 for 8 hours per day and enhanced UV radiation (1.73 kJ h-1 m-2 significantly decreased seed yield per plant. Concentrations of rutin, queretin and total flavonoids were significantly increased under the elevated O3 treatment or the enhanced UV radiation treatment or the combination treatment at flowering and podding stages, and concentrations of rutin, queretin and total flavonoids showed significant correlations with seed yield per plant. Concentrations of ABA and IAA decreased under the three treatments. There was a significant positive correlation between the ABA concentration and seed yield and a negative correlation between the IAA concentration and seed yield. We concluded that the combined stress of elevated O3 and UV radiation significantly decreased seed yield per plant. Yield reduction was associated with changes in the concentrations of flavonoids, ABA and IAA in soybean leaves. The effects of the combined O3 and UV stress were always greater than those of the individual stresses alone.

  12. Ultraviolet-B (UV-B) radiation under high-temperature conditions affects growth of rice (cv. Koshihikari) after a young panicle formation stage

    International Nuclear Information System (INIS)

    Inaba, K.

    2005-01-01

    A japonica rice (cv. Koshihikari) was used to test the effects on blooming and ripening of UV-B radiation treatment combined with high temperature treatments (day/night, 35 / 30 deg C). Strong UV-B radiation (60.4 kJ/m(2) . day) slightly increased sterility. High temperatures and weak UV-B radiation (18.1 kJ/m(2) . day) applied together from two weeks before heading and from the heading day increased sterility and those applied from two weeks after heading decreased sterility. High temperature combined with strong UV-B radiation applied from two weeks before heading increased sterility and decreased the size of unhulled grain and anther length. The same treatment given from the heading stage greatly increased sterility and decreased anther length and pollen production, and that given two weeks after heading decreased unhulled grain weight. It also decreased photosynthetic rate in Flag leaves. A high temperature applied together with strong UV-B radiation had a synergistic effect causing poor growth; it increased the harmful effects of a high temperature and strong UV-B given separately, on the sterility and pollen formation

  13. Modification of plasma membrane electron transport in cultured rose cells by UV-C radiation and fungal elicitor

    International Nuclear Information System (INIS)

    Murphy, T.M.; Auh, C.K.; Schorr, R.; Grobe, C.

    1991-01-01

    Previous experiments have shown that treatments of suspension-cultured cells of Rosa damascena Mill. with UV radiation or with fungal elicitors stimulates the synthesis of H 2 O 2 by the cells. To test the hypothesis that this synthesis involves reduction of O 2 at the plasma membrane and to identify the mechanism of the reduction, we have determined the effects of UV and elicitor on redox reactions associated with the plasma membrane. Elicitor prepared from cell walls of Phytophthora sp. (14 μg solids/ml) inhibited the reduction of ferricyanide by intact cells by 98%; UV-C (primarily 254 nm, up to 19,500 J/m 2 ) inhibited this reduction by 40%. Neither treatment inhibited the reduction of Fe(III)-EDTA by intact cells. Intact cells oxidized NADH in the absence of external oxidizing agent, and the rate of oxidation was increased by UV and elicitor. Cells that were poisoned with arsenite and CCCP catalyzed the reduction of Fe(III)-EDTA in the presence of external NADH, and this ability was slightly stimulated by UV and elicitor. UV irradiation (6,480 J/m 2 ) of cells resulted in a 27% inhibition of the specific activity of NADH-ferricyanide oxidoreductase in plasma membrane isolated from those cells. Elicitor treatment of cells for at least 90 min resulted in a 50% inhibition of the enzyme's specific activity in isolated plasma membrane; this inhibition was reversed by addition of Triton-X100 in the assay mixture. The results suggest that UV and elicitor alter the flow of electrons in the plasma membrane, reversibly inhibiting NADH-cytochrome b reductase, the putative key enzyme in the pathway of ferricyanide reduction, and stimulating (or at least not inhibiting) the pathway of Fe(III)-EDTA reduction

  14. Biological UV-doses and the effect on an ozone layer depletion

    International Nuclear Information System (INIS)

    Dahlback, A.; Henriksen, T.

    1988-08-01

    Effective UV-doses were calculated based on the integrated product of the biological action spectrum and the solar radiation. The calculations included absorption and scattering of UV-radiation in the atmosphere, both for normal ozone conditions as well as for a depleted ozone layer. The effective annual UV-dose increases by approximately 4% per degree of latitude towards the equator. An ozone depletion of 1% increases the annual UV-dose by approximately 1% at 60 o N. A large depletion of 50% over Scandinavia (60 o N) would give this region an effective UV-dose similar to that obtained, with normal ozone conditions, at a latitude of 40 o N (California or the Mediterranean countries). The Antarctic ozone hole increases the annual UV-dose by 20 to 25% which is a similar increase as that attained by moving 5 to 6 degrees of latitude nearer the equator. The annual UV-dose on higher latitudes is mainly determined by the summer values of ozone. Both the ozone values and the effective UV-doses vary from one year to another (within ±4%). No positive or negative trend is observed for Scandinavia from 1978 to 1988

  15. Estimation of radiation dose received by the radiation workers during radiographic testing

    International Nuclear Information System (INIS)

    Mohammed, N. A. H. O.

    2013-08-01

    This study was conducted primarily to evaluate occupational radiation dose in industrial radiography during radiographic testing at Balil-Hadida, with the aim of building up baseline data on radiation exposure in the industrial radiography practice in Sudan. Dose measurements during radiographic testing were performed and compared with IAEA reference dose. In this research the doses measured by using hand held radiation survey meter and personal monitoring dosimeter. The results showed that radiation doses ranged between minimum (0.448 mSv/ 3 month) , and maximum (1.838 mSv / 3 month), with an average value (0.778 mSv/ 3 month), and the standard deviation 0.292 for the workers used gamma mat camera. The analysis of data showed that the radiation dose for all radiation worker are receives less than annual limit for exposed workers 20 mSv/ year and compare with other study found that the dose received while body doses ranging from 0.1 to 9.4 mSv/ year, work area design in all the radiography site followed the three standard rules namely putting radiation signs, reducing access to control area and making of boundaries. Thus the accidents arising from design faults not likely to occur at these site. Results suggest that adequate fundamental training of radiation workers in general radiography prior to industrial radiography work will further improve the standard of personnel radiation protection. (Author)

  16. Protective Role of Intracellular Melatonin Against Oxidative Stress and UV Radiation in Saccharomyces cerevisiae.

    Science.gov (United States)

    Bisquert, Ricardo; Muñiz-Calvo, Sara; Guillamón, José M

    2018-01-01

    Melatonin (Mel) is considered a potent natural antioxidant molecule given its free-radical scavenging ability. Its origin is traced back to the origin of aerobic life as early defense against oxidative stress and radiation. More complex signaling functions have been attributed to Mel as a result of evolution in different biological kingdoms, which comprise gene expression modulation, enzyme activity, and mitochondrial homeostasis regulation processes, among others. Since Mel production has been recently reported in wine yeast, we tested the protective effect of Mel on Saccharomyces cerevisiae against oxidative stress and UV light. As the optimal conditions for S. cerevisiae to synthesize Mel are still unknown, we developed an intracellular Mel-charging method to test its effect against stresses. To assess Mel's ability to protect S. cerevisiae from both stresses, we ran growth tests in liquid media and viability assays by colony count after Mel treatment, followed by stress. We also analyzed gene expression by qPCR on a selection of genes involved in stress protection in response to Mel treatment under oxidative stress and UV radiation. The viability in the Mel-treated cells after H 2 O 2 stress was up to 35% greater than for the untreated controls, while stress amelioration reached 40% for UVC light (254 nm). Mel-treated cells showed a significant shortened lag phase compared to the control cells under the stress and normal growth conditions. The gene expression analysis showed that Mel significantly modulated gene expression in the unstressed cells in the exponential growth phase, and also during various stress treatments.

  17. Protective Role of Intracellular Melatonin Against Oxidative Stress and UV Radiation in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Ricardo Bisquert

    2018-02-01

    Full Text Available Melatonin (Mel is considered a potent natural antioxidant molecule given its free-radical scavenging ability. Its origin is traced back to the origin of aerobic life as early defense against oxidative stress and radiation. More complex signaling functions have been attributed to Mel as a result of evolution in different biological kingdoms, which comprise gene expression modulation, enzyme activity, and mitochondrial homeostasis regulation processes, among others. Since Mel production has been recently reported in wine yeast, we tested the protective effect of Mel on Saccharomyces cerevisiae against oxidative stress and UV light. As the optimal conditions for S. cerevisiae to synthesize Mel are still unknown, we developed an intracellular Mel-charging method to test its effect against stresses. To assess Mel’s ability to protect S. cerevisiae from both stresses, we ran growth tests in liquid media and viability assays by colony count after Mel treatment, followed by stress. We also analyzed gene expression by qPCR on a selection of genes involved in stress protection in response to Mel treatment under oxidative stress and UV radiation. The viability in the Mel-treated cells after H2O2 stress was up to 35% greater than for the untreated controls, while stress amelioration reached 40% for UVC light (254 nm. Mel-treated cells showed a significant shortened lag phase compared to the control cells under the stress and normal growth conditions. The gene expression analysis showed that Mel significantly modulated gene expression in the unstressed cells in the exponential growth phase, and also during various stress treatments.

  18. Protective Role of Intracellular Melatonin Against Oxidative Stress and UV Radiation in Saccharomyces cerevisiae

    Science.gov (United States)

    Bisquert, Ricardo; Muñiz-Calvo, Sara; Guillamón, José M.

    2018-01-01

    Melatonin (Mel) is considered a potent natural antioxidant molecule given its free-radical scavenging ability. Its origin is traced back to the origin of aerobic life as early defense against oxidative stress and radiation. More complex signaling functions have been attributed to Mel as a result of evolution in different biological kingdoms, which comprise gene expression modulation, enzyme activity, and mitochondrial homeostasis regulation processes, among others. Since Mel production has been recently reported in wine yeast, we tested the protective effect of Mel on Saccharomyces cerevisiae against oxidative stress and UV light. As the optimal conditions for S. cerevisiae to synthesize Mel are still unknown, we developed an intracellular Mel-charging method to test its effect against stresses. To assess Mel’s ability to protect S. cerevisiae from both stresses, we ran growth tests in liquid media and viability assays by colony count after Mel treatment, followed by stress. We also analyzed gene expression by qPCR on a selection of genes involved in stress protection in response to Mel treatment under oxidative stress and UV radiation. The viability in the Mel-treated cells after H2O2 stress was up to 35% greater than for the untreated controls, while stress amelioration reached 40% for UVC light (254 nm). Mel-treated cells showed a significant shortened lag phase compared to the control cells under the stress and normal growth conditions. The gene expression analysis showed that Mel significantly modulated gene expression in the unstressed cells in the exponential growth phase, and also during various stress treatments. PMID:29541065

  19. Health hazards of UV radiation

    International Nuclear Information System (INIS)

    Matthes, R.

    1994-01-01

    The author describes the effects and health risks of UV exposure. This includes UV effects on the DNS, the eyes, the immune system, and the skin. Finally, recommendations are given for protection against excessive UV exposure on the basis of the IRPA/INIRC guidelines. (orig.) [de

  20. UV exposure in cars.

    Science.gov (United States)

    Moehrle, Matthias; Soballa, Martin; Korn, Manfred

    2003-08-01

    There is increasing knowledge about the hazards of solar and ultraviolet (UV) radiation to humans. Although people spend a significant time in cars, data on UV exposure during traveling are lacking. The aim of this study was to obtain basic information on personal UV exposure in cars. UV transmission of car glass samples, windscreen, side and back windows and sunroof, was determined. UV exposure of passengers was evaluated in seven German middle-class cars, fitted with three different types of car windows. UV doses were measured with open or closed windows/sunroof of Mercedes-Benz E 220 T, E 320, and S 500, and in an open convertible car (Mercedes-Benz CLK). Bacillus subtilis spore film dosimeters (Viospor) were attached to the front, vertex, cheeks, upper arms, forearms and thighs of 'adult' and 'child' dummies. UV wavelengths longer than >335 nm were transmitted through car windows, and UV irradiation >380 nm was transmitted through compound glass windscreens. There was some variation in the spectral transmission of side windows according to the type of glass. On the arms, UV exposure was 3-4% of ambient radiation when the car windows were shut, and 25-31% of ambient radiation when the windows were open. In the open convertible car, the relative personal doses reached 62% of ambient radiation. The car glass types examined offer substantial protection against short-wave UV radiation. Professional drivers should keep car windows closed on sunny days to reduce occupational UV exposure. In individuals with polymorphic light eruption, produced by long-wave UVA, additional protection by plastic films, clothes or sunscreens appears necessary.

  1. Environmental radioactivity and radiation exposure in Switzerland 1995

    International Nuclear Information System (INIS)

    Voelkle, H.; Gobet, M.

    1996-01-01

    Switzerland has been performing systematic monitoring of radioactivity in the environment and in food for forty years. This report contains the results of measurements made in the course of 1995 and the consequential radiation doses for the population. The monitoring programme deals with radioactivity in the atmosphere, precipitation, aquatic systems, soil, grass, foodstuffs and the human body, but also includes natural radiation, doses due to radon inside dwellings, emissions from nuclear power stations and other operations using radionuclides, as well as miscellaneous radiation sources. All the nuclear power plants and other facilities licensed to handle radioactive substances remained within their annual release limits in 1995, and environmental measurements revealed no inadmissible immission or dose values. The population's mean annual radiation dose totals 4 mSv, with some 40% of this due to radon in the home (but with extreme values as high as 100 mSv), another 30% coming from natural radiation, a quarter from medical applications and less than 5% from artificial radiation. (author) figs., tabs., refs

  2. Epidermal transmittance and phenolic composition in leaves of atrazine-tolerant and atrazine-sensitive cultivars of Brassica napus grown under enhanced UV-B radiation

    International Nuclear Information System (INIS)

    Olsson, L.C.; Veit, M.; Bornman, J.F.

    1999-01-01

    Experiments were conducted on the atrazine-tolerant mutant Stallion and the atrazine-sensitive cv. Paroll of Brassica napus L., which were grown under either visible light or with the addition of UV-B radiation (280–320 nm) for 15 days. The mutant has been shown to be sensitive to high levels of visible light as compared to the atrazine-sensitive cultivar and therefore we wished to determine plant response to UV-B radiation with respect to potential pigment changes, certain anatomical features, radiation penetration and partial photosynthesis. With regard to pigment changes, we were particularly interested in whether the compositional shift in flavonol pigments under enhanced UV-B radiation, previously suggested to favour increased antioxidant activity, is confined to the adaxial epidermis, which generally receives most UV-B radiation or whether the pigment shift is also inducible in the abaxial epidermis.As was to be expected, the penetration of UV-B radiation (310 nm) was lower in the UV-B-exposed plants, which was correlated with an increased amount of UV-screening pigments in the adaxial and abaxial epidermal layers. The main flavonoid glycosides showed the largest shift from kaempferol to quercetin as aglycone moiety in the adaxial epidermal layer. However, in the abaxial epidermal layer the hydroxycinnamic acid (HCA) derivatives and kaempferol glycosides were predominant. Penetration of 430 nm light was higher after UV-B exposure, and probably contributed to the fact that photosynthetic efficiency of photosystem II was unchanged or higher after UV-B exposure. UV-B radiation decreased leaf area in the atrazine-tolerant mutant only. Both cultivars showed an increased leaf thickness after UV-B exposure due to cell elongation mainly of the palisade tissue. This was especially evident in the mutant

  3. A flavonoid mutant of barley (Hordeum vulgare L.) exhibits increased sensitivity to UV-B radiation in the primary leaf

    International Nuclear Information System (INIS)

    Reuber, S.; Bornman, J.F.; Weissenböck, G.

    1996-01-01

    The aim of the present investigation was to define the role of soluble flavonoids as UV-B protectants in the primary leaf of barley (Hordeum vulgare L.). For this purpose we used a mutant line (Ant 287) from the Carlsberg collection of proanthocyanidin-free barley containing only 7% of total extractable flavonoids in the primary leaf as compared to the mother variety (Hiege 550/75). Seven-day-old leaves from plants grown under high visible light with or without supplementary UV-B radiation were used for the determination of UV-B sensitivity. UV-B-induced changes were assessed from parameters of chlorophyll fluorescence of photosystem II, including initial and maximum fluorescence, apparent quantum yield, and photochemical and non-photochemical quenching. A quartz fibre-optic microprobe was used to evaluate the amount of potentially harmful UV-B (310 nm radiation) penetrating into the leaf as a direct consequence of flavonoid deficiency. Our data indicate an essential role of flavonoids in UV-B protection of barley primary leaves. In leaves of the mutant line grown under supplementary UV-B, an increase in 310nm radiation in the mesophyll and a strong decrease in the quantum yield of photosynthesis were observed as compared to the corresponding mother variety. Primary leaves of liege responded to supplementary UV-B radiation with a 30% increase in the major flavonoid saponarin and a 500% increase in the minor compound lutonarin. This is assumed to be an efficient protective response since no changes in variable chlorophyll fluorescence were apparent. In addition, a further reduction in UV-B penetration into the mesophyll was recorded in these leaves

  4. Oxidative stress and enzymatic scavenging of superoxide radicals induced by solar UV-B radiation in Ulva canopies from southern Spain

    Directory of Open Access Journals (Sweden)

    Kai Bischof

    2003-09-01

    Full Text Available The generation of reactive oxygen species (ROS and scavenging of the superoxide radical by superoxide dismutase (SOD was studied in mat-like canopies of the green macroalga Ulva rotundata Bliding in a tidal brine pond system in southern Spain. Artificial canopies were covered with different cut-off filters, generating different radiation conditions. ROS and SOD were assessed after three days of exposure. ROS induced lipid peroxidation depended on the position of individual thalli within the canopy and on radiation conditions. Samples exposed to the full solar spectrum were most affected, whereas samples either exposed to photosynthetically active radiation (PAR alone or UV radiation without PAR exhibited fewer peroxidation products. The activity of SOD appeared to be controlled by the impinging UV-A and UV-B radiation and also increased in response to oxidative stress. The results provide evidence for additive effects of high PAR and UV-B under field conditions and support the previously proposed hypothesis that UV-B effects are mediated by an inhibition of the xanthophyll cycle, which increases ROS production and, consequently, causes oxidative damage to components of the photosynthetic machinery, such as proteins and pigments.

  5. Effects of reducing the ambient UV-B radiation in the high Arctic on Salix arctica and Vaccinium uliginosum

    DEFF Research Database (Denmark)

    Albert, K.R.; Ro-Poulsen, H.; Mikkelsen, Teis Nørgaard

    2005-01-01

    , transmitting λ > 400 nm) were used to reduce UV-B radiation and UV-B+A respectively. A UV transparent film (Teflon, transmitting λ > 280 nm) and no film were used as controls. Field measurements showed that the plants under Teflon, Mylar and Lexan received app. 91%, 39% and 17% of the ambient UV-B irradiance...

  6. Acclimation to UV-B radiation and visible light in Lactuca sativa involves up-regulation of photosynthetic performance and orchestration of metabolome-wide responses.

    Science.gov (United States)

    Wargent, J J; Nelson, B C W; McGhie, T K; Barnes, P W

    2015-05-01

    UV-B radiation is often viewed as a source of stress for higher plants. In particular, photosynthetic function has been described as a common target for UV-B impairment; yet as our understanding of UV-B photomorphogenesis increases, there are opportunities to expand the emerging paradigm of regulatory UV response. Lactuca sativa is an important dietary crop species and is often subjected to rapid sunlight exposure at field transfer. Acclimation to UV-B and visible light conditions in L. sativa was dissected using gas exchange and chlorophyll fluorescence measurements, in addition to non-destructive assessments of UV epidermal shielding (SUV ). After UV-B treatment, seedlings were subjected to wide-range metabolomic analysis using liquid chromatography hybrid quadrupole time-of-flight high-resolution mass spectrometry (LC-QTOF-HRMS). During the acclimation period, net photosynthetic rate increased in UV-treated plants, epidermal UV shielding increased in both subsets of plants transferred to the acclimatory conditions (UV+/UV- plants) and Fv /Fm declined slightly in UV+/UV- plants. Metabolomic analysis revealed that a key group of secondary compounds was up-regulated by higher light conditions, yet several of these compounds were elevated further by UV-B radiation. In conclusion, acclimation to UV-B radiation involves co-protection from the effects of visible light, and responses to UV-B radiation at a photosynthetic level may not be consistently viewed as damaging to plant development. © 2014 John Wiley & Sons Ltd.

  7. Effects of UV radiation on genetic recombination

    International Nuclear Information System (INIS)

    Vlahovic, K.; Zahradka, D.; Petranovic, M.; Petranovic, D.

    1996-01-01

    We have used the model consisting of Escherichia coli cells and l phage to study the effects of UV radiation on genetic recombination. We found two radiation induced processes that reduce or inhibit genetic recombination. One such process leads to the inability of prophage to excise itself from the irradiated bacterial chromosome by the site-specific recombination. The other process was shown to inhibit a type of general recombination by which the prophage transfers one of its genetic markers to the infecting homologous phage. Loss of the prophage ability to take part in both site-specific and general recombination was shown to develop in recB + but not in recB cells. From this we infer that the loss of prophage recombinogenicity in irradiated cells is a consequence of one process in which RecBCD enzyme (the product of recB, recC and recD genes) plays an essential role. (author)

  8. Occupational radiation exposure in Germany in 2006. Report of the radiation protection register

    International Nuclear Information System (INIS)

    Frasch, G.; Fritzsche, E.; Kammerer, L.; Karofsky, R.; Spiesl, J.; Stegemann, R.

    2008-06-01

    In Germany, persons occupationally exposed to radiation are monitored by several official dosimetric services who transmit their records about individual radiation doses to the Radiation Protection Register of the Federal Office for Radiation Protection (BfS). The number of dose recordings reported to the Radiation Protection Register has annually increased to more than three million records per year and thus accumulated to more than 34 million dose records at the end of 2006. The purpose of the Radiation Protection Register is to supervise the keeping of the dose limits by each radiation worker and to monitor the compliance with the radiation protection principle ''optimisation'' by performing detailed annual statistical analyses of the monitored persons and their radiation exposure. Amongst others, the annual report of the Radiation Protection Register provides information about status and development of occupational radiation exposure in Germany. In 2006, about 312,000 workers were monitored with dosimeters for occupational radiation exposure. About 18 % of the monitored persons received a measurable personal dose. The average annual dose of these exposed workers was 0.75 mSv. This value is the lowest average annual dose since dose monitoring for occupational worker was introduced. It remains below the dose limit of 1 mSv for the general public and amounts only 4 % of the annual dose limit of 20 mSv for radiation workers. Since 2003 aircraft crew personnel is subject to dose monitoring if it is employed in accordance with the German employment act and likely to receive an effective dose of at least 1 mSv per year from cosmic radiation during flight operation. This accounts for about 33.000 pilots and flight attendants. 45 airlines report the monthly accumulated dose values of their personnel via the Federal Office for Civil Aviation (''Luftfahrt-Bundesamt, LBA'') to the BfS. The collective dose of the aircraft crew personnel is 71 Person-Sv and thus

  9. Photochemical degradation of chromophoric-dissolved organic matter exposed to simulated UV-B and natural solar radiation

    NARCIS (Netherlands)

    Zhang, Y.; Liu, M.; Qin, B.; Feng, S.

    2009-01-01

    Photochemical degradation of chromophoric-dissolved organic matter (CDOM) by UV-B radiation decreases CDOM absorption in the UV region and fluorescence intensity, and alters CDOM composition. CDOM absorption, fluorescence, and the spectral slope indicating the CDOM composition were studied using

  10. Responses of membrane lipid peroxidation and endogenous hormones of soybean seedlings to UV-B radiation and rare earth

    International Nuclear Information System (INIS)

    Yan Shengrong; Yang Chunhe; Zhang Yuequn

    2009-01-01

    [Objective] The aim was to provide strategies for development of rare earth and control of environmental pollution. [Method] Responses of membrane lipid peroxidation and endogenous hormones of soybean seedlings to UV-B radiation and rare earth were studied through hydroponics in laboratory. [Result] The results showed that under irradiation of UV-B(T1-0.15 W/m2 and T2-0.45 W/m2), chlorophyll and indole-3-acetic acid(IAA) contents firstly decreased during the stress phase (1-5d) and then increased during the restoration phase (6-9d) while contents of malonadialdehyde(MDA) and abscisic acid(ABA) gradually increased during the imposition of UV-B radiation (1-5d) and subsequently decreased during recovery from UV-B stress (6-9d) . With adding of La (Ⅲ) with the concentration of 20mg•L-1, the decline/rise trend of chlorophyll, IAA, MDA and ABA contents was slowed down during the stress period while the rise/decline speed was accelerated during the recovery period. [Conclusion] It suggests that the regulation of La (Ⅲ) on membrane lipid peroxidation and endogenous hormones could increase chlorophyll and IAA contents, improve the metabolism of reactive oxygen species (ROS), inhibit membrane lipid peroxidation, decrease the accumulation amount of ABA and alleviate injury of UV-B radiation to soybean seedlings. Further, the protective potential of La (Ⅲ) was better under low UV-B radiation than under high one

  11. Enhanced UV-B radiation alleviates the adverse effects of summer drought in two Mediterranean pines under field conditions [ozone depletion

    International Nuclear Information System (INIS)

    Petropoulou, Y.; Kyparissis, A.; Nikolopoulos, D.; Manetas, Y.

    1995-01-01

    The effects of enhanced UV-B (290-320 nm) radiation on two native Mediterranean pines (Pinus pinea L., Pinus halepensis Mill.) were recorded during a one-year field study. Plants received ambient or ambient plus supplemental UV-B radiation (simulating a 15% stratospheric ozone depletion over Patras. Greece, 38.3°N. 29.1°E) and only natural precipitation, i.e. they were simultaneously exposed to other natural stresses. particularly water stress during summer. Supplemental UV-B irradiation started in early February, 1993 and up to late June, no effects were observed on growth and photochemical efficiency of photosystem II, as measured by chlorophy II fluorescence induction. Water stress during the summer was manifested in the control plants as a decline in the ratio of variable to maximum fluorescence (F v /F m ), the apparent photon yield for oxygen evolution (φ I ) and the photosynthetic capacity at 5% CO 2 (P m ). In addition, a partial needle loss was evident. Under supplemental UV-B radiation, however, the decreases in F v /F m , φ i , and P m . as well as needle losses were significantly less. Soon after the first heavy autumn rains. photosynthetic parameters in both control and UV-B treated plants recovered to similar values. but the transient summer superiority of UV-B irradiated plants resulted in a significant increase in their dry weight measured at plant harvest. during late January. 1994. Plant height. UV-B absorbing compounds, photosynthetic pigments and relative water content measured at late spring. late summer and at plant harvest, were not significantly affected by supplemental UV-B radiation. The results indicate that enhanced UV-B radiation may be beneficial for Mediterranean pines through a partial alleviation of the adverse effects of summer drought. (author)

  12. Growth, photosynthesis and UV-B absorbing compounds of Portuguese Barbela wheat exposed to ultraviolet-B radiation

    International Nuclear Information System (INIS)

    Correia, C.M.; Torres-Pereira, M.S.; Torres-Pereira, J.M.G.

    1999-01-01

    Wheat plants (Triticum aestivum L.) were exposed to two levels of UV-B radiation (ambient UV-B and high UV-B, simulating a 20% reduction in the ozone layer) under mediterranean field-growth conditions. After 4 months of UV-B treatment, total plant biomass of high UV-B plants was 18% lower compared to control plants. The decrease of biomass appears to be the result of changes in morphological and physiological processes. High UV-B treatment induces decreases in leaf area, net photosynthesis rate, transpiration rate and water use efficiency. Pigment analysis of leaf extracts showed increases in chlorophyll content and no effect on accumulation of UV-B absorbing pigments. The underlying mechanisms for these results are discussed. (author)

  13. Environmental policy. Ambient radioactivity levels and radiation doses in 1996

    International Nuclear Information System (INIS)

    1997-10-01

    The report is intended as information for the German Bundestag and Bundesrat as well as for the general population interested in issues of radiological protection. The information presented in the report shows that in 1996, the radiation dose to the population was low and amounted to an average of 4 millisievert (mSv), with 60% contributed by natural radiation sources, and 40% by artificial sources. The major natural source was the radioactive gas radon in buildings. Anthropogenic radiation exposure almost exclusively resulted from application of radioactive substances and ionizing radiation in the medical field, for diagnostic purposes. There still is a potential for reducing radiation doses due to these applications. In the reporting year, there were 340 000 persons occupationally exposed to ionizing radiation. Only 15% of these received a dose different from zero, the average dose was 1.8 mSv. The data show that the anthropogenic radiation exposure emanating from the uses of atomic energy or applications of ionizing radiation in technology is very low. (orig./CB) [de

  14. Potential radiation doses likely to be received by the radiologists and para medical staff in an hospital in Pakistan. (G. M. counter, survey meter measurements )

    International Nuclear Information System (INIS)

    Ali, A.; Zeb, J.; Iqbal, S.; Orfi, S.D.

    1999-01-01

    Potential radiation doses likely to received by the radiologists and paramedical staff in a typical hospital in Pakistan have been measured using a very sensitive radiation survey meter (FAG FH40F2) employing in Geiger Muller counter (FHZ 120] as a role which is extendable up to 4 meters in length. The measurements have been compared with internationally accepted Maximum Permissible Radiation Dos Level (MPDL). Radiation dose rates measured on the hands of two radiologist during fluoroscopy examination of the patient were of the order of 1 m Sv.h/sup -1/ and 540 u Sv. h/sup -1/ which were 400% to 21% higher than the MPDL (250 u Sv. h/sup -1/). Radiation dose rates measured on the chest of the nurses were 300 and 50 u Sv. h/sup -1/, which were 3000% to 500% higher than those of MPDL(10 u Sv. h/sup -1/). Such high dose rates present a serious situation from radiation damage point of view and deserve attention of the hospital management and of national regulatory authority so as to minimize the potential radiation doses to the radiologists and paramedical staff. As Low As Reasonably Achievable (ALARA) concept should be implemented in the health sector. (author)

  15. Replication of simian virus 40 in simian virus 40-transformed hamster kidney cells induced by mitomycin C or 60Co γ irradiation

    International Nuclear Information System (INIS)

    Rakusanova, T.; Smales, W.P.; Kaplan, J.C.; Black, P.H.

    1978-01-01

    Several clones of simian virus 40 (SV40)-transformed hamster kidney cells, which are heterogeneous for induction of infectious SV40, have been studied. SV40 yields are low after induction with 60 Co γ irradiation or mitomycin C. In order to clarify the mechanism(s) by which virus is produced in induced cells, we analyzed the replication of viral DNA and production of virion (V) antigen and infectious virus after induction in various clones as well as in lytically infected permissive cells. Cells replicating SV40 DNA or synthesizing V antigen were visualized by in situ hybridization and immunofluorescence techniques, respectively. Only some cells in induced cultures were found to produce SV40 and those which did were less efficient than lytically infected monkey cells. Mitomycin C or 60 Co γ irradiation acted by inducing more cells to replicate virus rather than by increasing the amount of SV40 released from individual cells. A greater proportion of cells could be induced to replicate SV40 DNA than to synthesize V antigen in all induced clones studied. Also, SV40 DNA replication was induced at lower doses of γ irradiation than the production of either V antigen or infectious virus suggesting that synthesis of late virus protein is more restricted in induced cells than is replication of SV40 DNA. These findings indicate that one of the effects of induction treatments on SV40-transformed hamster cells is an enhancement of the cells' capacity to support SV40 replication

  16. One-step simultaneous detection of Ureaplasma parvum and genotypes SV1, SV3 and SV6 from clinical samples using PlexPCR technology.

    Science.gov (United States)

    Payne, M S; Furfaro, L L; Tucker, R; Tan, L Y; Mokany, E

    2017-08-01

    Ureaplasma spp. are associated with preterm birth. In recent times, it has become apparent that Ureaplasma parvum, but not Ureaplasma urealyticum, is of most relevance. We recently demonstrated this in Australian pregnant women and using high-resolution melt (HRM) PCR, further showed that U. parvum genotype SV6 was of particular significance. However, our assay was unable to identify multiple genotypes in the same sample, required a separate species-level qPCR for low titre samples and was not ideal for diagnostic laboratories due to the nature of HRM PCR result interpretation. Consequently, our current study developed a novel, one-step PlexPCR assay capable of detecting U. parvum and genotypes SV1, SV3 and SV6 in a single reaction directly from clinical samples. We then validated this using vaginal swab DNA from our Australian cohort of pregnant women. The PlexPCR was highly sensitive, detecting all targets to between 0.4 × 10 -5  ng DNA (SV3) and 0.4 × 10 -6  ng DNA (U. parvum, SV1 and SV6). Compared to our HRM PCR, the PlexPCR defined genotype distribution in all seven cases previously reported as 'mixed', and detected another eight cases where multiple genotypes (two) were present in samples previously reported as single genotypes using HRM PCR. Ureaplasma spp. have been associated with prematurity for decades, however, only a minority of studies have examined this beyond the genus level. In those that have, Ureaplasma parvum has been strongly associated with preterm birth. We recently demonstrated this in Australian women and further showed that U. parvum genotype SV6 was of particular significance. Our PlexPCR assay allows rapid detection and concurrent genotyping of U. parvum in clinical samples and may be of particular interest to obstetricians, particularly those caring for women at a high risk of preterm birth, and any other disease phenotypes where U. parvum is of interest. © 2017 The Authors. Letters in Applied Microbiology published by John

  17. Commentaar op art. 563 Sv

    NARCIS (Netherlands)

    Knoops, G.G.J.; van Laanen, F.; Melai, A.L.; Groenhuijsen, M.S.

    2004-01-01

    Schrijvers verschaffen een wetenschappelijk commentaar op art. 563 Sv, betreffende de tenuitvoerlegging van andere straffen dan de bij art. 562 Sv bedoelde straffen ingeval van een veroordeelde wiens geestvermogens ziekelijk zijn gestoord.

  18. Inactivation credit of UV radiation for viruses, bacteria and protozoan (oo)cysts in water: a review

    NARCIS (Netherlands)

    Hijnen, W.A.M.; Beerendonk, E.F.; Medema, Gerriet Jan

    2006-01-01

    UV disinfection technology is of growing interest in the water industry since it was demonstrated that UV radiation is very effective against (oo)cysts of Cryptosporidium and Giardia, two pathogenic micro-organisms of major importance for the safety of drinking water. Quantitative Microbial Risk

  19. [Knowledge about UV-radiation and sun protection: survey of adolescents and young adults in Bavaria].

    Science.gov (United States)

    Eichhorn, C; Seibold, C; Loss, J; Steinmann, A; Nagel, E

    2008-10-01

    Identifying deficits in sun protection knowledge and behavior can serve as a starting point for primary prevention interventions. The aim of this study was to investigate knowledge and behavior related to ultraviolet radiation in the population between 14 and 45 years of age in Bavaria, as well as effects of the awareness campaign "Sensible in the Sun". In two Bavarian districts, 545 individuals of the target population completed a telephone survey about risks of UV-radiation, sun protection knowledge and behavior, and effects of the campaign. Sunburn and skin cancer as adverse effects of ultraviolet radiation were named by almost every participant. When asked about protective interventions, 91% mentioned sunscreen and 45-54% clothing, limited stay in the sun and seeking shade at noon. Women were better informed than men, adults better than adolescents. 10.6% were aware of the campaign. In this group, 37.9% had been motivated to consider their sun protective behavior; 13.8% (especially women >30 years) stated they had changed their behavior because of the campaign. There were deficits in knowledge, especially about eye damage and the importance of getting slowly used to UV radiation. Physician advice, but also broadcast and print media, has an effect on UV-related knowledge.

  20. Optimizing UV Index determination from broadband irradiances

    Science.gov (United States)

    Tereszchuk, Keith A.; Rochon, Yves J.; McLinden, Chris A.; Vaillancourt, Paul A.

    2018-03-01

    A study was undertaken to improve upon the prognosticative capability of Environment and Climate Change Canada's (ECCC) UV Index forecast model. An aspect of that work, and the topic of this communication, was to investigate the use of the four UV broadband surface irradiance fields generated by ECCC's Global Environmental Multiscale (GEM) numerical prediction model to determine the UV Index. The basis of the investigation involves the creation of a suite of routines which employ high-spectral-resolution radiative transfer code developed to calculate UV Index fields from GEM forecasts. These routines employ a modified version of the Cloud-J v7.4 radiative transfer model, which integrates GEM output to produce high-spectral-resolution surface irradiance fields. The output generated using the high-resolution radiative transfer code served to verify and calibrate GEM broadband surface irradiances under clear-sky conditions and their use in providing the UV Index. A subsequent comparison of irradiances and UV Index under cloudy conditions was also performed. Linear correlation agreement of surface irradiances from the two models for each of the two higher UV bands covering 310.70-330.0 and 330.03-400.00 nm is typically greater than 95 % for clear-sky conditions with associated root-mean-square relative errors of 6.4 and 4.0 %. However, underestimations of clear-sky GEM irradiances were found on the order of ˜ 30-50 % for the 294.12-310.70 nm band and by a factor of ˜ 30 for the 280.11-294.12 nm band. This underestimation can be significant for UV Index determination but would not impact weather forecasting. Corresponding empirical adjustments were applied to the broadband irradiances now giving a correlation coefficient of unity. From these, a least-squares fitting was derived for the calculation of the UV Index. The resultant differences in UV indices from the high-spectral-resolution irradiances and the resultant GEM broadband irradiances are typically within 0

  1. UV disinfection of water. 1. Effect on microorganisms/virus conditions which can limit the use of UV radiation as a means of disinfection

    Energy Technology Data Exchange (ETDEWEB)

    Skipperud, E; Johansen,; Myhrstad, J A [Statens Inst. for Folkehelse, Oslo (Norway)

    1978-01-01

    UV radiation has been found to have advantages over chloration for the disinfection of water. New regulations for dietary conditions on Norwegian ships introduced in 1974 led to increased use of UV disinfection, and this has in the following years spread to waterworks. The present article is based on a study to determine possible limitation. The nature of the injuries to the microorganisms is first discussed, together with repair mechanisms. A table is given showing the energy required for 90 and 100 percent inactivation of a number of microorganisms. Some other factors affecting UV inactivation are briefly mentioned. (JIW).

  2. Potential radiation doses likely to be received by the radiologists and paramedical staff in typical hospital in Pakistan (GM counter, survey meter measurements) (abstract)

    International Nuclear Information System (INIS)

    Ali, A.; Zeb, J.; Iqbal, S.; Orfi, S.D.

    1998-01-01

    Potential radiation doses likely to be received by the radiologists and para medical staff in a typical hospital in Pakistan have been measured using a very sensitive radiation survey meter (FAG FH40F2) employing a Geiger Muller counter (FHZ120) as a probe which is a probe extend able up to 4 meters in length. These measurements have been compared with internationally accepted Maximum Permissible Radiation Dose Level (MPDL). Radiation dose rates measured on the hands of two radiologists during fluoroscopy examination of the patient were of the order of 1mSv.h/sup -1/ and 540 mu Sv.h/sup -1/ which were 400% to 216% times higher than the MPDL (250 mu Sv.h/sup -1/). Radiation dose rates measured on the chest and neck were 300 and 50 mu Sv.h/sup -1/, which were 3000% to 500% times higher than those of MPDL (10 mu Sv.h/sup -1/. Such high dose rates present a serious situation and deserve attention of the hospital management and of national regulatory authority so as to minimize the potential radiation doses to the radiologists and para medical staff. As Low As Reasonably Achievable (ALARA) concept should be implemented in the health sector. (author)

  3. Changes of ionizing radiation caused by natural radionuclides in the Curonian Spit

    International Nuclear Information System (INIS)

    Peciuliene, M.; Jasaitis, D.; Grigaliunaite-Vonseviciene, G. and others

    2005-01-01

    Taking into consideration a unique scenery of the Curonian Spit, dosimetric investigation of ionizing radiation caused by natural radionuclides is performed there. The influence of natural radionuclides present in the ground on the equivalent dose rate of gamma radiation in the ground surface air is established. Measurements of equivalent dose rate are carried out in the whole territory of the Curonian Spit in Lithuania. Especially numerous data have been collected on the coasts of the sea and bay, near them, in seaside dunes and by roads. The established equivalent dose rate values vary from 22 nSv/h (on the dune top) to 90 nSv/h (above an asphalt path). The values of the main gamma radiation source ( 40 K and 226 Ra) concentration are measured, and positive correlation of concentrations and equivalent dose rates in the ground surface air between 40 K and 2 '2 6 Ra is determinated. It is established that 40 K has the biggest influence on equivalent dose rate. The equivalent dose rate values in the ground surface air in the Curonian Spit are comparatively low (they can even be 1630 times lower in comparison to Guarapari beach, Brazil). (author)

  4. Response of oxidative stress defense systems in rice (Oryza sativa) leaves with supplemental UV-B radiation

    International Nuclear Information System (INIS)

    Dai, Q.; Yan, B.; Huang, S.; Liu, X.; Peng, S.; Miranda, M.L.L.; Chavez, A.Q.; Vergara, B.S.; Olszyk, D.M.

    1997-01-01

    The impact of elevated ultraviolet-B radiation (UV-B, 280–320 nm) on membrane systems and lipid peroxidation, and possible involvement of active oxygen radicals was investigated in leaves of two UV-B susceptible rice cultivars (Oryza sativa L. cvs IR74 and Dular). Rice seedlings were grown in a greenhouse for 10 days and then treated with biologically effective UV-B (UV-B BE ) radiation for 28 days. Oxidative stress effects were evaluated by measuring superoxide anion (O 2 ) generation rate, hydrogen peroxide (H 2 O 2 ) content, malondialdehyde (MDA) concentration and relative electrolyte conductivity (EC) for IR74 and Dular at 0 (control), 6 or 13 kJ m −2 day −1 UV-B BE . Significant increases in these parameters were found in rice plants grown at 13 vs 0 kJ m −2 day −1 UV-B BE after 28 days; indicating that disruption of membrane systems may be an eventual reason for UV-B-induced injury in rice plants. There was a positive correlation between O 2 − generation and increases in EC or MDA in leaves. Activities of enzymatic and nonenzymatic free radical scavengers were measured for IR74 after 7, 14, 21 and 28 days of exposure to 13 or 0 UV-B BE to evaluate dynamics of these responses over time. Activities of catalase and superoxide dismutase (but not ascorbate peroxidase) and concentrations of ascorbic acid and glutathione were enhanced by 13 vs 0 UV-B BE after 14 days of UV-B exposure. Further exposure to 28 days of UV-B was associated with a decline in enzyme activities and ascorbic acid, but not glutathione. It is suggested that UV-B-induced injury may be associated with disturbance of active oxygen metabolism through the destruction and alteration of both enzymatic and nonenzymatic defense systems in rice. (author)

  5. Precautionary radiation protection

    International Nuclear Information System (INIS)

    Heller, W.

    2006-01-01

    The German federal government annually reports about the development of radioactivity in the environment, providing the most important data and changes in environmental radioactivity and radiation exposure. These reports are based on the Act on Precautionary Protection of the Public against Radiation Exposure (Radiation Protection Provisions Act) of December 19, 1986 as a consequence of the Chernobyl reactor accident. The purpose of the Act is protection of the public from health hazards arising from a nuclear accident or any other event with comparable radiological consequences, and to create the foundations for correct evaluation of the risks resulting from specific radiation exposures. After 1986, the Act was soon given concrete shape by legal ordinances, which made it a workable tool. The following points, among others, can be summarized form the report for 2004: - The calculated natural and manmade overall exposure is 4.0 mSv/a, as in the previous year, and happens to be exactly the same figure as in the report for 1994. - The contribution to radiation exposure by nuclear power plants and other nuclear facilities is less than 0.01 mSv/a. Over a period of nearly twenty years, the Act and the annual reporting regime have proved to work. Standardized criteria prevent data abuse and misinterpretation, respectively. Definitions of limits have contributed to more transparency and more objectivity. (orig.)

  6. Monitoring of radiation situation in the territory of the Voronezh region

    Directory of Open Access Journals (Sweden)

    Yu. I. Stepkin

    2017-01-01

    Full Text Available The purpose of the study was to assess the doses of personnel and the population at the expense of all the main activities and sources of radiation in the territory of the Voronezh region. The data of the forms of state statistical supervision No. 1-DOZ “Information on the doses of personnel from persons under normal use of technogenic sources of ionizing radiation”, No. 3-DOZ “Information on radiation doses of patients during X-ray radiology studies”, No. 4-DOZ “Information on radiation doses of the population due to natural and technogenically altered background” for 2010-2016 and the radiation and hygienic passport of the territory of the Voronezh Region. Based on the results of monitoring the radiation situation, the situation associated with the impact of ionizing radiation sources in the Voronezh Region has been characterized as safe for the past 7 years. The average annual effective dose per 1 inhabitant due to all ionizing radiation remains stable with a slight upward trend and lies in the range from 2.925 (2010 to 3.399 mSv (2016. In the structure of the collective dose of the population of the Voronezh region, the dose from natural sources is 83.65%, from medical sources – 16.06%, from technogenically changed background radiation, including global fallout and accident at the Chernobyl nuclear power plant – 0.18%, from the activities of enterprises using Sources of ionizing radiation – 0.11%. The average annual effective dose of natural exposure to humans varies from 0.660 to 0.704 mSv / year, natural radiation from radon from 0.832 to 1.465 mSv / year. The average effective dose from medical research for the procedure for the study period was 0.27-0.40 mSv and tends to decrease due to the introduction of modern low-dose medical diagnostic equipment. On the territory of the Voronezh region, there were no population groups with an effective radiation dose exceeding 5 mSv / year. Gamma-background in the region in 2010

  7. UV Radiation Detection Using Optical Sensor Based on Eu3+ Doped PMMA

    Directory of Open Access Journals (Sweden)

    Miluski Piotr

    2016-12-01

    Full Text Available Progress in UV treatment applications requires new compact and sensor constructions. In the paper a hybrid (organic-inorganic rare-earth-based polymeric UV sensor construction is proposed. The efficient luminescence of poly(methyl methacrylate (PMMA matrix doped by europium was used for testing the optical sensor (optrode construction. The europium complex assures effective luminescence in the visible range with well determined multi-peak spectrum emission enabling construction of the optrode. The fabricated UV optical fibre sensor was used for determination of Nd:YAG laser intensity measurements at the third harmonic (355 nm in the radiation power range 5.0-34.0 mW. The multi-peak luminescence spectrum was used for optimization of the measurement formula. The composition of luminescent peak intensity enables to increase the slope of sensitivity up to −2.8 mW-1. The obtained results and advantages of the optical fibre construction enable to apply it in numerous UV detection systems.

  8. UV-Induced Cell Death in Plants

    Science.gov (United States)

    Nawkar, Ganesh M.; Maibam, Punyakishore; Park, Jung Hoon; Sahi, Vaidurya Pratap; Lee, Sang Yeol; Kang, Chang Ho

    2013-01-01

    Plants are photosynthetic organisms that depend on sunlight for energy. Plants respond to light through different photoreceptors and show photomorphogenic development. Apart from Photosynthetically Active Radiation (PAR; 400–700 nm), plants are exposed to UV light, which is comprised of UV-C (below 280 nm), UV-B (280–320 nm) and UV-A (320–390 nm). The atmospheric ozone layer protects UV-C radiation from reaching earth while the UVR8 protein acts as a receptor for UV-B radiation. Low levels of UV-B exposure initiate signaling through UVR8 and induce secondary metabolite genes involved in protection against UV while higher dosages are very detrimental to plants. It has also been reported that genes involved in MAPK cascade help the plant in providing tolerance against UV radiation. The important targets of UV radiation in plant cells are DNA, lipids and proteins and also vital processes such as photosynthesis. Recent studies showed that, in response to UV radiation, mitochondria and chloroplasts produce a reactive oxygen species (ROS). Arabidopsis metacaspase-8 (AtMC8) is induced in response to oxidative stress caused by ROS, which acts downstream of the radical induced cell death (AtRCD1) gene making plants vulnerable to cell death. The studies on salicylic and jasmonic acid signaling mutants revealed that SA and JA regulate the ROS level and antagonize ROS mediated cell death. Recently, molecular studies have revealed genes involved in response to UV exposure, with respect to programmed cell death (PCD). PMID:23344059

  9. Anthropogenic changes in the surface all-sky UV-B radiation through 1850-2005 simulated by an Earth system model

    Science.gov (United States)

    Watanabe, S.; Takemura, T.; Sudo, K.; Yokohata, T.; Kawase, H.

    2012-06-01

    The historical anthropogenic change in the surface all-sky UV-B (solar ultraviolet: 280-315 nm) radiation through 1850-2005 is evaluated using an Earth system model. Responses of UV-B dose to anthropogenic changes in ozone and aerosols are separately evaluated using a series of historical simulations including/excluding these changes. Increases in these air pollutants cause reductions in UV-B transmittance, which occur gradually/rapidly before/after 1950 in and downwind of industrial and deforestation regions. Furthermore, changes in ozone transport in the lower stratosphere, which is induced by increasing greenhouse gas concentrations, increase ozone concentration in the extratropical upper troposphere and lower stratosphere. These transient changes work to decrease the amount of UV-B reaching the Earth's surface, counteracting the well-known effect increasing UV-B due to stratospheric ozone depletion, which developed rapidly after ca. 1980. As a consequence, the surface UV-B radiation change between 1850 and 2000 is negative in the tropics and NH extratropics and positive in the SH extratropics. Comparing the contributions of ozone and aerosol changes to the UV-B change, the transient change in ozone absorption of UV-B mainly determines the total change in the surface UV-B radiation at most locations. On the other hand, the aerosol direct and indirect effects on UV-B play an equally important role to that of ozone in the NH mid-latitudes and tropics. A typical example is East Asia (25° N-60° N and 120° E-150° E), where the effect of aerosols (ca. 70%) dominates the total UV-B change.

  10. UV radiation: a promising tool in the synthesisof multicomponent nano-oxides

    Czech Academy of Sciences Publication Activity Database

    Čuba, V.; Procházková, L.; Bárta, J.; Vondrášková, A.; Pavelková, T.; Mihóková, Eva; Jarý, Vítězslav; Nikl, Martin

    2014-01-01

    Roč. 16, č. 11 (2014), "2686-1"-"2686-7" ISSN 1388-0764 R&D Projects: GA ČR GA13-09876S Institutional support: RVO:68378271 Keywords : nanoscintillators * band-gap engineering * UV radiation radioluminescence * zinc oxide * synthetic garnets * composite nanoparticles Subject RIV: CH - Nuclear ; Quantum Chemistry Impact factor: 2.184, year: 2014

  11. Dose/dose-rate responses of shrimp larvae to UV-B radiation

    International Nuclear Information System (INIS)

    Damkaer, D.M.

    1981-01-01

    Previous work indicated dose-rate thresholds in the effects of UV-B on the near-surface larvae of three shrimp species. Additional observations suggest that the total dose response varies with dose-rate. Below 0.002 Wm -2 sub([DNA]) irradiance no significant effect is noted in activity, development, or survival. Beyond that dose-rate threshold, shrimp larvae are significantly affected if the total dose exceeds about 85 Jm -2 sub([DNA]). Predictions cannot be made without both the dose-rate and the dose. These dose/dose-rate thresholds are compared to four-year mean dose/dose-rate solar UV-B irradiances at the experimental site, measured at the surface and calculated for 1 m depth. The probability that the shrimp larvae would receive lethal irradiance is low for the first half of the season of surface occurrence, even with a 44% increase in damaging UV radiation. (orig.)

  12. Dose/dose-rate responses of shrimp larvae to UV-B radiation

    Energy Technology Data Exchange (ETDEWEB)

    Damkaer, D.M.; Dey, D.B.; Heron, G.A.

    1981-01-01

    Previous work indicated dose-rate thresholds in the effects of UV-B on the near-surface larvae of three shrimp species. Additional observations suggest that the total dose response varies with dose-rate. Below 0.002 Wm/sup -2/sub((DNA)) irradiance no significant effect is noted in activity, development, or survival. Beyond that dose-rate threshold, shrimp larvae are significantly affected if the total dose exceeds about 85 Jm/sup -2/sub((DNA)). Predictions cannot be made without both the dose-rate and the dose. These dose/dose-rate thresholds are compared to four-year mean dose/dose-rate solar UV-B irradiances at the experimental site, measured at the surface and calculated for 1 m depth. The probability that the shrimp larvae would receive lethal irradiance is low for the first half of the season of surface occurrence, even with a 44% increase in damaging UV radiation.

  13. Effects of Stratospheric Ozone Depletion, Solar UV Radiation, and Climate Change on Biogeochemical Cycling: Interactions and Feedbacks

    Science.gov (United States)

    Climate change modulates the effects of solar UV radiation on biogeochemical cycles in terrestrial and aquatic ecosystems, particularly for carbon cycling, resulting in UV-mediated positive or negative feedbacks on climate. Possible positive feedbacks discussed in this assessment...

  14. Row orientation effect on UV-B, UV-A and PAR solar irradiation components in vineyards at Tuscany, Italy

    Science.gov (United States)

    Grifoni, D.; Carreras, G.; Zipoli, G.; Sabatini, F.; Dalla Marta, A.; Orlandini, S.

    2008-11-01

    Besides playing an essential role in plant photosynthesis, solar radiation is also involved in many other important biological processes. In particular, it has been demonstrated that ultraviolet (UV) solar radiation plays a relevant role in grapevines ( Vitis vinifera) in the production of certain important chemical compounds directly responsible for yield and wine quality. Moreover, the exposure to UV-B radiation (280-320 nm) can affect plant-disease interaction by influencing the behaviour of both pathogen and host. The main objective of this research was to characterise the solar radiative regime of a vineyard, in terms of photosynthetically active radiation (PAR) and UV components. In this analysis, solar spectral UV irradiance components, broadband UV (280-400 nm), spectral UV-B and UV-A (320-400 nm), the biological effective UVBE, as well as the PAR (400-700 nm) component, were all considered. The diurnal patterns of these quantities and the UV-B/PAR and UV-B/UV-A ratios were analysed to investigate the effect of row orientation of the vineyard in combination with solar azimuth and elevation angles. The distribution of PAR and UV irradiance at various heights of the vertical sides of the rows was also studied. The results showed that the highest portion of plants received higher levels of daily radiation, especially the UV-B component. Row orientation of the vines had a pronounced effect on the global PAR received by the two sides of the rows and, to a lesser extent, UV-A and UV-B. When only the diffused component was considered, this geometrical effect was greatly attenuated. UV-B/PAR and UV-A/PAR ratios were also affected, with potential consequences on physiological processes. Because of the high diffusive capacity of the UV-B radiation, the UV-B/PAR ratio was significantly lower on the plant portions exposed to full sunlight than on those in the shade.

  15. Effect of solar radiation (UV and visible) at high altitude on CAM-cycling and phenolic compound biosynthesis in Sedum album

    International Nuclear Information System (INIS)

    Bachereau, F.; Marigo, G.; Asta, J.

    1998-01-01

    The field experiment was carried out in order to compare the response of a CAM plant, Sedum album L., to solar radiation at a high altitude (2 100 m) with that at a low altitude location with respect to CAM and phenolic content. Treatment sites included (1) sun-exposed, low altitude, (2) sun-exposed, high altitude with different light treatments, including UV-B and UV-B + A screening, and (3) shade at high altitude. After a 70-day treatment period, CAM-cycling and phenolic compound content were analysed, and high altitude treatments were compared to the low altitude control. The sun-exposed low altitude control was characterized by CAM-cycling and a low phenolic compound content during the experiment. In plants transplanted to the high altitude, only the shaded group maintained a CAM-cycling and a phenolic compound content similar to those of the sun-exposed low altitude control. Samples under UV-B and UV-B + A filters showed similar responses, suggesting the absence of a specific UV-A radiation effect. The screening of UV-B or UV-B + A radiation allowed plants to partially maintain a CAM-cycling and induced a decrease in phenolic compound content. These responses under UV filters were, however, intermediate between those observed in sun-exposed and shaded groups. These results demonstrate a specific effect of radiation from both visible (400–800 nm) and UV-B (280–320 nm) bands on both CAM-cycling and phenolic biosynthesis in S. album L. plants. These light-dependent effects are discussed on a physiological basis and a possible interaction between CAM-cycling and phenolic metabolism is suggested. (author)

  16. Development of Ultraviolet (UV) Radiation Protective Fabric Using Combined Electrospinning and Electrospraying Technique

    Science.gov (United States)

    Sinha, Mukesh Kumar; Das, B. R.; Kumar, Kamal; Kishore, Brij; Prasad, N. Eswara

    2017-06-01

    The article reports a novel technique for functionization of nanoweb to develop ultraviolet (UV) radiation protective fabric. UV radiation protection effect is produced by combination of electrospinning and electrospraying technique. A nanofibrous web of polyvinylidene difluoride (PVDF) coated on polypropylene nonwoven fabric is produced by latest nanospider technology. Subsequently, web is functionalized by titanium dioxide (TiO2). The developed web is characterized for evaluation of surface morphology and other functional properties; mechanical, chemical, crystalline and thermal. An optimal (judicious) nanofibre spinning condition is achieved and established. The produced web is uniformly coated by defect free functional nanofibres in a continuous form of useable textile structural membrane for ultraviolet (UV) protective clothing. This research initiative succeeds in preparation and optimization of various nanowebs for UV protection. Field Emission Scanning Electron Microscope (FESEM) result reveals that PVDF webs photo-degradative behavior is non-accelerated, as compared to normal polymeric grade fibres. Functionalization with TiO2 has enhanced the photo-stability of webs. The ultraviolet protection factor of functionalized and non-functionalized nanowebs empirically evaluated to be 65 and 24 respectively. The developed coated layer could be exploited for developing various defence, para-military and civilian UV protective light weight clothing (tent, covers and shelter segments, combat suit, snow bound camouflaging nets). This research therefore, is conducted in an attempt to develop a scientific understanding of PVDF fibre coated webs for photo-degradation and applications for defence protective textiles. This technological research in laboratory scale could be translated into bulk productionization.

  17. Diurnal changes in epidermal UV transmittance of plants in naturally high UV environments.

    Science.gov (United States)

    Barnes, Paul W; Flint, Stephan D; Slusser, James R; Gao, Wei; Ryel, Ronald J

    2008-06-01

    Studies were conducted on three herbaceous plant species growing in naturally high solar UV environments in the subalpine of Mauna Kea, Hawaii, USA, to determine if diurnal changes in epidermal UV transmittance (T(UV)) occur in these species, and to test whether manipulation of the solar radiation regime could alter these diurnal patterns. Additional field studies were conducted at Logan, Utah, USA, to determine if solar UV was causing diurnal T(UV) changes and to evaluate the relationship between diurnal changes in T(UV) and UV-absorbing pigments. Under clear skies, T(UV), as measured with a UV-A-pulse amplitude modulation fluorometer for leaves of Verbascum thapsus and Oenothera stricta growing in native soils and Vicia faba growing in pots, was highest at predawn and sunset and lowest at midday. These patterns in T(UV) closely tracked diurnal changes in solar radiation and were the result of correlated changes in fluorescence induced by UV-A and blue radiation but not photochemical efficiency (F(v)/F(m)) or initial fluorescence yield (F(o)). The magnitude of the midday reduction in T(UV) was greater for young leaves than for older leaves of Verbascum. Imposition of artificial shade eliminated the diurnal changes in T(UV) in Verbascum, but reduction in solar UV had no effect on diurnal T(UV) changes in Vicia. In Vicia, the diurnal changes in T(UV) occurred without detectable changes in the concentration of whole-leaf UV-absorbing compounds. Results suggest that plants actively control diurnal changes in UV shielding, and these changes occur in response to signals other than solar UV; however, the underlying mechanisms responsible for rapid changes in T(UV) remain unclear.

  18. 25 years of Chernobyl: Countermeasures are still required to keep radiation doses to reindeer herders under the recommended limits; 25 aar med Tsjernobyl: Mottiltak er framleis noedvendige for aa halde straaledosane til reindriftsutoevarane under tilraadde grenser

    Energy Technology Data Exchange (ETDEWEB)

    2011-07-01

    The government's goal was that no one should get radiation doses above 5 mSv the first year after the Chernobyl accident, and not more than 1 mSv per year in the following years. Radiation doses to reindeer herders in the most polluted areas in North-Troendelag and Nordland would have been about 10 mSv per year at most without all the measures that was initiated. From 1986 to 2009 was radiation doses to reindeer herders in Snaasa region reduced with approx. 70%, and in the Roeros region with approx. 40%. (AG)

  19. In vivo effects of UV radiation on multiple endpoints and expression profiles of DNA repair and heat shock protein (Hsp) genes in the cycloid copepod Paracyclopina nana

    International Nuclear Information System (INIS)

    Won, Eun-Ji; Han, Jeonghoon; Lee, Yeonjung; Kumar, K. Suresh; Shin, Kyung-Hoon; Lee, Su-Jae; Park, Heum Gi; Lee, Jae-Seong

    2015-01-01

    Highlights: • UV-B radiation induced a significant reduction of the re-brooding rate of ovigerous females. • A dose-dependent decrease in food ingestion and the rate of assimilation to the body upon UV radiation. • Expression of base excision repair-associated and hsp chaperoning genes was significantly increased upon UV radiation in P. nana. - Abstract: To evaluate the effects of ultraviolet (UV) radiation on energy acquisition and consumption, the copepod Paracyclopina nana was irradiated with several doses (0–3 kJ/m 2 ) of UV. After UV radiation, we measured the re-brooding success, growth pattern of newly hatched nauplii, ingestion rate, and assimilation of diet. In addition, we checked the modulated patterns of DNA repair and heat shock protein (hsp) chaperoning genes of P. nana. UV-B radiation induced a significant reduction (7–87%) of the re-brooding rate of ovigerous females, indicating that UV-induced egg sac damage is closely correlated with a reduction in the hatching rate of UV-irradiated ovigerous female offspring. Using chlorophyll a and stable carbon isotope incubation experiments, we found a dose-dependent decrease (P < 0.05) in food ingestion and the rate of assimilation to the body in response to UV radiation, implying that P. nana has an underlying ability to shift its balanced-energy status from growth and reproduction to DNA repair and adaptation. Also, expression of P. nana base excision repair (BER)-associated genes and hsp chaperoning genes was significantly increased in response to UV radiation in P. nana. These findings indicate that even 1 kJ/m 2 of UV radiation induces a reduction in reproduction and growth patterns, alters the physiological balance and inhibits the ability to cope with UV-induced damage in P. nana

  20. In vivo effects of UV radiation on multiple endpoints and expression profiles of DNA repair and heat shock protein (Hsp) genes in the cycloid copepod Paracyclopina nana

    Energy Technology Data Exchange (ETDEWEB)

    Won, Eun-Ji; Han, Jeonghoon [Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Lee, Yeonjung; Kumar, K. Suresh; Shin, Kyung-Hoon [Department of Marine Sciences and Convergent Technology, College of Science and Technology, Hanyang University, Ansan 426-791 (Korea, Republic of); Lee, Su-Jae [Department of Life Sciences, College of Natural Sciences, Hanyang University, Seoul 133-791 (Korea, Republic of); Park, Heum Gi, E-mail: hgpark@gwnu.ac.kr [Department of Marine Resource Development, College of Life Sciences, Gangneung-Wonju National University, Gangneung 210-702 (Korea, Republic of); Lee, Jae-Seong, E-mail: jslee2@skku.edu [Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2015-08-15

    Highlights: • UV-B radiation induced a significant reduction of the re-brooding rate of ovigerous females. • A dose-dependent decrease in food ingestion and the rate of assimilation to the body upon UV radiation. • Expression of base excision repair-associated and hsp chaperoning genes was significantly increased upon UV radiation in P. nana. - Abstract: To evaluate the effects of ultraviolet (UV) radiation on energy acquisition and consumption, the copepod Paracyclopina nana was irradiated with several doses (0–3 kJ/m{sup 2}) of UV. After UV radiation, we measured the re-brooding success, growth pattern of newly hatched nauplii, ingestion rate, and assimilation of diet. In addition, we checked the modulated patterns of DNA repair and heat shock protein (hsp) chaperoning genes of P. nana. UV-B radiation induced a significant reduction (7–87%) of the re-brooding rate of ovigerous females, indicating that UV-induced egg sac damage is closely correlated with a reduction in the hatching rate of UV-irradiated ovigerous female offspring. Using chlorophyll a and stable carbon isotope incubation experiments, we found a dose-dependent decrease (P < 0.05) in food ingestion and the rate of assimilation to the body in response to UV radiation, implying that P. nana has an underlying ability to shift its balanced-energy status from growth and reproduction to DNA repair and adaptation. Also, expression of P. nana base excision repair (BER)-associated genes and hsp chaperoning genes was significantly increased in response to UV radiation in P. nana. These findings indicate that even 1 kJ/m{sup 2} of UV radiation induces a reduction in reproduction and growth patterns, alters the physiological balance and inhibits the ability to cope with UV-induced damage in P. nana.

  1. Choice of Eye-Safe Radiation Wavelength in UV and Near IR Spectral Bands for Remote Sensing

    Directory of Open Access Journals (Sweden)

    M. L. Belov

    2016-01-01

    Full Text Available The introduction of laser remote sensing systems carries a particular risk to the human’s sense of vision. A structure of the eye, and especially the retina, is the main critical organ as related to the laser radiation.The work uses the optical models of the atmosphere, correctly working in both the UV and the near-IR band, to select the eye-safe radiation wavelengths in the UV (0.355 m and near-IR (~ 1.54 and ~ 2 m spectral bands from the point of view of recorded lidar signal value to fulfill the tasks of laser sensing the natural formations and laser aerosol sensing in the atmosphere.It is shown that the remote sensing lasers with appropriate characteristics can be selected both in the UV band (at a wavelength of 0.355 μm and in the near-IR band (at wavelengths of 1.54 ~ or ~ 2 μm.Molecular scattering has its maximum (for the selected wavelength at a wavelength of 0.355 μm in the UV band, and the minimum at the wavelengths of 1.54 and 2.09 μm in the near -IR band. The main contribution to the molecular absorption at a wavelength of 0.355 μm is made by ozone. In the near-IR spectral band the radiation is absorbed due to water vapor and carbon dioxide.Calculations show that the total effect of the molecular absorption and scattering has no influence on radiation transmission for both the wavelength of 0.355 μm in the UV band, and the wavelengths of 1.54 and 2.09 μm in the near-IR band for sensing trails ~ 1 km.One of the main factors of laser radiation attenuation in the Earth's atmosphere is radiation scattering by aerosol particles.The results of calculations at wavelengths of 0.355 μm, 1.54 μm and 2.09 μm for the several models of the atmosphere show that a choice of the most effective (in terms of the recorded signal of lidar and eye-safe radiation wavelength depends strongly on the task of sensing.To fulfill the task of laser sensing the natural formations, among the eye-safe wavelengths there is one significantly advantageous

  2. Thermoluminescence dependence on the wavelength of monochromatic UV-radiation in Cu-doped KCl and KBr at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Perez R, A.; Piters, T.; Aceves, R.; Rodriguez M, R.; Perez S, R., E-mail: rperez@cifus.uson.mx [Universidad de Sonora, Departamento de Investigaciones en Fisica, Apdo. Postal 5-088, 83190 Hermosillo, Sonora (Mexico)

    2014-08-15

    Thermoluminescence (Tl) dependence on the UV irradiation wavelengths from 200 to 500 nm in Cu-doped KCl and KBr crystals with different thermal treatment has been analyzed. Spectrum of the Tl intensity of each material show lower intensity at wavelengths longer than 420 nm. The Tl intensity depends on the irradiation wavelength. Structure of the Tl intensity spectrum of each sample is very similar to the structure of its optical absorption spectrum, indicating that at each wavelength, monochromatic radiation is absorbed to produce electronic transitions and electron hole pairs. Thermoluminescence of materials with thermal treatment at high temperature shows electron-hole trapping with less efficiency. The results show that Cu-doped alkali-halide materials are good detectors of a wide range of UV monochromatic radiations and could be used to measure UV radiation doses. (Author)

  3. Thermoluminescence dependence on the wavelength of monochromatic UV-radiation in Cu-doped KCl and KBr at room temperature

    International Nuclear Information System (INIS)

    Perez R, A.; Piters, T.; Aceves, R.; Rodriguez M, R.; Perez S, R.

    2014-08-01

    Thermoluminescence (Tl) dependence on the UV irradiation wavelengths from 200 to 500 nm in Cu-doped KCl and KBr crystals with different thermal treatment has been analyzed. Spectrum of the Tl intensity of each material show lower intensity at wavelengths longer than 420 nm. The Tl intensity depends on the irradiation wavelength. Structure of the Tl intensity spectrum of each sample is very similar to the structure of its optical absorption spectrum, indicating that at each wavelength, monochromatic radiation is absorbed to produce electronic transitions and electron hole pairs. Thermoluminescence of materials with thermal treatment at high temperature shows electron-hole trapping with less efficiency. The results show that Cu-doped alkali-halide materials are good detectors of a wide range of UV monochromatic radiations and could be used to measure UV radiation doses. (Author)

  4. Radiation dose and radiation risk to foetuses and newborns during X-ray examinations

    Energy Technology Data Exchange (ETDEWEB)

    Kettunen, A. [Oulu Univ. (Finland)

    2004-05-01

    to a foetus was not calculated either before or after the pelvic x-ray examination of an expectant mother. The responsibility for counselling an expectant mother about the risk of a radiation dose to the foetus was not determined. In conventional pelvic x-ray examinations, the dose to the foetus varied from 1 to 2 mSv/exposure. A proposal for a guide to good practices in the pelvic x-ray examination of women of reproductive age is given. The effective doses of 118 chest x-ray examinations to 43 newborns (gestational age from 26 to 42 weeks) were estimated. The effective dose from one chest radiograph varied from 7.5 {mu}Sv to 54 {mu}Sv. Retrospectively, the total number of radiation examinations to these newborns totalled 399 during the study; the mean was 9.3 (range 1-40). 98% of the examinations were produced during the first treatment period after birth. The total effective dose per child varied from 0.31 mSv to 3.7 mSv. The radiation risk of fatal childhood cancer due to the mean dose of 0.37 mSv is 3.7*10 -5. (orig.)

  5. Radiation dose and radiation risk to foetuses and newborns during X-ray examinations

    International Nuclear Information System (INIS)

    Kettunen, A.

    2004-05-01

    foetus was not calculated either before or after the pelvic x-ray examination of an expectant mother. The responsibility for counselling an expectant mother about the risk of a radiation dose to the foetus was not determined. In conventional pelvic x-ray examinations, the dose to the foetus varied from 1 to 2 mSv/exposure. A proposal for a guide to good practices in the pelvic x-ray examination of women of reproductive age is given. The effective doses of 118 chest x-ray examinations to 43 newborns (gestational age from 26 to 42 weeks) were estimated. The effective dose from one chest radiograph varied from 7.5 μSv to 54 μSv. Retrospectively, the total number of radiation examinations to these newborns totalled 399 during the study; the mean was 9.3 (range 1-40). 98% of the examinations were produced during the first treatment period after birth. The total effective dose per child varied from 0.31 mSv to 3.7 mSv. The radiation risk of fatal childhood cancer due to the mean dose of 0.37 mSv is 3.7*10 -5. (orig.)

  6. Repair of radiation damage of Micrococcus radioproteolyticus due to gamma and UV irradiation

    International Nuclear Information System (INIS)

    Ryznar, L.; Drasil, V.

    1982-01-01

    Cells were irradiated in dry state with gamma radiation and UV radiation. The post-irradiation warming of freeze dried cells (2 hours to 60deg or to 80deg) influenced the ability to repair sublethal damage. Heating to 80deg caused a mild reduction in survival. The repair of irradiated and heated cells required more time than that of cells which had only been irradiated. (M.D.)

  7. The role of p-aminobenzoic acid in the repair of injuries induced by UV- and γ-radiation

    International Nuclear Information System (INIS)

    Rapoport, I.A.; Vasil'eva, S.V.; Davnichenko, L.S.

    1979-01-01

    For the first time it was proved that low doses of p-aminobenzoic acid (PABA) were capable of sharply decreasing lethal mutational effects of UV light and less significantly-gamma effect on a bacterial cell. The experiments were carried out on E.Coli strains which differed in the activity of ferment system of DNA UV-induced injuries reparation. VV radiation dose equaled 10-1500 erd/mm 2 . PABA capability to intensify the reparative process under mutagenic effects of 3 main types: chemical, UV as a representative of non-penetrating radiation, and penetrating radiation permitted to characterize this compound as ''reparagen''. It was emphasized that the application of reparagens capable of intensifying or weakening the reparative process permitted to observe different effects of reparation dependence on the concentration of a chemical agent being introduced from outside and localize the process of reparagen effect in time

  8. Spectral variations of UV-A and PAR solar radiation in estuarine waters of Goa

    Digital Repository Service at National Institute of Oceanography (India)

    Talaulikar, M.; Suresh, T.; Silveira, N.; Desa, E.; Matondkar, S; Lotlikar, A

    radiation (400 to 700 nm), PAR and ultraviolet radiation in the range 350-400 nm (UV-A) are presented here. The mean PAR values at the surface were 327 W/m sup(2) and reduced to 84 W/m sup(2) at first optical depth, Z sub(90) (m) in water. The first optical...

  9. Choice of Eye-Safe Radiation Wavelength in UV and Near IR Spectral Bands for Remote Sensing

    OpenAIRE

    M. L. Belov; V. A. Gorodnichev; D. A. Kravtsov; A. A. Cherpakova

    2016-01-01

    The introduction of laser remote sensing systems carries a particular risk to the human’s sense of vision. A structure of the eye, and especially the retina, is the main critical organ as related to the laser radiation.The work uses the optical models of the atmosphere, correctly working in both the UV and the near-IR band, to select the eye-safe radiation wavelengths in the UV (0.355 m) and near-IR (~ 1.54 and ~ 2 m) spectral bands from the point of view of recorded lidar signal value to ful...

  10. Biobased Nanoparticles for Broadband UV Protection with Photostabilized UV Filters

    NARCIS (Netherlands)

    Hayden, D.R.|info:eu-repo/dai/nl/412640694; Imhof, A.|info:eu-repo/dai/nl/145641600; Velikov, K. P.|info:eu-repo/dai/nl/239483472

    2016-01-01

    Sunscreens rely on multiple compounds to provide effective and safe protection against UV radiation. UV filters in sunscreens, in particular, provide broadband UV protection but are heavily linked to adverse health effects due to the generation of carcinogenic skin-damaging reactive oxygen species

  11. Visible laser and UV-A radiation impact on a PNP degrading Moraxella strain and its rpoS mutant.

    Science.gov (United States)

    Nandakumar, Kanavillil; Keeler, Werden; Schraft, Heidi; Leung, Kam T

    2006-07-05

    The role of stationary phase sigma factor gene (rpoS) in the stress response of Moraxella strain when exposed to radiation was determined by comparing the stress responses of the wild-type (WT) and its rpoS knockout (KO) mutant. The rpoS was turned on by starving the WT cultures for 24 h in minimal salt medium. Under non-starved condition, both WT and KO planktonic Moraxella cells showed an increase in mortality with the increase in duration of irradiation. In the planktonic non-starved Moraxella, for the power intensity tested, UV radiation caused a substantially higher mortality rate than did by the visible laser light (the mortality rate observed for 15-min laser radiation was 53.4 +/- 10.5 and 48.7 +/- 8.9 for WT and KO, respectively, and 97.6 +/- 0 and 98.5 +/- 0 for 25 s of UV irradiation in WT and KO, respectively). However, the mortality rate decreased significantly in the starved WT when exposed to these two radiations. In comparison, rpoS protected the WT against the visible laser light more effectively than it did for the UV radiation. The WT and KO strains of Moraxella formed distinctly different types of biofilms on stainless steel coupons. The KO strain formed a denser biofilm than did the WT. Visible laser light removed biofilms from the surfaces more effectively than did the UV. This was true when comparing the mortality of bacteria in the biofilms as well. The inability of UV radiation to penetrate biofilms due to greater rates of surface absorption is considered to be the major reason for the weaker removal of biofilms in comparison to that of the visible laser light. This result suggests that high power visible laser light might be an effective tool for the removal of biofilms. (c) 2006 Wiley Periodicals, Inc.

  12. DNA repair synthesis in human skin exposed to ultraviolet radiation used in PUVA (psoralen and UV-A) therapy for psoriasis

    International Nuclear Information System (INIS)

    Bishop, S.C.

    1979-01-01

    The ultraviolet radiation used in psoralen and UV-A (PUVA) therapy stimulated DNA repair activity in normal human skin and in the uninvolved skin from psoriatic patients. The activity detected by autoradiography increased linearly with exposure time. No stimulation was observed when the UV-B component was removed from the incident radiation by filtration through glass. Therefore UV-B damage to DNA was found responsible for the activity detected following exposure to the unfiltered PUVA light source. (author)

  13. Acute Radiation Syndrome. Consequences and outcomes

    International Nuclear Information System (INIS)

    Okladnikova, N.D.; Pesternikova, V.S.; Sumina, M.V.; Azizova, T.V.; Yurkov, N.N.

    2000-01-01

    The consequences and outcomes of an Acute Radiation Syndrome (ARS), induced by external gamma radiation for 59 persons (49 men and 10 women) have been estimated. All incidents have taken place more than 40 years ago in the yearly years of adjustment of an atomic industry (1950-1953-38 persons, 1954-1958-21 persons). According to the degree of severity ARS 5 groups are selected: the severest degree - 7 individuals (average dose in group 43.8±12.8 Sv), severe - 4 individuals (9.3±1.5 Sv), medium - 14 individuals (2.2±0.8 Sv), a light degree - 15 individuals (0.93±0.13 Sv), ''erased'' from - 19 individuals (0.85±0.07 Sv). In all cases, except for lethal (the severest degree), the characteristics of morphological composition of the peripheral blood were restored in the first year after ARS and now correspond to physiological standard. In 2 cases the moderate hypoplasia of granulocytopoiesis was diagnosed. A marker of the acute exposure was the chromosome aberrations in lymphocytes of the peripheral blood. The frequency of chromosome aberrations correlates with severity degree of ARS (from 3-7 up to 35-50 stable aberrations per 100 cells). In cases of ARS with severe degree the early development of a cerebral atherosclerosis is detected. The radiation cataract was diagnosed in 5 patients (an exposure doses 4.0-9.8 Sv, a period of development 2-5 years). During the first years after ARS in 80% of cases the complete labour rehabilitation is reached. Of 53 patients with known vital status by 45 year of monitoring 19 persons (35.8%) have died, of these in 2 cases the causes of death are not determined. In remaining cases the causes of death were ARS of severest degree (7 persons), Ischemic Heart Disease (5 persons), malignant tumors (4 persons), accidents and traumas (2 persons). (author)

  14. Natural radioactivity contents in tobacco and radiation dose induced from smoking

    International Nuclear Information System (INIS)

    Shousha, H. A.; Ahmad, F.

    2012-01-01

    One of the causative factors for cancer-inducing mechanisms in humans is radioactive elements present in tobacco leaves used in the manufacture of cigarettes. Smoking of tobacco and its products increases the internal intake and radiation dose due to naturally occurring radionuclides that are considered to be one of the most significant causes of lung cancer. In this work, different commercial types of cigarettes, cigar and moassel were collected from market. Naturally occurring radionuclides 226 Ra and 214 Bi ( 238 U series), 228 Ac and 228 Ra ( 232 Th series), 40 K and man-made 137 Cs were measured in tobacco using gamma-ray spectrometer. Results show that the average concentrations of 238 U, 232 Th and 40 K were 4.564, 3.940 and 1289.53 Bq kg -1 , respectively. This reflects their origin from the soil by root uptake and fertilisers used in the cultivation of tobacco plants. Concentration of 137 Cs was 0.348 Bq kg -1 due to root uptake or deposition onto the leaf foliage. For smokers, the annual effective dose due to inhalation of 238 U varied from 49.35 to 139.40 μSv -1 (average 104.27 μSv y -1 ), while of 232 Th from 23.86 to 111.06 μSv y -1 (average 65.52 μSv y -1 ). The annual effective dose resulting from 137 Cs was varied from 10.96 to 24.01 nSv y -1 (average 19.41 nSv y -1 ). (authors)

  15. Instability of a double layer and initiation of a photoelectric gas discharge by UV radiation

    International Nuclear Information System (INIS)

    Meshalkin, E.A.

    1991-01-01

    At the present time there is no theory or systematic experiments for the conversion of the energy of vacuum uv radiation into current energy in connection with the photoelectric effect in gases. The aim in this work was to study the process by which an SCL is established and to obtain a gas discharge associated with photoemission (a photoelectric gas discharge), similar to the gas discharge in thermal-emission converters, in order to transform optical energy into electrical current. The development of a space-charge layer (SCL) is studied when a metallic target in air or nitrogen at a pressure in the range 10 -3 -10 torr is subjected to UV radiation. A laser plasma was used as the source of the UV radiation, modulated in intensity at a frequency of 75 MHz. It was found that after a period of development in the course of which the potential difference across the SCL can reach 185 V, it drops abruptly. This effect is due to an instability of the SCL which arises because the pressure of the electron gas in the background plasma exceeds the confining pressure of the electric field which penetrates from SCL into the plasma. A photoelectric arc discharge was observed in which the energy of the UV radiation was converted into current energy with an efficiency ∼ 1%. The current was found to be 3.1 A and the power in the load was 10W. Because of the threshold for the occurrence of the instability in the SCL, the potential drop across the SCL could be completely modulated at a frequency of 75 MHz. The amplitude of the HF current reached 0.3 A

  16. Dependence of biologically active UV radiation on the atmospheric ozone in 2000 - 2001 over Stara Zagora, Bulgaria

    International Nuclear Information System (INIS)

    Gogosheva, Tz.; Petkov, B.; Mendeva, B.; Krastev, D.

    2003-01-01

    This study investigates how the changes in simultaneously measured ozone columns influence the biologically active UV irradiance. Spectral ground-based measurements of direct solar ultraviolet radiation performed at Stara Zagora (42 o N, 25 o E), Bulgaria in 2000 - 2001 are used in conjunction with the total ozone content to investigate the relation to the biologically active UV radiation, depending on the solar zenith angle (SZA) and the ozone. The device measures the direct solar radiation in the range 290 - 360 nm at 1 nm resolution. The direct sun UV doses for some specific biological effects (erythema and eyes) are obtained as the integral in the wavelength interval between 290 and 330 nm of the UV solar spectrum weighted with an action spectrum, typical of each effect. For estimation of the sensitivity of biological doses to the atmospheric ozone we calculate the radiation amplification factor (RAF) defined as the percentage increase in the column amount of the atmospheric ozone. The biological doses increase significantly with the decrease of the SZA. The doses of SZA=20 o are about three times larger than doses at SZA=50 o . The RAF derived from our spectral measurements shows an increase of RAF along with the decreasing ozone. For example, the ozone reduction by 1% increases the erythemal dose by about 2%. (authors)

  17. Lethal effect of short-wave (254 nm) UV-radiation on cells of Chlamidomonas reinhardii strains with different carotenoid content

    International Nuclear Information System (INIS)

    Kamchatova, I.E.; Chunaev, A.S.; Bronnikov, V.A.

    1987-01-01

    In experiments on related Chlamidomonas reinhardii strains of similar mating type a study was made of sensitivity of cells with different carotenoid content to UV-radiation of 254 nm. Mutants having a lower, as opposed to the wild type strain, content of carotenoids exhibited an increased radiosensitivity. A carotenoid-free mutant was found to possess a higher sensitivity to UV-radiation which was typical of the strain with the impaired excision repair system. The studied subclone of the UV-radiosensitive strain CC-888 was unable to photoreactivate the UV-induced damages which was typical of the wild-type strain. The content of carotenoids in cells of this subnuclone exceeded that in cells of mutants with the reduced pigmentation

  18. Utilising shade to optimize UV exposure for vitamin D

    Science.gov (United States)

    Turnbull, D. J.; Parisi, A. V.

    2008-06-01

    Numerous studies have stated that humans need to utilise full sun radiation, at certain times of the day, to assist the body in synthesising the required levels of vitamin D3. The time needed to be spent in the full sun depends on a number of factors, for example, age, skin type, latitude, solar zenith angle. Current Australian guidelines suggest exposure to approximately 1/6 to 1/3 of a minimum erythemal dose (MED), depending on age, would be appropriate to provide adequate vitamin D3 levels. The aim of the study was to determine the exposure times to diffuse solar UV to receive exposures of 1/6 and 1/3 MED for a changing solar zenith angle in order to assess the possible role that diffuse UV (scattered radiation) may play in vitamin D3 effective UV exposures (UVD3). Diffuse and global erythemal UV measurements were conducted at five minute intervals over a twelve month period for a solar zenith angle range of 4° to 80° at a latitude of 27.6° S. For a diffuse UV exposure of 1/3 MED, solar zenith angles smaller than approximately 50° can be utilised for exposure times of less than 10 min. Spectral measurements showed that, for a solar zenith angle of 40°, the UVA (315-400 nm) in the diffuse component of the solar UV is reduced by approximately 62% compared to the UVA in the global UV, whereas UVD3 wavelengths are only reduced by approximately 43%. At certain latitudes, diffuse UV under shade may play an important role in providing the human body with adequate levels of UVD3 (290-315 nm) radiation without experiencing the high levels of UVA observed in full sun.

  19. Polymer-layered silicate nanocomposites by UV-radiation curing: an original synthesis

    International Nuclear Information System (INIS)

    Keller, L.; Decker, C.; Zahouily, K.; Miehe-Brendle, J.; Le Meins, J.M.

    2004-01-01

    Full text.Because of the many hopes which they raise, the nanocomposite materials are the subject of an increasing number of scientific publications. Indeed, the intimate association of a polymer matrix and silicate nano-platelets leads to the formation of materials having mechanical and barriers properties improved (fire, gas, humidity,...). A literature survey shows that these materials are generally produced by a thermal polymerization, which presents two major disadvantages: the use of organic solvents and a great consumption of energy. To overcome such limitations, photoinitiated polymerization was chosen to synthesize nanocomposite materials. By this technology, called UV radiation curing, a solvent-free resin is transformed within seconds into a solid polymer upon exposure to UV-radiation at ambient temperature. The principal objective of this study was to develop photopolymerizable systems with clay particles having a layer structure (phyllosilicates). The clay mineral was made organophilic by treatment with an alkylammonium salt to allow the acrylate resin to penetrate into the expanded galleries. A morphological characterization of the materials obtained was carried out by X-rays diffraction and electronic microscopy transmission. The polymerization of the various resins under the UV exposure was followed in situ by using the real-time infrared spectroscopy (RT-FTIR) and attenuated total reflection (ATR). The results obtained show that the presence of the organoclay does not modify much the polymerization kinetics. The nanocomposite material thus obtained is transparent, insoluble int eh organic solvents and presents improved mechanical properties, compared to the neat resin and the microcomposite, for a load factor ranging between 2 and 5% wt. The addition of nanoparticles also makes it possible to reduce efficiently the brightness of coatings UV and finally confers to this material barriers properties higher than that of the photocrosslinked polymeric

  20. Impact of robotics and a suspended lead suit on physician radiation exposure during percutaneous coronary intervention

    Energy Technology Data Exchange (ETDEWEB)

    Madder, Ryan D., E-mail: ryan.madder@spectrumhealth.org; VanOosterhout, Stacie; Mulder, Abbey; Elmore, Matthew; Campbell, Jessica; Borgman, Andrew; Parker, Jessica; Wohns, David

    2017-04-15

    Background: Reports of left-sided brain malignancies among interventional cardiologists have heightened concerns regarding physician radiation exposure. This study evaluated the impact of a suspended lead suit and robotic system on physician radiation exposure during percutaneous coronary intervention (PCI). Methods: Real-time radiation exposure data were prospectively collected from dosimeters worn by operating physicians at the head- and chest-level during consecutive PCI cases. Exposures were compared in three study groups: 1) manual PCI performed with traditional lead apparel; 2) manual PCI performed using suspended lead; and 3) robotic PCI performed in combination with suspended lead. Results: Among 336 cases (86.6% manual, 13.4% robotic) performed over 30 weeks, use of suspended lead during manual PCI was associated with significantly less radiation exposure to the chest and head of operating physicians than traditional lead apparel (chest: 0.0 [0.1] μSv vs 0.4 [4.0] μSv, p < 0.001; head: 0.5 [1.9] μSv vs 14.9 [51.5] μSv, p < 0.001). Chest-level radiation exposure during robotic PCI performed in combination with suspended lead was 0.0 [0.0] μSv, which was significantly less chest exposure than manual PCI performed with traditional lead (p < 0.001) or suspended lead (p = 0.046). In robotic PCI the median head-level exposure was 0.1 [0.2] μSv, which was 99.3% less than manual PCI performed with traditional lead (p < 0.001) and 80.0% less than manual PCI performed with suspended lead (p < 0.001). Conclusions: Utilization of suspended lead and robotics were observed to result in significantly less radiation exposure to the chest and head of operating physicians during PCI. - Highlights: • Use of suspended lead during manual PCI reduced cranial radiation among operators by 97%. • Robotic PCI reduced cranial radiation among operators by 99%. • Suspended lead and robotics together achieved the lowest levels of radiation exposure.

  1. Impact of robotics and a suspended lead suit on physician radiation exposure during percutaneous coronary intervention

    International Nuclear Information System (INIS)

    Madder, Ryan D.; VanOosterhout, Stacie; Mulder, Abbey; Elmore, Matthew; Campbell, Jessica; Borgman, Andrew; Parker, Jessica; Wohns, David

    2017-01-01

    Background: Reports of left-sided brain malignancies among interventional cardiologists have heightened concerns regarding physician radiation exposure. This study evaluated the impact of a suspended lead suit and robotic system on physician radiation exposure during percutaneous coronary intervention (PCI). Methods: Real-time radiation exposure data were prospectively collected from dosimeters worn by operating physicians at the head- and chest-level during consecutive PCI cases. Exposures were compared in three study groups: 1) manual PCI performed with traditional lead apparel; 2) manual PCI performed using suspended lead; and 3) robotic PCI performed in combination with suspended lead. Results: Among 336 cases (86.6% manual, 13.4% robotic) performed over 30 weeks, use of suspended lead during manual PCI was associated with significantly less radiation exposure to the chest and head of operating physicians than traditional lead apparel (chest: 0.0 [0.1] μSv vs 0.4 [4.0] μSv, p < 0.001; head: 0.5 [1.9] μSv vs 14.9 [51.5] μSv, p < 0.001). Chest-level radiation exposure during robotic PCI performed in combination with suspended lead was 0.0 [0.0] μSv, which was significantly less chest exposure than manual PCI performed with traditional lead (p < 0.001) or suspended lead (p = 0.046). In robotic PCI the median head-level exposure was 0.1 [0.2] μSv, which was 99.3% less than manual PCI performed with traditional lead (p < 0.001) and 80.0% less than manual PCI performed with suspended lead (p < 0.001). Conclusions: Utilization of suspended lead and robotics were observed to result in significantly less radiation exposure to the chest and head of operating physicians during PCI. - Highlights: • Use of suspended lead during manual PCI reduced cranial radiation among operators by 97%. • Robotic PCI reduced cranial radiation among operators by 99%. • Suspended lead and robotics together achieved the lowest levels of radiation exposure.

  2. Effects of solar UV radiation on diatom assemblages of the Mediterranean

    International Nuclear Information System (INIS)

    Santas, Regas; Lianou, Charalambia; Haeder, D.-P.

    1996-01-01

    Three UV treatments (PAR; PAR + UVA; PAR + UVA + UVB) were performed by placing different UV-absorbing filters over communities developing on ceramic tiles in a natural marine habitat near Korinthos, Greece. The experiment was repeated at three depths (0.5 m, 1 m, 1.5 m) below the surface of the sea. Differences in community structure due to UV radiation exposure were more pronounced during the early stages of community development. After the first 3 weeks of growth, the productivity of the PAR + UVA + UVB treatment was significantly lower than the PAR + UVA but not than the PAR treatment. This difference did not persist thereafter. At 5 weeks of growth, the productivity at 0.5 m was significantly lower than at 1.0 m. No other significant differences were observed. The findings of the present study suggest that periphytic communities occurring at the upper layers of the euphotic zone may be capable of adjusting to changes in environmental stresses such as by increased solar UVB irradiance. (Author)

  3. Phototransformation of membrane lipids and its role in biomembrane function change under the effect of UV-radiation

    International Nuclear Information System (INIS)

    Roshchupkin, D.I.; Anosov, A.K.; Murina, M.A.; Lordkipanidze, A.T.

    1988-01-01

    The papers devoted to the investigation of photochemical transformations of lipid under the effect of UV radiation of biological membranes are reviewed. The mechanism of peroxide photooxidation of mebrane lipid is considered. Data on the effect of antioxidants and the structure state of membranes on the process of peroxide photooxidation of lipid are presented. The problem on the role of this process under the effect of UV-radiation on blood and skin of mammals is discussed. 48 refs.; 4 refs

  4. Changes induced by UV radiation in the presence of sodium benzoate in films formulated with polyvinyl alcohol and carboxymethyl cellulose

    International Nuclear Information System (INIS)

    Villarruel, S.; Giannuzzi, L.; Rivero, S.; Pinotti, A.

    2015-01-01

    This work was focused on: i) developing single and blend films based on carboxymethyl cellulose (CMC) and polyvinyl alcohol (PVOH) studying their properties, ii) analyzing the interactions between CMC and PVOH and their modifications UV-induced in the presence of sodium benzoate (SB), and iii) evaluating the antimicrobial capacity of blend films containing SB with and without UV treatment. Once the blend films with SB were exposed to UV radiation, they exhibited lower moisture content as well as a greater elongation at break and rougher surfaces compared to those without treatment. Considering oxygen barrier properties, the low values obtained would allow their application as packaging with selective oxygen permeability. Moreover, the characteristics of the amorphous phase of the matrix prevailed with a rearrangement of the structure of the polymer chain, causing a decrease of the crystallinity degree. These results were supported by X-rays and DSC analysis. FT-IR spectra reflected some degree of polymer–polymer interaction at a molecular level in the amorphous regions. The incorporation of sodium benzoate combined with UV treatment in blend films was positive from the microbial point of view because of the growth inhibition of a wide spectrum of microorganisms. From a physicochemical perspective, the UV treatment of films also changed their morphology rendering them more insoluble in water, turning the functionalized blend films into a potential material to be applied as food packaging. - Highlights: • CMC:PVOH blend films were developed with the addition of sodium benzoate (SB). • Exposition to UV radiation was carried out with sodium benzoate as photoinitiator. • Blend films were exposed to UV radiation to modify their surface morphology. • Low O 2 permeability of UV treated blends allow them to be used as selective packaging. • Efficacy of SB as an antimicrobial agent was examined with and without UV radiation

  5. Changes induced by UV radiation in the presence of sodium benzoate in films formulated with polyvinyl alcohol and carboxymethyl cellulose

    Energy Technology Data Exchange (ETDEWEB)

    Villarruel, S. [Faculty of Exact Sciences, UNLP (Argentina); Giannuzzi, L.; Rivero, S. [Center for Research and Development in Food Cryotechnology (CCT-CONICET La Plata), 47 and 116 (Argentina); Pinotti, A., E-mail: acaimpronta@hotmail.com [Center for Research and Development in Food Cryotechnology (CCT-CONICET La Plata), 47 and 116 (Argentina); Faculty of Engineering, UNLP, La Plata 1900 (Argentina)

    2015-11-01

    This work was focused on: i) developing single and blend films based on carboxymethyl cellulose (CMC) and polyvinyl alcohol (PVOH) studying their properties, ii) analyzing the interactions between CMC and PVOH and their modifications UV-induced in the presence of sodium benzoate (SB), and iii) evaluating the antimicrobial capacity of blend films containing SB with and without UV treatment. Once the blend films with SB were exposed to UV radiation, they exhibited lower moisture content as well as a greater elongation at break and rougher surfaces compared to those without treatment. Considering oxygen barrier properties, the low values obtained would allow their application as packaging with selective oxygen permeability. Moreover, the characteristics of the amorphous phase of the matrix prevailed with a rearrangement of the structure of the polymer chain, causing a decrease of the crystallinity degree. These results were supported by X-rays and DSC analysis. FT-IR spectra reflected some degree of polymer–polymer interaction at a molecular level in the amorphous regions. The incorporation of sodium benzoate combined with UV treatment in blend films was positive from the microbial point of view because of the growth inhibition of a wide spectrum of microorganisms. From a physicochemical perspective, the UV treatment of films also changed their morphology rendering them more insoluble in water, turning the functionalized blend films into a potential material to be applied as food packaging. - Highlights: • CMC:PVOH blend films were developed with the addition of sodium benzoate (SB). • Exposition to UV radiation was carried out with sodium benzoate as photoinitiator. • Blend films were exposed to UV radiation to modify their surface morphology. • Low O{sub 2} permeability of UV treated blends allow them to be used as selective packaging. • Efficacy of SB as an antimicrobial agent was examined with and without UV radiation.

  6. Oxidative damage in response to natural levels of UV-B radiation in larvae of the tropical sea urchin Tripneustes gratilla.

    Science.gov (United States)

    Lister, Kathryn Naomi; Lamare, Miles D; Burritt, David J

    2010-01-01

    To assess the effects of UV radiation (280-400nm) on development, oxidative damage and antioxidant defence in larvae of the tropical sea urchin Tripneustes gratilla, a field experiment was conducted at two depths in Aitutaki, Cook Islands (18.85°S, 159.75°E) in May 2008. Compared with field controls (larvae shielded from UV-R but exposed to VIS-radiation), UV-B exposure resulted in developmental abnormality and increases in oxidative damage to proteins (but not lipids) in embryos of T. gratilla held at 1m depth. Results also indicated that larvae had the capacity to increase the activities of protective antioxidant enzymes when exposed to UV-B. The same trends in oxidative damage and antioxidant defence were observed for embryos held at 4m, although the differences were smaller and more variable. In contrast to UV-B exposure, larvae exposed to UV-A only showed no significant increases in abnormality or oxidative damage to lipids and proteins compared with field controls. This was true at both experimental depths. Furthermore, exposure to UV-A did not cause a significant increase in the activities of antioxidants. This study indicates that oxidative stress is an important response of tropical sea urchin larvae to exposure to UV radiation. © 2010 The Authors. Journal Compilation. The American Society of Photobiology.

  7. The effectiveness of UV-C radiation for facility-wide environmental disinfection to reduce health care-acquired infections.

    Science.gov (United States)

    Napolitano, Nathanael A; Mahapatra, Tanmay; Tang, Weiming

    2015-12-01

    Health care-acquired infections (HAIs) constitute an increasing threat for patients worldwide. Potential contributors of HAIs include environmental surfaces in health care settings, where ultraviolet-C radiation (UV-C) is commonly used for disinfection. This UV-C intervention-based pilot study was conducted in a hospital setting to identify any change in the incidence of HAIs before and after UV-C intervention, and to determine the effectiveness of UV-C in reducing pathogens. In a hospital in Culver City, CA, during 2012-2013, bactericidal doses of UV-C radiation (254 nm) were delivered through a UV-C-based mobile environmental decontamination unit. The UV-C dosing technology and expertise of the specifically trained personnel were provided together as a dedicated service model by a contracted company. The incidence of HAIs before and after the intervention period were determined and compared. The dedicated service model dramatically reduced HAIs (incidence difference, 1.3/1000 patient-days, a 34.2% reduction). Reductions in the total number and incidence proportions (28.8%) of HAIs were observed after increasing and maintaining the coverage of UV-C treatments. The dedicated service model was found to be effective in decreasing the incidence of HAIs, which could reduce disease morbidity and mortality in hospitalized patients. This model provides a continuously monitored and frequently UV-C-treated patient environment. This approach to UV-C disinfection was associated with a decreased incidence of HAIs. Copyright © 2015 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  8. Effects of UV-B radiation on leaf hair traits of invasive plants-Combining historical herbarium records with novel remote sensing data.

    Science.gov (United States)

    Václavík, Tomáš; Beckmann, Michael; Cord, Anna F; Bindewald, Anja M

    2017-01-01

    Ultraviolet-B (UV-B) radiation is a key but under-researched environmental factor that initiates diverse responses in plants, potentially affecting their distribution. To date, only a few macroecological studies have examined adaptations of plant species to different levels of UV-B. Here, we combined herbarium specimens of Hieracium pilosella L. and Echium vulgare L. with a novel UV-B dataset to examine differences in leaf hair traits between the plants' native and alien ranges. We analysed scans of 336 herbarium specimens using standardized measurements of leaf area, hair density (both species) and hair length (H. pilosella only). While accounting for other bioclimatic variables (i.e. temperature, precipitation) and effects of herbivory, we examined whether UV-B exposure explains the variability and geographical distribution of these traits in the native (Northern Hemisphere) vs. the alien (Southern Hemisphere) range. UV-B explained the largest proportion of the variability and geographical distribution of hair length in H. pilosella (relative influence 67.1%), and hair density in E. vulgare (66.2%). Corresponding with higher UV-B, foliar hairs were 25% longer for H. pilosella and 25% denser for E. vulgare in records from the Southern as compared to those from the Northern Hemisphere. However, focusing on each hemisphere separately or controlling for its effect in a regression analysis, we found no apparent influence of UV-B radiation on hair traits. Thus, our findings did not confirm previous experimental studies which suggested that foliar hairs may respond to higher UV-B intensities, presumably offering protection against detrimental levels of radiation. We cannot rule out UV-B radiation as a possible driver because UV-B radiation was the only considered variable that differed substantially between the hemispheres, while bioclimatic conditions (e.g. temperature, precipitation) and other considered variables (herbivory damage, collection date) were at similar

  9. Effects of UV-B radiation on leaf hair traits of invasive plants—Combining historical herbarium records with novel remote sensing data

    Science.gov (United States)

    Cord, Anna F.; Bindewald, Anja M.

    2017-01-01

    Ultraviolet-B (UV-B) radiation is a key but under-researched environmental factor that initiates diverse responses in plants, potentially affecting their distribution. To date, only a few macroecological studies have examined adaptations of plant species to different levels of UV-B. Here, we combined herbarium specimens of Hieracium pilosella L. and Echium vulgare L. with a novel UV-B dataset to examine differences in leaf hair traits between the plants’ native and alien ranges. We analysed scans of 336 herbarium specimens using standardized measurements of leaf area, hair density (both species) and hair length (H. pilosella only). While accounting for other bioclimatic variables (i.e. temperature, precipitation) and effects of herbivory, we examined whether UV-B exposure explains the variability and geographical distribution of these traits in the native (Northern Hemisphere) vs. the alien (Southern Hemisphere) range. UV-B explained the largest proportion of the variability and geographical distribution of hair length in H. pilosella (relative influence 67.1%), and hair density in E. vulgare (66.2%). Corresponding with higher UV-B, foliar hairs were 25% longer for H. pilosella and 25% denser for E. vulgare in records from the Southern as compared to those from the Northern Hemisphere. However, focusing on each hemisphere separately or controlling for its effect in a regression analysis, we found no apparent influence of UV-B radiation on hair traits. Thus, our findings did not confirm previous experimental studies which suggested that foliar hairs may respond to higher UV-B intensities, presumably offering protection against detrimental levels of radiation. We cannot rule out UV-B radiation as a possible driver because UV-B radiation was the only considered variable that differed substantially between the hemispheres, while bioclimatic conditions (e.g. temperature, precipitation) and other considered variables (herbivory damage, collection date) were at similar

  10. Effects of UV-B radiation on leaf hair traits of invasive plants-Combining historical herbarium records with novel remote sensing data.

    Directory of Open Access Journals (Sweden)

    Tomáš Václavík

    Full Text Available Ultraviolet-B (UV-B radiation is a key but under-researched environmental factor that initiates diverse responses in plants, potentially affecting their distribution. To date, only a few macroecological studies have examined adaptations of plant species to different levels of UV-B. Here, we combined herbarium specimens of Hieracium pilosella L. and Echium vulgare L. with a novel UV-B dataset to examine differences in leaf hair traits between the plants' native and alien ranges. We analysed scans of 336 herbarium specimens using standardized measurements of leaf area, hair density (both species and hair length (H. pilosella only. While accounting for other bioclimatic variables (i.e. temperature, precipitation and effects of herbivory, we examined whether UV-B exposure explains the variability and geographical distribution of these traits in the native (Northern Hemisphere vs. the alien (Southern Hemisphere range. UV-B explained the largest proportion of the variability and geographical distribution of hair length in H. pilosella (relative influence 67.1%, and hair density in E. vulgare (66.2%. Corresponding with higher UV-B, foliar hairs were 25% longer for H. pilosella and 25% denser for E. vulgare in records from the Southern as compared to those from the Northern Hemisphere. However, focusing on each hemisphere separately or controlling for its effect in a regression analysis, we found no apparent influence of UV-B radiation on hair traits. Thus, our findings did not confirm previous experimental studies which suggested that foliar hairs may respond to higher UV-B intensities, presumably offering protection against detrimental levels of radiation. We cannot rule out UV-B radiation as a possible driver because UV-B radiation was the only considered variable that differed substantially between the hemispheres, while bioclimatic conditions (e.g. temperature, precipitation and other considered variables (herbivory damage, collection date were at

  11. Comparison of UV action spectra for lethality and mutation in Salmonella typhimurium using a broad band source and monochromatic radiations

    International Nuclear Information System (INIS)

    Calkins, John; Selby, Christopher; Enoch, H.G.

    1987-01-01

    The UV-B region (280-320 nm) is thought to be primarily responsible for the mutagenic, lethal, and carcinogenic effects of solar radiation. We have conducted UV-B action spectroscopy for mutagenesis and survival of Ames' Salmonella typhimurium strain TA98 (uvrB, pKM101) using both monochromatic radiation from a dye laser and broader bandwidth radiation emitted from FS-20 sunlamps. A series of optical filters having different transmission cut-offs together with the sunlamp source provided bandwidths having successively less short wavelength components from which a ''broad band'' action spectrum was deduced. The two sets of action spectra differed both qualitatively and quantitatively: in comparison to the monochromatic action spectra, the ''broad band'' spectra showed up to a 200-fold reduced efficiency for both mutation induction and lethality by UV-B wavelengths. These results suggest a large protective effect of the background UV-A and/or visible radiations which were present during the broad spectrum irradiations and which are also present in solar radiation. Additional experiments show that to the extent tested this protective effect is not due to photo-reactivation or irradiance (dose rate) effects. (author)

  12. Protein Kinases and Transcription Factors Activation in Response to UV-Radiation of Skin: Implications for Carcinogenesis

    OpenAIRE

    Laurence A. Marchat; Elena Aréchaga Ocampo; Mavil López Casamichana; Carlos Pérez-Plasencia; César López-Camarillo; Elizbeth Álvarez-Sánchez

    2011-01-01

    Solar ultraviolet (UV) radiation is an important environmental factor that leads to immune suppression, inflammation, photoaging, and skin carcinogenesis. Here, we reviewed the specific signal transduction pathways and transcription factors involved in the cellular response to UV-irradiation. Increasing experimental data supporting a role for p38, MAPK, JNK, ERK1/2, and ATM kinases in the response network to UV exposure is discussed. We also reviewed the participation of NF-?B, AP-1, and NRF2...

  13. Effects of radiation and chemicals on SV40 oncogenesis. Final progress report

    International Nuclear Information System (INIS)

    Coggin, J.H. Jr.

    1982-05-01

    This project is directed toward developing rapid, quantitative methods and immunologic markers which will permit the early detection of newly forming tumors induced or enhanced by x-irradiation, chemical carcinogens, viruses or combinations of the three. The projects under study in our ongoing collaborative program seek to develop the detailed understanding and precise methodology required for the early detection of embryonic antigens in transformed cells induced by the co-carcinogenic effects of viruses and low-level radiation. A new technique for assaying the earliest transformed cells appearing in a carcinogen treated population affords a unique tool for this study. Present plans involve efforts to purify embryonic determinants from fetal and transformed cells of hamsters and mice in order to define their role in the transformation process and in tumor development

  14. UV and X radiation effects on the stability of calcium halide phosphate phosphors. 1

    International Nuclear Information System (INIS)

    Tews, W.

    1983-01-01

    Intensity losses of several calcium halide phosphate phosphors have been investigated as a function of the time of irradiation with near UV and X radiation. The results show that antimony-containing foreign phases increase such losses. The directly excited manganese centre emission is much more lowered than the sensitized one. Detrimental effects of the 185 nm UV radiation are observable not only in the first minutes of irradiation but also over considerably extended periods. The sensitization effect caused by irradiation in different gases depends on the phosphor, especially on the content of antimony, and can be explained by the sorption of gaseous impurities at the phosphor surface so that the diffusion of photochemical reaction products from the surface is inhibited

  15. Limnoithona sinensis as refuge for bacteria: protection from UV radiation and chlorine disinfection in drinking water treatment.

    Science.gov (United States)

    Lin, Tao; Cai, Bo; Chen, Wei

    2014-11-01

    In this study, we tested the potential of Limnoithona sinensis to provide its attached bacteria refuge against disinfection. The experimental results indicated that in water devoid of zooplankton, both UV radiation and chlorine disinfection significantly decreased the viability of free-living bacteria. In the presence of L. sinensis, however, the attached bacteria could survive and rapidly recover from disinfection. This demonstrated that L. sinensis provided protection from external damage to various aquatic bacteria that were attached to its body. The surviving bacteria remained on L. sinensis after disinfection exposure, which enabled a rapid increase in the bacterial population followed by their subsequent release into the surrounding water. Compared with UV radiation, chlorine disinfection was more effective in terms of inactivating attached bacteria. Both UV radiation and chlorine disinfection had little effect in terms of preventing the spread of undesirable bacteria, due to the incomplete inactivation of the bacteria associated with L. sinensis.

  16. UV sensitivity of various solid state detectors

    International Nuclear Information System (INIS)

    Knezevic, Zeljka; Ranogajec-Komor, Maria; Miljanic, Saveta

    2008-01-01

    Full text: The light sensitivity is an important characteristic of solid state passive dosimeters used in individual, clinical and environmental dosimetry. Light sensitivity stands for the response directly induced by visible or UV light in a fully annealed material. For the above mentioned applications a negligible light sensitivity is an advantage. However, high light sensitivity and linear response allows the use of detectors as UV dosimeters. For this purpose various TL detectors and the glass element of the RPL dosemeter type SC-1 were systematically investigated after exposure to UV light (254 and 366 nm) as a function of time. The following solid state detectors were investigated relative to TLD-100: Li 2 B 4 O 7 :Cu,Ag,P LiF:Mg,Cu,P, LiF:Mg,Cu,Si, Al 2 O 3 :C and the glass element of RPL dosimeter. UV irradiations were performed with Camag UV lamp at 254 nm and at 366 nm. The illumination times were 5, 10 and 20 minutes. Day light illumination was also carried out at room temperature over time period of several hours up to 2 weeks. The UV light response of each detector was compared to the response obtained after irradiation with 137 Cs. Al 2 O 3 :C, showed high light sensitivity; after 10 minutes illumination with 254 nm UV light the response was equivalent to 130 mGy 137 Cs gamma irradiation. The 254 nm UV response of LiF:Mg,Cu,P (GR-200 A), as well as TLD-700H and Li 2 B 4 O 7 :Cu,Ag,P were proportional to the time of illumination. The responses after 10 min UV illumination were equivalent to 0.001 mGy, 0.01 mGy and 0.1 mGy 137 Cs gamma irradiation, respectively. The complete SC-1 RPL dosimeter is insensitive to light because the glass element is encapsulated in light protected holder throughout the automatic evaluation process following the annealing (irradiation, preheat, readout). The responses of the previously annealed glass element after 20 min illumination with 254 nm and 366 nm UV light were equivalent to 45μSv and 3 μSv of 137 Cs gamma

  17. Monitoring ultraviolet (UV) radiation inactivation of Cronobacter sakazakii in dry infant formula using Fourier transform infrared spectroscopy.

    Science.gov (United States)

    Liu, Qian; Lu, Xiaonan; Swanson, Barry G; Rasco, Barbara A; Kang, Dong-Hyun

    2012-01-01

    Cronobacter sakazakii is an opportunistic pathogen associated with dry infant formula presenting a high risk to low birth weight neonates. The inactivation of C. sakazakii in dry infant formula by ultraviolet (UV) radiation alone and combined with hot water treatment at temperatures of 55, 60, and 65 °C were applied in this study. UV radiation with doses in a range from 12.1 ± 0.30 kJ/m² to 72.8 ± 1.83 kJ/m² at room temperature demonstrated significant inactivation of C. sakazakii in dry infant formula (P radiation combining 60 °C hot water treatment increased inactivation of C. sakazakii cells significantly (P radiation on C. sakazakii inactivation kinetics (D value) were not observed in infant formula reconstituted in 55 and 65 °C water (P > 0.05). The inactivation mechanism was investigated using vibrational spectroscopy. Infrared spectroscopy detected significant stretching mode changes of macromolecules on the basis of spectral features, such as DNA, proteins, and lipids. Minor changes on cell membrane composition of C. sakazakii under UV radiation could be accurately and correctly monitored by infrared spectroscopy coupled with 2nd derivative transformation and principal component analysis. © 2011 Institute of Food Technologists®

  18. Exposure of the orthopaedic surgeon to radiation

    Energy Technology Data Exchange (ETDEWEB)

    Katoh, Kiyonobu; Koga, Takamasa; Matsuzaki, Akio; Kido, Masaki; Satoh, Tetsunori [Fukuoka Univ. (Japan). Chikushi Hospital

    1995-09-01

    We monitored the amount of radiation received by surgeons and assistants during surgery carried out with fluoroscopic assistance. The radiation was monitored with the use of MYDOSE MINIX PDM107 made by Aloka Co. Over a one year period from Aug 20, 1992 to Aug 19, 1993, a study was undertaken to evaluate exposure of the groin level to radiation with or without use of the lead apron during 106 operation (Group-1). In another group, radiation was monitored at the breast and groin level outside of the lead apron during 39 operations (Group-2). In Group-1, the average exposure per person during one year was 46.0 {mu}SV and the average exposure for each procedure was 1.68 {mu}SV. The use of the lead apron affirmed its protective value; the average radiation dose at the groin level out-side of the apron was 9.11 {mu}SV, the measured dose beneath the apron 0.61 {mu}SV. The average dose of exposure to the head, breast at groin level outside of the lead apron, were 7.68 {mu}SV, 16.24 {mu}SV, 32.04 {mu}SV respectively. This study and review of the literature indicate that the total amount of radiation exposure during surgery done with fluoroscopic control remains well within maximum exposure limits. (author).

  19. Exposure of the orthopaedic surgeon to radiation

    International Nuclear Information System (INIS)

    Katoh, Kiyonobu; Koga, Takamasa; Matsuzaki, Akio; Kido, Masaki; Satoh, Tetsunori

    1995-01-01

    We monitored the amount of radiation received by surgeons and assistants during surgery carried out with fluoroscopic assistance. The radiation was monitored with the use of MYDOSE MINIX PDM107 made by Aloka Co. Over a one year period from Aug 20, 1992 to Aug 19, 1993, a study was undertaken to evaluate exposure of the groin level to radiation with or without use of the lead apron during 106 operation (Group-1). In another group, radiation was monitored at the breast and groin level outside of the lead apron during 39 operations (Group-2). In Group-1, the average exposure per person during one year was 46.0 μSV and the average exposure for each procedure was 1.68 μSV. The use of the lead apron affirmed its protective value; the average radiation dose at the groin level out-side of the apron was 9.11 μSV, the measured dose beneath the apron 0.61 μSV. The average dose of exposure to the head, breast at groin level outside of the lead apron, were 7.68 μSV, 16.24 μSV, 32.04 μSV respectively. This study and review of the literature indicate that the total amount of radiation exposure during surgery done with fluoroscopic control remains well within maximum exposure limits. (author)

  20. Occupational radiation exposure in Germany in 2011. Report of the radiation protection register; Die berufliche Strahlenexposition in Deutschland 2011. Bericht des Strahlenschutzregisters

    Energy Technology Data Exchange (ETDEWEB)

    Frasch, Gerhard; Kammerer, Lothar; Karofsky, Ralf; Mordek, Else; Schlosser, Andrea; Spiesl, Josef

    2013-04-15

    In Germany, persons who are occupationally exposed to ionising radiation are monitored by several official dosimetry services that transmit the dose records about individual radiation monitoring to the Radiation Protection Register of the Federal Office for Radiation Protection (BfS). The purpose of the Radiation Protection Register is to supervise the keeping of the dose limits and to monitor the compliance with the radiation protection principle ''Optimisation'' by performing detailed annual statistical analyses of the monitored persons and their radiation exposure. The annual report of the Radiation Protection Register provides information about status and development of occupational radiation exposure in Germany. In 2011, about 350,000 workers were monitored with dosemeters for occupational radiation exposure. The number increased during the past five years continuously by 10 %. Only 19 % of the monitored persons received measurable personal doses. The average annual dose of these exposed workers was 0.58 mSv corresponding to 3 % of the annual dose limit of 20 mSv for radiation workers. In total, 7 persons exceeded the annual dose limit of 20 mSv, i.e. two cases per 100,000 monitored persons. The collective dose of the monitored persons decreased to 38.5 Person-Sv, the lowest value since the last fifty years of occupational dose monitoring. In 2010, 45 airlines calculated the route doses of 39,000 members of the aircraft crew personnel by using certified computer programmes for dose calculation and sent the accumulated monthly doses via the Federal Office for Civil Aviation (''Luftfahrt-Bundesamt, LBA'') to the BfS. The collective dose of the aircraft crew personnel is 83 person-Sv, and thus significantly higher than the total collective dose of the workers monitored with personal dosemeters (38.5 person-Sv). The annual average dose of aircraft crew personnel was 2.12 mSv and decreased compared to 2010 (2,30 mSv). In 2011

  1. Performance Analysis of Si-Based Ultra-Shallow Junction Photodiodes for UV Radiation Detection

    NARCIS (Netherlands)

    Shi, L.

    2013-01-01

    This thesis presents a performance investigation of newly-developed ultra-shallow junction photodiodes (PureB-diodes) for ultraviolet (UV) radiation detection. The photodiodes are fabricated by pure boron chemical vapor deposition (PureB CVD) technology, which can provide nanometer-thin boron

  2. Impact of robotics and a suspended lead suit on physician radiation exposure during percutaneous coronary intervention.

    Science.gov (United States)

    Madder, Ryan D; VanOosterhout, Stacie; Mulder, Abbey; Elmore, Matthew; Campbell, Jessica; Borgman, Andrew; Parker, Jessica; Wohns, David

    Reports of left-sided brain malignancies among interventional cardiologists have heightened concerns regarding physician radiation exposure. This study evaluated the impact of a suspended lead suit and robotic system on physician radiation exposure during percutaneous coronary intervention (PCI). Real-time radiation exposure data were prospectively collected from dosimeters worn by operating physicians at the head- and chest-level during consecutive PCI cases. Exposures were compared in three study groups: 1) manual PCI performed with traditional lead apparel; 2) manual PCI performed using suspended lead; and 3) robotic PCI performed in combination with suspended lead. Among 336 cases (86.6% manual, 13.4% robotic) performed over 30weeks, use of suspended lead during manual PCI was associated with significantly less radiation exposure to the chest and head of operating physicians than traditional lead apparel (chest: 0.0 [0.1] μSv vs 0.4 [4.0] μSv, probotic PCI performed in combination with suspended lead was 0.0 [0.0] μSv, which was significantly less chest exposure than manual PCI performed with traditional lead (probotic PCI the median head-level exposure was 0.1 [0.2] μSv, which was 99.3% less than manual PCI performed with traditional lead (probotics were observed to result in significantly less radiation exposure to the chest and head of operating physicians during PCI. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Physicochemical characterization, antioxidant activity and total phenolic content in 'Gala' apples subjected to different UV-C radiation doses

    Directory of Open Access Journals (Sweden)

    Thaís Gabrielle Dias

    2017-01-01

    Full Text Available UV-C radiation is a food preservation method aimed to extend the life of the product, inactivate microorganisms, and stimulate the synthesis of phenolic compounds. This study aimed to physicochemically characterize and evaluate the antioxidant activity and phenolic content of ‘Gala’ apples subjected to different UV-C radiation doses.The fruits were harvested, sanitized, selected and inserted into a UV-C radiation chamber, and different radiation doses were applied as follows:0 KJ m-2 (0 min., 0.68 KJ m-2 (2 minutes,2.73 KJ m-2 (4 minutes, and 4.10 KJ m-2 (6 minutes. The apples were stored for 120 days at 5 ± 1°C and analyzed after 0, 30, 60, 90, and 120 days of storage. Radiation doses had no influence on parameters, such as weight loss, firmness and Hue angle, and physicochemical aspects, such as pH, soluble solids, titratable acidity and the soluble solids/titratable acidity ratio. The 4.10 KJ m-2 dose was effective and increased the phenolic content and antioxidant activity for up to 90 days while maintaining the content of vitamin C during storage.

  4. UV and ionizing radiations induced DNA damage, differences and similarities

    Science.gov (United States)

    Ravanat, Jean-Luc; Douki, Thierry

    2016-11-01

    Both UV and ionizing radiations damage DNA. Two main mechanisms, so-called direct and indirect pathways, are involved in the degradation of DNA induced by ionizing radiations. The direct effect of radiation corresponds to direct ionization of DNA (one electron ejection) whereas indirect effects are produced by reactive oxygen species generated through water radiolysis, including the highly reactive hydroxyl radicals, which damage DNA. UV (and visible) light damages DNA by again two distinct mechanisms. UVC and to a lesser extend UVB photons are directly absorbed by DNA bases, generating their excited states that are at the origin of the formation of pyrimidine dimers. UVA (and visible) light by interaction with endogenous or exogenous photosensitizers induce the formation of DNA damage through photosensitization reactions. The excited photosensitizer is able to induce either a one-electron oxidation of DNA (type I) or to produce singlet oxygen (type II) that reacts with DNA. In addition, through an energy transfer from the excited photosensitizer to DNA bases (sometime called type III mechanism) formation of pyrimidine dimers could be produced. Interestingly it has been shown recently that pyrimidine dimers are also produced by direct absorption of UVA light by DNA, even if absorption of DNA bases at these wavelengths is very low. It should be stressed that some excited photosensitizers (such as psoralens) could add directly to DNA bases to generate adducts. The review will described the differences and similarities in terms of damage formation (structure and mechanisms) between these two physical genotoxic agents.

  5. Investigation of 207 nm UV radiation for degradation of organic dye ...

    African Journals Online (AJOL)

    The photo-degradation of organic dye C.I. Acid Red 213 (AR-213) was achieved by 207 nm UV radiation emitted from a planar KrBr* excimer lamp without addition of oxidants at varying initial pH values. Precipitates were found to be generated when the irradiated solution of initial acid pH was adjusted to alkaline pH and ...

  6. The optimal UV exposure time for vitamin D3 synthesis and erythema estimated by UV observations in Korea

    Science.gov (United States)

    Lee, Y. G.; Koo, J. H.

    2016-12-01

    Solar UV radiation in a wavelength range between 280 to 400 nm has both positive and negative influences on human body. Surface UV radiation is the main natural source of vitamin D, providing the promotion of bone and musculoskeletal health and reducing the risk of a number of cancers and other medical conditions. However, overexposure to surface UV radiation is significantly related with the majority of skin cancer, in addition other negative health effects such as sunburn, skin aging, and some forms of eye cataracts. Therefore, it is important to estimate the optimal UV exposure time, representing a balance between reducing negative health effects and maximizing sufficient vitamin D production. Previous studies calculated erythemal UV and vitamin-D UV from the measured and modelled spectral irradiances, respectively, by weighting CIE Erythema and Vitamin D3 generation functions (Kazantzidis et al., 2009; Fioletov et al., 2010). In particular, McKenzie et al. (2009) suggested the algorithm to estimate vitamin-D production UV from erythemal UV (or UV index) and determined the optimum conditions of UV exposure based on skin type Ⅱ according to the Fitzpatrick (1988). Recently, there are various demands for risks and benefits of surface UV radiation on public health over Korea, thus it is necessary to estimate optimal UV exposure time suitable to skin type of East Asians. This study examined the relationship between erythemally weighted UV (UVEry) and vitamin D weighted UV (UVVitD) from spectral UV measurements during 2006-2010. The temporal variations of the ratio (UVVitD/UVEry) were also analyzed and the ratio as a function of UV index was applied to the broadband UV measured by UV-Biometer at 6 sites in Korea Thus, the optimal UV exposure time for vitamin D3 synthesis and erythema was estimated for diurnal, seasonal, and annual scales over Korea. In summer with high surface UV radiation, short exposure time leaded to sufficient vitamin D and erythema and vice

  7. Leaf waxes of slow-growing alpine and fast-growing lowland Poa species: inherent differences and responses to UV-B radiation

    International Nuclear Information System (INIS)

    Pilon, J.J.; Lambers, H.; Baas, W.; Tosserams, M.; Rozema, J.; Atkin, O.K.

    1999-01-01

    We investigated whether alpine and lowland Poa species exhibit inherent differences in leaf cuticular waxes, leaf UV absorbing compounds and/or growth responses to UV-B treatment. All plants were grown hydroponically in a growth cabinet (constant 20°; 14 hr photoperiod; 520 μmol photons m −2 s −1 PAR). Two alpine (P. fawcettiae and P. costiniana), one sub-alpine (P. alpina) and three temperate lowland species (P. pratensis, P. compressa and P. trivialis) were grown under conditions without UV radiation for 36 days. In a subsequent experiment, four Poa species (P. costiniana, P. alpina, P. compressa and P. trivialis) were also exposed for 21 days to UV-B/(UV-A) radiation ('UV-B treatment') that resulted in daily UV-B radiation of 7.5 kJ m −2 day −1 , with control plants being grown without UV-B ('UV-A control treatment'). All treatments were carried out in the same growth cabinet. There was no altitudinal trend regarding wax concentrations per unit leaf area, when the six species grown under UV-less conditions, were compared at similar developmental stage (20–30 g shoot fresh mass). However, large differences in cuticular wax chemical composition were observed between the alpine and lowland species grown under UV-less conditions. For example, a single primary alcohol was present in the waxes of the lowland and sub-alpine species (C 26 H 53 OH), but was virtually absent in the alpine species. Although alkanes were present in all six species (primarily C 29 H 60 and C 31 H 64 ), the proportion of total wax present as alkanes was highest in the alpine species. Aldehydes were only present in the waxes of the alpine species. Conversely, substantial amounts of triterpenoids were mainly present in the three lowland species (squalene and lupeol were the dominant forms). The proportion of total wax present as long-chain esters (LCE-s) was similar in all six species grown in the absence of UV radiation. Acetates were observed only in the wax of

  8. A micro-controller based palm-size radiation monitor

    International Nuclear Information System (INIS)

    Bhingare, R.R.; Bajaj, K.C.; Kannan, S.

    2001-01-01

    A micro-controller based, palm-size radiation monitor, PALMRAD, using a silicon P-N junction diode as a detector has been developed. It is useful for radiation protection monitoring during radiation emergency as well as radioactive source loading operations. Some of the features of PALMRAD developed are the use of a semiconductor diode as the detector, simultaneous display of integrated dose and dose rate on a 16-digit alpha numeric LCD display, measurable integrated dose range from 1 μSv to 5000 μSv and dose rate range from 1 mSv/h to 1,000 mSv/h, RS 232C serial interface for connection to a Personal Computer,-storage of integrated dose and dose rate readings, recall of stored readings on LCD display, presentable integrated dose alarm from 1 μSv to 5000 μSv and dose rate from 1 mSv/h to 1,000 mSv/h, battery status and memory status check during measurement, LCD display with LED back-lighting, etc. (author)

  9. Environmental policy. Ambient radioactivity levels and radiation doses in 1996; Umweltpolitik. Umweltradioaktivitaet und Strahlenbelastung im Jahr 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-01

    The report is intended as information for the German Bundestag and Bundesrat as well as for the general population interested in issues of radiological protection. The information presented in the report shows that in 1996, the radiation dose to the population was low and amounted to an average of 4 millisievert (mSv), with 60% contributed by natural radiation sources, and 40% by artificial sources. The major natural source was the radioactive gas radon in buildings. Anthropogenic radiation exposure almost exclusively resulted from application of radioactive substances and ionizing radiation in the medical field, for diagnostic purposes. There still is a potential for reducing radiation doses due to these applications. In the reporting year, there were 340 000 persons occupationally exposed to ionizing radiation. Only 15% of these received a dose different from zero, the average dose was 1.8 mSv. The data show that the anthropogenic radiation exposure emanating from the uses of atomic energy or applications of ionizing radiation in technology is very low. (orig./CB) [Deutsch] Der vorliegende Bericht ueber die `Umweltradioaktivitaet und Strahlenbelastung im Jahr 1996` richtet sich an Bundestag und Bundesrat und darueber hinaus an alle an Fragen des Strahlenschutzes interessierte Buerger. Der Bericht belegt, dass die Strahlenbelastung der Bevoelkerung im Jahr 1996 gering war und insgesamt durchschnittlich 4 Millisievert (mSv) betrug. Dieser Wert war zu 60% auf natuerliche und zu 40% auf kuenstliche Strahlenquellen zurueckzufuehren. Den wesentlichen Beitrag zur natuerlichen Strahlenbelastung lieferte das radioaktive Gas Radon in Wohnungen. Die zivilisatorische Strahlenexposition der Bevoelkerung wurde fast ausschliesslich durch die Anwendung radioaktiver Stoffe und ionisierender Strahlen in der Medizin im Rahmen der Diagnostik hervorgerufen. Hier bestehen nach wie vor Moeglichkeiten zur Reduktion der Strahlenbelastung. Im Jahre 1996 waren 340 000 Personen beruflich

  10. Solar UV-B radiation and ethylene play a key role in modulating effective defenses against Anticarsia gemmatalis larvae in field-grown soybean.

    Science.gov (United States)

    Dillon, Francisco M; Tejedor, M Daniela; Ilina, Natalia; Chludil, Hugo D; Mithöfer, Axel; Pagano, Eduardo A; Zavala, Jorge A

    2018-02-01

    Solar UV-B radiation has been reported to enhance plant defenses against herbivore insects in many species. However, the mechanism and traits involved in the UV-B mediated increment of plant resistance are unknown in crops species, such as soybean. Here, we studied defense-related responses in undamaged and Anticarsia gemmatalis larvae-damaged leaves of two soybean cultivars grown under attenuated or full solar UV-B radiation. We determined changes in jasmonates, ethylene (ET), salicylic acid, trypsin protease inhibitor activity, flavonoids, and mRNA expression of genes related with defenses. ET emission induced by Anticarsia gemmatalis damage was synergistically increased in plants grown under solar UV-B radiation and was positively correlated with malonyl genistin concentration, trypsin proteinase inhibitor activity and expression of IFS2, and the pathogenesis protein PR2, while was negatively correlated with leaf consumption. The precursor of ET, aminocyclopropane-carboxylic acid, applied exogenously to soybean was sufficient to strongly induce leaf isoflavonoids. Our results showed that in field-grown soybean isoflavonoids were regulated by both herbivory and solar UV-B inducible ET, whereas flavonols were regulated by solar UV-B radiation only and not by herbivory or ET. Our study suggests that, although ET can modulate UV-B-mediated priming of inducible plant defenses, some plant defenses, such as isoflavonoids, are regulated by ET alone. © 2017 John Wiley & Sons Ltd.

  11. Influence of UV and Gamma radiations on the induced birefringence of stretched poly(vinyl) alcohol foils

    Science.gov (United States)

    Nechifor, Cristina-Delia; Zelinschi, Carmen Beatrice; Dorohoi, Dana-Ortansa

    2014-03-01

    The aim of our paper is to evidence the influence of Gamma and UV radiations on the induced birefringence of poly(vinyl alcohol) stretched foils. Thin foils of PVA were prepared and dried without modifying their surfaces. The polymeric foils were irradiated from 15 min to 6 h using UV and Gamma radiations. The induced by stretching under heating birefringence of PVA films was measured at λ = 589.3 nm with a Babinet Compensator. Physico-chemical processes (photo stabilization, photo degradation, oxidation) induced by irradiation of polymer matrix influence both the stretching degree and the anisotropy of etired foils. An increase of birefringence versus the stretching ratio of the PVA foils was evidenced for all studied samples. The dependence of the birefringence on the exposure time, stretching ratio and nature of radiation was also confirmed.

  12. Effects of radiation; Effets des radiations

    Energy Technology Data Exchange (ETDEWEB)

    Masse, R [Office de Protection contre les Rayonnements Ionisants, 78 - le Vesinet (France)

    2006-07-01

    The medical consequences of a whole-body irradiation come from the destruction of cells and inflammatory reactions it provokes. The most sensitive organs are the tissues that actively split. The embryo is particularly sensitive, from 200 mSv for the effects on the brain development. The reproduction functions are reached for man from 2000 mSv, the ovary sensitivity is less, the oocytes do not split after the fetus life. For adult the bone marrow outrage leads to the disappearing of blood cells (4000 mSv). The doses from 6000 to 10000 mSv lead the failure of the digestive system and lung. for the upper doses every tissue is reached, particularly by the effects on cells of blood vessels. Important brain dysfunctions appear beyond 10000 mSv. As regards the delayed effects of overexposures the epidemiology brings to light sanitary consequences of the exposure of the population to the ionizing radiations and requires that all the possible factors associated for that purpose are considered. About hereditary effects, it appears that moderate acute radiation exposures of even a relatively large human population must have little impact, in spite of the rate of spontaneous congenital deformations is of the order of 6 %. For the induction of cancers, it is not observed excess for doses lower than 200 mSv for adults and 100 mSv for children (the populations studied are survival people of hiroshima and Nagasaki, patients treated by irradiation, uranium miners, children exposed to radioactive iodine after Chernobylsk accident). To simplify an expression of the risk has been fixed to 5% of induced cancer by Sv for population and 4% by Sv for workers, the different being explained by the demography and the sensitivity of the youngest age groups. As regards the low doses of radiations, a bundle of convergent epidemiological observations notices the absence of effects of the low doses rates. Biological mechanisms, notably of repair are approached, then certain accidents (Goiania

  13. Effects of radiation; Effets des radiations

    Energy Technology Data Exchange (ETDEWEB)

    Masse, R. [Office de Protection contre les Rayonnements Ionisants, 78 - le Vesinet (France)

    2006-07-01

    The medical consequences of a whole-body irradiation come from the destruction of cells and inflammatory reactions it provokes. The most sensitive organs are the tissues that actively split. The embryo is particularly sensitive, from 200 mSv for the effects on the brain development. The reproduction functions are reached for man from 2000 mSv, the ovary sensitivity is less, the oocytes do not split after the fetus life. For adult the bone marrow outrage leads to the disappearing of blood cells (4000 mSv). The doses from 6000 to 10000 mSv lead the failure of the digestive system and lung. for the upper doses every tissue is reached, particularly by the effects on cells of blood vessels. Important brain dysfunctions appear beyond 10000 mSv. As regards the delayed effects of overexposures the epidemiology brings to light sanitary consequences of the exposure of the population to the ionizing radiations and requires that all the possible factors associated for that purpose are considered. About hereditary effects, it appears that moderate acute radiation exposures of even a relatively large human population must have little impact, in spite of the rate of spontaneous congenital deformations is of the order of 6 %. For the induction of cancers, it is not observed excess for doses lower than 200 mSv for adults and 100 mSv for children (the populations studied are survival people of hiroshima and Nagasaki, patients treated by irradiation, uranium miners, children exposed to radioactive iodine after Chernobylsk accident). To simplify an expression of the risk has been fixed to 5% of induced cancer by Sv for population and 4% by Sv for workers, the different being explained by the demography and the sensitivity of the youngest age groups. As regards the low doses of radiations, a bundle of convergent epidemiological observations notices the absence of effects of the low doses rates. Biological mechanisms, notably of repair are approached, then certain accidents (Goiania

  14. Study of mechanical behavior of PMMA in bending and after UV irradiation and gamma radiation

    International Nuclear Information System (INIS)

    Todt, M.L.; Kienen, V.D.; Azevedo, E.C.

    2014-01-01

    PMMA is a polymer that has density similar to water and refractive index alike to glass. It has been used in the substitution to roofing tiles and coverages, affording to be exposed to UV radiation and gamma radiation. This paper had the objective to study the effect in the flexural proprieties of the PMMA exposed to these types of radiations and the evaluation of the wettability through a contact angle measurer. The PMMA specimens have been submitted to 1500 h of UVA radiation, 1500 h of UVC radiation and to 25kGy of gamma radiation. The results show that the PMMA. (author)

  15. Effects of enhanced UV-B radiation on nitrogen fixation in arctic ecosystems.

    NARCIS (Netherlands)

    Solheim, B.; Zielke, M.; Bjerke, J.W.; Rozema, J.

    2006-01-01

    Recent global climate models predict a further significant loss of ozone in the next decades, with up to 50% depletion of the ozone layer over large parts of the Arctic resulting in an increase in ultraviolet-B radiation (UV-B) (280-315 nm) reaching the surface of the Earth. The percentage of total

  16. UV-A enhanced growth and UV-B induced positive effects in the recovery of photochemical yield in Gracilaria lemaneiformis (Rhodophyta).

    Science.gov (United States)

    Xu, Juntian; Gao, Kunshan

    2010-09-02

    The effects of solar UV radiation (280-400 nm) on growth, quantum yield and pigmentation in Gracilaria lemaneiformis were investigated when the thalli were cultured under solar radiation with or without UV for a period of 15 days. Presence of UV-A (315-400 nm) enhanced the relative growth rate, while UV-B (218-315 nm) inhibited it. The positive effect of UV-A and negative effect of UV-B counteracted to result in an insignificant impact of UVR on growth. During the noon period, both UV-A and UV-B resulted in the decrease of maximum quantum yield (Fv/Fm), but UV-B aided in the recovery of the yield in the late afternoon, reflecting that UV-B might be used as a signal in photorepair processes. UV induced the accumulation of UV-absorbing compounds (UVAC) to defend against the harmful UVR. However, the accumulation of UVAC took a much longer time compared to that previously reported, which was probably due to the lower levels of solar radiation and water temperature in the early spring period. Unknown UV-absorbing compounds (UVAC), which peaked at 265 nm, probably the precursor of MAAs (UVAC(325)), accumulated under moderate levels of solar radiation and were transformed to MAAs under higher solar radiation. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  17. ROS and calcium signaling mediated pathways involved in stress responses of the marine microalgae Dunaliella salina to enhanced UV-B radiation.

    Science.gov (United States)

    Zhang, Xinxin; Tang, Xuexi; Wang, Ming; Zhang, Wei; Zhou, Bin; Wang, You

    2017-08-01

    UV-B ray has been addressed to trigger common metabolic responses on marine microalgae, however, the upstream events responsible for these changes in marine microalgae are poorly understood. In the present study, a species of marine green microalgae Dunaliella salina was exposed to a series of enhanced UV-B radiation ranging from 0.25 to 1.00 KJ·m -2 per day. The role of ROS and calcium signaling in the D. salina responses to UV-B was discussed. Results showed that enhanced UV-B radiation markedly decreased the cell density in a dose-dependent manner, but the contents of protein and glycerol that were essential for cell growth increased. It suggested that it was cell division instead of cell growth that UV-B exerted negative effects on. The subcellular damages on nuclei and plasmalemma further evidenced the hypothesis. The nutrient absorption was affected with UV-B exposure, and the inhibition on PO 4 3- uptake was more serious compared to NO 3 - uptake. UV-B radiation promoted reactive oxygen species (ROS) formation and thiobarbituric acid reactive substances (TBARS) contents, decreased the redox status and altered the antioxidant enzyme activities. The addition of the ROS scavenger and the glutathione biosynthesis precursor N-acetyl-l-cysteine (NAC) alleviated the stress degree, implying ROS-mediated pathway was involved in the stress response to UV-B radiation. Transient increase in Ca 2+ -ATPase was triggered simultaneously with UV-B exposure. Meanwhile, the addition of an intracellular free calcium chelator aggravated the damage of cell division, but exogenous calcium and ion channel blocker applications did not, inferring that endogenously initiated calcium signaling played roles in response to UV-B. Cross-talk analysis showed a relatively clear relationship between ROS inhibition and Ca 2+ -ATPase suppression, and a relation between Ca 2+ inhibition and GPx activity change was also observed. It was thus presumed that ROS-coupled calcium signaling via the

  18. Is ultraviolet radiation a synergistic stressor in combined exposures? The case study of Daphnia magna exposure to UV and carbendazim

    International Nuclear Information System (INIS)

    Ribeiro, Fabianne; Ferreira, Nuno C.G.; Ferreira, Abel; Soares, Amadeu M.V.M.; Loureiro, Susana

    2011-01-01

    The toxicological assessment of chemical compounds released to the environment is more accurate when mixtures of chemicals and/or interactions between chemicals and natural stressors are considered. Ultraviolet radiation can be taken as a natural stressor since the levels of UV are increasing due to the decrease of its natural filter, the stratospheric ozone concentration. Therefore, a combination of chemical exposures and increasing UV irradiance in aquatic environments is likely to occur. In the current study, combined effects of carbendazim and ultraviolet radiation were evaluated, using selected life traits as endpoints on Daphnia magna. To design combined exposures, first single chemical and natural stressor bioassays were performed: a reproduction test with carbendazim and a reproduction, feeding inhibition and Energy budget test with ultraviolet radiation. Following single exposures, the combinations of stressors included exposures to UV radiation and carbendazim for a maximum exposure time of 4 h, followed by a post-exposure period in chemically contaminated medium for a maximum of 15 days, depending on the endpoint, where the effects of the combined exposures were investigated. Statistical analyses of the data set were performed using the MixTox tool and were based on the conceptual model of Independent Action (IA) and possible deviations to synergism or antagonism, dose-ratio or dose-level response pattern. Both ultraviolet radiation and carbendazim as single stressors had negative impacts on the measured life traits of daphnids, a decrease on both feeding rates and reproduction was observed. Feeding rates and reproduction of D. magna submitted to combined exposures of ultraviolet radiation and carbendazim showed a dose-ratio deviation from the conceptual model as the best description of the data set, for both endpoints. For feeding inhibition, antagonism was observed when the UV radiation was the dominant item in combination, and for reproduction

  19. The inactivation of hepatitis A virus and other model viruses by UV irradiation

    International Nuclear Information System (INIS)

    Battigelli, D.A.; Sobsey, M.D.; Lobe, D.C.

    1993-01-01

    Ultraviolet light is an attractive alternative to chemical disinfection of water, but little is known about its ability to inactivate important waterborne pathogens such as hepatitis A virus. Therefore, the sensitivity of HAV strain HM-175, coxsackievirus type B-5, rotavirus strain SA-11, and bacteriophages MS2 and φX174 to ultraviolet radiation of 254 nm wavelength in phosphate buffered water was determined. Purified stocks of the viruses were combined and exposed to collimated UV radiation in a stirred reactor for a total dose of up to 40 mW sec/cm 2 . Virus survival kinetics were determined from samples removed at dose intervals. The results of these experiments indicate that UV radiation can effectively inactivate viruses of public health concern in drinking water. (author)

  20. Radiation protection of aviation personnel at exposure by cosmic radiation

    International Nuclear Information System (INIS)

    Vicanova, M.; Pinter, I.; Liskova, A.

    2008-01-01

    For determination of radiation dose of aviation personnel we used the software EPCARD (European Program Package for the Calculation of Aviation Route Doses) developed by National Research Center for Environmental Health - Institute of Radiation Protection (Neuherberg, Germany) and the software CARI 6, developed by the FAA's Civil Aerospace Medical Institute (USA). Both codes are accomplished by the Joint Aviation Authorities. Experimental measurement and estimation of radiation doses of aviation personnel at exposure by cosmic radiation were realised in the period of lowered solar activity. All-year effective dose of pilots, which worked off at least 11 months exceeds the value 1 mSv in 2007. The mean all-year effective dose of member of aviation personnel at exposure by cosmic radiation is 2.5 mSv and maximal all-year effective dose, which we measured in 2007 was 4 mSv. We assumed that in the period of increased solar activity the all-year effective doses may by higher