Neutrino masses from SUSY breaking in radiative seesaw models
Energy Technology Data Exchange (ETDEWEB)
Figueiredo, Antonio J.R. [University of Lisbon, Centro de Fisica Teorica de Particulas (CFTP), Instituto Superior Tecnico, Lisbon (Portugal)
2015-03-01
Radiatively generated neutrino masses (m{sub ν}) are proportional to supersymmetry (SUSY) breaking, as a result of the SUSY non-renormalisation theorem. In this work, we investigate the space of SUSY radiative seesaw models with regard to their dependence on SUSY breaking (SUSY). In addition to contributions from sources of SUSY that are involved in electroweak symmetry breaking (SUSY{sub EWSB} contributions), and which are manifest from left angle F{sub H}{sup †} right angle = μ left angle anti H right angle ≠ 0 and left angle D right angle = g sum {sub H} left angle H{sup †} x {sub H} H right angle ≠ 0, radiatively generated m{sub ν} can also receive contributions from SUSY sources that are unrelated to EWSB (SUSY{sub EWS} contributions). We point out that recent literature overlooks pure-SUSY{sub EWSB} contributions (∝ μ/M) that can arise at the same order of perturbation theory as the leading order contribution from SUSY{sub EWS}. We show that there exist realistic radiative seesaw models in which the leading order contribution to m{sub ν} is proportional to SUSY{sub EWS}. To our knowledge no model with such a feature exists in the literature. We give a complete description of the simplest model topologies and their leading dependence on SUSY. We show that in one-loop realisations LLHH operators are suppressed by at least μ m{sub soft}/M{sup 3} or m{sub soft}{sup 2}/M{sup 3}. We construct a model example based on a oneloop type-II seesaw. An interesting aspect of these models lies in the fact that the scale of soft-SUSY effects generating the leading order m{sub ν} can be quite small without conflicting with lower limits on the mass of new particles. (orig.)
Neutrino Masses in SUSY theories
Lola, S
1999-01-01
We discuss aspects of neutrino masses and lepton-number violation, in the light of the observations of Super-Kamiokande. As a first step, we use the data from various experiments, in order to obtain a phenomenological understanding of neutrino mass textures. We then investigate how the required patterns of neutrino masses and mixings are related to the flavour structure of the underlying theory. In supersymmetric extensions of the Standard Model, renormalisation group effects can have important implications: for small tanb, bottom-tau unification indicates the presence of significant muon-tau flavour mixing. The evolution of the neutrino mixing may be described by simple semi-analytic expressions, which confirm that, for large tanb, very small mixing at the GUT scale may be amplified to maximal mixing at low energies, and vice versa. Passing to specific models, we first discuss the predictions for neutrino masses in different GUT models (including superstring-embedded solutions). Imposing the requirement for ...
Flavor violating Z′ from SO(10 SUSY GUT in High-Scale SUSY
Directory of Open Access Journals (Sweden)
Junji Hisano
2015-05-01
Full Text Available We propose an SO(10 supersymmetric grand unified theory (SUSY GUT, where the SO(10 gauge symmetry breaks down to SU(3c×SU(2L×U(1Y×U(1X at the GUT scale and U(1X is radiatively broken at the SUSY-braking scale. In order to achieve the observed Higgs mass around 126 GeV and also to satisfy constraints on flavor- and/or CP-violating processes, we assume that the SUSY-breaking scale is O(100 TeV, so that the U(1X breaking scale is also O(100 TeV. One big issue in the SO(10 GUTs is how to realize realistic Yukawa couplings. In our model, not only 16-dimensional but also 10-dimensional matter fields are introduced to predict the observed fermion masses and mixings. The Standard-Model quarks and leptons are linear combinations of the 16- and 10-dimensional fields so that the U(1X gauge interaction may be flavor-violating. We investigate the current constraints on the flavor-violating Z′ interaction from the flavor physics and discuss prospects for future experiments.
Two-loop SUSY QCD correction to the gluino pole mass
Yamada, Youichi
2006-01-01
We calculate the pole mass of the gluino as a function of the running parameters in the lagrangian, to O(alpha_s^2) in SUSY QCD. The correction shifts the pole mass from the running mass by typically 1-2 %. This shift can be larger than the expected accuracy of the mass determination at future colliders, and should be taken into account for precision studies of the SUSY breaking parameters. The effects of other corrections are breifly commented.
The Higgs boson mass and SUSY spectra in 10D SYM theory with magnetized extra dimensions
Directory of Open Access Journals (Sweden)
Hiroyuki Abe
2014-11-01
Full Text Available We study the Higgs boson mass and the spectrum of supersymmetric (SUSY particles in the well-motivated particle physics model derived from a ten-dimensional supersymmetric Yang–Mills theory compactified on three factorizable tori with magnetic fluxes. This model was proposed in a previous work, where the flavor structures of the standard model including the realistic Yukawa hierarchies are obtained from non-hierarchical input parameters on the magnetized background. Assuming moduli- and anomaly-mediated contributions dominate the soft SUSY breaking terms, we study the precise SUSY spectra and analyze the Higgs boson mass in this mode, which are compared with the latest experimental data.
Masiero, A; Vives, O
2004-01-01
After a quarter of century of intense search for new physics beyond the Standard Model (SM), two ideas stand out to naturally cope with (i) small neutrino masses and (ii) a light higgs boson : Seesaw and SUSY. The combination of these two ideas, i.e. SUSY seesaw exhibits a potentially striking signature: a strong (or even very strong) enhancement of lepton flavour violation (LFV), which on the contrary remains unobservable in the SM seesaw. Indeed, even when supersymmetry breaking is completely flavour blind, Renormalisation Group running effects are expected to generate large lepton flavour violating entries at the weak scale. In Grand Unified theories, these effects can be felt even in hadronic physics. We explicitly show that in a class of SUSY SO(10) GUTs there exist cases where LFV and CP violation in B-physics can constitute a major road in simultaneously confirming the ideas of Seesaw and low-energy SUSY.
Low-scale SUSY breaking and the (s)goldstino physics
Antoniadis, I.
2013-01-01
For a 4D N=1 supersymmetric model with a low SUSY breaking scale (f) and general Kahler potential K(Phi^i,Phi_j^*) and superpotential W(Phi^i) we study, in an effective theory approach, the relation of the goldstino superfield to the (Ferrara-Zumino) superconformal symmetry breaking chiral superfield X. In the presence of more sources of supersymmetry breaking, we verify the conjecture that the goldstino superfield is the (infrared) limit of X for zero-momentum and Lambda->\\infty. (Lambda is the effective cut-off scale). We then study the constraint X^2=0, which in the one-field case is known to decouple a massive sgoldstino and thus provide an effective superfield description of the Akulov-Volkov action for the goldstino. In the presence of additional fields that contribute to SUSY breaking we identify conditions for which X^2=0 remains valid, in the effective theory below a large but finite sgoldstino mass. The conditions ensure that the effective expansion (in 1/Lambda) of the initial Lagrangian is not in ...
Detecting kinematic boundary surfaces in phase space: particle mass measurements in SUSY-like events
Debnath, Dipsikha; Gainer, James S.; Kilic, Can; Kim, Doojin; Matchev, Konstantin T.; Yang, Yuan-Pao
2017-06-01
We critically examine the classic endpoint method for particle mass determination, focusing on difficult corners of parameter space, where some of the measurements are not independent, while others are adversely affected by the experimental resolution. In such scenarios, mass differences can be measured relatively well, but the overall mass scale remains poorly constrained. Using the example of the standard SUSY decay chain \\tilde{q}\\to {\\tilde{χ}}_2^0\\to \\tilde{ℓ}\\to {\\tilde{χ}}_1^0 , we demonstrate that sensitivity to the remaining mass scale parameter can be recovered by measuring the two-dimensional kinematical boundary in the relevant three-dimensional phase space of invariant masses squared. We develop an algorithm for detecting this boundary, which uses the geometric properties of the Voronoi tessellation of the data, and in particular, the relative standard deviation (RSD) of the volumes of the neighbors for each Voronoi cell in the tessellation. We propose a new observable, \\overline{Σ} , which is the average RSD per unit area, calculated over the hypothesized boundary. We show that the location of the \\overline{Σ} maximum correlates very well with the true values of the new particle masses. Our approach represents the natural extension of the one-dimensional kinematic endpoint method to the relevant three dimensions of invariant mass phase space.
2016-01-01
We critically examine the classic endpoint method for particle mass determination, focusing on difficult corners of parameter space, where some of the measurements are not independent, while others are adversely affected by the experimental resolution. In such scenarios, mass differences can be measured relatively well, but the overall mass scale remains poorly constrained. Using the example of the standard SUSY decay chain $\\tilde q\\to \\tilde\\chi^0_2\\to \\tilde \\ell \\to \\tilde \\chi^0_1$, we demonstrate that sensitivity to the remaining mass scale parameter can be recovered by measuring the two-dimensional kinematical boundary in the relevant three-dimensional phase space of invariant masses squared. We develop an algorithm for detecting this boundary, which uses the geometric properties of the Voronoi tessellation of the data, and in particular, the relative standard deviation (RSD) of the volumes of the neighbors for each Voronoi cell in the tessellation. We propose a new observable, $\\bar\\Sigma$, which is ...
Detecting kinematic boundary surfaces in phase space: particle mass measurements in SUSY-like events
Debnath, Dipsikha; Kilic, Can; Kim, Doojin; Matchev, Konstantin T.; Yang, Yuan-Pao
2017-06-19
We critically examine the classic endpoint method for particle mass determination, focusing on difficult corners of parameter space, where some of the measurements are not independent, while others are adversely affected by the experimental resolution. In such scenarios, mass differences can be measured relatively well, but the overall mass scale remains poorly constrained. Using the example of the standard SUSY decay chain $\\tilde q\\to \\tilde\\chi^0_2\\to \\tilde \\ell \\to \\tilde \\chi^0_1$, we demonstrate that sensitivity to the remaining mass scale parameter can be recovered by measuring the two-dimensional kinematical boundary in the relevant three-dimensional phase space of invariant masses squared. We develop an algorithm for detecting this boundary, which uses the geometric properties of the Voronoi tessellation of the data, and in particular, the relative standard deviation (RSD) of the volumes of the neighbors for each Voronoi cell in the tessellation. We propose a new observable, $\\bar\\Sigma$, which is t...
Energy Technology Data Exchange (ETDEWEB)
Kaminska, Anna [Oxford Univ. (United Kingdom). Centre for Theoretical Physics; Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Ross, Graham G. [Oxford Univ. (United Kingdom). Centre for Theoretical Physics; Schmidt-Hoberg, Kai [European Lab. for Particle Physics (CERN), Geneva (Switzerland)
2013-08-15
For the case of the MSSM and the most general form of the NMSSM (GNMSSM) we determine the reduction in the fine tuning that follows from allowing gaugino masses to be non-degenerate at the unification scale, taking account of the LHC8 bounds on SUSY masses, the Higgs mass bound, gauge coupling unification and the requirement of an acceptable dark matter density. We show that low-fine tuned points fall in the region of gaugino mass ratios predicted by specific unified and string models. For the case of the MSSM the minimum fine tuning is still large, approximately 1:60 allowing for a 3 GeV uncertainty in the Higgs mass (1:500 for the central value), but for the GNMSSM it is below 1:20. We find that the spectrum of SUSY states corresponding to the low-fine tuned points in the GNMSSM is often compressed, weakening the LHC bounds on coloured states. The prospect for testing the remaining low-fine-tuned regions at LHC14 is discussed.
Combining high-scale inflation with low-energy SUSY
Energy Technology Data Exchange (ETDEWEB)
Antusch, Stefan [Basel Univ. (Switzerland). Dept. of Physics; Max-Planck-Institut fuer Physik, Muenchen (Germany). Werner-Heisenberg-Institut; Dutta, Koushik [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Halter, Sebastian [Max-Planck-Institut fuer Physik, Muenchen (Germany). Werner-Heisenberg-Institut
2011-12-15
We propose a general scenario for moduli stabilization where low-energy supersymmetry can be accommodated with a high scale of inflation. The key ingredient is that the stabilization of the modulus field during and after inflation is not associated with a single, common scale, but relies on two different mechanisms. We illustrate this general scenario in a simple example, where during inflation the modulus is stabilized with a large mass by a Kaehler potential coupling to the field which provides the inflationary vacuum energy via its F-term. After inflation, the modulus is stabilized, for instance, by a KKLT superpotential. (orig.)
New limits on the SUSY Higgs boson mass
Energy Technology Data Exchange (ETDEWEB)
Matchev, Konstantin T.; Pierce, Damien M.
1998-05-01
We present new upper limits on the light Higgs boson mass mh in supersymmetric models. We consider two gravity-mediated models (with and without universal scalar masses) and two gauge-mediated models (with a 5+5 or 10+10 messenger sector). We impose standard phenomenological constraints, as well as SU(5) Yukawa coupling unification. Requiring that the bottom and tau Yukawa couplings meet at the unification scale to within 15%, we find the upper limit mh<114 GeV in the universal supergravity model. This reverts to the usual upper bound of 125 GeV with a particular nonuniversality in the scalar spectrum. In the 5+5 gauge-mediated model we find mh<97 GeV for small tan beta and mh = 116 GeV for large tan beta, and in the 10+10 model we find mh<94 GeV. We discuss the implications for upcoming searches at LEP-II and the Tevatron.
Fermion Masses and Mixing in SUSY Grand Unified Gauge Models with Extended Gut Gauge Groups
Energy Technology Data Exchange (ETDEWEB)
Chou, Chih-Lung
2005-04-05
The authors discuss a class of supersymmetric (SUSY) grand unified gauge (GUT) models based on the GUT symmetry G x G or G x G x G, where G denotes the GUT group that has the Standard Model symmetry (SU(3){sub c} x SU(2){sub L} x U(1){sub Y}) embedded as a subgroup. As motivated from string theory, these models are constructed without introducing any Higgs field of rani two or higher. Thus all the Higgs fields are in the fundamental representations of the extended GUT symmetry or, when G = SO(10), in the spinorial representation. These Higgs fields, when acquiring their vacuum expectation values, would break the extended GUT symmetry down to the Standard Model symmetry. In this dissertation, they argue that the features required of unified models, such as the Higgs doublet-triplet splitting, proton stability, and the hierarchy of fermion masses and mixing angles, could have natural explanations in the framework of the extended SUSY GUTs. Furthermore, they argue that the frameworks used previously to construct SO(10) GUT models using adjoint Higgs fields can naturally arise from the SO(10) x SO(10) and SO(10) x SO(10) x SO(10) models by integrating out heavy fermions. This observation thus suggests that the traditional SUSY GUT SO(10) theories can be viewed as the low energy effective theories generated by breaking the extended GUT symmetry down to the SO(10) symmetry.
Baumgart, Matthew; Zorawski, Thomas
2014-01-01
Radiative flavor models where the hierarchies of Standard Model (SM) fermion masses and mixings are explained via loop corrections are elegant ways to solve the SM flavor puzzle. Here we build such a model in the context of Mini-Split Supersymmetry (SUSY) where both flavor and SUSY breaking occur at a scale of 1000 TeV. This model is consistent with the observed Higgs mass, unification, and WIMP dark matter. The high scale allows large flavor mixing among the sfermions, which provides part of the mechanism for radiative flavor generation. In the deep UV, all flavors are treated democratically, but at the SUSY breaking scale, the third, second, and first generation Yukawa couplings are generated at tree level, one loop, and two loops, respectively. Save for one, all the dimensionless parameters in the theory are O(1), with the exception being a modest and technically natural tuning that explains both the smallness of the bottom Yukawa coupling and the largeness of the Cabibbo angle.
Neutrino masses from SUSY: Different contributions and their ...
Indian Academy of Sciences (India)
We discuss the various sources of neutrino masses in supersymmetric standard models with explicit lepton number violation. We show that the bilinear lepton number violating soft terms in models with either bilinear or trilinear lepton number violating couplings in the superpotential, play an important role in determining the ...
Higgs mass in D-term triggered dynamical SUSY breaking
Maru, Nobuhito
2017-12-01
We discuss a new mechanism of D-term dynamical supersymmetry breaking in the context of Dirac gaugino scenario. The existence of a nontrivial solution of the gap equation for D-term is shown. It is also shown that an observed 126 GeV Higgs mass is realized by tree level D-term effects in a broad range of parameters.
Global fits of GUT-scale SUSY models with GAMBIT
Athron, Peter; Balázs, Csaba; Bringmann, Torsten; Buckley, Andy; Chrząszcz, Marcin; Conrad, Jan; Cornell, Jonathan M.; Dal, Lars A.; Edsjö, Joakim; Farmer, Ben; Jackson, Paul; Krislock, Abram; Kvellestad, Anders; Mahmoudi, Farvah; Martinez, Gregory D.; Putze, Antje; Raklev, Are; Rogan, Christopher; de Austri, Roberto Ruiz; Saavedra, Aldo; Savage, Christopher; Scott, Pat; Serra, Nicola; Weniger, Christoph; White, Martin
2017-12-01
We present the most comprehensive global fits to date of three supersymmetric models motivated by grand unification: the constrained minimal supersymmetric standard model (CMSSM), and its Non-Universal Higgs Mass generalisations NUHM1 and NUHM2. We include likelihoods from a number of direct and indirect dark matter searches, a large collection of electroweak precision and flavour observables, direct searches for supersymmetry at LEP and Runs I and II of the LHC, and constraints from Higgs observables. Our analysis improves on existing results not only in terms of the number of included observables, but also in the level of detail with which we treat them, our sampling techniques for scanning the parameter space, and our treatment of nuisance parameters. We show that stau co-annihilation is now ruled out in the CMSSM at more than 95% confidence. Stop co-annihilation turns out to be one of the most promising mechanisms for achieving an appropriate relic density of dark matter in all three models, whilst avoiding all other constraints. We find high-likelihood regions of parameter space featuring light stops and charginos, making them potentially detectable in the near future at the LHC. We also show that tonne-scale direct detection will play a largely complementary role, probing large parts of the remaining viable parameter space, including essentially all models with multi-TeV neutralinos.
Predicting the sparticle spectrum from GUTs via SUSY threshold corrections with SusyTC
Energy Technology Data Exchange (ETDEWEB)
Antusch, Stefan [Department of Physics, University of Basel,Klingelbergstr. 82, CH-4056 Basel (Switzerland); Max-Planck-Institut für Physik (Werner-Heisenberg-Institut),Föhringer Ring 6, D-80805 München (Germany); Sluka, Constantin [Department of Physics, University of Basel,Klingelbergstr. 82, CH-4056 Basel (Switzerland)
2016-07-21
Grand Unified Theories (GUTs) can feature predictions for the ratios of quark and lepton Yukawa couplings at high energy, which can be tested with the increasingly precise results for the fermion masses, given at low energies. To perform such tests, the renormalization group (RG) running has to be performed with sufficient accuracy. In supersymmetric (SUSY) theories, the one-loop threshold corrections (TC) are of particular importance and, since they affect the quark-lepton mass relations, link a given GUT flavour model to the sparticle spectrum. To accurately study such predictions, we extend and generalize various formulas in the literature which are needed for a precision analysis of SUSY flavour GUT models. We introduce the new software tool SusyTC, a major extension to the Mathematica package REAP http://dx.doi.org/10.1088/1126-6708/2005/03/024, where these formulas are implemented. SusyTC extends the functionality of REAP by a full inclusion of the (complex) MSSM SUSY sector and a careful calculation of the one-loop SUSY threshold corrections for the full down-type quark, up-type quark and charged lepton Yukawa coupling matrices in the electroweak-unbroken phase. Among other useful features, SusyTC calculates the one-loop corrected pole mass of the charged (or the CP-odd) Higgs boson as well as provides output in SLHA conventions, i.e. the necessary input for external software, e.g. for performing a two-loop Higgs mass calculation. We apply SusyTC to study the predictions for the parameters of the CMSSM (mSUGRA) SUSY scenario from the set of GUT scale Yukawa relations ((y{sub e})/(y{sub d}))=−(1/2), ((y{sub μ})/(y{sub s}))=6, and ((y{sub τ})/(y{sub b}))=−(3/2), which has been proposed recently in the context of SUSY GUT flavour models.
Testing No-Scale F- SU (5): A 125 GeV Higgs boson and SUSY at the √{ s} = 8 TeV LHC
Li, Tianjun; Maxin, James A.; Nanopoulos, Dimitri V.; Walker, Joel W.
2012-11-01
We celebrate the recent Higgs discovery announcement with our experimental colleagues at the LHC and look forward to the implications that this success will bring to bear upon the continuing search for supersymmetry (SUSY). The model framework named No-Scale F- SU (5) possesses the rather unique capacity to provide a light CP-even Higgs boson mass in the favored 124-126 GeV window while simultaneously retaining a testably light SUSY spectrum that is consistent with emerging low-statistics excesses beyond the Standard Model expectation in the ATLAS and CMS multijet data. In this Letter we review the distinctive F- SU (5) mechanism that forges the physical 125 GeV Higgs boson and make a specific assessment of the ATLAS multijet SUSY search observables that may be expected for a 15 fb-1 delivery of 8 TeV data in this model context. Based on our Monte Carlo study, we anticipate that the enticing hints of a SUSY signal observed in the 7 TeV data could be amplified in the 8 TeV results. Moreover, if the existing signal is indeed legitimate, we project that the rendered gains in significance will be sufficient to conclusively rule out an alternative attribution to statistical fluctuation at that juncture.
Antonella Del Rosso
2012-01-01
Recent information from the LHC experiments, the relatively low mass of the new boson and other data coming from experiments looking for dark matter worldwide are placing new constraints on the existence of supersymmetry (SUSY). However, there is a large community of scientists that still believes that SUSY particles are out there. Like lost keys at night, perhaps we have been looking for SUSY under the wrong lamp-posts… Can you work out this rebus? Source: Caroline Duc. So far, SUSY is “just” a theoretical physics model, which could solve problems beyond the Standard Model by accounting for dark matter and other phenomena in the Universe. However, SUSY has not been spotted so far, and might be hiding because of features different from what physicists previously expected. “Currently, there is no evidence for SUSY, but neither has any experimental data ruled it out. Many searches have focused on simplified versions of the theory but, given the recen...
Naturalness, SUSY heavy higgses and flavor constraints
CERN. Geneva
2014-01-01
I will demonstrate that supersymmetric (SUSY) higgses provide an important diagnostic for electroweak naturalness in the SUSY paradigm. I first review the naturalness problem of the Standard Model (SM) and SUSY as one of its most promising solutions. I study the masses of heavy Higgses in SUSY theories under broad assumptions, and show how they are constrained by their role in Electroweak symmetry breaking. I then show how Flavor Physics severely constrains large parts of SUSY parameter space, otherwise favored by naturalness. If SUSY Higgses are not discovered at relatively low mass during the next LHC run, this tension will further increase, disfavoring naturalness from SUSY.
Hitting sbottom in natural SUSY
Lee, Hyun Min; Trott, Michael
2012-01-01
We compare the experimental prospects of direct stop and sbottom pair production searches at the LHC. Such searches for stops are of great interest as they directly probe for states that are motivated by the SUSY solution to the hierarchy problem of the Higgs mass parameter - leading to a "Natural" SUSY spectrum. Noting that sbottom searches are less experimentally challenging and scale up in reach directly with the improvement on b-tagging algorithms, we discuss the interplay of small TeV scale custodial symmetry violation with sbottom direct pair production searches as a path to obtaining strong sub-TeV constraints on stops in a natural SUSY scenario. We argue that if a weak scale natural SUSY spectrum does not exist within the reach of LHC, then hopes for such a spectrum for large regions of parameter space should sbottom out. Conversely, the same arguments make clear that a discovery of such a spectrum is likely to proceed in a sbottom up manner.
Mamuzic, Judita; The ATLAS collaboration
2017-01-01
Supersymmetry (SUSY) is considered one of the best motivated extensions of the Standard Model. It postulates a fundamental symmetry between fermions and bosons, and introduces a set of new supersymmetric particles at the electroweak scale. It addresses the hierarchy and naturalness problem, gives a solution to the gauge coupling unification, and offers a cold dark matter candidate. Different aspects of SUSY searches, using strong, electroweak, third generation production, and R-parity violation and long lived particles are being studied at the LHC. An overview of most recent SUSY searches results using the 13 TeV ATLAS RUN2 data will be presented.
Misra, Aalok; Shukla, Pramod
2010-03-01
We consider type IIB large volume compactifications involving orientifolds of the Swiss Cheese Calabi-Yau WCP[1,1,1,6,9] with a single mobile space-time filling D3-brane and stacks of D7-branes wrapping the “big” divisor ΣB (as opposed to the “small” divisor usually done in the literature thus far) as well as supporting D7-brane fluxes. After reviewing our proposal of [1] (Misra and Shukla, 2010) for resolving a long-standing tension between large volume cosmology and phenomenology pertaining to obtaining a 10 GeV gravitino in the inflationary era and a TeV gravitino in the present era, and summarizing our results of [1] (Misra and Shukla, 2010) on soft supersymmetry breaking terms and open-string moduli masses, we discuss the one-loop RG running of the squark and slepton masses in mSUGRA-like models (using the running of the gaugino masses) to the EW scale in the large volume limit. Phenomenological constraints and some of the calculated soft SUSY parameters identify the D7-brane Wilson line moduli as the first two generations/families of squarks and sleptons and the D3-brane (restricted to the big divisor) position moduli as the two Higgses for MSSM-like models at TeV scale. We also discuss how the obtained open-string/matter moduli make it easier to impose FCNC constraints, as well as RG flow of off-diagonal squark mass(-squared) matrix elements.
Gluino reach and mass extraction at the LHC in radiatively-driven natural SUSY
Energy Technology Data Exchange (ETDEWEB)
Baer, Howard; Savoy, Michael; Sengupta, Dibyashree [University of Oklahoma, Department of Physics and Astronomy, Norman, OK (United States); Barger, Vernon [University of Wisconsin, Department of Physics, Madison, WI (United States); Gainer, James S.; Tata, Xerxes [University of Hawaii, Department of Physics and Astronomy, Honolulu, HI (United States); Huang, Peisi [University of Chicago, Enrico Fermi Institute, Chicago, IL (United States); HEP Division, Argonne National Laboratory, Argonne, IL (United States); Texas A and M University, Mitchell Institute for Fundamental Physics and Astronomy, College Station, TX (United States)
2017-07-15
Radiatively-driven natural SUSY (RNS) models enjoy electroweak naturalness at the 10% level while respecting LHC sparticle and Higgs mass constraints. Gluino and top-squark masses can range up to several TeV (with other squarks even heavier) but a set of light Higgsinos are required with mass not too far above m{sub h} ∝ 125 GeV. Within the RNS framework, gluinos dominantly decay via g → tt{sub 1}{sup *}, anti tt{sub 1} → t anti tZ{sub 1,2} or t anti bW{sub 1}{sup -} + c.c., where the decay products of the higgsino-like W{sub 1} and Z{sub 2} are very soft. Gluino pair production is, therefore, signaled by events with up to four hard b-jets and large E{sub T}. We devise a set of cuts to isolate a relatively pure gluino sample at the (high-luminosity) LHC and show that in the RNS model with very heavy squarks, the gluino signal will be accessible for m{sub g} < 2400 (2800) GeV for an integrated luminosity of 300 (3000) fb{sup -1}. We also show that the measurement of the rate of gluino events in the clean sample mentioned above allows for a determination of m{sub g} with a statistical precision of 2-5% (depending on the integrated luminosity and the gluino mass) over the range of gluino masses where a 5σ discovery is possible at the LHC. (orig.)
SUSY searches with the ATLAS detector
Bianchi, Riccardo-Maria; The ATLAS collaboration
2017-01-01
Despite the absence of experimental evidence, weak scale supersymmetry remains one of the best motivated and studied Standard Model extensions. This talk summarises recent ATLAS results for searches for supersymmetric (SUSY) particles, with focus on those obtained using proton-proton collisions at a centre of mass energy of 13 \\TeV. Strong production in both R-Parity conserving and R-Parity violating SUSY scenarios are considered. The searches involved final states including jets, missing transverse momentum, light leptons, as well as long-lived particle signatures.
SUSY searches with the ATLAS detector
Directory of Open Access Journals (Sweden)
BIANCHI Riccardo Maria
2017-01-01
Full Text Available Despite the absence of experimental evidence, weak scale supersymmetry remains one of the best motivated and studied Standard Model extensions. This talk summarises recent ATLAS results for searches for supersymmetric (SUSY particles, with focus on those obtained using proton-proton collisions at a centre of mass energy of 13 TeV. Strong production in both R-Parity conserving and R-Parity violating SUSY scenarios are considered. The searches involved final states including jets, missing transverse momentum, light leptons, as well as long-lived particle signatures.
SUSY searches with the ATLAS detector
Ventura, Andrea; The ATLAS collaboration
2016-01-01
Despite the absence of experimental evidence, weak scale supersymmetry remains one of the best motivated and studied Standard Model extensions. This talk summarises recent ATLAS results for searches for supersymmetric (SUSY) particles, with focus on those obtained using proton-proton collisions at a centre of mass energy of 13 TeV. Strong production in both R-Parity conserving and R-Parity violating SUSY scenarios are considered. The searches involved final states including jets, missing transverse momentum, light leptons, as well as long-lived particle signatures.
Interplay of LFV and slepton mass splittings at the LHC as a probe of the SUSY seesaw
Abada, A; Romao, J C; Teixeira, A M
2010-01-01
We study the impact of a type-I SUSY seesaw concerning lepton flavour violation (LFV) both at low-energies and at the LHC. The study of the di-lepton invariant mass distribution at the LHC allows to reconstruct some of the masses of the different sparticles involved in a decay chain. In particular, the combination with other observables renders feasible the reconstruction of the masses of the intermediate sleptons involved in $ \\chi_2^0\\to \\tilde \\ell \\,\\ell \\to \\ell \\,\\ell\\,\\chi_1^0$ decays. Slepton mass splittings can be either interpreted as a signal of non-universality in the SUSY soft breaking-terms (signalling a deviation from constrained scenarios as the cMSSM) or as being due to the violation of lepton flavour. In the latter case, in addition to these high-energy processes, one expects further low-energy manifestations of LFV such as radiative and three-body lepton decays. Under the assumption of a type-I seesaw as the source of neutrino masses and mixings, all these LFV observables are related. Worki...
The Reach of the Fermilab Tevatron and CERN LHC for Gaugino Mediated SUSY Breaking Models
Baer, Howard W; Krupovnickas, T; Tata, Xerxes; Baer, Howard; Belyaev, Alexander; Krupovnickas, Tadas; Tata, Xerxes
2002-01-01
In supersymmetric models with gaugino mediated SUSY breaking (inoMSB), it is assumed that SUSY breaking on a hidden brane is communicated to the visible brane via gauge superfields which propagate in the bulk. This leads to GUT models where the common gaugino mass $m_{1/2}$ is the only soft SUSY breaking term to receive contributions at tree level. To obtain a viable phenomenology, it is assumed that the gaugino mass is induced at some scale $M_c$ beyond the GUT scale, and that additional renormalization group running takes place between $M_c$ and $M_{GUT}$ as in a SUSY GUT. We assume an SU(5) SUSY GUT above the GUT scale, and compute the SUSY particle spectrum expected in models with inoMSB. We use the Monte Carlo program ISAJET to simulate signals within the inoMSB model, and compute the SUSY reach including cuts and triggers approriate to Fermilab Tevatron and CERN LHC experiments. We find no reach for SUSY by the Tevatron collider in the trilepton channel. %either with or without %identified tau leptons. ...
Reach of the Fermilab Tevatron and CERN LHC for gaugino mediated SUSY breaking models
Baer, Howard W; Krupovnickas, T; Tata, Xerxes; 10.1103/PhysRevD.65.075024
2002-01-01
In supersymmetric models with gaugino mediated SUSY breaking (gMSB), it is assumed that SUSY breaking on a hidden brane is communicated to the visible brane via gauge superfields which propagate in the bulk. This leads to GUT models where the common gaugino mass m/sub 1/2/ is the only soft SUSY breaking term to receive contributions at the tree level. To obtain a viable phenomenology, it is assumed that the gaugino mass is induced at some scale M/sub c/ beyond the GUT scale, and that additional renormalization group running takes place between M/sub c/ and M/sub GUT/ as in a SUSY GUT. We assume an SU(5) SUSY GUT above the GUT scale, and compute the SUSY particle spectrum expected in models with gMSB. We use the Monte Carlo program ISAJET to simulate signals within the gMSB model, and compute the SUSY reach including cuts and triggers appropriate to Fermilab Tevatron and CERN LHC experiments. We find no reach for SUSY by the Tevatron collider in the trilepton channel. At the CERN LHC, values of m/sub 1/2/=1000...
Cosmological problems of the string axion alleviated by high scale SUSY of m3/2≃10–100 TeV
Directory of Open Access Journals (Sweden)
Masahiro Kawasaki
2016-02-01
Full Text Available The string axion may provide the most attractive solution to the strong CP problem in QCD. However, the axion energy density easily exceeds the dark matter density in the present universe due to a large decay constant around 1016 GeV, unless the initial value of the axion field is finely tuned. We show that this problem is alleviated if and only if the SUSY particle mass scale is 10–100 TeV, since the decay of the saxion can produce a large enough amount of entropy after the QCD phase transition, not disturbing the BBN prediction. The saxion decay also produces a large number of the lightest SUSY particles (LSPs. As a consequence, R-parity needs to be violated to avoid the overproduction of the LSPs. The saxion field can be stabilized with relatively simple Kähler potentials, not inducing a too large axion dark radiation. Despite the large entropy production, the observed baryon number is explained by the Affleck–Dine mechanism. Furthermore, the constraint from isocurvature perturbations is relaxed, and the Hubble constant during inflation can be as large as several ×1010 GeV.
Energy Technology Data Exchange (ETDEWEB)
Berger, C.F.; Gainer, J.S.; Hewett, J.L.; Rizzo, T.G.
2008-12-11
We begin an exploration of the physics associated with the general CP-conserving MSSM with Minimal Flavor Violation, the pMSSM. The 19 soft SUSY breaking parameters in this scenario are chosen so as to satisfy all existing experimental and theoretical constraints assuming that the WIMP is a thermal relic, i.e., the lightest neutralino. We scan this parameter space twice using both flat and log priors for the soft SUSY breaking mass parameters and compare the results which yield similar conclusions. Detailed constraints from both LEP and the Tevatron searches play a particularly important role in obtaining our final model samples. We find that the pMSSM leads to a much broader set of predictions for the properties of the SUSY partners as well as for a number of experimental observables than those found in any of the conventional SUSY breaking scenarios such as mSUGRA. This set of models can easily lead to atypical expectations for SUSY signals at the LHC.
High scale parity invariance as a solution to the SUSY CP problem ...
Indian Academy of Sciences (India)
anism automatic in the theory. The minimal version of this theory also provides an explanation of ... cannot be rotated away by. *This talk is based on work done in collaboration with K S Babu and B Dutta. ... ¯Г. The low energy theory in this case is MSSM, but without the SUSY CP problem and with its parameters restricted ...
Xu, Da; The ATLAS collaboration
2018-01-01
Despite the absence of experimental evidence, weak scale supersymmetry remains one of the best motivated and studied Standard Model extensions. This talk gives an overview of the most recent SUSY searches in ATLAS and CMS experiments using 13 TeV ATLAS Run2 data.
Overview of SUSY results from the ATLAS experiment
Federico Brazzale Simone
2014-01-01
The search for Supersymmetric extensions of the Standard Model (SUSY) remains a hot topic in high energy phisycs in the light of the discovery of the Higgs boson with mass of 125 GeV. Supersymmetric particles can cancel out the quadratically-divergent loop corrections to the Higgs boson mass and can explain presence of Dark Matter in the Universe. Moreover, SUSY can unify the gauge couplings of the Standard Model at high energy scales. Under certain theoretical assumptions, some of the super-...
Papucci, Michele; Ruderman, Joshua T.; Weiler, Andreas
2012-09-01
The first 1 fb-1 of LHC searches have set impressive limits on new colored particles decaying to missing energy. We address the implication of these searches for naturalness in supersymmetry (SUSY). General bottom-up considerations of natural electroweak symmetry breaking show that higgsinos, stops, and the gluino should not be too far above the weak scale. The rest of the spectrum, including the squarks of the first two generations, can be heavier and beyond the current LHC reach. We have used collider simulations to determine the limits that all of the 1 fb-1 searches pose on higgsinos, stops, and the gluino. We find that stops and the left-handed sbottom are starting to be constrained and must be heavier than about 200-300 GeV when decaying to higgsinos. The gluino must be heavier than about 600-800 GeV when it decays to stops and sbottoms. While these findings point toward scenarios with a lighter third generation split from the other squarks, we do find that moderately-tuned regions remain, where the gluino is just above 1 TeV and all the squarks are degenerate and light. Among all the searches, jets plus missing energy and same-sign dileptons often provide the most powerful probes of natural SUSY. Overall, our results indicate that natural SUSY has survived the first 1 fb-1 of data. The LHC is now on the brink of exploring the most interesting region of SUSY parameter space.
SUSY with ATLAS Leptonic Signatures, Coannihilation Region
Comune, G
2004-01-01
In this work we present an initial study on how leptonic signatures can be used at ATLAS to constrain SUSY particle masses combinations for the first time in the so called "coannihilation region''. The analysis is carried out in the framework of mSUGRA constrained SUSY model using fast detector simulation and reconstruction exploiting an invariant mass endpoint technique.
Energy Technology Data Exchange (ETDEWEB)
Papucci, Michele; Ruderman, Joshua T. [Lawrence Berkeley National Laboratory, CA (United States). Theoretical Physics Group; California Univ., Berkeley, CA (United States). Dept. of Physics; Weiler, Andreas [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); European Organization for Nuclear Research, Geneva (Switzerland). Theoretical Physics Div.
2011-10-31
The first 1 fb{sup -1} of LHC searches have set impressive limits on new colored particles decaying to missing energy. We address the implication of these searches for naturalness in supersymmetry (SUSY). General bottom-up considerations of natural electroweak symmetry breaking show that higgsinos, stops, and the gluino should not be too far above the weak scale. The rest of the spectrum, including the squarks of the first two generations, can be heavier and beyond the current LHC reach. We have used collider simulations to determine the limits that all of the 1 fb{sup -1} searches pose on higgsinos, stops, and the gluino. We find that stops and the left-handed sbottom are starting to be constrained and must be heavier than about 200-300 GeV when decaying to higgsinos. The gluino must be heavier than about 600-800 GeV when it decays to stops and sbottoms. While these findings point toward scenarios with a lighter third generation split from the other squarks, we do find that moderately-tuned regions remain, where the gluino is just above 1 TeV and all the squarks are degenerate and light. Among all the searches, jets plus missing energy and same-sign dileptons often provide the most powerful probes of natural SUSY. Overall, our results indicate that natural SUSY has survived the first 1 fb{sup -1} of data. The LHC is now on the brink of exploring the most interesting region of SUSY parameter space. (orig.)
Should sparticle masses unify at the GUT scale?
Pomarol, Alex
1995-01-01
Gauge and Yukawa (for the third family) coupling unification seem to be the best predictions of the grand-unified theories (GUTs). In supersymmetric GUTs, one also expects that the sparticle masses unify at the GUT scale (for sparticles embedded in the same GUT multiplet). I show under what circumstances GUTs do not lead to sparticle mass unification. In particular, I give examples of SU(5) and SO(10) SUSY GUTs in which squarks and sleptons of a family have different tree-level masses at the unification scale. The models have interesting relations between Yukawa couplings. For example, I present an SO(10) GUT that allows for a large ratio of the top to bottom Yukawas, accounting for the large m_t /m_b. The splittings can also be induced in the Higgs soft masses and accommodate the electroweak breaking.
High scale parity invariance as a solution to the SUSY CP problem ...
Indian Academy of Sciences (India)
It is shown that if the supersymmetric Standard Model (MSSM) emerges as the low energy limit of a high scale left–right symmetric gauge structure, the number of uncontrollable CP violating phases of MSSM are drastically reduced. In particular it guarantees the vanishing of the dangerous phases that were at the root of the ...
Raising the SUSY-breaking scale in a Goldstone-Higgs model
DEFF Research Database (Denmark)
Alanne, Tommi; Rzehak, Heidi; Sannino, Francesco
2017-01-01
We show that by combining the elementary Goldstone-Higgs scenario and supersymmetry it is possible to raise the scale of supersymmetry breaking to several TeVs by relating it to the spontaneous-symmetry-breaking one. This is achieved by first enhancing the global symmetries of the super-Higgs sec...
Global fits of GUT-scale SUSY models with GAMBIT arXiv
Athron, Peter; Bringmann, Torsten; Buckley, Andy; Chrząszcz, Marcin; Conrad, Jan; Cornell, Jonathan M.; Dal, Lars A.; Edsjö, Joakim; Farmer, Ben; Jackson, Paul; Krislock, Abram; Kvellestad, Anders; Mahmoudi, Farvah; \\ Martinez, Gregory D.; Putze, Antje; Raklev, Are; Rogan, Christopher; Ruiz de Austri, Roberto; Saavedra, Aldo; Savage, Christopher; Scott, Pat; Serra, Nicola; Weniger, Christoph; White, Martin
We present the most comprehensive global fits to date of three supersymmetric models motivated by grand unification: the Constrained Minimal Supersymmetric Standard Model (CMSSM), and its Non-Universal Higgs Mass generalisations NUHM1 and NUHM2. We include likelihoods from a number of direct and indirect dark matter searches, a large collection of electroweak precision and flavour observables, direct searches for supersymmetry at LEP and Runs I and II of the LHC, and constraints from Higgs observables. Our analysis improves on existing results not only in terms of the number of included observables, but also in the level of detail with which we treat them, our sampling techniques for scanning the parameter space, and our treatment of nuisance parameters. We show that stau co-annihilation is now ruled out in the CMSSM at more than 95\\% confidence. Stop co-annihilation turns out to be one of the most promising mechanisms for achieving an appropriate relic density of dark matter in all three models, whilst avoid...
SUSY Searches in the ATLAS Experiment
Lee JR, Lawrence; The ATLAS collaboration
2014-01-01
Despite the absence of experimental evidence, weak scale supersymmetry remains one of the best motivated and studied Standard Model extensions. This talk summarises recent ATLAS results for searches for supersymmetric (SUSY) particles. Weak and strong production in both R-Parity conserving and R-Parity violating SUSY scenarios are considered. The searches involved final states including jets, missing transverse momentum, light leptons, taus or photons, as well as long-lived particle signatures.
Datta, Amitava
2017-10-01
The searches for supersymmetry at the Large Hadron Collider (LHC) have so far yielded only null results and have considerably tightened the bounds on the sparticle masses. This has generated some skepticism in the literature regarding the `naturalness of SUSY' which qualitatively requires some sparticles to be relatively light. Re-examining some of the bounds from LHC searches, it is argued with specific examples that the above skepticism is a red herring because (i) a quantitative and universally accepted definition of `naturalness' is not available and (ii) even if some conventional definitions of naturalness is accepted at their face values, the alleged tension with the apparently stringent LHC bounds wither away once the strong assumptions, by no means compelling, underlying such bounds are relaxed.
Higgs, Binos and Gluinos: Split Susy within Reach
Energy Technology Data Exchange (ETDEWEB)
Alves, Daniele S.M.; Izaguirre, Eder; /SLAC /Stanford U., Phys. Dept.; Wacker, Jay G.; /SLAC /Stanford U., ITP
2012-09-14
Recent results from the LHC for the Higgs boson with mass between 142 GeV {approx}< m{sub h{sup 0}} {approx}< 147 GeV points to PeV-scale Split Supersymmetry. This article explores the consequences of a Higgs mass in this range and possible discovery modes for Split Susy. Moderate lifetime gluinos, with decay lengths in the 25 {micro}m to 10 yr range, are its imminent smoking gun signature. The 7TeV LHC will be sensitive to the moderately lived gluinos and trilepton signatures from direct electroweakino production. Moreover, the dark matter abundance may be obtained from annihilation through an s-channel Higgs resonance, with the LSP almost purely bino and mass m{sub {chi}{sub 1}{sup 0}} {approx_equal} 70 GeV. The Higgs resonance region of Split Susy has visible signatures in dark matter direct and indirect detection and electric dipole moment experiments. If the anomalies go away, the majority of Split Susy parameter space will be excluded.
Katz, Andrey; Pokorski, Stefan; Redigolo, Diego; Ziegler, Robert
2017-01-31
We investigate the general structure of mirror symmetry breaking in the Twin Higgs scenario. We show, using the IR effective theory, that a significant gain in fine tuning can be achieved if the symmetry is broken hardly. We emphasize that weakly coupled UV completions can naturally accommodate this scenario. We analyze SUSY UV completions and present a simple Twin SUSY model with a tuning of around 10% and colored superpartners as heavy as 2 TeV. The collider signatures of general Twin SUSY models are discussed with a focus on the extended Higgs sectors.
Papucci, Michele; Weiler, Andreas
2012-01-01
The first 1/fb of LHC searches have set impressive limits on new colored particles decaying to missing energy. We address the implication of these searches for naturalness in supersymmetry (SUSY). General bottom-up considerations of natural electroweak symmetry breaking show that higgsinos, stops, and the gluino should not be too far above the weak scale. The rest of the spectrum, including the squarks of the first two generations, can be heavier and beyond the current LHC reach. We have used collider simulations to determine the limits that all of the 1/fb searches pose on higgsinos, stops, and the gluino. We find that stops and the left-handed sbottom are starting to be constrained and must be heavier than about 200-300 GeV when decaying to higgsinos. The gluino must be heavier than about 600-800 GeV when it decays to stops and sbottoms. While these findings point toward scenarios with a lighter third generation split from the other squarks, we do find that moderately-tuned regions remain, where the gluino ...
Compressed and Split Spectra in Minimal SUSY SO(10
Directory of Open Access Journals (Sweden)
Frank Franz Deppisch
2014-05-01
Full Text Available The non-observation of supersymmetric signatures in searches at the Large Hadron Collider strongly constrains minimal supersymmetric models like the CMSSM. We explore the consequences on the SUSY particle spectrum in a minimal SO(10 with large D-terms and non-universal gaugino masses at the GUT scale. This changes the sparticle spectrum in a testable way and for example can sufficiently split the coloured and non-coloured sectors. The splitting provided by use of the SO(10 D-terms can be exploited to obtain light first generation sleptons or third generation squarks, the latter corresponding to a compressed spectrum scenario.
Searches for SUSY in leptons+jets+MET final states
Hoermann, Natascha
2009-01-01
Session:Higgs and New Physics If supersymmetry would manifest itself at a low mass scale it might be found already in the early phase of the LHC operation. Generic signatures for supersymmetry in pp-collisions consist of high jet multiplicity, large missing transverse energy (MET) as well as leptons in the final state. The presence of charged leptons makes these signature more robust and therefore facilitates their application in early data-taking. This talk will review the CMS search strategy and prospects for a SUSY discovery in the single lepton and di-lepton final states.
A split SUSY model from SUSY GUT
Wang, FeiDepartment of Physics and Engineering, Zhengzhou University, Zhengzhou, 450000, P.R. China; Wang, Wenyu(Institute of Theoretical Physics, College of Applied Science, Beijing University of Technology, Beijing, 100124, P.R. China); Yang, Jin(State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing, 100190, P.R. China)
2015-01-01
We propose to split the sparticle spectrum from the hierarchy between the GUT scale and the Planck scale. A split supersymmetric model, which gives non-universal gaugino masses, is built with proper high dimensional operators in the framework of SO(10) GUT. Based on a calculation of two-loop beta functions for gauge couplings (taking into account all weak scale threshold corrections), we check the gauge coupling unification and dark matter constraints (relic density and direct detections). We...
Overview of SUSY results from the ATLAS experiment
Brazzale, Simone Federico
2014-04-01
The search for Supersymmetric extensions of the Standard Model (SUSY) remains a hot topic in high energy phisycs in the light of the discovery of the Higgs boson with mass of 125 GeV. Supersymmetric particles can cancel out the quadratically-divergent loop corrections to the Higgs boson mass and can explain presence of Dark Matter in the Universe. Moreover, SUSY can unify the gauge couplings of the Standard Model at high energy scales. Under certain theoretical assumptions, some of the super-symmetric particles are preferred to be lighter than one TeV and their discovery can thus be accessible at the LHC. The recent results from searches for Supersymmetry with the ATLAS experiment which utilized up to 21 fb-1 of proton-proton collisions at a center of mass energy of 8 TeV are presented. These searches are focused on inclusive production of squarks and gluinos, on production of third generations squarks, and on electroweak production of charginos and neutralinos. Searches for long-lived particles and R-parity violation are also summarized in the document.
Overview of SUSY results from the ATLAS experiment
Directory of Open Access Journals (Sweden)
Federico Brazzale Simone
2014-04-01
Full Text Available The search for Supersymmetric extensions of the Standard Model (SUSY remains a hot topic in high energy phisycs in the light of the discovery of the Higgs boson with mass of 125 GeV. Supersymmetric particles can cancel out the quadratically-divergent loop corrections to the Higgs boson mass and can explain presence of Dark Matter in the Universe. Moreover, SUSY can unify the gauge couplings of the Standard Model at high energy scales. Under certain theoretical assumptions, some of the super-symmetric particles are preferred to be lighter than one TeV and their discovery can thus be accessible at the LHC. The recent results from searches for Supersymmetry with the ATLAS experiment which utilized up to 21 fb−1 of proton-proton collisions at a center of mass energy of 8 TeV are presented. These searches are focused on inclusive production of squarks and gluinos, on production of third generations squarks, and on electroweak production of charginos and neutralinos. Searches for long-lived particles and R-parity violation are also summarized in the document.
Liu, Xiaohui; Mantry, Sonny; Petriello, Frank
2012-03-01
Supersymmetry has been one of the most popular candidates for physics beyond standard model (SM) for a long time. The fact that we haven't yet discover super particles in nowadays LHC data, pushes the SUSY production nearer and nearer to the LHC machine threshold. In the threshold limit, how well we understand the SM background is crucial for SUSY or other physics beyond SM search. In this talk, we will use the simplest case by considering photon plus two jets events to address the problem and we will talk about how we use the soft collinear effective theory to sum up potentially large logs related to threshold limit to improve our understanding of the SM background.
Directory of Open Access Journals (Sweden)
Marco Aurelio Díaz
2017-03-01
Full Text Available The Minimal Supersymmetric Extension of the Standard Model (MSSM is able to explain the current data from neutrino physics. Unfortunately Split Supersymmetry as low energy approximation of this theory fails to generate a solar square mass difference, including after the addition of bilinear R-Parity Violation. In this work, it is shown how one can derive an effective low energy theory from the MSSM in the spirit of Split Supersymmetry, which has the potential of explaining the neutrino phenomenology. This is achieved by going beyond leading order in the process of integrating out heavy scalars from the original theory, which results in non-renormalizable operators in the effective low energy theory. It is found that in particular a d=8 operator is crucial for the generation of the neutrino mass differences.
Díaz, Marco Aurelio; Koch, Benjamin; Rojas, Nicolás
2017-03-01
The Minimal Supersymmetric Extension of the Standard Model (MSSM) is able to explain the current data from neutrino physics. Unfortunately Split Supersymmetry as low energy approximation of this theory fails to generate a solar square mass difference, including after the addition of bilinear R-Parity Violation. In this work, it is shown how one can derive an effective low energy theory from the MSSM in the spirit of Split Supersymmetry, which has the potential of explaining the neutrino phenomenology. This is achieved by going beyond leading order in the process of integrating out heavy scalars from the original theory, which results in non-renormalizable operators in the effective low energy theory. It is found that in particular a d = 8 operator is crucial for the generation of the neutrino mass differences.
SUSY: New Perspectives and Variants
Munoz, C.
2007-01-01
Although supersymmetry (SUSY) is thirty five years old, it is still one of the most attractive theories for physics beyond the standard model. Assuming that SUSY will be discovered at the LHC, the key question is: What SUSY model do we expect to be the correct one ? After reviewing briefly the advantages and problems of SUSY, several interesting models that have been proposed in the literature will be discussed. In particular, models such as the MSSM, BRpV, NMSSM, and possible extensions. We ...
Latest news on SUSY from the ATLAS experiment
CERN. Geneva
2016-01-01
Despite the absence of experimental evidence, weak scale supersymmetry remains one of the best motivated and studied Standard Model extensions. This talk reports the latest ATLAS results for searches for supersymmetric (SUSY) particles, obtained with 13 to 18 fb-1 of 13 TeV data. Weak and strong production in both R-Parity conserving and R-Parity violating SUSY scenarios are considered. The searches involved final states including jets, missing transverse momentum, light leptons, taus or photons.
Renormalizations in softly broken SUSY gauge theories
Avdeev, L. V.; Kazakov, D. I.; Kondrashuk, I. N.
1998-01-01
The supergraph technique for calculations in supersymmetric gauge theories where supersymmetry is broken in a "soft" way (without introducing quadratic divergencies) is reviewed. By introducing an external spurion field the set of Feynman rules is formulated and explicit connections between the UV counterterms of a softly broken and rigid SUSY theories are found. It is shown that the renormalization constants of softly broken SUSY gauge theory also become external superfields depending on the spurion field. Their explicit form repeats that of the constants of a rigid theory with the redefinition of the couplings. The method allows us to reproduce all known results on the renormalization of soft couplings and masses in a softly broken theory. As an example the renormalization group functions for soft couplings and masses in the Minimal Supersymmetric Standard Model up to the three-loop level are calculated.
Renormalizations in softly broken SUSY gauge theories
Energy Technology Data Exchange (ETDEWEB)
Avdeev, L.V.; Kazakov, D.I.; Kondrashuk, I.N. [Joint Inst. for Nuclear Research, Dubna (Russian Federation). Lab. of Theoretical Physics
1998-01-19
The supergraph technique for calculations in supersymmetric gauge theories where supersymmetry is broken in a ``soft`` way (without introducing quadratic divergencies) is reviewed. By introducing an external spurion field the set of Feynman rules is formulated and explicit connections between the UV counterterms of a softly broken and rigid SUSY theories are found. It is shown that the renormalization constants of softly broken SUSY gauge theory also become external superfields depending on the spurion field. Their explicit form repeats that of the constants of a rigid theory with the redefinition of the couplings. The method allows us to reproduce all known results on the renormalization of soft couplings and masses in a softly broken theory. As an example the renormalization group functions for soft couplings and masses in the minimal supersymmetric standard model up to the three-loop level are calculated. (orig.). 16 refs.
Energy Technology Data Exchange (ETDEWEB)
Jaffre, Michel; /Orsay, LAL
2012-02-01
The Tevatron collider has provided the CDF and D0 collaborations with large datasets as input to a rich program of physics beyond the standard model. The results presented here are from recent searches for SUSY particles using up to 6 fb{sup -1} of data. Supersymmetry (SUSY) [1] is one of the most favored theories beyond the standard model (SM). Each SM particle is associated to a sparticle whose spin differs by one half unit. This boson-fermion symmetry is obviously broken by some unknown mechanism. Even in the minimal supersymmetric extension of the SM (MSSM [2]) there are a large number of free parameters. To reduce this number one can introduce new assumptions on the symmetry breaking mechanism and build models based on minimal supergravity (as mSUGRA [3]) or on a Gauge Mediated Symmetry Breaking scenario (GMSB [4]), a top-down approach. Another possibility is to make phenomenological assumptions to reduce the number of particles accessible to the experiment while keeping some of the properties of the above models (bottom-up approach). As the sparticles are heavy, to produce them one has to make collisions at the highest center of mass energy. The Tevatron was the best place for discovery until the start of LHC. In the near term, Tevatron experiments and their large datasets remain competitive in areas like production of third generation squarks and of non-coloured sparticles. I will report on recent results from the CDF and D0 collaborations, assuming R-parity is conserved, i.e the sparticles are produced in pairs, and the lightest of them (LSP) is stable, neutral, weakly interacting, and detected as missing transverse energy, E{sub T}.
Highlights from SUSY searches with ATLAS
Mitsou, V A
2014-01-01
Supersymmetry (SUSY) is one of the most relevant scenarios of new physics searched by the ATLAS experiment at the CERN Large Hadron Collider. In this write-up the principal search strategies employed by ATLAS are outlined and the most recent results for analyses targeting SUSY discovery are discussed. A wide range of signatures is covered motivated by various theoretical scenarios and topologies: strong production, third-generation fermions, long-lived particles and R-parity violation, among others. The results are based on up to ~5/fb of data recorded during 2010 - 2011 at sqrt(s) = 7 TeV centre-of-mass energy by the ATLAS experiment at the LHC.
The SSM with Suppressed SUSY Charge
Directory of Open Access Journals (Sweden)
John A. Dixon
2016-10-01
Full Text Available The concept of Suppressed SUSY Charge, introduced in a recent Letter, is used here to assemble a new version of the SSM. This new SSM has no need for Squarks or Sleptons. It does not need spontaneous breaking of SUSY, so that the cosmological constant problem does not arise (at least at tree level. It mimics the usual non-supersymmetric Standard Model very well, and the absence of large flavour changing neutral currents is natural. There is no need for a hidden sector, or a messenger sector, or explicit ‘soft’ breaking of SUSY. Spontaneous Gauge Symmetry Breaking from SU(3×SU(2×U(1 to SU(3×U(1 in the model assembled here implies the existence of two new very heavy Higgs Bosons with mass 13.4 TeV, slightly smaller than the energy of the LHC at 14 TeV. There is also a curious set of Gauginos and Higgsinos which have exactly the same masses as the Higgs and Gauge Bosons. These do not couple to the Quarks and Leptons, except through the Higgs and Gauge Bosons. As it stands, this model probably gives rise to too many W+ decays to be consistent with experiment. The Feynman loop expansion of this theory also needs further examination.
Hilltop supernatural inflation and SUSY unified models
Energy Technology Data Exchange (ETDEWEB)
Kohri, Kazunori [Cosmophysics Group, Theory Center, IPNS KEK, and The Graduate University for Advanced Studies (Sokendai), 1-1 Oho, Tsukuba, 305-0801 (Japan); Lim, C.S. [Department of Mathematics, Tokyo Woman' s Christian University, Tokyo, 167-8585 (Japan); Lin, Chia-Min [Department of Physics, Chuo University, Bunkyo-ku, Tokyo, 112 (Japan); Mimura, Yukihiro, E-mail: kohri@post.kek.jp, E-mail: lim@lab.twcu.ac.jp, E-mail: lin@chuo-u.ac.jp, E-mail: mimura@hep1.phys.ntu.edu.tw [Department of Physics, National Taiwan University, Taipei, 10617 Taiwan (China)
2014-01-01
In this paper, we consider high scale (100TeV) supersymmetry (SUSY) breaking and realize the idea of hilltop supernatural inflation in concrete particle physics models based on flipped-SU(5)and Pati-Salam models in the framework of supersymmetric grand unified theories (SUSY GUTs). The inflaton can be a flat direction including right-handed sneutrino and the waterfall field is a GUT Higgs. The spectral index is n{sub s} = 0.96 which fits very well with recent data by PLANCK satellite. There is no both thermal and non-thermal gravitino problems. Non-thermal leptogenesis can be resulted from the decay of right-handed sneutrino which plays (part of) the role of inflaton.
Hilltop supernatural inflation and SUSY unified models
Kohri, Kazunori; Lim, C. S.; Lin, Chia-Min; Mimura, Yukihiro
2014-01-01
In this paper, we consider high scale (100TeV) supersymmetry (SUSY) breaking and realize the idea of hilltop supernatural inflation in concrete particle physics models based on flipped-SU(5)and Pati-Salam models in the framework of supersymmetric grand unified theories (SUSY GUTs). The inflaton can be a flat direction including right-handed sneutrino and the waterfall field is a GUT Higgs. The spectral index is ns = 0.96 which fits very well with recent data by PLANCK satellite. There is no both thermal and non-thermal gravitino problems. Non-thermal leptogenesis can be resulted from the decay of right-handed sneutrino which plays (part of) the role of inflaton.
Lepton Flavor Violation in SUSY-SO(10) with Predictive Yukawa Texture
Gomez, Mario E.; Goldberg, Haim
1995-01-01
We analyze the scalar lepton mass matrices in a supersymmetric SO(10) grand unified model with soft SUSY breaking terms generated at Planck scale and a Georgi-Jarslkog Yukawa texture at GUT scale induced by higher dimensional operators. This model predicts lepton flavor violation. The predictive features of the Georgi-Jarlskog texture are used to estimate branching ratios for the radiative decays $e_{a} \\rightarrow e_{b}+\\gamma,$ and we find rates that could provide an experimental test for t...
On the doublet/triplet splitting and intermediate mass scales in locally supersymmetric SO(10)
Pulido, João
1985-01-01
In the light of the doublet/triplet splitting, the possibilities for an intermediate mass scale in locally supersymmetric SO(10) are analysed. It is found that the subgroup SU(4)c × SU(2)L × SU(2)R and more generally left-right symmetric models are unlikely to survive as intermediate symmetries since they imply too large values of the weak mixing angle. An alternative model using the subgroup SU(3)c × U(1)L × U(1)R is discussed. Requirements from global SUSY preservation impose an extra constraint and predictions for the grand unification and the intermediate masses are obtained at MX ~ 6 × 1015 GeV and MI ~ 1012 GeV. Address after March 1984: Centro de Fisica da Materia Condensada, Av. Prof. Gama Pinto, 2, 1699 Lisbon Codex, Portugal.
Susi astus rektori kohalt tagasi / Sigrid Laev
Laev, Sigrid
2003-01-01
Concordia rektor Mart Susi ja prorektor Mari-Ann Susi astusid kooli juhtimisest tagasi ja kuulutasid välja Concordia Varahalduse OÜ pankroti. Concordia töötajate loodud ühing hakkas looma uut õppeasutust
ATLAS diboson excess from low scale supersymmetry breaking
Energy Technology Data Exchange (ETDEWEB)
Petersson, Christoffer [Department of Fundamental Physics, Chalmers University of Technology,412 96 Göteborg (Sweden); Physique Théorique et Mathématique, Université Libre de Bruxelles,C.P. 231, 1050 Brussels (Belgium); International Solvay Institutes,1050 Brussels (Belgium); Torre, Riccardo [Dipartimento di Fisica e Astronomia, Università di Padova and INFN Sezione di Padova,Via Marzolo 8, I-35131 Padova (Italy)
2016-01-18
We provide an interpretation of the recent ATLAS diboson excess in terms of a class of supersymmetric models in which the scale of supersymmetry (SUSY) breaking is in the few TeV range. The particle responsible for the excess is the scalar superpartner of the Goldstone fermion associated with SUSY breaking, the sgoldstino. This scalar couples strongly to the Standard Model vector bosons and weakly to the fermions, with all coupling strengths determined by ratios of soft SUSY breaking parameters over the SUSY breaking scale. Explaining the ATLAS excess selects particular relations and ranges for the gaugino masses, while imposing no constraints on the other superpartner masses. Moreover, this signal hypothesis predicts a rate in the Zγ final state that is expected to be observable at the LHC Run II already with a few fb{sup −1} of integrated luminosity.
Phenomenology of the minimal $ SO (10) $ SUSY model
Indian Academy of Sciences (India)
In this talk I define what I call the minimal S O ( 10 ) SUSY model. I then discuss the phenomenological consequences of this theory, vis-a-vis gauge and Yukawa coupling unification, Higgs and super-particle masses, the anomalous magnetic moment of the muon, the decay B s → + − and dark matter.
Leptogenesis scenarios for natural SUSY with mixed axion-higgsino dark matter
Energy Technology Data Exchange (ETDEWEB)
Bae, Kyu Jung [Department of Physics and Astronomy, University of Oklahoma,Norman, OK 73019 (United States); Department of Physics, University of Tokyo,Bunkyo-ku, Tokyo 113-0033 (Japan); Baer, Howard; Serce, Hasan; Zhang, Yi-Fan [Department of Physics and Astronomy, University of Oklahoma,Norman, OK 73019 (United States)
2016-01-07
Supersymmetric models with radiatively-driven electroweak naturalness require light higgsinos of mass ∼100–300 GeV. Naturalness in the QCD sector is invoked via the Peccei-Quinn (PQ) axion leading to mixed axion-higgsino dark matter. The SUSY DFSZ axion model provides a solution to the SUSY μ problem and the Little Hierarchy μ≪m{sub 3/2} may emerge as a consequence of a mismatch between PQ and hidden sector mass scales. The traditional gravitino problem is now augmented by the axino and saxion problems, since these latter particles can also contribute to overproduction of WIMPs or dark radiation, or violation of BBN constraints. We compute regions of the T{sub R} vs. m{sub 3/2} plane allowed by BBN, dark matter and dark radiation constraints for various PQ scale choices f{sub a}. These regions are compared to the values needed for thermal leptogenesis, non-thermal leptogenesis, oscillating sneutrino leptogenesis and Affleck-Dine leptogenesis. The latter three are allowed in wide regions of parameter space for PQ scale f{sub a}∼10{sup 10}–10{sup 12} GeV which is also favored by naturalness: f{sub a}∼√(μM{sub P}/λ{sub μ})∼10{sup 10}–10{sup 12} GeV. These f{sub a} values correspond to axion masses somewhat above the projected ADMX search regions.
The flavor and CP problems in SUSY
Masiero, A
2004-01-01
Although direct searches of supersymmetry (SUSY) constitute the only way we have to clearly verify the existence of a low-energy SUSY extension of the standard model, yet, in particular in our pre-LHC era, it is of utmost importance to study any possible signal where SUSY manifests itself indirectly in discrepancies with the SM expectations in rare processes. In this talk we'll consider a wide range of flavor changing neutral current and/or CP violating phenomena where, indeed, SUSY contributions are comparable to the SM ones. Such analysis provides stringent constraints on different SUSY model parameter spaces and, at the same time, it individuates possible windows for SUSY signals in spite of all the existing constraints. Our attention will focus in particular on the CP violating processes which are the most sensitive place for SUSY effects in the vast class of rare phenomena of the SM.
Post LHC7 SUSY benchmark points for ILC physics
Energy Technology Data Exchange (ETDEWEB)
Baer, Howard [Oklahoma Univ., Norman, OK (United States); List, Jenny [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2012-05-15
We re-evaluate prospects for supersymmetry at the proposed International Linear e{sup +}e{sup -} Collider (ILC) in light of the first year of serious data taking at LHC with {radical}(s)=7 TeV and {proportional_to}5 fb{sup -1} of pp collisions (LHC7). Strong new limits from LHC SUSY searches, along with a hint of a Higgs boson signal around m{sub h}{proportional_to}125 GeV, suggest a paradigm shift from previously popular models to ones with new and compelling signatures. We present a variety of new ILC benchmark models, including: natural SUSY, hidden SUSY, NUHM2 with low m{sub A}, non-universal gaugino mass (NUGM) model, pMSSM, Kallosh-Linde model, Bruemmer-Buchmueller model, normal scalar mass hierarchy (NMH) plus one surviving case from mSUGRA/CMSSM in the far focus point region. While all these models at present elude the latest LHC limits, they do offer intriguing case study possibilities for ILC operating at {radical}(s){proportional_to}0.25-1 TeV, and present a view of some of the diverse SUSY phenomena which might be expected at both LHC and ILC in the post LHC7 era.
Low-Energy Predictions of SUSY GUT’S: the Minimal Model Versus the Finite Model
Kazakov, D. I.; Kondrashuk, I. N.
We consider the low-energy predictions for sin2 θW and τproton of SUSY GUT’s along the lines of Ref. 1. Special attention is paid to the dependence on the mass spectrum of superpartners and possible heavy inhabitants of the Great desert. The minimal and finite SUSY SU(5) models with light and heavy t squark and additional higgsino are considered. It is shown that modern precise LEP data are naturally reproduced within the finite SUSY SU(5) GUT with both light and heavy t squark and light higgsino with a reasonable SU(5) splitting.
Using Experimental Data To Test And Improve Susy Theories
Wang, T
2004-01-01
There are several pieces of evidence that our world is described by a supersymmetric extension of the Standard Model. In this thesis, I assume this is the case and study how to use experimental data to test and improve supersymmetric standard models. Several experimental signatures and their implications are covered in this thesis: the result of the branching ratio of b → sγ is used to put constraints on SUSY models; the measured time-dependent CP asymmetry in the B → &phis;KS process is used to test unification scale models; the excess of positrons from cosmic rays helps us to test the property of the Lightest Supersymmetric Particle and the Cold Dark Matter production mechanisms; the LEP higgs search results are used to classify SUSY models; SUSY signatures at the Tevatron are used to distinguish different unification scale models; by considering the μ problem, SUSY theories are improved. Due to the large unknown parameter space, all of the above inputs should be used ...
Search for compressed SUSY scenarios with the ATLAS detector
Maurer, Julien; The ATLAS collaboration
2017-01-01
Scenarios where multiple SUSY states are nearly degenerate in mass produce soft decay products, and they represent an experimental challenge for ATLAS. This talk presents recent results of analyses explicitly targeting such “compressed” scenarios with a variety of experimental techniques. All results make use of proton-proton collisions collected at a centre of mass of 13 TeV with the ATLAS detector.
Search for compressed SUSY scenarios with the ATLAS detector
Maurer, Julien; The ATLAS collaboration
2017-01-01
Scenarios where multiple SUSY states are nearly degenerate in mass produce soft decay products, and they represent an experimental challenge for ATLAS. This contribution presented recent results of analyses explicitly targeting such ``compressed'' scenarios with a variety of experimental techniques. All results made use of proton-proton collisions collected at a centre-of-mass energy of 13 TeV with the ATLAS detector at the LHC.
DarkSUSY: Computing Supersymmetric Dark Matter Properties Numerically
Energy Technology Data Exchange (ETDEWEB)
Gondolo, P.
2004-07-16
The question of the nature of the dark matter in the Universe remains one of the most outstanding unsolved problems in basic science. One of the best motivated particle physics candidates is the lightest supersymmetric particle, assumed to be the lightest neutralino - a linear combination of the supersymmetric partners of the photon, the Z boson and neutral scalar Higgs particles. Here we describe DarkSUSY, a publicly-available advanced numerical package for neutralino dark matter calculations. In DarkSUSY one can compute the neutralino density in the Universe today using precision methods which include resonances, pair production thresholds and coannihilations. Masses and mixings of supersymmetric particles can be computed within DarkSUSY or with the help of external programs such as FeynHiggs, ISASUGRA and SUSPECT. Accelerator bounds can be checked to identify viable dark matter candidates. DarkSUSY also computes a large variety of astrophysical signals from neutralino dark matter, such as direct detection in low-background counting experiments and indirect detection through antiprotons, antideuterons, gamma-rays and positrons from the Galactic halo or high-energy neutrinos from the center of the Earth or of the Sun. Here we describe the physics behind the package. A detailed manual will be provided with the computer package.
Post LHC8 SUSY benchmark points for ILC physics
Energy Technology Data Exchange (ETDEWEB)
Baer, Howard [Oklahoma Univ., Norman, OK (United States); List, Jenny [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2013-07-15
We re-evaluate prospects for supersymmetry at the proposed International Linear e{sup +}e{sup -} Collider (ILC) in light of the first two years of serious data taking at LHC: LHC7 with {proportional_to}5 fb{sup -1} of pp collisions at {radical}(s)=7 TeV and LHC8 with {proportional_to}20 fb{sup -1} at {radical}(s)=8 TeV. Strong new limits from LHC8 SUSY searches, along with the discovery of a Higgs boson with m{sub h}{approx_equal}125 GeV, suggest a paradigm shift from previously popular models to ones with new and compelling signatures. After a review of the current status of supersymmetry, we present a variety of new ILC benchmark models, including: natural SUSY, radiatively-driven natural SUSY (RNS), NUHM2 with low m{sub A}, a focus point case from mSUGRA/CMSSM, non-universal gaugino mass (NUGM) model, {tau}-coannihilation, Kallosh-Linde/spread SUSY model, mixed gauge-gravity mediation, normal scalar mass hierarchy (NMH), and one example with the recently discovered Higgs boson being the heavy CP-even state H. While all these models at present elude the latest LHC8 limits, they do offer intriguing case study possibilities for ILC operating at {radical}(s){approx_equal} 0.25-1 TeV. The benchmark points also present a view of the widely diverse SUSY phenomena which might still be expected in the post LHC8 era at both LHC and ILC.
Indian Academy of Sciences (India)
Amitava Datta
2017-10-05
Oct 5, 2017 ... First, the upper bound on an sparti- cle mass obtained from the naturalness arguments is basically an order of magnitude estimate. For exam- ple, if an sparticle has a mass ≈3 TeV, say, it is likely to be beyond the kinematic reach of the LHC but it hardly makes the above cancellations seriously unnatural.
Status of SUSY searches at the LHC (including SUSY Higgs bosons)
Marshall, Zach; The ATLAS collaboration
2017-01-01
We review the status of SUSY searches at the LHC, including searches for SUSY Higgs Bosons. ATLAS and CMS have both prepared a large number of search results on the full 2015+2016 dataset, pushing the bounds on SUSY further than ever before.
Low-scale gaugino mass unification
Energy Technology Data Exchange (ETDEWEB)
Endo, M. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Yoshioka, K. [Kyoto Univ. (Japan). Dept. of Physics
2008-04-15
We present a new class of scenarios with the gaugino mass unification at the weak scale. The unification conditions are generally classified and then, the mirage gauge mediation is explored where gaugino masses are naturally unified and scalar partners of quarks and leptons have no mass hierarchy. The low-energy mass spectrum is governed by the mirage of unified gauge coupling which is seen by low-energy observers. We also study several explicit models for dynamically realizing the TeV-scale unification. (orig.)
Supersymmetric grand unified theories from quarks to strings via SUSY GUTs
Raby, Stuart
2017-01-01
These course-tested lectures provide a technical introduction to Supersymmetric Grand Unified Theories (SUSY GUTs), as well as a personal view on the topic by one of the pioneers in the field. While the Standard Model of Particle Physics is incredibly successful in describing the known universe it is, nevertheless, an incomplete theory with many free parameters and open issues. An elegant solution to all of these quandaries is the proposed theory of SUSY GUTs. In a GUT, quarks and leptons are related in a simple way by the unifying symmetry and their electric charges are quantized, further the relative strength of the strong, weak and electromagnetic forces are predicted. SUSY GUTs additionally provide a framework for understanding particle masses and offer candidates for dark matter. Finally, with the extension of SUSY GUTs to string theory, a quantum-mechanically consistent unification of the four known forces (including gravity) is obtained. The book is organized in three sections: the first section contai...
Indian Academy of Sciences (India)
2017-10-05
Oct 5, 2017 ... Keywords. Supersymmetry; Large Hadron Collider; naturalness; dark matter. Abstract. The searches for supersymmetry at the Large Hadron Collider (LHC) have so far yielded only null results and have considerably tightened the bounds on the sparticle masses. This has generated some skepticism in the ...
Scaling analysis of meteorite shower mass distributions
DEFF Research Database (Denmark)
Oddershede, Lene; Meibom, A.; Bohr, Jakob
1998-01-01
Meteorite showers are the remains of extraterrestrial objects which are captivated by the gravitational field of the Earth. We have analyzed the mass distribution of fragments from 16 meteorite showers for scaling. The distributions exhibit distinct scaling behavior over several orders of magnetude...
Energy Technology Data Exchange (ETDEWEB)
Chen Muchun, E-mail: muchunc@uci.edu [Department of Physics and Astronomy, University of California, Irvine, CA 92697-4575 (United States); Huang Jinrui, E-mail: jinruih@uci.edu [Department of Physics and Astronomy, University of California, Irvine, CA 92697-4575 (United States)
2011-11-30
We extend the Minimum Supersymmetry Standard Model by a non-anomalous family (NAF) U(1){sub NAF}{sup Prime} gauge symmetry. All gauge anomalies are cancelled with no additional exotics other than the three right-handed neutrinos. The FI D-terms associated with the U(1){sub NAF}{sup Prime} symmetry lead to additional positive contributions to slepton squared masses. In a RG invariant way, this thus solves the tachyonic slepton mass problem in Anomaly Mediated Supersymmetry Breaking. In addition, the U(1){sub NAF}{sup Prime} symmetry naturally gives rise to the fermion mass hierarchy and mixing angles, and determines the mass spectrum of the sparticles.
Mart Susi tegevust uurib keskkriminaalpolitsei / Sigrid Laev
Laev, Sigrid
2003-01-01
Keskkriminaalpolitsei algatas Concordia ülikooliga seotu uurimiseks kaks kriminaalasja, millest üks käsitleb endise rektori Mart Susi ja endise prorektori Mari-Ann Susi võimalikku ametiseisundi kuritarvitamist, teise sisuks on Concordia varade ilmne varjamine
Cornering natural SUSY at LHC Run II and beyond
Buckley, Matthew R.; Feld, David; Macaluso, Sebastian; Monteux, Angelo; Shih, David
2017-08-01
We derive the latest constraints on various simplified models of natural SUSY with light higgsinos, stops and gluinos, using a detailed and comprehensive reinterpretation of the most recent 13 TeV ATLAS and CMS searches with ˜ 15 fb-1 of data. We discuss the implications of these constraints for fine-tuning of the electroweak scale. While the most "vanilla" version of SUSY (the MSSM with R-parity and flavor-degenerate sfermions) with 10% fine-tuning is ruled out by the current constraints, models with decoupled valence squarks or reduced missing energy can still be fully natural. However, in all of these models, the mediation scale must be extremely low ( motivated by this work.
SLAM, a Mathematica interface for SUSY spectrum generators
Energy Technology Data Exchange (ETDEWEB)
Marquard, Peter [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Zerf, Nikolai [Alberta Univ., Edmonton, AB (Canada). Dept. of Physics
2013-09-15
We present and publish a Mathematica package, which can be used to automatically obtain any numerical MSSM input parameter from SUSY spectrum generators, which follow the SLHA standard, like SPheno, SOFTSUSY or Suspect. The package enables a very comfortable way of numerical evaluations within the MSSM using Mathematica. It implements easy to use predefined high scale and low scale scenarios like mSUGRA or m{sub h}{sup max} and if needed enables the user to directly specify the input required by the spectrum generators. In addition it supports an automatic saving and loading of SUSY spectra to and from a SQL data base, avoiding the rerun of a spectrum generator for a known spectrum.
Darkenergy andneutrino model in SUSY
Takahashi, Ryo
2007-01-01
We consider a Mass Varying Neutrinos (MaVaNs) model in supersymmetric theory. The model includes effects of supersymmetry breaking transmitted by the gravitational interaction from the hidden sector, in which supersymmetry was broken, to the dark energy sector. Then evolutions of the neutrino mass and the equation of state parameter of the dark energy are presented in the model. It is remarked that only the mass of a sterile neutrino is variable in the case of the vanishing mixing between the left-handed and a sterile neutrino on cosmological time scale. The finite mixing makes the mass of the left-handed neutrino variable.
Higgs pair production with SUSY QCD correction: revisited under current experimental constraints
Energy Technology Data Exchange (ETDEWEB)
Han, Chengcheng [State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Academia Sinica,Beijing 100190 (China); Ji, Xuanting [State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Academia Sinica,Beijing 100190 (China); Institute of Theoretical Physics, College of Applied Science, Beijing University of Technology,Beijing 100124 (China); Wu, Lei [ARC Centre of Excellence for Particle Physics at the Terascale, School of Physics,University of Sydney,Sydney, NSW 2006 (Australia); Wu, Peiwen; Yang, Jin Min [State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Academia Sinica,Beijing 100190 (China)
2014-04-01
We consider the current experimental constraints on the parameter space of the MSSM and NMSSM. Then in the allowed parameter space we examine the Higgs pair production at the 14 TeV LHC via bb-macron→hh (h is the 125 GeV SM-like Higg boson) with one-loop SUSY QCD correction and compare it with the production via gg→hh. We obtain the following observations: (i) For the MSSM the production rate of bb-macron→hh can reach 50 fb and thus can be competitive with gg→hh, while for the NMSSM bb-macron→hh has a much smaller rate than gg→hh due to the suppression of the hbb-macron coupling; (ii) The SUSY-QCD correction to bb-macron→hh is sizable, which can reach 45% for the MSSM and 15% for the NMSSM within the 1σ region of the Higgs data; (iii) In the heavy SUSY limit (all soft mass parameters become heavy), the SUSY effects decouple rather slowly from the Higgs pair production (especially the gg→hh process), which, for M{sub SUSY}=5 TeV and m{sub A}<1 TeV, can enhance the production rate by a factor of 1.5 and 1.3 for the MSSM and NMSSM, respectively. So, the Higgs pair production may be helpful for unraveling the effects of heavy SUSY.
Rencontres de Moriond QCD 2012: Searches for Dark Matter, SUSY and other exotic particles
CERN Bulletin
2012-01-01
The fact that SUSY and other new physics signals do not seem to hide in “obvious” places is bringing a healthy excitement to Moriond. Yesterday’s presentations confirmed that, with the 2012 LHC data, experiments will concentrate on searches for exotic particles that might decay into yet unexplored modes. In the meantime, they are setting unprecedented boundaries to regions where new particles (not just SUSY) could exist. The limits of what particle accelerators can bring to enlighten the mystery of Dark Matter were also presented and discussed. Each bar on the picture represents a decay channel that the ATLAS Collaboration (top) and the CMS Collaborations (bottom) have analysed. The value indicated on the scale (or on the relevant bar) defines the maximum mass that the particle in that search cannot have. Not knowing what kind of new physics we should really expect, and given the fact that it does not seem to be hiding in any of the obvious places, e...
Lepton Flavor Violation in Predictive SUSY-GUT Models
Energy Technology Data Exchange (ETDEWEB)
Albright, Carl H.; /Northern Illinois U. /Fermilab; Chen, Mu-Chun; /UC, Irvine
2008-02-01
There have been many theoretical models constructed which aim to explain the neutrino masses and mixing patterns. While many of the models will be eliminated once more accurate determinations of the mixing parameters, especially sin{sup 2} 2{theta}{sub 13}, are obtained, charged lepton flavor violation (LFV) experiments are able to differentiate even further among the models. In this paper, they investigate various rare LFV processes, such as {ell}{sub i} {yields} {ell}{sub j} + {gamma} and {mu} - e conversion, in five predictive SUSY SO(10) models and their allowed soft SUSY breaking parameter space in the constrained minimal SUSY standard model (CMSSM). Utilizing the WMAP dark matter constraints, they obtain lower bounds on the branching ratios of these rare processes and find that at least three of the five models they consider give rise to predictions for {mu} {yields} e + {gamma} that will be tested by the MEG collaboration at PSI. in addition, the next generation {mu} - e conversion experiment has sensitivity to the predictions of all five models, making it an even more robust way to test these models. While generic studies have emphasized the dependence of the branching ratios of these rare processes on the reactor neutrino angle, {theta}{sub 13}, and the mass of the heaviest right-handed neutrino, M{sub 3}, they find very massive M{sub 3} is more significant than large {theta}{sub 13} in leading to branching ratios near to the present upper limits.
Search for SUSY in the AMSB scenario with the DELPHI detector
Abdallah, J.; Adam, W.; Adzic, P.; Albrecht, T.; Alderweireld, T.; Alemany-Fernandez, R.; Allmendinger, T.; Allport, P.P.; Amaldi, U.; Amapane, N.; Amato, S.; Anashkin, E.; Andreazza, A.; Andringa, S.; Anjos, N.; Antilogus, P.; Apel, W.D.; Arnoud, Y.; Ask, S.; Asman, B.; Augustin, J.E.; Augustinus, A.; Baillon, P.; Ballestrero, A.; Bambade, P.; Barbier, R.; Bardin, D.; Barker, G.; Baroncelli, A.; Battaglia, M.; Baubillier, M.; Becks, K.H.; Begalli, M.; Behrmann, A.; Ben-Haim, E.; Benekos, N.; Benvenuti, A.; Berat, C.; Berggren, M.; Berntzon, L.; Bertrand, D.; Besancon, M.; Besson, N.; Bloch, D.; Blom, M.; Bluj, M.; Bonesini, M.; Boonekamp, M.; Booth, P.S.L.; Borisov, G.; Botner, O.; Bouquet, B.; Bowcock, T.J.V.; Boyko, I.; Bracko, M.; Brenner, R.; Brodet, E.; Bruckman, P.; Brunet, J.M.; Bugge, L.; Buschmann, P.; Calvi, M.; Camporesi, T.; Canale, V.; Carena, F.; Castro, Nuno Filipe; Cavallo, F.; Chapkin, M.; Charpentier, Ph.; Checchia, P.; Chierici, R.; Chliapnikov, P.; Chudoba, J.; Chung, S.U.; Cieslik, K.; Collins, P.; Contri, R.; Cosme, G.; Cossutti, F.; Costa, M.J.; Crennell, D.; Cuevas, J.; D'Hondt, J.; Dalmau, J.; da Silva, T.; Da Silva, W.; Della Ricca, G.; De Angelis, A.; De Boer, W.; De Clercq, C.; De Lotto, B.; De Maria, N.; De Min, A.; de Paula, L.; Di Ciaccio, L.; Di Simone, A.; Doroba, K.; Drees, J.; Dris, M.; Eigen, G.; Ekelof, T.; Ellert, M.; Elsing, M.; Espirito Santo, M.C.; Fanourakis, G.; Fassouliotis, D.; Feindt, M.; Fernandez, J.; Ferrer, A.; Ferro, F.; Flagmeyer, U.; Foeth, H.; Fokitis, E.; Fulda-Quenzer, F.; Fuster, J.; Gandelman, M.; Garcia, C.; Gavillet, Ph.; Gazis, Evangelos; Gokieli, R.; Golob, B.; Gomez-Ceballos, G.; Goncalves, P.; Graziani, E.; Grosdidier, G.; Grzelak, K.; Guy, J.; Haag, C.; Hallgren, A.; Hamacher, K.; Hamilton, K.; Haug, S.; Hauler, F.; Hedberg, V.; Hennecke, M.; Herr, H.; Hoffman, J.; Holmgren, S.O.; Holt, P.J.; Houlden, M.A.; Hultqvist, K.; Jackson, John Neil; Jarlskog, G.; Jarry, P.; Jeans, D.; Johansson, Erik Karl; Johansson, P.D.; Jonsson, P.; Joram, C.; Jungermann, L.; Kapusta, Frederic; Katsanevas, S.; Katsoufis, E.; Kernel, G.; Kersevan, B.P.; Kerzel, U.; Kiiskinen, A.; King, B.T.; Kjaer, N.J.; Kluit, P.; Kokkinias, P.; Kourkoumelis, C.; Kouznetsov, O.; Krumstein, Z.; Kucharczyk, M.; Lamsa, J.; Leder, G.; Ledroit, Fabienne; Leinonen, L.; Leitner, R.; Lemonne, J.; Lepeltier, V.; Lesiak, T.; Liebig, W.; Liko, D.; Lipniacka, A.; Lopes, J.H.; Lopez, J.M.; Loukas, D.; Lutz, P.; Lyons, L.; MacNaughton, J.; Malek, A.; Maltezos, S.; Mandl, F.; Marco, J.; Marco, R.; Marechal, B.; Margoni, M.; Marin, J.C.; Mariotti, C.; Markou, A.; Martinez-Rivero, C.; Masik, J.; Mastroyiannopoulos, N.; Matorras, F.; Matteuzzi, C.; Mazzucato, F.; Mazzucato, M.; McNulty, R.; Meroni, C.; Migliore, E.; Mitaroff, W.; Mjoernmark, U.; Moa, T.; Moch, M.; Monig, Klaus; Monge, R.; Montenegro, J.; Moraes, D.; Moreno, S.; Morettini, P.; Mueller, U.; Muenich, K.; Mulders, M.; Mundim, L.; Murray, W.; Muryn, B.; Myatt, G.; Myklebust, T.; Nassiakou, M.; Navarria, F.; Nawrocki, K.; Nicolaidou, R.; Nikolenko, M.; Oblakowska-Mucha, A.; Obraztsov, V.; Olshevski, A.; Onofre, A.; Orava, R.; Osterberg, K.; Ouraou, A.; Oyanguren, A.; Paganoni, M.; Paiano, S.; Palacios, J.P.; Palka, H.; Papadopoulou, Th.D.; Pape, L.; Parkes, C.; Parodi, F.; Parzefall, U.; Passeri, A.; Passon, O.; Peralta, L.; Perepelitsa, V.; Perrotta, A.; Petrolini, A.; Piedra, J.; Pieri, L.; Pierre, F.; Pimenta, M.; Piotto, E.; Podobnik, T.; Poireau, V.; Pol, M.E.; Polok, G.; Poropat, P.; Pozdniakov, V.; Pukhaeva, N.; Pullia, A.; Rames, J.; Ramler, L.; Read, Alexander L.; Rebecchi, P.; Rehn, J.; Reid, D.; Reinhardt, R.; Renton, P.; Richard, F.; Ridky, J.; Rivero, M.; Rodriguez, D.; Romero, A.; Ronchese, P.; Roudeau, P.; Rovelli, T.; Ruhlmann-Kleider, V.; Ryabtchikov, D.; Sadovsky, A.; Salmi, L.; Salt, J.; Savoy-Navarro, A.; Schwickerath, U.; Segar, A.; Sekulin, R.; Siebel, M.; Sisakian, A.; Smadja, G.; Smirnova, O.; Sokolov, A.; Sopczak, A.; Sosnowski, R.; Spassov, T.; Stanitzki, M.; Stocchi, A.; Strauss, J.; Stugu, B.; Szczekowski, M.; Szeptycka, M.; Szumlak, T.; Tabarelli, T.; Taffard, A.C.; Tegenfeldt, F.; Timmermans, Jan; Tkatchev, L.; Tobin, M.; Todorovova, S.; Tome, B.; Tonazzo, A.; Tortosa, P.; Travnicek, P.; Treille, D.; Tristram, G.; Trochimczuk, M.; Troncon, C.; Turluer, M.L.; Tyapkin, I.A.; Tyapkin, P.; Tzamarias, S.; Uvarov, V.; Valenti, G.; Van Dam, Piet; Van Eldik, J.; Van Lysebetten, A.; van Remortel, N.; Van Vulpen, I.; Vegni, G.; Veloso, F.; Venus, W.; Verdier, P.; Verzi, V.; Vilanova, D.; Vitale, L.; Vrba, V.; Wahlen, H.; Washbrook, A.J.; Weiser, C.; Wicke, D.; Wickens, J.; Wilkinson, G.; Winter, M.; Witek, M.; Yushchenko, O.; Zalewska, A.; Zalewski, P.; Zavrtanik, D.; Zhuravlov, V.; Zimine, N.I.; Zintchenko, A.; Zupan, M.
2004-01-01
The DELPHI experiment at the LEP e+e- collider collected almost 700 pb^-1 at centre-of-mass energies above the Z0 mass pole and up to 208 GeV. Those data were used to search for SUSY in the Anomaly Mediated SUSY Breaking (AMSB) scenario with a flavour independent common sfermion mass parameter. The searches covered several possible signatures experimentally accessible at LEP, with either the neutralino, the sneutrino or the stau being the Lightest Supersymmetric Particle (LSP). They included: the search for nearly mass-degenerate chargino and neutralino, which is a typical feature of AMSB; the search for Standard-Model-like or invisibly decaying Higgs boson; the search for stable staus; the search for cascade decays of SUSY particles resulting in the LSP and a low multiplicity final state containing neutrinos. No evidence of a signal was found, and thus constraints were set in the space of the parameters of the model.
SLAM, a Mathematica interface for SUSY spectrum generators
Marquard, Peter; Zerf, Nikolai
2014-03-01
We present and publish a Mathematica package, which can be used to automatically obtain any numerical MSSM input parameter from SUSY spectrum generators, which follow the SLHA standard, like SPheno, SOFTSUSY, SuSeFLAV or Suspect. The package enables a very comfortable way of numerical evaluations within the MSSM using Mathematica. It implements easy to use predefined high scale and low scale scenarios like mSUGRA or mhmax and if needed enables the user to directly specify the input required by the spectrum generators. In addition it supports an automatic saving and loading of SUSY spectra to and from a SQL data base, avoiding the rerun of a spectrum generator for a known spectrum. Catalogue identifier: AERX_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AERX_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 4387 No. of bytes in distributed program, including test data, etc.: 37748 Distribution format: tar.gz Programming language: Mathematica. Computer: Any computer where Mathematica version 6 or higher is running providing bash and sed. Operating system: Linux. Classification: 11.1. External routines: A SUSY spectrum generator such as SPheno, SOFTSUSY, SuSeFLAV or SUSPECT Nature of problem: Interfacing published spectrum generators for automated creation, saving and loading of SUSY particle spectra. Solution method: SLAM automatically writes/reads SLHA spectrum generator input/output and is able to save/load generated data in/from a data base. Restrictions: No general restrictions, specific restrictions are given in the manuscript. Running time: A single spectrum calculation takes much less than one second on a modern PC.
Tornambe, Peter; The ATLAS collaboration
2017-01-01
Supersymmetry (SUSY) is one of the most studied theories to extend the Standard Model (SM) beyond the electroweak scale. If R-parity is conserved, SUSY particles are produced in pairs and the lightest supersymmetric particle (LSP), which is typically the lightest neutrino $\\tilde{\\chi}_1^0$, is stable. In many models the LSP can be a suitable candidate for dark matter. This poster presents a search for supersymmetric phenomena in final states with two leptons (electrons or muons) of the same electric charge or three leptons, jets and missing transverse energy. While the same-sign or three leptons signature is present in many SUSY scenarios, SM processes leading to such events have very small cross-sections. Therefore, this analysis benefits from a small SM background in the signal regions leading to a good sensitivity especially in SUSY scenarios with compressed mass spectra or in which the R-parity is not conserved. Except from the prompt production of same-sign lepton pairs or three leptons, the main source...
Low-energy predictions of SUSY GUT's; The minimal model versus the finite model
Energy Technology Data Exchange (ETDEWEB)
Kazakov, D.I.; Kondrashuk, I.N. (Lab. of Theoretical Physics, Joint Inst. for Nuclear Research, Dubna (SU))
1992-06-30
This paper considers the low-energy predictions for sin{sup 2}{theta}{sub w} and {tau}{sub proton} of SUSY GUT's. Special attention is paid to the dependence on the mass spectrum of superpartners and possible heavy inhabitants of the Great desert. The minimal and finite SUSY SU(5) models with light and heavy t squark and additional higgsino are considered. It i shown that modern precise LEP data are naturally reproduced within the finite SUSY SU(5) GUT with both light and heavy t squark and light higgsino with a reasonable SU(5) splitting.
Precision natural SUSY at CEPC, FCC-ee, and ILC
Energy Technology Data Exchange (ETDEWEB)
Fan, JiJi [Department of Physics, Syracuse University,Syracuse, NY, 13210 (United States); Reece, Matthew [Department of Physics, Harvard University,Cambridge, MA 02138 (United States); Wang, Lian-Tao [Enrico Fermi Institute and Kavli Institute for Cosmological Physics, University of Chicago,Chicago, IL 60637 (United States)
2015-08-31
Testing the idea of naturalness is and will continue to be one of the most important goals of high energy physics experiments. It will play a central role in the physics program of future colliders. In this paper, we present projections of the reach of natural SUSY at future lepton colliders: CEPC, FCC-ee and ILC. We focus on the observables which give the strongest reach, the electroweak precision observables (for left-handed stops), and Higgs to gluon and photon decay rates (for both left- and right-handed stops). There is a “blind spot” when the stop mixing parameter X{sub t} is approximately equal to the average stop mass. We argue that in natural scenarios, bounds on the heavy Higgs bosons from tree-level mixing effects that modify the hbb̄ coupling together with bounds from b→sγ play a complementary role in probing the blind spot region. For specific natural SUSY scenarios such as folded SUSY in which the top partners do not carry Standard Model color charges, electroweak precision observables could be the most sensitive probe. In all the scenarios discussed in this paper, the combined set of precision measurements will probe down to a few percent in fine-tuning.
SUSY decays of Higgs particles
Djouadi, Abdelhak; Kalinowski, Jan; Zerwas, Peter M
1996-01-01
Among the possible decay modes of Higgs particles into supersymmetric states, neutralino and chargino decays play a prominent rôle. The experimental opportunities of observing such decay modes at LEP2 and at future $\\ee$ linear colliders are analyzed within the frame of the Minimal Supersymmetric extension of the Standard Model. For heavy Higgs particles, the chargino/neutralino decay modes can be very important, while only a small window is open for the lightest CP--even Higgs particle. If charginos/neutralinos are found at LEP2, such decay modes can be searched for in a small area of the parameter space, and invisible decays may reduce the exclusion limits of the lightest CP-even Higgs particle slightly; if charginos/neutralinos are not found at LEP2 in direct searches, the Higgs search will not be affected by the SUSY particle sector.
Conciliating SUSY with the Z-peaked excess
Directory of Open Access Journals (Sweden)
Mitsou Vasiliki A.
2016-01-01
Full Text Available The ATLAS experiment observed an excess at the 3σ level in the channel of Z boson, jets and high missing transverse momentum in the full 2012 dataset at 8 TeV while searching for SUSY. The question arises whether the abundance and the kinematical features of this excess are compatible with the yet unconstrained supersymmetric realm, respecting at the same time the measured Higgs boson properties and dark matter density. By trying to explain this signal with SUSY we find that only relatively light gluinos together with a heavy neutralino NLSP decaying predominantly to a Z boson plus a light gravitino could reproduce the excess. We construct an explicit general gauge mediation model able to match the observed signal. More sophisticated models could also reproduce the signal, as long as it features light gluinos, or heavy particles with a strong production cross section, producing at least one Z boson in its decay chain. The implications of our findings for the Run II at LHC with the scaling on the Z peak, as well as for the direct search of gluinos and other SUSY particles, are also discussed.
Inclusive SUSY searches at the LHC
Sekmen, Sezen
2014-01-01
I summarize the status of the inclusive SUSY searches conducted by the ATLAS and CMS experiments using the 20 fb-1 of 8 TeV LHC data in the all inclusive, 0 lepton, >=1 lepton and >=2 lepton final states. Current searches show that data are consistent with the SM. The impact of this consistency was explored on a rich variety of SUSY scenarios and simplified models, examples of which I present here.
Energy Technology Data Exchange (ETDEWEB)
Bruemmer, Felix [SISSA/ISAS, Trieste (Italy); Kraml, Sabine; Kulkarni, Suchita; Smith, Christopher [Universite Grenoble-Alpes, CNRS/IN2P3, Laboratoire de Physique Subatomique et de Cosmologie, Grenoble Cedex (France)
2014-09-15
An inverted mass hierarchy in the squark sector, as in so-called ''natural supersymmetry'', requires non-universal boundary conditions at the mediation scale of supersymmetry breaking. We propose a formalism to define such boundary conditions in a basis-independent manner and apply it to generic scenarios where the third-generation squarks are light, while the first two-generation squarks are heavy and near-degenerate. We show that not only is our formalism particularly well suited to study such hierarchical squark mass patterns, but in addition the resulting soft terms at the TeV scale are manifestly compatible with the principle of minimal flavour violation, and thus automatically obey constraints from flavour physics. (orig.)
Signatures of High-Scale Supersymmetry at the LHC
CERN. Geneva; Spiropulu, Maria; Treille, D
2004-01-01
I will discuss the experimental signatures at the LHC of a novel paradigm-shift away from naturalness, suggested by the cosmological constant problem and the multitude of vacua in string theory. In the new paradigm supersymmetry can be broken near the unification scale, and the only light superparticles are the gauginos and higgsinos, which account for the successful unification of gauge couplings. This framework removes all the phenomenological difficulties of standard SUSY. The mass of the Higgs is in the range 120-160 GeV. Measuring the couplings of the Higgs to the gauginos and higgsinos precicely tests for high-scale SUSY. The gluino is strikingly long lived, and a measurement of its lifetime can determine the SUSY breaking scale. Signatures at the LHC detectors include out-of-time energy depositions, displaced vertices, and intermittent tracks.
Search for Gauge-Mediated SUSY Breaking Topologies at $\\sqrt{s}\\sim{189}$ GeV
Barate, R; Ghez, P; Goy, C; Jézéquel, S; Lees, J P; Martin, F; Merle, E; Minard, M N; Pietrzyk, B; Alemany, R; Bravo, S; Casado, M P; Chmeissani, M; Crespo, J M; Fernández, E; Fernández-Bosman, M; Garrido, L; Graugès-Pous, E; Juste, A; Martínez, M; Merino, G; Miquel, R; Mir, L M; Morawitz, P; Pacheco, A; Riu, I; Ruiz, H; Colaleo, A; Creanza, D; De Palma, M; Iaselli, Giuseppe; Maggi, G; Maggi, M; Nuzzo, S; Ranieri, A; Raso, G; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Tricomi, A; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Abbaneo, D; Boix, G; Buchmüller, O L; Cattaneo, M; Cerutti, F; Ciulli, V; Davies, G; Dissertori, G; Drevermann, H; Forty, Roger W; Frank, M; Gianotti, F; Greening, T C; Halley, A W; Hansen, J B; Harvey, J; Janot, P; Jost, B; Kado, M; Leroy, O; Maley, P; Mato, P; Minten, Adolf G; Moutoussi, A; Ranjard, F; Rolandi, Luigi; Schlatter, W D; Schmitt, M; Schneider, O; Spagnolo, P; Tejessy, W; Teubert, F; Tournefier, E; Valassi, Andrea; Wright, A E; Ajaltouni, Ziad J; Badaud, F; Chazelle, G; Deschamps, O; Dessagne, S; Falvard, A; Ferdi, C; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Pascolo, J M; Perret, P; Podlyski, F; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Rensch, B; Wäänänen, A; Daskalakis, G; Kyriakis, A; Markou, C; Simopoulou, Errietta; Vayaki, Anna; Blondel, A; Brient, J C; Machefert, F P; Rougé, A; Swynghedauw, M; Tanaka, R; Videau, H L; Focardi, E; Parrini, G; Zachariadou, K; Corden, M; Georgiopoulos, C H; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Chiarella, V; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Passalacqua, L; Pepé-Altarelli, M; Chalmers, M; Kennedy, J; Lynch, J G; Negus, P; O'Shea, V; Räven, B; Smith, D; Teixeira-Dias, P; Thompson, A S; Ward, J J; Cavanaugh, R J; Dhamotharan, S; Geweniger, C; Hanke, P; Hepp, V; Kluge, E E; Leibenguth, G; Putzer, A; Tittel, K; Werner, S; Wunsch, M; Beuselinck, R; Binnie, David M; Cameron, W; Dornan, Peter J; Girone, M; Goodsir, S M; Marinelli, N; Martin, E B; Nash, J; Nowell, J; Przysiezniak, H; Sciabà, A; Sedgbeer, J K; Thompson, J C; Thomson, E; Williams, M D; Ghete, V M; Girtler, P; Kneringer, E; Kuhn, D; Rudolph, G; Bowdery, C K; Buck, P G; Ellis, G; Finch, A J; Foster, F; Hughes, G; Jones, R W L; Robertson, N A; Smizanska, M; Williams, M I; Giehl, I; Hölldorfer, F; Jakobs, K; Kleinknecht, K; Kröcker, M; Müller, A S; Nürnberger, H A; Quast, G; Renk, B; Rohne, E; Sander, H G; Schmeling, S; Wachsmuth, H W; Zeitnitz, C; Ziegler, T; Bonissent, A; Carr, J; Coyle, P; Ealet, A; Fouchez, D; Tilquin, A; Aleppo, M; Antonelli, M; Gilardoni, S S; Ragusa, F; Büscher, V; Dietl, H; Ganis, G; Hüttmann, K; Lütjens, G; Mannert, C; Männer, W; Moser, H G; Schael, S; Settles, Ronald; Seywerd, H C J; Stenzel, H; Wiedenmann, W; Wolf, G; Azzurri, P; Boucrot, J; Callot, O; Chen, S; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Jacholkowska, A; Lefrançois, J; Serin, L; Veillet, J J; Videau, I; De Vivie de Régie, J B; Zerwas, D; Bagliesi, G; Boccali, T; Bozzi, C; Calderini, G; Dell'Orso, R; Ferrante, I; Giassi, A; Gregorio, A; Ligabue, F; Marrocchesi, P S; Messineo, A; Palla, Fabrizio; Rizzo, G; Sanguinetti, G; Sguazzoni, G; Tenchini, Roberto; Venturi, A; Verdini, P G; Blair, G A; Coles, J; Cowan, G D; Green, M G; Hutchcroft, D E; Jones, L T; Medcalf, T; Strong, J A; Botterill, David R; Clifft, R W; Edgecock, T R; Norton, P R; Tomalin, I R; Bloch-Devaux, B; Colas, P; Fabbro, B; Faïf, G; Lançon, E; Lemaire, M C; Locci, E; Pérez, P; Rander, J; Renardy, J F; Rosowsky, A; Seager, P; Trabelsi, A; Tuchming, B; Vallage, B; Black, S N; Dann, J H; Loomis, C; Kim, H Y; Konstantinidis, N P; Litke, A M; McNeil, M A; Taylor, G; Booth, C N; Cartwright, S L; Combley, F; Hodgson, P N; Lehto, M H; Thompson, L F; Affholderbach, K; Böhrer, A; Brandt, S; Grupen, Claus; Hess, J; Misiejuk, A; Prange, G; Sieler, U; Borean, C; Giannini, G; Gobbo, B; Pütz, J; Rothberg, J E; Wasserbaech, S R; Williams, R W; Armstrong, S R; Elmer, P; Ferguson, D P S; Gao, Y; González, S; Hayes, O J; Hu, H; Jin, S; Kile, J; McNamara, P A; Nielsen, J; Orejudos, W; Pan, Y B; Saadi, Y; Scott, I J; Walsh, J; Von Wimmersperg-Töller, J H; Wu Sau Lan; Wu, X; Zobernig, G
2001-01-01
Searches for topologies characteristic of Gauge Mediated SUSY Breaking models (GMSB) are performed by analysing 173.6 pb^-1 of data collected at Ecm = 188.6~GeV with the ALEPH detector.These topologies include acoplanar photons, non-pointing single photon, acoplanar leptons, large impact parameter leptons, detached slepton decay vertices, heavy stable charged sleptons and four leptons plus missing energy final states.No evidence for these new phenomena is observed and limits on production cross sections and sparticle masses are derived. A scan of a minimal GMSB parameter space is performed and model dependent lower limits of about 45 GeV/c^2 on the next-to-lightest supersymmetric particle (NLSP) mass and of about 9 TeV on the mass scale parameter Lambda are derived, independently of the NLSP lifetime.
Improved determination of the Higgs mass in the MSSM with heavy superpartners
Energy Technology Data Exchange (ETDEWEB)
Bagnaschi, Emanuele [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Pardo Vega, Javier [Abdus Salam International Centre for Theoretical Physics, Trieste (Italy); SISSA International School for Advanced Studies, Trieste (Italy); INFN, Trieste (Italy); Slavich, Pietro [UPMC Univ. Paris 06 Sorbonne Univs., Paris (France). LPTHE; CNRS, Paris (France). LPTHE
2017-03-15
We present several advances in the effective field theory calculation of the Higgs mass in MSSM scenarios with heavy superparticles. In particular, we compute the dominant two-loop threshold corrections to the quartic Higgs coupling for generic values of the relevant SUSY-breaking parameters, including all contributions controlled by the strong gauge coupling and by the third-family Yukawa couplings. We also study the effects of a representative subset of dimension-six operators in the effective theory valid below the SUSY scale. Our results will allow for an improved determination of the Higgs mass and of the associated theoretical uncertainty.
Improved determination of the Higgs mass in the MSSM with heavy superpartners
Energy Technology Data Exchange (ETDEWEB)
Bagnaschi, Emanuele [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Vega, Javier Pardo [Abdus Salam International Centre for Theoretical Physics, Trieste (Italy); SISSA International School for Advanced Studies, Trieste (Italy); INFN Trieste, Trieste (Italy); Slavich, Pietro [LPTHE, UPMC Univ. Paris 06, Sorbonne Universites, Paris (France); LPTHE, CNRS, Paris (France)
2017-05-15
We present several advances in the effective field theory calculation of the Higgs mass in MSSM scenarios with heavy superparticles. In particular, we compute the dominant two-loop threshold corrections to the quartic Higgs coupling for generic values of the relevant SUSY-breaking parameters, including all contributions controlled by the strong gauge coupling and by the third-family Yukawa couplings. We also study the effects of a representative subset of dimension-six operators in the effective theory valid below the SUSY scale. Our results will allow for an improved determination of the Higgs mass and of the associated theoretical uncertainty. (orig.)
Strategy for early SUSY searches at ATLAS
Yamamoto, S
2007-01-01
The CERN Large Hadron Collider (LHC) is scheduled to commence operation in 2008 and inclusive searches for supersymmetry (SUSY) will be one of our primary tasks in the first days of LHC operation. It is certain that the final state of âﾜmultijets + missing transverse energyâ will provide a superior performance in SUSY searches. As yet, well-considered strategies for the understanding of instrumental effects of detectors and the realistic estimations of the Standard Model (SM) backgrounds would not be clear: they are urgent issues for the coming data. We describe the strategy for early SUSY searches at the ATLAS experiment using the fist data corresponding to the integrated luminosity up to 1fbâ1, which comprises many progresses in the data-driven technique for the SM background estimations.
Strategy for early SUSY searches at ATLAS
Yamamoto, Shimpei
2008-01-01
The CERN Large Hadron Collider (LHC) is scheduled to commence operation in 2008 and inclusive searches for supersymmetry (SUSY) will be one of our primary tasks in the first days of LHC operation. It is certain that the final state of multijets plus missing transverse energy will provide a superior performance in SUSY searches. As yet, well-considered strategies for the understanding of instrumental effects of detectors and the realistic estimations of the Standard Model (SM) backgrounds would not be clear: they are urgent issues for the coming data. We describe the strategy for early SUSY searches at the ATLAS experiment using the fist data corresponding to the integrated luminosity up to 1fb^-1, which comprises many progresses in the data-driven technique for the SM background estimations.
Strategy for early SUSY searches at ATLAS
Yamamoto, S
2007-01-01
The CERN Large Hadron Collider (LHC) is scheduled to commence operation in 2008 and inclusive searches for supersymmetry (SUSY) will be one of our primary tasks in the first days of LHC operation. It is certain that the final state of multijets plus missing transverse energy will provide a superior performance in SUSY searches. As yet, well-considered strategies for the understanding of instrumental effects of detectors and the realistic estimations of the Standard Model (SM) backgrounds would not be clear: they are urgent issues for the coming data. We describe the strategy for early SUSY searches at the ATLAS experiment using the fist data corresponding to the integrated luminosity up to 1fb^-1, which includes many progresses in the data-driven technique for the SM background estimations.
SUSY searches at LHC and Dark Matter
Barberio, E; The ATLAS collaboration
2009-01-01
Supersymmetric models with R-parity conservation provide an excellent can- didate for Dark Matter, the Lightest Supersymmetric Particle, which will be searched for with the ATLAS detector at the Large Hadron Collider (LHC). Based on recent simulation studies, we present the discovery potential for Su- persymmetry (SUSY) with the ﬁrst few fb−1 of ATLAS data, as well as studies of the techniques used to reconstruct decays of SUSY particles at the LHC. We further discuss how such measurements can be used to constrain the underly- ing Supersymmetric model and hence to extract information about the nature of Dark Matter.
Coupled Boltzmann computation of mixed axion neutralino dark matter in the SUSY DFSZ axion model
Energy Technology Data Exchange (ETDEWEB)
Bae, Kyu Jung; Baer, Howard; Serce, Hasan [Department of Physics and Astronomy, University of Oklahoma, 440 West Brooks, Norman, OK 73019 (United States); Lessa, Andre, E-mail: bae@nhn.ou.edu, E-mail: baer@nhn.ou.edu, E-mail: lessa@fma.if.usp.br, E-mail: serce@ou.edu [Instituto de Física, Universidade de São Paulo, São Paulo – SP (Brazil)
2014-10-01
The supersymmetrized DFSZ axion model is highly motivated not only because it offers solutions to both the gauge hierarchy and strong CP problems, but also because it provides a solution to the SUSY μ-problem which naturally allows for a Little Hierarchy. We compute the expected mixed axion-neutralino dark matter abundance for the SUSY DFSZ axion model in two benchmark cases—a natural SUSY model with a standard neutralino underabundance (SUA) and an mSUGRA/CMSSM model with a standard overabundance (SOA). Our computation implements coupled Boltzmann equations which track the radiation density along with neutralino, axion, axion CO (produced via coherent oscillations), saxion, saxion CO, axino and gravitino densities. In the SUSY DFSZ model, axions, axinos and saxions go through the process of freeze-in—in contrast to freeze-out or out-of-equilibrium production as in the SUSY KSVZ model—resulting in thermal yields which are largely independent of the re-heat temperature. We find the SUA case with suppressed saxion-axion couplings (ξ=0) only admits solutions for PQ breaking scale f{sub a}∼< 6× 10{sup 12} GeV where the bulk of parameter space tends to be axion-dominated. For SUA with allowed saxion-axion couplings (ξ =1), then f{sub a} values up to ∼ 10{sup 14} GeV are allowed. For the SOA case, almost all of SUSY DFSZ parameter space is disallowed by a combination of overproduction of dark matter, overproduction of dark radiation or violation of BBN constraints. An exception occurs at very large f{sub a}∼ 10{sup 15}–10{sup 16} GeV where large entropy dilution from CO-produced saxions leads to allowed models.
Kepribadian Dan Komunikasi Susi Pudjiastuti Dalam Membentuk Personal Branding
Directory of Open Access Journals (Sweden)
Stevani
2017-07-01
Full Text Available The life story of Susi Pudjiastuti is admired by many people for her hard work, until becoming successful by having so much company in the field of aviation and fisheries. Susi Pudjiastuti is also well known to the public for his work in the ministry. Good performance makes Susi Pudjiastuti popular among Jokowi's working cabinet. Currently, the Brand Name in humans is personal branding which is the trend of the formation of self-image and the creation of good perception from others to us. This research will discuss about personality, communication and personal branding Susi Pudjiastuti with qualitative research method. Good personality makes Susi Pudjiastuti has the ability to communicate well and liked by the community. Personality and communication can form a personal branding Susi Pudjiastuti a natural. By exposing the personality and communication of Susi Pudjiastuti in forming personal branding, then people will realize the importance of personality and Communication in forming a natural personal branding. Kisah hidup Susi Pudjiastuti banyak dikagumi oleh banyak orang atas kerja kerasnya hingga menjadi sukses dengan memiliki banyak perusahaan di bidang penerbangan dan perikanan. Susi Pudjiastuti juga dikenal baik oleh masyarakat akan kinerjanya dalam bekerja di kementerian. Kinerja yang baik menjadikan Susi Pudjiastuti popular diantara kabinet kerja Jokowi. Saat ini, Sebutan merek pada manusia adalah personal branding yang merupakan trend dari pembentukan pencitraan diri dan penciptaan persepsi yang baik dari orang lain kepada kita. Penelitian ini akan membahas mengenai kepribadian, komunikasi serta personal branding Susi Pudjiastuti dengan metode penelitian kualitatif. Kepribadian yang baik menjadikan Susi Pudjiastuti memiliki kemampuan berkomunikasi dengan baik dan disenangi oleh masyarakat. Kepribadian dan komunikasi tersebut dapat membentuk personal branding Susi Pudjiastuti yang alami. Dengan memaparkan kepribadian dan komunikasi Susi
Energy Technology Data Exchange (ETDEWEB)
Arganda, E.; Penaranda, S. [Universidad de Zaragoza, Departamento de Fisica Teorica, Facultad de Ciencias, Zaragoza (Spain); Guasch, J. [Universitat de Barcelona, Departament de Fisica Fonamental, Barcelona, Catalonia (Spain); Universitat de Barcelona, Institut de Ciencies del Cosmos (ICC), Barcelona, Catalonia (Spain); Hollik, W. [Max-Planck-Institut fuer Physik, Muenchen (Germany)
2016-05-15
It is still an open question whether the new scalar particle discovered at the LHC with a mass of 125 GeV is the SM Higgs boson or belongs to models of new physics with an extended Higgs sector, as the MSSM or 2HDM. The ratio of branching fractions R = BR(H → b anti b)/BR(H → τ{sup +}τ{sup -}) of Higgs-boson decays is a powerful tool in distinguishing the MSSM Higgs sector from the SM or non-supersymmetric 2HDM. This ratio receives large renormalization-scheme independent radiative corrections in supersymmetric models at large tan β, which are insensitive to the SUSY mass scale and absent in the SM or 2HDM. Making use of the current LHC data and the upcoming new results on Higgs couplings to be reported by ATLAS and CMS collaborations and in a future linear collider, we develop a detailed and updated study of this ratio R which improves previous analyses and sets the level of accuracy needed to discriminate between models. (orig.)
Susi lubab Concordiale investorit / Sigrid Laev
Laev, Sigrid
2003-01-01
Mart Susi teatas Concordia ülikoolile, et tal on kaks võimalikku investorit, kes on huvitatud kooli tegevuses osalemisest. Üks neist on Läti kõrgem ärikool Turiba, teine võimalik investor on Ameerika päritolu
Concordia soovib Susi lahkumist / Sigrid Laev
Laev, Sigrid
2003-01-01
Concordia eraülikooli töötajad andsid 5. märtsil pärast ametiühingu koosolekut rektor Mart Susile üle ametliku palve tagasi astuda. Plaanid rektori umbusaldamiseks algasid nädala eest, kui selgus M. Susi tegevus kooli ja oma isiklike varade ühendamisel
Energy Technology Data Exchange (ETDEWEB)
Ellwanger, Ulrich [Laboratoire de Physique Theorique, Universite de Paris XI, F-91405 Orsay Cedex (France); Hugonie, Cyril [Laboratoire Physique Theorique et Astroparticules, Universite de Montpellier II, F-34095 Montpellier (France)
2006-12-15
NMSPEC is a Fortran code that computes the sparticle and Higgs masses, as well as Higgs decay widths and couplings in the NMSSM, with soft susy breaking terms specified at M{sub GUT}. Exceptions are the soft singlet mass m{sub s}{sup 2} and the singlet self coupling {kappa} that are both determined in terms of the other parameters through the minimization equations of the Higgs potential. We present a first analysis of the NMSSM parameter space with universal susy breaking terms at M{sub GUT} except for m{sub s} and A{sub {kappa}} that passes present experimental constraints on sparticle and Higgs masses. We discuss in some detail a region in parameter space where a SM-like Higgs boson decays dominantly into two CP odd singlet-like Higgs states. (authors)
The ATLAS discovery reach for SUSY models with early data
Dietrich, Janet
2010-01-01
The search for physics beyond the Standard Model (BSM) is one of the most important goals for the general purpose detector ATLAS at the Large Hadron Collider at CERN. We review some of the current strategies to search for generic SUSY models with R-parity conservation in channels with jets, leptons and missing transverse energy for an integrated luminosity of L = 200 pb^-1 at a centre-of-mass energy s = $10TeV. Only a selection of the results is presented with a focus on the discovery potential for inclusive searches. The discovery reach for a centre-of-mass energy of s = 7TeV and an integrated luminosity of L = 1 fb^-1 is expected to be very similar to the one discussed in this note.
Muon g - 2 through a flavor structure on soft SUSY terms
Energy Technology Data Exchange (ETDEWEB)
Flores-Baez, F.V. [Universidad Autonoma de Nuevo Leon, UANL Ciudad Universitaria, FCFM, San Nicolas de los Garza, Nuevo Leon (Mexico); Gomez Bock, M. [Universidad de las Americas Puebla, UDLAP, Ex-Hacienda Sta. Catarina Martir, DAFM, Cholula, Puebla (Mexico); Mondragon, M. [Universidad Nacional Autonoma de Mexico, Instituto de Fisica, Apdo. Postal 20-364, Mexico, D.F. (Mexico)
2016-10-15
In this work we analyze the possibility to explain the muon anomalous magnetic moment discrepancy within theory and experiment through lepton-flavor violation processes. We propose a flavor extended MSSM by considering a hierarchical family structure for the trilinear scalar soft-supersymmetric terms of the Lagrangian, present at the SUSY breaking scale. We obtain analytical results for the rotation mass matrix, with the consequence of having non-universal slepton masses and the possibility of leptonic flavor mixing. The one-loop supersymmetric contributions to the leptonic flavor violating process τ → μγ are calculated in the physical basis, instead of using the well-known mass-insertion method. The flavor violating processes BR(l{sub i} → l{sub j}γ) are also obtained, in particular τ → μγ is well within the experimental bounds. We present the regions in parameter space where the muon g - 2 problem is either entirely solved or partially reduced through the contribution of these flavor violating processes. (orig.)
Harmonic Oscillator SUSY Partners and Evolution Loops
Directory of Open Access Journals (Sweden)
David J. Fernández
2012-07-01
Full Text Available Supersymmetric quantum mechanics is a powerful tool for generating exactly solvable potentials departing from a given initial one. If applied to the harmonic oscillator, a family of Hamiltonians ruled by polynomial Heisenberg algebras is obtained. In this paper it will be shown that the SUSY partner Hamiltonians of the harmonic oscillator can produce evolution loops. The corresponding geometric phases will be as well studied.
Complex scaling and residual flavour symmetry in the neutrino mass ...
Indian Academy of Sciences (India)
Probir Roy
2017-10-09
Oct 9, 2017 ... Using the residual symmetry approach, we propose a complex extension of the scaling ansatz on the neutrino Majorana mass matrix ... Neutrinos; residual flavour symmetry; scaling ansatz. PACS Nos 14.60.Pq; 12.60. ..... shown in figures 1 and 2 against the central value of the lightest neutrino mass as the ...
Baer, Howard; Barger, Vernon; Savoy, Mike
2015-06-01
More than 30 years ago, Arnowitt-Chamseddine-Nath and others established the compelling framework of supergravity gauge theories (SUGRA) as a picture for the next step in beyond the standard model physics. We review the current SUGRA scenario in light of recent data from LHC8 collider searches and the Higgs boson discovery. While many SUSY and non-SUSY scenarios are highly disfavored or even excluded by LHC, the essential SUGRA scenario remains intact and as compelling as ever. For naturalness, some non-universality between matter and Higgs sector soft terms is required along with substantial trilinear soft terms. SUSY models with radiatively-driven naturalness are found with high scale fine-tuning at a modest ˜ 10%. In this case, natural SUSY might be discovered at LHC13 but could also easily elude sparticle search endeavors. A linear {{e}+}{{e}-} collider with \\sqrt{s}\\gt 2m(higgsino) is needed to provide the definitive search for the required light higgsino states which are the hallmark of natural SUSY. In the most conservative scenario, we advocate inclusion of a Peccei-Quinn sector so that dark matter is composed of a WIMP/axion admixture i.e. two dark matter particles.
Kazana, Malgorzata
2016-01-01
Results of the 2015 early searches for supersymmetric particles obtained by the CMS experiment with 13\\,TeV data are reviewed.With an integrated luminosity of 2.2\\,fb$^{-1}$, limits on the gluino mass have been lifted up to higher values with respect to previous limits from 19.5\\,fb$^{-1}$ of 8\\,TeV data.
An R-Parity Breaking SUSY Solution to the $R_b$ and ALEPH Anomalies
Choudhury, D; Choudhury, Debajyoti
1996-01-01
We discuss an optimal $R$-parity breaking SUSY solution to the $R_b$ excess as well as the ALEPH 4-jet anomaly. The latter arises from the pair production of stop via chargino decay at LEP1.5, followed by its $R$--violating decay into a light quark pair. The model satisfies top quark and $Z$--boson decay constraints along with gaugino mass unification.
Predictions for Higgs and SUSY spectra from SO(10) Yukawa Unification with $\\mu > 0$
Blazek, T; Raby, S; CERN. Geneva
2002-01-01
We use t, b, tau Yukawa unification to constrain SUSY parameter space. We find a narrow region survives for mu > 0 (suggested by b --> s gamma and the anomalous magnetic moment of the muon) with A_0 \\sim - 1.9 m_{16}, m_{10} \\sim 1.4 m_{16}, m_{16} \\sim 1200 -3000 GeV and mu, M_{1/2} \\sim 100 - 500 GeV. Demanding Yukawa unification thus makes definite predictions for Higgs and sparticle masses.
Analysis of the TeV-scale mirage mediation with heavy superparticles
Kawamura, Junichiro; Omura, Yuji
2017-11-01
We discuss effective models derived from a supersymmetric model whose mediation mechanism of supersymmetry (SUSY) breaking is namely mirage mediation. In this model, light higgsino mass, that is required by the natural realization of the electroweak scale, is achieved by the unification of the soft SUSY breaking parameters at the low scale. Besides, we find that extra Higgs fields are also possibly light in some cases. Then, the effective model is a two Higgs doublet model (2HDM) with higgsinos, and it is distinguishable with namely type-II 2HDM which is widely discussed. In this paper, we study the mass spectrum of SUSY particles and the extra Higgs fields, and summarize the phenomenology in the effective model. We survey the current experimental bounds from the LHC and the dark matter experiments as well as the flavor physics. Then, we point out the expected mass scale of the SUSY particles and reveal the future prospects for the direct and indirect searches. We also discuss the difference between our effective model and the 2HDM in the bottom-up approach.
SUSY formalism for the symmetric double well potential
Indian Academy of Sciences (India)
SUSY; moving boundary condition; exactly solvable; symmetric double well; NH3 molecule. PACS Nos 02.30.Ik; 03.50. ... Various work has been done to construct the integrable potentials by SUSY Darboüx for- malism. If the boundary .... ϵj being the energy eigenvalue for the jth level. So the obtained potential [1,4,5] is.
Results from GRACE/SUSY at one-loop
Indian Academy of Sciences (India)
We report the recent development on the SUSY calculations with the help of GRACE system. GRACE/SUSY/1LOOP is the computer code which can generate Feynman diagrams in the MSSM automatically and compute one-loop amplitudes in the numerical way. We present new results of various two-body decay widths ...
Maksuamet võtmas Susi vara / Sigrid Laev
Laev, Sigrid
2003-01-01
Maksuamet võib alustada pankrotiohus Concordia ülikooli ja selle rektori Mart Susi vara realiseerimist, sest kooli omanik Concordia Varahaldus OÜ pole maksuametile lubatud ajal raha üle kandnud. Väidetavalt maksis Susi õppejõududele palka offshore-firma kaudu. AS Audentes on valmis Concordiat ostma
Mari-Ann Susi õigustas ülikooli raha kasutamist
2003-01-01
M.-A. Susi eitas ülikooli palgaraha kasutamist isikliku mõisa ülalpidamiseks ning tahtlikult riigimaksudest kõrvalehoidmist, nende üks ideid oli Susi sõnul arendada mõis konverentsiturismi keskuseks, mis oleks majanduslikult kasu toonud ka ülikoolile
Small Scale Mass Flow Plug Calibration
Sasson, Jonathan
2015-01-01
A simple control volume model has been developed to calculate the discharge coefficient through a mass flow plug (MFP) and validated with a calibration experiment. The maximum error of the model in the operating region of the MFP is 0.54%. The model uses the MFP geometry and operating pressure and temperature to couple continuity, momentum, energy, an equation of state, and wall shear. Effects of boundary layer growth and the reduction in cross-sectional flow area are calculated using an in- integral method. A CFD calibration is shown to be of lower accuracy with a maximum error of 1.35%, and slower by a factor of 100. Effects of total pressure distortion are taken into account in the experiment. Distortion creates a loss in flow rate and can be characterized by two different distortion descriptors.
On inflation, cosmological constant, and SUSY breaking
Energy Technology Data Exchange (ETDEWEB)
Linde, Andrei [Department of Physics and SITP, Stanford University, Stanford, California 94305 (United States)
2016-11-02
We consider a broad class of inflationary models of two unconstrained chiral superfields, the stabilizer S and the inflaton Φ, which can describe inflationary models with nearly arbitrary potentials. These models include, in particular, the recently introduced theories of cosmological attractors, which provide an excellent fit to the latest Planck data. We show that by adding to the superpotential of the fields S and Φ a small term depending on a nilpotent chiral superfield P one can break SUSY and introduce a small cosmological constant without affecting main predictions of the original inflationary scenario.
Local supersymmetry and the problem of the mass scales
Energy Technology Data Exchange (ETDEWEB)
Nilles, H.P.
1983-02-01
Spontaneously broken supergravity might help us to understand the puzzle of the mass scales in grand unified models. We describe the general mechanism and point out the remaining problems. Some new results on local supercolor are presented.
Viable and testable SUSY GUTs with Yukawa unification the case of split trilinears
Guadagnoli, Diego; Straub, David M
2009-01-01
We explore general SUSY GUT models with exact third-generation Yukawa unification, but where the requirement of universal soft terms at the GUT scale is relaxed. We consider the scenario in which the breaking of universality inherits from the Yukawa couplings, i.e. is of minimal flavor violating (MFV) type. In particular, the MFV principle allows for a splitting between the up-type and the down-type soft trilinear couplings. We explore the viability of this trilinear splitting scenario by means of a fitting procedure to electroweak observables, quark masses as well as flavor-changing neutral current processes. Phenomenological viability singles out one main scenario. This scenario is characterized by a sizable splitting between the trilinear soft terms and a large mu term. Remarkably, this scenario does not invoke a partial decoupling of the sparticle spectrum, as in the case of universal soft terms, but instead it requires part of the spectrum, notably the lightest stop, the gluino and the lightest charginos...
Leptogenesis in a Δ(27)×SO(10) SUSY GUT
Energy Technology Data Exchange (ETDEWEB)
Björkeroth, Fredrik [School of Physics and Astronomy, University of Southampton,SO17 1BJ Southampton (United Kingdom); Anda, Francisco J. de [Departamento de Física, CUCEI, Universidad de Guadalajara,Guadalajara (Mexico); Varzielas, Ivo de Medeiros; King, Stephen F. [School of Physics and Astronomy, University of Southampton,SO17 1BJ Southampton (United Kingdom)
2017-01-17
Although SO(10) Supersymmetric (SUSY) Grand Unification Theories (GUTs) are very attractive for neutrino mass and mixing, it is often quite difficult to achieve successful leptogenesis from the lightest right-handed neutrino N{sub 1} due to the strong relations between neutrino and up-type quark Yukawa couplings. We show that in a realistic model these constraints are relaxed, making N{sub 1} leptogenesis viable. To illustrate this, we calculate the baryon asymmetry of the Universe Y{sub B} from flavoured N{sub 1} leptogenesis in a recently proposed Δ(27)×SO(10) SUSY GUT. The flavoured Boltzmann equations are solved numerically, and comparison with the observed Y{sub B} places constraints on the allowed values of right-handed neutrino masses and neutrino Yukawa couplings. The flavoured SO(10) SUSY GUT is not only fairly complete and predictive in the lepton sector, but can also explain the BAU through leptogenesis with natural values in the lepton sector albeit with some tuning in the quark sector.
Calibrating the Planck cluster mass scale with CLASH
Penna-Lima, M.; Bartlett, J. G.; Rozo, E.; Melin, J.-B.; Merten, J.; Evrard, A. E.; Postman, M.; Rykoff, E.
2017-08-01
We determine the mass scale of Planck galaxy clusters using gravitational lensing mass measurements from the Cluster Lensing And Supernova survey with Hubble (CLASH). We have compared the lensing masses to the Planck Sunyaev-Zeldovich (SZ) mass proxy for 21 clusters in common, employing a Bayesian analysis to simultaneously fit an idealized CLASH selection function and the distribution between the measured observables and true cluster mass. We used a tiered analysis strategy to explicitly demonstrate the importance of priors on weak lensing mass accuracy. In the case of an assumed constant bias, bSZ, between true cluster mass, M500, and the Planck mass proxy, MPL, our analysis constrains 1-bSZ = 0.73 ± 0.10 when moderate priors on weak lensing accuracy are used, including a zero-mean Gaussian with standard deviation of 8% to account for possible bias in lensing mass estimations. Our analysis explicitly accounts for possible selection bias effects in this calibration sourced by the CLASH selection function. Our constraint on the cluster mass scale is consistent with recent results from the Weighing the Giants program and the Canadian Cluster Comparison Project. It is also consistent, at 1.34σ, with the value needed to reconcile the Planck SZ cluster counts with Planck's base ΛCDM model fit to the primary cosmic microwave background anisotropies.
Data driven background determination for SUSY searches with ATLAS
Koutsman, AJ
2009-01-01
Supersymmetry(SUSY) is an attractive extension of the Standard Model solving many standing issues in particle physics and cosmology. The general purpose ATLAS detector at the Large Hadron Collider (LHC) is an excellent experiment to discover or exclude TeV SUSY. However discovery can only be claimed when the Standard Model backgrounds are understood and are under control. The expectations at the LHC are that Monte Carlo predictions will not be sufficient to achieve this, the backgrounds will have to determined from data itself. In this talk we will highlight some data driven methods developed to estimate backgrounds and measure a possible SUSY excess.
Closing up a light stop window in natural SUSY at LHC
Directory of Open Access Journals (Sweden)
Archil Kobakhidze
2016-04-01
Full Text Available Top squark (stop plays a key role in the radiative stability of the Higgs boson mass in supersymmetry (SUSY. In this work, we use the LHC Run-1 data to determine the lower mass limit of the right-handed stop in a natural SUSY scenario, where the higgsinos χ˜1,20 and χ˜1± are light and nearly degenerate. We find that the stop mass has been excluded up to 430 GeV for mχ˜10≲250 GeV and to 540 GeV for mχ˜10≃100 GeV by the Run-1 SUSY searches for 2b+ETmiss and 1ℓ+jets+ETmiss, respectively. In a small strip of parameter space with mχ˜10≳190 GeV, the stop mass can still be as light as 210 GeV and compatible with the Higgs mass measurement and the monojet bound. The 14 TeV LHC with a luminosity of 20 fb−1 can further cover such a light stop window by monojet and 2b+ETmiss searches and push the lower bound of the stop mass to 710 GeV. We also explore the potential to use the Higgs golden ratio, Dγγ=σ(pp→h→γγ/σ(pp→h→ZZ⁎→4ℓ±, as a complementary probe for the light and compressed stop. If this golden ratio can be measured at percent level at the high luminosity LHC (HL-LHC or future e+e− colliders, the light stop can be excluded for most of the currently allowed parameter region.
Higgs mass naturalness and scale invariance in the UV
Tavares, Gustavo Marques; Skiba, Witold
2014-01-01
It has been suggested that electroweak symmetry breaking in the Standard Model may be natural if the Standard Model merges into a conformal field theory (CFT) at short distances. In such a scenario the Higgs mass would be protected from quantum corrections by the scale invariance of the CFT. In order for the Standard Model to merge into a CFT at least one new ultraviolet (UV) scale is required at which the couplings turn over from their usual Standard Model running to the fixed point behavior. We argue that the Higgs mass is sensitive to such a turn-over scale even if there are no associated massive particles and the scale arises purely from dimensional transmutation. We demonstrate this sensitivity to the turnover scale explicitly in toy models. Thus if scale invariance is responsible for Higgs mass naturalness, then the transition to CFT dynamics must occur near the TeV scale with observable consequences at colliders. In addition, the UV fixed point theory in such a scenario must be interacting because loga...
One-loop stabilization of the fuzzy four-sphere via softly broken SUSY
Energy Technology Data Exchange (ETDEWEB)
Steinacker, Harold C. [Faculty of Physics, University of Vienna,Boltzmanngasse 5, A-1090 Vienna (Austria)
2015-12-17
We describe a stabilization mechanism for fuzzy S{sub N}{sup 4} in the Euclidean IIB matrix model due to vacuum energy in the presence of a positive mass term. The one-loop effective potential for the radius contains an attractive contribution attributed to supergravity, while the mass term induces a repulsive contribution for small radius due to SUSY breaking. This leads to a stabilization of the radius. The mechanism should be pertinent to recent results on the genesis of 3+1-dimensional space-time in the Minkowskian IIB model.
Neutrino Oscillations in an SO(10) SUSY GUT with $U(2)xU(1)^{n}$ Family Symmetry
Blazek, T; Tobe, K
2000-01-01
In a previous paper we analyzed fermion masses (focusing on neutrino masses and mixing angles) in an SO(10) SUSY GUT with U(2)$\\timesU(1)^n$ family symmetry. The model is "natural" containing all operators in the Lagrangian consistent with the states and their charges. With minimal family symmetry breaking vevs the model is also predictive giving a unique solution to atmospheric (with maximal $\
Milline on Eesti õiguslik mõte? / Mart Susi
Susi, Mart, 1965-
1996-01-01
Concordia Ülikooli rektori, vandeadvokaat Mart Susi arvamus Eesti õigusliku mõtte olemusest ja arengusuundadest, sealhulgas ka Eesti Akadeemilise Õigusteaduse Seltsi ja Eesti Juristide Liidu ühisest aastakoosolekust
Lauri, miks Sul lapsi ei ole? / Endel Susi
Susi, Endel-Haljand, 1940-
2006-01-01
Rahvaliidu Lääne Ühenduse juhatuse esimehe Endel Susi vastukaja Lauri Luige artiklile "Saagu meid palju ja elagem kaua!" 6. juuni "Lääne Elus", kus ta otsib alternatiive negatiivse iibe pidurdamiseks
Concordia elas tuleviku arvelt / Mart Susi ; interv. Krister Kivi
Susi, Mart, 1965-
2003-01-01
Ilmunud ka: Infopress 21. märts nr. 12 lk. 30-31. Concordia Ülikooli rektor Mart Susi räägib kooli senisest juhtimisest ning asjaoludest, mis on põhjustanud pankroti. Tabel: Concordia kronoloogia
Effective Planck Mass and the Scale of Inflation
Kleban, Matthew; Porrati, Massimo
2016-01-01
A recent paper argued that it is not possible to infer the energy scale of inflation from the amplitude of tensor fluctuations in the Cosmic Microwave Background, because the usual connection is substantially altered if there are a large number of universally coupled fields present during inflation, with mass less than the inflationary Hubble scale. We give a simple argument demonstrating that this is incorrect.
Decoupling of gravity on non-susy Dp branes
Energy Technology Data Exchange (ETDEWEB)
Nayek, Kuntal; Roy, Shibaji [Saha Institute of Nuclear Physics,1/AF Bidhannagar, Calcutta, 700064 (India)
2016-03-15
We study the graviton scattering in the background of non-susy Dp branes of type II string theories consisting of a metric, a dilaton and a (p+1) form gauge field. We show numerically that in these backgrounds graviton experiences a scattering potential which takes the form of an infinite barrier in the low energy (near brane) limit for p≤5 and therefore is never able to reach the branes. This shows, contrary to what is known in the literature, that gravity indeed decouples from the non-susy Dp branes for p≤5. For non-susy D6 brane, gravity couples as there is no such barrier for the potential. To give further credence to our claim we solve the scattering equation in some situation analytically and calculate the graviton absorption cross-sections on the non-susy branes and show that they vanish for p≤4 in the low energy limit. This shows, as in the case of BPS branes, that gravity does decouple for non-susy Dp branes for p≤4 but it does not decouple for D6 brane as the potential here is always attractive. We argue for the non-susy D5 brane that depending on one of the parameters of the solution gravity either always decouples (unlike the BPS D5 brane) or it decouples when the energy of the graviton is below certain critical value, otherwise it couples, very similar to BPS D5 brane.
Geoelectrical Measurement of Multi-Scale Mass Transfer Parameters
Energy Technology Data Exchange (ETDEWEB)
Day-Lewis, Frederick David [US Geological Survey, Storrs, CT (United States); Singha, Kamini [Colorado School of Mines, Golden, CO (United States); Johnson, Timothy C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Haggerty, Roy [Oregon State Univ., Corvallis, OR (United States); Binley, Andrew [Lancaster Univ. (United Kingdom); Lane, John W. [US Geological Survey, Storrs, CT (United States)
2014-11-25
Mass transfer affects contaminant transport and is thought to control the efficiency of aquifer remediation at a number of sites within the Department of Energy (DOE) complex. An improved understanding of mass transfer is critical to meeting the enormous scientific and engineering challenges currently facing DOE. Informed design of site remedies and long-term stewardship of radionuclide-contaminated sites will require new cost-effective laboratory and field techniques to measure the parameters controlling mass transfer spatially and across a range of scales. In this project, we sought to capitalize on the geophysical signatures of mass transfer. Previous numerical modeling and pilot-scale field experiments suggested that mass transfer produces a geoelectrical signature—a hysteretic relation between sampled (mobile-domain) fluid conductivity and bulk (mobile + immobile) conductivity—over a range of scales relevant to aquifer remediation. In this work, we investigated the geoelectrical signature of mass transfer during tracer transport in a series of controlled experiments to determine the operation of controlling parameters, and also investigated the use of complex-resistivity (CR) as a means of quantifying mass transfer parameters in situ without tracer experiments. In an add-on component to our grant, we additionally considered nuclear magnetic resonance (NMR) to help parse mobile from immobile porosities. Including the NMR component, our revised study objectives were to: 1. Develop and demonstrate geophysical approaches to measure mass-transfer parameters spatially and over a range of scales, including the combination of electrical resistivity monitoring, tracer tests, complex resistivity, nuclear magnetic resonance, and materials characterization; and 2. Provide mass-transfer estimates for improved understanding of contaminant fate and transport at DOE sites, such as uranium transport at the Hanford 300 Area. To achieve our objectives, we implemented a 3
Step scaling in coordinate space. Running of the quark mass
Energy Technology Data Exchange (ETDEWEB)
Cichy, Krzysztof [Frankfurt Univ., Frankfurt am Main (Germany). Inst. fuer Theoretische Physik; Adam Mickiewicz Univ., Poznan (Poland). Faculty of Physics; Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Korcyl, Piotr [Regensburg Univ. (Germany). Inst. fuer Theoretische Physik
2016-12-15
We perform a benchmark study of the step scaling procedure for the ratios of renormalization constants extracted from position space correlation functions. We work in the quenched approximation and consider the pseudoscalar, scalar, vector and axial vector bilinears. The pseudoscalar/scalar cases allow us to obtain the non-perturbative running of the quark mass over a wide range of energy scales - from around 17 GeV to below 1.5 GeV - which agrees well with the 4-loop prediction of continuum perturbation theory. We find that step scaling is feasible in X-space and we discuss its advantages and potential problems.
Implicit Priors in Galaxy Cluster Mass and Scaling Relation Determinations
Mantz, A.; Allen, S. W.
2011-01-01
Deriving the total masses of galaxy clusters from observations of the intracluster medium (ICM) generally requires some prior information, in addition to the assumptions of hydrostatic equilibrium and spherical symmetry. Often, this information takes the form of particular parametrized functions used to describe the cluster gas density and temperature profiles. In this paper, we investigate the implicit priors on hydrostatic masses that result from this fully parametric approach, and the implications of such priors for scaling relations formed from those masses. We show that the application of such fully parametric models of the ICM naturally imposes a prior on the slopes of the derived scaling relations, favoring the self-similar model, and argue that this prior may be influential in practice. In contrast, this bias does not exist for techniques which adopt an explicit prior on the form of the mass profile but describe the ICM non-parametrically. Constraints on the slope of the cluster mass-temperature relation in the literature show a separation based the approach employed, with the results from fully parametric ICM modeling clustering nearer the self-similar value. Given that a primary goal of scaling relation analyses is to test the self-similar model, the application of methods subject to strong, implicit priors should be avoided. Alternative methods and best practices are discussed.
Complex scaling and residual flavour symmetry in the neutrino mass ...
Indian Academy of Sciences (India)
2017-10-09
Oct 9, 2017 ... Home; Journals; Pramana – Journal of Physics; Volume 89; Issue 4. Complex scaling and residual flavour symmetry in the neutrino mass matrix. PROBIR ROY. Special Issue ... Author Affiliations. PROBIR ROY1. Centre for Astroparticle Physics and Space Science, Bose Institute, Kolkata 700 054, India ...
Geoelectrical Measurement of Multi-Scale Mass Transfer Parameters
Energy Technology Data Exchange (ETDEWEB)
Day-Lewis, Frederick; Singha, Kamini; Haggerty, Roy; Johnson, Tim; Binley, Andrew; Lane, John
2014-01-16
Mass transfer affects contaminant transport and is thought to control the efficiency of aquifer remediation at a number of sites within the Department of Energy (DOE) complex. An improved understanding of mass transfer is critical to meeting the enormous scientific and engineering challenges currently facing DOE. Informed design of site remedies and long-term stewardship of radionuclide-contaminated sites will require new cost-effective laboratory and field techniques to measure the parameters controlling mass transfer spatially and across a range of scales. In this project, we sought to capitalize on the geophysical signatures of mass transfer. Previous numerical modeling and pilot-scale field experiments suggested that mass transfer produces a geoelectrical signature—a hysteretic relation between sampled (mobile-domain) fluid conductivity and bulk (mobile + immobile) conductivity—over a range of scales relevant to aquifer remediation. In this work, we investigated the geoelectrical signature of mass transfer during tracer transport in a series of controlled experiments to determine the operation of controlling parameters, and also investigated the use of complex-resistivity (CR) as a means of quantifying mass transfer parameters in situ without tracer experiments. In an add-on component to our grant, we additionally considered nuclear magnetic resonance (NMR) to help parse mobile from immobile porosities. Including the NMR component, our revised study objectives were to: 1. Develop and demonstrate geophysical approaches to measure mass-transfer parameters spatially and over a range of scales, including the combination of electrical resistivity monitoring, tracer tests, complex resistivity, nuclear magnetic resonance, and materials characterization; and 2. Provide mass-transfer estimates for improved understanding of contaminant fate and transport at DOE sites, such as uranium transport at the Hanford 300 Area. To achieve our objectives, we implemented a 3
Determination of the b Quark Mass at the Z Mass Scale
Abbiendi, G.; Akesson, P.F.; Alexander, G.; Allison, John; Anagnostou, G.; Anderson, K.J.; Arcelli, S.; Asai, S.; Axen, D.; Azuelos, G.; Bailey, I.; Ball, A.H.; Barberio, E.; Barlow, Roger J.; Batley, R.J.; Behnke, T.; Bell, Kenneth Watson; Bella, G.; Bellerive, A.; Bethke, S.; Biebel, O.; Bloodworth, I.J.; Boeriu, O.; Bock, P.; Bohme, J.; Bonacorsi, D.; Boutemeur, M.; Braibant, S.; Brigliadori, L.; Brown, Robert M.; Burckhart, H.J.; Cammin, J.; Carnegie, R.K.; Caron, B.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlton, David G.; Clarke, P.E.L.; Clay, E.; Cohen, I.; Couchman, J.; Csilling, A.; Cuffiani, M.; Dado, S.; Dallavalle, G.Marco; Dallison, S.; De Roeck, A.; De Wolf, E.A.; Dervan, P.; Desch, K.; Dienes, B.; Dixit, M.S.; Donkers, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Duerdoth, I.P.; Etzion, E.; Fabbri, F.; Feld, L.; Ferrari, P.; Fiedler, F.; Fleck, I.; Ford, M.; Frey, A.; Furtjes, A.; Futyan, D.I.; Gagnon, P.; Gary, J.W.; Gaycken, G.; Geich-Gimbel, C.; Giacomelli, G.; Giacomelli, P.; Glenzinski, D.; Goldberg, J.; Grandi, C.; Graham, K.; Gross, E.; Grunhaus, J.; Gruwe, M.; Gunther, P.O.; Gupta, A.; Hajdu, C.; Hanson, G.G.; Harder, K.; Harel, A.; Harin-Dirac, M.; Hauschild, M.; Hawkes, C.M.; Hawkings, R.; Hemingway, R.J.; Hensel, C.; Herten, G.; Heuer, R.D.; Hill, J.C.; Hoffman, Kara Dion; Homer, R.J.; Horvath, D.; Hossain, K.R.; Howard, R.; Huntemeyer, P.; Igo-Kemenes, P.; Ishii, K.; Jawahery, A.; Jeremie, H.; Jones, C.R.; Jovanovic, P.; Junk, T.R.; Kanaya, N.; Kanzaki, J.; Karapetian, G.; Karlen, D.; Kartvelishvili, V.; Kawagoe, K.; Kawamoto, T.; Keeler, R.K.; Kellogg, R.G.; Kennedy, B.W.; Kim, D.H.; Klein, K.; Klier, A.; Kluth, S.; Kobayashi, T.; Kobel, M.; Kokott, T.P.; Komamiya, S.; Kowalewski, Robert V.; Kramer, T.; Kress, T.; Krieger, P.; von Krogh, J.; Krop, D.; Kuhl, T.; Kupper, M.; Kyberd, P.; Lafferty, G.D.; Landsman, H.; Lanske, D.; Lawson, I.; Layter, J.G.; Leins, A.; Lellouch, D.; Letts, J.; Levinson, L.; Liebisch, R.; Lillich, J.; Littlewood, C.; Lloyd, A.W.; Lloyd, S.L.; Loebinger, F.K.; Long, G.D.; Losty, M.J.; Lu, J.; Ludwig, J.; Macchiolo, A.; Macpherson, A.; Mader, W.; Marcellini, S.; Marchant, T.E.; Martin, A.J.; Martin, J.P.; Martinez, G.; Mashimo, T.; Mattig, Peter; McDonald, W.John; McKenna, J.; McMahon, T.J.; McPherson, R.A.; Meijers, F.; Mendez-Lorenzo, P.; Menges, W.; Merritt, F.S.; Mes, H.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D.J.; Moed, S.; Mohr, W.; Montanari, A.; Mori, T.; Nagai, K.; Nakamura, I.; Neal, H.A.; Nisius, R.; O'Neale, S.W.; Oakham, F.G.; Odorici, F.; Oh, A.; Okpara, A.; Oreglia, M.J.; Orito, S.; Pahl, C.; Pasztor, G.; Pater, J.R.; Patrick, G.N.; Pilcher, J.E.; Pinfold, J.; Plane, David E.; Poli, B.; Polok, J.; Pooth, O.; Quadt, A.; Rabbertz, K.; Rembser, C.; Renkel, P.; Rick, H.; Rodning, N.; Roney, J.M.; Rosati, S.; Roscoe, K.; Rozen, Y.; Runge, K.; Rust, D.R.; Sachs, K.; Saeki, T.; Sahr, O.; Sarkisian, E.K.G.; Sbarra, C.; Schaile, A.D.; Schaile, O.; Scharff-Hansen, P.; Schroder, Matthias; Schumacher, M.; Schwick, C.; Scott, W.G.; Seuster, R.; Shears, T.G.; Shen, B.C.; Shepherd-Themistocleous, C.H.; Sherwood, P.; Skuja, A.; Smith, A.M.; Snow, G.A.; Sobie, R.; Soldner-Rembold, S.; Spagnolo, S.; Spano, F.; Sproston, M.; Stahl, A.; Stephens, K.; Strom, David M.; Strohmer, R.; Stumpf, L.; Surrow, B.; Talbot, S.D.; Tarem, S.; Tasevsky, M.; Taylor, R.J.; Teuscher, R.; Thomas, J.; Thomson, M.A.; Torrence, E.; Toya, D.; Trefzger, T.; Trigger, I.; Trocsanyi, Z.; Tsur, E.; Turner-Watson, M.F.; Ueda, I.; Ujvari, B.; Vachon, B.; Vollmer, C.F.; Vannerem, P.; Verzocchi, M.; Voss, H.; Vossebeld, J.; Waller, D.; Ward, C.P.; Ward, D.R.; Watkins, P.M.; Watson, A.T.; Watson, N.K.; Wells, P.S.; Wengler, T.; Wermes, N.; Wetterling, D.; Wilson, G.W.; Wilson, J.A.; Wyatt, T.R.; Yamashita, S.; Zacek, V.; Zer-Zion, D.
2001-01-01
In hadronic decays of Z bosons recorded with the OPAL detector at LEP, events containing b quarks were selected using the long lifetime of b flavoured hadrons. Comparing the 3-jet rate in b events with that in d u,s and c quark events, a significant difference was observed. Using Order(alpha_s squared) calculations for massive quarks, this difference was used to determine the b quark mass in the MSbar renormalisation scheme at the scale of the Z boson mass. By combining the results from seven different jet finders the running b quark mass was determined to be mb(MZ) = (2.67 +/- 0.03(stat) +0.29/-0.37(syst) +/- 0.19(theo.)) GeV. Evolving this value to the b quark mass scale itself yields mb(mb) = (3.95 +0.52/-0.62) GeV, consistent with results obtained at the b quark production threshold. This determination confirms the QCD expectation of a scale dependent quark mass. A constant mass is ruled out by 3.9 standard deviations.
Mart ja Mari-Ann Susi taotlevad omanikena Concordia pankrotti / Andri Maimets
Maimets, Andri, 1979-
2003-01-01
Concordia Ülikooli rektor Mart Susi esitas kohtule avalduse, milles taotleb ülikooli pidanud Concordia Varahalduse OÜ pankroti väljakuulutamist. Vt. samas: Mari-Ann Susi õigustas ülikooli raha kasutamist
Liu, Yang; The ATLAS collaboration
2017-01-01
Supersymmetry (SUSY) is a well motivated extension of the Standard Model (SM) that postulates the existence of a superpartner for each SM particle. A search for strongly produced SUSY particles decaying to a pair of two isolated \\textbf{same-sign leptons (SS)} or \\textbf{three leptons (3L)} has been carried out using the complete data set collected by the ATLAS experiment in 2015-16 at 13 TeV ($36.5 fb^{-1}$). The analysis benefits from a low SM background and uses looser kinematic requirements compared to other beyond the SM (BSM) searches which increases its sensitivity to scenarios with small mass differences between the SUSY particles, or in which R-parity is not conserved. The results are interpreted in the context of \\textbf{R-parity conserving (RPC)} or \\textbf{R-parity violating (RPV)} simplified signal models
Dynamical mass scale and approximate scaling symmetry in the Higgs sector
Lalak, Zygmunt
2013-01-01
We investigate basic consequences of the assumption that the mass scale of the perturbative sector responsible for the spontaneous symmetry breaking is generated dynamically in a theory with a large UV scale. It is assumed that in addition to an elementary scalar there exists an additional scalar, a modulus, which controls the dynamical hierarchy of scales in the manner similar to that of supersymmetric gaugino condensation. It is shown that a light degree of freedom appears that couples to the gauge bosons and to charged fermions in a specific way which is different from the couplings of the dilaton of the exact scale invariance.
The evolving Planck mass in classically scale-invariant theories
Kannike, K.; Raidal, M.; Spethmann, C.; Veermäe, H.
2017-04-01
We consider classically scale-invariant theories with non-minimally coupled scalar fields, where the Planck mass and the hierarchy of physical scales are dynamically generated. The classical theories possess a fixed point, where scale invariance is spontaneously broken. In these theories, however, the Planck mass becomes unstable in the presence of explicit sources of scale invariance breaking, such as non-relativistic matter and cosmological constant terms. We quantify the constraints on such classical models from Big Bang Nucleosynthesis that lead to an upper bound on the non-minimal coupling and require trans-Planckian field values. We show that quantum corrections to the scalar potential can stabilise the fixed point close to the minimum of the Coleman-Weinberg potential. The time-averaged motion of the evolving fixed point is strongly suppressed, thus the limits on the evolving gravitational constant from Big Bang Nucleosynthesis and other measurements do not presently constrain this class of theories. Field oscillations around the fixed point, if not damped, contribute to the dark matter density of the Universe.
The evolving Planck mass in classically scale-invariant theories
Energy Technology Data Exchange (ETDEWEB)
Kannike, K.; Raidal, M.; Spethmann, C.; Veermäe, H. [National Institute of Chemical Physics and Biophysics,Rävala 10, 10143 Tallinn (Estonia)
2017-04-05
We consider classically scale-invariant theories with non-minimally coupled scalar fields, where the Planck mass and the hierarchy of physical scales are dynamically generated. The classical theories possess a fixed point, where scale invariance is spontaneously broken. In these theories, however, the Planck mass becomes unstable in the presence of explicit sources of scale invariance breaking, such as non-relativistic matter and cosmological constant terms. We quantify the constraints on such classical models from Big Bang Nucleosynthesis that lead to an upper bound on the non-minimal coupling and require trans-Planckian field values. We show that quantum corrections to the scalar potential can stabilise the fixed point close to the minimum of the Coleman-Weinberg potential. The time-averaged motion of the evolving fixed point is strongly suppressed, thus the limits on the evolving gravitational constant from Big Bang Nucleosynthesis and other measurements do not presently constrain this class of theories. Field oscillations around the fixed point, if not damped, contribute to the dark matter density of the Universe.
Allometric scaling of mortality rates with body mass in abalones.
Rossetto, Marisa; De Leo, Giulio A; Bevacqua, Daniele; Micheli, Fiorenza
2012-04-01
The existence of an allometric relationship between mortality rates and body mass has been theorized and extensively documented across taxa. Within species, however, the allometry between mortality rates and body mass has received substantially less attention and the consistency of such scaling patterns at the intra-specific level is controversial. We reviewed 73 experimental studies to examine the relationship between mortality rates and body size among seven species of abalone (Haliotis spp.), a marine herbivorous mollusk. Both in the field and in the laboratory, log-transformed mortality rates were negatively correlated with log-transformed individual body mass for all species considered, with allometric exponents remarkably similar among species. This regular pattern confirms previous findings that juvenile abalones suffer higher mortality rates than adult individuals. Field mortality rates were higher overall than those measured in the laboratory, and the relationship between mortality and body mass tended to be steeper in field than in laboratory conditions for all species considered. These results suggest that in the natural environment, additional mortality factors, especially linked to predation, could significantly contribute to mortality, particularly at small body sizes. On the other hand, the consistent allometry of mortality rates versus body mass in laboratory conditions suggests that other sources of mortality, beside predation, are size-dependent in abalone.
Search for SUSY trilepton events with ATLAS at the LHC
Energy Technology Data Exchange (ETDEWEB)
Serfon, C.; Kummer, C. [Ludwig-Maximilians Univ. Muenchen, Garching b. Muenchen (Germany)
2007-07-01
One of the best motivated extension of the Standard Model is SUper-SYmmetry (SUSY). The ATLAS experiment at the pp-collider LHC will search for the new particles predicted by SUSY. In this talk, the discovery potential of the direct production of charginos and neutralinos decaying into a final state with three charged leptons is presented. In the start-up phase of the LHC an important signal of SUSY, the missing transverse energy, will need extensive calibration studies. We therefore present an analysis which does not rely on this signature. The model used for the analysis is mSUGRA. A full simulation of the ATLS detector has been used, and the most important backgrounds tt, W{sup {+-}} Z and ZZ have been taken into account. (orig.)
Natural X-ray lines from the low scale supersymmetry breaking
Directory of Open Access Journals (Sweden)
Zhaofeng Kang
2015-03-01
Full Text Available In the supersymmetric models with low scale supersymmetry (SUSY breaking where the gravitino mass is around keV, we show that the 3.5 keV X-ray lines can be explained naturally through several different mechanisms: (I a keV scale dark gaugino plays the role of sterile neutrino in the presence of bilinear R-parity violation. Because the light dark gaugino obtains Majorana mass only via gravity mediation, it is a decaying warm dark matter (DM candidate; (II the compressed cold DM states, whose mass degeneracy is broken by gravity mediated SUSY breaking, emit such a line via the heavier one decay into the lighter one plus photon(s. A highly supersymmetric dark sector may readily provide such kind of system; (III the light axino, whose mass again is around the gravitino mass, decays to neutrino plus gamma in the R-parity violating SUSY. Moreover, we comment on dark radiation from dark gaugino.
Indications of the CMSSM Mass Scale from Precision Electroweak Data
Ellis, Jonathan Richard; Olive, Keith A; Weiglein, Georg
2006-01-01
We discuss the sensitivities of present-day electroweak precision data to the possible scale of supersymmetry within the constrained minimal supersymmetric extension of the Standard Model (CMSSM). Our analysis is based on M_W, sin^2 theta_eff, (g-2)_mu, BR(b -> s gamma), and the lightest MSSM Higgs boson mass, M_h. We display the impact of the recent reduction in m_t from 178.0 +- 4.3 GeV to 172.7 +- 2.9 GeV on the interpretation of the precision observables. We show the currently preferred values of the CMSSM mass scale m_{1/2} based on a global chi^2 fit, assuming that the lightest supersymmetric particle (LSP) is a neutralino, and fixing m_0 so as to obtain the cold dark matter density allowed by WMAP and other cosmological data for specific values of A_0, tan beta and mu > 0. The recent reduction in m_t reinforces previous indications for relatively light soft supersymmetry-breaking masses, offering good prospects for the LHC and the ILC, and in some cases also for the Tevatron. Finally, we discuss the se...
Large scale electromechanical transistor with application in mass sensing
Energy Technology Data Exchange (ETDEWEB)
Jin, Leisheng; Li, Lijie, E-mail: L.Li@swansea.ac.uk [Multidisciplinary Nanotechnology Centre, College of Engineering, Swansea University, Swansea SA2 8PP (United Kingdom)
2014-12-07
Nanomechanical transistor (NMT) has evolved from the single electron transistor, a device that operates by shuttling electrons with a self-excited central conductor. The unfavoured aspects of the NMT are the complexity of the fabrication process and its signal processing unit, which could potentially be overcome by designing much larger devices. This paper reports a new design of large scale electromechanical transistor (LSEMT), still taking advantage of the principle of shuttling electrons. However, because of the large size, nonlinear electrostatic forces induced by the transistor itself are not sufficient to drive the mechanical member into vibration—an external force has to be used. In this paper, a LSEMT device is modelled, and its new application in mass sensing is postulated using two coupled mechanical cantilevers, with one of them being embedded in the transistor. The sensor is capable of detecting added mass using the eigenstate shifts method by reading the change of electrical current from the transistor, which has much higher sensitivity than conventional eigenfrequency shift approach used in classical cantilever based mass sensors. Numerical simulations are conducted to investigate the performance of the mass sensor.
Prospects for mass unification at low energy scales
Energy Technology Data Exchange (ETDEWEB)
Volkas, R.R.
1995-12-31
A simple Pati-Salam SU(4) model with a low symmetry breaking scale of about 1000 TeV is presented. The analysis concentrates on calculating radiative corrections to tree level mass relations for third generation fermions. The tree-level relation m{sub b}/m{sub {tau}} = 1 predicted by such models can receive large radiative corrections up to about 50% due to threshold effects at the mass unification scale. These corrections are thus of about the same importance as those that give rise to renormalisation group running. The high figure of 50% can be achieved because l-loop graphs involving the physical charged Higgs boson give corrections to m{sub {tau}} -m{sub b} that are proportional to the large top quark mass. These corrections can either increase or decrease m{sub b}/m{sub {tau}} depending on the value of an unknown parameter. They can also be made to vanish through a fine-tuning. A related model of tree-level t-b-{tau} unification which uses the identification of SU(2){sub R} with custodial SU(2) is then discussed. A curious relation m{sub b}{approx} {radical}2m{sub {tau}} is found to be satisfied at tree-level in this model. The overall conclusion of this work is that the tree-level relation m{sub b}=m{sub {tau}} at low scales such as 1000 TeV or somewhat higher can produce a successful value for m{sub b}/m{sub {tau}} after corrections, but one must be mindful that radiative corrections beyond those incorporated through the renormalisation group can be very important. 14 refs., 7 figs.
Scaling of human body mass with height: the body mass index revisited.
MacKay, N J
2010-03-03
We adapt a biomechanical argument of Rashevsky, which places limits on the stress experienced by a torso supported by the legs, to deduce that body mass m of growing children should scale as the p th power of height h with 7/3 < p < 8/3. Further arguments based on stability and heat loss suggest that p should be close to 8/3. The arguments are extended to suggest that waist circumference w should scale as hq with q near the lower end of 2/3 < or = q < or = 1. Data from Hong Kong and British children are consistent with these hypotheses. Copyright 2009 Elsevier Ltd. All rights reserved.
The Higgs mass and natural supersymmetric spectrum from the landscape
Directory of Open Access Journals (Sweden)
Howard Baer
2016-07-01
Full Text Available In supersymmetric models where the superpotential μ term is generated with μ≪msoft (e.g. from radiative Peccei–Quinn symmetry breaking or compactified string models with sequestration and stabilized moduli, and where the string landscape 1. favors soft supersymmetry (SUSY breaking terms as large as possible and 2. where the anthropic condition that electroweak symmetry is properly broken with a weak scale mW,Z,h∼100 GeV (i.e. not too weak of weak interactions, then these combined landscape/anthropic requirements act as an attractor pulling the soft SUSY breaking terms towards values required by models with radiatively-driven naturalness: near the line of criticality where electroweak symmetry is barely broken and the Higgs mass is ∼125 GeV. The pull on the soft terms serves to ameliorate the SUSY flavor and CP problems. The resulting sparticle mass spectrum may barely be accessible at high-luminosity LHC while the required light higgsinos should be visible at a linear e+e− collider with s>2m(higgsino.
Results from GRACE/SUSY at one-loop
Indian Academy of Sciences (India)
3Seikei University, Musashino, Tokyo 180-8633, Japan. 4Meiji Gakuin University, Totsuka, Yokohama 244-8539, Japan. 5The Graduate University for Advanced Studies, Hayama, Kanagawa 240-0193, Japan. ∗E-mail: yasui@tmc-ipd.ac.jp. Abstract. We report the recent development on the SUSY calculations with the help.
Non-simplified SUSY. {tau}-coannihilation at LHC and ILC
Energy Technology Data Exchange (ETDEWEB)
Berggren, M.; Cakir, A.; Krueger, D.; List, J.; Lobanov, A.; Melzer-Pellmann, I.A.
2013-07-15
Simplified models have become a widely used and important tool to cover the more diverse phenomenology beyond constrained SUSY models. However, they come with a substantial number of caveats themselves, and great care needs to be taken when drawing conclusions from limits based on the simplified approach. To illustrate this issue with a concrete example, we examine the applicability of simplified model results to a series of full SUSY model points which all feature a small {tau} -LSP mass difference, and are compatible with electroweak and flavor precision observables as well as current LHC results. Various channels have been studied using the Snowmass Combined LHC detector implementation in the Delphes simulation package, as well as the Letter of Intent or Technical Design Report simulations of the ILD detector concept at the ILC. We investigated both the LHC and ILC capabilities for discovery, separation and identification of all parts of the spectrum. While parts of the spectrum would be discovered at the LHC, there is substantial room for further discoveries and property determination at the ILC.
Reach of the CERN LHC for the Minimal Anomaly-Mediated SUSY Breaking Model
Baer, Howard W; Tata, Xerxes; Baer, Howard; Tata, Xerxes
2000-01-01
We examine the reach of the CERN LHC pp collider for supersymmetric models where the dominant contribution to soft SUSY breaking parameters arises from the superconformal anomaly. In the simplest viable anomaly mediated SUSY breaking (AMSB) model, tachyonic slepton squared masses are made positive by adding a universal contribution m_0^2 to all scalars. We use the event generator ISAJET to generate AMSB signal events as a function of model parameter space. Assuming an integrated luminosity of 10 fb-1, the LHC can reach to values of $m_{\\tg}\\sim 2.3$ TeV for low values of $m_0$, where the dilepton plus jets plus E_T(missing) channel offers the best reach. For large $m_0$, the best signature is typically 0 or 1 isolated lepton plus jets plus E_T(missing); in this case the reach is typically diminished to values of $m_{\\tg}\\sim 1.3$ TeV. The presence of terminating tracks in a subset of signal events could serve to verify the presence of a long lived lightest chargino which is generic in the minimal AMSB model.
Membranes for nanometer-scale mass fast transport
Bakajin, Olgica [San Leandro, CA; Holt, Jason [Berkeley, CA; Noy, Aleksandr [Belmont, CA; Park, Hyung Gyu [Oakland, CA
2011-10-18
Nanoporous membranes comprising single walled, double walled, and multiwalled carbon nanotubes embedded in a matrix material were fabricated for fluid mechanics and mass transfer studies on the nanometer scale and commercial applications. Average pore size can be 2 nm to 20 nm, or seven nm or less, or two nanometers or less. The membrane can be free of large voids spanning the membrane such that transport of material such as gas or liquid occurs exclusively through the tubes. Fast fluid, vapor, and liquid transport are observed. Versatile micromachining methods can be used for membrane fabrication. A single chip can comprise multiple membranes. These membranes are a robust platform for the study of confined molecular transport, with applications in liquid and gas separations and chemical sensing including desalination, dialysis, and fabric formation.
Large-scale mass distribution in the Illustris simulation
Haider, M.; Steinhauser, D.; Vogelsberger, M.; Genel, S.; Springel, V.; Torrey, P.; Hernquist, L.
2016-04-01
Observations at low redshifts thus far fail to account for all of the baryons expected in the Universe according to cosmological constraints. A large fraction of the baryons presumably resides in a thin and warm-hot medium between the galaxies, where they are difficult to observe due to their low densities and high temperatures. Cosmological simulations of structure formation can be used to verify this picture and provide quantitative predictions for the distribution of mass in different large-scale structure components. Here we study the distribution of baryons and dark matter at different epochs using data from the Illustris simulation. We identify regions of different dark matter density with the primary constituents of large-scale structure, allowing us to measure mass and volume of haloes, filaments and voids. At redshift zero, we find that 49 per cent of the dark matter and 23 per cent of the baryons are within haloes more massive than the resolution limit of 2 × 108 M⊙. The filaments of the cosmic web host a further 45 per cent of the dark matter and 46 per cent of the baryons. The remaining 31 per cent of the baryons reside in voids. The majority of these baryons have been transported there through active galactic nuclei feedback. We note that the feedback model of Illustris is too strong for heavy haloes, therefore it is likely that we are overestimating this amount. Categorizing the baryons according to their density and temperature, we find that 17.8 per cent of them are in a condensed state, 21.6 per cent are present as cold, diffuse gas, and 53.9 per cent are found in the state of a warm-hot intergalactic medium.
Direct geoelectrical evidence of mass transfer at the laboratory scale
Swanson, Ryan D.; Singha, Kamini; Day-Lewis, Frederick D.; Binley, Andrew; Keating, Kristina; Haggerty, Roy
2012-01-01
Previous field-scale experimental data and numerical modeling suggest that the dual-domain mass transfer (DDMT) of electrolytic tracers has an observable geoelectrical signature. Here we present controlled laboratory experiments confirming the electrical signature of DDMT and demonstrate the use of time-lapse electrical measurements in conjunction with concentration measurements to estimate the parameters controlling DDMT, i.e., the mobile and immobile porosity and rate at which solute exchanges between mobile and immobile domains. We conducted column tracer tests on unconsolidated quartz sand and a material with a high secondary porosity: the zeolite clinoptilolite. During NaCl tracer tests we collected nearly colocated bulk direct-current electrical conductivity (σb) and fluid conductivity (σf) measurements. Our results for the zeolite show (1) extensive tailing and (2) a hysteretic relation between σf and σb, thus providing evidence of mass transfer not observed within the quartz sand. To identify best-fit parameters and evaluate parameter sensitivity, we performed over 2700 simulations of σf, varying the immobile and mobile domain and mass transfer rate. We emphasized the fit to late-time tailing by minimizing the Box-Cox power transformed root-mean square error between the observed and simulated σf. Low-field proton nuclear magnetic resonance (NMR) measurements provide an independent quantification of the volumes of the mobile and immobile domains. The best-fit parameters based on σf match the NMR measurements of the immobile and mobile domain porosities and provide the first direct electrical evidence for DDMT. Our results underscore the potential of using electrical measurements for DDMT parameter inference.
THE (BLACK HOLE)-BULGE MASS SCALING RELATION AT LOW MASSES
Energy Technology Data Exchange (ETDEWEB)
Graham, Alister W. [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn, VIC 3122 (Australia); Scott, Nicholas [Sydney Institute for Astronomy, School of Physics, University of Sydney, NSW 2006 (Australia)
2015-01-01
Several recent papers have reported on the occurrence of active galactic nuclei (AGNs) containing undermassive black holes relative to a linear scaling relation between black hole mass (M {sub bh}) and host spheroid stellar mass (M {sub sph,} {sub *}). However, dramatic revisions to the M {sub bh}-M {sub sph,} {sub *} and M {sub bh}-L {sub sph} relations, based on samples containing predominantly inactive galaxies, have recently identified a new steeper relation at M {sub bh} ≲ (2-10) × 10{sup 8} M {sub ☉}, roughly corresponding to M {sub sph,} {sub *} ≲ (0.3-1) × 10{sup 11} M {sub ☉}. We show that this steeper, quadratic-like M {sub bh}-M {sub sph,} {sub *} relation defined by the Sérsic galaxies, i.e., galaxies without partially depleted cores, roughly tracks the apparent offset of the AGN having 10{sup 5} ≲ M {sub bh}/M {sub ☉} ≲ 0.5 × 10{sup 8}. That is, these AGNs are not randomly offset with low black hole masses, but also follow a steeper (nonlinear) relation. As noted by Busch et al., confirmation or rejection of a possible AGN offset from the steeper M {sub bh}-M {sub sph,} {sub *} relation defined by the Sérsic galaxies will benefit from improved stellar mass-to-light ratios for the spheroids hosting these AGNs. Several implications for formation theories are noted. Furthermore, reasons for possible under- and overmassive black holes, the potential existence of intermediate mass black holes (<10{sup 5} M {sub ☉}), and the new steep (black hole)-(nuclear star cluster) relation, M{sub bh}∝M{sub nc}{sup 2.7±0.7}, are also discussed.
Flowering to bloom of PeV scale supersymmetric left–right ...
Indian Academy of Sciences (India)
SUSY breaking soft terms emerge below the SUSY breaking scale MS. ... the two apparently independent breaking effects. The soft terms which arise in the two models ABMRS and BM may be parametrized as follows: L1 soft = m2 .... with speed β in a medium of temperature T . The scaling law for the growth of the scale.
Micro-scale mass-transfer variations during electrodeposition
Energy Technology Data Exchange (ETDEWEB)
Sutija, D.P.
1991-08-01
Results of two studies on micro-scale mass-transfer enhancement are reported: (1) Profiled cross-sections of striated zinc surfaces deposited in laminar channel flow were analyzed with fast-fourier transforms (FFT) to determine preferred striation wavelengths. Striation frequency increases with current density until a minimum separation between striae of 150 {mu}m is reached. Beyond this point, independent of substrate used, striae meld together and form a relatively smooth, nodular deposit. Substrates equipped with artificial micron-sized protrusions result in significantly different macro-morphology in zinc deposits. Micro-patterned electrodes (MPE) with hemispherical protrusions 5 {mu}m in diameter yield thin zinc striae at current densities that ordinarily produce random nodular deposits. MPEs with artificial hemi-cylinders, 2.5 {mu}m in height and spaced 250 {mu}m apart, form striae with a period which matches the spacing of micron-sized ridges. (2) A novel, corrosion-resistant micromosaic electrode was fabricated on a silicon wafer. Measurements of mass-transport enhancement to a vertical micromosaic electrode caused by parallel bubble streams rising inside of the diffusion boundary-layer demonstrated the presence of two co-temporal enhancement mechanisms: surface-renewal increases the limiting current within five bubble diameters of the rising column, while bubble-induced laminar flows cause weaker enhancement over a much broader swath. The enhancement caused by bubble curtains is predicted accurately by linear superposition of single-column enhancements. Two columns of smaller H{sub 2} bubbles generated at the same volumetric rate as a single column of larger bubbles cause higher peak and far-field enhancements. 168 refs., 96 figs., 6 tabs.
Ghosh, B
2001-01-01
Recently, using a very simple approximation scheme which includes the most important terms in the radiative corrections for the Higgs masses in the minimal supersymmetric standard model (MSSM), Haber et al. have estimated the Higgs masses over a very large fraction of MSSM parameter space. The purpose of this paper is to apply the method of solving the renormalization group equations for top quark and bottom quark Yukawa couplings in the two-Higgs doublet model given by Parida and Usmani to the above studies of Haber et al. Here the effects of the running vacuum expectation values (VEVs) in the two Higgs doublet model below mu =M/sub susy/ have also been taken into account in terms of solutions of RGEs for the VEVs nu /sub 1/( mu ) and nu /sub 2/( mu ). It may be mentioned that at mass scales below M/sub susy/, the solutions of the non-SUSY (supersymmetry) two Higgs doublet model are used. Interestingly, new results are obtained from systematic studies on the mass of lightest Higgs boson in MSSM which have im...
Analysis of SUSY Heavy Higgs events at CLIC
Quevillon, J
2009-01-01
This paper reports the results of a study of the supersymmetric neutral heavy Higgs boson production channel e+e− → H◦A◦ → bb ̄bb ̄ at √s = 3 TeV. Reconstruction of data simulated at generator level shows a significant degradation of SUSY Heavy Higgs signal caused by γγ to hadrons background at s = 3 TeV. The importance of analysis procedures such as event cuts and transversal momentum cuts during jet-clustering to reduce the impact of the hadron background is underlined. Reconstruction at both the generator level and at the level of a full detector simulation forces us to introduce cuts to improve the quality of the results. This note describes a preliminary study of SUSY Heavy Higgs at CLIC - a more detailed paper on an extended study is in preparation.
Non-susy exotics searches at the Tevatron
Energy Technology Data Exchange (ETDEWEB)
Pronko, Alexandre; /Fermilab
2008-05-01
The authors present results of searches for signs of physics beyond the Standard Model. The focus of this paper is on analyses not driven by SUSY models. Most of the presented results are based on {approx} 2 fb{sup -1} of data and obtained since summer of 2007. No significant excess of data over predicted background is observed. They report kinematic distributions, data and background counts, as well as limits on some parameters of selected models of new physics.
Early SUSY Searches at the CMS Experiment at CERN
Kasieczka, Gregor
When the Large Hadron Collider (LHC) commences operation, physicists all over the world will be eagerly awaiting data. The LHC was built as a discovery machine and the two general purpose detectors ATLAS and CMS might see evidence for new ndings with the rst year of data. Among the possible early discoveries is supersymmetry or SUSY. For SUSY events there exist irreducible backgrounds - Standard Model processes that are in principle indistinguishable from the signal. A possible search channel for SUSY are events with jets + one lepton + large missing transverse energy or 6ET . In this channel there also exists a signi cant contribution of Standard Model top anti-top production. For early data the prediction of the background overshadowing the expected supersymmetric events by computer simulations is subject to large uncertainties. It is necessary to use strategies that estimate the background in the signal region by using information from regions that are expected to be signal-free. The work examines such tec...
SUSY strong production (leptonic) with ATLAS
Saito, Tomoyuki; The ATLAS collaboration
2017-01-01
Supersymmetry is one of the most motivated scenarios for physics beyond the Standard Model. This article summarizes recent ATLAS results on searches for supersymmetry in proton-proton collisions at a centre-of-mass energy of 13 TeV at LHC, which target supersymmetric particles produced by strong interaction in events with leptonic fi nal states. No signi ficant excess above the Standard Model expectation is observed and exclusion limits have been set on squark and gluino masses in various scenarios.
Experimental results on SUSY searches with top
Eifert, Till
2014-01-01
Searches for supersymmetric partner particles of the top and bottom quarks at the Large Hadron Collider are reviewed. The focus is on the status of searches for a relatively light partner of the top quark performed by the CMS and ATLAS Collaborations. No excess beyond Standard Model expectations is observed and exclusion limits are set on the masses of supersymmetric particles.
Shigeru, HEMMI; Department of Physics, Hiroshima University
1980-01-01
Hadronic productions of two real photons with high invariant mass are investigated with the aid of the quark parton model. Unlike the Drell-Yan process, exact scaling does not work. Production cross section and angular distribution of one photon are sensitive to quark mass.
Scaling Factor Estimation Using an Optimized Mass Change Strategy, Part 1: Theory
DEFF Research Database (Denmark)
Aenlle, Manuel López; Fernández, Pelayo Fernández; Brincker, Rune
2007-01-01
. The scaling factors are determined using the natural frequencies and mode shapes of both the modified and the unmodified structure. However, the uncertainty on the scaling factor estimation depends on the modal analysis and the mass change strategy (number, magnitude and location of the masses) used to modify......In natural input modal analysis, only un-scaled mode shapes can be obtained. The mass change method is, in many cases, the simplest way to estimate the scaling factors, which involves repeated modal testing after changing the mass in different points of the structure where the mode shapes are known...
Calibrating the Planck Cluster Mass Scale with Cluster Velocity Dispersions
Amodeo, Stefania; Mei, Simona; Stanford, Spencer A.; Bartlett, James G.; Melin, Jean-Baptiste; Lawrence, Charles R.; Chary, Ranga-Ram; Shim, Hyunjin; Marleau, Francine; Stern, Daniel
2017-08-01
We measure the Planck cluster mass bias using dynamical mass measurements based on velocity dispersions of a subsample of 17 Planck-detected clusters. The velocity dispersions were calculated using redshifts determined from spectra that were obtained at the Gemini observatory with the GMOS multi-object spectrograph. We correct our estimates for effects due to finite aperture, Eddington bias, and correlated scatter between velocity dispersion and the Planck mass proxy. The result for the mass bias parameter, (1-b), depends on the value of the galaxy velocity bias, {b}{{v}}, adopted from simulations: (1-b)=(0.51+/- 0.09){b}{{v}}3. Using a velocity bias of {b}{{v}}=1.08 from Munari et al., we obtain (1-b)=0.64+/- 0.11, i.e., an error of 17% on the mass bias measurement with 17 clusters. This mass bias value is consistent with most previous weak-lensing determinations. It lies within 1σ of the value that is needed to reconcile the Planck cluster counts with the Planck primary cosmic microwave background constraints. We emphasize that uncertainty in the velocity bias severely hampers the precision of the measurements of the mass bias using velocity dispersions. On the other hand, when we fix the Planck mass bias using the constraints from Penna-Lima et al., based on weak-lensing measurements, we obtain a positive velocity bias of {b}{{v}}≳ 0.9 at 3σ .
On the common mass scale of the Milky Way satellites
Li, Yang-Shyang; Helmi, Amina; De Lucia, Gabriella; Stoehr, Felix
2009-01-01
We use a hybrid approach that combines high-resolution simulations of the formation of a Milky Way-like halo with a semi-analytic model of galaxy formation to study the mass content of dwarf galaxies in the concordance Lambda cold dark matter cosmology. We find that the mass within 600 pc of dark
(Pseudogoldstinos, SUSY fluids, Dirac gravitino and gauginos
Directory of Open Access Journals (Sweden)
Benakli Karim
2014-04-01
Full Text Available We review the emergence and fate of goldstinos in different frameworks. First, we consider a super-Higgs mechanism when supersymmetry breaking is induced by neither an F-term nor a D-term but related to a more general stress energy-momentum tensor. This allows us to build a novel Lagrangian that describes the propagation of a spin-3/2 state in a fluid. Then we briefly review the ubiquitous pseudo-goldstinos when breaking supersymmetry in an extra dimension. We remind that the fermion (gravitino or gaugino soft masses can be tuned to be of Dirac-type. Finally, we briefly connect the latter to the study of models with Dirac-type gaugino masses and stress the advantage of having both an F and a D-term sizable contributions for the hierarchies of soft-terms as well as for minimizing R-symmetry breaking.
Searches for electroweak SUSY production at CMS
Heidegger, Constantin
2017-01-01
In this talk, the latest results of searches for electroweak production of supersymmetry with a data set of pp collisions at $13\\,\\mathrm{TeV}$ corresponding to an integrated luminosity of $35.9\\,\\mathrm{fb}^{-1}$ collected by the CMS detector in 2016 are presented. Exclusion limits at $95\\,\\%$ confidence level on the masses of charginos and neutralinos reach up to $1150\\,\\mathrm{GeV}$.
Mart ja Mari-Ann Susi taotlevad omanikena Concordia pankrotti / Andri Maimets
Maimets, Andri
2003-01-01
Concordia Ülikooli rektori kohast loobunud Mart Susi ning prorektori ametikohalt lahkunud Mari-Ann Susi taotlevad neile kuuluvat ülikooli pidanud miljonivõlgades firma pankrotti. Hiljuti loodi õppejõududest, tudengitest js töötajatest mittetulundusühing Concordia Akadeemiline Ühisus (CAU), selle nõukogu esimees on Hagi Šein
Searches for SUSY and Exotics at HERA
Haller, J; Abramowicz, H; Adamczyk, L; Adamus, M; Adler, V; Aghuzumtsyan, G; Antonioli, P; Antonov, A; Arneodo, M; Bailey, D S; Bamberger, A; Barakbaev, A N; Barbagli, G; Barbi, M; Bari, G; Barreiro, F; Bartsch, D; Basile, M; Bauerdick, L A T; Behrens, U; Bell, M; Bellagamba, L; Benen, A; Bertolin, A; Bhadra, S; Bloch, I; Bodmann, B; Bold, T; Boos, E G; Borras, K; Boscherini, D; Brock, I; Brook, N H; Brugnera, R; Brümmer, N; Bruni, A; Bruni, G; Bussey, P J; Butterworth, J M; Bylsma, B; Caldwell, A; Capua, M; Cara Romeo, G; Carli, T; Carlin, R; Catterall, C D; Chekanov, S; Chiochia, V; Chwastowski, J; Ciborowski, J; Ciesielski, R; Cifarelli, Luisa; Cindolo, F; Cloth, P; Cole, J E; Collins-Tooth, C; Contin, A; Cooper-Sarkar, A M; Coppola, N; Cormack, C; Corradi, M; Corriveau, F; Cottrell, A; D'Agostini, Giulio; Dal Corso, F; Danilov, P; Dannheim, D; De Pasquale, S; Dementiev, R K; Derrick, M; Deshpande, Abhay A; Devenish, R C E; Dhawan, S; Dolgoshein, B A; Doyle, A T; Drews, G; Durkin, L S; Dusini, S; Eisenberg, Y; Ermolov, P F; Eskreys, Andrzej; Ferrando, J; Ferrero, M I; Figiel, J; Filges, D; Foster, B; Foudas, C; Fourletov, S; Fourletova, J; Fricke, U; Fusayasu, T; Gabareen, A; Gallo, E; Garfagnini, A; Geiser, A; Genta, C; Gialas, I; Giusti, P; Gladilin, L K; Gladkov, D; Glasman, C; Gliga, S; Goers, S; Golubkov, Yu A; Goncalo, R; González, O; Göttlicher, P; Grabowska-Bold, I; Grijpink, S; Grzelak, G; Gutsche, O; Gwenlan, C; Haas, T; Hain, W; Hall-Wilton, R; Hamatsu, R; Hamilton, J; Hanlon, S; Hart, J C; Hartmann, H; Hartner, G; Hartner, G F; Heaphy, E A; Heath, G P; Heath, H F; Helbich, M; Heusch, C A; Hilger, E; Hillert, S; Hirose, T; Hochman, D; Holm, U; Iacobucci, G; Iga, Y; Inuzuka, M; Irrgang, P; Jakob, H P; Jones, T W; Kagawa, S; Kahle, B; Kaji, H; Kananov, S; Kappes, A; Kataoka, Y; Yamazaki, M; Katkov, I I; Katz, U F; Kcira, D; Khein, L A; Kim, J Y; Kim, Y K; Kind, O; Kisielewska, D; Kitamura, S; Klimek, K; Koffeman, E; Kohno, T; Kooijman, P; Koop, T; Korzhav, I A; Kotanski, A; Kötz, U; Kowal, A M; Kowal, M; Kowalski, H; Kowalski, T; Krakauer, D; Kramberger, G; Kreisel, A; Krumnack, N; Kuze, M; Kuzmin, V A; Labarga, L; Labes, H; Lainesse, J; Lammers, S; Lee, J H; Lee, S W; Lelas, D; Levchenko, B B; Levman, G M; Levy, A; Li, L; Lightwood, M S; Lim, H; Lim, I T; Limentani, S; Ling, T Y; Liu, X; Löhr, B; Lohrmann, E; Loizides, J H; Long, K R; Longhin, A; Lukina, O Yu; Lupi, A; Luzniak, P; Maddox, E; Magill, S; Mankel, R; Margotti, A; Marini, G; Martin, J F; Mastroberardino, A; Matsuzawa, K; Mattingly, M C K; McCubbin, N A; Mellado, B; Melzer-Pellmann, I A; Menary, S R; Metlica, F; Meyer, U; Milite, M; Mirea, A; Monaco, V; Montanari, A; Moritz, M; Musgrave, B; Nagano, K; Nania, R; Nguyen, C N; Nigro, A; Ning, Y; Nishimura, T; Notz, D; Nowak, R J; Oh, B Y; Olkiewicz, K; Pac, M Y; Padhi, S; Paganis, S; Palmonari, F; Parenti, A; Park, I H; Patel, S; Paul, E; Pavel, N; Pawlak, J M; Pelfer, P G; Pellegrino, A; Pesci, A; Petrucci, M C; Piotrzkowski, K; Plucinsky, P P; Pokrovskiy, N S; Polini, A; Posocco, M; Proskuryakov, A S; Przybycien, M B; Rautenberg, J; Raval, A; Reeder, D D; Ren, Z; Renner, R; Repond, J; Riveline, U; Karshon, M; Robins, S; Rodrigues, E; Rosin, M; Rurua, L; Ruspa, M; Sacchi, R; Salehi, H; Sartorelli, G; Savin, A A; Saxon, D H; Schagen, S; Schioppa, M; Schlenstedt, S; Schmidke, W B; Schneekloth, U; Sciulli, F; Scott, J; Selonke, F; Shcheglova, L M; Skillicorn, I O; Slominski, W; Smith, W H; Soares, M; Solano, A; Son, D; Sosnovtsev, V V; Stairs, D G; Stanco, L; Standage, J; Stifutkin, A; Stoesslein, U; Stonjek, S; Stopa, P; Straub, P B; Suchkov, S; Susinno, G; Suszycki, L; Sutton, M R; Sztuk, J; Szuba, D; Szuba, J; Tandler, J; Tapper, A D; Tapper, R J; Tassi, E; Tawara, T; Terron, J; Tiecke, H G; Tokushuku, K; Tsurugai, T; Turcato, M; Tymieniecka, T; Ukleja, A; Ukleja, J; Vázquez, M; Velthuis, J J; Vlasov, N N; Voss, K C; Walczak, R; Walsh, R; Wang, M; Weber, A; Wessoleck, H; West, B J; Whitmore, J J; Wick, K; Wiggers, L; Wills, H H; Wing, M; Wolf, G; Yamada, S; Yamashita, T; Yoshida, R; Youngman, C; Zawiejski, L; Zeuner, W; Zhautykov, B O; Zichichi, A; Ziegler, A; Zotkin, S A; De Wolf, E; Del Peso, J; Haller, Johannes
2004-01-01
The HERA collaborations, H1 and ZEUS, have searched for physics beyond the Standard Model in ep collisions at centre-of-mass energies of up to 319 GeV. In this article the experimental results coming from the HERA I phase are summarised and the constraints on theories of new physics including Contact Interactions, Large Extra Dimensions, Leptoquarks, FCNC and various scenarios in R-parity violating supersymmetry are discussed. In addition the first results on searches for new physics coming from the upgraded HERA II collider are presented.
Searches for SUSY signals at ATLAS
Meloni, Federico; The ATLAS collaboration
2017-01-01
The High Luminosity-Large Hadron Collider (HL-LHC) is expected to start in 2026 and to pro- vide an integrated luminosity of 3000 fb−1 in ten years, a factor 10 more than what will be collected by 2023. This high statistics will allow ATLAS to improve searches for new physics at the TeV scale. The search prospects for Supersymmetry are presented, with a programme spanning from strong to electroweak production of sparticles.
Kilbourne, Brandon M
2014-01-01
In spite of considerable work on the linear proportions of limbs in amniotes, it remains unknown whether differences in scale effects between proximal and distal limb segments has the potential to influence locomotor costs in amniote lineages and how changes in the mass proportions of limbs have factored into amniote diversification. To broaden our understanding of how the mass proportions of limbs vary within amniote lineages, I collected data on hindlimb segment masses - thigh, shank, pes, tarsometatarsal segment, and digits - from 38 species of neognath birds, one of the most speciose amniote clades. I scaled each of these traits against measures of body size (body mass) and hindlimb size (hindlimb length) to test for departures from isometry. Additionally, I applied two parameters of trait evolution (Pagel's λ and δ) to understand patterns of diversification in hindlimb segment mass in neognaths. All segment masses are positively allometric with body mass. Segment masses are isometric with hindlimb length. When examining scale effects in the neognath subclade Land Birds, segment masses were again positively allometric with body mass; however, shank, pedal, and tarsometatarsal segment masses were also positively allometric with hindlimb length. Methods of branch length scaling to detect phylogenetic signal (i.e., Pagel's λ) and increasing or decreasing rates of trait change over time (i.e., Pagel's δ) suffer from wide confidence intervals, likely due to small sample size and deep divergence times. The scaling of segment masses appears to be more strongly related to the scaling of limb bone mass as opposed to length, and the scaling of hindlimb mass distribution is more a function of scale effects in limb posture than proximo-distal differences in the scaling of limb segment mass. Though negative allometry of segment masses appears to be precluded by the need for mechanically sound limbs, the positive allometry of segment masses relative to body mass may
{{{ N}}=2} SUSY gauge theories on S4
Hosomichi, Kazuo
2017-11-01
We review exact results in {{ N}}=2 supersymmetric gauge theories defined on S 4 and its deformation. We first summarize the construction of rigid SUSY theories on curved backgrounds based on off-shell supergravity, then explain how to apply the localization principle to supersymmetric path integrals. Closed formulae for partition function as well as expectation values of non-local BPS observables are presented. This is a contribution to the review issue ‘Localization techniques in quantum field theories’ (ed V Pestun and M Zabzine) which contains 17 chapters available at [1].
Electroweak contributions to SUSY particle production processes at the LHC
Energy Technology Data Exchange (ETDEWEB)
Mirabella, Edoardo
2009-07-22
In this thesis we have computed the electroweak contributions of O({alpha}{sub s}{alpha}), O({alpha}{sup 2}) and O({alpha}{sub s}{sup 2}) to three different classes of processes leading to the hadronic production of the SUSY partners of quarks and gluons, i.e. squarks and gluinos. The theoretical framework is the Minimal Supersymmetric extension of the Standard Model, the MSSM. The three processes are gluino pair production, diagonal squark-antisquark and associated squark-gluino production.
Conceptual Design and Demonstration of Space Scale for Measuring Mass in Microgravity Environment
Kim, Youn-Kyu; Lee, Joo-Hee; Choi, Gi-Hyuk; Choi, Ik-Hyeon
2015-12-01
In this study, a new idea for developing a space scale for measuring mass in a microgravity environment was proposed by using the inertial force properties of an object to measure its mass. The space scale detected the momentum change of the specimen and reference masses by using a load-cell sensor as the force transducer based on Newton's laws of motion. In addition, the space scale calculated the specimen mass by comparing the inertial forces of the specimen and reference masses in the same acceleration field. By using this concept, a space scale with a capacity of 3 kg based on the law of momentum conservation was implemented and demonstrated under microgravity conditions onboard International Space Station (ISS) with an accuracy of ±1 g. By the performance analysis on the space scale, it was verified that an instrument with a compact size could be implemented and be quickly measured with a reasonable accuracy under microgravity conditions.
A low Fermi scale from a simple gaugino-scalar mass relation
Energy Technology Data Exchange (ETDEWEB)
Bruemmer, F. [International School for Advanced Studies, Trieste (Italy); Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Buchmueller, W. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2013-11-15
In supersymmetric extensions of the Standard Model, the Fermi scale of electroweak symmetry breaking is determined by the pattern of supersymmetry breaking. We present an example, motivated by a higher-dimensional GUT model, where a particular mass relation between the gauginos, third-generation squarks and Higgs fields of the MSSM leads to a Fermi scale smaller than the soft mass scale. This is in agreement with the measured Higgs boson mass. The {mu} parameter is generated independently of supersymmetry breaking, however the {mu} problem becomes less acute due to the little hierarchy between the soft mass scale and the Fermi scale as we argue. The resulting superparticle mass spectra depend on the localization of quark and lepton fields in higher dimensions. In one case, the squarks of the first two generations as well as the gauginos and higgsinos can be in the range of the LHC. Alternatively, only the higgsinos may be accessible at colliders. The lightest superparticle is the gravitino.
Bhattacharyya, Nabanita; Choudhury, Arghya; Datta, Amitava
2011-11-01
The bτjE̸T signal at the ongoing LHC experiments is simulated with Pythia in the minimal supergravity (mSUGRA) and other models of supersymmetry (SUSY) breaking. Special attention is given to the compatibility of this signature with the low mass neutralino dark matter (LMNDM) scenario consistent with the Wilkinson Microwave Anisotropy Probe data. In the mSUGRA model the above signal as well as the LMNDM scenario are strongly disfavored due to the constraints from the ongoing SUSY searches at the LHC. This tension, however, originates from the model dependent correlations among the parameters in the strong and electroweak sectors of mSUGRA. That there is no serious conflict between the LMNDM scenario and the LHC data is demonstrated by constructing generic phenomenological models such that the strong sector is unconstrained or mildly constrained by the existing LHC data and parameters in the electroweak sector, unrelated to the strong sector, yield dark matter relic density consistent with the Wilkinson Microwave Anisotropy Probe data. The proposed models, fairly insensitive to the conventional SUSY searches in the jets+E̸T and other channels, yield observable signal in the suggested channel for L≳1fb-1 of data. They are also consistent with the LMNDM scenario and can be tested by the direct dark matter search experiments in the near future. Some of these models can be realized by nonuniversal scalar and gaugino masses at the grand unified theory scale.
Top-squark in natural SUSY under current LHC run-2 data
Energy Technology Data Exchange (ETDEWEB)
Han, Chengcheng [University of Tokyo, Kavli IPMU (WPI), UTIAS, Kashiwa (Japan); Ren, Jie [Chinese Academy of Sciences, Computer Network Information Center, Beijing (China); Wu, Lei [Nanjing Normal University, Department of Physics and Institute of Theoretical Physics, Nanjing, Jiangsu (China); The University of Sydney, ARC Centre of Excellence for Particle Physics at the Terascale, School of Physics, Sydney, NSW (Australia); Yang, Jin Min [Chinese Academy of Sciences, Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Beijing (China); Zhang, Mengchao [Institute for Basic Science (IBS), Center for Theoretical Physics and Universe, Taejon (Korea, Republic of)
2017-02-15
We utilize the recent LHC-13 TeV data to study the lower mass bound on the top-squark (stop) in natural supersymmetry. We recast the LHC sparticle inclusive search of (≥1)jets + E{sub T} with α{sub T} variable, the direct stop pair search (1-lepton channel and all-hadronic channel) and the monojet analyses. We find that these searches are complementary depending on stop and higgsino masses: for a heavy stop the all-hadronic stop pair search provides the strongest bound, for an intermediate stop the inclusive SUSY analysis with α{sub T} variable is most efficient, while for a compressed stop-higgsino scenario the monojet search plays the key role. Finally, the lower mass bound on a stop is: (1) 320 GeV for compressed stop-higgsino scenario (mass splitting less than 20 GeV); (2) 765 (860) GeV for higgsinos lighter than 300 (100) GeV. (orig.)
The Effective Planck Mass and the Scale of Inflation
Antoniadis, Ignatios
2015-01-01
Observable quantities in cosmology are dimensionless, and therefore independent of the units in which they are measured. This is true of all physical quantities associated with the primordial perturbations that source cosmic microwave background anisotropies such as their amplitude and spectral properties. However, if one were to try and infer an absolute energy scale for inflation-- a priori, one of the more immediate corollaries of detecting primordial tensor modes-- one necessarily makes reference to a particular choice of units, the natural choice for which is Planck units. In this note, we discuss various aspects of how inferring the energy scale of inflation is complicated by the fact that the effective strength of gravity as seen by inflationary quanta necessarily differs from that seen by gravitational experiments at presently accessible scales. The uncertainty in the former relative to the latter has to do with the unknown spectrum of universally coupled particles between laboratory scales and the pu...
Higgs mass prediction in the MSSM at three-loop level in a pure \\overline{{ {DR}}} context
Harlander, Robert V.; Klappert, Jonas; Voigt, Alexander
2017-12-01
The impact of the three-loop effects of order α _tα _s^2 on the mass of the light CP-even Higgs boson in the { {MSSM}} is studied in a pure \\overline{{ {DR}}} context. For this purpose, we implement the results of Kant et al. (JHEP 08:104, 2010) into the C++ module Himalaya and link it to FlexibleSUSY, a Mathematica and C++ package to create spectrum generators for BSM models. The three-loop result is compared to the fixed-order two-loop calculations of the original FlexibleSUSY and of FeynHiggs, as well as to the result based on an EFT approach. Aside from the expected reduction of the renormalization scale dependence with respect to the lower-order results, we find that the three-loop contributions significantly reduce the difference from the EFT prediction in the TeV-region of the { {SUSY}} scale {M_S}. Himalaya can be linked also to other two-loop \\overline{{ {DR}}} codes, thus allowing for the elevation of these codes to the three-loop level.
Hangout with CERN: All about SUSY (S03E09)
Kahle, Kate
2013-01-01
On 4th July 2012, CERN announced the discovery of a new boson later confirmed to be "a Higgs boson", but which one? Is it the Higgs boson predicted by the Standard Model of particle physics or one of the five Higgs bosons associated with "supersymmetry", a principle that attempts to fix the few remaining problems of the Standard Model?In this week's hangout we talk about supersymmetry, also known as "SUSY". What is it, why, and how does it link with the Higgs boson? Our host CMS physicist Freya Blekman is joined by SUSY theorist John Ellis, ATLAS physicist Xavier Portell Bueso and CMS physicist Josh Thompson, as well as student intern Jayendra Minakshisundar, with CMS physicist Seth Zenz monitoring social media.Find out more about supersymmetry by watching these videos by Don Lincoln from Fermilab: What is Supersymmetry? http://www.youtube.com/watch?v=0CeLRrBAI60 and Why Supersymmetry? http://www.youtube.com/watch?v=09VbAe9JZ8YRecorded live on 20th June 20...
Leptogenesis after chaotic sneutrino inflation and the supersymmetry breaking scale
Directory of Open Access Journals (Sweden)
Fredrik Björkeroth
2017-03-01
Full Text Available We discuss resonant leptogenesis arising from the decays of two nearly-degenerate right-handed neutrinos, identified as the inflaton and stabiliser superfields in a model of chaotic sneutrino inflation. We compare an analytical estimate of the baryon asymmetry ηB in the Boltzmann approximation to a numerical solution of the full density matrix equations, and find that the analytical result fails to capture the correct physics in certain regions of parameter space. The observed baryon asymmetry can be realised for a breaking of the mass degeneracy as small as O(10−8. The origin of such a small mass splitting is explained by considering supersymmetry (SUSY breaking in supergravity, which requires a constant in the superpotential of the order of the gravitino mass m3/2 to cancel the cosmological constant. This yields additional terms in the (sneutrino mass matrices, lifting the degeneracy and linking ηB to the SUSY breaking scale. We find that achieving the correct baryon asymmetry requires a gravitino mass m3/2≥O(100 TeV.
Constraining SUSY models with Fittino using measurements before, with and beyond the LHC
Energy Technology Data Exchange (ETDEWEB)
Bechtle, Philip [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Desch, Klaus; Uhlenbrock, Mathias; Wienemann, Peter [Bonn Univ. (Germany). Physikalisches Inst.
2009-07-15
We investigate the constraints on Supersymmetry (SUSY) arising from available precision measurements using a global fit approach.When interpreted within minimal supergravity (mSUGRA), the data provide significant constraints on the masses of supersymmetric particles (sparticles), which are predicted to be light enough for an early discovery at the Large Hadron Collider (LHC). We provide predicted mass spectra including, for the first time, full uncertainty bands. The most stringent constraint is from the measurement of the anomalous magnetic moment of the muon. Using the results of these fits, we investigate to which precision mSUGRA and more general MSSM parameters can be measured by the LHC experiments with three different integrated luminosities for a parameter point which approximately lies in the region preferred by current data. The impact of the already available measurements on these precisions, when combined with LHC data, is also studied. We develop a method to treat ambiguities arising from different interpretations of the data within one model and provide a way to differentiate between values of different digital parameters of a model (e. g. sign({mu}) within mSUGRA). Finally, we show how measurements at a linear collider with up to 1 TeV centre-of-mass energy will help to improve precision by an order of magnitude. (orig.)
Impact of Porous Media and NAPL Spatial Variability at the Pore Scale on Interphase Mass Transfer
Copty, N. K.; Agaoglu, B.; Scheytt, T.
2015-12-01
Sherwood number expressions are often used to model NAPL dissolution in porous media. Such expressions are generally derived from meso-scale experiments and expressed in terms of fluid and porous medium properties averaged over some representative volume. In this work a pore network model is used to examine the influence of porous media and NAPL pore scale variability on interphase mass transfer. The focus was on assessing the impact of (i) NAPL saturation, (ii) interfacial area (iii) NAPL spatial distribution at the pore scale, (iv) grain size heterogeneity and (v) REV or domain size on the apparent interphase mass transfer. Variability of both the mass transfer coefficient that explicitly accounts for the interfacial area and the mass transfer coefficient that lumps the interfacial area was examined. It was shown that pore scale NAPL distribution and its orientation relative to the flow direction have significant impact on flow bypassing and the interphase mass transfer coefficient. This results in a complex non-linear relationship between interfacial area and the REV-based interphase mass transfer rate. In other words, explicitly accounting for the interfacial area does not eliminate the variability of the mass transfer coefficient. Moreover, grain size heterogeneity can also lead to a decrease in the interphase mass transfer. It was also shown that, even for explicitly defined flow patterns, changing the domain size over which the mass transfer process is average influences the extent of NAPL bypassing and dilution and, consequently, the interphase mass transfer.
Wu, Po-Feng
2018-02-01
Here I report the scaling relationship between the baryonic mass and scale-length of stellar discs for ∼1000 morphologically late-type galaxies. The baryonic mass-size relationship is a single power law R_\\ast ∝ M_b^{0.38} across ∼3 orders of magnitude in baryonic mass. The scatter in size at fixed baryonic mass is nearly constant and there are no outliers. The baryonic mass-size relationship provides a more fundamental description of the structure of the disc than the stellar mass-size relationship. The slope and the scatter of the stellar mass-size relationship can be understood in the context of the baryonic mass-size relationship. For gas-rich galaxies, the stars are no longer a good tracer for the baryons. High-baryonic-mass, gas-rich galaxies appear to be much larger at fixed stellar mass because most of the baryonic content is gas. The stellar mass-size relationship thus deviates from the power-law baryonic relationship, and the scatter increases at the low-stellar-mass end. These extremely gas-rich low-mass galaxies can be classified as ultra-diffuse galaxies based on the structure.
Medina, Anibal D.; Schmidt, Michael A.
2017-08-01
In the Minimal Supersymmetric Standard Model (MSSM) searches for the heaviest CP-even and CP-odd Higgs H, A to tau-lepton pairs severely constrain the parameter region for large values of tan β and light Higgs bosons H, A. We demonstrate how the experimental constraint can be avoided by new decays to light third-generation sfermions, whose left-right couplings to H can be maximised in regions of large trilinear couplings A b , A τ for sbottoms and staus, or large supersymmetric (SUSY) Higgs mass μ for stops. Due to the tan β-enhancement in the production cross-sections via gluon-fusion and in association with bottom-quark pairs for H and A, we find that down-type sfermions, in particular, sbottoms perform a better job in allowing more parameter space than up-type sfermions such as stops, which require much larger values of μ to compensate for tan β. Vacuum stability as well as flavour observables constraints and direct searches for SUSY particles are imposed. We also associate the lightest CP-even Higgs with the observed 125 GeV SM-like Higgs and impose the experimental constraints from the LHC.
Determining the Halo Mass Scale Where Galaxies Lose Their Gas
Rudnick, Gregory; Jablonka, Pascale; Moustakas, John; Aragón-Salamanca, Alfonso; Zaritsky, Dennis; Jaffé, Yara L.; De Lucia, Gabriella; Desai, Vandana; Halliday, Claire; Just, Dennis; Milvang-Jensen, Bo; Poggianti, Bianca
2017-12-01
A major question in galaxy formation is how the gas supply that fuels activity in galaxies is modulated by their environment. We use spectroscopy of a set of well-characterized clusters and groups at 0.4 10.4) of these old galaxies with weak [O II] emission. We use line ratios and compare to studies of local early-type galaxies to conclude that this gas is likely excited by post-AGB stars and hence represents a diffuse gas component in the galaxies. For cluster and group galaxies the fraction with EW([O II]) > 5 Å is f [O II] = {0.08}-0.02+0.03 and f [O II] = {0.06}-0.04+0.07, respectively. For field galaxies we find f [O II] = {0.27}-0.06+0.07, representing a 2.8σ difference between the [O II] fractions for old galaxies between the different environments. We conclude that a population of old galaxies in all environments has ionized gas that likely stems from stellar mass loss. In the field galaxies also experience gas accretion from the cosmic web, and in groups and clusters these galaxies have had their gas accretion shut off by their environment. Additionally, galaxies with emission preferentially avoid the virialized region of the cluster in position-velocity space. We discuss the implications of our results, among which is that gas accretion shutoff is likely effective at group halo masses (log { M }/{{ M }}⊙ > 12.8) and that there are likely multiple gas removal processes happening in dense environments. Based on observations obtained at the European Southern Observatory using the ESO Very Large Telescope on Cerro Paranal through ESO program 166.A-0162.
Threshold corrections to dimension-six proton decay operators in non-minimal SUSY SU(5 GUTs
Directory of Open Access Journals (Sweden)
Borut Bajc
2016-09-01
Full Text Available We calculate the high and low scale threshold corrections to the D=6 proton decay mode in supersymmetric SU(5 grand unified theories with higher-dimensional representation Higgs multiplets. In particular, we focus on a missing-partner model in which the grand unified group is spontaneously broken by the 75-dimensional Higgs multiplet and the doublet–triplet splitting problem is solved. We find that in the missing-partner model the D=6 proton decay rate gets suppressed by about 60%, mainly due to the threshold effect at the GUT scale, while the SUSY-scale threshold corrections are found to be less prominent when sfermions are heavy.
The fine-tuning cost of the likelihood in SUSY models
Ghilencea, D M
2013-01-01
In SUSY models, the fine tuning of the electroweak (EW) scale with respect to their parameters gamma_i={m_0, m_{1/2}, mu_0, A_0, B_0,...} and the maximal likelihood L to fit the experimental data are usually regarded as two different problems. We show that, if one regards the EW minimum conditions as constraints that fix the EW scale, this commonly held view is not correct and that the likelihood contains all the information about fine-tuning. In this case we show that the corrected likelihood is equal to the ratio L/Delta of the usual likelihood L and the traditional fine tuning measure Delta of the EW scale. A similar result is obtained for the integrated likelihood over the set {gamma_i}, that can be written as a surface integral of the ratio L/Delta, with the surface in gamma_i space determined by the EW minimum constraints. As a result, a large likelihood actually demands a large ratio L/Delta or equivalently, a small chi^2_{new}=chi^2_{old}+2*ln(Delta). This shows the fine-tuning cost to the likelihood ...
From X-ray binaries to quasars black holes on all mass scales black holes on all mass scales
Ho, L C; Maccarone, T J
2005-01-01
This volume brings together contributions from many of the world's leading authorities on black hole accretion. The papers within represent part of a new movement to make use of the relative advantages of studying stellar mass and supermassive black holes and to bring together the knowledge gained from the two approaches. The topics discussed here run the gamut of the state of the art in black hole observational and theoretical work-variability, spectroscopy, disk-jet connections, and multi-wavelength campaigns on black holes are all covered. Reprinted from ASTROPHYSICS AND SPACE SCIENCE, 300:1-3 (2005)
Heat and mass transfer intensification and shape optimization a multi-scale approach
2013-01-01
Is the heat and mass transfer intensification defined as a new paradigm of process engineering, or is it just a common and old idea, renamed and given the current taste? Where might intensification occur? How to achieve intensification? How the shape optimization of thermal and fluidic devices leads to intensified heat and mass transfers? To answer these questions, Heat & Mass Transfer Intensification and Shape Optimization: A Multi-scale Approach clarifies the definition of the intensification by highlighting the potential role of the multi-scale structures, the specific interfacial area, the distribution of driving force, the modes of energy supply and the temporal aspects of processes. A reflection on the methods of process intensification or heat and mass transfer enhancement in multi-scale structures is provided, including porous media, heat exchangers, fluid distributors, mixers and reactors. A multi-scale approach to achieve intensification and shape optimization is developed and clearly expla...
Directory of Open Access Journals (Sweden)
Müller H.
2010-04-01
Full Text Available The paper presents a fractal scaling model of a chain system of quantum harmonic oscillators, that reproduces some systematic features in the mass distribution of hadrons, leptons and gauge bosons.
High-scale supersymmetry, the Higgs boson mass, and gauge unification
Ellis, Sebastian A. R.; Wells, James D.
2017-09-01
Suppressing naturalness concerns, we discuss the compatibility requirements of high-scale supersymmetry breaking with the Higgs boson mass constraint and gauge coupling unification. We find that to accommodate superpartner masses significantly greater than the electroweak scale, one must introduce large nondegeneracy factors. These factors are enumerated for the Minimal Supersymmetric Standard Model, and implications for the allowed forms of supersymmetry breaking are discussed. We find that superpartner masses of arbitrarily high values are allowed for suitable values of tan β and the nondegeneracy factors. We also compute the large, but viable, threshold corrections that would be necessary at the unification scale for exact gauge coupling unification. Whether or not high-scale supersymmetry can be realized in this context is highly sensitive to the precise value of the top quark Yukawa coupling, highlighting the importance of future improvements in the top quark mass measurement.
Scaling of Body Masses and Orbital Periods in the Solar System
Directory of Open Access Journals (Sweden)
Müller H.
2015-04-01
Full Text Available The paper shows that the sequence of sorted by value body masses of planets and largest planetoids is connected by a constant scaling exponent with the sequence of their sorted by value orbital periods.
Physics at the 100 GeV mass scale: Proceedings
Energy Technology Data Exchange (ETDEWEB)
Brennan, E.C. (ed.)
1990-01-01
This report contains the following papers: heavy quarks--experimental; the theory of heavy flavour production; precision experiments in electroweak interactions; theory of precision electroweak measurements; applications of QCD to hadron-hadron collisions; W{sup +}W{sup {minus}} interactions and the search for the Higgs Boson; electroweak symmetry breaking: Higgs/Whatever; electron-positron storage rings as heavy quark factories; prospects for next-generation e{sup +}e{sup {minus}} linear colliders; current prospects for hadron colliders; hadron colliders beyond the SSC; recent results on weak decays of charmed mesons from the Mark 3 experiment; recent CLEO results on bottom and charm; recent results on B-decays from ARGUE; a review of recent results on the hadron and photoproduction of charm; search for the top quark at UA1; recent results from the UA2 experiment at the CERN {bar p}p collider; selected preliminary results from CDF; new measurement of the phase difference {Phi}{sub 00} {minus} {Phi}{sub {plus minus}} in CP--violating K{sup 0} decays; a recent result on CP violation by E731 at Fermilab; rare kaon decay experiments; CP violation; inverse muon decay, neutrino dimuon production, and a search for neutral heavy leptons at the tevatron; first results from MACRO; a superstring theory underview; recent results from TRISTAN ; measurements of the Z boson resonance parameters at SLC; decays of the Z boson; and theory--weak neutral currents and the Z mass after the SLC.
Search for squark production in R-parity violating SUSY at HERA
Stanco, L
2001-01-01
Searches for squarks produced via R-parity violating interactions in e /sup +/p collisions at a center-of-mass energy of 300 GeV have been performed at HERA using the two detectors, H1 and ZEUS, and an integrated luminosity of 37 and 48 pb/sup -1/, respectively. Squarks produced in e/sup +/-quark fusion could decay either to e/sup +/-quark or via a supersymmetric gauge decay, resulting in many possible final states. The signal has been searched for in most of R-parity violating decays and gauge decays of the squarks. No evidence for squark production was found and limits were set on the R-parity violating coupling as a function of the squark mass and the SUSY parameters, extending to domains unexplored in other direct or indirect searches. For a fixed value of the coupling, HERA results are interpreted for the first time in terms of constraints on the parameters of the mSUGRA model.
Scaling Factor Estimation Using Optimized Mass Change Strategy, Part 2: Experimental Results
DEFF Research Database (Denmark)
Fernández, Pelayo Fernández; Aenlle, Manuel López; Garcia, Luis M. Villa
2007-01-01
of the structure. On the other hand, the aforementioned objectives are difficult to achieve for all modes simultaneously. Thus, a study of the number, magnitude and location of the masses must be performed previously to the modal tests. In this paper, the mass change method was applied to estimate the scaling......The mass change method is used to estimate the scaling factors, the uncertainty is reduced when, for each mode, the frequency shift is maximized and the changes in the mode shapes are minimized, which in turn, depends on the mass change strategy chosen to modify the dynamic behavior...... factors of a steel cantilever beam. The effect of the mass change strategy was experimentally studied by performing several modal tests in which the magnitude, the location and the number of the attached masses were changed....
Searches for SUSY with other than jets + X + MET signature with the ATLAS detector
Kopeliansky, R; The ATLAS collaboration
2013-01-01
Searches for SUSY with other than jets + X + MET: EW production: Colored sparticles are heavy, the production is suppressed Gauginos & Sleptons assumed to be light enough to be produced Several scenarios including mainly
Scaling the Mode Shapes of a Building Model by Mass Changes
DEFF Research Database (Denmark)
Brincker, Rune; Rodrigues, J.; Andersen, P.
2004-01-01
It is well known, that when using natural input modal analysis, the loads are not known, and thus, the mode scaling factor that relates the magnitude of the loading to the magnitude of the response cannot be estimated. However It has been pointed out by several theoretical papers that mode shapes...... change technique can be used on a ¼ scale model of a 4-storey building. The uncertainties on the estimated scaling factors are illustrated by repeating the estimation using different mass changes....... can be scaled by performing several natural input modal analysis tests with different mass changes, observe the frequency shift introduced by the mass changes and then follow an estimation scheme that allows the user to estimate the scaling factor modeby- mode, i.e. only information of the particular...
Sum rules study and a scaling property of fragmentation mass yield curves
Energy Technology Data Exchange (ETDEWEB)
Campi, X.; Desbois, J.; Lipparini, E.
1984-04-26
Information obtained in mass yield distributions produced in protons and heavy ions induced reactions has been analyzed with two model independent sum rules. The average number of fragments of different sizes produced in one collision has been extracted. A scaling law for the mass yield has been deduced.
Impact of two mass scale oscillations on the analysis of atmospheric and reactor neutrino data
Energy Technology Data Exchange (ETDEWEB)
Gonzalez-Garcia, M.C. [Theory Division, CERN, 1211 Geneva 23 (Switzerland); Instituto de Fisica Corpuscular, Universitat de Valencia - C.S.I.C., Edificio Institutos de Paterna, Apt. 22085, 46071 Valencia (Spain); C.N. Yang Institute for Theoretical Physics, State University of New York at Stony Brook, NY (United States); Maltoni, M. [Instituto de Fisica Corpuscular, Universitat de Valencia - C.S.I.C., Edificio Institutos de Paterna, Apt. 22085, 46071 Valencia (Spain)
2003-01-01
We study the stability of the results of the three-neutrino oscillation analysis of atmospheric and reactor neutrino data under departures of the one dominant mass scale approximation. In order to do so we perform the analysis of atmospheric and reactor neutrino data in terms of three-neutrino oscillations where the effect of both mass differences is explicitly considered. We study the allowed parameter space resulting from this analysis as a function of the mass splitting hierarchy parameter {alpha}={delta}m{sup 2}/ {delta}M{sup 2} which parameterizes the departure from the one dominant mass scale approximation. We consider schemes with both direct and inverted mass ordering. Our results show that in the analysis of the atmospheric data the derived range of the largest mass splitting, {delta}M{sup 2}, is stable, while the allowed ranges of mixing angles sin {sup 2}{theta}{sub 23} and sin {sup 2}{theta}{sub 13} are wider than those obtained in the one dominant mass scale approximation. Inclusion of the CHOOZ reactor data in the analysis results in the reduction of the parameter space in particular for the mixing angles. As a consequence the final allowed ranges of the parameters from the combined analysis are only slightly broader than when obtained in the one dominant mass scale approximation. (orig.)
Nucleon electric dipole moments in high-scale supersymmetric models
Energy Technology Data Exchange (ETDEWEB)
Hisano, Junji [Kobayashi-Maskawa Institute for the Origin of Particles and the Universe (KMI),Nagoya University,Nagoya 464-8602 (Japan); Department of Physics, Nagoya University,Nagoya 464-8602 (Japan); Kavli IPMU (WPI), UTIAS, University of Tokyo,Kashiwa, Chiba 277-8584 (Japan); Kobayashi, Daiki; Kuramoto, Wataru; Kuwahara, Takumi [Department of Physics, Nagoya University,Nagoya 464-8602 (Japan)
2015-11-12
The electric dipole moments (EDMs) of electron and nucleons are promising probes of the new physics. In generic high-scale supersymmetric (SUSY) scenarios such as models based on mixture of the anomaly and gauge mediations, gluino has an additional contribution to the nucleon EDMs. In this paper, we studied the effect of the CP-violating gluon Weinberg operator induced by the gluino chromoelectric dipole moment in the high-scale SUSY scenarios, and we evaluated the nucleon and electron EDMs in the scenarios. We found that in the generic high-scale SUSY models, the nucleon EDMs may receive the sizable contribution from the Weinberg operator. Thus, it is important to compare the nucleon EDMs with the electron one in order to discriminate among the high-scale SUSY models.
Overview of SUSY results from the ATLAS experiment
Brazzale, S; The ATLAS collaboration
2014-01-01
The search for Supersymmetry remains a hot topic in high energy phisycs in the light of the discovery of the Higgs boson at a mass of 125 GeV. Supersymmetry cancels out the quadratically divergent quantum corrections on the Higgs boson mass and provides a particle which can explain the presence of Dark Matter in the Universe. Moreover, it unifies the gauge couplings of the Standard Model at high energy scales. Under certain theoretical assumptions, some of the supersymmetric particles are preferred to be lighter than TeV and their discovery can thus be accessible at the LHC. The recent results from searches for Supersymmetry with\
Scaling of human body composition to stature: new insights into body mass index 123
Heymsfield, Steven B; Gallagher, Dympna; Mayer, Laurel; Beetsch, Joel; Pietrobelli, Angelo
2009-01-01
Background Although Quetelet first reported in 1835 that adult weight scales to the square of stature, limited or no information is available on how anatomical body compartments, including adipose tissue (AT), scale to height. Objective We examined the critical underlying assumptions of adiposity–body mass index (BMI) relations and extended these analyses to major anatomical compartments: skeletal muscle (SM), bone, residual mass, weight (AT+SM+bone), AT-free mass, and organs (liver, brain). Design This was a cross-sectional analysis of 2 body-composition databases: one including magnetic resonance imaging and dual-energy X-ray absorptiometry (DXA) estimates of evaluated components in adults (total n = 411; organs = 76) and the other a larger DXA database (n = 1346) that included related estimates of fat, fat-free mass, and bone mineral mass. Results Weight, primary lean components (SM, residual mass, AT-free mass, and fat-free mass), and liver scaled to height with powers of ≈2 (all P 2 (2.31–2.48), and the fraction of weight as bone mineral mass was significantly (P < 0.001) correlated with height in women. AT scaled weakly to height with powers of ≈2, and adiposity was independent of height. Brain mass scaled to height with a power of 0.83 (P = 0.04) in men and nonsignificantly in women; the fraction of weight as brain was inversely related to height in women (P = 0.002). Conclusions These observations suggest that short and tall subjects with equivalent BMIs have similar but not identical body composition, provide new insights into earlier BMI-related observations and thus establish a foundation for height-normalized indexes, and create an analytic framework for future studies. PMID:17616766
Scaling of human body composition to stature: new insights into body mass index.
Heymsfield, Steven B; Gallagher, Dympna; Mayer, Laurel; Beetsch, Joel; Pietrobelli, Angelo
2007-07-01
Although Quetelet first reported in 1835 that adult weight scales to the square of stature, limited or no information is available on how anatomical body compartments, including adipose tissue (AT), scale to height. We examined the critical underlying assumptions of adiposity-body mass index (BMI) relations and extended these analyses to major anatomical compartments: skeletal muscle (SM), bone, residual mass, weight (AT+SM+bone), AT-free mass, and organs (liver, brain). This was a cross-sectional analysis of 2 body-composition databases: one including magnetic resonance imaging and dual-energy X-ray absorptiometry (DXA) estimates of evaluated components in adults (total n=411; organs=76) and the other a larger DXA database (n=1346) that included related estimates of fat, fat-free mass, and bone mineral mass. Weight, primary lean components (SM, residual mass, AT-free mass, and fat-free mass), and liver scaled to height with powers of approximately 2 (all P2 (2.31-2.48), and the fraction of weight as bone mineral mass was significantly (P<0.001) correlated with height in women. AT scaled weakly to height with powers of approximately 2, and adiposity was independent of height. Brain mass scaled to height with a power of 0.83 (P=0.04) in men and nonsignificantly in women; the fraction of weight as brain was inversely related to height in women (P=0.002). These observations suggest that short and tall subjects with equivalent BMIs have similar but not identical body composition, provide new insights into earlier BMI-related observations and thus establish a foundation for height-normalized indexes, and create an analytic framework for future studies.
Scanning of the supersymmetry breaking scale and the gravitino mass in supergravity
Energy Technology Data Exchange (ETDEWEB)
Farakos, Fotis [Dipartimento di Fisica “Galileo Galilei”, Universita di Padova,Via Marzolo 8, 35131 Padova (Italy); INFN, Sezione di Padova,Via Marzolo 8, 35131 Padova (Italy); Kehagias, Alex [Physics Division, National Technical University of Athens, 15780 Zografou Campus, Athens (Greece); Racco, Davide; Riotto, Antonio [Department of Theoretical Physics and Center for Astroparticle Physics (CAP),24 quai E. Ansermet, CH-1211 Geneva 4 (Switzerland)
2016-06-21
We consider the minimal three-form N=1 supergravity coupled to nilpotent three-form chiral superfields. The supersymmetry breaking is sourced by the three-forms of the chiral multiplets, while the value of the gravitino mass is controlled by the three-form of the supergravity multiplet. The three-forms can nucleate membranes which scan both the supersymmetry breaking scale and the gravitino mass. The peculiar supergravity feature that the cosmological constant is the sum of a positive contribution from the supersymmetry breaking scale and a negative contribution from the gravitino mass makes the cosmological constant jump. This can lead to a phenomenologically allowed small value of the cosmological constant even though the supersymmetry breaking scale and the gravitino mass are dynamically large.
Evaluation of mixing and mass transfer in a stirred pilot scale bioreactor utilizing CFD
DEFF Research Database (Denmark)
Bach, Christian; Yang, Jifeng; Larsson, Hilde Kristina
2017-01-01
and mass transfer performance of a high power agitated pilot scale bioreactor has been characterized using a novel combination of computational fluid dynamics (CFD) and experimental investigations. The effect of turbulence inside the vessel was predicted using a standard RANS k-ε model. Mixing time......Knowledge and prediction of mixing and mass transfer in agitated bioreactors is fundamental for process development and scale up. In particular key process parameters such as mixing time and volumetric mass transfer coefficient are essential for bioprocess development. In this work the mixing...... transfer coefficients were determined from six Trichoderma reesei fermentations at different well-defined process conditions. Similarly the mass transfer was predicted by Higbie’s penetration model from two-phase CFD simulations using a correlation of bubble size and power input, and the overall mass...
The QCD mass gap and quark deconfinement scales as mass bounds in strong gravity
Burikham, Piyabut; Harko, Tiberiu; Lake, Matthew J.
2017-11-01
Though not a part of mainstream physics, Salam's theory of strong gravity remains a viable effective model for the description of strong interactions in the gauge singlet sector of QCD, capable of producing particle confinement and asymptotic freedom, but not of reproducing interactions involving SU(3) color charge. It may therefore be used to explore the stability and confinement of gauge singlet hadrons, though not to describe scattering processes that require color interactions. It is a two-tensor theory of both strong interactions and gravity, in which the strong tensor field is governed by equations formally identical to the Einstein equations, apart from the coupling parameter, which is of order 1 {GeV}^{-1}. We revisit the strong gravity theory and investigate the strong gravity field equations in the presence of a mixing term which induces an effective strong cosmological constant, Λ f. This introduces a strong de Sitter radius for strongly interacting fermions, producing a confining bubble, which allows us to identify Λ f with the `bag constant' of the MIT bag model, B ˜eq 2 × 10^{14} {g} {cm}^{-3}. Assuming a static, spherically symmetric geometry, we derive the strong gravity TOV equation, which describes the equilibrium properties of compact hadronic objects. From this, we determine the generalized Buchdahl inequalities for a strong gravity `particle', giving rise to upper and lower bounds on the mass/radius ratio of stable, compact, strongly interacting objects. We show, explicitly, that the existence of the lower mass bound is induced by the presence of Λ _f, producing a mass gap, and that the upper bound corresponds to a deconfinement phase transition. The physical implications of our results for holographic duality in the context of the AdS/QCD and dS/QCD correspondences are also discussed.
Handberg, R.; Brogaard, K.; Miglio, A.; Bossini, D.; Elsworth, Y.; Slumstrup, D.; Davies, G. R.; Chaplin, W. J.
2017-11-01
We present an extensive peakbagging effort on Kepler data of ˜50 red giant stars in the open star cluster NGC 6819. By employing sophisticated pre-processing of the time series and Markov chain Monte Carlo techniques we extracted individual frequencies, heights and line widths for hundreds of oscillation modes. We show that the `average' asteroseismic parameter δν02, derived from these, can be used to distinguish the stellar evolutionary state between the red giant branch (RGB) stars and red clump (RC) stars. Masses and radii are estimated using asteroseismic scaling relations, both empirically corrected to obtain self-consistency and agreement with independent measures of distance, and using updated theoretical corrections. Remarkable agreement is found, allowing the evolutionary state of the giants to be determined exclusively from the empirical correction to the scaling relations. We find a mean mass of the RGB stars and RC stars in NGC 6819 to be 1.61 ± 0.02 and 1.64 ± 0.02 M⊙, respectively. The difference ΔM = -0.03 ± 0.01 M⊙ is almost insensitive to systematics, suggesting very little RGB mass loss, if any. Stars that are outliers relative to the ensemble reveal overmassive members that likely evolved via mass transfer in a blue straggler phase. We suggest that KIC 4937011, a low-mass Li-rich giant, is a cluster member in the RC phase that experienced very high mass loss during its evolution. Such over- and undermassive stars need to be considered when studying field giants, since the true age of such stars cannot be known and there is currently no way to distinguish them from normal stars.
Briggs, Martin A.; Day-Lewis, Frederick D.; Ong, John B.; Curtis, Gary P.; Lane, John W.
2013-01-01
Anomalous solute transport, modeled as rate-limited mass transfer, has an observable geoelectrical signature that can be exploited to infer the controlling parameters. Previous experiments indicate the combination of time-lapse geoelectrical and fluid conductivity measurements collected during ionic tracer experiments provides valuable insight into the exchange of solute between mobile and immobile porosity. Here, we use geoelectrical measurements to monitor tracer experiments at a former uranium mill tailings site in Naturita, Colorado. We use nonlinear regression to calibrate dual-domain mass transfer solute-transport models to field data. This method differs from previous approaches by calibrating the model simultaneously to observed fluid conductivity and geoelectrical tracer signals using two parameter scales: effective parameters for the flow path upgradient of the monitoring point and the parameters local to the monitoring point. We use regression statistics to rigorously evaluate the information content and sensitivity of fluid conductivity and geophysical data, demonstrating multiple scales of mass transfer parameters can simultaneously be estimated. Our results show, for the first time, field-scale spatial variability of mass transfer parameters (i.e., exchange-rate coefficient, porosity) between local and upgradient effective parameters; hence our approach provides insight into spatial variability and scaling behavior. Additional synthetic modeling is used to evaluate the scope of applicability of our approach, indicating greater range than earlier work using temporal moments and a Lagrangian-based Damköhler number. The introduced Eulerian-based Damköhler is useful for estimating tracer injection duration needed to evaluate mass transfer exchange rates that range over several orders of magnitude.
A novel Medical Achievement Self-efficacy Scale (MASS): a valid and reliable tool.
Turan, Sevgi; Valcke, Martin; De Maeseneer, Jan; Aper, Leen; Koole, Sebastiaan; De Wispelaere, Christine; Deketelaere, Ann; Derese, Anselme
2013-07-01
In search for an instrument to measure overall curriculum impact, we developed a Medical Achievement Self-efficacy Scale (MASS) and presented it to medical students enrolled in the different years of the integrated Ghent curriculum. The research aim was to study the validity and reliability of this new scale. MASS items were constructed based on the end terms of the Ghent curriculum, as it is related to the general competency frameworks of CanMEDs and the Five-star Doctor. The scale includes at least two items for each CanMEDS competency domain. Items were examined by seven experts in view of content and face validity. This resulted in an MASS version, containing 18 items, to be rated on a five-point Likert scale. This version was piloted on 94 undergraduate medical students enrolled at the Catholic University of Leuven. The final version was presented to 1066 undergraduate medical students enrolled at Ghent University. Reliability of the MASS scale was high (α=0.89). As expected, self-efficacy scores increased significantly over the years (F=39.11, pacademic achievement from self-efficacy scores. As expected, MASS scores significantly predicted Maastricht Progress Test scores (F=108.18, p<0.001).
Mitigating the mass dependence in the Δν scaling relation of red giant stars
Guggenberger, Elisabeth; Hekker, Saskia; Angelou, George C.; Basu, Sarbani; Bellinger, Earl P.
2017-09-01
The masses and radii of solar-like oscillators can be estimated through the asteroseismic scaling relations. These relations provide a direct link between observables, I.e. effective temperature and characteristics of the oscillation spectra, and stellar properties, I.e. mean density and surface gravity (thus mass and radius). These scaling relations are commonly used to characterize large samples of stars. Usually, the Sun is used as a reference from which the structure is scaled. However, for stars that do not have a similar structure as the Sun, using the Sun as a reference introduces systematic errors as large as 10 per cent in mass and 5 per cent in radius. Several alternatives for the reference of the scaling relation involving the large frequency separation (typical frequency difference between modes of the same degree and consecutive radial order) have been suggested in the literature. In a previous paper, we presented a reference function with a dependence on both effective temperature and metallicity. The accuracy of predicted masses and radii improved considerably when using reference values calculated from our reference function. However, the residuals indicated that stars on the red giant branch possess a mass dependence that was not accounted for. Here, we present a reference function for the scaling relation involving the large frequency separation that includes the mass dependence. This new reference function improves the derived masses and radii significantly by removing the systematic differences and mitigates the trend with νmax (frequency of maximum oscillation power) that exists when using the solar value as a reference.
Chia, Michael; Aziz, Abdul Rashid
2008-04-01
Maximal oxygen uptake, V&O2 peak, among athletes is an important foundation for all training programmes to enhance competition performance. In Singapore, the V& O2 peak of athletes is apparently not widely known. There is also controversy in the modelling or scaling of maximal oxygen uptake for differences in body size - the use of ratio-scaling remains common but allometric scaling is gaining acceptance as the method of choice. One hundred fifty-eight male (age, 21.7 +/- 4.9 years; body mass, 64.8 +/- 8.6 kg) and 28 female (age, 21.9 +/- 7.0 years; body mass, 53.0 +/- 7.0 kg) athletes completed a maximal treadmill run to volitional exhaustion, to determine VO2 peak. V& O2 peak in L/min of female athletes was 67.8% that of male athletes (2.53 +/- 0.29 vs. 3.73 +/- 0.53 L/min), and V& O2 peak in mL/kg BM1.0/min of female athletes was 83.4% of male athletes (48.4 +/- 7.2 vs. 58.0 +/- 6.9 mL/kg BM1.0/min). Ratio-scaling of V& O2 peak did not create a size-free variable and was unsuitable as a scaling method. Instead, V& O2 peak, that was independent of the effect of body mass in male and female athletes, was best described using 2 separate and allometrically-derived sex-specific regression equations; these were V& O2 peak = 2.23 BM0.67 for male athletes and V& O2 peak = 2.23 BM0.24 for female athletes.
DEFF Research Database (Denmark)
Merryman Boncori, John Peter; Dall, Jørgen; Ahlstrøm, A. P.
2010-01-01
This paper describes the validation of an ice-motion processing chain developed for the PROMICE project – a long-term program funded by the Danish ministry of Climate and Energy to monitor the mass budget of the Greenland ice-sheet. The processor, named SUSIE, (Scripts and Utilities for SAR Ice......-motion Estimation) uses a combination of differential SAR interferometry (DInSAR) and offset-tracking techniques to measure the horizontal velocity components, providing also an estimate of the corresponding measurement error standard deviations. In this performance of SUSIE’s offset-tracking chain is compared...
LHC phenomenology of natural MSSM with non-universal gaugino masses at the unification scale
Energy Technology Data Exchange (ETDEWEB)
Abe, Hiroyuki; Kawamura, Junichiro [Department of Physics, Waseda University,Tokyo 169-8555 (Japan); Omura, Yuji [Kobayashi-Maskawa Institute for the Origin of Particles and the Universe (KMI),Nagoya University,Nagoya 464-8602 (Japan)
2015-08-18
In this letter, we study collider phenomenology in the supersymmetric Standard Model with a certain type of non-universal gaugino masses at the gauge coupling unification scale, motivated by the little hierarchy problem. In this scenario, especially the wino mass is relatively large compared to the gluino mass at the unification scale, and the heavy wino can relax the fine-tuning of the higgsino mass parameter, so-called μ-parameter. Besides, it will enhance the lightest Higgs boson mass due to the relatively large left-right mixing of top squarks through the renormalization group (RG) effect. Then 125 GeV Higgs boson could be accomplished, even if the top squarks are lighter than 1 TeV and the μ parameter is within a few hundreds GeV. The right-handed top squark tends to be lighter than the other sfermions due to the RG runnings, then we focus on the top squark search at the LHC. Since the top squark is almost right-handed and the higgsinos are nearly degenerate, 2b+E{sub T}{sup miss} channel is the most sensitive to this scenario. We figure out current and expected experimental bounds on the lightest top squark mass and model parameters at the gauge coupling unification scale.
A universal minimal mass scale for present-day central black holes
Alexander, Tal; Bar-Or, Ben
2017-08-01
The early stages of massive black hole growth are poorly understood1. High-luminosity active galactic nuclei at very high redshift2 z further imply rapid growth soon after the Big Bang. Suggested formation mechanisms typically rely on the extreme conditions found in the early Universe (very low metallicity, very high gas or star density). It is therefore plausible that these black hole seeds were formed in dense environments, at least a Hubble time ago (z > 1.8 for a look-back time of tH = 10 Gyr)3. Intermediate-mass black holes (IMBHs) of mass M• ≈ 102-105 solar masses, M⊙, are the long-sought missing link4 between stellar black holes, born of supernovae5, and massive black holes6, tied to galaxy evolution by empirical scaling relations7,8. The relation between black hole mass, M•, and stellar velocity dispersion, σ★, that is observed in the local Universe over more than about three decades in massive black hole mass, correlates M• and σ★ on scales that are well outside the massive black hole's radius of dynamical influence6, rh≈GM•/σ★2. We show that low-mass black hole seeds that accrete stars from locally dense environments in galaxies following a universal M•/σ★ relation9,10 grow over the age of the Universe to be above M0≈3×105M⊙ (5% lower limit), independent of the unknown seed masses and formation processes. The mass M0 depends weakly on the uncertain formation redshift, and sets a universal minimal mass scale for present-day black holes. This can explain why no IMBHs have yet been found6, and it implies that present-day galaxies with σ★ gravitational wave mergers12.
Q{sub 6} as the flavor symmetry in a non-minimal SUSY SU(5) model
Energy Technology Data Exchange (ETDEWEB)
Gomez-Izquierdo, J.C.; Mondragon, M [Universidad Nacional Autonoma de Mexico, Instituto de Fisica, Mexico, DF (Mexico); Gonzalez-Canales, F. [Benemerita Universidad Autonoma, Facultad de Ciencias de la Electronica, Puebla, Puebla (Mexico); Instituto de Fisica Corpuscular-CSIC/Universitat de Valencia, AHEP Group, Paterna, Valencia (Spain)
2015-05-15
We present a non-minimal renormalizable SUSY SU(5) model, with extended Higgs sector and right-handed neutrinos, where the flavor sector exhibits a Q{sub 6} flavor symmetry. We analyzed the simplest version of this model, in which R-parity is conserved and the right-handed neutrino masses in the flavor doublet are considered with and without degeneracy. We find the generic form of the mass matrices both in the quark and lepton sectors. We reproduce, according to current data, the mixing in the CKM matrix. In the leptonic sector, in the general case where the right-handed neutrino masses are not degenerate, we find that the values for the solar, atmospheric, and reactor mixing angles are in very good agreement with the experimental data, both for a normal and an inverted hierarchy. In the particular case where the right-handed neutrinos masses are degenerate, the model predicts a strong inverted hierarchy spectrum and a sum rule among the neutrino masses. In this case the atmospheric and solar angles are in very good agreement with experimental data, and the reactor one is different from zero, albeit too small (θ{sub 13}{sup l{sup t{sup h}}}). This value constitutes a lower bound for θ{sub 13} in the general case.We also find the range of the values for the neutrino masses in each case. (orig.)
Ecology of ontogenetic body-mass scaling of gill surface area in a freshwater crustacean.
Glazier, Douglas S; Paul, David A
2017-06-01
Several studies have documented ecological effects on intraspecific and interspecific body-size scaling of metabolic rate. However, little is known about how various ecological factors may affect the scaling of respiratory structures supporting oxygen uptake for metabolism. To our knowledge, our study is the first to provide evidence for ecological effects on the scaling of a respiratory structure among conspecific populations of any animal. We compared the body-mass scaling of gill surface area (SA) among eight spring-dwelling populations of the amphipod crustacean Gammarus minus Although gill SA scaling was not related to water temperature, conductivity or G. minus population density, it was significantly related to predation regime (and secondarily to pH). Body-mass scaling slopes for gill SA were significantly lower in four populations inhabiting springs with fish predators than for four populations in springs without fish (based on comparing means of the population slopes, or slopes calculated from pooled raw data for each comparison group). As a result, gill SA was proportionately smaller in adult amphipods from springs with versus without fish. This scaling difference paralleled similar differences in the scaling exponents for the rates of growth and resting metabolic rate. We hypothesized that gill SA scaling is shallower in fish-containing versus fishless spring populations of G. minus because of effects of size-selective predation on size-specific growth and activity that in turn affect the scaling of oxygen demand and concomitantly the gill capacity (SA) for oxygen uptake. Although influential theory claims that metabolic scaling is constrained by internal body design, our study builds on previous work to show that the scaling of both metabolism and the respiratory structures supporting it may be ecologically sensitive and evolutionarily malleable. © 2017. Published by The Company of Biologists Ltd.
The BSM-AI project: SUSY-AI-generalizing LHC limits on supersymmetry with machine learning.
Caron, Sascha; Kim, Jong Soo; Rolbiecki, Krzysztof; de Austri, Roberto Ruiz; Stienen, Bob
2017-01-01
A key research question at the Large Hadron Collider is the test of models of new physics. Testing if a particular parameter set of such a model is excluded by LHC data is a challenge: it requires time consuming generation of scattering events, simulation of the detector response, event reconstruction, cross section calculations and analysis code to test against several hundred signal regions defined by the ATLAS and CMS experiments. In the BSM-AI project we approach this challenge with a new idea. A machine learning tool is devised to predict within a fraction of a millisecond if a model is excluded or not directly from the model parameters. A first example is SUSY-AI, trained on the phenomenological supersymmetric standard model (pMSSM). About 300, 000 pMSSM model sets - each tested against 200 signal regions by ATLAS - have been used to train and validate SUSY-AI. The code is currently able to reproduce the ATLAS exclusion regions in 19 dimensions with an accuracy of at least [Formula: see text]. It has been validated further within the constrained MSSM and the minimal natural supersymmetric model, again showing high accuracy. SUSY-AI and its future BSM derivatives will help to solve the problem of recasting LHC results for any model of new physics. SUSY-AI can be downloaded from http://susyai.hepforge.org/. An on-line interface to the program for quick testing purposes can be found at http://www.susy-ai.org/.
The BSM-AI project: SUSY-AI-generalizing LHC limits on supersymmetry with machine learning
Energy Technology Data Exchange (ETDEWEB)
Caron, Sascha [Radboud Universiteit, Institute for Mathematics, Astro- and Particle Physics IMAPP, Nijmegen (Netherlands); Nikhef, Amsterdam (Netherlands); Kim, Jong Soo [UAM/CSIC, Instituto de Fisica Teorica, Madrid (Spain); Rolbiecki, Krzysztof [UAM/CSIC, Instituto de Fisica Teorica, Madrid (Spain); University of Warsaw, Faculty of Physics, Warsaw (Poland); Ruiz de Austri, Roberto [IFIC-UV/CSIC, Instituto de Fisica Corpuscular, Valencia (Spain); Stienen, Bob [Radboud Universiteit, Institute for Mathematics, Astro- and Particle Physics IMAPP, Nijmegen (Netherlands)
2017-04-15
A key research question at the Large Hadron Collider is the test of models of new physics. Testing if a particular parameter set of such a model is excluded by LHC data is a challenge: it requires time consuming generation of scattering events, simulation of the detector response, event reconstruction, cross section calculations and analysis code to test against several hundred signal regions defined by the ATLAS and CMS experiments. In the BSM-AI project we approach this challenge with a new idea. A machine learning tool is devised to predict within a fraction of a millisecond if a model is excluded or not directly from the model parameters. A first example is SUSY-AI, trained on the phenomenological supersymmetric standard model (pMSSM). About 300, 000 pMSSM model sets - each tested against 200 signal regions by ATLAS - have been used to train and validate SUSY-AI. The code is currently able to reproduce the ATLAS exclusion regions in 19 dimensions with an accuracy of at least 93%. It has been validated further within the constrained MSSM and the minimal natural supersymmetric model, again showing high accuracy. SUSY-AI and its future BSM derivatives will help to solve the problem of recasting LHC results for any model of new physics. SUSY-AI can be downloaded from http://susyai.hepforge.org/. An on-line interface to the program for quick testing purposes can be found at http://www.susy-ai.org/. (orig.)
The BSM-AI project: SUSY-AI-generalizing LHC limits on supersymmetry with machine learning
Caron, Sascha; Kim, Jong Soo; Rolbiecki, Krzysztof; de Austri, Roberto Ruiz; Stienen, Bob
2017-04-01
A key research question at the Large Hadron Collider is the test of models of new physics. Testing if a particular parameter set of such a model is excluded by LHC data is a challenge: it requires time consuming generation of scattering events, simulation of the detector response, event reconstruction, cross section calculations and analysis code to test against several hundred signal regions defined by the ATLAS and CMS experiments. In the BSM-AI project we approach this challenge with a new idea. A machine learning tool is devised to predict within a fraction of a millisecond if a model is excluded or not directly from the model parameters. A first example is SUSY-AI, trained on the phenomenological supersymmetric standard model (pMSSM). About 300, 000 pMSSM model sets - each tested against 200 signal regions by ATLAS - have been used to train and validate SUSY-AI. The code is currently able to reproduce the ATLAS exclusion regions in 19 dimensions with an accuracy of at least 93%. It has been validated further within the constrained MSSM and the minimal natural supersymmetric model, again showing high accuracy. SUSY-AI and its future BSM derivatives will help to solve the problem of recasting LHC results for any model of new physics. SUSY-AI can be downloaded from http://susyai.hepforge.org/. An on-line interface to the program for quick testing purposes can be found at http://www.susy-ai.org/.
Final Report: Geoelectrical Measurement of Multi-Scale Mass Transfer Parameters
Energy Technology Data Exchange (ETDEWEB)
Haggerty, Roy [Oregon State Univ., Corvallis, OR (United States); Day-Lewis, Fred [U.S. Geological Survey, Storrs, CT (United States); Singha, Kamini [Colorado School of Mines, Golden, CO (United States); Johnson, Timothy [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Binley, Andrew [Lancaster Univ. (United Kingdom); Lane, John [U.S. Geological Survey, Storrs, CT (United States)
2014-03-20
Mass transfer affects contaminant transport and is thought to control the efficiency of aquifer remediation at a number of sites within the Department of Energy (DOE) complex. An improved understanding of mass transfer is critical to meeting the enormous scientific and engineering challenges currently facing DOE. Informed design of site remedies and long-term stewardship of radionuclide-contaminated sites will require new cost-effective laboratory and field techniques to measure the parameters controlling mass transfer spatially and across a range of scales. In this project, we sought to capitalize on the geophysical signatures of mass transfer. Previous numerical modeling and pilot-scale field experiments suggested that mass transfer produces a geoelectrical signature—a hysteretic relation between sampled (mobile-domain) fluid conductivity and bulk (mobile + immobile) conductivity—over a range of scales relevant to aquifer remediation. In this work, we investigated the geoelectrical signature of mass transfer during tracer transport in a series of controlled experiments to determine the operation of controlling parameters, and also investigated the use of complex-resistivity (CR) as a means of quantifying mass transfer parameters in situ without tracer experiments. In an add-on component to our grant, we additionally considered nuclear magnetic resonance (NMR) to help parse mobile from immobile porosities. Including the NMR component, our revised study objectives were to: 1. Develop and demonstrate geophysical approaches to measure mass-transfer parameters spatially and over a range of scales, including the combination of electrical resistivity monitoring, tracer tests, complex resistivity, nuclear magnetic resonance, and materials characterization; and 2. Provide mass-transfer estimates for improved understanding of contaminant fate and transport at DOE sites, such as uranium transport at the Hanford 300 Area. To achieve our objectives, we implemented a 3
On the MSSM Higgsino mass and fine tuning
Ross, Graham G.
2016-08-10
It is often argued that low fine tuning in the MSSM necessarily requires a rather light Higgsino. In this note we show that this need not be the case when a more complete set of soft SUSY breaking mass terms are included. In particular an Higgsino mass term, that correlates the $\\mu-$term contribution with the soft SUSY-breaking Higgsino masses, significantly reduces the fine tuning even for Higgsinos in the TeV mass range where its relic abundance means it can make up all the dark matter.
Scale analysis and integral approximation applied to heat and mass transfer in packed beds
Sman, van der R.G.M.
2008-01-01
In this paper, we apply two mathematical tools for the analysis of models describing heat and mass transfer in dispersed systems, namely scale analysis and integral approximation. The particular model investigated is a 1-D model describing the cooling of packed beds of fresh agricultural produce
Basal metabolic rate scaled to body mass between species by the ...
African Journals Online (AJOL)
This implies that the whole body fractal vascular dimension D is also applicable to all organs or collections of organs such as the viscera and skeletal muscle. The principal reason that basal metabolic rate (BMR) and MMR scale with different power exponents to whole body mass is that MMR is due mainly to respiration in ...
Ontogenetic scaling of fish metabolism in the mouse-to-elephant mass magnitude range
DEFF Research Database (Denmark)
Moran, Damian; Wells, R.M.G.
2007-01-01
, and are therefore not statistically comparable. In this study the metabolic rate of yellowtail kingfish was measured from 0.6 mg-2.2 kg, a mass range comparable to that between a mouse and an elephant. Linear regression of the log transformed data resulted in a scaling exponent of 0.90 and high correlation...
Sgoldstino-less inflation and low energy SUSY breaking
Argurio, Riccardo; Coone, Dries; Heurtier, Lucien; Mariotti, Alberto
2017-07-01
We assess the range of validity of sgoldstino-less inflation in a scenario of low energy supersymmetry breaking. We first analyze the consistency conditions that an effective theory of the inflaton and goldstino superfields should satisfy in order to be faithfully described by a sgoldstino-less model. Enlarging the scope of previous studies, we investigate the case where the effective field theory cut-off, and hence also the sgoldstino mass, are inflaton-dependent. We then introduce a UV complete model where one can realize successfully sgoldstino-less inflation and gauge mediation of supersymmetry breaking, combining the α-attractor mechanism and a weakly coupled model of spontaneous breaking of supersymmetry. In this class of models we find that, given current limits on superpartner masses, the gravitino mass has a lower bound of the order of the MeV, i.e. we cannot reach very low supersymmetry breaking scales. On the plus side, we recognize that in this framework, one can derive the complete superpartner spectrum as well as compute inflation observables, the reheating temperature, and address the gravitino overabundance problem. We then show that further constraints come from collider results and inflation observables. Their non trivial interplay seems a staple feature of phenomenological studies of supersymmetric inflationary models.
Body mass explains characteristic scales of habitat selection in terrestrial mammals
Fisher, Jason T; Anholt, Brad; Volpe, John P
2011-01-01
Niche theory in its various forms is based on those environmental factors that permit species persistence, but less work has focused on defining the extent, or size, of a species’ environment: the area that explains a species’ presence at a point in space. We proposed that this habitat extent is identifiable from a characteristic scale of habitat selection, the spatial scale at which habitat best explains species’ occurrence. We hypothesized that this scale is predicted by body size. We tested this hypothesis on 12 sympatric terrestrial mammal species in the Canadian Rocky Mountains. For each species, habitat models varied across the 20 spatial scales tested. For six species, we found a characteristic scale; this scale was explained by species’ body mass in a quadratic relationship. Habitat measured at large scales best-predicted habitat selection in both large and small species, and small scales predict habitat extent in medium-sized species. The relationship between body size and habitat selection scale implies evolutionary adaptation to landscape heterogeneity as the driver of scale-dependent habitat selection. PMID:22393519
DEFF Research Database (Denmark)
Rapetti Serra, David Angelo
Using a data set of 238 cluster detections drawn from the ROSAT All-Sky Survey and X-ray follow-up observations from the Chandra X-ray Observatory and/or ROSAT for 94 of those clusters we obtain tight constraints on dark energy, both luminosity-mass and temperature-mass scaling relations, neutrino...... properties and gravity. I will present the novel statistical framework we employed to self-consistently and simultaneously constrain cosmology and observable-mass scaling relations accounting for survey biases, parameter covariances and systematic uncertainties. Allowing the dark energy equation of state...... and the linear growth index to take any constant values, we find no evidence for departures from the standard cosmological paradigm – General Relativity plus a cosmological constant and cold dark matter. I will review in detail our results and demonstrate the power of X-ray cluster studies to constrain both...
Cumming, Graeme S; Henry, Dominic A W; Reynolds, Chevonne
2017-07-01
Ecological theory predicts that if animals with very similar dietary requirements inhabit the same landscape, then they should avoid niche overlap by either exploiting food resources at different times or foraging at different spatial scales. Similarly, it is often assumed that animals that fall in different body mass modes and share the same body plan will use landscapes at different spatial scales. We developed a new methodological framework for understanding the scaling of foraging (i.e. the range and distribution of scales at which animals use their landscapes) by applying a combination of three well-established methods to satellite telemetry data to quantify foraging patch size distributions: (1) first-passage time analysis; (2) a movement-based kernel density estimator; and (3) statistical comparison of resulting histograms and tests for multimodality. We demonstrate our approach using two sympatric, ecologically similar species of African ducks with quite different body masses: Egyptian Geese (actually a shelduck), and Red-billed Teal. Contrary to theoretical predictions, the two species, which are sympatric throughout the year, foraged at almost identical spatial scales. Our results show how ecologists can use GPS tracking data to explicitly quantify and compare the scales of foraging by different organisms within an animal community. Our analysis demonstrates both a novel approach to foraging data analysis and the need for caution when making assumptions about the relationships among niche separation, diet, and foraging scale.
The impact of a 126 GeV Higgs on the neutralino mass
Directory of Open Access Journals (Sweden)
C. Beskidt
2014-11-01
Full Text Available We highlight the differences of the dark matter sector between the constrained minimal supersymmetric SM (CMSSM and the next-to-minimal supersymmetric SM (NMSSM including the 126 GeV Higgs boson using GUT scale parameters. In the dark matter sector the two models are quite orthogonal: in the CMSSM the WIMP is largely a bino and requires large masses from the LHC constraints. In the NMSSM the WIMP has a large singlino component and is therefore independent of the LHC SUSY mass limits. The light NMSSM neutralino mass range is of interest for the hints concerning light WIMPs in the Fermi data. Such low mass WIMPs cannot be explained in the CMSSM. Furthermore, prospects for discovery of XENON1T and LHC at 14 TeV are given.
Split-Family SUSY, U(2)^5 Flavour Symmetry and Neutrino Physics
Jones-Pérez, Joel
2014-01-01
In split-family SUSY, one can use a U(2)^3 symmetry to protect flavour observables in the quark sector from SUSY contributions. However, attempts to extend this procedure to the lepton sector by using an analogous U(2)^5 symmetry fail to reproduce the neutrino data without introducing some form of fine-tuning. In this work, we solve this problem by shifting the U(2)^2 symmetry acting on leptons towards the second and third generations. This allows neutrino data to be reproduced without much difficulties, as well as protecting the leptonic flavour observables from SUSY. Key signatures are a $\\mu\\to e\\gamma$ branching ratio possibly observable in the near future, as well as having selectrons as the lightest sleptons.
Multi-Scale Modeling and the Eddy-Diffusivity/Mass-Flux (EDMF) Parameterization
Teixeira, J.
2015-12-01
Turbulence and convection play a fundamental role in many key weather and climate science topics. Unfortunately, current atmospheric models cannot explicitly resolve most turbulent and convective flow. Because of this fact, turbulence and convection in the atmosphere has to be parameterized - i.e. equations describing the dynamical evolution of the statistical properties of turbulence and convection motions have to be devised. Recently a variety of different models have been developed that attempt at simulating the atmosphere using variable resolution. A key problem however is that parameterizations are in general not explicitly aware of the resolution - the scale awareness problem. In this context, we will present and discuss a specific approach, the Eddy-Diffusivity/Mass-Flux (EDMF) parameterization, that not only is in itself a multi-scale parameterization but it is also particularly well suited to deal with the scale-awareness problems that plague current variable-resolution models. It does so by representing small-scale turbulence using a classic Eddy-Diffusivity (ED) method, and the larger-scale (boundary layer and tropospheric-scale) eddies as a variety of plumes using the Mass-Flux (MF) concept.
Energy Technology Data Exchange (ETDEWEB)
Gosdzik, Bjoern
2011-03-15
In November 2009 the ATLAS experiment started operation at the Large Hadron Collider (LHC) at CERN. The detector is optimized to search for the Higgs Boson and new physics at the TeV scale. Until the end of the data-taking period with proton-proton collisions on November 3rd, 2010, the ATLAS detector recorded an integrated luminosity of 45.0 pb{sup -1} at a center-of-mass energy of {radical}(s) = 7 TeV. In many signals of the Standard Model and new physics (e.g. SUSY and Higgs) {tau}-leptons play an important role. A cut-based approach for the identification of hadronically decaying {tau}-leptons is being used, particularly for the first data-taking period. Using Monte Carlo Data, the development of a cut-based identification method for hadronically decaying {tau}-lepton with the ATLAS detector at the Large Hadron Collider (LHC) with a center-of-mass energy of {radical}(s) = 14 TeV is presented. The separation of signal and the large QCD jet background is a challenge to the identification of hadronically decaying {tau}-lepton. The identification is separated into two methods: the calorimeter-based method uses exclusive calorimeter information, while the calorimeter+track-based method combines calorimeter and tracking information. The cut optimization is separately accomplished for {tau} candidates with one charged decay product (1-prong) and {tau} candidates with three charged decay products (3-prong). Additionally the optimisation is split into bins of the visible transverse energy of the {tau} candidate (E{sub T}{sup vis}). First of all the optimization is presented and afterwards the performance of the cut-based identification method is discussed. The reconstruction efficiency for {tau}-leptons is determined by comparing first data corresponding to an integrated luminosity of 244 nb{sup -1} and Monte Carlo simulation. The effect of systematic uncertainties is investigated. The CP violation predicted by the Standard Model is not sufficient to explain the matter
Large-scale correlations in gas traced by Mg II absorbers around low-mass galaxies
Kauffmann, Guinevere
2018-03-01
The physical origin of the large-scale conformity in the colours and specific star formation rates of isolated low-mass central galaxies and their neighbours on scales in excess of 1 Mpc is still under debate. One possible scenario is that gas is heated over large scales by feedback from active galactic nuclei (AGNs), leading to coherent modulation of cooling and star formation between well-separated galaxies. In this Letter, the metal line absorption catalogue of Zhu & Ménard is used to probe gas out to large projected radii around a sample of a million galaxies with stellar masses ˜1010M⊙ and photometric redshifts in the range 0.4 statistically significant excess of Mg II absorbers is present around the red-low-mass galaxies compared to their blue counterparts out to projected radii of 10 Mpc. In addition, the equivalent width distribution function of Mg II absorbers around low-mass galaxies is shown to be strongly affected by the presence of a nearby (Rp < 2 Mpc) radio-loud AGNs out to projected radii of 5 Mpc.
Basin-scale heterogeneity in Antarctic precipitation and its impact on surface mass variability
Directory of Open Access Journals (Sweden)
J. Fyke
2017-11-01
Full Text Available Annually averaged precipitation in the form of snow, the dominant term of the Antarctic Ice Sheet surface mass balance, displays large spatial and temporal variability. Here we present an analysis of spatial patterns of regional Antarctic precipitation variability and their impact on integrated Antarctic surface mass balance variability simulated as part of a preindustrial 1800-year global, fully coupled Community Earth System Model simulation. Correlation and composite analyses based on this output allow for a robust exploration of Antarctic precipitation variability. We identify statistically significant relationships between precipitation patterns across Antarctica that are corroborated by climate reanalyses, regional modeling and ice core records. These patterns are driven by variability in large-scale atmospheric moisture transport, which itself is characterized by decadal- to centennial-scale oscillations around the long-term mean. We suggest that this heterogeneity in Antarctic precipitation variability has a dampening effect on overall Antarctic surface mass balance variability, with implications for regulation of Antarctic-sourced sea level variability, detection of an emergent anthropogenic signal in Antarctic mass trends and identification of Antarctic mass loss accelerations.
The mass dependence of dark matter halo alignments with large-scale structure
Piras, Davide; Joachimi, Benjamin; Schäfer, Björn Malte; Bonamigo, Mario; Hilbert, Stefan; van Uitert, Edo
2018-02-01
Tidal gravitational forces can modify the shape of galaxies and clusters of galaxies, thus correlating their orientation with the surrounding matter density field. We study the dependence of this phenomenon, known as intrinsic alignment (IA), on the mass of the dark matter haloes that host these bright structures, analysing the Millennium and Millennium-XXL N-body simulations. We closely follow the observational approach, measuring the halo position-halo shape alignment and subsequently dividing out the dependence on halo bias. We derive a theoretical scaling of the IA amplitude with mass in a dark matter universe, and predict a power law with slope βM in the range 1/3 to 1/2, depending on mass scale. We find that the simulation data agree with each other and with the theoretical prediction remarkably well over three orders of magnitude in mass, with the joint analysis yielding an estimate of β M = 0.36^{+0.01}_{-0.01}. This result does not depend on redshift or on the details of the halo shape measurement. The analysis is repeated on observational data, obtaining a significantly higher value, β M = 0.56^{+0.05}_{-0.05}. There are also small but significant deviations from our simple model in the simulation signals at both the high- and low-mass end. We discuss possible reasons for these discrepancies, and argue that they can be attributed to physical processes not captured in the model or in the dark matter-only simulations.
Mass balances of dissolved gases at river network scales across biomes.
Wollheim, W. M.; Stewart, R. J.; Sheehan, K.
2016-12-01
Estimating aquatic metabolism and gas fluxes at broad spatial scales is needed to evaluate the role of aquatic ecosystems in continental carbon cycles. We applied a river network model, FrAMES, to quantify the mass balances of dissolved oxygen at river network scales across five river networks in different biomes. The model accounts for hydrology; spatially varying re-aeration rates due to flow, slope, and water temperature; gas inputs via terrestrial runoff; variation in light due to canopy cover and water depth; benthic gross primary production; and benthic respiration. The model was parameterized using existing groundwater information and empirical relationships of GPP, R, and re-aeration, and was tested using dissolved oxygen patterns measured throughout river networks. We found that during summers, internal aquatic production dominates the river network mass balance of Kings Cr., Konza Prairie, KS (16.3 km2), whereas terrestrial inputs and aeration dominate the network mass balance at Coweeta Cr., Coweeta Forest, NC (15.7 km2). At network scales, both river networks are net heterotrophic, with Coweeta more so than Kings Cr. (P:R 0.6 vs. 0.7, respectively). The river network of Kings Creek showed higher network-scale GPP and R compared to Coweeta, despite having a lower drainage density because streams are on average wider so cumulative benthic surface areas are similar. Our findings suggest that the role of aquatic systems in watershed carbon balances will depend on interactions of drainage density, channel hydraulics, terrestrial vegetation, and biological activity.
Tornambe, Peter; The ATLAS collaboration
2017-01-01
This proceeding summarizes a search for supersymmetric phenomena in final states with two leptons (electrons or muons) of the same electric charge or three leptons, jets and missing transverse energy. While the same-sign or three leptons signature is present in many SUSY scenarios, SM processes leading to such events have very small cross-sections. Therefore, this analysis benefits from a small SM background in the signal regions leading to a good sensitivity especially in SUSY scenarios with compressed mass spectra or in which the R-parity is not conserved. The search was performed with the full dataset recorded with the ATLAS detector during the year 2015 and 2016 corresponding to a total integrated luminosity of 36.1 fb$^{-1}$. No significant excess above the Standard Model expectations is observed. The results are interpreted in several simplified supersymmetric models featuring R-parity conservation or R-parity violation, extending the exclusion limits from previous searches.
Energy Technology Data Exchange (ETDEWEB)
Herrmann, A M; Ritz, K; Nunan, N; Clode, P L; Pett-Ridge, J; Kilburn, M R; Murphy, D V; O' Donnell, A G; Stockdale, E A
2006-10-18
Soils are structurally heterogeneous across a wide range of spatio-temporal scales. Consequently, external environmental conditions do not have a uniform effect throughout the soil, resulting in a large diversity of micro-habitats. It has been suggested that soil function can be studied without explicit consideration of such fine detail, but recent research has indicated that the micro-scale distribution of organisms may be of importance for a mechanistic understanding of many soil functions. Due to a lack of techniques with adequate sensitivity for data collection at appropriate scales, the question 'How important are various soil processes acting at different scales for ecological function?' is challenging to answer. The nano-scale secondary ion mass spectrometer (NanoSIMS) represents the latest generation of ion microprobes which link high-resolution microscopy with isotopic analysis. The main advantage of NanoSIMS over other secondary ion mass spectrometers is the ability to operate at high mass resolution, whilst maintaining both excellent signal transmission and spatial resolution ({approx}50 nm). NanoSIMS has been used previously in studies focusing on presolar materials from meteorites, in material science, biology, geology and mineralogy. Recently, the potential of NanoSIMS as a new tool in the study of biophysical interfaces in soils has been demonstrated. This paper describes the principles of NanoSIMS and discusses the potential of this tool to contribute to the field of biogeochemistry and soil ecology. Practical considerations (sample size and preparation, simultaneous collection of isotopes, mass resolution, isobaric interference and quantification of the isotopes of interest) are discussed. Adequate sample preparation avoiding biases in the interpretation of NanoSIMS data due to artifacts and identification of regions-of interest are of most concerns in using NanoSIMS as a new tool in biogeochemistry and soil ecology. Finally, we review
The proton mass and scale-invariant hidden local symmetry for compressed baryonic matter
Rho, Mannque
2017-12-01
I discuss how to access dense baryonic matter of compact stars by combining hidden local symmetry (HLS) of light-quark vector mesons with spontaneously broken scale invariance of a (pseudo) Nambu-Goldstone boson, dilaton, in a description that parallels the approach to dilatonic Higgs. Some of the surprising observations are that the bulk of proton mass is not Nambu-Goldstonian, parity doubling emerges at high density and the EoS of baryonic matter can be soft enough for heavy-ion processes at low density and stiff enough at high density for ˜ 2 solar mass neutron stars.
Three-body decays of sleptons in models with non-universal Higgs masses
Kraml, Sabine
2008-01-01
We compute the three-body decays of charged sleptons and sneutrinos into other sleptons. These decays are of particular interest in SUSY-breaking models with non-universal Higgs mass parameters, where the left-chiral sleptons can be lighter than the right-chiral ones, and lighter than the lightest neutralino. We present the formulas for the three-body decay widths together with a numerical analysis in the context of gaugino-mediated SUSY breaking with a gravitino LSP.
Predictions of the marviken subcooled critical mass flux using the critical flow scaling parameters
Energy Technology Data Exchange (ETDEWEB)
Park, Choon Kyung; Chun, Se Young; Cho, Seok; Yang, Sun Ku; Chung, Moon Ki [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)
1997-12-31
A total of 386 critical flow data points from 19 runs of 27 runs in the Marviken Test were selected and compared with the predictions by the correlations based on the critical flow scaling parameters. The results show that the critical mass flux in the very large diameter pipe can be also characterized by two scaling parameters such as discharge coefficient and dimensionless subcooling (C{sub d,ref} and {Delta}{Tau}{sup *} {sub sub}). The agreement between the measured data and the predictions are excellent. 8 refs., 8 figs. 1 tab. (Author)
ADVANTAGES OF RAPID METHOD FOR DETERMINING SCALE MASS AND DECARBURIZED LAYER OF ROLLED COIL STEEL
Directory of Open Access Journals (Sweden)
E. V. Parusov
2016-08-01
Full Text Available Purpose. To determine the universal empirical relationships that allow for operational calculation of scale mass and decarbonized layer depth based on the parameters of the technological process for rolled coil steel production. Methodology. The research is carried out on the industrial batches of the rolled steel of SAE 1006 and SAE 1065 grades. Scale removability was determined in accordance with the procedure of «Bekaert» company by the specifi-cations: GA-03-16, GA-03-18, GS-03-02, GS-06-01. The depth of decarbonized layer was identified in accordance with GOST 1763-68 (M method. Findings. Analysis of experimental data allowed us to determine the rational temperature of coil formation of the investigated steel grades, which provide the best possible removal of scale from the metal surface, a minimal amount of scale, as well as compliance of the metal surface color with the require-ments of European consumers. Originality. The work allowed establishing correlation of the basic quality indicators of the rolled coil high carbon steel (scale mass, depth of decarbonized layer and inter-laminar distance in pearlite with one of the main parameters (coil formation temperature of the deformation and heat treatment mode. The re-sulting regression equations, without metallographic analysis, can be used to determine, with a minimum error, the quantitative values of the total scale mass, depth of decarbonized layer and the average inter-lamellar distance in pearlite of the rolled coil high carbon steel. Practical value. Based on the specifications of «Bekaert» company (GA-03-16, GA-03-18, GS-03-02 and GS-06-01 the method of testing descaling by mechanical means from the surface of the rolled coil steel of low- and high-carbon steel grades was developed and approved in the environment of PJSC «ArcelorMittal Kryvyi Rih». The work resulted in development of the rapid method for determination of total and remaining scale mass on the rolled coil steel
Distributed SUSY breaking: dark energy, Newton's law and the LHC
Burgess, C. P.; van Nierop, L.; Williams, M.
2014-07-01
We identify the underlying symmetry mechanism that suppresses the low-energy effective 4D cosmological constant within some 6D supergravity models, generically leading to results suppressed by powers of the KK scale, m {/K K 2}, relative to the much larger size, m 4, associated with mass- m particles localized in these models on codimension-2 branes. These models are examples for which the local conditions for unbroken supersymmetry can be satisfied locally everywhere within the extra dimensions, but are obstructed only by global conditions like flux quantization or by the mutual inconsistency of the boundary conditions required at the various branes. Consequently quantities (like vacuum energies) forbidden by supersymmetry cannot become nonzero until wavelengths of order the KK scale are integrated out, since only such long wavelength modes can see the entire space and so `know' that supersymmetry has broken. We verify these arguments by extending earlier rugby-ball calculations of one-loop vacuum energies within these models to more general pairs of branes within two warped extra dimensions. For the Standard Model confined to one of two otherwise identical branes, the predicted effective 4D vacuum energy density is of order ρ vac ⋍ C( mM g /4 πM p )4 = C(5 .6 × 10-5 eV)4, where M g ≳ 10 TeV (corresponding to extra-dimensional size r ≲ 1 μm) and M p = 2 .44 × 1018 GeV are the 6D and 4D rationalized Planck scales, and m is the heaviest brane-localized particle. (For numerical purposes we take m to be the top-quark mass and take M g as small as possible, consistent with energy-loss bounds from supernovae.) C is a constant depending on the details of the bulk spectrum, which could easily be of order 500 for each of hundreds of fields in the bulk. The value C ˜ 6 × 106 would give the observed Dark Energy density.
Vacuum Stability with Tachyonic Boundary Higgs Masses in No-Scale Supersymmetry or Gaugino Mediation
Evans, Jason L; Wells, James D
2009-01-01
No-scale supersymmetry or gaugino mediation augmented with large negative Higgs soft masses at the input scale provides a simple solution to the supersymmetric flavor problem while giving rise to a neutralino LSP. However, to obtain a neutralino LSP it is often necessary to have tachyonic input Higgs soft masses that can give rise to charge-and-color-breaking (CCB) minima and unbounded-from-below (UFB) directions in the low energy theory. We investigate the vacuum structure in these theories to determine when such problematic features are present. When the standard electroweak vacuum is only metastable, we compute its lifetime under vacuum tunneling. We find that vacuum metastability leads to severe restrictions on the parameter space for larger $\\tan\\beta \\sim 30$, while for smaller $\\tan\\beta\\sim 10$, only minor restrictions are found. Along the way, we derive an exact bounce solution for tunneling through an inverted parabolic potential.
Starobinsky-Like Inflation and Neutrino Masses in a No-Scale SO(10) Model
Ellis, John
2016-11-08
Using a no-scale supergravity framework, we construct an SO(10) model that makes predictions for cosmic microwave background observables similar to those of the Starobinsky model of inflation, and incorporates a double-seesaw model for neutrino masses consistent with oscillation experiments and late-time cosmology. We pay particular attention to the behaviour of the scalar fields during inflation and the subsequent reheating.
Starobinsky-like inflation and neutrino masses in a no-scale SO(10) model
Energy Technology Data Exchange (ETDEWEB)
Ellis, John [Theoretical Particle Physics and Cosmology Group,Department of Physics, King’s College London, WC2R 2LS London (United Kingdom); Theoretical Physics Department, CERN,CH-1211 Geneva 23 (Switzerland); Garcia, Marcos A.G. [Physics and Astronomy Department, Rice University,6100 Main Street, Houston, TX 77005 (United States); Nagata, Natsumi [Department of Physics, University of Tokyo,Bunkyo-ku, Tokyo 113-0033 (Japan); Nanopoulos, Dimitri V. [George P. and Cynthia W. Mitchell Institute for Fundamental Physics and Astronomy,Texas A& M University, College Station, 77843 Texas (United States); Olive, Keith A. [William I. Fine Theoretical Physics Institute, School of Physics and Astronomy, University of Minnesota,116 Church Street SE, Minneapolis, MN 55455 (United States)
2016-11-08
Using a no-scale supergravity framework, we construct an SO(10) model that makes predictions for cosmic microwave background observables similar to those of the Starobinsky model of inflation, and incorporates a double-seesaw model for neutrino masses consistent with oscillation experiments and late-time cosmology. We pay particular attention to the behaviour of the scalar fields during inflation and the subsequent reheating.
Scaling of free-ranging primate energetics with body mass predicts low energy expenditure in humans.
Simmen, Bruno; Darlu, Pierre; Hladik, Claude Marcel; Pasquet, Patrick
2015-01-01
Studies of how a mammal's daily energy expenditure scales with its body mass suggest that humans, whether Westerners, agro-pastoralists, or hunter-gatherers, all have much lower energy expenditures for their body mass than other mammals. However, non-human primates also differ from other mammals in several life history traits suggestive of low energy use. Judging by field metabolic rates of free-ranging strepsirhine and haplorhine primates with different lifestyle and body mass, estimated using doubly labeled water, primates have lower energy expenditure than other similar-sized eutherian mammals. Daily energy expenditure in humans fell along the regression line of non-human primates. The results suggest that thrifty energy use could be an ancient strategy of primates. Although physical activity is a major component of energy balance, our results suggest a need to revise the basis for establishing norms of energy expenditure in modern humans. Copyright © 2014 Elsevier Inc. All rights reserved.
Extended scaling and residual flavor symmetry in the neutrino Majorana mass matrix
Energy Technology Data Exchange (ETDEWEB)
Samanta, Rome; Ghosal, Ambar [Saha Institute of Nuclear Physics, HBNI, Astroparticle Physics and Cosmology Division, Kolkata (India); Roy, Probir [Bose Institute, Center for Astroparticle Physics and Space Science, Kolkata (India)
2016-12-15
The residual symmetry approach, along with a complex extension for some flavor invariance, is a powerful tool to uncover the flavor structure of the 3 x 3 neutrino Majorana mass matrix M{sub ν} toward gaining insights into neutrino mixing. We utilize this to propose a complex extension of the real scaling ansatz for M{sub ν} which was introduced some years ago. Unlike the latter, our proposal allows a nonzero mass for each of the three light neutrinos as well as a nonvanishing θ{sub 13}. The generation of light neutrino masses via the type-I seesaw mechanism is also demonstrated. A major result of this scheme is that leptonic Dirac CP-violation must be maximal while atmospheric neutrino mixing does not need to be exactly maximal. Moreover, each of the two allowed Majorana phases, to be probed by the search for nuclear 0νββ decay, has to be at one of its two CP-conserving values. There are other interesting consequences such as the allowed occurrence of a normal mass ordering which is not favored by the real scaling ansatz. Our predictions will be tested in ongoing and future neutrino oscillation experiments at T2K, NOνA and DUNE. (orig.)
DEFF Research Database (Denmark)
Kiørboe, Thomas; Hirst, Andrew G.
2014-01-01
The metabolic rate of organisms may be viewed as a basic property from which other vital rates and many ecological patterns emerge and that follows a universal allometric mass scaling law, or it may be considered a property of the organism that emerges as a result of the adaptation...... to the environment, with consequently fewer universal mass scaling properties. Here, we examine the mass scaling of respiration and maximum feeding (clearance and ingestion rates) and growth rates of heterotrophic pelagic organisms over an ~1015 range in body mass. We show that clearance and respiration rates have...
Searches for RPV SUSY and long-lived particles at the LHC
Liu, Minghui; The ATLAS collaboration
2015-01-01
Both the ATLAS and CMS collaboration have made great effort to search for RPV SUSY and LLP. Tens of models are used to perform studies, and all the observations seem to be in good agreement with background expectation. Most stringent limits up to date are put on these new models.
Lepton-Flavour-Violation in SUSY Models with and without R-parity
Tobe, K
2000-01-01
We discuss Lepton-Flavour-Violating phenomena such as $\\mu \\to e \\gamma$, $\\mu \\to eee$, and $\\mu \\to e$ conversion in nuclei in SUSY models with and without R-parity. We stress that experimental searches for all the LFV processes are important to distinguish between the different models.
Decoupling limit and throat geometry of non-susy D3 brane
Directory of Open Access Journals (Sweden)
Kuntal Nayek
2017-03-01
Full Text Available Recently it has been shown by us that, like BPS Dp branes, bulk gravity gets decoupled from the brane even for the non-susy Dp branes of type II string theories indicating a possible extension of AdS/CFT correspondence for the non-supersymmetric case. In that work, the decoupling of gravity on the non-susy Dp branes has been shown numerically for the general case as well as analytically for some special case. Here we discuss the decoupling limit and the throat geometry of the non-susy D3 brane when the charge associated with the brane is very large. We show that in the decoupling limit the throat geometry of the non-susy D3 brane, under appropriate coordinate change, reduces to the Constable–Myers solution and thus confirming that this solution is indeed the holographic dual of a (non-gravitational gauge theory discussed there. We also show that when one of the parameters of the solution takes a specific value, it reduces, under another coordinate change, to the five-dimensional solution obtained by Csaki and Reece, again confirming its gauge theory interpretation.
Decoupling limit and throat geometry of non-susy D3 brane
Energy Technology Data Exchange (ETDEWEB)
Nayek, Kuntal, E-mail: kuntal.nayek@saha.ac.in; Roy, Shibaji, E-mail: shibaji.roy@saha.ac.in
2017-03-10
Recently it has been shown by us that, like BPS Dp branes, bulk gravity gets decoupled from the brane even for the non-susy Dp branes of type II string theories indicating a possible extension of AdS/CFT correspondence for the non-supersymmetric case. In that work, the decoupling of gravity on the non-susy Dp branes has been shown numerically for the general case as well as analytically for some special case. Here we discuss the decoupling limit and the throat geometry of the non-susy D3 brane when the charge associated with the brane is very large. We show that in the decoupling limit the throat geometry of the non-susy D3 brane, under appropriate coordinate change, reduces to the Constable–Myers solution and thus confirming that this solution is indeed the holographic dual of a (non-gravitational) gauge theory discussed there. We also show that when one of the parameters of the solution takes a specific value, it reduces, under another coordinate change, to the five-dimensional solution obtained by Csaki and Reece, again confirming its gauge theory interpretation.
Kas kool vajab kõrvalpilke? / Meelis Kond, Peep Susi, Marge Lepik ... [jt.
2009-01-01
Küsimusele vastavad Tallinna haridusameti hariduskorralduse teenistuse direktor Meelis Kond, Lihula gümnaasiumi direktor Peep Susi, Lääne-Viru maavalitsuse haridus- ja kultuuriosakonna juhataja Marge Lepik, Oru kooli direktor Andres Kampmann ja Haapsalu Nikolai kooli direktor Aive Saadjärv
sUsY dark matter-a collider physicist's perspective
Indian Academy of Sciences (India)
Home; Journals; Pramana – Journal of Physics; Volume 62; Issue 2. SUSY dark matter — a collider physicist's perspective. Mihoko M Nojiri. Volume 62 Issue 2 February 2004 pp 335-346. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/pram/062/02/0335-0346. Keywords.
Concordia ülikooli õppejõud nõuavad rektor Mart Susi lahkumist / Andri Maimets
Maimets, Andri
2003-01-01
Concordia Ülikooli õppejõud ja tudengid esitasid senisele rektorile Mart Susile palve oma kohalt lahkuda, nad ei pea õigeks, et ülikooli juhib ülikooli rahaga patustanud inimene. Susi väitis üliõpilaste ees peetud pressikonverentsil, et jutud ülikooli võlgadest ja tema enda ametikoha kuritarvitustest ei vasta tõele
Susi takistab Concordia ülikooli tööd
2003-01-01
Concordia ülikooli endine rektor Mart Susi pole astunud konkreetseid samme õppetöö jätkuvuse tagamiseks ega oma volituste üleandmiseks, vaid üritab võimu taas enda kätte koondada ja on alates märtsi lõpust otsinud võimalusi pankrotiprotsessi peatamiseks
Generalized Jaynes-Cummings Hamiltonians by shape-invariant hierarchies and their SUSY partners
Energy Technology Data Exchange (ETDEWEB)
Hussin, V [Centre de recherches mathematiques et Departement de mathematiques et de statistique, Universite de Montreal, C P 6128, succ. Centre-ville, Montreal (Quebec), H3C 3J7 (Canada); Kuru, S [Departamento de Fisica Teorica, Atomica y Optica, Universidad de Valladolid, 47071 Valladolid (Spain); Negro, J [Departamento de Fisica Teorica, Atomica y Optica, Universidad de Valladolid, 47071 Valladolid (Spain)
2006-09-08
A generalization of the matrix Jaynes-Cummings model in the rotating wave approximation is proposed by means of the shape-invariant hierarchies of scalar factorized Hamiltonians. A class of Darboux transformations (sometimes called SUSY transformations in this context) suitable for these generalized Jaynes-Cummings models is constructed. Finally one example is worked out using the methods developed.
Möbius invariant BFKL equation for the adjoint representation in N=4 SUSY
Energy Technology Data Exchange (ETDEWEB)
Fadin, V.S., E-mail: fadin@inp.nsk.su [Budker Institute of Nuclear Physics of SD RAS, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, 630090 Novosibirsk (Russian Federation); Fiore, R., E-mail: roberto.fiore@cs.infn.it [Dipartimento di Fisica, Università della Calabria, and Istituto Nazionale di Fisica Nucleare, Gruppo collegato di Cosenza, Arcavacata di Rende, I-87036 Cosenza (Italy); Lipatov, L.N., E-mail: lipatov@thd.pnpi.spb.ru [Petersburg Nuclear Physics Institute and St. Petersburg State University, Gatchina, 188300 St. Petersburg (Russian Federation); Papa, A., E-mail: alessandro.papa@cs.infn.it [Dipartimento di Fisica, Università della Calabria, and Istituto Nazionale di Fisica Nucleare, Gruppo collegato di Cosenza, Arcavacata di Rende, I-87036 Cosenza (Italy)
2013-09-01
It is shown that in the next-to-leading approximation of N=4 SUSY the BFKL equation for two-gluon composite states in the adjoint representation of the gauge group can be reduced to a form which is invariant under Möbius transformation in the momentum space. The corresponding similarity transformation of its integral kernel is constructed in an explicit way.
DEFF Research Database (Denmark)
López-Aenlle, Manuel; Brincker, Rune; Pelayo, F.
2012-01-01
When operational modal analysis (OMA) is used to estimate modal parameters, mode shapes cannot be mass normalized. In the past few years, some equations have been proposed to scale mode shapes using the mass-change method, which consists of repeating modal testing after changing the mass at diffe...
The little things that run: a general scaling of invertebrate exploratory speed with body mass.
Hirt, Myriam R; Lauermann, Tobias; Brose, Ulrich; Noldus, Lucas P J J; Dell, Anthony I
2017-11-01
Speed is a key trait of animal movement, and while much is already known about vertebrate speed and how it scales with body mass, studies on invertebrates are sparse, especially across diverse taxonomic groups. Here, we used automated image-based tracking to characterize the exploratory (voluntary) speed of 173 invertebrates comprising 57 species across six taxonomic groups (Arachnida, Chilopoda, Diplopoda, Entognatha, Insecta, Malacostraca) and four feeding types (carnivore, detritivore, herbivore, omnivore). Across all individuals, exploratory speed (mm/s) scaled with body mass (g) following a power-law relationship with a scaling exponent of 0.19 ± 0.04 (mean ± SE) and an intercept of 14.33 ± 1.2. These parameters varied substantially with taxonomic group and feeding type. For the first time, we provide general empirically derived allometric scaling relationships of exploratory speed across broad taxonomic groups of invertebrates. As exploratory speed drives key components of species interactions, such as encounter and attack rates, or competition, our study contributes to a deeper understanding of the role of individual movement in population and community level processes. © 2017 by the Ecological Society of America.
MHD Winds as X-ray Acsorbers in AGN Across the Black Hole Mass Scales
Kazanas, Demosthenes; Fukumura, Keigo; Behar, Ehud; shrader, Chris; Tombesi, Francesco; Contopoulos, Ioannis
2018-01-01
We present detailed photoionization calculations of MHD winds off accretion disks associated with AGN and/or LMXRBs, by following the transfer of radiation along the observer's Line of Sight (LoS), to model the properties of the ubiquitous X-ray absorbers in the spectra of accreting black holes. We argue that the self-similarity of these winds implies that their photoionization properties are independent of the mass of the accreting object, if the luminosity and wind mass loss are scaled to their Eddington values. Our models reproduce the Absorption Measure Distribution (AMD), introduced to account for the observed Hydrogen-equivalent column, NH , of a large number of ionic species as a function of their ionization parameter ξ. Furthermore, since our wind models determine also the winds' local velocities, we also compute and present the profiles of the absorption lines of the corresponding transitions. These compare favorably to those observed in both AGN (NGC 3783) and LMXRB (GRO 1655-40). Successful fits to the data provide both the wind mass flux as function of radius and the observer inclination angle θ. Most importantly, the mass flux in the winds is found to increase with distance, with mdot ~ rs with s~0.3-0.5, indicating that most of the available mass is lost at the largest accretion disk radii. We present simulations of the line profiles for the AGN and LMXRB which yield well constrained values for mdot(r) and θ.
Lower limb articular scaling and body mass estimation in Pliocene and Pleistocene hominins.
Ruff, Christopher B; Burgess, M Loring; Squyres, Nicole; Junno, Juho-Antti; Trinkaus, Erik
2018-01-10
Previous attempts to estimate body mass in pre-Holocene hominins have relied on prediction equations derived from relatively limited extant samples. Here we derive new equations to predict body mass from femoral head breadth and proximal tibial plateau breadth based on a large and diverse sample of modern humans (avoiding the problems associated with using diaphyseal dimensions and/or cadaveric reference samples). In addition, an adjustment for the relatively small femoral heads of non-Homo taxa is developed based on observed differences in hip to knee joint scaling. Body mass is then estimated for 214 terminal Miocene through Pleistocene hominin specimens. Mean body masses for non-Homo taxa range between 39 and 49 kg (39-45 kg if sex-specific means are averaged), with no consistent temporal trend (6-1.85 Ma). Mean body mass increases in early Homo (2.04-1.77 Ma) to 55-59 kg, and then again dramatically in Homo erectus and later archaic middle Pleistocene Homo, to about 70 kg. The same average body mass is maintained in late Pleistocene archaic Homo and early anatomically modern humans through the early/middle Upper Paleolithic (0.024 Ma), only declining in the late Upper Paleolithic, with regional variation. Sexual dimorphism in body mass is greatest in Australopithecus afarensis (log[male/female] = 1.54), declines in Australopithecus africanus and Paranthropus robustus (log ratio 1.36), and then again in early Homo and middle and late Pleistocene archaic Homo (log ratio 1.20-1.27), although it remains somewhat elevated above that of living and middle/late Pleistocene anatomically modern humans (log ratio about 1.15). Copyright © 2017 Elsevier Ltd. All rights reserved.
Large-Scale Ichthyoplankton and Water Mass Distribution along the South Brazil Shelf
de Macedo-Soares, Luis Carlos Pinto; Garcia, Carlos Alberto Eiras; Freire, Andrea Santarosa; Muelbert, José Henrique
2014-01-01
Ichthyoplankton is an essential component of pelagic ecosystems, and environmental factors play an important role in determining its distribution. We have investigated simultaneous latitudinal and cross-shelf gradients in ichthyoplankton abundance to test the hypothesis that the large-scale distribution of fish larvae in the South Brazil Shelf is associated with water mass composition. Vertical plankton tows were collected between 21°27′ and 34°51′S at 107 stations, in austral late spring and early summer seasons. Samples were taken with a conical-cylindrical plankton net from the depth of chlorophyll maxima to the surface in deep stations, or from 10 m from the bottom to the surface in shallow waters. Salinity and temperature were obtained with a CTD/rosette system, which provided seawater for chlorophyll-a and nutrient concentrations. The influence of water mass on larval fish species was studied using Indicator Species Analysis, whereas environmental effects on the distribution of larval fish species were analyzed by Distance-based Redundancy Analysis. Larval fish species were associated with specific water masses: in the north, Sardinella brasiliensis was found in Shelf Water; whereas in the south, Engraulis anchoita inhabited the Plata Plume Water. At the slope, Tropical Water was characterized by the bristlemouth Cyclothone acclinidens. The concurrent analysis showed the importance of both cross-shelf and latitudinal gradients on the large-scale distribution of larval fish species. Our findings reveal that ichthyoplankton composition and large-scale spatial distribution are determined by water mass composition in both latitudinal and cross-shelf gradients. PMID:24614798
Large-scale ichthyoplankton and water mass distribution along the South Brazil Shelf.
Directory of Open Access Journals (Sweden)
Luis Carlos Pinto de Macedo-Soares
Full Text Available Ichthyoplankton is an essential component of pelagic ecosystems, and environmental factors play an important role in determining its distribution. We have investigated simultaneous latitudinal and cross-shelf gradients in ichthyoplankton abundance to test the hypothesis that the large-scale distribution of fish larvae in the South Brazil Shelf is associated with water mass composition. Vertical plankton tows were collected between 21°27' and 34°51'S at 107 stations, in austral late spring and early summer seasons. Samples were taken with a conical-cylindrical plankton net from the depth of chlorophyll maxima to the surface in deep stations, or from 10 m from the bottom to the surface in shallow waters. Salinity and temperature were obtained with a CTD/rosette system, which provided seawater for chlorophyll-a and nutrient concentrations. The influence of water mass on larval fish species was studied using Indicator Species Analysis, whereas environmental effects on the distribution of larval fish species were analyzed by Distance-based Redundancy Analysis. Larval fish species were associated with specific water masses: in the north, Sardinella brasiliensis was found in Shelf Water; whereas in the south, Engraulis anchoita inhabited the Plata Plume Water. At the slope, Tropical Water was characterized by the bristlemouth Cyclothone acclinidens. The concurrent analysis showed the importance of both cross-shelf and latitudinal gradients on the large-scale distribution of larval fish species. Our findings reveal that ichthyoplankton composition and large-scale spatial distribution are determined by water mass composition in both latitudinal and cross-shelf gradients.
Large-scale ichthyoplankton and water mass distribution along the South Brazil Shelf.
de Macedo-Soares, Luis Carlos Pinto; Garcia, Carlos Alberto Eiras; Freire, Andrea Santarosa; Muelbert, José Henrique
2014-01-01
Ichthyoplankton is an essential component of pelagic ecosystems, and environmental factors play an important role in determining its distribution. We have investigated simultaneous latitudinal and cross-shelf gradients in ichthyoplankton abundance to test the hypothesis that the large-scale distribution of fish larvae in the South Brazil Shelf is associated with water mass composition. Vertical plankton tows were collected between 21°27' and 34°51'S at 107 stations, in austral late spring and early summer seasons. Samples were taken with a conical-cylindrical plankton net from the depth of chlorophyll maxima to the surface in deep stations, or from 10 m from the bottom to the surface in shallow waters. Salinity and temperature were obtained with a CTD/rosette system, which provided seawater for chlorophyll-a and nutrient concentrations. The influence of water mass on larval fish species was studied using Indicator Species Analysis, whereas environmental effects on the distribution of larval fish species were analyzed by Distance-based Redundancy Analysis. Larval fish species were associated with specific water masses: in the north, Sardinella brasiliensis was found in Shelf Water; whereas in the south, Engraulis anchoita inhabited the Plata Plume Water. At the slope, Tropical Water was characterized by the bristlemouth Cyclothone acclinidens. The concurrent analysis showed the importance of both cross-shelf and latitudinal gradients on the large-scale distribution of larval fish species. Our findings reveal that ichthyoplankton composition and large-scale spatial distribution are determined by water mass composition in both latitudinal and cross-shelf gradients.
Phenomenology of non-universal gaugino masses and implications ...
Indian Academy of Sciences (India)
We study the implications of such non-universal gaugino masses for the composition of the lightest neutralino in supersymmetric (SUSY) theories based on (5) gauge group. We also consider the phenomenological implications of non-universal gaugino masses for the phenomenology of Higgs bosons in the context of ...
Reactive Transport in Porous Media: Pore-scale Mass Exchange between Aqueous Phase and Biofilms
Hassanizadeh, S.; Qin, C.
2013-12-01
In the presence of water and necessary nutrients, biofilms can grow on soil grain surfaces. They occupy void pore spaces blocking water flow. As a result, some hydrodynamic properties of porous media like porosity and permeability will be reduced. This ultimately leads to a condition known as bioclogging. Also, biofilms can degrade certain compounds. So, the features of bioclogging and biodegradation in porous media with biofilms have given rise to a broad range of environmental and engineering applications, such as bioremediation, biobarriers, microbial enhanced oil recovery, and protection of steel corrosion. To date, a number of macroscale and pore-scale models for describing biodegradation in porous media with biofilms are available in the literature. At the macro scale, to simplify numerical implementation, a ';one-equation' model is normally preferred. In this approach, only the solute concentration in aqueous phase is modeled associated with the consumption of solute in biofilms. Because the solute concentration in biofilms is different from that in aqueous phase, an effectiveness factor may be used in Monod kinetics for relating reaction rate within biofilms to the solute concentration in aqueous phase. Notice that this approach has its validity domains like local equilibrium and reaction-rate limited consumption. Another approach to modeling biodegradation is referred to as a ';two-equation' model, in which one needs to simultaneously track the solute concentrations in both aqueous phase and biofilms. In addition, the two concentrations may be related by a first-order kinetic mass exchange model. This first-rate exchange model is normally represented by a constant mas exchange coefficient multiplied by the concentration difference in the two domains. Here, one may question if complex advection-diffusion-reaction processes can be represented just by a constant mass exchange coefficient. In addition, the kinetic model of mass exchange between aqueous phase
Scoring Large-Scale Affinity Purification Mass Spectrometry Datasets with MiST.
Verschueren, Erik; Von Dollen, John; Cimermancic, Peter; Gulbahce, Natali; Sali, Andrej; Krogan, Nevan J
2015-03-09
High-throughput Affinity Purification Mass Spectrometry (AP-MS) experiments can identify a large number of protein interactions, but only a fraction of these interactions are biologically relevant. Here, we describe a comprehensive computational strategy to process raw AP-MS data, perform quality controls, and prioritize biologically relevant bait-prey pairs in a set of replicated AP-MS experiments with Mass spectrometry interaction STatistics (MiST). The MiST score is a linear combination of prey quantity (abundance), abundance invariability across repeated experiments (reproducibility), and prey uniqueness relative to other baits (specificity). We describe how to run the full MiST analysis pipeline in an R environment and discuss a number of configurable options that allow the lay user to convert any large-scale AP-MS data into an interpretable, biologically relevant protein-protein interaction network. Copyright © 2015 John Wiley & Sons, Inc.
Moody, J. L.; Munger, J. W.; Goldstein, A. H.; Jacob, D. J.; Wofsy, S. C.
1998-06-01
We calculated 4 years (1990-1993) of back trajectories arriving at Harvard Forest and used them to define patterns in atmospheric transport history. This information was used to assess the degree to which regional-scale transport modulates the chemical composition of air masses sampled at Harvard Forest. Different seasonal signals in trace-gas concentration are derived for different flow patterns. Throughout the year, high-speed transport of cool, dry, cloud-free air from the north and northwest represents background conditions for the Harvard Forest site. These synoptic conditions describe the atmosphere after passage of a cold front. The most polluted conditions in each season occurred under SW flow, with warmer temperatures, higher water vapor mixing ratios, low mixed-layer depths at the site, and a higher frequency of cloudy conditions. These regional-scale air mass characteristics describe synoptic conditions of warm sector transport. In addition to average air mass characteristics, we have analyzed the covariation of species (e.g., O3 versus NOy-NOx; O3 versus CO) to address chemical processes based on transport history. For summer daytime measurements, we show that relatively fresh pollutants arrive in SW flow while the most aged air masses with higher O3 to NOz slopes arrive with W flow, suggesting a Midwestern contribution to regional high-oxidant episodes. These observations of patterns in chemical characteristics related to patterns in transport are corroborated with probability maps indicating the likelihood of transport from upwind regions using trajectories selected for chemical distribution end-members (10th and 90th percentiles).
Directory of Open Access Journals (Sweden)
Hikari Shirakata
2017-09-01
Full Text Available We use a semi-analytic model of galaxy formation and investigate how the mass of a seed black hole affect the scaling relation between black hole mass and bulge mass at z ~ 0. When the mass of the seed is set at 105M⊙, we find that the model results become inconsistent with recent observational results of the scaling relation for dwarf galaxies. On the other hand, when we set seed black hole mass as 103M⊙ or as randomly chosen value within a 103-5M⊙ range, we find the results are consistent with observational results including the dispersion. We also find that black hole mass—bulge mass relations for less massive bulges at z ~ 0 put stronger constraints on the seed BH mass than the relations at higher redshifts.
Pore-scale supercritical CO_{2} dissolution and mass transfer under drainage conditions
Energy Technology Data Exchange (ETDEWEB)
Chang, Chun; Zhou, Quanlin; Oostrom, Mart; Kneafsey, Timothy J.; Mehta, Hardeep
2017-02-01
Abstract: Recently, both core- and pore-scale imbibition experiments have shown non-equilibrium dissolution of supercritical CO_{2} (scCO_{2}) and a prolonged depletion of residual scCO_{2}. In this study, pore-scale scCO_{2} dissolution and mass transfer under drainage conditions were investigated using a two-dimensional heterogeneous micromodel and a novel fluorescent water dye with a sensitive pH range between 3.7 and 6.5. Drainage experiments were conducted at 9 MPa and 40 °C by injecting scCO_{2} into the sandstone-analogue pore network initially saturated by water without dissolved CO_{2} (dsCO_{2}). During the experiments, time-lapse images of dye intensity, reflecting water pH, were obtained. These images show non-uniform pH in individual pores and pore clusters, with average pH levels gradually decreasing with time. Further analysis on selected pores and pore clusters shows that (1) rate-limited mass transfer prevails with slowly decreasing pH over time when the scCO_{2}-water interface area is low with respect to the volume of water-filled pores and pore clusters, (2) fast scCO_{2} dissolution and phase equilibrium occurs when scCO_{2} bubbles invade into water-filled pores, significantly enhancing the area-to-volume ratio, and (3) a transition from rate-limited to diffusion-limited mass transfer occurs in a single pore when a medium area-to-volume ratio is prevalent. The analysis also shows that two fundamental processes – scCO_{2} dissolution at phase interfaces and diffusion of dsCO_{2} at the pore scale (10-100 µm) observed after scCO_{2} bubble invasion into water-filled pores without pore throat constraints – are relatively fast. The overall slow dissolution of scCO_{2} in the millimeter-scale micromodel can be attributed to the small area-to-volume ratios that represent pore-throat configurations and characteristics of phase
Energy Technology Data Exchange (ETDEWEB)
Saliwanchik, B. R.; et al.
2015-01-22
We describe a method for measuring the integrated Comptonization (Y (SZ)) of clusters of galaxies from measurements of the Sunyaev-Zel'dovich (SZ) effect in multiple frequency bands and use this method to characterize a sample of galaxy clusters detected in the South Pole Telescope (SPT) data. We use a Markov Chain Monte Carlo method to fit a β-model source profile and integrate Y (SZ) within an angular aperture on the sky. In simulated observations of an SPT-like survey that include cosmic microwave background anisotropy, point sources, and atmospheric and instrumental noise at typical SPT-SZ survey levels, we show that we can accurately recover β-model parameters for inputted clusters. We measure Y (SZ) for simulated semi-analytic clusters and find that Y (SZ) is most accurately determined in an angular aperture comparable to the SPT beam size. We demonstrate the utility of this method to measure Y (SZ) and to constrain mass scaling relations using X-ray mass estimates for a sample of 18 galaxy clusters from the SPT-SZ survey. Measuring Y (SZ) within a 0.'75 radius aperture, we find an intrinsic log-normal scatter of 21% ± 11% in Y (SZ) at a fixed mass. Measuring Y (SZ) within a 0.3 Mpc projected radius (equivalent to 0.'75 at the survey median redshift z = 0.6), we find a scatter of 26% ± 9%. Prior to this study, the SPT observable found to have the lowest scatter with mass was cluster detection significance. We demonstrate, from both simulations and SPT observed clusters that Y (SZ) measured within an aperture comparable to the SPT beam size is equivalent, in terms of scatter with cluster mass, to SPT cluster detection significance.
Pore-scale Analysis of Equilibrium and Non-equilibrium DNAPL Mass Transfer
Roberts, K. L.; Willson, C. S.; Thompson, K. E.; Moe, W. M.
2008-12-01
A large number of groundwater aquifers are contaminated by dense nonaqueous phase liquids (DNAPL) comprised of chlorinated hydrocarbons. While there have been a large number of experimental and modeling studies investigating NAPL dissolution at various length scales, rate-limiting processes involved in DNAPL dissolution remain poorly understood. Appropriate mathematical models for describing localized phenomena in a manner conducive to continuum scale modeling are not yet fully developed or have not been robustly tested in comparison to experimental data. Here, high-resolution (i.e., ~10 micron) synchrotron X-ray tomography was used to non-destructively obtain three-dimensional images of the internal structure of a series of unconsolidated porous media (40/50 Accusand) systems at various stages of tetrachloroethene (PCE) dissolution during equilibrium and non-equilibrium mass transfer conditions. Algorithms developed by our group were used to: (1) quantify the granular packing characteristics (e.g., grain sizes, shapes, coordination number); (2) pore network structure (e.g., individual pore body geometry and connectivity); and (3) DNAPL blob characteristics (e.g., blobs sizes, interfacial areas); and (4) correlations between the blob characteristics and pore network structure. Generation of the detailed pore network structure allowed pore network modeling to be performed on the actual void space geometry and topology. A unique aspect of this approach is that it directly incorporated pore-scale preferential flow paths that formed due to pore-level heterogeneities and NAPL blob location and geometry. Analysis of the granular packing and pore network structure properties indicate that the column preparation technique resulted in uniform packing among the different systems. This allowed us to assess the impact of flowrates and local pore-level properties on mass transfer and dissolution of individual DNAPL blobs. Experimental results from columns subjected to low flow
Benchmark models, planes lines and points for future SUSY searches at the LHC
Energy Technology Data Exchange (ETDEWEB)
AbdusSalam, S.S. [The Abdus Salam International Centre for Theoretical Physics, Trieste (Italy); Allanach, B.C. [Cambridge Univ. (United Kingdom). Dept. of Applied Mathematics and Theoretical Physics; Dreiner, H.K. [Bonn Univ. (DE). Bethe Center for Theoretical Physics and Physikalisches Inst.] (and others)
2012-03-15
We define benchmark models for SUSY searches at the LHC, including the CMSSM, NUHM, mGMSB, mAMSB, MM-AMSB and p19MSSM, as well as models with R-parity violation and the NMSSM. Within the parameter spaces of these models, we propose benchmark subspaces, including planes, lines and points along them. The planes may be useful for presenting results of the experimental searches in different SUSY scenarios, while the specific benchmark points may serve for more detailed detector performance tests and comparisons. We also describe algorithms for defining suitable benchmark points along the proposed lines in the parameter spaces, and we define a few benchmark points motivated by recent fits to existing experimental data.
DEFF Research Database (Denmark)
Vestergaard, Marianne; Peterson, B. M.
2006-01-01
We present four improved empirical relationships useful for estimating the central black hole mass in nearby AGNs and distant luminous quasars alike using either optical or UV single-epoch spectroscopy. These mass-scaling relationships between line widths and luminosity are based on recently...
Alignments of Dark Matter Halos with Large-scale Tidal Fields: Mass and Redshift Dependence
Chen, Sijie; Wang, Huiyuan; Mo, H. J.; Shi, Jingjing
2016-07-01
Large-scale tidal fields estimated directly from the distribution of dark matter halos are used to investigate how halo shapes and spin vectors are aligned with the cosmic web. The major, intermediate, and minor axes of halos are aligned with the corresponding tidal axes, and halo spin axes tend to be parallel with the intermediate axes and perpendicular to the major axes of the tidal field. The strengths of these alignments generally increase with halo mass and redshift, but the dependence is only on the peak height, ν \\equiv {δ }{{c}}/σ ({M}{{h}},z). The scaling relations of the alignment strengths with the value of ν indicate that the alignment strengths remain roughly constant when the structures within which the halos reside are still in a quasi-linear regime, but decreases as nonlinear evolution becomes more important. We also calculate the alignments in projection so that our results can be compared directly with observations. Finally, we investigate the alignments of tidal tensors on large scales, and use the results to understand alignments of halo pairs separated at various distances. Our results suggest that the coherent structure of the tidal field is the underlying reason for the alignments of halos and galaxies seen in numerical simulations and in observations.
DarkSUSY 6 : An Advanced Tool to Compute Dark Matter Properties Numerically
Bringmann, Torsten; Edsjo, Joakim; Gondolo, Paolo; Ullio, Piero; Bergstrom, Lars
2018-01-01
The nature of dark matter remains one of the key science questions. Weakly Interacting Massive Particles (WIMPs) are among the best motivated particle physics candidates, allowing to explain the measured dark matter density by employing standard big-bang thermodynamics. Examples include the lightest supersymmetric particle, though many alternative particles have been suggested as a solution to the dark matter puzzle. We introduce here a radically new version of the widely used DarkSUSY packag...
Phenomenology of the minimal ЛЗ(10) sUsY model
Indian Academy of Sciences (India)
Let me first define the minimal SO(10) sUsY model [MsOЅјsM] [1] and then I will discuss the phenomenological consequences of this theory. In the MsOЅјsM the quarks and leptons of one family are contained in a 16 dimensional spinor representation and the two Higgs doublets of the MssM come from a single 10.
Determination of QCD Backgrounds in ATLAS: A challenge for SUSY searches
Meirose, B; The ATLAS collaboration
2009-01-01
The understanding of QCD jet events in supersymmetry is one of the biggest background-determination challenges in SUSY searches. Effects such as dead material and pile-up of machine backgrounds can significantly affect the missing transverse energy. Other effects like jet punch through and cosmic ray backgrounds can also be important background sources. We discuss several QCD background sources and techniques under development in ATLAS to remove or estimate them.
The hyperbolic step potential: Anti-bound states, SUSY partners and Wigner time delays
Energy Technology Data Exchange (ETDEWEB)
Gadella, M. [Departamento de Física Teórica, Atómica y Óptica and IMUVA, Universidad de Valladolid, E-47011 Valladolid (Spain); Kuru, Ş. [Department of Physics, Faculty of Science, Ankara University, 06100 Ankara (Turkey); Negro, J., E-mail: jnegro@fta.uva.es [Departamento de Física Teórica, Atómica y Óptica and IMUVA, Universidad de Valladolid, E-47011 Valladolid (Spain)
2017-04-15
We study the scattering produced by a one dimensional hyperbolic step potential, which is exactly solvable and shows an unusual interest because of its asymmetric character. The analytic continuation of the scattering matrix in the momentum representation has a branch cut and an infinite number of simple poles on the negative imaginary axis which are related with the so called anti-bound states. This model does not show resonances. Using the wave functions of the anti-bound states, we obtain supersymmetric (SUSY) partners which are the series of Rosen–Morse II potentials. We have computed the Wigner reflection and transmission time delays for the hyperbolic step and such SUSY partners. Our results show that the more bound states a partner Hamiltonian has the smaller is the time delay. We also have evaluated time delays for the hyperbolic step potential in the classical case and have obtained striking similitudes with the quantum case. - Highlights: • The scattering matrix of hyperbolic step potential is studied. • The scattering matrix has a branch cut and an infinite number of poles. • The poles are associated to anti-bound states. • Susy partners using antibound states are computed. • Wigner time delays for the hyperbolic step and partner potentials are compared.
Yuanyuan, Zhang
The stochastic branching model of multi-particle productions in high energy collision has theoretical basis in perturbative QCD, and also successfully describes the experimental data for a wide energy range. However, over the years, little attention has been put on the branching model for supersymmetric (SUSY) particles. In this thesis, a stochastic branching model has been built to describe the pure supersymmetric particle jets evolution. This model is a modified two-phase stochastic branching process, or more precisely a two phase Simple Birth Process plus Poisson Process. The general case that the jets contain both ordinary particle jets and supersymmetric particle jets has also been investigated. We get the multiplicity distribution of the general case, which contains a Hypergeometric function in its expression. We apply this new multiplicity distribution to the current experimental data of pp collision at center of mass energy √s = 0.9, 2.36, 7 TeV. The fitting shows the supersymmetric particles haven't participate branching at current collision energy.
Schuna, John M; Peterson, Courtney M; Thomas, Diana M; Heo, Moonseong; Hong, Sangmo; Choi, Woong; Heymsfield, Steven B
2015-01-01
Adult body mass (MB) empirically scales as height (Ht) squared (MB ∝ Ht(2) ), but does regional body mass and body composition as a whole also scale as Ht(2) ? This question is relevant to a wide range of biological topics, including interpretation of body mass index (BMI). Dual-energy X-ray absorptiometry (DXA) was used to quantify regional body mass [head (MH), trunk, arms, and legs] and whole-body composition [fat, lean soft tissue (LST), and bone mineral content (BMC)] in non-Hispanic (NH) white, NH black, Mexican American, and Korean adults participating in the National Health and Nutrition Examination Survey (NHANES; n = 17,126) and Korean NHANES (n = 8,942). Regression models were developed to establish Ht scaling powers for each measured component with adjustments for age and adiposity. Exploratory analyses revealed a consistent scaling pattern across men and women of the four population groups: regional mass powers, head (∼0.8-1) body composition, LST (∼2.0-2.3) body mass scaled uniformly across the eight sex and population groups as Ht(∼2) , tall and short subjects differed in body shape (e.g., MH/MB ∝ Ht(-∼1) ) and composition. Adult human body shape and relative composition are a function of body size as represented by stature, a finding that reveals a previously unrecognized phenotypic heterogeneity as defined by BMI. These observations provide new pathways for exploring mechanisms governing the interrelations between adult stature, body morphology, biomechanics, and metabolism. © 2014 Wiley Periodicals, Inc.
Luo, Ping; Yin, Peiyuan; Zhang, Weijian; Zhou, Lina; Lu, Xin; Lin, Xiaohui; Xu, Guowang
2016-03-11
Liquid chromatography-mass spectrometry (LC-MS) is now a main stream technique for large-scale metabolic phenotyping to obtain a better understanding of genomic functions. However, repeatability is still an essential issue for the LC-MS based methods, and convincing strategies for long time analysis are urgently required. Our former reported pseudotargeted method which combines nontargeted and targeted analyses, is proved to be a practical approach with high-quality and information-rich data. In this study, we developed a comprehensive strategy based on the pseudotargeted analysis by integrating blank-wash, pooled quality control (QC) sample, and post-calibration for the large-scale metabolomics study. The performance of strategy was optimized from both pre- and post-acquisition sections including the selection of QC samples, insertion frequency of QC samples, and post-calibration methods. These results imply that the pseudotargeted method is rather stable and suitable for large-scale study of metabolic profiling. As a proof of concept, the proposed strategy was applied to the combination of 3 independent batches within a time span of 5 weeks, and generated about 54% of the features with coefficient of variations (CV) below 15%. Moreover, the stability and maximal capability of a single analytical batch could be extended to at least 282 injections (about 110h) while still providing excellent stability, the CV of 63% metabolic features was less than 15%. Taken together, the improved repeatability of our strategy provides a reliable protocol for large-scale metabolomics studies. Copyright © 2016 Elsevier B.V. All rights reserved.
sUsY dark matter - a collider physicist's perspective
Indian Academy of Sciences (India)
The number of the observed dwarf galaxies around the Milky Way halo is not consistent with the Ν body simulations. The discrepancy may be the problem of numerical simulations. These simulations go through complicated procedures such as interfacing a large scale simulation to a small scale one. In addition, effects of.
SUSI 62 A Robust and Safe Parachute Uav with Long Flight Time and Good Payload
Thamm, H. P.
2011-09-01
In many research areas in the geo-sciences (erosion, land use, land cover change, etc.) or applications (e.g. forest management, mining, land management etc.) there is a demand for remote sensing images of a very high spatial and temporal resolution. Due to the high costs of classic aerial photo campaigns, the use of a UAV is a promising option for obtaining the desired remote sensed information at the time it is needed. However, the UAV must be easy to operate, safe, robust and should have a high payload and long flight time. For that purpose, the parachute UAV SUSI 62 was developed. It consists of a steel frame with a powerful 62 cm3 2- stroke engine and a parachute wing. The frame can be easily disassembled for transportation or to replace parts. On the frame there is a gimbal mounted sensor carrier where different sensors, standard SLR cameras and/or multi-spectral and thermal sensors can be mounted. Due to the design of the parachute, the SUSI 62 is very easy to control. Two different parachute sizes are available for different wind speed conditions. The SUSI 62 has a payload of up to 8 kg providing options to use different sensors at the same time or to extend flight duration. The SUSI 62 needs a runway of between 10 m and 50 m, depending on the wind conditions. The maximum flight speed is approximately 50 km/h. It can be operated in a wind speed of up to 6 m/s. The design of the system utilising a parachute UAV makes it comparatively safe as a failure of the electronics or the remote control only results in the UAV coming to the ground at a slow speed. The video signal from the camera, the GPS coordinates and other flight parameters are transmitted to the ground station in real time. An autopilot is available, which guarantees that the area of investigation is covered at the desired resolution and overlap. The robustly designed SUSI 62 has been used successfully in Europe, Africa and Australia for scientific projects and also for agricultural, forestry and
SUSI 62 A ROBUST AND SAFE PARACHUTE UAV WITH LONG FLIGHT TIME AND GOOD PAYLOAD
Directory of Open Access Journals (Sweden)
H. P. Thamm
2012-09-01
Full Text Available In many research areas in the geo-sciences (erosion, land use, land cover change, etc. or applications (e.g. forest management, mining, land management etc. there is a demand for remote sensing images of a very high spatial and temporal resolution. Due to the high costs of classic aerial photo campaigns, the use of a UAV is a promising option for obtaining the desired remote sensed information at the time it is needed. However, the UAV must be easy to operate, safe, robust and should have a high payload and long flight time. For that purpose, the parachute UAV SUSI 62 was developed. It consists of a steel frame with a powerful 62 cm3 2- stroke engine and a parachute wing. The frame can be easily disassembled for transportation or to replace parts. On the frame there is a gimbal mounted sensor carrier where different sensors, standard SLR cameras and/or multi-spectral and thermal sensors can be mounted. Due to the design of the parachute, the SUSI 62 is very easy to control. Two different parachute sizes are available for different wind speed conditions. The SUSI 62 has a payload of up to 8 kg providing options to use different sensors at the same time or to extend flight duration. The SUSI 62 needs a runway of between 10 m and 50 m, depending on the wind conditions. The maximum flight speed is approximately 50 km/h. It can be operated in a wind speed of up to 6 m/s. The design of the system utilising a parachute UAV makes it comparatively safe as a failure of the electronics or the remote control only results in the UAV coming to the ground at a slow speed. The video signal from the camera, the GPS coordinates and other flight parameters are transmitted to the ground station in real time. An autopilot is available, which guarantees that the area of investigation is covered at the desired resolution and overlap. The robustly designed SUSI 62 has been used successfully in Europe, Africa and Australia for scientific projects and also for
Energy Technology Data Exchange (ETDEWEB)
Freunberger, S. A.
2007-07-01
This dissertation is concerned with the development, experimental diagnostics and mathematical modelling and simulation of polymer electrolyte fuel cells (PEFC). The central themes throughout this thesis are the closely interlinked phenomena of mass and charge transfer. In the face of developing a PEFC system for vehicle propulsion these phenomena are scrutinized on a broad range of relevant scales. Starting from the material related level of the membrane and the gas diffusion layer (GDL) we turn to length scales, where structural features of the cell additionally come into play. These are the scale of flow channels and ribs, the single cell and the cell stack followed by the cell, stack, and system development for an automotive power train. In Chapter 3 selected fundamental material models and properties, respectively, are explored that are crucial for the mathematical modelling and simulation of PEFC, as needed in some succeeding parts of this work. First, established mathematical models for mass and charge transfer in the membrane are compared within the framework of the membrane electrode assembly (MEA), which represents the electrochemical unit. Second, reliable values for effective diffusivities in the GDLs which are vital for the simulation of gaseous mass transport are measured. Therefore, a method is developed that allows measuring this quantity both as a function of compression and direction as this is a prerequisite of sophisticated more-dimensional numerical PEFC-models. Besides the cross section of the catalyst layer (CL) mass transfer under channels and ribs is considered as a major source of losses in particular under high load operation. As up to now there have been solely non-validated theoretical investigations, in Chapter 4 an experimental method is developed that is for the first time capable of resolving the current density distribution on the this scale. For this, the electron conductors in the cell are considered as 2-dimensional shunt
Measuring the black hole mass in ultraluminous X-ray sources with the X-ray scaling method
Jang, I.; Gliozzi, M.; Satyapal, S.; Titarchuk, L.
2018-01-01
In our recent work, we demonstrated that a novel X-ray scaling method, originally introduced for Galactic black holes (BH), could be reliably extended to estimate the mass of supermassive black holes accreting at moderate to high level. Here, we apply this X-ray scaling method to ultraluminous X-ray sources (ULXs) to constrain their MBH. Using 49 ULXs with multiple XMM-Newton observations, we infer that ULXs host both stellar mass BHs and intermediate mass BHs. The majority of the sources of our sample seem to be consistent with the hypothesis of highly accreting massive stellar BHs with MBH ∼ 100 M⊙. Our results are in general agreement with the MBH values obtained with alternative methods, including model-independent variability methods. This suggests that the X-ray scaling method is an actual scale-independent method that can be applied to all BH systems accreting at moderate-high rate.
A scale of greatness and causal classification of mass extinctions: implications for mechanisms.
Sengör, A M Celâl; Atayman, Saniye; Ozeren, Sinan
2008-09-16
A quantitative scale for measuring greatness, G, of mass extinctions is proposed on the basis of rate of biodiversity diminution expressed as the product of the loss of biodiversity, called magnitude (M), and the inverse of time in which that loss occurs, designated as intensity (I). On this scale, the catastrophic Cretaceous-Tertiary (K-T) extinction appears as the greatest since the Ordovician and the only one with a probable extraterrestrial cause. The end-Permian extinction was less great but with a large magnitude (M) and smaller intensity (I); only some of its individual episodes involved some semblance of catastrophe. Other extinctions during the Phanerozoic, with the possible exception of the end-Silurian diversity plunge, were parts of a forced oscillatory phenomenon and seem caused by marine- and land-habitat destruction during continental assemblies that led to elimination of shelves and (after the Devonian) rain forests and enlargement of deserts. Glaciations and orogenies that shortened and thickened the continental crust only exacerbated these effects. During the Mesozoic and Cainozoic, the evolution of life was linearly progressive, interrupted catastrophically only at the K-T boundary. The end-Triassic extinction was more like the Paleozoic extinctions in nature and probably also in its cause. By contrast, the current extinction resembles none of the earlier ones and may end up being the greatest of all.
Swiss-cheese D3- D7 soft SUSY breaking
Misra, Aalok; Shukla, Pramod
2010-03-01
We address issues related to (i) a proposal for resolving a long-standing tension between large volume cosmology and phenomenology as regards reconciliation of requirements of different gravitino masses within the same string-theoretic framework, as well as (ii) evaluation of soft supersymmetry breaking terms and open-string moduli masses in the context of type IIB large volume compactifications involving orientifolds of the Swiss-cheese Calabi-Yau WCP[1,1,1,6,9] with a single mobile space-time filling D3-brane and stacks of D7-branes wrapping the "big" divisor Σ as well as supporting D7-brane fluxes. In addition, we also include perturbative α-corrections and non-perturbative world-sheet instanton corrections to the Kähler potential as well as Euclidean D3-instanton superpotential. First, using the toric data for the aforementioned Swiss-cheese Calabi-Yau and GLSM techniques, we obtain in the large volume limit, the geometric Kähler potential for the big (and small) divisor(s) in terms of derivatives of genus-two Siegel theta functions. Next, we show that as the mobile space-time filling D3-brane moves from a particular non-singular elliptic curve embedded in the Swiss-cheese Calabi-Yau to another non-singular elliptic curve, it is possible to obtain 10 12 GeV gravitino during the primordial inflationary era as well as, e.g., a TeV gravitino in the present era, within the same set up for the same volume of the Calabi-Yau stabilized at around 10ls6. Then by constructing local (i.e. localized around the location of the mobile D3-brane in the Calabi-Yau) appropriate involutively-odd harmonic one-form on the big divisor that lies in coker(H∂¯,-(0,1)(CY)→iH∂¯,-(0,1)(Σ)) and extremizing the potential, we show that it is possible to obtain an O(1)g from the wrapping of D7-branes on the big divisor due to competing contributions from the Wilson line moduli relative to the divisor volume modulus. To permit gaugino condensation, we take the rigid limit of the
Low-energy. beta. -function in a finite super-Yang-Mills model with multiple mass scales
Energy Technology Data Exchange (ETDEWEB)
Foda, O.; Helayel-Neto, J.A. (International Centre for Theoretical Physics, Trieste (Italy))
1985-02-14
We compute the one-loop contribution to the low-energy light-fermion gauge coupling in a finite supersymmetric gauge theory with two mass scales: a heavy mass that breaks an initial N=4 supersymmetry down to N=2, but respects the finiteness, and a light mass that, for simplicity, is set to zero. We find that coupling grows with the mass of the heavy intermediate states. Hence the latter do not decouple at low energies, leading to large logarithms that invalidate low-energy perturbation theory. Consequently, further manipulations are required to obtain a meaningful perturbative expansion. Enforcing decoupling through finite renormalizations, that absorb the heavy mass effects into a redefinition of the parameters of the lagrangian, introduces an arbitrary subtraction mass ..mu... The requirement that the S-matrix elements be independent of ..mu.. leads to a non-trivial renormalization-group equation for the low-energy theory, with a non-vanishing ..beta..-function.
A Local Baseline of the Black Hole Mass - Host Galaxy Scaling Relations for Active Galaxies
Bennert, Vardha
2017-08-01
The discovery of relations between supermassive black holes (BHs) and their host-galaxy properties has sparked many observational studies pertaining both to the local Universe and cosmic history. Nevertheless, a clear understanding of their origin and fundamental drivers still eludes us. Studying the evolution of these relations depends on our understanding of the slope and scatter of local relations for active galaxies (AGNs). We propose a SNAP program of a unique sample of 84 local type-1 AGNs, spanning a wide range of BH masses (MBH), morphologies, and stellar masses. The high resolution WFC3/F814W images are essential for a detailed decomposition of the host-galaxy in the presence of a bright AGN point source, resulting in precise measurements of the different host-galaxy components and AGN luminosity free of host-galaxy contamination for a robust determination of MBH. When complemented with spatially-resolved Keck spectra to determine stellar-velocity dispersion within bulge effective radius, this yields a most complete baseline of host-galaxy properties over the entire range of MBH scaling relations. A typical SNAP completion rate results in a sample of 30 objects which will be used to calibrate existing Gemini NIRI and SDSS images. We will study slope and scatter of the relations, dependencies and fundamental drivers. The frequency of pseudo-bulges, bars, and (minor) mergers will reveal the dominant growth mechanism of spheroids. The homogeneous sample will identify any selection biases in the reverberation-mapped AGN sample which serves as a MBH calibrator for the entire Universe. Results will be compared with state-of-the-art semi-analytical models.
Should We Care that Johnny Can't Catch and Susie Can't Skip? What Should We Do about It?
Whitall, Jill; Clark, Jane E.
2011-01-01
Physical and sport educators care that Johnny and Susie cannot move as well as their peers. They try their best to improve their skill levels because they value participation and skillfulness in sport and physical activity. However, many times there is a deeper problem as to why Johnny or Susie cannot move as well as their peers. Physical and…
Altenkämper, Lucas; Bock, Friederike; Loizides, Constantin; Schmidt, Nicolas
2017-12-01
We present a study on the applicability of transverse mass scaling for identified particle spectra in proton-proton collisions at √{s }=7 TeV based on data taken by the ALICE experiment at the LHC. The measured yields are parametrized and compared to estimates obtained from a generalized transverse mass scaling approach applied to different reference particle spectra. It is found that generalized transverse mass scaling is not able to describe the measured spectra over the full range in transverse momentum. At low pT, deviations of 20 % or more are obtained, in particular, if pions are used as reference particles. A better scaling performance is obtained when kaons are used as reference particles. At high pT all tested spectra with the possible exception of the charged kaons exhibit a scaling behavior. Investigating the feed-down contributions from resonance decays to the charged pion yields reveals, that using them as reference a general scaling may not be achievable. Our findings imply that for precision measurements of direct photon and di-electron spectra at low transverse momentum one should measure the relevant hadronic background, instead of relying on mT scaling for its estimate.
Convective kinetic energy equation under the mass-flux subgrid-scale parameterization
Yano, Jun-Ichi
2015-03-01
The present paper originally derives the convective kinetic energy equation under mass-flux subgrid-scale parameterization in a formal manner based on the segmentally-constant approximation (SCA). Though this equation is long since presented by Arakawa and Schubert (1974), a formal derivation is not known in the literature. The derivation of this formulation is of increasing interests in recent years due to the fact that it can explain basic aspects of the convective dynamics such as discharge-recharge and transition from shallow to deep convection. The derivation is presented in two manners: (i) for the case that only the vertical component of the velocity is considered and (ii) the case that both the horizontal and vertical components are considered. The equation reduces to the same form as originally presented by Arakwa and Schubert in both cases, but with the energy dissipation term defined differently. In both cases, nevertheless, the energy "dissipation" (loss) term consists of the three principal contributions: (i) entrainment-detrainment, (ii) outflow from top of convection, and (iii) pressure effects. Additionally, inflow from the bottom of convection contributing to a growth of convection is also formally counted as a part of the dissipation term. The eddy dissipation is also included for a completeness. The order-of-magnitude analysis shows that the convective kinetic energy "dissipation" is dominated by the pressure effects, and it may be approximately described by Rayleigh damping with a constant time scale of the order of 102-103 s. The conclusion is also supported by a supplementary analysis of a cloud-resolving model (CRM) simulation. The Appendix discusses how the loss term ("dissipation") of the convective kinetic energy is qualitatively different from the conventional eddy-dissipation process found in turbulent flows.
Sun, Jun; Fan, Ruirui; Niklas, Karl J; Zhong, Quanlin; Yang, Fuchun; Li, Man; Chen, Xiaoping; Sun, Mengke; Cheng, Dongliang
2017-07-01
Leaf area and dry mass are crucial for plant metabolic performance. The "diminishing returns" hypothesis predicts that leaf area will scale less than one with respect to leaf dry mass, indicating that the cost of light interception increases with leaf area. However, it remains unclear whether and how this scaling relationship varies among species growing in different environments. More than 2000 measurements from five bamboo species adapted to high and low light and growing at different elevations in Wuyi Mountains, Southeast China, were used to explore how the leaf area vs. dry mass scaling relationship was affected by light and elevation. The data indicate that (1) the normalization constants for leaf area vs. dry mass were positively but not significantly correlated with increasing leaf size and that (2) the scaling exponents remained numerically invariant among all five bamboo species, with a common slope of 0.85. Standardized major axis (SMA) analyses and comparisons of 95% confidence intervals also showed that the numerical values of the scaling exponents did not differ regardless of elevation and were similar between shaded and unshaded adapted species, whereas the numerical values of the normalization constants increased with decreasing light. The data collected for all five bamboo species are consistent with the "diminishing returns" hypothesis, i.e., the scaling exponents governing the leaf area vs. dry mass scaling relationship are less than one within and across species and are insensitive to light conditions or elevation. © 2017 Sun et al. Published by the Botanical Society of America. This work is licensed under a Creative Commons Attribution License (CC-BY).
Impact of SUSY-QCD corrections to neutralino-squark coannihilation on the dark matter relic density
Energy Technology Data Exchange (ETDEWEB)
Harz, Julia [Deutsches Elektronen-Synchrotron, Hamburg (Germany); Herrmann, Bjoern [Laboratoire d' Annecy de Physique Theorique, Annecy-le-Vieux (France); Klasen, Michael [Institute for Theoretical Physics, University of Muenster (Germany); Kovarik, Karol [Karlsruhe Institute of Technology, Karlsruhe (Germany); Le Boulc' h, Quentin [Laboratoire de Physique Subatomique et de Cosmologie, Grenoble (France)
2012-07-01
A powerful method to constrain the parameter space of theories beyond the Standard Model is to compare the predicted dark matter relic density with data from cosmological precision measurements, in particular from the WMAP satellite. On the particle physics side, the main uncertainty on the relic density arises from the (co-)annihilation cross sections of the dark matter particle. After a motivation for including higher order corrections in the prediction of the relic density, the project DM rate at NLO is presented. This software package allows one to compute the neutralino (co-)annihilation cross sections including SUSY-QCD corrections at the one-loop level and to evaluate their effect on the relic density using a link to the public codes MicrOMEGAs and DarkSUSY. Recent results of the impact of SUSY-QCD corrections on the neutralino pair annihilation cross section are discussed, and first results on neutralino-squark coannihilation are shown.
Confronting SUSY models with LHC data via electroweakino production
Energy Technology Data Exchange (ETDEWEB)
Arina, Chiara [Univ. Catholique de Louvain, Louvain-la-Neuve (Belgium). Centre for Cosmology, Particle Physics and Phenomology (CP3); Chala, Mikael [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Martin-Lozano, Victor [Univ. Autonoma de Madrid UAM/CSIC (Spain). Dept. de Fisica Teorica y Inst. de Fisica Teorica; Bonn Univ. (Germany). Bethe Center for Theoretical Physics und Physikalisches Inst.; Nardini, Germano [Bern Univ. (Switzerland). Inst. fuer Theoretische Physik
2016-12-15
We investigate multi-lepton signals produced by ElectroWeakino (EWino) decays in the MSSM and the TMSSM scenarios with sfermions, gluinos and non Standard Model Higgses at the TeV scale, being the Bino electroweak-scale dark matter. We recast the present LHC constraints on EWinos for these models and we find that wide MSSM and TMSSM parameter regions prove to be allowed. We forecast the number of events expected in the signal regions of the experimental multi-lepton analyses in the next LHC runs. The correlations among these numbers will help to determine whether future deviations in multi-lepton data are ascribable to the EWinos, as well as the supersymmetric model they originate from.
SUSY + Beyond Standard Model Higgs Searches at the Tevatron
Directory of Open Access Journals (Sweden)
Abid Patwa
2012-06-01
Full Text Available Recent results by the CDF and DØ Collaborations for non-Standard Model Higgs boson searches in pp¯ $par p$ collisions at center-of-mass energy of √s = 1.96 TeV using up to 8.2 fb−1 of Fermilab Tevatron data are discussed. Searches for neutral Higgs bosons predicted in the Minimal Supersymmetric Standard Model (MSSM, doubly-charged Higgs bosons predicted in extended models, as well as Higgs bosons within Hidden Valley and Fermiophobic models are described.
An industry-scale mass marking technique for tracing farmed fish escapees.
Directory of Open Access Journals (Sweden)
Fletcher Warren-Myers
Full Text Available Farmed fish escape and enter the environment with subsequent effects on wild populations. Reducing escapes requires the ability to trace individuals back to the point of escape, so that escape causes can be identified and technical standards improved. Here, we tested if stable isotope otolith fingerprint marks delivered during routine vaccination could be an accurate, feasible and cost effective marking method, suitable for industrial-scale application. We tested seven stable isotopes, (134Ba, (135Ba, (136Ba, (137Ba, (86Sr, (87Sr and (26Mg, on farmed Atlantic salmon reared in freshwater, in experimental conditions designed to reflect commercial practice. Marking was 100% successful with individual Ba isotopes at concentrations as low as 0.001 µg. g-1 fish and for Sr isotopes at 1 µg. g-1 fish. Our results suggest that 63 unique fingerprint marks can be made at low cost using Ba (0.0002 - 0.02 $US per mark and Sr (0.46 - 0.82 $US per mark isotopes. Stable isotope fingerprinting during vaccination is feasible for commercial application if applied at a company level within the world's largest salmon producing nations. Introducing a mass marking scheme would enable tracing of escapees back to point of origin, which could drive greater compliance, better farm design and improved management practices to reduce escapes.
Mining Large Scale Tandem Mass Spectrometry Data for Protein Modifications Using Spectral Libraries.
Horlacher, Oliver; Lisacek, Frederique; Müller, Markus
2016-03-04
Experimental improvements in post-translational modification (PTM) detection by tandem mass spectrometry (MS/MS) has allowed the identification of vast numbers of PTMs. Open modification searches (OMSs) of MS/MS data, which do not require prior knowledge of the modifications present in the sample, further increased the diversity of detected PTMs. Despite much effort, there is still a lack of functional annotation of PTMs. One possibility to narrow the annotation gap is to mine MS/MS data deposited in public repositories and to correlate the PTM presence with biological meta-information attached to the data. Since the data volume can be quite substantial and contain tens of millions of MS/MS spectra, the data mining tools must be able to cope with big data. Here, we present two tools, Liberator and MzMod, which are built using the MzJava class library and the Apache Spark large scale computing framework. Liberator builds large MS/MS spectrum libraries, and MzMod searches them in an OMS mode. We applied these tools to a recently published set of 25 million spectra from 30 human tissues and present tissue specific PTMs. We also compared the results to the ones obtained with the OMS tool MODa and the search engine X!Tandem.
Nitrogen mass balance across pilot-scale algae and duckweed-based wastewater stabilisation ponds.
Zimmo, O R; van der Steen, N P; Gijzen, H J
2004-02-01
Nitrogen removal processes and nitrogen mass balances in algae-based ponds (ABPs) and duckweed (Lemna gibba)-based ponds (DBPs) were assessed during periods of 4 months, each under different operational conditions. During periods 1 and 2, the effect of cold and warm temperature was studied. During periods 2 and 3, the effect of low- and high-system organic loading (OL) was studied in warm seasons operation. The pilot-scale systems consisted of four similar ponds in series fed with domestic sewage with hydraulic retention time of 7 days in each pond. Overall nitrogen removal was higher during warm temperature in both ABPs and DBPs, but similar during periods 2 and 3. Nitrogen removal in DBPs was lower than in ABPs by 20%, 12% and 8% during cold temperature, warm temperature and high-OL periods, respectively. Depending on temperature and OL rate, ABPs showed higher nitrogen removal via sedimentation (46-245% higher) compared to DBPs. Also, ABPs also showed higher nitrogen removal via denitrification (7-37% higher) compared to DBPs. Ammonia volatilisation in both systems did not exceed 1.1% of influent total nitrogen during the entire experimental period. N uptake by duckweed corresponds to 30% of the influent nitrogen during warm/low OL period and decreased to 10% and 19% during the cold and warm/high OL period, respectively. Predictive models for nitrogen removal presented a good reflection of nitrogen fluxes on overall nitrogen balance under the prevailing experimental conditions.
SARAH 4: A tool for (not only SUSY) model builders
Staub, Florian
2014-06-01
We present the new version of the Mathematica package SARAH which provides the same features for a non-supersymmetric model as previous versions for supersymmetric models. This includes an easy and straightforward definition of the model, the calculation of all vertices, mass matrices, tadpole equations, and self-energies. Also the two-loop renormalization group equations for a general gauge theory are now included and have been validated with the independent Python code PyR@TE. Model files for FeynArts, CalcHep/CompHep, WHIZARD and in the UFO format can be written, and source code for SPheno for the calculation of the mass spectrum, a set of precision observables, and the decay widths and branching ratios of all states can be generated. Furthermore, the new version includes routines to output model files for Vevacious for both, supersymmetric and non-supersymmetric, models. Global symmetries are also supported with this version and by linking Susyno the handling of Lie groups has been improved and extended.
Susy-QCD corrections to neutrlino pair production in association with a jet
Energy Technology Data Exchange (ETDEWEB)
Cullen, Gavin [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Greiner, Nicolas; Heinrich, Gudrun [Max-Planck-Institut fuer Physik, Muenchen (Germany)
2012-12-15
We present the NLO Susy-QCD corrections to the production of a pair of the lightest neutralinos plus one jet at the LHC, appearing as a monojet signature in combination with missing energy. We fully include all non-resonant diagrams, i.e. we do not assume that production and decay factorise. We derive a parameter point based on the p19MSSM which is compatible with current experimental bounds and show distributions based on missing transverse energy and jet observables. Our results are produced with the program GoSam for automated one-loop calculations in combination with MadDipole/- MadGraph for the real radiation part.
Energy Technology Data Exchange (ETDEWEB)
Day-Lewis, Frederick; Singha, Kamini; Haggerty, Roy; Johnson, Timothy; Binley, Andrew; Lane, John
2014-03-10
. In this project, we sought to capitalize on the geophysical signatures of mass transfer. Previous numerical modeling and pilot-scale field experiments suggested that mass transfer produces a geoelectrical signature—a hysteretic relation between sampled (mobile-domain) fluid conductivity and bulk (mobile + immobile) conductivity—over a range of scales relevant to aquifer remediation. In this work, we investigated the geoelectrical signature of mass transfer during tracer transport in a series of controlled experiments to determine the operation of controlling parameters, and also investigated the use of complex-resistivity (CR) as a means of quantifying mass transfer parameters in situ without tracer experiments. In an add-on component to our grant, we additionally considered nuclear magnetic resonance (NMR) to help parse mobile from immobile porosities. Our study objectives were to: 1. Develop and demonstrate geophysical approaches to measure mass-transfer parameters spatially and over a range of scales, including the combination of electrical resistivity monitoring, tracer tests, complex resistivity, nuclear magnetic resonance, and materials characterization; and 2. Provide mass-transfer estimates for improved understanding of contaminant fate and transport at DOE sites, such as uranium transport at the Hanford 300 Area. To achieve our objectives, we implemented a 3-part research plan involving (1) development of computer codes and techniques to estimate mass-transfer parameters from time-lapse electrical data; (2) bench-scale experiments on synthetic materials and materials from cores from the Hanford 300 Area; and (3) field demonstration experiments at the DOE’s Hanford 300 Area.
Energy Technology Data Exchange (ETDEWEB)
Nath, Pran
2012-09-12
SUSY2009 brought together researchers from a very broad area of fundamental physics including elementary particle theory, astrophysics and cosmology and string theory with a focus on supersymmetry. Thus the topic covered at the SUSY2009 conference included the following: Search for the Higgs boson, search for supersymmetry, supersymmetry phenomenology, theories of dark matter and direct and indirect detection, neutrino physics, accelerator experiments, electroweak physics, supersymmetry phenomenology, string theory, string phenomenology, extra Dimensions as well as other recent theoretical and experimental developments. The conference was successful in fostering interdisciplinary interactions between theorists and experimentalists.
Search for SUSY in final states with photons at CMS
Directory of Open Access Journals (Sweden)
Ntomari Eleni
2013-05-01
Full Text Available Résumé The Compact Muon Solenoid (CMS collaboration has developed a complete program of searches beyond the Standard Model (SM covering a wide range of final states. This document focuses on searches in final states with photons and missing transverse energy ETmiss organised in three analyses. The first two include comparison of the ETmiss distribution (isolation sideband method in events with either at least two photons plus at least one hadronic jet, or at least one photon plus at least two hadronic jets. The third analysis corresponds to a new approach, the Jet-Gamma Balance (JGB method, for events with at least one photon plus at least three hadronic jets.We observe no significant deviations from the SM expectation and thus derive upper limits on the signal cross section at the 95% confidence level (CL for a range of squark, gluino and neutralino mass points in the Gauge Mediated Supersymmetry Breaking scenario.
Dark matter and the Higgs in natural SUSY
Energy Technology Data Exchange (ETDEWEB)
Basirnia, Aria; Macaluso, Sebastian; Shih, David [NHETC, Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854 (United States)
2017-03-14
Null results from dark matter (DM) direct detection experiments and the 125 GeV Higgs both pose serious challenges to minimal supersymmetry. In this paper, we propose a simple extension of the MSSM that economically solves both problems: a “dark sector” consisting of a singlet and a pair of SU(2) doublets. Loops of the dark sector fields help lift the Higgs mass to 125 GeV consistent with naturalness, while the lightest fermion in the dark sector can be viable thermal relic DM, provided that it is mostly singlet. The DM relic abundance is controlled by s-wave annihilation to tops and Higgsinos, leading to a tight relation between the relic abundance and the spin-dependent direct detection cross section. As a result, the model will be fully probed by the next generation of direct detection experiments. Finally we discuss the discovery potential at LHC Run II.
Ogata, K.; Mountjoy, J. J.; Pini, Gian Andrea; Festa, A.; Tinterri, R.
2014-01-01
We present the integrated outcrop-geophysical study of two mass transport complexes, the exhumed Specchio unit in the Northern Apennines of Italy and the Holocene Poverty unit in the Hikurangi margin of New Zealand. The combination of micro- to meso-scale structural, stratigraphic and sedimentologic
Frederikse, T.; Simon, K.M.; Katsman, C.A.; Riva, R.E.M.
2017-01-01
Sea-level rise and decadal variability along the northwestern coast of the North Atlantic Ocean are studied in a self-consistent framework that takes into account the effects of solid-earth deformation and geoid changes due to large-scale mass redistribution processes. Observations of sea and
Affleck-Dine leptogenesis with varying Peccei-Quinn scale
Energy Technology Data Exchange (ETDEWEB)
Bae, Kyu Jung [Center for Theoretical Physics of the Universe, Institute for Basic Science (IBS),193 Munji-ro, Yuseong-gu, Daejeon 34051 (Korea, Republic of); Baer, Howard [Department of Physics and Astronomy, University of Oklahoma,440 West Brooks, Norman, OK 73019 (United States); Hamaguchi, Koichi; Nakayama, Kazunori [Department of Physics, Graduate School of Science, University of Tokyo,7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU),University of Tokyo,5-1-5 Kashiwanoha, Kashiwa 277-8583 (Japan)
2017-02-03
The Affleck-Dine leptogenesis scenario along the LH{sub u} flat direction is reconsidered. It is known that successful Affleck-Dine leptogenesis requires that the lightest neutrino mass is extremely small. This situation can be significantly relaxed if the neutrino mass in the early universe is different from the present one. We consider a supersymmetric Dine-Fischler-Srednicki-Zhitnitsky (DFSZ) type model, which provides a solution to the strong CP problem and generates a SUSY μ-term and right-handed neutrino masses. If the PQ scale during lepton number generation is much larger than the present value, leptogenesis is very efficient so that enough baryon number can be generated without introducing a hierarchically small neutrino mass. The final baryon asymmetry is related to the μ-term, and hence linked to the level of electroweak fine-tuning. We also show the PQ breaking scalar dynamics that keeps a large PQ breaking scale during inflation and lepton number generation. The μ-term generating superpotential plays an important role for preserving the lepton asymmetry during saxion oscillation. In this scenario, the axion isocurvature perturbation is naturally suppressed.
Affleck-Dine leptogenesis with varying Peccei-Quinn scale
Bae, Kyu Jung; Baer, Howard; Hamaguchi, Koichi; Nakayama, Kazunori
2017-02-01
The Affleck-Dine leptogenesis scenario along the LH u flat direction is reconsidered. It is known that successful Affleck-Dine leptogenesis requires that the lightest neutrino mass is extremely small. This situation can be significantly relaxed if the neutrino mass in the early universe is different from the present one. We consider a supersymmetric Dine-Fischler-Srednicki-Zhitnitsky (DFSZ) type model, which provides a solution to the strong CP problem and generates a SUSY μ-term and right-handed neutrino masses. If the PQ scale during lepton number generation is much larger than the present value, leptogenesis is very efficient so that enough baryon number can be generated without introducing a hierarchically small neutrino mass. The final baryon asymmetry is related to the μ-term, and hence linked to the level of electroweak fine-tuning. We also show the PQ breaking scalar dynamics that keeps a large PQ breaking scale during inflation and lepton number generation. The μ-term generating superpotential plays an important role for preserving the lepton asymmetry during saxion oscillation. In this scenario, the axion isocurvature perturbation is naturally suppressed.
The di-photon excess in a perturbative SUSY model
Energy Technology Data Exchange (ETDEWEB)
Benakli, Karim, E-mail: kbenakli@lpthe.jussieu.fr [Sorbonne Universités, UPMC Univ Paris 06, UMR 7589, LPTHE, F-75005, Paris (France); CNRS, UMR 7589, LPTHE, F-75005, Paris (France); Darmé, Luc, E-mail: darme@lpthe.jussieu.fr [Sorbonne Universités, UPMC Univ Paris 06, UMR 7589, LPTHE, F-75005, Paris (France); CNRS, UMR 7589, LPTHE, F-75005, Paris (France); Sorbonne Universités, Institut Lagrange de Paris (ILP), 98 bis Boulevard Arago, 75014 Paris (France); Goodsell, Mark D., E-mail: goodsell@lpthe.jussieu.fr [Sorbonne Universités, UPMC Univ Paris 06, UMR 7589, LPTHE, F-75005, Paris (France); CNRS, UMR 7589, LPTHE, F-75005, Paris (France); Harz, Julia, E-mail: jharz@lpthe.jussieu.fr [Sorbonne Universités, UPMC Univ Paris 06, UMR 7589, LPTHE, F-75005, Paris (France); CNRS, UMR 7589, LPTHE, F-75005, Paris (France); Sorbonne Universités, Institut Lagrange de Paris (ILP), 98 bis Boulevard Arago, 75014 Paris (France)
2016-10-15
We show that a 750 GeV di-photon excess as reported by the ATLAS and CMS experiments can be reproduced by the Minimal Dirac Gaugino Supersymmetric Standard Model (MDGSSM) without the need of any ad-hoc addition of new states. The scalar resonance is identified with the spin-0 partner of the Dirac bino. We perform a thorough analysis of constraints coming from the mixing of the scalar with the Higgs boson, the stability of the vacuum and the requirement of perturbativity of the couplings up to very high energy scales. We exhibit examples of regions of the parameter space that respect all the constraints while reproducing the excess. We point out how trilinear couplings that are expected to arise in supersymmetry-breaking mediation scenarios, but were ignored in the previous literature on the subject, play an important role.
The di-photon excess in a perturbative SUSY model
Directory of Open Access Journals (Sweden)
Karim Benakli
2016-10-01
Full Text Available We show that a 750 GeV di-photon excess as reported by the ATLAS and CMS experiments can be reproduced by the Minimal Dirac Gaugino Supersymmetric Standard Model (MDGSSM without the need of any ad-hoc addition of new states. The scalar resonance is identified with the spin-0 partner of the Dirac bino. We perform a thorough analysis of constraints coming from the mixing of the scalar with the Higgs boson, the stability of the vacuum and the requirement of perturbativity of the couplings up to very high energy scales. We exhibit examples of regions of the parameter space that respect all the constraints while reproducing the excess. We point out how trilinear couplings that are expected to arise in supersymmetry-breaking mediation scenarios, but were ignored in the previous literature on the subject, play an important role.
Determination of the b quark mass at the $M_Z$ scale with the DELPHI detector at LEP
Abdallah, J; Adam, W; Adzic, P; Albrecht, T; Alderweireld, T; Alemany-Fernandez, R; Allmendinger, T; Allport, P P; Amaldi, Ugo; Amapane, N; Amato, S; Anashkin, E; Andreazza, A; Andringa, S; Anjos, N; Antilogus, P; Apel, W D; Arnoud, Y; Ask, S; Åsman, B; Augustin, J E; Augustinus, A; Baillon, Paul; Ballestrero, A; Bambade, P; Barbier, R; Bardin, D; Barker, G J; Baroncelli, A; Battaglia, M; Baubillier, M; Becks, K H; Begalli, M; Behrmann, A; Ben-Haim, E; Benekos, N; Benvenuti, A C; Bérat, C; Berggren, M; Berntzon, L; Bertrand, D; Besançon, M; Besson, N; Bloch, D; Blom, M; Bluj, M; Bonesini, M; Boonekamp, M; Booth, P S L; Borisov, G; Botner, O; Bouquet, B; Bowcock, T J V; Boyko, I; Bracko, M; Brenner, R; Brodet, E; Brückman, P; Brunet, J M; Buschmann, P; Calvi, M; Camporesi, T; Canale, V; Carena, F; Castro, N; Cavallo, F; Chapkin, M; Charpentier, P; Checchia, P; Chierici, R; Shlyapnikov, P; Chudoba, J; Chung, S U; Cieslik, K; Collins, P; Contri, R; Cosme, G; Cossutti, F; Costa, M J; Crennell, D J; Cuevas-Maestro, J; D'Hondt, J; Dalmau, J; Da Silva, T; Da Silva, W; Della Ricca, G; De Angelis, A; de Boer, Wim; De Clercq, C; De Lotto, B; De Maria, N; De Min, A; De Paula, L; Di Ciaccio, L; Di Simone, A; Doroba, K; Drees, J; Eigen, G; Ekelöf, T J C; Ellert, M; Elsing, M; Espirito-Santo, M C; Fanourakis, G K; Fassouliotis, D; Feindt, M; Fernández, J; Ferrer, A; Ferro, F; Flagmeyer, U; Föth, H; Fokitis, E; Fulda-Quenzer, F; Fuster, J; Gandelman, M; García, C; Gavillet, P; Gazis, E; Gokieli, R; Golob, B; Gómez-Ceballos, G; Gonçalves, P; Graziani, E; Grosdidier, G; Grzelak, K; Guy, J; Haag, C; Hallgren, A; Hamacher, K; Hamilton, K; Haug, S; Hauler, F; Hedberg, V; Hennecke, M; Herr, H; Hoffman, J; Holmgren, S O; Holt, P J; Houlden, M A; Hultqvist, K; Jackson, J N; Jarlskog, G; Jarry, P; Jeans, D; Johansson, E K; Johansson, P D; Jonsson, P; Joram, C; Jungermann, L; Kapusta, F; Katsanevas, S; Katsoufis, E; Kernel, G; Kersevan, B P; Kerzel, U; King, B T; Kjaer, N J; Kluit, P; Kokkinias, P; Kourkoumelis, C; Kuznetsov, O; Krumshtein, Z; Kucharczyk, M; Lamsa, J; Leder, G; Ledroit, F; Leinonen, L; Leitner, R; Lemonne, J; Lepeltier, V; Lesiak, T; Liebig, W; Liko, D; Lipniacka, A; Lopes, J H; López, J M; Loukas, D; Lutz, P; Lyons, L; MacNaughton, J; Malek, A; Maltezos, S; Mandl, F; Marco, J; Marco, R; Maréchal, B; Margoni, M; Marin, J C; Mariotti, C; Markou, A; Martínez-Rivero, C; Masik, J; Mastroyiannopoulos, N; Matorras, F; Matteuzzi, C; Mazzucato, F; Mazzucato, M; McNulty, R; Meroni, C; Migliore, E; Mitaroff, W A; Mjörnmark, U; Moa, T; Moch, M; Mönig, K; Monge, R; Montenegro, J; Moraes, D; Moreno, S; Morettini, P; Müller, U; Münich, K; Mulders, M; Mundim, L; Murray, W; Muryn, B; Myatt, G; Myklebust, T; Nassiakou, M; Navarria, Francesco Luigi; Nawrocki, K; Nicolaidou, R; Nikolenko, M; Oblakowska-Mucha, A; Obraztsov, V F; Olshevskii, A G; Onofre, A; Orava, R; Österberg, K; Ouraou, A; Oyanguren, A; Paganoni, M; Paiano, S; Palacios, J P; Palka, H; Papadopoulou, T D; Pape, L; Parkes, C; Parodi, F; Parzefall, U; Passeri, A; Passon, O; Peralta, L; Perepelitsa, V F; Perrotta, A; Petrolini, A; Piedra, J; Pieri, L; Pierre, F; Pimenta, M; Piotto, E; Podobnik, T; Poireau, V; Pol, M E; Polok, G; Pozdnyakov, V; Pukhaeva, N; Pullia, A; Rames, J; Read, A; Rebecchi, P; Rehn, J; Reid, D; Reinhardt, R; Renton, P B; Richard, F; Rídky, J; Rivero, M; Rodríguez, D; Romero, A; Ronchese, P; Roudeau, P; Rovelli, T; Ruhlmann-Kleider, V; Ryabtchikov, D; Sadovskii, A; Salmi, L; Salt, J; Sander, C; Savoy-Navarro, A; Schwickerath, U; Segar, A; Sekulin, R L; Siebel, M; Sisakian, A; Smadja, G; Smirnova, O; Sokolov, A; Sopczak, A; Sosnowski, R; Spassoff, Tz; Stanitzki, M; Stocchi, A; Strauss, J; Stugu, B; Szczekowski, M; Szeptycka, M; Szumlak, T; Tabarelli de Fatis, T; Taffard, A C; Tegenfeldt, F; Timmermans, J; Tkatchev, L G; Tobin, M; Todorovova, S; Tomé, B; Tonazzo, A; Tortosa, P; Travnicek, P; Treille, D; Tristram, G; Trochimczuk, M; Troncon, C; Turluer, M L; Tyapkin, I A; Tyapkin, P; Tzamarias, S; Uvarov, V; Valenti, G; van Dam, P; Van Eldik, J; Van Remortel, N; Van Vulpen, I; Vegni, G; Veloso, F; Venus, W; Verdier, P; Verzi, V; Vilanova, D; Vitale, L; Vrba, V; Wahlen, H; Washbrook, A J; Weiser, C; Wicke, D; Wickens, J; Wilkinson, G; Winter, M; Witek, M; Yushchenko, O P; Zalewska-Bak, A; Zalewski, P; Zavrtanik, D; Zhuravlov, V; Zimin, N I; Zintchenko, A; Zupan, M
2006-01-01
An experimental study of the normalized three-jet rate of b quark events with respect to light quarks events (light= \\ell \\equiv u,d,s) has been performed using the CAMBRIDGE and DURHAM jet algorithms. The data used were collected by the DELPHI experiment at LEP on the Z peak from 1994 to 2000. The results are found to agree with theoretical predictions treating mass corrections at next-to-leading order. Measurements of the b quark mass have also been performed for both the b pole mass: M_b and the b running mass: m_b(M_Z). Data are found to be better described when using the running mass. The measurement yields: m_b(M_Z) = 2.85 +/- 0.18 (stat) +/- 0.13 (exp) +/- 0.19 (had) +/- 0.12 (theo) GeV/c^2 for the CAMBRIDGE algorithm. This result is the most precise measurement of the b mass derived from a high energy process. When compared to other b mass determinations by experiments at lower energy scales, this value agrees with the prediction of Quantum Chromodynamics for the energy evolution of the running mass. ...
New ATLAS results in SUSY searches for 3rd generation squarks and electroweak production
Directory of Open Access Journals (Sweden)
David Claire
2014-04-01
Full Text Available Naturalness arguments for weak-scale supersymmetry favour supersymmetric partners of the third generation quarks with masses close to those of their Standard Model counterparts. Real and virtual production of third generation squarks via decay of a gluino can be significant if the mass of the gluino does not exceed the TeV scale. Top or bottom squarks with masses less than a few hundred GeV can also give rise to direct pair production rates at the LHC that can be observed in the 8 TeV data sample recorded by the ATLAS detector. Moreover, many supersymmetric models feature neutralinos, charginos and even sleptons with masses less than a few hundred GeV so that they can be observed in the available data sample. The talk presents recent ATLAS results from searches for direct stop and sbottom pair production as well as pair production of charginos, neutralinos and sleptons.
DEFF Research Database (Denmark)
Hirst, Andrew G.; Lilley, M.K.S.; Glazier, D.S.
2017-01-01
. Among diverse pelagic invertebrates that change shape during ontogeny, recent analysis has demonstrated a significant positive correlation between the body-mass allometry of respiration rates (measured as the ontogenetic body mass-scaling exponent bR) and the allometry of body surface area (b......A, as predicted from body-shape changes using a Euclidean model). As many pelagic invertebrates use a large portion of their external body surface for both resource uptake and waste excretion, we predicted that body-mass scaling exponents for rates of excretion of soluble N (bN) should also then relate...... to the degree of body-shape change during growth. We tested this hypothesis using literature data on bN for 39 species of pelagic invertebrates across five different phyla, and find strong support: bN is significantly positively correlated with predicted bA, whilst also co-varying with bR. Intraspecific...
Calculating the renormalisation group equations of a SUSY model with Susyno
Fonseca, Renato M.
2012-10-01
Susyno is a Mathematica package dedicated to the computation of the 2-loop renormalisation group equations of a supersymmetric model based on any gauge group (the only exception being multiple U(1) groups) and for any field content. Program summary Program title: Susyno Catalogue identifier: AEMX_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEMX_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 30829 No. of bytes in distributed program, including test data, etc.: 650170 Distribution format: tar.gz Programming language: Mathematica 7 or higher. Computer: All systems that Mathematica 7+ is available for (PC, Mac). Operating system: Any platform supporting Mathematica 7+ (Windows, Linux, Mac OS). Classification: 4.2, 5, 11.1. Nature of problem: Calculating the renormalisation group equations of a supersymmetric model involves using long and complicated general formulae [1, 2]. In addition, to apply them it is necessary to know the Lagrangian in its full form. Building the complete Lagrangian of models with small representations of SU(2) and SU(3) might be easy but in the general case of arbitrary representations of an arbitrary gauge group, this task can be hard, lengthy and error prone. Solution method: The Susyno package uses group theoretical functions to calculate the super-potential and the soft-SUSY-breaking Lagrangian of a supersymmetric model, and calculates the two-loop RGEs of the model using the general equations of [1, 2]. Susyno works for models based on any representation(s) of any gauge group (the only exception being multiple U(1) groups). Restrictions: As the program is based on the formalism of [1, 2], it shares its limitations. Running time can also be a significant restriction, in particular for models with many fields. Unusual features
A light stop with flavor in natural SUSY
Auzzi, Roberto; Giveon, Amit; Gudnason, Sven Bjarke; Shacham, Tomer
2013-01-01
The discovery of a SM-like Higgs boson near 125 GeV and the flavor texture of the Standard Model motivate the investigation of supersymmetric quiver-like BSM extensions. We study the properties of such a minimal class of models which deals naturally with the SM parameters. Considering experimental bounds as well as constraints from flavor physics and Electro-Weak Precision Data, we find the following. In a self-contained minimal model — including the full dynamics of the Higgs sector — top squarks below a TeV are in tension with b → sγ constraints. Relaxing the assumption concerning the mass generation of the heavy Higgses, we find that a stop not far from half a TeV is allowed. The models have some unique properties, e.g. an enhancement of the h → boverline{b} , tau overline{tau} decays relative to the h → γγ one, a gluino about 3 times heavier than the stop, an inverted hierarchy of about 3 ÷ 20 between the squarks of the first two generations and the stop, relatively light Higgsino neutralino or stau NLSP, as well as heavy Higgses and a W ' which may be within reach of the LHC.
Anatomy of new SUSY breaking holographic RG flows
Energy Technology Data Exchange (ETDEWEB)
Argurio, Riccardo [Physique Théorique et Mathématique andInternational Solvay Institutes, Université Libre de Bruxelles,C.P. 231, 1050 Brussels (Belgium); Musso, Daniele [International Center of Theoretical Physics (ICTP),Strada Costiera 11, I 34014 Trieste (Italy); Redigolo, Diego [Physique Théorique et Mathématique andInternational Solvay Institutes, Université Libre de Bruxelles,C.P. 231, 1050 Brussels (Belgium); Sorbonne Universités, UPMC University Paris 06, UMR 7589, LPTHE,F-75005, Paris (France); CNRS, UMR 7589, LPTHE,F-75005, Paris (France)
2015-03-17
We find and thoroughly study new supergravity domain wall solutions which are holographic realizations of supersymmetry breaking strongly coupled gauge theories. We set ourselves in an N=2 gauged supergravity with a minimal content in order to reproduce a dual N=1 effective SCFT which has a U(1){sub R} symmetry, a chiral operator whose components are responsible for triggering the RG flow, and an additional U(1){sub F} symmetry. We present a full three dimensional parameter space of solutions, which generically break supersymmetry. Some known solutions are recovered for specific sets of values of the parameters, with the new solutions interpolating between them. The generic backgrounds being singular, we provide a stability test of their dual theories by showing that there are no tachyonic resonances in the two point correlators. We compute the latter by holographic renormalization. We also carefully analyze the appearance of massless modes, such as the dilaton and the R axion, when the respective symmetries are spontaneously broken, and their lifting when the breaking is explicit. We further comment on the application of such class of backgrounds as archetypes of strongly coupled hidden sectors for gauge mediation of supersymmetry breaking. In particular, we show that it is possible to model in this way all types of hierarchies between the visible sector gaugino and sfermion masses.
SUSY Breaking in Local String/F-Theory Models
Blumenhagen, R; Krippendorf, S; Moster, S; Quevedo, F
2009-01-01
We investigate bulk moduli stabilisation and supersymmetry breaking in local string/F-theory models where the Standard Model is supported on a del Pezzo surface or singularity. Computing the gravity mediated soft terms on the Standard Model brane induced by bulk supersymmetry breaking in the LARGE volume scenario, we explicitly find suppressions by M_s/M_P ~ V^{-1/2} compared to M_{3/2}. This gives rise to several phenomenological scenarios, depending on the strength of perturbative corrections to the effective action and the source of de Sitter lifting, in which the soft terms are suppressed by at least M_P/V^{3/2} and may be as small as M_P/V^2. Since the gravitino mass is of order M_{3/2} ~ M_P/V, for TeV soft terms all these scenarios give a very heavy gravitino (M_{3/2} >= 10^8 GeV) and generically the lightest moduli field is also heavy enough (m >= 10 TeV) to avoid the cosmological moduli problem. For TeV soft terms, these scenarios predict a minimal value of the volume to be V ~ 10^{6-7} in string uni...
Scaling of convex hull volume to body mass in modern primates, non-primate mammals and birds.
Brassey, Charlotte A; Sellers, William I
2014-01-01
The volumetric method of 'convex hulling' has recently been put forward as a mass prediction technique for fossil vertebrates. Convex hulling involves the calculation of minimum convex hull volumes (vol(CH)) from the complete mounted skeletons of modern museum specimens, which are subsequently regressed against body mass (Mb) to derive predictive equations for extinct species. The convex hulling technique has recently been applied to estimate body mass in giant sauropods and fossil ratites, however the biomechanical signal contained within vol(CH) has remained unclear. Specifically, when vol(CH) scaling departs from isometry in a group of vertebrates, how might this be interpreted? Here we derive predictive equations for primates, non-primate mammals and birds and compare the scaling behaviour of Mb to volCH between groups. We find predictive equations to be characterised by extremely high correlation coefficients (r(2) = 0.97-0.99) and low mean percentage prediction error (11-20%). Results suggest non-primate mammals scale body mass to volCH isometrically (b = 0.92, 95%CI = 0.85-1.00, p = 0.08). Birds scale body mass to volCH with negative allometry (b = 0.81, 95%CI = 0.70-0.91, p = 0.011) and apparent density (volCH/Mb) therefore decreases with mass (r(2) = 0.36, pprimates scale body mass to vol(CH) with positive allometry (b = 1.07, 95%CI = 1.01-1.12, p = 0.05) and apparent density therefore increases with size (r(2) = 0.46, p = 0.025). We interpret such departures from isometry in the context of the 'missing mass' of soft tissues that are excluded from the convex hulling process. We conclude that the convex hulling technique can be justifiably applied to the fossil record when a large proportion of the skeleton is preserved. However we emphasise the need for future studies to quantify interspecific variation in the distribution of soft tissues such as muscle, integument and body fat.
Dietze, Michael; Dietrich, Peter
2011-03-25
Measuring contaminant flow rates at control cross sections is the most accurate method to evaluate natural attenuation processes in the saturated subsurface. In most instances, point scale measurement is the method of choice due to practical reasons and cost factors. However, at many field sites, the monitoring network is too sparse for a reliable estimation of contaminant and groundwater flow rates. Therefore, integral pumping tests have been developed as an alternative. In this study, we compare mass flow rates obtained by integral pumping test results and point scale data. We compare results of both methods with regard to uncertainties due to estimation errors and mass flow estimations based on two different point scale networks. The differences between benzene and groundwater flow rate estimates resulting from point scale samples and integral pumping tests were 6.44% and 6.97%, respectively, demonstrating the applicability of both methods at the site. Point scale-based data, especially with use of cost efficient Direct-Push technique, can be applied to show the contaminant distribution at a site and may be followed by a denser point scale network or an integral method. Nevertheless, a combination of both methods decreases uncertainties. Copyright © 2010 Elsevier B.V. All rights reserved.
The geometry and dynamics of mass-loss at milli-arcsecond scales of massive stars in transition
de Wit, W. J.; Wheelwright, H.; Oudmaijer, R. D.; Mehner, A.
2013-06-01
The dynamics, geometry and abundances of circumstellar material provide the crucial information necessary to reconstruct the post-main sequence evolution and final fate of high-mass stars. In this context, we will present recent discoveries made by means of infra-red high spectral and spatial resolution observations using VLTI/AMBER, VLTI/PIONIER and VLT/CRIRES. The observations shed new light on the ongoing mass-loss of high-mass stars transiting the HR-diagram. In particular, we discuss new results on the milli-arcsecond (mas) scale mass-loss geometry of the yellow hypergiant IRC+10420. They indicate an hour-glass wind geometry and a high mass-loss rate that results in a pseudo-photosphere (Oudmaijer & de Wit 2013). Whether the wind is shaped because of a secondary component or because of slow/fast wind interactions is discussed. In the case of supergiant B[e] stars, binarity may have an important effect on the dynamics and geometry of the mass loss on masscales (Wheelwright et al. 2012a, 2012b, 2013). Our studies of the circumstellar environment of sgB[e] stars have discovered several circumbinary discs that exhibit Keplerian rotation, contrary to expectations based on the dual outflow model. We raise the question of whether binarity is responsible for the Galactic sgB[e] phenomenon or whether the blue supergiant component's mass loss is intrinsically peculiar in sgB[e]s.
Mass and metallicity scaling relations of high-redshift star-forming galaxies selected by GRBs
Arabsalmani, M.; Møller, P.; Perley, D. A.; Freudling, W.; Fynbo, J. P. U.; Le Floc'h, E.; Zwaan, M. A.; Schulze, S.; Tanvir, N. R.; Christensen, L.; Levan, A. J.; Jakobsson, P.; Malesani, D.; Cano, Z.; Covino, S.; D'Elia, V.; Goldoni, P.; Gomboc, A.; Heintz, K. E.; Sparre, M.; de Ugarte Postigo, A.; Vergani, S. D.
2018-01-01
We present a comprehensive study of the relations between gas kinematics, metallicity and stellar mass in a sample of 82 gamma-ray burst (GRB)-selected galaxies using absorption and emission methods. We find the velocity widths of both emission and absorption profiles to be a proxy of stellar mass. We also investigate the velocity-metallicity correlation and its evolution with redshift. Using 33 GRB hosts with measured stellar mass and metallicity, we study the mass-metallicity relation for GRB host galaxies in a stellar mass range of 108.2-1011.1 M⊙ and a redshift range of z ∼ 0.3-3.4. The GRB-selected galaxies appear to track the mass-metallicity relation of star-forming galaxies but with an offset of 0.15 towards lower metallicities. This offset is comparable with the average error bar on the metallicity measurements of the GRB sample and also the scatter on the mass-metallicity relation of the general population. It is hard to decide whether this relatively small offset is due to systematic effects or the intrinsic nature of GRB hosts. We also investigate the possibility of using absorption-line metallicity measurements of GRB hosts to study the mass-metallicity relation at high redshifts. Our analysis shows that the metallicity measurements from absorption methods can significantly differ from emission metallicities and assuming identical measurements from the two methods may result in erroneous conclusions.
Hyperon puzzle and the RMF model with scaled hadron masses and coupling constants
Kolomeitsev, E. E.; Maslov, K. A.; Voskresensky, D. N.
2016-01-01
The equation of state of cold baryonic matter is studied within a relativistic mean-field model with hadron masses and coupling constants depending on a scalar field. We demonstrate that if the effective nucleon mass stops to decrease with a density increase at densities n > n*> n0, where n0 is the nuclear saturation density, the equation of state stiffens for these densities and the limiting neutron star mass increases. The stabilization of the nucleon mass can be realised if in the equation of motion for the scalar mean-field there appear a term sharply varying in a narrow vicinity of the field value corresponding to the density n*. We show several possible realizations of this mechanism getting sufficiently stiff equations of state. The appearance of hyperons in dense neutron star interiors is accounted for. The obtained equations of state remain sufficiently stiff if the reduction of the ϕ meson mass is incorporated. Thereby, the hyperon puzzle can be resolved.
Van Oost, Kristof; Nadeu, Elisabet; Wiaux, François; Wang, Zhengang; Stevens, François; Vanclooster, Marnik; Tran, Anh; Bogaert, Patrick; Doetterl, Sebastian; Lambot, Sébastien; Van wesemael, Bas
2014-05-01
In this paper, we synthesize the main outcomes of a collaborative project (2009-2014) initiated at the UCL (Belgium). The main objective of the project was to increase our understanding of soil organic matter dynamics in complex landscapes and use this to improve predictions of regional scale soil carbon balances. In a first phase, the project characterized the emergent spatial variability in soil organic matter storage and key soil properties at the regional scale. Based on the integration of remote sensing, geomorphological and soil analysis techniques, we quantified the temporal and spatial variability of soil carbon stock and pool distribution at the local and regional scales. This work showed a linkage between lateral fluxes of C in relation with sediment transport and the spatial variation in carbon storage at multiple spatial scales. In a second phase, the project focused on characterizing key controlling factors and process interactions at the catena scale. In-situ experiments of soil CO2 respiration showed that the soil carbon response at the catena scale was spatially heterogeneous and was mainly controlled by the catenary variation of soil physical attributes (soil moisture, temperature, C quality). The hillslope scale characterization relied on advanced hydrogeophysical techniques such as GPR (Ground Penetrating Radar), EMI (Electromagnetic induction), ERT (Electrical Resistivity Tomography), and geophysical inversion and data mining tools. Finally, we report on the integration of these insights into a coupled and spatially explicit model and its application. Simulations showed that C stocks and redistribution of mass and energy fluxes are closely coupled, they induce structured spatial and temporal patterns with non negligible attached uncertainties. We discuss the main outcomes of these activities in relation to sink-source behavior and relevance of erosion processes for larger-scale C budgets.
Energy Technology Data Exchange (ETDEWEB)
Sudiarta, I. Wayan; Angraini, Lily Maysari, E-mail: lilyangraini@unram.ac.id [Physics Study Program, University of Mataram, Jln. Majapahit 62 Mataram, NTB (Indonesia)
2016-04-19
We have applied the finite difference time domain (FDTD) method with the supersymmetric quantum mechanics (SUSY-QM) procedure to determine excited energies of one dimensional quantum systems. The theoretical basis of FDTD, SUSY-QM, a numerical algorithm and an illustrative example for a particle in a one dimensional square-well potential were given in this paper. It was shown that the numerical results were in excellent agreement with theoretical results. Numerical errors produced by the SUSY-QM procedure was due to errors in estimations of superpotentials and supersymmetric partner potentials.
Energy Technology Data Exchange (ETDEWEB)
Brun, Pierre [Laboratoire d' Annecy-le-vieux de Physique des Particules, CNRS/IN2P3/Univ. de Savoie, 9 Chemin de Bellevue - BP 110 F-74941 Annecy-le-Vieux CEDEX (France)
2006-03-15
In the quest for indirect signals from dark matter annihilation, powerful computation codes are required. I report here a new code based on micrOMEGAs devoted to the analysis of such signals in term of Supersymmetry. It computes gamma rays and positrons fluxes in a general SuSy model, as well as the other charged cosmic rays and neutrinos source terms. This work aims to propose an alternative to the DarkSUSY code by providing inclusive signals from SuSy for dark matter indirect searches. Therefore it can be used for sensitivity studies and data analysis. (author)
SUSY see-saw and NMSO(10)GUT inflation after BICEP2
Indian Academy of Sciences (India)
2016-01-13
Jan 13, 2016 ... Abstract. Supersymmetric see-saw slow roll inflection point inflation occurs along a MSSM. D-flat direction associated with gauge invariant combination of Higgs, slepton and right-handed sneutrino at a scale set by the right-handed neutrino mass Mνc. ∼ 106−1013 GeV. The tensor to scalar perturbation ...
Family gauge bosons with an inverted mass hierarchy
Energy Technology Data Exchange (ETDEWEB)
Koide, Yoshio, E-mail: koide@het.phys.sci.osaka-u.ac.jp [Department of Physics, Osaka University, Toyonaka, Osaka 560-0043 (Japan); MISC, Kyoto Sangyo University, Kyoto 603-8555 (Japan); Yamashita, Toshifumi, E-mail: tyamashi@cc.kyoto-su.ac.jp [MISC, Kyoto Sangyo University, Kyoto 603-8555 (Japan)
2012-05-23
A model that gives family gauge bosons with an inverted mass hierarchy is proposed, stimulated by Sumino's cancellation mechanism for the QED radiative correction to the charged lepton masses. The Sumino mechanism cannot straightforwardly be applied to SUSY models because of the nonrenormalization theorem. In this Letter, an alternative model which is applicable to a SUSY model is proposed. It is essential that family gauge boson masses m(A{sub i}{sup j}) in this model is given by an inverted mass hierarchy m(A{sub i}{sup i}){proportional_to}1/{radical}(m{sub ei}), in contrast to m(A{sub i}{sup i}){proportional_to}{radical}(m{sub ei}) in the original Sumino model. Phenomenological meaning of the model is also investigated. In particular, we notice a deviation from the e-{mu} universality in the tau decays.
Comparison of direct and geodetic mass balances on a multi-annual time scale
Directory of Open Access Journals (Sweden)
A. Fischer
2011-02-01
Full Text Available The geodetic mass balances of six Austrian glaciers over 19 periods between 1953 and 2006 are compared to the direct mass balances over the same periods. For two glaciers, Hintereisferner and Kesselwandferner, case studies showing possible reasons for discrepancies between the geodetic and the direct mass balance are presented. The mean annual geodetic mass balance for all periods is −0.5 m w.e. a^{−1}, the mean annual direct mass balance −0.4 m w.e. a^{−1}. The mean cumulative difference is −0.6 m w.e., the minimum −7.3 m w.e., and the maximum 5.6 m w.e. The accuracy of geodetic mass balance may depend on the accuracy of the DEMs, which ranges from 2 m w.e. for photogrammetric data to 0.02 m w.e. for airborne laser scanning (LiDAR data. Basal melt, seasonal snow cover, and density changes of the surface layer also contribute up to 0.7 m w.e. to the difference between the two methods over the investigated period of 10 yr. On Hintereisferner, the fraction of area covered by snow or firn has been changing within 1953–2006. The accumulation area is not identical with the firn area, and both are not coincident with areas of volume gain. Longer periods between the acquisition of the DEMs do not necessarily result in a higher accuracy of the geodetic mass balance. Trends in the difference between the direct and the geodetic data vary from glacier to glacier and can differ systematically for specific glaciers under specific types of climate forcing. Ultimately, geodetic and direct mass balance data are complementary, and great care must be taken when attempting to combine them.
Mixing and mass transfer in a pilot scale U-loop bioreactor
DEFF Research Database (Denmark)
Petersen, Leander Adrian Haaning; Villadsen, John; Jørgensen, Sten Bay
2017-01-01
A system capable of handling a large volumetric gas fraction while providing a high gas to liquid mass transfer is a necessity if the metanotrophic bacterium Methylococcus capsulatus is to be used in single cell protein (SCP) production. In this study mixing time and mass transfer coefficients we...... equipped with static mixers at modest volumetric liquid and gas flow rates. This article is protected by copyright. All rights reserved...
Non-unified sparticle and particle masses in unified theories
Dimopoulos, Savas K; Dimopoulos, Savas; Pomarol, Alex
1995-01-01
We give examples of minimal extensions of the simplest SU(5) SUSY-GUT in which all squarks and sleptons of a family have different tree level masses at the unification scale. This phenomenon is general; it occurs when the quarks and leptons are the light remnants of a theory which contains extra heavy families at the unification scale. The examples have interesting relations between Yukawa couplings: In one model the ratio of the top to bottom Yukawas is as large as \\simeq 3, partly accounting for the large m_t /m_b. Another gives m_b/m_\\tau between 2/3 and 1; this relaxes the strict bounds on the top mass and neutrino properties that come from b--\\tau unification. Still another allows m_s/m_\\mu to be between 1/6 and 1 and evades the potentially problematic GUT relation of m_s=m_\\mu. The final example has horizontal sparticle splittings in spite of the existence of horizontal symmetries.
An experimental scale-model study of seismic response of an underground opening in jointed rock mass
Energy Technology Data Exchange (ETDEWEB)
Kana, D.D.; Fox, D.J.; Hsiung, S.; Chowdhury, A.H.
1997-02-01
This report describes an experimental investigation conducted by the Center for Nuclear Waste Regulatory Analyses (CNWRA) to (i) obtain a better understanding of the seismic response of an underground opening in a highly-fractured and jointed rock mass and (ii) generate a data set that can be used to evaluate the capabilities (analytical methods) to calculate such response. This report describes the design and implementation of simulated seismic experiments and results for a 1/15 scale model of a jointed rock mass with a circular tunnel in the middle. The discussion on the design of the scale model includes a description of the associated similitude theory, physical design rationale, model material development, preliminary analytical evaluation, instrumentation design and calibration, and model assembly and pretest procedures. The thrust of this discussion is intended to provide the information necessary to understand the experimental setup and to provide the background necessary to understand the experimental results. The discussion on the experimental procedures and results includes the seismic input test procedures, test runs, and measured excitation and response time histories. The closure of the tunnel due to various levels of seismic activity is presented. A threshold level of seismic input amplitude was required before significant rock mass motion occurred. The experiment, though designed as a two-dimensional representation of a rock mass, behaved in a somewhat three-dimensional manner, which will have an effect on subsequent analytical model comparison.
Energy Technology Data Exchange (ETDEWEB)
Riddick, Thomas [Univ. College London, Bloomsbury (United Kingdom)
2012-06-15
The calibration of the calorimeter energy scale is vital to measuring the mass of the W boson at CDF Run II. For the second measurement of the W boson mass at CDF Run II, two independent simulations were developed. This thesis presents a detailed description of the modification and validation of Bremsstrahlung and pair production modelling in one of these simulations, UCL Fast Simulation, comparing to both geant4 and real data where appropriate. The total systematic uncertainty on the measurement of the W boson mass in the W → ev_{e} channel from residual inaccuracies in Bremsstrahlung modelling is estimated as 6.2 ±3.2 MeV/c^{2} and the total systematic uncertainty from residual inaccuracies in pair production modelling is estimated as 2.8± 2.7 MeV=c^{2}. Two independent methods are used to calibrate the calorimeter energy scale in UCL Fast Simulation; the results of these two methods are compared to produce a measurement of the Z boson mass as a cross-check on the accuracy of the simulation.
Body mass index, Stunkard Figure Rating Scale, and sexuality in young Italian women: a pilot study.
Morotti, Elena; Battaglia, Bruno; Paradisi, Roberto; Persico, Nicola; Zampieri, Marina; Venturoli, Stefano; Battaglia, Cesare
2013-04-01
Increased body mass index is associated with a higher prevalence of metabolic diseases, depression, and sexual dysfunction. In obese patients, the perception of an altered body image may influence health and psychologically related behaviors. Furthermore, there is a significant positive relationship between sexual function, sexual satisfaction, and all body image variables. To evaluate the relationship between body weight, perceived body image, and sexual behavior. Ninety women underwent ultrasonographic clitoral volume measurement and color Doppler evaluation of the clitoral and ophthalmic arteries. The subjects filled the McCoy Female Sexuality Questionnaire (MFSQ), the Stunkard Figure Rating Scale (FRS), and the Beck's Depression Inventory (BDI) questionnaire. Clitoral volume, clitoral and ophthalmic artery pulsatility index (PI), MFSQ, FRS, and BDI. The women were distributed into three groups: lean (N = 47); overweight (N = 22); and obese (N = 21). The ophthalmic artery showed lower PI in lean (1.72 ± 0.39) than in overweight (1.99 ± 0.30) and obese women (2.08 ± 0.19). The obese subjects presented the worst clitoral vascularization. The MFSQ for sexuality was higher in lean (45.8 ± 11.8) than in overweight (36.4 ± 15.0) and obese (36.1 ± 10.8) women. The frequency of intercourse per week was higher in lean (2.2 ± 1.4) than in overweight (1.3 ± 0.7) and obese (1.2 ± 0.4) women. The percentage of anorgasmic women was higher in obese (23%) than in lean subjects (6%). The FRS evidenced that the lean subjects represented themselves with a mean value (3.5 ± 1.0) lower than overweight (4.8 ± 0.7) and obese women (5.9 ± 0.6). The silhouette that represented their own ideal was significantly higher in obese (4.0 ± 0.4) than in overweight (3.3 ± 0.5) and lean (2.9 ± 0.7) subjects. The mean BDI was significantly higher in obese (15.8 ± 5.4) than in lean (8.4 ± 6.8) women
Cosmological simulations in MOND: the cluster scale halo mass function with light sterile neutrinos
Angus, G. W.; Diaferio, A.; Famaey, B.; van der Heyden, K. J.
2013-11-01
We use our Modified Newtonian Dynamics (MOND) cosmological particle-mesh N-body code to investigate the feasibility of structure formation in a framework involving MOND and light sterile neutrinos in the mass range 11-300 eV: always assuming that Ω _{ν _s}=0.225 for H0 = 72 km s-1 Mpc-1. We run a suite of simulations with variants on the expansion history, cosmological variation of the MOND acceleration constant, different normalizations of the power spectrum of the initial perturbations and interpolating functions. Using various box sizes, but typically with ones of length 256 Mpc h-1, we compare our simulated halo mass functions with observed cluster mass functions and show that (i) the sterile neutrino mass must be larger than 30 eV to account for the low-mass (M200 sterile neutrino mass or any of the variations we mentioned above, it is not possible to form the correct number of high-mass (M200 > 1015.1 M⊙) clusters of galaxies: there is always a considerable over production. This means that the ansatz of considering the weak-field limit of MOND together with a component of light sterile neutrinos to form structure from z ˜ 200 fails. If MOND is the correct description of weak-field gravitational dynamics, it could mean that subtle effects of the additional fields in covariant theories of MOND render the ansatz inaccurate, or that the gravity generated by light sterile neutrinos (or by similar hot dark matter particles) is different from that generated by the baryons.
Klug, Christoph; Bollmann, Erik; Galos, Stephan; Kaser, Georg; Prinz, Rainer; Rieg, Lorenzo; Sailer, Rudolf
2016-04-01
The quantification of glacier mass changes is fundamental for glacier monitoring and provides important information for climate change assessments, hydrological applications and sea-level changes. On Alpine glaciers two methods of measuring glacier mass changes are widely applied: the direct glaciological method and the geodetic method. Over the last decades several studies compared the mass balance estimates obtained by both methods to identify and correct stochastic and systematic errors. In almost all of these studies, the time span for comparison between the two methods is about one decade or longer. On Hintereisferner (HEF; Ötztal Alps, Austria) mass balance measurements were initiated in the glaciological year 1952/53, resulting in a consistent mass balance data set with an estimated accuracy of ±0.2 m w.e. a-1. Furthermore, 11 airborne laser scanning (ALS) campaigns were conducted between 2001 and 2011 at HEF, all consistent in accuracy as well as in precision (± 0.04 to 0.10 m for slopes ≤ 50°). This is a world-wide unique ALS dataset of a glacierized alpine catchment. Flight campaigns were performed close to the end of the hydrological year (30th September). Resulting data provide high quality topographic information to derive glacier mass changes by applying the geodetic method. On sub-decadal time-scales such method comparisons are rare, or reveal unexplainable large discrepancies between both mass balance methods. In this study we estimate stochastic and systematic uncertainties of the ALS data for processing volume changes, and quantify methodological differences, such as density assumptions, unequal measurement dates, crevasses and glacier dynamics. Hence, we present a method to compare direct glaciological and geodetic mass balances on an annual basis. In a first step, we calculate the annual geodetic mass balance of HEF between 2001 and 2011, resulting in a thickness change map of the glacier. In a second step, the snow cover, which has
Sopczak, Andre; The ATLAS collaboration
2017-01-01
During the data-taking period at LHC (Run-II), several searches for supersymmetric particles were performed. The results from searches by the ATLAS collaborations are concisely reviewed. Model-independent and model-dependent limits on new particle production are set, and interpretations in supersymmetric models are given.
Sopczak, Andre; The ATLAS collaboration
2017-01-01
During the LHC Run-II data-taking period, several searches for supersymmetric particles were performed by the ATLAS collaboration. The results from these searches are concisely reviewed. Model-independent and model-dependent limits on new particle production are set, and interpretations in supersymmetric models are given.
Basin-scale partitioning of Greenland ice sheet mass balance components (2007-2011)
DEFF Research Database (Denmark)
Andersen, M.L.; Stenseng, Lars; Skourup, Henriette
2015-01-01
The current deficit in Greenland ice sheet mass balance is due to both a decrease in surface mass balance (SMB) input and an increase in ice discharge (D) output. While SMB processes are beginning to be well captured by observationally-constrained climate modeling, insight into D is relatively...... of the gate. Using a 1961-1990 reference climatology SMB field from the MAR regional climate model, we quantify ice sheet mass balance within eighteen basins. We find a 2007-2011 mean D of 515±57 Gtyr-1. We find a 2007-2011 mean total mass balance of -262±21 Gtyr-1, which is equal to a 0.73 mm yr-1 global sea...... limited. We use InSAR-derived velocities, in combination with ice thickness observations, to quantify the mass flux (F) across a flux perimeter around the ice sheet at ~1700 m elevation. To quantify D, we correct F for SMB, as well as changes in volume due to ice dynamics, in the area downstream...
Final scientific and technical report: New experiments to measure the neutrino mass scale
Energy Technology Data Exchange (ETDEWEB)
Monreal, Benjamin [Univ. of California, Santa Barbara, CA (United States)
2016-11-19
In this work, we made material progress towards future measurements of the mass of the neutrino. The neutrino is a fundamental particle, first observed in the 1950s and subjected to particularly intense study over the past 20 years. It is now known to have some, non-zero mass, but we are in an unusual situation of knowing the mass exists but not knowing what value it takes. The mass may be determined by precise measurements of certain radioactive decay distributions, particularly the beta decay of tritium. The KATRIN experiment is an international project which is nearing the beginning of a tritium measurement campaign using a large electrostatic spectrumeter. This research included participation in KATRIN, including construction and delivery of a key calibration subsystem, the ``Rear Section''. To obtain sensitivity beyond KATRIN's, new techniques are required; this work included R&D on a new technique we call CRES (Cyclotron Resonance Electron Spectroscopy) which has promise to enable even more sensitive tritium decay measurements. We successfully carried out CRES spectroscopy in a model system in 2014, making an important step towards the design of a next-generation tritium experiment with new neutrino mass measurement abilities.
Next-to-leading order contributions to the pole mass of gluino in minimal gauge mediation
Lee, Jae Yong; Yoon, Yeo Woong
2011-01-01
We compute the pole mass of the gluino in the minimal gauge mediation to two-loop order. The pole mass of the gluino begins to arise at one-loop order and the two-loop order correction shifts the leading order pole mass by 20% or even more. This shift is much larger than the expected accuracy of the mass determination at the LHC, and should be reckoned with for precision studies on the SUSY breaking parameters.
Resonances and antibound states for the Pöschl–Teller potential: Ladder operators and SUSY partners
Energy Technology Data Exchange (ETDEWEB)
Çevik, D., E-mail: cevikdogukan@gmail.com [Department of Physics, Faculty of Science, Ankara University, 06100 Ankara (Turkey); Gadella, M., E-mail: manuelgadella1@gmail.com [Departamento de Física Teórica, Atómica y Óptica and IMUVA, Universidad de Valladolid, E-47011 Valladolid (Spain); Kuru, Ş., E-mail: kuru@science.ankara.edu.tr [Department of Physics, Faculty of Science, Ankara University, 06100 Ankara (Turkey); Negro, J., E-mail: jnegro@fta.uva.es [Departamento de Física Teórica, Atómica y Óptica and IMUVA, Universidad de Valladolid, E-47011 Valladolid (Spain)
2016-04-22
We analyze the one dimensional scattering produced by all variations of the Pöschl–Teller potential, i.e., potential well, low and high barriers. The transmission coefficients of Pöschl–Teller well and low barrier potentials have an infinite number of simple poles corresponding to bound and antibound states. However, the Pöschl–Teller high barrier potential shows an infinite number of resonance poles. We have constructed ladder operators connecting wave functions for bound and antibound states as well as for resonance states. Finally, using wave functions of these states, we provide some examples of supersymmetric partners of the Pöschl–Teller Hamiltonian. - Highlights: • Poles of the scattering matrix of Pöschl–Teller potentials are obtained. • These poles are associated to bound, antibound and resonance states. • Ladder operators connecting these states are constructed. • Susy partners using antibound and resonance states are computed.
SUSY Discovery at the LHC: Extending Reach with Modern Analysis Methods
Dharmaratna, W G D; Johnson, K F; McDonald, J; Prosper, H B
2006-01-01
We investigate the potential for discovery of supersymmetric matter in the context of the minimal supergravity model (mSUGRA), in the focus point region, by the CMS detector at the LHC. We show that use of a Bayesian neural network discriminant would allow the extraction of a significant SUSY signal, if present, in the presence of large QCD, $t\\bar{t}$, W+jets and Z+jets backgrounds, with as little as one fb$^{-1}$ of integrated luminosity. It is possible that not all of the CMS detector will be fully operational at startup. Consequently, if there are early discoveries to be had only data from those parts of the detector that are functional at, or shortly after, startup will be available. In this paper, we investigate the potential for an early discovery using calorimetric data only, assuming such data will be available at startup.
Large-Scale Identification of the Arginine Methylome by Mass Spectrometry
DEFF Research Database (Denmark)
Sylvestersen, Kathrine B; Nielsen, Michael L
2015-01-01
The attachment of one or more methylation groups to the side chain of arginine residues is a regulatory mechanism for cellular proteins. Recent advances in mass spectrometry-based characterization allow comprehensive identification of arginine methylation sites by peptide-level enrichment...... strategies. Described in this unit is a 4-day protocol for enrichment of arginine-methylated peptides and subsequent identification of thousands of distinct sites by mass spectrometry. Specifically, the protocol explains step-by-step sample preparation, enrichment using commercially available antibodies......, prefractionation using strong cation exchange, and identification using liquid chromatography coupled to tandem mass spectrometry. A strategy for relative quantification is described using stable isotope labeling by amino acids in cell culture (SILAC). Approaches for analysis of arginine methylation site occupancy...
Monthly solutions of ice sheet mass balance at basin scale – and their associated uncertainties
DEFF Research Database (Denmark)
Sørensen, Louise Sandberg; Barletta, Valentina Roberta; Forsberg, René
2012-01-01
There are still discrepancies in published ice sheet mass balance results, even between ones based on the same data sets. It can be difficult to conclude from where the discrepancies arise, and it is therefore important to cross calibrate methods, data and models in order to determine the uncerta...... in the behaviour of time series. We compare our GRACE derived regional estimates with independent mass change results based on altimetry data from NASA’s Ice Cloud and land Elevation Satellite.......There are still discrepancies in published ice sheet mass balance results, even between ones based on the same data sets. It can be difficult to conclude from where the discrepancies arise, and it is therefore important to cross calibrate methods, data and models in order to determine...
Coetzee, Johan Francois
2012-03-01
Uncertainty exists as to the most suitable pharmacokinetic parameter sets for propofol target-controlled infusions (TCI). The pharmacokinetic parameter sets currently employed are clearly not universally applicable, particularly when patient attributes differ from those of the subjects who participated in the original research from which the models were derived. Increasing evidence indicates that the pharmacokinetic parameters of propofol can be scaled allometrically as well as in direct proportion to lean body mass (LBM). Appraisal of hitherto published studies suggests that an allometrically scaled pharmacokinetic parameter set may be applicable to a wide range of patients ranging from children to obese adults. On the other hand, there is evidence that propofol pharmacokinetic parameters, scaled linearly to LBM, provide improved dosing in normal and obese adults. The 'Schnider' pharmacokinetic parameter set that has been programmed into commercially available TCI pumps cannot be employed at present for morbidly obese patients (body mass index >40 kg/m2), because of anomalous behaviour of the equation used to calculate LBM, resulting in administration of excessive amounts of propofol. Simulations of TCI using improved equations to calculate LBM indicate that the Schnider model delivers similar amounts of propofol to morbidly obese patients as do the allometrically scaled pharmacokinetic parameter sets. These hypotheses deserve further investigation. To facilitate further investigation, researchers are encouraged to make their data freely available to the WorldSIVA Open TCI Initiative (http://opentci.org).
The scaling of the X-ray variability with black hole mass in AGN
Papadakis, I. E.
2003-01-01
The relation between the 2-10 keV, long term, excess variance and AGN black hole mass is considered in this work. A significant anti-correlation is found between these two quantities in the sense that the excess variance decreases with increasing black hole mass. This anti-correlation is consistent with the hypothesis that the 2-10 keV power spectrum in AGN follows a power law of slope -2 at high frequencies. It then flattens to a slope of -1 below a break frequency until a second break frequ...
Cornering natural SUSY with $\\sqrt{s}=13 TeV$ data
Petridis, Andreas; The ATLAS collaboration
2017-01-01
Naturalness arguments for weak-scale supersymmetry favour supersymmetric partners of top quarks and Higgsinos with masses not too far from those of their Standard Model counterparts. The increase in the center of mass energy of the proton-proton collisions gives us a unique opportunity to extend the sensitivity of the production of these supersymmetric particles at the Large Hadron Collider. This talk presents recent ATLAS and CMS results from searches for direct stop, sbottom and electroweakino pair production using 2015+2016 data at $\\sqrt{s}=13$ TeV. These searches include several final states with leptons, jets and missing transverse momentum.
Mixing and mass transfer in a pilot scale U-loop bioreactor.
Petersen, Leander A H; Villadsen, John; Jørgensen, Sten B; Gernaey, Krist V
2017-02-01
A system capable of handling a large volumetric gas fraction while providing a high gas to liquid mass transfer is a necessity if the metanotrophic bacterium Methylococcus capsulatus is to be used in single cell protein (SCP) production. In this study, mixing time and mass transfer coefficients were determined in a 0.15 m 3 forced flow U-loop fermenter of a novel construction. The effect on the impeller drawn power when a gas was introduced into the system was also studied. Mixing time decreased and mass transfer increased with increasing volumetric liquid flow rate and specific power input. This happened also for a large volume fraction of the gas, which was shown to have only minor effect on the power drawn from the pump impeller. Very large mass transfer coefficients, considerably higher than those obtainable in an STR and previous tubular loop reactors, could be achieved in the U-loop fermenter equipped with static mixers at modest volumetric liquid and gas flow rates. Biotechnol. Bioeng. 2017;114: 344-354. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Testing the blazar sequence and black hole mass scaling with BL Lac objects
Plotkin, R.M.; Markoff, S.; Anderson, S.F.; Kelly, B.C.; Körding, E.; Trager, S.C.
2010-01-01
Jets from accreting black holes appear remarkably similar over eight orders of magnitude in black hole mass, with more massive black holes generally launching more powerful jets. For example, there is an observed correlation, termed the fundamental plane of black hole accretion, between black hole
Testing the blazar sequence and black hole mass scaling with BL Lac objects
Plotkin, Richard M.; Markoff, Sera; Anderson, Scott F.; Kelly, Brandon C.; Körding, Elmar; Trager, Scott C.; Romero, Gustavo E.; Sunyaev, Rashid A.; Belloni, Tomaso
Jets from accreting black holes appear remarkably similar over eight orders of magnitude in black hole mass, with more massive black holes generally launching more powerful jets. For example, there is an observed correlation, termed the fundamental plane of black hole accretion, between black hole
Exercise-induced maximum metabolic rate scaled to body mass by ...
African Journals Online (AJOL)
user
2016-10-27
Oct 27, 2016 ... length, with the fractal dimension of the vascular distribution network and with the fractal extent of a capillary .... Under the assumption of the minimization of transport energy dissipation, these capillary ..... fractal structural design exponent matching the body mass functional demand MMR exponent . The.
A p-Adic Metric for Particle Mass Scale Organization with Genetic Divisors
Energy Technology Data Exchange (ETDEWEB)
DAI, YANG; BORISOV, ALEXEY B.; BOYER, KEITH; RHODES, CHARLES K.
2001-12-01
The concept of genetic divisors can be given a quantitative measure with a non-Archimedean p-adic metric that is both computationally convenient and physically motivated. For two particles possessing distinct mass parameters x and y, the metric distance D(x, y) is expressed on the field of rational numbers Q as the inverse of the greatest common divisor [gcd (x , y)]. As a measure of genetic similarity, this metric can be applied to (1) the mass numbers of particle states and (2) the corresponding subgroup orders of these systems. The use of the Bezout identity in the form of a congruence for the expression of the gcd (x , y) corresponding to the v{sub e} and {sub {mu}} neutrinos (a) connects the genetic divisor concept to the cosmic seesaw congruence, (b) provides support for the {delta}-conjecture concerning the subgroup structure of particle states, and (c) quantitatively strengthens the interlocking relationships joining the values of the prospectively derived (i) electron neutrino (v{sub e}) mass (0.808 meV), (ii) muon neutrino (v{sub {mu}}) mass (27.68 meV), and (iii) unified strong-electroweak coupling constant ({alpha}*{sup -1} = 34.26).
Oxygen mass transfer and scale-up studies in baffled roller bioreactors.
Nikakhtari, H; Song, W; Nemati, M; Hill, G A
2014-02-01
Oxygen mass transfer was studied in conventional, bead mill and baffled roller bioreactors. Using central composite rotational design, impacts of size, rotation speed and working volume on the oxygen mass transfer were evaluated. Baffled roller bioreactor outperformed its conventional and bead mill counterparts, with the highest k(L)a obtained in these configurations being 0.58, 0.19, 0.41 min(-1), respectively. Performances of the bead mill and baffled roller bioreactor were only comparable when a high bead loading (40%) was applied. Regardless of configuration increase in rotation speed and decrease in working volume improved the oxygen mass transfer rate. Increase in size led to enhanced mass transfer and higher k(L)a in baffled roller bioreactor (0.49 min(-1) for 2.2 L and 1.31 min(-1) for 55 L bioreactors). Finally, the experimentally determined k(L)a in the baffled roller bioreactors of different sizes fit reasonably well to an empirical correlation describing the k(L)a in terms of dimensionless numbers.
Majewsky, Marius; Farlin, Julien; Bayerle, Michael; Gallé, Tom
2013-04-01
Removal efficiencies of micropollutants in wastewater treatment plants (WWTPs) are usually evaluated from mass balance calculations using a small number of observations drawn from short sampling campaigns. Since micropollutant loads can vary greatly in both influent and effluent and reactor tanks exhibit specific hydraulic residence times, these short-term approaches are particularly prone to yield erroneous removal values. A detailed investigation of micropollutant transit times at full-scale and on how this affects mass balancing results was still lacking. The present study used hydraulic residence time distributions to scrutinize the match of influent loads to effluent loads of 10 polar micropollutants with different influent dynamics in a full-scale WWTP. Prior hydraulic modeling indicated that a load sampled over one day in the effluent is composed of influent load fractions of five preceding days. Results showed that the error of the mass balance can be reduced with increasing influent sampling duration. The approach presented leads to a more reliable estimation of the removal efficiencies of those micropollutants which can be constantly detected in influents, such as pharmaceuticals, but provides no advantage for pesticides due to their sporadic occurrence. The mismatch between sampled influent and effluent loads was identified as a major error source and an explanation was provided for the occurrence of negative mass balances regularly reported. This study indicates that the accurate determination of global removal values is only feasible in full-scale investigations with sampling durations much longer than 1 day. In any case, the uncertainty of these values needs to be reported when used in removal assessment, model selection or validation.
Filipovic, Vilim; Coquet, Yves; Gerke, Horst H.
2017-04-01
In arable soil landscapes, specific spatial heterogeneities related to tillage and trafficking can influence the movement of water and chemicals. The structure in the topsoil is characterized by spatial patterns with locally compacted zones. The contrasting hydraulic properties of more-and-less compacted soil zones can result in heterogeneous flow fields and preferential flow. Two- or three-dimensional models used to account for soil spatial variability are relatively too complex when trying to include local heterogeneities in the description of field scale flow and transport problems. The idea was to reduce the model complexity linked to the explicit description of heterogeneities in 2D or 3D without deteriorating the validity of simulation results. When reducing the spatial dimensionality, the geometry in a 2D, cross-sectional explicit plot description is removed on the expense of an increased complexity of the 1D model with two flow domains and mass exchange between them. Our objective was to design a simplified 1D model approach that effectively accounts for plot-scale soil structural variability. In this simplified 1D model, effective soil hydraulic parameters can be assigned to each of the two domains separately. Different theoretical scenarios simulating different shape, size and arrangement of compacted clods in the tilled layer were set to estimate their effect on solute behaviour. The mass exchange parameters could be determined from structure quantification and by comparing simplified 1D with reference 2D results accounting for defined soil structural (i.e., here the compacted regions) geometries. The mass exchange is strongly related to the geometry of the compacted zones including their distribution and size within the non-compacted soil. Additionally, the simplified model approach was tested by comparing it with measured results from a field tracer experiment.
Peidou, Athina C.; Fotopoulos, Georgia; Pagiatakis, Spiros
2017-10-01
The main focus of this paper is to assess the feasibility of utilizing dedicated satellite gravity missions in order to detect large-scale solid mass transfer events (e.g. landslides). Specifically, a sensitivity analysis of Gravity Recovery and Climate Experiment (GRACE) gravity field solutions in conjunction with simulated case studies is employed to predict gravity changes due to past subaerial and submarine mass transfer events, namely the Agulhas slump in southeastern Africa and the Heart Mountain Landslide in northwestern Wyoming. The detectability of these events is evaluated by taking into account the expected noise level in the GRACE gravity field solutions and simulating their impact on the gravity field through forward modelling of the mass transfer. The spectral content of the estimated gravity changes induced by a simulated large-scale landslide event is estimated for the known spatial resolution of the GRACE observations using wavelet multiresolution analysis. The results indicate that both the Agulhas slump and the Heart Mountain Landslide could have been detected by GRACE, resulting in {\\vert }0.4{\\vert } and {\\vert }0.18{\\vert } mGal change on GRACE solutions, respectively. The suggested methodology is further extended to the case studies of the submarine landslide in Tohoku, Japan, and the Grand Banks landslide in Newfoundland, Canada. The detectability of these events using GRACE solutions is assessed through their impact on the gravity field.
Mass coral spawning: A natural large-scale nutrien t addition experiment
DEFF Research Database (Denmark)
Eyre, B.D.; Glud, Ronnie Nøhr; Patten, N.
2008-01-01
A mass coral spawning event on the Heron Island reef flat in 2005 provided a unique opportunity to examine the response of a coral reef ecosystem to a large episodic nutrient addition. A post-major spawning phytoplankton bloom resulted in only a small drawdown of dissolved inorganic phosphorus (DIP......), and dissolved organic phosphorus were used in the production of biomass, and mass balance calculations highlighted the importance of organic forms of N and P for benthic and pelagic production in tropical coral reef environments characterized by low inorganic N and P. The input of N and P via the deposition...... potential N limitation of benthic coral reef communities. For example, there was sufficient bioavailable P stored in the top 10 cm of the sediment column to sustain the prespawning rates of benthic production for over 200 d. Most of the change in benthic N cycling occurred via DON and N-2 pathways, driven...
Meso-scale kinematic indicators in exhumed mass transport deposits: Definitions and implications
Ogata, Kei; Pini, Gian Andrea; Festa, Andrea; Poga??nik, Z??ljko; Lucente, Claudio Corrado
2016-01-01
In this study we combine observations and analytical data from large-scale (10–100s of m-thick and 100 m 2 -extensive), siliciclastic and carbonate MTD/MTCs belonging to the Oligocene – Miocene foredeep and wedge-top suc-cessions of the Northern Apennines and the Paleocene – Eocene Friuli basin of
Exercise-induced maximum metabolic rate scaled to body mass by ...
African Journals Online (AJOL)
The central postulation of the present approach to metabolic rate scaling is that exercise-induced maximum aerobic metabolic rate (MMR) is proportional to the fractal extent (V) of an animal. Total fractal extent can be calculated from the sum of the fractal extents of the capillary service units, as specified by the formula V ...
Untargeted large-scale plant metabolomics using liquid chromatography coupled to mass spectrometry
Vos, de C.H.; Moco, S.I.A.; Lommen, A.; Keurentjes, J.J.B.; Bino, R.J.; Hall, R.D.
2007-01-01
Untargeted metabolomics aims to gather information on as many metabolites as possible in biological systems by taking into account all information present in the data sets. Here we describe a detailed protocol for large-scale untargeted metabolomics of plant tissues, based on reversed phase liquid
Energy Technology Data Exchange (ETDEWEB)
Naumann-Emme, Sebastian
2011-07-15
In this thesis, pairs of top quarks produced in proton-proton collisions at a center-of-mass energy of 7 TeV and decaying in the muon+jets channel t anti t {yields} (b{mu}{nu})(bqq{sup '}) are analyzed using data that were recorded by the CMS detector in the year 2010 and correspond to an integrated luminosity of 35.9 pb{sup -1}. A sample of 78 events is selected by requiring exactly one isolated muon and at least four jets, two of them being identified as jets from the decay of b quarks. Given these selection criteria, the expected fraction of t anti t events is 94%. The trijet mass, M3, and the dijet mass, M2, are reconstructed, taking into account the b-tagging information. M3 and M2 are estimators of the masses of hadronically decaying top quarks and the corresponding W bosons, respectively. Templates for M2 and for the event-wise mass difference {delta}M{sub 32}=M3-M2 are parametrized as linear functions of the top quark mass, m{sub t}, and the jet energy scale (JES). Based on the precise knowledge of the W boson mass, M2 provides a strong handle on the energy scale of jets from light quarks. The reconstructed M2 and {delta}M{sub 32} in data are compared to the template functions from simulation in a combined likelihood fit. The overall JES in the selected sample is found to be 1.048{+-}0.040(stat){+-}0.015(syst) relative to the simulated JES and the measured m{sub t} is 167.8{+-}7.1(stat+JES){+-}3.1(syst) GeV. This is one of the first measurements of m{sub t} at the Large Hadron Collider. Furthermore, the JES measurement is an important input for the commissioning of the CMS experiment for the upcoming measurements with more data in the near future. (orig.)
Directory of Open Access Journals (Sweden)
Guillaume Ramillien
2014-08-01
Full Text Available Time series of regional 2° × 2° Gravity Recovery and Climate Experiment (GRACE solutions of surface water mass change have been computed over Africa from 2003 to 2012 with a 10-day resolution by using a new regional approach. These regional maps are used to describe and quantify water mass change. The contribution of African hydrology to actual sea level rise is negative and small in magnitude (i.e., −0.1 mm/y of equivalent sea level (ESL mainly explained by the water retained in the Zambezi River basin. Analysis of the regional water mass maps is used to distinguish different zones of important water mass variations, with the exception of the dominant seasonal cycle of the African monsoon in the Sahel and Central Africa. The analysis of the regional solutions reveals the accumulation in the Okavango swamp and South Niger. It confirms the continuous depletion of water in the North Sahara aquifer at the rate of −2.3 km3/y, with a decrease in early 2008. Synergistic use of altimetry-based lake water volume with total water storage (TWS from GRACE permits a continuous monitoring of sub-surface water storage for large lake drainage areas. These different applications demonstrate the potential of the GRACE mission for the management of water resources at the regional scale.
Motani, Ryosuke; Jiang, Da-Yong; Tintori, Andrea; Ji, Cheng; Huang, Jian-Dong
2017-05-17
The fossil record of a major clade often starts after a mass extinction even though evolutionary rates, molecular or morphological, suggest its pre-extinction emergence (e.g. squamates, placentals and teleosts). The discrepancy is larger for older clades, and the presence of a time-scale-dependent methodological bias has been suggested, yet it has been difficult to avoid the bias using Bayesian phylogenetic methods. This paradox raises the question of whether ecological vacancies, such as those after mass extinctions, prompt the radiations. We addressed this problem by using a unique temporal characteristic of the morphological data and a high-resolution stratigraphic record, for the oldest clade of Mesozoic marine reptiles, Ichthyosauromorpha. The evolutionary rate was fastest during the first few million years of ichthyosauromorph evolution and became progressively slower over time, eventually becoming six times slower. Using the later slower rates, estimates of divergence time become excessively older. The fast, initial rate suggests the emergence of ichthyosauromorphs after the end-Permian mass extinction, matching an independent result from high-resolution stratigraphic confidence intervals. These reptiles probably invaded the sea as a new ecosystem was formed after the end-Permian mass extinction. Lack of information on early evolution biased Bayesian clock rates. © 2017 The Author(s).
Energy Technology Data Exchange (ETDEWEB)
Rasmussen, Rasmus W.; Winter, Walter
2016-11-15
We discuss the parameter space reach of future experiments searching for heavy neutral leptons (HNLs) at the GeV scale in terms of neutrino mass models with three HNL generations. We focus on two classes of models: Generic assumptions (such as random mass matrices or the Casas-Ibarra parameterization) and flavor symmetry-generated models. We demonstrate that the generic approaches lead to comparable parameter space predictions, which tend to be at least partially within the reach of future experiments. On the other hand, specific flavor symmetry models yield more refined predictions, some of these can be more clearly excluded. We also highlight the importance to measure the flavor-dependent couplings of the HNLs as a model discriminator, and we clarify the impact of assumptions frequently used in the literature to show the parameter space reach for the active-sterile mixings.
DEFF Research Database (Denmark)
Nühse, Thomas S; Stensballe, Allan; Jensen, Ole N
2003-01-01
Global analyses of protein phosphorylation require specific enrichment methods because of the typically low abundance of phosphoproteins. To date, immobilized metal ion affinity chromatography (IMAC) for phosphopeptides has shown great promise for large-scale studies, but has a reputation for poor...... specificity. We investigated the potential of IMAC in combination with capillary liquid chromatography coupled to tandem mass spectrometry for the identification of plasma membrane phosphoproteins of Arabidopsis. Without chemical modification of peptides, over 75% pure phosphopeptides were isolated from...... plasma membrane digests and detected and sequenced by mass spectrometry. We present a scheme for two-dimensional peptide separation using strong anion exchange chromatography prior to IMAC that both decreases the complexity of IMAC-purified phosphopeptides and yields a far greater coverage...
SUSY-QCD Effects in Top Quark Pair Production in Association with a Gluon at the ILC
Zhang, Yan-Ming; Liu, Ning
2015-08-01
Given the null results of searches for new physics at the LHC, we investigate the one-loop effects SUSY QCD in the process e^ + e^ - \\to t\\bar tg at the ILC in Minimal Supersymmetric Standard Model (MSSM). We find that the relative SUSY-QCD corrections to the cross section of e^ + e^ - \\to t\\bar tg can maximally reach 6.5%(3.2%) at the ILC with \\sqrt s = 1000 GeV when m\\bar t1 = 313.4 GeV and m\\bar g = 500≤ft( {1500} \\right) GeV. Supported by the National Natural Science Foundation of China (NNSFC) under Grant Nos. 11305049, 11275057, and 11405047, by Specialized Research Fund for the Doctoral Program of Higher Education under Grant No. 20134104120002 and by the Startup Foundation for Doctors of Henan Normal University under Grant No. 11112
Connors, R. M. T.; Markoff, S.; Nowak, M. A.; Neilsen, J.; Ceccobello, C.; Crumley, P.; Froning, C. S.; Gallo, E.; Nip, J. E.
2017-04-01
The 'Fundamental Plane of black hole accretion' (FP), a relation between the radio luminosities (LR), X-ray luminosities (LX) and masses (MBH) of hard/quiescent state black hole binaries and low-luminosity active galactic nuclei, suggests some aspects of black hole accretion may be scale invariant. However, key questions still exist concerning the relationship between the inflow/outflow behaviour in the 'classic' hard state and quiescence, which may impact this scaling. We show that the broad-band spectra of A0620-00 and Sgr A* (the least luminous stellar mass/supermassive black holes on the FP) can be modelled simultaneously with a physically motivated outflow-dominated model where the jet power and all distances are scaled by the black hole mass. We find we can explain the data of both A0620-00 and Sgr A* (in its non-thermal flaring state) in the context of two outflow-model scenarios: (1) a synchrotron-self-Compton dominated state in which the jet plasma reaches highly sub-equipartition conditions (for the magnetic field with respect to that of the radiating particles), and (2) a synchrotron-dominated state in the fast-cooling regime in which particle acceleration occurs within the inner few gravitational radii of the black hole and plasma is close to equipartition. We show that it may be possible to further discriminate between models (1) and (2) through future monitoring of Sgr A*'s submm/infrared/X-ray emission, in particular via time lags between the variable emission in these bands.
Authentication of Fish Products by Large-Scale Comparison of Tandem Mass Spectra
DEFF Research Database (Denmark)
Wulff, Tune; Nielsen, Michael Engelbrecht; Deelder, André M.
2013-01-01
workflow including protein extraction, digestion, and data analysis. First, a set of reference spectral libraries was generated using unprocessed muscle tissue from 22 different fish species. Query tandem mass spectrometry data sets from “unknown” fresh muscle tissue samples were then searched against...... the reference libraries. The number of matching spectra could unambiguously identify the origin of all fresh samples. A number of processed samples were also analyzed to further test the robustness and applicability of the method. The results clearly show that the method is also able to correctly identify...... heavily processed samples....
Hydraulic Performance and Mass Transfer Efficiency of Engineering Scale Centrifugal Contactors
Energy Technology Data Exchange (ETDEWEB)
David Meikrantz; Troy Garn; Nick Mann; Jack Law; Terry Todd
2007-09-01
Annular centrifugal contactors (ACCs) are being evaluated for process-scale solvent extraction operations in support of Advanced Fuel Cycle Initiative (AFCI) separations goals. Process-scale annular centrifugal contactors have the potential for high stage efficiency if properly employed and optimized for the application. Hydraulic performance issues related to flow instability and classical flooding are likely unimportant, especially for units with high throughputs. However, annular mixing increases rapidly with increasing rotor diameter while maintaining a fixed g force at the rotor wall. In addition, for engineering/process-scale contactors, elevated rotor speeds and/or throughput rates, can lead to organic phase foaming at the rotor discharge collector area. Foam buildup in the upper rotor head area can aspirate additional vapor from the contactor housing resulting in a complete loss of separation equilibrium. Variable speed drives are thus desirable to optimize and balance the operating parameters to help ensure acceptable performance. Proper venting of larger contactors is required to balance pressures across individual stages and prevent vapor lock due to foam aspiration.
Heidegger, Constantin
2017-01-01
This poster reports on the search for the production of charginos and neutralinos in events with either two leptons of the same charge or three or more leptons using the full 2016 proton-proton collision dataset of $35.9\\,\\mathrm{fb}^{-1}$ at $\\sqrt{s}=13\\,\\mathrm{TeV}$ collected by the CMS detector. Exclusion limits at $95\\,\\%$ confidence level range between $450-1100\\,\\mathrm{GeV}$ depending on the SUSY scenario.
An Efficient Algorithm for Clustering of Large-Scale Mass Spectrometry Data.
Saeed, Fahad; Pisitkun, Trairak; Knepper, Mark A; Hoffert, Jason D
2012-10-04
High-throughput spectrometers are capable of producing data sets containing thousands of spectra for a single biological sample. These data sets contain a substantial amount of redundancy from peptides that may get selected multiple times in a LC-MS/MS experiment. In this paper, we present an efficient algorithm, CAMS (Clustering Algorithm for Mass Spectra) for clustering mass spectrometry data which increases both the sensitivity and confidence of spectral assignment. CAMS utilizes a novel metric, called F-set, that allows accurate identification of the spectra that are similar. A graph theoretic framework is defined that allows the use of F-set metric efficiently for accurate cluster identifications. The accuracy of the algorithm is tested on real HCD and CID data sets with varying amounts of peptides. Our experiments show that the proposed algorithm is able to cluster spectra with very high accuracy in a reasonable amount of time for large spectral data sets. Thus, the algorithm is able to decrease the computational time by compressing the data sets while increasing the throughput of the data by interpreting low S/N spectra.
Effective photon mass by Super and Lorentz symmetry breaking
Bonetti, Luca; dos Santos Filho, Luís R.; Helayël-Neto, José A.; Spallicci, Alessandro D. A. M.
2017-01-01
In the context of Standard Model Extensions (SMEs), we analyse four general classes of Super Symmetry (SuSy) and Lorentz Symmetry (LoSy) breaking, leading to observable imprints at our energy scales. The photon dispersion relations show a non-Maxwellian behaviour for the CPT (Charge-Parity-Time reversal symmetry) odd and even sectors. The group velocities exhibit also a directional dependence with respect to the breaking background vector (odd CPT) or tensor (even CPT). In the former sector, the group velocity may decay following an inverse squared frequency behaviour. Thus, we extract a massive Carroll-Field-Jackiw photon term in the Lagrangian and show that the effective mass is proportional to the breaking vector and moderately dependent on the direction of observation. The breaking vector absolute value is estimated by ground measurements and leads to a photon mass upper limit of 10-19 eV or 2 ×10-55 kg, and thereby to a potentially measurable delay at low radio frequencies.
Effective photon mass by Super and Lorentz symmetry breaking
Directory of Open Access Journals (Sweden)
Luca Bonetti
2017-01-01
Full Text Available In the context of Standard Model Extensions (SMEs, we analyse four general classes of Super Symmetry (SuSy and Lorentz Symmetry (LoSy breaking, leading to observable imprints at our energy scales. The photon dispersion relations show a non-Maxwellian behaviour for the CPT (Charge-Parity-Time reversal symmetry odd and even sectors. The group velocities exhibit also a directional dependence with respect to the breaking background vector (odd CPT or tensor (even CPT. In the former sector, the group velocity may decay following an inverse squared frequency behaviour. Thus, we extract a massive Carroll–Field–Jackiw photon term in the Lagrangian and show that the effective mass is proportional to the breaking vector and moderately dependent on the direction of observation. The breaking vector absolute value is estimated by ground measurements and leads to a photon mass upper limit of 10−19 eV or 2×10−55 kg, and thereby to a potentially measurable delay at low radio frequencies.
Zulueta, Rommel Callejo
Natural ecosystems are rarely structurally or functionally homogeneous. This is true for the complex coastal regions of Magdalena Bay, Baja California Sur, Mexico, and the Barrow Peninsula on the Arctic Coastal Plain of Alaska. The coastal region of Magdalena Bay is comprised of the Pacific coastal ocean, eutrophic lagoon, mangroves, and desert ecosystems all adjacent and within a few kilometers, while the Barrow Peninsula is a mosaic of small ponds, thaw lakes, different aged vegetated thaw-lake basins ( VDTLBs ) and interstitial tundra which have been dynamically formed by both short- and long-term processes. We used a combination of tower- and small environmental research aircraft (SERA)-based eddy covariance measurements to characterize the spatial and temporal patterns of CO2, latent, and sensible heat fluxes along with MODIS NDVI, and land surface information, to scale the SERA-based CO2 fluxes up to the regional scale. In the first part of this research, the spatial variability in ecosystem fluxes from the Pacific coastal ocean, eutrophic lagoon, mangroves, and desert areas of northern Magdalena Bay were studied. SERA-derived average midday CO2 fluxes from the desert showed a slight uptake of -1.32 mumol CO2 m-2 s-1, the coastal ocean also showed uptake of -3.48 mumol CO2 m-2 s -1, and the lagoon mangroves showed the highest uptake of -8.11 mumol CO2 m-2 s-1. Additional simultaneous measurements of NDVI allowed simple linear modeling of CO2 flux as a function of NDVI for the mangroves of the Magdalena Bay region. In the second part of this research, the spatial variability of ecosystem fluxes across the 1802 km2 Barrow Peninsula region was studied. During typical 2006 summer conditions, the midday hourly CO2 flux over the region was -2.04 x 105 kgCO2 hr-1. The CO2 fluxes among the interstitial tundra, Ancient and Old VDTLBs, as well as between the Medium and Young VDTLBs were not significantly different. Combined, the interstitial tundra and Old and Ancient
SUSY-QCD corrections to the (co)annihilation of neutralino dark matter within the MSSM
Energy Technology Data Exchange (ETDEWEB)
Meinecke, Moritz
2015-06-15
Based on experimental observations, it is nowadays assumed that a large component of the matter content in the universe is comprised of so-called cold dark matter. Furthermore, latest measurements of the temperature fluctuations of the cosmic microwave background provided an estimation of the dark matter relic density at a measurement error of one percent (concerning the experimental 1σ-error). The lightest neutralino χ 0{sub 1}, a particle which subsumes under the phenomenologically interesting category of weakly interacting massive particles, is a viable dark matter candidate for many supersymmetric (SUSY) models whose relic density Ω{sub χ} {sub 0{sub 1}} happens to lie quite naturally within the experimentally favored ballpark of dark matter. The high experimental precision can be used to constrain the SUSY parameter space to its cosmologically favored regions and to pin down phenomenologically interesting scenarios. However, to actually benefit from this progress on the experimental side it is also mandatory to minimize the theoretical uncertainties. An important quantity within the calculation of the neutralino relic density is the thermally averaged sum over different annihilation and coannihilation cross sections of the neutralino and further supersymmetric particles. It is now assumed and also partly proven that these cross sections can be subject to large loop corrections which can even shift the associated Ω{sub χ} {sub 0{sub 1}} by a factor larger than the current experimental error. However, most of these corrections are yet unknown. In this thesis, we calculate higher-order corrections for some of the most important (co)annihilation channels both within the framework of the R-parity conserving Minimal Supersymmetric Standard Model (MSSM) and investigate their impact on the final neutralino relic density Ω{sub χ} {sub 0{sub 1}}. More precisely, this work provides the full O(α{sub s}) corrections of supersymmetric quantum chromodynamics (SUSY
Towards a complete Δ (27 )×S O (10 ) SUSY GUT
Björkeroth, Fredrik; de Anda, Francisco J.; de Medeiros Varzielas, Ivo; King, Stephen F.
2016-07-01
We propose a renormalizable model based on Δ (27 ) family symmetry with an S O (10 ) grand unified theory leading to a novel form of spontaneous geometrical C P violation. The symmetries, including Δ (27 ) and Z9×Z12×Z4R , are broken close to the grand unified theory breaking scale to yield the minimal supersymmetric standard model with the standard R parity. S O (10 ) is broken via S U (5 ) with doublet-triplet splitting achieved by a version of the Dimopoulos-Wilczek (missing vacuum expectation value) mechanism. Low-scale Yukawa structure is dictated by the coupling of matter to Δ (27 ) antitriplets ϕ ¯ of which the vacuum expectation values are aligned in the constrained sequential dominance 3 directions by the superpotential. Light physical Majorana neutrinos masses emerge from a specific implementation of the seesaw mechanism within S O (10 ). The model predicts a normal neutrino mass hierarchy with the best-fit lightest neutrino mass between 0.32 and 0.38 meV, C P -violating oscillation phase δl≈(275 - 280 )° , and the remaining neutrino parameters all within 1 σ of their best-fit experimental values.
Status of large-scale analysis of post-translational modifications by mass spectrometry
DEFF Research Database (Denmark)
Olsen, Jesper V; Mann, Matthias
2013-01-01
Cellular function can be controlled through the gene expression program but often protein post translations modifications (PTMs) provide a more precisely and elegant mechanism. Key functional roles of specific modification events for instance during the cell cycle have been known for decades......, with label-free methods showing particular promise. It is also becoming possible to determine the absolute occupancy or stoichiometry of PTMS sites on a large scale. Powerful software for the bioinformatic analysis of thousands of PTM sites has been developed. However, a complete inventory of sites has...... not been established for any PTM and this situation will persist into the foreseeable future. Furthermore, although PTM coverage by MS-based methods is impressive, it still needs to be improved, especially in tissues and in clinically relevant systems. The central challenge for the field is to develop...
Structurally controlled 'teleconnection' of large-scale mass wasting (Eastern Alps)
Ostermann, Marc; Sanders, Diethard
2015-04-01
In the Brenner Pass area (Eastern Alps) , closely ahead of the most northward outlier ('nose') of the Southern-Alpine continental indenter, abundant deep-seated gravitational slope deformations and a cluster of five post-glacial rockslides are present. The indenter of roughly triangular shape formed during Neogene collision of the Southern-Alpine basement with the Eastern-Alpine nappe stack. Compression by the indenter activated a N-S striking, roughly W-E extensional fault northward of the nose of the indenter (Brenner-normal fault; BNF), and lengthened the Eastern-Alpine edifice along a set of major strike-slip faults. These fault zones display high seismicity, and are the preferred locus of catastrophic rapid slope failures (rockslides, rock avalanches) and deep-seated gravitational slope deformations. The seismotectonic stress field, earthquake activity, and structural data all indicate that the South-Alpine indenter still - or again - exerts compression; in consequence, the northward adjacent Eastern Alps are subject mainly to extension and strike-slip. For the rockslides in the Brenner Pass area, and for the deep-seated gravitational slope deformations, the fault zones combined with high seismic activity predispose massive slope failures. Structural data and earthquakes mainly record ~W-E extension within an Eastern Alpine basement block (Oetztal-Stubai basement complex) in the hangingwall of the BNF. In the Northern Calcareous Alps NW of the Oetztal-Stubai basement complex, dextral faults provide defacement scars for large rockfalls and rockslides. Towards the West, these dextral faults merge into a NNW-SSE striking sinistral fault zone that, in turn, displays high seismic activity and is the locus of another rockslide cluster (Fern Pass cluster; Prager et al., 2008). By its kinematics dictated by the South-Alpine indenter, the relatively rigid Oetztal-Stubai basement block relays faulting and associated mass-wasting over a N-S distance of more than 60
Pore to Core Scale Simulation of the Mass Transfer with Mineral Reaction in Porous Media
Directory of Open Access Journals (Sweden)
Bekri S.
2015-04-01
Full Text Available Pore Network Model (PNM is used to simulate mass transfer with mineral reaction in a single phase flow through porous medium which is here a sandstone sample from the reservoir formation of the Pakoslaw gas field. The void space of the porous medium is represented by an idealized geometry of pore-bodies joined by pore-throats. Parameters defining the pore-bodies and the pore-throats distribution are determined by an optimization process aiming to match the experimental Mercury Intrusion Capillary Pressure (MICP curve and petrophysical properties of the rock such as intrinsic permeability and formation factor. The generated network is used first to simulate the multiphase flow by solving Kirchhoff’s laws. The capillary pressure and relative permeability curves are derived. Then, reactive transport is addressed under asymptotic regime where the solute concentration undergoes an exponential evolution with time. The porosity/permeability relationship and the three phenomenological coefficients of transport, namely the solute velocity, the dispersion and the mean reaction rate are determined as functions of Peclet and Peclet-Damköhler dimensionless numbers. Finally, the role of the dimensionless numbers on the reactive flow properties is highlighted.
Nanogram-scale preparation and NMR analysis for mass-limited small volatile compounds.
Directory of Open Access Journals (Sweden)
Satoshi Nojima
2011-03-01
Full Text Available Semiochemicals are often produced in infinitesimally small quantities, so their isolation requires large amounts of starting material, not only requiring significant effort in sample preparation, but also resulting in a complex mixture of compounds from which the bioactive compound needs to be purified and identified. Often, compounds cannot be unambiguously identified by their mass spectra alone, and NMR analysis is required for absolute chemical identification, further exacerbating the situation because NMR is relatively insensitive and requires large amounts of pure analyte, generally more than several micrograms. We developed an integrated approach for purification and NMR analysis of <1 µg of material. Collections from high performance preparative gas-chromatography are directly eluted with minimal NMR solvent into capillary NMR tubes. With this technique, (1H-NMR spectra were obtained on 50 ng of geranyl acetate, which served as a model compound, and reasonable H-H COSY NMR spectra were obtained from 250 ng of geranyl acetate. This simple off-line integration of preparative GC and NMR will facilitate the purification and chemical identification of novel volatile compounds, such as insect pheromones and other semiochemicals, which occur in minute (sub-nanogram, and often limited, quantities.
Barak, Meir Max; Lieberman, Daniel E; Hublin, Jean-Jacques
2013-08-01
Body mass (BM) in mammal species spans over six orders of magnitude. Although trabecular bone contributes to the mechanical properties of bones, we know much less about how trabecular bone scales with BM than about how cortical bone scales with BM. We therefore conducted a meta-analysis of the existing literature to test in rodents, humans and other mammals, predicted scaling properties between BM and several trabecular parameters: bone volume fraction (BV/TV), trabecular number (Tb.N), trabecular thickness (Tb.Th), trabecular separation (Tb.Sp), connectivity density (ConnD) and degree of anisotropy (DA). Our results show that BV/TV and DA are independent of BM and that Tb.N, Tb.Th and Tb.Sp scale with negative allometry relative to BM. Rodents appear to have relatively thicker and fewer trabeculae than humans, and we propose it that is due to a minimum thickness threshold "imposed" on mechanically functional trabeculae. Consequently, rodents (mice and rats) and humans demonstrate two distinct mechanisms to achieve variations in BV/TV. Although Tb.Th variation is the main contributing factor for differences in BV/TV in humans, Tb.N variation is the main contributing factor for differences in BV/TV in rodents. Our results also demonstrate no correlation between Tb.N and Tb.Th within each taxon (mice, rats and humans). Since rodents are a common animal model for research on bone biomechanics, the evidence that trabecular bone parameters scale and correlate differently in rodents than in humans suggests that care should be applied when extrapolating bone biomechanical results from small animals to large-bodied humans. Copyright © 2013 Elsevier Inc. All rights reserved.
ESO 243-49 HLX-1: scaling of X-ray spectral properties and black hole mass determination
Titarchuk, Lev; Seifina, Elena
2016-11-01
We report the results of Swift/XRT observations (2008-2015) of a hyper-luminous X-ray source, ESO 243-49 HLX-1. We demonstrate a strong observational evidence that ESO 243-49 HLX-1 undergoes spectral transitions from the low/hard state to the high/soft state during these observations. The spectra of ESO 243-49 HLX-1 are well fitted by the so-called bulk motion Comptonization model for all spectral states. We have established the photon index (Γ) saturation level, Γsat = 3.0 ± 0.1, in the Γ versus mass accretion rate (Ṁ) correlation. This Γ-Ṁ correlation allows us to estimate black hole (BH) mass in ESO 243-49 HLX-1 to be MBH 7 × 104 M⊙ assuming the distance to ESO 243-49 of 95 Mpc. For the BH mass estimate we use the scaling method taking Galactic BHs XTE J1550-564, H 1743-322 and 4U 1630-472, and an extragalactic BH source, M101 ULX-1 as reference sources. The Γ versus Ṁ correlation revealed in ESO 243-49 HLX-1 is similar to those in a number of Galactic and extragalactic BHs and it clearly shows the correlation along with the strong Γ saturation at ≈3. This is a robust observational evidence for the presence of a BH in ESO 243-49 HLX-1. We also find that the seed (disk) photon temperatures are quite low, of order of 50-140 eV which are consistent with high BH mass in ESO 243-49 HLX-1.
Moonlight Drives Ocean-Scale Mass Vertical Migration of Zooplankton during the Arctic Winter.
Last, Kim S; Hobbs, Laura; Berge, Jørgen; Brierley, Andrew S; Cottier, Finlo
2016-01-25
In extreme high-latitude marine environments that are without solar illumination in winter, light-mediated patterns of biological migration have historically been considered non-existent [1]. However, diel vertical migration (DVM) of zooplankton has been shown to occur even during the darkest part of the polar night, when illumination levels are exceptionally low [2, 3]. This paradox is, as yet, unexplained. Here, we present evidence of an unexpected uniform behavior across the entire Arctic, in fjord, shelf, slope and open sea, where vertical migrations of zooplankton are driven by lunar illumination. A shift from solar-day (24-hr period) to lunar-day (24.8-hr period) vertical migration takes place in winter when the moon rises above the horizon. Further, mass sinking of zooplankton from the surface waters and accumulation at a depth of ∼50 m occurs every 29.5 days in winter, coincident with the periods of full moon. Moonlight may enable predation of zooplankton by carnivorous zooplankters, fish, and birds now known to feed during the polar night [4]. Although primary production is almost nil at this time, lunar vertical migration (LVM) may facilitate monthly pulses of carbon remineralization, as they occur continuously in illuminated mesopelagic systems [5], due to community respiration of carnivorous and detritivorous zooplankton. The extent of LVM during the winter suggests that the behavior is highly conserved and adaptive and therefore needs to be considered as "baseline" zooplankton activity in a changing Arctic ocean [6-9]. VIDEO ABSTRACT. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Economies of scale: body mass index and costs of cardiac surgery in Ontario, Canada.
Johnson, Ana P; Parlow, Joel L; Milne, Brian; Whitehead, Marlo; Xu, Jianfeng; Rohland, Susan; Thorpe, Joelle B
2017-05-01
An obesity paradox has been described, whereby obese patients have better health outcomes than normal weight patients in certain clinical situations, including cardiac surgery. However, the relationship between body mass index (BMI) and resource utilization and costs in patients undergoing coronary artery bypass graft (CABG) surgery is largely unknown. We examined resource utilization and cost data for 53,224 patients undergoing CABG in Ontario, Canada over a 10-year period between 2002 and 2011. Data for costs during hospital admission and for a 1-year follow-up period were derived from the Institute for Clinical Evaluative Sciences, and analyzed according to pre-defined BMI categories using analysis of variance and multivariate models. BMI independently influenced healthcare costs. Underweight patients had the highest per patient costs ($50,124 ± $36,495), with the next highest costs incurred by morbidly obese ($43,770 ± $31,747) and normal weight patients ($42,564 ± $30,630). Obese and overweight patients had the lowest per patient costs ($40,760 ± $30,664 and $39,960 ± $25,422, respectively). Conversely, at the population level, overweight and obese patients were responsible for the highest total yearly population costs to the healthcare system ($92 million and $50 million, respectively, compared to $4.2 million for underweight patients). This is most likely due to the high proportion of CABG patients falling into the overweight and obese BMI groups. In the future, preoperative risk stratification and preparation based on BMI may assist in reducing surgical costs, and may inform health policy measures aimed at the management of weight extremes in the population.
Cuzzi, J. N.; Hartlep, T.; Estrada, P.
2016-01-01
The initial accretion of primitive bodies from freely-floating nebula particles remains problematic. Traditional growth-by-sticking models in turbulent nebulae encounter a "meter-size barrier" due to both drift and destruction, or even a millimeter-to-centimeter-size "bouncing" barrier. Recent suggestions have been made that some "lucky" particles might be able to outgrow the collision and/or drift barriers, and lead to so-called "streaming instabilities" or SI. However, new full models of growth by sticking in the presence of radial drift show that lucky particles (the largest particles, at the tail of the size distribution, that grow beyond the nominal fragmentation and drift barriers) are far too rare to lead to any collective effects such as streaming or gravitational instabilities. Thus we need to focus on typical radii gamma(sub M) which contain most of the mass. Our models of disks with weak-to-moderate turbulence, which include all the most recent experimental constraints on collisional growth, erosion, bouncing, and fragmentation, as well as radial drift, find that growth stalls quite generally at sizes gamma(sub M) which are too small to settle into layers which are dense enough for any collective effects (streaming or gravitational instabilities) to arise. Even if growth by sticking could somehow breach the nominal barriers (perhaps if the actual sticking or strength is larger than current estimates for pure ice or pure silicate, with specific grain sizes), turbulent nebulae present subsequent formidable obstacles to incremental growth through the 1-10km size range. On the other hand, non-turbulent nebulae alpha is less than 10(Sup -4).
Camarillo, Mary Kay; Stringfellow, William T; Spier, Chelsea L; Hanlon, Jeremy S; Domen, Jeremy K
2013-10-15
Anaerobic digestion of manure and other agricultural waste streams with subsequent energy production can result in more sustainable dairy operations; however, importation of digester feedstocks onto dairy farms alters previously established carbon, nutrient, and salinity mass balances. Salt and nutrient mass balance must be maintained to avoid groundwater contamination and salination. To better understand salt and nutrient contributions of imported methane-producing substrates, a mass balance for a full-scale dairy biomass energy project was developed for solids, carbon, nitrogen, sulfur, phosphorus, chloride, and potassium. Digester feedstocks, consisting of thickened manure flush-water slurry, screened manure solids, sudan grass silage, and feed-waste, were tracked separately in the mass balance. The error in mass balance closure for most elements was less than 5%. Manure contributed 69.2% of influent dry matter while contributing 77.7% of nitrogen, 90.9% of sulfur, and 73.4% of phosphorus. Sudan grass silage contributed high quantities of chloride and potassium, 33.3% and 43.4%, respectively, relative to the dry matter contribution of 22.3%. Five potential off-site co-digestates (egg waste, grape pomace, milk waste, pasta waste, whey wastewater) were evaluated for anaerobic digestion based on salt and nutrient content in addition to bio-methane potential. Egg waste and wine grape pomace appeared the most promising co-digestates due to their high methane potentials relative to bulk volume. Increasing power production from the current rate of 369 kW to the design value of 710 kW would require co-digestion with either 26800 L d(-1) egg waste or 60900 kg d(-1) grape pomace. However, importation of egg waste would more than double nitrogen loading, resulting in an increase of 172% above the baseline while co-digestion with grape pomace would increase potassium by 279%. Careful selection of imported co-digestates and management of digester effluent is required to
Poveda, Joaquín; Ferrer, A
2009-01-01
The work presented in this thesis is framed in the pre-operation phase of the ATLAS experiment at LHC. Its first part is devoted to the energy reconstruction in the ATLAS Tile Calorimeter. In particular, the Optimal Filtering energy reconstruction algorithm implementation for offline uses and its validation studies with Monte Carlo and real data are presented. This algorithm combines a simple formulation with robustness in the reconstruction of signal amplitude and timing for data affected by electronics noise. Furthermore, the performance under a minimum bias pileup environment and the impact of this kind of physics noise are also shown. The second part of the thesis contains a contribution to the ATLAS Jet/Missing Transverse Energy (MET) and SUSY groups. Cleaning methods for events with large fake MET are proposed. These methods are based on one hand in the jet energy deposition in selected parts of the calorimeter system which are related with jet leakage or dead material effects and, on the other hand, in...
Decadal-scale joint inversion of NOx and SO2 using a hybrid 4D-Var / mass balance approach
Qu, Z.; Henze, D. K.; Capps, S.; Wang, Y.; Xu, X.; Wang, J.; Keller, M.
2016-12-01
Quantifying the emissions of nitrogen oxides (NOx) and sulfur dioxide (SO2) is important for improving our understanding of acid rain, formation of aerosols, and human health problems. Traditional top-down estimates have provided valuable constraints for NOx and SO2 emission inventories in China, but are either time-consuming (e.g., 4D-Var) or only crudely represent the influence of atmospheric transport and chemistry (e.g., mass balance). We develop an approach combining mass balance and an adjoint-based four-dimensional variational (4D-Var) methods that facilitates decadal-scale emission inversions. This hybrid inversion is first evaluated with a single species inversion using NO2 pseudo observations. In a set of seven-year pseudo observation test, hybrid posterior NOx emissions have smaller normalized mean square error (by 54% to 94%) than that of mass balance when compared to true emissions in most cases, and have slightly better performance in detecting emissions magnitudes and trends. Using this hybrid method, NO2 observations from the Ozone Monitoring Instrument (OMI), and the GEOS-Chem chemical transport model, we have derived monthly top-down NOx emissions for China from 2005 to 2012. Our posterior emissions have the same seasonality as recent bottom-up inventories, and smaller emissions (by 13.4% to 23.5%) as well as emission growth rate (by 0.6% to 4.1%). The hybrid method is further implemented for long-term joint inversion of NOx and SO2 emissions in China using combined observations of OMI NO2 and SO2 column densities. A 4D-Var inversion is first performed to optimize NOx and SO2 emissions in the base year using GEOS-Chem adjoint. Mass balance scaling factor is then applied to these posterior to improve their inter-annual variation. Overall, these studies augment the utility of remote sensing data for evaluating emission control strategies and mitigating the impact of NOx and SO2 on human health and the environment.
DEFF Research Database (Denmark)
D'Souza, Sonia; Rasmussen, John; Schwirtz, Ansgar
2012-01-01
and valuable ergonomic tool. Objective: To investigate age and gender effects on the torque-producing ability in the knee and elbow in older adults. To create strength scaled equations based on age, gender, upper/lower limb lengths and masses using multiple linear regression. To reduce the number of dependent...... parameters based on statistical redundancies, and then validate these equations. Methods: 283 subjects (141 males, 142 females) aged 50-59 years (54.9 +/- 2.9) , 60-69 years (65.4 +/- 2.9) and 70-79 years (73.7 +/- 2.7) were tested for maximal voluntary isometric torque of right knee extensors and elbow...... flexors. Results: Males were signifantly stronger than females across all age groups. Elbow peak torque (EPT) was better preserved from 60s to 70s whereas knee peak torque (KPT) reduced significantly (P
Directory of Open Access Journals (Sweden)
C. Rasmussen
2013-09-01
Full Text Available Recent work suggests that a coupled effective energy and mass transfer (EEMT term, which includes the energy associated with effective precipitation and primary production, may serve as a robust prediction parameter of critical zone structure and function. However, the models used to estimate EEMT have been solely based on long-term climatological data with little validation using direct empirical measures of energy, water, and carbon balances. Here we compare catchment-scale EEMT estimates generated using two distinct approaches: (1 EEMT modeled using the established methodology based on estimates of monthly effective precipitation and net primary production derived from climatological data, and (2 empirical catchment-scale EEMT estimated using data from 86 catchments of the Model Parameter Estimation Experiment (MOPEX and MOD17A3 annual net primary production (NPP product derived from Moderate Resolution Imaging Spectroradiometer (MODIS. Results indicated positive and significant linear correspondence (R2 = 0.75; P −2 yr−1. Modeled EEMT values were consistently greater than empirical measures of EEMT. Empirical catchment estimates of the energy associated with effective precipitation (EPPT were calculated using a mass balance approach that accounts for water losses to quick surface runoff not accounted for in the climatologically modeled EPPT. Similarly, local controls on primary production such as solar radiation and nutrient limitation were not explicitly included in the climatologically based estimates of energy associated with primary production (EBIO, whereas these were captured in the remotely sensed MODIS NPP data. These differences likely explain the greater estimate of modeled EEMT relative to the empirical measures. There was significant positive correlation between catchment aridity and the fraction of EEMT partitioned into EBIO (FBIO, with an increase in FBIO as a fraction of the total as aridity increases and percentage of
Carreira, Ricardo J.; Shyti, Reinald; Balluff, Benjamin; Abdelmoula, Walid M.; van Heiningen, Sandra H.; van Zeijl, Rene J.; Dijkstra, Jouke; Ferrari, Michel D.; Tolner, Else A.; McDonnell, Liam A.; van den Maagdenberg, Arn M. J. M.
2015-06-01
Cortical spreading depression (CSD) is the electrophysiological correlate of migraine aura. Transgenic mice carrying the R192Q missense mutation in the Cacna1a gene, which in patients causes familial hemiplegic migraine type 1 (FHM1), exhibit increased propensity to CSD. Herein, mass spectrometry imaging (MSI) was applied for the first time to an animal cohort of transgenic and wild type mice to study the biomolecular changes following CSD in the brain. Ninety-six coronal brain sections from 32 mice were analyzed by MALDI-MSI. All MSI datasets were registered to the Allen Brain Atlas reference atlas of the mouse brain so that the molecular signatures of distinct brain regions could be compared. A number of metabolites and peptides showed substantial changes in the brain associated with CSD. Among those, different mass spectral features showed significant ( t-test, P migraine pathophysiology. The results also demonstrate the utility of aligning MSI datasets to a common reference atlas for large-scale MSI investigations.
Schieb, Daniel J.; Haberbusch, Mark S.; Yeckley, Alexander J.
2006-05-01
Sierra Lobo tested its patented Cryo-Tracker(R) probe and Mass Gauging System in a large scale Expendable Launch Vehicle (ELV) liquid oxygen tank simulation for NASA. Typical Liquid Oxygen (LOX) tank operations were simulated at Lockheed Martin's Engineering Propulsion Laboratory in Denver, Colorado. The Cryo-Tracker(R) probe is 33 feet long, the longest built to date. It was mounted in the tank at only two locations, separated by 26 feet. Each test simulated typical Lockheed Martin booster pre-launch tanking operations, including filling the tank with LOX at fill rates typically used at the launch pad, and maintaining the fill level for a period representative of a typical pad hold. The Cryo-Tracker(R) Mass Gauging System was the primary instrument used for monitoring the fill and controlling the topping operations. Each test also simulated a typical flight profile, expelling the LOX at representative pressures and expulsion flow rates. During expulsion, the Cryo-Tracker(R) System served to generate an Engine Cut-Off (ECO) signal. Test objectives were as follows: Cryo-Tracker(R) data will be validated by flight-like propellant instruments currently used in launch vehicles; the probe will survive the harsh environment (which will be documented by a digital video camera) with no loss of signal or structural integrity; the system will successfully measure liquid levels and temperatures under all conditions and calculate propellant mass in real-time; the system will successfully demonstrate its feasibility as a control sensor for LOX filling and topping operations, as well as for engine cut-off. All objectives were met and the test results are presented.
Energy Technology Data Exchange (ETDEWEB)
Dietrich, J.P.; et al.
2017-11-14
Uncertainty in the mass-observable scaling relations is currently the limiting factor for galaxy cluster based cosmology. Weak gravitational lensing can provide a direct mass calibration and reduce the mass uncertainty. We present new ground-based weak lensing observations of 19 South Pole Telescope (SPT) selected clusters and combine them with previously reported space-based observations of 13 galaxy clusters to constrain the cluster mass scaling relations with the Sunyaev-Zel'dovich effect (SZE), the cluster gas mass $M_\\mathrm{gas}$, and $Y_\\mathrm{X}$, the product of $M_\\mathrm{gas}$ and X-ray temperature. We extend a previously used framework for the analysis of scaling relations and cosmological constraints obtained from SPT-selected clusters to make use of weak lensing information. We introduce a new approach to estimate the effective average redshift distribution of background galaxies and quantify a number of systematic errors affecting the weak lensing modelling. These errors include a calibration of the bias incurred by fitting a Navarro-Frenk-White profile to the reduced shear using $N$-body simulations. We blind the analysis to avoid confirmation bias. We are able to limit the systematic uncertainties to 6.4% in cluster mass (68% confidence). Our constraints on the mass-X-ray observable scaling relations parameters are consistent with those obtained by earlier studies, and our constraints for the mass-SZE scaling relation are consistent with the the simulation-based prior used in the most recent SPT-SZ cosmology analysis. We can now replace the external mass calibration priors used in previous SPT-SZ cosmology studies with a direct, internal calibration obtained on the same clusters.
Probing grand unification with fermion masses, neutrino oscillations ...
Indian Academy of Sciences (India)
short-distance renormalization effect for the d = 5 operator which arises owing to extrap- olation between the GUT and the SUSY-breaking scales [49,51,55]. The average value of. AS =0.67, given in ref. [51] for mt =100 GeV, has been used in most early estimates. For mt = 175 GeV, one would, however, have AS. 0.93 to 1.2 ...
Directory of Open Access Journals (Sweden)
O. E. Malandraki
Full Text Available Solar energetic particle fluxes (E_{e} > 38 keV observed by the ULYSSES/HI-SCALE experiment are utilized as diagnostic tracers of the large-scale structure and topology of the Interplanetary Magnetic Field (IMF embedded within two well-identified Interplanetary Coronal Mass Ejections (ICMEs detected at 56° and 62° south heliolatitudes by ULYSSES during the solar maximum southern high-latitude pass. On the basis of the energetic solar particle observations it is concluded that: (A the high-latitude ICME magnetic structure observed in May 2000 causes a depression in the solar energetic electron intensities which can be accounted for by either a detached or an attached magnetic field topology for the ICME; (B during the traversal of the out-of-ecliptic ICME event observed in July 2000 energetic electrons injected at the Sun are channeled by the ICME and propagate freely along the ICME magnetic field lines to 62° S heliolatitude.
Key words. Interplanetary physics (energetic particles; interplanetary magnetic fields
Directory of Open Access Journals (Sweden)
O. E. Malandraki
2003-06-01
Full Text Available Solar energetic particle fluxes (Ee > 38 keV observed by the ULYSSES/HI-SCALE experiment are utilized as diagnostic tracers of the large-scale structure and topology of the Interplanetary Magnetic Field (IMF embedded within two well-identified Interplanetary Coronal Mass Ejections (ICMEs detected at 56° and 62° south heliolatitudes by ULYSSES during the solar maximum southern high-latitude pass. On the basis of the energetic solar particle observations it is concluded that: (A the high-latitude ICME magnetic structure observed in May 2000 causes a depression in the solar energetic electron intensities which can be accounted for by either a detached or an attached magnetic field topology for the ICME; (B during the traversal of the out-of-ecliptic ICME event observed in July 2000 energetic electrons injected at the Sun are channeled by the ICME and propagate freely along the ICME magnetic field lines to 62° S heliolatitude.Key words. Interplanetary physics (energetic particles; interplanetary magnetic fields
Profumo di SUSY: Suggestive Correlations in the ATLAS and CMS High Jet Multiplicity Data
Li, Tianjun; Nanopoulos, Dimitri V; Walker, Joel W
2011-01-01
We present persistently amassing evidence that the CMS and ATLAS Collaborations may indeed be already registering supersymmetry events at the Large Hadron Collider (LHC). Our analysis is performed in the context of a highly phenomenologically favorable model named No-Scale F-SU(5), which represents the unification of the F-lipped SU(5) Grand Unified Theory (GUT), two pairs of hypothetical TeV-scale vector-like supersymmetric multiplets derived out of F-Theory, and the dynamically established boundary conditions of No-Scale supergravity. We document highly suggestive correlations between the first inverse femtobarn of observations by CMS and ATLAS, where seductive excesses in multijet events, particularly those with nine or more jets, are unambiguously accounted for by a precision Monte-Carlo simulation of the F-SU(5) model space. This intimate correspondence is optimized by a unified gaugino mass in the neighborhood of M_{1/2}=518 GeV. We supplement this analysis by extrapolating for the expected data profile...
Search for beyond standard model physics (non-SUSY) in final states with photons at the Tevatron
Energy Technology Data Exchange (ETDEWEB)
Palencia, Jose Enrique; /Fermilab
2009-01-01
We present the results of searches for non-standard model phenomena in photon final states. These searches use data from integrated luminosities of {approx} 1-4 fb{sup -1} of p{bar p} collisions at {radical}s = 1.96 TeV, collected with the CDF and D0 detectors at the Fermilab Tevatron. No significant excess in data has been observed. We report limits on the parameters of several BSM models (excluding SUSY) for events containing photons.
Directory of Open Access Journals (Sweden)
Suparmi
2014-12-01
Full Text Available The bound state solution of the Dirac equation for generalized PöschlTeller and trigonometric Pöschl-Teller non-central potentials was obtained using SUSY quantum mechanics and the idea of shape invariance potential. The approximate relativistic energy spectrum was expressed in the closed form. The radial and polar wave functions were obtained using raising and lowering of radial and polar operators. The orbital quantum numbers were found from the polar Dirac equation, which was solved using SUSY quantum mechanics and the idea of shape invariance.
Lagrue, Clément; Poulin, Robert; Cohen, Joel E
2015-02-10
How do the lifestyles (free-living unparasitized, free-living parasitized, and parasitic) of animal species affect major ecological power-law relationships? We investigated this question in metazoan communities in lakes of Otago, New Zealand. In 13,752 samples comprising 1,037,058 organisms, we found that species of different lifestyles differed in taxonomic distribution and body mass and were well described by three power laws: a spatial Taylor's law (the spatial variance in population density was a power-law function of the spatial mean population density); density-mass allometry (the spatial mean population density was a power-law function of mean body mass); and variance-mass allometry (the spatial variance in population density was a power-law function of mean body mass). To our knowledge, this constitutes the first empirical confirmation of variance-mass allometry for any animal community. We found that the parameter values of all three relationships differed for species with different lifestyles in the same communities. Taylor's law and density-mass allometry accurately predicted the form and parameter values of variance-mass allometry. We conclude that species of different lifestyles in these metazoan communities obeyed the same major ecological power-law relationships but did so with parameters specific to each lifestyle, probably reflecting differences among lifestyles in population dynamics and spatial distribution.
Lagrue, Clément; Poulin, Robert; Cohen, Joel E.
2015-01-01
How do the lifestyles (free-living unparasitized, free-living parasitized, and parasitic) of animal species affect major ecological power-law relationships? We investigated this question in metazoan communities in lakes of Otago, New Zealand. In 13,752 samples comprising 1,037,058 organisms, we found that species of different lifestyles differed in taxonomic distribution and body mass and were well described by three power laws: a spatial Taylor’s law (the spatial variance in population density was a power-law function of the spatial mean population density); density-mass allometry (the spatial mean population density was a power-law function of mean body mass); and variance-mass allometry (the spatial variance in population density was a power-law function of mean body mass). To our knowledge, this constitutes the first empirical confirmation of variance-mass allometry for any animal community. We found that the parameter values of all three relationships differed for species with different lifestyles in the same communities. Taylor's law and density-mass allometry accurately predicted the form and parameter values of variance-mass allometry. We conclude that species of different lifestyles in these metazoan communities obeyed the same major ecological power-law relationships but did so with parameters specific to each lifestyle, probably reflecting differences among lifestyles in population dynamics and spatial distribution. PMID:25550506
Computation of neutrino masses in R-parity violating supersymmetry: SOFTSUSY3.2
Allanach, B. C.; Kom, C. H.; Hanussek, M.
2012-03-01
. Reasons for new version: Added functionality (computation of all three neutrino masses and their mixings) and bug-fixes. Summary of revisions: Additional error flags for which particle has become tachyonic. Allowing tanb(MX) boundary condition. New SOFTSUSY Block 7 allows the user to change the number of loops in calculating Higgs mass and electroweak symmetry breaking calculation to be 1 or 2. mGMSB fine tuning fixed: thanks to Matthias Hamer for pointing out the bug. RPV SUSY couplings now able to be set at MZ as well as at SUSY breaking scale. Default output format from softpoint.x is SLHA. Fixed third-family mixing contribution to gluino mass. MIXING=-1 now banned. Small bug-fix in charged Higgs loop calculation, in gaugino contribution. Now respects Z2 (U1R-PQ) flip exactly due to bug-fixes in gluino mass. Gravitino default mass changed to Planck scale. Added one-loop RPV loop corrections to neutrino masses allows computation of neutrino oscillation parameters. Restrictions: SOFTSUSY will provide a solution only in the perturbative régime and it assumes that all couplings of the MSSM are real (i.e. CP-conserving). Running time: A second per parameter point.
Envelope structure on 700 AU scales and the molecular outflows of low-mass young stellar objects
Hogerheijde, M. R.; van Dishoeck, E. F.; Blake, G. A.; van Langevelde, H. J.
1998-01-01
Aperture synthesis observations of HCO+ J = 1-0, 13CO 1-0, and C18O 1-0 obtained with the Owens Valley Millimeter Array are used to probe the small-scale (5" approximately 700 AU) structure of the molecular envelopes of a well-defined sample of nine embedded low-mass young stellar objects in Taurus. The interferometer results can be understood in terms of: (1) a core of radius approximately or less than 1000 AU surrounding the central star, possibly flattened and rotating; (2) condensations scattered throughout the envelope that may be left over from the inhomogeneous structure of the original cloud core or that may have grown during collapse; and (3) material within the outflow or along the walls of the outflow cavity. Masses of the central cores are 0.001-0.1 M (solar), and agree well with dust continuum measurements. Averaged over the central 20" (3000 AU) region, an HCO+ abundance of 4 x 10(-8) is inferred, with a spread of a factor of 3 between the different sources. Reanalysis of previously presented single-dish data yields an HCO+ abundance of (5.0 +/- 1.7) x 10(-9), which may indicate an average increase by a factor of a few on the smaller scales sampled by the interferometer. Part of this apparent abundance variation could be explained by contributions from extended cloud emission to the single-dish C18O lines, and uncertainties in the assumed excitation temperatures and opacities. The properties of the molecular envelopes and outflows are further investigated through single-dish observations of 12CO J = 6-5, 4-3, and 3-2, 13CO 6-5 and 3-2, and C18O 3-2 and 2-1, obtained with the James Clerk Maxwell and IRAM 30 m telescopes, along with the Caltech Submillimeter Observatory. Ratios of the mid-J CO lines are used to estimate the excitation temperature, with values of 25-80 K derived for the gas near line centre. The outflow wings show a similar range, although Tex is enhanced by a factor of 2-3 in at least two sources. In contrast to the well-studied L1551
Hoth, S.; Adam, J.; Kukowski, N.; Oncken, O.
Orogenic wedges are expressions of dynamic equilibrium between tectonic and grav- itational stresses. Thus, surficial mass transport by climate-driven erosion changes the morphology of, and the state of stress within, the orogenic wedge. Here, we suggest that the orogenic wedge adjusts itself to the new stress conditions, inducing changes in morphology, which may modify the pre-existing drainage pattern, and therefore change also the erosion rate. Depending on the amount of vertical alteration in wedge morphology the regional climate is modified, which again may lead to a different ero- sion rate. The aim of this study is to describe qualitatively and quantitatively how different ero- sion rates and their 2D lateral distribution influences the mass-transport mode in col- lisional orogens, using scaled sandbox-experiments. The advantages of analogue sim- ulation are (i) a more detailed structural resolution, (ii) a direct observation of strain localisation and fault propagation and (iii) an easy way of applying erosion at any given point through time. The models presented here were run in a 2D shearbox with two converging sand lay- ers which build up a bivergent sand-orogen. A thin glass-bead layer which simulates a mid-level detachment was incorporated to allow frontal and basal accretion. Us- ing a vacuum cleaner, incremental erosion, which decreases linearly from the top of the sand-orogen to the toe of either the pro-wedge or retro-wedge, was simulated. A friction-controlled elastic/plastic rheology with strain hardening and softening is used to simulate upper crustal rock deformation. Our aim is to elucidate: (i) The in- fluence of different modes of distribution of erosion rates on the tectonically-driven mass transfer in orogenic belts. (ii) The control of erosion rates on tectonic style in orogenic wedges, i.e. frontal versus basal accretion. (iii) The time and length scales at which climatic and tectonic forces interact. (iv) The way with which such
Shirakata, Hikari; Kawaguchi, Toshihiro; Okamoto, Takashi; Makiya, Ryu; Ishiyama, Tomoaki; Matsuoka, Yoshiki; Nagashima, Masahiro; Enoki, Motohiro; Oogi, Taira; Kobayashi, Masakazu A. R.
2017-09-01
We explore the effect of varying the mass of a seed black hole on the resulting black hole mass - bulge mass relation at z ˜ 0, using a semi-analytic model of galaxy formation combined with large cosmological N-body simulations. When the mass of the seed is set at 10^5 M_⊙, we find that the model results become inconsistent with recent observational results of the black hole mass - bulge mass relation for dwarf galaxies. On the other hand, when we employ seed black holes of 10^3 M_⊙ or select their mass randomly within a 10^{3 -5} M_⊙ range, the resulting relation is consistent with observational results including the dispersion. We also find that black hole mass - bulge mass relations for less massive bulges at z ˜ 0 put stronger constraints on the seed BH mass than the relations at higher redshifts.
Energy Technology Data Exchange (ETDEWEB)
Fix, N. J.
2008-01-31
The purpose of the project is to conduct research at an Integrated Field-Scale Research Challenge Site in the Hanford Site 300 Area, CERCLA OU 300-FF-5 (Figure 1), to investigate multi-scale mass transfer processes associated with a subsurface uranium plume impacting both the vadose zone and groundwater. The project will investigate a series of science questions posed for research related to the effect of spatial heterogeneities, the importance of scale, coupled interactions between biogeochemical, hydrologic, and mass transfer processes, and measurements/approaches needed to characterize a mass-transfer dominated system. The research will be conducted by evaluating three (3) different hypotheses focused on multi-scale mass transfer processes in the vadose zone and groundwater, their influence on field-scale U(VI) biogeochemistry and transport, and their implications to natural systems and remediation. The project also includes goals to 1) provide relevant materials and field experimental opportunities for other ERSD researchers and 2) generate a lasting, accessible, and high-quality field experimental database that can be used by the scientific community for testing and validation of new conceptual and numerical models of subsurface reactive transport.
Energy Technology Data Exchange (ETDEWEB)
Strelnikov, B.; Rapp, M.; Strelnikova, I.; Engler, N.; Latteck, R. [Leibniz Institute of Atmospheric Physics, Kuehlungsborn (Germany)
2009-07-01
We present results of in situ measurements of neutral temperature during the ECOMA/MASS rocket campaign. We present and compare results of turbulence measurements conducted simultaneously by both in situ and doppler radar techniques. We show that the derived values of the turbulence energy dissipation rates are similar on average. We also find a region with a near adiabatic lapse rate with turbulence detected at the upper and lower edge. We note that it is consistent with expectation for a Kelvin-Helmholtz instability. We also present an estimate of the Schmidt numbers, Sc, for the charged aerosols that utilizes in situ measured small-scale density fluctuations of charged aerosols and both in situ and radar turbulence measurements. The derived Schmidt numbers fall within the range between 100 and 4500. This result agrees with previous estimates based on multi-frequency observations of PMSE (Rapp et al., 2008) and also with estimates of microphysical parameters presented in the companion paper by Rapp et al. (2009). (orig.)
Shafii, Behnaz; Vismeh, Ramin; Beaudry, Randy; Warner, Ryan; Jones, A Daniel
2012-07-01
The plant Stevia rebaudiana accumulates a suite of diterpenoid metabolites that are natural sweeteners finding increased use as sugar substitutes. To guide breeding of stevia plants that accumulate substances with desirable flavor in high yield, rapid and accurate methods are needed to profile these substances in plant populations. This report describes an 8-min ultrahigh performance liquid chromatography-tandem mass spectrometry method for separation and quantification of seven stevia glycosides including steviolbioside; stevioside; rebaudiosides A, B, and C; rubusoside; and dulcoside as well as aglycones steviol and isosteviol. This negative mode electrospray ionization/multiple reaction monitoring method yielded low limits of detection stevia glycosides. Stevioside and Reb A, B, and C were quantified in more than 1,100 extracts from stevia leaves as part of a large-scale profiling exercise. Leaf tissue levels in this population spanned about two orders of magnitude for stevioside (2-125 mg/g dry weight), Reb A (2.5-164 mg/g), Reb B (0.5-50 mg/g), and Reb C (1.5-125 mg/g), but levels of individual metabolites exhibited independent variation. The wide spread of metabolite levels highlights the utility and importance of performing targeted metabolic profiling for large plant populations.
Directory of Open Access Journals (Sweden)
B. Strelnikov
2009-04-01
Full Text Available We present results of in situ measurements of neutral temperature during the ECOMA/MASS rocket campaign. We present and compare results of turbulence measurements conducted simultaneously by both in situ and doppler radar techniques. We show that the derived values of the turbulence energy dissipation rates are similar on average. We also find a region with a near adiabatic lapse rate with turbulence detected at the upper and lower edge. We note that it is consistent with expectation for a Kelvin-Helmholtz instability. We also present an estimate of the Schmidt numbers, Sc, for the charged aerosols that utilizes in situ measured small-scale density fluctuations of charged aerosols and both in situ and radar turbulence measurements. The derived Schmidt numbers fall within the range between 100 and 4500. This result agrees with previous estimates based on multi-frequency observations of PMSE (Rapp et al., 2008 and also with estimates of microphysical parameters presented in the companion paper by Rapp et al. (2009.
Directory of Open Access Journals (Sweden)
B. Strelnikov
2009-04-01
Full Text Available We present results of in situ measurements of neutral temperature during the ECOMA/MASS rocket campaign. We present and compare results of turbulence measurements conducted simultaneously by both in situ and doppler radar techniques. We show that the derived values of the turbulence energy dissipation rates are similar on average. We also find a region with a near adiabatic lapse rate with turbulence detected at the upper and lower edge. We note that it is consistent with expectation for a Kelvin-Helmholtz instability.
We also present an estimate of the Schmidt numbers, Sc, for the charged aerosols that utilizes in situ measured small-scale density fluctuations of charged aerosols and both in situ and radar turbulence measurements. The derived Schmidt numbers fall within the range between 100 and 4500. This result agrees with previous estimates based on multi-frequency observations of PMSE (Rapp et al., 2008 and also with estimates of microphysical parameters presented in the companion paper by Rapp et al. (2009.
[Zvonimir Susić--doyen of Croatian neuropsychiatry in the 20th century].
Sepcić, Juraj; Pavlović, Eduard; Perković, Olivio; Skrobonja, Ante
2008-01-01
There are three distinct phases in the life of Zvonimir Susić--neurologist, psychiatrist, forensic expert, educator, teacher, translator, and erudite of general and professional knowledge--Zagreb, Rijeka and Zadar phase. In Zagreb (1926-1946) he was promoted to physician (1932), there he was a student tutor, then the assistant at the Physiology Institute of the Medical Faculty; volunteer, hospital doctor (he got the specialization in 1938), assistant and head doctor of the Hospital for Mental Diseases in Vrapce, and the assistant professor (1941) at the Neuropsychiatric Department of the Zagreb University. In Rijeka (1947-1959) he reorganized Psychiatric and established the Neurology Department of the General Hospital "Brothers Dr. Sobol" and, at first, he was the honorary professor, then assistant professor and associate professor of neurology and psychiatry at the Medical Faculty of Rijeka. In Zadar (1960-1968) he was the manager of the Ugljan Hospital. He published approximately 100 works in the field of clinical neurology, neuropathology, psychiatry, and forensic psychiatry, His works on cortical presentation of the body scheme, hallucinations, tuberous sclerosis, pregnancy and multiple sclerosis, pathohistology of demyelisation, toxic neuritis, epilepsies, nervous manifestations of Malta fever, herpetic infections, pathogenesis of convulsive syndromes, psychiatric terminology, therapies of Parkinson disease and schizophrenia, ability of making will, organization of the psychiatric service, were published in national and prestigious European journals, and often cited. He wrote chapters in psychiatric handbooks and special notes in encyclopedic editions. Together with Stanislav Zupić he was the author of the first and only psychodrama in Croatia. He was one of the pioneers of neuropathology in Croatia because he founded the Neuropathology Laboratory in Vrapce Hospital in 1936. He had a remarkable preciseness in examining the patient. He was frequent and
Mart Susi müüb Concordia ülikooli hüvanguks Kolu mõisa / Sigrid Laev
Laev, Sigrid
2003-01-01
Concordia ülikooli rektor Mart Susi pani müüki endale kuuluva Kolu mõisa, et sellest saadava rahaga katta ülikooli vajadusi. Tallinna Pedagoogikaülikool on Concordia ostmisest huvitatud. Concordia ülikooli tudengid on teinud üleskutse ühinemiseks, et kooli tuleviku suhtes kaasa rääkida
Teo, Boon K.; Li, Wai-Kee
2011-01-01
This article is divided into two parts. In the first part, the atomic unit (au) system is introduced and the scales of time, space (length), and speed, as well as those of mass and energy, in the atomic world are discussed. In the second part, the utility of atomic units in quantum mechanical and spectroscopic calculations is illustrated with…
Walker, Joel W.
2014-08-01
The M T2, or "s-transverse mass", statistic was developed to associate a parent mass scale to a missing transverse energy signature, given that escaping particles are generally expected in pairs, while collider experiments are sensitive to just a single transverse momentum vector sum. This document focuses on the generalized extension of that statistic to asymmetric one- and two-step decay chains, with arbitrary child particle masses and upstream missing transverse momentum. It provides a unified theoretical formulation, complete solution classification, taxonomy of critical points, and technical algorithmic prescription for treatment of the event scale. An implementation of the described algorithm is available for download, and is also a deployable component of the author's selection cut software package AEAC uS (Algorithmic Event Arbiter and C ut Selector). appendices address combinatoric event assembly, algorithm validation, and a complete pseudocode.
On the difference between the pole and the MS masses of the top quark at the electroweak scale
Energy Technology Data Exchange (ETDEWEB)
Jegerlehner, Fred [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Kalmykov, Mikhail Yu.; Kniehl, Bernd A. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik
2012-12-15
We argue that for a Higgs boson mass M{sub H} {proportional_to} 125 GeV, as estimated from recent Higgs searches at the LHC, the inclusion of the electroweak radiative corrections in the relationship between the pole and MS masses of the top quark reduces the difference to about 1 GeV. This fact is relevant for the scheme dependence of electroweak observables as well as for the extraction of the top quark mass from experimental data.
Mass limit for the lightest neutralino
Buskulic, D.; de Bonis, I.; Decamp, D.; Ghez, P.; Goy, C.; Lees, J.-P.; Lucotte, A.; Minard, M.-N.; Nief, J.-Y.; Odier, P.; Pietrzyk, B.; Casado, M. P.; Chmeissani, M.; Crespo, J. M.; Delfino, M.; Efthymiopoulos, I.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, Ll.; Juste, A.; Martinez, M.; Orteu, S.; Padilla, C.; Park, I. C.; Pascual, A.; Perlas, J. A.; Riu, I.; Sanchez, F.; Teubert, F.; Colaleo, A.; Creanza, D.; de Palma, M.; Gelao, G.; Girone, M.; Iaselli, G.; Maggi, G.; Maggi, M.; Marinelli, N.; Nuzzo, S.; Ranieri, A.; Raso, G.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Zito, G.; Huang, X.; Lin, J.; Quyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Alemany, R.; Bazarko, A. O.; Bright-Thomas, P.; Cattaneo, M.; Comas, P.; Coyle, P.; Drevermann, H.; Forty, R. W.; Frank, M.; Hagelberg, R.; Harvey, J.; Janot, P.; Jost, B.; Kneringer, E.; Knobloch, J.; Lehraus, I.; Lutters, G.; Martin, E. B.; Mato, P.; Minten, A.; Miquel, R.; Mir, Ll. M.; Moneta, L.; Oest, T.; Pacheco, A.; Pusztaszeri, J.-F.; Ranjard, F.; Rensing, P.; Rolandi, L.; Schlatter, D.; Schmelling, M.; Schmitt, M.; Schneider, O.; Tejessy, W.; Tomalin, I. R.; Venturi, A.; Wachsmuth, H.; Wagner, A.; Ajaltouni, Z.; Barrès, A.; Boyer, C.; Falvard, A.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Monteil, S.; Montret, J.-C.; Pallin, D.; Perret, P.; Podlyski, F.; Proriol, J.; Rosnet, P.; Rossignol, J.-M.; Fearnley, T.; Hansen, J. B.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Nilsson, B. S.; Wäänänen, A.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Siotis, I.; Vayaki, A.; Zachariadou, K.; Blondel, A.; Brient, J. C.; Rougé, A.; Rumpf, M.; Valassi, A.; Videau, H.; Focardi, E.; Parrini, G.; Corden, M.; Georgiopoulos, C.; Jaffe, D. E.; Antonelli, A.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Casper, D.; Chiarella, V.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Passalacqua, L.; Pepe-Altarelli, M.; Curtis, L.; Dorris, S. J.; Halley, A. W.; Knowles, I. G.; Lynch, J. G.; O'Shea, V.; Raine, C.; Reeves, P.; Scarr, J. M.; Smith, K.; Teixeira-Dias, P.; Thompson, A. S.; Thomson, F.; Thorn, S.; Turnbull, R. M.; Becker, U.; Geweniger, C.; Graefe, G.; Hanke, P.; Hansper, G.; Hepp, V.; Kluge, E. E.; Putzer, A.; Schmidt, M.; Sommer, J.; Stenzel, H.; Tittel, K.; Werner, S.; Wunsch, M.; Abbaneo, D.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Dornan, P. J.; Morawitz, P.; Moutoussi, A.; Nash, J.; Sedgbeer, J. K.; Stacey, A. M.; Williams, M. D.; Dissertori, G.; Girtler, P.; Kuhn, D.; Rudolph, G.; Betteridge, A. P.; Bowdery, C. K.; Colrain, P.; Crawford, G.; Finch, A. J.; Foster, F.; Hughes, G.; Sloan, T.; Whelan, E. P.; Williams, M. I.; Galla, A.; Greene, A. M.; Hoffmann, C.; Jacobs, K.; Kleinknecht, K.; Quast, G.; Renk, B.; Rohne, E.; Sander, H.-G.; van Gemmeren, P.; Zeitnitz, C.; Aubert, J. J.; Bencheikh, A. M.; Benchouk, C.; Bonissent, A.; Bujosa, G.; Calvet, D.; Carr, J.; Diaconu, C.; Konstantinidis, N.; Payre, P.; Rousseau, D.; Talby, M.; Sadouki, A.; Thulasidas, M.; Tilquin, A.; Trabelsi, K.; Aleppo, M.; Ragusa, F.; Bauer, C.; Berlich, R.; Blum, W.; Büscher, V.; Dietl, H.; Dydak, F.; Ganis, G.; Gotzhein, C.; Kroha, H.; Lütjens, G.; Lutz, G.; Männer, W.; Moser, H.-G.; Richter, R.; Rosado-Schlosser, A.; Schael, S.; Settles, R.; Seywerd, H.; Denis, R. St.; Stenzel, H.; Wiedenmann, W.; Wolf, G.; Boucrot, J.; Callot, O.; Cordier, A.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, Ph.; Höcker, A.; Jacholkowska, A.; Jacquet, M.; Kim, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A.-M.; Nikolic, I.; Park, H. J.; Schune, M.-H.; Simion, S.; Veillet, J.-J.; Videau, I.; Zerwas, D.; Azzurri, P.; Bagliesi, G.; Batignain, G.; Bettarini, S.; Bozzi, C.; Calderini, G.; Carpinelli, M.; Ciocci, M. A.; Ciulli, V.; Dell'Orso, R.; Fantechi, R.; Ferrante, I.; Giassi, A.; Gregorio, A.; Ligabue, F.; Lusiani, A.; Marrocchesi, P. S.; Messineo, A.; Palla, F.; Rizzo, G.; Sanguinetti, G.; Sciabà, A.; Spagnolo, P.; Steinberger, J.; Tenchini, R.; Tonelli, G.; Vannini, C.; Verdini, P. G.; Walsh, J.; Blair, G. A.; Bryant, L. M.; Cerutti, F.; Chambers, J. T.; Gao, Y.; Green, M. G.; Medcalf, T.; Perrodo, P.; Strong, J. A.; von Wimmersperg-Toeller, J. H.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Haywood, S.; Maley, P.; Norton, P. R.; Thompson, J. C.; Wright, A. E.; Bloch-Devaux, B.; Colas, P.; Emerya, S.; Kozanecki, W.; Lançon, E.; Lemaire, M. C.; Locci, E.; Marx, B.; Perez, P.; Rander, J.; Renardy, J.-F.; Roussarie, A.; Schuller, J.-P.; Schwindling, J.; Trabelsi, A.; Vallage, B.; Black, S. N.; Dann, J. H.; Johnson, R. P.; Kim, H. Y.; Litke, A. M.; McNeil, M. A.; Taylor, G.; Booth, C. N.; Boswell, R.; Brew, C. A. J.; Cartwright, S.; Combley, F.; Koksal, A.; Letho, M.; Newton, W. M.; Reeve, J.; Thompson, L. F.; Böhrer, A.; Brandt, S.; Cowan, G.; Grupen, C.; Saraiva, P.; Smolik, L.; Stephan, F.; Apollonio, M.; Bosisio, L.; Della Marina, R.; Giannini, G.; Gobbo, B.; Musolino, G.; Putz, J.; Rothberg, J.; Wasserbaech, S.; Williams, R. W.; Armstrong, S. R.; Elmer, P.; Feng, Z.; Ferguson, D. P. S.; Gao, Y. S.; González, S.; Grahl, J.; Greening, T. C.; Hayes, O. J.; Hu, H.; McNamara, P. A.; Nachtman, J. M.; Orejudos, W.; Pan, Y. B.; Saadi, Y.; Scott, I. J.; Walsh, A. M.; Wu, Sau Lan; Wu, X.; Yamartino, J. M.; Zheng, M.; Zobernig, G.
1996-12-01
Indirect limits on the mass of the lightest neutralino are derived from the results of searches for charginos, neutralinos, and sleptons performed with data taken by the ALEPH Collaboration at centre-of-mass energies near the Z peak and at 130 and 136 GeV. Within the context of the Minimal Supersymmetric Standard Model and whenM_{tilde ν } ≥slant 200 GeV/c^2 , the bound M x > 12.8 GeV/ c 2 at the 95% confidence level applies for any tan β. The impact of lighter sneutrinos is presented in the framework of SUSY grand unified theories; a massless neutralino is allowed only for a narrow range of tan β, μ, and the scalar mass parameter m 0. Finally, by including Higgs mass constraints and requiring that radiative electroweak symmetry breaking occur, more stringent bounds on M x as a function of tan β are derived.
Energy Technology Data Exchange (ETDEWEB)
Sifon, Cristobal; Barrientos, L. Felipe; Gonzalez, Jorge; Infante, Leopoldo; Duenner, Rolando [Departamento de Astronomia y Astrofisica, Facultad de Fisica, Pontificia Universidad Catolica de Chile, Casilla 306, Santiago 22 (Chile); Menanteau, Felipe; Hughes, John P.; Baker, Andrew J. [Department of Physics and Astronomy, Rutgers University, 136 Frelinghuysen Road, Piscataway, NJ 08854 (United States); Hasselfield, Matthew [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z4 (Canada); Marriage, Tobias A.; Crichton, Devin; Gralla, Megan B. [Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, MD 21218-2686 (United States); Addison, Graeme E.; Dunkley, Joanna [Sub-department of Astrophysics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH (United Kingdom); Battaglia, Nick; Bond, J. Richard; Hajian, Amir [Canadian Institute for Theoretical Astrophysics, University of Toronto, Toronto, ON M5S 3H8 (Canada); Das, Sudeep [Berkeley Center for Cosmological Physics, LBL and Department of Physics, University of California, Berkeley, CA 94720 (United States); Devlin, Mark J. [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Hilton, Matt [School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD (United Kingdom); and others
2013-07-20
We present the first dynamical mass estimates and scaling relations for a sample of Sunyaev-Zel'dovich effect (SZE) selected galaxy clusters. The sample consists of 16 massive clusters detected with the Atacama Cosmology Telescope (ACT) over a 455 deg{sup 2} area of the southern sky. Deep multi-object spectroscopic observations were taken to secure intermediate-resolution (R {approx} 700-800) spectra and redshifts for Almost-Equal-To 60 member galaxies on average per cluster. The dynamical masses M{sub 200c} of the clusters have been calculated using simulation-based scaling relations between velocity dispersion and mass. The sample has a median redshift z = 0.50 and a median mass M{sub 200c}{approx_equal}12 Multiplication-Sign 10{sup 14} h{sub 70}{sup -1} M{sub sun} with a lower limit M{sub 200c}{approx_equal}6 Multiplication-Sign 10{sup 14} h{sub 70}{sup -1} M{sub sun}, consistent with the expectations for the ACT southern sky survey. These masses are compared to the ACT SZE properties of the sample, specifically, the match-filtered central SZE amplitude y{sub 0}-tilde, the central Compton parameter y{sub 0}, and the integrated Compton signal Y{sub 200c}, which we use to derive SZE-mass scaling relations. All SZE estimators correlate with dynamical mass with low intrinsic scatter ({approx}< 20%), in agreement with numerical simulations. We explore the effects of various systematic effects on these scaling relations, including the correlation between observables and the influence of dynamically disturbed clusters. Using the three-dimensional information available, we divide the sample into relaxed and disturbed clusters and find that {approx}50% of the clusters are disturbed. There are hints that disturbed systems might bias the scaling relations, but given the current sample sizes, these differences are not significant; further studies including more clusters are required to assess the impact of these clusters on the scaling relations.
Decadal-scale rates of reef erosion following El Niño-related mass coral mortality.
Roff, George; Zhao, Jian-Xin; Mumby, Peter J
2015-12-01
As the frequency and intensity of coral mortality events increase under climate change, understanding how declines in coral cover may affect the bioerosion of reef frameworks is of increasing importance. Here, we explore decadal-scale rates of bioerosion of the framework building coral Orbicella annularis by grazing parrotfish following the 1997/1998 El Niño-related mass mortality event at Long Cay, Belize. Using high-precision U-Th dating and CT scan analysis, we quantified in situ rates of external bioerosion over a 13-year period (1998-2011). Based upon the error-weighted average U-Th age of dead O. annularis skeletons, we estimate the average external bioerosion between 1998 and 2011 as 0.92 ± 0.55 cm depth. Empirical observations of herbivore foraging, and a nonlinear numerical response of parrotfish to an increase in food availability, were used to create a model of external bioerosion at Long Cay. Model estimates of external bioerosion were in close agreement with U-Th estimates (0.85 ± 0.09 cm). The model was then used to quantify how rates of external bioerosion changed across a gradient of coral mortality (i.e., from few corals experiencing mortality following coral bleaching to complete mortality). Our results indicate that external bioerosion is remarkably robust to declines in coral cover, with no significant relationship predicted between the rate of external bioerosion and the proportion of O. annularis that died in the 1998 bleaching event. The outcome was robust because the reduction in grazing intensity that follows coral mortality was compensated for by a positive numerical response of parrotfish to an increase in food availability. Our model estimates further indicate that for an O. annularis-dominated reef to maintain a positive state of reef accretion, a necessity for sustained ecosystem function, live cover of O. annularis must not drop below a ~5-10% threshold of cover. © 2015 John Wiley & Sons Ltd.
Bowrin, Valerie; Sutton, Fedora
2016-01-01
Cassava (M. esculenta) gives rise to unique underground stem tubers when stem cuttings are planted in an inverted orientation. The nutritional profile of the stem and root tubers were similar except for protein content which was higher in stem than in root tubers. RT-PCR revealed that several key genes (Mec1, RZF, SuSy1 and PIN2) involved in root tuberization were also expressed in these stem tubers. At five weeks post planting, these genes were expressed in roots and underground stems as in the mature tubers. However at 15 weeks post planting, they were expressed in both root and stem tubers but not in adventitious roots or in the non-tuberized stems. Expression of, the root auxin efflux carrier gene PIN2 in the stem tubers indicate a role for auxin in the stem tuberization process.
Fermion masses and Higgs physics in grand unified theories
Energy Technology Data Exchange (ETDEWEB)
Bhatti, Abdul Aziz
2010-03-12
The Standard model of particle physics is a very successful theory of strong weak and electromagnetic interactions. This theory is perturbative at sufficiently high energies and renormalizable thus it describes these interactions at quantum level. However it has a number of limitations, one being the fact that it has 28 free parameters assuming massive neutrinos. Within the Standard model these parameters can not be explained, however they can be accommodated in the standard theory. Particularly the masses of the fermions are not predicted by the theory. The existence of the neutrino masses can be regarded as the first glimpse of the physics beyond the standard model. In this thesis we have described the quark and lepton masses and mixings in context of non-SUSY SO(10) and four zero texture (FZT). In the four zero texture case the fermion masses and mixing can be related. We have made some predictions using tribimaximal mixing, the near tribimaximal (TBM) mixing and the triminimal parameterization. Our results show that under the TBM the neutrinos have normal, but weak hierarchy. Under near tribimaximal mixing and the triminimal parameterization we find that the neutrino masses in general increase, if the value of solar angle increases from its TBM value and vice versa. It appears that the neutrinos become more and more degenerate for solar angle values higher than TBM value and hierarchical for lower values of solar angle. We also briefly discuss neutrino parameters in the SUSY SO(10) theories. An overview of SUSY SO(10) theories and proton decay is also presented. (orig.)
The effect of design and scale on the mixing and mass transfer in U-loop bioreactors
DEFF Research Database (Denmark)
Petersen, Leander Adrian Haaning; Villadsen, John; Jørgensen, Sten Bay
vertical forced flow loop reactor where gas and liquid are driven through a series of static mixers in a U-shaped pipe, is quite capable of coping with these challenges in pilot scale. The critical question remains; what happens when the scale undergoes a more than 10 fold increase and the geometry...
Energy Technology Data Exchange (ETDEWEB)
Konar, Partha; /Florida U.; Kong, Kyoungchul; /SLAC; Matchev, Konstantin T.; Park, Myeonghun; /Florida U.
2011-08-11
The variable {radical}s{sub min} was originally proposed in [1] as a model-independent, global and fully inclusive measure of the new physics mass scale in missing energy events at hadron colliders. In the original incarnation of {radical}s{sub min}, however, the connection to the new physics mass scale was blurred by the effects of the underlying event, most notably initial state radiation and multiple parton interactions. In this paper we advertize two improved variants of the {radical}s{sub min} variable, which overcome this problem. First we show that by evaluating the {radical}s{sub min} variable at the RECO level, in terms of the reconstructed objects in the event, the effects from the underlying event are significantly diminished and the nice correlation between the peak in the {radical}s{sub min}{sup (reco)} distribution and the new physics mass scale is restored. Secondly, the underlying event problem can be avoided altogether when the {radical}s{sub min} concept is applied to a subsystem of the event which does not involve any QCD jets. We supply an analytic formula for the resulting subsystem {radical}s{sub min}{sup (sub)} variable and show that its peak exhibits the usual correlation with the mass scale of the particles produced in the subsystem. Finally, we contrast {radical}s{sub min} to other popular inclusive variables such as H{sub T}, M{sub Tgen} and M{sub TTgen}. We illustrate our discussion with several examples from supersymmetry, and with dilepton events from top quark pair production.
Reina-Campos, Marta; Kruijssen, J. M. Diederik
2017-08-01
We present a simple, self-consistent model to predict the maximum masses of giant molecular clouds (GMCs), stellar clusters and high-redshift clumps as a function of the galactic environment. Recent works have proposed that these maximum masses are set by shearing motions and centrifugal forces, but we show that this idea is inconsistent with the low masses observed across an important range of local-Universe environments, such as low-surface density galaxies and galaxy outskirts. Instead, we propose that feedback from young stars can disrupt clouds before the global collapse of the shear-limited area is completed. We develop a shear-feedback hybrid model that depends on three observable quantities: the gas surface density, the epicylic frequency and the Toomre parameter. The model is tested in four galactic environments: the Milky Way, the Local Group galaxy M31, the spiral galaxy M83 and the high-redshift galaxy zC406690. We demonstrate that our model simultaneously reproduces the observed maximum masses of GMCs, clumps and clusters in each of these environments. We find that clouds and clusters in M31 and in the Milky Way are feedback-limited beyond radii of 8.4 and 4 kpc, respectively, whereas the masses in M83 and zC406690 are shear-limited at all radii. In zC406690, the maximum cluster masses decrease further due to their inspiral by dynamical friction. These results illustrate that the maximum masses change from being shear-limited to being feedback-limited as galaxies become less gas rich and evolve towards low shear. This explains why high-redshift clumps are more massive than GMCs in the local Universe.
Weiner, Andre; Bothe, Dieter
2017-10-01
This paper presents a novel subgrid scale (SGS) model for simulating convection-dominated species transport at deformable fluid interfaces. One possible application is the Direct Numerical Simulation (DNS) of mass transfer from rising bubbles. The transport of a dissolving gas along the bubble-liquid interface is determined by two transport phenomena: convection in streamwise direction and diffusion in interface normal direction. The convective transport for technical bubble sizes is several orders of magnitude higher, leading to a thin concentration boundary layer around the bubble. A true DNS, fully resolving hydrodynamic and mass transfer length scales results in infeasible computational costs. Our approach is therefore a DNS of the flow field combined with a SGS model to compute the mass transfer between bubble and liquid. An appropriate model-function is used to compute the numerical fluxes on all cell faces of an interface cell. This allows to predict the mass transfer correctly even if the concentration boundary layer is fully contained in a single cell layer around the interface. We show that the SGS-model reduces the resolution requirements at the interface by a factor of ten and more. The integral flux correction is also applicable to other thin boundary layer problems. Two flow regimes are investigated to validate the model. A semi-analytical solution for creeping flow is used to assess local and global mass transfer quantities. For higher Reynolds numbers ranging from Re = 100 to Re = 460 and Péclet numbers between Pe =104 and Pe = 4 ṡ106 we compare the global Sherwood number against correlations from literature. In terms of accuracy, the predicted mass transfer never deviates more than 4% from the reference values.
R-broken SUSY Standard Model with right-handed neutrino
Gladyshev, A. V.; Parpalak, R. S.
2013-12-01
We consider the supersymmetric extension of the Standard Model with neutrino Yukawa interactions and R-parity violation. We found that R-parity breaking term λiνHuHd leads to an additional F-type contribution to the Higgs scalar potential, and thus to the masses of supersymmetric Higgs bosons. The most interesting consequence is the modification of the tree-level expression for the lightest neutral supersymmetric Higgs boson mass. It appears that due to this contribution the tree bound on the lightest Higgs mass may be shifted upwards, thus taking into account radiative corrections might open the part of the model parameter space consistent with the observation of the Higgs boson at LHC, which is not natural in the MSSM. We also calculate one-loop corrections to physical neutrino masses in case of neutrino-neutralino mixing and discuss the influence of this mass shift on parameter constraints.
Coatman, Liam; Hewett, Paul C.; Banerji, Manda; Richards, Gordon T.; Hennawi, Joseph F.; Prochaska, Jason X.
2017-01-01
Accurate black-hole (BH) mass estimates for high-redshift (z>2) quasars are essential for better understanding the relationship between super-massive BH accretion and star formation. Progress is currently limited by the large systematic errors in virial BH-masses derived from the CIV broad emission line, which is often significantly blueshifted relative to systemic, most likely due to outflowing gas in the quasar broad-line region. We have assembled Balmer-line based BH masses for a large sample of 230 high-luminosity (1045.5-1048 ergs-1), redshift 1.5CIV blueshifts seen in the quasar population. We find the CIV-based BH-masses to be larger than the corresponding Balmer line-based masses by almost an order of magnitude at the most extreme blueshifts (˜5000 kms-1). An empirical correction to the CIV BH-masses is derived, which depends only on the properties of the CIV line itself (i.e. blueshift and FWHM). We show that this new correction now enables the derivation of un-biased CIV-based virial BH masses for the majority of high-luminosity, high-redshift quasars.In the same high-luminosity quasar sample, we find the narrow [OIII] emission to be weaker and more asymmetric than is generally found in lower-luminosity AGN and that a significant fraction of our quasars have exceptionally broad (FWHM > 3000 kms-1), blueshifted [OIII] emission. We find a strong correlation between the CIV and [OIII] blueshifts. This correlation holds even for quasars at fixed luminosity and suggests that broad line region outflows in quasars are connected to galaxy-scale winds.
Directory of Open Access Journals (Sweden)
K. Lesley eSzostek
2015-04-01
Full Text Available Changes in the timing of migratory events have been observed recently in many migratory species, most likely in response to climatic change. In the common tern Sterna hirundo we examined such changes in spring arrival date and body mass based on a 19 year individual-based longitudinal data from a transponder marked colony from 1994 - 2012. Although no long-term trend was observed in either trait, strong inter-annual and age-specific variation in arrival date and mass was evident. We investigated whether environmental factors such as (i global climate phenomena North Atlantic and Southern Oscillation Indices NAOI and SOI, or (ii local factors, such as food abundance in the wintering and breeding area, represented by fish stock or marine primary productivity, could explain this variation. We found that 2-year-old birds on their first spring migration advanced arrival relative to spring NAOI and delayed arrival relative to sprat Sprattus sprattus abundance. The arrival date of 3-year-olds also advanced in relation to NAOI and delayed in relation to winter SOI. In contrast, adults delayed arrival with NAOI and advanced relative to SOI. Within age groups, earlier annual arrival coincided with higher mass, indicating that a fast and/or early migration did not come at a cost to body condition. Changes in arrival mass relative to environmental covariates were found only in 2-year-olds on their first spring migration: in these birds arrival mass was positively related to herring Clupea harengus and sprat abundance in the breeding area as well as spring NAOI and negatively related to SOI. In conclusion, traits related to migration of common terns were linked with environmental conditions, but showed no long-term trends over the past two decades. Age-related differences were marked, suggesting that common terns might be subject to differing environmental constraints or respond differently to conditions during their annual cycle depending on age.
Energy Technology Data Exchange (ETDEWEB)
Harz, Julia [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Herrmann, Bjoern [Laboratoire d' Annecy de Physique Theorique, Annecy-le-Vieux (France); Klasen, Michael; Meinecke, Moritz; Steppeler, Patrick [Institute of Theoretical Physics Muenster (Germany); Kovarik, Karol [Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany); Le Boulc' h, Quentin [Laboratoire de Physique Subatomique et de Cosmologie, Grenoble (France)
2013-07-01
A powerful method to constrain the parameter space of theories beyond the Standard Model is to compare the predicted dark matter relic density with cosmological precision measurements, in particular with WMAP- and the upcoming Planck-data. On the particle physics side, the main uncertainty on the relic density arises from the (co-)annihilation cross sections of the dark matter particle. After a motivation for including higher order corrections in the prediction of the relic density, the DM rate at NLO-project will be presented, a software package that allows for the computation of the neutralino (co-)annihilation cross sections including SUSY-QCD corrections at the one-loop level and the evaluation of their effect on the relic density using a link to the public codes MicrOMEGAs and DarkSUSY. Recent results of the impact of SUSY-QCD corrections on the neutralino (co-)annihilation cross section as well as further ongoing projects in the context of the DM rate at NLO-project are discussed.
Seifina, Elena; Titarchuk, Lev; Shaposhnikov, Nikolai
2014-01-01
We present the results of a comprehensive investigation on the evolution of spectral and timing properties of the Galactic black hole candidate 4U 1630-47 during its spectral transitions. In particular, we show how a scaling of the correlation of the photon index of the Comptonized spectral component gamma with low-frequency quasi-periodic oscillations (QPOs), ?(sub L), and mass accretion rate, M, can be applied to the black hole mass and the inclination angle estimates.We analyze the transition episodes observed with the Rossi X-Ray Timing Explorer and BeppoSAX satellites.We find that the broadband X-ray energy spectra of 4U 1630-47 during all spectral states can be modeled by a combination of a thermal component, a Comptonized component, and a red-skewed iron-line component. We also establish that gamma monotonically increases during transition from the low-hard state to the high-soft state and then saturates for high mass accretion rates. The index saturation levels vary for different transition episodes. Correlations of gamma versus ?(sub L) also show saturation at gamma (is) approximately 3. Gamma -M and gamma -?(sub L) correlations with their index saturation revealed in 4U 1630-47 are similar to those established in a number of other black hole candidates and can be considered as an observational evidence for the presence of a black hole in these sources. The scaling technique, which relies on XTE J1550-564, GRO 1655-40, and H1743-322 as reference sources, allows us to evaluate a black hole mass in 4U 1630-47 yielding M(sub BH) (is) approximately 10 +/- 0.1 solar masses and to constrain the inclination angle of i (is) approximately less than 70 deg.
Reaching towards higher masses of supersymmetric particles
Olsen, Agnethe Seim
This thesis presents an optimisation of the search for SUSY in final states with one tau lepton, jets and large missing transverse energy. The search is performed in proton-proton collisions at sqrt(s) = 8TeV corresponding to an integrated luminosity of 20.3 fb^(−1). The SUSY model considered is mSUGRA with parameter values: m0 and m1/2 are treated as grid parameters, A0 = −2m0, tan beta = 30 and mu>0. The event selection is optimised for maximal sensitivity to mSUGRA in the low m0, high m1/2 region of the mass plane. The result of the optimised analysis is interpreted in the mSUGRA model and a limit in the (m0, m1/2) plane is obtained. Values of m1/2 up to 640 GeV are excluded for low m0 and 300 GeV for high m0 ( 2000 GeV < m0 < 5400 GeV).
Energy Technology Data Exchange (ETDEWEB)
Genzel, R.; Tacconi, L. J.; Lutz, D.; Berta, S.; Burkert, A. [Max-Planck-Institut für Extraterrestrische Physik (MPE), Giessenbachstr., D-85748 Garching (Germany); Saintonge, A. [Department of Physics and Astronomy, University College London, Gower Place, London WC1E 6BT (United Kingdom); Magnelli, B. [Argelander-Institut für Astronomie, Universität Bonn, Auf dem Hügel 71, D-53121 Bonn (Germany); Combes, F. [Observatoire de Paris, LERMA, CNRS, 61 Av. de l' Observatoire, F-75014 Paris (France); García-Burillo, S. [Observatorio Astronómico Nacional-OAN, Observatorio de Madrid, Alfonso XII, 3, 28014 Madrid (Spain); Neri, R.; Boissier, J. [IRAM, 300 Rue de la Piscine, F-38406 St. Martin d' Heres, Grenoble (France); Bolatto, A. [Department of Astronomy, University of Maryland, College Park, MD 20742-2421 (United States); Contini, T.; Boone, F.; Bouché, N. [Institut d' Astrophysique et de Planétologie, Universite de Toulouse, 9 Avenue du Colonel Roche BP 44346, F-31028 Toulouse Cedex 4 (France); Lilly, S.; Carollo, M. [Institute of Astronomy, Department of Physics, Eidgenössische Technische Hochschule, CH-8093 ETH Zürich (Switzerland); Bournaud, F. [Service d' Astrophysique, DAPNIA, CEA/Saclay, F-91191 Gif-sur-Yvette Cedex (France); Colina, L. [CSIC Instituto Estructura Materia, C/Serrano 121, E-28006 Madrid (Spain); Cooper, M. C., E-mail: linda@mpe.mpg.de, E-mail: genzel@mpe.mpg.de [Department of Physics and Astronomy, Frederick Reines Hall, University of California, Irvine, CA 92697 (United States); and others
2015-02-10
We combine molecular gas masses inferred from CO emission in 500 star-forming galaxies (SFGs) between z = 0 and 3, from the IRAM-COLDGASS, PHIBSS1/2, and other surveys, with gas masses derived from Herschel far-IR dust measurements in 512 galaxy stacks over the same stellar mass/redshift range. We constrain the scaling relations of molecular gas depletion timescale (t {sub depl}) and gas to stellar mass ratio (M {sub mol} {sub gas}/M{sub *} ) of SFGs near the star formation ''main-sequence'' with redshift, specific star-formation rate (sSFR), and stellar mass (M{sub *} ). The CO- and dust-based scaling relations agree remarkably well. This suggests that the CO → H{sub 2} mass conversion factor varies little within ±0.6 dex of the main sequence (sSFR(ms, z, M {sub *})), and less than 0.3 dex throughout this redshift range. This study builds on and strengthens the results of earlier work. We find that t {sub depl} scales as (1 + z){sup –0.3} × (sSFR/sSFR(ms, z, M {sub *})){sup –0.5}, with little dependence on M {sub *}. The resulting steep redshift dependence of M {sub mol} {sub gas}/M {sub *} ≈ (1 + z){sup 3} mirrors that of the sSFR and probably reflects the gas supply rate. The decreasing gas fractions at high M{sub *} are driven by the flattening of the SFR-M {sub *} relation. Throughout the probed redshift range a combination of an increasing gas fraction and a decreasing depletion timescale causes a larger sSFR at constant M {sub *}. As a result, galaxy integrated samples of the M {sub mol} {sub gas}-SFR rate relation exhibit a super-linear slope, which increases with the range of sSFR. With these new relations it is now possible to determine M {sub mol} {sub gas} with an accuracy of ±0.1 dex in relative terms, and ±0.2 dex including systematic uncertainties.
Weber, Jan; Link, Mathias; Primig, Robert; Pitzer, Dana; Wersing, Wolfram; Schreiter, Matthias
2007-02-01
Solidly mounted (SMR-type) thin film bulk acoustic resonators operating at 2.2, 4.1, and 8.0 GHz and with lateral extents from 30 to 500 microm were fabricated and their performance as mass sensors was evaluated theoretically as well as experimentally. It was found that increasing the frequency leads to a principally improved performance of these devices. Problems arising for the horizontal as well as the vertical dimension and structure are investigated.
Barrier Island Dynamics Using Mass Center Analysis: A New Way to Detect and Track Large-Scale Change
Directory of Open Access Journals (Sweden)
Paul Paris
2014-01-01
Full Text Available A geographic information system (GIS was used to introduce and test a new method for quantitatively characterizing topographic change. Borrowing from classic Newtonian mechanics, the concept of a body’s center of mass is applied to the geomorphic landscape, and the barrier island environment in particular, to evaluate the metric’s potential as a proxy for detecting, tracking and visualizing change. Two barrier islands along North Carolina’s Outer Banks are used to test this idea: Core Banks, uninhabited and largely-undeveloped, and Hatteras Island, altered by the presence of a protective dune system. Findings indicate that for Core Banks, the alongshore change in the center of mass is in accord with dominate littoral transport and wind conditions. Cross-shore change agrees with independent estimates for the island migration rates. This lends credence to our assertion that the mass center metric has the potential to be a viable proxy for describing wholesale barrier migration and would be a valuable addition to the already-established ocean shoreline and subaerial volume metrics. More research is, however, required to demonstrate efficacy.
Xiong, Jun Ying
2016-12-29
A comprehensive analysis of fluid motion, mass transport, thermodynamics and power generation during pressure retarded osmotic (PRO) processes was conducted. This work aims to (1) elucidate the fundamental relationship among various membrane properties and operation parameters and (2) analyse their individual and combined impacts on PRO module performance. A state-of-the-art inner-selective thin-film composite (TFC) hollow fiber membrane was employed in the modelling. The analyses of mass transfer and Gibbs free energy of mixing indicate that the asymmetric nature of hollow fibers results in more significant external concentration polarization (ECP) in the lumen side of the inner-selective hollow fiber membranes. In addition, a trade-off relationship exists between the power density (PD) and the specific energy (SE). The PD vs. SE trade-off upper bound may provide a useful guidance whether the flowrates of the feed and draw solutions should be further optimized in order to (1) minimize the boundary thickness and (2) maximize the osmotic power generation. Two new terms, mass transfer efficiency and power harvesting efficiency for osmotic power generation, have been proposed. This work may provide useful insights to design and operate PRO modules with enhanced performance so that the PRO process becomes more promising in real applications in the near future.
The Charged Lepton Mass Matrix and Non-zero θ13 with TeV Scale New Physics.
Rashed, Ahmed; Datta, Alakabha
2012-03-01
We provide an explicit structure of the charged lepton mass matrix which is 2-3 symmetric except for a single breaking of this symmetry by the muon mass. We identify a flavor symmetric limit for the mass matrices where the first generation is decoupled from the other two in the charged lepton sector while in the neutrino sector the third generation is decoupled from the first two generations. The leptonic mixing in the symmetric limit can be, among other structures, the bi-maximal (BM) or the tri-bimaximal (TBM) mixing. Symmetry breaking effects are included both in the charged lepton and the neutrino sector to produce corrections to the leptonic mixing and explain the recent θ13 measurements. A model that extends the SM by three right handed neutrinos, an extra Higgs doublet, and two singlet scalars is introduced to generate the leptonic mixing.[4pt] This work was supported in part by the US-Egypt Joint Board on Scientific and Technological Co-operation award (Project ID: 1855) administered by the US Department of Agriculture, summer grant from the College of Liberal Arts, University of Mississippi and in part by the National Science Foundation under Grant No. 1068052 and 1066293 and the hospitality of the Aspen Center for Physics.
Energy Technology Data Exchange (ETDEWEB)
Deur, Alexandre [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Brodsky, Stanley J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); de Teramond, Guy F. [Univ. de Costa Rica, San Jose (Costa Rica)
2015-04-06
Quantum Chromodynamics (QCD) provides a fundamental description of the physics binding quarks into protons, neutrons, and other hadrons. QCD is well understood at short distances where perturbative calculations are feasible. Establishing an explicit relation between this regime and the large-distance physics of quark confinement has been a long-sought goal. A major challenge is to relate the parameter Λ_{s}, which controls the predictions of perturbative QCD (pQCD) at short distances, to the masses of hadrons. Here we show how new theoretical insights into QCD's behavior at large and small distances lead to an analytical relation between hadronic masses and Λ_{s}. The resulting prediction, Λ_{s} = 0.341 ± 0.024 GeV agrees well with the experimental value 0.339 ± 0.016 GeV. Conversely, the experimental value of Λ_{s} can be used to predict the masses of hadrons, a task which had so far only been accomplished through intensive numerical lattice calculations, requiring several phenomenological input parameters.
Energy Technology Data Exchange (ETDEWEB)
Grier, C. J.; Martini, P.; Peterson, B. M.; Pogge, R. W.; Zu, Y. [Department of Astronomy, Ohio State University, 140 W 18th Avenue, Columbus, OH 43210 (United States); Watson, L. C. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Bentz, M. C. [Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303 (United States); Dasyra, K. M. [Observatoire de Paris, LERMA (CNRS:UMR8112), 61 Avenue de l' Observatoire, F-75014, Paris (France); Dietrich, M. [Department of Physics and Astronomy, Ohio University, Athens, OH 45601 (United States); Ferrarese, L. [Herzberg Institute of Astrophysics, National Research Council of Canada, 5071 West Saanich Road, Victoria BV V9E 2E7 (Canada)
2013-08-20
We present new stellar velocity dispersion measurements for four luminous quasars with the Near-Infrared Integral Field Spectrometer instrument and the ALTAIR laser guide star adaptive optics system on the Gemini North 8 m telescope. Stellar velocity dispersion measurements and measurements of the supermassive black hole (BH) masses in luminous quasars are necessary to investigate the coevolution of BHs and galaxies, trace the details of accretion, and probe the nature of feedback. We find that higher-luminosity quasars with higher-mass BHs are not offset with respect to the M{sub BH}-{sigma}{sub *} relation exhibited by lower-luminosity active galactic nuclei (AGNs) with lower-mass BHs, nor do we see correlations with galaxy morphology. As part of this analysis, we have recalculated the virial products for the entire sample of reverberation-mapped AGNs and used these data to redetermine the mean virial factor (f) that places the reverberation data on the quiescent M{sub BH}-{sigma}{sub *} relation. With our updated measurements and new additions to the AGN sample, we obtain (f) = 4.31 {+-} 1.05, which is slightly lower than, but consistent with, most previous determinations.
Pore-scale studies of interphase mass and heat transfer during two-phase flow in porous media
Hassanizadeh, S. M.; Karadimitriou, N.; Zhang, Q.; Nuske, P.
2015-12-01
Micro-models have been proven to be a valuable tool in porous media studies by allowing the observation of flow and transport on the micro-scale. They help to increase our insight of flow and transport phenomena on both micro- and macro-scales. A micro-model is an artificial representation of a porous medium, made of a transparent material. We have used Poly-Di-Methyl-Siloxane (PDMS), which is a viscoelastic, silicon-based organic polymer. It is optically transparent, inert, non-toxic, and non-flammable. We have studied capillary phenomena, colloid transport, and heat transfer during two-phase flow. We have shown that capillarity phenomena are controlled by fluid-fluid interfaces at the micro-scale. In colloid transport experiments, we directly observe colloids movement, their retention at interfaces, and mobilization with the moving interface and contact lines. We have also performed heat transport experiments where the two fluids have distinctly different temperatures at the pore scale. Under such conditions, fluid-fluid interfaces play a major role in heat transport processes. Our results suggest that average fluid-fluid interfacial area could be an important state variable for the macroscale description of two-phase flow and transport processes.
Klöckner, Wolf; Gacem, Riad; Anderlei, Tibor; Raven, Nicole; Schillberg, Stefan; Lattermann, Clemens; Büchs, Jochen
2013-12-02
Among disposable bioreactor systems, cylindrical orbitally shaken bioreactors show important advantages. They provide a well-defined hydrodynamic flow combined with excellent mixing and oxygen transfer for mammalian and plant cell cultivations. Since there is no known universal correlation between the volumetric mass transfer coefficient for oxygen kLa and relevant operating parameters in such bioreactor systems, the aim of this current study is to experimentally determine a universal kLa correlation. A Respiration Activity Monitoring System (RAMOS) was used to measure kLa values in cylindrical disposable shaken bioreactors and Buckingham's π-Theorem was applied to define a dimensionless equation for kLa. In this way, a scale- and volume-independent kLa correlation was developed and validated in bioreactors with volumes from 2 L to 200 L. The final correlation was used to calculate cultivation parameters at different scales to allow a sufficient oxygen supply of tobacco BY-2 cell suspension cultures. The resulting equation can be universally applied to calculate the mass transfer coefficient for any of seven relevant cultivation parameters such as the reactor diameter, the shaking frequency, the filling volume, the viscosity, the oxygen diffusion coefficient, the gravitational acceleration or the shaking diameter within an accuracy range of +/- 30%. To our knowledge, this is the first kLa correlation that has been defined and validated for the cited bioreactor system on a bench-to-pilot scale.
2013-01-01
Background Among disposable bioreactor systems, cylindrical orbitally shaken bioreactors show important advantages. They provide a well-defined hydrodynamic flow combined with excellent mixing and oxygen transfer for mammalian and plant cell cultivations. Since there is no known universal correlation between the volumetric mass transfer coefficient for oxygen kLa and relevant operating parameters in such bioreactor systems, the aim of this current study is to experimentally determine a universal kLa correlation. Results A Respiration Activity Monitoring System (RAMOS) was used to measure kLa values in cylindrical disposable shaken bioreactors and Buckingham’s π-Theorem was applied to define a dimensionless equation for kLa. In this way, a scale- and volume-independent kLa correlation was developed and validated in bioreactors with volumes from 2 L to 200 L. The final correlation was used to calculate cultivation parameters at different scales to allow a sufficient oxygen supply of tobacco BY-2 cell suspension cultures. Conclusion The resulting equation can be universally applied to calculate the mass transfer coefficient for any of seven relevant cultivation parameters such as the reactor diameter, the shaking frequency, the filling volume, the viscosity, the oxygen diffusion coefficient, the gravitational acceleration or the shaking diameter within an accuracy range of +/− 30%. To our knowledge, this is the first kLa correlation that has been defined and validated for the cited bioreactor system on a bench-to-pilot scale. PMID:24289110
Yan, X. L.; Jiang, C. W.; Xue, Z. K.; Wang, J. C.; Priest, E. R.; Yang, L. H.; Kong, D. F.; Cao, W. D.; Ji, H. S.
2017-08-01
Solar flares and coronal mass ejections are the most powerful explosions in the Sun. They are major sources of potentially destructive space weather conditions. However, the possible causes of their initiation remain controversial. Using high-resolution data observed by the New Solar Telescope of Big Bear Solar Observaotry, supplemented by Solar Dynamics Observatory observations, we present unusual observations of a small-scale emerging flux rope near a large sunspot, whose eruption produced an M-class flare and a coronal mass ejection. The presence of the small-scale flux rope was indicated by static nonlinear force-free field extrapolation as well as data-driven magnetohydrodynamics modeling of the dynamic evolution of the coronal three-dimensional magnetic field. During the emergence of the flux rope, rotation of satellite sunspots at the footpoints of the flux rope was observed. Meanwhile, the Lorentz force, magnetic energy, vertical current, and transverse fields were increasing during this phase. The free energy from the magnetic flux emergence and twisting magnetic fields is sufficient to power the M-class flare. These observations present, for the first time, the complete process, from the emergence of the small-scale flux rope, to the production of solar eruptions.
Supernatural supersymmetry and its classic example: M-theory inspired NMSSM
Li, Tianjun; Raza, Shabbar; Wang, Xiao-Chuan
2016-06-01
We briefly review the supernatural supersymmetry (SUSY), which provides a most promising solution to the SUSY electroweak fine-tuning problem. In particular, we address its subtle issues as well. Unlike the minimal supersymmetric standard model (MSSM), the next to MSSM (NMSSM) can be scale invariant and has no mass parameter in its Lagrangian before SUSY and gauge symmetry breakings. Therefore, the NMSSM is a perfect framework for supernatural SUSY. To give the SUSY breaking soft mass to the singlet, we consider the moduli and dilaton dominant SUSY breaking scenarios in M-theory on S1/Z2. In these scenarios, SUSY is broken by one and only one F term of moduli or dilaton, and the SUSY breaking soft terms can be determined via the Kähler potential and superpotential from Calabi-Yau compactification of M-theory on S1/Z2. Thus, as predicted by supernatural SUSY, the SUSY electroweak fine-tuning measure is of unity order. In the moduli dominant SUSY breaking scenario, the right-handed sleptons are relatively light around 1 TeV, stau can even be as light as 580 GeV and degenerate with the lightest neutralino, chargino masses are larger than 1 TeV, the light stop masses are around 2 TeV or larger, the first two-generation squark masses are about 3 TeV or larger, and gluinos are heavier tha.n squarks. In the dilaton dominant SUSY breaking scenario, the qualitative picture remains the same but we have heavier spectra as compared to the moduli dominant SUSY breaking scenario. In addition to it, we have Higgs H2/A1-resonance solutions for dark matter (DM). In both scenarios, the minimal value of DM relic density is about 0.2. To obtain the observed DM relic density, we can consider the dilution effect from supercritical string cosmology or introduce the axino as the lightest supersymmetric particle.
Buler, Jeffrey J; Lyon, Rebecca J; Smolinsky, Jaclyn A; Zenzal, Theodore J; Moore, Frank R
2017-08-29
Migrating birds are under selective pressure to complete long-distance flights quickly and efficiently. Wing morphology and body mass influence energy expenditure of flight, such that certain characteristics may confer a greater relative advantage when making long crossings over ecological barriers by modifying the flight range or speed. We explored the possibility, among light (mass body mass have a lower margin for error in dealing with the exigencies of a long water crossing across the Gulf of Mexico and consequently minimize their travel time or distance. We found that species-mean fat-free body mass and wing tip pointedness independently explained variability among species distributions within ~50 km from the northern coast. In both spring and autumn, lighter (i.e., slower flying) species and species with more rounded wings were concentrated nearest the coastline. Our results support the idea that morphology helps to shape broad-scale bird distributions along an ecological barrier and that migration exerts some selective force on passerine morphology. Furthermore, smaller species with less-efficient flight appear constrained to stopping over in close proximity to ecological barriers, illustrating the importance of coastal habitats for small passerine migrants.
The Higgs mass from a string-theoretic perspective
Energy Technology Data Exchange (ETDEWEB)
Hebecker, Arthur, E-mail: a.hebecker@thphys.uni-heidelberg.de [Institut für Theoretische Physik, Universität Heidelberg, Philosophenweg 19, D-69120 Heidelberg (Germany); Knochel, Alexander K., E-mail: knochel@physik.rwth-aachen.de [Institut für Theoretische Physik, Universität Heidelberg, Philosophenweg 19, D-69120 Heidelberg (Germany); Institut für Theoretische Teilchenphysik und Kosmologie, RWTH Aachen, D-52056 Aachen (Germany); Weigand, Timo, E-mail: t.weigand@thphys.uni-heidelberg.de [Institut für Theoretische Physik, Universität Heidelberg, Philosophenweg 19, D-69120 Heidelberg (Germany)
2013-09-01
The Higgs quartic coupling λ has now been indirectly measured at the electroweak scale. Assuming no new low-scale physics, its running is known and, together with gauge and Yukawa couplings, it is a crucial new piece of information constraining UV completions of the Standard Model. In particular, supersymmetry broken at an intermediate or high energy scale with tanβ=1 (i.e. λ=0) is consistent with present data and has an independent theoretical appeal. We analyze the possible string-theoretic motivations for tanβ=1 (including both the shift-symmetry and the more economical variant of a Z{sub 2} symmetry) in a Higgs sector realized on either 6- or 7-branes. We identify specific geometries where λ≃0 may arise naturally and specify the geometrical problems which need to be solved to determine its precise value in the generic case. We then analyze the radiative corrections to λ. Finally we show that, in contrast to naive expectations, λ<0 at the SUSY breaking scale is also possible. Specifically, string theory may produce an MSSM plus chiral singlet at a very high scale, which immediately breaks to a non-SUSY Standard Model with λ<0. This classically unstable theory then becomes metastable through running towards the IR.
Ma, R.; Zheng, C.; Prommer, H.; Greskowiak, J.; Liu, C.; Zachara, J.; Rockhold, M.
2010-05-01
This study explores field-scale modeling of U(VI) reactive transport through incorporation of laboratory and field data. A field-scale reactive transport model was developed on the basis of laboratory-characterized U(VI) surface complexation reactions (SCRs) and multirate mass transfer processes, as well as field-measured hydrogeochemical conditions at the U.S. Department of Energy, Hanford 300 Area (300 A), Washington. The model was used to assess the importance of multirate mass transfer processes on U(VI) reactive transport and to evaluate the effect of variable geochemical conditions caused by dynamic river water-groundwater interactions on U(VI) plume migration. Model simulations revealed complex spatiotemporal relationships between groundwater composition and U(VI) speciation, adsorption, and plume migration. In general, river water intrusion enhances uranium adsorption and lowers aqueous uranium concentration because river water dilution increases pH and decreases aqueous bicarbonate concentration, leading to overall enhanced U(VI) surface complexation. Strong U(VI) retardation was computed for the field-measured hydrogeochemical conditions, suggesting a slow dissipation of the U(VI) plume, a phenomenon consistent with field observations. The simulations also showed that SCR-retarded U(VI) migration becomes more dynamic and synchronous with the groundwater flow field when multirate mass transfer processes are involved. Breakthrough curves at selected locations and the temporal changes in the calculated mass during the 20 year simulation period indicated that uranium adsorption/desorption never attained steady state because of the dynamic flow field and groundwater composition variations caused by river water intrusion. Thus, the multirate SCR model appears to be a crucial consideration for future reactive transport simulations of uranium contaminants at the Hanford 300 A site and elsewhere under similar hydrogeochemical conditions.
Directory of Open Access Journals (Sweden)
Per Nordin
2014-12-01
Full Text Available Background: Clinical schistosomiasis in endemic countries is treated with a single dose of praziquantel per 40 mg/kg body weight. Treating according to weight, in resource-poor settings when thousands of doses are to be administered in mass treatment campaigns, is considered problematic. A calibrated dose-pole based on height was developed and is now used in mass treatment campaigns for determining the doses for schoolchildren. The dose-pole will generate dose errors since every child population contains individuals that are either short or tall for weight. The aim of this study is to explore whether the WHO praziquantel pole is a satisfactory dose instrument for mass treatment of S. haematobium. Methods: In 1996 and 2002, 1,694 children were surveyed in the Kilimanjaro Region, Tanzania. We compared doses given by weight to doses given by height using descriptive statistics and regression. Conclusions and interpretation: The WHO dose-pole for praziquantel is based on height of the patient; however, children with the same height will differ in weight. Our study shows that children with the same weight could qualify for up to four different dose levels based on their height. The largest variation of doses based on the WHO dose-pole will be found in children below 20 kg of bodyweight. Using bodyweight and tablet halves as the smallest tablet division unit to determine the doses of praziquantel, one only has to identify every 6th kilogram of bodyweight; the doses will then vary a lot less than when using the WHO dose-pole.
Muon anomalous magnetic moment in SUSY B−L model with inverse seesaw
Directory of Open Access Journals (Sweden)
Shaaban Khalil
2016-12-01
Full Text Available Motivated by the tension between the Higgs mass and muon g−2 in minimal supersymmetric standard model (MSSM, we analyze the muon g−2 in supersymmetric B−L extension of the standard model (BLSSM with inverse seesaw mechanism. In this model, the Higgs mass receives extra important radiative corrections proportional to large neutrino Yukawa coupling. We point out that muon g−2 also gets significant contribution, due to the constructive interferences of light neutralino effects. The light neutralinos are typically the MSSM Bino like and the supersymmetric partner of U(1B−L gauge boson (B˜′-ino. We show that with universal soft supersymmetry breaking terms, the muon g−2 resides within 2σ of the measured value, namely ∼20×10−10, with Higgs mass equal to 125 GeV.
Directory of Open Access Journals (Sweden)
Daniel Petras
2017-12-01
Full Text Available Dissolved organic matter (DOM is arguably one of the most complex exometabolomes on earth, and is comprised of thousands of compounds, that together contribute more than 600 × 1015 g carbon. This reservoir is primarily the product of interactions between the upper ocean's microbial food web, yet abiotic processes that occur over millennia have also modified many of its molecules. The compounds within this reservoir play important roles in determining the rate and extent of element exchange between inorganic reservoirs and the marine biosphere, while also mediating microbe-microbe interactions. As such, there has been a widespread effort to characterize DOM using high-resolution analytical methods including nuclear magnetic resonance spectroscopy (NMR and mass spectrometry (MS. To date, molecular information in DOM has been primarily obtained through calculated molecular formulas from exact mass. This approach has the advantage of being non-targeted, accessing the inherent complexity of DOM. Molecular structures are however still elusive and the most commonly used instruments are costly. More recently, tandem mass spectrometry has been employed to more precisely identify DOM components through comparison to library mass spectra. Here we describe a data acquisition and analysis workflow that expands the repertoire of high-resolution analytical approaches available to access the complexity of DOM molecules that are amenable to electrospray ionization (ESI MS. We couple liquid chromatographic separation with tandem MS (LC-MS/MS and a data analysis pipeline, that integrates peak extraction from extracted ion chromatograms (XIC, molecular formula calculation and molecular networking. This provides more precise structural characterization. Although only around 1% of detectable DOM compounds can be annotated through publicly available spectral libraries, community-wide participation in populating and annotating DOM datasets could rapidly increase the
Shapi, M M; Hesso, A
1991-01-02
A number of compounds emitted during the thermal degradation of plastics are potentially toxic. This study was aimed at identifying the volatile compounds emitted during large-scale thermal degradation of poly(acrylonitrile-butadiene-styrene). About 5 g of the sample were degraded at between 25 and 470 degrees C in air and nitrogen in a device that can simulate temperature-programmed thermogravimetry. The volatiles were collected in dichloromethane using the solvent trap technique. Some of the 92 compounds identified by gas chromatography-mass spectrometry were found to have no hitherto documented toxicological profiles, even though they are potentially dangerous.
Bruggink, Cees; Wuhrer, Manfred; Koeleman, Carolien A M; Barreto, Victor; Liu, Yan; Pohl, Chris; Ingendoh, Arnd; Hokke, Cornelis H; Deelder, André M
2005-12-27
A capillary-scale high-pH anion-exchange chromatography (HPAEC) system for the analysis of carbohydrates was developed, in combination with two parallel on-line detection methods of sub-picomolar sensitivity: (1) pulsed amperometric detection (PAD); (2) capillary-scale desalting followed by electrospray ion-trap (IT) mass spectrometry (MS). The capillary chromatographic system combined the superb selectivity of HPAEC that allows routine separation of isomeric oligosaccharides with the information on monosaccharide sequence and linkage positions obtained by MS/MS fragmentation using the IT-MS. The applicability of the system in biomedical research was demonstrated by its use for the analysis of a urine sample of a GM1-gangliosidosis patient. Isomeric glycans in the sample could be resolved by HPAEC and assigned on the basis of the monosaccharide linkage information revealed by on-line IT-MS/MS.
Bennett, G R; Herrmann, M C; Edwards, M J; Spears, B K; Back, C A; Breden, E W; Christenson, P J; Cuneo, M E; Dannenburg, K L; Frederick, C; Keller, K L; Mulville, T D; Nikroo, A; Peterson, K; Porter, J L; Russell, C O; Sinars, D B; Smith, I C; Stamm, R M; Vesey, R A
2007-11-16
On the first inertial-confinement-fusion ignition facility, the target capsule will be DT filled through a long, narrow tube inserted into the shell. microg-scale shell perturbations Delta m' arising from multiple, 10-50 microm-diameter, hollow SiO2 tubes on x-ray-driven, ignition-scale, 1-mg capsules have been measured on a subignition device. Simulations compare well with observation, whence it is corroborated that Delta m' arises from early x-ray shadowing by the tube rather than tube mass coupling to the shell, and inferred that 10-20 microm tubes will negligibly affect fusion yield on a full-ignition facility.
Nevill, A M; Beech, C; Holder, R L; Wyon, M
2010-02-01
We investigated whether the concept II indoor rowing ergometer accurately reflects rowing on water. Forty-nine junior elite male rowers from a Great Britain training camp completed a 2000 m concept II model C indoor rowing ergometer test and a water-based 2000 m single-scull rowing test. Rowing speed in water (3.66 m/s) was significantly slower than laboratory-based rowing performance (4.96 m/s). The relationship between the two rowing performances was found to be R2=28.9% (r=0.538). We identified that body mass (m) made a positive contribution to concept II rowing ergometer performance (r=0.68, Prowing performance (r=0.039, P=0.79). The contribution that m made to single-scull rowing in addition to ergometer rowing speed (using allometric modeling) was found to be negative (Prowing speed. The optimal allometric model to predict single-scull rowing speed was the ratio (ergometer speed xm(-0.23))1.87 that increased R2 from 28.2% to 59.2%. Simply by dividing the concept II rowing ergometer speed by body mass (m0.23), the resulting "power-to-weight" ratio (ergometer speed xm(-0.23)) improves the ability of the concept II rowing performance to reflect rowing on water.
Besjes, Geert Jan; Caron, Sascha
In this thesis, a search for new elementary particles predicted by a theory called supersymmetry (SUSY), which attempts to address shortcomings in our current description of particle physics, the Standard Model, is presented. No events incompatible with the Standard Model are observed, however. The results obtained in this search are also used in fits to a larger supersymmetric model, and combined with different analyses to obtain improved limits on simplified models. In addition, prospects for a similar search at the proposed high-luminosity LHC are discussed. Finally, HistFitter is presented, a program developed to perform searches in high-energy physics. Supersymmetry is searched for in a decay channel with 2 to 6 jets, missing energy, and no leptons in the final state. The coupling of squarks and gluinos to the strong force leads to a final state with many jets, in which the lightest supersymmetric particle produced in the cascade decay escapes the detector unseen. The analysis is designed using 15 signa...
Energy Technology Data Exchange (ETDEWEB)
Humbird, David; Sitaraman, Hariswaran; Stickel, Jonathan; Sprague, Michael A.; McMillan, Jim
2016-11-18
If advanced biofuels are to measurably displace fossil fuels in the near term, they will have to operate at levels of scale, efficiency, and margin unprecedented in the current biotech industry. For aerobically-grown products in particular, scale-up is complex and the practical size, cost, and operability of extremely large reactors is not well understood. Put simply, the problem of how to attain fuel-class production scales comes down to cost-effective delivery of oxygen at high mass transfer rates and low capital and operating costs. To that end, very large reactor vessels (>500 m3) are proposed in order to achieve favorable economies of scale. Additionally, techno-economic evaluation indicates that bubble-column reactors are more cost-effective than stirred-tank reactors in many low-viscosity cultures. In order to advance the design of extremely large aerobic bioreactors, we have performed computational fluid dynamics (CFD) simulations of bubble-column reactors. A multiphase Euler-Euler model is used to explicitly account for the spatial distribution of air (i.e., gas bubbles) in the reactor. Expanding on the existing bioreactor CFD literature (typically focused on the hydrodynamics of bubbly flows), our simulations include interphase mass transfer of oxygen and a simple phenomenological reaction representing the uptake and consumption of dissolved oxygen by submerged cells. The simulations reproduce the expected flow profiles, with net upward flow in the center of column and downward flow near the wall. At high simulated oxygen uptake rates (OUR), oxygen-depleted regions can be observed in the reactor. By increasing the gas flow to enhance mixing and eliminate depleted areas, a maximum oxygen transfer (OTR) rate is obtained as a function of superficial velocity. These insights regarding minimum superficial velocity and maximum reactor size are incorporated into NREL's larger techno-economic models to supplement standard reactor design equations.
Niklas, Karl J; Christianson, Michael L
2011-08-01
The manner in which the area of the leaf lamina (A) scales with respect to the dry mass of the lamina (M) is an important functional trait that is correlated with whole-plant growth rates and habitat preferences across diverse species. However, the extent to which the scaling between these two variables differs among leaves collected from different types of shoots within the canopy of a tree is poorly understood. Should they exist, significant differences in the A vs. M scaling relationship within canopies would raise a number of important questions, in particular what constitutes an adequate sampling procedure to determine the whole-canopy A vs. M relationship. To address this issue, we used a large data set representing 13 biologically distinct categories of leaves sampled from mega- and microsporangiate trees of the dioecious gymnosperm Ginkgo biloba. Analyses of the data for these 13 categories of leaves identify seven statistically significantly different modes of A vs. M scaling that result in significant differences in how specific leaf area (SLA) changes as M varies within the canopies of Ginkgo. These results indicate that the protocols used to sample leaves for the analysis of foliar functional traits such as specific leaf area need to acknowledge and cope with the effects of leaf and shoot polymorphisms on the quantification of functional traits (and on the construction and testing of hypotheses about these traits).
Directory of Open Access Journals (Sweden)
Randee J Kastner
Full Text Available Lymphatic filariasis (LF is a neglected tropical disease for which more than a billion people in 73 countries are thought to be at-risk. At a global level, the efforts against LF are designed as an elimination program. However, current efforts appear to aim for elimination in some but not all endemic areas. With the 2020 goal of elimination looming, we set out to develop plausible scale-up scenarios to reach global elimination and eradication. We predict the duration of mass drug administration (MDA necessary to reach local elimination for a variety of transmission archetypes using an existing model of LF transmission, estimate the number of treatments required for each scenario, and consider implications of rapid scale-up.We have defined four scenarios that differ in their geographic coverage and rate of scale-up. For each scenario, country-specific simulations and calculations were performed that took into account the pre-intervention transmission intensity, the different vector genera, drug regimen, achieved level of population coverage, previous progress toward elimination, and potential programmatic delays due to mapping, operations, and administration.Our results indicate that eliminating LF by 2020 is unlikely. If MDA programs are drastically scaled up and expanded, the final round of MDA for LF eradication could be delivered in 2028 after 4,159 million treatments. However, if the current rate of scale-up is maintained, the final round of MDA to eradicate LF may not occur until 2050.Rapid scale-up of MDA will decrease the amount of time and treatments required to reach LF eradication. It may also propel the program towards success, as the risk of failure is likely to increase with extended program duration.
Higgs mass and muon anomalous magnetic moment in the MSSM with gauge-gravity hybrid mediation
Zhu, Bin; Ding, Ran; Li, Tianjun
2017-08-01
In general, we can propose the hybrid supersymmetry breakings and hybrid mediations in the supersymmetric standard models. In this paper, we study the hybrid mediation for supersymmetry (SUSY) breaking. In particular, we study how to keep the good properties of gravity mediation, gauge mediation, and anomaly mediation, while solving their problems simultaneously. As an example, we consider the gauge-gravity mediation, where all the supersymmetric particles (sparticles) obtain the SUSY breaking soft terms from the traditional gravity mediation while gauge mediation gives dominant contributions to the soft terms in the colored sector due to the splitted messengers. Thus, we can realize the electroweak supersymmetry naturally where the sleptons, sneutrinos, and electroweakinos are light within one TeV while the squarks and gluino are heavy around a few TeVs. Then we can explain 125 GeV Higgs mass, satisfy the LHC SUSY search bounds, and explain the anomalous magnetic moment of muon, etc. Moreover, the gluino and squarks are well beyond the current LHC run II searches.
Search for SUSY photonic signatures in 13 TeV pp collisions with the ATLAS detector.
Arduh, Francisco Anuar; The ATLAS collaboration
2017-01-01
A search for photonic signatures of various generalised models of gauge-mediated supersymmetry breaking is presented at proton--proton collisions at a centre-of-mass energy of 13 TeV. The results are based on 2015-2016 data recorded by the ATLAS detector at the LHC. Different experimental signatures incorporating one or more isolated photon and significant missing transverse momentum are explored.
Lee, Seungchul; Rao, Sankara; Kim, MinJeong; Janghorban Esfahani, Iman; Yoo, ChangKyoo
2015-01-01
Environmental plants are notorious for poor data quality and sensor reliability due to the hostile environment in which the measurement equipment has to function, where the measurements and flow rate equipment in plants must be mutually consistent. The aim of this study is to detect any error in the measured data in an environmental plant and reconcile the data with some gross errors by using a closed data reconciliation of mass balance and the Lagrange multiplier method. A data reconciliation method based on closed-loop mass balance is suggested in order to reduce or remove error within data and obtain reliable process data. The proposed method is applied to a full-scale plant to detect the gross error in measured data, investigate the effects of erroneous data on modelling errors and compare the modelling performances of the faulty data and reconciled data. The results show that the proposed method can efficiently detect any gross error in data, estimate the error-free data by a reconciliation method and enhance the modelling accuracy by using reconciled data. This study provides a simple way to incorporate prior knowledge of plant modelling of a closed-loop mass balancing to identify any gross error and reconcile the faulty measurements.
Alien calculus and a Schwinger-Dyson equation: two-point function with a nonperturbative mass scale
Bellon, Marc P.; Clavier, Pierre J.
2017-10-01
Starting from the Schwinger-Dyson equation and the renormalization group equation for the massless Wess-Zumino model, we compute the dominant nonperturbative contributions to the anomalous dimension of the theory, which are related by alien calculus to singularities of the Borel transform on integer points. The sum of these dominant contributions has an analytic expression. When applied to the two-point function, this analysis gives a tame evolution in the deep euclidean domain at this approximation level, making doubtful the arguments on the triviality of the quantum field theory with positive β -function. On the other side, we have a singularity of the propagator for timelike momenta of the order of the renormalization group invariant scale of the theory, which has a nonperturbative relationship with the renormalization point of the theory. All these results do not seem to have an interpretation in terms of semiclassical analysis of a Feynman path integral.
DEFF Research Database (Denmark)
Palmisano, Giuseppe; Melo-Braga, Marcella Nunes; Engholm-Keller, Kasper
2012-01-01
for false positives. The confusion arises since the protein N-glycosidase F (PNGase F) reaction used to separate N-glycans from formerly glycosylated peptides catalyses the cleavage and deamidates the asparagine residue. This is typically viewed as beneficial since it acts to highlight the modification site....... We have evaluated this common large-scale N-linked glycoproteomic strategy and proved potential pitfalls using Escherichia coli as a model organism, since it lacks the N-glycosylation machinery found in mammalian systems and some pathogenic microbes. After isolation and proteolytic digestion of E......-linked consensus sites based on common N-linked glycoproteomics strategies without proper control experiments. Beside showing the spontaneous deamidation we provide alternative methods for validation that should be used in such experiments....
Alien calculus and a Schwinger-Dyson equation: two-point function with a nonperturbative mass scale
Bellon, Marc P.; Clavier, Pierre J.
2018-02-01
Starting from the Schwinger-Dyson equation and the renormalization group equation for the massless Wess-Zumino model, we compute the dominant nonperturbative contributions to the anomalous dimension of the theory, which are related by alien calculus to singularities of the Borel transform on integer points. The sum of these dominant contributions has an analytic expression. When applied to the two-point function, this analysis gives a tame evolution in the deep euclidean domain at this approximation level, making doubtful the arguments on the triviality of the quantum field theory with positive β -function. On the other side, we have a singularity of the propagator for timelike momenta of the order of the renormalization group invariant scale of the theory, which has a nonperturbative relationship with the renormalization point of the theory. All these results do not seem to have an interpretation in terms of semiclassical analysis of a Feynman path integral.
Hollemeyer, Klaus; Altmeyer, Wolfgang; Heinzle, Elmar; Pitra, Christian
2012-08-30
The identification of fur origins from the 5300-year-old Tyrolean Iceman's accoutrement is not yet complete, although definite identification is essential for the socio-cultural context of his epoch. Neither have all potential samples been identified so far, nor there has a consensus been reached on the species identified using the classical methods. Archaeological hair often lacks analyzable hair scale patterns in microscopic analyses and polymer chain reaction (PCR)-based techniques are often inapplicable due to the lack of amplifiable ancient DNA. To overcome these drawbacks, a matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) method was used exclusively based on hair keratins. Thirteen fur specimens from his accoutrement were analyzed after tryptic digest of native hair. Peptide mass fingerprints (pmfs) from ancient samples and from reference species mostly occurring in the Alpine surroundings at his lifetime were compared to each other using multidimensional scaling and binary hierarchical cluster tree analysis. Both statistical methods highly reflect spectral similarities among pmfs as close zoological relationships. While multidimensional scaling was useful to discriminate specimens on the zoological order level, binary hierarchical cluster tree reached the family or subfamily level. Additionally, the presence and/or absence of order, family and/or species-specific diagnostic masses in their pmfs allowed the identification of mammals mostly down to single species level. Red deer was found in his shoe vamp, goat in the leggings, cattle in his shoe sole and at his quiver's closing flap as well as sheep and chamois in his coat. Canid species, like grey wolf, domestic dog or European red fox, were discovered in his leggings for the first time, but could not be differentiated to species level. This is widening the spectrum of processed fur-bearing species to at least one member of the Canidae family. His fur cap was
Zachara, J. M.
2009-12-01
The 300 A uranium (U) plume at the U.S. DOE Hanford site shows complex seasonal behavior as a result of groundwater-surface water interaction. The plume, which is under regulatory mandated clean-up, has persisted far longer than anticipated and is inadequately described by previous modeling approaches. A field experimental site consisting of 37 wells has been installed within the plume to understand hydrologic and geochemical processes controlling: i.) U resupply to the groundwater, and ii.) U concentrations, migration velocities, and directions in the saturated zone. The site supports various field activities including high-volume saturated zone injections, and monitoring based experiments along hydrologic and geochemical gradients. A project goal is to develop a reactive transport simulator, based on geochemical retardation by kinetically controlled surface surface complexation, to forecast long term plume dynamics, quantify potential U fluxes to the nearby Columbia River, and evaluate the efficacy of proposed remediation strategies. A hierarchical characterization scheme involving laboratory measurements and studies of retrieved core materials, and field hydrologic and geophysical measurements of different kinds is being applied to develop site geostatistical models of hydrologic properties, U distribution, and kinetic and thermodynamic reaction parameters. This presentation will briefly summarize these various activities as background, with subsequent focus on multi-scale studies, measurements, and modeling of U mass transfer that is a dominant coupled process influencing the behavior of U at this site. Our approach to develop a field scale understanding of the roles of mass transfer from the particle to facies scale will be highlighted through discussion of key laboratory and field experimental results.
Mills, S. K.; Phillips, F. M.; Hogan, J. F.; Hendrickx, J. M.
2002-12-01
The Rio Grande is clearly undergoing salinization, manifested by a 50-fold increase in total dissolved solids content between its headwaters in Colorado and the U.S.-Mexico border. To elucidate the causes of this salinization, we conducted an eight-day synoptic sampling campaign in August 2001. This sampling included the river, its major tributaries, and major irrigation drain inflows. Along 1200 km between the river headwaters in Colorado and Fort Quitman, Texas, we collected 110 water samples with an average interval of ~10 km between sampling locales. In the laboratory, samples were analyzed for major constituents including chloride, as well as for bromide and the 36Cl/Cl ratio. Isotopic fingerprinting using the 36Cl/Cl ratio indicates that meteoric waters and deep sedimentary brines respectively account for most of the water and most of the salt inflow to the Rio Grande. The meteoric end member has a 36Cl/Cl ratio of 1100 and a Cl/Br ratio of 30; the brine end member has a 36Cl/Cl ratio of 35 and a Cl/Br ratio of 1150. Using these end member chemistries with USGS stream flow gauging data, we constructed a water- and salt- instantaneous mass balance model of the Rio Grande for the eight-day sampling interval. This model indicates that most water losses from the Rio Grande are due to evaporation from Elephant Butte reservoir, open water evaporation from irrigation ditches, and evapotranspiration of riparian and ditch-bank vegetation. The model also emphasizes the significance of salt input due to deep brine discharge to the river, particularly at the downstream ends of local sedimentary basins of the Rio Grande rift. The Rio Grande receives a smaller amount of salt from saline drains near El Paso, which may be acquiring salt from deep brine discharge as they cross over faults or other structural fluid conduits.
Towards a complete A{sub 4}×SU(5) SUSY GUT
Energy Technology Data Exchange (ETDEWEB)
Björkeroth, Fredrik [School of Physics and Astronomy, University of Southampton,Southampton, SO17 1BJ United Kingdom (United Kingdom); Anda, Francisco J. de [Departamento de Física, CUCEI, Universidad de Guadalajara,Blvd. Marcelino García Barragán 1421, esq Calzada Olímpica, Guadalajara, Jalisco, 44430 (Mexico); Varzielas, Ivo de Medeiros; King, Stephen F. [School of Physics and Astronomy, University of Southampton,Southampton, SO17 1BJ United Kingdom (United Kingdom)
2015-06-22
We propose a renormalisable model based on A{sub 4} family symmetry with an SU(5) grand unified theory (GUT) which leads to the minimal supersymmetric standard model (MSSM) with a two right-handed neutrino seesaw mechanism. Discrete ℤ{sub 9}×ℤ{sub 6} symmetry provides the fermion mass hierarchy in both the quark and lepton sectors, while ℤ{sub 4}{sup R} symmetry is broken to ℤ{sub 2}{sup R}, identified as usual R-parity. Proton decay is highly suppressed by these symmetries. The strong CP problem is solved in a similar way to the Nelson-Barr mechanism. We discuss both the A{sub 4} and SU(5) symmetry breaking sectors, including doublet-triplet splitting, Higgs mixing and the origin of the μ term. The model provides an excellent fit (better than one sigma) to all quark and lepton (including neutrino) masses and mixing with spontaneous CP violation. With the A{sub 4} vacuum alignments, (0,1,1) and (1,3,1), the model predicts the entire PMNS mixing matrix with no free parameters, up to a relative phase, selected to be 2π/3 from a choice of the nine complex roots of unity, which is identified as the leptogenesis phase. The model predicts a normal neutrino mass hierarchy with leptonic angles θ{sub 13}{sup l}≈8.7{sup ∘}, θ{sub 12}{sup l}≈34{sup ∘}, θ{sub 23}{sup l}≈46{sup ∘} and an oscillation phase δ{sup l}≈−87{sup ∘}.
Mass and Spin Measurement with M{sub T2} and MAOS Momentum
Energy Technology Data Exchange (ETDEWEB)
Cho, Won Sang [Department of Physics and Astronomy, Seoul National University, Seoul 151-747 (Korea, Republic of); Choi, Kiwoon [Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Korea, Republic of); Kim, Yeong Gyun [Physics Division, Korea Institute for Advanced Study, Seoul 130-722 (Korea, Republic of); Park, Chan Beom [Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Korea, Republic of)
2010-03-15
We discuss the M{sub T2}-kink method to determine the masses of both the dark matter WIMP and its mother particle produced at the LHC. We then introduce a new kinematic variable, the M{sub T2}-Assisted-On-Shell (MAOS) momentum, that provides a systematic approximation to the invisible particle momenta in hadron collider events producing a pair of invisible particles, and apply it to certain SUSY processes and their UED equivalents to determine the spin of gluino/KK-gluon and of slepton/KK-lepton. An application of the MAOS momentum to the SM Higgs mass measurement is briefly discussed also.
Matsumoto, Akiko; Shimanoe, Chisato; Tanaka, Keitaro; Ichiba, Masayoshi; Hara, Megumi
2017-07-01
Levels of urinary glucocorticoids and their concentration ratios have been analyzed as potential markers for various pathological statuses. Large-scale studies may possibly accelerate the investigations; however, a suitable method needs to be established. Analytical conditions for measurement of urinary glucocorticoids with LCMS were examined. Electrospray ionization in the positive ion mode was applied for detection of cortisol (precursor>product ion: 363.3>121.0), cortisol-d4 (internal standard, IS, 367.4>121.1), and cortisone (361.2>163.2). To maximize ionization, acetic acid-ammonium acetate buffer (18mM) at pH 5.3 was employed as eluent A. A C18 column (100mm×2.1mm, 2.7μm) at 50°C was used for the 9.5min binary gradient separation starting with 60% eluent A with methanol being eluent B. Linear correlations were observed between the concentrations and the peak areas in the concentration range of 1-300ng/mL with correlation coefficients (r) of 0.998 and 0.997 for cortisol and cortisone, respectively, without IS adjustment, and 0.999 with IS adjustment for both cortisol and cortisone. Solid-phase extraction (SPE) using a 2mL centrifuge column was performed for the urine samples, with the original and final volumes being 100μL. The SPE of 12 urine specimens could be performed within 30min. The effect of the sample matrix on the quantification of endogenous compounds present in the urine extract was limited (coefficient of variation (CV) of IS-adjusted matrix factor: 4.4-8.1%; urine extracts of 8 individuals); however, substantial peak reduction of cortisol was observed at low concentrations. Exogenous contaminants originating from the SPE centrifuge column seemed to be a main cause for this phenomenon because the pure-water extract showed similar peak reduction. A recovery of ∼50% was obtained for both cortisol and cortisone. Adjustment with the IS improved the apparent recovery, with ∼100% being obtained for both cortisol and cortisone. The recovery rate
Kovarik, Peter; Hodgson, Richard J; Covey, Tom; Brook, Michael A; Brennan, John D
2005-05-15
Frontal affinity chromatography (FAC) interfaced with electrospray mass spectrometry (ESI-MS) has been reported as a potential method for screening of compound mixtures against immobilized target proteins. However, the interfacing of bioaffinity columns to ESI-MS requires that the eluent that passes through the protein-loaded column have a relatively low ionic strength to produce a stable spray. Such low ionic strength solvents can cause serious problems with protein stability and may also affect binding constants and lead to high nonspecific binding to the column. Herein, we report on the interfacing of bioaffinity columns to matrix-assisted laser desorption/ionization (MALDI) MS/MS as a new platform for FAC/MS studies. Capillary columns containing a monolithic silica material with entrapped dihydrofolate reductase were used for frontal affinity chromatography of small-molecule mixtures. The output from the column was combined with a second stream containing alpha-cyano-hydoxycinnamic acid in methanol and was deposited using a nebulizer-assisted electrospray method onto a conventional MALDI plate that moved relative to the column via a computer-controlled x-y stage, creating a semipermanent record of the FAC run. The use of MALDI MS/MS allowed for buffers with significantly higher ionic strength to be used for FAC studies, which reduced nonspecific binding of ionic compounds and allowed for better retention of protein activity over multiple runs. Following deposition, MALDI analysis required only a fraction of the chromatographic run time, and the deposited track could be rerun multiple times to optimize ionization parameters and allow signal averaging to improve the signal-to-noise ratio. Furthermore, high levels of potential inhibitors could be detected via MALDI with limited ion suppression effects. Both MALDI- and ESI-based analysis showed similar retention of inhibitors present in compound mixtures when using identical ionic strength conditions. The results
SUSY searches with two opposite-sign same-flavor leptons at CMS
Sanchez Cruz, Sergio
2016-01-01
A search is presented for physics beyond the standard model in final states with two opposite-sign same-flavor leptons, jets, and missing transverse momentum. The data sample corresponds to an integrated luminosity of 2.2 inverse fb of proton-proton collisions at sqrt{s}=13 TeV collected with the CMS detector at the CERN LHC in 2015. The analysis focuses on the invariant mass distribution of the lepton pair, searching for a kinematic edge or a resonant-like excess compatible with the Z boson mass. The kinematic edge search includes phase-space regions matching the previous 8 TeV analysis where CMS reported a 2.6 sigma excess. The resonant Z boson peak search includes a region where ATLAS reported a 3.0 sigma excess at 8 TeV. Additional event categories are included in both searches beyond those in the 8 TeV analysis to increase sensitivity to new physics.The observations in all signal regions are consistent with the expectations from the standard model,and the results are interpreted in the context of simplif...
Di-boson production and SM SUSY Higgs searches at the Tevatron
Energy Technology Data Exchange (ETDEWEB)
Elvira, V.Daniel; /Fermilab
2005-07-01
The discovery of the Higgs boson would be a major success for the Standard Model (SM) and would provide further insights into the electroweak symmetry breaking mechanism. This report contains the latest results from the D0 and CDF Tevatron experiments on searches for the SM Higgs produced from gluon fusion with H {yields} WW, and in association with a W boson. It also includes searches for a supersymmetric Higgs in the b{bar b} and {tau}{sup +}{tau}{sup -} decay channels. The study of di-boson production at the Tevatron is important to understand backgrounds in high mass Higgs searches. It also provides a test of the SM through the measurement of the production cross section and the gauge boson self couplings. This paper includes measurements of the WW, W{gamma}, and WZ production cross sections, as well as limits on the anomalous couplings associated with the WW{gamma} and WWZ interactions. The results are based on sets of up to 320 pb{sup -1} of data collected by the D0 and CDF experiments at the {bar p}p Tevatron collider, running at a center-of-mass energy of 1.96 TeV.
Jorm, Christine; Roberts, Chris; Lim, Renee; Roper, Josephine; Skinner, Clare; Robertson, Jeremy; Gentilcore, Stacey; Osomanski, Adam
2016-03-08
There is little research on large-scale complex health care simulations designed to facilitate student learning of non-technical skills in a team-working environment. We evaluated the acceptability and effectiveness of a novel natural disaster simulation that enabled medical students to demonstrate their achievement of the non-technical skills of collaboration, negotiation and communication. In a mixed methods approach, survey data were available from 117 students and a thematic analysis undertaken of both student qualitative comments and tutor observer participation data. Ninety three per cent of students found the activity engaging for their learning. Three themes emerged from the qualitative data: the impact of fidelity on student learning, reflexivity on the importance of non-technical skills in clinical care, and opportunities for collaborative teamwork. Physical fidelity was sufficient for good levels of student engagement, as was sociological fidelity. We demonstrated the effectiveness of the simulation in allowing students to reflect upon and evidence their acquisition of skills in collaboration, negotiation and communication, as well as situational awareness and attending to their emotions. Students readily identified emerging learning opportunities though critical reflection. The scenarios challenged students to work together collaboratively to solve clinical problems, using a range of resources including interacting with clinical experts. A large class teaching activity, framed as a simulation of a natural disaster is an acceptable and effective activity for medical students to develop the non-technical skills of collaboration, negotiation and communication, which are essential to team working. The design could be of value in medical schools in disaster prone areas, including within low resource countries, and as a feasible intervention for learning the non-technical skills that are needed for patient safety.
Chen, Daoyang; Shen, Xiaojing; Sun, Liangliang
2017-06-21
Better peptide separation is required for bottom-up proteomics for further improving the proteome coverage. The two-dimensional liquid chromatography (2D-LC) systems only explore differences among peptides in their hydrophobicity (reversed-phase, RP) and charge (strong cation/anion exchange, SCX/SAX). Alternative separation techniques with different separation mechanisms are required to further improve the separation. Capillary zone electrophoresis (CZE) is an attractive alternative because it has high efficiency for separation of biomolecules and it separates analytes based on their size-to-charge ratios, complementary with LC. However, the low loading capacity and narrow separation window of CZE limit its wide application for large-scale proteomics. In this manuscript, we present an automated CZE-mass spectrometry (MS) system for solving those issues. The CZE-MS system can approach at least half-a-microliter loading capacity with good robustness and reproducibility, can routinely use over 12% of the available sample in the sample vial for analysis, and can generate a 140 min separation window and high peak capacity (∼380) for complex proteome analysis. The results represent the highest peak capacity and the widest separation window of CZE for peptide separation with a microliter-scale loading capacity. It is the first time that CZE-MS approaches both the microliter-scale loading capacity and over 2-hour separation window for analysis of complex samples. The automated CZE-MS system dramatically reduces the gap between CZE-MS and RPLC-MS in terms of loading capacity, separation window and peak capacity. It truly opens the door for large-scale bottom-up proteomics using CZE-MS.
Directory of Open Access Journals (Sweden)
G. Baumgarten
2009-03-01
Full Text Available During the ECOMA/MASS rocket campaign large scale NLC/PMC was observed by satellite, lidar and camera from polar to mid latitudes. We examine the observations from different instruments to investigate the morphology of the cloud. Satellite observations show a planetary wave 2 structure. Lidar observations from Kühlungsborn (54° N, Esrange (68° N and ALOMAR (69° N show a highly dynamic NLC layer. Under favorable solar illumination the cloud is also observable by ground-based cameras. The cloud was detected by cameras from Trondheim (63° N, Juliusruh (55° N and Kühlungsborn. We investigate planetary scale morphology and local scale gravity wave structures, important for the interpretation of the small scale rocket soundings. We compare in detail the lidar observations with the NLC structure observed by the camera in Trondheim. The ALOMAR RMR-lidar observed only a faint NLC during the ECOMA launch window, while the camera in Trondheim showed a strong NLC display in the direction of ALOMAR. Using the high resolution camera observations (t~30 s, Δx<5 km and the wind information from the meteor radar at ALOMAR we investigate the formation and destruction of NLC structures. We observe that the NLC brightness is reduced by a factor of 20–40 within 100 s which can be caused by a temperature about 15 K above the frostpoint temperature. A horizontal temperature gradient of more than 3 K/km is estimated.
SARAH goes left and right looking beyond the Standard Model and meets SUSY
Energy Technology Data Exchange (ETDEWEB)
Opferkuch, Toby Oliver
2017-07-07
Progress in the search for physics beyond the Standard Model (BSM) proceeds through two main avenues. The first requires the development of models that address the host of theoretical and experimental deficiencies of the Standard Model (SM). The second avenue requires scrutinising these models against all available data as well as checks for theoretical consistency. Unfortunately there exists a large number of strongly motivated models as well as an absence of any signs illuminating the correct path nature has chosen. With the lack of a clear direction, automated tools provide an effective means to test as many models as possible. In this thesis we demonstrate how the SARAH framework can be used in this context as well as its adaptability for confronting unexpected hints of new physics, such as the diphoton excess, that have arisen at the Large Hadron Collider (LHC) over the previous years. We then turn to more theoretical constraints namely, studying the stability of the electroweak vacuum in minimal supersymmetric models. Here we studied the impact of previously neglected directions when including non-standard vacuum expectation values. In the second half of this thesis we consider low-scale left-right symmetric models both with and without supersymmetry. In the non-supersymmetric case we consider constraints arising from charged lepton flavour violation. We have significantly improved existing parametrisations allowing for the new Yukawa couplings to be determined as a function of the underlying model parameters. The last scenario we consider is a model based on SO(10) unification at the high-scale. We build a complete model with TeV-scale breaking of the left-right phase studying in detail the phenomenology.